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Reduction of the MSE in R-times Oversampled
A/D Conversion from O(1/R) to O(1/R?)

Nguyen T. Thao and Martin Vetterli

Abstract—1In oversampled analog-to-digital conversion, the usual re-
construction method using lowpass filtering leads to a mean squared
error (MSE) inversely proportional to the oversampling ratio R. In this
correspondence, we prove, under certain assumptions and with periodic
analog input signals, that optimal reconstruction achieves an MSE with
an oversampling ratio dependence order of at least O(1/R?). That is, an
MSE slope of —6 dB per octave of oversampling is obtained, rather than
the conventional —3 dB/octave slope of classical schemes.

1. INTRODUCTION

Analog-to-digital conversion consists of discretizing an analog
signal in time and in amplitude. Shannon’s well-known sampling
theorem [1] guarantees that when a bandlimited signal is sampled
only in time at the Nyquist rate or above, no information is lost.
It also gives an analytical expression for the reconstruction of the
bandlimited signal from its samples. Results on reconstruction were
also obtained by Logan [2] when the analog signal is discretized
only in amplitude. Under certain assumptions, he showed that an
octave band signal is uniquely defined by its zero crossings, up to
a multiplicative constant. This corresponds to amplitude quantization
to regions having positive and negative values. However, in practical
A/D conversion, analog signals are discretized both in time and
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amplitude (see Fig. 1). Few analytical results have been derived
about the reconstruction of an analog signal from its discrete-time
discrete-amplitude (DTDA) version.

Of course, if the signal is sampled in time at the Nyquist rate and
uniformly quantized with a step size ¢. then the quantization error is
given by ¢°/12. A more interesting scenario results when the samples
are taken above the Nyquist rate, i.e., when oversampling occurs.
The classical reconstruction method consists in lowpass filtering the
quantized signal, thus preserving the original bandlimited signal but
reducing the power of the quantization error signal in proportion to
the oversampling ratio R (under certain assumptions [3], [4]).

However, the following insight indicates that the classical recon-
struction method may not be optimal in the mean squared error
(MSE) sense. Halving the amplitude quantization step size will
reduce the quantization error by a factor of 4 in the MSE sense, but
halving the sampling period will only reduce the quantization error
by 2. This inhomogeneity in the time and amplitude dimensions is
counterintuitive. We will show that optimal reconstruction leads to
homogeneity, that is, halving either amplitude or time quantization
leads to a reduction of quantization error by a factor of 4.

The suboptimality in classical reconstruction stems from the fact
that a requantization of the lowpass filtered reconstruction does not
in general lead to the same quantized signal [5], {6]. That is, the
DTDA version of the original signal is different from the DTDA
version of the lowpass filtered reconstruction. It was shown in [5]
and [6] that an estimate which does not reproduce the DTDA version
of the original signal can be automatically improved in terms of MSE.
Therefore, by necessity, any optimal reconstruction scheme should at
least provide an estimate which reproduces the DTDA version of the
original signal.

In this correspondence, we analyze the MSE of an estimate given
by an optimal reconstruction scheme, with the assumption that the
analog signals are periodic in the time interval in which they are
coded. Assuming that the original signal has a minimum number of
quantization threshold crossings (QTC’s), we show that the MSE is
at least inversely proportional to R” instead of R. for R high enough.

This result is the consequence of an analysis of the information
present in the DTDA signal. After defining the mathematical context
of our derivations in Section II, we show in Section III that when
the oversampling ratio is high enough, the DTDA signal gives the
location of the analog signal’s QTC’s with a time uncertainty equal
to the sampling period. As shown in Section IV, this implies the
O(1/R?) behavior of the MSE.

II. MATHEMATICAL CONTEXT AND NOTATIONS

As mentioned in the Introduction, we consider that the bandlimited
signals are sampled and quantized on the time interval [0, 7] and are
T-periodic. We designate such signals using boldface italic capital
letters, like X. We denote the value of X at time t by X[t].
Bandlimited and T -periodic real signals necessarily have a finite
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Fourier expansion as follows:
A
Xfl= Y XD wih X =X €C
i=—AT

(where j = V—1). (§)]

The number of nonzero low-frequency components is 11" = 23/ +1.
and characterizes the bandwidth of X . We will simply say that X has
a bandwidth equal to W~ The space of bandlimited signals defined in
(1) is called V. Given a bandwidth 1§ because of the Hermitian
symmetry of the coefficients (X.)-1r<i<a.V is a real space of
dimension W. According to Parseval’s equality

(x[ \X[rnz(u)l/z

M 1/2
(Z \X,P) = 15| @

1=—AI

X1

where X = [X_.r--- X17)7 € C" is called the associated vector
of X. The distance between two signals X and X' of V will be
measured by their MSE defined by MSE(X.X") = || X' - X|* =
|IX" — X||>. When a signal X € V is given by its associated vector
X. thanks to (1), the values of X at W instants ¢,.---.tu € [0.T]
can be obtained from X as

[X[t] - X[tw])” = Mty ti) - X 3)

where Mt~ tw) s
[EﬂﬂI(lk/T)

the 1§" x 1§" Vandermonde matrix
- . This matrix has the following property

(proved in the Appendix).

Property 2.1: Let § = {(ti.---.tw) €]0.T|" Vi # jit. #
t;}. Then for all (t;.---.tw) € S.M(ty.---.tw) is invert-
ible. Moreover, given a real number 6 > O0.[M(t1.-- .ty )t
is bounded on the set Sy = {(ti.---.tw) € [T} /Vi =
2. Wit >t + 6.

One of the consequences is the following property.

Property 2.2: Let X € V and t,.---.tw €]0.7] be 11~ distinct
instants. Then, X is uniquely defined by X[t:].---. X{tw].

Proof: For this choice of instants ti.--- .ty M(t1.--- . ti)
is invertible, according to Property 2.1. Therefore. X is uniquely
defined by X[t:].---. X[tw] from (3). So is X. O

When a signal of V is sampled, N designates the number of
samples in the time window [0.T]. The sampling period is then
T, = T/N. and the oversampling ratio R is related to .V by
R = N/W. According to the discretization scheme of Fig. 1, the
DTDA version of X is a sequence C of discrete values C'(k). The
discretization mapping from X to C is symbolized as C' = Q[X].

III. INFORMATION IN THE DISCRETE-TIME
DISCRETE-AMPLITUDE SIGNAL

Consider an analog signal X as a 2-D graph with time and
amplitude as the dimensions (Fig. 2(a)). Sampling corresponds to
a discretization of the time axis, while quantization corresponds to a
discretization of the amplitude axis which indicates in what amplitude
interval (or quantization interval) the signal is, at a given sampling
instant. This is shown in Fig. 2(a) as the shaded vertical segments.
The sequence C = Q[X] can be represented by the sequence of
these vertical segments.

Conversely, start from the DTDA signal C of Fig. 2(a) and consider
any analog signal X such that Q{X] = C. When two consecutive
vertical segments of C' show an amplitude jump, like between the
sampling instants 4 and 5, C indicates that X has a QTC between
these two instants. The localization of this QTC is represented in

. sampling
threshold 4 amplitude interval
index _.1 |<_ C
5 44 - :
4
3 v
quantization
interval
. T
1 .
time
+————t—
123456 7 8 910111314 sampling
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(a)
threshold  amplitude
index4 [T %Y g ts C
5 1 L S
4 <4 i
3+
2 4
1 <+
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1 2 3 456 7 8 910111314 sampling
index

(b)

Fig. 2. Information in the discrete-time discrete-amplitude (DTDA) signal:
(a) Derivation of C = Q[X] from X (sequence of shaded vertical segments);
(b) QTC information provided by C about any X such that Q[X] = C. From
the knowledge of C. it is derived that the analog signal has a QTC in each
horizontal segment (represented in dark).

Fig. 2(b) by a horizontal segment. If n is the number of vertical
segment jumps, C gives the localization of n QTC’s in the form of
a sequence (1;.Ji)i<i<n. where I; is the level of the ith QTC, and
I, is the sampling interval when the ith QTC occurs.

Consider now a fixed analog signal X. For this signal, various
sampling rates can be considered. It is possible to choose the
oversampling ratio R high enough so that the sampling period 7 is
less than the minimum distance between any two QTC’s of X In this
situation, X has no more than one QTC per sampling interval. Then,
every QTC of X is necessarily indicated by the sequence C = Q[X).
Indeed, since X crosses a quantization threshold at most once in
a sampling interval, the two vertical segments of C. respectively,
preceding and following a QTC, are necessarily at different amplitude
levels.

We have shown that, when the oversampling ratio is high enough,
the sequence C = Q[X] uniquely characterizes the set of QTC’s
of X. with time precision .. Rigorously speaking, if » is the total
number of QTC’s and X is sampled at a high enough rate, then 1)
the sequence C = Q[X] gives the level /, and the sampling interval
I, of the ith QTC of X. for any i = 1.---.n: and 2) any other
analog signal X' such that Q[X'] = C necessarily has a QTC at the
level I, and in the sampling interval /; for each i = 1.---.n.

IV. MSE UpPER BOUND

The previous section showed that the sequence C' = Q[X) gives
the location of the QTC’s of X with absolute precision in the
amplitude levels, and a time uncertainty equal to the sampling period.
Theoretically speaking, if the oversampling ratio R was infinite, we
would also have infinite precision in the time specification. This
amounts to knowing the amplitude values of X at n particular
instants, where n is the number of QTC's. Suppose, moreover, that
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X € V. From Property 2.2, we know that the values of X at W’
arbitrary known instants uniquely define X. Suppose that X has
W QTC’s. Then, in the limit of R going to infinity, the sequence
C = Q[X] would uniquely define X. Now, when R is finite this is
no longer true. But, according to Section I, if R is high enough,
any other signal X' such that Q[X'] = C has W QTC’s at the same
levels as those of X, respectively, and at instants which differ by
less than the sampling period T, = T/N = TW/R. If, moreover,
X' € V., we show in the next theorem that this QTC property on X'
implies the MSE upper bound MSE(X.X') < ¢/R*, where ¢ is a
positive constant which depends only on X.

Theorem 4.1: Assume that a signal X € V (where V is the space
of signals defined in (1)) and has more than W~ quantization threshold
crossings' in ]0, T]. There exist two constants ¢ > 0 and Ry > 1.
which only depend on X such that: VR > Ro. VX' € V.

X and X' produce the same DTDA signal

= MSE(X.X') < %.

Proof: X may have more than 1" QTC’s, but let us arbitrarily
choose 11" of them, call 0 < #; < --- < tw < T their instants, and
(I1.---.1w) their levels. We have X[t.] = 1; forall : = 1.---, W
Using the convention ¢ty = 0, let § be the minimum distance between
to.---.tw. that is, 6 = miny<,<w (f; — ti—1) (see Fig. 2(b)). Let
us choose R large enough so that the sampling period T, = T/N
is smaller than 6/3. and call (I;.---.Iw ) the sampling intervals
containing (#;.--- .ty ). respectively. Since the sampling intervals
have a length equal to 7. we have: V(t}.---.t}y:) € I} X --+ x Iiy.

-t <T. = = @)

Vi=1,---.1 ¥

From the condition 7, < §/3. we have the following constraint:

Y(t).--- . tiy) € I X -+ x Iy,
. > 1 1 6
Vi=loo W f2dl+ g
with the convention t; = 0 5)
since
ti—ti = (=t 4+ (=t )+ (g — )
P e LA 1 o [
I
>6-T, - T, > -.
- T3

Therefore, I) X - - x In- C Ss/3. Let X' be an element of V which
produces the same DTDA signal as that of X at the oversampling
ratio R = N /M. According to Section III, X' necessarily has QTC’s
at the levels (/1.---.lw) in the sampling intervals (I;.---,Iw).
Therefore, 3(t7.- .ty ) €1 X - x Iw,Vi=1.-.. W.X'[t]] =
l;. This W-tuple (#|.---,t}-) necessarily verifies (4) and (5). Using
(1) and (3), the fact that X'[t;] = X[t;] =, forevery i = 1.---. 11"
can be written

Mt ) X = Mty tw) - X =[he-1w]’. (6)

Subtracting .M(#1,---.tiw) - X' in the two first members of this

''We will not count as QTC’s, points where X [t] reaches a quantization
threshold without crossing it.

equation, we find

(Mt by ) — Mt b)) - X
= Mt b)) (X = X). %)

Because of (4), |t; — t.| is upper bounded by T//N and thus goes

to zero when N goes to infinity. Therefore, in the limit of N going

to ~c. we have’
Mt

th) — Mt tw)

= DBt Gt tw). ®)

According to Property 2.1, the fact that (¢;,---.fw) and
(t).-+.ty) belong to Iy x --- x Iw C Ssgz C S,
implies that M(¢y,---.tw) and M(¢}, --.t}-) are invertible.
Moreover, [M(t}.---.#4-)]”" is bounded, which implies that
X = M@ttt - [l ---Iw]T is bounded (expression
obtained from (6)). Using (7) and (8), we can thus write

X -X ~ ‘—[,\A(tl.~~'.1w')rl

N

-Z(fﬁ—f‘%:fl(fl.-.-,tw)X’. 9

Since X' is bounded, the right-hand side goes to zero when N goes
to 0. Therefore, X' tends to X. and (9) is still true when replacing
X' by X in the right-side.” We obtain

(10

where

_1OM

%, (t1,- - tw) X,

F = — Mt tw)]

For each i = 1.---,W.F, is a vector which depends only on the
signal X . Using the fact that |¢; — ¢;| is upper bounded by T/N, (10)
implies that, for V large enough, || X’ — X|| < T/N SUE]
Using the definition of M SE(X.X') and the fact that N = RW.
the proof is completed by taking ¢ = (T/WZ}L HEHV- O

Remark: The only assumption used in this theorem was the
number of QTC’s of the input signal. For example, this does not
require quantization to be uniform. However, the constant ¢ obtained
in the upper bound may depend on how the input signal crosses
the thresholds. In particular, ¢ depends on F, which contains the
term (8 M /8¢;)(t1,--- . w)- X. One can verify that this expression
contains the slope of X at the ith QTC.

V. CONCLUSION

Under the assumption of periodicity of the bandlimited input
signals and a sufficient number of quantization threshold crossings, it

2The symbol _~ designates the asymptotic equivalence. We recall
that two vectorial funacclions f(N) and g(V) are said to be asymptotically
equivalent when N goes to infinity if and only if ||f(N) — g(N)]| =
o(llg(VN)ID-

3This is valid provided that X # 0. This is indeed the case because the
QTC requirement on X implies that X is a nonzero signal.
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Fig. 3. Experimental results [6] of reconstruction in oversampled A/D

conversion. Classical reconstruction and an optimal reconstruction scheme
(alternating convex projection algorithm [5], [6]) are performed on the DTDA
version of sinusoidal inputs (peak-to-peak amplitude equal to twice the
quantization step size). The MSE of reconstruction is measured for different
oversampling ratios. The alternating convex projection algorithm [5], [6]
achieves approximately an MSE slope of —6 dB/octave of oversampling,
instead of —3 dB/octave in classical reconstruction.

was shown that the upper bound on the reconstruction error decreases
inversely with the square of the oversampling ratio (Theorem 4.1).
This is in contrast with the performance of classical reconstruction,
where the MSE decreases inversely with the oversampling ratio
only. The condition for achieving such a performance is that the
reconstruction produce the same DTDA signal as that of the original
signal. Reconstruction algorithms verifying this condition are given in
[5] and [6] (altemnating convex projections). The experimental results
shown in Fig. 3 [6] confirm the result of Theorem 4.1.

APPENDIX
PROOF OF PROPERTY 2.1

M(ty.--- . tw) is a Vandermonde matrix. Its determinant is equal
© [T arcicare ™MD times TT_ypqopen (€270
e/ /Ty "For (ty.---.tw) € S, such that t; # ¢, for all i # J.
one can check that this determinant is nonzero. This proves that
M(ty, -+ tw) is invertible. Let us write [M(t1.---.ty)]™' =
[Mi(ti1.- . tw)]i<i<w . Using the algebraic expression of the

1<2W
inverse of a matrix, it can be seen that Mj(ti--- . tw) is a
continuous function of (f;.---.tu) on the set S. Let & > 0.
Ss is a subset of .S which is compact, since it is closed and bounded.
Therefore, every coefficient M;;(t1.---.tw ) is bounded on Ss.
since the image of a compact subset through a continuous function
is compact and thus bounded. [M(#;.---.#w)]”" is then bounded
on Ss. 0
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A Mildly Weaker Sufficient Condition in
IIR Adaptive Filtering

Majid Nayeri

Abstract— The cross-covariance matrix of two stable autoregressive
(AR) seq is considered. A mildly weaker condition is identified
that ensures the nonsingularity of this matrix. As one consequence of this
result, a weaker sufficient condition is obtained that would guarantee the
unimodality of the mean-square output error surface of an IIR adaptive
filter with white noise excitation.

I. INTRODUCTION

The two most popular approaches to filtering, identification, pre-
diction, estimation, etc., are the equation error method and the output
error method. Goodwin and Sin [1], and Ljung and Soderstrom [2]
have treated the equation error based algorithms thoroughly from the
perspective of convergence and applications. An attractive feature of
the equation error is its unique minimum mean square equation error
(MSEE) solution regardless of the linear model and the properties of
the input. However, this property is not shared with the output error
method in general when the model is an infinite impulse response
(IIR) filter. But, there are sufficient conditions which guarantee
the uniqueness of the minimum mean square output error (MSOE)
solution in the identification setting [3], where the model (adaptive
filter) can characterize the plant (unknown) completely.

The goal of this paper is to present a weaker sufficient condition
than what was presented in [3] when the input is white noise and the
model is constrained to the minimal parameterization for identifying
the plant. In this paper, first a cross-correlation matrix is introduced
in section II where some of its properties are outlined. In section III,
these properties are used to extract the weaker sufficient condition for
the uniqueness of the IIR identifier which would minimize the MSOE.

II. A CROSS-CORRELATION MATRIX

Consider the m x m matrix P defined by

P(A.C.2.m) = E[om(n)th (n)] 1
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