26

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

Optimal Trellis-Based Buffered Compression
and Fast Approximations

Antonio Ortega, Student Member, IEEE, Kannan Ramchandran, Student Member, IEEE,
and Martin Vetterli, Senior Member, IEEE

Abstract— We formalize the description of the buffer-
constrained adaptive quantization problem. For a given set of
admissible quantizers used to code a discrete nonstationary signal
sequence in a buffer-constrained environment, we formulate
the optimal solution. We also develop slightly suboptimal but
much faster approximations. These solutions are valid for any
globally minimum distortion criterion, which is additive over
the individual elements of the sequence. As a first step, we
define the problem as one of constrained, discrete optimization
and establish its equivalence to some of the problems studied
in the field of imteger programming. Forward dynamic
programming using the Viterbi algorithm is shown to provide
a way of computing the optimal solution. Then, we provide a
heuristic algorithm based on Lagrangian optimization using
an operational rate-distortion framework that, with computing
complexity reduced by an order of magnitude, approaches the
optimally achievable performance. Our algorithms can serve as
a benchmark for assessing the performance of buffer control
strategies and are useful for applications such as multimedia
workstation displays, video encoding for CD-ROM’s, and
buffered JPEG coding environments, where processing delay is
not a concern but decoding buffer size has to be minimized.

I. INTRODUCTION

N RECENT years, spurred by an increased interest in

efficient digital compression techniques, variable bit rate
(VBR) methods for source coding have received renewed
attention. In order to exploit the redundancy present in typical
nonstationary signals, one has to resort to VBR coding to
approach the compression limits set by the source entropy.
On the other hand, when the coded bit stream is transmitted
over constant bit rate (CBR) channels, buffering is needed
to absorb the variations of the instantaneous source bit rate.
Even transmission over asynchronous transfer mode (ATM)
networks for synchronous applications makes it necessary to
buffer the source as excessive delay would produce loss of
information.

Studies of buffered variable-length coding of stationary
memoryless sources [1] have shown that the probability of
eventual buffer overflow is 1 for any buffer size, even when
the average rate of the source is matched to the channel rate.

Manuscript received April 24, 1992; revised March 16, 1993. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Hsueh-Ming Hang. This work was supported by the Fulbright
Commission and the Ministry of Education of Spain, the New York State
Science and Technology Foundation’s CAT at Columbia University, and the
National Science Foundation under grants ECD-88-11111 and MIP-90-14189,

The authors are with the Department of Electrical Engineering and Center
for Telecommunications Research, Columbia University, New York, NY
10027.

[EEE Log Number 9213624,

Hence, a buffer control strategy is necessary even for station-
ary sources. In the case of nonstationary sources (like typical
video sequences), defining efficient buffer control policies for
the use of VBR coding techniques in delay-limited situations
is all the more relevant. Many applications like CD-ROM
storage of images and video sequences, windows applications
for multimedia workstations, buffer-limited JPEG [2] coding,
video broadcast, and MPEG [3] buffer control strategies are
either nonreal time or real time where processing delay is not
an issue. For these finite-buffer constrained coding applica-
tions, computationally expensive methods are admissible if the
complexity-performance tradeoff is worthwhile.

It is possible to resort to a large enough buffer size at
the encoder and decoder in order to absorb source bit rate
variations and thus reduce the significance of the buffer
control algorithms. However, this approach may not only be
unacceptable because of end-to-end delay restrictions but also
economically unwise even when delay is not an issue, as there
may exist “smarter” shorter-buffer solutions that yield the same
performance. In particular, the buffer size at the decoder has
often to be minimized since it represents a significant cost
(e.g., broadcast applications).

This provides the motivation to investigate optimal buffer
control strategies for signal sequences in a finite buffered
environment. Buffer control algorithms have been considered
in the literature in different contexts, especially for video
coding. In early studies of video sequence coding [4] as well as
in some recent ones [5], the approach was to deterministically
map each buffer occupancy level to a fixed coder mode of
operation. Other works [6], [7] propose the use of models
of the coder behavior to set up coding rate predictions. The
control algorithm sets objectives for buffer occupancy and
chooses a mode of operation based on these predictions.
The buffer control problem has been studied in [8] using a
probabilistic model of the coded sequence. Independently of
our work, buffered quantization has been studied in [9].

Buffer control schemes typically have the sole objective
of preventing overflow and do not use a global distortion
measure over the entire sequence to formulate their strategy.
Furthermore, they are “memoryless” in their operation in that
they base their algorithm only on the current buffer occupancy
level. This leads to the consideration of how much better one
could do if one had access to the entire signal sequence to be
coded, i.e., what would be the optimal quantization choice for
each element in the sequence if the entire sequence was known
a priori? The optimality criterion would be a minimum total

1057-7149/94$04.00 © 1994 IEEE

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

distortion measure rather than that of only minimum overflow
probability as the former is more meaningful from a source
coder’s point of view.

Such an optimal solution enables us to quantify the perfor-
mance tradeoffs involving key design parameters like buffer
size, buffer occupancy “granularity,” and quantization choice.
It can also serve as a valuable benchmark for assessing the
performance of other contro! algorithms and quantifying their
suboptimality. The optimal solution also serves as a starting
point for designing less complex algorithms. In particular, we
show how a solution that is only slightly suboptimal can be
obtained when only a finite window of the entire sequence is
known at each decision instant. More generally, as will be
described, the problem structure lends itself to fast heuristic
approximations.

In this paper, extending our previous work in [10], we
formalize the generalized problem of buffer-constrained quan-
tization of a sequence of independent blocks and describe how
(given a set of quantizers, a finite buffer, and any additive
cost measure over the sequence elements) an optimal solution
can be found. We show how this problem (one of discrete
optimization with constraints) can be construed as a determin-
istic dynamic programming problem with the Viterbi algorithm
used to compute the optimal minimal distortion solution.
We draw parallels between this buffer-constrained quantiza-
tion problem and the simpler budget-constrained unbuffered
quantization problem. We then present a recursive Lagrange-
multiplier-based algorithm that provides a fast nearly-optimal
solution with much reduced complexity.

This paper is organized as follows. In Section II, we
define the problem of buffer constrained quantization. The
problem is set in an integer programming framework in
Section III. Section IV presents the optimal solution as well as
fast heuristic approximations. Finally, Section V shows some
applications of the previously described techniques, namely,
providing the optimal buffer size for a given application,
benchmarking other buffer control algorithms, and quantifying
statistical multiplexing gain in ATM networks.

II. PROBLEM DEFINITION

A. Quantization and Cost Criterion

Let us define the system under study. The source consists
of a sequence of “blocks” (for example, entire video frames, 8
by 8 pixel image blocks, or individual samples) that arrive at
a constant rate at the encoder. The blocks are to be quantized
before being entropy coded and sent to the output buffer for
transmission (see Fig. 1).

For a discrete set of admissible quantizers, the problem
consists of choosing that optimal sequence of quantizers that
minimizes some cost measure in a global sense. Two points
have to be emphasized here:

» The set of quantizers is finite. This is an important factor
that determines the type of optimization techniques to be
used.

* Minimization of a global cost measure is necessary to
obtain good coding quality. A simple algorithm that lo-

27

CONTROL
uantizer Buffer State
@ J B()
In Output
t ENTROPY
Illze“k ——epe{ QUANTIZATION CODING BUFFERING
i Channel Rate
r
Quantized Value Codeword
Distortion dy Bitrate ry

Fig. 1. Block diagram of the encoding system. The buffer control mechanism
determines the quantizer to be used for each input block. Given the set of
quantizers, the system can be characterized by the rate r;; and distortion d;;
for each block and quantizer.

cally uses the best quality quantizer (in a greedy fashion)
usually results in overall suboptimality.

To find the optimal sequence of quantizers, one has to first
define a cost measure consistent with the system’s design
criteria. The best cost measure is one that reflects the subjective
quality of the decoded sequence. For simplicity, we normally
use MSE in our experiments, but in general, our approach
can be applied whenever the cost is additive over all the
elements of the sequence, thus making it possible to consider,
for instance, MSE weighted by an activity measure or human
visual system criteria (see, for example, Section V-B). Note
that our additive cost criterion does not exclude the use
of additional prequantization stages like a discrete cosine
transform (DCT). In addition, we place no restriction on the
quantization scheme to be used, thus permitting, for instance,
the choice of vector quantization (VQ).

B. Delay and Buffer Size

The system under consideration is made up of three el-
ements: the coder/decoder at the transmitting and receiving
ends, with their respective buffers, and the transmission chan-
nel. In general, although transmission need not be synchronous
(for example, video transmission over ATM networks), there
exists a constant delay between the following:

i) the time at which the nth block from the sequence has

been acquired by the encoder at the input (7?)
ii) the time at which the nth block from the sequence has to
be available to the decoder at the output (7).

This constant delay AT (for all n, T2 — T = AT) is
due to the encoder and the decoder both being attached to
synchronous devices. If the processing time at the decoder is
negligible, there are four delay components for each block:

i) encoder processing delay 6t,

ii) encoder buffer delay #t.

iii) channel delay 6¢.

iv) decoder buffer delay 6t4.

Clearly, for any block, the total delay through the system is

28

constant, i.e.
bty + 6t + 6t. + 6tg = AT.)

This scheme applies to both synchronous transmission ap-
plications and ATM networks. In the former, the transmission
delay (6t.) is constant, whereas in the latter, it is variable.
Moreover, except for nonreal-time decoding applications, such
as image retrieval, the total delay constraint is also present
in ATM networks, where transmission delay plays a more
important role as excessive delay due to network congestion
could lead to packet loss and therefore quality degradation.

From the above, we can establish the equivalence, when
the channel rate is finite, of a “finite buffer” constraint and a
“finite delay” constraint. These constraints are equivalent since
some of the blocks could potentially have a delay greater than
the maximum permissible delay in the system (A7) if infinite
buffers were used with a finite channel rate.

Consider a real-time decoding application where the delay
between input and output is constant, and the channel has a
constant rate (the processing time will normally be constant).
An input block that encounters a near empty encoding buffer,
i.e,, low delay at the encoder (6. small) will necessarily,
from (1), be delayed at the decoder since AT is constant.
Hence, the decoder buffer will tend to fill up if the encoder
buffer is emptying and vice versa. From this point of view, in
order to be efficient, it is clear that the buffer memories have
to be of equal sizes at both ends as they must each be able
to accommodate the maximum combined buffering delay of
AT — bt — 6btp.

In some applications, the total delay can be large, but buffer
memories should remain small to reduce the cost of decoders.
From the above, any buffer memory used at the encoder
would have to be duplicated at each decoder. On the other
hand, the additional memory used for processing (6,) will
just increase the total delay. In fact, using techniques to be
described in Section IV, one could optimize the transmission
of a sequence based on all the blocks in the sequence (thus
using the maximum processing memory) while choosing any
physical buffer size.

C. Possible System Configurations

Before we formulate the problem, it is useful to list all possi-
ble system configurations in terms of the characteristics of both
encoding and decoding. The key point here is whether either
operation takes place in real time. The following classification
is summarized in Table I.

One application is real-time encoding and decoding (e.g.,
a videoconferencing system) where delay, as was previously
noted, is the limiting factor. Delay is especially important in
applications involving interaction between the two ends (for
instance a delay of more than 100 ms would be unacceptable
for videoconference transmission), although it might be less
crucial in other applications like live broadcast where no
interaction occurs. Roughly, the maximum permissible delay
can be allocated between processing and buffering, thus mak-
ing the choice of buffer size essentially delay-limited. If the
transmission has variable delay (as in ATM networks), the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

TABLE 1
ALL PosSIBLE CONFIGURATIONS OF ENCODING/DECODING, THEIR
IMPLICATIONS IN TERMS OF DELAY/MEMORY CONSTRAINTS,
AND SOME EXAMPLES IN THE CONTEXT OF VIDEO CODING

Encoder Decoder Constraint Example
Real time Real time Interactive: delay Videoconferencing
Real time Real time Noninteractive: Broadcast

memory

Real time Nonreal time Memory Live Recording

Nonreal time Real time Memory Video CD-ROM

No constraints: File transfer

“Static allocation”

Nonreal time Nonreal time

constraint on the buffer size at the encoder and the decoder will
be tighter. Our algorithm will be less suitable for a situation
where delay has to be small. However, if the delay constraint is
not too demanding, as would be the case for broadcast, longer
processing delays may be acceptable, and our techniques can
be used.

If decoding has to be done in real-time but there is no time
constraint for the encoding process (as in digital coding for
applications such as video on CD-ROM’s), delay is no longer
the main issue. Taking as an example the CD-ROM device,
we note that the only contribution to the delay comes from the
decoding buffer since the data is read at a constant rate from
the disc. Furthermore, the absolute delay between data reading
and display will be noticeable only at the start of each “play”
mode. Hence, the system delay can be seen as a latency time,
and the maximum delay constraint will be more flexible. The
limiting factor in the choice of buffer size would be the cost
of the physical memory, rather than the delay; the problem is
memory limited rather than delay limited.

The dual case, real-time encoding and nonreal-time decod-
ing is essentially equivalent. To encode a sequence in real time
and store it in coded format, instead of displaying it in some
output device, the limiting factor is the amount of memory to
be used in interfacing the coder output with the storage device.
Delay is not an issue. Finally, nonreal-time problems can be
essentially seen as “static” nonbuffer-constrained bit allocation
problems that have been studied in the literature [11], [12].

III. PROBLEM FORMULATION: INTEGER PROGRAMMING

A. A First Formulation of the Problem

In the previous section, we have motivated the relevance
of a finite buffer coding environment. Now that both the cost
and the constraints have been defined, a first formulation of
the problem can be given:

Formulation 1:

Given a set of quantizers, a sequence of blocks to be quan-
tized, and a finite buffer, select the optimal quantizer for
each block so that the total cost measure is minimized and
the finite buffer is never in overflow.

Note that underflow is not included in this formulation.
An underflow constraint would be redundant, given that the
objective of minimizing distortion would tend to increase the
coding bit rate and thus automatically penalize underflow.

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

o BLOCKI BLOCK2Z .4 _ BLOCKN
m| x 21 x o | =
” x 2
2 x x x
™ x = ™ x
dydy; dy; D dydpdy D dudnz dwy D
(@
R - E’U
X CONVEX BUFFER EVOLUTION
/ £ e e
b
x
Ry.Dp) Bumax '1
R x
(Ry.D2)
x X x .e
time
* 4t 3 eses N
\
D' R <Nr
D-34,
(b) (©)

Fig. 2. Individual and composite R-D characteristics. Constrained and
unconstrained optimization: (a) Each block in the sequence has a different
R-D characteristic. In this example, there are three quantizers available to
code each block; (b) for a given choice of quantizers for the blocks in the
sequence, we can obtain R-D points to form the composite characteristic. No
point in the convex hull meets the budget R;. The optimal solution R* is
not a convex hull solution; (c) R* is not a feasible solution with the chosen
buffer size.

B. Continuous versus Discrete Optimization

A fundamental characteristic of the above problem is that
the set of available quantizers is finite. To see the impor-
tance of this, consider the following example, where N
blocks are coded using three quantizers. Fig. 2(a) shows the
operational rate-distortion (R-D) characteristics of each of
these blocks, and Fig. 2(b) represents the composite rate-
distortion characteristic, that is, all the values of total rate
and distortion obtained using combinations of all admissible
quantizer choices for each block. Refer to {13] for a detailed
treatment of an operational rate-distortion framework.

The convex hull of the set of points in the composite R-
D characteristic, as will be seen in Section IV-B, contains
those solutions that are attainable in a “fast” way and are, if
they exist, optimal for each rate. Note that not all rates are
attainable, meaning that the convex hull has a discrete number
of operating points. As an example, in Fig. 2(b), suppose we
had to allocate a budget of R; bits among the N blocks. The
only solution that exactly meets the budget (R;,D;) is clearly
suboptimal, whereas a convex hull solution (Rz,D3) would
have to settle for a smaller total rate (R, < R;). The optimal
solution in this case is (R*, D*), which is not attainable using
convex hull techniques but would be reached by our optimal
algorithm.

C. Constrained versus Unconstrained Optimization

In the case where there is no buffering constraint and only
a desired total bit budget has to be met, well-known optimal

29

bit allocation techniques have been documented [11]. We will
call this situation an unconstrained allocation problem, i.e.,
one where buffers are either infinite or large enough to store
the complete sequence. In general, the finite buffered case,
or constrained allocation, will be different. As each block
is coded, it is sent to an output buffer, and therefore, the
number of bits available for certain blocks will be limited
by the constraints imposed by the buffer, namely, underflow
and overflow conditions. As an example, note that the uncon-
strained solution (R*, D*) of Fig. 2(b) may produce overflow
for a certain finite buffer size (see Fig. 2(c)) and thus is not a
solution to the constrained problem, even though R* < N -r;
thus, blocks are coded on average with a number of bits lower
than the channel rate r. This example should motivate the
fact that having buffer constraints increases the complexity of
the optimization. However, it should be noted that buffering
constraints may not always render the unconstrained solution
infeasible; therefore, studying the solution to the unconstrained
problem may be helpful in solving the constrained one. For
instance, in Fig. 2(c), for the same channel rate r, if the
buffer size was increased enough to avoid overflow, the
unconstrained solution would also be the solution to the
constrained problem.

D. Integer Programming Formulation

The problem described in the above section is one of
constrained optimization over a set of discrete operating points.
The optimization has to trade off limited resources (bit rate)
for quality (distortion). What makes the solution of this
problem complex is the discrete nature of the space of possible
solutions. This problem can be described and solved using
techniques developed in the field of integer programming [14],
[15]. We now present an integer programming formulation that
will be helpful in developing the optimal solution, although
alternative formulations can also be proposed. See Fig. 1 for
the notation.

Consider the allocation for N blocks, and suppose there
are M quantizers available to code each block. Let d;; and
ri; be, respectively, the distortion and the number of bits!
produced by the coding of block ¢ with quantizer j, and
let be the channel rate per block. Define an admissible
solution z as a selection of one quantizer for each block,
ie., a mapping from {1,2,---,N} to {1,2,---, M}, z =
{z(1),2(2), - -,z(N)}, where each z(3) is the index of one of
the M quantizers for block i. Therefore, (715(1), ", T"Na(N))
and (di(1, " -+, dno(v)) are, respectively, the rate and distor-
tion for each block and a given choice of quantizers z.

Now, define the buffer occupancy at stage ¢, B(%) for a given
admissible solution z. To account for the fact that the buffer
occupancy cannot be negative at any stage (i.e., underflow
means the buffer occupancy is 0), we use a recursive definition.

Let B(1) = ri501)+B(0), B(2) = max(B(1)+72,(2)—7,0)
and, in general

B(i) = max(B(i — 1) + riyi) — 7,0))

!Note that in r;;, we include the bits of overhead required to specify that
quantizer j was used.

30

where the buffer occupancy at each block instant is increased
by the coding rate of the current block and decreased by the
channel rate. B(0) is the initial buffer state.

Formulation 2: (IntegerProgramming)

The problem is to find the mapping x that solves

N
min (Z diz(i))a (3)

i=]1
subject to

B(l) SBmaxy Vl:lyaN (4)

where By is the buffer size.

This problem is similar to the one known in the integer
programming literature as the generalized assignment problem
(GAP)?. We will show in what follows how the problem lends
itself to efficient optimal and slightly suboptimal solutions.

IV. OPTIMAL ALGORITHM AND FAST APPROXIMATIONS

Throughout this section, experimental results that compare
the different approaches will be shown. In the experiments,
we use a JPEG-like coding scheme, with the difference from
JPEG {2] being that we permit variable quantizer scales for
each 8 by 8 block. Our sequence of signal blocks thus consists
of 8 by 8 image blocks coded using M different quantization
scales in a JPEG coding environment. Note that while the
exact values for attainable signal-to-noise ratio (SNR)® are
source and coder dependent, the results would still hold for
a general class of sources and coders. For convenience, we
sometimes consider the normalized buffer size, i.e., Byax/7,
which indicates the number of blocks that can “fit in the buffer”
when coded at the average rate or, in other words, the buffer
size expressed in average blocks.

A. Optimal Algorithm

1) Dynamic Programming Solution Using the Viterbi Algo-
rithm: The problem under consideration can be solved using a
typical deterministic dynamic programming (DP) framework,
where a solution is found for every possible initial buffer state.
Here, it is more natural to resort to the special case of forward
DP known as the Viterbi algorithm (VA) [17], [18] for which,
given the initial conditions, the best solutions leading to each
of the possible final states are found. This technique, which
is successfully employed in the decoding of convolutional
codes [19], has also been used in the context of trellis-
coded modulation (TCM) [20] and trellis-coded quantization
(TCQ) [21]. We can apply the VA because our system, due
to the finite buffer, can be in only a finite number of states.
The basic principle consists of creating a trellis to represent
all the viable allocations at each instant, given the buffer
constraints. Each path in the trellis has an associated cost (the
total distortion accumulated by coding the successive blocks

2In the GAP [16], the objective is to minimize a cost using some resources
limited by a set of inequality constraints.

We use peak SNR as defined by SNR = 10log;,(2552/MSE).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

Ty T; T

Fig. 3. Trellis diagram to be used for the Viterbi algorithm solution. Each
branch corresponds to a quantizer choice for a given block and has an
associated cost, whereas its length along the vertical axis is a function of
the rate. For instance, quantizer 1 at stage ¢ produces a distortion d;) and
requires rate +;,;. A path will correspond to a quantizer assignment to all the
blocks in the sequence.

with the quantizers chosen in the path) and a certain buffer
occupancy at each stage.

Let us clarify some of the terms to be used in the discussion.

Referring to Fig. 3:

 Trellis: the trellis is made of all possible paths that link
the initial stage to nodes in the final stage.

* Stage: Each stage corresponds to a block to be coded.

* Node: Each node is a pair (i,b), where ¢ € 0,---, N
is the stage number, and b € 0,---, B, is the buffer
occupancy state.

» Branch: If quantizer j at stage ¢ has R-D characteristics
(ri;, d;;) then node (3 — 1, b) will be linked by a branch of
cost weight d;; to node (i, max(b + ri; — r,0)), provided
no overflow occurs.

 Path: A path is a concatenation of branches. A path from
the initial node to a final stage corresponds to a feasible
choice of quantizers for each successive block.

We can now use the following algorithm to generate the paths
in the trellis (refer to Fig. 4):
Algorithm 1: Algorithm for trellis growth (Viterbi
algorithm [17], [18]):
Step 0: Choose an initial node (0, By) and a final node
(N,By), i.e., the initial and final state of the buffer.
Step 1: At each stage i add permissible branches (as
determined by the R-D characteristics of block i+ 1) to the
end nodes of all surviving paths. At each node, a branch is
grown for each of the available quantizers, and the cost of
that branch is added to the total accumulated cost of the
path arriving to the node in stage i + 1.
Step 2: Of all the paths arriving at a node in stage i + 1,
the one having the lowest cost is chosen, and the rest are
“pruned”. This is made possible due to the additivity and

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

BLOCK 1 R BLOCK 2 BLOCK 3
R

R
x
ru| ¥ fu
ryl x
r
(@) n x .
Fiz x ™) x L
13 x r3s x

dydy; dy3 D dndndn p dydy d33 D

) 2

Z

H@ dyy +dy +dyy

@ dprineiy

s
e (3) dp+dyrdn

©

A ible paths
Non admissible paths:

Fig. 4. Problem seen from the VA point of view: (a)} R-D characteristics
of the blocks with available quantizers; (b) equivalent representation. Each
of the branches corresponds to the choice of a specific quantizer and has an
attached cost. The length of the branch along the vertical axis is proportional
to the rate; (c) all possible paths for the three blocks considered. Paths 1 and
2 cannot be used because of overflow. 1 and 3 are, respectively, the minimum
and maximum distortion paths.

independence of the costs of each branch. Note that, by our
definition of branches, paths resulting in overflow are not
permitted.

Step 3: Increment ¢ and go to Step 1.

In the rest of the paper, this “unrestricted” VA will be used
to evaluate the suboptimality of other approaches as well as
to study the characteristics of the optimal solution. Now, we
explore modifications of the basic algorithm in order to reduce
complexity. First, we study the suboptimality incurred when
the number of representative buffer states is reduced (see
Section IV-A-2), or we limit the memory, i.e., the number
of blocks over which the optimization is done (see Section
IV-A-3). Then, we note the similarity of our problem to an
unconstrained optimization problem and present techniques
that exploit it (see Section IV-B).

2) Buffer State Clustering to Reduce Complexity in the VA:
It is clear that using the VA to find the optimal allocation
for a sequence becomes very complex as the dimensions of
the trellis, both the number of states per stage (buffer size)
and the number of branches (number of quantizers), increase.
See Section IV-C for an analysis of the complexity of the
algorithms discussed in this paper.

A way to reduce this complexity is to decrease the number
of states in each trellis stage by “clustering” together some
of the states. Instead of considering all possible buffer states,
only the minimal cost branch in a range of states is chosen
and grown in the following iteration. In our experiment, we

3

SNR (dB) VS. QUANTIZATION OF BUFFER

4136

-

4134

I H s . i N
10 20 30 4 S50 60 70 8 9% 100
CLUSTER FACTOR

Fig. 5. SNR versus cluster factor: The cluster factor indicates how many
states or nodes are clustered at each trellis stage. Note that the suboptimality
is negligible for cluster factors as high as 50, i.e., when the number of nodes,
and thus the complexity, is reduced by a factor of 50.

use Algorithm 1, but we cluster together a fixed number of
neighboring nodes or states (the number of nodes that are
clustered into one is called the “cluster factor). The clustering
operation consists in choosing the best, i.e., the minimal cost,
path among those arriving at a set of neighboring nodes, and
then discarding all the suboptimal paths. Thus, complexity is
reduced as the number of surviving paths is limited. As an
example, Fig. 5 shows how this approach, with a reduction in
the number of VA states by a factor as high as 50 at each stage,
produces less than 0.05 dB of degradation over the optimal
distortion for our test sequence.

3) Use of VA Techniques with Limited Memory: In general,
to guarantee global optimality of the VA for a given sequence,
one needs to grow the full trellis before allocating bits to any
block. Nonetheless, actual implementations require that only
a finite amount of memory be used, mainly because of delay
restrictions. Therefore, paths are grown and released based on
just a limited number of blocks.

In Fig. 6, each plot represents surviving paths after applying
the unrestricted VA to the blocks considered. Note that, in both
cases, all surviving paths share the same allocation for the first
few blocks, i.e., all survivors have common initial branches.
This can be interpreted as a finite memory characteristic: As
the number of blocks grows, the allocation for the first few
blocks is not likely to be influenced by the allocation for the
last ones and can thus be done independently. Since, for a
sufficient number of blocks, all surviving paths have a common
root, we can in effect choose the unique path for the first blocks
so that the optimization can be performed in a sliding window
fashion. Moreover, note that the sliding window memory n is
a function of the buffer size (compare Fig. 6(a) and (b)). As
the buffer size (i.e., the number of possible states) increases,
so does the memory of the problem, highlighting a property
similar to that of convolutional codes, which typically operate
with a finite window of five times the constraint length (i.e.,
the memory of the finite state machine that generates the code
[19D).

‘We now quantify the performance of a finite memory VA. In
the previous section, for a length N sequence, we generated a

32

trellis diagram of depth V. The experiment (see Fig. 7) shows
the result of using sliding windows of different sizes n for a
length N sequence. In order to generate an n-block path, we
have to choose a final state at stage :+n — 1. This accounts for
the nonmonotonicity of the SNR with the number of blocks:
Given that the final state choice for the intermediate paths
is arbitrary, a larger processing memory n does not always
guarantee a lower global cost.

Fig. 7 shows that in the finite memory case, to get within
0.05 dB of the optimal value, one has to consider at least three
or four times the normalized buffer size (i.e., the buffer size
divided by the rate per block). It can be seen that the full VA
cannot be implemented in real time, but the results from Fig.
7 show that even real time, memory-limited implementations
of the algorithm produce only slight suboptimality. This is
of importance when coding has to be done in real time but
delay can be relatively large (e.g., broadcast). At each instant,
the encoder can store as many blocks as needed to find the
optimal path and then release the coded blocks to the buffer
with a delay equal to the length of the sliding window. The
buffer size at the decoder would be determined by the actual
size of the encoding buffer and could thus be kept small.

B. Fast Approximations

In Section HI-C, we noted how our problem, without the
buffer constraint, could be solved using well-known techniques
such as Lagrange multipliers [11]. Additionally, examining the
optimal solution for a sequence of length N with channel rate
r, as obtained using the VA, shows that the allocation for large
enough groups of n contiguous blocks (n <« N) is very close
to nr bits.

In this section, we will illustrate how these observations can
be exploited in generating a nearly optimal but much faster
solution for the buffer constrained problem by solving a series
of allocation problems with budget nr and no buffer constraint.
To this end, we now provide a brief review of the Lagrange
multiplier optimization technique.

1) Constant Slope Optimization for Budget-Constrained Al-
location: Lagrangian optimization has been widely applied
in the context of differentiable optimization in the presence
of constraints [14], [15]. However, in [22], this method was
also shown to be useful in the case of discrete constrained
optimization. The concept was later used in [11] and [12] to
determine the optimal bit allocation, in a rate distortion sense,
for a given source with an arbitrary discrete set of quantizers
and, more recently, to find an optimal bit allocation for a
wavelet packet decomposition [23]. A complete description of
this technique goes beyond the scope of this paper; therefore,
we only summarize the main ideas; refer to [11], [12], [22],
and [23] for further details.

Consider the problem described in Formulation 2 without
the buffer constraints (i.e., if the buffer size were unlimited)
but instead with a rate budget constraint so that R is the
maximum total number of bits that can be used to code the
sequence. We will first show how an efficient solution can
be obtained for the budget-constrained problem. This solution
will then be shown to be useful for our problem.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

BUFFER SIZE= 400 (BITS), LENGTH= 100 (BLOCKS)

150
50

g 250} :
§) A\t
E o WM NV

-]

[} 10 20 30 40 50 60 70 80 90 100
BLOCK NUMBER

@)

BUFFER SIZE= 500 (BITS), LENGTH= 100 (BLOCKS)

A

5§>

BUFFER OCCUPANCY (BITS)
g

1} 10 20 30 40 50 60 70 80 90 100
BLOCK NUMBER

(b

Fig. 6. Surviving paths using the full VA. The problem has finite memory.
For a sufficient length, all surviving paths share the same initial path. Bmax
is the buffer size in bits, and L is the number of blocks on which the VA is
run; (@) Bmax = 400 and L = 100; (b) Bmax = 500 and L = 100. Note
that as the buffer size is increased the length of the common path decreases.

Formulation 3: (Budget — Constrained Optimization)

The problem is to find the mapping = that solves

N N
min(z diz(:)), subject to : Z"'iz(i) <R, (5
i=1 i=1

where R is the total budget.

Now, the main result states that, for any real positive number
A, the Lagrange multiplier:

Theorem 1 [11], [22]: If the mapping z*(i) for ¢ =
1,2,---, N minimizes

N
E diz(y + X Tiz(i)s ©)

i=1

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

SNR VS. NUMBER OF BLOCKS USED FOR VA

395 T

e L—]

3 4 5 6 7 8 9 10
NUMBER OF BLOCKS/NORMALIZED BUFFER SIZE)

Fig. 7. SNR versus number of blocks = used to obtain the VA solution. We
divide n by the normalized buffer size so that the horizontal axis represents the
window of the VA expressed in “number of buffer sizes.” In the experiment,
a quantizer is chosen for block ¢ based on the best path from i to i + n. To
select the path, we force it to end at an arbitrary buffer position at stage i +n
(normally midbuffer), thus explaining the nonmonotonicity of the resulting
function.

then it is also the optimal solution to the problem of For-
mulation 3 for the particular case where the total budget
is

N
R=R(\) =) Tiz(i)s)
i=1
so that
N N
D) = zdw(i) < Zdiz(i) ®)
i=1 i=1

for any z satisfying (5) with R given by (7).
Since we have removed the constraints, for a given operating
“quality” A, (6) can be rewritten as

N N
miﬂ(z dig(iy + Aiz(s)) = E min(dizy + Aia@)) (9)

i=1 i=1
s0 that the minimum can be computed independently for each
block. Note also that for each block z, the point on the R-D
characteristic that minimizes d;z;) + Ariz(;) is that point at
which the line of absolute slope A is tangent to the convex
hull of the R-D characteristic (see Fig. 8). For this reason,
we normally refer to A as the slope, and since A is the same
for every block on the sequence, we refer to this algorithm as
“constant slope optimization.”

From Theorem 1, for a fixed A, we obtain the best possible
solution that meets the budget constraint of (7). The budget for
which we obtain a solution is itself a function of the chosen
A. Therefore, to find a solution to the initial problem, we need
to iteratively change A until we find the multiplier A* such
that the total number of bits used R(A*) = R within a convex
hull approximation. It has been shown [11] that this is a fast
convex search. If for some A* we have R(A*) = R, then
the theorem guarantees that the solution to the unconstrained
problem is also the solution to the constrained one. A fast
way of searching for A* using the bisection algorithm is now
described. We again refer the reader to [11], [12], [22], and
[23] for a more detailed description.

33

BLOCK i

minl [dU'b'u)

WD\

NN
N

Fig. 8. For each block, minimizing d;,(;) + Ari.() for a given A is
equivalent to finding the point in the R-D characteristic that is “hit” first
by a “plane wave” of slope A.

Algorithm 2: Lagrangian optimization:
Step 0: Start with two values A, and X such that R()\,) <
R < R()\;) where R(-) is as defined above.
Step 1: Set djexy = Ig(;\:):g /’\\:) | 4+ € where € is an
arbitrarily small positive number added to make sure that
the smallest rate is picked if Anext is a singular slope value.
Step 2: Repeat the optimization of (9) for A = Apexe. If
R(Mpext) = R, stop. Else if R{Apext) > R set \j = Anext,
or else if (R(Anext) < R) set Ay = Apext. Go to Step 1.

The main advantage of this algorithm is its efficiency.
Indeed, our experiments verify that usually a relatively small
number of iterations (typically less than 10) is sufficient for
convergence in the problems we have considered. An analysis
of the comparative complexities of the VA and a constant
slope-based algorithm for the buffer-constrained quantization
problem is given in Section IV-C.

As pointed out earlier, a solution for budget R may not exist
for any A, but using the constant slope algorithm will at least
yield a solution that is optimal for a budget R()) that is slightly
less than R, i.e., within a convex hull approximation of R. Fig.
9 shows all the constant slope solutions that do not produce
overflow or underflow for the allocation of the first 128 blocks
of a sequence. As all final buffer states are not attainable, it is
clear that there are no constant slope solutions for all desired
budgets. However, it must be emphasized that those “constant
slope paths” that can be constructed using the above described
optimization are optimal in the sense that there is no better way
of coding the sequence if the initial and final stages had to be
those determined by the constant slope path.

2) Iterative Constant Slope Optimization for Buffer-Con-
strained Allocation: We now apply the above ideas to set up
the following algorithm for the buffer-constrained allocation
problem:

Algorithm 3: Iterative constant slopes:
Step 1: Az every stage k, use Lagrangian optimization, with
budget constraint n -7 — B(k) + Bmax/2 1o obtain the

34

ALL POSSIBLE CONSTANT SLOPE PATHS

1500

BUFFER OCCUPANCY (BITS)

0 20 40 60 80 100 120 140

Fig. 9. All possible “constant slope” solutions. Note that not all final states
can be reached with a constant slope path. However, if a path exists, it is
optimal. In this example, Bimax = 3000 bits.

best non-buffer-constrained allocation for the following n
blocks.

Step 2: Using the quantizer indicated by the previous step
for block k, release that block to the buffer and repeat Step
1 for stage k + 1.

The budget constraint requires that the number of bits used
for the next n blocks is such that at the nth stage the buffer will
be in mid-position (Bmax/2). This is equivalent to performing
a moving window optimization so that the bit rate of the kth
block depends only on the R-D characteristics of the following
n blocks and on the buffer state at the kth stage. Thus, we
exploit both the finite memory of the problem (see results
in Fig. 7) and the effect of the buffer in terms of getting
the average bit rate of a finite number of blocks close to the
channel bit rate.

Results show that this approach yields a solution very close
to the optimal one as obtained using the VA. When comparing
the allocations obtained using Algorithms 1 and 3 for a typical
sequence, experiments showed that a disparity in quantizer
choice between the two approaches occurred for less than
5% of the signal blocks. Indeed, it can be seen that the
optimal solution obtained with the VA follows a constant slope
path for several blocks; the optimal solution is a piecewise
constant slope path. Intuitively, as the optimal solution for a
given budget without buffering is a constant slope solution,
when buffering constraints are added, the solution becomes
“piecewise constant slopes.”

3) Fast lterative Constant Slope Optimization Based on
Heuristics: A straightforward way of improving the speed of
the algorithm while sacrificing little quality is the following:
Use Algorithm 3, except perform optimization over n blocks
only when the buffer size is above or below certain bounds.
Call the heuristic threshold the fraction of the buffer size used
as a bound (see Fig. 10). Thus a “10% threshold” means
that the path is recomputed whenever the buffer occupancy

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

Threshold Buffer size
levels
Allocation is recomputed
only when occupanc:;
/ exceeds the thresholds
+
i j Block number

Fig. 10. Example of Algorithm 4. From block ¢ to block 7, the allocation is
not recomputed. Then, as the buffer state exceeds the threshold, the allocation
is recomputed.

is below 10% or above 90% of the total buffer size. With this
notation, a 50% threshold corresponds to using Algorithm 3.
Note that although we use symmetric thresholds for simplicity,
nonsymmetric thresholds for overflow and underflow are also
possible. The algorithm can be expressed in a more formal
way as follows:

Algorithm 4: Heuristic constant slopes:

Step 0: Initialize the stage count i to 1.

Step 1: Use Algorithm 3 to compute the allocation for the
following n blocks (i, - - ,1+n). Reset the window counter
w to 0.

Step 2: At stage i, use the allocation previously determined
for block i. Increment i by 1. If the buffer occupancy is
within the desired thresholds and w<mn, increment w and
go to Step 2. Else, go 1o Step 1.

Results show that for typical sequences, for a heuristic
threshold as low as 10%, for which the paths are seldom
recomputed, more than 85% of the quantizer choices match
those selected in the optimal solution. In Fig. 11, the SNR of
both the VA solution with limited memory and the heuristic
(10%) approximation are compared. For a sufficiently large
number of blocks, the heuristic approximation comes within
0.05 dB of the optimal value for our experiments.

C. Complexity

In this section, the following notation will be used: M is the
number of quantizers available, N is the number of blocks to
be coded, and By is the buffer size or, more precisely, the
number of different states or nodes considered in the buffer.

1) Optimization Using the VA: Since there are B,,, nodes
per stage, a total of Bnay - N nodes have to be considered.
Growing a branch to each individual node b involves choosing,
among at most M branches arriving to that node, the branch
with minimum total cost so that there are M comparisons
per node. Denoting by C;(b) the cost accumulated up to
stage ¢ on the best path arriving at node b, we have that
Ci(b) = minj=y .. mM(Ci_1(b — ry; +) + d;;)), where the
minimum is over all M quantizers. The cost of each incoming
branch is computed as the sum of the cost accumulated in the

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

SNR VS. NUMBER OF BLOCKS USED FOR VA AND HEURISTIC
5 T T

39.

100 200 300 400 500 600 700 800 900 1000
NUMBER OF BLOCKS

Fig. 11. SNR of suboptimal VA (top) and Algorithm 4 with 10% heuristic
threshold. When a sufficient number of blocks is considered, the heuristic
approximation comes within 0.05 dB of the distortion for the optimal solution.

path up to the previous stage and the cost of the branch itself.
Hence, for each node, the complexity increases linearly with
the number of quantizers M. Once the full trellis has been
grown, determining the optimal path involves backtracking
from the final stage to the initial stage. This requires one
addition per stage, which we can neglect in estimating the
order of complexity. The total complexity of growing the trellis
is thus

Cy = O(BmaxNM) (10)

Note that in the sliding window version of the VA (see
Section IV-A-3), the complexity of generating the trellis
remains the same, but the cost of backtracking is no longer
negligible since backtracking has to be performed for every
iteration.

2) Solution Using Constant Slope Optimization: Consider
Algorithm 3, with n blocks being used for each iteration of
the Lagrangian optimization. Finding the path for each set of
n blocks requires, on the average, I iterations of Algorithm
2. In each iteration of Algorithm 2, i.e., for a fixed A, one has
to find, for each of the n blocks, the quantizer that minimizes
(ri; + Adj;), which, as before, makes the complexity increase
linearly with M. Note that recomputing A in Step 1 of each
iteration of Algorithm 2 is negligible compared with the n- M
comparisons required in Step 2. This procedure is repeated for
each of the N blocks. Since / remains essentially independent
of the other parameters of the problem, an estimate of the
complexity is

Cs =0(nNM). an

In practice, values of n that yield a good performance are
of the order of klog({Bmax), where k is a constant; therefore,
in general, we have that n < B ..

3) Experimental Comparison: To give a better idea of the
tradeoffs between complexity and performance involved in
choosing one of the algorithms of Section IV, we now look
at the results of a typical example (see Table II). We fix
the sequence, rate, and quantizer set and compute, for buffer

35

TABLE I
COoMPARISON OF DISTORTION AND EXECUTION TIME FOR (i) VA, (ii)
CONSTANT SLOPE OPTIMIZATION WITH LENGTH 200 AND (iii) LENGTH 400,
AND (iv) HEURISTIC APPROXIMATION WITH 10% THRESHOLD

Bumax 2000 3000 4000
10g5(Bmax) 10.96 1155 11.96

@ Tme® 82.8 121.8 162.3
Y SNR (dB) 37.93 37.96 37.98
Gy Time ® 718 81.1 83.6
SNR (dB) 37.92 37.93 37.95

iy Tme © 150.1 156.1 157.7
SNR (dB) 37.92 37.94 37.96

vy Tme) 79 41 52
SNR (dB) 3791 37.90 37.84

sizes (in bits) of 2000, 3000, and 4000, the solution using the
following algorithms:

i) Algorithm 1 (optimal solution)

ii) Algorithm 3 with n = 200 blocks (“‘short look-ahead™)
iii) Algorithm 3 with n = 400 blocks (“long look-ahead”)
iv) Algorithm 4 with 10% heuristic.

With the obvious disclaimer that the precise values depend
on the chosen sequence, some general observations can be
made:

« The suboptimal algorithms afford good approximations
to the optimal values.

» As just derived, the computation time for the VA increases
linearly with the the buffer size, whereas the increase is
only logarithmic for the Lagrangian-based algorithms. In
the limit, as the buffer size goes to infinity, we would
be dealing with an unconstrained allocation problem for
which the VA is clearly nonpractical, whereas Lagrangian
approaches can be efficiently used [11], [12], [23].

* A comparison between the execution times of the VA and
Algorithm 3 is unfair since Algorithm 3 suffers from the
overhead required by a sliding window optimization. A
fairer comparison would be between Algorithm 3 and the
sliding window version of the VA. Our results indicate
that the former is significantly faster than the latter.

¢ Clearly, the heuristic methods of Algorithm 4 have an
edge in terms of speed, although the gains are very
dependent on the sequence. In the limit, if a “constant
slope solution” to the problem exists (i.e., if the buffers
play no role and the optimal solution is the same as in the
unbuffered case for the same total rate), then Algorithm
4 would find the solution in one iteration.

V. APPLICATIONS

This section is devoted to describing several specific appli-
cations of the theoretical analyses and algorithms presented
thus far. We first use an optimal solution to the buffer-
constrained quantization problem to determine the appropriate
buffer size for a given source and application. We also show
the relevance of our methods in providing a benchmark for

36

SNR VS. NORMALIZED BUFFER SIZE FOR r= 70, 100, 140

Foan H y { et -)
S . | !]

20 40 60 80 100 120 140 160
NORMALIZED BUFFER SIZE

Fig. 12. SNR versus normalized buffer size. The normalized buffer size
(Bu,ax /1) represents the size of the memory expressed in number of blocks
coded at the nominal rate of r bits. Note that for different values of =, the
curves have a similar shape, and the optimal normalized buffer size is roughly
the same.

buffer control algorithms as well as to analyze the statistical
multiplexing gain in ATM networks. Our intention here is not
to be exhaustive but rather illustrative.

A. Optimal Buffer Size

The first question that arises in the study of our buffer
constrained problem is that of the optimal buffer size. As
we have seen, a budget-constrained unbuffered quantization
provides the lower bound for the distortion incurred. How
much does the buffer size have to be increased so that
the buffer constraints no longer make a difference and the
allocation is the same as in an nonbuffered situation? It might
be interesting to examine what the minimal buffer size might
be where the buffer becomes “transparent” to the bit allocation
problem. This is relevant in light of the different applications
that were outlined in Section II-C. Although in some cases, like
real-time services, the maximum buffer size that can be used in
the system is limited by the total delay AT, it is apparent that
in other applications, like video CD-ROM’s, the memory to
be used is essentially a design choice with no limitation other
than cost. In such a case, the buffer size need not be bigger
than the maximum length of oscillation in buffer occupancy
when a “constant slope” is maintained.

In our experiments, for a given sequence, channel rate, and
set of quantizers, we find the optimal solution for several
buffer sizes. As can be seen in Fig. 12, the marginal gain
of increasing the buffer size decreases as the buffer size gets
large. This gain becomes zero once the maximum buffer size
that a “constant slope” solution generates has been reached.
The buffer size to choose, if the choice is possible, is that one
for which the optimal value is “just” reached and necessarily
depends on the variability of the source. In the curves, in order
to remove the dependence on the channel rate, the buffer size
is normalized by the channel rate so that the horizontal axis
represents the maximum number of blocks that could fit in
the buffer if coded at the nominal rate. It can be seen that all
three curves, corresponding to three channel rates for the same
sequence, have the “knee” at roughly the same normalized

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

buffer size. This result indicates that, as expected, the optimal
buffer size is a function of the sequence to be coded. Note
that the knee is reached first for the higher channel rates. This
happens because the set of quantizers is maintained constant in
all three experiments so that as rate increases there are fewer
possible choices. In the limiting case, if the channel rate was
above the maximum rate of the highest quality quantizer in
the set, the optimal solution would be reached for any buffer
size since the buffer would be permanently in underflow.

Although one cannot guarantee that a given buffer size will
be appropriate for a given nonstationary video sequence, if
the range of variability of the source is known, a good choice
for the buffer size can still be made. Finally, it is worth
noting that for some applications, the buffer size can indeed
be tailored for each specific sequence. Consider, for instance,
a workstation display of a previously coded sequence. In this
environment, since delay is not a factor, it would be possible
to decide on different buffer sizes, depending on the specific
characteristics of the sequence by prefixing, in the sequence
header, the optimal buffer size that was chosen during the
coding process.

B. Benchmarking

Many different applications require a real-time buffer con-
trol strategy, where complexity considerations may not permit
the use of the methods of Section IV-B. In that case, given
a sequence, we can compute the optimal buffer-constrained
allocation and thus have a benchmark serving as an up-
per bound for performance in assessing real-time algorithms.
Typical examples would be workstation display, video on CD-
ROM, buffered JPEG, or MPEG. In this section, we present an
example of the use of benchmarking for an activity-weighted
buffered JPEG-like coding environment (unlike JPEG, we
allow different quantizer scales to be used for each block
within a frame).

As discussed in Section II-A, the only requirement we
impose on the cost measure to be minimized is that it be
additive. As an example, we consider a typical DCT-based
coding scheme, such as JPEG, and take as an activity measure
the sum of the absolute values of the DCT coefficients of each
block. Then, we choose as cost measure for each block the
MSE divided by the activity (so that higher activity blocks are
permitted to have a higher MSE).

We now consider a practical scheme that might be used
and assess its performance against the “optimal” benchmark
provided by the VA. While distributing the allocated rate
among the blocks in a frame, the criterion should tend to use
finer quantizers for the lower activity blocks (for which coding
errors are more noticeable), whereas coarser quantization can
be afforded for the higher activity blocks. Given the nominal
bit allocation budget per frame, the mean activity of the frame
A is computed, and an activity classification A; is performed
for each block i. Blocks with an activity index A; close to the
mean A are assigned the “nominal” quantizer, whereas those
deviating from the mean are coded using finer quantizers (if
their activity is less than average) or coarser quantizers (if their
activity is more than average). Thus, for a real-time coding

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

BUFFER EVOLUTION UNDER "FIXED" CONTROL

8

1600]
. 1400 SNR=444B.
3 B[
2 1000
E - |
E 00 i '
LYY { IR SO S | | | - t |I“

200 A T

00 500 1000 1500 2000 2500 3000 3500 4000
BLOCK NUMBER
(a)
BUFFER EVOLUTION UNDER VA CONTROL

- m

1500]-- U, | mn

1600 WSNR=359148 . AL i H
é .m,l..l
g 1200} | I ! I }
& 1000 fRH--| A I || ‘ ‘ | 1
E ol ! _
g o | URHp " A
a

400} 1 ‘ |

200 i

00 51:'10 x&n 1500 2000 2500 3000 3500 4000
BLOCK NUMBER
(b)

Fig. 13. Comparison of “fixed” activity-based allocation and optimal

buffer-constrained allocation. In both figures, the channel rate is r = 64
bits/block, and the buffer size Buax = 2000 bits. WSNR denotes the
activity-weighted SNRL: (a) Buffer evolution for “fixed” control, For the
chosen buffer size and nominal quantizer, there is underflow at both the
beginning and the end of the frame; (b) buffer evolution under VA allocation.

scheme, a fixed mapping is set up between the quantizer grade
chosen and the relative activity (A4;/ A). Note that the nominal
quantizer is chosen so that the number of bits actually allocated
to the frame is close to the desired objective.

We can now estimate the suboptimality of such a rate control
scheme when it is used in a finite buffer environment. Suppose
the practical scheme described above is used with a buffer size
Bax that just prevents overflow when the buffer empties out
at a “channel rate” r (see Fig. 13(a)). Note that for the example
considered, in order to accommodate the coded stream in the
buffer, we need to use a channel rate higher that the average
coding rate of the source due to the peakiness of the source.
In Fig. 13(b), we show how we can get an optimal upper
bound to the performance given the same conditions (set of
quantizers r, Byax) by using the VA with an activity-weighted
MSE cost measure. In our results, for the coding of one frame,

37
‘COMBINED BUFFER EVOLUTION
000~ 4Ni5 k1S, SNIR=363 a8
MUX.: R=272, SNR=36 74

BUFFER OCCUPANCY (BITS)
g

o 100 200 300 400 500 600

Fig. 14. Buffer evolution in the common buffer for the four sources when the
allocation is computed using a combined or multiplexed VA (solid line) or an
independent VA (dashed line). The resulting total SNR (obtained by averaging
the MSE of all sources) increases, as was to be expected when a combined
VA is used for the allocation. The independent VA uses one fourth of the rate
and buffer size of the combined scenario independently for each source.

VA proves to be better than a “fixed” mapping by 1 dB in both
SNR and weighted SNR (WSNR).

C. Statistical Multiplexing of ATM Sources

Within an ATM network, the user negotiates with the
network the parameters of each connection, specifying the
mean channel rate, maximum peak rate available to the user,
etc. [24]. Thus, several VBR sources would be able to share
transmission resources and buffers within the network, so that
advantage can be taken of what has been called statistical
multiplexing gain (SMG).The bit stream combining the mul-
tiplexed sources has a less peaky behavior (i.e., its “peak to
mean rate” ratio is smaller than that of the individual sources),
and therefore, the probability of buffer overfiow is lower.
Studies of SMG for packet video [25], [26] have expressed
the gain only in terms of reducing overflow probability, i.e.,
looking at the problem from a network point of view. In [27], it
was shown how, for certain sources such as speech and video,
end-to-end SNR is a more meaningful measure of performance
than packet loss. This fact was used to propose a system of
packet priorities so that under congestion, the least “important”
information, in the distortion sense, is lost first. We look at
the problem of statistical muitiplexing also from a source
coding point of view (i.e., taking into account both rate and
distortion) and show an example of how to use the previously
described techniques to evaluate the maximum performance
gain of source multiplexing in an ATM environment.

It has to be noted that our experiment does not take into ac-
count the fact that sources will be policed by the network [24],
and thus, no restrictions are imposed on the parameters (peak
and mean rate) of each individual source being multiplexed.
Our results provide a bound on the achievable performance
given the set of sources and the bit rate available to transmit
them and would also be applicable to cases, for instance within
MPEG, where several video sources are simultaneously coded

38 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994
BUFFER EVOLUTION: SOURCE #1 BUFFER EVOLUTION: SOURCE #2
7000]-..... IND.: R=68, SNR=36.24B A .
. IND.: R268, SNR=37.98 4B & 6000} MUX.: R=72.32, SNR=3648dB_ }]v \/\ EWLN
E MUX.: R=47.22'SNR=37.04 4B _ g V V
5 : j & sooof A
: E A
g E 3000 /!\N
2 R 2000 / ¥ - =
5 A . it MY
00 200 300 40 500 600 0080 S0 1000
BLOCK NUMBER
(b)
BUFFER EVOLUTION: SOURCE #3 BUFFER EVOLUTION: SOURCE #4
57698 4500 oy
.: R=82,19; SNR=16.67 dB 4000 "\'A\ [\ﬁ ’ “ \Vl\ f\
E . ' VNV - NRARY J\\ A
a
5 12 MV/"\VN | B 3000 i J \{ IND.; R=68, SNR=36,63 4B A \
§ 1ho \/x\/‘\/\\ z 500 'V\! MUX.; R=70.27, SNR=36.78 4B \J
€ AN % | _
E 06 /\./ E [.
2 5
2l]
; W s w 5 i M < o < i F”.
% w0 200 00 40 300 &0 700 500 900 1000 300 400 S00 600 700 800 900 1000
BLOCK NUMBER BLOCK NUMBER
© (d)
Fig. 15. Individua! buffer occupancies for each source: (a) Source 1; (b) source 2; (c) source 3; (d) source 4. The independent buffer evolution (dashed

line) corresponds to a buffer size of 2000. The combined or multiplexed buffer evolution (solid line) is simulated based on the combined allocation and
assuming that the channel rate was the same as in the independent case, i.., one fourth of the total rate. Observe that the most demanding sources (2,
3, 4) increase their effective rates in the combined case at the expense of the least demanding source (1). Overall, the same total rate is used and, as
seen in Fig. 14, the overall SNR is improved when doing a combined allocation.

by a single coder and then multiplexed into a single CBR
bit stream. The problem of optimizing source coding under
policing constraints is studied in [28].

The experiment is mecessarily source dependent and is
given as an example of what a typical behavior might be.
One could expect higher gains if the sources are highly
uncorrelated (different sources having peaks during different
time intervals), whereas gains would have to be modest for
correlated sources. In fact, in the limit of high correlation,
when all sources are identical, there would be no gain in
using multiplexing.

In our experiment, we consider four sources, each consisting
of 1000 blocks, that are muitiplexed into a buffer of size
4 - B before being sent through a channel of rate 4 - R. As
stated, this problem is equivalent to the one we have treated
previously; therefore, we can use the VA to determine the
optimal allocation given the buffer constraints. This can be
done in two ways:

(i) Allocate the rate independently for each source, i.e., use
the VA on each one assuming a rate of R and a buffer size
of B. The VA minimizes the distortion of each source.
Perform the VA in a combined fashion, i.e., for a rate
of 4 - R and a buffer size of 4 - B. At each stage,
the algorithm determines the quantizers to be used in
each of the sources, taking into account the combined
rate distortion characteristic. With this approach, the VA
minimizes the total distortion of the four sources.

(i)

Fig. 14 shows the evolution of the multiplexing buffer under
methods (i) and (i) (dashed and solid lines, respectively).
Note that when the independent allocation is used, the buffer
is not fully used. In contrast, when a combined allocation is
performed, the buffer reaches near-full and near-empty levels
during the simulation. For this particular example, the gain
achievable by using a combined VA is nearly 0.2 dB for the
average distortion. However, the individual distortions of each
of the sources with either method are of more interest (see

ORTEGA et al.: OPTIMAL TRELLIS-BASED BUFFERED COMPRESSION

Fig. 15). Our results show that in order to improve the overall
quality, one source is allocated fewer bits by the combined
algorithm (see Fig. 15(a)), whereas the other three (Fig. 15(b),
(c), and (d)) increase their total allocation. It can be seen that
source 3 increases its SNR by almost 1 dB, whereas source
1 loses close to 1 dB. Overall, minimizing the total distortion
tends to average out the SNR’s of the individual sources. Note
that there is also a gain from the buffer size point of view:
for sources 2, 3, and 4 to reach the same distortion values
as with method (ii), the buffers used with method (i) would
need to be much larger than the original size of Bpax = 2000
bits.

VI. CONCLUSION

In this work, a global view of the problem of buffer-
constrained quantization has been presented. A detailed study
of the problem from a theoretical point of view is undertaken,
and based on it, practical methods to compute the optimal so-
lution to the problem are described. In particular, we present a
class of nearly optimal fast algorithms exhibiting a substantial
reduction in computational complexity. We have shown some
possible applications for our algorithms, such as benchmarking
for buffer control algorithms, determination of the optimal
buffer size for a given coding environment, and analysis
of statistical multiplexing gain in ATM networks. Addition-
ally, our optimal algorithm is useful for applications where
processing delay is not important, like broadcast, video on
CD-ROM, workstation display, or buffer—constrained JPEG.
The case of dependent quantization, that is, when the bit
rate of a given block depends both on the quantizer used
and on the previous block (the simplest example would be
interframe DPCM video sequence coding), is currently under
investigation.

ACKNOWLEDGMENT

The authors wish to thank Prof. M. Pinedo from Columbia
University for useful discussions on Lagrangian techniques
for integer programming and Dr. D. LeGall from C-Cube
Microsystems for helpful comments on activity-weighted al-
location.

REFERENCES

[1] N. Farvardin and J. W. Modestino, “On the overflow and underflow
problems in buffer-instrumented variable-length coding of fixed-rate
memoryless sources,” IEEE Trans. Inform. Theory, vol. 1T-32, pp.
516-532, Nov. 1986.

[2] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, pp. 3044, Apr. 1991.

(3] D. LeGall, “MPEG: A video compression standard for multimedia

applications,” Commun. ACM, vol. 34, pp. 46-58, Apr. 1991.

B. G. Haskell and R. L. Schmidt, “A low bit-rate interframe coder for

the videotelephone,” Bell Syst. Tech. J., vol. 54, pp. 1475-1495, Oct.

1975.

[S] J. -P. Leduc and S. D’Agostino, “Universal VBR videocodecs for ATM

networks in the Belgian broadband experiment,” Image Commun., vol.

3, pp. 157-165, June 1991.

J. Zdepsky, D. Raychaudhuri, and K. Joseph, “Statistically based buffer

control policies for constant rate transmission of compressed digital

video,” IEEE Trans. Commun., vol. 39, pp. 947-957, June 1991.

4

[6

39

[71 A. Ortega, J. 1. Ronda, N. Garcia, and P. J. Zufiria, “A model based
approach to buffer occupancy control for TV and HDTV coders,” in
Proc. 4th Int. Workshop HDTV (Turin), Sept. 1991.

[8] J. I Ronda, A. Ortega, A. Ferndndez, and N. Garcfa, “Predictive control
of variable bit rate video coders,” in Proc. 6th Euro. Signal Processing
Conf., EUSIPCO ’92 (Brussels), Aug. 1992, pp. 1369-1372, vol. 3.

[9] T. Hamada, M. Saito, and S. Matsumoto, “Optimal quantization by
viterbi algorithm for HDTV coding,” in Proc. 4th Int. Workshop HDTV
(Turin), Sept. 1991 (Abstract).

[10} A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal buffer-
constrained source quantization and fast approximations,” in Proc.
1EEE Int. Symp. Circ. Syst. ISCAS °92 (San Diego), pp. 192-195, May

1992.

Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set

of quantizers,” IEEE Trans. Signal Processing, vol. 36, pp. 1445-1453,

Sept. 1988.

S.-W. Wu and A. Gersho, “Rate-constrained optimal block-adaptive

coding for digital tape recording of HDTV,” IEEE Trans. Circuits Syst.

Video Tech., vol. 1, pp. 100-112, Mar. 1991.

P. A. Chou, T. Lookabaugh, and R. M. Gray, “Optimal pruning with

applications to tree-structured source coding and modeling,” IEEE

Trans. Inform. Theory, vol. I1T-35, pp. 299-315, Mar. 1986.

G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial opti-

mization. New York: Wiley, 1988.

M. Minoux, Matt ical Prog

New York: Wiley, 1986.

M. L. Fisher, “The Lagrangian relaxation method for solving integer

programming problems,” Management Sci., vol. 27, pp. 1-18, Jan. 1981.

A. J. Viterbi and J. K. Omura, Principles of Digital Communication and

Coding. New York: McGraw-Hill, 1979.

G. D. Fommey, “The Viterbi algorithm,” Proc. [EEE, vol. 61, pp.

268-278, Mar, 1973,

J. G. Proakis, Digital Communications.

1989.

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE

Trans. on Inform. Theory, vol. IT-28, pp. 55-67, Jan. 1982.

M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of
memoryless and gauss-markov sources,” IEEE Trans. Commun., vol.

38, pp. 82-93, Jan. 1990.

H. Everett, “Generalized Lagrange multiplier method for solving prob-

lems of optimum allocation of resources,” Oper. Res., vol. 11, pp.

399-417, 1963.

K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a

rate-distortion sense,” JEEE Trans. Image Processing, Apr. 1993,

E. P. Rathgeb, “Modeling and performance comparison of policing
mechanisms for ATM networks,” IEEE J. Selected Areas Commun., vol.
9, pp. 325-334, Apr. 1991.

B. Maglaris, D. Anastassion, P. Sen, G. Karlsson and J. Robbins,

“Performance models of statistical multiplexing in packet video com-

munications,” IEEE Trans. Commun., vol. 36, pp. 834843, July 1988.

W. Verbiest, L. Pinnoo, and B. Voeten, “The impact of the ATM
concept on video coding,” IEEE J. Selected Areas Commun., vol. 6,
pp. 1623-1632, Dec. 1988.

M. W. Garrett and M. Vetterli, “Joint source/channel coding of statis-

tically multiplexed real time services on packet networks,” IEEE/ACM

Trans. Networking, vol. 1, pp. 71-80, Feb. 1993.

A. Ortega, M. W. Garrett and M. Vetterli, “Toward joint optimization
of VBR video coding and packet network traffic control,” in Proc. 5th

Packet Video Workshop (Berlin), Mar. 1993,

{11

[12]

[13]

[14]

[15] s Theory and Algorithms.

[16]
7]
(18]
[19] New York: McGraw-Hill,
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Antonio Ortega (5'92) was born in Madrid, Spain, in 1965. He received the
Telecommunication Engineering degree from the Universidad Politécnica de
Madrid (UPM), Madrid, Spain, in 1989 and is currently working toward the
Ph.D. degree in electrical engineering at Columbia University, New York, NY.

In 1986 and 1987, he worked during the summer for Gibbs & Hill, Inc.,
Washington, DC. In 1988, he was a summer intern at the Optoelectronics
Lab, ENST, Paris, France. During 1990, he was a research assistant at
the Image Processing group at UPM. Since January 1991, he has been a
Research Assistant at the Center for Telecommunications Research, Columbia
University. His work is being supported by a scholarship from the Fulbright
Commission and the Spanish Ministry of Education. His research interests
include digital image and video processing and communications.

40

Kannan Ramchandran ($'92) was born in Madras, India, in 1961. He
received the B.S. in E.E. degrees from the City College of New York in 1982
and the M.S. and M. Phil. degrees in electrical ineering from Columbi

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3., NO. 1, JANUARY 1994

Martin Vetterli (S'86-M’86-SM’90) was born in Switzerland in 1957.
He received the Dipl. El.-Ing. degree from the Eidgenossische Technische
Hochschule Ziirich, Switzerland, in 1981, the Master of Science degree from

University in 1984 and 1992, respectively.

From 1982 to 1984, he worked for IBM as a microprocessor systems
designer. In 1984, he joined AT&T Bell Labs as a Member of the Technical
Staff, where he designed digital line multiplexers, phase-locked loops, syn-
chronization circuitry, and custom transmission IC’s in the optical fiber loop
carrier system and the fiber-to-the-home development system. He is currently
on educaiional leave from AT&T to finish his Ph.D. dissertation at the Center
for Telecommunications Research at Columbia. His research interests in-
clude multiresolution signal processing, adaptive quantization, fast algorithms,
and architectures for image and video coding, digital telecommunications,
wavelets, time-frequency analysis, and packet video.

Stanford University, Stanford, CA, in 1982, and the Doctorat &s Science degree
from the Ecole Polytechnique Fédé rale de Lausanne, Switzerland, in 1986.

In 1982, he was a Research Assistant at Stanford University, and from 1983
0 1986, he was a researcher at the Ecole Polytechnique. He has worked for
Siemens and AT&T Bell Laboratories. In 1986, he joined Columbia University
in New York, where he is currently Associate Professor of Electrical Engineer-
ing, member of the Center for Telecommunications Research, and codirector
of the Image and Advanced Television Laboratory. Since 1992, he has
been an Acting Associate Professor of Electrical Engineering and Computer
Science at the University of California at Berkeley. His research interests
include wavelets, multirate signal processing, computational complexity,
signal prc ing for telecc ications, and digital video processing and
compression.

He is a member of SIAM and ACM, a member of the MDSP committee
of the IEEE Signal Processing Society, and he is on the editorial boards
of Signal Processing, Image Communication, Annals of Telecommunications
Applied and Computational Harmonic Analysis, and The Journal of Fourier
Analysis and Applications. He received the Best Paper Award of EURASIP in
1984 for his paper on multidimensional subband coding, the Research Prize
of the Brown Bovery Corporation (Switzerland) in 1986 for his thesis, and
the IEEE Signal Processing Society’s 1991 Senior Award (DSP Technical
Area) for a 1989 Transactions paper with D. LeGall on filter banks for
subband coding. He was a plenary speaker at the 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing and is the co-author,
with J. Kovacevic, of the forthcoming book Wavelets and Subband Coding
(Prentice-Hall, 1994).

