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Discrete-Time Wavelet Extrema Representation:
Design and Consistent Reconstruction

Zoran Cvetkovié and Martin Vetterli, Senior Member, IEEE

Abstract—This paper studies wavelet transform extrema and
zero-crossings representations within the framework of convex
representations in (2(Z). Wavelet zero-crossings representation
of two-dimensional signals is introduced as a convex multiscale
edge representation as well. One appealing property of convex
representations is that the reconstruction problem can be solved,
at least theoretically, using the method of alternating projections
onto convex sets. It turns out that in the case of the wavelet
extrema and wavelet zero-crossings representations this method
yields simple and practical reconstruction algorithms. Nonsub-
sampled filter banks that implement the wavelet transform for
the two representations are also studied in this paper. Relevant
classes of nonsubsampled perfect reconstruction FIR filter banks
are characterized. This characterization gives a broad class of
wavelets for the representations which are derived from those of
the filter banks which satisfy a regularity condition.

I. INTRODUCTION

AVELET modulus maxima and wavelet Zero-crossings
Wrepresentations (11, [2] are based on irregular sampling
of the multiscale wavelet transform at points which have some
physical significance. Modulus maxima and zero-crossings of
the wavelet transform, in the case of continuous-time signals,
provide information on singularities, which are considered to
be among the most meaningful features for signal charac-
terization. Besides, unlike regular sampling, such a sampling
strategy attains shift invariance of the representation, and thus
overcomes one of the major drawbacks of the wavelet series
expansion. This was one of the main reasons for introduction
of the two representations by Mallat er al. [1], [2], and their
promising performances were demonstrated in applications to
signal denoising and compression.

Although these representations stem from underlying
continuous-time theory, implementation takes place in the
discrete-time domain. Berman er al. [3] were the first to
pose the problem in purely discrete-time, arguing that the
discrete framework is the model of an actual implementation,
and showing that wavelet transform extrema/zero-crossings
provide stable representations of finite length discrete-time
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signals. However, a complete discrete-time framework for the
two representations has not been developed yet. In this paper,
we give rigorous analysis of several aspects of wavelet extrema
and zero-crossings representations in ¢2(Z), in particular:
implementation, wavelet design and reconstruction.

Wavelet modulus maxima or zero-crossings based signal
processing schemes are implemented by nonsubsampled oc-
tave band filter banks. We investigate properties of such filter
banks and give a complete characterization of finite impulse
response (FIR) filter banks for wavelet modulus maxima and
wavelet zero-crossings representations. Wavelets for the two
representations can be derived from the filter banks using the
procedure proposed by Daubechies [16], [14] for generating
orthonormal bases from critically sampled filter banks. How-
ever, nonsubsampled filter banks being less constrained allows
for the design of a broader class of wavelets. This point is
illustrated by a design procedure for highly regular wavelets
with a given number of vanishing moments.

Reconstruction algorithms proposed in this paper are based
on alternating projections onto convex sets and converge to
a consistent estimate of the original signal. The notion of
consistent estimate, originally introduced by Thao and Vetterli
[6], denotes a signal which has the same representation as the
original. The set of consistent estimates, called reconstruc-
tion set, in the case of nonunique representations generally
consists of more than a single signal. Although experiments
in reconstruction from wavelet modulus maxima and wavelet
zero-crossings representations [1], [2], [7] yielded very good
results, it was shown by Berman [4] and Meyer [5] that
these representation do not provide a unique characterization
of signals in R™ and L%(R), respectively. That means that
some information is lost when going to the representation
domain. The reason we insist on the consistent reconstruction
is because it means reconstruction without loss of information,
that is, fully utilizing the information which is embedded in the
representation. In other words, although in the nonunique case
we are not able to achieve perfect reconstruction, a consistent
reconstruction algorithm yields a signal which at least has
all of the properties of the original signal as described by
the representation. A problem with wavelet modulus max-
ima representation is that it is nonconvex, which makes the
reconstruction difficult. Hence, in this paper we study the
wavelet extrema representation, which is a convex variant of
the wavelet modulus maxima scheme, and propose simple and
efficient algorithms for consistent reconstruction from wavelet
transform extrema or zero-crossings. Numerical complexity of
the proposed algorithms is O(JN) operations per iteration
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for signals of length N and wavelet transform across J
scales.

For similar reasons, in the case of two-dimensional signals
we propose wavelet zero-crossings representation as a convex
alternative to the wavelet modulus maxima representation. The
wavelet modulus maxima representation for two-dimensional
signals was proposed by Mallat ez al. [2], [7] as a tool for
extracting information on multiscale edges. For a particular
class of the wavelet transform analysis filters, zero-crossings
of the wavelet transform also occur at points of sharp image
variations. As a consequence of the convexity, it is possible
to achieve consistent reconstruction with a simple iterative
algorithm. As an illustration, we report results of image
reconstruction using this new algorithm.

The outline of the paper is as follows. Section II introduces
definitions of the wavelet extrema and wavelet zero-crossings
representations and establishes their relation. Relevant proper-
ties of nonsubsampled filter banks and the design of wavelets
are studied in Section IIl. Algorithms for consistent recon-
struction are described in Section IV, which also introduces
the wavelet zero-crossings representation of two-dimensional
signals. Results of experiments in signal reconstruction from
the two representations are reported in Section V.

Notations: For a real discrete-time filter H(z), let H(2)
denote the filter whose impulse response is the time-reversed
version of the impulse response of H(z). The Fourier trans-
form of ¢(z) € L2(R) will be written as ¢(w). For the dilated
and scaled version of 9(z), the notation 1,(z) = 1¢(Z) will
be used. Convolution of functions in L?(R) will be denoted

by *: fxg(z) = f_:: f(w)g(z — v)du.

II. WAVELET EXTREMA AND WAVELET ZERO-CROSSINGS
REPRESENTATIONS: DEFINITIONS AND MUTUAL RELATIONSHIP

Wavelet extrema and zero-crossings representations are con-
sidered here in the discrete-time domain, for signals in £2(Z).
The wavelet transform will refer to the bounded linear operator
W:£2(Z) — £3(T), where £2(I) = £2({1,2,---,J + 1} x Z),
consisting of J + 1 linear operators W;:2(Z) — (2(Z),
j =12,---,J + 1. The operators W; are the convolution
operators with the impulse responses of filters

Vi(z) = Hi(z),
Va(2) = Ho(z)H:(z%),

Vi(z) = Ho(z) -~ Ho(22 " YH1(22' "),
Vipa(2) = Hol2) -+ Ho(z% ) Ho(z* )

respectively. This is the type of transform implemented by an
octave band nonsubsampled filter bank with analysis filters
Hy(z) and H;(z), as shown in Fig. 1(a) for J = 4. FIR
nonsubsampled octave band filter banks are studied in more
detail in Section IIL. In the following, signals in ¢2(Z) will
be denoted by lower case letters, f,g,... and their wavelet
transforms by corresponding upper case letters, F = Wf,G =
Wy, .... Any vector F in £2(I) will represent a (J + 1)-tuple
of vectors in £2(Z), F = (F*,F?,.--, F/t1), 50 a jth octave
band component of W f will be denoted by W; f = F7.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 3, MARCH 1995

Fig. 1. Wavelet transform: (a) Filter bank implementation of the W op-
erator; (b) filter bank implementation of an inverse of ‘W; (c) filter bank
implementation of the W™ operator.

The definitions of the wavelet extrema and zero-crossings
representations adopted here are essentially those introduced
by Berman et al. [3]. In the following, M, and M; will denote
the operators which give the locations of local maxima and
minima respectively of some signal f,

M.f={k:f(k+1) < f(k), f(k-1) < f(B)}, D
Mif = {k: f(k+1) > f(k), f(k-1) > f(k)} ()

while M will stand for the operator extracting values of some
signal at its local extrema points

My = {f(k), ke Mof | JMif}.

According to this notation, the wavelet extrema representation
of a signal f is defined as:

Eef={MaW]f7MlW]f7MWJf7 ]=197J+1} (4)

3

This means that E. f consists of indices of local extrema of
W, f and the values of W;f at these points, and this for all
scales j = 1,2,---,J + 1.

The wavelet extrema representation contains information on
both wavelet transform modulus maxima and minima. For
a wavelet which is the first derivative of some smoothing
function the maxima correspond to sharp variations in the
signal while the minima occur at the points where the signal
is maximally regular [2]. This does not necessarily lead to a
significant increase in the number of points to be considered
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with respect to the wavelet modulus maxima representation
as would appear at first. It turns out that most of wavelet
transform local extrema are actually modulus maxima (there
are examples of signals for which the wavelet extrema and
modulus maxima representations are the same). In experiments
performed on lines from images and randomly generated
signals we obtained that taking the modulus maxima instead
of all local extrema reduces the total number of points by only
about 10%. Another example of a convex modification of the
original modulus maxima scheme is a representation which
includes information on positions of local modulus minima
without coding their values. Also, either the whole low-pass
signal W, f or only its local extrema could be kept for this
representation. For the sake of conciseness, in this paper, we
will adhere to the definition (4) since most of the results apply
to other cases as well.

The definition of wavelet Zero-Crossings representation re-
quires the introduction of two more operators. Z will denote
the operator which provides the zero-crossings of a sequence

f:
Zf={k:f(k)- f(k—1) <0} (%)

It is known that the zero-crossings by themselves do not
provide a stable! characterization of signals [1]. Therefore
the integral values of the function between Zero-crossings
are added in order to stabilize the representation [1]. Let S
be the operator which gives the integral values (the sum of
points) between all pairs of consecutive zero-crossings of some
sequence. If the total number of zero-crossings of f is denoted
by |Zf|, and its kth zero-crossing by 2, the S operator is
defined as:

zp—1

5f=q8f(k):Sf(k)= > f(i)k=1,--,|1Zf] +1

I=2k—1

(6)
It is assumed here that the points —oc and +oo are also zero-
crossings, denoted by 2y and 2|z f|+1- respectively. In order to
ensure that S f(1) and Sf(|Z f|+1) are finite, we shall require
that the signal f be integrable, that is f € ¢(Z). Therefore, the
following definition of wavelet Zero-Crossings representation
is introduced for signals in ¢!(Z) (this is usually the case in
practice, where signals with sufficient decay are encountered):

meaning that the zero-crossings representation, E. f, consists
of the indices of the zero-crossings of W; f and integral values
of W; f between consecutive zero-crossings, across all scales
J=12-- J+1

In the last part of this section we consider mutual rela-
tionship between wavelet extrema and wavelet Zero-crossings
representations defined this way. Consider the extrema repre-
sentation R f of some signal f € (2(Z),

Ref: {Maf7 M1f7Mf} (8)

!By stable we mean that a small perturbation of the representation can not
correspond to an arbitrarily large perturbation of the original signal.

and the zero-crossings representation R, A f of its difference

Af,
Af(n) = f(n+1) - f(n) )]
defined as

R.Af = {2ZAf,SAf). (10)

According to the definitions of local extrema and zero-
crossings, (1), (2), (5), the local extrema of f coincide with
the zero-crossings of A f:

Mof(JMif = ZAf. (1)

In addition to the equivalence between M, f UM, fand ZAf,
Mf and SAf also provide equivalent information on the
signal f. With z; denoting the index (location) of the kth zero-
crossing of Af, k =1,2,--- |ZAf|, the following relations
can be easily proven:

Mf={f(z1),f(z2),---, F(z12a5))} (12)
SAf = {(f(z1) - f(~o0)),
(f(z2) = f(21)), -+, (f(+00) = f(212a0) }-
(13)

Since in most practical cases f(—00) = 0 and f(+00) = 0,
information contained in M f and SA f are equivalent, i.e., one
uniquely determines the other. We can now state the relation
between the two representations as an immediate consequence
of equalities (11), (12), (13), and the commutativity of the A
and W; operators.

Proposition 1: For signals in ¢2(Z), the wavelet extrema
representation and the wavelet zero-crossings representation of
the signal’s first difference (9) provide an equivalent character-
izations of the signal. Consider an arbitrary signal f € ¢%(Z)
and its difference Af. Any signal in the reconstruction set
of Af, from its wavelet zero-crossings representation, is the
first difference of some signal in the reconstruction set of fs
from its wavelet extrema representation. Conversely, the first
difference of any signal in the reconstruction set of f, from
its wavelet extrema representation, is in the reconstruction set
of Af, from its wavelet Zero-Crossings representation.

III. NONSUBSAMPLED FILTER BANKS
FOR THE WAVELET TRANSFORM

Discussions of nonsubsampled filter banks in this paper will
be restricted to FIR filters and octave band trees implementing
the wavelet transform, as illustrated by Fig. 1(a). For perfect
reconstruction of an arbitrary signal f € £2(Z) from its wavelet
transform, W £, it is necessary and sufficient that there exist
two filters Go(z) and G1(z) satisfying

Ho(2)Go(2) + Hy(2)G1(2) = 1. (14)

Then, an inverse of the wavelet transform operator W1 can
be implemented by a filter bank as shown in Fig. 1(b), which
will be referred to as the nonsubsampled synthesis octave band
filter bank. It can be shown that for stable reconstruction to
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be plausible the filters Ho(z) and Hi(z) can not have any
common zeros on the unit circle [8]. For the reconstruction
scheme using only FIR filters following FIR analysis, perfect
reconstruction condition (14) is equivalent to the constraint
that Ho(z) and H;(z) have no common zeros. These perfect
reconstruction conditions are less restrictive than the one in
critically sampled filter banks [9], and consequently allow a
greater degree of freedom in choosing the prototype filters.

Note that the synthesis filters Go(z) and G1(z), and there-
fore the inverse wavelet transform operator, W1, are not
unique. An obvious solution for the reconstruction operator
W1 is represented by Fig. Ic, where V(z) is

V(z) = Vi(2)Vi(z™Y) + Va(2)Va(z ™)
4o Vi (2) Vg (z7h).

It amounts to filtering the octave band components W1 f, W2,
“y Wi f by Uir(2) = Va(2)/V (2), Ua(2) = Va(2)/V(2),
<o, Uss1(2) = Vy41(2)/V(2) respectively, and adding the
resulting sequences. This inverse is called the Hilbert adjoint
of the dual operator of W [10], [8] and is denoted by W*. The
reconstruction algorithms which we propose use iteratively
the orthogonal projection operator onto the range of the
wavelet transform Py: ¢%(I) — ¢%(I), which is implemented
as P, = WW*. Note that only for W=1 = W* is the
Py, operator: P, = WW 1, Since the numerical complexity
of the reconstruction algorithms depend on this operator it is
desirable to implement it using FIR filters.

It is easy to see that the wW* operator has an FIR im-
plementation if and only if V(z) is equal to a constant or,
without loss of generality, V(z) = 1. Note that V(z) cannot
be a delay, since it is a symmetric polynomial. Necessary and
sufficient conditions for this to hold are given by the following
proposition which is proven in Appendix A.

Proposition 2: V(z) is equal to a constant if and only if

Ho(2)Ho(z™h) + Hy(2)Hy(27Y) = 1. (16)

Filters satisfying condition (16) are called power comple-
mentary filters [11]. Proposition 2 immediately proves the
following theorem.

Theorem 1: Consider the wavelet transform operator W,
implemented by an octave band nonsubsampled filter bank,
with FIR analysis filters Ho(z) and H;(z). W*, the Hilbert
adjoint operator of the dual operator of W, has an FIR imple-
mentation if and only if Ho(z) and H;(z) are power comple-
mentary filters. In that case, Py = WW! for W-1 = W*,
and W* can be implemented by the nonsubsampled octave
band synthesis filter bank (see Fig. 1(b)), with Go(z)
H()(Z_l) and G](Z) = Hl(z‘l).

A subclass of all octave band nonsubsampled filter banks
satisfying this requirement is the class of orthogonal FIR filter
banks. In many signal processing tasks linear phase filters are
desirable. However, the power complementary condition (16)
excludes the possibility of nontrivial linear phase FIR designs
[11]. Another feature relevant for wavelet transform extrema
and zero-crossings schemes is the flatness of filters at zero
and at half the sampling frequency. In the following we study
design of power complementary filters with a given flatness
atz =1and z = —1.

(15)
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The flatness of a filter at some frequency is defined as the
multiplicity of the root at that frequency of the first derivative
of its frequency response. Maximally flat filters are filters
having the first derivative of the frequency response with the
maximum number of zeros on the unit circle. In applications
of filter banks an important role is played by the regularity of
the low-pass prototype filter, a feature which is closely related
to the flatness of the filter at w = = [10]. For example, in
constructing orthonormal bases of wavelets from iterated filter
banks, roughly speaking, a greater number of zeros of the low-
pass filter at w = 7 results in more regular wavelets. On the
other hand, the number of vanishing moments of the wavelet
obtained this way is determined by the multiplicity of zeros
of the high-pass filter at w = 0.

The motivation behind wavelet extrema and wavelet zero-
crossings representations is that for appropriately chosen
wavelets, wavelet transform modulus maxima and zero-
crossings occur at points of sharp variations of the signal [7].
An appropriate wavelet here means that it has to be the first
derivative of some smoothing function in the modulus maxima
case, or the second derivative of some smoothing function in
the zero-crossings case. This implies that the prototype high-
pass filter must have a zero of multiplicity one at w = 0 in the
modulus maxima case, or multiplicity two in the zero-crossings
case. The issue which we want to investigate here is how this
affects the flatness of the low-pass filter. A constraint with the
orthogonal filter bank design is that the low-pass prototype
filter must have a zero of multiplicity one/two at w = m, in the
extrema/zero-crossings case respectively, which means poor
regularity, or poor smoothness of the wavelet. However, with
general power complementary filters, zeros of the low-pass
filter at w = m are much less constrained.

The design procedure for maximally flat power complemen-
tary filters is given in Appendix B, as a constructive proof of
Proposition 3, which states the main design result. Consider
a pair of filters Ho(z) and Hi(z) satisfying the following
conditions:

H()(Z)H()(Z_l) + Hl(z)Hl(z_l) =1 an
Hy(-1)=0, Hi(1)=0.
If the multiplicity of the zeros of Ho(z) at z = —1 is No and
the multiplicity of the zeros of Hy(z) at z = 1 is Ni, then
the filters have flatness Ny — 1 at w = 7, and flatness N; — 1
at w = 0. In designing maximally flat filters, the issue is to
maximize the flatness of the filters, i.e., to maximize Ny + Ny
for the given filter length L. The following proposition holds.
Proposition 3: Consider a power complementary pair of
filters Ho(z) and H;(z) of length L, where Ho(—1) = 0 and
H;(1) = 0. Let Ny be the multiplicity of the zeros of Hy(z) at
w = =, and N; be the multiplicity of the zeros of H;(z) atw =
0. It is possible to design Ho(z) and H(z) for any pair of Ny
and Ny suchthat 1< Nog< L, 1< N; <L, No+ N, L L.
A consequence is that in the design of power complementary
filters for the wavelet extrema representation the low-pass filter
can even be a binomial filter. In the zero-crossings case the
low-pass filter of the power complementary pair can have all
but one of its zeros at w = w. However, the low-pass filter
does not necessarily have to be maximally flat in order to
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Fig. 2. Examples of power complementary filters for the wavelet
zero-crossings representation. The length of the filters is L = 9, and the

high-pass filters have a zero of multiplicity Ny = 2 at = = 1 in all cases:
(a) Maximally flat filters: low-pass filter has No = 7 zeros at = = —1; (b)
power complementary pair: low-pass filter with Ny = 6 zeros at z = —1; (c)
power complementary pair: low-pass filter with Ng = 5 zeros at z = —1;
(d) power complementary pair: low-pass filter with Ny = 4 zeros at = = —1.

achieve sufficient regularity. This brings additional freedom
which can be used to meet other design specifications. Fig. 2
illustrates several designs of power complementary filters for
the wavelet zero-crossings representation with the parameter
being the multiplicity of the zeros of the low-pass filter at
w = T.

Wavelets for the wavelet extrema or zero-crossings rep-
resentation can be generated using infinitely iterated octave
band nonsubsampled filter banks. That is a standard procedure
pioneered by Daubechies [16], and also discussed by Shensa in
the nonsubsampled case. Details of this construction are given
in Appendix C. Fig. 3 gives examples of wavelets derived
from the power complementary filter banks represented in
Fig. 2. It can be shown (see Appendix C) that wavelets derived
from maximally flat power complementary filters of the length
L are at least L — 3 times continuously differentiable in
the extrema case, while in the zero-crossings case they are
continuously differentiable at least L — 3 — % log, L times.

The connection between octave band filter banks and
continuous-time multiresolution analysis was first pointed
out by Mallat [13]. Mallat showed that in the case of critically
sampled orthogonal filter banks, octave band trees can be used
for efficient calculation of coefficients of wavelet expansions
of continuous-time signals. That result is known as Mallat’s
algorithm. Recently, Shensa [14] showed that a similar relation
between discrete and continuous-time frameworks exists in
the case of nonsubsampled filter banks provided only that the
perfect reconstruction condition (14) is satisfied. In Appendix
D, we briefly state this relation and give a direct proof.

IV. CONSISTENT RECONSTRUCTION

The wavelet extrema and zero-crossings representations of
a signal represent a number of convex constraints which the

04 05
0.2
ol 0
-0.2
-0.4 -0.5)
[ 0.5 0 05 1
(a) )
0.4
0.5]
0.2
0|
-0.2] 0
-0.4
-0.6 -0.5
0 0.5 1 [} 05 1

(c) (d

Fig. 3. Wavelets derived from the filters represented in Fig. 2. Wavelets in
(a)~(d) are derived from filters in Fig. 2(a)—(d), respectively.

signal obeys. In general, an infinite number of signals, which
are signals in the reconstruction set, satisfy the same set of
constraints. A consistent reconstruction strategy, which is our
goal, means finding a signal in the reconstruction set since it
satisfies all of the constraints and can not be distinguished from
the original based on the representation. This notion is also
important when quantization of extrema values (or integral
values between zero crossings) is used, as would be the case
in coding.

The reconstruction procedures described here actually re-
cover from the representations the wavelet transform F* =
W f* of a signal f* in the reconstruction set, which is then
itself obtained using the inverse wavelet transform. ®¢(F), the
closure of the reconstruction set of F' from the local extrema of
W;f, j=1,---, J+1, can be represented as the intersection

(P =vNeN [N (18)
4.3

of the following sets:
» V—the range of the wavelet transform

V={G:G=Wgforsome g € t*(Z)}; (19

+ E—the set of all G € £2(I), such that Gi(k) = F*(k) for
all & which are local extrema of F*, across all the scales
1 =1,2,---,J+ 1;

* C; j—the set determined by the requirement that the
component G* of G € ®S(F) has to be nonincreas-
ing/nondecreasing at the point j if F' is decreas-
ing/increasing at the same point. Note that the sets C; ;
are associated only to those points where F is strictly
increasing or decreasing, i.e., only for those indices (i, j)
such that F*(j) # F(j + 1).

Obviously, V is a subspace of ¢2(I) and € and C; ;’s are
closed convex sets, therefore alternating projections [15] of
any initial point Fy € £*(I) onto V, £ and all the C; ;’s will
converge to a point in their intersection, the reconstruction set
BE(F).
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Fig. 4. Reconstruction from the wavelet extrema representation: implemen-
tations of projection operators: (a) Segment of the extrema representation of
the sequence F*, with the local maximum and minimum occurring at the
points Imax and liin, respectively; (b) segment of the signal G* (bold dots)
and its projection onto £ obtained by assigning it values of F* at the points
that are local extrema of F* (crosses represent the new values of the altered
points); (c) projection of G* onto £ is now represented by the bold dots. It
is increasing at the point j and therefore is not in C; ;. The projection is
obtained by assigning points j and j+ 1 their arithmetic mean.

The projection Gg of some G onto £ is obtained by
assigning extrema values of F' to the corresponding points
of G (see Fig. 4(b)):

(k) = {F"(k), k is an extremum of F* 20)

Gi(k), otherwise

and G, ,, the projection of some G € ¢(I) onto C; ;, is equal
to G, except possibly at the points j and j + 1 of G, if the
monotonicity condition imposed by the set C; ; is violated. In
that case

OE {% (G +CG+D) k=4i+1

G*(k) otherwise @b

as illustrated by Fig. 4(c).

Finding successive projections of some G onto £ and all
C; ;’s consists of assigning the arithmetic mean to the pairs of
points of G which do not obey the required monotonicity, and
assigning the local extrema values of F' at the corresponding
points. This requires O(JN) additions and O(JN) divisions
by two for a length N signal. The numerical complexity of
the Py operator is O(JLN) additions and O(JLN) multi-
plications, where L is the filters’ length, provided that the
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conditions for an FIR implementation of Py, are met (see
Section III).

In the wavelet zero-crossings case, the closure of the re-
construction set of F = W f, from the wavelet zero-crossings
representation of f, is the intersection

o (F) =v U |2 ]

where U and Z; ; are defined as the following:

« U—the set of all sequences G € ¢2(I) such that for all
scalesi = 1,---,JJ+1, F¢ and G? have the same integral
values between any two adjacent zero-crossings of F If
i denotes the kth zero-crossing of F%, then U can be
written as:

zp—1 il . zp—1 i/

y - {G: Germ T} GU)=TL FO)

k=1,2,---,|ZF|+1,i=1,2,---,J +1 &

« Z; j—the set of all sequences G € £2(I) such that G* has

the same sign as F* at point j. The Z; ; sets are defined
only for the nonzero points of F, only for those indices
(3,7) satisfying F*(j) # O.

Since the sets Z; ; and I are also closed and convex, a point
in the reconstruction set $¢(F') can be reached as the limit of
the sequence of alternating projections of an arbitrary starting
point Fy € £2(I) onto V, U and Z; ;’s. The projection Gz, ;
of any vector G € £%(I) onto Z;;, is obtained by assigning
a zero value to the point j of G* if F* and G* don’t have
the same sign at that point, as shown in Fig. 5(a) and (b).
The projection operator onto I operates on some G in the
following way. All the sequences G* of G are considered on
intervals between consecutive zero-crossings of corresponding
F*’s, and to each point of the interval the average difference
of G* and F* on that interval is added (see Fig. 5(c)). Thus
the projection Gy of a G onto U is given by

(22) .

zb =1
i ; 1 < . .
Gi(k) = Gi(k) + ——— Y (F(3) - G(3)),
Zp — Zp-1 j:zi_l
2 <k<z,n=1--|2ZF|+1i=1,--,J+1

(24)

Thus, Gy, has the same integral values as F on the intervals
determined by the zero-crossings of F'.

This algorithm actually iterates between operators Py, the
projection operator onto U, Py, and the projection operator
onto Z, Pz, where Z is the set of all vectors in £2(I) which
have prespecified zero crossings. Numerical complexity of the
composition of the projectors P, and Pz is O(JN) addi-
tions and O(JN) divisions by integers. A similar algorithm
for consistent reconstruction from wavelet transform zero-
crossings is proposed by Mallat [1]. Comparison between
Mallat’s algorithm and this algorithm is discussed in the next
section.

It is important to note that in each iteration of the reconstruc-
tion algorithms the distance between the original signal and its
estimate is decreased, which is a consequence of the fact that
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Fig. 5. Reconstruction from the wavelet zero-crossings representation: im-
plementations of the projection operators: (a) Segment of the zero-crossings
representation of F** with zero crossings occurring at the points =}, and =}, +15

(b) segment of the sequence G* represented by the bold dots. Its projections
onto Z; ;’s are obtained by assigning zero values to those points that do not
have the required sign; (c) projection of G' onto Z;. ;s is represented by the
dots. Its projection onto { is found by adding the same values to each point
of the segments between zero crossings of F'* so that the required integral
values are achieved.

projectors onto convex sets are nonexpansive operators. For
alternative algorithms for consistent reconstruction, based on
the gradient descent algorithm, the reader is referred to work
by Berman et al. [3].

The discrete wavelet transform operator of two dimensional
signals for wavelet modulus maxima [2], [7] and wavelet zero-
crossings representations is the linear operator W: £2(Z2) —
£({1,2,---,2J + 1} x Z?) consisting of 2J + 1 linear
operators W, ;:¢2(Z%) — ¢3(Z?) i =1,2 j=1,2,---.J
and Wy1:£2(Z%) — £*(Z?). The operators W1 ;, Wy j, and
W1 denote respectively separable filtering with the filters

WVii(22s2y) = HO(ZI)HQ(%y)"' )

- Ho(22 )Hg(zgj_l)Hl(zzJ),
Vaj(22:2y) = HO(Zx)HO(Zy)"' )

- Ho(22 ") Ho(22 ™ ) Hy(22")
V]_+.1(Za,,zy) = Ho(ZI)Ho(Zy)“ .

-+ Ho(22 ) Ho(22).

Defined this way, the wavelet transform operator W can be
implemented using the filter bank based on the prototype filters
Ho(z) and H;(z) as shown in Fig. 6(a). Perfect reconstruction
is possible provided that there exist two filters Go(z) and

(25)

Holz)Holz,)

Holz)Ho(3)

(a)

Wiy

wof
[

Wi,

(b)

Fig. 6. Wavelet transform used in the 2-D wavelet zero-crossings represen-
tation: (a) Filter bank implementation of the 2-D wavelet transform operator
W; (b) filter bank implementation of an inverse of the 2-D wavelet transform
operator.

G1(z) satisfying (14). An inverse operator W1 implemented
again as a filter bank, based on the filters Go(z), G1(z) and
L(z) = $(1 + Ho(2)Go(z)), is illustrated by Fig. 6(b). For
the analysis filters such that Hy(z) is low-pass and H;(z) has
exactly two zeros at z = 1, zero-crossings of Wi ;fs and
W ; fs are related to multiscale sharp variations of f along x
and y coordinates respectively. This explains the reasons for
using this particular type of wavelet transform. For the details
on this issue the reader is referred to the work by Mallat and
Zhong [7].

The wavelet zero-crossings representation of two dimen-
sional signals will be defined again using two operators,
denoted as in the one dimensional case by Z and S, with
similar meaning. The zero-crossings operator Z in £2(Z?) is
defined as:

Zf={(k,D): f(k,))f(k - 1,0) <0

or f(k,1)f (k.1 - 1) < 0}. (26)
Zero-crossings of 2-D signals define a number of connected
areas of points sharing the same sign, which are going to be
referred to simply as areas in the following. The S operator,
in the 2-D case, provides information on integral values (the
sum of points) of the signal in each of these areas:

Sf = S f(k): the sum of points inside the area k, n
“ 1k =1,2,---, number of the areas '

Note that according to the definition (26) of zero-crossings,
all the points of f where f assumes zero value, are declared
as zero-crossings. In implementations these points can be
associated with any of the contiguous areas. Analogously
to the definition (7) in ¢2(Z), the wavelet zero-crossings
representation for two-dimensional signals can be now defined



688

as

E.f ={ZW;;f,SWi;f,
1= 172.7: 177J+ 112W1+1f75WJ+1f} (28)

The reconstruction algorithm from the wavelet zero-
crossings representation of two-dimensional signals, defined
in this manner, is a straightforward extension of the
reconstruction algorithm in the case of signals in £2(Z), and
details are not given here. However, it can be shown that for
the wavelet transform for two-dimensional signals as defined
in (25), the orthogonal projection operator onto the range of
the wavelet transform can not have an FIR implementation.
Instead, in experiments we used a WW ™1 which has an
FIR implementation. The FIR synthesis filters Go(z) and
G1(z) are not unique and should be designed with a caution,
because some choices may even lead to a divergence of the
reconstruction algorithm. For instance, a pair of FIR synthesis
filters which satisfy the perfect reconstruction condition can
be obtained from Hy(z) and H;(z) using Euclid’s algorithm
which gives a highpass filter Go(z) and a lowpass filter
G1(z) for Ho(z) and H;(z), which are lowpass and highpass,
respectively. Such synthesis filters are certainly bad choice
and in this case we observed divergence of the reconstruction
algorithm. The design of synthesis filters which would insure
convergence of the reconstruction algorithm in the case when
W1 is not implemented as the Hilbert adjoint of the dual
of W is still an open problem. In experiments with power
complementary filters Hy(z) and Hy(z) the reconstruction
algorithm always converged for Go(z) = Hyp(z™!) and
G1(z) = Hi(z71). In addition, we observed the convergence
and very good reconstruction results for Go(z) and G1(z)
whose magnitude responses were close to those of Hy(z) and
H;(z), respectively. Numerical complexity of the WW !
operator is O(JLN?) additions and O(.JLN?) multiplications
if it is implemented using FIR filters of length L. The rest of
the operators used in the reconstruction are analogous to their
counter-parts in the one-dimensional case and their numerical
complexity is O(JN?) additions and O(JN?) divisions by
integers.

V. EXPERIMENTAL RESULTS IN RECONSTRUCTION
OF SIGNALS FROM THE WAVELET
EXTREMA/ZERO-CROSSINGS REPRESENTATION

Generally, signals can not be reconstructed with arbitrary
high quality from their wavelet extrema/zero-crossings rep-
resentations since the representations are nonunique. It can
be shown that for finite length signals, the closures of the
reconstruction sets are the convex hulls of finitely many
vertices [3]. The sizes of the reconstruction sets, determined
by the distances between these vertices, directly influence the
quality of the reconstructed signal. Each wavelet transform
extremum or zero-crossing represents a linear constraint which
defines a hyperplane in the signal space bounding the recon-
struction set. It can be expected that signals producing more
extrema/zero-crossings have reconstruction sets of smaller
sizes, and consequently yield better reconstruction results.
However, the price paid is the larger number of points in
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55, T
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number of iterations number of iterations

() (b)

Fig. 7. Results of reconstruction of randomly generated 1-D signals: (a) SNR
in the reconstruction from the wavelet zero-crossings representation obtained
with wavelets having different regularities. Plots on the top, middle, and
bottom correspond to wavelets on Fig. 2(c), (b), and (a), respectively; (b) SNR
in the reconstruction from the wavelet extrema representation (solid line), and
SNR in the reconstruction from the wavelet zero-crossings representation for
the wavelet in Fig. 2(c) (dashed line).

the representation. Experiments generally confirm this rather
heuristic argument. Signals with higher frequency content,
which results in larger number of extrema or zero-crossings
usually have faster convergence and better reconstruction.

Regularity of the wavelet used for the representation is of
a paramount importance. The dyadic wavelet transform is a
sequence of signals foi = i * fe, § = 1,2,---, which
are results of filtering an original signal f. € L% (R) by
dilated versions of the wavelet 9 (see Appendix D). Obviously,
in generating the component signals f,;, the original signal
f. and the dilated wavelets ,; play interchangeable roles.
Therefore, the extrema or zero-crossings of the dyadic wavelet
transform can result from the singularities of either the original
signal or the wavelet. If the aim is to suppress those local
extrema/zero-crossings which are rather wavelet than signal
related it is advisable to use smoother wavelets. However,
more regular wavelets generally produce reduced number of
wavelet transform extrema/zero-crossings, and consequently
yield poorer reconstruction results. As an illustration of the
above discussion, Fig. 7(a) represents results in reconstruction
of randomly generated signals from the wavelet transform
zero-crossings for wavelets with different regularity proper-
ties. Experimental results in the reconstruction from wavelet
extrema representation are represented in Fig. 7(b). For a
comparison with the zero-crossings reconstruction, one of the
curves from Fig. 7(a) is plotted again on the same graph. Note
that in both cases shown in Fig. 7(b), the plots represent an
average for the same set of random signals, and that the total
number of the zero-crossings was on average around 6.5%
smaller than the number of the extrema. In the experiments
with wavelet transform extrema representation, we used the
same filters as Mallat et al. for their wavelet modulus maxima
scheme [7].
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There is a difference between Mallat’s algorithm for recon-
struction from wavelet transform zero-crossings [1] and the
algorithm presented here. As stated in the previous section, the
new algorithm iterates between P);, P, and Pz, while Mallat’s
algorithm iterates between Py, and the projection operator onto
I'=U(\ Z, Pr. Numerical complexity of Pr is O(JN log N)
additions and O(JN) divisions by integers. On the other hand
the composition of Pz and Py requires O(JN) additions and
O(JN) divisions by integers and reduced number of loops
with respect to Pr. It may appear that the new algorithm
has a slower convergence since the constraints in T" are split
between U and Z, and successive projections onto I and
Z in general do not yield projection onto I'. However, the
situation is not so simple. It is possible to come up with
examples where such splitting strategy can even improve
speed of convergence or give exactly the same results at a
reduced cost of implementation. For instance, if we start the
reconstruction with a point inside ' and the reconstructed
signals stayed in Z throughout the reconstruction procedure,
the two algorithms would give the same result. Experiments
showed that during the reconstruction process all intermediate
solutions are very close to Z, if not inside it, and hence that
the composition of operators Py, and Pz yields points close to
those obtained by the Pr operator. In most cases we observed
that the reconstructed signals obtained by Mallat’s and the
new algorithm, starting at a same point, were very close and
differed in the reconstruction error typically by less than 0.1
dB in each iteration.

Examples of images reconstructed from wavelet zero-
crossings representations are shown in Fig. 8. The size of
the originals (the left column) is 256 x 256 pixels, and
the reconstructed images (the right column) are obtained
after 10 iterations of the algorithm. In these experiments the
wavelet transform is performed across four scales and the
representation included the whole signal W, f (there is no
significant difference in the reconstruction error with respect
to the case when only zero-crossings information on W { f is
used). As in the case of one-dimensional signals we observed
that using more regular filters reduces the amount of data
to be recorded but increases the mean-squared reconstruction
error. In all experiments with images, reported here, we used
linear phase filters: Hy = (1 2 1], Hy = 11 - 21],
Go=5[-1262 - 1,and G = }[12 - 621].

Some modified versions of the original wavelet zero-
crossings scheme can be more convenient. The definition
of the two dimensional wavelet zero-crossings representation,
as introduced in the preceding section, can be generalized
in the following manner. Some of the areas of the same
sign can be partitioned into several subareas, and information
on these subareas, locations and integral values, extracted
separately. This increases the overhead, but generally
decreases distortion of the representation and may facilitate
some signal processing tasks, such as the selection of
important edges. On the other hand, only partial information
on the wavelet transform zero-crossings can be kept, which
has the opposite effect on rate-distortion properties of the
scheme. The reconstruction algorithm can be modified in a
straightforward manner to accommodate these variants of the

representation. Fig. 9 illustrates the reconstruction of an image
from the representation obtained by combining the two general
approaches. Black regions in the two-level images represent
the subareas which are included in the representation, across
four scales of the wavelet transform. The selected subareas are
those with positive integral values and average intensity above
a given threshold. The original (bottom left) is the 256 x 256
image, and the reconstructed signal (bottom right) is obtained
after 10 iterations of the algorithm, with 20.8 dB SNR.

The number of subareas used in the representation is 5146.
It can be noticed that even with this rather naive selection
process, wavelet zero-crossings representation provides the
information on important multiscale edges and yields good
reconstruction.

VI. CONCLUSION

The wavelet extrema and zero-crossings representations
were considered in discrete time using filter banks tools. We in-
vestigated relevant properties and design of the nonsubsampled
filter banks which implement the wavelet transform for the
representations. The relation between the two representations
was established, showing that the wavelet extrema representa-
tion and the wavelet zero-crossings representation of the first
difference yield equivalent characterizations of signals. The
new understanding of the structures of the reconstruction sets,
introduced here, turns out to be convenient for devising simple
and efficient reconstruction procedures. Besides consistency
in the reconstruction, and low numerical complexity, these
algorithms are simple and easy to implement. The wavelet
transform zero-crossings representation of two dimensional
signals was also discussed as a multiscale edge representation.
The results of this paper were presented in the wavelet
transform framework, but it should be emphasized that most
of them hold for arbitrary invertible overcomplete linear
transforms.

APPENDIX A

Sufficiency is obvious from the definition of V(z). Neces-
sity is to be proven next. It can be deduced from (15), and
the definitions of the filters V;(z), that the filters Hy(z) and
H;(z) must have equal lengths, because otherwise one of the
factors V;(2)Vy(z71) or Vy11(2)Vyqa(271) in V(2) would
contain powers of z and z~! of higher order than any other
factors in V'(z) of (15), and therefore V(z) = const could not
be achieved. Furthermore, if Ho(2)Ho(2 1)+ Hy(2)Hy(z™1)
contained any nonzero power of z, Vy1;(2)Vy41(271), and
Vi(2)Vs(z7!) in V(z) would add to a polynomial having
powers of z and 2z~ ! of higher order than any other factor in the
sum (15), and consequently the possibility of V(2) = const
would be lost. Hence, it is necessary that Ho(z)Ho(z™1) +
Hi(z)Hy(z7!) = k, and it can easily be seen that k& must be
equal to 1.

APPENDIX B

The design procedure described here follows along the same
lines as the design of maximally flat orthogonal filter banks
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Fig. 8. Examples of images reconstructed from the wavelet zero-crossings representation. Left column: the originals, 256 x 256 pixels. Right column:
reconstructed images, obtained after 10 iterations of the algorithm. SNR’s are 36.1, 40.3, and 33.6 dB for “Lenna,” “House,” and “Tree” images, respectively.

[10], [11]. There is a bijective mapping between the set of
FIR autocorrelation functions with real coefficients and the set
of polynomials over R which are positive on the interval [0,
1]. The autocorrelation function H(z)H(z~1) of a real FIR
filter defines a real coefficient polynomial of sin? % on the
unit circle:

H(e7)H(e ) = P(sin2 %) 9)

On the other hand, any polynomial P(y), positive on {0,

1], with y = (1;z)(1—‘§:i) defines an FIR autocorrelation
function

P((l;;) (%)) =H()H(z™Y).  30)

According to this, in order to obtain power complementary
filters of length L having flatness of order No — 1l at w = 7
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Fig. 9. The “Lenna” image reconstructed from partial wavelet zero-crossings representation. Bottom left: 256 x 256 original. Bottom right: the image obtained
after 10 iterations of the reconstruction algorithm, with 20.8 dB SNR (PSNR is 28.0 dB). Bilevel images: black regions mark selected areas across four scales of
the wavelet transform; the number of selected areas is 5146, Top left, top right, middle left, and middle right images represent scales 1, 2, 3, and 4, respectively.

and flatness Ny — 1 at w = 0, it is sufficient to find For the case of maximally flat filters, the coefficients of the
polynomial
P(y) =1 -y Q(y) 3D
L—1-N,
such that Q(y) has no zeros at y = 1, and P’'(y), the formal Qy) = Z ay' (32)
derivative of P(y), has a zero of multiplicity N; — 1 at y=0. =0
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are obtained from the requirement that P’(y) has a (N; — 1)th
order zero at y = 0 and that P(0) = 1. This gives

No+i-1
q:=( 0+l

Hy(z) is then obtained from (30), while H,(z) is derived by

)

as Hy(2)H1(271). That this is always possible to do is ensured
by the fact that P(y) has all of its extrema aty = Oand y = 1,
and therefore it is monotonically decreasing from 1 to 0 on the
interval [0, 1], which makes expression (34) being positive on
the unit circle. This gives the class of maximally flat power
complementary filters.

In the case of the filters which are not maximally flat,
No + N1 < L, P(y) still has the form (1 — )V Q(y), and
the coefficients ¢;,/ = 0,1,---, Ny — 1, are determined as in
(33). This gives the required flatness of the filters. The rest
of coefficients of Q(y) represent additional degrees of design
freedom.

>,l:0,1,~--,L—l—No. (33)

(34

APPENDIX C

The derivation of wavelets from the iterated filter banks is
as follows. Consider an octave band nonsubsampled filter bank
of depth 7 and equivalent filters of the two lowest branches

H Ho(z2),
G H Ho(z2
k=0

Note that Hy(2) and H;(z) denote the prototype low-pass and
high-pass ﬁlters respectively. Then associate with the impulse
responses h) and h{" of H{"(z) and H(2) the continuous
time functlons ¢(’)(zc) and %) (x):

HY(2) =H (36)

. e 1

@) =2hm), Z<o< 2 @)
, - 1

9 (z) = 2P (n), 23 <z< "; . (38)

The elementary interval is divided by 2* so that the continuous
time functions remain compactly supported as ¢ — oo. The
factor 2 which multiplies kg ) and h1 is needed in order to
maintain the L? norms of the associated continuous-time func-
tions inside finite bounds?. Assume that ¢{)(z) and @) (x)
converge in the L? sense to the limits>:

¢(z) = lim (z), (39)
¥(2) = lim $©(z). (40)

2Note that in the case of the construction of wavelets from critically sampled
filter banks this renormalization factor is 2% .

3For an in depth review of the conditions which ensure this convergence
the reader is referred to [10].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 3, MARCH 1995

Functions ¢(z) and (z) obtained as the limits of the above
construction are the scaling function and the wavelet derived
from this filter bank.

Regularity of the derived wavelets can be estimated using
Daubechies’ criterion [10], [16]. According to that criterion,
wavelet derived from a filter bank with the low-pass filter

. NO
) 1 + eiw
Ho(e?) = ( +2e ) R(w) @1)
is r times continuously differentiable if
B = sup,¢(q or [R(w)] < 2™ 771, 42)

For the maximally flat power complementary filter design,
described in the previous appendix

B= SUPye(o0,1] V Q(y)

where Q(y) is the polynomial defined in (31), while its
coefficients are given by (33). In the case of filters for wavelet
extrema representation of length L, Q(y) = 1 and Ny = L—1,
which implies that the derived wavelet is at least L — 3 times
continuously differentiable. In the zero-crossings case, the low-
pass filter has all but one of its zeros at w = , and therefore
from (31) and (33) it follows that Ny = L — 2, while Q(y) =
1+ (L — 2)y. Consequently B = /L — 1 and Daubechies’
criterion immediately proves that the derived wavelet is at
least L — 3 — %log2 L times continuously differentiable.

“43)

APPENDIX D

Consider an octave band nonsubsampled filter bank with
the prototype filters Ho(z) and H;(z). Assume that this filter
bank is regular, i.e., that continuous-time functions ¢ (z) and
¥)(z) associated to this filter bank in the manner described
in the above appendix converge to ¢(z) and ¢(z) in the L?
sense. In Fourier domain the scaling function ¢(z) and the
wavelet 1(z) derived in this way are given by

=[] Ho(e® "), (44)
k=1
$(w) = Hi(e? ') ] Ho(e® ). 45)

k=2

For an arbitrary continuous-time signal f.(z) € L(R), let
the input of the filter bank be the sequence of samples of f.(x)
smoothed by ¢(z). Then the filter bank produces sequences of
samples of the dyadic wavelet transform [7] of f.(z). That is,
if f € £2(Z) denotes the sampled version of ¢ * f.,

f(n) = ¢ = fe(n) (46)
the output of the filter bank is
Wif(n) = 9o * fe(n) j =1,2,.... “47)

where 99 (z) = 2%1#(-2%)
The relation (47) can be proven as follows. The discrete-
time signal f in (46) is given in the Fourier domain as

eJ“

Z Felw + 2km)d(w + 2kn).

k=-o00



=
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Then
wisn) = = [

= iy,
or | Ve

400
Z felw + 2%7)d(w + 2km) | 7" dw

k=—o00

+m . ~ ~ .
3 | Ve i),

According to the definitions of ngS(w) and 9(w) in (44) and
(45), it follows that ¢(w)V(e’*) = 1)(2'w), and therefore

+oo . . )
Wif(n)= & / F ()2 ) o,

27 J_ o

which immediately gives relation (47).
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