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for BCH Decoding

Jonathan Hong and Martin Vetterli, Senior Member, IEEE

Abstract— In this paper we propose some simple algorithms
for decoding BCH codes. We show that the pruned FFT is
an effective method for evaluating syndromes and for finding
the roots of error-locator polynomials. We show that a simple
variation of the basic Gaussian elimination procedure can be
adapted to compute the error-locator polynomial efficiently for
codes with small designed distance. Finally, we give a procedure
for computing the error values that has half the complexity of
the Forney algorithm.

I. INTRODUCTION

CH CODES are a subclass of cyclic codes in which

the generator polynomials of the codes have as roots 2t
consecutive powers of an element of order n. BCH codes are
attractive because a) a lower bound on their minimum distance
is known (2¢ + 1, hence t-error-correcting) and b) efficient
algorithms exist for their decoding. The decoding procedure
for BCH codes consists of four steps.

1) Evaluation of Syndromes: If r(z) is the received word

and o, ¢ = 1,2,...,2t, are the 2¢ consecutive roots of
the generator polynomial, then the syndromes are given
by

S;=rla®) i=1,2,...,2t (N

The syndromes are calculated either directly by evalu-
ating r(z) at the roots using Horner’s rule [15], or by
first dividing r(z) by the minimal polynomials of the
roots and then evaluating the remainder polynomials at
the roots. The complexity of this step is ~2¢(n — 1).

2) Determination of the Error-Locator Polynomial: Sup-
pose e < t errors occurred at locations 51, j2,. .., Je.
Denote the ith error location o by X;; then the error-
locator polynomial is defined as

€

a(z) = H(l - Xiz) = 1401240922+ +0.25 ()
i=1

It is seen that the zeros of the error-locator polynomial
are the inverse error locations. Knowledge of the poly-
nomial thus serves to determine the error locations. Two
popular methods are available for computing the error-
locator polynomial: the shift-register synthesis algorithm
of Berlekamp and Massey [2] and the Euclidean algo-
rithm of Sugiyama et al. [3]. The Berlekamp-Massey
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algorithm makes use of the fact that the error-locator
polynomial coefficients are elementary symmetric func-
tions of {a’*} and are related to the syndromes {S;} by
the recurrence relation
€
SJ‘I——ZU,'S]'_i j=e+1,...,2t. 3)
i=1

The algorithm interprets the equation as a linear feed-
back filter and computes the error-locator polynomial by
finding the minimum length shift-register which will gen-

erate the requisite syndromes. The Berlekamp-Massey
algorithm has (multiplicative) complexity {3]
C, = 4t* + 2te — ® + 10t + e. @

Alternatively, the error-locator polynomial can be com-
puted using the Euclidean algorithm of Sugiyama et al.
The Euclidean algorithm exploits another relationship
between the error-locator polynomial and the syndromes,
namely

0(2) = w(z)s(z) mod z*.

6))

Here
2t »

s(2) :ZSizl—l =S1+SZZ+"-+Sztz2t_1 6)
i=1

represents the syndrome polynomial and

w(z) = inX,- [Ia - Xxiz)
j=1

i#]

)

is the error-evaluator polynomial. In w(z), X; denotes
as before the ith error location and Y; denotes the
ith error value. Given the syndrome polynomial s(z),
the Euclidean algorithm produces both o(z) and w(z).
The Euclidean algorithm is somewhat less efficient than
the Berlekamp-Massey algorithm; however, it has the
advantage of being easier to understand and is in fact
the algorithm of choice for a number of researchers. The
Euclidean algorithm has (multiplicative) complexity (3]
C, = 8te — %ez + ?e.

3) Determination of the Roots of the Error-Locator Polyno-
mial: Once the error-locator polynomial is known, the
next task is to determine its roots. This is done using

a procedure known as the Chien search. The search
begins by summing the coefficients of the error-locator
polynomial. The sum equals zero iff 1 (¢’ = a")

is a root. After determining whether 1 is a root, the

®
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coefficients of the error-locator polynomial are modified
according to the formula
or — afop k=0,1,... €. 9)
The effect of the mapping is to cyclically shift {a}.
The new coefficients are again summed. Due to the
cyclic shift, the sum now equals 0 iff a®~! is a root.
This process is repeated until all the roots of the error-
locator polynomial are found. Since the Chien procedure
searches, in order, a™,a™7!,. .., its complexity is de-
termined by the root with the smallest index. Thus, if ¢,
1 < i < n, is the least index such that o’ is a root of
a(z), then the (multiplicative) complexity of the Chien
algorithm is
Cy=¢e(n—1). (10)
4) Determination of Error Values: The final step of the BCH
decoding procedure involves computing the actual error

values. This is done using the following algorithm due
to Forney [15]

LX) e

T L= a1
where 0'(z) = — 32%_) X; [1;4,;(1—X;z2) is the formal
derivative of the error-locator polynomial. Assuming
that the two polynomials are evaluated using Horner’s
rule, it is easy to verify that Forney's algorithm has
the following multiplicative (C,,) and additive (C,)
complexities

Cu= 2¢? — ¢
Co =2(e% —¢).

(12)
(13)

In this paper we will propose alternative algorithms for
each step of the BCH decoding procedure. The algorithms
are presented as tools from which the designer may pick and
choose along with existing algorithms as deemed appropriate.
In Section II, we examine steps 1) and 3) of the decoding
procedure. We cast the problems in the spectral domain and
propose pruned FFT’s for their computation. While it is
difficult to quantify the merits of this approach in general, we
demonstrate the feasibility of the technique with two important
examples: one involving a Fermat number transform and the
other a space communication code. In Section III, we examine
the problem of determining the error-locator polynomial. We
propose a simple algorithm that is based on Gaussian elimina-
tion and LU decomposition. Though elementary, the procedure
has lower complexity than the Euclidean algorithm and the
Berlekamp—Massey algorithm for codes of practical interest
(¢t < 15). Finally, in Section IV, we consider the problem
of error evaluation. For this step, we propose an algorithm
that is based on the fast Vandermonde solver of Bjorck and
Pereyra {5]. It will be shown that the proposed algorithm has a
complexity approximately half of that of the Forney algorithm.
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II. SYNDROME EVALUATION AND ROOT FINDING

Steps 1) and 3) of the BCH decoding algorithm are similar
in that both entail the evaluation of polynomials at select
elements of the extension field. The technique most often
employed to carry out these two steps is Horner’s method of
polynomial evaluation (or variants of it, e.g., the Chien search).
Though conceptually simple, these two steps are potentially the
most computationally intensive steps in the BCH decoding
procedure [7]. The reason for this is that the complexity of
these two steps depends on n, the block length of the code.
By contrast, the complexity of determining the error-locator
polynomial and the error values is a function of ¢, the error-
correction capability of the code. In general, n > t.

The high cost of syndrome evaluation and root finding
can be traced to the iterative nature of their computation
procedures. The same set of computations is carried out for
each syndrome or each root totally independent of any other
syndromes or roots. If all the syndromes or all the roots can
be computed together, a reduction in complexity is perhaps
possible. To that end, it is fruitful to examine syndrome
evaluation and root finding from the spectral point of view.

Consider the syndromes

n—1
S =r(a)= S et i=12...
j=0

(14)

Since « is an element of order m, these equations may
be interpreted as a Fourier transform with the syndromes
representing 2¢ contiguous components of the spectrum of the
received word 7(z). Thus an alternative way to compute the
syndromes is to take the Fourier transform of r(z) and discard
the unwanted spectral components.

Root finding can similarly be cast in the spectral domain.
Given the error-locator polynomial ¢(z), the roots of o(z) are
those powers of « that satisfy

o(a’) = o0t =0. (15)
j=0

Note that the sum does not run from O to n — 1 as required in
a Fourier transform. However, that is easily fixed by defining
Oeyl = Oeqo = -+ = gp—1 = 0. Doing so allows us to
rewrite the above equation as

n—1

AN EFlo} =Y o0 =o(a’) =0, (16)
7=0

Thus o is a zero of ¢(z) iff A; is zero. This provides another
way to compute the roots of the error-locator polynomial: pad
the error-locator polynomial with zeros and take its n-point
Fourier transform. Where the spectrum is zero, o(z) has a
root there.

As an aside, let us mention that the celebrated Chien search
has a very simple interpretation in the Fourier domain. Recall
that the Chien search works by repeatedly summing the error-
locator polynomial coefficients and checking whether that sum
is zero followed by a modification of the coefficients according
to o — aoy Vk. In the Fourier domain, this is equivalent
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to repeatedly checking whether the spectral component Ay is
zero followed by circularly shifting the spectrum of o(z) “up”
by one. The latter interpretation follows from the modulation
property of the Fourier transform [15]

{o:} = (A} = {a'oi} = {AGp )

In other words, the Chien search is equivalent to computing,
in order, Ag = Ap,Ap 1, ., ALl

The idea of using FFT’s to evaluate syndromes and find
roots of the error-locator polynomial has been suggested by a
number of authors [15], [7]. However, [7] suggests that FFT’s
cannot be profitably employed unless log n is on the order of e
or ¢, which is seldom the case. Indeed, by doing a few practical
examples, one finds that the FFT approach is, by and large, less
efficient than the polynomial-based approaches. This seems
surprising at first since polynomial evaluation is equivalent
to computing the DFT point by point which is known to
be inefficient. The apparent contradiction is easily resolved
once one realizes that in syndrome evaluation and root finding
either not all inputs are present or not all output are required.
Indeed, for syndrome evaluation, only 2¢ points of the n-
point spectrum are necessary and for root finding, only e + 1
points of the n-point input are nonzero. Thus the appropriate
algorithms to use are not FFT algorithms, but rather, pruned
FFT algorithms. Clearly, syndrome evaluation requires output
pruning and root finding requires input pruning.

It is difficult to give a general comparison of the pruned
FFT approach versus the polynomial approach. Much depends
on the block length of the code, the error-correction capability
of the code, the actual number of errors that occurred, the
locations of the errors, and the actual FFT algorithms chosen.
However, in every case known to us, pruning substantially
reduces the amount of computation required. The reduction
in complexity is attributable to the fact that practical codes
have small error-correction capabilities relative to their code
lengths. From the discussion above, this means that much
of the complexity of a full-scale FFT is unnecessary. By
eliminating the unwanted computations, a significant reduction
in complexity can be achieved. Since it is not our purpose to
develop pruned FFT algorithms but rather to demonstrate their
usefulness, we will illustrate the technique with two examples.

Example 1) Fermat Number Transforms: A Fermat num-
ber transform is a Fourier transform over GF(2™ + 1), where
2™ + 1 is a prime called a Fermat prime. The first four
Fermat primes are 5, 17, 257, and 65537 corresponding
to m = 2,4,8, and 16. A Fermat number transform is
unusual (for finite fields) in that it is a transform of size
2™ (or divisors thereof). Hence, the ubiquitous radix-2 FFT
algorithm can be used to compute the transform. For BCH
decoding, a Fermat number transform has the added advantage
that there exist well-developed algorithms for both input and
output pruning [8]-[12]. Moreover, the complexities of the
pruning algorithms are well-studied. For input pruning, if
only the first 2 of the 2™ input points are nonzero, then by
deleting the redundant butterflies from the radix-2 algorithm,
a factor of I/m reduction in computation time is possible
[9]. Similarly, if only the first 2% of the 2™ output points
are desired, pruning the unnecessary butterflies results in a

an
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Fig. 2. 16-point FFT with input pruning. A"

factor of (k+2(1
(81, [10].

Consider the Reed-Solomon code RS(16, 10) over GF(17).
This is a distance 7 code capable of correcting 3 errors. If
one were to compute the 6 syndromes Sy, Ss,...,Se using
Horner’s method of polynomial evaluation, it would require
a total of 6 x 15 = 90 multiplications. By contrast, if one
computes the syndromes using a pruned DIT FFT as in Fig.
1, then the total number of multiplications reduces to 17.

Consider now the problem of finding the roots of the error-
locator polynomial. Assume that 3 errors occurred. Then the
error-locator polynomial is given by o(z) = 1 + 0,2+ 0222 +
0323, The pruned FFT algorithm thus has only 4 nonzero
inputs 5. As we can see from Fig. 2, it can compute the entire
16-point spectrum with only 13 multiplications.

How does the method compare with Chien? Since Chien
searches the roots in the order a® = a®,a”1,...,at,
its complexity is determined by the root with the small-
est index. That being the case, the comparison of the two
methods must necessarily be probabilistic. Since all but the
first iteration of Chien requires 3 multiplications (o} —
afor. k = 1,2,3), Chien can make no more than 5 iterations
(4 x 3 = 12 < 13) before its complexity exceeds that of the
pruned FFT. In other words, the Chien approach has a lower
complexity when (and only when) the 3 errors are confined

—2k=m)) /m reduction in computation time
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Sis | S0

Si [ S
Se | Sn
Ss | Su
S | Sz
Sia | Sar
EEN
S [ S5 | Su
Ss | Sis
Ss | Sw
S1 | Sn
So | Sn
Su | Sz
Sis [ S

Fig. 3. Good-Thomas mapping for evaluating the syndromes of the RS(255,
223) code.

to {a!,al® o, a'® 12}, How often does this happen?
Assuming that all trip._. error patterns are equally likely, the
probability of such an occurrence is

() _ 10 _

(136) =560 = 0.0178.
Thus with probability greater than 98%, the pruned FFT
algorithm will surpass Chien in performance.

Example 2) Space Communication BCH Code: Let us now
look at a practical example: the (255, 223) Reed-Solomon
code over GF(28). This is a 16-error-correcting code which
is used as the outer code of an interleaved code recently
standardized by the Consultative Committee for Space Data
Systems (CCSDS) for use in space communication [16].
Consider the task of evaluating syndromes for this code.
There are a total of 2¢ = 32 syndromes. It will require
32x 254 = 8,128 multiplications to compute all the syndromes
using Horner’s method. By contrast, the pruned FFT approach
requires substantially less. Since 255 = 15 x 17 and 15 and
17 are relatively prime, we can map the one-dimensional
FFT into a twiddle-factor-free two-dimensional FFT via the
Good-Thomas mapping [6, 15]. Fig. 3 shows the output array
obtained with the mapping ¢ = 15¢; + 17i2 (mod 255). Only
the syndromes Sy, So, ..., S3o are displayed. The other values
are of no consequence and need not be computed.

Clearly, the way to compute the transform is to perform
the 17 15-point column transforms followed by pointwise
evaluation of the 32 points along the rows. It can be shown that
each 15-point FFT requires 39 multiplications. Therefore the
syndromes can be computed with (39x17)+(16x32) = 1,175
multiplications or a saving by a factor of 7.

Consider now the task determining the roots of the error-
locator polynomial. We will work out the result for ¢ = 16
errors and state the results for other error values. For e = 16,
the error-locator polynomial is given by

0(z) =1+ 012+ 0922 + -+ 0162C.

The pruned FFT thus has 17 nonzero and 255 — 17 = 238 zero
inputs. Using the Good-Thomas mapping

il =1 (IIlOd 15)
ip =i (mod 17),

the one-dimensional FFT can be mapped into the two-
dimensional FFT in Fig. 4.
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Fig. 4. Good-Thomas mapping for finding the roots of the RS(255, 223)
code.

To compute the two-dimensional transform, we will com-
pute the 15 17-point row transforms followed by the 17
15-point column transforms. Because of the sparsity of the
input, the 17-point transforms are best carried out the obvious
way, using straight-forward multiplications. For the 15-point
column transforms, we will use the fast 39 multiplication
algorithm. The pruned FFT approach thus requires a total of
(16 x 16) + (39 x 17) = 919 multiplications to find all the
roots of the error-locator polynomial. The Chien approach,
on the other hand, requires a minimum of 16 x 15 = 240
multiplications in the optimum scenario in which the 16 errors
are in the first 16 positions of the search path, i.e. when
the errors are in locations a® = 2% 02%,. .. 0%, Its
complexity then increases at the rate of 16 multiplications per
position that the “minimum-index” zero is beyond a?4°. When
this error is at location o7 or beyond, the complexity of the
Chien search would have exceeded that of the pruned FFT.
Thus in order for Chien search to have a lower complexity than
the pruned FFT algorithm, the 16 errors must be confined to
positions {a?%%, 2%, ..., a19%}. How often does this happen?
Assuming that all 16-error patterns are equally likely, the
probability of such an occurrence is

(e)

(21565)
Thus, with near total certainty the pruned FFT algorithm will
surpass Chien in performance.

In Table I, we compare the performance of the Chien and
the pruned FFT algorithms. We have listed the probability
(in percent) that the Chien procedure surpasses the pruned
FFT in performance versus e, the actual number of errors that
occurred. We have omitted the case e = 1 since in that case
o(z) = 1+ 01z and the root can be found directly.

As is evident from the table, the Chien search procedure is
a better method when the number of errors is 2 or 3. Beyond
that, the pruned FFT offers better performance. It should be
noted that the number of errors is known from the degree of
the error-locator polynomial, thus the designer has a choice of
which algorithm to use.

= 8.46 x 10712,

III. ERROR-LOCATOR POLYNOMIAL EVALUATION

The following algorithm is motivated by the fact that a)
most BCH codes in use correct in the range from 1 to 10 errors
[16], and b) the occurrence of a small number of errors is more
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TABLE 1
A COMPARISON OF THE CHIEN AND THE PRUNED
FFT ALGORITHMS FOR THE RS(255, 223) CopE

f probability (%) ;
e | C..(Chien) < Cu(FFT) |

2 100.00 %
K 80.21 %
[ 25.70 %
51 6.62 %
6 144 %
7 027 % |
8] 431x10 %]
9] 648 %10 % .
0] 9.08x107"%
I EENPEIURNS
(12 1.27 x 1075 %
M3 112x10° %
YRR
SR ATERURER

[T 81077 ;

probable than the occurrence of a large number of errors. For
an (n.k.d) BCH code with per symbol error probability p,
the probability of ¢ errors is

I)P — <:i)pf(l . p)ufr

if we make the usual assumption that the errors occur in-
dependently. In a typical communication system, p < I,
consequently P. decays rapidly as a function of ¢. As an
example, for the Reed—Solomon code RS(255, 223, 33) men-
tioned in the previous section, assuming a value of p = 1072
leads to the conclusion that /P = 2.32 x 107, ie. a
single error is more probable than 16 errors by a factor of
10 million. The figure increases to P /P = 2.66 x 10%?
when p = 1073, Since many binary communication systems
aim for a bit error rate of 10~° [18], translating to a symbol
error rate of ~k107° when there are k bits per symbol. the
probability of a large number of errors is even more remote
in an actual system. For this reason, it is desirable to have an
algorithm for computing the error-locator polynomial which
will be efficient when the number of errors is small even at
the expense of greater complexity at higher error values. In
this way, the expected complexity is minimized.
Consider the t x (t + 1) augmented syndrome matrix

(18)

Sy S - S;
Se 53

Sits

. def Siy1 Srg2
S4= . .

(19)
Sy Sty Soiov S

Claim: If ¢ <t errors occurred, then S 4 is row equivalent
to

1 -0, % *
1 — Ty * *
0 0 0 0 0 (20)

0 - 0 0 o - - 0

where * =don’t care.
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Proof: Assume that e < t errors occurred, then the
syndromes satisfy the linear recurrence (3)
¢
szfz(r,s_,_, j=e4+1,...,2t 3))
i=1
The equation implies that, except for the first e rows, every row
of the matrix S 4 is a linear combination of the previous e rows.
By induction, the last t — e rows of S 4 are linearly dependent
on the first e rows. It follows that S4 is row equivalent to a
matrix in which the last { — e rows are zero.
Consider now the leading principal minors of S4

S; Sy o S
S 53 Skt

My = . . =1.2,....t. (22)
Sk Skt Sak-1

Gorenstein and Zieler [1] have shown that the matrices
My M40 M, are singular, whereas the matrix M.
is invertible. It is therefore possible to find a sequence of
elementary row operations to reduce M, to I.. In the reduction
process. if it becomes necessary to exchange rows (for the
purpose of selecting a nonzero pivot, say), by choosing the
row with the first nonzero component below the “diagonal” we
will ensure that the exchange takes place within the confines
of M,. The net effect of this sequence of row operations is to
apply M ' to M.. It follows from (21) that the application
of the same sequence of operations to the first e components
of column ¢ + 1 would yield

S,,_H —~Te
St +2 —Oet1
VAl I N R 23)
Sa. —01
This establishes the claim. O
In fields of characteristic 2, 4 = —/ for all 3, we thus have

the following simple but important corollary to the claim
Corollary: In fields of characteristic 2, S4 is row equiv-
alent to

1 o, K *

1 o See ok
0 --- 0 0 0 - -0 (24)
o -0 0 0 -+ -0

Example 3: Consider the space communication code
RS(255, 223, 33) of the previous section. This is a 16-error
correcting code over GE(2%). The Galois field GF(2®%) is
constructed from the primitive polynomial p(z) = 28 + 27 +
224 241 and the code itself is generated from the polynomial
g(z) = H}flm(: — o'%) [16]. For simplicity, assume that
the zero codeword is sent and that the received word is

r(z) =e(z) = a + o’z

It is easy to verify that the augmented syndrome matrix is
given by (x) shown at the bottom of the page. Performing
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row reduction on the first column of the augmented syndrome
martrix yields the matix in (%) shown at the bottom of the
page. Performing row reduction on the second column of (*x)
yields the matrix in (x * x) at the top of the next page.

The procedure terminates at this point since no further
reduction can be done. Since the syndromes belong to GF(2%),
a field of characteristic 2, the third column contains the error-
locator polynomial coefficients oo and o4. The error-locator
polynomial is therefore

o(z) =1+0124 0222 =1+ a2+ all22

The claim will serve only as the theoretical basis of our
computation. The actual calculations will be carried out dif-
ferently in order to eliminate unnecessary operations. To that
end we note that the row reduction operations terminates after
exactly e columns have been reduced (zeroed). Since column
e + 1 contains the desired coefficients, operations that were
performed on columns e + 2 through ¢ + 1 were in fact
unnecessary and can be eliminated. When e < t, the saving
can be substantial. A priori, we do not know the value e, so we
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proceed as follows: when working to reduce column 7, we will
apply all row operations associated with columns 1 through ¢
to column ¢+ 1 and only column 7+ 1. Columns 7 + 2 through
t 4+ 1 will be left untouched as they are in the augmented
syndrome matrix S4. When the reduction on the ith column
is complete, we examine column 7 + 1. If all elements on
and below the “diagonal” are zero, the reduction cannot be
continued. The process terminates with e equal to 4 and the
negative error-locator polynomial coefficients in column ¢ + 1.
If, however, at least one element on or below the “diagonal”
is nonzero, then we know that the reduction process can be
carried one step further. We move on to column # 4 1 and
repeat the above process.

At this point, the elimination method is of the Gauss-Jordan
type. That is to say, the reduction of the columns seeks to
place zeros both above and below the diagonal. However, it is
well known that Gaussian elimination (which seeks to place
zeros only below the diagonal), followed by back substitution
is a more efficient way to solve a linear system of equations.
Therefore, instead of reducing M. to I., we will transform it

b6 o212 a’™ al36 al¥? 45 alll o8t a’f
0212 Q74 al36 QIQQ 045 111 (\34 (!70 (160
074 leﬁ 0!99 045 alll 84 “70 0‘("U Ql&
QISS a199 045 (t”l 084 (176 060 018 o
alQ‘) 0145 all] &84 076 060 18 (1132 a
045 alll 084 075 a6(,\ alﬁ 132 alld a
alll 084 QYG (160 0118 0132 0114 ”127 o
084 076 (XGO alB a132 0114 a127 (1234 o
(176 aﬁO 018 0132 u114 0]27 u'23‘l (’196 lyi’i
60 (118 alll‘l alltl alz'{ 0234 (1196 azs
18 132 a‘lld (!127 (1234 0196 023 0170
132 114 0127 0234 a196 ‘!‘23 O170 “158
allé 127 a234 algﬁ a23 0170 alSS 194 a(m
0(127 0234 0196 (123 al70 0158 u194 64 a
234 196 a‘l? 0170 (1158 0194 (164 226
196 23 170 0158 (1194 0‘04 a?)ﬁ 0213
1 al4ﬁ 018 (!70 QL’!S 0234 0'15 &lS QlO
0 28 a95 (;234 Q229 (1228 025‘2 Ql[)l 0242
0 095 al()). Q‘!S 041 “40 064 0168 54
0 (1234 u‘iﬁ QIRS alSO 179 nZUS “52 193
0 (!229 a“ a‘lSﬂ 0175 174 ngd 047 0188
0 a228 040 a179 a174 173 a a7 H4G a187
0 0252 64 0203 0198 QIQ’I 221 (l70 0211
0 (1‘01 0168 52 047 04() 70 Q174 aﬁU
0 242 054 193 alSS a187 (lel UGO 0201
0 0117 a'29 168 alﬁ3 QLGZ QIBG 035 0176
0 (!'240 052 ulgl alSG QISS 0209 "58 0199
0 01“)4 0(17] ass 050 049 (173 177 (!63
0 33 100 239 0234 0233 02 106 (1247
0 082 149 (!33 ("Z\S (,\27 51 155 (111
0 024[ (’(53 al!}? alST (1186 quO 0‘59 (Y‘ZUD
0 (!239 (151 0190 0185 ('184 0208 057 0198

aﬁD 018 01132 a114 0127 a234 alSB 0123
(!18 (1132 114 cx127 0234 0196 a23 al7D
0132 (1114 127 QQL{« alQb’ 23 (1170 C8158
Qlld G127 4234 196 a3 Q170 o188 194
(!127 a'z.m 0\96 azs al?O ('158 C'194 a64
01234 (!‘gﬁ QZB 0170 a158 01194 064 a226
0196 QZS 0170 (1158 0194 (!04 (1226 ()“213
o23 170 158 194 o4 226,213 225
al’® 158 a9 af? a226 213 o225 24l (*)
alsd 194 a64 (1226 ("2|3 01225 0241 01113
11194 064 a226 a‘213 Q225 0241 113 (157
LT 226 213 (225 241 113 57 0
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®
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1 0 a @ % «@ Ies @
0 1 67 206 201 0200 224 73 214 189 212 76 (15 54 aZl} Q/le 240
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (% %)
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 o0 0 ] 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ) 0 0 0 0 0 0 0 0 0
to a unit upper triangular matrix. TABLE 11
OMPARISON OF THE (COMPLEXITIES OF THE BERLEKAMP-MASSEY,
AC C B M
1 + + | Be | = * THE EUCLIDEAN AND THE MODIFIED GAUSSIAN ALGORITHMS
+ | : | e | Gaussian | Euclidean | Berlekamp-Massey |
. 1]t 8i+1 47412t
1 | 51 | * * AE T6t+11 | 4t7+140-2
S 3] 6t-1 24t+15 | 4t7+16t-6
A - - - - - - - - - (25) 4 [ 10t-4 32t+18 4t7+18t-12
5 [ 15t-10 40t+20 | 4t7+201-20
0 0 | 0 l * * 6 [ 21t-20 48t+21 | 4t7+22t-30
. : : 7] 28t-35 56t+21 | 4t7424t-42
: : | . | 8 | 36t-56 641+20 4t2+26t-56
0 0 | 0 I % % | 9[45t84 | 72t418 [4U+28LT2
10 | 55t-120 80t+15 4t4-30t-90
, , s T11[66t-165 | 88t+11 | 4t°+32t-110
Here the *’s represent don’t care values and the +’s denote 12 (780220 | 961+6 1346132
1 i 13911286 [ 104t 4t7+36t-156
unspecified values.wk}lch may or may not be zero. A ﬁn'al MBTEE TR ETe T e S
step of back substitution yields the error-locator polynomial 16 | 1200455 | 12015 | 474401210
fﬁ . t 16 | 136t-560 | 128t-24 4t7+42t-240
coethcients 17 | 1531:680 | 136134 | 407+441.272
18 | 171t-816 [ 144t-45 4t7+46t-306
1 + + | ﬂe 1 | Oe 19 | 190t-969 | 152t-57 4t°+48t-342
. . 20 | 210t-1140 | 160t-70 4t*+501-380
N ., |
1 + | ﬂz 1 l ao
o of multiplications nec ut S i
1 1 1 1 f Itiplicat necessary to put S, into upper triangular
(26) form (25) is
Example 4: Had we performed the previ le usi ZH
xample 4: Had we performe revi
p. ) p O] the previous exarmp € using C‘l(I'OW) _ (t _ k)(@ _ k)
the technique just described, the first row reduction process o
would have yielded the matrix at the top of the next page. 1, 1 1 s
The second row reduction would have yielded the second = 5’56 + Ete—f— g(e —e°). (27
matrix shown on the next page. The process terminates at The back substituti the other hand .
this point since all elements on and below the third diagonal ¢ back substitution step, on the other hand, requires
are zero. Note that columns 4 through 17 are as they were 1 5
. . . Cu(back) =142+ -+ (e—1)= (e —¢) (28)
in the augmented syndrome matrix S 4. The reduction process 2

was not applied to them, resulting in substantial savings in
computation. A final step of back substitution gives the desired

result
1 ol | (1o
0 1 | 0 1 | '

We now consider the complexity of this algorithm. With e
errors, there will be te multiplications associated with the first
column reduction, (t—1)(e—1) multiplications associated with
the second column reduction, and so on. Thus the total number

all

o 0167

multiplications. Thus, the multiplicative complexity of this
algorithm is

1 1
C,(Gaussian) = 5t(62 +e) - 8(63 —3e2+2e). (29)

Table II compares the complexity of the modified Gauss-
ian algorithm (29) with those of the Euclidean (8) and the
Berlekamp—Massey (4) algorithms. The comparison is carried
out for values of e less than or equal to 20. The value ¢, though
unspecified, is assumed to be at least as large as e for each e.
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0 alﬂl \ Q60 alB (1132 all4 0127 0234 C(195 D(23 0170 alSS (]194 064 0226 (1213 a225
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0 (1240 | alld alZ'l a234 alQG (123 al70 0158 Dt194 064 (1226 O{213 Cl225 &241 a113 057
0 all)d | ‘1127 0234 0196 &23 0170 0158 0194 a64 226 a213 (1225 0241 0113 057 0
0 0133 | a234 a196 a23 al70 0158 a194 064 (1226 a213 a225 0241 C!ll3 057 0 aﬁS
0 082 I 0196 (123 0170 QISS 0194 (164 a226 a213 0225 (1241 0(113 (157 0 68 a135
0 a?dl | a23 (1170 alSE 01194 (!64 0{226 0213 C!225 a24l 0113 057 0 68 01135 019
0 0239 | (1170 a158 0194 (164 0226 01213 (1225 (1241 0113 a57 0 aﬁﬂ (1135 19 0!14
1 al46 aS | a136 &199 a45 alll a84 076 QGO alB a132 (1114 0127 a234 algﬁ CI23
0 1 0167 ‘ 01199 (145 alll a84 a76 aSO 018 ala‘) 0114 a127 a234 01196 023 al'{D
0 0 0 | 045 alll 084 (176 060 alS 0132 a1|4 01'27 Q234 a196 a23 0170 alsﬁ
0 0 0 | alll aﬁd ﬂ76 (XSD 018 0132 all4 0(127 l!234 QIQG (123 0170 0158 0194
0 0 0 | (X84 (176 aGCI alS (1132 alld 0‘127 ‘1234 0196 0123 ﬁ170 0158 0194 (164
) 0 0 | (176 a50 018 C.{132 0114 127 u234 QIQS 023 al70 0158 (1194 (164 0226
0 0 0 | aSO a]a (1132 a114 0127 (!234 (1196 aza QITO alSB a]94 aﬂé a226 11213
0 0 0 | alS &!32 alld 0127 a734 alQS a23 0170 0158 a194 (164 (1226 O{213 0225
0 0 0 l a132 a114 alZ7 234 01196 (123 ()(170 0158 u194 064 Q226 0213 a225 aZAl
0 0 0 | (1114 alZT a234 0196 023 Ql70 a158 0194 064 (1226 a213 a'ZZS C!24l all3
0 0 0 | a127 (]234 alQG (123 (!170 (1158 05194 a64 0226 a'213 (1225 0241 aua (157
0 0 0 I 0234 0196 023 0170 a158 11194 0564 0226 a213 a225 0(241 a113 (157 0

0 0 0 | 0196 (123 0170 alSS Q194 0464 a226 213 Ot225 a24l a]li} 057 0 063
0 0 0 ‘ a‘23 a170 a158 0194 064 0226 a‘213 225 a24l allB 0557 [} 68 0135
0 0 0 I a170 0158 0194 0(64 a'226 a213 0/225 241 (1113 (157 0 68 135 &lg
) 0 0 | 0158 al94 QGA 0225 a?l(i 0225 a241 113 a57 0 068 a135 19 ald

An examination of Table II reveals that the Gaussian algo- admissible set {(e,t) : e < t} is represented by the shaded

rithm is uniformly more efficient than the Euclidean algorithm
for error values less than or equal to 15 for any value of .
For error values greater than 15, the Gaussian approach may
have higher or lower complexity than the Euclidean algorithm
depending on the error-correction capability of the code. For
example, if e = t = 20, then C,(Gaussian) = 3060 and
C,.(Euclid) = 3130.

A comparison of the Gaussian algorithm with the
Berlekamp-Massey algorithm is difficult without actually
specifying ¢t. However, for any ¢, it is easy to find values of e
for which the Gaussian approach is more efficient.

Although the Gaussian algorithm is efficient for small
error values, it must be pointed out that the approach is not
asymptotic. For large error values, the classical algorithms are
clearly superior and should be used.

Fig. 5 is a graphical comparison of all three algorithms
for the cases 1 < e < t < 40. In the figure, the white
region represents the inadmissible set {(e,t) : e > t}. The

regions. The shadings reflect the regions where each of the
algorithms is dominant. The light, medium and dark shadings
in the figure represent, respectively, those values of ¢ and e
for which the complexities of the Euclidean, the Gaussian and
the Berlekamp-Massey algorithms are minimal. In accordance
with previous discussions, the Gaussian algorithm is seen
to have lower complexity for small error values while the
traditional algorithms are more efficient for large error values.

IV. ERROR EVALUATION

We now consider the problem of error evaluation. As
mentioned previously, this step is generally carried out using
the Forney algorithm (11). In this section we will present
an alternate solution that is based on the fast Vandermonde-
system solver of Bjorck and Pereyra [5]. The algorithm will
be seen to have about one half the complexity of the Forney
algorithm.
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TABLE 111
Decoding Steps traditional decoder  proposed decoder
Syndrome Evaluation Horner: 8,128  pruned FFT: 1,175
Error-Locator Polynomial R"/BM: 1,044/1,384  Gauss: 520
Root Finding Chien: 1,784  pruned FFT: 791
Error Evaluation Forney: 120 Vandermonde: 64
Total 11,076/11,416 2,550
40 Factoring the matrix of error locations, we have
s = 1 T | X
X, X X, X,
30 : : :
z : 1 -1 1
825 Xt X5 X Xe
8
> \4 D
£20
g Y Sy
< Y; S.
15 2 2
& x| 1= (33)
10 .
g Ye Se
e — N —
5 /
T N Y S
tHH
5 10 15 20 25 30 35 40

Error Value e

Fig. 5. A comparison of the Berlekamp-Massey, the Euclidean, and the
modified Gaussian algorithms for 1 < e < t < 40.

Recall that the syndromes are given by
(30)

where r(z) is the received word. Using the fact that the
received word is the sum of a codeword and an error polyno-
mial and the fact that a!,a?,...,a? are zeros of the given
codeword, one arrives at the following equivalent formulation
of the syndromes [15]

(31

Here X; and Y; represent, respectively, the ith error location
and the 7th error value. This is a set of nonlinear equations
which has exactly one solution when the number of errors that
occurred is no more than the error-correction capability of the
code [15]. The values e, X1, Xo, ..., X, are determined in the
first 3 steps of the BCH decoding procedure. With these values,
(31) reduces to an overdetermined system of linear equations.
The first e of the 2t equations are sufficient to determine the
the e error values Y1,Y3,...,Y,.

The e equations can be written in matrix form as

X1 X - Xe Y, S1
X2 X2 X2 ||V S
L S =T e
X XS xe/ \v. S,

Since the X;’s are distinct and nonzero by definition, both
the Vandermonde matrix V' and the diagonal matrix D are
invertible. Thus,

Y =D'vls. (34)
Since V is a Vandermonde matrix, the step V=15 is most
efficiently carried out using the algorithm of Bjorck and
Pereyra [5]. The step D~} (V~1S) consists of pointwise
multiplications carried out in the obvious manner. We will
replicate the Bjorck-Pereyra algorithm without details. Good
expositions of the algorithm may be found in [5], [17].

Algorithm for Computing Error Values:
fork=1toe—-1
for i = e downto k + 1
S; = 8; — XpSi1
for k = e — 1 downto 1
fori =k+1toe
Si = Si/(Xi — Xi_k)
fori=ktoe—-1

S; = 8 — Sit1
fork=1toe
S; = XS,

The algorithm above is an in-place algorithm. The array S[-]
which contains the syndromes {.S;} on entry is overwritten so
that upon exit it contains the error values {Y;}. By direct
counting, it is easy to verify that this algorithm has the
following complexity

C, =é? (35)
Co = g(ez —e). (36)

Compared with the Forney algorithm (12) (13), we see that this
represents ~50% reduction in the number of multiplications
and ~25% reduction in the number of additions.
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Example 5: As a final example, we will compare the com-
plexities of the traditional BCH decoder and that of a decoder
using the algorithms detailed in this chapter. We will compare
the performance of the decoders on the 16 error-correcting
RS(255, 223) code over GF(28). We will assume that e =
t/2 = 8 errors occurred and that the errors are uniformly
spaced. Table III shows the number of multiplications required
by each decoder.

V. CONCLUSION

In this paper, we have introduced alternative algorithms
for the various parts of the BCH decoder. We have shown
that the pruned FFT can be used effectively to compute
the syndromes and to evaluate the roots of the error-locator
polynomial. We have also shown that a simple variation of
the Gaussian elimination procedure can be used to compute
the error-locator polynomial of practical BCH codes. Finally,
we presented an algorithm for evaluating error values that has
half the complexity of the Forney algorithm.
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