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Lower Bound onv the

an-Squared Error

in Oversampled Qufcfr{tization of Periodic
Signals Using Vector Quantization Analysis

Nguyen T. Thao and Martin Vetterli, Fellow, IEEE

Abstract— Oversampled analog-to-digital conversion is a
technique which permits high conversion resolution while
using coarse quantization. Classically, by lowpass filtering
the quantized oversampled signal, it is possible to reduce the
quantization error power in proportion to the oversampling
ratio R. In other words, the reconstruction mean-squared error
(MSE) is in O(R™!). It was recently found that this error
reduction is not optimal. Under certain conditions, it was shown
on periodic bandlimited signals that an upper bound on the MSE
of optimal reconstruction is in O (R~?) instead of O (R™'). In
the present paper, we prove on the same type of signals that the
order O (R™?%) is the theoretical limit of reconstruction as an
MSE lower bound. The proof is based on a vector-quantization
approach with an analysis of partition cell density.

Index Terms— Oversampling, quantization, A/D conversion,
optimal reconstruction, MSE lower bound, hyperplane, partition.

I. INTRODUCTION

N oversampled analog-to-digital conversion (ADC), higher

resolution in the discrete-time samples is achieved not by
using a finer quantizer but by quantizing redundant, oversam-
pled values of the continuous-time signal. In the simple version
of oversampled ADC, a bandlimited signal x is sampled at R
times its Nyquist rate, and using an ideal digital lowpass filter
with passband [~ %, %], the out-of-band quantization noise is
filtered out, leading to an approximation & of the true signal
. £ where the mean-squared error (MSE) behaves at best in
O (R™1) [1], [2] (Fig. 1). The digital lowpass filter followed
by the downsampling is usually considered as a part of the
A/D converter. However, one can look at the ADC chain in a
different way by saying that the real encoded signal is obtained
after sampling and quantization, and that the lowpass filter is
already a part of the reconstruction of the input signal. This
leads to the block diagram of Fig. 2(a) which emphasizes the
separation between the encoding part of the ADC process and
the reconstruction part, or, decoder. Because of the lowpass
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Classical block diagram of oversampled ADC.

filter, the decoder is based on a linear reconstruction algorithm
and will be called linear decoder. While such a reconstruction
is simple and easily implementable, the question of an optimal
reconstruction from the oversampled and quantized signal, in
the minimum mean-squared error sense, arises quite naturally
(Fig. 2(c)). In [3], [4], we showed that for periodic bandlim-
ited signals, there exists a nonlinear reconstruction algorithm
which leads to an MSE of O (R~2) instead of O (R™1) in the
linear reconstruction case (Fig. 2(b)). The method relies on
finding estimates which are consistent with the bandlimitation
characteristics and the oversampled data from the signal. The
derivation of the MSE in O (R™2) is based on the fact that
a bandlimited signal with bounded amplitude has a bounded
slope, and consequently, errors of reconstruction in amplitude
are of the same order as errors due to the time discretization,
up to a bounded multiplicative coefficient. While the method
of consistent reconstruction is clearly more complex than the
straightforward linear reconstruction, it establishes an upper
bound on the reconstruction MSE of O (R™2).

In the present paper, we are concerned about establishing a
lower bound on the reconstruction error. Due to the difficulty
of the general problem, we deal only with periodic and
bandlimited input signals. For any given probability distri-
bution of input signals, we show that the MSE in simple
oversampled ADC is lower-bounded by O (R~2). Thus under
the above assumption of input signals, an optimal decoder for
oversampled ADC has a performance of O (R™2).

The outline of the paper is as follows. In Section II, we
define precisely our space of periodic bandlimited signals.
With this assumption, we show in Section III that the input
signals belong to a finite-dimensional space. Thus they can
be considered as vectors. As a consequence, the oversampled
ADC chain can be analyzed as a vector quantizer with an en-
coding section and a decoding section. For a given probability
distribution of input vectors, the performance of the optimal
decoder all depends on the input space partition defined by
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Fig. 2. Representation of the oversampled ADC process in terms of encod-
ing-decoding. (a) Classical ADC chain. (b) ADC with consistent reconstruc-
tion. (¢) ADC with optimal reconstruction.

the encoder. Assuming that the quantizer is uniform with an
infinite input range, we show in Section IV that this partition
has a particular structure called hyperplane wave structure.
This partition structure is studied in the Appendix where an
upper bound on the cell density is derived. A lower bound on
the MSE can then be derived from this upper bound, thanks to
Zador’s formula [5}-{7]. We show finally that this MSE lower
bound holds also when the quantizer has a finite number of
levels. :

II. PERIODIC BANDLIMITED SIGNALS
AND VECTOR REPRESENTATION

We assume that the continuous-time signals belong to
L(0,T) (space of square-integrable functions on [0, 7)) and
we denote them by using bold face characters. The value of
a signal z at time ¢ will be denoted by z(z). In £4(0,7), we
will- consider the inner product

1 T
e W ARLCIICL
and the norm
Izl = (z,2)>.

Using real Fourier series, an orthonormal basis of £4(0,7) is
~given by

U1 (t) =1

ugp(t) = V2cos (2mpt) (1)

Vp > 1,
U2p+1 (t) = \/_2— sin (27!']3%).

We recall that any signal x € £5(0,7T") can be written as

oo
T = E Xk’ll,k
k=1
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where X = (uk,z)T for all £ > 1. We call T-periodic
bandlimited signals of bandwidth K, signals = of L£5(0,T)
such that

K
=) Xpup ae. 2)
k=1 -

The set of such signals is a K-dimensional real vector space
and is designated by V, . The term “T’-periodic bandlimited” is
justified as follows: if a signal z of £5(0,T’) is 7-periodized,
it has a discrete Fourier transform which is bandlimited.

Equation (2) defines a one-to-one linear mapping between
z €V, and the vector ¥ = (X1, --, X ) € RE. We will
say that Z is the vector representation of # € V. We recall
that R¥ has an inner product

K
<f7:lj> = ZXkYk

k=1

where £ = (X1, --,Xk) and § = (Y1,- -, Yk ), and a norm

K 1/2
1] = (ZX%) =

Thanks to Parseval’s equality, we have
(@,9), = (#,9) and ||z, = ||

where z,y € RX are the vector representations of z,y €
V., respectively. As a consequence, the MSE between two
signals z,y € V, can be expressed in terms of their vector
representation, since |ly — =2 = ||7 ~ Z|%.

II. VECTOR QUANTIZATION REPRESENTATION
OF THE OVERSAMPLED. ADC CHAIN

In this section, we show that the block diagrams of Fig. 2
can be studied in a vector quantization framework. We assume
that signals are 7'-periodic bandlimited -as described in.the
previous section, and thus belong to the space V.. We assume
that they are regularly sampled N times in the time window
[0, T'). The samples are then uniformly quantized into integers.
Considering the case of Fig. 2(a), the linear decoder necessar-
ily outputs a bandlimited signal, which is T-periodic, thus
belonging to V.. In the case of Fig. 2(b) and (c), the decoder
should naturally output signals of V, .. For Fig. 2(b), this is
because of the bandlimitation consistency with the input signal.
For Fig. 2(c), optimality requires that.the output signal belong
to the same space as the input signal, as a necessary condition.
Indeed, if this were not the case, the orthogonal projection of
the output signal onto the space of the input signal would
necessarily be a better estimate of the input, as a'consequence
of Pythagoras theorem. As summarized in Fig. 3, the block
diagrams of Fig. 2 are composed of an encoder which maps
a signal of V, into an /N-point sequence of integers, and a
decoder which maps an N-point sequence of integers into
some signal of V,.. This scheme can be translated into vector-
quantization terms, when replacing the analog input and the
analog output by their vector representations, and considering
an N-point sequence of integers I = (41,--,4,) as an index
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Fig. 3. Encoder-decoder decomposition of the oversampled ADC chain,
with real signals (above the diagram), and with vector-quantization signal
representation (below the diagram).
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Fig. 4. Partition of the input signal space spanned by us and ug defined by
the sampling-quantization encoder when N = 5. Each cell comprises all input
vectors giving the same /N-tuple index through the sampling-quantization
encoder. Examples of /N-tuple indices are given for a selection of cells.

of the discrete set Z = Z". This equivalent view is also shown
in Fig. 3.

In this view, the encoder defines a partition of the space
R¥ into cells which comprise all input vectors giving a
same index. In fact, the encoder is uniquely defined by this
partition. Although each index has the form of an /N-point
sequence, it is not so much the explicit form of the index
that matters, but its one-to-one correspondence with a cell
of the partition. Fig. 4 shows the partition induced by the
sampling-quantization encoder when the space of input signals
is two-dimensional, spanned by uy and u3 (space of sinusoids
of period T' with arbitrary phase and amplitude, see (1)), and
the total number of samples is N = 5. For a selection of
cells, the figure also indicates the corresponding indices in
their original V-point sequence form. It is important to see
that the dimension K of the encoded signal is intrinsic in the
continuous-time analog signals of V, . This dimension is not
the number of input samples NV, contrary to the usual case in
vector quantization. In particular, the components X1, - --, Xx
of the input vectors Z are not the samples of the analog signals.
One should think of the sampling-quantization encoder as a
“black box,” where N only appears as an element of the
internal process.

Because of the one-to-one correspondence between cells and
indices, the role of the decoder amounts to mapping each cell
into some vector of R¥, called code vector according to the
vector quantization terminology [8]. For a given probability
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Fig. 5. Code vectors of the optimal decoder (circles) and the linear decoder
(crosses) for the encoding configuration of Fig. 4.

distribution of input signals, any choice of decoder results
in some expected MSE. As mentioned in [8], the decoder is
optimal (that is, minimizes the expected MSE) when each code
vector is the centroid of its associated cell. With the encoding
conditions of Fig. 4, we show in Fig. 5 the code vectors of
the optimal decoder in the case where the input vectors have
a uniform probability distribution in a bounded region of RX.
The figure also shows the code vectors of the linear decoder.
One can see that these code vectors aré not necessarily optimal,
and not even necessarily consistent, since they sometimes lie
outside their corresponding cells. :

IV. DERIVATION OF THE SAMPLING-QUANTIZATION PARTITION

In this section, we show how the partition of the sampling-
quantization encoder can be derived. We also present some
of its properties. The vector quantization representation.of
the sampling-quantization encoder is shown in Fig. 6(a). The
sampling operator originally maps continuous-time signals
z € V, into the N-point sequence (z1,---,zn) Where for
aln =1,---,N, z, = o(§T). Let & = (Xy,---,Xk) be
the vector representation of . Using (2), we have for each
n=1,---,N

K
T =2($1) = Y New(FT) = (FnE) )

k=1
where ﬁ is the vector of R¥ defined by

Fo= (0 (2T),us(2T), - usc(ZT)), forn=1,---,N.
4)
Therefore, the sampling operator S of Fig. 6(a) which is
directly applied on the vector representation & is expressed as

sid) = ((£.2), (£.7), . (fv.)) e RY.
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Fig. 6. Vector quantization representation of the sampling-quantization en-
coder. (a) Primitive form. (b) Parallel decomposition.

The quantization operator Q of Fig. 6 is simply defined by
(Qfz1], Qlzz], - -+, Qznl)

where Q is the scalar quantization operator. In most of
the paper (except in the last paragraph), we assume that
the quantizer is uniform on infinite input range, with step
size ¢q. More precisely, we assume that the quantizer splits
the amplitude axis into intervals of the type [iq, (¢ + 1)g[.
Whenever an input sample falls into the interval [ig, (i + 1)q[,
the output of the quantizer is the integer ¢ which serves as
index of the interval. With these assumptlons Q has the
following s1mple expressmn1

Q[(z1, 32, -+, zN)] =

. ) T
Va: e R,Q[z] = [E} (5)
where |y| designates the greatest integer smaller than or equal
to y.
Then, the whole encoder is defined by the mappmg

E:RKE — 7V

7+ E[f] = (Q(<ﬁf>)Q(<fo>))

The encoder E can be seen as the association of N suben-
coders E1,---,Ex working “in parallel,” such that, for each
n=1--,N '

E,:RX —7Z

Fr— E,[Z] =

(7).

(By[2], -+, En[2])- (6)

The parallel decomposition of the sampling-quantization en-
coder is shown in Fig. 6(b). The partition P defined by

'In general, a quantizer may have an offset ¢ such that Qz] = {%J

For the sake of simplicity, we assume that ¢ = 0. The following derivations
can be easily generalized for ¢ # 0.

With this definition, we have
vz ¢ RE E[7] =

Py,
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the encoder E can be simply derived from the partitions
,Pn defined by the subencoders Ei,---,En, respec-
tively. Because of (6), C is a cell of P if and only if there
ist cells Cq,-++,Cn of Py, -, Py, respectively, such that
C =CiNn---NCyx. We will say by abuse of language that P
is obtained by intersection of Py, -+, Pn.

Therefore, we just need to concentrate on the study of P,
for each n € {1,---, N}. According to (5) we have

B[] = E(f;az‘” .

We propose an equivalent expression:of E, which will make
the analysis of its partition easier. Let us define

)

g =1 ®
q
Then, combining (7). and (8), we find
E.[7] = Kaz’ngz)J ©)

It is easy to see that the cells of the partition df E, are of
the type

¢ = {MRK{ig <Jn,5> < z'-l—l}, ieZ
and are separated‘by the affine hypetplanes

H; = {fe.Rfin},@ - z} ieZ.

An example of partition is shown in Fig. 7. The hyperplanes
are perpendicular to d,, and are equally spaced with the period

1

We call the set of hyperplanes {Hilt € Z} a hyperplane
wave and say that dn is the density vector of the wave. The
corresponding partition is called a hyperplane wave partition,
and is designated by P, (J )
by d,,. Finally, the partition of the- encoder E is obtained by
intersection of the partitions

s Py (JN)

EXCARS

where each a? is given by (8). Fig. 8 shows an example in the
case where N = 5. By convention we des1gnate the resulting’

partition by
3 JN )

and call it the hyperplane wave structured partition of density
vectors dy,---,dnN.

, since it is uniquely defined

7DK<CZ'1,...
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Fig. 7. Hyperplane wave partition.
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V. UPPER BOUND ON THE NUMBER OF CELLS

As mentioned in the Introduction, the method used to derive
a lower bound on the optimal decoding MSE requires an upper
bound on the number of cells of the partition. We propose such
an upper bound based on the properties of hyperplane wave
structured partitions.

Assume that the input signal Z belongs to a region B of
RX such that :

vz € B, ||Z|| < B, where B > 0. (10)

When N is the total number of samples, the sampling-
quantization encoder induces in the region a certain number
of cells that we call Msqg(B, N). According to the previous
section, the partition defined by the sampling-quantization
encoder is the hyperplane wave structured partition

‘PK(Jh"’,JN)

where d,, is given by (8). We designate by N, , (J}, e
the maximum number of cells that the partition

PK(J;,"-,JN>

can induce in a sphere of R of diameter D and of arbitrary
origin. Since B is included in a sphere of diameter 2B, we
necessarily have

Msq(B,N) < N, ,,(dy, -

aJN)

,dN). (1)

Thanks to the particular properties of a hyperplane wave
structured partition, an upper bound on the number of cells
N, ,(d1,---,dy) is derived in the Appendix. The following
theorem is shown:
Theorem 5.1: Let (fl,

D > 0. Let d be an upper bound on ||da]], -

Ny ooy dy) < (%)(wd] + 1)K

-,dy be N vectors of RX and
||dN]| Then

12

where [y] is the smallest integer greater than or equal to .
.In our hyperplane wave structured partition, the vectors d,
are given by (8). Using (1) and (4), it is easy to derive that

K
> Ju(

2
N oy g
e @D
@2

”dn”2 = o)

Therefore, d = is an upper bound on ||cz'1||, N ||JN||
Applying Theorem 5.1 with this upper bound and using the

-
=

- facts that D = 2B and [y] < y + 1, we find

K
" V2K
NK,ZB(d]-’ T

B——+2
q

Jdy) < (ﬁ)(

Applying (11) and using the fact that

PEELEURER £5

NK
<
- K!
we conclude that

1 B K
Msq(B,N) < [ZN(E\/Q—K + 1)] (13)

VI. LOWER BOUND ON THE OPTIMAL DECODING MSE

In this section we assume that the input signals belong to
the region B defined in (10) and have a certain probability
distribution p in B. The goal is to express a lower bound on
the optimal decoding MSE in terms of the oversampling ratio
R defined’ by R = —II% For convenience, we assume that NV is
chosen such that R is an integer (R € N*). Let us designate by
MSE,pt(R) the optimal decoding MSE when the oversampling
ratio is equal to R. For R given, we have N = RK and the
number of cells induced by the sampling-quantization encoder
in B is equal to Mso(B, RK). According to (13) from the
previous section, we have the following inequality:

[2K(§m+1)r
K

Using Zador’s formula [5], [6], we show how this upper bound
on the number of cells can be used to derive a lower bound
on MSE¢(R).

For a given probability density p of input 31gna1s in RK
and a given number of cells M, Zador analyzed the minimum
MSE that can be achieved by a vector quantizer using M code
vectors (or equivalently, defining a partition of M cells). Let
us call this minimum MSE;;» (K, p, M). He showed that

x RE.  (14)

MSQ(B7 RK) S

MhmJr MY EMSEin(K,p, M) = b N(K,p) (15
where by is a coefficient® which depends on K and
Kt2
s K - ®
N = ( [ oty Pa) 16)
RK :

This limit says that when the number of cells M is large,
MSE i (K, p, M) is of the order of b, N (K,p)M~%/K,

2This definition is consistent with the traditional definition of oversampling
ratio. The periodic and bandlimited input signals have K nonzero consecutive
discrete frequency components equally spaced by 1/T. Their bandwidth in
the traditional sense is therefore X'/ T, while the sampling frequency is N/T.
The oversampling ratio in the traditional sense is then T = K

3Zador provides in [5] the following bounds on bx:

(5"

where I is the gamma function.

/K
1K <be < ir(% +1) “ra+2)
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Since the sampling-quantization encoder defines Msqo(B,
RK) cells, it is clear that

MSEopt(R) > MSEpin(K, p, Msg(B, RK)).  (17)

Intuitively speaking, when R is large, the number of cells
Msq(B, RK) is large, and MSE i, (K, p, Mso(B, RK)) is
of the order of b, N'(K,p)Mso(B, RK)~2/K_ But using the
upper bound on Mgg(B,RK) in (14), this order can be
lower-bounded by ¢(K,p, B, q) - R™2, where ¢(K,p, B,q)
is a coefficient which only depends on K, p, B, g. This gives
the intuition that O (R™2) is a lower bound on MSE,(R).
We formalize and prove this intuitive result in the following
theorem.
Theorem 6.1: There exists a constant ¢(K, p, B, ¢) which
may depend on K, p, B, g but not on R such that
VR € N*,MSEpi(R) > fu{’g%’@.
Proof: Equation (15) implies that there exists a number
My > 0 which may depend on K and p, such that

VM 2 Mo, M/ MSEyin (K, , M) > £, N'(K, p)
or

VM 2 Mo, MSEuin(K, p, M) > 2, A (K, )M/,
(18)
It is clear that MSE,,;,(K, p, M) is a decreasing function of
M, that is )

M' < M == MSEpin (K, p, M') 2 MSEpin(K, p, M).
a9
In particular, for all R € IN*, this inequality can be applied to
the following choice of M’ and M:

M' = Msg(B, RK) (20)
and
[2K(§\/2K i 1)]1{
M= ¥d x RK (1)

due to the inequality (14). We would also like to apply (18)
for M given by (21). This requires R to be larger than

K!
K
B
[QK(T/QK + 1)] ,
which only depends on K, p, B, g, since My only depends on
K and p. .
Suppose that. R > Ry and consider the numbers M’ and

M given in (20) and (21). Because of (17), (20), and (19),
we have -

MSEopt(R) > MSEmin(K, p, M") > MSE i (K, p, M)
1
> 5bKJ\/(K, p)M~¥K,

R0=M0><

(22)

Replacing M by its value given in (21), we derive that
VR > Ry,
K12/K 1

e (zvam )]

MSEou(R) > %bKN (K,p)

This can be rewritten as

C
VR > Ro,MSEqp:(R) > n%

where cg depends only on K,p,B,q. This inequality is
not necessarily true for R < Ry. However, for each
R = 1,2,---,Ry, we can always define the coefficient
cr = R*MSEqpi(R) such that MSEqy(R) = 4. For each
R = 1,2,---,Ro, cp depends only on K,p,B,q. Let us
define ¢(K, p, B, q) = min(cg, c1,ce," -, Cr, ). It is clear that
¢(K, p, B, q) only depends on K, p, B, q (we recall from (22)
that Ry only depends on K, p, B, g). Moreover, we have

N CK; ;B:q
VReN ,MSEOPt(R) 2 _(%) 0

Case of Finite Range Quantization

When the quantizer has a finite number of levels, the model
of uniform quantization on an infinite input range is no longer
valid. However, the upper bound on the number of cells of
Theorem 5.1 remains valid. Indeed, the partition defined by a
real quantizer is derived from the partition of the infinite range
quantizer by merging .all the cells located outside the range of
the real quantizer. As a result, a certain namber of cells of the
partition defined by the encoder of Fig. 6(c) may be merged
in the considered region of input signals. This can only result
in decreasing the evaluated number of cells. Since Theorem 1
is valid, the lower bound on the MSE holds.

APPENDIX
PROPERTIES OF HYPERPLANE WAVE STRUCTURED PARTITIONS

Although hyperplane wave structured partitions appear in
this paper as a result of the sampling-quantization encoder in
oversampled ADC, their definition is quite abstract, and their
properties can be studied independently of this context. Also,
it will be more convenient to study them in the more general
context of gffine spaces, where elements are not vectors but
geometric points. As will be seen, the derivation of upper
bounds on the number of cells will be recursive on the space
dimension and will be based on partitions induced in affine
hyperplanes. In Section A.1 we redefine the hyperplane wave
partitions and the hyperplane wave : structured partitions in
affine spaces and show that vector spaces correspond to a
particular case. We also demonstrate a property essential for
the recursion. In Section A.2, we derive some upper bounds"
on cell densities. The affine space version of Theorem 5.1 will
be shown in the end of this section (Theorem A.7).

A.l. General Definition and Properties in

- a Euclidean Affine Space

Let WK be a Euclidean vector space of dimension K
associated with an inner product (-, -) and the norm || - ||. Let
W, be an affine space of direction WK. This means that W,
is a set of points and that there exists a mapping ™

Wy x W, — W,
(4,B) 5= Al -

pd



THAO AND VETTERLI: LOWER BOUND ON THE MSE IN OVERSAMPLED QUANTIZATION OF PERIODIC SIGNALS ) 475

Fig. 8. Example of hyperplane wave structured partition with N = 5. One
can see the five directions of hyperplane indicated by the five perpendicular
vectors d , - - - ,ds. For each direction, the hyperplanes are equidistant.

which satisfies the following properties:

VA, BEW,, AB=0o A=B (24)
VA,B,C € W, ,AB + BC = AC (25)
VAEW, VT e W, ,IBEW,,AB = (26)

A.1.1) Hyperplane Wave Partition: We call the hyperplane
wave partition of density vector de W and origin C € W,
the partition obtained by inversion of the mapping

E:W, — VA
2 (o)

where |y] is the greatest integer smaller than or equal to
We denote the partition by P, (d; C). The cells of P, (d; )
are separated by the affine hyperplanes

H; = {XeWKKJZCT)() =i}

@7

where ¢ € Z. These hyperplanes have as common dlI'eCthIl
the space orthogonal to d. In the particular case where d = 0
note that P, (0;C) = {W,} for any C € W,. Whend;éo
the distance between two consecutive hyperplanes is constant
and equal to ¢ =

lldll*

PropaszizonA 1: Let W be an L dimensional subspace
of W,, W, be an L-d1mens1onal affine subspace of W, of
direction WL, and let C € W,, de W The partition
induced in W, by P, (d C) is a hyperplane wave partition
P, (d’ C") of W,, where d’ € W, is the orthogonal projection
of d e W on W and C’ is some point of W, .

Proof: The partition induced by P, (d:C) in W,
obtained by inverse image of the mapping

e x - |(a0%)

W

P, @)

Fig. 9. Partition induced in an affine subspace VW, by a hyperplane wave
partition P (d: C’).

restricted to X € W, . Let P be the orthogonal pro;ectlon of
C on W, and let us write d = d +d", where d’ € WL (see
Fig. 9). Then

VX eW,, <cf,03(> - <J’ +d'.CP+ P3(> |
- <J’,PTX> + <c?’,073> 28)

since PX € W, and CP € W,
Suppose d = 0. Then VX € W,, E(X) = k where

k=|(d,CP)|
is a fixed integer. The inverse image of E restricted to W,
leads to the partition {W, } which is equal to P, (0; C"), where

C’ can be arbitrarily chosen in W, .
Suppose d’ # 0. Let O be the unique point of W, such that

<J7I’C?> 7

PO =~ .

=l

—<0Z",C“P>. (29)

Combining (28) and (29), we find
VX eW,, <J, 03(>=<d’,p3(> <d’ PC’> <J’ C’X>
Therefore

VX € W, E(X) = [(2. 7))

The inverse image of E restricted to W, generatés then the
partition P, (d’; C") O
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A.1.2) Hyperplane Wave > Structured Partition: Let N >1
be an integer, dl, dN be N vectors of W and
Cy,-+-,Cn be N points of W,. We call the hyperplane
wave structured partition of density vectors cfl, e ,JN and
origins C1,---,Cy, the partition obtained by inverse image
of the mapping

E: W, — ZN 30)
X (El(X),‘--.,EN(X))
where
VE=1,---,N,VYX € W_,Ex(X) = KJ;C,O,:XH.
‘We denote this partition by P (dl, ‘e ,JN;Ol, .- -,CNj. As

in Section IV, P, (dy, -, dn;Ch, - Cp) is obtained by

intersection of the hyperplane wave part1t10ns P (dl, Cy),-

P (dN7 Cn). As a consequence of Proposition A.1 we have.
Proposition A.2: Let W_L‘ be an L-dimensional affine sub-

space of W, of direction W, . The partition induced in W, by

P (dl, . dN, Cy,--+,Cp) is a hyperplane wave structured
partition P, (d}, -, dy; Cl, -+, Ch) where dl, -, dly are,
respectively, the orthogonal projections of dl, dN on W

and C,---,C}, are N points of W, .

A.1.3) Particular Case of Affine Space W, W : The
definitions of hyperplane wave partition and hyperplane wave
structured partmon apply to the particular case where the affine

space is W itself. Indeed, W is an affine space of direction
W, when the mapping (23) is defined by
Wi X W, — Wy
@8 T=b- v

One can check that this mapping satisfies (24)—(26). In this
situation, a hyperplane wave partition is characterized by a
density vector d of W (as vector space) and an origin ¢ of
W (as affine space), is obtained by inversion of the mapping

-

E: W

e — Z
P (i)

and is denoted by P, (cf ¢). Similarly, a hyperplane wave
structured pamtlon is characterized by N den51ty vectors
di,-,dy. € WK and N origins ¢1,---,n € W , and
_is denoted by P, (dy,---,dn;él, - cN) The main sec-
tion -deals with this present case where W, = WK =
RX and uses the presentation of (32) in the case where
@ = 0. The notation of the main section P, (d) corresponds
here to P, (d 0) and P, (dy,---,dy) corresponds here to
PK(dl,m dn;0, - -,0).

(32)

A.2. Number of Cells Induced in a Sphere in Finite Dimension

We have already introduced in Section V the number
N, p(di, -, dy) that we redefine here in the general context
of affine spaces.

D
-— .
@ —t
? boundarl :
¢ e L R@cy
®) =t } — f f - — t
.- : : .
! G
(€) e H___'_.__H .................................
" npboundaries | =
¢ 1 boundaries P v( Z:C)
@ =t L } F——t } i
PEE
[ R H_+__+_* ................................
<ny+nyboundaries P, (G5 d:C1C)
: A~ : W3
® H——t—t—H———+—H—H—F—F——H
() o e FH e e

Fig. 10. Construction of the partition induced in a segment by a
one-dimensiohal hyperplane wave structured partition.

Definition A.3: Let dl, -,dy be N vectors of W,. The
number N, oy, - -,dy) is the maximum number of cells
that a partition P, (dl, e dy; Cy, - -, Cn) of arbitrary ori-
gins Cp,---,Cp can induce in a. K-dimensional sphere of
W, of diameter D and arbitrary origin.

We have several remarks about this number. For a given
choice of points C1,---,Cy and sphere of diameter D, the
number of cells induced by PK(ci'l,~~,d_'N;Cl,---,CN) in
the sphere is not necessarily equal to N, (J;, e JN), but
always upper-bounded by it. However, one can prove that there
always exists a choice of points Cy,---,Cy and sphere of
dlameter D such that the induced number of cells is equal to

K D (dla o dN )

From Proposition A.5 to Theorem A.7, we propose upper
bounds on N, »(d1,---,dy) in various cases.

Proposition A.4: Tn the case K =1land N >'1

N
<1+ [Dldi].
k=1

Proof: When K = 1, spheres of diameter D are simply
segments of the real line of length D (see Fig. 10(a)). Each
partition Py (dk, Cy,) such that dk + 0 divides the real line mto
intervals whose boundaries are equally spaced by ¢, =

N, ,(dy, -, dn) (33)

Id [
The number ng of boundaries which can be found in a given

segment of length D (Fig. 10(b)) is necessarily upper bounded
as :
D
e < [—]
dk

ne < [DIdill]-

which leads to

(34)

When dk = 0, the whole real axis R is the unique cell
of P1(dy; Cr) and the number of boundaries induced in a
segment is ng = 0. Therefore, the inequality (34) is also
true when sz = 0. Now, by intersection, the complete
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partition Pl(dql,w,JN;C’], -+, Cy) divides the real line into
interval§ whose boundaries are the reunion of the boundaries
of P1(dy; Cy) from k = 1 to N (see Fig. 10(f) for the case
N = 2). Therefore, the number of boundaries found in a
segment of length D is less than

N
E Nng.

k=1
Then, the number of cells induced by P (d_;, R d—'N;
C1,-++,Cp) in the segment is less than
N
1+ Z Nk
k=1
(Fig. 10(h)). This leads to (33) by using (34) O
Proposition A.5: Inthe case K > 1and N = K
K
Neo(diy o odie) < TT ([PIdl] +1). 639)
k=1

Proof: Let us consider the kth partition P, (dx; Cy). The
cells of th1s partition are separated by hyperplanes perpendlc-
ular to dy and equally spaced by gr = AT (when dk # 0)
(see Fig. 11). Let ny be the number of hyperplanes which cut
the sphere. The number n; has the same upper bound

m < DI},

as _ig (34) (see Fig. 11). Consequently, the partition
P, (dr; Ci) induces ny + 1 cells in the sphere. Consider now
the full partition P, (d}, R -70N). Since this is
the intersection of all the hyperplane wave partitions

PK(Jk;Ck) fork=1,---,N

(36)

the number of cells of 'PK(J;, - ,JN; Cyy- -y
ing the sphere is upper-bounded by

Cn) intersect-

N

[T +1).

k=1
Then, using (36), we obtain

NK,D(JIH' nk-l-l

([oud] +1). O

The next pgopositlon gives an inequality in terms of
Ny p(d1,---,dy) which is recursive on K and N.
ProposmonA6 Let K > 1, N > 1,

fj

and

di, - dy,dnvsr be (N 4+ 1) dens1ty vectors of RKE.
Then

N o(dr, - dw, dn1)

SNy (e A+ [ Dlidvsall |- Ny o (- dy)
-where dl, (f 'v are the orthogonal projections of cfl, s dn

on < dyi1 >'L (the space orthogonal to dy 41).

(37

Py @C

ny, hyperplanes

3
boundaries

Fig. 11. Partition induced in a sphere by a hyperplane wave partition.

Proof: Letus consider K > 1 and N > 1. There exists a
set of origins (Ck)1<k<n+1 and a sphere S, , of dimension
K and diameter D such that the number of cells induced by

Py <€Zia < dy,dyyy; Cr, - '7ON,CN+1)
in S, ,, is equal to the maximum number
N, p(di, - ).
Let us fix this choice of origins and sphere. The partition
Py (CZ;, oo ydy,dyg1; O, ',CN,CN-H)
can be obtained by intersection of
7’K>(dﬁl, ',JN;C'lr“,CN)

and ,
Py (JNH; CN+1)-

The first partition P, (cfl, e ,JN; Ci,---,Cy) induces a cer-
tain number My of cells in S, , which necessarily satisfies

My < Ny o (d1,---,dn) (38)

by definition of N, ,(di,--,dn) (Definition A.3). As al-
ready explained in the proof of Proposition A.5, the second
partition P, (dN+1, CN+1) cuts the sphere with ny 41 hyper-
planes perpendicular to d; ~N+1 such that

vt < [ Dlidall]-

Let us call H; these hyperplanes, from j = 1 t0 NN 41 They
are all affine spaces of dlrectlon < d N+l >1. To count the
total number of cells N, D(d1, . dN, dN+1) induced by

,PK(d_’lv"')

in S, ,, let us consider the following scheme: start from the

partition P, (dl, . dN,Cl,- ,Cn) which already induces
My cells in SKD, and count from 5 = 1 to nyy41 the
additional number of cells m; induced in S, ,, obtained when

(39

JN’dN-Fl;Ola"'aCN’ON-Q-l)
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, /A}én 5.

m’; cells

Fig. 12.. Representation of the increased number of cells induced in a
sphere due to the insertion of a hyperplane H;. The cells of the partition
P (di,--+,dn;C1, -, Cy) which are intersected by ‘H; are emphasized

by a dashed contour. Their number is equal to m;

inserting H; respectively and successively. By this procedure
we obtain

. TNt
Nyp(di, - dy,dypa) = My + Y mj. (40)
=1
Let us show that
m; < Ny, o (dy, -+, dy). (41)

Fig. 12 shows what happens when inserting the hyperplane
H;. A certain number of cells induced by P, (Ji, e da
Cr,-++,Cn) in S, are intersected by H;. They are repre-
sented by a shaded contour in Fig. 12. Let m; be their number.
When inserting H;, these m;v cells are cut into two parts (the
bottom part of each split cell is emphasized by a shaded area).
This implies that the total number of cells which already exist
in the sphere has been increased by

m; =m

(42)

’.
i
of H; NS, , (see Fig. 12). The]se cells can be interpreted as
follows. Because 7; is an affine subspace of Wy of dimension
K —1, we know from Proposition A.2 that the partition induced
by PK(d—;, -'-,JN;CI,-~~,CN) in ‘H; is a hyperplane wave
structured.  partition P, _; (d}, -+, dy; Cl, -+, Cy) where
J’l, . '-,J7N are the orthogonal projections of (fl,-~~,af}v on
ﬁj =< dy41 >+ and C1,+--,Cy-are N points of H;.

The m/; cells of H; NS, , are simply the cells induced by

Py, dys O Oy) inH NS, . The set H;NS,
is necessarily a K — 1-dimensional sphere of a certain diameter
D; < D. Therefore, H; NS, , is included in a K — 1-
dimensional sphere of: diameter D. We conclude that, by
necessity

Now, the intersection of these mn; cells with ; form m; cells

mly < Ny o (dyy - diy). 43)

Then (41) is a consequence of (42) and (43).

We can now use (40), (38), and. (41) and find

NK,D(d_;l). : '7JN)‘CZ‘N+1) S.

NK,D(JD’ i 7JN) + NNy NVK—-I,D(J;’ ) _7N)
which leads to (37) using (39) (|

Theorem A.7: Let K > 1'and N > K. Let dy,---,dy
be N vectors of W, and d be an upper bound on ||dx|| for
k =1,---,N. Then '

Ny o (dr, - dy) < (%)([Dd}H)K. (44)

Proof: We prove the proposition by double induction on
K and N. _
At K =1, we have from Proposition A4, YN > 1

N
S dy) <1+ Y [DId] < 1+ N[Dd)
k=1

< (‘7)([1741“).

Therefore, (44) is proved for K = 1 and any N > 1.

Suppose that we have proved (44) at some K —1 > 1 and,
any N > K — 1. Let us prove (44) at K by induction on
N > K. The case N = K is proved from Proposition A.5
as follows:

N (i) < I ([P1dl] +1) < (1] + 1
k=1 .

< (g)((Dd] + DK,

Now, suppose we know that (44) is frue at some N > K. Let
di,--.,dn,dn41 be (N +1) density vectors with ||dj|| < d,
forall K =1,.--, N. By recursive assumption on N we have

NKD(('Z;L”JN)S (]KV)({DC[I"FDK (45)

Let ‘Z;c be the orthogonal projection of Jk on < d; N1 >+, for
k=1,.--,N. We necessarily have .

] < ] <
Therefore, using the recursive assumption at K — 1, we have

Nxfl,D((ﬁa"')dﬂiN) < (K]il>(de—| +1>K—1~ - (46)

Then applying Proposition A.6 witﬁ (45) and (46), we find
NK,D(J’I7 e )JN7JN+1) S

N ' > ' N ) ) 1
(& ) o+ + [o1dvai] (Y, ) roa w2y
However '

[Dlldsall] < TDd] < [Dd] +1.
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Therefore

Neoldiosndvans () + (42, o0
< (M) apasnx.

Therefore (44) is true at N + 1. The double induction is
completed O

Theorem 5.1 is the particular case of Theorem A.7 where
the affine space W, is equal to the vector space RX.
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