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Image Compression Using
Binary Space Partitioning Trees
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Abstract— For low Dbit-rate compression applications,
segmentation-based coding methods provide, in general, high
compression ratios when compared with traditional (e.g.,
“transform and subband) coding approaches. In this paper, we
present a new segmentation-based image coding method that
divides the desired image using binary space partitioning (BSP).
The BSP approach partitions the desired image recursively by
arbitrarily oriented lines in a hierarchical manner. This recursive
partitioning generates a binary tree, which is referred to as the
BSP-tree representation of the desired image. The most critical
aspect of the BSP-tree method is the criterion used to select the
partitioning lines of the BSP tree representation. In previous
works, we developed novel methods for selecting the BSP-tree
lines, and showed that the BSP approach provides efficient
segmentation of images. In this paper, we describe a hierarchical
approach for coding the partitioning lines of the BSP-tree
representation. We also show that the image signal within the
different regions (resulting from the recursive partitioning) can
be represented using low-order polynomiails. Furthermore, we
employ an optimum pruning algorithm to minimize the bit rate
of the BSP tree representation (for a ‘given budget constraint)
while minimizing distortion. Simulation results and comparisons
with other compression methods are also presented.

I. INTRODUCTION

HE field of image compression is rich in diverse source

coding schemes ranging from classical lossless tech-
niques and popular transform approaches to the more recent
segmentation-based (or second generation) coding methods
[91, [12], [16]-[18], [20]. For low bit-rate compression applica-
tions, segmentation-based coding methods provide, in general,
high compression ratios when compared with traditional trans-
form, vector quantization (VQ), and subband (SB) coding
approaches.

The notion of segmentation-based image coding was
introduced during the early 1980°s [11], [12]. A contour-
texture coding method was used to partition the image into
rather complex geometric regions. The image signals within
these regions were represented using low-order polynomials.
Quadtree-based image compression, which recursively divides
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the image signal into simple geometric regions (squares or
rectangles), has been one of the most popular segmentation-
based coding schemes investigated by researchers [13], [14],
{301, [31D.

Segmentation-based compression methods usually describe
the desired image as a set of regions. In general, the description
of each region requires two types of information: 1) the
geometry of the region boundaries and 2) the attributes of
the image signal within the region. In order to achieve high
compression ratio and good image quality, one needs to
segment the image into a minimum number of regions such
that the geometric description of the regions’ boundaries is
simple and the image signal within each region is continuous
(or smooth).

Therefore, the most challenging aspect of a segmentation-
based coding approach is to balance between a small number
of geometrically simple regions and the smoothness (or con-
tinuity) of the image signal within these regions. Previous
segmentation-based methods have focused on one of these
two conflicting requirements at the expense of the other. For
example, due to the complexity of the regions used in the
contour-texture coding method [12], the geometric information
uses 75% of the total bit-rate cost even with a very small
number of regions. On the other hand, using rigid geometric
descriptions, such as the quadtree representation method, a
very large number of regions is needed to generate a piecewise-
smooth image signal [13], [14].

The binary tree image coding method presented here
achieves the above balance by using a simple, yet flexible,
description of the image regions. Due to this flexible geometric
description, which is based on arbitrarily oriented lines, a
small number of regions can be used to represent the image
while maintaining simplicity for the regions’ boundaries, and
smoothness for the image signal within these regions.

This paper is organized as follows: In the next subsection we
provide an overview of binary tree representations of images
(based on our work and other related work). Then, we describe
our binary-tree-based image compression method in Section
II. The line quantization and coding method, partitioning line
selection criterion, and the coding of the attributes of the
image signal (using first-order approximations) are described
in Sections II-A, II-B, and II-C, respectively. In Section III, we
develop an optimum pruning algorithm based on the general-
ized Breiman, Friedman, Olshen, and Stone (G-BFOS) method
[2] to reduce the bit rate of the binary tree representation
to a required budget constraint while minimizing distortion.
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Fig. 1. Examples of image segmentation using binary space partitioning.

Finally, in Section IV, we show simulation results and compare
our work with other image compression methods.

A. Binary Tree Representation of Images

A binary tree image representation method that divides
the image domain using binary space partitioning (BSP) was
introduced by the authors in 1990 [22] and further developed
in a series of papers [23]-[25]. The BSP approach partitions
the desired image recursively by straight lines in a hierarchical
manner. First, a line (arbitrarily oriented) is selected, based
on an appropriate criterion, to partition the whole image into
two subimages. Using the same (or another) criterion, two
lines are selected to split the two subimages resulting from the
first partitioning. This procedure is repeated until a terminating
criterion is reached. The outcome of this recursive partitioning
is a set of (unpartitioned) convex regions (polygons) that are
referred to as the cells of the segmented image (see Fig. 1), and
a binary tree that is referred to as the binary space partitioning
tree representation of that image. The nonleaf nodes of the BSP
tree are associated with the partitioning lines, and the leaves
represent the cells (unpartitioned regions) of the image. Each
region of the image’s BSP tree representation may have one or
more attributes that describe the characteristics of the image
signal. An example of such attributes is a zero-order (i.e., the
mean value) or higher order polynomial model of the pixel
intensities within the region.

The most critical aspect of the BSP tree construction process
is the method used for selecting the partitioning lines. At each
stage of the recursive partitioning (including the first stage
when partitioning the whole image), the BSP line-selection
method consists of two major steps, explained in the following:

1) Since the number of lines that pass through (i.e., parti-
tion) the polygon under consideration is infinite, in prac-
tice, and especially for image coding applications, one
has to quantize the space of all possible lines that parti-
tion the polygon. This line-quantization process gener-
ates a finite set of lines that one needs to consider. Fur-
thermore, because lines in the image (two-dimensional)
domain can be represented using two parameters (e.g.,
the slope-intercept or normal’ representation), a line-

IThe slope-intercept, y = mz + b, representation used the (m, b) parame-
ters, whereas the normal, p = « cos 6+ ysin 6, representation uses the (6, p)
parameters. The p parameter represents the normal distance between the line
and the origin (z = 0,y = 0). And the 6 parameter is the angle between the
line normal and the x-axis.
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quantization process implies the quantization of two
parameters. In general, and independent of the particular
line representation used, one of the two line parameters
is referred to as the line orientation.> The quantization
of the line orientation is an important concept and will
be discussed further below.

2) From the finite set of (quantized) lines, one has to select
the partitioning line of the polygon under consideration.
For this step, one needs to define a line-selection cri-
terion that can be used for selecting the partitioning
line.

In earlier stages of our work [22], [24], the number of
line-orientations we considered (at every step of the recursive
BSP tree construction process) was on the order of the image
dimension® (e.g., 256 orientations for 256 x 256 images). In
[23], we described a multiresolution approach for constructing
the BSP tree representation of images. Under this approach,
low-resolution images (e.g., with 32 x 32 pixels) were derived
from higher resolution images, and were used to construct a
low-resolution BSP tree. This enabled us to consider a small

number of line orientations when building the low-resolution

BSP tree (see [23] and [24] for more details).

The binary-tree-based coding scheme that is most related to
the BSP tree method is the adaptive tree-structured segmen-
tation (ATSS) approach introduced by Wu in 1992 [34]. (The
two methods were developed independently.) Similar to the
BSP scheme, the ATSS method i) segments the image in a bi-
nary recursive manner using straight lines and ii) represents the
image using a binary tree data structure. The main difference,
however, is that the ATSS method restricts the partitioning
to lines that have one of four possible orientations: 0°, 45°,
90°, and 135°. Therefore, the ATSS approach quantizes the
line orientation into four values, uniformly, at all stages of
the recursive partitioning. The ATSS-based segmentation leads
to polygons with a maximum of eight vertices, whereas the
BSP-tree approach gives arbitrarily shaped (convex) polygons
with variable number of vertices. In other words, the BSP tree
representation approach provides a more general framework
for the recursive binary partitioning of images. By using more
line orientations, the BSP tree approach can represent complex
images with fewer regions. This leads to better quality images
at a given bit rate (see the simulation section).

Regarding the line-criterion used for selecting the parti-
tioning lines, in our previous works we have employed both
boundary and least-square-error-based criteria [26]. Under
the boundary-based approach, the selected lines pass through
the boundaries (edges) of the objects in the image. For the
least-square-error case, a selected line minimizes a square
error function defined over the region under consideration.
The ATSS approach employs a least-square-error criterion for
selecting the partitioning lines [34].

In this paper we present a hierarchical, least-square-error-
based (LSE-based) BSP-tree image compression method. Un-

2The line .orientation is represented by the slope (m) and angle (9)
parameters of the slope-intercept and normal line representations, respectively.

3 Although this quantization may be costly (in terms of bits) from an image
coding perspective, it is consistent with the normal practice used in computer
vision applications for detecting straight lines in edge images [7].
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der this approach, a) quantization of the line orientations
is done in a hierarchical manner, i.e., the number of lines
considered (for partitioning a polygon) is proportional to the
size of the polygon, and each selected partitioning line meets
a square-error criterion.

II. HIBRARCHICAL LSE-BASED
IMAGE CODING USING BSP TREES

As mentioned above, at each step of the recursive partition-
ing of the BSP-tree coding method, one has to identify a finite
number of lines that need to be considered for segmenting
the region under consideration. Only one line from this finite
set is selected (using the LSE criterion described in Section
II-B) to partition the region into two subregions. Under the
hierarchical line quantization approach used here, the number
of line orientations considered depends on the dimension of
the polygon as described below. In addition, we use lossless
coding of the (quantized) partitioning line parameters.

Both the terminating criterion, used to terminate the recur-
sive partitioning and create the unpartitioned convex polygons,
and the line selection criterion, used to select the partitioning
line from the quantized set of lines, are based on a least-square-
error approach. When the mean square error (MSE) resulting
from approximating the image signal (using a first-order poly-
nomial) is less than a desired threshold, then the region under
consideration is not partitioned (i.e., BSP-tree cell). In this
case, the polynomial parameters (cell attributes) are quantized
and coded. In our work, we use both uniform and hierarchical
quantization methods for the first-order polynomial parameters
as described in Section II-C.

If the MSE error is higher than the desired threshold, one
of the quantized lines is selected to partition the region under
consideration. The selected line has to minimize a square-error
function defined over that region. Since the number of lines
considered for partitioning the whole image (as well as the
large polygons) is very large,* we employed the LSE parti-
tioning line (LPL) transform [25], which significantly reduces
the number of quantized lines that need to be considered (see
Section 1I-B).

When coding the BSP-tree representation, one bit is used to
indicate whether the current polygon is partitioned or not. We
refer to this bit as the binary tree structure bit since it describes
the shape and size of the BSP tree. Fig. 2 shows an example
of a BSP tree and its data stream. Therefore, the encoded BSP
tree data stream consists of the i) binary tree structure bits; ii)
encoded line parameter bits (the Ly, Ly, and L3 data shown in
Fig. 2; and iii) coded bits (the Cy, Cs, Cs, and C4 data shown
in the same figure) of the quantized polynomial parameters
approximating the image signal in the unpartitioned regions.

A. Quantization and Coding of the Line Parameters

As mentioned above, quantization of the lines implies, in
general, the quantization of the parameters used to represent
these lines. There are several parametric representations of
straight lines in the 2-D plane. Here we focus on the normal

40n the order of the number of pixels in the image.
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Fig. 2. (a) BSP tree. (b) Traversal of the tree. (c) BSP-tree data stream
resulting from the tree traversal.
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Fig. 3. Different regions in the image space and the corresponding PLD
domains in the parameter space. (a) Entire image and its PLD domain. (b)
and (c) Two subregions of the image and their PLD domains.

representation (or the (#, p) parameterization) since it simpli-
fies the line detection process when compared with the slope-
intercept representation [4]. Therefore, the remainder of this
section focuses on the quantization of the (8, p) parameters.
First, we take a closer look at the (6, p) parameter space that
we are about to quantize.

A point in the (4, p) parameter space represents a straight
line in the image space (2-D plane). From the dimensions of
the image domain, one can exactly identify the set of all lines
that can pass through (or partition) the domain. This set of
partitioning lines corresponds to (or is represented by) a set of
points in the parameter space. We refer to this set of points as
the partitioning lines domain (PLD).

The PLD domain is usually a connected region in the
parameter space as shown in Fig. 3. The boundaries of the
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PLD domain of an image are defined by the parametric
representation of the image-domain four corner points. For
example, if the image domain has the corner points (z,y) =
1, 1, (-1,1), (—-1,-1), and (1, —1), then these points are
mapped onto four sinusoidal functions in the parameter space
using p = z - cos § + y - sin 6. Now, for a given value of 6,
the lower and upper limits of the PLD domain are determined
by the minimum and maximum values of the four parametric
(sinusoidal) curves generated by the four corner points of the
image.

Similarly, knowing the geometric description of a given
polygon, one can identify the parameter space domain of all
possible lines that can pass through this polygon. In other
words, each polygon in the image domain has a corresponding
unique PLD domain in the parameter space.

We assume that the decoder will have a priori knowledge
of the image dimensions (otherwise, the dimensions are sent
first). Hence, the first partitioning line representation in the
parameter space has to be within the PLD domain of the image.
Due to the recursive nature of the BSP-tree representation, the
BSP-tree decoder (at the receiver) has a complete geometric
description of the polygon to be partitioned. Consequently, the
receiver has a knowledge of the PLD domain of that polygon,
and expects the parametric representation of the partitioning
line to be within that PLD domain. As the recursive parti-
tioning continues, the polygons get smaller and so do their
corresponding PLD domains in the parameter space. Fig. 3
shows examples of polygons and their PLD domains in the
(@, p) space.

Now, let’s consider the quantization aspects of the PLD
domain. Quantizing straight lines, which pass through the
discrete 2-D lattice of pixels, is a very difficult and complex
problem. The line quantization process is influenced by how
one defines a pixel and its domain in the 2-D (z,¥) space.
For example, a pixel at location (zg,yo) can be viewed as a
square centered at (g, yo), and its value represents the image
intensity over that (whole) square. Another example is that a
pixel represents just a single point in the (z,y) space and its
value represents the image signal only at that point. In addition
to the pixel definition, when quantizing the lines that “pass
through” (whatever that means) the image pixels, one has to
consider the line width. For example, if a pixel is defined as
a unit square (i.e., has a 1 x 1 dimension), should the line
width be the unit dimension (i.e., one), the square diagonal
(i.e., \/ﬁ), or dependent on the line orientation?

These and other tricky questions forced us to use a simple
and heuristic approach for the quantization of lines that pass
through a convex polygon. We think of pixels as discrete
points in the 2-D (z,y) space with quantization step sizes of
one in both the horizontal (x) and vertical (y) directions. Our
objective, in general, is to consider lines that “pass through”
different set of pixels (Fig. 4). Consider the case when one
line passes through a set of pixels and another line passes in
the “vicinity” of the same set of pixels. Now, if the second
line does not impact (i.e., neither passes through nor passes
in the vicinity of) any other pixels outside the aforementioned
set, then the second line is discarded. However, if one can
define the set of all discrete lines such that each line in the set
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Fig. 4. Quantization size of the angle § when the normal distance p is zero.

“pass through” or “pass in the vicinity of” a “different” set of
pixels, we can not claim that our heuristic approach captures
that entire set of lines. (This depends on how one defines
“pass through,” “vicinity,” and “different.”) Without having
much choice, when developing our line quantization method
we resorted to the following principles, which we believe are
reasonable.

1) The number of line orientations (i.e., discrete # values)
should be dependent on the polygon size.

2) The range of parallel lines (i.e., range of the p param-
eter) that can partition the polygon under consideration
should be dependent on the polygon size and the lines’
orientation.

3) The quantization step size of the p parameter should be
a function of the line orientation.

To further simplify the line quantization process, we perform
the following: i) we code the § and p parameters separately
(not jointly); ii) for a given polygon, we use uniform quantiza-
tion of the line orientations; and iii) for a given orientation, we
use uniform quantization of the p parameter. Below, we justify,
through simple examples, the above principles, and explain our
quantization and coding method for the  and p parameters.
Before proceeding, it is important to note the following: Since
the quantization and coding of the p parameter is dependent
on the line orientation (# value), under our proposed line
coding approach the encoder must first encode and transmit
the parameter 6 and then the parameter p.

1) Quantization and Coding of the Line Orientation ©:
Regardless of the type of line-orientation quantization used,
one has to consider the range between zero and = for the
angle 6. This range of @ values is also independent of the
size of the polygon. We show here, through an example, that
the quantization step size for 8 (i.e., 6p) should be dependent
on the size of the polygons. For large polygons one needs to
use small quantization levels, whereas smaller polygons can
tolerate large quantization levels.
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Fig..5. Plot of 8y as a function of the image dimension N. Also shown are
the values of the approximation 6y = 1/(N/2). The approximation values,
which are shown with the symbol A, illustrates that the quantization step size
6g one employs should be inversely proportional to the image dimension.

Let us consider the example shown in Fig. 4, where the
image domain (with a dimension N) is centered around the
origin. First, consider the vertical line (4, p) = (0, 0). This
line passes through all pixels with z-coordinates equal to
zero. If we rotate the line around the origin while maintaining
the p value constant (i.e., p = 0), then the first pixels that
intersect the rotated line are located at (z, y) = (-1, N/2)
and (z, y) = (1,—N/2) If one uses this rotated angle as the
quantization step size for 6, then 6y = atan[2/N].

Fig. 5 shows a plot for this dg as a function of the image
dimension V. As the image dimension gets larger, the value
for 0p gets smaller. In other words, one needs to use larger
number of § values for larger images. This simple example
illustrates that changing the line orientation by a small angle,
which is inversely proportional to the image dimension, causes
the rotated line to cover a new set of pixels. This observation
is the basis for our proposed hierarchical line-orientation
quantization approach.

Similar to the image case, the quantization step size &g
required for a given polygon is also a function of the polygon
dimensions. In this case, however, it is impractical (from
analysis and implementation point-of-view) to design a 6
quantizer that is a function of a polygon with an arbitrary
(convex) shape. One way of solving this problem is to employ
a bounding box around the polygon under consideration. Now,
the quantization step size 6y is dependent on the dimension
of the box surrounding the polygon, similar to the case of
an image with a dimension N. This strategy can be adopted
since the decoder has a complete knowledge of the geometry
of the polygon, and therefore can derive the dimensions of the
bounding box for that polygon. In general, the bounding box is
an M x N rectangle. We adopted the following strategy when
quantizing the partitioning lines of a polygon: The number
of line orientations (numg) considered is proportional to the
polygon’s bounding box maximum dimension. In other words
numg « max{M,N}.

To further simplify the quantization and coding of the line
orientation, we use, for all polygons with the same M x N (or
N x M) bounding box, a fixed number of bits for a uniform
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and lossless coding of the (quantized) @ values.” In our line
quantization approach, for the polygon under consideration
with an M x N bounding box, we start by determining the
(maximum) number of line orientations using the following
formula: numg = [max {M, N}, where [f] is the smallest
power-of-two integer that is larger than f. Therefore, the
(uniform) quantization step size can be expressed as &y =
7/[max {M, N}]2. Now, the quantized 6 values are #; =
169 = t(w/[max{M, N}]s), for i = 0,1,2,---,numg — 1.
Consequently, the number of bits $4 used for lossless coding
of the (quantized) angle 6 of a partitioning line is ® =
log, [nums] = log, [ max {M, N}]a].

2) Quantization and Coding of the p Parameter: As  ex-
plained above, the reduction in the PLD domains (due to
smaller polygons) is achieved merely by limiting the range of
p values. For a given polygon P (see Fig. 3), the range of p
values within the PLD domain of P is a function of the angle
6. If one defines the p range by the interval {pmin, Pmax], then
Pmin and pmax can be computed as follows:

Pmin(i) = min {zcos §; + ysin 6;}
(z,y)EV

Prmax(0;) = (m?xv {z cos 6; + ysin 6;} 2.1

z,Y)€
where V is the set of vertices of the polygon P and §; is the
quantized line-orientation value. Now, the range of p values
is prange(gi) = pmax(gi) - pmin(gi)-

In addition to the range value, the number of bits required
to code p is dependent on the size of its (p) quantization
levels. We show here, through a simple example, that the size
of the quantization levels for p should be a function of the
angle 6. First, consider the horizontal line (8 = 7/2,p = 0)
that passes through all pixels with a y-coordinate equal to
zero. If we increase the p value of this line (while keeping
its line orientation # = x/2 constant) then the new set
of pixels affected by the moving line are the ones with y-
coordinate equal to one. This new line is represented by the
8 = /2, p = 1 parameters. Now, if we start with the diagonal
line (8 = w/4, p = 0), and increase its p value (while keeping
its line orientation § = m/4 constant), then the new line
that passes through a new set of pixels is represented by the
§ = m/4,p = 1/+/2 parameters. Therefore, the quantization
step sizes for the horizontal and diagonal lines are 1 and
1/ /2, respectively. This simple example illustrates that the
p quantization levels used should be a function of the line
orientation. We use the following expression for a f-dependent
quantization of p:

6p (6;) = max {| cos 6;], |sin 6;|} 2.2)

where §; is the quantized line orientation value. It is important
to note that, for a given value of 0;, 6,(8), represents a uniform
quantizer. Therefore, the quantized p values can be expressed
as follows:

pj = §8p(6:) = jlmax {|cos 6, [sin (6;]}]

forj = min, ---, max (2.3)
J J

5In other words, we do not employ entropy-based coding for the line
orientation. The design of an optimum variable-length code (VLC) which
is dependent on the polygon dimension is difficult and requires further study.
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Fig. 6. Histogram functions of the first-order polynomial (ax + by + ¢)
coefficients for the Mona Lisa example. (a) Histogram of the coefficient a
(similar histogram was obtrained for the coefficient b). (b) Histogram of the
¢ parameter I, in the approximation I = a(z — z.) + b(y — yc) + I,
where (2, yc) is the coordinate of the polygon centroid. By comparing the
histograms in (b) and (c), one can see that the parameter I has a much smaller
entropy than the DC parameter c in the first-order polynomial az + by + c.

where min; = [pmin(0:)/6,(6;)] and max; =
omax(0:)/0,(6;)]. (Here [f] and [f] are the smallest
and largest integers that are larger and smaller than f,
respectively.)

Based on this approach, the number of quantized p values
used for a given (quantized) line orientation is: num, =
max; —min; +1. Consequently, for a given polygon with
a vertex set V, and a quantized angle 6; of a line (that
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partitions the polygon), the number of bits R, used for lossless
(and uniform) coding of the normal distance parameter p is
R, = [log, [num,]].

B. The LSE-Based Line Selection Method

One has to select the partitioning line of a given region
from the set of quantized lines (described above) based on
some criterion. If Ap represents the set of quantized lines
considered for partitioning a polygon P, then based on the
f and p quantization approach described above, Ap can be
expressed as shown in (2.4) at the bottom of the page. Now,
every line h;; in the set A p has to be tested before selecting the
partitioning line. In a previous work [21], [25], we developed
an optimization approach, in a (recursive) least-square-error
(LSE) sense, for constructing BSP trees. Based on this LSE
approach, a straight line is selected to partition a given region
of the image if the line minimizes a square error function
defined over that region. If E(P; h;;) is the square error
function resulting from partitioning the polygon P by the line
hij, then the LSE (selected) line satisfies the following:

hij = min [E(P, h”)]
ijeAp
See [25] for the definition of the function E(P; hij).

When large polygons (e.g., the whole image) are under
consideration, evaluating the square error function for every
line in the set Ap can be very computationally expensive.
For an image with an N X N dimension, the computational
complexity can be on the order of N*. In [26], we derived
a necessary condition for the optimum partitioning lines of
a BSP tree representation. We used this necessary condition
to develop an LSE partitioning line (LPL) transform. The
LPL transform can reduce the number of lines that needs
to be considered for the LSE error test significantly. The
computational savings for an N x N image are on the order of
N. In this work, the LPL transform is employed by the LSE-
based approach to select the partitioning lines in a recursive
manner when building the BSP tree of the desired image.
For more details regarding the LPL transform and the LSE-
based method for selecting the partitioning lines, the reader is
referred to [25] and [26].

C. Coding the Cell Attributes

As explained in the introduction, one of the main advantages
of segmentation-based coding methods is that the image signal
within the unpartitioned regions can be represented using
simple mathematical functions. For the BSP tree approach,
the characteristics of the image signal within the unpartitioned
regions are referred to as the cell attributes. We focus below
on using polynomial functions to describe the cell attributes of
a BSP tree representation. If the image signal I(z,y) over a
polygon domain D is approximated using a polynomial I, then

Ap= {hij = (91'7 Pj):

6: = i6s(P),
pi = jép(oi)v .7 = mln](gz)’ Ty maxj(al)

i=0,1,2,- -, numg(P) — 1 2.4)
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the optimum, in the square-error sense, estimate [y satisfies
the following:
Iy = min / [I(z,y) — 1% dz dy. 2.5)
I Jp
The square-error distortion depends on both the smoothness
of the image signal within the cell and the order of the
polynomial. The higher the order and the smoother the image
signal, the less distortion results from the approximation. Due
to the efficient segmentation of the LSE-based method used
here for selecting the partitioning lines, one can use low-order
polynomials to describe the image signal within the cells. Here,
we consider first-order polynomials for representing the image
signal within the BSP-tree cells: [ = az + by + c.
The optimum approximation Iy that minimizes the square
error function is found by determining the coefficients a, b,
and ¢ that minimizes

/ (2,y) — (az + by + )] dz dy. 2.6)
D

After computing the polynomial coefficients, one needs to
encode these coefficients efficiently. It is important to note
that ¢ and b measure how flat the image signal is along the
z and y axes, and ¢ indicates the average brightness of the
image signal. The smaller the value of a and b, the flatter the
image signal, and the larger the value of ¢ the brighter the
image signal.

1) Coding the Slope Parameters: Fig. 6(a) shows the
histogram of the optimum coefficient a for a BSP tree
representation of the Mona Lisa image. As expected, the small
variation in the coefficient’s values gives a clear indication
of the smoothness of the image signal within the BSP tree
cells. The average entropy of the quantized values of the
slope parameters ¢ and b is a function of the range of
values considered and the number of quantization levels.
Fig. 7 shows the entropy (in bits/coefficient) of the parameter
a for the Lenna® BSP-tree example for different uniform
quantizers. It is clear that for a given range value, the entropy
increases with the number of quantization levels. Similarly,
for a given number of quantization levels, the entropy, in
general,” increases with the range.

To select the desired uniform quantizer, one needs to
consider the performance (e.g., in terms of peak signal-to-
noise ratio (PSNR), or subjectively) that can be achieved for a
given coding rate. Fig. 8 shows the average number of dB’s of
PSNR one can gain per every bit used to encode the BSP-tree
Lenna image using different uniform quantizers. All images
were coded at a rate around 0.1 b/pixel. Although all of the
compressed images have very similar data rate, one can gain as
much as 1 dB of PSNR by selecting the appropriate quantizer.
These and other examples have shown that, for a target rate
of around 0.1 b/pixel, a uniform quantizer with 256-512
quantization levels and a range value around 64 provides
good PSNR performance numbers when compared with other

For the remainder of the document, we focus on the 512 X 512 Lenna

image, which is the most common test image used in the compression
literature.

7For small number of quantization levels (e.g., two), the entropy actually
decreases with increasing values of the range.
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Fig. 7. Entropy (in bits per coefficient) of the coefficient « (for the Lenna
BSP image example) as a function of the number of quantization levels and
the range of values considered. Uniform quantization levels are used with a
quantized value of zero included. For even number of quantization levels, the
minimum and maximum values of the coefficient were chosen accoding to the
following formulas: min = Aq((L — 1)/2) and maz = A ((L — 1)/2),
where A, = (range)/L is the quantization step size and L is the number of
quantization levels. The corresponding minimum and maximum quantization
values ate Qumin = min + (Ag/2) and Qmaz = maz ~ (Aq/2).

uniform quantizers.® (Very similar results were obtained for
the coefficient b.) For other target bit rates (e.g., 0.05 b/pixel),
other uniform quantizers can provide better performance’ as
shown in the simulation section.

One major disadvantage of the (above) uniform quantizer
is that it treats all polygons in the same manner. In other
words, the number of quantization levels and range values are
the same regardless of i) the number of pixels affected by this
quantization and ii) the shape of the polygon. A better solution
would be to have an adaptive (hierarchical) quantizer that
uses different quantization levels and range values depending
on the polygon under consideration. In this case, the number
of quantization levels can be made directly proportional to
the area of the polygon: numievers = (area,)/(QF), where
areap is the area of the polygon P and QF is a quantization
factor for the slope parameters a and b. The number'® of bits
required to encode the coefficients a and b can be expressed
as follows: Ryopes = 2 - [logy (nuMyeyers)].

8We have also considered encoding the slope parameters a and b in a
differential manner. In this case, instead of encoding the value of the current
slope, one encodes the difference between the current and previous slopes.
No clear advantages for using this differential approach were observed. This
indicates that the first-order attributes of consecutive cells in the BSP-tree data
streamn can be very different. However, we would like to emphasize that the
result of differential coding depends heavily on the strategy used to define
two consecutive cells. In our case, we computed the difference between the
attributes of two consecutive cells within a BSP tree that are constructed
using a preorder traversal. In other words, it is feasible that a more elaborate
strategy for defining consecutive cells may result in a more efficient coding
of the differential attributes.

From our experience, at very low bit rates the PSNR performance measure
does not provide a good criterion for comparing different quantizers (or even
different encoders). In that case, visual evaluation might be the only tool
available.

108y employing entropy-based coding for the different quantizers in the
hierarchy, a smaller number of bits can be used. However, all the simulation
results reported here are based on the maximum number of bits shown in the
equation, and are therefore worst-case (or upper-bound) scenarios.
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Fig. 8. The ratio of PSNR value to the average b/pixel for the Lenna
example. The different points of the plots represents BSP tree images coded
with different uniform quantizers for the parameters and of the first-order
polynomial. The target bit rate was 0.1 b/pixel (the actual rates ranged from
0.097-0.1 b/pixel).

For a given bit rate, the quantization factor QF has an
impact on the number of bits allocated for coding the cell
attributes. Fig. 9(a) shows a plot for the percentage of bits
allocated for the cell attributes and the partitioning lines
as a function of QF and the bit rate for the BSP tree
Lenna example. As QF increases the number of quantization
levels for the slope parameters a and b decreases and this in
turn decreases the number of bits!! used to encode the cell
attributes. Therefore, more bits are made available for coding
the partitioning lines, which leads to an increase in the number
of regions in the final image. Fig. 9(b) shows a similar plot
for the number of cells as a function of QF and the bit rate.
Moreover, the impact of the quantization factor on the overall
performance of the adaptive quantizer depends on the desired
bit rate. Fig. 10 shows a plot of the PSNR as a function of QF
and the bit rate for the BSP tree Lenna example. As shown in
the figure, the best QF value changes with the bit rate. For
example, a QF of eight provides the best result (in terms of
PSNR) when the target bit rate is around 0.1 b/pixel.

Similarly, one can change the range of values that should be
considered based on the polygon dimensions. For a polygon
P with a bounding box of dimensions M x N, the maximum
slope values (for the first-order approximation) that need to
be considered are: max, = (MaXintensity)/M and max, =
(maxXintensity) /N, where maXintensity 1S the maximum pixel
intensity value (i.e., 255 for 8 b/pixel images). Similar expres-
sions can be used for the minimum slope values. Therefore,
the total ranges of slope values that need to be considered by

the quantizer are
2-( max )
intensity

range, = i

1 Since a constant number of bits (always 8) are used to encode the DC
parameter of the polynomial (as explained in the next section), the Q F" factor
can be used to balance between the number of bits used on the segmentation
aspect (i.e., partitioning lines) of the BSP tree representation and the number
of bits used to represent the image signal.
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(®)

Fig. 9. (a) Percentage of bits allocated for the cell attributes and the
partitioning lines as a function of the quantization factor and the rate. (b)
Number of cells (unpartitioned regions) as a function of the quantization
factor and the bit rate.

and

2. max
intensity

= @2.7)

rangep =

As shown in the simulation results section, the hierarchical

quantizer provides better performance when compared to the
uniform quantizer.

2) Coding the Direct Current (DC) Parameter: The

value of the coefficient c is strongly dependent on the location
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Fig. 10. PSNR as a function of the quantization factor (log) and the bit rate.
As can be seen, the best quantization factor (in terms of maximum PSNR)
changes with the desired bit rate.

of the cell’s polygon relative to the origin of the image, i.e., ¢
is variant under translation. In other words, for a given domain
D of a BSP-tree cell, and an image function I(z,y) over D,
“he value of ¢ changes with the location of the domain D
within the (z,y) plane. This property provides ¢ with a wide
range of possible values, and therefore makes ¢ a bad choice
for an efficient representation of the first-order polynomial.
Fig. 6(b) shows the histogram of the coefficient ¢ for the Mona
Lisa BSP-tree example.

It is important to note that ¢ represents the value of the first-
order approximation at the origin, i.e., I = cat (z,y) = (0,0).
Therefore, if the cell domain D does not include the origin
point (z,y) = (0,0), ¢ can have any value outside the normal
range of a pixel luminance. This problem can be resolved by
selecting a point (z¢,y.) within the cell domain, evaluating
the first order polynomial at that point, and using this value
I{z.,y.) to represent the DC coefficient of the polynomial
instead of the z-axis intercept c.

A good choice for the point (z.,¥y.) is the centroid of the
cell domain D. In this case

/ xdzdy
JD

Te = i
and
/ ydx dy
_Jbp
Ye="" (2.8)

where A is the area of the domain D. One advantage for using
the centroid is that its coordinates x, and y, are computed
when determining the optimum slope coefficients a and b. If
1, is the first-order polynomial value at the polygon centroid,
then this polynomial can be expressed as follows:

I=a(z—z)+b(y —ye) + Lo 2.9
This expression can be obtained by translating the cell such
that its centroid coincides with the origin (z, y) = (0, 0).
Now, the DC parameter I; is invariant under translation. (In
fact, I, is equal to the mean value of i) the pixel intensities
of the image signal over the region under consideration (i.e.,
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the domain D), and ii) the first order approximation I over
the same region.)

After receiving the values for a, b, and ic, a BSP-tree
decoder needs to compute the centroid coordinates (¢, yc)
in order to approximate the image signal within the cell
under consideration (i.e., using (2.9)). This can be achieved
since, as explained previously, a BSP-tree decoder will have
a complete knowledge of the geometry of the polygon under
consideration. Fig. 6(c) shows a plot of the histogram of the
coefficient jc for the Mona Lisa BSP-tree example. (Please
note that different scales are used for Fig. 6(b) and (c).) By
comparing this histogram with the plot of Fig. 6(b), it is clear
that the parameter I, has a much narrower range of values than
the coefficient c. Since I, has a value within the normal range
of pixel intensities (i.e., 0-255), one can encode I efficiently
using 8 bits per coefficient.!?

III. OPTIMUM PRUNING OF BSP TREES

In most coding applications, one is constrained by the usage
of a certain number of bits to encode the desired signal. This
is commonly known as a bit rate budget constraint for the
encoder. After using an efficient compression strategy to code
the signal, one way to reduce the bit rate (in order to meet
a given rate budget constraint) is to reduce the amount of
encoded data transmitted. In general, reducing the amount of
data introduces some distortion to the encoded signal. The
challenge in this case is to eliminate some data from the
signal to achieve the maximum allowed bit rate such that the
introduced distortion is minimum.

For a given BSP tree, reducing the number of bits required
to represent the tree can be accomplished by pruning one
or more branches of the original tree. Pruning a branch is
basically converting an intermediate (or nonleaf) node into a
terminating (or leaf) node. A pruned node can be thought of as
the root node of a subtree of the original BSP tree. Since there
are a large number of intermediate nodes in an encoded BSP
tree (in the range of about 500-1500 nodes for the examples
shown in the simulation section), one should have a well-
defined strategy for selecting the nonleaf nodes, to be pruned,
in order to achieve a given rate budget.

Here, we adopt the rate-distortion strategy, which guar-
antees a minimum distortion introduced to the signal when
reducing the rate to the required budget. The same strategy
guarantees the dual option of achieving a minimum bit rate
for a maximum allowable distortion. Applying this strategy
to a tree-structured data is known as optimum pruning. It is
important to note, however, that the BSP tree representation
method used here do not provide the optimum representation
in a global rate-distortion sense. Finding the optimum BSP tree
requires, in general, considering all possible combinations of
i) recursive binary partitionings, i) quantization and coding
methods for the partitioning lines, and iii) quantization and
coding methods for the image signal within the segmented

121t is feasible that a more efficient coding (e.g., 6 or 7 bits per coefficient)
can be achieved for I. by using entropy-based coding. The simulation results
shown in this paper is based on an 8-bits/coefficient coding of the parameter
I, and therefore represent a worst case.



RADHA et al.: IMAGE COMPRESSION

regions. The computational cost of finding such a tree is
obviously very prohibitive. The main objective of employing
the optimum pruning scheme described below is to adjust the
bit rate of a given BSP tree representation in an optimum
manner.

Optimum pruning has been used extensively, with great
success, in other tree-based signal coding applications such
as tree-structured vector quantization (TSVQ), quadtree en-
coding, and wavelet packet-based compression [2], [5], [27],
[30]. Here, we use the G-BFOS optimum pruning algorithm
developed in [2] for TSVQ applications.

Before describing how to apply the G-BFOS algorithm on a
BSP tree representation of an image, we first present a formal
definition of the problem. Let R(7") and D(7) be the rate and
distortion of a BSP tree 7 representing the desired image. If S
is a pruned version of the original tree 7, then S is a subtree
of 7. Here we consider the subtrees of 7 that have the same
root node g, where to is the root node of the original tree 7.
We use the notation 7 = S to denote that S is a subtree of
T, and that both trees (7 and &) share the same root node.
Let R(S) and D(S) be the rate and distortion of a subtree S,
respectively. The objective is to find the optimum subtree S,
that has the minimum distortion, such that the rate of S, meets
the required budget constraint. In other words, the optimum
subtree S, must satisfy the following:

D(S,) = min D(S) (3.1
such that the following budget constraint is met:
R(So) < Rbudget (32)

where Rpudget is the maximum allowable bits one can use to
encode the BSP tree.

The G-BFOS algorithm guarantees the detection of the
optimum subtree S, (with the minimum distortion), only if
the tree under consideration meets a monotonicity constraint.
Under this constraint, the distortion associated with any pruned
tree (of the original tree) must be larger than or equal to the
distortion associated with the original tree, and the rate of the
pruned tree must be smaller than or equal to the rate of the
original tree. In other words, pruning of an intermediate node
should not decrease the distortion and should not increase the
rate.

The monotonicity constraint, however, does not always hold
for tree-structured data when variable quantizers are used for
the terminating (leaf) nodes of the tree [27]. In the case of
using a (nonhierarchical) uniform quantizer, we apply the
pruning algorithm after populating each leaf node in the tree
with the number of bits required to encode that node. In
other words, we prune a BSP tree with fixed leaf-nodes’
quantizers. Therefore, and as shown in [26], this leads to a
BSP tree that meets the monotonicity constraint. However,
the monotonicity constraint does not always hold when the
hierarchical quantizer (explained in the previous section) is
used. Nevertheless, we show in the simulation results’ section
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that using the G-BFOS pruning algorithm for BSP-tree coding
(with both cases of uniform and hierarchical quantization)
provides very satisfactory results in reducing the bit rate while
maintaining a small increase of the encoded image-signal
distortion. :

Here, we provide a very brief description of the G-BFOS
algorithm and how it can be used to prune BSP trees. For
more details regarding the algorithm, the reader is referred to
[2], [5], and [26].

In general, pruning of an intermediate node causes some
changes in the rate and distortion of the tree. As mentioned
above, based on the monotonicity assumption of the G-BFOS
algorithm, the change-in-rate AR(7) due to pruning a node #
is always less than or equal to zero: AR(7) < 0. Similarly, the
change-in-distortion, due to the pruning of ¢, is always larger
than or equal to zero:AD(7) > 0. An important parameter to
the G-BFOS algorithm is the ratio of the increase-in-distortion
to the decrease-in-rate, i.e.,

AD(T)
M)_—Ang (3.3)
From this definition, one can see that A(t) is a positive number.
In addition, and for an obvious reason, the parameter X is
commonly referred to as the slope magnitude of the rate-
distortion function, or simply the slope parameter. Since the
objective is to maximize the reduction in the bit rate (i.e.,
minimize 1/AR(T)), while minimizing the increase in the
distortion (i.e., minimizing AD(T)), it is natural that one
should minimize the slope parameter A(t). And that is exactly
what the G-BFOS algorithm accomplishes, taking advantage
of the monotonicity condition explained above. It is important
to note that for every (nonleaf) node ¢ in the tree, one can
compute a corresponding parameter A(t) that measures the
overall impact that the pruning of the node ¢ has on the total
rate and distortion of the whole tree.

In summary, at every step of the G-BFOS algorithm, one
has to find the node ¢ with the minimum slope parameter
A(t). After detecting the desired node (with the minimum
slope), that node is pruned from the tree. This pruning process,
which generates a new subtree at every step, is continued until
the total rate of the tree meets the desired budget constraint
(.e,R(S) < Rpudget)-

IV. BSP-TREE COMPRESSION RESULTS AND COMPARISON

The BSP-tree compression techniques explained in this
paper were simulated in software, and applied to several
images. In the following, we compare our BSP-tree-based
compression method with other coding schemes. Here, we
report the performance numbers of both nonsegmentation- and
segmentation-based methods. For this comparison between our
work and other compression techniques, we use the 512 x 512
Lenna image, which is the most common test image used in
the compression literature. In addition, this image represents
a human face (for which distortion is very noticeable), and
includes different types of textures.
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Fig. 11. Several decoded images of Lenna using different uniform quantizers and target bit rates. Images (a)—(c) are coded with 0.1 b/pixel, a quantizer
range of 64 for the first-order polynomial slopes and, and the following number of levels: (a) 16, (b) 64, and (¢) 512. The images in (d)—(f) are coded
with a 0.05 b/pixel. The images in (d) and (e) are coded with a range value of 4 and number of levels of 16 and 512, respectively. The image in (f) is
coded using the mean values of the pixel intensities within each cell (i.e., zero-order approximation).

Fig. 11 shows several decoded images of Lenna using the
BSP-tree compression method described in this paper. The
-original BSP-tree representation was generated using the LSE-
based algorithm described in [25]. Fig. 11(a)—(c) are all coded
with a bit rate of 0.1 b/pixel. Fig. 11(d)—(f) are coded with a
bit rate of 0.05. It is clear from the figure that changing the
parameters of the uniform quantizer can have a significant

impact on the quality of the final decoded images. These
images were generated from a high-rate (around 0.2 b/pixel)
image using the G-BFOS pruning algorithm.

Fig. 12 shows both BSP-tree images coded with the adap-
tive quantizer, and Joint Photographers Expert Group (JPEG)
images coded at the same data rates of 0.07 and 0.1 b/pixel.
It is clear that, at these low rates, the BSP-tree approach
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Fig. 12. Comparison of BSP-tree and JPEG images. (a) and (b) represent BSP tree images coded at 0.1 (QF = 8) and 0.7 (QF = 32) b/pixel, and with
PSNR values of 25.7 and 24.7 dB, respectively, using adaptive quantization for the first-order approximation of the cell attributes. (c) and (d) are JPEG
images coded with bit rates of 0.1 and 0.07 b/pixel and PSNR values of 25.6 and 24.1 dB, respectively.

provides supetior results when compared with JPEG. Also,
by comparing the BSP images in Figs. 11 and 12, one can
observe an improvement in the image quality when using the
adaptive (hierarchical) quantization approach.

We use the PSNR as a measure of quality when comparing
the different coding methods, as follows:!?

2

PSNR = 10 log v

MSE 4.1)

13 As mentioned earlier, we do not believe that the PSNR measure is a good
criterion for comparison. However, it is the only one used consistently in the
compression literature.

when V is the peak-to-peak value of the pixel intensities
within the test image. For images with M x N pixels, MSE
is the mean square of the difference (error) signal between
the original image I(z,y)and the decoded image I(x,y), as
follows:

&

1 1 N-1 R
Z [I(Cl,‘,y) - I(x7 y)]2 (42)
0 y=0

MSE:W‘w

Since we are testing a gray-level image with an 8-b/pixel
representation, we use V' = 255. The PSNR of the decoded
Lenna images shown in Fig. 11 (with uniform quantizers)
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ranges from 23.3 dB (for 0.05 b/pixel) to 25 dB (for 0.1
b/pixel).

Under the traditional (nonsegmentation) works, in addition
to JPEG, we looked at the performances of subband and vector
quantization-based methods. For some of the JPEG algorithm
performance (for 0.25 b/pixel and above), we have used the
results shown in Table 10.3 in [20]. The JPEG performance
numbers range from a PSNR of around 30.81 dB at 0.25
b/pixel to around 39.95 dB at 1.5 b/pixel.

One of the best subband coding results for the Lenna
image is given by [3], which shows a PSNR of 31 dB at
0.27 b/pixel. In [20] the authors report the results of using
a hybrid subband/vector-quantization approach. A range of
30-35 dB PSNR are given for 0.38-0.94 b/pixel compression
rates. Better performance numbers are reported in [10] for a
hybrid SB~VQ method with a PSNR of 30 dB at 0.25 bpp.

Regarding VQ coding schemes, we considered the variable-
rate multistage hierarchical VQ (MSHVQ) approach by Ho
and Gersho [6], and the full-search VQ method with pruned
tree structured quantizers [28]. For the Lenna image, the
MSHVQ, and full-search VQ methods reported PSNR’s of
30.93 at 0.37 b/pixel and 29.29 dB at 0.32 b/pixel, respectively.

We have also looked at the performance of more recent
nonsegmentation-based coding schemes such as the wavelet
[1] and fractal-block [8] image compression methods. In [1],
PSNR’s of 30.85 dB at 0.37 b/pixel and 29.11 at 0.21 b/pixel
are reported. In [8], the author divides the image into small
square blocks (e.g.,'8 x 8) and then apply fractal coding
(iterated transformations) to these blocks. The author reports
a PSNR of 31.4 dB at 0.6 b/pixel.

As discussed before, the segmentation-based coding scheme
that is most related to our BSP-tree method is the ATSS
approach [34]. To compare the compression performance of
both the ATSS and BSP-tree approaches, one must look at the
same data (Lenna image) using the same error criterion. Al-
though simulation results for Lenna were reported in [34], the
author did not provide any error performance numbers for the
decoded images. However, based on a subjective evaluation of
the decoded images shown in [34], one can observe that the
BSP-tree approach provides better compression performance
for the same bit rate. (Compare Fig. 8 in [34] with the decoded
Lenna images shown in here.) Or, one can observe a lower bit
rate for our approach for the same quality images.!* (Compare
Fig. 8(a) and (b) in [34] with the BSP-tree images in Figs. 11
and 12.)

The other segmentation-based approach that we considered
(for the sake of comparison) is the quadtree-based coding
scheme. Many people have employed quadtrees for image
coding applications [14] and [31]. Here, we focused on the
work by Vaisey and Gersho, since it represents the latest

141t is important to note that the computational expense of the BSP-tree
approach presented here is higher than the ATSS method. As discussed in
[34], the computational complexity of the ATSS-approach is on the order
of N2for an N x N image. For the same image, the LSE-based BSP-tree
construction method has a computational complexity on the order of N3[25].
However, the computational expense of the BSP-tree approach can be reduced
(by about an order of magnitude) when employing a multiresolution method
[24]. The use of a multiresolution approach for an LSE-based BSP-tree image
compression requires further study.
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research in that area, and it also provides the best quadtree-
based compression results when compared to the other works.
In their approach, Vaisey and Gersho segment the image into
variable-size blocks, and classify each block into perceptually
important region (small blocks) or random texture regions
(large blocks). Under their variable block size segmentation
(VBSS) algorithm, mean and residual images are generated
and coded separately, where both images are segmented using
the quadtree approach. The residual image is classified into
low detail, high detail, and random texture regions. The small
high-detail regions are coded using classified VQ, whereas the
large low-detail regions are coded with a hybrid transform
coding/VQ scheme. Under this approach, the authors reported
bit rates between 0.277 b/pixel with 30.20 dB PSNR and 0.36
b/pixel with 31.36 PSNR.

Fig. 13 shows the PSNR performance numbers for some
of the compression methods outlined above. All data points
shown in the figure are for the 512x 512 Lenna image. The
following observations can be made from the figure:

» In general, for high-quality (around and more than 30 dB),
high-rate (around and higher than 0.25 b/pixel) compres-
sion applications, the mainstream coding schemes (e.g.,
SB, VQ, DCT) provide better solution than segmentation-
based methods (including the BSP-tree approach). In
other words, we believe that the computational complex-
ity and the PSNR performance numbers reported in the
literature for the different segmentation-based methods do
not justify using these approaches. L

* The recent quadtree-based approach by Vaisey and Ger-
sho gives very good results when compared with other
quadtree and segmentation based methods. The encoding
of a residual image and the classification of the different
regions within that image have contributed in providing
good PSNR performance results. These ideas can be
extended to our approach (i.e., encoding of a BSP-tree
residual image and classifying the image attributes within
the resulting cells). We believe that these enhancements
can improve our performance numbers as well.

* For low bit-rate coding applications, we believe that the
BSP-tree approach provides very promising results. In
addition, this approach provides a clear advantage over
other low and high bit-rate coding schemes for applica-
tions requiring geometric transformations. As explained
in detail in [26], due to the flexibility of the BSP tree
representation, all line-preserving transformations can be
applied to the encoded image.

V. CONCLUSION

In this paper, we have described a BSP-tree-based image
coding system that is capable of achieving high compression
ratios when applied on still images. The coding method
presented here is based on a hierarchical approach for encoding
the partitioning lines of the BSP-tree representation of images.
We also described how to efficiently encode the BSP-tree
cells using low-order polynomials for approximating the image
signal within these cells. Moreover, an optimum pruning
algorithm was used to reduce the bit rate of the encoded BSP
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Fig. 13. PSNR performance comparison of the BSP-tree coding method with

other compression schemes. Please note that although the PSNR values of the
BSP-tree results are close to the JPEG PSNR numbers, the JPEG images
are significantly worse than the corresponding BSP-tree images (as shown in
Fig. 12).

tree while minimizing distortion. As shown in the simulation
results section of this paper, the overall BSP-tree-based coding
approach provides very high compression ratios. For example,
it is shown that one can encode a gray-level, complex image
(of a human face) using less than 0.1 b/pixel, which represents
a compression ratio of more than 80.
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