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Absijact

The polyphase representation with respect to sampling lattices

" in multidimensional (M-D) multirate signal processing allows us to

. identify perfect reconstruction (PR) filter banks with unimodular Lau-.
.rent polynomial matrices, and various problems in the design and anal- -

. ysis of invertible MD multirate systems can be algebraically formulated -

- with the aid of this representation. While the resulting algebraic prob-

lems can be solved in one dimension (1-D) by the Euclidean Division

- Algorithm; we show that Grébner bases offers an effective solutlon to

them in the M-D case.

1 Introduction )

It has been well known that the polyphase representation with respect to
sampling lattices is a natural representation of multirate systems i in studying
" their algebra.lc properties. As demonstrated in [1], it allows us to 1dent1fy' '
* various problems in the design and analysis of invertible MD multirate sys-
tems with the following mathematical question: '

Given a matri:cxof polyphase components, can we eﬁectively de-
cide whether or not that matriz-has a left inverse, and give a
. complete parametrization of all the left inverses of that matriz?
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Figure 1: An a.na.lysis/synthesis system with PR property. '

In this paper, based on the methods initiated in [1], we will further inves- .

tigate this algebraically simplified problem, and all the systems henceforth

will be assumed to be FIR (Finite Impulse Response). ,
~ Let us start by reminding the reader that the following three problems
were proposed in [1] as demonstra,ting examples of this theme.

1. Given an MD FIR low-pass filter G(z), decide eﬁ'ectlvely whether or
not G(z) can occur as an analysis filter in a critically downsampled,
2-channel, perfect reconstructing (PR) FIR filter bank. - When this
decision process yields a positive answer, find all such filter banks.

2. Given an oversampled MD FIR analysis filter bank, decide effectively
" whether or not there is an FIR synthesis filter bank such that the
overall system is PR. When this decision process yields a positive an-
swer, provide a complete parametrization of all- such FIR synthesis
filter banks

3. Given a sample rate conversion scheme consisting of upsampling, fil-
tering with an MD FIR filter, and downsampling, decide effectwely
whether or not this scheme is FIR invertible.

Some of these questions have been studied in 1-D multirate systems (see
(3], (4], [5], [2], and [6]), in which the Euclidean Division Algorithm plays
a central role. In the M-D case, however, the questions are substantially -
' harder to answer, and it is the goal of this paper to show how Grébner bases
can be used to effectively answer them.

While comprehensive accounts of this theory can be found in [7], [8], [9],
(10], [11] and [12], a short review of the Grobner bases theory is presented

!This is often called the complementary filter problem {2].



~inthe followmg sectlon A heurlstlc review of this theory can also be found
in [13] :

.2 Grobnér Bases

In order to define Grébner basis, we first have to introduce the notion of
-monomial order. A monomial in C{z] = ({z1,..., %] is a power product of
the form z{! -:-z¢m, and we denote by T(zy,..:, %), or simply by T, the

set of .all monomials in these variables. In the univariate case, there is a -
- natural monomial order, that is, ' ' S

1A< z < z? {'23 < vee
In the multivariate case, we define a monomial order < to- be a lmea.r order
onT sa.tlsfymg the following two conditions. }

1 1<tfora,llt€T

).

2. 44 <t21mphest1 s<t2 sfora,llstl,tgeT

, Once a monomial order is given, we can talk ‘about the leading monomial

(or leading term), It(f(z)), of f(z) € Cfz]. It should be noted that, if we _
' change the monomial order, then we may have a different 1t(f(z)) for the
same f(x). Now, fix a monomial order on T, and let I C Clz] be an ideal -
(i.e a set which includes all the elements which it can generate by ta.kmg
linear combma.tlons) Define 1t(I ) by ' S

(1) = {W(f(=))|fel}.
' Deﬁnition 2.1 '{fi‘(a:‘), ., f(2} C I is called a Grobner basis ofI zf
o W@ W fe(=)) = ()
ie 'if the ideal genemted by 1t( fl(a:)), oo It(fi(®) coincides with 1t(I )

'Example 2.2 Fix the degree lexxcogra.phlc order on Clz, y], and let I’ be.
_-the ideal generated by (f(a:),g(:c)), with f(z) = 1 - zy and g(x) = z?
Then the relation -

| (1+ z9)f(=) + ¥*g(=) = 1 |

. implies .that I = C[z,y], and therefore 1t(I) = C[z,y]. But

- 1(f(=)), 1(g(=))) = (~zy,2%) C (z).

- Therefore, { f(d:), g(x)} is not a Grobner basis of the ideal I. : o
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The main reason that Grébner basis is useful for us comes fromthe followmg
analogue of the Euclidean division algonthm

Theorem 2.3. ( Division Algorithm) -

Let {It(f(z)), ..., 1t(fe())} C Clz] be a Grébner basis w.r.t. a fized mono-.
mial order, and let h(m) € Clz]. Then there is an algorithm for writing h(=)
in the form '

- A=) = Al(w)fl(w) TR /\t(w)ft(w) + ()
such’ that k(=) € I if and only if r(a:)

~The polynomla.l r(x) in the above is called the normal form of f(:c) w.r.t.
{t(f1(=)), - --,1t(fe(x))}. Now, in order to solve our problem, we just com-
~ pute the norma.l form of h(z) w.r.t. the given set of polynomials (assuming
that this set is a Grobner basis. Otherwise, we first have to transform it to
another set of polynomials which is a Grobner basis. There is a standard
algorithm for this transformation). If it is 0, then h(a) can be written as a
linear combination of the polynorials f;(x) and we have at the same time
.found the polynomia.ls Ai().

Remark 2.4 There are some results krown on the complexxty of Grébner
“bases computation. If we let

r = # of variables
'd = the maximum degree of the polynomxa,ls :
s. = the degree of the Hilbert polynomial (this is one less than the :
dimension, and is between 0 and r — 1)
b = the worst case upper bound for the degree of the elements of

: the Grobner basis (of the ngen polynomials),
then it is known that

b= ((r+ 1)(d+1) + 1)@+,

i.e. is potentially doubly exponential in the number of variables.

This estimate is so large that it seems to suggest that Grobner bases .
would be useless in practice. Fortunately, this is not at all the case, and the
algorithm (in actual use) terminates quite quickly on very many problems of
.- interest. There is a partial understanding of why this is so, and various other
‘bounds are known in some special cases. It is also known that the monomial
order being used for the computation affects the complexity, i.e. you have
to choose a good monomial order in order to shorten the computation time.
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Reverse degree lexicographic order-behaves particularly well in many cases.
The papers [14], [15], [16], and [17] contain some results on this complexity
. issue. . o : : :

* Remark 2.5 One of the reviewers of this paper asked to include some re-
sults on the issue of sensitivity of round-off errors to Grobner bases com--
- putations. We must however note that we are not aware.of any results in

this direction. The importance of this issue is however recognized by the
. authors. T . ' . :

] 3 Unimodularity and Perfect Reconstruction

~ Since the polyphase representation of an FIR system a.lwé,ys gives rise to
_ a rectangular matrix with Laurent polynomial entries (see below for a -
~ definition),. our problem is essentially reduced to the following;:

Find left inverses to Laurent polynomial matrices.
Definition 8.1 Let k be one of thé sets Q,R,C.

1. A Laurent polynomial f over k in m variables z1,...,%m s an -
ezpression of the form ‘

dy . dm S

— . - < 2
f(Z1ye s Tm) = D > iy T T
. . ©oar=h “im=lm

where l; < dp, ..yl £ d, are all integers (positive or negative) and
each a;,..;,, is an element of k. :

2. The set of all the Laurent polynomials over k in z1,..., ;vm is called a
Laurent polynomial ring, and denoted by ‘

k[#*l] = ke, ..,z

cesylm .

~ In order to see why a Laurent polynomial (rather than a polynomial) arises -
~ naturally, consider a filter with frequency response '

H(w)=2 sin(w) — 3 cos(2w).



Then, letting z = e, we get

_ eiw = e—tw e2iv + e~ 2w
H = 2= -3
. 2 2
_ —36;2110 —iw 40 — 36;“"
3 1 322

TR T Z AT
‘which is a Laurent polynomla.I in z.

Deﬁmtlon 8.2 Let R:= k[m*l] be a Laurent polynomial ring.

1. Let v = (v1,.:.,0,)" € R® for some n' € N. Then v is called a
"~ unimodular column vector if its components generate R, i.e. if
there exist g1y . v ey gn € R such that vyg1-+ -+ + vngn =1.

2. A matriz A € Mpq(R) is called a ummodular matrxx if its mazzmal
minors generate R.

Remark-3.3 When R = ([z] := C[z1,...,%m] is a polynomial ring over
‘C and the polynomials v1,...,vn € R do not have a common root, Hilbert
- Nullstellensatz states that there always exist g1,...,9n € R such that vig1+
4 Ungn = 1,ie. v = (v1,.. ., Up)t € R is unimodula.r In this case,
'Grobner bases theory offers a way to find such g;’s (see [7]).

Example 3.4 Consider the -polynom1a1 matrix H,, given by

zy—y+1 1-2
( yz+w -~z ) € Maz(k[w,y])

H, =

‘ Computmg (the determinants of) the maximal minors, we find. Dya(z) =
—w+wz—2, D1a(x) = —1 and Da3(z) = w. Since 0- Dyo(z)+(— 1)D13(a:)+
0-Da3(z)=1,H,is trmally unimodular.

~ Now the following important result simplifies our problem s1gmﬁca.ntly

Theorem 3.5 A px q Laurent polynomial matriz (p 2 ¢ ) has a left inverse
if and only if it is unimodular.

‘A proof of this assertion in the. case of polynomial matrices can be found in
[18], and this result was extended to the case of Laurent polynomxa.l matrices
in [19]. An immediate corollary of this theorem is,
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"Corollary 3.6 An M-D FIR filter bank can be the analysis portion of an M-
D PR filter bank if and only if its polyphase matriz is a unimodular Laurent
polynomial matriz.

| ‘Example 3.7 Consider the polyphase matrix H, of the Example 3.4. Since
it was shown to be ummodular, it has to have a left inverse. Actua.lly, one
verifies easily that

10 =z-1
%=y 0 oy +1)eM23(k[w,y])

~ satisfies GpH, = I. This left inverse, however, is ‘far from being unique.
On the contra.ry, a computation using Grobner bases shows (see [19, page
30-31, page 116]) that an arbitrary matrix of the form, :

10 z—1 (ulw ~u; w(zw—z—w)
(y 0 zy-— y+ 1) + ugw —tup u(zw—2z-— w))
for any La.urent polynomla.ls uy, up € kfzt?, il], is also a left inverse of H
“Even more strikingly, this parametrization of the left inverses of H, in terms
of the two parameters u; and u; turns out to be complete (i.e. exhaustive) '
. and ‘canonical (i.e. minimal with unique representation). '
~ Therefore, the analysis filter bank H whose polyphase matrix is H, is
FIR invertible, and together with the synthesis filter bank obtained by a
- backward polyphase superposition of Gy, makes a PR FIR filter bank. And
"the above parametrization in terms of the two Laurent polynomial parame-
ters #y,ug € k[zﬂ,yil] gives a complete and canonical parametrization of

the complementary FIR filter banks. Thus, the degree of freedom- with
which we can design a PR pair of H is precisely 2. i

“Therefore, mathematically, we are dealing with the problem of determining
“ifa given' Laurent polynomial matrix is unimodular, and in case it is, if
" we can explicitly find all the (not unique in non-square cases) left inverses
for it. This allows us to see the study of perfect reconstructing FIR filter
banks as the study of unimodular matrices over Laurent polynonﬁal rings.

‘4 Causal FIR systems and General FIR systems

"Many of the known methods for ummodula.r matrices are developed mainly
~over polynomial rings, i.e." when the matrices involved are unimodular poly-
nomial matrices rather than Laurent polynomial matrices. In system the-
oretic terminology, causal invertibility of causal filters are therefore covered



_by. these methods. Geometnca,lly, tlus demonstra.tes the relative simplicity
" associated with affine systems compa.red to toric systems.

" The situation, however, is more complicated partly because an FIR-
invertible causal filter may not be causal-invertible. For an example, con31der

“the polynomial vector ( ) € (k:[z])2 While the relation 2 -z+ szt =1

clearly shows the FIR-invertibility of.this vector, it is not ca.usa.l—mvertxble
- since there are no polynomials f(z), g(z) € k[z] satisfying

) s 4g() =1

as we can see easily by evaluating both sides at z = 0.

- Now, in order to extend any affine results (i.e. causal cases) to general
FIR systems, we need an effective process of converting a given Laurent
polynomial matrix to a polynomial matrix while preserving unimodularity
i.e. we have to perform a preparatory process to convert the problems to
- causal problems.

- We already have presented a systematlc method to this effect in [1] for
'-every variable z; we introduce two new variables z; and y;. Substituting

™ for every positive power 2/ and -yF for every negative power z; ~k we
transform the original set of Laurent polynomials into a set of regular poly-v

- nomials. We then enlarge this set by adding the polynomials ;¥ — 1. One
verifies that the constant 1 is a linear combination of the original set of Lau-

- rent polynomials if and only if the same is true for the constructed set of
regular polynomials. Moreover, given a linear.combination of polynomials ,
we find a linear combination of La.urent polynomials by back substltutlon
z; and y; are replaced by 2; and 2] ! respectively.

There are, however, some drawbacks with this method. First, it signifi-
cantly increases the complexity of the problem by introducing extra variables
and by enlarging the size of the given polynomial vector. Also, a complete
parametrization of solutions needs separate computatlon
. To remedy the situation, an alternative systematic process for the same
purpose was developed in [19], and was named the LaurentToPoly Algo-
rithm. An input-output description of this algorithm is given in the box of
Figure 2. An overview of the main ingredients of this algorithm is presented

-in the Appendix (see [19] for a complete description of this algorithm). .
In this paper, we will mainly rely on this result to reduce the FIR prob-
.lems to causal FIR problems. A graphical demonstratlon of this process is

shown in the Figure 3. '



, ‘In.put: .’ (=) e (K[==))n, _
. . a Laurent polynomial column vector
| Output: e Yy, a cha,nge of variables.

T(2) € GLa(k[z%]), a square unimodular Laurent
polynomial matrix -

Specification: (1) {r(y) = T(a:)v(z) € (k[y])" is a polynomial
R column vector in the new variable y
(2) v(=) is unimodular over k{z*!] if and only if ¥(y)
is unimodular over k{y].

Figure 2: Algorithm LauréntToPoly

", [T T | Gy

_ H, I Gy
Figure 3: Conversion of an FIR system H to a causal system H
" Now finding an FIR inverse G to the given FIR filter H is equivalent to
finding a causal inverse G' to the causal filter H.
Example 4.1 Consider the unimodular Laurent polynomial vector
v = (z,2%) € k[z*].

~ As was pointed out in the Section 4, this vector is not unimodular as a .
polynomial vector. If we let the transformation matrix T be

L 1/ z 0
= (0 2):
“then the converted vector v="Tv=(1, 23)‘, is ummodular asa polynomla.l
vector. ‘ o : = ,



Remark 4.2 At this point, we would like to make a remark on the opiﬁion
expressed in [20]. In that paper, it is stated that the class of 1D cafacafi

systems is more tractable than the more general class of FIR systems with -

. FIR inverse.. The LaurantToPoly algorithm, however, shows that this
is not necessarily true: using LaurentToPoly, any invertible FIR system -
is translated into the mathematically well understood domain of invertible
polynomial matrices. At the same time, LaurentToPoly is also applicable
in the MD case. o o

-5 _1-D Case

In this section, we will present a complete solution to our problem in the
‘transparent one-dimensional (1-D) setup. And our main tool in this section
will be the Euclidean Division Algorithm for the univariate polynomial ring.

5.1 Determination of 1-D FIR. Invertibility

“'Let H be an FIR filter bank whose polyphase matrix is H, € My (k[z%']),
a s X t univariate Laurent polynomial matrix (s > t). Suppose H is FIR
invertible. Then, since a Laurent polynomial matrix has a left inverse if and -
only if it is unimodular, there exist [ := (;) Laurent polynomials D;y(z) such
that

{ o
;D,‘(m)M;(:B) = | 1, : (D

where M;(z) ranges over the maximal minors of H,.

So, determining the FIR invertibility of H is equivalent to determining
the unimodularity of the Laurent polynomial matrix H,, or equivalently, the
unimodularity of the Laurent polynomial vector (Mj, ..., M) € (k[z*1])".

When k = C, this unimodularity determination problem can be readily
solved once we notice that, due to the the Laurent polynomial analogue of
Hilbert Nullstellensatz over C, .Y"; D;(z)M;i(z) =1 is possible if and only
if the Laurent polynomials M;(z)’s, 1 < ¢ < (3), havée no nonzero common
roots, i.e. no roots in C*. Since each univariate Laurent polynomial M;(x)
has only finitely many zeros which can be explicitly found using any existing -
computer algebra packages, we can tell if M;(z)’s have a nonzero common
root or not, and thereby determining if H, is unimodular.
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Example 5.1 Consider a samiple rate conversion scheme consisting of up-.
" sampling by p = 3, filtering with an FIR. filter U (z) and downsa.mplmg by
=2, where U (z) is glven by .
"U(z)l- = 3,8, -6—+‘ 3 94204253425 — 25— 4 2R~
28 28 8 22 .
‘ | 232% — 2210 442 2277 - 20270 - 16z15 + 20z" + 20z21

" Then we get the polyphase decomposxtlon U (z) Yoz U,(zs) of U (z) :
" where U; (z)’s are found as -

Uo(z) = ~g—-—2 2z+2z

Ui(z) = g+29 4z - 202%
Us(z) = 2=
"6

Us(z) = —+25-23z- 1622 + 2023
| U4(z) = g—- 2z |
© . Us(z) = 2+4z+202%

Now, as demonstrated in [1], the FIR invertibility “of the given schemeis
* equivalent to the FIR invertibility of the following polynomial matrix:

- Uo(2) Us(z)\
U = (U4(z) Ul(z)) .
\Ux(2) Us(2)/

The three maximal minors of U are =

) _ Uo(z) Us(z _ )
M(2) = U(2) U1g2§ =-1.
= |Uo(2) Us(2)| _6_, o .92
M) =y p(g| Tz A
M@ =[5 =3

“which obviously don’t ha.ve any common roots. _ . _
Consequently the given scheme is FIR invertible. . - a



5.2 Parametrization of 1-D PR Pairs -

'_ Let the polyphase matrix be A, ap X ¢ Laurent. polynomial matrix, p 2 ¢.
Since this polyphase matrix has a left inverse if and only if it is unimodular,
we can first determine its unimodularity by the method outlined in the
above. If this test shows the unimodularity of A, we first a.ppl_y the algorlthm'
. LaurentToPoly to A, converting A to a unimodular polynomial matrix
- A: Then, by usirig Fuclidean Division ‘Algorithm, we apply a succession of
elementary operations to A to reduce it to the following p X ¢ matrix

L\
01
: € Myq(k),
0

where I, is thegX ¢ identii;:y matrix, and 0 is the g-dimensional zero row
vector.

This means that we can find E € Ep(k| z]) a product of elementary
. matrices, such tha.t

I
: 0
- EA .

o
Now take the first ¢ rows of E to make a ¢ Xp matrix F, i.e. '
(1,,0,...,0)E.
I,
Then F is a desired left inverse of A. Note here that VA =E"! 0 impii;eé

0/
E’1 € GL,(k{2]) is a unimodular completion of A.
To get a complete para,metrlza.tlon of all the possible left inverses of A,
let. B € M,,(k[2]) be an arbitrary left inverse of A. Then

BA = 1,
Now, since E~! is a unimodular completion of A,

BE™' = (I;uy,...,Upg)

12



for some.uy,,..,Up—q € (k[z%}])7. Now regarding uj, ..., Up—q as free pa- -
rameters ranging over g-dimensional La.urent polynomxal vectors, we get-a’
complete para.metmzatxon of the left inverses to A in terms of (p — ¢)q pa-
rameters ranging over the Laurent polynomials in k[z*l]

B = (Iu,...,u-4)E. ' - (2)

Remérk 5.2 If p=gq, i.e. if the polyphase matrix A is a square unimodular '
matrix, then the number of free parameters is (p— ¢)¢g = 0. This coincides
: W1th the fact that a square unimodular matrix has a unique inverse.

Example 5.3 Consider an oversampled 1-D FIR a,nalysxs filter bank whose‘
~ polyphase matrix is the matrix U of the Example 5.1. We a.lready saw in
that example that }

222 6+29 4z — 2022

——2 2z + 222 6+25 23z — 1622 + 2023\
U =
: 2z : - 2+4z+20z

is unimodular, so there is an FIR synthesis filter bank such that the overall
- gystem is PR. Now we want to find all such FIR synthesis filter banks.
Closely following the algorlthm outhned in the above, we get ‘

. 10
- EU={0 1},

* where the 3 x 3 matrix E is found as

5 )
£ (3+19z—-32z2 42323 ~92% —8254625) . 2(4-532—22 +za) %—4z+3—f2—2-+za—z4

. 2 3 4 .
( 18(—18—125:—18832-*-252:3—21524+178z5+6z6) £(-2-272430:242°) (=12-89248127-60:" 22 ) )
o~z 220 553 4ot 4 82 _2,8) 2:(-312422—23) 6462222204224

Now a general left inverse of U is in ‘the form

1 0 u\L
(O 1 .v) E,
where u, v are arbitrary Laurent polynomials in k(2. o

Now we consider a real world problem.

13
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o Figure 4: Frequency Response of the Lowpass Filter H (2) -

i -Escample 5.4 Consider a causal lowpass filter H(2) given by

H(z) = 0.1605+0.4156z40.4592:2+0.148723~0.1643z* ~0.124525+0.082525+
) .. 0.088727 —0.05082% —0.06082°4-0.035121°+0.0399211 —0.0256 212 —
10.024421340.01862144-0.01352!5 —0.013126 ~0.00742 7 4-0.01292!2 —0.0050z1°

whose: lowpass characteristic is shown in the Figure 4.
This is decomposed into polyphase components as

H(z) = Ho(2)+zH(2%),
where Ho(2) and H;(z) are -

Hy(z) = 0.1605+0.45922—0.164322+0.08252°—0.05082% +0.035125—-0.02562% +
0.018627—0.013128+4-0.01292°, '
Hy(2) = 0.415640.14872—0.1245:240.08872%~0.060824 +0.039925~0.024425 +

0.0135z7 ~0.00742%-0.00502°.
the Euclidean Division yields

Ho(z) = ~2.5893H1(z)+r(z)

J

with the remainder

.

7(2) = 1.236740.84422-0.48672240.31232% —0.2083492440.13847225—0.088810925+

0.053679727—0.032369628.

Ca.rrying out the corresponding elementary operation gives
Ho(z)> ( r(2) ) |
E1,(2.5893 ( = .
| 12( ) Hl(?) _ Hy(2)

14



- Repea,ting the same pfocedilre to the polynomial vector ( H( ( ))>
_ eventua.lly get C € Eo(Cfz]), product of 10 elementa.ry mat/nces, such that

o(w3) = (%)

Let & := 67'716'50' Thgn ) '
Ho('z)) 3 '(1 3
B (HI(Z) —\0/¢

An exphcxt computa.tlon shows
L

‘E11(z) = -0.4138+0.5743z-0. 0.308957.40.26522 0. 1667z4+0 09602%—0.04782%+
: | 0.01642740.01542° ’ o
. Eya(2) = 2.5658-0. 6827z+6 368922-0.23692%+0.16582* —0.118925+0.083925 -
0 0572z7+0. 0398z
Ej(z) = -0.7081-0.2533240.212122—0. 1512z3+o 1036: —0.06792° +0. 041625~

_ 0.0231z7+0.01272°40.00852°
Eg2(z) = 0.2735-+0.78242—-0.27992240.1406z3—0.086524 +0.05992° ~0.043625 +

0.031727—0.02232%40.02202°.
Now by the parametrization formula (2), any left inverse B is of the form

B(u) = (1 v)E
= (Epn+uEyn Ei2+uEp)
(Eu El2)+u(E21 Exn),

' where u € k[z*!]is an a.rbltrary Laurent polynomxa.l Now, the, 1 pa.ra.meter
family of filters -

F(zu(2)) = Bu(z%u(z%)+ an(»z?,u(zZ)), u € k[z*']

describes all the synthesis filters, and making a good choice of u € k[z*!]
will give us a synthesis filter with a more desirable frequency response. O

6 Grobner Bases and M-D FIR Systems

‘Let an s X t matrix H, € M,t(k[mil]) be the polyphase matrix of a given
M-D FIR filter bank H (s > t). Now, suppose we want to find a synthesis

15



| 'ﬁlter bank G so tha.t G together with H makes a perfect reconstructing -
- system. ’

" Applying the LaurentToPoly Algorithm to H, € M, (k[=*1]) to obtain
H, ¢ M¢,(K[z]), we see that this problem is eqmva.lent to finding a t X s
matrix G, € M,(k[z]) such that G,H, = I . After getting such a Gy,
we can apply the LaurentToPoly Algorithm backwards to G to obtain
.Gy € My(k[z*1]). Then it follows that G,H, = I,, and the ﬁlter bank G-
.- with its polyphase matrix being G, is a desired synthesrs ﬁlter bank.

So, we have reduced our problem to

~ For a given polynomial matrix A € Mg (k[z]) (s >.t), find a
(partrcular) left inverse B € Mq,(k[x]) of A.

“This is in fact possible using Grobner bases, and the followmg method was
"~ introduced in [18], and was exploited in our context in [19]:

The column vectors of the unimodular matrix A = (f;;) € M,¢(k[m])
spa.n the free k[z])-module (k[z])’. Therefore, we can use Grobner bases to-
express the standard basis vectors ey, ...e, € (k[z])? as linear combinations
(with polynomial coefficients) of the column vectors of A'. .

" More explicitly, denoting the ¢- th column -vector of Atbyw;, 1< < P,
il

we have w; := . |. Now, use Grobner bases to find g;;’s such that -
fiq - A
1 .
o : ' B3 ' fpl
ef == | .| =guwit-+tgpwp=gu}| : | +--+g1,p| :
0 ' o hal Jra
0 | " |
. n f1
€, = 0 :gqlwl'lf""l_'gqup:‘gql F o+ Ggp :
1 flq ’ qu

Denoting the ¢ x p matrix (gi;) by B, we can rewrite the above set of
equations as : '

_ gin t Gip fu - Sfig ,
I, = : : s : | =BA.
gg1 ¢ Jap fpl . qu
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~ And this B is precisely (one of) what we want.

.:‘Example 6.1 Aga.ln, consxder the polyphase matrix

, zy—y+1 1 -z

Hy=| yz+w- -z ) € Msz(k[x )
. -y 1 |

of Example 3 4. The following is a SIN GULAR? script lmplementmg the

"a.lgonthm of this section to find a G, € M23(k[z y]) such that G pHp = Iz ,

ring r=0, (x,y,z,w),(c, dp) optlon(redSB)
‘vector v(1)=[xy- y+1 1-x] ;vector v(2)= [yz+w,-z]
vector v(3)=[-y,1]; -

module M=v(1),v(2) v(3);

‘module G=std(M); matrix T=1ift(M,G);

And the fesults are

> G;
G[1]=[0,1]
G[2]1=[1]

> T3

T1,1]=y

T[1,2]=1

T[2,1]=0

T{2,2]=0

T(3,1]l=xy-1y+1 )
‘T[3,2]=x-1 . \

Since {(1,0), (0,1)} is a Grobner basis of the row vectors of H , Hp is
unimodular, and the relation G = MT translates to

0 1\ - .
] = HIT.
( 10 ) P
2SINGULAR is a computer algebra system for singularity theory and algebraic geome-

try, developed in the University of Kaiserslautern, Germany. It is being alpha-tested, and
is freely available by anonymous fip. For more information, see [21] '
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" By .ta.king transpose of both sid'es; we get T'H,, = _(-0 1), ie.

10
(10 21 .
| (y'O wy‘—y+1>H”_~I2-'
" Hence, G,,.‘:= <; g xyai—;%l-l) is-a left inverse of Hy. .o )

E}éafnple 6.2 Consider the 2D sa.mplé rate conversion scheme which con-
sists of vertical upsampling by a factor 3, filtering with a filter H (2) =

- H(a, #2) and horizontal downsampling with a factor 2. We assume that H

s FIR, and we would like to know if this scheme has an FIR i inverse. To ‘
be more precise, we are looking for an FIR filter G(z), such that horizontal
upsampling by a factor 2, filtering with G(z) and vertical downsampling
with a factor 3, cancels the effect of the first sample rate conversion scheme:
‘Let the filter H(z) be given by H(z) = " h; jzi z3. Following the method -
outlmed in Section 5, but now for this 2D case, we construct the 3.x 2 -
: polyliomia.l matrix Hgj(z) = Eh3;+k 2j+1z{z§, where 0 < k£ < 2 and 0<I<
1.
"Assume momentanly that H (z) isa sepa.ra,ble filter H Mz)H¥(zp). Tt is
“easily seen that in this case the filters H(z) are products of 1D polyphase
components, i.e. Hii(z) = H} 2 )H}(22). Consequently, all the maximal
- minors of Hy(z) have determinants equal to 0. Therefore the 2D analogue
of Eq. 1 cannot be satisfied; and inversion is impossible.
Now we consider a non-separable case, where the filter H(z) is gwen by
the 4 X6 (horizontal X vertical) impulse response :

2 3 2 1 3 2
3 5 3 1 3 2
1 1 1 1 1 1
2 2 2 1 1 1

The polyphase component matrix H, = (H r) of H(z) is defined by

"H(z) = ZZZ 2y Hi(21, 23),

k=0 1=0
which is found as

24 z1+ 22+ 2120 34221+ 20+ 2129
H 3+ z1+35n+z2122 54221+ 320+ 5129
2+ 0420+ 22 3420 +224 212,
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Computing the determinants of the maximal minors we find Do(2) =
—1 — 23, D1(2) = —23 — 2122 and Dg(z) = 1— 23 — z2123. These determi-
nants are proper multivariable expressions and the Euclidean algorithm will
therefore not work. In this case one easily verifies that Dy’ — Dy = 1, and
therefore H,, is unimodular and there exist an inverse FIR ﬁlter G(z). To
find G(z) we first need to find a left inverse G, to H,. -

The following is an example SINGULAR scmpt used to compute a left
inverse of H,. For notational convemence, welet z:= z1, y 1= 23, A := Hp, '
and B := G '

ring r=0,(x,y),(c,dp); option(redSB);
vector v(1)=[2+x+y+xy,3+2xx+y+xy];

- vector v(2)=[3+x+3*y+xy,5+2%x+3*y+xy];
vector v(3)=[2+x+2*y+xy, 3+2*x+2*y+xy]
module M=v(1),v(2),v(3);
module G=std(M); matrix T=1ift(M,G)

“The output from SINGULAR is as follows:

> G;
G[11=[o, 1]
G[2]=[1]

> T;
T[1,1]=0
T[1,2]=1
T[2,1]=x+2
T[2,2]=-2x-3
T[3,1]=-1x-3
T[3 2] =2x+4

Since {(1,0),(0,1)} is a Grobner basis of the row vectors of A, A is uni-
modular, and the relation G = MT translates to

0 1\ _
(01 = aw

By takingr transpose of both sides, we get T'A = ((1) é), i.e

(1 —2r -3 244

0 z+2 —x—3)A=I2'
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N

1 =22 -3 2z +4

.‘ H_gnce, B := (0 42—z - 3) is a left myerse of A. -

“Appendix
A LaurentToPoly Algorithm

~In this appendix, we present an algorithm that transforms a’'Laurent poly-
" nomial column vector to a polynomial column vector while preserving uni- -
. -modularity. A schematic description of this LaurentTonly Algorithm was
~ given in Section 4, and we refer to the Figure 2 for the notations. This pro-
cess is very powerful essentially because the unimodularity of the Laurent
- polynomial vector v(z) € (k[z*!])" is converted to the unimodularity of the
polynomial vector ¥(y) € (k[z])®. For the results stated in this appendix
without proof, see [19]. : : o
We start with a theorem (without proof ) that can be seen as an analogue
of the Noether Normalization Lemma. The Noether Normalization Lemma.
states that, for any given polynomial f ¢ k[z], by defining new variables
Yoo Ym DY Z1 =y, 20 = ot v}, T = Y + 3 fora sufficiently
large [ € N and regarding f as a polynomial in the new variables Ylseeos Ym,y
we can make f a monic polynomial in the first variable y;. Now, we extend
this to the Laurent polynomial ring kfz*!] = k[z¥!,..., 7],

sy %Ym

Figure 5: LaurentNoether
Input: - f € k[z*1] '

Output: ‘& — y, a change of variables

Specification: the leading and the lowest coefficients of f € k[y*!]
- with respect to the first variable y; are units in the

ring k[y2i1 1y y":!tll] .

[y

Theorem A.1 (Laurent polynomial analogue of Noether Normal-
ization) Let.f € k[z*1] be a Laurent polynomial, and define new variables
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Yisee e Um by T = U582 =l ey Ty = Ygl™ Then, for a sufficiently
largel e N, the leading and the lowest coefficients of f € k[=*1] with respect

' to the first variable y, are units in the ring k[yZ!, .. L yE).

With this theorem at hand, we can now describe the LaurentToPoly
Algorithm. _ ; ' : R
 Létn>2 8= Klz3,...,2%1], and v = (v1,...,9,)t € (kztl)n =
(S[z1])™. By using the algorithm LaurentNoether, We may assume that
the leading and the lowest coefficients of v; w.r.t. 7y are invertible elements '
of S. Write - : -

. +
n = aprf +appzit 4o az]
where a, and a, are units of S.

o Step 1: Using the invertibﬁity, of a,,_é S, deﬁne D € M.($[z") and .

v' e (Sl by .
. a;‘lx;‘p O o o
D := 0 apz]
. Loos

v o= (v1,..,v.) ;== Dv."
- Ngte here that the matrix h N
D = Eu(ae])Ern(1~a;'s; p)Eéltl)Elz(l ~apad)
 Is realizable over S[zE!], and
| vy | = o'z " =1+ Api1/apTy +- -+ aq/‘fpig-p

is a polynomial in Slzy].

¢ Step 2: Since the constant term ofv; € S[z4)is 1, by adding suitable

multiples of v} to v’s,1=2,...,7n, we can make 3,..., v, polynomials
in §(z,] whose constant terms are zero, i.e. find E € E.(k[=*!]) such -
that : R '
; | By
Evi=v = | €(S[z1))",
p

where 9, = 1 mod z, and 9; = 0 mod z; for alli=2,... n.
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. Step 3: Choose a sufficiently la,rge number [ € N.so tha,t with the -
- . following change of va.rla.bles,

\,

1 = yi-(v2ym)
Te ="y ‘
Tm = Ym,

all the #;’s become polynomials in k[y]. Then #; = 1 mod y; - - - Y.
lew"give the transformation matrix T := ED as the output.
-0

It still remains t6 show that the outcome of this algorithm is what we
-want. This, however-, follows from the following theorem (without proof).

Theorem A.2 With the notations as in the above, v(z) is ummodular over
k[etl] if and only if ¥(y) is unimodular over k[y]
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