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Adaptive Scalar Quantization
Without Side Information

Antonio Ortega,Member, IEEE,and Martin Vetterli,Fellow, IEEE

Abstract—In this paper, we introduce a novel technique for this model “on the fly,” with no prior assumptions. In this
adaptive scalar quantization. Adaptivity is useful in applica- work, we propose that estimating the source model from past
tions, including image compression, where the statistics of the jn, 15 should be an essential building block in adaptive scalar
source are either not knowna priori or will change over time. tizati Il While th Id b d f
Our algorithm uses previously quantized samples to estimate quantization _as _We ) lie the same cou_ e argued for
the distribution of the source, and does not require that side VECtor quantization, we concentrate here in the scalar case
information be sent in order to adapt to changing source statistics. since going to higher dimensions complicates the modeling
Our quantization scheme is thus backward adaptive. We propose process. Note also that an adaptive quantizer can be used as
that an adaptive quantizer can .be separated into two .bundmg part of a differential pulse code modulation (DPCM) loop
blocks, namely, model estimation and quantizer design. The d th t tricti | t |
model estimation produces an estimate of the changing source @Nd W€ are thus n_o restricuing ourseives 1o memory ess
probability density function, which is then used to redesign Sources. We can define our problem as that of adapting some
the quantizer using standard techniques. We introduce non- or all of the parameters of a scalar quantizer/entropy coder
parametric estimation techniques that only assume smoothness system (including bin sizes, reconstruction levels, codeword
of the input distribution. We discuss the various sources of onqihs and dynamic range) to the changing statistics of an
error in our estimation and argue that, for a wide class of . ke f . h istical
sources with a smooth probability density function (pdf), we MPUt source. We make few assumptions on the statistica
provide a good approximation to a “universal” quantizer, with ~ Characteristics of the source and, in particular, we allow it
the approximation becoming better as the rate increases. We to have long-term dependencies and to show varying “local’
study the performance ?f_ our $Ch‘|9me and show hOW_th? loss duepehavior. We will assess the performance of the adaptive
to adaptivity is minimal in typical scenarios. In particular, we ghemes by comparing their rate-distortion characteristics with
provide examples and show how our technique can achieve signal- . .
to-noise ratios (SNR’s) within 0.05 dB of the optimal Lloyd—Max those achievable by means of nonadaptive schemes. We study

quantizer (LMQ) for a memoryless source, while achieving over Systems where the adaptation occurs basgy on the causal

1.5 dB gain over a fixed quantizer for a bimodal source. past so that both encoder and decoder can adapt in the same
manner, and no extra information needs to be sent.
|_ INTRODUCT|ON AND RELATED WORK Wh|le adaptive source mOdels haVe been Used tO Varying

extents in many adaptive quantization schemes, here we pro-

DAPTIVITY is a key feature in th? most popular meth— ose to explicitly separate the adaptation algorithm into two
ods for lossless data compression, such as arithmeli

coding (AC) [2]-[4], Lempel-Ziv coding [5], or dynamic afts [see Fig. 1(a)], as follows:

Huffman coding [6]-[8] (see [9] for an extensive review of 1) Source modelingBased on the preyiousf quantizec_j
lossless compression). samples, we model the source, for instance, by estimat-

The classical works on entropy coding (e.g., Huffman cod- __ N9 its probability density function (pdf).
ing) and optimal quantizer design (e.g., Lloyd—Max quantiza- 2) Quantizer designFor the given estimated statistics, new

tion—LMQ), propose methods to achieve optimal performance  quantizer parameters are computed.
for sources that can be fitted to a certain model. In adaptiveSeparating the algorithm into these two building blocks,

AC implementations, adaptation is achieved by estimati®) approach similar to that used in adaptive AC, allows us
to use well-known quantizer design techniques (such as the
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A. Adaptive Quantization

Input Output
- ) While some recent work has demonstrated adaptive vector
ram xi gquantization schemes that do require side information to
o specify modifications on existing codebooks [10]-[12], or
B to choose among a predetermined set of codebooks [13],

I

Optimal Quantizer design
given distribution

'

require overhead information. Examples of backward adaptive

{ : here we focus on backward adaptive schemes, which do not
guantization can be found in [14]-[16], where the objective is

o R e to adjust the support region of a uniform scalar quantizer so
| Bstimation of Input Distribution | ’ Delay W that this quantizer can be used in conjunction with a predictor
R b in a DPCM system. Adaptation is based on one [14], [17], [18]

or more [15] of the previously quantized samples. In [16], both
the support region and the bin sizes can be adjusted, although
the bin sizes are restricted to a finite set of values.

@) A somewhat different problem is tackled in [19] where an
initial tree-structured vector quantizer (TSVQ) is designed off
line with a rate higher than the rate available for transmission.

xim ) Q '77 Zan At any given time a subtree of the original tree is used, namely,
o

‘ the one that minimizes the expected distortion (under the

T assumption that future samples will have the same distribution
i {— —————— as, recent, past ones). Encoder and decoder keep counts of the
Delay l

Optimal quantizer design
P givcnqdislribution g numbe_r Qf samplgs that corresponded .to ea}ch of the nodes and
use this information to generate the distortion estimates.

! Speed of Note that these systems use (implicitly or explicitly) simple
| Estimation of input distribution — Adaptation models of the source to determine the changes in quantization.

i - For instance, [14] assumes that the source distributions are
A . . N(n) relatively smooth (and a uniform quantizer is thus suitable) but
xa-Now.xn-Novb....xn-1, have varying dynamic range so that the role of the adaptation
— is to estimate the changes in the variance of the source.

(b) Similarly, the assumption in [19] is that the initially designed

Fig. 1. Adaptive quantization algorithm. (a) The adaptation algorithm can E@e'StrUCt_ured C.OdebOOk is sufficiently representative of t.he
decomposed into two parts: i) the estimation of the input distribution basexpected input signals, so that the adaptive algorithm can find
on past samples, and ii) the design of the new quantizemthe estimated 5 “good” subtree at any given time. In our work, the aim is
distribution. (b) In the simplest case, the adaptive algorithm uses a fixed finjte licit] . '
window to estimate the distribution. In a more general case, it would B8 €XP icitly determine a model for the source from the _dat‘?l
necessary to change the speed of adaptation as well, so that the window kizewn to encoder and decoder, and then adapt the quantization
would also change over time. scheme to get the best performance for the given model.

distribution (i.e.,V). Clearly, if the input source were indepen- . .
dent identically distributed (i.i.d.), it would be reasonable t§- Adaptive Lossless Compression
accumulate statistics over a long time window. Conversely, if The two main approaches to adaptive lossless compression
the source input distribution were changing over time, shortf®] are model-based (e.g., arithmetic coding (AC) or adap-
windows would have to be used. If the window size is kepiive Huffman coding) and dictionary-based (e.g., Lempel-Ziv
constant, choosing an appropriate size for a given type @fZ) coding), where the adaptivity comes from dynamically
source will result in suboptimal performance for other sourcagpdating, respectively, the model and the dictionary.
We are thus interested in systems, such as that depicted iWe will concentrate on the AC algorithm [2]-[4] as it is
Fig. 1(b), where the window size or, equivalently, the speeatbser in spirit to our approach. In an AC scheme, the encoder
of adaptation, can be changed over time. keeps track of the probabilities of the input symbols. If the
Note that in our choices we are seeking to avoid makirgpurce is i.i.d. and the model is correct, then AC can achieve
assumptions on the nature of the source to be quantizadiate very close to the source entropy. However, in real-life
However, there are two underlying assumptions that we expectvironments, the performance of the algorithm is determined
to be met in order for our method to work. First, we assunt®y how well it adapts to the changing statistics of the source.
that the source pdf will be smooth, e.g., that the pdf im that sense, model tracking plays an essential part in the AC
continuous (higher regularity would be even better). Similarlalgorithm performance. The general idea [20] is to determine
when it comes to the time variance of the sources, we assufoe every newly arrived symbol, whether the occurrence is
either i.i.d. or independent samples with slow variation. Waormal,” i.e., consistent with the current model, or “not-
believe these two assumptions to be valid for most practicabrmal,” i.e., unexpected within the current model. Because
cases of interest. of the need to adapt to changing statistics, this scheme will
We now briefly review some of the relevant prior work. perform worse than a static algorithm for an i.i.d. source [20].



ORTEGA AND VETTERLI: ADAPTIVE SCALAR QUANTIZATION 667

As another example of adaptation in the context of losslessWe consider a quantizer with. reconstruction levels
coding, it has been shown that the Huffman coding tree cag ---, r;,_; andL—1 decision levels denotdd, ---, by, _1.
be modified “on the fly” so that the code adapts to changirgdditionally, denoten,, for ¢ = 0, --., L — 1, the number
statistics, or learn them starting with no prior knowledgef samples, out of theV most recently transmitted, which
[6]-[8]. A first approach to generate these statistics wouldlere quantized to th&h bin. ng andnz_; are the number of
be to choose the number of sampl&sover which symbol samples that fell in the “outer” bins and, obviously,. n, =
occurrences are counted. However, a fully adaptive scheidve Our goal is, given the knowledge efy, ---, ny,_1 and
would also require a procedure to changye if necessary, b, ---, b;_1, to find a good approximatioﬁn(a:).1 From the
during the coding process in order to improve the performanobserved data we can deduce that
[we would thus have a paramet¥i(r) as in Fig. 1(b)]. Recent

b;
work [21] presents a solution to this last question and proposes P = / " f(z)dr
that the window sizeN be updated by choosing, among by
several possible sizes, the one producing a code with better ~ E7 fori=0,---,L—1
compression for the last received symbols. N
Finally, it is worth noting the connection between data mod- andby = —oo, by, = +o0. 1)

eling and data compression. Indeed, the minimum description

length (MDL) principle introduced by Rissanen [22], [23JAlthough strictly speaking, the equality holds only in the limit
provides the link between these two problems by establishiag N goes to infinity, we use,; /N to approximatel’;.

the asymptotic optimality of describing a distribution with a The problem we have formulated is in fact very general
set of parameters that requires the least total number of d is encountered, for instance, in statistics when fitting a
to be encoded when countitgth the bits needed to describemodel to some data. There are, however, two major differences
the model, and the bits needed to encode the occurrencedeifveen our work and standard model estimation problems: i)

the different symbols within the model. we estimate a moddlased on quantized datand ii) we insist
on using a nonparametric approach
C. Outline of the Paper By restricting ourselves to the quantized data, we will

. . . .operate with reduced information and thus our model esti-
The paper is organized as follows. In Section Il, we describg . . : .

. . N mation technique will perform worse than those described
the various components of the adaptive quantization scheme as

depicted in Fig. 1(b). For each of the building blocks we defing standard model estimation problems. In particular, we

o ) . . ay have to separate our model estimation problem into
the objective and examine some solutions. In Section | C . T . .
: ; 0 parts: i) estimatingf(x) in the two outer bins, where
we analyze the convergence properties of the algorithm. We : : .
. . ; . we can rely on knowing only one of the boundaries (this is

consider the asymptotic behavior as well as the various sources . o .

. ) . . . . _equivalent to estimating the dynamic range of the source), and
of error in the algorithm. Finally, in Section IV, we provide

some experimental results to demonstrate the advantages |Qn%st|mat|ngf(a:) within the inner bins, where we know both

) X o . In boundaries.
disadvantages of adaptive quantization over static a roacrpe . A . .
g P q PP % parametric approach would restrict the set of candidate

models to a family of pdf's determined by a vector parameter
6. For example, one could try to find an estimgie:|¢) with

In this section, we will describe the three building blockg — (m, o) such thatf is a Gaussian pdf with parameters
of the adaptive quantizer, namely, source pdf estimation, andc. In our work we choose to use estimatgshat are
quantizer adaptation, and adjustment of adaptation speed [sRRewise linear approximations to the underlying pdf. We are

Il. ADAPTIVE SCALAR QUANTIZATION ALGORITHM

Fig. 1(b)]. obviously estimating a finite set of parameters that uniquely
o o describef but still deem this approach nonparametric in that
A. Estimation of Input Distribution we do not expect the input pdf to also be piecewise linear

1) General Case:Given a discrete time inputz(1), Rather, we choose a model (piecewise linear) that is expected
-+, z(n) we are seeking to find a model that best “explaind® provide a reasonably good fit for a wide class of input pdf's
the data. To do so, we assume that the fissamples have (but which will not give a “perfect” approximation) instead of
been generated by an i.i.d. source, and we estimate the pAposing a specific parametric source model (e.g., Gaussian).
of that source,f(z), based on information available at both 2) A Nonparametric Piecewise Linear Approximatiofm
encoder and decoder, i.e., the previously quantized samp@gneral, we can choose a set Bf points, zo, -+, zp_1,
We only assume that the underlying source has a smooth (el > L, and make it our objective to finfl(zo), - - f(zp—1).
continuous) pdf and that the source changes slowly, so tifdt) can then be linearly interpolated at other pointJhez;
modeling the paslN samples as if they had been generated [$an be chosen arbitrarily within the estimated dynamic range
an i.i.d. source is reasonable. Our objective here is as follov@$. the source, saybo, b]. The task of approximating the
Objective 1: Given the N most recent quantized sampledynamic range will be dealt with in more detail in Section
occurrenceg(n—N), #(n—N+1), ---, 2(n—1), whereN II-AS.
might be a constant or can be changed by the speed adaptath)po simplify the notation, in the remainder of the paper we do not use the

algorjthm, find an estimatg‘n(a:) of the prObabi"ty denSity subscriptn in f'n(.r), but it should be clear that differegfft(x)’s are obtained
function of the sourcef(x). every time the estimated input pdf is updated.
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Assume, thusjpo, bz] given and choos > L points. Our where B = {b;}, with b, = —1 for k = 4, by, = 2 for
goal is then, under the pdf smoothness assumption, toffindc = ¢ + 1, b;, = —1 for k = i + 2, and zero elsewhere, for
such that i=1,---,P—-2andk=1,.--- P.

Now, combining the two costdf and S and choosing a

/’““ fo)dr=P.  fori=0.-.L-1 () real positive numbea, we can findf(x;) to minimize
b

i

where P, = n;/N. Since f is a piecewise linear approxi- ™I (M+AS) = min [R-f—p[*+A\(f* - BT -B )] (8)
mation, we can write the equations in (2) as a function of
the P unknowns f(xo), - -+, f(zp—1). This can be seen as
a typical inverse problemwhich in the case ofP > L is
underdetermined. Several techniques can be used to reguIaE o .
such problems (see [24] for an excellent description of the 8 for_ eagh value of a set of pointsf(x;) f{hat yield an
techniques). We outline a linear regularization method that h%gprommatlon to the pdf. There are two main advantages to
the advantage of resorting to the pdf smoothness assumptlﬁﬁ'ng this technique, as follows:

Clearly, if P > L, there are many possible solutions that 1) It does not require an accurate estimation of the “outer
meet the constraints of (2). For a large enoujlinearizing is boundaries.” A good guess for the outer boundaries

a good approximation, and we can thus write the constraints as  Suffices, as the matching and smoothness criterion will
guarantee smoothly decaying tails for the approximated

This is a least squares problem that can be solved using
dard techniques (see [24] for the details.) Thus, we can

P-1 distribution.
le + f(-Tk)]7 (z1)(zpy1 — ) = P 2) It provides an easy way of including in the estimation
=0 any available prior knowledge about the smoothness of
Yi=0,.--,L—1 (3) the pdf to be estimated.
However, there are also drawbacks in this approach, such
wherer;(xy) = 1if (zpq1 +21)/2 € [bi, biy1] andr;(z,) = as the relatively large number of points that are required,

0, otherwise. Assuming, for simplicity, equally spacedand P, and, most importantly, the relevance of a good choice
normalizing so thatry, 1 — z; = 1, we can write in matrix for the parametei which determines the relative weights to
form the smoothness and matching criteria. Potentially, an iterative
procedure, where severals are tried until an appropriate
R-f=p (4) solution is found, may be required. For these reasons we
now propose a simpler approach that requires aflly= L
where f is the vector of theP unknown *knots” in the points and involves no iterations. Note that, for the appropriate
piecewise linear approximationp is the vector of theL choice of the smoothness parameter and sufficiently latge
observed probability masses;, andR = {r;x} = {ri(zx)} this approach would in fact converge to the true distribution,
is the P x L matrix, which determines whiclf(z;) should be while the technique we present next would still generate an
considered in each of thé constraints. approximation error. However this may not be a decisive con-
The basic idea of the linear regularization methods is #deration since, in general, the “right” smoothness parameter
first relax the constraint of choosinf(z;) to exactly match will not be known.
the observed frequencies of occurrence as in (4). We thusg) A Simple Noniterative ApproachAssume  that  the
introduce a costM, which measures how much a solutiorhoundaries), and by, are chosen so that(by) = f(bz) = 0,

deviates from a perfect fit as our estimate of the dynamic range (refer to Fig. 2).
) Furthermore, assume that we estimate that our choice of
=|R-f—pl|". (5) bo, by is expected to “leave out” fractions of the tails of the

y _ . distribution such that/™_ f(z)de = [**° f(z)de = Pou
Additionally, we introduce a second caStwhich measures (the details will be explained in Sect|on II-A5). Then,

the smoot_hngs§ of the result.mg(a:). For instance, |f.we denoting P, — Po Pout and P, = Pr_i — Pyu with
expecta priori f(z) not to deviate too much from a ImearP, — P fori=1,--, L—2 we can choose® = L

function, we can introduce a cost based on an approxmah%nmts x;, at which we need to calculate the function values

to the second derivativg”(z) so that f(a:z) = f, such thatf will meet the constraint of (2)
. for P!. To restrict the number of degrees of freedom, we
S= /[f”(ﬂl?)]2 dx arbitrarily choose ther; to be the center of each of the
1 inner bins?
~ [—far) + 2f (zrg1) — flars)] (6)
k=0

2Note that we choose for simplicity thg = (b; +b;1)/2 as the “fixed”
points in our piecewise linear approximation. Alternatively, we could have
defined the estimation problem as one where Kopthndx,; have to be chosen
to match the observed input and possibly some smoothness constraints, in a
S=fT.BT.B.f (7)  manner similar to the method in Section 11-A2.

This can be also expressed in matrix form as
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particularly important whemV is small and we have a rapidly
varying source.

5) Estimation of the Dynamic Rang&he remaining task
is to determine the point8y, b;, at which we estimate the
pdf to be zero. Note that this problem is especially relevant
in the simple method of Section 1I-A3. Indeed, while in the
general case a sufficiently large number of interpolation points
P > L enables us to produce a model with smoothly decaying
tails, in the scheme of Section II-A3 we are restricted j{t{a)
with linearly decaying tails. More precisely, in the general case
as P > L, the tall in the outer bins can have several linear
segments, thus achieving a smoothly decaying tail, while in
Section II-A3 we are restricted to just one such segment. If we

chose pointsdy, by, that overestimate the true dynamic range

Fig. 2. Notation used in the model estimation algorithm. This denote f the input source, we may have cases where the result of
the decision levels, witthy and b7, denoting the outer boundaries of the . . . N A
finite support approximation. The;’s are the knots of the piecewise linearSOIVINg (11) would yield negative values f@(xo), f(zr-1).
approximation. In this figure, there are as many knots as bins but in gendfde are thus interested in having good estimates of the dynamic

one can use more knots than bins. Note that we depictef{ap which is ineti ;
nonzero outside the range determinedbpy b;,, to emphasize the fact that range of the source. More formally, our objective here is as

these two boundaries have to be estimated and that the operation introdJ@éléPWS-
some error. Objective 2: Find by and by, defined as the points such

that we estimate the source pdf to be “almost zero.” For these
Now we can write the integrals over each bin of thBCints we will have by definitiory(bo) = 0 and f(bz) = 0.
piecewise linear approximation as The difficulty here stems from the fact that we have limited
information: We know thaty, resp.ny_1, samples fell below
bip1
/ f(x)dx
b

fx)

f(x)

b; s; by,

by, resp. aboveb;_;, but we need to resort to some of

L our assumptions to estimatg and b;,. Obviously, the main

1rp ¢ assumption is that the outer bins should contain the tails of
T2 [f(xf) + f 0l (i —bi) the dis?ribution. Based on the available information, i.e., the
+ 5 [f (i) + f(big1)](big1 — z2), countsn;, the current decision levels, i = 1, L—1, andbg¢
i1=0,---, L—1, (9) andb$¢ the dynamic range estimates obtained in the previous
. ) ) _ iteration, we will consider three cases as follows (we outline
where f(b;) can be found by linear interpolation the algorithm for adjustindy, but the same ideas apply for
. Pl — Fl, . br):
f(bi) = (bi = zi—1) M + f(@i-1) (10) 1) If ng = 0, i.e., the outer bin is empty, we readjust the

Ly — L4j—
cTet boundaries so thab, = b, (unless the adjacent bin

and we havef(b) = 0 and f(by) = 0. Note that, since
we have only one “knot” per bin, each of the equations (9)
involves at most three unknown®z;_1), f(z:), f(ziy1) SO
that the system we have to solve is

T f=p (11)

whereT is aL x L tridiagonal matrix angy’ denotes the vector 2)

of observed probabilities (with the corrected tails). Efficient
Gaussian substitution methods can be used to solve this system
[24].

4) The Zero Frequency Problentso far we have seen how
to estimate the distribution from the available sample counts,
but a further question remains as to whether the counts can be
used as is or some additional assumptions have to be made. R
particular, the zero frequency problem [9], [25] arises: If for
a certainz (not one of the outer bins) we hawe = 0, should
we assume that the source has probability O of producing
samples in that range? Or, conversely, should we assume that
the set of samples is not of significant enough size? We adopt
the solution advocated, for instance, in probability estimation

is also empty), and we then “split” one of the inner
bins (e.g., the one where we observed the most samples,
¢ = arg max; n;), says, and we assigm; /2 samples to
each of the newly formed bins. Thus we choose the new
bo such that, at least based in our latest observation, we
have f(bo) = 0.

If no/(by — b)Y > ny1/(bs — b1), then clearly our
current estimate is incorrect, since we assume smoothly
decaying tails for the distribution, and we are observing
greater “sample density” in the outer bin. We have to
expand the quantizer range and thus choose the new
boundaries so that the two adjacent bins have the same
sample density; thus, we piék = b; —(no/n1)(ba—b1).

) The two previous cases occur when there is a large

enough disparity between the current estimate and the
“true” short-term source distribution. When the estimate
is sufficiently good that neither 1) nor 2) apply, we
assume that the tail of the density function is Gaussian
and we determinég so thatff(;o f(z)dx = P, refer

to [26] for the details.

for arithmetic coders, and we add one count to all countersNote that Cases 1) and 2) have to be dealt with separately,
to avoid the problem [2], [4]. Using some such technique &nce they represent situations where our previous estimates
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are incorrect. However, it is clear that, since we carry a runninghere H is the entropy estimate for theh bin at thekth
memory, Cases 1) and 2) would not occur if we updatéteration.

the quantizer sufficiently often. For instance, we note how It is important to note that once we have estimated a model
in [14], [17], where the dynamic range is estimated aft§i.e., chosen thef(z;)], the model is not modified by the
each quantized sample is received, no such situations ariggantizer design algorithm. Furthermore, since our system
However, it may not be practical to recompute the modkkeps a running memory of the counts for each bin (the
as frequently and thus 1) and 2) are needed to enableaunters are not reset to zero after the quantizer has been
less complex operation of the algorithm. It should also bedesigned), we also change the counters to adjust for the
pointed out that the estimation of the dynamic range is not aew bin sizes. Therefore, after the quantizer design stage, and
important when the more general approach is used. Finalgglling b, andn’, respectively, the new bin boundaries and the
in some cases, for instance, in image processing applicatiomgdated estimated bin counts, we have that

the boundary estimation is not as critical, since the source has

inherently finite and known range. n; = ROUND [N /
b

7
i

’
bie

f(x) da:] (12)
B. Quantizer Design for the Estimated Distribution wheren/, is rounded to the nearest integer, and we ensure that
The ideas of the previous section have provided a way df n, = N. In this manner, the bin counts are reset every
computing an estimate of the source distribution. The objectitieme the model is recomputed. This allows us to maintain a
of the next building block [see Fig. 1(b)], is as follows. running memory longer than the model update period, without

Objective 3: Redesign the quantizer for the given densityaking into account the fact that the samples were quantized
function f This can be done by using an optimal quantizewith various quantizers (typically, a different quantizer during
design algorithm that assumg?sas the input pdf. each update period).

As an example, we can design a constant rate quantizer
simply using the Lloyd—Max algorithm for the given piecewis€. Determining the Speed of Adaptation

linear approximation. The task is to choose a new set of bintpq remaining block to be defined in the encoder of

boundariest;, as well as the corresponding reconstructiopiy 1) is that in charge of determining the speed of adapta-
levelsr{, such that the expected distortion for the distributiog,, our aim here is to choose the “memory” of the algorithm
f(z) is minimized. Note that, as is the case with Huffmagq iy the following objective. ’
coding, for example, one can guarantee optimality provided Objective 4: Dynamically determine every time the
the model matches the source distribution. The algorithm ﬁxﬁﬁantizer is updated the number of past sampesthat
the outer boundarieg, and ¢}, and then uses the standardpquid be used in estimating the pdf.

Lloyd—Max design procedure [27] iteratively to find the new The errors produced by the choice of memory can be
boundaries and reconstruction levels. The only diﬁerenceggparated into the following two classes.

that f () is used to compute the optimal reconstruction levels,

i.e., the centroids of the source distribution. Thus, a) Nonsignificant dataf not enough memory is usedy(

small), we may be dealing with a nonsignificant (in a
§ 1 v statistical sense) set of data and our estimation could be
=g /k_l zf(z)ds erroneous.

o b b) Sources with memonryf the source statistics (as deter-
where mined by time averages over finite windows) change

pimt over time, then an excess of memory (large) will
sk — / i+t f(a:) dr not permit sufficient adaptivity and will result in loss of
b

k=1 performance.

1

Note that if we were quantizing an i.i.d. source with
unknown statistics, we could use a training mode operation
L . - 29] where the quantizer learns the statistics of the source
optimization since these are not decision levels and are olifYing 5 certain period of time and afterwards the adaptivity
L_Jsed for the_purpose of deﬂ-mn_g the modglr). Becausg.is switched off. Similarly, one could operate the quantizer
linear appr_OX|mat|ons to the (_:hstrlbutlon are used, determ'n'%ernatively in training and stationary modes according to
the centroids can be done in closed form, at a low COSt {fhether the current measured statistics agree with previously

co_lrphplexny. . ‘ o 4 with - rtneasured ones.
€ same Iramework can be used with a variable-rale,, o, experiments, we keep two sets of counters, one

entropy constrained design [28], where again the only molg‘1

is the centroid of théth bin, wherek is the iteration number.
Note that obviouslyb, and b are not changed in the

o : . _dccumulating the long-term statistics, the other accumulating
ification to the standard algorithm is that we operate Witfhq |atest pattern of sample distribution. We choose to use the
our estimated pdff(x). For example, the entropy estimategyq i term data to estimate the model only if the difference

required by this algorithm can be found as between short- and long-term data exceeds a threshold. In this
el way, we try to detect the changes in statistics, while avoiding

HF = —log, / flz)dx always using a short-term estimate, and thus risking having

k—1

b; to deal with nonsignificant data. Other ways of weighting the
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past are possible (and can be combined with the approaciihe estimation error of the pdf's integral over the bins will

just described). For example, in our experiments we uge down to zero, since the variance of the estimated probability

exponential weights for the past counts in long term statistiofeach bin goes to zero inversely proportionally to the number

by multiplying the current bin counts by a “forget factor” Oof sample points (see Section 111-B).

< «a < 1 before updating the counts. Let us consider the approximation problem in more detail.
First, assume that the probability density function is parametric
with & parameters. Assuming that the bins cover the region

ll. CONVERGENCE OF THEADAPTIVE QUANTIZER of support of the random variable, then we nek¢ 1

While in Section Il we proposed using “optimal” quantizePins to specify the distribution, and usually this is sufficient,
design algorithms, it should be clear that these are guarant@édpointed out in [30]. For example, a Gaussian random
to be optimal only for the set of samples on which they wenariable is specified by the probability measure on three
trained. Given that our approach entails training the quantizZgtervals covering the real line. For more complex parametric
on the fly based on paguantizedsamples, there is no reasorflistributions, the intervals might have to be chosen with some
to expect optimal behavior. In this section we study the sourcé®e, and finding the parameters from the probability measures
of error intrinsic to our scheme and analyze its asymptotf@uld be involved. In these parametric cases, we are thus able
behavior. As will be demonstrated by the examples of Sectith identify the pdf exactly from the quantized data, and can
IV with real sequences of samples, the suboptimality incurr@tain a universal quantizer for the parametric family.
is very limited, although pdfs that would make the algorithm However, there are several reasons a nonparametric approx-
fail are also possible. We will concentrate on the case #Ration such as that proposed here could be preferable. First,
a stationary memoryless input source. While the dynantige intervals over which the probability is measured in our
behavior (characterizing how the algorithm performs when tt@@plication correspond to the quantization bins. Therefore, we
local statistics of the source change) is also of interest, itHay have situations where the parametric model estimation
more difficult to analyze. Such an analysis is left for futur@roblem is ill conditioned for the given quantization levels.
work. Second, the goodness of our approximation to a certain ar-

Also, we will not compare the errors introduced by théitrary input source will hinge on how well such a source
different approaches that were presented for approximatié@n be described by our particular parametric model. Also,
f(x) with a piecewise linear function. Although we have setomplexity considerations may come into play, and we might
up a general framework for determining the approximation, wgttle for an approximation which can perform reasonably well
find the simpler approach of Section 1I-A3 to be sufficientljwithout achieving a perfect fit) for a large class of sources.
good for our purposes. All the results presented in this sectibfe quality of this approximation will depend on the number
and Section IV were obtained using the approach of Sectighbins and the interpolation function used to approximate the
[1-A3. probability density function.

Instead of a parametric family, we may only assume smooth-
ness properties on the probability density function, which
can then be used in fitting the datdote that to measure

Our adaptive scalar quantization scheme introduces ty “goodness of fit” we do not consider the quality of the
sorts of errors which, in general, preclude that the optimghproximation to the pdf, but rather the obtention a good LMQ.
quantizer for the given source be achieved. These are:  |ndeed, work reported in [30] and [33] has shown that in many

1) Modelizationor approximation erroy which results from instances a good approximation to the LMQ can be found

designing the new quantizer based on a certain modeking our method, even when a relatively high error is made in
thus optimal performance would not be achieved imatching the true pdf with a piecewise linear approximation.
general unless the input pdf exactly matches the mod@uantifying the additional mean square error (MSE) due to

2) Estimation error which results from building the modelan LMQ design based on an approximated pdf is beyond the

on the fly based on a finite memory of previous samplesgope of this work, but is an interesting question in its own
rather than based on the complete set of samples raght. Numerical evidence shown in Section IV indicates that a
required to achieve optimality. reasonable fit gives negligible errors in the cases investigated.

Ideally, if the approximation error is zero and the estimation
error goes to zero as the sample size grows to infinity, ¢ Asymptotic Performance Under Fine
would have auniversal quantizer Otherwise, the quantizer Quantization Assumption

will have a certainredundancy Let id the hiah rat that | hen th
In general, the approximation error is not going to be €l us consider now the high rate case, that 1S, when the

zero. First, we might not have enough information to get a{wmbtehr of bins gr(t)_ws to |nf|n(;t)g?gamt_aislum_er;hat t_t;e_ pdlf IS

exact fit to the probability density functiofixz). Second, for smooth (e.g., continuous and differentiable). Then, it is clear

computational reasons, we might choose an approximation to

the true probability density function (e.g., a piecewise linear3Actually, if the probability density function belongs to a certain smooth-

fit as in our algorithm). This inherent mismatch to the trugess class, e.g., Lipschitz-1, there exist estimation procedures that allow an
. . . . . .__exact fit. However, these use a number of bins that increases with the number

probability density function will lead to a suboptimal quantiz

- ) €l samples, e.g., as'/3, and they would have to be modified so as to satisfy
design during the Lloyd—Max procedure. our constant rate requirement [31], [32].

A. Sources of Error
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that the approximation error will go to zero, and again, we will . , ; . : . : —
obtain a universal scheme (but only in the limit of infinite rate). ,,,
As for the estimation error, we note that our algorithm is 4

OPTIMAL PERFORMANCE |

asymptotically optimal for an i.i.d. source, under the fine quan-g 3 LEVEL QUANTIZER |
tization assumption. In the asymptotic case, we are interested ****|
in the behavior of the algorithm as i) we gather statistics over
an arbitrarily long time, i.e.N large, and ii) the number of 85, 5 5 7 5 P 7 s 9 10
quantization leveld, becomes Iarge. INITIAL QUANTIZER (UNIFORM =1, LLOYD-MAX=10)

The statistics gathered from the decoded data become afg s, ‘ : ‘ : , : : :
bitrarily close to the true statistics of the input source as the OPTIMAL PERFORMANGE

H 6.6134
number of observc_ad samples increases. By the law of Iar%é & LEVEL QUANTIZER
numbers, for a stationary input sourceifis the total number 2156152} 1
of observed samples ang(NV) is the number of samples that&

fell in bin ¢, we have that sl )
ni(N) b . 2 2 ] : NIFORM 1‘7LLOYD ré:Ax 10 g "
. i i .
lim = f(z)dr INITIAL QUANTIZER (U , )
N—oo N iy

Fig. 3. SNR obtained after running the Lloyd—Max iteration on yﬁa’)

; ) : _ Obtained with different starting conditions for the quadratic pdf. The horizontal
Wheref(a:) is the source pdf and thig’s are the bin bound axis represents the different choices for the initial quantizer with 1 being the

aries. Therefore, the variance of the estimated statistics carubi®rm quantizer and 10 the LMQ obtained g¢igz). The top line of each
made arbitrarily small for large enough. graph indicates the performance of the LMQ design for the true pdf. The top
Also, whenL_ increases, the erfor we make in approximain2, resents he fhree bin cace, e botton one he et case Note
a smooth input pdf with a piecewise linear function decreas@$inhe eight-bin case.
This is analogous to the arguments used in high-resolution
gquantization analyses [27]. Thus, for a sufficiently large num-
ber of quantizer levels, the performance can be made arbitra ‘%
close to that of the optimal quantizer for the given input pd
and thus, quite obviously, the error due to generating the mo
based on the quantized levels can be made arbitrarily sma|
Therefore, agV and L increase, our approximation gets ar
bitrarily close to the true pdf and, thus, the resulting quantiz
is arbitrarily close to optimal.

adaptive algorithm on a known pdf (i.e., no estimation
rror). In our example (Figs. 3-5) we use a quadratic pdf
glnvolution of three uniform distributions). We first note that
e initial conditions affect the result of the iteration (refer
to Fig. 3). In the experiment we initially use a quantizer that
fd a linear combination of the LMQ for the true pdf and a
uniform quantizer. Note how the initial choice of quantizer is
o not too critical and, as should be expected, even less so in the
C. Approximation Error for Memoryless Sources case where a larger number of bins is used. Fig. 3 represents
We now look at the behavior when the source input is agdine result after using a single Lloyd—Max iteration on the
i.i.d., but we make no assumptions AnThis case is of interest approximated function. If we then use the new quantizer as
as it provides for practical cases (i.e., with small number #ifie initial condition we again observe convergence.
bins) a measure of how close the adaptive quantizer is to therig. 4 represents an example of the successive application
optimal performance. Since we noted that under stationarit§ the algorithm (with a four-level quantizer). Note that the
the measured bin counts approach those dictated by the fiitgt iteration (when the algorithm is started with a uniform
distribution, we assume here that we kng«) and we thus quantizer as the initial condition) is already very close to the
eliminate the effect of the estimation error and concentratenvergence value.
on the approximation error due to using a piecewise linearWe can also measure the performance when using the
approximationf(a:) instead of the true pdf(x). Moreover, iterative solution for different number of quantizer levels. Our
we also assume that the input pdf has known finite suppoessults are shown in Fig. 5. We observe that the iterative
so as to ignore the errors derived from the estimation of tlaplication of our algorithm converges to a unique solution.
dynamic range for a nonfinite support distribution. Furthermore we see that the loss due to the approximation
Note that the Lloyd iteration converges to a solution tharror is minimal, and diminishes as the number of levels
meets the two optimality conditions, namely, the centroidicreases. This figure shows the lower bound of the error due
condition (CC) and the nearest neighbor condition (NNC) [27fp adaptivity.
however, it is not guaranteed to converge to a globally optimal2) Discussion: Our previous example shows that the
solution. Section 1V will present examples of this behavior ihloyd—Max algorithm converges for the considered piecewise
actual sources. The following toy example seeks to isolate tleear approximation. More generally, in order for the iteration
effect of the quantized data from the error in determining the produce a global minimum, a sufficient condition [34],
dynamic range and the error due to estimating fhdrom a [35] is to have a Iog—concavé(a:). For instance a concave
finite set of past data. piecewise linear approximation can be shown to be log-
1) Example—Solution Using Lloyd—Max with Known pdftoncave and, thus, will yield a global minimum. Generally
Let us consider the iterative solution that can be obtained usisigeaking, we should expect that if a solution exists for the
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0.9 . : : : , the Lloyd—Max algorithm will probably change slightly at
each iteration, because the samples observed over the latest

o891 1 interval may give slightly different estimates fé% due to the

0.881 | estimation error.

] IV. EXPERIMENTAL RESULTS

In this section, we present several examples to illustrate the
performance of our adaptive quantization. We are concerned
with the advantages of adaptivity in situations where the input
| pdf, as measured by the local gathered statistics, changes
over time. We will also show examples for i.i.d. sources,
where we should be experiencing some performance loss due

9.82

981} | to the adaptivity of the algorithm and to various sources
. . ' ‘ of error described in the previous section. Most examples
8 15 2 LN 35 4 are provided for fixed rate quantizers at a rate of 2 b per

sample. The examples with variable rate quantization indicate
Fig. 4. SNR obtained after running successive Lloyd-Max iterations whetdie achieved SNR versus entropy trade-off. Note that we

at each stage, the true pdf is used to generate the counts that will prodH%ee th ; (22 2 2
A e normalized SNRlo %), where and o7
f(x). A 2-b quantizer is used. The resulting quantizer is used as the starti 5 (0“”/0’ ) Tz i

n : ) .
condition of the following iteration. Note that convergence is fast and that ev@r?e’ respectively, the variance _Of the S'gnal_ and_that of the
after only one iteration (with a uniform quantizer as the initial condition) therror. When we are dealing with time-varying signals, we

SNR is very close to that attained at convergence. use averages over windows as our estimates for the variance.
We use two types of sources in our experiments, memoryless
s LOWER BOUND OF LOSS DUE TO ADAPTATION Gaussian sources and “bimodal” sources, which are generated

using a Markov chain (each of the two states of the Markov
chain generates a memoryless Gaussian output).
01r B .

A. Advantages of Adaptivity

0.08r ' ] An adaptive algorithm can be useful even in the case of
& i.i.d. sources. In particular, adaptive schemes can learn the
= 0.06f ~ o 4 distribution on the fly (for instance, they could operate in
5 “training mode” part of the time, typically at the beginning of

the transmission). Furthermore, because they are not designed
for a specific distribution, they do not suffer the shortcoming
of loss of performance in the face of mismatch between the
0.021 1 actual source distribution and the one that was assumed in the
design. Examples can be seen in Fig. 6(a) and (b), where the
0 ‘ ‘ , J 1 — behavior of the adaptive algorithm and an LMQ are compared
2 ¢ e CUANTIZER LEVELS | © 1 '*  when the mean and variance of the source, respectively, do
not match those assumed in the design.

Fig. 5. Loss in performance due to the approximation error for several : : : :
numbers of quantizer levels. The curve depicts the difference in SNR betweenA second advantage of using an adaptlve algorlthm is that

the optimal LMQ and the quantizer obtained after iterating our algorithm. Notk Can outperform systems that are designed considering only
that the loss diminishes as the number of level increases. Also note that {hag term statistics, by attempting to find short-term trends

decrease is not strictly monotonic. The error incurred betwien andf(z) .
in the approximation is clearly strictly monotonic in the number of quantizéF1 the data. As an example, Fig. 7(a) shows the performances

levels, but this may not be the case as far as the loss in performance of @fethe Lloyd—Max algorithm (trained on the sequence) and
LMQ is concerned. the adaptive algorithm for a bimodal source, which randomly

switches between two states, each producing different mean
underlying pdf f(xz) then a good approximatiogf(a:) will and variance. When an i.i.d. source is considered though, the
also be well behaved. adaptive approach will be less effective although, as shown
Convergence was also observed in the experiments pir-Fig. 7(b) for a Gaussian distribution, only marginally so.
formed on real sources. In the above example, we onNote that the results we present were obtained using the
suffered from the approximation error since tli¢ were adaptive algorithm with thesameparameters for both types
computed directly from the known pdf(z). However, in the of sources (i.e., both the time between quantizer updates,
case of actual sources, the errors in estimating Wétland and all the thresholds were fixed at the same level in both
the bin boundaries would prevent a perfect convergence.dases). Fig. 8 shows that the advantage of adaptivity can
other words, even for an i.i.d. source, the quantizer obtainal$o be obtained within an entropy-constrained variable-rate
in the process of successively estimatifigz) and running quantization framework [28].

0.041- b
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Fig. 6. Comparison between adaptive and Lloyd—Max algorithms. (a) Mean O 20 BLgOCK NUMBEF?O 80 100

mismatch. The LMQ is designed for a zero mean Gaussian source. The
adaptive algorithm maintains its performance constant. The variance of the (b)
source was 1. (b) Variance mismatch. The LMQ is designed for a variance 1

Gaussian source. As the mismatch becomes significant, the adaptive algorittgn 7. Comparison of performance of Lloyd-Max and the adaptive algo-
clearly outperforms the LMQ. rithm. The SNR is the average measured over blocks of 2000 samples. (a)

When a bimodal source is considered, the performance is much better than
a Lloyd—Max design based on the complete sequence. The source switches
. between two states each producing different mean but same variahce (
B. Loss Due to Adapt|V|ty 1). (b) When a stationary Gaussian soureé & 1) is considered, the loss

In this section, we briefly discuss the performance of ogpe to the adaptation is minimal.

adaptive algorithm for i.i.d. sources, and show how the loss

due to operating with estimates of the distribution—rathefeans that all previous samples are considered at every update.
than the samples themselves as is the case in the Lloyd—Mg¥ note that, as the number of samples becomes small, the
design—is minimal. In our experiment, we use the adaptiygain factor is the “nonsignificance” error, i.e., not enough
algorithm but initialize it with the optimal LMQ trained onjformation is used in updating the quantizers. This error can
the source, rather than a uniform quantizer as is usually thg overcome by appropriate choice of the speed of adaptation.
case. In this way, since our first “guess” was optimal, the loggnversely, for long update intervals the main factor is the
in performance is due exclusively to the adaptivity. Table dyror introduced by the algorithm itself due to its manipulating
summarizes our results. quantized data, rather than the original samples as in the

In Table I, the recurrence time is the period betweanoyd—Max algorithm. This error can be seen to be very small.
consecutive quantizer updates. The memory (measured in units

of the recurrence times) represents the number of samples that
are considered to generate the new quantizer. For instance,
a memory of 1.25 implies that the previous 50 samples areWe have described an adaptive quantization algorithm,
used when the recurrence time is 40, and a memory-®f which learns the source distribution from the quantized data

V. CONCLUSIONS AND FUTURE WORK
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COMPARISON AQ AND OPTIMAL FOR BIMODAL SOURCE

T T T T T T T T T

I 1 ! : L ' L L

12 14 16 18 2 22 24 26 28
ENTROPY (BITS/SAMPLE)
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TABLE |
PERFORMANCE AT DIFFERENT SPEEDS OFADAPTATION FOR A STATIONARY
SOURCE NOTE THAT THE ADAPTIVE ALGORITHM WAS INITIALIZED
WITH THE OPTIMAL QUANTIZER AS DESIGNED BY THE LLOYD—MAX
ALGORITHM ON THE ACTUAL DATA. LMQ PERFORMANCE 159.271 dB

Recurrence time T (samples)
Memory (times T') 40 200 | 400 | 2000
1.25 8.824 | 9.157 | 9.220 | 9.259

1.67 8.903 | 9.210 | 9.241 | 9.264

2.5 9.109 | 9.240 | 9.257 | 9.266

5 9.154 | 9.260 | 9.265 | 9.267

400 9.241 | 9.264 | 9.266 | 9.267

compression, e.g., in quantization of subbands, are being
investigated [40]. Further work is needed on the problem
of estimating the boundaries and determining the speed of
adaptation.

@)

COMPARISON AQ AND OPTIMAL FOR GAUSSIAN SOURCE
15 T T T T T T T T T

(1]

] 2]

(3]
(4]

5 1 L 1 1 1 s L 1 L

1 1.2 1.4 1.6 1.8 2 2.2 24 2.6 2.8 3
ENTROPY (BITS/SAMPLE)
(b) [5]

Fig. 8. Comparison of performance of Lloyd—-Max and the adaptive algo-
rithm in the entropy-constrained case. The average entropy of the quantiz
is used. (a) When a bimodal source is considered, the performance is mu
better than a Lloyd—Max design based on the complete sequence. (b) Whm
a stationary Gaussian source?( = 1) is considered, the loss due to the
adaptation is minimal. (8]

and adapts the quantizer parameters using well-known desi(ﬁﬂ
methods. As an example, we have demonstrated adaptjvg
fixed-rate and entropy-constrained scalar quantizers that use
a piecewise linear approximation of the estimated sour
distribution and rely on the well-known Lloyd—Max and
entropy-constrained quantization design algorithms to upd {%
the quantizer parameters. Our backward adaptive algorithm
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