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Tight Weyl-Heisenberg Frames #i(Z)

Zoran Cvetkowt, Member, IEEE and Martin Vetterli,Fellow, IEEE

Abstract—Tight Weyl-Heisenberg frames in¢*(Z) are the tool had been known in the signal processing community that
for short-time Fourier analysis in discrete time. They are closely redundant short-time Fourier transforms are advantageous over
related to paraunitary modulated filter banks and are studied o isically sampled transforms in terms of providing robustness,

here using techniques of the filter bank theory. Good resolution hich is i tant i licati . Vi .
of short-time Fourier analysis in the joint time—frequency plane which 1S important in applications involving some processing

is not attainable unless some redundancy is introduced. That in the Fourier domain [7]. !n digital signal p.rocessing, we
is the reason for considering overcomplete Weyl-Heisenberg often encounter representations that are obtained as the inner

expansions. The main result of this correspondence is a completeproductsg’ Vi) Of @ signal f € g2(z) with the vectors of
parameterization of finite length tight Weyl-Heisenberg frames in a discrete-time Weyl-Heisenberg family, v ;- rather than
'U7 ¥ 2

2(Z) with arbitrary rational oversampling ratios. This parame- . ith t The di te-ti famil
terization follows from a factorization of polyphase matrices of EXPansions with respect ®., v . the discrete-ime tamily

paraunitary modulated filter banks, which is introduced first. ®, N,k IS given by

®, Nk = {Vim,l € Zgm € Z} (3)
I. INTRODUCTION
ORT-TIME Fourier analysis, as originally proposed by'her¢Zx = {0,1,---,k -1}, and
abor [1], amounts to expanding a signal with respect to vimln] = v[n — mN]ej(Qﬂ-/K)ln'
vectors in a Weyl-Heisenberg famiy, ., .., that is generated
from a single prototype window function by translating it This kind of short-time Fourier transform can be implemented

in time and frequency using modulated filter banks. An effect similar to that de-
scribed by the Balian—-Low theorem has been observed in

Loz = {Vim: Vim(2) [9], where it was shown that there are no critically sampled
=v(z —lxg)e!™*, 1€ Z,me Z}. (1) modulated filter banks with finite impulse responses that have

good frequency selectivity and allow for perfect reconstruction

using FIR filter banks.

= Z Qi Vi, ) These_ are the reasons fpr studying o_vercom!ete
Weyl-Heisenberg families of functions. Particularly interesting

are tight frames of this kind. Dealing with tight frames

is to extract information on the spectral content of the signalitomatically solves two problems associated with short-time

without sacrificing information on its localization in time. Therourier representations that were a matter of debate in the

windows proposed by Gabor were Gaussians since they attgiiszt. Namely, the problem of finding expansion coefficients

the lower bound on the localization in the time—frequendy (2) and the problem of synthesizing a signal from its inner

plane and therefore enable analysis with the best resolutigivducts with vectorsy,,,. If vectors vy, constitute a tight

in time and frequency jointly. Along with the developmentrame in the considered Hilbert spacé’*(Z) or L*(R)),

of Gabor's original scheme, it was observed that such egen the expansion and the inner product representation with

pansions inL*(R) are stable only if the expansion vectorgespect to this family are equivalent, and any signal can be

constitute an overcomplete family in this space [3], [4kepresented in a manner reminiscent of orthogonal expansions

Another incarnation of the same phenomenon is expressed

by the Balian—Low theorem [5], [6], which asserts that there f= 12( fs Vim Yim (4)

are no orthogonal Weyl-Heisenberg bases that have good & m

localization in both time and frequency. Even before these . )

results on Weyl—Heisenberg expansions were establishedVfiere is a constant factor. Furthermore, it was de_m_onstrated

by Daubechies that as soon as some redundancy is introduced,
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M-component polyphase representationVf)

I 44/ \F 4 4¢/ hf 3 -
o (Ny— i (¥ Gt o
V(z)= > z79V(z") (6)
N N -
— Hyz) [ Ny—  ylnl —(NVY— G2 j=0
x[n] 1z \*/ il N it \?d,/ x[n J
[ where
Vi(z) =Y oli+ Nl (7)
Hyg.1(z) ;/N\\ i’ \/libl Gg.1(2) . .n .
“ Qv yralnl (N ) PR The entries of the associatédl x N polyphase matrid p(z)
are polyphase components of the filtdrge/(?=/%) ), and
@ () they can be represented in terms of the polyphase components
Fig. 1. Filter banks. (a) Analysis filter bank. (b) Synthesis filter bank. of the window as
L—-1

oversampling ratios. A design example is also provided to V() = ZG @R/ Mt IN) =y, v () (8)
demonstrate that the design flexibility attained with oversam- =0
pled filter banks of this kind allows for linear-phase filters an@here L = M /N. The polyphase matrix can be factored as
significantly improved frequency selectivity over the critically Vp(2) = FrV(2) 9)
sampled case.

where F'y; is the K x K DFT matrix, and

Notation: V(z) =k - Ix] diag (Vo(z") - - - Vs -1 ("))
For a filterH(z), H(z) will denote the filter whose impulse Iy
response is the complex conjugate of the time-reversed version ) P b (10)
of the impulse response df(z). Similarly, when used with
matrices of rational functions of the complex variableH () 2~ =Dy

will denote the matrix obtained fromil(z) by transposing it, gy inspection of the above factorization, we can see that the
conjugating all of the coefficients of the rational functions igjements ofV(z) are given by

H(z), and replacing: by »=*. Iy denotes theV x N identity
matrix. V(2] = 27 Vo pmmy i (25) (11)
wherep(m,n) and g(m,n) are integers satisfying

Il. THE POLYPHASE REPRESENTATION m + plm, n)K =n + g(m,n)N

' Let ¢, n x, s given in (3), be a Weyl—Hejsenberg family plm,n) <J =1, gmn)<L—1. (12)
in £2(Z). We say thatb, n i is a tight frame in¢?(Z) if for
any f € (*(Z) Note that these equations cannot be satisfied for every pair of

integersm andn. In fact, for eachn, there are exactly =
M/K indicesm that satisfy these constraints. Consequently,
2 _ 2

all £l = Z Z 14, o) 7 (5)  there areJ nonzero elements in each row o(z) and L

1=0 m=-co nonzero elements in each columniéfz). The possible cases

If this is satisfied, any square summable sequefaan be are illustrated by the following examples.
expanded as given by (4). The inner products of a signalExample 1: K is a multiple of V. In this case,/ = 1;
with the vectorsu;,,, can be obtained at the output of & therefore, there is a single nonzero element in each row of
channel filter bank, as shown in Fig. 1(a), with filters that alé(z). For K = 6 and N = 3, we have

K-1 oo

time-reversed modulated versions of the window Vo(22) 0 0
2
H() = T(202) o wi
Viz) = 27 1Va(22) 0 QOV
whereV (z) denotes the: transform ofy. On the other hand, ) 03 i 2 1(22) 0
the signal can be perfectly reconstructed from these inner 0 ) 6‘ ) 1V4(22)
products using the synthesis filter bank shown in Fig. 1(b), TPV
where the filters are modulated versions of the window u
- Example 2: K and N are coprime. In this case) = N;
Gi(z) = V(25 ), therefore, all elements df (z) are nonzero. FoK = 3 and

o ) ) N = 2, we obtain
The parameterization of tight Weyl-Heisenberg frames will

be given here as a parameterization of polyphase matrices ) 3 Y
corresponding to associated filter banks. Bétbe the least Vi) = |27 Vale) - ),
common multiple of X and N, and letJ and L be the 2 Valz") 2TVR(2)
two integers satisfying/ KX = LN = M. We consider the O

Vo(z%) 27 1V5(2%)
z
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Example 3: K andN have a common factor other than In general, the entries dD;(2)V(z)D.,(z) are equal to
For K =6 and N = 4, V(z) is equal to
()1 e DAV D)

VO(Zg) 0 Z_l‘/ﬁ(zg) 0 _ ,—q(m,n)+q(m,0)+¢(0,n) (L 14
0 Vl(z?)) 0 Z_1V7(23) =z Vm-l—p(m,n)ls (Z ) (14)
272V(23) 0 Va(2®) 0 It follows from (12) that
0 272Vy(2?) 0 Va(2®)
Z_1V4(23) 0 Z—QVIO(Z?:) 0 (_(J(mv 7’L) + (J(mv 0) + (J(Ov n))N

0 z_lvs(z?’) 0 z_QVH(z?’) = (—p(m, ”) —i—p(m, 0) +p(07 ”))K (15)

O which implies that the delay factar-4(mm)+a(m.0)+4(0.n) jn
(14) can be only:° or . Therefore, we can write

Ill. PARAMETERIZATIONS DI(Z)V(Z)DT(Z) — U(ZL) (16)

A necessary and sufficient condition on a Weyl-Heisenber
family @, v x to be a tight frame i¥?(Z) is given by the
following proposition.

Proposition 1: A Weyl-Heisenberg family,, v i is a tight
frame in/?(Z) if and only if the polyphase matri¥p(z) is
paraunitaryVp(z)Vp(z) = aly. |

This proposition is proven for a more general case in [105,(
and it can be easily shown that the constanis equal to
redundancy of the frame, that is,= K/N.

According to the factorization in (9K p(z) is paraunitary
if and only if V(z) is paraunitary

ere U(z) is a matrix whose entries are, up to a delay,
equal to the polyphase componentsiofz). Therefore, any
paraunitaryK x N matrixU(z) gives a window functior//(z)
of a tight Weyl-Heisenberg frame. Conversely, any FIR tight
Weyl-Heisenberg frame if?(Z) with the oversampling ratio
/N can be obtained in this manner. O
Case 3)K and N have a common factor other tha¥: It
can be easily observed that the paraunitarines® ¢f) is
equivalent to the paraunitariness of its submatriées:), i =
0,---,N/J—-1, each of dimensiot x J. Note thatL and.J are

coprime, and all submatricds;(z) have the same structure, in

V(2)V(z) = iIN- terms of the distribution of delay elements, a¥ &) matrix
corresponding to a frame,, ; r. For instance, in Example 3,

Noting that some of the elements B{z)V () are identically V() is paraunitary if and only if its submatrices

zero and taking symmetries into account, it can be observed [ Vo(z%) 27 We(2%)

that the paraunitariness condition impogés- (N (J —1)/2) Vol(z) = |27 2Vs(23) Va(23) 17)
different constraints. We now investigate the implications of W) 2 Vio(2?)

these constraints for the three cases presented in the previous - 3

BRAC R CICUN

Vi(z) = |27%Vo(2%)  Va(2%) (18)
ERRZICHRE R (U

1

L—1
Z Vian(2)Vipn (z) = =, i=0,1,---,N —1. (13) are paraunitary [compare these submatrices With) in Ex-
=o N ample 2]. According to the considerations in Case 2, it follows

Therefore, the polyphase components of the window of a tig%htat paraunitariness of the submatridégz) is equivalent to

frame ®, n x with an integer oversampling factdt /N are baraunitariness of certain matrichls(z), = 0,---, N/J — 1,

. S . : whose entries are up to a delay equal to the polyphase
given as entries of any set &f L x 1 paraunitary matrices. components of (). For the matrixV/(z) in Example 3, the
Note that the power complementarity condition in (13) means P ) z pie s,

that Vi(z). Visx(2), -, V(o) (=) are polyphase compo- corresponding matrice§;(z) are given by

section.
Case 1)K is a multiple of N: V(z) is constrained only by

nents of a filterF;(z), which is orthogonal to its translates by [Vo(z)  Vs(2) |
multiples of L [2]. O Uo(z) = | Ws(2) 2Va(z)
Case 2)K and N are coprime: In this case, the polyphase |Va(z)  Vio(2) |
components ofV’(z) are, up to a time delay, equal to the Vi(z)  Vi(z) ]
entries of a full X' x N paraunitary matrix. In order to show Ui(z) = |Volz) 2Va(z) |. (19)
this, we need to transforr(z). Let D,.(z) and D;(z) be Vi(z) Vii(2)

diagonal matrices of monomials selected so that the elements ) )
in the first row and the first column dP,(z)V(z)D,(z) are 1herefore, a prototype lowpass filte¥(z) of any tight
equal to the polyphase components¥fz). These matrices Weyl-Heisenberg frame with the oversampling rafiy v

are given byD;(z) = diagl,2419, ... »(K-10) gnd can be obtained fronV/J paraunitary matrices of size x .J
D.(z) = diag(qu(o,l)’ . Zq(o,N—l))_ For instance, for the by identifying their entries with thé/ polyphase components
matrix V(z) in Example 2,D;(z) = diag1, 22, 2), D,.(z) = of V(). o o
diag(1, z), yielding Further parameterizations of rectangular paraunitary matri-

ces follow immediately from the parameterizations of square

. V(J(Zz) }))/3(23% paraunitary matrices studied by Vaidayanathan [2] and from
Di(2)V(2)D(2) =U(z") = V4(753) # Vl(:f ) the fact that anyL x J paraunitary matrix(L > J) can be
Va(z®) - Vs(27) embedded into a, x L paraunitary matrix [10], [11].
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IV. DESIGN EXAMPLE

.
The results presented in the previous section provide a

complete parameterization of tight Weyl-Heisenberg framés
of finite support iné?(Z%) for any given rational oversampling %6
ratio. Design of tight frames of this kind then amounts to an.-
optimization procedure under these constraints.

The critically sampled cas® = K gives tight frames with

0.2

no redundancy, that is, orthonormal bases. From the conditiofy
given in (13), we have thab, k x is an orthonormal basis
only if 1

‘h}i(z)%(z):cvizovlv"'vK_1' (20) o8r
This result has two-fold implications. First, short-time Fourie(r)'aﬁ
analysis with critical sampling does not allow for overlap$*/
between analysis windows. This creates blocking effects db
some processing in the Fourier domain followed by synthey,

sis is to be done. The other disadvantage of orthonormaP

1259
rectangular window, length=16
T T
I i I /—\\
0.05 01 0.15 0.2 0.25
a tight frame window, length=64
T T
f /\/\ ; . —
0.05 0.1 0.15 02 0.25

Weyl-Heisenberg bases is that the only admissible winddue. 2. Magnitude responses of the windows for tight Weyl-Heisenberg

is the rectangular window of Iengtﬁ which is not sufficient frames in¢2(Z). (Top) Sixteen-tap rectangular window for the orthonormal
! basis®,,16,16. (Bottom) Sixty four-tap window for ab., & 16 tight frame.

for good frequency resolution [9]. In the oversampled case
(N < K), no similar restriction is imposed on the window

length. The acquired design freedom is illustrated by trdso demonstrated through a design example that redundant

following example.

Example 4: Consider the case& = 16 and N = 8.
With the additional requirement that the prototype filtéfz)
is symmetric, the design consists of finding a set of eight
filters Ly(z),¢ = 0,---,7, each of which is orthogonal to
its translates by integer multiples of 2. These filters canyj
be represented in terms of their polyphase components as
Fi(2) = Fio(22) + 2~ LFy1 (22). Let g
15 [3]
Z Z_iVi(ZIG)

=0

V(z)

(5]

be the polyphase decomposition &f(z). The design con- -

straints are then satisfied by taking
VZ(Z) = .Fio(Z), Vi+8(z) ‘Fil(z)v

and the remaining polyphase componeFi§z) as the time-
reversed versions ofi;_;(z), respectively. The filtery  [&]
obtained in this way is a symmetric window of a tight [9]
Weyl-Heisenberg frame, s 16. The magnitude response of
an example window of this kind, with 64 taps, is shown in thE-%]
bottom part of Fig. 2. The magnitude response is plotted jiy)
the frequency range from 0-0.25 of the sampling frequency.
For comparison, the top part of Fig. 2 shows the magnitude
response of the rectangular window of length 16, that is, the
window of the orthonormal basi®,, 16 16.

i=0,1,2,3

Weyl-Heisenberg families allow for windows with improved
frequency selectivity over critically sampled ones.
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