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Oversampled Filter Banks

Zoran Cvetkowt, Member, IEEE and Martin Vetterli,Fellow, IEEE

Abstract—Perfect reconstruction oversampled filter banks are i.e., orthonormal and biorthonormal baseg36Z) [5], [6]. In
equivalent to a particular class of frames inf*(Z). These frames this paper, we study the class of frames/iZ), which are
are the subject of this paper. First, necessary and sufficient oqjivalent to perfect reconstruction oversampled filter banks.

conditions on a filter bank for implementing a frame or a o f th . f tudvi let
tight frame expansion are established, as well as a necessary "€ Of theé main reéasons for studying overcompiete ex-

and sufficient condition for perfect reconstruction using FIR ~pansions is that the requirement for orthogonality or linear
filters after an FIR analysis. Complete parameterizations of independence of expansion vectors imposes considerable con-

oversampled filter banks satisfying these conditions are given. straints that can be in conflict with other design specifications.
Further, we study the condition under which the frame dual to Perhaps the most striking example is the fact that Gabor

the frame associated with an FIR filter bank is also FIR and give a Vi ith d ti f lution i ibl
parameterization of a class of filter banks satisfying this property. analysis with good time—frequency resolution Is not possible

Then, we focus on nonsubsampled filter banks. Nonsubsampled With orthonormal bases [7], [8]. For a number of applications,
filter banks implement transforms similar to continuous-time orthogonality is indeed not needed. For instance, it is hard
transforms and allow for very flexible design. We investigate tg pelieve that orthonormal representations occur anywhere in
relations of these filter banks to continuous-time filtering and e and that they would be appropriate for modeling biolog-
illustrate the design flexibility by giving a procedure for designing . h
maximally flat two-channel filter banks that yield highly regular ical systems or natural phenomena. Redundant representations
wavelets with a given number of vanishing moments. followed by a sophisticated selection of information can even
yield good compression schemes. This has been demonstrated
by Mallat and Zhong with their wavelet modulus maxima
) i ~signal compression algorithm [9]. The matching pursuit algo-
HE IDEA OF localized time—frequency representationgthm, studied also by Mallagt al. [10], is another example. It
was introduced in the 1940’s by Gabor [1], who progs hased on the idea that there is a greater chance for finding
posed decompositions of signals ##(R) in terms of mod- compact signal representations if the dictionary of vectors at
ulated Gaussians, given that they attain the lower bougdy gisposal is richer. The full potential of these algorithms
on the uncertainty in the joint time—frequency domain anghs not been assessed yet; however, they already give results
thus facilitate signal analysis with good resolution in boﬂf!omparable with standard compression schemes [11].
time and frequency. Expansions based on different kinds ofrne jssues on overcomplete expansions that we investigate
time—frequency localized waveforms have been subsequeilfe are related to the completeness and the stability of

used in physics, geophysics, and signal processing. Ho¥mhand decompositions provided by oversampled filter banks.
ever, only in the 1980’s have they received a thorough ajpdl particular, we investigate

rigorous treatment. One of the important results was the,
discovery of the relationship between wavelet expansions
in L2(R) and their discrete-time analog, which had been
developing independently in the framework of filter banks after an FIR analysis:

and subband coding. Namely, wavelet based.#(R) can . the design of oversarﬁpled filter banks:

be generated from iterated filter banks [2], and these filter the relation to continuous-time signal a{nalysis
banks can be used for the efficient computation of correspond- ) ) ’
ing continuous-time wavelet expansion coefficients [3]. THaeneral results regarding oversampled filter banks, such as the
theory of time—frequency localized representationd.#{R) fram_e and the tight fr_ame conditions, are given m_Sectlon M.
has been developed beyond linearly independent expansio?f’s‘,:t'on Il also prowde_s complete parameter_lzatlon§ of FIR
focusing on redundant expansions based on Weyl—Heisenb@fgr Pank frames and tight frames. Parahermitan unimodular
and wavelet frames [4]. However, the theory of filter banK@atrices of polynomials give FIR filter bank frames whose

has been primarily confined to the critically sampled casgual frames also consist of finite length vectors. A complete
parameterization of these matrices is also given in Section IlI.
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when used with matrices of rational functions of the complex

variablez, H(z) will denote the matrix obtained frofH(z) by 1 Ho@® ~® Yoln] 4@— Go@
transposing it, conjugating all of the coefficients of the rational -

functions inH(z), and replacing: by »~1. If H(z) = H(z), | H@ <:> yq[nl <:>_ G,

we say thatH(z) is parahermitian. A polynomial matrix *n! — YD xn)

H(z), whose determinant is a nonzero constant, is called a
unimodular matrix. A matrixH(z) is said to be paraunitary

if H(z)H(z) = cI, whereI is the identity matrix, and:

is a (cgnsia%t. Note that in this paper we will use the term | Hiea®) G yiatn) —(Nf) ) Gra® L]
polynomialfor Laurent polynomialsin general, that is, FIR @ ®)
filters H(z) = 3.~ h;z" that contain possibly both positive _ i _ _ _ C
and negative powers of. The complex conjugate transpos{g'/fr;alj‘si'scﬁﬁ‘tg?eg;'f E’S”é%'ttﬁ;‘fsbsfﬁgpgﬁﬁy factdrin the channels.
of a vectorv will be denoted as/*; when used with scalars,

the « superscript will denote complex conjugation.

Frames® and¥ have interchangeable roles so that any signal

in #2(Z) can also be expanded as
Il. FILTER BANKS AND FRAME EXPANSIONS (Z) P

The theory of filter banks [5], [6] provides a convenient P

framework for both the study and the implementation of an o] = Z Z (@, i )i in]- (6)
important class of signal decompositions #A(Z). These =0 U=

are expansions underlying signal analysis through a slidirgr a given analysis frame, the corresponding synthesis
window using a selected set of elementary waveforms. frame W in (6) is not unique. One particular solution is the

general, they have the form frame dual to® [12]. When a signal is synthesized from
Kol oo expansion coefficients degraded by an additive noise, the
o[n] = Z Z e piiln] (1) noise component that is orthogonal to the range of the frame
)7 expansion, is projected to zero, provided that the synthesis is

=0 j=—o0

performed using the dual frame. No other synthesis frame has
where the vectors; ;[n] denote the translated versionsigf this maximal noise reduction property.

elementary waveforms If the frame bounds are equali(= B), we say that the
‘ frame is tight. It can be shown that under this condition, the
¢ij[n] = @iln — jN] frame® is equal to its dual. Hence, the expansion formula (1)

. . . _has a form similar to orthogonal expansions
and N < K. Any signal in¢?(Z) can be represented in a m g xpansi

numerically stable way using such an expansion if and only 1 Bl o>
if the family ® o) =5 D D (weineislnl. 7
=0 j=—o0

e = {%j Lpigln] = eiln ij] However, unlike an orthogonal basis, vectors of a tight frame
i=0,1,.... K -1, jeZ} (2)  are generally not linearly independent.

constitutes a frame i*(Z). Here, we briefly review results off The inner products of a signal with the vectors of the

the frame theory that are relevant for this paper. This revie(\:i?,/]rglrl%e(lb’ﬁlg’r(pég%kcmthbesuobbst:::eﬁn at Jhefa%l:é?uitn Oéf;h
is based on the treatments given in [2] and [12]. pling by

. . . . of the channels [see Fig. 1(a)]. The impulse responses of the
A family of vectors® given by (2) is said to be a frame.. ) .
if for any & € £2(Z) filters Ho(z), Hi(2),...,Hx_1(z) of such a filter bank are

the complex conjugates of the time-reversed versions of the

K—1 oo elementary waveformg;, h;[n] = ¢ [-n],i=10,1,..., K —
Allz|)? < Z Z [z, i )|* < Bllz|? (3) 1. If @ is a frame, the filter bank associated within this
i=0 j=—o0 way is said to implement a frame expansion, @nds called

its associated framer a filter bank frame Note that® can
be a frame only if¥ < K, and we assume this condition
?hroughout this paper. Critically sampled filter banks are those
U = {hij : i ;[n] = Pi[n — jN] where N = K, whereas the term oversample_d filter banks
i—0.1 K-1,j€eZ) @) refers to the casﬁf_< K. Infilter bank terms® bgmg aframg
ey ’ means that any signal can be reconstructed in a numerically
such that the coefficients of the expansion in (1) can istablé manner from the subband components obtained at the
calculated as inner products with its vectors, that is outputs of the associated filter bank. This reconstruction is
implemented using a synthesis filter bank such as the one

for some constantd > 0 and B < oo, which are calledrame
bounds If the family ¢ is a frame, there exists another fram

K-1 oo

z[n] = Z Z (10 )i i [n] (5) 1Stable reconstruction means that a bounded perturbation of subband com-
¢ ) P ISy U ponents cannot result in an arbitrary large error and that a small perturbation
i=0 j=—o0 can cause only a small reconstruction error.
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shown in Fig. 1(b). If the impulse responses of the filters Theorem 2: A filter bank implements a tight frame expan-

Go(z),...,Gx_1(z) of the synthesis filter bank are equal tasion if and only if its polyphase analysis matrix is paraunitary
the waveformsy;, that is, g;[n] = v;[n], then this filter bank H(z)H(z) = cL
implements the synthesis formula In this paper, we are primarily interested in FIR filter banks.
However, note that Theorems 1 and 2 are also valid for IIR
K-1 oo filter banks if we assume stable filters (not necessarily causal).
zln] = Z Z yiln — ki ;K] (8) The proofs go along the same lines as in the FIR case.
i=0 j=—o0 Another formulation of the frame condition is given by the

following corollary of Theorem 1. The proof of this corollary

where y;[n] denotes the sequence at the input of #hie is straightforward and will not be given here.
channel. Corollary 1: A filter bank with the polyphase analysis

The scope of frames i#*(Z) that can be derived from matrix H(z) implements a frame expansion if and only if
filter banks goes beyond families of vectors of the typgere exists a matri(z) of stable rational functiondwhich
given in (2). An abundance of frames can be generated fgya left inverse ofH(%)
iteratively growing filter bank trees in the manner used for
generating wavelet packets [16]. The significance of iterated G(2)H(z) = L. (12)

filter structures is that they can produce waveforms with almost . . L . - .
q]ne convenience of this formulation is that it explicitly gives

any reasonable localization in the time—frequency plane, whic . . ; )
. L L ! synthesis frame corresponding to the frame associated with
allows for signal analysis with a great flexibility of time an e :
he analysis filter bank. Namely, the left inverse

frequency resolutions.

Goo(2) o Gr—no(?)
_ Gor(2) Gr—11(2)
I1l. GENERAL RESULTS ON OVERSAMPLED FILTER BANKS G(z) = ( S) (13)
Gon—ny(2) +++ Gr_iynv-1)(#)

A. Frame Conditions in (12) is the so-calledynthesis polyphase matriits entries

The frame conditions on an oversampled filter bank will bare the polyphase components of filters of a synthesis filter
expressed here in terms of properties of its polyphase analysék [Fig. 1(b)], which can be used for perfect reconstruction

matrix. In the case of d(-channel filter bank of a signal from the decomposition obtained at the output of the
analysis filter bank. The synthesis filters are given in terms of
{Ho(z),H1(2),...,Hx—1(2)} entries of G(z) as
N-1
and a subsampling factaV [see Fig. 1(a)], the polyphase Gi(z) = Z 277G (2N) (14)
analysis matrixH(z) is defined as =0
Heol Ho v (2 [note the inversion of the powers efwith respect to (11)].
Hoogjg o HO(AT 1)8 If the frame condition of Theorem 1 is satisfied, the solution
H(z) = L0V HN=1 (9) for G(z) of the polyphase equation (12), and, hence, the

Hicoipol) - Higopiv-n(2) synthesis filter bank, is not unique in the oversampled case

(N < K). This is in accordance with the fact that for a
given analysis frame, the corresponding synthesis frame is not
where . . ; .
unigque. One solution folG(z) is the parapseudoinverse of
+oo H(z), which is given by
H;;(z)= hi[nN —j]-2z7" 10 - -
()= 2 W) (0 H* (2) = (F(=)H(2)) " H(2). (15)

) . It can be easily verified that the frame corresponding to
represents thgth polyphase component éf;(z). The analysis G(z) = H*(z) is the frame dual to the frame associated

filters are given in terms of their polyphase components by "the analysis filter bank. The following theorem gives a
Net necessary and sufficient condition for an FIR filter bank frame
—~ r to have the dual consisting of finite length filters. It is proven
Hi(z) =) 2 - Hij(z"). 1D Appendix C. ° ° P
= Theorem 3: For a frame associated with an FIR filter bank

The necessary and sufficient frame and tight frame co\ﬁv!th _the polyphase analysis matrikl(z), its dual frame

ditions are given by the following two theorems, which argonss;s IOf finite length vectors if and only ﬁ(z)H(z) Is
: : . unimodular.
proven in Appendices A and B, respectively. .
Theorem 1: A filter bank implements a frame expansion if Note that in .the oversampled case, T.hecl>rem 3 does npt
and only if its polyphase analysis matrix is of full rank OrPreclude the existence of an FIR synthesis filter bank even if

the unit circle. 2These functions need not be causal.
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H(z)H(z) is not unimodular. However, due to the aforemen- A complete parameterization of FIR filter bank frames
tioned reasons, we put the emphasis on reconstruction usialipws directly from the Smith form and is given by the next
dual frames. proposition.

In the critically sampled casél = N), the situation is  Proposition 1: An FIR filter bank implements a frame
different. The frame associated with a perfect reconstructiexpansion if and only if the polynomials on the diagonal of
critically sampled filter bank is a Riesz bases [6Y#i(Z). The the Smith form of its polyphase analysis matrix have no zeros
corresponding synthesis frame, i.e., the left inversH@£), is  on the unit circle.
unique, and it is the dual of the analysis frame. The following This proposition follows from the fact that the polyphase
result on critically sampled filter banks can be established amtrix and its Smith form have the same rank on the unit circle
a corollary of Theorem 3. since they are related by elementary row (column) operations.

Corollary 2 [6]: Perfect reconstruction with FIR filters af-Hence, the filter bank implements a frame decomposition if
ter an analysis by a critically sampled FIR filter bank iand only if its Smith form is of full rank on the unit circle
possible if and only if the determinant 8f(z) is a pure delay. and that holds if and only if the polynomials on the diagonal

have no zeros on the unit circle.
B. Parameterization of Frames i?(Z) An important class of FIR filter bank frames are those that

The parameterization of filter bank frames given here I%Eve duals consisting of finite length vectors. According to
based on the Smith form of polynomial matrices [13]. A eorem 3, these are equivalent to polynomial matrkis)

polynomial matrixH(z) of dimensionk x N (K > N) can such thatH(z)H(z) is unimodular and positive definite on the
be decomposed as the product - unit circle. A parameterization of these frames is given by the

following proposition.
H(z) = R(2)D(#)C(») (16) Proposition 2: Consider an oversampled FIR filter bank
with the polyphase analysis matrB(z). H(z)H(z) is uni-

whereR(z) andC(z) are unimodular matrices of dimensionsynoqular and positive definite on the unit circleH(z) can
K x K and N x N, respectively, andD(z) is a diagonal pe written as

K x N polynomial matrix

) 0 L 0 - H(z) = HR(2)D(2)C(z) (18)
0  do(z) ... 0 where the factorsHy, R(z), D(z), and C(z) have the
following forms.
D(z)=| 0 0 ... dn(2)]. (17)  « Hyis aK x N matrix of scalars, such th&,Hy = L.
0 o ... 0 + R(z) andC(z) are N x N unimodular matrices, which
0 0 0 are products of finitely many elementary matrices.

- * D(z)is anN x N diagonal matrix of nonzero monomials.

The unimodular matrices can be chosen so that the pofyn the other hand, any unimodular parahermitian matrix of
nomials d;(z) are monic, and;(z) is a factor ofd,;41(z). polynomialsP(z), which is positive definite on the unit circle,
Such a matrixD(z) is called theSmith formof H(z). The can be factored aP(z) = H(2)H(%), whereH(z) is of the
unimodular matrice®R(z) and C(z) are products of finitely form given in (18).

many elementary matrices This result is proven in Appendix D.
For perfect reconstruction using an FIR filter bank after
R(z) = Ru(z)Ra2(2) - Rin(2) analysis with an FIR oversampled filter badk(z)H(z) need
C(z) = C1(2)Ca(z) - Cp(2). not be unimodular. A necessary and sufficient condition for

the feasibility of an FIR synthesis is given by the following

The elementary matriceR;(z) and C;(z) correspond to a{)roposition. It is proven in Appendix E.

elementary row ahd column operations, respectively, and h Vquoposition 3: Perfect reconstruction with FIR filters after
one of the following forms: analysis by an FIR filter bank is possible if and only if
* a permutation matrix, i.e., the identity matrix with perthe polynomials on the diagonal of the Smith form of the
muted rows; polyphase analysis matrix are monomials.
+ adiagonal matrix with elements on the diagonal equal t0 As it was shown in the previous subsection, tight filter bank
unity, except for one that is equal to a nonzero constafames are equivalent to paraunitary polynomial matrices. A
* a matrix with ones on the main diagonal and a singlg x ' paraunitary matriX & > ) can always be embedded
nonzero entry off the diagonal, which is a polynomiahto a K x K paraunitary matrix [15]. The following pa-

a(z). rameterization of rectangular paraunitary polyphase matrices,
An example of the three types dfx 4 elementary matrices that is, tight filter bank frames, follows directly from one of
is given as follows. the factorizations of square paraunitary matrices studied by

10007 00071 000 Vaidyanathan [5]. _ _

00 0 1 010 0 0 1.0 0 ~ Proposition 4: A K'xN (.K_ > N) polynomial ma_t_rle(z)

001000 col|az) 010 is paraunitary if and only if it has the decomposition

0100 oo 1 0 00 1 H(z) = Va(2)Var_1(2) -+ V1(2)Hy. (19)
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Corollary 3: A nonsubsampled filter bank implements a
—  Ho@ ——  yolnl —— Gyl2) frame decomposition if and if only its analysis filters have
no zeros in common on the unit circle.

The frame condition does not guarantee that FIR recon-
| @ = bl —— G struction is possible.
x[n] — x[n} . . .

Corollary 4: Perfect reconstruction using FIR filters after
an FIR analysis by a nonsubsampled filter bank is possible if
and only if the analysis filters have no zeros in common.

This result is a corollary of Proposition 3. As a special
case of Theorem 2, we have the following result about
nonsubsampled filter banks and tight frames.

@) () Corollary 5: A nonsubsampled filter bank implements a
Fig. 2. K—(_:hannel nonsubsampled filter bank. (a) Analysis filter bank. (tﬂght frame expansion if and 0n|y if its ana'ysis filters are
Synthesis filter bank. power complementary.

Ho(z)ffo(z) + Hy (z)fh(z) +-- 4+ HK_l(z)ﬁIK_l(z) =c.
(23)

In the case of nonsubsampled filter banks, only if a frame
associated with an FIR filter bank is tight does its dual frame
consist of finite length vectors. This result is an immediate
corollary of Theorem 3.

Corollary 6: For a frame associated with an FIR nonsub-
IV. NONSUBSAMPLED FILTER BANKS sampled filter bank, its dual frame consists of finite length

' : .yectors if and only if the analysis filters are power comple-
Nonsubsampled filter banks have several nice propert|%:§éntary' that is, if and only if the frame is tight.

Constraints for perfect reconstruction are mild and allow
for very flexible design. The highly redundant represen?—“
f

L | Hga®@ | ygqn] — | Gka(@

The elementary building block¥’; (=) have the form
Vi(z) =1 —v;vi+ 27 vvi (20)

where v; denotes a unit norm vector, add, is a K x N
matrix of scalars such thdlyHy = cI.

SNonsubsampled Filter Banks and Continuous

tions they generate can be close discrete-time approximatior] ) .
Y 9 Pp me Signal Analysis

of continuous-time transforms. Examples of applications f
which that property is crucial are applications based on waveletA nonsubsampled filter bank, as shown in the following,
modulus maxima representations, which are proposed by Mgives samples of continuous-time transforms of a signal in
lat et al. [18] for singularity detection, signal denoising,L*(R), provided that an appropriate discrete-time version of
and compression, and which use nonsubsampled filter bati@ signal is available at the input. In this subsection, we
as the preprocessing tool. Nonsubsampled filter banks aidentify the underlying continuous-time filters. An important
find their place in applications that require shift-invarianparticular case is that of two-channel octave band iterated filter
representations, a requirement that conflicts with subsamplipgnks that yield samples of the continuous wavelet transform.
in the filter bank channels [17]. The discretization of a continuous-time signal I#(R)
usually amounts to projecting it onto @pproximation space
V.., which is spanned by translates of a single functjgs)

. . ) » calledthe generating functiariThe generating function should
In this subsection, we discuss the frame conditions for t@%tisfy a conditiof

case of nonsubsampled filter banks, as well as the condition

A. General Results on Nonsubsampled Filter Banks

for the feasibility of an FIR synthesis after an FIR analysis. 0<a< Z |p(w + 2km)|* < B < 0 (24)
The polyphase analysis matrix of a nonsubsampled filter keZ
bank [see Fig. 2(a)] is a column vector whose entries are tiiich means that its translates by integer shifts constitute a
analysis filters themselves Riesz basis fol/,. The projectionf,(z) of a signalf(z) onto
T V., can be represented by a sequerfg@:] that consists of
H(z) = [Ho(z) Hi(z) -+ Hx-1(2)]". (21) coefficients of the expansion
Perfect and stable reconstruction is possible, provided that fplz) = Z foln]e(x —n). (25)
there exist stable filter&y(z), G1(2), ..., Gx—1(z) such that n€Z

The sequencé,[n] is a discrete-time version of the signal and
Ho(2)Go(2) + Hi(2)G1(2) + - + Hx-1(2)Gr-1(2) = 1. s optained by samplingf(z) prefiltered by an appropriate
(22) filter ¢(x)

+oo
In that case, reconstruction is performed by a synthesis filter fsln] = / f(@)p(n —x)dx. (26)
bank with the filters7;(z) [see Fig. 2(b)]. The necessary and —o0

sufficient condition for the existence of such filters is given by 3|, this paper, the Fourier transform of a signfilz) will be written as
the following corollary of Theorem 1. Flw).
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fl s 4
HI(Z) — L3
f
f H() |
f3
Ho(2) H ) —
2 f4
Ho(Z) HI(ZS) — - * -
Hy(z*)
f5 ° o * - -
HO(ZS) I - - - - - L 3 - - - - -
a5

Fig. 3. Octave band iterated filter bank for discrete-time wavelet transform
of depth J = 4. (@

Integer translates of the time-reversed versior@f) consti- AR EERS A EE R R R X I I N
tute another basis fdr,, which is dual to{p(z — n),n € Z}
[19]. The projectionf,(x) can be alternatively represented as

ncZ
+OO - & & ® & & & & & & > & & ® & ® & & & & &

Shannon’s sampling occurs when the approximation space is ()

the space of bandlimited signals generated by translatesFBf 4. Sampling grids of the continuous wavelet transform implemented by
discrete-time processing. (a) Grid corresponding to the two-channel critically

the sinc funCtion_- AnOther particul_ar case is th%_ SPace  sampled filter bank. (b) Grid corresponding to the two-channel nonsubsampled
of Mallat's multiresolution analysis, withp(z) being the filter bank.

correspondingscaling function For a detailed analysis of

various aspects of generalized sampling, refer to the work : L
Unser and Aldroubi [19]. fﬂIer bank yields samples, up to a multiplicative factor, of the

. - . . . . continuous wavelet transform . The continuous wavelet
For a continuous-time signgf(z) discretized as in (26), glz)

consider a subsequent processing by the nonsubsampled fﬂtaerr]Sform of f() for & waveletj(z) is defined as

bank {Ho(z), H1(#2),..., Hx_1(2)}. The subband compo- Sl
nents fi,k = 0,1,2,... K — 1 generated by the filter bank CWTy(a,b) = /_Oo o (0)f (@) dx (32)
are given in the Fourier domain by
F e ” 5 ) where v, ;,(z) = == (%=%). The sequencey[n], which is
Jwy — jw : Va’\"a
Ji(e’™) = Hle )Z Hlw+2nm)dlw +2nm). (29)  Gpiained in thekth channel (see Fig. 3), is the sequence of

nez samples
This expression indicates that the filter bank performs regular -
sampling of signals obtained by filtering(z) by a set of Fuln] :/ f(x)izﬁ(n —a:) i (33)
filters wo(z), ¢1(x),...,px—1(x). These filters are given in oo 2k 2k
the Fourier domain as i ,
o where(z) is the wavelet given by
or(w) = Hiy(*)p(w). (30) X e w
=Hi(e2)pl=). 34
This characterizes the continuous-time transforms that underly () 1(6 )¢(2> (34)

the nonsubsampled filter bank analysis in the given appro)?iherefore, the octave band iterated filter bank of depth

matlon spacey/@. . . . rovides the samples of the continuous wavelet transfatm
An interesting particular case is wavelet analysis impl he grid given by
e

mented using an iterated two-channel filter bank, such as t
one shown in Fig. 3. Suppose that the lowpass filfg(z) of (a,b) € {(20,5):i=1,2,...,J jeZ} (35)
this filter bank is regular, i.e., that the infinite product

n Besides sampling the continuous wavelet transform on a
lim H HO(@J'Q_Sw) (31) denser grid as compared with a critically sampled filter bank
nUee i (see Fig. 4), a nonsubsampled filter bank allows for a more
flexible design. This flexibility is demonstrated in the next

converges todA)(w), which is the Fourier transform of ag psection

continuous-time functionp(z) € L?(R). If this particular
¢(x) is used in the discretization given by (26), then the *we assume that the wavelg(x) is real.
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TABLE | 1 1
AUTOCORRELATION FUNCTIONS OF THE LOWPASSFILTERS H () FOR POWER © o

COMPLEMENTARY NONSUBSAMPLED FILTER BANKS(Ho(z), H1(z)). THE 208 £08
AUTOCORRELATION FUNCTIONS ARE GIVEN FOR SEVERAL FILTER LENGTHS L Zo6 o6

AND WITH DIFFERENTMULTIPLICITIES N1 OF THE ZERO AT 2 = 1 OF THE ° ©
HiGHPASS FILTERS H 1 (z). THE AUTOCCORELATION FUNCTIONS ARE SYMMTRIC § 0.4 é 0.4

So ONLY THE FIRST L OuTt OF 2L — 1 COEFFICIENTSARE GIVEN IN THE TABLE §>02 %0 »

L | N Ho(z)Ho(z_l) € &

41 1 ?% [1,6,15,20] % 51 o0z o3 o4 % o1 o0z 03 oa

4 2 55 [—1,0,9, 16] normalized frequency normalized frequency

5 1 & (1, 8, 28,56, 70]

5 2 o [—23, —8,12,72,110] @ (®)

6 1 1o (1,10, 45, 120, 210, 252] 1 1

6] 2 3 [-1,-5, -5, 20,70, 98]

61 3 45 13,0,-25,0, 150, 256] Bos 208

7 1 51z (1,12, 66, 220, 495, 792, 924] § §

7 2 51z [—5, —36, —90, —20, 405, 1080, 1428] 206 206

7] 3 5tr [5,12, —30, —100, 75, 600, 924} 3 04 §o.4

8 1 7ir [1, 4,91, 364, 1001, 2002, 3003, 3432] = £

8| 2 otv [-3, —28, —105, —168, 77, 924, 2079, 2640] So0.2 g0.2

8| 3 17 (15,70, 21, —420, —665, 1050, 4725, 6792]

81 ¢ 31z [5,0,49,0,-245,0,1225, 2048) % o1 o0z 03 o4 % o1 o2 03 o4

9 1 2% [1,16,120,560, 1820, 4368, 8008, 11440, 12870] normalized frequency normalized frequency

9 2 515 [—7, —80, —392, —1008, —1092, 1456, 8008, 16016, 19734] q

9 3 515 [21, 144,280, —336, —2100, —1904, 5544, 18480, 25278] © @

9 4 %{—s [-35, —80, 280, 784, —980, —3920, 1960, 19600, 30318] Fig. 5. Magnitude responses of power complementary filters for generating
10 1 s1s [1,18,153, 816, 3060, 8568, 18564, 31824, 43758,48620]  \avelets with two vanishing moments. The length of the filtetk is 9, and
10 | 2 i [-2,-27, 162, —552, —1080, —756, 2184, 8424,15444,18590]  the highpass filters have a zero of multiplic§i = 2 atz = 1 in all cases.
0] 3 51 [7, 63,207, 168, —756, --2268, --1092, 6552, 18018, 23738] (a) Maximally flat power complementary filters; lowpass filter Hés = 7
10 4 st (- 14, —63,18, 504,504, ~1764, —3528, 3528, 19404, 28358] 76105 at: = —1. (b) Power complementary pair; lowpass filter Hég = 6
E air [35, 0, —405, 0, 2268, 0, —8820, 0, 39690, 65536]  zer0g at: = —1. (c) Power complementary pair; lowpass filter hég = 5

zeros atz = —1. (d) Power complementary pair; lowpass filter idg = 4
zeros atz = —1.

C. Design of Wavelets from Maximally Flat Filter Banks

The popularity of wavelet analysis comes mainly from its Consider a pair of filters{y(z) and H,(z) satisfying
ability to locate and characterize different types of singularities Ho( N Ho (21 + Ho (D H: (2~ = 1 36
(see [18] for a review). In such applications, nonsubsampled o) Ho(z™) + Hy(2)H(=7") (36)
filter banks are not only convenient for implementation in Ho(=1) =0, Hi(1)=0. (37)
discrete time but also give rise to a broad spectrum of wavelgtshe multiplicity of the zeros ofHo(z) at z = —1 is Ny and
that can be derived from iterated octave band trees. Note thgd multiplicity of the zeros of1(z) at z = 1 is Ny, then
for singularity detection and discrimination, it is important t@ne filters have flatnes&, — 1 atw = 7 and flatnessV; — 1
use wavelets with a given number of vanishing moments aggl,, = 0. In designing maximally flat filters, the issue is to
a certain high degree of regularity. maximize Ny + N; for a given filter lengthZ. This is dealt

The procedure for wavelet design from a two-channglith in the following proposition.
filter bank {Ho(z), H1(z)}, pioneered by Daubechies [2], is proposition 5: For a pair of filters Hy(z) and Hy(z) of
basically described by (31) and (34). The regularity of thength L, satisfying (36) and (37), leV, be the multiplicity
derived wavelet is closely related to the multiplicity of zerogf the zeros offy(z) atz = —1, and letlV; be the multiplicity
of the lowpass filtetHo(z) at = = —1. Note thatto(z) has to of the zeros ofH,(z) at = = 1. It is possible to design

have a zero at = —1 for the iterative scheme (31) to CONVergey(») and Hy(z) for any pair of N, and N; such that
and that highly regular wavelets are obtained from filters with< ) < L. 1< N, <L, No+ N, < L.

a maximum number of zeros at= —1. On the other hand, the A constructive proof of the above proposition is given
number of Vanishing moments of the wavelet is determined hy [20] as a design procedure for maxima”y flat power

the multiplicity of zeros of the highpass filtéf, (z) atz = 1. complementary filters. The lowpass filter of the maximally
Hence, the design of highly regular wavelets from iterated filtggt pair is obtained as a spectral factor of

banks amounts to the design of maximally ¥lfiters Ho(z) 1
. _ 1—=2 1—=x
and H;(z). In our case, the relevant issues are the flatness of Ho(2)Ho(z™1) = P<< ) < )) (38)
Hy(e'*) atw = 7 and the flatness off;(¢’*) atw = 0. We 2 2
study the design under the constraint ti&f(z) and Hi(z) where P(y) is given by
are power complementary, which corresponds to tight frames

H L—1—Ng
n KQ(Z) P(y) — (1 _ y)]\’o Z <NO +ll —_ 1 )yl ) (39)

=0

5 _ o . The highpass filtef{; (z) is obtained from the factorization
The flatness of a filter at some frequency is defined as the multiplicity of

the root of the first derivative of its frequency response at that frequency. L 1—z 1— 21
Maximally flat filters are filters with a frequency response whose first Hy(z)H1(z7")=1-P . (40)
derivative has a maximum number of zeros on the unit circle. 2 2
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TABLE 11
CoEFFICIENTS OFPOWER COMPLEMENTARY FILTERS WHOSE MAGNITUDE RESPONSESARE PLOTTED IN FiG. 5. THE HiGHPASS FILTER H1(2)
HAs A ZERO OF MULTIPLICITY 2 AT z = 1 IN ALL CASES. (@) MAXIMALLY FLAT FILTERS. (b) POWER COMPLEMENTARY PAIR; LOWPASS
FILTER Ho(z) HAS Ng = 6 ZEROS ATz = —1. (c) PoweR COMPLEMENTARY PAIR; LOWPASSFILTER Hg(z) HASNy = 5
ZEROS ATz = —1. (d) Power COMPLEMENTARY PAIR; LowPAss FILTER Ho(z) HAs Ny = 4 Zeros ATz = —1
a b c d
Hy H, Hy Hy Hy H Hy Hy

0.37690273 0.53402011 0.03078682 0.22376086 0.04095616 0.01495479 0.18430940 0.10430306
-0.65503275  -0.61696397 | -0.17864344 -0.53553401 0.21295453 0.09754126 0.53853041 0.40558545
0.09170122 -0.13570812 0.38821680 0.38072858 0.42509906 0.26405461 0.41251639 0.51532830
0.18384469 0.06867234 | -0.47681949 0.05794996 0.37209430 0.37342961 | -0.07678751 0.13439669
0.05438736 0.08732849 0.12287851  -0.14190924 0.07046279 0.27343750 | -0.10938868 -0.16366452
-0.02189883 0.04577467 0.22906289  -0.04590030 | -0.04396930 -0.04530460 0.00941692 0.05310331
-0.02218162 0.01415950 | -0.02304830 0.03319186 | -0.04396930 -0.04530460 0.00941692 0.05310331
-0.00691311 0.00251695 | -0.07359995 0.02348454 0.01192523  -0.03504126 | -0.01515299 0.00659616
-0.00080969 0.00020001 | -0.01883383 0.00422792 0.00745127 -0.00714229 0.00314598  -0.00907015

Several design examples are given in Table I. Each row of this , 05

table contains coefficients of the autocorrelation function of the

lowpass filter of the maximally flat power-complementary pair. °*

These filters are designed for several filter lengfhsand with 0 o

different multiplicities(V;) of the zeros of the highpass filter  ,

atz = 1. In the caseV, = 1, which corresponds to wavelets s 05

with a single vanishing moment, the lowpass filiép(z) is o os 1 o 03 1
the binomial filter of the corresponding length. In that case, @) ()

the functions¢(x) generated by iterated filter bank trees in

the manner described by (31) are B splines. It follows from o4 os

the theory of B-splines that the derived wavelets in this case o2

(Ny =1) are at least — 3 times continuously differentiable. 0 —

Wavelets with two vanishing moments are obtained from -2 0

filters with Ny = 2. In this case,Ho(z) can have all but o4

one of its zeros at = —1, which gives wavelets that are -0s 05

at leastL — 3 — }log, L times continuously differentiable 0 05 ! 0 05 !
[20]. Note that wavelets with one or two vanishing moments (©) (d)

generated from orthogonal filter banks cannot have such a high s. Wavelets derived from the filters shown in Fig. 5. Wavelets in (a)—(d)
regularity. The reason is that in the orthogonal design, tiag derived from filters in Fig. 5(a)—(d).
multiplicity of the zeros of the lowpass filter at= —1 has to

be equal to the multiplicity of the zeros of the highpass filt§fiie; hanks to implement frame or tight frame expansions in
atz = 1; the requirements for the small number of vanishing 7y were established. In addition, complete parameteriza-
moments_and high regularity are then con_tradlctory. Note thadns of FIR filter bank frames, tight frames, and frames for
for even filter lengthd, and N, = L/2, maximally flat power \yhich an FIR synthesis frame exists were given. Nonsubsam-
complementary design actually gives Daubechies' filters [2}y|eq filter banks are studied as a special case. As an illustration
To achieve a sufficient regularity, the lowpass filf#§(z) of the design flexibility allowed by oversampled filter banks,

does not necessarily have to be maximally flakat= 7. e described a procedure for design of highly regular wavelets
This brings additional freedom, which can be used to megiin 5 given number of vanishing moments.

other design specifications. We illustrate this point with the
following design example.

Example 1: Fig. 5 shows the magnitude responses of sev-
eral power complementary filters for generating wavelets with
two vanishing moments. All filters are of length= 9 and ~ The proofs given in this Appendix require the introduction
differ in the muiltiplicity of the zeros of the lowpass filterof the polyphase representation of a signeds

APPENDIX A

at » = —1. The maximally flat pair is shown in Fig. 5(a).
The design flexibility obtained by relaxing the maximally N-1
flat constraint can be used to attain different bandwidths, as X(z)=>_ 71X ((zY) (41)
illustrated by the three other examples in the same figure. 1=0
Coefficients of these filters are given in Table Il. Fig. 6 gives
the wavelets that are obtained from these filters. where
V. CONCLUSION oo
Oversampled filter banks were studied in this paper using Xi(2) = Z z[nN +1]z7". (42)

the theory of frames. Sufficient and necessary conditions on n=-00
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The norm ofz in terms of its polyphase components is givenircle, and henceH*(z) = (H(z)H(z)) ' H(z) is a matrix

by of rational functions ofz that are bounded (no poles) on the
unit circle. We have that
2 wy|2
el = 5 Z / X do. (43)  [Xo(z) - Xnoa(2)]" = HY @)Yo(2) -+ Yieoa ()]
Since
The subband components ofproduced at the output of the
filter bank{Ho(2), H1(2),...,Hx_1(2)} will be denoted by 2 ooy |2
Yk, k = 0,1,..., K — 1. They are given in theZ-transform 1" = 2 zz—% _W [Xi(e™) dew
domain by ) - ]
. . using the same argument as in the above, it can be shown that
[Yo(2) -+ Yi-1(2)]" = H(2)[Xo(2) - Xn_1(2)]" (44) Kl
whereH(z) denotes the polyphase analysis matrix of the filter ] < « Z lyall?, 0 < a < oc.
bank. k=0
Proof of Theorem 1: This proves that
a) Necessary Condition: K—1
SupposeH(¢/*?)a = 0 for some vectora and some Allz|? < Z lyxll? < Bllz||?,
frequencyw,. Consider the sequence of signdis }7°, such e N
that the polyphase representationagfhas the form 0<A<B<oo, VrelXZ) O
() ey v () @) (geyiT _ [pilw)a,  w>0
(X7 ()X (&) - - XN (7)) = {pi(—w)a, w <0 APPENDIX B
where Proof qf _Theorem 2 o _
o . . a) Sufficient ConditionThis is obwousi o
pilw) = {\/ lal? “0 7 % Swswot g b)' Necessary Condition:Let M; ,,,(e’*) = [H(gﬂw)
0, otherwise H(e*)].m. First, note that all elements on the diagonal
() of H(z)H(z) have to be equal to a constant. To verify this,
Let{yg”, ", ..., ic_,} be the subband S|gnals produced byonsider a signalz that has only one nonzero polyphase

x;. Then, for all z;, ||ajz||2 =1, but EA ! ||y )||2 — 0 as component. Then
1 — oo. Therefore, there is nol > 0 such that

1 (7 i
ol = 5 [ Xy do
Al <Y Hlwell? -
=0 for somel,0 < < N -1, and
for all z € £2(Z). - 2 1 [7 jw Jwy|2
o Suffcien Conditon >l = g [ (e
Consider -
Then, for the tight frame condition to hold, it is necessary that
= =1 = : Myy(e) = ¢,1=0,1,...N — 1.
2 jw jw 1l = = -
Z ] Z /_7T zz; Hya(e™)Xo(e)| - dew. Now, suppose that for somem, M m(¢?) = 0 does
not hold. Considerr such that onlyX;(z) and X,,(z) are

Since we are considering FIR filter banks (or stable IIR filtergonzero. Then

i.e., no poles on the unit circle) K1
K-1 K-1 x N—1 ' ' Z ||yk||2
>l < Z ) D DI LIS TEN I M. =t
—T =0 1 N jw ® 7 jw jw
= = clell? + 5 /_ Re(Mi (¢5) X (09X (07 do
— 27r /7T kz—o () P17 d From this, it follows that
T_l a . . .
1 ™ Jw * 0 jw Jw —
<3 L [ e /_ RE(My ()X () X)) do = 0
I= VX7 (), Xpm(e?®)
holds, where3 = sup,, ; sup,, |[Hy,i(¢?“)|*. Therefore and thereforel;.,,(¢/*) = 0. 0O
K-1
S ollwll? < Bllzl?, 0<B=Kp<oo, Vzel*(Z). APPENDIX C
k=0

Readers not familiar with the Smith form of polynomial
Suppose further thal(z) is of full rank everywhere on the matrices are advised to read the beginning of Section 11I-B in
unit circle. Then,H(z)H(z) is also of full rank on the unit order to follow this proof.
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Proof of Theorem 3:The sufficiency of the condition is where H(z) is an N x N matrix of polynomials [14]. Let
obvious. Here, we prove that it is also a necessary conditidd(z) = R(z)D(z)C(z) be the Smith form decomposition of
Given the filter bank polyphase analysis mat#k(z), let H(z). SinceP(z) is unimodular and positive definite on the
H(z) = R(2)D(%)C(z) be its Smith form decomposition. unit circle, the polynomials on the diagonal BXz) have to
R(z) and C(z) are products of corresponding elementare nonzero monomials. This proves the proposition. O
matrices, and

APPENDIX E
b = |74 | (45) ) | )
0 Proof of Proposition 3: Let the Smith decompositions of
where Dy (z) is a diagonal matrix of monic polynomials.the Polyphase analysis matrki(z) and a corresponding FIR
Suppose that the frame dual to the frame associated with tAf{yPhase synthesis matri&(z) be

filter bank consists of finite length vectors, i.e., tit (z) = D (2)

(H(2)H(z))"*H(z) is a polynomial matrix. Substituting the H(z) = Rh(z){ 0 }Ch(z) (52)
Smith decomposition in the equation for the pseudoinverse
H*(z), we obtain and

H*(2) = C(2) " (D(x)R(2)R(2)D(2)) 'D(2)R(2). (46) G(z) = Ry(9)[Dy(2) 0]Cy(2) (53)
This expression further gives respectively. HereD;, () andD, () are diagonal polynomial

+AR(A-1 — (T —1T8 matrices. From the condition tha&(z)H(z) = I and that
CEHT(HRE)T = Du(2/Ru (=)D (=) D1(z) (2]7) detRy(z) = detCp(z) = 1, it foIIowg zhagn :
threRll(z) denotes theéV x N upper-left corner submatrix detDy () - detA(z) - detDy(2) = 1 (54)
of R(z)R(z). It follows that
AR — -1 -1 where A(z) denotes theV x N submatrix in the upper-left
CEHHT (R = D)™ Ruu(2) o (8 corner og‘ ()JQ(z)Rh(z). Since A(z) is a polynomial matrix
The matrixR(z) is unimodular, and therefore, its inverse i@nd bothD,,(z) andD,(z) are diagonal polynomial matrices,
a polynomial matrix. Consequently, the left-hand side of (4&p4) can be satisfied only if the polynomials on the diagonal
is also a polynomial matrix. Therefod®;(z)~*Rq1(z)~' is of Dy(z) are monomials.
a polynomial matrix. This implies that d@;(z)Rq1(2)) = Conversely, perfect reconstruction can be achieved using
c - z* for some constant and an integet. However, this the filter bank with the synthesis polyphase ma#@xXz) =
is possible only if polynomials on the diagonal Bf (z) are C(z) ! [Dy(2)~* O]R.(z) . Ifin the Smith decomposition

monomials. of the analysis polyphase matl,(z) is a diagonal matrix
Taking this fact into account, the expressidfit(») = of monomials, such a synthesis filter bank is obviously FIR.
(H(2)H(z))~'H(z) can be transformed into
H*(2)R(2)™" = (H(2)H()) " [C()D1(2) 0]. (49) ACKNOWLEDGMENT
) ) The authors are grateful to Dr. T. Kalker and Dr. H. Park
From this, we obtain that for valuable and insightful discussions on this subject. They
- 1 [Di(2)71C(2) ! - _ would also like to thank M. Goodwin and G. Chang for their
+ 1D _ 1
H (2)R(2) { 0 = (H(z)H(z))~". (50) comments on the paper.
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