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Discrete- and Continuous-Time Local
Cosine Bases with Multiple Overlapping

Riccardo Bernardini and Martin Vetterlkellow, IEEE

Abstract—Cosine-modulated filter banks (CMFB's) are filter The continuous-time case has received less attention in the
banks whose impulse responses are obtained by modulating asignal processing literature. The continuous-time counterpart
window with cosines. Among their applications are video and of the CMFB is known as local cosine bases (LCB), and
audio compression and multitone modulation. Their continuous- . - . !
time counterpart is known as local cosine bases. Even though it h"_’ls been introduced by Coifman and Meyer [11]. Such a
there is an extended literature on the discrete-time case both device has been used by Auscletral. [12] to construct the
for single and multiple overlapping, the continuous-time case Lemaré and Meyer wavelet [13]. Recently, Matviyenko [14]
has received less attention, and only the single overlapping casejntroduced biorthogonal LCB, showing that the dual is still an
has been solved. This work gives a solution to the problem of | cg ¢ with a different window. All the cited works consider

continuous-time local cosine bases with multiple overlapping via v the sindl | . Th | It k to th
a general theory that emphasizes the deep connection betweer®N'Y € SiNgle Overiapping case. 1he only result known 1o the

discrete and continuous time. A sampling theorem for local cosine authors for multiple overlapping in continuous time is due to
basis and an efficient algorithm to compute the expansion of a Malvar, which, in [15], shows that by modulating a raised

signal are also given. cosine, we get an orthonormal basis fof(IR).
Index Terms—tapped orthogonal transform, local cosine bases, ~ Bernardini and Kovéevic in [16] explore both continuous
smooth localized trigonometric transforms. and discrete time. Inspired by [12], they approach the problem

with a vector space point of view, interpreting PR as a decom-
position of £2(Z) [or L?(IR)] into a direct sum of subspaces
of compactly supported signals. The theory presented in [16]
OSINE-modulated filter banks (CMFB) are filter banksyorks both in continuous and discrete time and, like [10],
whose impulse responses are obtained by modulatifgies only on symmetries, but it is usable only in the single
a window with harmonic trigonometric functions [1]-[3].overlapping case.
Among their advantages are easy design and fast computathe goal of this paper is twofold: A first immediate one is
tion with an FFT-like algorithm. The fact that they can beo give a solution to the problem of continuous-time LCB with
interpreted as a “smooth DCT” make them interesting fanultiple overlapping; a second result is to present a general
compression purposes [4], [5]. Recently, they have also foutikory of LCB that emphasizes the deep connection between
application in multitone modulation systems [6]. discrete and continuous time. The approach is similar to the
In discrete time, the first perfect reconstruction (PR) versighe used in [16]; we will study LCB via the orthogonality of
of the CMFB has been introduced by Princen and Bradley [dome subspaces @f(IR) or #2(Z). The theory relies on the
In such a construction, the filter lengthis twice the sampling idea of folding operatot that has an intuitive interpretation.
period M, giving rise to single overlappingCMFB. The Using this concept, we can deduce the constraints that a
first results on the multiple overlapping case, more preciselindow must satisfy in order to have PR. The idea of folding
for L = 2kM, are due to Malvar [8] and Koilpillai and gperator can be readily extended to the discrete-time case by
Vaidyanathan [9]. In [10], Poizeet al. show that it is not simple “sampling.” For reasons of space, we will develop in
necessary to use cosines as modulating functions, as longjail only the continuous-time case by simply pointing out
the modulating functions enjoy some type of symmetry angbw the theory should be modified in discrete time.
periodicity. All the cited works use an algebraic approach, The outline is as follows. In Section I, we present the
relying on popular signal processing tools like th&ransform notation and give the problem statement. In Section Ill, we
and polyphase components [2]. introduce the framework that will be used in this paper. In
Section IV, we revisit the continuous-time, single overlap-
Manuscript received February 15, 1997; revised May 29, 1998. This wopdNg case using the techniques introduced in Section Ill. In
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[I. NOTATION AND PROBLEM STATEMENT With this definition ofV};, orthonormality of functiong;  can
be split into two types of orthogonality:
A. Notation  an “external” orthogonality between vector spatesind
The scalar product between two vectgtg of vector space Vin, J # m;

V will be denoted as'f,g)y or (f,g) when no confusion * an “internal” orthogo_nality between two functions ;
about the vector space can arise. For complex signals, we andg;¢, k # £ belonging to the same vector space

will suppose the scalar product linear with respect to tHguch a separation will make the study of LCB easier. Com-
second argument, that iéf, ag) = a{f, g) for everya € C. pleteness is also split in two parts:

With notation f(- — j), we will denote the signal obtained by « “external” completenesst?(IR) = @®j¢z Vj;

translatingf of j. Such a notation is convenient in expressions « “internal” completeness: functiodg; » }xen form a basis

like {(f(- — j)w,g), where f(¢t — j) could be interpreted as for V;.

the scalar value assumed hy in ¢ — j. Continuous and Actually, we just need to check the external completeness since
discrete-time signals will be differentiated by writing theikne internal one is automatically granted by definition (4).
argument between parenthesis or square brackets, respectivel\s a second step, let us give a characterization of the

(e.g., f(z) or wn]). functions belonging td’;. Note that vector spack; is just
a translated version o¥fy; more precisely,f(t) € V, <
B. Problem Statement Jf(t —j) € V;. Because of this, we can limit ourselves to
In continuous time, a (time-invariant) local cosine basi§€ study ofVo. .
(LCB) is made of functions If a function f € Vo, then there exists a real, square

summable sequence,, &k € N such that

A owlt — i) cose(t — i ; .
gia(t) = V2wt —jcosi(t—j), JELEEN (1) £ =" angos(t) = apw(t) cose(?)

wherew(t) is a function having as support an interya) ], eN =
and cos(t) is defined as =w(t) Z oy, cosg(t) = w(t)s(t) (5)
cosy(t) 2 cos[m(k + %) (t— %)] ) keN

that is, if f(¢) € Vb, then f can be written as the product
We assumed, without loss of generality, an elementary shift 1o windoww(#) with a function s(t) A Sken  cosy(t)
step of 1. Other steps can be obtained by scaling. belonaing to th e 2 The t lated
In a time-invariant discrete-time cosine-modulated  filte/0N9iNg (0 the spacéy = spar{cosk }xcw. The translate

; . . version ofCy will be called C;. Functions inCy are not in
bank (CMFB), the generic basis function has the form L2(IR); however, it is easy to show that spageis a Hilbert

gixln] E V2wln — Nj]cosk(n/N — j + ¢n), space when endowed with the scalar product
sn€Z, k=0,1,---,N—-1 (3 N
(51,52)c 2 / s1(t)sa(t) dt. (6)
—1/2

with ¢ 2 1/2 4+ 1/2N. Note that in the discrete-time case,
we cannot normalize the elementary st€pby scaling. The reason for limiting the integral in (6) betweeri/2 and
If the window lengthb — « is less or equal to twice the 1/2 stems from the fact that everysy (t) is symmetric around
elementary step, the support @f{t) (or w[n]) overlaps only —1/2, antisymmetric around 1/2, askew periodiavith period
the support of adjacent windows. This is #iagle overlapping 2, that is
case If b — a is greater than twice the elementary step, the
support ofw(t) also intersects the support of nonadjacent
windows, and we have thewltiple overlapping case cosg(t + 2) = — cosw(t). )

. The_ main opjgct|ve in our study of contmqous-pme LCBBecause of the symmetries in (7), every function belonging
is to find conditions onw(¢) that lead to functions in (1) to Co is uniquely determined by the values assumed on

form an orthonormal basis fo&*(IR). Similarly, in the study [—1/2, 1/2]. Definition (6) follows from such a fact. We can

of CMFB, we search for conditions omw[n] such that the characterizeC, as follows

functions in (3) form an orthonormal basis 6¥(2). Property 1: The vector spac€, is the space of the func-
tions that are square summable onlf2, 1/2] and enjoy

cosp(—1 —t) = cosp(t) cosp(l —1t) = — cosg(t)

lll. THE FRAMEWORK symmetries (7).
Proof: We give just a sketch of the proof. By definition,
A. Vector Spaces Characterization: Continuous Time every functions(t) € Cy can be written a&; a4 cosi(t) with

As a first step, it is instrumental to “collect” together thétx» & = 0,1,--- a square summable sequence; therefe(,
functionsg; x(t), k = 0,1, -- - relative to the same translation!S Squaré summable on-1/2, 1/2]. Moreover,s(t) inherits

j. Let V; be the subspace df*(IR) generated by their linear Symmetries (7) from cosines.
combinations, that is Now, let f(¢) be a function square summable onlj2,1/2]

/ and enjoying symmetries (7). Singgt) = f(t + 4), f(¢)
V; 2 spar{ g; x fken- (4) can be expressed with a Fourier series. Skew periodicity
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f(t) = —f(t + 2) implies that only odd harmonics are used,
and symmetry around-1/2 implies that the series contains
only cosines.

SincelV, = wCy, that is,V} is a “windowed” version of’,
we obtain the following characterization &f.

Corollary 1: The vector spacel, is the space of the
functions that can be written af(t) = w(t)s(t) with s(¢)
square summable or-[L/2, 1/2] and enjoying symmetries (7).

We will need some other vector spaces similar dg
but differing in the symmetry signs. More exactly, we will
consider vector spaces

Co = {s(t) € L*([~1/2,1/2])

s(=1—1t)=—s(t),s(1 —t) =+s(t)} (8a)
So = {s(t) € LM([=1/2,1/2]):
s(—1—1t) = +s(t),s(1 —t) = +s(t)} (8b) ®)
_ A
So = {S(t) € Ll([_1/27 1/2]): Fig. 1. Action of the folding operator when computirfgz r(t)s(t) dt,
s(—1—1t) = —s(t),s(1 —¢) = —s(¢)}. (8c) with s(t) € Sy. (a) Folding of functions(¢) around the symmetry point

1/2 4 Z causes the overlay of the single pieces of the function. (b) Folding
. . . o . .. onr(t) induced by the folding in (a).
It is possible to prove that functions &), are skew periodic r(®) y gin ()

with period 2, whereas functions i, and S, are periodic
with period 2.

We report here some useful properties enjoyed by vecfgperators (10) will be calletblding operators The one with
space€, C5 , So, andS; . The proofs can be found in Proofsthe most intuitive action i€}, whose action can be described
A.1-A.3 of Appendix A. as “folding” f(¢) around the symmetry points/2 + ¢,£ € Z

Property 2: For every;j € Z, Cz; = Co, andCyj4, = Cy.  (See Fig. 1). Operator®, and Q7 act like QF, but they

Property 3: Every function S(t) € Cy is antisymmetric W6|ght each term in the sum diﬁerently. It is easy to prove
around2¢+ 1/2 and symmetric aroun¢2¢ — 1)+ 1/2,¢ € z. that the result of operators (10) belongsdg, S; ', and Co,
Dually, every functions(¢) € C; is symmetric aroun@/+1/2 respectively. Note that the weights that each operator (10)

and antisymmetric aroun€@/ — 1) +1/2, £ € Z. assigns to the symmetry poiritg2+ ¢ match with the weights
Property 4: If s;,55 € Co OF 51,55 € Cy, thens; sy € So; of the corresponding vector space. The folding operators (10)
if 51 € Co, 50 € Cy, thensysy € Sy . will be used to simplify scalar products, according to the

following property.

Property 6: Let s(t) € Sg, s_(t) € Sy, andsy(¢t) € Co,
o ~and letr(¢) be a function with compact support; then
The theory presented in this work does not use any particular

characteristic of continuous time, and everything could be re-

B. Vector Spaces Characterization: Discrete Time

1/2

peated also in discrete time, with just a change of language. For n
sake of convenience, let us just summarize the characterization /]RT(t)S(t) dt = 1 Qo r(t)s(t) dt (11a)
of V4 in discrete time because we will need it in Section VI-B. 12
Property 5: The vector spac¥, contains the functiong[n] / r(t)s_(t) dt = Q5 r(t)s_(t) dt (11b)
that can be written ag[n] = w[n]s[n], with s[n] satisfying R —1/2
the symmetries 1/2
/ r(t)sL(t) dt = QFr(t)s+(t) dt.  (11c)
S[N—=1—n] = —sn] s[-N—=1=n]=s[r]. (9) k ~1/2
C. The Folding Operators Proof: We just give a graphical sketch of the proof in
The following operators acting on compactly supporteid- 2. A more formal proof can be easily obtained by using
functions of L2(IR) will prove useful. Fig. 2 as a guide. Fig. 2 shows that one can “fold” the left-
hand integral of (11) around the symmetry point 1/2 without
QFf(t) = Y f(t+20) + f(L—t+20) changing the value. Such a folding can be repeated for every
ez symmetry point ofs(¢) to obtain the right side of (11). O
Q ft) 2 S ft+20) - fF(1—t+20)
ez D. Internal Orthogonality

QF f(t) 2 Z (—1)[f(t+26) — fF(A—t+20)]. (10) Let z(¢) be the indicator function of the intervat-[L/2, 1/2].

tez We will prove internal orthogonality via the following lemma.
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- Since the functions, s; € Co, their product belongs t&,
- 1\/]—\ (Property 4), and we can apply Property 6 to rewrite (15) as
1/2
(w(t)so(t), w(t)s1(t)) = QF w(t)so(t)s1(t) dt. (16)
-1/2

Expression (16) is equal to (14) for evesy, s; if and only

T/ ‘ - if (12) is true.
‘ ‘ v In the single overlapping case, since the window support is
T - [-1, 1], (12) assumes the more usual form
I w () +w?(1—t)=1 0<t<1/2
j_a w? () +w?(—=1—1t) =1 —1/2<t<0. (17)

T/ E. Projection

’ We will search for an expression for the projection &n
that does not depend on the chosen basis. It is worth spending

Fig. 2. Proof of folding operator properties. Every plot symbolizes a scalar . . . .
product inL2(IR) and should be read as “the integral of the product of the t few words to eXplam Why this could be interesting. Let us

plotted functions.” 1) Continuous line shows a compact support funeion ~ Start from a simpler case: a discrete-time modulated filter bank
dashed line shows a functiaiit) of Sp; dash-and-dot line shows the position(cosine modulated or DFT filter bank). Call the sampling

of 1/2. 2) and 3) The integral oR is split into two integrals for: <1/2 and . .
+>1/2, respectively. 4) The integral for > 1/2 is flipped around 1/2. This iNterval andw the prototype filter, and let;,, & = 1,---, N

does not change the value of the integral. 5) The integrals relative to 2) dne the modulating functions (cosines or complex exponentials).
4) have the same support, and they can be summed together. Since the daﬂx@ basis associated with such a filter bank is

plots are equal, the resulting plot correspondﬁlt/gi(rl (t)+r2(t))s1(t) dt,

that is, the two continuous lines are added, whereas the dashed line remains

the same. gjk[n] =wln — Njlep[n — Nj)
jE€Z k=12 N. (18)
Lemma 1:If the window w(t) verifies the power-
complementarityconditions Note that in discrete time, we have just a finite number of
IS ) ) modulating functions. From a linear space point of view,
Q (w) = Zw (t =20 +wi(l—t -2 =1, to compute the filter bank output at time corresponds to
et compute the scalar products
vVt e [—1/2,1/2] (12)
then linear mapping (fr95%) = (frw[—Njlex[—Njl), k=1,2,---,N. (19)
1= w(t)s(t) — 2(£)s(t)- (13)  For the sake of simplicity, in the following, we will concentrate

; on the casg = 0. With the usual scalar product ét(Z), we

mapsV;, into L?([—1/2,1/2]) preserving the scalar produc X ; - _
can move the window in (19) to the same side ¢fto obtain

that is
1/2
(w(t)so(t), w(t)s (t)) :/ s0(t)s1(t) dt, (fr90) =(wf,cr), k=12, N. (20)
—1/2
V0,51 € Co. (14) Equation (20) can be interpreted as saying that the filter bank

Joutput can be obtained by windowing the input sigfiakith

Th ti f b hically d ibed in Fig. 3;
© action oty can be grapnicatly described as in =g the prototypew and by computing the scalar product of the

Function w(¢)s(¢) [Fig. 3(a)] is “unwindowed,” and the re- it with th dulating functi
sulting functions(t) € Co [Fig. 3(b)] is forced to zero outside result W't_ the moadu ating unctlons: . .
the interval [-1/2, 1/2] [Fig. 3(c)]. It is clear from the same If the window is rectangular (that is, the filter bank imple-

figure thaty can be inverted by extending by symmetry th@'ents @ DCT or a DFT), the product of the input signal with
function in Fig. 3(c) talR and multiplying the result bys(t). the window is the projection ok, and (20) can be interpreted

Since the functiongcos;,(£)}xen form an orthonormal basis @S tWo-step procedure: Firsf, is projected oy, and then,

of C,, internal orthogonality follows from (14) and (6) withthe result is projected on basis vectoys The first projection
sot) = cosg(t), s1(t) = cos;(t) is an “external” projection, and the second one is an “internal”
= (1), = cos;(t).

Proof of Lemma 1:To prove that (14) follows from (12), ©ne- If the window is not rectangular, the product withis
write explicitly the scalar productw(t)so(t), w(t)si (£)) not a projection since it is not idempotent. We will see that to
obtain a projection one must take one more step (folding).

(w(t)so(t), w(t)s1(t)) :/ w(t)so(t)s1(t) dt.  (15) To find the projection onV;,, remember that because of
R internal orthogonality, the sefgo:} forms an orthonormal
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Fig. 3. Graphical description of the unitary transformatiprbetweenV, and L?([—1/2,1/2]). (a) Functionw(t)s(t) belonging toVy. (b) Function
S(t). (c) Restriction of functions(t) to [—1/2, 1/2].

1 ————— e —r If our goal is to compute the scalar produ¢fs go »), we can
J P exploit the isomorphism betweenV, and L?([-1/2,1/2])

by simply expressing(t) Qi (wf) as a linear combination of

[ + - -
-1 Yy T e T e 2 0 lcosk(t)}. Indiscrete time, this is just a DCT. This is how the
S S fast algo_rithm for discrete-t_ime CMFB’s works. Indeed, such
5ol : an algorithm can be described as follows.
; ¢ The input signal is multiplied by the windowM products,
80 20 10 : oo T 10

: 20 a0 with N the window length) and folded\(/2 sums). This

i corresponds to the external projection.

'  The DCT (for which fast algorithms of complexity
' Nlog N exist) of the resulting signal is computed. This
Y 101 1 20 3.0 corresponds to the internal projection.

(c)
o

I
i
-3.0 -2.0 -1.0 1
1

F. Completeness

(d)
o

T R L We will prove that completeness of the LCB follows from

power complementarity. More formally, we have the follow-
Fig. 4. Computation of the projection @f[r] on V; for » = 0,1,2. (&) jn

. . , = g.
Window w(t). (b) Signalf(¢). (c) and (d) Translated versiogf§¢ — 1) and . . o .
f(t—2). To computey [n], we have to multiply the values ¢f(t—n) marked Property 7: If «w(?) satisfies the power complementarity

with little circles by the corresponding window values, with a possible chang@nditions (12) andf(¢) € L2(IR) is orthogonal to every/;,
of sign, according to the little signs reported next to the window. j €z, then f(t) = 0, that is

basis of,. Therefore, the projection ol can be written as (Vi eZ.J(O) L Vi) = J(H) =0 (24)
Pof(t) = gox(®){f g01)

kEN VieZ, ft—37) LVy) = f(t)=0. (25)

=w(t) Z cos (0){f, wcosy)

kCN

or, equivalently

The proof of Property 7 is reported in Sections IV-B and
V-B, for the single and multiple overlapping case, respectively.
=w(t) ZCOSk(t)/ f(@)w(z)cosi(x) dv.  (21)  In the proofs, for technical conveniencg(t) is supposed
keN R continuous. Since the subset of continuous functions is dense
in L?*(R), completeness for continuous functions implies

Sincecos() € Co, we can apply Property 6 to rewrite (21) ascompleteness fol.2(IR). The proofs will use the auxiliary

1/2 N signal
Ff(t)y=w(t cosy(t Qo (wf)(z)cosp(x) dx.
o/ (®) ( )% +(0) —1/2 o (wf)(w)cosi () g[2n +m] A {Qi[w(.)f(-_zn)](t)7 if m=0
22 W wOf(=Cn+1)IE+1), ifm=1
(26)

Remember thaQE (wf) € Cy. Since cosineqcosi () }ren
are an orthonormal basis fdl, the sum in (22) is equal to Sincew(t+m)q[2n +m] is the projection off (t — (2n+m))
Qoi(wf)’ and (22) can be rewritten as evaluated irt + m, signal f is orthogonal to every, if and
only if ¢;[n] = 0 for everyt € [-1,0],n € Z. We will prove
Pof(t) = w(t) QE (wf). (23) that in such a casg, = 0. To have an intuitive reason for the
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Fig. 5. Computation of the scalar product between a functiolgofind a function ofV’;. Symbol¢ denotes the product of two signals; symboinside
a box means that the input signal is integrated dRerDash-and-dot lines denote the position-e£/2 and 1/2. (a) Windowo(¢) relative to spacéy. (b)
Function sy belonging to spac€y. (c) Translated windowo(¢ — 1). (d) Functions; (¢) belonging to spac€;. (e) Functionfo(t) = w(t)so(t) € Vo.

(f) Function fi(t) = w(t — 1)si(t) € Vi. (g) Product fo(t)fi(t).

choice of the signal (26), write explicitly the expression for Fig. 5 shows the computation of the scalar product of a

Qoi in (26) to obtain, after some algebra

@2n] = > (=D [f(t +20 — 2n)w(t + 2¢)

—fA—t+20—2)w(l1—t+20)] (27a)
@2n+1] = (=D[f(t+2£ - 2n)w(1 + ¢+ 20)

lez

+f(1—t4+20—2n)w(2—t+20)]. (27b)

function fo(t) € V, with a function f;(¢) € V. The proof of

the orthogonality betweel, andV; becomes immediate from

symmetry considerations by rearranging Fig. 5 as in Fig. 6. It

is worth summarizing how the scheme of Fig. 6 works because

the same reasoning holds also for multiple overlapping and

odd shifts.

1) Window w(t) is even,; this implies that(t — 1) can be

obtained via a symmetry around 1/2 and that the product
w(t)w(t — 1) is symmetric around 1/2.

Interpreting (27) with the help of Fig. 4, we can see that the 2) The functions;(t) € C; = C; (Property 2), whereas

computation ofg;[n] always requires the same set of values
of {f(t+2¢), f(t+ 2i+1)},cz for everyn. Such a fact will

s0(t) € Co. Therefore, they have different symmetries
around 1/2, and their product is antisymmetric.

be exploited in Sections IV-B and V-B to write (27) as a PR 3) The overall products(t)w(t — 1)so(t)s1(t) is antisym-

filter bank and prove the completeness.

IV. SINGLE OVERLAPPING REVISITED

metric, and its area is zero.

B. Completeness

In this section, we briefly revisit the single overlapping case As anticipated, we will prove completeness by showing that
[11] to show how the framework presented in Section Ill caifi the auxiliary signalg;[»] introduced in (26) is identically

be used.

A. External Orthogonality

zero, thenf = 0. We present such a proof because it
introduces, in a simpler context, the technique that will be
used in the multiple overlapping case.

Proof of Property 7 (Single Overlapping)By using in

We need to check/; L Vi, j # k, j,k € Z. Because of
the support restriction, only; L V;;1 needs to be checked
which, by translation invariance, reduces ¥ L Vi. We
will prove that external orthogonality follows from window
symmetryw(t) = w(—t). A simple consequence of window

(27) the fact that the window support is-1, 1] and the
'window symmetry, we get

FE—=2n)w)+ f(—1—¢t—2n)w(—1—1)

if m=20
symmetry that will be exploited in the following is that:[2n +m] = f(t—lzjzl)w(—l—t) (1t — 2n)ult)
w(t — 1) = w(l — ¢t), that is, translatingu(t) is equivalent T

to taking its symmetric around 1/2. (28)
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Fig. 6. Rearrangement of the signals of Fig. 5. (a) Windeiw) symmetric with respect to 0, that is(t) = w(—t). (b) Windoww(t—1) = w(1—t). (c) Sig-
nalsq(t) € Co symmetric around-1/2 and antisymmetric around 1/2. (d) Sigralt) € C; symmetric around 1/2. (e) Produe(t)w(t—1) = w(t)w(1—1t)

symmetric around 1/2. (f) Produsg (¢)s: (¢) antisymmetric around 1/2 because of the two different types of symmesiy(of ands; (¢). (g) Overall product
w(t)w(t — 1)so(t)s1(¢) antisymmetric because product of the symmetric functign)w(t — 1) with the antisymmetric oney(¢)s: (¢). Its integral is zero.

Rewriting (28) in matrix form gives * The productso(t)s; (t) is antisymmetric arounfR;j+1)/2
sincesy(t) € Cp and s (t) € Cojq1 = (5 -
[ q[2n] } _ [w(—l — 1) w(t) } * The approach of the single overlapping case still works:
q:[2n + 1] —w(t)  w(-1-1t) w(t)w(t—(2j+1)) is symmetric aroungd+1/2, whereas
) [f(—l —t— 271)} (29) so(t)s1(t) is antisymmetric. Therefore, the overall prod-
f(t—2n) ) uct is antisymmetric, and the two spaces are orthogonal.

] » We can summarize such a fact in a property.
Because of the power complementarity conditions, the matnxproperty 8: If w(t) = w(—t), then V; is orthogonal to

in (29) is invertiblevt € [—1,0]. This implies that ifg:[n] = 0,
then

Vaj41 for everyj € Z.
What happens for a translation ®f? For even translations,
IR both s¢(¢) and s;(t) belong toCy; therefore,sgs; € Sp is
1—-t—-2n 0 0 1
[f( £t —2n) )} = {0} Vte[-1,0,neZ  (30) symmetric around + 1/2, ¢ € Z, and the approach of the
single overlapping case cannot be applied anymore.

Since for everyty € R there existt € [~1,0] andn € 7 How can we obtain orthogonality? The answer is contained
such thatty = t — 2n or to = —1 — ¢t — 2n, (30) implies in the following property.
f(t) =0, Vt € R. Property 9: Vector spacedy and Vo, 7 € Z, j # 0 are

orthogonal if and only if the windoww(¢) is self-orthogonal

in the sense that
V. MULTIPLE OVERLAPPING IN CONTINUOUS TIME

Now, we attack an original construction, namely, the case+ 24)) — + i
. . . : = = E + 2/ t+20—2
of LCB with multiple overlapping. % (wl-yw(-=27)) wl yul 7

el
+w(l —t 4+ 20)w(1 —t + 20 — 25)
A. External Orthogonality =0, Vtc R (31)

In the case of multiple overlapping, window symmetry still
leads to external orthogonality but only for odd translations.
« If the window is even, we can writex(t — (25 + 1)) =

w((2j + 1) —t), that is, a translation d;j + 1 gives the
same result of a symmetry arout®yj + 1)/2. Therefore, / w(tyw(t — 2§)s1(t)sa(t) dt

the productw(t)w(t — (25 + 1)) is symmetric around R

(2j + 1)/2 =j+ 1/2. =0, \V/81(t) S CO,SQ(t) S CQJ' =Co (32)

Proof: If ¥, has to be orthogonal t&5;
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1) Other Uses of the Folding Operatoin this section, we
show some other applications of the folding operator.

Window symmetry is a sufficient, but not necessary, condi-
tion for external orthogonality for odd translations. To obtain
a necessary condition, we can prove, with a reasoning sim-
ilar to the one used in the case of even translations, that
external orthogonality for odd translations is equivalent to
Qo w(t)w(t — (25 + 1)) = 0 that can be rewritten as

> w202 + 20— 1] =Y w20+ Lo [25 + 2]
ez ez
=3 (Dfwluft+2i -1 =0, VieZ (37)
[4YA

Since everyu[n] is a branch of a PR filter bank, (37) implies

05 L L L T L

-2 - °o ! 2 thatu[n] 2 (—1)"v_,[n — 1] must be the conjugate (in a
Fig. 7. (a) Example of construction of discrete-time signdkh|. (b) Trian- PR sense) of;[n]. Window symmetry clearly fulfills such a
gular sinus giving the position of the samplesgfn|. condition.

If LCB’s are used for multitone modulation [6], the window
must hold. In (32),s1(t)s2(t) € So (Property 4) and from at the receiver is a distorted versia#(t) of the window at

Property 6, we get the transmitterw(¢). Because of this, we can loose external
12 orthogonality, and this causes intersymbol interference. To
/ [QF (w()w(- — 29)](t)s1(t)s2(t) dt measure the deviation from orthogonality we could use the
-1/2 norm of the folded product| Qg [w(t)w(t — 25)]||. More
=0, Vsi(t),s2(t) € Co. (33) generally, by using Property 6 and the Cauchy-Schwartz

inequality, we can prove the following property.

Equation (33) is verified if and only if (31) is true. Property 11: Let s,(t) € Co andsa(#) € C;, j € Z, and let
Equation (31) is not a continuous-time condition but By (t (), wa(t) be two windows; then !

continuum of discrete-time conditions (a condition for every — *’ ’

t € [-1/2,1/2]). By using such a fact, we can prove the if 7 even

following property. A [(wis1, w2s2)| = { Hg%iig;;“’ if j odd. 8
Property 10: The windoww(¢) enjoys power complemen- 0 ’

tarity and self-orthogonality if and only if, for eaghw:[]is ~ As an example of application of Property 11, we can

a branch of a two-channel PR filter bank. consider Matviyenko's biorthogonal local trigonometric
Property 10 is interesting because two-channel PR filtgases [14]. In [14], the two dual bases are obtained by

banks have a nice parameterization. Such a fact will bgodulating two different windowss(¢) and @(¢) with the

exploited in the section relative to window design. same cosines. Using Property 11 with (f) = w(t) and
Proof: Define the following discrete-time signal wa(t) = b(t), we can write the biorthogonality conditions as
+ ~ . _ . j— ~ . _
A [witt2m),  Hm=0 OF (w(-)id(-=2)) = 6(j) and Qg (w(-Yid(-—(2j +1))) = 0.
vil2n +m] = {w(l—t+2n), if m=1. (34)

Fig. 7(a) shows the construction of signaln| for ¢ = 0.4. B. Completeness

;I_'tft}e yalllJes szfj(ttg used to COQ.SUUC{“[”]I are marked.t\f[wth Let f(¢) € L*(IR) be a continuous function, and defipén]
ittle circles, and the corresponding samples ] are written (26). We want to prove that[n] — 0 for all ¢ and n

next to them. By using (34) in (31) and recalling the poqunplles fF=o0
complementarity conditiofu[], v:[] = 1), we get Proof of Property 7 (Multiple Overlapping) Observe
th[%]vt[% — 2n] 4 v [26 + 1], [20 + 1 — 2n] Fig. 4. Whenf(t) is translated, valueg(t + 2/ — 2n) and
ez f(1 —t 4 2¢ — 2n) fall alternatively under the influence of
= (u[],v:[-—2n]) = 8(n), n#0 (35) two different sets of window values. This suggests thét]

can be written as a convolution. To such an end, define
that is,v; is orthogonal to its even translations or, equivalently,

it is a branch of a tvyo-channel PR filter bank. O (2 + m] A {f(t + 2n), ?f m=20 (39)
It is worth to pointing out two properties ef[n] that come fl—t+2n), fm=1
directly from its definition (the first equality requires window a [ (=D)"w(t +2n), if m=0
symmetry) and that will be exploited in the following. uo[2n +m] = { (—1)"*w(l —t+2n), i m=1 (40)
v_¢[—n] =v¢[n] (36a) w2n +m] A { (=1)™w(l+1t+2n), ?f m=0 (a1)
v [2n +m] =20 + (1 — m)]. (36D) (—Drw(—t+2n+2), ifm=1.
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al2j] and
u [n] Z w(t + 20)w(t + 20 — 2j)
g[n] e ez

i) +w(l —t+20)w(l —t+20—25) =0. (45c)

+

u n] @ A Define Vo as.the subspacg oLQ(IR). spanned by{w(t)
U cosy(t) bcz With cosg(t) defined as in (2). Lefl; be the

translation oflj in the sense that(t) e Vo < f(t—j) € V,.
Fig. 8. Two-channel perfect reconstruction filter bank induced by the pro- 0 Qf( ) 0 f( J) J

jection on Vp. Then, L?(R) = ®;ez V;, and functionsg; »(¢) 2 w(t —
J)cosi(t — 4), 4,k € Z make an orthonormal basis fof;.

By using such signals, we can rewrite (27) as
y 9 g 27) VI. RELATION BETWEEN DISCRETETIME AND

CONTINUOUS-TIME CASES A SAMPLING THEOREM,

@[2n] = Zg[% — 2njuo(2(] AND A MALLAT -LIKE ALGORITHM FOR LCB

ez
+ 9[2¢ + 1 = 2nJuo[20 + 1] A. Discrete-Time Case
= glt —2nJuol/] (42a)  The continuous-time theory can be easily rephrased in dis-
tez crete time. This is suggested from the fact that the conditions
@2n+1] = Zg[zg — 2n]u[24] + g[2¢ of Theorem 1 have a “pointwise” nature. For example, self-
tcz orthogonality (45c¢) is a pointwise condition, and it does not
+ 1 — 2njug[20 + 1] requiret to belong to a continuous set. It is worth emphasizing
_ Zg[g — mlu[4]. (42b) the major differences between the two casgs.
< * The elementary step cannot be normalized, and we have

one more parameter: the step si¥eThe cosine symme-
A possible interpretation of (42) is presented in Fig. 8; values tries are not aroune:=1/2 but are aroundV/2.
¢:[n] can be obtained by filtering[n] with a two-channel filter ~ « The scalar product is computed via sums and not inte-
bank havingug[n] andu; [n] as impulse responses. The even  grals, and properties like Property 6 should be suitably

samples exit fromuy, whereas the odd ones exit from. rewritten. The folding operator remains the same but with
Such a filter bank structure will be even more interesting after ¢t € Z.
we will have proved a fundamental relationship betwegjm| » The vector space¥; have finite dimension, whereas in
andu:[n]. As a first step, rewrite,[n] andw,[n] in terms of continuous time, their dimension is infinite. Since we
ve[n] and v_y[n] as never used the dimension &f;, the difference is of no
consequence.
uo[2n +m] = (=1)"",[2n + m)| » The proof of the fact thay is a unitary mapping still
wi2n 4+ m] = (—1)"v[2n +m + 1. (43) works. This time, the role oL_Q([—l/Z,l/Z]) is played
by the space of sequences with supddrt---, N — 1}.
From (43), it is easy to prove that * Itis possible that the symmetry points do not belond to
This is not a problem since the proofs rely on the property

(uo[]. wo[+2n]) = (=1)™(w[], ve[- + 2n]) = 6(n that an antisymmetric function has zero mean, and this
" holds independently from the fact that the symmetry point

(ui[],ua[+2n]) =(=1)"(v_i[], v+ +2n]) = 6(n) (44) belongs, or does not belong, B

« Self-orthogonality condition (31) gives rise to a finite set

of constraints and not a continuum.

Ag important relationship between the continuous and

discrete-time cases is that by sampling a continuous-time

LCB with a lattice symmetric with respect t&1/2 (in this

that is,uo[n] andu4 [n] are orthogonal to their even translation.
Moreover, by using (43) in (37), we can see thgfn] and
uq [n] are conjugate quadrature filters, and the scheme of Fig
is a PR filter bank! Therefore, if:[n] = 0 for everyn € 7,

then g[n] = 0 because of the PR property. If such a fact i L .
verified for everyt, then f() = 0. way, the symmetry characteristics of LCB still make sense),

It is interesting to observe from the proof that a continuou¥/€ g€t a discrete-time CMFB. It is convenient to define some

time LCB can be interpreted as a continuum of discrete-timg"WV symbo]s for the sampled Versions of the generic sllgnal
two channel filter banks. f(t), the window w(t), the cosinescosi(t), and the basis

It is worth summarizing what we found so far. functions g;1(¢). They will be denoted as

Theorem 1:Let w(t) be a conti_nuous window satisfying w[n] 2 w(1/241/2N +n/N)
?(;r:srprgxs power complementarity, and self orthogonality ful] A F(1/2 1 1/2N +n/N) (462)
w(t) —w(—t)  (45a) cx[n] £ cosi(1/2+ 1/2N +n/N)
SO Wt - 20) £ w1 —t—20) =1 (45b) WY ] = gin(1/2+1/2N +n/N)

ez =wy[n]ex[n]. (46b)
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“Phase” ¢ 2 1/2 + 1/2N in (46) is necessary in order to Definition 1: Define By as the “locally bandlimited” sub-
make the sampling lattice symmetric with respectd@/2. space ofL?(IR), that is
Now, we can state the announced property. A ) , .

Property 12: Consider a continuous-time LCB with win- By = {[: e L/(R), F(j,w) =0,Yw 2 N, j € Z}
dow w(t). Let N € N,N >0. Define V") as the space =span{gjo fuw < Njez. (49)

obtained by sampling’; more precisely Theorem 2:1f f(t) € By, thenf(t) can be recovered from

its sampled versiorfy[n] via

F@&) =Y Inllr(t, ¢n +£/N) (50)

el

VO(N) A {r[n]: r[n] = f(1/2+1/2N + n/N)
n €, f(t) € Vo}. (47)

(N) . . : _ where (¢, z) is defined as
The vector spacé,” ’ is a discrete-time local cosine space

of dimension N relative to the windowwx[n] and having A =
functionshg)[n],k =0,---,N — 1 as an orthonormal basis. r(t,x) = z; E:O 9jo(8)950(2)- (51)
B . jE w=
It is clear thatVO(M has dimensionV since there areV ! ) ]
independent samples (the ones insidd/R, 1/2]). The proof If f(f) By, the quadratic norm of the reconstruction error

of Property 12 requires the following “aliasing lemma.” is minimized by sampling

Lemma 2: The following “aliasing relationships” hold:
g g f Falt) = / F(x)r(e, t) de. (52)
R

can—1-k[n] = —ci[n] Equation (52) is the LCB correspondent of the lowpass
crraen(n] =(=Dfe[n], Viez (48a) filtering used in the usual sampling. Note that a signal can
JA — _pV. be locally bandlimited without being bandlimited in the usual

IN—1—kn ko . ) .

() 0N sgnsg. _Therefore, gccordmg to Theorem 2, we can find S|g|jals

hitoen,, =(=1)°hy, . VELEL (48b)  with infinite bandwidth that can be perfectly reconstructed in

an LCB sense (and vice versa). To prove Theorem 2, we need
Equations (48) have an intriguing interpretation. If wéhe following lemma that describes the relationship between
considere;[n] as a “function valued signal” ik, the equations the local cosine transforms ¢ft) and its sampled versiofiy.
in (48) claim thatc[r] is antisymmetric aroundvV — 1/2 Lemma 3: Let F(j,w) and yF'(j,w) be the local cosine
and skew periodic with period N, that is, the same type oftransforms of f(¢) € L*(IR) and its sampled versiotfy,

symmetries enjoyed by the cosine functions in time! respectively; then
Proof: Equations (48) follow immediately from cosine PN Ty
properties and the definition (bzfi? O v w) = % (ZL7F (26N + w)
Sketch of the Proof of Property 12$unctionshéf\;) [n],k € — F(j,2¢N + (2N — 1 - w))]. (53)

VA enerateV(N). Because of Lemma 2, we can restrict our .
g 0 Lemma 3 descends directly from Lemma 2. Note that

. . (N) . o

ﬁtte_?t'?n to fl,ltnctlonshoﬁ [nl. k<N Thel Wmdoth_lt]’\’ ] ('jn Ifinstead of the usual aliasing of the classical sampling theorem,

erits rom_w( ) Symmetry, power complementarity, an se, here we have a folding! Lemma 3 has an immediate corollary.
orthogonality. Functions,[n] are the cosines used in CMFB’s

) . Corollary 2: If f(t) € By, then F'(j,w) = yF(j,w),
[compare with (3)]. Therefore’;éf\k)[n] = wy[n]ek[n], k<N, _ 0,1,---,N — 1(’)]' € z,]\ e )

are the impulse responses of a CMFB, and the thesis foIIowsLemma 4: Expression (52) is the projection ¢ft) on By .
Proof: Write the projectionZy on By in terms ofg; ..,

B. A Sampling Theorem for LCB’s jeENw=0,---N—-1
The sampling theorem is an important result of Fourier N-1
analysis. Since LCB's, like the Fourier transform, are a fre-  (Rn/)(®) =Y > (f,9:4)95x(1)
guency analysis tool, we expect a result similar to the sampling j€l k=0
theorem based on LCB. In this section, we are going to N-1
give such a result. It will be seen that the class of perfectly => > / f(@)gix(%)g)n(t) da
reconstructible signals in the LCB sense is different from the jez k=0 R
class of perfectly reconstructible signals in the Fourier sense N-1
(bandlimited signals). = / F@Y D gix(@)gia(t) do
To emphasize the connection with the Fourier transform, R jel k=0
we will change, in this section only, indexin cosAk andg; _ / Fx)r(x,t) da. (54)
with w. Moreover, we will use notation'(j,w) = (f, g;..) R

and y F(j,w) 2 <fN,h](»7]::)> for continuous- and discrete-timeThe compact support of the functiodg; »} allowed us to

functions, respectively. Before stating the main result, let lsing the sums inside the integral. O
define the concept of “bandlimited signal” in an LCB sense. Now, we can proof Theorem 2.
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Proof of Theorem 2:Let f(t) € Bx. From Corollary S —
2, it follows that for eachj € Z andk = 0,---,N — 1, r——— Y00 {@» a0
(frgin) = F(4, k) = NF(4, k) = (fN,hﬁ)} Therefore, we

can write
90,1 a,

F& =303 (v gm0 ()

Vel ken f(t) fulnl :
N—1 > <f(t), r(t,n)> :
=535 Un D gia ). (55) '
jeZ k=0
By replacing the scalar product in (55) with its expression, Yon-1 @ N
we get
(@
N-1
N
0= 3 (S oo w @
jCZ k=0 \¢€Z i0 00 |
N-1
SN DI IO OSRY 3 (N g -
ez jez k=0
=Y Inlr(t£/N + $). (56) '
tez \ :
The second part of the theorem is clear since the reconstruction i E
formula gives a function ofBy, and f2(¢) in (52) is the l
fy [n] f(t)

function of By having minimum distance fromnfi(¢). O
Note the necessity of projectint{t) on By before sampling  &n-1 —’@" I G MU R

it. This is similar to what happens with the wavelet expansion

using Mallat’s algorithm; we must first calculate a projection ()

onto the space spanned by the scaling functions at a choS@n®. Mallat-like algorithm for local cosine bases. (a) Analysis—For each

scale. Another example is the case of classical sampling; f €, "¢ SSr procuct o e it sonly) i e kemey .o,

signal is not bandlimited, we must use a lowpass filter (thatcmFs whose output are components . (b) Synthesis—TheV input

is, the projection on the space of bandlimited signals). signalsa;o,- -+, a; y—1 are sentinto a synthesis filter bank whose output is
the original sequencéx [n] because of the perfect reconstruction property.

The discrete-time sequence is sent into an interpolator that reconstructs the
C. A Mallat-Like Algorithm for Continuous-Time Local Base%r'g'”al signal f(t) (or its projection onBy if originally f(t) was not

andlimited).
Let us exploit the results of the previous section to develop
an algorithm to computéf, g; x). change the notation;[n] into v(¢;n). We need to know how

If f(t) € By, itis clear that because of Corollary 2, weo obtainw(t) from the filtersuv(¢;n).
can samplef(t) and compute the scalar products in discrete Property 13: For everyt € IR, there exisiy(t) € Z, 7(t) €
time. This can be efficiently done with a CMFB. f{t) is not [0,1/2] such thatw(t) = v((¢); q(t)). Moreover, for every
bandlimited, we have, according to Theorem 2, to project it g € IR — (Z/2), the functionr(¢) is arbitrarily differentiable
By . By evaluatingRy f at instantspy +n/N,n € Z, we get in t,, and there exists a neighborhoodtgfsuch thatg(t) is
constant.
(BN ) (@n +n/N) = (f.r( én +n/N)).  (57) Proof: Call tsin(¢) (as triangular sinug the function

. . . . . . from R to [—1/2, 1/2], which is shown in Fig. 7(b). It is
The resulting analysis algorithm is shown in Fig. 9(a)clear from [the figure] thatt € R, there exigtSn()e 7

Fig. 9(b) shows the corresponding synthesis scheme. such thatw(t) = wu(tsin(t);n). If tsin(f) > 0, we are

done; otherwise, exploit window symmetry to obtairit) =
w(—t) = wv(tsin(—¢); —n), with tsin(—t) = —tsin(¢) >0
VIl. WINDOW DESIGN since tSilﬁt) is odd. O
In this section, we show how to design a window for The integerg(t) in Property 13 is not necessarily unique;
a continuous-time, multiple overlapping LCB. Let us statmdeed, for every € 7 /2, there exist two integers satisfying
explicitly our objective. Property 13. We will avoid such an ambiguity by imposing left
Problem 1: Let D € N. Design aD-time differentiable continuity to¢(¢). By exploiting Property 13, we can restate
window satisfying the constraints of power complementaritfgroblem 1 as follows.
symmetry, and self-orthogonality. Problem 2: Find a family of filtersv(¢;n), parameterized
Recall the definition (34) of the signal[»]. Remember that by ¢ € [0,1/2], such that the corresponding windowZstime
ve[n] is a branch of a PR filter bank. Let us, in this sectiordifferentiable.



BERNARDINI AND VETTERLI: DISCRETE- AND CONTINUOUS-TIME LOCAL COSINE BASES WITH MULTIPLE OVERLAPPING 3177

Every two channel filter bank can be expressed via tif@1) becomes a linear system in unknowa$’(0) and
lattice factorization as a sequence of rotations and unit delay$’(1/2) that can be solved with usual techniques. The
[1], [2]. Every rotation is identified by an angle, and a2N- obtained boundary conditions can be easily matched by using
length filter bank requiresv rotations. Collect all the anglesfor eacha;(¢) a polynomial int.
in a vectora 2 [a1,---,ax]. Let L,(a) be the function giving  Although everything can be carried out in closed form,
thenth sample of the filter relative to anglesTo determine a Pecause of the involved form of the functiofs, (a(t)) and
family of filters, make every angle; a function oft € [0,1/2], their derivatives, a program for symbolic mathematics can
and definev(¢;n) = L.(a)(t). Note that functionsa;(t) Prove useful.
have no constraint. With such a parameterization Problem 2
becomes the following. A. Continuous-Time Design with Discrete-Time

Problem 3: Find a set of functiong;(t),t € [0,1/2], such Techniques and Vice Versa
that the windoww(t) = v(7(t);q(t)) = Ly (a(r(t))) is
D-time differentiable.

Now, we have to map the requirement of window smoot
ness into constraints om,(t). Since L, (a) and 7(t) are
arbitrarily smooth if¢ € IR — (Z/2), it is clear that as long
asq(t) does not changey(t) is as smooth aa(t). Since for
everyt € IR — (Z/2) there is a neighborhood afin which
q(t) is constant, we have the following property.

Property 14: If every functiona;(t) is D-times differen-
tiable inty € R — (Z/2), thenw(t) is D-times differentiable
in .

Therefore, to achieve smoothnesslin— (Z/2), we can,
for example, use for every;(¢) a polynomial int. Instead, if
to € Z/2, function¢(t) assumes two different values in every
neighborhood of,, and we have continuity if

Since the self-orthogonality conditions for discrete time are
just the sampled version of the continuous time ones, we can
Jet a good discrete-time window by sampling a continuous-
time one. Such a fact can be exploited in two ways.

1) Design a discrete-time window (with some known tech-
nique, e.g., [1]), and use its samples as “anchor points.”
The continuous-time window is obtained by (nonlinear)
interpolation.

More precisely, suppose the discrete-time window
has N samples between 0 and F2aVindow samples
w(pan+4£/2N), £ € Z can be mapped into angle values
a;(n/2N),n=0,1,---,N — 1 that can be interpolated
with smooth functions.

2) Design a good continuous-time window; then, obtain
a good discrete-time one by sampling. This approach
could be used, for example, to transform a window for

lim L t e))) =lm L ¢ _. tog— € . . L .
AT a(toto(alT(fo +))) clo atto y(a(r(to = ) N; channels with a given overlapping into a window

_ o _ (58) for N, > N; channels with the same overlapping. To do
wherelim, o denotes the limit for going to zero from the that, just interpolate the original window to continuous
right. Call n; and n, the two constant valueg(ty + e), time, and sample the result.

q(to—e) in (58). Since, for fixedh, L, (a(7(t))) is a continuous

function of ¢, we can rewrite (58) as .
(58) B. Design Example

Ly, (a(7(0))) = Ln, (a(7(t0))). (59) Fig. 10(a) shows the plots of the sinc function (dashed line)
_ ) _and of a twice differentiable window for quadruple overlapping
Since 7(to) = |tsin(to)| can only assume values 0, 1/2 ificontinuous line). The window frequency response is shown

to € Z/2 [see Fig. 7(b)], (59) can be rewritten as a sefjth continuous line in Fig. 10(b) together the frequency
of boundary conditions on functiong;(¢) for ¢ = 0,1/2.  response of the single overlapping window shown in Fig. 10(c)
Actually, it is shown in Appendix B that the window must(dotted line). Samples of the window of Fig. 10(a) can be

satisfy the following constraints ofi/2: found in Table I.
Fig. 10(e) and (f) show time and frequency domain views
w(0) =1;  w(1/2) =w(-1/2) =1/V2 of a window obtained by interpolating, with the technique
w(n/2) =0, n€Z,|n|>1. (60) of Section VII-A, the discrete-time window reported in [1]

for M = 16, K = 4, andw, = «/M. It is interesting
Constraints (60) map themselves into constraintsaft). It to observe that the resulting window does not satisfy the
is immediate to see that if;(t) are continuous and satisfypoundary conditions irz/2 and, therefore, is not continu-
constraints (60), the limits in (58) are necessarily equal.  ous (the discontinuities are evident in= +2.5, £3, +3.5).
The reasoning used to obtain (59) can be repeated for evefywever, allowing such discontinuities gives more freedom
order of differentiability, giving rise to the following boundaryto the window, and the resulting frequency response has a

conditions on the derivatives df,,(a(t)) with respect tot better stopband attenuation, although it decreases more slowly
D) D7 (D) for high frequencies. It is worth observing that the cosine
Ly (a(7(t0))) = (=1)7 Ly (a(7 (#0)))- (61)  window for double overlapping presented by Malvar in [15]

. .. is discontinuous as well.
The term(—1)" in (61) comes from the fact that the derivative

of 7(¢) is +1 or —1, depending on the directianapproaches

to- Smce everyL’{(a) IS a “ne_ar_ comblpatlon of products 2For simplicity, the discrete-time window domain is supposed to be
of sines and cosines aof;(¢), it is possible to show that (1/2N)Z instead of the more commah
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Fig. 10. Example of window design. Frequency scales are normalized to the sampling frequency. (a) Continuous line: twice differentiable window for
guadruple overlapping. Dashed line: sinc function for the same sampling frequency. (b) Continuous line: frequency response of the windowed [jag:Dot
frequency response of the window in (c). (c) Single overlapping window used for comparison. (d) “Zoom” on a tail of (a). This closer view explaias why th
two tails are doomed to be different; the first minimum of ¢inds aroundt = —1.5, wherew(t) must be zero. (e) and (f) Like (a) and (b), but for a window
obtained by interpolating a discrete-time one. Note that the window has some discontinuitieste.5, +£3, £3.5. This is because the discrete-time window

did not satisfy the boundary conditions#ij 2. Despite that, the frequency response of the window (d) is better than the frequency response of the window (a).



TABLE |
SAMPLES OF THE WINDOW FOR QUADRUPLE OVERLAPPING SHOWN

IN Fic. 10FORt = 1/50 + n/25,n = 0,1,---,99. THE TABLE
MusT BE READ CoLUMNWISE, Tor TO BoTTOM, LEFT TO RIGHT

BERNARDINI AND VETTERLI: DISCRETE- AND CONTINUOUS-TIME LOCAL COSINE BASES WITH MULTIPLE OVERLAPPING

9.9996401e-01

-5.9381407e-03

1.8085379¢-05

4.7595983e-10

9.9714078e-01

-4.7960558e-02

1.4166675¢e-03

4.2825537e-06

9.9016782¢-01

-7.7841672e-02

4.4108398e-03

5.6628850e-05

9.7956648e-01

-9.4160549e-02

7.6151584e-03

2.2891095e-04

9.6554735e-01

-9.7509738e-02

9.6795605e-03

5.1447048¢-04

9.4793139%¢-01

-8.9927145e-02

9.8507279¢-03

7.7856613e-04

9.2635105e-01

-7.4470997e-02

8.2055305e-03

8.5069323e-04

9.0057747e-01

-5.4862763e-02

5.5148390e-03

6.7567248e-04

8.7077650e-01

-3.5013478e-02

2.8145831e-03

3.6940426e-04

8.3751552¢-01

-1.8345793e-02

9.0811603e-04

1.1469735e-04

8.0150050e-01

-7.0357110e-03

4.7636882e-05

5.0346091e-06

7.6323524e-01

-1.4464086e-03

-7.2658345e-05

-5.0535093e-06

7.2284268e-01

-2.9816804e-05

-3.7408560e-06

-7.7098491e-08

6.8006913e-01

1.5497145e-04

-1.3421552e-05

4.5354349e-07

6.3439941e-01

2.0748571e-03

-6.6962791e-05

5.3529318e-06

5.8531216e-01

6.45566683e-03

1.2499595¢-04

-1.4042451e-05

5.3240283e-01

1.2107395e-02

7.9167361e-04

-1.0209609¢-04

4.7561137e-01

1.7174185e-02

1.7640640e-03

-2.2973221e-04

4.1540335e-01

2.0085753e-02

2.5779724e-03

-3.0572754¢-04

3.5272035e-01

2.0108382e-02

2.8111595e-03

-2.7511986e-04

2.8874577e-01

1.7453573e-02

2.3720158e-03

-1.7200151e-04

2.2468847e-01

1.3032317¢-02

1.5345587e-03

-7.2085165¢e-05

1.6174465e-01

8.0605310e-03

7.1833684e-04

-1.8040071e-05

1.0122505e-01

3.7047671e-03

2.0664859¢-04

-1.9987838e-06

4.4704868e-02

8.4915981e-04

2.0116661e-05

-3.4454387e-08

A theory for local cosine basis with multiple overlapping has
been presented. Although only the continuous-time case has

VIII.
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From (63), it follows that
s +1—1)=(—1)"s(1 — 1) = —s(t);
s(4—1—t)=(=1)"Hs(-1—t)=s(t).  (64)
O

Proof A.3: We only give the proof fors;, so € Cp.
The proof for the other cases differs only in the signs. Since
s1 and so are both square summable or1[/2, 1/2], then
s1s2 € LY([-1/2,1/2]). We just need to prove that;ss
enjoys the symmetries characteristic &f

s1(1 = 8)s2(1 — 1) =(=s1(8)) (—s2(t)) = s1(t)s2(2);

s1(—1 = t)sa(—1— 1) = s1(t)s2(2). (65)

O

APPENDIX B
BOUNDARY CONDITIONS ON w;[n] FORt = 0,1/2

Equation (36a) fort = 0 implies vg[n] = wvo[—n]. Since
{vol], vo[-—241) = 6(4), j € Z, thenwg[n] = &(n).

B.1. Constraints fort = 1/2

Equation (36b) fort = 1/2 gives vy s2[2n] = vy2[2n + 1]
¥n. Therefore, (35) becomes
{v1/2[']; v1y2l + 2n])

=2 v 20120+ 0)] = 6[n].  (66)

been studied in detail, the theory also works in discrete time. ez

Such a fact allowed us to obtain a sampling theorem for local _ A _ o
cosine bases and an efficient Mallat-like analysis algorithfgguation (66) claims thai[n] = v »[2n] is a non-null finite
The problem of window design has also been analyzed, dgaoth signal orthogonal tall its translations. This implies
some example of windows for multiple overlapping have beéfln] = 1/v/28[n], which in turn implies

given. 1
vy/2[2n] = vy 020+ 1] = w(1/2 = 2n) = E&[n] (67)
AP;:SS::XSA By window symmetry, we deduce from (67) the values as-

sumed by the window oRZ — 1/2.
Proof A.1: We will prove thatC, = Cy andC; = .
The property will follow by induction.

Let s(t) € Co, and calls;(t) = s(t — 1). Since symmetries , . L
(7) are not independent one another, but every two of thenf_hde f|_rst ?.Jthotr VIVOUI? I|ke_ to l‘;hank Dr'd‘]'ngwa\{tEO:gr
imply the third one, we just need to prove thaf(t) is introducing him 1o focal cosin€ bases and ~. Lvetkolr
symmetric around 1/2 because skew periodicity is not aﬁectgaggestmg the idea of interpolating a discrete-time window.
by translations.
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