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Spatially Adaptive Wavelet Thresholding with
Context Modeling for Image Denoising
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Abstract—The method of wavelet thresholding for removing compaction, small coefficients are more likely due to noise,
noise, or denoising, has been researched extensively due to itand large coefficients due to important signal features (such as
effectiveness and simplicity. Much of the literature has focused edges). The threshold thus acts as an oracle deciding whether or

agxgzglroE]thrglﬁhbflztsugggrznaéwgstgorfaﬁre ?ﬁzttgf‘:s'i;??g;gg'snot to keep the coefficients. Most of the literature thus far has

adaptive to the spatially changing statistics of images. Such adap- concentrated on developing threshold selection methods, with
tivity can improve the wavelet thresholding performance because the threshold being uniform or at best one threshold for each
it allows additional local information of the image (such as the sybband. Very little has been done on developing thresholds
identification of smooth or edge regions) to be incorporated into that are adaptive to different spatial characteristics. Other

the algorithm. This work proposes a spatially adaptive wavelet . - . . .
thresholding method based on context modeling, a common tech- works investigate the choice of wavelet basis or expansion for

nique used in image compression to adapt the coder to changing the thresholding framework. One particularly interesting result
image characteristics. Each wavelet coefficient is modeled as ais that (uniform) thresholding in a shift-invariant expansion
random variable of a generalized Gaussian distribution with an  (dubbedtranslation-invariant (T1) denoisindgpy Coifman and

unknown parameter. Context modeling is used to estimate the pon0ng [4]) eliminates some of the unpleasant artifacts intro-

parameter for each coefficient, which is then used to adapt the d d by th dificati fh th | let .
thresholding strategy. This spatially adaptive thresholding is ex- uced by the modification of the orthogonal wavelet expansion

tended to the overcomplete wavelet expansion, which yields better CO€fficients. In this paper, we use the wisdom that thresholding
results than the orthogonal transform. Experimental results show in a shift-invariant, overcomplete representation outperforms
that spatially adaptive wavelet thresholding yields significantly the orthogonal basis, and also investigate an issue that has not

superior image quality and lower MSE than the best uniform ; N
thresholding with the original image assumed known, Szlir; explored, namely, the spatial adaptivity of the threshold

Index Terms—Adaptive method, context modeling, image 1o motivate spatially adaptive thresholding, consider the ex-
denoising, image restoration, wavelet thresholding. R :
ample in Fig. 1, where a square pulse function has been cor-
rupted by additive noise, and the goal is to recover the original
I. INTRODUCTION function. The wavelet coefficients of the original and the noisy

N THIS paper, we address the classical problem of removiltl ction are displayed in Fig. 1(a) and (b), respectively. The
I additive noisé from a corrupted image, denaising.In noisy coefficients are (soft) thresholded by a single threshold

recent years there has been a plethora of work on weinelet in Fig. 1(c), and one can see that, especially in the finest scale,

thresholding6] for denoising in both the signal processing aan(:"trg are sotn:e coefﬂmegttshut)rrespon?|tr;]g to noise Wh'ifh havte
statistics community, due to its effectiveness and simplicity. fot been set o zero, and that Some of tnese noisy coetlicients

its most basic form, this technique denoises in the orthogort?r'gl(l9 Ia}rgerllnTlxagnltl_Jtﬂe thanfthoszta‘hcoe;ﬁclléen.tts corresg?[obndlfng to
wavelet domain, where each coefficienthisesholdedy com- € signal. Thus, with a uniform thresnold, it may not be 1ea-

paring against a threshold; if the coefficient is smaller than t éble to have b_°t_h the bent_afits of ".e?p"‘g the important signal
gatures and Kkilling the noisy coefficients. On the other hand,

threshold, it is set to zero, otherwise it is kept or modified. Th ) ) )
intuition is that because the wavelet transform is good at ener@?fe can reap hoth benefits with adaptive threshiolds by choosing
e threshold value to be very small in the regions of the peaks

due to the step function, and large otherwise [see Fig. 1(d)].
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© C) Fig. 2. Four level wavelet decompositionlagna.White pixels indicate large

magnitude coefficients, and black signifies small magnitude.

; ] should be kept, or at most modified only a little, to ensure that
A most of the signal details are retained. Thus, the idea is to dis-
o8 B Py il tinguish between the low and high energy regions, and modify
' : the coefficients using a spatially adaptive thresholding strategy.
To accomplish spatial adaptive thresholding, we model each
wavelet coefficient as a realization from a given probability dis-
tribution, whose parameter is to be estimated. This parameter in
02} S " ] turn is used to find the appropriate threshold. It has long been ac-
T cepted in the subband coding community that for a large class of
e images, the coefficients in each subband form a distribution well
- described by a generalized Gaussian distribution (GGD) [15].

06 B

04 ; —

02 Sriginal Thresholding | | Instead of using one parameter for each subband level, several
T Adaptive Thresholding wavelet-based image coders have achieved better performances
) 50 100 150 200 250 by modeling the wavelet coefficients as a mixture of GGD with
(e) unknown slowly spatially varying parameters [8], [16]. The es-

) o ) timation of the parameter for a given coefficient is conditioned
Fig. 1. Motivation for adaptive thresholds: (a) and (b) show a square pulse f . fi ighbori ffici hod lled
function and its corrupted version, respectively, along with their wavel@n @ function O Its neighboring (_:Oe icients, a met 0. calle
decomposition of four scales. The wavelet coefficients are thresholded bg@antext-modelingrequently used in compression for differen-
uniform threshold in (c) and spatially adaptive thresholds in (d). The originﬁlating pixels of varied characteristics and adapting the coder.
and the reconstructions from (c) and (d) are shown in (e). . . L

Context modeling allows one to group pixels of similar nature

but not necessarily spatially adjacent, and to gather statistical
position of theLenaimage in Fig. 2. One observes areas of higimformation from these pixels. Now, given that one can estimate
and low energy (or large and small coefficient magnitude), retite parameter for each coefficient, the next step is to use them
resented by white and black pixels, respectively. High energyy calculate the threshold. Our work in [3] found that when the
areas correspond to signal features of sharp variation sucts@mal coefficients are modeled as GGD random variables and
edges and textures; low energy areas correspond to smoottthie-noise as Gaussian, the threshfiid= o2 /oy is a good ap-
gions. When noise is added, it tends to increase the magnitydeximation to the optimal threshold which minimizes the mean
of the wavelet coefficient on average. Specifically, in smootguared error of the soft-thresholding estimator, wiéris the
regions, one expects the coefficients to be dominated by noiseise power, and x is the standard deviation of the signal. The
thus most of these coefficients should be removed, especialynplicity of this threshold makes it easy to achieve spatial adap-
since noise is highly visible here. In regions of sharp transitiotiyity—one uses context modeling to quantify the local charac-
the coefficients have a lot of energy due to the signal, and soteeistic in o, which in turn yields a threshol@iz adaptive on
due to noise (which is not as visible in these regions), thus thapixel-by-pixel manner.
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Our proposed algorithm is based on using adaptive thresh- highpass H(z,) _@__HHJH
olding in the overcomplete wavelet expansion (specifically, H(z)
nonsubsampled expansion). It outperforms both using only Ll H(z,) @_mj+l
adaptive thresholding in the orthogonal expansion or using LL; 2
only uniform thresholding in the overcomplete expansion like lowpass H(z,) _@_;LHJ.H
the Tl denoising. That ishy combining spatially adaptive H(z))
thresholding and overcomplete expansion, we achieve results H(z,) @LLj+l
which are significantly superior than either method alofiest, horizontal —
the adaptive threshold selection is effective at removing noise filtering ;7;;’,3;’2
in smooth regions, while not disturbing too much the edge
and texture regions. Second, thresholding in the orthogonal 1 stage of wavelet transform

expansion has been observed to produce Gibbs-like edge
artifacts. Thresholding in the overcomplete expansion has the
interpretation of averaging circularly-shifted, denoised versions
of the signal, thus providing an additional smoothing whichorrelated. Several alternative approaches will be discussed in
attenuates these unpleasant artifacts [4]. terms of their applicability to our adaptive algorithm.

The organization of this paper is as follows. Section I
introduces the threshold selection method when there is omly Coefficient Modeling and Threshold Selection
one class of Generalized Gaussian distributed random variable
cqrrupted by mdepe_nde:nt add'tl\{? Ga.ussuan noise. Becalﬁ% some integer power of 2. The image has been corrupted by
thls thrgsholq s'electlon is based iah noise assumption, the additive noise and one observes
discussion will first be set in the orthogonal wavelet transform.
The method of context modeling is then introduced to allow L L Lo .
coefficients be modeled as random variables of different pa- gli, 1= fli g+ el jlé, 5=1,--- N (1)
rameters, and these parameters are used to make the threshold o . . . o
spatially adaptive. The explanation of our proposed algorithm'| ereelt, j1} are independent and identically distributéd)
completed by extending this adaptive method in the orthogorf normalN (0, o,.) and independent off[z, 1}. The goal is

expansion to the overcomplete expansion. In Section |, V\tI% remove the noise, or "denoisgj[i, j]}, and to obtain an es-

will compare the spatially adaptive results with those frofimate{/[¢, j]} of { f[z, s]} which minimizes the mean squared
the best uniform thresholding strategy (in the mean squar%ﬂror (MSE)
error sense, and based on knowing the original image), in both L
the orthogonal and overcomplete expansion, and also with a N AL s L2
state-of-the-art denoising method [10]. Results will show that MSE(f) = N2 Z (L. 1= fli. ) @
the combination of using spatially adaptive thresholding and
overcomplete expansion yields significantly better results in To accomplish wavelet thresholding for denoising, the obser-
both visual quality and mean squared error. vations{g[i, j]} are first transformed into the wavelet domain.
The necessary notations for the wavelet transform will be intro-
duced here, and the readers are referred to references such as
II. ADAPTIVE ALGORITHM [9], [14] for more details. The two-dimensional (2-D) discrete
orthogonal wavelet transform (DWT) can be implemented as a
The adaptive algorithm will be developed in the followingritically sampled octave-band filter bank, where separable fil-
manner. First, the concept of wavelet thresholding in thering is used (Fig. 3). Leg = {g[¢, jl}i, ;. £ = {f i, 41} 5s
orthogonal wavelet transform is introduced, and coefficienégs= {¢[¢, j]}. ;, that is, the boldfaced letters will denote the
in each subband are modeled as realizations of one classtrix representation of the signals under consideration. Let
of GGD (with unknown parameter), corrupted by additiv&d = WWg denote the matrix of wavelet coefficients gfwhere
white Gaussian noise. We then describe the threshold sel#¢-s the 2-D dyadic orthogonal wavelet transform operator, and
tion method developed in [3] which achieves near-optimalmilarly X = Wf andV = We. It is often convenient to
soft-thresholding under these distributions. To make this threstuster these coefficients into groups subbandof different
olding approach spatially adaptivegch coefficienfrather than scales and orientations as in Fig. 4, where, for example, the
each subband) is modeled as a GGD random variable withahel HL, refers to those coefficients at the first scale of de-
different unknown parameter estimated on a pixel level usimpmposition which are the output of the highpass filter in the
context modeling. This spatial mixture of distributions allowsorizontal direction and the lowpass filter in the vertical direc-
the image characteristics to be quantified locally via the disttion. The subband$/ Hy, H L, LHy, k = 1,2, ---, J are
bution parameters, which are then used to adjust the threshoddled thedetails,wherek is thescale,with J being the largest
for each coefficient. Last, since the aforementioned algorithfor coarsest) scale in the decomposition, and a subband at scale
is developed in the orthogonal expansion where the coefficiedtdas sizeN/2¥ x N/2¥. The subband.L; is thelow res-
are uncorrelated, the algorithm will need to be modified tolution residual,and J is typically chosen large enough such
extend to the overcomplete expansion where coefficients dnat N/27 < N and N/27 > 1. Let Y4, j],4,j =

Fig. 3. One stage of the 2-D wavelet transform.

Pet the original image béf[:, j],4,i =1, ---, N}, where

i, j=1
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LL 5| HL; nr(z) = sgn(z) - max(|z| — T, 0) is the soft-thresholding
™ HL.— function, andr” is called thethreshold.The optimal threshold
LH, |HH; 2 T* is defined to be the argument which minimizes the expected
l O HL, squared error
LH, HH, T = arg I%in Eyvix, x(nr(Y) — X)2 (5)
1
| H whereY | X ~ ¢(y — z, 02) andX ~ GGg ., (z). The soft-
l thresholding function is chosen over another popular choice, the
hard-thresholdingunction,r(z) = = - 1>}, because it

yields denoised images with better visual quality. In [3], it was
LH, AN HH, found that at least for the range @fe [0.5, 4], T* can be well
AN approximated by

2
a
Tp = — (6)
ox
Fig. 4. Subbands of the orthogonal DWT. The arrows show the relationstth at most 5% difference from the minimum expected squared
from parent to child. error. Because the threshdlg; depends only on the standard
deviations x and not on the shape paramefteit may not yield
1, ---, N/2%, denote the wavelet coefficients 6§[:, j]} at a a good approximation for other values®than the range tested
particular scale and orientatiors, wheres = 1, 2, ---, J and here, and the threshold may need to be modified to incorporate
o€ {HL,LH, HH, LL}. /3. However, in practice it has been observed in several work

The method of wavelet thresholding denoising filters each c-3], as well as in our own experience, thattypically falls
efficient Y;; from the detail subbands with a threshold functiomithin the range [0.5, 1], well within the range gftested here,
(to be explained shortly) to obtaiki;;. The denoised estimate isthus the simple form of the threshdld; is appropriate for our
thenf = WX, whereW! is the inverse wavelet transformpurpose. The curve of expected squared error is very flat near
operator. the optimal threshold™, implying that the error is not very

It has been observed that for a large class of images, the c&&msitive to a slight perturbation neat.
ficients from each subband (excehL) form a symmetric dis-  The thresholdl’s = o7 /ox is not only nearly optimal but
tribution that is sharply peaked at zero [9], [15], well describedSO has an intuitive appeal. For such a choice, the normalized

by the zero-mean GGD thresholdTs /o, is inversely proportional te x, the standard
deviation of X', and proportional t@,,, the noise standard de-
GGp oy (1) =05, O_X)e—(a(,a,(rx)l-rl)ﬂ7 viation. Wheno,,/ox < 1, the signal is much stronger than

©) the noise, thu§'s /o, is chosen to be small in order to preserve

—o<r<,ox >0,6>0 - : ”
most of the signal and remove some of the noise; vice versa,

where wheno, /ox > 1, the noise dominates and the normalized
12 threshold is chosen to be large to remove the noise which has
r <§) overwhelmed the signal.
-1 I5] Ba(B, ox) The proposed thresholds can easily be adjusted to the
o, ox) = ox 1 , OB ox)= ~/1\  signal and noise energy as reflectedsip and o,,. By esti-
I </§> 2r </§> mating the parametery for each subband, we have aniform

(4) thresholdZ’s adaptive on a subband-level. Better denoising
performance can be achieved by using spatially adaptive

andI'(t) = [~e “ut~ldu is the gamma function. The thresholds, whose derivation will be described in the following
parametersx is the standard deviation and determineg§ection.
the spread of the density function, and the paramgtes
called theshape parameteiVell-known special cases of the
GGD density function include the Gaussian distribution with To achieve a spatially adaptive thresholding strategy, the
$ = 2, and the Laplacian witi3 = 1. Let {X ()[4, 5]} and wavelet coefficients are modeled as components in a discrete
{v(=9)[i, 4]} denote the wavelet coefficients of the originatandom field, with a collection of independent zero-mean GGD
signal{ f[¢, j]} and the nois€z[i, j]}, respectively. For each random variables whose parametgrsand ox are spatially
subband, the signal coefficienfst*-?)[i, 5]} are modeled as varying. As discussed previously, mainly the parameteris
independent samples of distributign; (z) = GGp ., (x), of interest since the thresholti; = o2 /ox depends on it,
and since the wavelet transform is orthogonal, the noised/ is assumed to be in the range for which this threshold
coefficients are independent samples of the Gaussian disisi-appropriate. The parameter; needs to be estimated for
bution py(v) = ¢(v, 02) = 1//2702 exp{—v?/202}. each coefficient to make the threshdig spatially adaptive.
Let the estimator be restricted to thsoft-thresholdesti- This can be accomplished mpntext modelingan idea used
mator of the formX®[i, j] = 7 (Y)[i, j]), where frequently in image compression for adapting the coder to

B. Context Modeling for Spatial Adaptivity
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changing image characteristics. That is, the statistical model- histograms of Y/i,j]
a given coefficient is conditioned on a function of its neighbor: s T
Several model-based coders have utilized information froZ
causal quantized neighbors to determine the context model &= -
the model parameters for each coefficient (for example, [€>~
[16]). The most relevant work is the wavelet-based compressi §
scheme in [16], where context modeling was used to class"é
coefficients into several classes of Laplacian distributions wi'g - :
different values ofsx. The conditioning was based on the_§ L 7 = B
weighted average of the magnitude of quantized coefficients /' context (Z{i,j] )
a causal neighborhood, and each class was formed by clustel variable window
coefficients whose associated weighted averages fall within a o o ,
specified range. The distribution parameter is estimated frcgrg%ﬁ?éienst‘?‘rgﬁ'dezp['ftﬁ{i [’i’t ;Lgﬂ%ﬁ”ﬁ&ﬁfgggn J(])f'ys[tlhe]]”‘f,'vsléws""r‘r’]‘:lft
the coefficients for each class, which is then used to adapt thies ofz[i, j] have a smaller spread than those with large valug&bf j],
coder. Since the parameter and the description of each clagwesting that context modeling provides a good variability estimate of
need to be sent as overhead, only four classes were used in [Yé’].f]'

From [16], we adopt the idea of clustering pixels with similar
context for parameter estimation. For the denoising problemgite close in value taZ[i, j]. To develop an intuition for
is not necessary to explicitly cluster the pixels into a discret8is, it is helpful to examine Fig. 5, which plots the pairs
number of classes in order to conserve bits. Thus, one has {#@i, jl, Y[¢, jl}, ¢, 7 = 1, ---, M. The points are clustered
luxury of estimating the parameters for each coefficient via, sayithin a cone shape centered at origin. Taking an interval of
a moving window, resulting in virtually an infinite mixture of small valuedZ [z, j], the associated coefficien{d’[i, j]} have
distributions. The estimation method used here will be for tfesmall spread; on the other hand, an interval of large valued
GGD parameters, and our context model generalizes that of [#8}, j] has correspondingY'[i, j]} with a larger spread (the
to be more flexible and advantageous for the denoising task.intervals are of different widths to capture the same number

Consider one particular subband with/? coefficients, Of points). This suggests that the context provides a good
{Y&:9)i, 4]}. To simplify notation, the superscrigk, o) is indication of local variability. Thus, for a given coefficient
dropped and will be used only when necessary for clarity. Ea&Hio, jo], an interval is placed aroundfio, jo], and the
coefficient Y[i, j] is modeled as a random variable whoswariance oft[io, jo| is estimated from the poinis[i, j] whose
variance can be estimated as follows. Consider a neighborh@géitext Z[i, j] falls within this window. In particular, we
of Y4, j], and theabsolute valuef its p elements are placedtake L closest points (in value) abo&lio, jo] and L closest
inap x 1 vectoru;;. One possible choice is the eight nearegtoints below, resulting in a total &L + 1 points. We choose
neighbors ofY[i, j] in the same subband, plus its parent = max(50, 0.02- M?) to ensure that enough points are used
coefficienty (=+1.9)[[: /2], [j/2]] (see Fig. 4 for the definition to estimate the variance, but not too many points to destroy the
of parent—child relationship). To characterize the activity levédcality of the window. Different choices df around this value
of the current pixel, we calculate the context as a weight&éelds similar results, though too small (e.g., 10 or less) or too

[

average of the absolute value of the neighbors large (e.g., close td42/2) values ofL worsen the performance
significantly. Note that this is a moving window rather than
Zli, j] = w'ug;. (7) the fixed classes in [16], and thus allows a continuous range

) ) ) ) of estimate values. L8, ;, denote the set of point&[i, j|}
The weightw is found by using the least squares estimate, thgh, e context falls in the moving window. The estimate of the

is, variances?-[ig, jo] is then
wrs = arg Hti}ll Z (YT, 5] — wtuij)Q 8 1
) 63 [i0, jo] = max Y[k, £? =02, 0
— (U'U)UYY ©) wlio o ety 2y TR

[k, £]CBig o
whereU is aM? x p matrix with each row being;,, foralli, j, (10)

Noice hat the absolute values of the neighborsrather than )¢ (8T needs o be subtracted becaysf, 1} are the
original values are used in the averaging. This is because g?JSy opservatlons, and the noise is m_dependgnt of the signal,
e j with variances2. The threshold at locatiofo, jo] is then

thogonal wavelet coefficients are uncorrelated, and thus an av-

erage of the neighbors does not yield much information about o2

the coefficient of interest. However, the absolute value or the Tglio, jo] = Wnl] 11)

squared values of neighboring coefficients are correlated [12], 0210

and therefore their averages are useful in collecting informati@alculating the thresholfiz [, j] for every locatiorjz, j] yields

about other coefficients in the near vicinity. a spatially adaptive threshold. In the implementation, the con-
The variance of the random variabl¥[i, j] is esti- text{Z]:, j]} are first sorted, and a moving window is placed

mated from other coefficients whose context variablever them, so the sé;; and the variance estimatg; [¢, j] can
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be updated efficiently. To update the summation in (10) only re- H, ()
quires one addition and subtraction for tH¢k, £]? term, and H ()
one multiplication for the constan/ (2L + 1). Thus, the arith- 0

Hy )

metic complexity incurred by computing (10) is of ordef?, H,@

whereM? is the number of points in the subband. H, %) {

The above threshold estimation method is repeated for each H@) |
subband separately, because the subbands exhibit significantly
different characteristics. Up to now we have not discussed h@w. 6. one-dimensional nonsubsampled filter bank. One-dimensional
to estimate the noise varianeg. In some practical cases, it isfiltering is extended to 2-D by separable filtering.
possible to measure? based on information other than the cor-
rupted observation. If this is not the case, as is here, we estimetefficients (in each direction) are correlated.Thus, we can
it by using the robust median estimator in the highest subbaseparate the coefficients into four sets of uncorrelated coeffi-
of the wavelet transform cients, namely{Y[2¢, 2]}, {Y[2¢, 27 + 1]}, {Y[2¢ + 1, 24]}

and {Y[2¢ + 1,25 + 1]}. For the sth level decompo-
&, = Median([Y'[¢, 5]|)/0.6745, YTi, j] € subbanddH,  sition, the coefficients can be separated I8 sets,
(12) each containing uncorrelated coefficients, and they are

also used in [3], [4], [6]. {Y[2%0+ Fv, 2°F + ka]}i,j, k1, k2 =0, 1, -+, 2° — 1. Since
o ' each set contains uncorrelated coefficients, the noise are also
C. Thresholding in Overcomplete Expansion iid within each set as well, and thus the adaptive algorithm

Thresholding in the orthogonal wavelet domain has be&an be used for each set of coefficients. This approach lets us
observed to produce significantly noticeable artifacts sudfill use the independent noise assumption and circumvent the
as Gibbs-like ringing around edges and specks in smodggue of denoising correlated signal coefficients with correlated

regions. To ameliorate this unpleasant phenomenon, Coifri2@ise, Which is not an easy task. That is, if the coefficients are
and Donoho [4] proposed théranslation-invariant (TI) correlated, thenone can conceivably do better than thresholding

denoising. The discussion in [4] is one-dimensional (1-D)each coefficient independently; one could look at the numerous

but we explain it in 2-D here. LeShift; ([g] denote the correlated coefficients and do jaint thresholding. This is
Opera“on of C|rcu|ar|y Sh|ft|ng the |nput |magﬁby k indices still an open prOblem and will be InveStlgated For correlated
in the vertical direction and indices in the horizontal, and noise, [7] proved some minimax propertles of using a modified
let Unshifty ¢[g] be a similar operation but in the opp05|temlvefsa| thresholdey,” /2 Tog IV, whereo',” is the standard
direction. Also, let Denoisclg, T] denote the operation of deviation of the noise at decomposition levelhe framework
taking the DWT of the input image, threshold it with a is for a deterministic signal, however, and not the Bayesian
chosen uniform threshold”, then transform it back to the framework used here. Thus, for simplicity, we separate the
space domain. Then TI denoising yields an output which @®efficients into groups of uncorrelated coefficients before
the average of the thresholded copies over all possible shiftsing the adaptive thresholding algorithm.
f = (1/N?) k P OUTLSthtk ¢[Denoise[Shifty ¢[g], T There are two other minor details in the implementation.
The rationale is that since the orthogonal wavelet transfofrirst, one needs to alter the noise powérat each decompo-
is a time-varying transform and thresholding the coefficiengition scale tar?/4° due to the renormalization of the filters.
produces ringing-like phenomena, thresholding a shifted inpﬁecond, the definition of the parent coefficient used in the
would produce ringing at different locations, and averagin@gighborhood of the context is slightly changed: the parent of
over all different shifts would yield an output with morea coefficient in scales is simply the coefficient at the same
attenuated artifacts than a single copy alone. TI denoising cfatial location in scale + 1.
be shown to be equivalent to thresholding in the shift- |nvar|ant
overcomplete representation implemented bynbasubsam-
pled filter bankas will be described below, up to some scaling There are several other possible alternative approaches which
in the thresholds. It has been shown to reduce the ringiagll be discussed below.
artifacts and the specks. Thus, we proceed to extend our spatidl) Different Estimation of VarianceAn alternative
adaptive algorithm to the nonsubsampled expansion. common approach for estimating the local variance is to
The adaptive algorithm in the orthogonal basis describede the points in a local neighborhood arouvigi, 5] (as
above can easily be extended to the overcomplete bagis[8]). This is a simpler way than the indirect way of first
Now consider the same orthogonal filters but used in a filtgrouping coefficients with similar context, and then estimating
bank without down-samplers (see Fig. 6 for the 1-D casthe variance. As demonstrated by the good performance of
and the 2-D case is achieved by simply extending the 1tBe image coder in [8], the variance estimate from a local
filtering to separable filtering; refer to [14] for more detailneighborhood yields an estimate good enough for adapting the
on nonsubsampled filter banks). The filters are renormalizedder. However, our experience with noisy images shows that
by 1/v/2 so that coefficient energy stays the same. Thaich an estimate yields considerably more unreliable variance
decomposition is a redundant representation, and there estimatesg%[i, j], and also blotchy denoised image. This is
correlations between the decomposition coefficients. Fbecause the estimate is highly sensitive to the window size we
example, at the first level of decomposition, the odd and evehoose: a small window contains few points and thus yields

. Alternative Methods
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unreliable estimates; a large window adapts slowly to changifigis logic can be applied to the denoising framework as well.
characteristics. The context-based grouping allows one \i¢hen the algorithm computes]:, 5], it identifies the locations
congregate those coefficients with similar context though np, ¢] in the causal neighborhods}; for which X[k, #] = 0 but
necessarily spatially adjacent. It also allows a large numb@éf(k, ¢]| > o, and thes& [k, £] are substituted for the zero
of coefficients to be used in the variance estimation, thu§[k, /] to be used in the computation &, j] andé x[4, j].
yielding a more reliable estimate. Simulations show that ttf&mulations show the resulting images to yield worse MSE’s
performance is not sensitive to the neighborhood chéige than the previously proposed method, and they are visually con-
and the weightw used in the context calculation, as a simplsiderably more noisy.
equally weighted average of the eight nearest neighbors in théAnother variation is to use the denoised coefficient for con-
same subband yields approximately the same result. text modeling, but the observed noisy coefficients for estimating
2) One-Pass Algorithm:The method we have proposed is2[i, j] as in (10). Again, without taking some caution about
a two-passprocess: the first pass calculates the weighted abhe runs of zero coefficients, the variance estimate may be in-
erage{ Z[, 7]} of the absolute values of the neighborimgisy adequate for several rows (recall the scanning is row by row)
coefficients, and the{Z[¢, 7]} are sorted; the second pass colbefore having enough nonzero causal neighbors for collecting
lects the noisy coefficients with similar values Bfi, j], esti- valid information. The denoised images are also similar to the
mates the signal variance?-[i, j], from the noisy coefficients ones described above, having worse MSE'’s than the proposed
and the thresholds for the thresholding function. It is worthwo-pass algorithm, and are visually more noisy.
while to investigate the algorithm performance when the con-3) Heteroscedasticity ModelA central part of our spatially
text modeling and the parameter estimation are performed asaptive algorithm is based on modeling the varian&éi, j]
the denoisedcoefficients instead, since, intuitively, if the co-to be nonconstant and varying throughout the image. This is
efficients are really denoised, they should yield more reliabfeminiscent of théneteroscedasticitygr nonconstant variance,
information. This simple intuition is, however, not as straighfpproblem in statistics. Le{Y'[¢, ]} be the observed noisy
forward to implement as it seems. To do this in a two-pass algeavelet coefficients, and eadfis, j] a random variable whose
rithm is difficult, sinceZ[i, j] is a weighted average of neigh-variance+?[i, j] is nonconstant. A common approach to the
boring denoised coefficients, but the threshold used to denofsgteroscedasticity problem is to modél:, j] as a function of
these coefficients are estimated from other denoised coefficiestsne design vectos, ;. Traditionally there are two approaches
with similar context. A simple-minded alternative solution is tin estimating this function: parametric and nonparametric.
use aone-passnodification of our algorithm, where the condi-Since we have an assumed distribution on the wavelet coeffi-
tioning and estimation are based on ttaisal, denoisedoef- cients (i.e., GGD), the parametric approach will be used here.
ficients, much along the same philosophy as one-pass compiHse readers are referred to [1], [11] and related literatures for
sion methods conditioning on causal quantized data [8], [1@hore details on heteroscedasticity models. Using a parametric
Assume a scanning order of row by row, and initialize the fir§tinction to describe the variangé([i, j] has the advantage that
coefficient as already denoised, thati§[1, 1] = Y[1, 1]. For it allows a compact representation of the nonconstant variance,
every new coefficient at locatiofi, j], the context is condi- useful for image analysis and understanding. In contrast,
tioned onZ[i, j|] = w'u,;; wherew;; is now the vector con- although the nonparametric approach described in Section I1-B
taining the absolute value of denoised coefficieﬁtb‘, j] in  works well, it does not lend itself to any tractable analysis.
a causal neighborhood, and the elementsaire simply the  In the previous section, we have described the noisy coef-
equal weights. These choices are made for simplicity since tigent Y[¢, j] as a sum of two random variableX]:, j] ~
denoising performance is not too sensitive to the neighborho@&D andV[i, j] ~ Gaussian. UnlesX[i, j] is a Gaussian
selection and weight vectas. The GGD parameterx[¢, j] is distributed random variable, there is no closed form expression
estimated from past denoised coefficients whose contexts #oethe distribution oft [, j]. However, often one observes the
similar, and2L + 1 coefficients are used (or all of the availablevavelet coefficients for images to be sharply peaked at zero,
coefficients so far if less tha@V. + 1 coefficients have been de-better described by the Laplacian density function. Furthermore,
noised.) Since the coefficients are already denoised, the estitee noisy coefficients also form a histogram which is sharply
tion of ox[i, j]is 6% [i, j] = (1/2L + 1) D[k, (B X[k, 4> peaked at zero. Thus, for simplicity and for the sake of tractable
instead of (10). Simulations show this approach to run into proénalysis, we assume the noisy coefficiéfjt, j] to be Lapla-
lems especially when the noise poweris large, causing many cian distributed, or, alternativelyy i, j]| be exponentially dis-
coefficients to be denoised to zero. Having too many consedtibuted. Similar to the context modeling framework in Sec-
tive zero coefficients is likely to cause; [7, j] to be zero, which tion II-B, let the design vectad;; at location[z, j] be the vector
then translates to an infinite threshold (i.¥, j] is thresh- containing the absolute value of the eight closest neighboring
olded to zero). This in turn may cause all the subsequent coeffioisy) coefficientsaw be the unknown regression parameter
cients to be thresholded to zero. This phenomenon is frequeriilg., the weights for the weighted average of the neighboring
encountered in backward adaptive compression methods whictefficients contained in;;), and the variance fdr;; be a func-
adapts based on causal quantized coefficients: a run of zeroton of w'u;;. Formally, our heteroscedasticity model is
efficients may cause all subsequent coefficients to be quantized
to zero as well. Some work ameliorate this problem by looking
ahead to identifjunpredictable sets;oefficients whose neigh-

1 o
il e~ —y/[, 4]
bors are zero, but who should not be quantized to zero [8], [16]. YL, Jl] N v yz0 (13)

[¢, 4]
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where the standard deviation is TABLE |
MSE RESULTS OFDIFFERENT DENOISING METHODS FORVARIOUS TEST
’}/[i, J] — Kﬂ(wtuij) (14) IMAGES AND ¢,, VALUES
andKpg(-) is a smooth function such as a polynomial of order MSE/a, | 125 ‘ 15 ‘ 17.5 ‘ 20 ‘ 22.5 ‘ 25
with unknown parametel- 4 1) x 1 vectorg. Modeling~[¢, j]
. + R . Method lena
as a function otv*u;; can be justified by observing that the plot
of {(w'u;;, Y[z, j])}s, ; often resides within a cone shape (see AdaptShr || 31.2 | 37.8 | 443 | 51.2 | 575 | 645
Fig. 5), implying that the variability o¥"[¢, j] depends highly OracleShr || 36.4 | 44.3 | 521 | 59.6 | 67.4 | 743
on wtuij.
To estimate the paramete?sndw, the likelihood approach SE-AdaptShr | 24.9 | 29.9 | 35.2 | 40.2 | 45.2 | 50.8
is used. The negative log-likelihood (f[i, j]| is SI-OracleShr. || 29.8 | 35.9 | 42.3 | 48.7 | 55.7 | 612
YT, j| Mihcak {10] || - | 376 | - | 52.1 - 67.5
log Kg(w'u;;) + |7’ 15
& ( “) Ko(wtuij ) ( ) barbara
For {|Y[i, j]|}:, j=1,--, v, the negative log-likelihood, or the AdaptShr || 52.4 | 66.2 | 79.7 | 95.6 | 111.0 | 124.0
likelihood function, is OracleShr || 63.1 | 82.6 | 99.6 | 119.3 | 138.0 | 154.4
N Lo
YTi, SI-AdaptShr || 39.5 | 50.4 | 60.7 | 73.2 | 85.3 | 96.2
L6, w) = Z <10g Ko(w'u;;) + Lﬂ) (16)
i Ko(w'uy;) SI-OracleShr || 512 | 663 | 81.0 | 96.7 | 112.0 | 128.2
The likelihood function (16) is minimized over both parameters _ Mibgak [10] || - [ 612 ] - | 887 | - | 1175

@ andw to find their optimal values. One way to do this is to start
with an initialw being the linear least squares estimaigg as

, X . r ner ingandn in MATLAB. For the orthogonal
in (8). Thend is estimated as are generated usingind or the orthogona

wavelet transform, four levels of decomposition are used, and

0— arg min L(6, WLs). (17) fche. wavelet employed is Daube_chies’ symmlet with eight van-
4 ishing moments [5]. There are five methods that are compared,
The regression parameteris refined one step further as and the MSE results are shown in Table I, with the best one
X _ ) highlighted in bold font. ThéAdaptShrinkmethod refers to the
W = arg min L(6, w). (18) proposed adaptive thresholding method using the orthogonal

) transform DWT (the soft-thresholding function is sometimes
After obtainingw and#é, the standard deviation af[¢, j]is referred to as shrinkage, and hence the na@iefpdaptShrink
estimated byy[4, j] = Ke(w'u;;), and the variance estimate ofis the adaptive thresholding using the shift-invariant (Sl),

the clean coefficienf[¢, j] is 6% [¢, j] = max(0, 42[¢, j] — nonsubsampled wavelet transform. These two are compared
&2 ). The threshold is then calculated as before tdhf, j] = against the best uniform thresholding techniques (in the MSE
62 Joxli, 7). sense) when the original uncorrupted image is assumed to be

Polynomials of order = 1, 2 were experimented with, andknown. For uniform thresholding with DWT, in each subband,
a different set of polynomial parameters is found for each sulge find theoraclethreshold?Z;, as
band. Simulations show this parametric estimationy§t, ;]
to differentiate well between regions of high energy (e.g., edges T, = arg min > (e (YVTi, 1) - X[4, 41 (19)
and textures) and smooth areas. That is, the variance estimate is i J

larger in the edge and texture region, and smaller in the Smo%nereY[i, j] and X[i, ] are the wavelet coefficients of the

regions. However, these values are not appropriate since the wﬁéy observatiory and original imagef, respectively. This

. . o ,\2 [. K _
sequently calculated variance estimateXgi, j], ox [t, j]. e~ \ainod is referred to a®racleShrink.Similarly, this is ex-

N@nded to the nonsubsampled wavelet transform, where a dif-

all the coeff|C|e.nts " the thresholghng. This p'henome!’lon M3 rent threshold is found for each set of uncorrelated coefficients
be due to the disparity between this parametric modeling of the hin each subband (th2%* thresholds for a subband at scale

nonconstant variance and the noisy observation modeling: in the

i h the ob d o ficient 5),” This method is coine®&I-OracleShrinkResults from the
parametric approach, the observed noiSy coetlicients are mey noising algorithm recently proposed in [10] is also listed in

eled as Laplacian distributed, whereas in the original fram‘I%_ble | for comparison. Reference [10] uses a locally estimated

work, the observations aumsof a Laplacian and GaussmnEGD and applies this model to the denoising problem using a

random variable. Nevertheless, the likelihood approach to t Syesian estimate. Fig. 7 shows the comparison of the different
heteroscedasticity problem may be valuable to other appliqﬁ

tions ethods on a magnified region in tBarbaraimage fore = 25

and thelenaimage foroc = 22.5. The SI-AdaptShrinknethod

outperforms all the other methods in both visual quality and

MSE performance. It yields significantly less ringing artifacts
The imageBarbaraandLena,of size512 x 512, are used and blotchiness than the methods using D\WIFOracleShrink

as test imagesid Gaussian noise at different levels of still shows significant noise in the smooth background. Thus, it

I1l. EXPERIMENTAL RESULTS
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Fig. 7. Comparing the results of various denoising methoddefwa corrupted by noise,, = 22.5 andbarbaraby noises,, = 25. (a) Original, (b) noisy
observation, (c) adaptive thresholding in DWT basid€ptShrin, (d) oracle uniform thresholding in DWT basBiacleShrinl, (e) spatially adaptive thresholding
in overcomplete expansio®(-AdaptShrink and (f) oracle uniform thresholding in overcomplete expans&irQracleShrink This figure can also be found at
http://www-wavelet.eecs.berkeley.edu/~grchang/SpatialDenoise.html.

is both the spatial adaptive thresholds and the overcomplete rgpatially adapting the threshold values has not been addressed
resentation that contribute to the superior qualitysbfAdapt- in the literature. As we have shown in this paper, adapting
Shrink. The adaptive methods denoise better especially in thiee threshold values to local signal energy allows us to keep
flat regions, where the uniform methods yields images witimuch of the edge and texture details, while eliminating most
much noise and specks. of the noise in smooth regions, something that may be hard to
achieve with a uniform threshold. The results show substantial
improvement over the optimal uniform thresholding both in
visual quality and mean squared error.

We have proposed a simple and effective spatially and
scale-wise adaptive method for denoising via wavelet thresh- ACKNOWLEDGMENT
olding in an overcomplete expansion. The adaptivity is based
on context-modeling which enables a pixel-wise estimation of The authors would like to thank A. Ortega for his insightful
the signal variance and thus of the best threshold. The issueofnments.

IV. CONCLUSION
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