
1522 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000

Spatially Adaptive Wavelet Thresholding with
Context Modeling for Image Denoising

S. Grace Chang, Student Member, IEEE, Bin Yu, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—The method of wavelet thresholding for removing
noise, or denoising, has been researched extensively due to its
effectiveness and simplicity. Much of the literature has focused
on developing the best uniform threshold or best basis selection.
However, not much has been done to make the threshold values
adaptive to the spatially changing statistics of images. Such adap-
tivity can improve the wavelet thresholding performance because
it allows additional local information of the image (such as the
identification of smooth or edge regions) to be incorporated into
the algorithm. This work proposes a spatially adaptive wavelet
thresholding method based on context modeling, a common tech-
nique used in image compression to adapt the coder to changing
image characteristics. Each wavelet coefficient is modeled as a
random variable of a generalized Gaussian distribution with an
unknown parameter. Context modeling is used to estimate the
parameter for each coefficient, which is then used to adapt the
thresholding strategy. This spatially adaptive thresholding is ex-
tended to the overcomplete wavelet expansion, which yields better
results than the orthogonal transform. Experimental results show
that spatially adaptive wavelet thresholding yields significantly
superior image quality and lower MSE than the best uniform
thresholding with the original image assumed known.

Index Terms—Adaptive method, context modeling, image
denoising, image restoration, wavelet thresholding.

I. INTRODUCTION

I N THIS paper, we address the classical problem of removing
additive noise from a corrupted image, ordenoising.In

recent years there has been a plethora of work on usingwavelet
thresholding[6] for denoising in both the signal processing and
statistics community, due to its effectiveness and simplicity. In
its most basic form, this technique denoises in the orthogonal
wavelet domain, where each coefficient isthresholdedby com-
paring against a threshold; if the coefficient is smaller than the
threshold, it is set to zero, otherwise it is kept or modified. The
intuition is that because the wavelet transform is good at energy
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compaction, small coefficients are more likely due to noise,
and large coefficients due to important signal features (such as
edges). The threshold thus acts as an oracle deciding whether or
not to keep the coefficients. Most of the literature thus far has
concentrated on developing threshold selection methods, with
the threshold being uniform or at best one threshold for each
subband. Very little has been done on developing thresholds
that are adaptive to different spatial characteristics. Other
works investigate the choice of wavelet basis or expansion for
the thresholding framework. One particularly interesting result
is that (uniform) thresholding in a shift-invariant expansion
(dubbedtranslation-invariant (TI) denoisingby Coifman and
Donoho [4]) eliminates some of the unpleasant artifacts intro-
duced by the modification of the orthogonal wavelet expansion
coefficients. In this paper, we use the wisdom that thresholding
in a shift-invariant, overcomplete representation outperforms
the orthogonal basis, and also investigate an issue that has not
been explored, namely, the spatial adaptivity of the threshold
value.

To motivate spatially adaptive thresholding, consider the ex-
ample in Fig. 1, where a square pulse function has been cor-
rupted by additive noise, and the goal is to recover the original
function. The wavelet coefficients of the original and the noisy
function are displayed in Fig. 1(a) and (b), respectively. The
noisy coefficients are (soft) thresholded by a single threshold
in Fig. 1(c), and one can see that, especially in the finest scale,
there are some coefficients corresponding to noise which have
not been set to zero, and that some of these noisy coefficients
are larger in magnitude than those coefficients corresponding to
the signal. Thus, with a uniform threshold, it may not be fea-
sible to have both the benefits of keeping the important signal
features and killing the noisy coefficients. On the other hand,
one can reap both benefits with adaptive thresholds by choosing
the threshold value to be very small in the regions of the peaks
due to the step function, and large otherwise [see Fig. 1(d)].1

Fig. 1(e) compares the reconstruction from both methods, and
adaptive thresholding yields a more accurate reconstruction and
retains better the sharp edges. Thus the question becomes, how
one distinguishes between the coefficients that are mainly due
to signal and those mainly due to noise. Also, how should the
thresholds be adjusted? These are the questions that we will an-
swer in this paper with our proposed algorithm.

Most natural images have changing characteristics, since they
typically consist of regions of smoothness and sharp transitions.
These regions of varying characteristics can be well differenti-
ated in the wavelet domain, as can be seen in the wavelet decom-

1For the sake of illustrating the effectiveness of varying thresholds, the regions
of the true peaks are assumed to be known in this example.
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Fig. 1. Motivation for adaptive thresholds: (a) and (b) show a square pulse
function and its corrupted version, respectively, along with their wavelet
decomposition of four scales. The wavelet coefficients are thresholded by a
uniform threshold in (c) and spatially adaptive thresholds in (d). The original
and the reconstructions from (c) and (d) are shown in (e).

position of theLenaimage in Fig. 2. One observes areas of high
and low energy (or large and small coefficient magnitude), rep-
resented by white and black pixels, respectively. High energy
areas correspond to signal features of sharp variation such as
edges and textures; low energy areas correspond to smooth re-
gions. When noise is added, it tends to increase the magnitude
of the wavelet coefficient on average. Specifically, in smooth
regions, one expects the coefficients to be dominated by noise,
thus most of these coefficients should be removed, especially
since noise is highly visible here. In regions of sharp transition,
the coefficients have a lot of energy due to the signal, and some
due to noise (which is not as visible in these regions), thus they

Fig. 2. Four level wavelet decomposition ofLena.White pixels indicate large
magnitude coefficients, and black signifies small magnitude.

should be kept, or at most modified only a little, to ensure that
most of the signal details are retained. Thus, the idea is to dis-
tinguish between the low and high energy regions, and modify
the coefficients using a spatially adaptive thresholding strategy.

To accomplish spatial adaptive thresholding, we model each
wavelet coefficient as a realization from a given probability dis-
tribution, whose parameter is to be estimated. This parameter in
turn is used to find the appropriate threshold. It has long been ac-
cepted in the subband coding community that for a large class of
images, the coefficients in each subband form a distribution well
described by a generalized Gaussian distribution (GGD) [15].
Instead of using one parameter for each subband level, several
wavelet-based image coders have achieved better performances
by modeling the wavelet coefficients as a mixture of GGD with
unknown slowly spatially varying parameters [8], [16]. The es-
timation of the parameter for a given coefficient is conditioned
on a function of its neighboring coefficients, a method called
context-modelingfrequently used in compression for differen-
tiating pixels of varied characteristics and adapting the coder.
Context modeling allows one to group pixels of similar nature
but not necessarily spatially adjacent, and to gather statistical
information from these pixels. Now, given that one can estimate
the parameter for each coefficient, the next step is to use them
to calculate the threshold. Our work in [3] found that when the
signal coefficients are modeled as GGD random variables and
the noise as Gaussian, the threshold is a good ap-
proximation to the optimal threshold which minimizes the mean
squared error of the soft-thresholding estimator, whereis the
noise power, and is the standard deviation of the signal. The
simplicity of this threshold makes it easy to achieve spatial adap-
tivity—one uses context modeling to quantify the local charac-
teristic in , which in turn yields a threshold adaptive on
a pixel-by-pixel manner.
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Our proposed algorithm is based on using adaptive thresh-
olding in the overcomplete wavelet expansion (specifically,
nonsubsampled expansion). It outperforms both using only
adaptive thresholding in the orthogonal expansion or using
only uniform thresholding in the overcomplete expansion like
the TI denoising. That is,by combining spatially adaptive
thresholding and overcomplete expansion, we achieve results
which are significantly superior than either method alone.First,
the adaptive threshold selection is effective at removing noise
in smooth regions, while not disturbing too much the edge
and texture regions. Second, thresholding in the orthogonal
expansion has been observed to produce Gibbs-like edge
artifacts. Thresholding in the overcomplete expansion has the
interpretation of averaging circularly-shifted, denoised versions
of the signal, thus providing an additional smoothing which
attenuates these unpleasant artifacts [4].

The organization of this paper is as follows. Section II
introduces the threshold selection method when there is only
one class of Generalized Gaussian distributed random variables
corrupted by independent additive Gaussian noise. Because
this threshold selection is based oniid noise assumption, the
discussion will first be set in the orthogonal wavelet transform.
The method of context modeling is then introduced to allow
coefficients be modeled as random variables of different pa-
rameters, and these parameters are used to make the threshold
spatially adaptive. The explanation of our proposed algorithm is
completed by extending this adaptive method in the orthogonal
expansion to the overcomplete expansion. In Section III, we
will compare the spatially adaptive results with those from
the best uniform thresholding strategy (in the mean squared
error sense, and based on knowing the original image), in both
the orthogonal and overcomplete expansion, and also with a
state-of-the-art denoising method [10]. Results will show that
the combination of using spatially adaptive thresholding and
overcomplete expansion yields significantly better results in
both visual quality and mean squared error.

II. A DAPTIVE ALGORITHM

The adaptive algorithm will be developed in the following
manner. First, the concept of wavelet thresholding in the
orthogonal wavelet transform is introduced, and coefficients
in each subband are modeled as realizations of one class
of GGD (with unknown parameter), corrupted by additive
white Gaussian noise. We then describe the threshold selec-
tion method developed in [3] which achieves near-optimal
soft-thresholding under these distributions. To make this thresh-
olding approach spatially adaptive,each coefficient(rather than
each subband) is modeled as a GGD random variable with a
different unknown parameter estimated on a pixel level using
context modeling. This spatial mixture of distributions allows
the image characteristics to be quantified locally via the distri-
bution parameters, which are then used to adjust the threshold
for each coefficient. Last, since the aforementioned algorithm
is developed in the orthogonal expansion where the coefficients
are uncorrelated, the algorithm will need to be modified to
extend to the overcomplete expansion where coefficients are

Fig. 3. One stage of the 2-D wavelet transform.

correlated. Several alternative approaches will be discussed in
terms of their applicability to our adaptive algorithm.

A. Coefficient Modeling and Threshold Selection

Let the original image be , where
is some integer power of 2. The image has been corrupted by

additive noise and one observes

(1)

where are independent and identically distributed (iid)
as normal and independent of . The goal is
to remove the noise, or “denoise” , and to obtain an es-
timate of which minimizes the mean squared
error (MSE)

MSE (2)

To accomplish wavelet thresholding for denoising, the obser-
vations are first transformed into the wavelet domain.
The necessary notations for the wavelet transform will be intro-
duced here, and the readers are referred to references such as
[9], [14] for more details. The two-dimensional (2-D) discrete
orthogonal wavelet transform (DWT) can be implemented as a
critically sampled octave-band filter bank, where separable fil-
tering is used (Fig. 3). Let , ,

, that is, the boldfaced letters will denote the
matrix representation of the signals under consideration. Let

denote the matrix of wavelet coefficients of, where
is the 2-D dyadic orthogonal wavelet transform operator, and

similarly and . It is often convenient to
cluster these coefficients into groups orsubbandsof different
scales and orientations as in Fig. 4, where, for example, the
label refers to those coefficients at the first scale of de-
composition which are the output of the highpass filter in the
horizontal direction and the lowpass filter in the vertical direc-
tion. The subbands are
called thedetails,where is thescale,with being the largest
(or coarsest) scale in the decomposition, and a subband at scale

has size . The subband is the low res-
olution residual,and is typically chosen large enough such
that and . Let
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Fig. 4. Subbands of the orthogonal DWT. The arrows show the relationship
from parent to child.

, denote the wavelet coefficients of at a
particular scale and orientation , where and

.
The method of wavelet thresholding denoising filters each co-

efficient from the detail subbands with a threshold function
(to be explained shortly) to obtain . The denoised estimate is
then , where is the inverse wavelet transform
operator.

It has been observed that for a large class of images, the coef-
ficients from each subband (except ) form a symmetric dis-
tribution that is sharply peaked at zero [9], [15], well described
by the zero-mean GGD

(3)

where

(4)

and is the gamma function. The
parameter is the standard deviation and determines
the spread of the density function, and the parameteris
called theshape parameter.Well-known special cases of the
GGD density function include the Gaussian distribution with

, and the Laplacian with . Let and
denote the wavelet coefficients of the original

signal and the noise , respectively. For each
subband, the signal coefficients are modeled as
independent samples of distribution ,
and since the wavelet transform is orthogonal, the noise
coefficients are independent samples of the Gaussian distri-
bution .
Let the estimator be restricted to thesoft-thresholdesti-
mator of the form , where

sgn is the soft-thresholding
function, and is called thethreshold.The optimal threshold

is defined to be the argument which minimizes the expected
squared error

(5)

where and . The soft-
thresholding function is chosen over another popular choice, the
hard-thresholdingfunction, , because it
yields denoised images with better visual quality. In [3], it was
found that at least for the range of , can be well
approximated by

(6)

with at most 5% difference from the minimum expected squared
error. Because the threshold depends only on the standard
deviation and not on the shape parameter, it may not yield
a good approximation for other values ofthan the range tested
here, and the threshold may need to be modified to incorporate

. However, in practice it has been observed in several work
[13], as well as in our own experience, thattypically falls
within the range [0.5, 1], well within the range oftested here,
thus the simple form of the threshold is appropriate for our
purpose. The curve of expected squared error is very flat near
the optimal threshold , implying that the error is not very
sensitive to a slight perturbation near.

The threshold is not only nearly optimal but
also has an intuitive appeal. For such a choice, the normalized
threshold is inversely proportional to , the standard
deviation of , and proportional to , the noise standard de-
viation. When , the signal is much stronger than
the noise, thus is chosen to be small in order to preserve
most of the signal and remove some of the noise; vice versa,
when , the noise dominates and the normalized
threshold is chosen to be large to remove the noise which has
overwhelmed the signal.

The proposed threshold can easily be adjusted to the
signal and noise energy as reflected in and . By esti-
mating the parameter for each subband, we have anuniform
threshold adaptive on a subband-level. Better denoising
performance can be achieved by using spatially adaptive
thresholds, whose derivation will be described in the following
section.

B. Context Modeling for Spatial Adaptivity

To achieve a spatially adaptive thresholding strategy, the
wavelet coefficients are modeled as components in a discrete
random field, with a collection of independent zero-mean GGD
random variables whose parametersand are spatially
varying. As discussed previously, mainly the parameteris
of interest since the threshold depends on it,
and is assumed to be in the range for which this threshold
is appropriate. The parameter needs to be estimated for
each coefficient to make the threshold spatially adaptive.
This can be accomplished bycontext modeling,an idea used
frequently in image compression for adapting the coder to
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changing image characteristics. That is, the statistical model for
a given coefficient is conditioned on a function of its neighbors.
Several model-based coders have utilized information from
causal quantized neighbors to determine the context model and
the model parameters for each coefficient (for example, [8],
[16]). The most relevant work is the wavelet-based compression
scheme in [16], where context modeling was used to classify
coefficients into several classes of Laplacian distributions with
different values of . The conditioning was based on the
weighted average of the magnitude of quantized coefficients in
a causal neighborhood, and each class was formed by clustering
coefficients whose associated weighted averages fall within a
specified range. The distribution parameter is estimated from
the coefficients for each class, which is then used to adapt the
coder. Since the parameter and the description of each class
need to be sent as overhead, only four classes were used in [16].

From [16], we adopt the idea of clustering pixels with similar
context for parameter estimation. For the denoising problem, it
is not necessary to explicitly cluster the pixels into a discrete
number of classes in order to conserve bits. Thus, one has the
luxury of estimating the parameters for each coefficient via, say,
a moving window, resulting in virtually an infinite mixture of
distributions. The estimation method used here will be for the
GGD parameters, and our context model generalizes that of [16]
to be more flexible and advantageous for the denoising task.

Consider one particular subband with coefficients,
. To simplify notation, the superscript is

dropped and will be used only when necessary for clarity. Each
coefficient is modeled as a random variable whose
variance can be estimated as follows. Consider a neighborhood
of , and theabsolute valueof its elements are placed
in a vector . One possible choice is the eight nearest
neighbors of in the same subband, plus its parent
coefficient (see Fig. 4 for the definition
of parent–child relationship). To characterize the activity level
of the current pixel, we calculate the context as a weighted
average of the absolute value of the neighbors

(7)

The weight is found by using the least squares estimate, that
is,

(8)

(9)

where is a matrix with each row being , for all ,
and is the vector containing all coefficients .
Notice that the absolute values of the neighbors rather than their
original values are used in the averaging. This is because or-
thogonal wavelet coefficients are uncorrelated, and thus an av-
erage of the neighbors does not yield much information about
the coefficient of interest. However, the absolute value or the
squared values of neighboring coefficients are correlated [12],
and therefore their averages are useful in collecting information
about other coefficients in the near vicinity.

The variance of the random variable is esti-
mated from other coefficients whose context variable

Fig. 5. Sample plot offZ[i; j]; Y [i; j]g, whereY [i; j] is the noisy wavelet
coefficient, andZ[i; j] is its context. A collection ofY [i; j] with small
values ofZ[i; j] have a smaller spread than those with large values ofZ[i; j],
suggesting that context modeling provides a good variability estimate of
Y [i; j].

are close in value to . To develop an intuition for
this, it is helpful to examine Fig. 5, which plots the pairs

. The points are clustered
within a cone shape centered at origin. Taking an interval of
small valued , the associated coefficients have
a small spread; on the other hand, an interval of large valued

has corresponding with a larger spread (the
intervals are of different widths to capture the same number
of points). This suggests that the context provides a good
indication of local variability. Thus, for a given coefficient

, an interval is placed around , and the
variance of is estimated from the points whose
context falls within this window. In particular, we
take closest points (in value) above and closest
points below, resulting in a total of points. We choose

to ensure that enough points are used
to estimate the variance, but not too many points to destroy the
locality of the window. Different choices of around this value
yields similar results, though too small (e.g., 10 or less) or too
large (e.g., close to ) values of worsen the performance
significantly. Note that this is a moving window rather than
the fixed classes in [16], and thus allows a continuous range
of estimate values. Let denote the set of points
whose context falls in the moving window. The estimate of the
variance is then

(10)

The term needs to be subtracted because are the
noisy observations, and the noise is independent of the signal,
with variance . The threshold at location is then

(11)

Calculating the threshold for every location yields
a spatially adaptive threshold. In the implementation, the con-
text are first sorted, and a moving window is placed
over them, so the set and the variance estimate can



CHANG et al.: SPATIALLY ADAPTIVE WAVELET THRESHOLDING 1527

be updated efficiently. To update the summation in (10) only re-
quires one addition and subtraction for the term, and
one multiplication for the constant . Thus, the arith-
metic complexity incurred by computing (10) is of order ,
where is the number of points in the subband.

The above threshold estimation method is repeated for each
subband separately, because the subbands exhibit significantly
different characteristics. Up to now we have not discussed how
to estimate the noise variance. In some practical cases, it is
possible to measure based on information other than the cor-
rupted observation. If this is not the case, as is here, we estimate
it by using the robust median estimator in the highest subband
of the wavelet transform

Median subband
(12)

also used in [3], [4], [6].

C. Thresholding in Overcomplete Expansion

Thresholding in the orthogonal wavelet domain has been
observed to produce significantly noticeable artifacts such
as Gibbs-like ringing around edges and specks in smooth
regions. To ameliorate this unpleasant phenomenon, Coifman
and Donoho [4] proposed thetranslation-invariant (TI)
denoising.The discussion in [4] is one-dimensional (1-D),
but we explain it in 2-D here. Let denote the
operation of circularly shifting the input imageby indices
in the vertical direction and indices in the horizontal, and
let be a similar operation but in the opposite
direction. Also, let denote the operation of
taking the DWT of the input image, threshold it with a
chosen uniform threshold , then transform it back to the
space domain. Then TI denoising yields an output which is
the average of the thresholded copies over all possible shifts:

.
The rationale is that since the orthogonal wavelet transform
is a time-varying transform and thresholding the coefficients
produces ringing-like phenomena, thresholding a shifted input
would produce ringing at different locations, and averaging
over all different shifts would yield an output with more
attenuated artifacts than a single copy alone. TI denoising can
be shown to be equivalent to thresholding in the shift-invariant,
overcomplete representation implemented by thenonsubsam-
pled filter bankas will be described below, up to some scaling
in the thresholds. It has been shown to reduce the ringing
artifacts and the specks. Thus, we proceed to extend our spatial
adaptive algorithm to the nonsubsampled expansion.

The adaptive algorithm in the orthogonal basis described
above can easily be extended to the overcomplete basis.
Now consider the same orthogonal filters but used in a filter
bank without down-samplers (see Fig. 6 for the 1-D case,
and the 2-D case is achieved by simply extending the 1D
filtering to separable filtering; refer to [14] for more detail
on nonsubsampled filter banks). The filters are renormalized
by so that coefficient energy stays the same. This
decomposition is a redundant representation, and there are
correlations between the decomposition coefficients. For
example, at the first level of decomposition, the odd and even

Fig. 6. One-dimensional nonsubsampled filter bank. One-dimensional
filtering is extended to 2-D by separable filtering.

coefficients (in each direction) are correlated.Thus, we can
separate the coefficients into four sets of uncorrelated coeffi-
cients, namely,
and . For the th level decompo-
sition, the coefficients can be separated into sets,
each containing uncorrelated coefficients, and they are

. Since
each set contains uncorrelated coefficients, the noise are also
iid within each set as well, and thus the adaptive algorithm
can be used for each set of coefficients. This approach lets us
still use the independent noise assumption and circumvent the
issue of denoising correlated signal coefficients with correlated
noise, which is not an easy task. That is, if the coefficients are
correlated, then one can conceivably do better than thresholding
each coefficient independently; one could look at the numerous
correlated coefficients and do ajoint thresholding.This is
still an open problem and will be investigated. For correlated
noise, [7] proved some minimax properties of using a modified
universal threshold, , where is the standard
deviation of the noise at decomposition level. The framework
is for a deterministic signal, however, and not the Bayesian
framework used here. Thus, for simplicity, we separate the
coefficients into groups of uncorrelated coefficients before
using the adaptive thresholding algorithm.

There are two other minor details in the implementation.
First, one needs to alter the noise powerat each decompo-
sition scale to due to the renormalization of the filters.
Second, the definition of the parent coefficient used in the
neighborhood of the context is slightly changed: the parent of
a coefficient in scale is simply the coefficient at the same
spatial location in scale .

D. Alternative Methods

There are several other possible alternative approaches which
will be discussed below.

1) Different Estimation of Variance:An alternative
common approach for estimating the local variance is to
use the points in a local neighborhood around (as
in [8]). This is a simpler way than the indirect way of first
grouping coefficients with similar context, and then estimating
the variance. As demonstrated by the good performance of
the image coder in [8], the variance estimate from a local
neighborhood yields an estimate good enough for adapting the
coder. However, our experience with noisy images shows that
such an estimate yields considerably more unreliable variance
estimates, , and also blotchy denoised image. This is
because the estimate is highly sensitive to the window size we
choose: a small window contains few points and thus yields
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unreliable estimates; a large window adapts slowly to changing
characteristics. The context-based grouping allows one to
congregate those coefficients with similar context though not
necessarily spatially adjacent. It also allows a large number
of coefficients to be used in the variance estimation, thus
yielding a more reliable estimate. Simulations show that the
performance is not sensitive to the neighborhood choice
and the weight used in the context calculation, as a simple
equally weighted average of the eight nearest neighbors in the
same subband yields approximately the same result.

2) One-Pass Algorithm:The method we have proposed is
a two-passprocess: the first pass calculates the weighted av-
erage of the absolute values of the neighboringnoisy
coefficients, and then are sorted; the second pass col-
lects the noisy coefficients with similar values of , esti-
mates the signal variance, , from the noisy coefficients
and the thresholds for the thresholding function. It is worth-
while to investigate the algorithm performance when the con-
text modeling and the parameter estimation are performed on
the denoisedcoefficients instead, since, intuitively, if the co-
efficients are really denoised, they should yield more reliable
information. This simple intuition is, however, not as straight-
forward to implement as it seems. To do this in a two-pass algo-
rithm is difficult, since is a weighted average of neigh-
boring denoised coefficients, but the threshold used to denoise
these coefficients are estimated from other denoised coefficients
with similar context. A simple-minded alternative solution is to
use aone-passmodification of our algorithm, where the condi-
tioning and estimation are based on thecausal, denoisedcoef-
ficients, much along the same philosophy as one-pass compres-
sion methods conditioning on causal quantized data [8], [16].
Assume a scanning order of row by row, and initialize the first
coefficient as already denoised, that is, . For
every new coefficient at location , the context is condi-
tioned on where is now the vector con-
taining the absolute value of denoised coefficients in
a causal neighborhood, and the elements ofare simply the
equal weights. These choices are made for simplicity since the
denoising performance is not too sensitive to the neighborhood
selection and weight vector. The GGD parameter is
estimated from past denoised coefficients whose contexts are
similar, and coefficients are used (or all of the available
coefficients so far if less than coefficients have been de-
noised.) Since the coefficients are already denoised, the estima-
tion of is
instead of (10). Simulations show this approach to run into prob-
lems especially when the noise poweris large, causing many
coefficients to be denoised to zero. Having too many consecu-
tive zero coefficients is likely to cause to be zero, which
then translates to an infinite threshold (i.e., is thresh-
olded to zero). This in turn may cause all the subsequent coeffi-
cients to be thresholded to zero. This phenomenon is frequently
encountered in backward adaptive compression methods which
adapts based on causal quantized coefficients: a run of zero co-
efficients may cause all subsequent coefficients to be quantized
to zero as well. Some work ameliorate this problem by looking
ahead to identifyunpredictable sets,coefficients whose neigh-
bors are zero, but who should not be quantized to zero [8], [16].

This logic can be applied to the denoising framework as well.
When the algorithm computes , it identifies the locations

in the causal neighborhood for which but
, and these are substituted for the zero

to be used in the computation of and .
Simulations show the resulting images to yield worse MSE’s
than the previously proposed method, and they are visually con-
siderably more noisy.

Another variation is to use the denoised coefficient for con-
text modeling, but the observed noisy coefficients for estimating

as in (10). Again, without taking some caution about
the runs of zero coefficients, the variance estimate may be in-
adequate for several rows (recall the scanning is row by row)
before having enough nonzero causal neighbors for collecting
valid information. The denoised images are also similar to the
ones described above, having worse MSE’s than the proposed
two-pass algorithm, and are visually more noisy.

3) Heteroscedasticity Model:A central part of our spatially
adaptive algorithm is based on modeling the variance
to be nonconstant and varying throughout the image. This is
reminiscent of theheteroscedasticity,or nonconstant variance,
problem in statistics. Let be the observed noisy
wavelet coefficients, and each a random variable whose
variance is nonconstant. A common approach to the
heteroscedasticity problem is to model as a function of
some design vector, . Traditionally there are two approaches
in estimating this function: parametric and nonparametric.
Since we have an assumed distribution on the wavelet coeffi-
cients (i.e., GGD), the parametric approach will be used here.
The readers are referred to [1], [11] and related literatures for
more details on heteroscedasticity models. Using a parametric
function to describe the variance has the advantage that
it allows a compact representation of the nonconstant variance,
useful for image analysis and understanding. In contrast,
although the nonparametric approach described in Section II-B
works well, it does not lend itself to any tractable analysis.

In the previous section, we have described the noisy coef-
ficient as a sum of two random variables,
GGD and Gaussian. Unless is a Gaussian
distributed random variable, there is no closed form expression
for the distribution of . However, often one observes the
wavelet coefficients for images to be sharply peaked at zero,
better described by the Laplacian density function. Furthermore,
the noisy coefficients also form a histogram which is sharply
peaked at zero. Thus, for simplicity and for the sake of tractable
analysis, we assume the noisy coefficient to be Lapla-
cian distributed, or, alternatively, be exponentially dis-
tributed. Similar to the context modeling framework in Sec-
tion II-B, let the design vector at location be the vector
containing the absolute value of the eight closest neighboring
(noisy) coefficients, be the unknown regression parameter
(i.e., the weights for the weighted average of the neighboring
coefficients contained in ), and the variance for be a func-
tion of . Formally, our heteroscedasticity model is

(13)
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where the standard deviation is

(14)

and is a smooth function such as a polynomial of order,
with unknown parameter vector . Modeling
as a function of can be justified by observing that the plot
of often resides within a cone shape (see
Fig. 5), implying that the variability of depends highly
on .

To estimate the parametersand , the likelihood approach
is used. The negative log-likelihood of is

(15)

For , the negative log-likelihood, or the
likelihood function, is

(16)

The likelihood function (16) is minimized over both parameters
and to find their optimal values. One way to do this is to start

with an initial being the linear least squares estimate, as
in (8). Then is estimated as

(17)

The regression parameteris refined one step further as

(18)

After obtaining and , the standard deviation of is
estimated by , and the variance estimate of
the clean coefficient is

. The threshold is then calculated as before to be
.

Polynomials of order were experimented with, and
a different set of polynomial parameters is found for each sub-
band. Simulations show this parametric estimation of
to differentiate well between regions of high energy (e.g., edges
and textures) and smooth areas. That is, the variance estimate is
larger in the edge and texture region, and smaller in the smooth
regions. However, these values are not appropriate since the sub-
sequently calculated variance estimate of , , re-
sults in zero in many subbands, which in turn translates to killing
all the coefficients in the thresholding. This phenomenon may
be due to the disparity between this parametric modeling of the
nonconstant variance and the noisy observation modeling: in the
parametric approach, the observed noisy coefficients are mod-
eled as Laplacian distributed, whereas in the original frame-
work, the observations aresumsof a Laplacian and Gaussian
random variable. Nevertheless, the likelihood approach to the
heteroscedasticity problem may be valuable to other applica-
tions.

III. EXPERIMENTAL RESULTS

The imagesBarbaraandLena,of size , are used
as test images.iid Gaussian noise at different levels of

TABLE I
MSE RESULTS OFDIFFERENTDENOISING METHODS FORVARIOUS TEST

IMAGES AND � VALUES

are generated usingrandn in MATLAB. For the orthogonal
wavelet transform, four levels of decomposition are used, and
the wavelet employed is Daubechies’ symmlet with eight van-
ishing moments [5]. There are five methods that are compared,
and the MSE results are shown in Table I, with the best one
highlighted in bold font. TheAdaptShrinkmethod refers to the
proposed adaptive thresholding method using the orthogonal
transform DWT (the soft-thresholding function is sometimes
referred to as shrinkage, and hence the name).SI-AdaptShrink
is the adaptive thresholding using the shift-invariant (SI),
nonsubsampled wavelet transform. These two are compared
against the best uniform thresholding techniques (in the MSE
sense) when the original uncorrupted image is assumed to be
known. For uniform thresholding with DWT, in each subband,
we find theoracle threshold as

(19)

where and are the wavelet coefficients of the
noisy observation and original image , respectively. This
method is referred to asOracleShrink.Similarly, this is ex-
tended to the nonsubsampled wavelet transform, where a dif-
ferent threshold is found for each set of uncorrelated coefficients
within each subband (thus thresholds for a subband at scale
). This method is coinedSI-OracleShrink.Results from the

denoising algorithm recently proposed in [10] is also listed in
Table I for comparison. Reference [10] uses a locally estimated
GGD and applies this model to the denoising problem using a
Bayesian estimate. Fig. 7 shows the comparison of the different
methods on a magnified region in theBarbaraimage for
and thelena image for . TheSI-AdaptShrinkmethod
outperforms all the other methods in both visual quality and
MSE performance. It yields significantly less ringing artifacts
and blotchiness than the methods using DWT.SI-OracleShrink
still shows significant noise in the smooth background. Thus, it
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Fig. 7. Comparing the results of various denoising methods, forlena corrupted by noise� = 22:5 andbarbara by noise� = 25. (a) Original, (b) noisy
observation, (c) adaptive thresholding in DWT basis (AdaptShrink), (d) oracle uniform thresholding in DWT basis (OracleShrink), (e) spatially adaptive thresholding
in overcomplete expansion (SI-AdaptShrink), and (f) oracle uniform thresholding in overcomplete expansion (SI-OracleShrink), This figure can also be found at
http://www-wavelet.eecs.berkeley.edu/~grchang/SpatialDenoise.html.

is both the spatial adaptive thresholds and the overcomplete rep-
resentation that contribute to the superior quality ofSI-Adapt-
Shrink.The adaptive methods denoise better especially in the
flat regions, where the uniform methods yields images with
much noise and specks.

IV. CONCLUSION

We have proposed a simple and effective spatially and
scale-wise adaptive method for denoising via wavelet thresh-
olding in an overcomplete expansion. The adaptivity is based
on context-modeling which enables a pixel-wise estimation of
the signal variance and thus of the best threshold. The issue of

spatially adapting the threshold values has not been addressed
in the literature. As we have shown in this paper, adapting
the threshold values to local signal energy allows us to keep
much of the edge and texture details, while eliminating most
of the noise in smooth regions, something that may be hard to
achieve with a uniform threshold. The results show substantial
improvement over the optimal uniform thresholding both in
visual quality and mean squared error.
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