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Abstract. A growing and important class of traffic in the Internet is so-called “streaming media,” in which a server
transmits a packetized multimedia signal to a receiver that buffers the packets for playback. This playback buffer, if
adequately sized, counteracts the adverse impact of delay jitter and reordering suffered by packets as they traverse
the network, and if large enough also allows lost packets to be retransmitted before their playback deadline expires.
We call this framework for retransmitting lost streaming-media packets “soft ARQ” since it represents a relaxed
form of Automatic Repeat reQuest (ARQ). While state-of-the-art media servers employ such strategies, no work
to date has proposed an optimal strategy for delay-constrained retransmissions of streaming media—specifically,
one which determines what is the optimal packet to transmit at any given point in time. In this paper, we address
this issue and present a framework for streaming media retransmission based onlayeredmedia representations, in
which a signal is decomposed into a discrete number of layers and each successive layer provides enhanced quality.
In our approach, the source chooses between transmitting (1) newer but critical coarse information (e.g., a first
approximation of the media signal) and (2) older but less important refinement information (e.g., added details)
using a decision process that minimizes the expected signal distortion at the receiver. To arrive at the proper mix
of these two extreme strategies, we derive an optimal strategy for transmitting layered data over a binary erasure
channel with instantaneous feedback. To provide a quantitative performance comparison of different transmission
policies, we conduct a Markov-chain analysis, which shows that the best transmission policy is time-invariant and
thus does not change as the frames’ layers approach their expiration times.
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1. Introduction

A common class of traffic on the Internet is so-called
“streaming media,” where real-time signals like audio
and video are delivered from a server somewhere in
the network to a human user that interactively views
the material. Unlike human-to-human communication,
which requires relatively tight and consistent end-to-
end delays for good interactive performance [1], server-
to-human communication can afford a certain level of

artificial delay. As a result, streaming media applica-
tions often have sufficient time to recover from lost
packets through retransmission and thereby avoid un-
necessary degradation in reconstructed signal quality.
We refer to this delay-constrained Automatic Repeat/
reQuest system as “soft ARQ,” because it represents a
relaxed form of ARQ in which the successful on-time
delivery of every packet is not guaranteed.

Soft ARQ has been exploited in commercial pro-
ducts like RealNetworks and Microsoft streaming
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media systems and in research protocols like
STORM [2] and MESH [3]. In these approaches, the
sender determines if a lost packet will arrive in time for
playout; if so the sender retransmits it; if not, the sender
drops it. Prior works have focused on how to choose the
playout delay and how to decide if retransmissions will
arrive in time. However, these issues are only part of the
retransmission puzzle. When the sender is subjected to
transmission rate constraints, it may have to retransmit
a packetat the expenseof a different unsent packet. As
a result, the sender must consider not only whether the
retransmitted packet will arrive at the receiver in time,
but also if that packet is more beneficial than one it
displaces—i.e., will transmitting packet A improve the
reconstructed signal quality more (on average) than if
packet B had been transmitted instead?

One way to flexibly accommodate this packet dis-
placement is to use a layered, or multi-resolution, sig-
nal representation. A fundamental attribute of layered
encodings is that they represent a signal in a hierarchi-
cal fashion. Packetizing each layer separately allows
finer-grained control of the transmission process than
is possible with a non-layered representation. An exam-
ple of layering is splitting a video signal into a coarse-
image “base” layer and a second “enhancement” layer
containing added details. Another example of layering
is simply splitting a sequence of unencoded 8-bit audio
samples into each sample’s 4 most signficant bits (the
base layer) and 4 least significant bits (the enhance-
ment layer). In both cases the enhancement layer when
combinedwith the base layer produces a better quality
signal than the base layer alone. However, due to the
hierarchical structure of the encoding, the enhancement
layer does not provide a useful representation without
the base layer. An alternative to this type of ordered,
multi-resolution coding is multiple description coding,
which does not need to distinguish among different
types of packets or layers [4]. The price of this flexi-
bility is reduced coding efficiency, however.

Layering has been exploited by other applications
for finer grained control of streaming multimedia; for
example, congestion control schemes can adjust the
rate of multimedia streams by changing the number
of layers transmitted [5, 6]. Layering benefits soft
ARQ systems by allowing the sender to choose be-
tween sendingpartof one time-frame or another, rather
than choosing between entire frames. For example, the
sender may choose to transmit a packet containing the
base layer of one frame instead of retransmitting one
containing a less critical enhancement layer of an older

frame. However, layering the signal in and of itself does
not solve the problem of determining what the optimal
packet is to transmit at any given time. The goal of this
work is to find the optimal transmission policy.

The paper is organized as follows. We introduce our
streaming media transmission model and its param-
eters in Section 2. Then, in Section 3, we define a
state space for the transmission process and detail a
Markov-chain analysis which is used to find the ex-
pected distortion resulting from applying a particular
transmission policy. Section 4 contains our analysis re-
sults, first focusing in detail on the case that there are
only two layers and two frames’ lifetimes overlapping
in Section 4.1, and then looking at more general cases
in Section 4.2. A key result for all cases is that the best
transmission policy is time-invariant and thus does not
change as the frames’ layers approach their expiration
times. Section 5 describes areas of related and future
work, and concluding remarks are given in Section 6.

2. An Analytical Model for Streaming Media

In this section we introduce the transmission model we
use for a streaming media session. After describing the
model we illustrate it with an example transmission
sequence and show the need for a transmission pol-
icy governing decisions of what information should be
(re-)transmitted at any point in time.

2.1. Transmission System Model

Figure 1 illustrates our model for a streaming lay-
ered multimedia transmission system. The transmis-
sion process begins with a multimedia signalX at the
sender. We assume that the entire signal is not available
prior to the start of transmission—in other words, it is
either dynamically generated or retrieved from storage
concurrently while the transmission process is ongo-
ing. The signal is segmented in time into equal length
segments or “frames”; these frames are produced peri-
odically as the signal is generated. We denote framen
by Xn. The signal is also encoded into a hierarchy ofN
layers{X1, X2, . . . , XN}, whereX1 is the most “impor-
tant” layer andXN is the least “important” layer, and we
assume that all layers have the same bit-rate. We also
assume that the importance of a layer can be quanti-
fied, so that receiving a more important layer of a frame
results in a measurably greater benefit (e.g., a greater
increase in signal quality or decrease in distortion) than
a less important layer of that frame. We denote thei th
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Figure 1. System diagram of layered transmission over a binary erasure channel with feedback.

frame of layerl by Xi
l . These layer/frame segments

form the basic transmission units or “messages” that
are sent across the network (e.g., contained in pack-
ets). The sender operates under a transmission rate con-
straint, which manifests itself as a lower bound on the
minimum time between message transmissions.

To model network packet loss, each message passes
through a binary erasure channel (BEC) on its way to
the receiver. The BEC will either erase (drop) a mes-
sage (with probabilityε) or successfully transmit it
(with probability 1− ε). The BEC, in conjunction with
an instantaneous feedback path, serves as an idealized
model for the network. Messages which successfully
reach the receiver are used to reconstruct the signal.
Because we have assumed a “streaming” multimedia
scenario, the receiver starts playback of the signal as it
is still being generated and transmitted at the source. At
some fixed time after framei is produced at the source,
it is reconstructed from whatever layersXi

l have arrived
at the receiver and played back.

An important component of our model is the trans-
mission policy, located at the sender. This policy dic-
tates which message (frame and layer) the source
should transmit (or retransmit) for any possible situ-
ation. For every feasible set of unsent (or sent but
dropped) messages and their corresponding playback
deadlines (i.e., the latest time they can be sent before
they are no longer useful to the receiver), the transmis-
sion policy contains a rule indicating which message
the sender should choose to transmit next. The need
for a policy stems from the fact that messages can have
both different priorities (due to the layering) and differ-
ent time constraints (due to the framing and streaming
playback). We illustrate this by means of an example.

2.2. Example Transmission Sequence

Figure 2 shows a message transmission sequence for
two different transmission policies for a two-layered
media signal. We denote time in terms of transmission
units; one unit is equal to the minimum time between
message transmissions stemming from the system’s
transmission rate constraint. Frames of the media signal
are generated periodically everyT units, and messages
containing a layer of a frame must be transmitted within
L units after that frame has been generated in order to
reach the receiver in time. In this exampleT is 3 and
the lifetimeL is 5.

Decisions of what to transmit so as to maximize sig-
nal quality are simple when the choice is restricted to
messages from within a single frame: the sender should
(re-)transmit the most important layer of that frame that
has not been successfully received yet. This is seen
at times 0 and 1 in Fig. 2, when only the first frame
is “alive” and so the sender chooses the high-priority
message,X1

0. Similarly, when choosing among all of
the messages of a single layer, the sender should decide
to (re-)transmit the oldest message of that layer which
will still arrive in time for playback. However, the de-
cision is not necessarily clear when choosing between
messages from different framesand different layers.
Specifically, how do you decide between sending an
older, lower priority message and a newer, high prior-
ity message? In this example at any time at most two
frames’ lifetimes overlap (T < L ≤ 2T), so at most four
messages will be available for transmission: the two
layers of framei andi + 1. In order to emphasize the
priority and age of these four messages, we introduce
the following variable names:
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Figure 2. Example transmission sequence for a 2-layered signal
(N = 2) with a data lifetime ofL = 5 and a inter-frame period of
T = 3. Two different transmission policies are shown. Erased trans-
missions are denoted with×’s.

• OH = Xi
1: the high priority layer of the older frame

• OL = Xi
2: the low priority layer of the older frame

• NH = Xi +1
1 : the high priority layer of the newer

frame
• NL = Xi +1

2 : the low priority layer of the newer
frame.

We will use the above notation throughout this work
whenever discussing the two layer, two overlapping-
frame case.

At time 3 in Fig. 2, we have a choice between
OL = X0

2 andNH = X1
1. There are fundamental trade-

offs between the data’s importance and its time-
constraints. One reason to favorOL overNH is its ear-
lier playback (time 5 as opposed to 8), so there is less
time and hence fewer opportunities in which to suc-
cessfully transmit it. However, a conflicting reason to
chooseNH over OL is its greater distortion reduction.
Sending the less importantOL leaves fewer transmis-
sion opportunities forNH , and if the loss rate is high
it may take all of those opportunities to successfully

transmitNH . It is not obvious which choice is better—
i.e., which choice results in a higher average signal
quality.

As a result, the sender relies on the transmission
policy to tell it what choice to make. Two policies are
shown in Fig. 2: in policy A the sender choosesOL each
time the decision arises, and in policy B it choosesNH .
In this particular segment policy B performs worse,
because by the time it successfully transmitsNH , OL

has expired. But if more erasures had occurred then the
more conservative policy B may have outperformed A.
In the next section we develop a framework for mathe-
matically analyzing the performance of any transmis-
sion policy. This will allow us to compare the long-term
performance of one policy to another.

3. Analysis

We now present a formal analysis for the layered
transmission system described above and illustrated by
Fig. 1. This analysis will allow us to objectively eval-
uate the performance of any transmission policy for
a given set of known parameters, such as the packet
erasure probability and data lifetime.

We begin by formalizing the parameters for the trans-
mission model introduced in the previous section. Next
we define a state space which captures the model’s
dynamics—what layers of what frames have already
been transmitted, how long before each frame expires,
etc. We then apply Markov chain analysis to find the
steady-state behavior of the transmission system. From
the steady-state analysis we obtain a distribution on
the number of layers per frame that are successfully
received before the frame expires. We finally com-
bine this information with a cost function (e.g., a rate-
distortion curve) to find the average cost associated
with a specific transmission policy.

3.1. Model Parameters

The multimedia signalX is segmented both into time
frames and signal layers. One layer of one frame forms
a message which is the basic unit of transmission. Mes-
sages can be transmitted at a maximum rate of one
message per time unit. For convenience we will use
seconds to denote time units. The signal is segmented
in time into frames that are generated periodically every
T time units, and each frame is further encoded into a
hierarchy ofN layers. We assumeT ≥ N, so that there
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is at least one chance to transmit each layer of every
frame. Each frame has a lifetime at thesenderof L sec-
onds; any messages sent more thanL seconds after the
frame is produced will arrive too late for playback at
the receiver. We say that a frame produced at timet
“expires” at the sender at timet + L. Because we have
assumed there is no network delay, this lifetime is solely
a function of delays at the receiver: specifically,L is
the playback delay less any processing delays. We will
assume thatL > T , so that there is at least some over-
lap in the lifetimes of consecutive frames. This leads
to situations requiring a non-obvious decision between
transmitting a less important message of a older frames
and a more important message of a newer frame.

Finally, because all of the frames of the multimedia
signal are not available to the sender at the start of the
transmission (the signal’s frames are produced periodi-
cally), and because each frame only hasL seconds after
it is produced to be sent to the receiver, there is a fi-
nite limit on the number of frames whose layers can be
considered valid candidates for transmission. We use
K to denote the maximum number of frames alive at
any given time by.K is a function of how long frames
live (L) and how frequently they are produced (T), and
is given by:

K =
[

L

T

]
. (1)

Table 1 summarizes the definitions of the above para-
meters.

3.2. State Space Definitions

Having identified the parameters of our transmission
model, we now set about defining a state space to track
the transmission process’ behavior. After the initialK
frames of the signal have been produced, a new frame
is produced and an old frame expires once everyT sec-
onds. Letφ be the phase (position) within aT-length

Table 1. Summary of transmission model
parameters.

Variable Meaning

L frame lifetime

T period of frame production

N number of layers per frame

K maximum number of frames “alive”

cycle, so thatφ ∈ {0, 1, . . . , T − 1}, and let the cycle
start atφ = 0 when a new frame is produced. Note that
if the lifetimeL is not an exact multiple ofT , the oldest
frame will expire at phaseφ = L − (K − 1)T , before
the next new frame is produced. In this case there will
be only K − 1 frames alive during the last (KT − L)
seconds of a cycle.

In deciding which message to transmit next at any
given timet , the sender must consider not only which
messages of theK current live frames have been trans-
mitted, but how much time remains before each of these
frames expires. However, the sender doesnot need to
consider (and hence, remember) any information about
the older expired frames in order to make its decision.
Because these frames have expired, there is no point
in sending any of their untransmitted messages, and
thus there is no need to remember their specific expira-
tion times. Also, although we may be able to infer the
channel erasure rate through knowledge of how many
layers of these frames were successfully transmitted,
we have assumed that we already know the erasure
rate and hence this knowledge is not needed to make
the current transmission decision.

We can now define a stateSt that summarizes the
information the sender needs to make a transmission
choice at timet . Let St be defined as:

St = (
φ(t), n(t)

)
, (2)

φ(t) = t modT, (3)

n(t) = [
n(t)

1 , n(t)
2 , . . . , n(t)

K

]
, (4)

wheren(t)
i is the number of successfully transmitted

layers of thei th-oldest live frame at timet (i.e., frame 1
is the oldest, frameK is the newest). We omit thet
superscript fromφ, n, andni when its context is clear.
Because there areN layers, 0≤ n(t) ≤ N. These state
space components are summarized in Table 2.

Table 2. Summary of the state space variables’ definitions
and relevant equation numbers.

Variable Meaning Eqn

St transmission state at timet 2

φ(t) phase within aT-length cycle 3

n(t) K -tuple of the transmission state of the
currently live framesn(t)

i 4

n(t)
i number of framei ’s layers successfully –

sent by timet
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The phaseφ tells us how much time is left before
each frame expires. For example, at the beginning of
a cycle(φ = 0) the frameK is produced, and so we
know it expires inL seconds. More generally, let ttli be
frame i ’s “time-to-live,” i.e., how much time remains
before it expires. It is calculated as:

ttl i = L − φ − iT . (5)

The K -tuple n tells us exactly what layers of theK
frames have already been transmitted, and, conversely,
which layers remain for each frame. At any timet ,
the n(t)

i -most important layers of framei have been
transmitted, and so there areN −n(t)

i layers remaining.
At the beginning of a cycle (φ = 0) a new frame is
produced, sonK = 0. Also at this time, all of the frames
“age” one position in theK -tuplen. To illustrate this,
suppose that, at some timet which is the start of one
cycle (t mod T = 0), we have a state

St = (
0, n(t) = [

n(t)
1 , n(t)

2 , . . . , n(t)
K

])
.

Now suppose that the nextT transmission attempts are
all erased, so that no frame gets any more messages
across. For this case the nextT states are independent
of our transmission policy—regardless of which mes-
sages the policy dictated we attempt to (re-)transmit,
those messages were all erased—and our state evolves
with time as:

St+1 = (
1, n(t)

)
St+2 = (

2, n(t)
)
,

...

St+T−1 = (
T − 1, n(t)

)
.

At time t + T , immediately following theT th erasure,
a new frame arrives and a new cycle begins. Because
the oldest frame of the previous cycle has expired by
this time, we no longer track its state. The new state
at timet + T is St+T = (0, ñ(t)), where

ñ(t) ≡ [
n(t)

2 , n(t)
3 , . . . , n(t)

K , 0
]
. (6)

Thẽ operator left shifts each frame’s state one position
to reflect how each frame ages one position per cycle
as one frame expires and a new frame arrives. In this
simple example, the valuesn(t)

i did not change (except
for the position shifts) because all of the transmission
attempts were failures, but this will not be the case in

general. In the next section we consider how to analyze
the state evolution for the more general case when some
transmissions succeed and some are erased.

3.3. Markov Chain Analysis

In this section we present an analysis of the processS =
{S0, S1, S2, . . .}, which illustrates how the state space
evolves with time. We perform this analysis so we can
find the steady-state behavior ofS; with this knowledge
we can calculate the expected distortion of a particular
policy π . The steady-state behavior ofS depends on
both the erasure rate of the channel, which determines
the chance of a successful transmission, and our policy
π , which dictates what layers of which frames should
be transmitted, or retransmitted, at any given time. To
illustrate this dependency we first examine howS can
change in a single time step.

Consider the possible transitions from a stateSt to
St+1. The transition of the phase componentφ of the
state is completely deterministic:

φ(t+1) = (
φ(t) + 1

)
modT. (7)

As a result, we focus our attention on the transitions
of the transmission state vectorn. There areK com-
ponentsni of n, each of which can take on any of
N +1 values (0≤ ni ≤ N), so the maximum number of
possible valuesn may take on is

M = (N + 1)K . (8)

However, there are only two values thatn(t+1) may take
on for a given value ofn(t). To see this, first assume (for
simplicity of discussion) that at timet we are not at the
end of a cycle:φ(t) 6= T − 1. The transmission policy
π contains a rule for every stateSt = (φ(t), n(t)) which
dictates what frame’s layer should next be transmitted,
or retransmitted if a previous attempt has failed. Ifπ(S)

is the frame that the policy dictates be chosen for a state
S, then at timet we would send the most important
layer of frameπ(St ) not yet successfully transmitted.
This layer is(n(t)

π(St )
+ 1)-most important layer, since

the firstn(t)
π(St )

layers of frameπ(St ) have already been
transmitted. This transmission can either succeed or be
erased. If it is erased thenn does not change; if the
transmission succeeds thenn(t+1) differs from n(t) in
only one component:

n(t+1)

π(St )
= n(t)

π(St )
+ 1. (9)
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Because the probability of an erasure isε, the one-step
transition probability is:

P
(
n(t+1)

∣∣ n(t)
) =


ε if n(t+1) = n(t)

1 − ε if n(t+1)

π(St )
= n(t)

π(St )
+ 1,

n(t+1)
j = n(t)

j , j 6= π(St )

0 else.

(10)

We encapsulate the one-step transition probabilities
of all M-possible values ofn(t) in an M × M state
transition matrixPφ , whereφ = t modT . Assume
that we have a functionf which maps each possible
value ofn to a unique indexi ∈ 1, . . . , M ; for exam-
ple, f ([1, 0, 0]) = 2 and f −1(2) = [1, 0, 0]. With this
mapping function, the components ofPφ are defined
as:

[ Pφ ] i, j = P
(
n(t+1) = f −1( j )

∣∣ n(t) = f −1(i )
)
, (11)

where the conditional probability can be found using
Eq. (10). Each rowi of Pφ contains two non-zero ele-
ments:ε in columni , and 1− ε in column j , where j
is determined by the policyπ .

In our analysis so far we assumed that we were not
at the end of a cycle at timet . However, if we are at
the end of a cycle (φ(t) = T − 1) the state transition
matrix given by Eq. (11) is not quite correct. It fails to
account for the arrival of a new frame and the aging of
each frame of the previous cycle by one position. This
is corrected by right-multiplying the matrixPT−1 by a
matrix Pa, which left-shifts each state by one position.
If we let ñ once again denote a staten shifted left by one
(see Eq. (6)), then the elements ofPa can be defined
as:

[ Pa] i, j =
{

1 if f −1( j ) = f −1(i )

0 else.
(12)

A new state transition matrixP′
T−1 = Pφ Pa now prop-

erly describes transitions fromn(t) to n(t+1) for which
φ(t) = T − 1.

We can now use the one-step state transition prob-
abilities in order to find the steady-state behavior of
S = {S0, S1, S2, . . .}. Because erasures are indepen-
dent,S is a discrete-time Markov chain. In other words,
the probability of being at some stateSt+t1 in the future
does not depend on any past knowledge of the process
St−t2 if we know the current stateSt . The only factors

that affect transitions fromSt to St+t1 are the transmis-
sion policy and the erasure rate. Their influence can be
summarized as follows:ε affects the chance thatn will
change, andπ determines how it changes.

BecauseSt includes phase information,S is cyclo-
stationary with periodT . This stems from the fact that
it is not possible to go from a stateSt1 = (φ(t1), n(t1))

at time t1 to the same stateSt2 = St1 in less than
T steps. The processSφ = {Sφ, Sφ+T , Sφ+2T , . . .},
φ ∈ {0, . . . , T − 1}, is a stationary process, however.
Its M × M state transition matrixP(φ) can be derived
from Eqs. (11) and (12):

P(φ) = Pφ Pφ+1 · · · PT−1Pa P0P1 · · · Pφ−1. (13)

A stationary distribution{Sφ, Sφ+T , Sφ+2T , . . .} can
be found analyzing the matrix of Eq. (13). Letη be
the stationary distribution when the oldest live frame
expires, i.e.,φ = L − (K − 1)T . The probabilityνi

of transmitting thei most important layers of a frame
by its expiration time is calculated by summing out the
possible states of the otherK − 1 frames:

νi =
N∑

n2=0

N∑
n3=0

. . .

N∑
nK =0

η f (i,n2,n3,...,nK ) (14)

Note that although there areM = (N + 1)K possible
values of theK -tuplen, the number offeasibleorreach-
able values may actually be lower. Which states are
unfeasible will depend on the policyπ . For example,
if π dictates that the most important layer of the oldest
frame alive is always chosen, then it is not possible to
haven3 6= 0 if n2 < N, since transmission of any mes-
sage of the third oldest frame would not commence
until all messages from the second oldest frame had
been sent. The transmission policy will have no rule
associated with these states. To get around this prob-
lem, we can remove each unfeasible statenu from the
analysis, and thus haveM ′ < M states. Alternatively,
we can still keepM states and assign a probability of 1
to the [f (nu), f (nu)] entries of eachPφ matrix defined
by Eq. (10). The stationary probability of these states
ν f (nu) will then 0 because they are null-recurrent, and
so their presence will not change the result of Eq. (14).

Finally, we wish to convert the stationary distribu-
tion of a policy into an objective assessment of that
policy’s performance. We will use average distortion as
our performance metric. Given a rate-distortion func-
tion D(R) such thatD(i ) is the distortion incurred in
reconstructing a frame from itsi highest priority
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layers, 0≤ i ≤ N, we can compute the average distor-
tion per frame for a transmission policyπ as

Dπ =
N∑

i =0

νi D(i ). (15)

Equation 15 can be interpreted as a weighted sum: the
distortionD(i ) incurred by reconstructing a frame from
its i most important layers is weighted by the probabil-
ity νi that only thesei layers of the frame are success-
fully sent in time for playback. One constraint on these
weights is that the expected number of layers transmit-
ted,Navg, can not exceed either the channel capacityC
or the raw transmission rateR:

Navg =
N∑

i =1

νi i ≤ min(C, R)

= min((1 − ε)T, N), (16)

whereC = (1 − ε)T is a basic information theoretic
result on the capacity of a binary erasure channel [7].
Even when the rateR is less than the channel capac-
ity C, the bound of Eq. (16) may still be unachievable
because the data is time-constrained. Thus althoughon
averagethere may be enough channel capacity to send
the entire multimedia signal, in the short term there may
be a sequence of many consecutive erasures so that data
expires before it is successfully transmitted. The choice
of policy can affect bothNavgand the distribution of the
rate-distortion weights (νi ). For example, a policy al-
ways favoring the most important message of the oldest
frame alive will maximize the average number of ex-
pected layersNavg and hence the chance of sending all
layers across (νN). Comparatively, a policy that sends
any messages belonging to the most important layer
ahead of all others will maximize the chance of send-
ing at least one message in a frame (ν1) by reducing
the chances of both getting none (ν0) and getting all of
them (νN). Which policy is better will depend not only
how much they can affectν (which is also dependent
onT andL), but also on the shape of the rate distortion
curveD(R).

4. Results

Having used our Markov chain model to calculate the
average distortionDπ of a policyπ , we now formulate
an optimization that computes the best transmission

policy:

π∗ = arg min
π∈5

Dπ , (17)

where5 is the set of all possible policies.
In this section we use our Markov chain analysis to

determineπ∗ for a given set of static network condi-
tions. Because our analysis depends on the erasure rate
ε, the relative importance of different priority layers
(determined by a rate-distortion functionD(R)), the
lifetime L, and the inter-frame periodT , the optimal
policy π∗ will depend on these factors as well. The
steps for findingπ∗ can be summarized as follows:

1. Fix the four aforementioned parameters:ε, L, T ,
andD(R).

2. For every possible policy, use the Markov analysis
to calculate its average distortion.

3. Determine which policy which produced the mini-
mum distortion.

In the results of our analysis presented below we
first focus on the most basic yet interesting case, when
there are two layers (N = 2) andT and L are valued
such that there is a maximum of two frames alive at any
time (K = 2). This is done to simplify the discussion
and interpretation of our results. After analyzing the
N = 2, K = 2 case we then look at more general cases
and discuss what aspects of the results differ as the
number of layers and overlapping frames increases.

4.1. A Basic Case: N= 2, K = 2

With two layers (N = 2) and at most two frames alive
at any given time (K = 2), there are at most 4 messages
to choose from at any time: the two layersXi

1 andXi
2

of an older framei , and the two layersXi +1
1 andXi +1

2
of the next, newer framei + 1. We will once again use
the OL -NH notation introduced in Section 2.2.

In Section 2 we explained that non-obvious trans-
mission decisions arise when we must choose between
older, less important messages and newer, more impor-
tant messages. For the two-layer, two-frame case, this
situation arises in only one of the 9 possible values of
n: n = [1, 0]. This is the case thatOH was successfully
transmitted, and so eitherOL or NH must be chosen
next. Each policy that we consider in this section con-
sists of a distinct choice ofOL or NH for each phase in
the cycle such that the older frame has not yet expired.
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Because 0≤ φ < L − T , there are 2L−T possible
policies to consider.

We first present results that illustrate the average
distortion of various policies as a function of the era-
sure rateε, when other parametersT , L, and the rate-
distortion functionD(R) are all held fixed. A non-
intuitive result is that the optimal policyπ∗ always
belongs to a subset consisting of two of the possi-
ble policies, and these two do not change their mes-
sage choice for a staten as the frames get closer to
their expiration times, i.e., asφ changes. There is a
threshold value ofε at whichπ∗ switches from one of
these policies to the other. Another key result is that the
best policy on one side of this threshold was also the
worst policy on the other side. Next, we illustrate how
the shape ofD(R) can affect the value of this threshold;
this tells us the best policy as a function of bothD(R)

andε. Finally, we examine how changing the values of
L andT can also affect the best policy.

4.1.1. Effect of the Erasure Rateε. The erasure rate
ε affects the probability of successfully transmitting a
message. In this section we examine how it affects the
choice ofπ∗. For fixed values ofL andT , the stationary
distributionν of a particular policy depends only on the
erasure rateε. However, theoptimal policy depends
not onlyν, and henceε, but also on the rate-distortion
function D(R).

Dπ , the distortion associated with a policy given by
Eq. (15), is a linear function ofD(R). As a result, trans-
lating and/or positively scalingD(R) does not change
which policy is optimal (i.e., has minimum distortion),
since by Eq. (15) all policies’ average distortions will
be equally scaled and translated. Therefore, we can find
and apply a scalinga > 0 and translationb to anyN-
layer rate-distortion function to normalize it so that the
resultingD′(R) = aD(R) + b satisfiesD′(0) = 1 and
D′(N) = 0. This new distortion function can be com-
pletely characterized by theN−1 values ofdi = D′(i ),
0 < i < N, subject to the convexity constraints

di − di +1 ≥ di +1 − di +2, 0 ≤ i ≤ N − 2. (18)

For the two-layer case, this constraint means that the
form of any rate-distortion function can be completely
summarized byd1, and for this case we will refer
to d1 as the “layer gap.” The convexity constraint
0≤ d1 ≤ 0.5 is necessary so that the high priority layer
actually is more important than the low priority layer
(or, at the minimum, equally important). Ifd1 is close

to 0.5 then both layers are of near equal importance; if
d1 is near 0 the high priority layer has much more ben-
efit (distortion reduction) than the low priority layer.

To illustrate the effect of the erasure rate on the dis-
tortion of different policies, we fix the layer gap at
d1 = 0.1, the inter-frame period atT = 4, and the frame
lifetime at L = 8. In this case the overlap in consec-
utive frames’ lifetimes lastsL − T = 4 seconds, and
so there are a total of 24 = 16 possible transmission
policies. We found that of all possible policies,π∗ is
always one of the two “phase-invariant” policies, which
either always chooseOL or always chooseNH through-
out the entire 4-second overlap window, regardless of
the phase. In other words, if the chosen message (OL

or NH ) is erased, these two policies always retransmit
it until it succeeds or it expires, whichever comes first.
The optimality of the phase-invariant policies can be
seen in Fig. 3, which displays the average distortion
as a function ofε incurred by these two transmission
policies and a third, phase-varying “hybrid” policy. The
hybrid policy shown favorsOL for the first two trans-
missions in a cycle (φ = {0, 1}) and then switches to
favor NH for the last two transmissions (φ = {2, 3}).
The scale of the y-axis can be interpreted as follows:
assuming that the distortion function is mean squared
error, a one-decade decrease in distortion corresponds
to a 10 dB increase in signal-to-noise ratio.

Figure 3 shows that for low values ofε, the best
policy always favors theOL , for high values ofε, the
best policy always favors theNH ; and there is a value of
ε where the two policies have equal distortion (≈0.44
here). When the erasure rate is low, sendingOL instead

Figure 3. Distortion versus erasure rate for 3 different decision
policies, forT = 4, L = 8, andd1 = 0.1.
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of NH is better becauseOL will expire sooner, and
although this choice reduces the number of possible
transmission attempts for the more importantNH , it is
unlikely to need them all. However, when the erasure
increases it increases the average number of attempts
needed to getNH to the receiver, and hence sending
NH beforeOL becomes more beneficial, even though
OL may expire before the sender succeeds withNH .

An equally important finding is that for values ofε

in which theOL phase-invariant policy is optimal, the
NH phase-invariant policy is not only suboptimal, but
it is also theworstpossible policy. The converse holds
true as well. In general, the two optimal policy distor-
tion curves form the upper and lower boundaries of a
performance envelope between which all other poli-
cies’ performance curves must lie. Note that although
we have only shown results from 3 of the 16 possible
policies, we did find that the distortion curves of other
13 do all lie between the envelope formed by the curves
of the two phase-invariant policies. Also, although we
have not proven this optimal/worst nature of the two
phase-invariant policies (it was identified through ex-
haustive search of all possible policies), we found that
this property held true for all other combinations ofd1,
T , andL that we examined.

4.1.2. Effect of the Layer Gap d1. In the preceding
section we found that when all parameters except the
erasure rate were fixed, the optimal policy could be
characterized by the threshold value of the erasure rate:
if the erasure rate is below this threshold,π∗ always
choosesOL ; if above, it choosesNH . In this section
we examine how the layer gap affects the value of this
threshold. Figure 4 illustrates the location of this thresh-
old (shown on thex-axis) as the layer gap is varied be-
tween 0 and 0.5 (y-axis), for an inter-frame period of
3 and a frame lifetime of 5 (T = 3, L = 5). AreaA to
the left of the curve indicates when the phase-invariant
policy favoring OL is optimal; areaB to the curve’s
right indicates that theNH phase-invariant policy is
optimal. The curve was obtained by analytically solv-
ing for the average distortionsDπ of the two policies as
a function ofε andd1, setting them equal and numer-
ically solving for ε asd1 was varied. We verified the
correctness of the curve by sampling theε × d1 plane,
finding π∗ through exhaustive search, and confirming
that theOL -favoring policy was indeed optimal for all
points lying in areaA, and likewise for areaB.

Figure 4 shows that as the layers become more equal
in importance (d1 increases), the erasure rate threshold

Figure 4. Optimal decision policy as a function ofε and d, for
T = 3 andL = 5.

moves to the right. This makes intuitive sense: if there
is a small disparity between the layers’ importance,
thenOL is almost as beneficial asNH , and thus unless
the erasure rate is high it is better to sendOL because
it expires sooner. Conversely, if the high priority layer
is much more important, then the erasure rate does not
have to be as high before it makes sense to start favoring
NH over OL ; this increases the chance of successfully
transmitting this more important message.

4.1.3. Effect of the Inter-Frame Period T. We also
examined the effect of the inter-frame period on the era-
sure rate threshold, and found that increasingT tends to
increase the threshold. Figure 5 illustrates this effect; it
shows threshold curves (as described in the preceding

Figure 5. Effect ofT on the optimal decision policy.
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section) for each value ofT between 3 to 6;L is set
to T + 2 for all cases. IncreasingT causes the curve’s
knee to move further to the right; because increases in
T provide more transmission opportunities per frame,
the erasure rate must also increase before sendingNH

over OL becomes more beneficial. We also see that as
T increases, the spacing between the curves becomes
smaller, but the slope of the knees remains relatively
fixed. This indicates that changingT does not change
the amount of influence the layer gap has on the erasure
rate threshold value.

4.1.4. Effect of the Frame Lifetime L. Finally, we
examined how the frame lifetimeL affects the location
of the erasure rate threshold, and hence the optimal
policy π∗. In general, we found that the lifetime has
the following effects:

• Increasing the lifetime moves the threshold curve to
theleft, so that it becomes more beneficial to send the
NH over theOL at even lower erasure rates. We hypo-
thesize that this is because if the sender chooses to
send the more importantNH before the olderOL , in-
creasing the lifetime increases the chance thatNH is
successfully transmittedbefore OL expires, thereby
increasing the chance thatOL can be sent as well.

• Increasing the lifetime decreases the impact of the
layer gap on the choice ofπ∗. This is reflected by a
steeper threshold curve.

• The magnitude of the difference in average distor-
tion between the best and worst policies increases
as the lifetime increases. This is because a longer
lifetime results in a longer overlap between consec-
utive frames’ lifetimes, and hence the transmission
policy can influence a the sender’s behavior over a
larger fraction of theT second transmission cycle,
for better or worse.

The first two properties are illustrated Figs. 6 and 7,
which show the threshold curves for variousL-values
whenT equals 3 and 4, respectively. In each figureL
was varied betweenT + 1 and 2T . The latter property
was confirmed by examiningDπ (ε) graphs (like Fig. 3)
for various lifetimes.

4.2. Generalized Results

We now turn our attention to finding the best policy
for more general cases than theN = 2, K = 2 case

Figure 6. Effect of L on the optimal decision policy.T = 3 for all
curves.

Figure 7. Effect of L on the optimal decision policy.T = 4 for all
curves.

studied above. We begin by looking at what changes
for the three overlapping-frame case (K = 3). We then
study the case when the signal is encoded into 3 layers
(N = 3). Both of these changes result in an increased
number of states that require non-obvious policy deci-
sions. Recall that these decisions arise for cases when
one must choose between transmitting a less impor-
tant message of an older frame and a more important
message of a newer frame. We can express this relation-
ship in terms of the stateS= [φ, n = [n1, n2, . . . , nK ],
where frame 1 is the oldest frame and frame K is the
newest one. The staten(t) requires a non-obvious trans-
mission choice if there exists at least one pair of indices
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i and j such that

nj < ni < N,

i < j, and (19)

1 < i if φ ≥ L − (K − 1)T.

The first two conditions state that framej must be
newer than framei but have had fewer messages trans-
mitted, and that not all of framei ’s messages have been
transmitted. The last condition states that if timet falls
in the latter part of a cycle (if there is one) such that the
oldest frame has expired, then the oldest frame cannot
be considered for transmission.

The number of unique pairs of indices satisfying
Eq. (19) can be greater than the number possible mes-
sages to choose from for that stateS= [φ, n], because
when there are ties among states (e.g.,ni = ni +1) the
older frame should be chosen. Let the number of mes-
sage choices benmsg(S). AssumingS requires a de-
cision (the conditions of Eq. (19) are satisfied), then
nmsg(S) is at least 2 and is upper bounded by:

nmsg(S) ≤
{

min(K , N) if φ < L − (K − 1)T,

min(K − 1, N) else.

(20)

If N and K are equal then there is one state vectorn
which results inN messages to choose from:

n = [N − 1, N − 2, . . . , 1, 0]. (21)

4.2.1. Increasing the Number of Overlapping Frames.
Increasing the number of frames whose lifetimes over-
lap (K ) increases the dimensionality ofn, and hence
increases the number of states requiring decisions (the
number of states satisfying Eq. (19) increases). In this
section we examine the best policies forK = 3 and
N = 2. There are now 3 states during the full-overlap
period requiring decisions: [1, 0, 0], [1, 1, 0], [2, 1,
0]. After the oldest frame expires, we have one state
requiring a decision: [x, 1, 0], where the value ofx is
irrelevant to the decision. Because we have two layers,
for all of these states there are still only two choices:
OL , an older less important layer (layer 2), andNH ,
a newer more important layer (layer 1). These choices
are summarized in the first four columns of Table 3.
We have used theXi

j notation to identify messages:
Xi

j corresponds to layerj of framei . When one of the
possible message choices belongs to framei and there

Table 3. Best policies forN = 2 andK = 3.

State Choices Policies

φ n OL NH A B

0, 1 [1, 0, 0] X1
2 X2

1 OL NH

0, 1 [1, 1, 0] X1
2 X3

1 OL OL

0, 1 [2, 1, 0] X2
2 X3

1 OL OL

2 [x, 1, 0] X2
2 X3

2 OL OL

Figure 8. Crossover curve forT = 3, L = 8, andN = 2. Policies
A and B are defined in Table 3.

is ak > i such thatnk = ni , we have chosenXi
ni +1 for

transmission because framei has the earlier expiration
time.

For all cases that we analyzed for whichN = 2 case
and values ofL andT such thatK = 3, we once again
found that the best policy belonged to a subset of size
two. Figure 8 shows a crossover curve between these
two policies forT = 3 andL = 8. For this case there are
128 possible policies and of these 16 are time-invariant.
We found that two best policies,A and B, were also
time-invariant as well, and we have listed their trans-
mission decisions in Table 3. These policies differ only
in their choice for state [1, 0, 0]; for all other states
they chooseOL . This indicates that the sender should
not be too conservative in ensuring the high priority
message of future frames gets transmitted; in this in-
stance the high priority message of the newest frame
(frame 3) before transmitting the low priority message
of the middle-aged frame (frame 2).

4.2.2. Increasing the Number of Layers.Increasing
the number of layersN increases the number of values
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each componentni of n can take on, and so this also in-
creases the number of states requiring policy decisions.
In this section we present results for the case thatK = 2
andN = 3. Because there are two overlapping frames,
we choose between a less important layer of the older
frame and a more important layer of the newer frame.
There are 3 states during the overlap period requiring
decisions: [1, 0], [2, 0], and [2, 1] (with K = 2 there
are no policy decisions needed after the older frame
expires). These states correspond to deciding between,
respectively, the older frame’s “medium” priority mes-
sage and the newer frame’s most priority message, the
older lowest priority message and the newer most pri-
ority message, and the older lowest priority message
and the newer medium priority message. We summa-
rize these choices forT = 4 andL = 6 in the first four
columns of Table 4, once again using theXi

j notation
to indicate the messages to be considered for transmis-
sion. Note that the decision for state [2, 1] does not
need to be made atφ = 0 because at the start of a cycle
the new frame has just arrived, son2 must be 0, and
thus this state cannot be achieved.

Unlike our previous results for two layer cases, with
N = 3 we found that the subset of optimal policies was
greater than two. Of the 32 possible policies (which in-
cludes a subset of 8 phase invariant ones), we found 5
different phase invariant policies which formed the op-
timal subset. These five policies are labeledA through
E and their decisions are listed in Table 4. Note that
because there are 3 layers, we now need 2 parameters
to describe the rate distortion curve:d1 and d2. The
shaded areas of Fig. 9 correspond to the areas of the
ε × d2 plane for which each policy is optimal, ford1

fixed at 0.5. The graph was obtained by finding the best
distortion of all possible policies over a 100×100 grid
of sampled values of theε andd2. Note that the range
of d2 is determined by the value ofd1 and the convexity
constraints of Eq. (18).

The following behavior is indicated by the results
shown in Fig. 9. As we move left to right, the era-
sure rate increases, and the optimal policy increasingly

Table 4. Best policies forN = 3 andK = 2.

State Choices Policies

φ n OL NH A B C D E

0, 1 [1, 0] X1
2 X2

1 OL OL OL NH NH

0, 1 [2, 0] X1
3 X2

1 OL NH NH NH NH

1 [2, 1] X1
3 X2

2 OL OL NH OL NH

Figure 9. Optimal policies as a function ofε and d2 for T = 4,
L = 6, N = 3, andd1 = 0.5. PoliciesA through E are defined in
Table 4.

chooses the more importantNH over OH to compen-
sate. We see that at low erasure rates we start out at
policy A, which always favors all of theOL ’s. As ε in-
creases we next switch toB, whose only difference
with A is for state [2, 0], for which B chooses the
newer highest priority message over the older’s low-
est priority message. This state’s decision is the first
to change with increasing erasure rate because it is the
state whose eligible messages have the greatest dis-
crepancy in importance (distortion). Asε continues to
increase the next policy we encounter is eitherC or D,
depending on the value ofd2. If d2 is low then the low-
est priority message is much less important than the
medium priority message, and so we move to policy
C, which chooses the newer medium priority message
over the older lowest priority one. However, increasing
d2 not only decreases the gap in importance between
the two lower priority messages, but it also increases
the performance gap between the highest priority mes-
sage and the medium priority message. Thus for high
d2 we transition from policyB to policy D instead,
which chooses the newer highest priority message over
the older medium priority one. Our final transition is to
policy E, which chooses all of the higher priority newer
messages over the lower priority older messages. Note
that whend2 = d1/2= .25 this final transition never oc-
curs, andD is still the best even at the highest erasure
rates. This is because for this case the two lower pri-
ority messages are of identical importance, and so the
older lowest priority message should always be sent
instead of the newer “medium” (but equal) priority
message.
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Figure 10. Optimal policies as a function ofε andd2 for T = 4,
L = 6, N = 3, andd1 = 1/3.

Similarly, note that whend2 = 0 ford1 = .5, the low-
est priority message has no value and the two higher pri-
ority messages are of equal importance. The best policy
for all erasure rates is thusC, which always transmits
either of the two newer higher priority messages over
the older lowest priority one and also chooses to send
the older medium priority message instead of the newer
high priority one. Whend1 < 0.5, the highest prior-
ity message will always be more important than the
medium priority one, and so for high erasure rates pol-
icy C is not necessarily the best. This is illustrated by
Fig. 10, which shows the best policies whend1 = 1/3.

5. Future and Related Work

The tradeoff we analyzed in choosing between mes-
sages differing in both priority and playback deadlines
has analogies to delay-constrained class-based queu-
ing, in which a switch must choose between packets of
different priorities (classes) with different deadlines.
Such queuing problems have been examined in [8] and
[9]. An important distinction is that in these works, the
arrival times of packets (i.e, production times of layers)
are random and geometrically distributed; in our case,
we have known deterministic and periodic arrival times
of messages.

Another interesting optimization for streaming lay-
ered media is posed in [10]. This work also examines
optimally choosing between a base layer and an en-
hancement layer of a video stream, but it employs a
different network model. The model differs from our
own in that it assumes the available bandwidth varies

randomly (as might result when using a congestion con-
trol algorithm) and that the network is loss-free (so that
retransmissions are unnecessary); our model assumes
fixed available bandwidth but random losses. Other dif-
ferences include the assumptions in [10] that the entire
video signal is available on the server prior to the start
of playback (as is the case with pre-recorded media
clips) and that an unlimited amount of data can be pre-
fetched by the server and buffered for playback at the
receiver. In our model, the stream is either generated or
fetched only as playback is occuring (as is the case with
live media sources), and as a result the receiver’s play-
back buffer is a fixed and finite size proportional to the
chosen playback delay. These modelling differences in
[10] lead to a different optimization problem—how to
dynamically allocate the a priori unknown available
bandwidth between the two video layers when it is
known that all transmisisons will succeed.

Much of the significant body of work that has been
done on streaming multimedia is oriented towards
improving the performance ofinteractive multime-
dia streams. Because delay requirements of interactive
multimedia (less than 200 ms by some measures [1])
typically preclude soft ARQ for error recovery, inter-
active multimedia research has explored alternative
ways to improving signal quality. For example, many
algorithms have been developed to automatically ad-
just the playback point at the receiver to compensate
for variations in network delay ( jitter) [11–15]. Such
techniques are complementary to our work, as the play-
back delay should account for both the average round
trip time needed for a retransmission plus a additional
factor to account for variations in the delay experienced
by retransmissions. Similarly, other techniques to deal
with packet loss in interactive media streams, such as
error concealment [16–18] and forward error correc-
tion (FEC) [18–23] can also be used in conjunction
with retransmission-based loss recovery.

One disadvantage of FEC is that the error correc-
tion is forward; because the source does not know a
priori which packets will be lost, it sends redundant
information even if it is not actually needed. ARQ re-
transmission schemes, on the other hand, only send
extra information that the sender believes has been lost
(whether this belief is accurate depends on the specifics
of the protocol and network). As a result they do not
unnecessarily waste bandwidth when there is no packet
loss, and they can easily adapt to changes in the loss
rates. Thus studies have examined soft ARQ for both
unicast [24, 25] and multicast [2, 26, 27] streaming
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multimedia. One way our work differs from all of
these is that we assume there is an overall transmis-
sion rate limit, so that a retransmission of one message
can come at the expense of the first transmission of
another; these other works assume that enough band-
width is available for any retransmissions the sender
decides to send, and instead focus on soft ARQ proto-
col issues. And although it is not soft-ARQ based, [28]
describes FLITT, an FEC-based scheme for transmis-
sion of layered images in a finite amount of time (this
time is determined by a transmission rate that is fixed
for the image).

In our analysis of the transmission model of Fig. 1,
we found that the optimal transmission policy was al-
ways phase-invariant. For the two-layer (N = 2) case,
the best policy was found to belong to a subset of two
phase-invariant policies (forK = 2 there are only two
phase-invariant policies). ForN = 3 we found an opti-
mal subset consisting of five phase-invariant policies.
We have observed similar results for all values ofL
and T tested such thatK ≤ 3 whenN ≤ 3. A practi-
cal limitation of our analysis is that not only is the
size of the state space exponential inN andK , but the
size of the set of possible policies (5) is also exponen-
tial in these factors and inT as well. This has limited
our ability to find the optimal policy for arbitrary val-
ues of these parameters. As a result one area of future
work is the exploration of other approaches to analyz-
ing this transmission problem, such as Markov decision
analysis or using approximations. Also, note that while
the aforementioned properties have been strongly indi-
cated by our results, they come from exhaustive search
and hence have not been proven to be true. Such proofs
remain an open area of research.

A limitation of our analysis is the zero-network-
delay assumption. Because this assumption clearly
does not hold in the Internet, it could be eliminated
in future work. However, this assumption was made to
make the analysis tractable; a difficulty in accounting
for network delay is that the delay leads to an explosion
in the state space, and as a result the number of poten-
tial transmission policies. The complexity introduced
by non-zero delay could be reduced, to a degree, by
assuming a balanced multiple description encoding of
the media signal [4]. Another limitation of our work
is our assumption that packet erasures are independent
events; Internet losses are often very correlated. Future
work could account for correlation by incorporating the
network status into the state space (for example, using
a 2-state Gilbert model for the loss process).

Finally, we have performed our analysis for the case
that the model parameters are fixed over time. Although
T is fixed for a given multimedia encoding, andD(R)

is arguably so, both the erasure rateε and data lifetime
L are likely to change. We have seen from our results
that the best policies are phase-invariant and relatively
few in number. The value(s) ofε for which the optimal
policy changes thus could be pre-computed for various
values ofL. A protocol could then adaptively estimate
the data lifetimeL (which can be defined to account for
variations in the network delay) and lookup crossover
value(s) ofε, and finally compare the results to the cur-
rent estimate ofε in order to choose the best policy. We
have examined the feasibility and performance of such
an adaptive protocol for the two-layer, two-overlap case
in [29].

6. Conclusion

We have examined optimal transmission policies for
real-time layered multimedia data, and we looked at
the specific case of using limited retransmission over a
BEC with instantaneous feedback. We illustrated that
there are non-trivial transmission choices to be made
between older, lower priority layers and newer, higher
priority layers. We presented a Markov chain analysis
for evaluating the efficacy of a specific transmission
policy. We then examined how the optimal choice of
policy varies as a function of the lifetime of the data,
the period between frames, the erasure rate, and the
relative importance (in a rate-distortion sense) of the
layers. A key result of our analysis is that, for fixed net-
work conditions, the best transmission policy is time-
invariant and does not change as layers approach their
expiration.
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