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Abstract— We study frames for robust transmission over
the Internet. In our previous work, we used quantized finite-
dimensional frames to achieve resilience to packet losses;
here, we allow the input to be a sequence in ¢3(Z) and focus
on a filter-bank implementation of the system. We present
results in parallel, RY or CY versus {3(Z), and show that
uniform tight frames, as well as newly introduced strongly
uniform tight frames, provide the best performance.
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I. INTRODUCTION

Aaron D. Wyner, to whom this issue and this paper are
dedicated, had a profound impact on information theory
and on his colleagues—including the first and third au-
thors. Amongst Wyner’s varied contributions were the con-
ception and development of source coding problems that
generalized Shannon’s basic point-to-point communication
problem [1], [2], [3], [4], [5]- Network source coding prob-
lems inspired in part by Wyner’s work currently occupy
many theoreticians and compression practitioners.

This paper concerns the analysis of one framework for
communicating infinite sequences over a set of parallel
channels, each of which is either noiseless or does not work
at all. The channel model gives a general form of multiple
description coding [6]. The transmitted information is gen-
erated with a filter bank and scalar quantization, as shown
in Fig. 1. The filter bank implements a frame expansion;
thus, the structure itself and the techniques for analysis and
design are generalizations of results for finite-dimensional
vectors in [7], [8].

A. Frames

Frames have become ubiquitous. They started as a
mathematical theory by Duffin and Schaeffer [9], who pro-
vided an abstract framework for the idea of time-frequency
atomic decomposition by Gabor [10]. The theory then laid
largely dormant until 1986 with the publication of the work
by Daubechies, Grossman and Meyer [11]. Since then,
frames have evolved into a state-of-the-art signal process-
ing tool.

The mathematics of frames can be found in several ex-
cellent sources. The original work by Duffin and Scha-
effer introduced frames for Hilbert spaces [9]. The pa-
per by Daubechies, Grossman and Meyer [11] discusses
applications to wavelet and Gabor transforms. A beau-
tiful tutorial on the art of frame theory was written by
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Casazza [12]. Some particular classes of frames have
been extensively studied: Gabor frames (also called Weyl-
Heisenberg frames) are described by Heil and Walnut in [13]
and by Casazza in [14], while the paper [15] and the book
[16] by Daubechies offer excellent introductions to frames
and in particular, wavelet and Gabor frames.

Frames, or redundant representations, have been used in
different areas under different guises. Perfect reconstruc-
tion oversampled filter banks are equivalent to frames in
l5(Z). The authors in [17], [18], [19] describe and ana-
lyze such frames. Frames show resilience to additive noise
as well as numerical stability of reconstruction [16]. They
have also demonstrated resilience to quantization [20], [21].
Several works exploit the greater freedom to capture signif-
icant signal characteristics which frames provide [22], [23],
[24]. Frames have been used to design unitary space-time
constellations for multiple-antenna wireless systems [25].
Finally, although a well-known result by a Russian math-
ematician M.A. Naimark!'-Naimark’s Theorem [26]-has
been widely used in frame theory in the past few years [8],
[27], only recently have researchers recast certain quantum
measurement results in terms of frames [28], [29].

The bibliography on frames is vast; the list given above
is just a sample. The reader is encouraged to check the ref-
erences above and the ones within for more uses of frames
and further technical details.

B. Structure of the Proposed System

As in previous work of two of the authors [8], our aim is
to exploit the resilience of frame expansions to coefficient
losses. This resilience is a result of the redundancy a frame
representation brings. In the earlier work, the frame ele-
ments belong to RN (or CV) and can be seen as filters in
a block-transform filter bank. Here, we investigate frames
with elements in £2(Z); they can be seen as filters in a
general, oversampled filter bank.

Consider the model depicted in Fig. 1. An input se-
quence z[n] is fed through an M-channel finite-impulse re-
sponse (FIR) filter bank followed by downsampling by N
(N < M). The M output sequences are then separately
scalar quantized with uniform scalar quantizers and sent
over M different channels. Each channel either works per-
fectly or not at all. The decoder receives only M — e of
the quantized output sequences, where e is the number of
erasures during the transmission. We assume there are no

1A common alternative spelling of Naimark is Neumark.
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Fig. 1.

Abstraction of a lossy network with a frame expansion implemented by an oversampled FIR filter bank. An input sequence z[n]

is fed through an M-channel finite-impulse response (FIR) filter bank that includes downsampling by N (N < M). The M output
sequences are then separately scalar quantized with uniform scalar quantizers and sent over M different channels. Each channel either
works perfectly or not at all. The decoder receives only M — e of the quantized output sequences, where e is the number of erasures
during the transmission. We assume there are no more than M — N erasures. The reconstruction process is performed by the synthesis
filter bank. The choice of synthesis filters depends on which channels are received.

more than M — N erasures. The reconstruction process is
linear. We wish to find properties of the filter banks that
minimize the mean square error (MSE) between the input
and the reconstructed sequences.

To analyze cases with more than M — N erasures requires
a statistical model for the input sequence. In [30], [31], [32],
the input sequence is a stationary Gaussian source; in [30],
[32] the case M = N = 2 and one erasure is considered,
while in [31] the case M = 3 and N = 2 and up to two
erasures is analyzed. In this work we do not make any as-
sumptions on the input source. Rather, a statistical model
for the quantization error makes the reconstruction quality
depend only on the characteristics of the filter bank.

We first go through the basics of frame expansions in Hy
(where H denotes a finite-dimensional space such as RY
or CV) and ¢5(Z). We introduce the notion of strongly uni-
form frames and discuss several examples. We then quan-
tize the frame coefficients and find the MSE. Finally, we
let some coefficients be erased (mimicking the losses in a
network) and discuss the effect on both the structure of
the frame and the MSE. Although we could present only
the results for H = ¢2(Z) and specialize them to H = Hy
when the filter length is N, we present the known results
for Hy [8] and the new ones for £5(Z) in parallel; the simple
geometry of Hy makes results feel more intuitive.

A few words about notation: superscript * denotes the
Hermitian transpose (complex conjugation as well as trans-
position in case of vectors and matrices). In the filter bank
literature, it is customary to denote matrices by bold cap-
ital letters; we will depart from this convention here to be
consistent with the frame notation.

II. SIMPLE EXAMPLE

We are given the following set of three vectors in R?:

@ = {p],95,03}

{(0,1)*,(=v3/2,-1/2)*,(v/3/2,-1/2)*} (1)

(see Fig. 2). This set is obviously not a basis, since it
has more vectors (three) than needed to represent vectors
in R? (two). However, it can still be used to represent
vectors from R? (albeit with linearly dependent vectors,
@1 = —p2 — p3). We can write any = € R? as

Fig. 2. Mercedes-Benz frame: A uniform tight frame with three
vectors in two dimensions. It is a representative of the whole
class of uniform tight frames with N =2, M = 3.
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This expression looks like it came out of the blue; however,
if we look more closely, we note that it can be expressed as

follows:
3

2
z = 3> {pnn)oi 2)
i=1
The above equation looks suspiciously like the expansion
formula using an orthonormal basis with basis vectors ;.
That is, except for the term 2/3. However, even that seems
to make sense; we are normalizing our expansion by the
factor that tell us what the “"redundancy” of the system
is, that is, how many more vectors we have than what we



would have needed to represent vectors in R2. Moreover,
the energy in the transform coefficients X; with

Xi = <(10i3$)5 1= 132735 X = (X17X23X3)*;

is

3
3
IXI1P = Y o) = CLEE
i=1

that is, it is (3/2) times that in the input vector. Fairly
intuitive.?

Thus, it seems that what we obtained is slightly more
particular than just a random collection of three vectors.
In fact, what we have is a frame; and not just any frame,
it is a uniform tight frame (this particular frame is called
a Mercedes-Benz (MB) frame).® We can thus think of this
frame as a generalization of an orthonormal basis. As we
will see in Section ITI-C.3, a tight frame satisfies F*F = Al
where F' is the matrix having elements of ¢ as its rows. A
uniform frame contains all vectors of norm 1, as is the case
in our example, and A is the redundancy ratio 3/2.

Suppose now that we perturb our frame coefficients by
adding white noise w; to the channel i, where Efw;] = 0,
Elw;wy] = 0%8;, for i,k = 1,2,3. Using (2), we can find
the error of the reconstruction,

3

Yot wer = 33 (@ p + i)

i=1
3
2
= -3 _wigi
i=1

Then the averaged mean-squared error per component is

Wi

2

MSE =

3
1 12 112
37l =l = 57|33 v

1,49 2 2
= 5025 Z llosll? = 502 3 = 502,
i=1
since all the frame vectors have norm 1.

The above result will show another particular property
of the frame we chose so “randomly”. Namely, among all
other frames with three norm-1 frame vectors in R?, this
particular one (and the others in the same class, as will be
shown later) minimizes the MSE. We can see this if we
perturb the first vector by a radians clockwise.* It then
becomes ¢ = (sin @, cos @)*. Denote the new frame matrix
by Fi and find the new left inverse of F;. Repeating the
above calculation, we get that the MSE is

1 3
MSE = —¢>— ————.
2" 9/4— (sina)?

2We will see later that this is true only for the so-called uniform
tight frames.

3We call this frame a Mercedes-Benz frame since the geometric
configuration of its vectors brings to mind the Mercedes-Benz car
logo.

40f course, perturbing just the first vector does not give us the most
general frame in R?; we neglect this issue for simplicity and refer the
reader to [8] for a more general treatment.

This MSE is minimized when oo = 0; we are back to the MB
frame! Moreover, our discussion justifies the statement in
the introduction that frames provide resilience to quanti-
zation; with an orthonormal basis, the MSE = o2 (take
the usual orthonormal basis ¢1 = (1,0)*,¢2 = (0,1)* and
repeat the above MSE calculations), while with our frame,
the MSE = (2/3)0?, a reduction of the error by one third.

Recall, however, that our intention was to use frames to
provide robustness to losses. Assume, thus, that one of the
quantized coefficients is lost, for example, X2. Does our
MB frame have further nice properties when it comes to
losses? Note first, that even with 2 not present, we can
still use ¢; and @3 to represent any vector in R2. The
expansion formula is just not as elegant:

i§3<¢i7$)¢ia (3)
o= (50). s (5) o

Repeating the same calculations as above for the MSE, we
get that

r =

with

2

1 1
Sz~ 3" = oE

Z w;P;

i=1,3

1 .12 4
= 502 Z llgsll™ = 502,
i=1,3

that is, twice the MSE without erasures. However, the
above calculations do not tell us anything about whether
there is another frame with a lower MSE. In fact, given
that one element is erased, does it really matter what the
original frame was?

It turns out that it does. In fact, among all frames with
three norm-1 frame vectors in R?, the MSE averaged over
all possible erasures of one coefficient is minimized when
the original frame is tight [8]. For a hint of the general re-
sult, as before, perturb the first vector by a (and as before,
be aware that this does not give us the most general uni-
form frame). Erasing one element at a time, compute the
new inverse of the matrix formed by the remaining vectors
and compute the MSE in each case. We get

4
MSE{I} = 50'2,
MSEp; = o7 1
&= 2+cos2a+\/§sin2a7
4
MSE = o2 )
3} 2+ cos2a — \/gsin 2x

The average MSE with one erasure is then

1
(MSE{I} + MSE{2} + MSE{g})

3
éUZ 15 + 10 cos 2a + 2 cos 4o
9 (1 4+ 2cos2a)?

MSE;, =

5The orthonormal basis minimizes the MSE among all two-
dimensional bases; take, for example, 1 = (cosa,sina)*, s =
(0,1)*. The MSE is (202)/(1+ cos 2a). This expression is minimized
for a = 0, that is, for an orthonormal basis.
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« UF unif or m fr ames * UTF
« UF1 unif or m fr ames

withnor m 1 * ONB
« UTF1  unif ormtight fr ames

withnor m 1

all frames
UTF1 UNTF
| ONB |

unif orm « TF tight fr ames
tight fr ames « NTF nor maliz ed
or thonor mal tight fr ames
bases « UNTF  unif orm nor maliz ed

tight fr ames

Fig. 3. Frames at a glance. Note that here we denote by UF uniform frames with the same norm, not necessarily 1. When the norm is 1,
we say so explicitly, as in UF1, that is, uniform frames with norm 1.

The above expression is minimized when a = 0; back to
the MB frame once more!

What we have done in this simple example is to show
the types of issues that arise when trying to use frames to
provide robustness. We have shown this when the frame
elements belong to a finite-dimensional space such as R?,
since the demonstrations are simple and the geometry intu-
itive. As mentioned previously, we extend these results to
the frame elements from £ (Z); this simple example should
serve as a guideline.

IT1I. FRAME EXPANSIONS IN Hy AND {¢5(Z)

We can now define frames more precisely. What we have
seen in our simple example will generalize. We will find
other frames with properties similar to those the MB frame
possesses (such as conservation of energy).

A set of vectors ® = {p;}icsr in a Hilbert space H, is
called a frame if

0 < Azl < Y Keiso)” < Bllall® < +oo,
i€l

()

for all  # 0, where I is the index set and the constants
A, B are called frame bounds. In this paper, we concentrate
only on the N-dimensional real or complex Hilbert spaces
RN and CN (which we denote Hy) with the usual Eu-
clidean inner product and on the Hilbert space of square-
summable sequences H = {5(Z) with the inner product
(z,y) = > ;eriy;. For the former, ® = {p;}X; C Hy
while for the latter, ® = {p;}icz C £2(Z).

When A = B the frame is tight (TF). If A= B =1, the
frame is normalized tight (NTF). A frame is uniform (UF)
if all its elements have norm 1,% ||g;|| = 1. For a UTF,

6 Actually, the definition of a UF is more general; the norm is allowed
to be ¢ # 1. In this work, however, we consider only UF with norm
1.

the frame bound A gives the redundancy ratio (it is 3/2 in
our example). A UTF which is also normalized, that is,
with A = 1, is an orthonormal basis (ONB). Fig. 3 helps
to clarify the “alphabet soup” of frames.

A frame operator F maps the Hilbert space H into £3(I)

(Fz)i = (pi,z), (6)

for ¢ € I. The frame operator can be represented by a
matrix whose rows are the transposed frame vectors ¢}.
When H = Hjy, the frame operator is an M x N matrix

* *
P11 1N

F=1: . ] (7)

Pt YuNn

while with H = ¢5(Z), the frame operator is an infinite ma-
trix (infinite number of frame vectors and infinite number
of elements in each vector). For the latter, we will examine
a particular class of frames with vectors which are shifted
versions of M prototype ones. This will become clear in a
moment.

The following theorem tells us that every tight frame
can be seen as a projection of an orthonormal basis from a
larger space.

Theorem 1 (Naimark [26]) 7 A family {p;}icr in a
Hilbert space H is a normalized tight frame for H if and
only if there is a larger Hilbert space H C K and an or-
thonormal basis {e;};cr for K so that the orthogonal pro-
jection P of K onto H satisfies: Pe; = ¢;, for all 1 € 1.

7This theorem has been rediscovered by several people in recent
years: The first author first heard it from I. Daubechies in the mid-
90’s. Han and Larson rediscovered it in [27]; they came up with the
idea that a frame could be obtained by compressing a basis in a larger
space and that the process is reversible. Finally, it was pointed out
to the first author by E. Soljanin [29] that this is, in fact, Naimark’s
Theorem, which has been widely known in operator theory and has
been used in quantum theory. The theorem was also proved in [28].



A. Digression: Frame Interpretation of Filter Banks

Fig. 1 depicts a signal-processing structure called a fil-
ter bank. It has been used extensively in compression as
well as communications (with analysis and synthesis banks
reversed) [33]. Early work in filter banks concentrated
on trying to provide perfect reconstruction, that is, en-
sure that the output signal is only a shifted and possibly
scaled version of the input signal. As the field matured, it
was recognized that the filter bank implements a particu-
lar, structured linear transform [33]. Most of the research
concentrated on critically-sampled filter banks, those with
M = N, in which the filter impulse responses are basis
functions from an orthogonal or a biorthogonal basis of
£2(Z). Some researchers, however, tried to overcome cer-
tain critical sampling restrictions by oversampling, that is,
by letting M > N [34], [17], [18]. Which brings us to
frames.

Have a look at Fig. 1 and assume that the filters
hi[n],gin], i = 1,..., M, are all of length N. The input
into the filter bank is a square-summable infinite sequence
z[n] € £»(Z). Let us now understand what such a filter
bank is doing. The analysis filters act on N samples at a
time and then, due to downsampling by N, the same filters
act on the following N samples. In other words, there is
no overlap. On the synthesis side, the reverse is true. This
process is described by the following matrix equation:

yl‘[O] z [-0]
yul] | oo AN 1]
wi] | = 0 F a4y | @
o] | T | s2v -1
RS RS
with
h[N —1] h1[0]
F - : :
hat[N — 1] h[0]

Since the infinite matrix has a block-diagonal structure,
we need only pay attention to the block F—an M x N ma-
trix with time-reversed analysis filters’ impulse responses
as its rows. This rings a bell. In fact, the matrix F is
exactly a frame operator as described earlier in (7) and
therefore, the filter bank as given in Fig. 1 implements a
finite-dimensional frame expansion as we explained earlier.
(Actually, the form of matrix F is not all that we need; we
still require the filters within to satisfy certain conditions
to be explored later.) In other words

pin = HIN —n], (9)

fori=1,...,M and n = 1,..., N (note that since n is
the time index, we number the elements of h; from 0 to

N —1 and those of ¢; from 1 to N). Recall, however, that
we restricted the filter length to be N, so there is no over-
lap.® Lifting this restriction and allowing our filters to be of
length larger than N (though most of the time we will still
require them to be of finite length—finite impulse response
or FIR), brings us to the topic of this paper and explains
why we restricted the frame vectors to be shifted versions
of M prototype ones. The M prototypes are M filters,
and shifted versions arise due to the sliding convolution
window and downsampling. The frame operator matrix H
is infinite, and although it possesses block structure, the
blocks overlap. This prevents us from looking at a single
block and forces us to find a simpler analysis method than
dealing with infinite matrices.

We borrow the simpler method from the filter bank liter-
ature. Instead of looking at the infinite, time-domain ma-
trix, we look at a so-called polyphase matriz H(w) [33]. The
polyphase matrix is based on gathering together samples
whose time indices are congruent modulo N. This allows
the system to be analyzed as time-invariant on vectors of
length N.

Fori=1,...,M, H;(w) = [Hu(w), Hi2(w), . .., Hin(w)]*
is called the polyphase representation of the ith analysis fil-
ter” where

Hz' (w) = Z h,[TLN + k— l]eijnw,

n=—oo

(10)

are the polyphase components for i = 1,..., M and k =
1,...,N. To relate H;,(w) to a time-domain object, note
that it is the discrete-time Fourier transform of the subse-
quence h;[n] obtained by retaining only the indices congru-
ent to kK — 1 modulo N. Then H(w) is the corresponding
M x N analysis polyphase matrix with elements H;y,(w).
In other words, a polyphase decomposition is a decompo-
sition into N subsequences modulo N. When the filter
length is N, then, each polyphase sequence is of length 1.
The polyphase matrix reduces to H(w) = FJ, with J an
antidiagonal matrix;'? that is, H(w) becomes independent
of w.

The following result establishes the equivalence between
frames in £2(Z) and polyphase matrices with certain prop-
erties:

Proposition 1 (Cvetkovi¢ and Vetterli [17]) A filter bank
implements a frame decomposition in ¢3(Z) if and only if
its analysis polyphase matrix is of full rank on the unit
circle.

We now revisit briefly the definition of a UF. The frame
is uniform if ||h;[n]|| =1 for ¢ = 1,..., M. Applying Par-
seval’s relation to this condition, we get that

1" )
%/—lez(WN dw.

8This is called a block transform in the filter bank literature. A
block transform uses filters of length N equal to the downsampling
factor exactly as explained above. The whole procedure can be de-
scribed by an infinite block-diagonal matrix as in (8).

9In the filter bank literature [33], this is usually the definition for
the polyphase representation of the synthesis filter; we reverse the
notation for convenience.

10The matrix J just reverses the order of columns of F.

1 = ln]ll* =
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Sinpe shifted and u_psa.mpled polyphase components
e J“FHy (Nw) and e~ 7' Hy (Nw) are orthogonal (they do
not overlap in time domain), the above expression is equal
to

N
1 [ 1 /7
— | Hw)Pde = — Hix(Nw)|2d
5 77r| i(w)| 5 7”§:1| k(Nw) | dw
1 [
_ . 2 _
= 5 S| Hi (@) Pdw = 1,

T k=1

fori=1,..., M [35, p. 52]. We used here the definition of
a polyphase component (10) as well as periodicity.

Although many results generalize from finite dimensions
to £2(Z), we need a more restricted definition of uniformity
than what is available to us. This leads us to define strongly
uniform frames:

Definition 1 (Strongly uniform frame) A frame expan-
sion in £2(Z) implemented by an M x N polyphase matrix
H(w) is strongly uniform!?! if

Y HaW) = 1, (11)

fori=1,...,M and w € [—m,n]. This is equivalent to all
the diagonal elements of H(w)H*(w) being 1.
Clearly, strongly uniform frames are a subset of uniform
frames. If H(w) = FJ and F is uniform, then the cor-
responding frame is strongly uniform. Moreover, a square
paraunitary matrix'? is automatically strongly uniform.
Further examples of strongly uniform frames will be
shown later in this section.
In the remainder of this paper, we will use the frame
operator F' in finite dimensions and polyphase matrix H (w)
when dealing with infinite sequences.

B. Back to Frames

After this filter bank interlude, let us go through certain
important frame notions. Using the frame operator F', (5)

can be rewritten as
Al < F*F < BI. (12)

It follows that F*F is invertible [16, Lemma 3.2.2], and

furthermore
B7'I < (F*F)™' < A7'I. (13)

Then, in finite dimensions, the dual frame of ® is a frame
defined as ® = {@;}}4,, where

@i = (F*F) ', (14)
for i =1,..., M. Noting that ¢} = ¢} (F*F)~! and stack-
ing @7, @5, ..., §} in a matrix, the frame operator asso-
ciated with @ is

F = F(F*F)™" (15)

11As before, when we say “strongly uniform”, we will mean
“strongly uniform with norm 1”.

127 square matrix H(w) is called paraunitary if H* (w)H(w) =
H(w)H*(w) =cl,c #0.

Since F*F = (F*F)~!, (13) shows that B~ and A~ are
frame bounds for ®.
Another important concept is that of a pseudo-inverse
Ft. Tt is the frame operator associated with the dual frame,
Ft = F~*. (16)
Similarly, for infinite sequences, the dual frame is repre-
sented by

Hw) = Hw)(H*W)HwW) ™, (17)
while the pseudo-inverse is
HY(w) = H*(w). (18)
Note that for any matrix F' with rows ¢}
M
F'F = ) ¢ip}. (19)
i=1

This identity will prove to be useful in many proofs.

C. The Role of Figenvalues

The products F*F and H*(w)H (w) will appear every-
where; their eigenstructures play an important role. De-
note by Ag’s the eigenvalues of F*F and by Ag(w)’s the
spectral eigenvalues of H*(w)H (w), where a spectral eigen-
value for a fixed wy is the eigenvalue of H*(wo)H (wg). We
could, of course, just analyze the infinite case and then
specialize it to finite dimensions with H(w) = F'J when
needed. However, we keep the discussions separate for clar-
ity. We now summarize important eigenvalue properties.

C.1 General Frame

For any frame in Hy, the sum of the eigenvalues of F* F',
equals the sum of the lengths of the frame vectors:

N M
dox =Y llell”.
k=1 i=1

For H = l5(Z), the integral sum of the spectral eigen-
values of H*(w)H (w) equals the sum of the filters’ norms:

(20)

1 XN M
o[ @ = Yl @)
k=1 i=1
C.2 Uniform Frame
For a uniform frame, that is, when ||¢;|| = 1, ¢ =
1,..., M,
N M
DA =Y lwil® = M. (22)
k=1 i=1

Not surprisingly, the integral sum of spectral eigenvalues
equals M as well,

1 [T
o > A(w)dw = M.

T k=1

(23)



C.3 Tight Frame

Since tightness means A = B, for a TF, we have from

(5)

M

=1

(24)

for all f € Hy. Moreover, according to (13), a frame is a
TF if and only if

F*'F = A-Iy. (25)
Thus, for a TF, all the eigenvalues of F*F are equal to A.
Then, using (20), the sum of the eigenvalues of F*F is as

follows:
N M
N-A = Z/\k = Z”%’Hz-
k=1 i=1

If we are dealing with infinite sequences, analogous re-
sults can be formulated. The following is known:

Proposition 2 (Cvetkovié¢ and Vetterli [17]) A filter bank
implements a tight frame expansion in ¢3(Z) if and only if
H*(w)H(w) = Aln.

Proposition 3 (Vaidyanathan [36]) An M x N polyphase
matrix H(w) represents a tight frame if and only if it has
the following decomposition:

(26)

where U(w) is an M x M paraunitary matrix'?® and F is
an M x N matrix such that F*F = Aly, that is, F' is a
tight frame operator.

Proposition 4 (Cvetkovi¢ [35, Thm. 7]) For a frame as-
sociated with an FIR filter bank, with the polyphase analy-
sis matrix H(w), its dual frame (17) consists of finite length
vectors if and only if H*(w)H (w) is unimodular.

This result leads us to formulate the following useful
property of TFs:

Corollary 1: Given an FIR analysis polyphase matrix

H(w) corresponding to a TF, the synthesis polyphase ma-
trix G(w) corresponding to the pseudo-inverse as in (18) is
FIR as well.
Using Proposition 2, we know that H*(w)H(w) = Aln.
Since H(w) is FIR, H(w)/VA is FIR as well. Thus
(H(w)/VA)*(H(w)/vA) = Iy is unimodular. By Propo-
sition 4, the dual frame (synthesis polyphase matrix) to
H(w)/V/Ais FIR as well. Since scaling does not affect the
FIR property, the dual frame (synthesis polyphase matrix)
to H(w) is FIR.

As for the eigenvalues, H*(w)H (w) has eigenvalues con-
stant over the unit circle and equal to A with multiplicity
N, that is, for k=1,...,N:

Ak (w) = A

13Moreover, any paraunitary matrix can be decomposed into a se-
quence of elementary matrices such as rotations and delays [36].

M Here unimodular means that the determinant of H*(w)H (w) is
+1.

C.4 Normalized Tight Frame
If a frame is an NTF, that is, A = B =1, then

M

STUE el = lIFIP,

i=1

(27)

for all f € Hy. In operator notation, a frame is an NTF if
and only if

F*F = Iy. (28)

For an NTF, all the eigenvalues of F*F are equal to 1.
Then, using (20), the sum of the eigenvalues of F*F is
as follows:

(29)

N M
N =3 X =) llail®
k=1 i=1
The same is, of course, true for an NTF in H = {y(Z).

C.5 Uniform Tight Frame
From (22) and (26), we see that

N

M
N-A=Y XN =) lellP = M (30)
k=1 i=1
Then, from (24) and (30),
M
. M
2 2
i = 37 ) 1
;I(f, i) 71l (31)
for all f € Hy. The redundancy ratio is then
M
A = —. 2
< (32)
Since F*F = (M /N)I, the following is obvious:
M
M
. 2 e
; oul* = - (33)

The same is true for sequences, that is, H*(w)H (w) has
eigenvalues constant over the unit circle and equal to M/N
with multiplicity N. Similarly to (33), we see that

(34)

M

M
Do Haw)? =
i=1 N

C.6 Uniform Normalized Tight Frame

If a frame is a UNTF, that is, we also ask for A = B =1,

then
N

N:ZAk:

M
lgsll* = M,
k=1 i=1

and thus, a UNTF is an orthonormal basis.
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D. Examples of Uniform and Strongly Uniform Frames

Oversampled filter banks are sometimes preferred to clas-
sical critically sampled filter banks for their greater design
freedom. However, this freedom makes the actual design
difficult.

One of the most used families of oversampled filter banks
are nondownsampled filter banks. They are obtained by
eliminating the downsampling in the filter bank scheme. If
the analysis and synthesis filters are power complementary
(that is, with FIR filters, up to a scaling factor, the syn-
thesis filters are the time-reversed versions of the analysis
ones) then the corresponding frame is tight and uniform
but not strongly uniform.

It will be shown in next sections that strongly uniform
tight frames constitute an important class of frames. We
propose the following factorization to design polyphase ma-
trices corresponding to strongly uniform tight frames:

Hw) = FU®W), (35)

where F is an M x N uniform tight frame in Hy and U (w)
isan N x N paraunitary matrix. It is easy to see that such
a polyphase matrix corresponds to a strongly uniform tight
frame.

Note the difference between this factorization and the
one in Proposition 3 (H(w) = U(w)F). The order of the
elements is reversed, so in this last factorization, the pa-
raunitary matrix has size M x M, while in our factoriza-
tion it has size N x N (N < M). This is not surprising
since the family of polyphase matrices with the factoriza-
tion H(w) = U(w)F represents a more general class of tight
frames and not the restricted class of strongly uniform tight
frames.

We cannot claim that our factorization includes all pos-
sible strongly uniform tight frames; however, the following
is true:

Theorem 2: Define an equivalence relation by bundling
a frame implemented with an FIR oversampled filter bank
with all frames that result from rigid rotations or reflections
of the entire frame as well as negations or shifts of some
individual elements (that is, h;[n] = —hi[n — k] k € Z).
When M = N + 1, there is a single equivalence class for all
strongly uniform tight frames.

Proof: See Appendix A-A. B

Since a UTF F' in Hy can be seen as a strongly uniform
tight frame in ¢5(Z) (that is, H(w) = FJ), Theorem 2
basically says that the factorization in (35) includes all the
possible strongly uniform tight frames when M = N + 1
(up to a shift or negation of some individual elements).
Also, when H(w) = F'J, this theorem reduces to Theorem
2.6 from [8].

For example, the MB tight frame from our simple exam-
ple describes all possible UTFs with N = 2 and M = 3
in finite dimensions; the same is true for sequences, that
is, the factorization H (w) = FU(w) with F' the MB frame,
describes all possible SUTFs with N = 2 and M = 3.

Unfortunately, when M exceeds N + 1, there are un-
countably many equivalence classes of the type described

above; thus, we cannot systematically obtain all uniform
tight frames. However, at least for N = 2, UTFs still have
a simple characterization.

Theorem 3 (Goyal, Kovagevié¢ and Kelner [8, Thm. 2.7])
The following are equivalent:
1. {pr = (cosay,sinayg)}M | is a uniform tight frame.

2. Zklezk =0 where z; = e??* for k=1,2,..., M.

Thus, a simple combination of our factorization (35)
together with the complete characterization of UTFs for
N = 2 given by the above theorem, produces a useful (al-
though probably not complete) factorization of SUTFs.

E. Harmonic Frames

We now turn our attention to an important family of
frames—harmonic tight frames (HTF). These frames are ob-
tained by keeping the first N coordinates of an M x M
discrete Fourier transform basis. They will prove to be
useful for our application.

A complex HTF is given by:

1
‘sz—\/—N

fork=1,...,Nandi=1,...,M, where Wy = e/27/M
A real HTF could be defined similarly [8]. A more general
definition of the harmonic frame (general harmonic frame)
is given in [37].

As a direct consequence of Theorem 2, we see that any
UTF with M = N + 1 is equivalent to the HTF with M =
N + 1. This is a very useful result since we have HTFs for
any N and M; thus, for M = N + 1, we always have an
expression for all UTFs.

Another interesting property of an HTF is that it is the
only NTF with equal-norm elements which are generated
by a group of unitary operators with one generator, that is,
® = {p;}M, = {Ulpo}M,, where U is a unitary operator
[37], [38].

Moreover, HTFs have a very convenient property when
it comes to erasures. We can erase any e < (M — N)
elements from the original frame; what is left is still a frame
[8, Thm. 4.2]. This will be extended in Section V-A to
frames represented by H(w) = FU(w) where F is an HTF
(Theorem 6).

Wik (36)

IV. QUANTIZED FRAME EXPANSIONS IN Hy AND ¢2(Z)

In this section we will analyze the effect of quantization
under a very simple model. For the moment we assume
that there are no erasures during transmission. We want
the reconstruction operator to be linear, that is, we want
it to be implemented by a synthesis filter bank. The recon-
struction operator that we will use is the pseudo-inverse
(18).

We will assume that the quantization error can be
treated as additive white noise with variance o? = A?/12,
where A represents the step size of the quantizer and each
quantizer has the same step size. We further assume that
the noise sequences generated by two different channels are



pairwise uncorrelated. This can be expressed as:

giln] = yiln] + wiln], (37)
fori=1,...,M, and
Elwi[n]w}[n —m]] = o°6;;6[m]. (38)

Now comes the justification of a pseudo-inverse. Under this
assumption (input sequences corrupted by additive white
noise), the pseudo-inverse in (16) is the best linear recon-
struction operator in the mean square sense [16]. The same
could be shown for (18). Moreover, in Appendix A-B we
show that the MSE due to quantization is:

2 ™
_ g * -1
MSE = 3N | tr((H*(w)H (W) Ndw  (39)
o? LR |
- 2 — 4
27N /_,,; (o) X (40)
where A\g(w), K =1,..., N denote the spectral eigenvalues

of H*(w)H(w). We will be using the above two expres-
sions interchangeably. Recall that the integral sum of the
eigenvalues is constant and if we are encoding with a uni-
form frame, it is equal to M. Thus, we want to minimize
the MSE given the constraint that the integral sum of the
eigenvalues is constant. This occurs when the eigenvalues
are equal and constant over w which is true if and only if
the original frame is tight. We can then state the following
theorem:

Theorem 4: When encoding with a filter bank imple-
menting a uniform frame and decoding with the pseudo-
inverse under the noise model (37)-(38), the MSE is mini-
mum if and only if the frame is tight. Then:

MSE, = %02. (41)

This optimality of TFs among UFs holds also for H =
Hy [8]. This makes sense, since the only difference in the
expression for the MSE given by (40) is that the eigenvalues
depend on w. Since the proof of the theorem is essentially
the same as the corresponding proof in [8], we omit it here.

A. A Note on Linear Reconstruction

We have assumed the use of a linear reconstruction algo-
rithm. In the implausible case that the input and output of
each quantizer are jointly Gaussian, linear reconstruction
is necessarily optimal. Otherwise, some nonlinear estimate
will generally be better, but determining such an estimate
requires knowledge of the input signal distribution and is
computationally difficult. Of particular present concern is
that a simple and explicit reconstruction algorithm facili-
tates the analysis and optimization of the system.

One alternative to linear reconstruction is called con-
sistent reconstruction. Consistent reconstruction is based
on viewing the encoder (analysis filter bank and quantiza-
tion) as partitioning the input signal space. Any estimate
in the same partition cell as the true signal will produce

the same quantized output and hence is said to be “con-
sistent” with the true signal. Consistent estimates depend
on the filter bank and quantizers, but not on the input
signal distribution. Nevertheless, in many scenarios con-
sistent reconstruction performs within a constant factor of
optimal reconstruction while linear reconstruction is much
worse [20], [39], [40], [8], [21]. Empirical evidence presented
in [8] suggests that the MSE under the assumption of lin-
ear reconstruction is a reasonable objective function even
if consistent reconstruction is used.

V. INTRODUCING ERASURES

Here we consider the effect of erasures on the structure of
the frame and on the MSE. We denote by FE the index set of
erasures and by Hg(w) the polyphase matrix after e = |E)|
erasures. Hp(w) is an (M — e) x N matrix obtained by
deleting the E-numbered rows from the M x N polyphase
matrix H(w). The first question to be answered is under
which conditions Hg(w) still represents a frame. We then
study the effect of erasures on the MSE.

It is interesting to note that there are families of frames
for which the properties of the frame after erasures do not
depend on the actual frame element removed. An example
is the class of geometrically uniform frames [41].

A. Effect of Erasures on the Structure of a Frame

Our aim is to use the pseudo-inverse of Hg(w) to re-
construct after e erasures. The pseudo-inverse matrix is
defined only if the matrix Hg(w) still represents a frame,
that is, if and only if it is still of full rank on the unit circle.
This leads to the following definition:

Definition 2: An oversampled filter bank which imple-
ments a frame expansion represented by a polyphase ma-
trix H(w) is said to be robust to e erasures when for any
erasure set F with |E| = e, Hg(w) is of full rank on the
unit circle.

Let us consider first the case where there is only one
erasure.

Theorem 5: An oversampled filter bank which imple-
ments a uniform tight frame is robust to one erasure if
and only if

N

M
S IHwW)P < =,
k=1 N

fori=1,..., M and for all w.
Proof: See Appendix A-C. B

Recall that with an SUTF: Y& | |Hi(w)> = 1, for
i =1,...,M and for all w. In finite dimensions, a UTF
is always robust to one erasure [8, Thm. 4.1]. This is eas-
ily seen from the above theorem if we substitute H(w) =
FJ, that is, Hy(w) = hilk — 1] and Y, |Hy(W)]? =
S~ |hilk = 1]|> = 1 < M/N, since it is a uniform frame

A consequence of the previous theorem is:

Corollary 2: Any oversampled filter bank which imple-
ments a strongly uniform tight frame is robust to one era-
sure.
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Theorem 5 does not reveal anything about the existence
of filter banks that are robust to more than one erasure.
However, it has been shown that an HTF in Hyy is robust to
M — N erasures [8]. This can be used to show the existence
of a family of SUTFs in £»(Z) that are robust to e erasures
fore< M — N.

Theorem 6: Consider an oversampled filter bank with a
polyphase matrix H(w) = FU(w), where F' is an HTF in
Hy, and U(w) is an N x N polyphase matrix nonsingular
on the unit circle (det(U(w)) # 0). This filter bank is
robust to e erasures (e < M — N).

Proof: See Appendix A-D. R

If U(w) is a paraunitary matrix, the resulting oversam-
pled filter bank H(w) = FU (w) represents an SUTF robust
to e erasures (e < M — N).

B. Effect of Erasures on the MSE

In the previous section, it was shown that it is possible
to design oversampled filter banks which are robust up to
M — N erasures. We assume such filter banks for the rest
of the paper.

Now, we want to compute the effect of the erasures on the
MSE. Call H(w) the polyphase matrix related to the orig-
inal frame and Hg(w) the polyphase matrix after e = |E|
erasures. The reconstruction uses the dual polyphase ma-
trix H;'E(w) and the quantization model is the one proposed
n (37)-(38). Under these assumptions the mean square er-
ror is equivalent to the one determined in (39)-(40):

MSEg =

oy | T ) e @2

o2 XL 7 1
= N ;/ Mg @) Hrw) ™ )

where A\, (H},(w)Hg(w)), for k=1,...,
eigenvalues of Hj(w)Hg(w).

However, our target is to express the mean square error
in terms of the original frame and to find properties that
the original frame operator has to satisfy to minimize the
distortion. Consider first a strongly uniform frame and
e=1:

Theorem 7: Consider encoding with a strongly uniform
frame and decoding with linear reconstruction. The MSE
averaged over all possible erasures of one channel is mini-
mum if and only if the original frame is tight. Moreover, a
tight frame minimizes the maximum distortion caused by
one erasure. The MSE is given by:

1
(1+ M_N) MSE,,

where MSE; is given by (41).
Proof: See Appendix A-E. B

N, are the spectral

MSE; =

(44)

It is hard to extend this theorem to cases with more than
one erasure. However, it is possible to compute the MSE
with e > 1 when the original frame is strongly uniform and

tight:

MSEg =

(w)
<1+—/_”1 ) w)MSEO,
(45)

where py(w) are the spectral eigenvalues of T*(w)T (w) and
T'(w) is the N x e polyphase matrix of erased components
with columns {H;(w)}icp. The derivation of (45) follows
closely that for H = Hy in [8], so we omit it here.

Note first that with one erasure, T*(w)T(w) =
H}(w)H;(w) = 1 and thus the single eigenvalue p(w) =1,
reducing (45) to (44).

Expression (45) is similar to (40), and the spectral sum
of the e eigenvalues of T'(w) is constrained to be a constant,
that is, >;_; ur(w) = tr(T*(w)T(w)) = e. Thus, the min-
imum in (45) occurs when all the eigenvalues are equal to
1 if possible.

If e < N, it is indeed possible to have ug(w) = 1, for
1 =1,...,e. This occurs if and only if the erased vectors
are pairwise orthogonal. Then T*(w)T (w) = I, and (45)
gives

e
MSE, orthogonal erasures — (1 + M— N) MSE,q.

If e > N, it is not possible to have e eigenvalues equal
to 1 because there will be at most N nonzero eigenvalues
in the N x N matrix 7*(w)T (w). Denoting the nonzero

eigenvalues {pu(w)}Y_,,

<1+_/ EM N,Uk 5 )MSEO.

This MSE is minimized when px(w) =e¢/N,i=1,...,N,
which occurs when the erased elements form a tight frame.
When any erasure event is possible-meaning any combina-
tion of switches may be open in Fig. 1-it is not possible
to make T'(w) always correspond to a tight frame. There
are situations in which the number of “physical” channels
(separate transmission media) is less than the number of
branches in the analysis filter bank. In this case, there may
be sets of channels that are each completely lost or com-
pletely received and then it may be possible for the erased
vectors to form a tight frame.

MSEg =

VI. CONCLUDING REMARKS

Given the recent surge of interest in frames and their
applications, we continued the previous work [8] of two of
the authors where frames are elements of RV or CV. In
this work, we allowed our frame elements to be from ¢5(Z).
Moreover, we require these frames to have a filter bank
implementation.

We investigated the robustness of such frames to erasures
after quantization. We found that any UTF is optimal
when no erasures are present (Theorem 4). When there
is one erasure, we know that any oversampled filter bank
which implements an SUTF is robust to one erasure (The-
orem 5) and minimizes the MSE (Theorem 7). When there



are e > 1 erasures, depending on whether e is smaller or
larger then N, the minimum in (45) occurs when the erased
elements are either orthogonal or form a tight frame.

The results in this paper thus present what is known
to date about frames which have a filter bank implemen-
tation when subjected to erasures. Some related issues
include classification of UTF robust to particular sets of
erasures [37] and finding other frame families with prop-
erties similar to those HTF's such as efficient computation
and robustness to erasures. Moreover, we are investigating
the use of frames in multiple-antenna wireless systems [42].

APPENDIX
I. PROOFS
A. Proof of Theorem 2

Given a strongly uniform tight frame represented by the
polyphase matrix K (w), all the other polyphase matrices
related to the same equivalent class are obtained as follows:

Hw) = ¥ K(w) U(w), (46)

where U(w) is an N x N paraunitary matrix, ¥ =
diag(oy,03,...,0) and 0; = + e [ €7Z,i =
1,..., M. This equivalence class preserves tightness, uni-
formity and strong uniformity. Thus, if K(w) is strongly
uniform and tight, so is H(w).

Now, let H(w) be a polyphase matrix associated with an
SUTF with M = N +1. It can be shown that it consists of
the first NV columns of a scaled (N +1) x (N +1) paraunitary
matrix H(w). Each row (or column) of H(w) is of norm

V(N +1)/N, that is:

N+1

_ N+1
M | Ha W) = =

N (47

fori =1,2,..., N+1. Moreover, since our frame is strongly
uniform we have:

(48)

1M
E‘

fori = 1,2,...,N + 1.
obtain:

Subtracting (48) from (47) we

|Hi vy ()] = N

Since H (w) is realized with FIR filters, it is formed only of
Laurent polynomial elements. This implies that H; ny1(w)
must be a monomial : H;nyi(w) = +£N-1/2eil
I € Z. Without loss of generality we assume that
H; Ny1(w) = £N /2. That is, the last column of H(w) is
(£N-Y2 £N-1/2) . +£N-1/2) for some choice of signs.

Any given choice of signs in H; y1(w) determines a sub-
space. Thus the span of the other N subspaces (each sub-
space is related to one of the channels) must be the or-
thogonal complement to this subspace. Since orthonormal
bases for a subspace are unitarily equivalent, the possible
tight frames corresponding to a single choice of signs are in
the same equivalence class. Flipping signs yields frames in
the same equivalence class. B

11

B. Derivation of (40)

We now find the error of the reconstruction after the
frame coefficients have been quantized:

MSE = E[|z[n] — £[n]]%]
1 ™
= o / BlIX()

= 2%N / " B @)W (@) (E W ()]

~ X(W)IP)dw

= sz [ZW B} () Hj(w)]dw

1,j=1
o> & .

- 27rN/ tr(H

= oo | u(E @) e

o? ~ N
- 4
2rN /4 ; (@)™

C. Proof of Theorem 5

Assume that the erased channel is H;(w). Call Hy; (w)
the polyphase matrix after one erasure. Using (19), we get

Hiy (W) Hgy (W) =

(w))dw

H*(w)H(w) — Hi(w)H; (w)(49)
M

—I
NN

— H;j(w)H} (w).

Hijp(w) is a frame if and only if Hfi}(w)H{i}(w) is
of full rank on the unit circle. =~ That means that
(H{;y (w)H{y(w)) ™" must exist on the unit circle. The
identity:

(A—BCD)™ = A"+ A'B(C™' —DA'B)'DA™,
with A = (M/N)Iy, B = Hi(w), C =1, and D = H(ZS;
yields:
(H{jy (W) Hpy (@)
_ % In
+ %INH,-(w) (1 — Hi*(w)%INH,-(w)) N Hf(w)%IN
- T+ X (1 - %H:@)Hi(w))l Hy(w)H; (@),

Thus, the matrix is invertible if and only if:

N
1 - Hi (W Hiw) # 0
for all w. The desired inequality now follows from the
fact that the frequency response of each filter is contin-
uous (since we are only considering FIR filters) and the
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frame is uniform. The continuity of the ﬁlters implies that
Zk 1 [ Hir(w)|> < M/N, for all w or Zk | Hig(W))? >
M/N, for all w. However, since the frame is uniform, that
i, (1/2m) 7 S [ Ha@) = 1, then Y3, | Hug(w)]? <
M/N, for all w. B

D. Proof of Theorem 6

First note that if a finite set of channels has a subset that
is a frame, then the original set of channels is also a frame.
Thus it suffices to consider subsets with N channels; since
all of these will be shown to be frames, larger subsets are
also frames.

Let us call Hg(w) the N x N polyphase matrix after
e = M — N erasures. Hg(w) is a frame if and only if
det(Hg(w)) # 0 on the unit circle. Now, we know that
det(Fg) # 0 for any subset of e = (M — N) erasures [§]
and since: Hg(w) = FgU(w),

det(Hg(w)) = det(Fg)det(U(w)) # 0
for all w. W

E. Proof of Theorem 7

As in the proof of Theorem 5, assume that the erased
channel is H;(w). Call Hy;(w) the polyphase matrix af-
ter one erasure. Then (49) holds. According to (42), the
average MSE with one erasure is:

MSE1 = NZ/ tr H{z} )H{,}(w))_l)dw
Call
v(w) = H'(w)H(w),
vilw) = Hi(w)(H*WH(Ww)) " Hiw).

Note that v(w) is an N x N matrix, while v;(w) is a scalar.
With that, (49) can be rewritten as

vy @) = Hig(@)Hgy @) = v(w) — Hiw)H; ).
We now find

o)™t = ww)Tt +

+ o) Hiw) (1 - o) Hf @)ow)
where we used (50) with A = v(w), B = H;(w), C =1, and
D = H}(w). Taking the trace of both sides gives
trvgy(w) ™) = tr(v(w) )

+ (1= i) tr(o(w)
= tr(v(w)™")
+ (1= vi(w) ™" tr(H; (W)o(w) > Hyw))

b, H@)ow) Hiw)
tr{o(w) ™) + TR,

since both H} (w)v(w)~?H;(w) and 1—v;(w) are scalars and
the trace of a product is invariant to the cyclic permutation

LH(w) Y (@)o(w)

of the factors. The average MSE becomes

27TN / tr(v

27TMN

MSE; = dw -+

Jv(w)?Hi(w)
1 S dw.

The first term of the above equation is minimized if
and only if the frame is tight (since tr(v(w)™!) =
tr((H*(W)H(w))™") = Yn_, 1/Ak(w)). We show now that
the second term is minimized as well if and only if the frame
is tight. We can say that

y

i=1

(51)

Z1—1)Z

Here we used Lemma A.1 from [8] which is valid for SUFs
and allows us to exploit the following inequality:

H (w)v(w) 2Hy(w) > (Hf (w)o(w) *Hiw))® =

Since we have the constraint:

M
Zvi(w) N,

the equality and minimization of (51) occur if and only if
the original frame is an SUTF. This condition minimizes
the maximum error too. The arguments are identical to
those in [8]; we refer the reader to [8] for more details. B

1—1}Z

vi(w)2.
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