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Lossy to Lossless Object-Based Coding
of 3-D MRI Data
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Abstract—We propose a fully three-dimensional (3-D) ob- these, some are mainly concerned with video sequences
ject-based coding system exploiting the diagnostic relevance of the[1]-[8], while others are focused on medical data [9]-[15].
different regions of the volumetric data for rate allocation. The The new trend in the field of data compression is founded
data are first decorrelated via a 3-D discrete wavelet transform. . -

The implementation via the lifting steps scheme allows to map 9” a rgdeflnlthn of the role and the mea“'”g o_f relevgnce
integer-to-integer values, enabling lossless coding, and facilitatesin the information to be encoded. The focus is increasingly
the definition of the object-based inverse transform. The coding put on semantics The different objects that are present in a
process assigns disjoint segments of the bitstream to the different scene are assigned a differgmiority in the encoding process,
objects, which can be independently accessed and reconstructedbased on their importance in the framework of the considered

at any up-to-lossless quality. Two fully 3-D coding strategies N - .
are cgnsizered: embed?ied zyerotree coging (EZW-3gD) and ?nul- application. The priori knowledge about image content makes

tidimensional layered zero coding (MLZC), both generalized SUch approaches particularly suitable for medical images. In
for region of interest (ROI)-based processing. In order to avoid the same perspective, object-based algorithms are suitable for

artifacts along region boundaries, some extra coefficients must be peing combined with modeling techniques. The idea behind the

encoded for each object. This gives rise to an overheading of the so-calledmodel-basedpproach to coding is to replace the real
bitstream with respect to the case where the volume is encoded.

as a whole. The amount of such extra information depends on information with some synthetic representation of it in all the
both the filter length and the decomposition depth. The system is fegions where the lossless constraint can be relaxed, assuming

characterized on a set of head magnetic resonance images. Resultshat theinformation to be preserveid the visual appearance.
show that MLZC and EZW-3D have competitive performances. |n this way, coding efficiency is improved by reducing the in-
In particular, the best MLZC mode outperforms the others gormation to transmit. Some examples can be found in the field
state-of-the-art technigues on one of the datasets for which results - . - - . -
are available in the literature. of video compression for multlmeqlla (I|ke yldeo-telephony
[5], [16] and surveillance [17]), medical imaging [18], as well
as in emerging applications like stereoscopic imaging, used to
obtain a 3-D perception of a scene [19].
|. INTRODUCTION Medical images usually consists of a region representing the
art of the body under investigation (i.e., the heartin a CT or
Rl chest scan, the brain in a head scan) on an often noisy back-
round with no diagnostic interest. It seems thus very natural to
ocess such data in a object-based framework: assign high pri-
ﬁty to the semantically relevant object, to be represented with

Index Terms—Multiresolution, objects, 3-D coding.

EDICAL data are increasingly represented in digit
form. Imaging techniques like magnetic resonanc
(MR), computerized tomography (CT) and positron emissi
tomography (PET) generate three-dimensional (3-D) d
distributions. The representation in digital form enables t

. . . - : -to-lossless quality, and lower priority to the background.
medical field to benefit from the know-how in signal and image The agreement of the image processing community on object-
processing, opening the way to new applications like com-

¢ ided di < tel dici q; | trB sed approaches is proved by the fact that the incoming stan-
|fou er-aige |hagn|3q3|s, N ?:ef |C|nehan » IN géneral, new (;g%rd for stillimage compression JPEG2000 [20] features region
orimproving heaith care. The focus NEre IS on compression nterest (ROI)-based functionalities [21]-[23]. Nevertheless,

coding. The limitations in transmission bandwidth and storagen yata are out of the scope of the baseline JPEG2000. Even

space on one side, and the growing size _Of medical ima@\%ugh some authors have addressed the task of object-based
datasets on the other, push toward the desigadshoctools

) - . . : _ coding for medical images (see, for example, [24]-[26]), such
for their efficient manipulation. The increasing demand ha§n ap?)roach Still deser\?es s(ome investiga{)ion[ I-26)
triggered a vast investigation on volumetric data compression,In this paper, we propose a fully 3-D wavellet-based coding

and a number of solution have been proposed so far exploiti tem allowing random access to any object at the desired

the dependencies among data samples in the 3-D space. A it¥ate. The distinguishing feature of the proposed system is

the absence of artifacts along object borders, for any decoding
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a rounding operation after each step [28], enabling losslgsarfect reconstruction is not the only issue when dealing with
coding. Two coding strategies are considered: a 3-D versiarcomplete coding system. Our goal is to make object-based
of the well-known embedded zerotree wavelet-based (EZ\Wocessing completely transparent with respect to the un-
algorithm [29] and the multidimensional layered zero codingonstrained general case where the signal is considered as a
(MLZC) technique [18]. These provide a fully embeddedvhole, in any working condition. Otherwise stated, we want the
bitstream supporting a finely-graded up-to lossless range iofages decoded at a given quality todectlythe same in the
bit-rates. Each object is encoded independently, to generftbowing conditions: 1) the signal has been encoded/decoded
a segment of the global bitstream. In this paper, we do na$ a whole and 2) each object has been independently encoded
address the issue of image segmentation, and we assume eachdecoded at a given quality (e.g., quantization level). The
object to be represented by a surface or region model (e.gpefect reconstruction condition is not enough to ensure the ab-
binary mask) [30], [31], whose description is assumed to Isence of artifacts—in terms of discontinuities at borders. Since
available at both the encoder and decoder sides. qguantized coefficients are approximations of the true values,
This paper is organized as follows. In Section Il the inany signal extension used to reconstruct two adjacent samples
teger wavelet transform via lifting steps is briefly revisitedbelonging to different objects (e.g., lying at the opposite sides
Section Ill illustrates the object-based Inverse DWT (IDWT)f a boundary) would generate a discontinuity. To avoid this,
and summarizes the procedure followed to select the relevéim inverse transform must be performelif the whole set of
wavelet coefficients in the different subbands. The gendrue coefficients were available. The use of the lifting scheme
alization of the EZW-3D and MLZC for object processingsimplifies this task. The idea is to determine which samples are
are presented in Section IV. Performances are analyzednigeded at thinputof the synthesis chain to reconstruct a given

Sections V and VI derives conclusions. sample at itoutput The key of the proposed solution is to start
at the finest resolution/ (= 1) and select the set of wavelet
II. THREEDIMENSIONAL INTEGERDWT VIA LIFTING coefficients which are needed (in each subband) to reconstruct

.- . . ) the object in the signal domain (full resolutidns= 0). At this
The lifting steps scheme [27], [32] is particularly suitable fo oint, the problem has been solved foe 1, or, equivalently,

our purpose. First, it leads to an integer version of the discr ltqﬂas been projected to the next coarser level. Due to the

wave_let t.r ansform (DWT) in a very natural way [28]..Th|s Is‘recursivity of the IDWT, the approximation subband of level
of prime importance because it enables lossless coding. Tth

the t ¢ be impl ekl inimizing th = 1 becomes the referenceritical) set of samples that must
€ lransiorm can be impiemente-place minimizing € e voconstructed without loss, and so on. By going through
run-time memory requirements. This can have an import

. t on th tational twhen | ¢ fdaéﬁ the resolutions and successively iterating the procedure as
Impact on the computational cost when large amounts of dQfgs iheq for — 1, ..., L, the appropriate set of wavelet

((jas voIl;]mes) must.be Tandle?' Fmglly, f't asy?wptoté%allysz oefficients is selected. We caleneralized projectionf the
uces the computational complexity by a factor four [33], [ bject such set of coefficients.

Due to the rounding operations, the integer coefficients are| ot 2P be the corresponding operator, andd@&P,, be the

different fromthe corresp_ondl_rtgjewavelet coefficients. ThIS set of samples obtained by applyiP in the directionn =
compromises the approximation power of the wavelet basis an

) : _ Z, 1, 2. The separability of the transform leads to the following
degrades compression performances in the medium-to-h position rule:
quality range [35]. Since the number of rounding operations im-
plied by each level of transformation, in each spatial dimension, GP.,. = GP.{GP,{GP.{}}}. 1)
increases with the number of lifting steps, filters corresponding
to polyphase matrices which can be factorized in only twphe set of wavelet coefficients to be encoded for each object are
steps (i.e.interpolatingfilters) are most suitable. Furthermorethose belonging to its generalized projection. We refer to [18]
short filters minimize the amount of extra information to beand [37] for further details.
encoded for each object to avoid artifacts along the boundaries.
Accordingly, we adopt the X 3 interpolating filter [36]. The IV. THREE-DIMENSIONAL OBJECT-BASED CODING
separability of the transform allows an efficient implementation
of the 3D-DWT by splitting it in three successive 1D-DWT,
one for each spatial dimension.

We restrict our analysis to the case of two disjoint regions. For
simplicity, we will adopt the same terminology as in JPEG2000
and call ROI the object of interest abdckgroundhe rest of the
volume. The ROl is identified by a color code in a 3-D mask,
lll. OBJECTBASED IDWT that we assume to be available at both the encoder and decoder
Object-based processing concerns both transformation amdes. The problem of shape representation and coding is not
coding. In the perspective of transformation it brings up addressed in this work. However, it is worth mentioning that
boundary problem. As discrete signals are nothing but setstbhé proposed coding scheme was conceived for being integrated
samples, it is straightforward to associate the idealpéctto within a model-based coding system. The idea was to describe
a subsetof samples, usually sharing some common featurdahe object of interest by a predefinad-hocshape model. Such
The problem of boundary conditions is greatly simplified whean approach was tailored on medical applications, due ta the
the DWT is implemented by the lifting steps scheme [27]. Ipriori knowledge about the image semantics. In a set of head
this case, perfect reconstruction is ensured by constructidfiRl images for example, the object of interest is most prob-
for any kind of signal extension at borders. Neverthelesably the brain, and the rest of the image can be considered as the
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background. If the “average” model for the generic patient weodbject can be reconstructed with increasing quality by pro-
available to both the encoder and the decoder, only the deforrmgeessively decoding the concerned portion of the bitstream.
tion parameters needed to fit it to the current data would need to

be transmitted. Different solutions can be envisaged in this 8- Multidimensional Layered Zero Coding

spect. In [31] and [38] we proposed a parametric hybrid modelThe multidimensional layered zero coding (MLZC) is
for shape representation. Such a model is defined as a set ofiRgpired by thelayered zero codindLZC) scheme proposed
brid ellipsoids which are used to deform a reference shape bath[2] for multirate subband coding of video. It basically
globally and locally. Such a parameterization allows to presergénsists in successively applying a sequence of quantizers of
the analytical representation during the fitting process, and h#screasing bin-size to the subband structure, and encoding each
a number of properties making it suitable for the integration igorresponding significance map by context-adaptive arithmetic
a coding system. Among these are compactness, concisengsging [39], [40]. LZC method takes advantage of the fact
availability of an inside—outside function and scale-invariangfat the most probable symbol resulting from quantization is
[30]. The final model can then be used either for deriving amaghke zero Symbol_ High efﬁciency is achieved by splitting the
(as itis the case in this work) or directly in analytical form viantropy coding phase in two successive steps:

the corresponding inside/outside function. « zero coding encodes a symbol representing gignifi-

Independent object coding has two major advantages. First, canceof the considered coefficients with respect to the
itis suitable for parallelization: different units can be devotedto ¢, rent quantizer (i.eQ),,(x[i]) being zero or nonzero);

the processing of the different objects simultaneously. Then, it , magnitude refinementenerates and encodes a symbol
is expected to improve coding efficiency when the objects cor- defining the value of each nonzero symbol.

respond to gtati_stically distinguishable sources. Inwhat foIIowiero coding exploits some spatial or other dependencies among
the generalization of EZW-3D and MLZC coding systems fo§ubband samples by providing such information tooatext

region-based processing are detailed. adaptivearithmetic coder [41]. The expected statistical relation-
A. Embedded Zerotree Wavelet Based Coding ships among coefficients are modeled by defining sao
' ditioning termswhich summarize the significance state of the
The generalization of the classical EZW technique [29] for isamples belonging to a given neighborhood. The conditioning
dependent processing of 3-D objects is performed by applyifigtm v, [k, I, j] for the symbol at positiotk in subband, 5)
the 3-D extension of the coding algorithm to the different ohs optained by modeling both thepatialand theinterbandde-

jects, separately. The definition of the parent—children relatiogendencies among wavelet coefficients via the tegffk, I, ;]
ship is slightly modified with respect to the general case wheg@dxf[h L 4]

the entire volume is encoded, to emphasize the semantics of the

voxels as belonging to a particular region. Accordingly, the set  x[k, I, j1=x°k, [, il + X7k, I, 5] VI#L.  (4)
of descendants of a wavelet coefficiefk, [, j) at positionk , Lo o ) )

in subband(, 7) is identified by restricting the oct-tree to the] "€ SPatial contribution®[k, 1, 5] is defined as a linear com-
domain of the generalized object projectio®(, j) in all the b|n_at|0n of the S|gn|f|c.ance states of one or more samples in a
finer levels. More specifically, I’ be a given oct-tree and let "€ighborhoodV(k, , ;)

T(l, j) identify the set of samples of the oct-tree in subband P—1
(€, ). Xk Ll = weolk, 1, j] VK €N (5)
Definition 1: We define assemantic oct-tre¢he set of all p=0

subband sampleST :
P wherep = p(k’). The weightsv, = 27 are such that each term

ST = U ST, §) (2) of the summation contributes to the value of fith bitplane

Y of x*[k, I, 7], P is the bit depth ofy*[k, [, j], ando is the
distribution of the sequence of symbel&k, I, j) generated by
quantizer@;. The fact that the weight depends on the spatial
positionk’ within the neighborhoodv allows to combine the
contributions of different samples to the same bitplane of the

Definition 2: A subband sample is zerotree rooff the all cond|t|o_n|ng term. N
the coefficients which belong to the oct-tree originating in it are The interband term relates -the S|gn!flgance state of the
nonsignificant with respect to the current threshold. current sample to the one of igarent within the subband
Fig. 1 illustrates the semantically constrained oct-tree. Givérr?e’ according to
a zerotre_e candidate point, as th_e signiﬁqam_:e of all the descen- 'k, I, j] = wpo[K, [+ 1, j] (6)
dants lying outside the generalized projection is not relevant
to the classification as zerotree root, we expect the numbvenerek’ = |k/2] is the position of the ancestor ang> = 2"
of successful candidate to increase with respect to the genésdhe weight needed to define the MSB of the final context. The
case wherll the descendants withifi are required to be non- general rule does not apply to the coarsest subbandsL,
significant. This potentially augments coding efficiency. Théor which no parents can be identified. In this case, only the
inherent embedding resulting from the quantization stratetpcal-space contribution is considered. In the case of MLZC,
allows PSNR scalability for each object. Accordingly, eacB-D local-scale conditioning terms are possible. Even though it

ST, ) =T(, 5) NGP(L, 7). ®3)

Based on this, we derivesemantically constrainedefinition
for a zerotree root.
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Fig. 1. Semantic oct-tree.

v+1

Current voxel

is reasonable to expect that 3-D contexts would increase coding
efficiency due to the exploitation of the whole correlation amorfg9- 2| _Thr%%'d"g?”smna'hSPa“a' support gf thheh Conditﬁ&”ing t‘)ermsd of a

. . sample In subband image The extensions to both the previous — 1) an
samples, some Ca_re mu_St be_ devoted to the de_s@ﬁ[k! In the next(r + 1) subband images are represented. Squares with same pattern
order to keep the dimensionality of the conditioning space Suffépresefn_t‘the positions of symbols whose significance states are combined in
ciently small. The 3-D spatial support for the conditioning terntge definition of the corresponding’ [k, , j].

has been obtained by extending that of the best behaved two-di- I

mensional (2-D) ones (in terms of compression performances) . | | |

to the adjacent physical layers, as shown in Fig. 2. The set of § -~ | . -

local-scale bidimensional settings that have been considered is 1 ) 3 4

illustrated in Fig. 3. Very little modifications are needed to adapt

the MLZC system to object-based processing. As for the EZW, T

each coefficient is encodéfiand only ifit belongs to the gen- | § §

eralized projection of the considered object. -~ | - | - -
Equation (5) is generalized for this case by assuming that ||

the significance state of any sample outside the generalized 5 6 7 3

projection is zero

P—1
Xl Ll =D wolk, L] (7) Sl
=0 [Sesq (R
.y ) ok, 1, 4], VK € GP(, j) Fig. 3. Spatial supports for bidimensional conditioning terms. Squares with
ok, 1, 4]) = ) (8) same pattern represent voxels whose significance states are combined in the
0, otherwise. definition of the correspondings [k, I, ;1.

set, Fig. 4(b) represents theask or atlas, (which is used to se-
V. RESULTS AND DISCUSSION lect the object), Fig. 4(c) is the object of interest as segmented by

In the framework of ROI-based coding, the weight assignéie mask, and Fig. 4(d) is the background. In our work, the brain
to a voxel depends on its semantics. This is assumed as $ggmentation has been performed by a directional watershed, as
ground for the judicious allocation of available resources (e.glescribed in [42]. Some coding results are also provided for the
bit-budget, bandwidth). The efficiency improvement is thus t8-bit head MR image volume obtained by the Mallinckrodt In-
be intended in the sensegioritization of the information to be  stitute of Radiology, Image Processing Laboratory, that we label
transmitted. The impact of the nonrelevant information must na8MR-MRIL It consists in a set of 58 images of size 26@56
be underestimated. This is particularly important when dealifigpresenting the saggital view of a head which has been used as
with medical images, where the background often encloses tg&t set by other authors [10], [43], [44] for the evaluation of the
majority of the voxels. For a typical MRI dataset for instanc&ompression performances of 3-D systems.
about the 90% of the voxels belong to the background. It is thus . .
of prime importance to classify them priori in order to as- A Compression Efficiency
sign higher priority to the ROI. Coding efficiency results from The performances of the EZW-3D and MLZC coding
the tradeoff between the improvement due to the separatiorsgbtems has been analyzed by comparison with the 2-D coun-
sources with different statistics and the degradation due to tiegparts—namely EZW-2D and MLZC-2D. The JPEG [45]
overhead implied by the border voxels. and JPEG2000 [20] standards have also been considered. For

The test set consists of an MRI head scan of 25856 x  2-D encoding, the images have been processed independently.
128 voxels. We assume that the object of interest is the braigr all the wavelet-based methods—namely EZW, MLZC
and consider the rest as background. The dataset is presentethth JPEG2000-£ = 3, 4 levels of decomposition and the
Fig. 4. Particularly, Fig. 4(a) shows a representative image of thex 3 [36] filter have been chosen. All of the seven prediction
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modalities of the lossless JPEG mode (JPEG-LS) were testq
and the best one—corresponding A0 = 7—was retained.
Results show that the best behaved context for MLZC-2D i
the (070) with inter-band conditioning, so it has been used t
define the 3-D spatial conditioning terms. Accordingly, the
x°[k, I, j] have been constructed as illustrated in Fig. 2, wit
(070) being the spatial support in layer Fig. 5 shows the
lossless rates for the whole volume (WHOLE) when varying
the shape of the support in the adjacent layers- 1) and
(v + 1). The most performant are the (271) and (370) with
inter-band conditioning. The first one has been retained for th i)
evaluation of the object-based performances. It consists in t
corner pixels of the first order neighborhood in the current laye
(v), a cross-shaped support in the previous lgyer 1), and
the pixel in the same spatial position as the current one in t
next(r+ 1) layer (see Figs. 2 and 3). For the head MRI datase
performances tend to improve when extending the generalize
neighborhood used for conditional arithmetic coding, in bot
the 2-D and 3-D cases. The intuition for this is that whe
the size of the neighborhood used for conditioning increase
more information is available for entropy coding. Nevertheles
such a conclusion does not hold in general. The limit on the Ll (i

improvement in compression efficiency with the size of the

support ofy is set by the volume size [18]. For relatively smalg'gest ofslr?tg?g:tl ‘gﬁ‘é" (?j';tggcf;gjﬁdbram (2) original image; (b) mask; (c)
volumes, the set of symbols is not sufficient for the probability

tables of the entropy coder to adapt to the statistic of the sourc= IRM — MLZC G_PROG

raising a tradeoff between the expected improvement due to t

4.74 T T — T T

-6~ L=3
increase of information and degradation due to an excessi |\, i
growth of the conditioning space. Y 2oLt lP
In order to compare the performances of MLZC and EZW-3L \ 030
systems with other state-of-the-art techniques, the same set 0:;" Y
experiments has been done on the MR-MRI dataset. In generg \

the trend is the same as for the MRI set, namely the best b»”E

haved contexts are (070) and (271) with interband cond|t|on|n:
for MLZC and MLZC-2D, respectively. Table | compares the$
average lossless rates of each of the considered 2-D algorith&
to those provided by MLZC and EZW-3D, for both datasets
Among the 2-D algorithms, MLZC-2D with context (070) out-
performs the others. JPEG2000 results in a lossless rate sligh
lower than EZW-2D for MRI. All 2-D schemes provide a sen-
sible improvement over JPEG-LS. For MR, the lowest lossles . 5
rate corresponds to the EZW-3D scheme, which in this cas 2 4 ® comon 10 12
slightly outperforms MLZC. Nevertheless, the MLZC method is
faster and less computationally demanding than EZW-3D. Th@- 5. Lossless rates for the whole volume (WHOLE) o= 3, 4 and 5x 3
zerotree algorithm scans the whole tree of descendants of ‘Isllﬁv Continuous lines: global conditioning; dashed lines: spatial conditioning.
potential zerotree-root for every quantization step. This makes
it inefficient for 3-D data. For MLZC, the encoding time de- TABLE |

LOSSLESSRATES FORMRI AND MR-MRI DATASETS. FOR THE 2-D
pends on the context, and increases with the size of the ne'Q\ LGORITHMS, THE AVERAGE L OSSLESSRATE HAS BEEN RETAINED FOR EACH
borhood. Efficiency can thus be improved by choosing spatial Mopke. THe FILTER 1S5 x 3, L = 4, AND GLOBAL CONDITIONING IS
conditioning terms of small support. USED IN THEMLZC MODE
X For the MR-MRI Set’ some reSUItS are gflvallable in t_h( EZW-2D | MLZC-2D (070) | JPEG2000 | JPEG-LS | EZW-3D | MLZC (271)
literature. We refer here to those presented in [10]. The fire— T & 507 ool | a1l | 236 i
one was obtained fat = 3 and using the integer version of the ;; yri | 257 5818 951 a1 | 297 2.143
(2 + 2, 2) filter (as defined in [36]) on the whole volume. The
second was based on a two levels integer transform with the
(1 + 1, 1) filter on 16 slice coding units, and the compressiotontext modeling. The corresponding lossless rates are 2.285
efficiency data were averaged over the volume. The codiagd 2.195 bit/voxel, while the best MLZC mode results in
scheme—3-D CB-EZW—was a version of EZW-3D exploiting 2.143 bit/voxel, slightly improving such a result. However,

B -
270

\\o\ 271 a9
TEH - ¢
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a wider set of measurements is required for the comparat|
evaluation of the two competing systems.

B. Object-Based Performances

The results given in this section concern the MRI datasf
for which a segmentation mask was available. For convenie
of notations, we defineobject projection (OP(l, j)) the
support of the polyphase representation of the correspond
signal segment in subbarél ;). Then, we calborder voxels
BV(l, j) the set of samples belonging to the generalizg
projectionGP(l, j) andnotto OP(l, 5)

Fig. 6. Three-dimensional generalized projection of the brain in subband
LLH.White voxels identifyO P(l, j), while gray voxels represent therder
extension

BV =GP\ (GPNOP). 9)

Fig. 6 gives an example of the generalized projection. The suk ; , ,

band isLLH andl! = 1, 2, 3. Border voxels are represented ol| - e? |
in gray, while white and black points represent the object ani | | % -
the background, respectively. The number of border voxels de | P |

termines the overloading in the encoded information. This in ° ,
creases with the decomposition level until a saturation occurs f¢g_ | , |
[ = l,4¢ [18], [38]. This means that for all > [, the relative

increase of border voxels is due to the decrease in object voxe
This trend is illustrated in Fig. 7. The horizontal axis represen
a composed subband index defined as(l — 1) x 7+ 4,j =
1,...,7andl =1, ..., L (we recall thaf = 1 corresponds to , -
the finest scale). The continuous line represents the percenta ! e |

201
of the object voxels, while the other lines show the percentage « K /

Percentage of voxel cate:

border voxels for the object of interest in the different subbands T T T )
In this example, the majority of the voxels in the coarsest suk B R A

bands are of the border type. It is worth pointing out that evel ———— P - n L = =
though the relative number of border voxels in the deep suk Subband index

ba_nds is high, the global percentage of such voxels—namely gﬂ& 7. Percentage of object and border voxels across the subbands. Subband
ratio between the total number of border voxels and the volume;) corresponds to the index= (I — 1) x7 + j. The relative amount of

size—is indeed very small. For the MRI dataset, for examp|e,q'@rderv0xels in particularly sensible in the higher decomposition levels.
is about 2.6%.

In the proposed system, the object of interest and the batlackground. With the implementation described in [46], for the
ground are encodeiidependentlyEach of them generates ahead MRI dataset high priority is assigned to the background
self-contained segment of the bitstream. This implies that tleyers in the codeblocks, moving the focus of the encoder
border informationis encoded twice: as side information forout of the ROI. The ROl and background codeblocks are
boththe objectandthe background. In this way, each of themmixed up, compromising ROI-based functionalities. This can
can be accessed and reconstruetedthe whole set of wavelet be easily verified by decoding the portion of the bitstream
coefficients were available, avoiding artifacts along the contourslicated by the encoder as representing the ROI. The resulting
for any quantization of the decoded coefficients. image is composed of both the ROl and the background. A

ROI-based EZW-2D has been assumed as the bench-maoksible solution would be to design ad-hocrate allocation
for the object-based functionalities. Despite the availability @fgorithm optimized for datasets having a background very
ROI-based functionalities, JPEG2000 was not suitable for teasy to code, but this was out of the scope of our work. Instead,
purpose. In JPEG2000, ROI-based coding is performed by thie independently compressed the ROI and the background
MAXSHIFT method [21]. Basically, the subband coefficientsvith JPEG2000 and compared the respective bitrates to those
within the ROI mask are shifted up (or, equivalently, thosgrovided by both our EZW-2D object-based system and ROI-
outside the ROI are shifted down) so that the minimum value based JPEG2000. Such working conditions emphasize the
the ROI is greater than the maximum value in the backgrourithplicit ROl mask encoding by JPEG2000. Even though the
This splits the bitplanes respectively used for the ROI and theask does not need to be separately coded, its encoding is
background in two disjoint sets. The rate allocation proceduiraplied by the exhaustive scanning of the subbands. Results
assigns to each layer of each codeblock (in the differeate given in Fig. 8. The global lossless rate in the different
subbands) a coding priority which depends on both the semantiomditions are shown as a function of the image index. In
(through the MAXSHIFT method) and the gain in termgarticular, the dash-dot line represents ROI-based JPEG2000
of rate/distortion ratio. This establishes the relative order ahd the continuous line is for EZW-2D with independent object
encoding of the ROI subband coefficients with respect to tleeding (I0). The curve represents the sum of the lossless
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Fig. 8. Lossless rates as a function of the position of the 2-D images akél,;}'@. 9. Lossless rates for the EZW-2D algorithm as a function of the position
the = axis. Continuous line: EZW-2D; dashed line: JPEG2000 10 (Independeffithe 2-D images along the axis, for the 5x 3 filter. Dashed linel = 3;
Object); dash-dot line: JPEG2000 ROI. continuous linel, = 4.

IRM OBJ - MLZC G-PROG
rates concerning the ROI and the background. Due to the r. 3857 ' ' ‘ ‘

allocation policy, JPEG 2000 ROI outperforms EZW-2D ir __ %~ 02
compression efficiency. The drawback is that, as previous & --4&
mentioned, the codeblocks of the ROI and the background i ssex
interlaced in such a way that the ROI-based functionalities ¢

not always achieved. The dashed line represents the total L. >
needed for independently encoding via JPEG2000 the Rg sors
and the background by (JPEG 2000 10). The gap between ‘s
corresponding curve and the one for EZW-2D 10 emphasizg s
the performance degradation due to the implicit coding &
the mask. Fig. 8 points out that the EZW-2D coding schen %%
represents a good compromise for the tradeoff between cod
efficiency and random access to the objects. Fig. 9 shows !
lossless rates for the ROI (OBJ), the background (BGND) ai szss
the entire image (WHOLE) for EZW-2D. The continuous an

[l i ol v
(ARSI N
T

B0

4
gop

58

dashed lines correspond th = 3 and L = 4, respectively. 57 2 4 6 5 10 12

Context n.

Here, the bitrates are calculated as the ratio between the size or
the portion of the bitstream concerning the OBJ(BGND) angyg. 10. Lossless rates for the object of interest (OBJYfe 3, 4 and 5x 3

the size of the OBJ(BGND). While the curves for WHOLE andlter. The lossless rate is evaluated as the ratio between the size of the bitstream
BGND are close to each other, the one for OBJ is outdistanc%?i%;?; g;f] dsi'tizsn?rfg.OB‘]' Continuous lines: global conditioning; dashed
The volume and the background enclose a large number of

black samples, which are simple to compress. Conversely, the

region of interest is entirely structured, and necessitates mord able Il quantifies the degradation in compression efficiency
bit/pixel to be encoded. The steep slope at both ends of the cufe to independent object coding. The first two columns
representing the object are due to the fact that the ROI tak&¥BJ and BGND) show the lossless rates for the ROl and
only very few or no pixels, stretching the curve to infinity. Thighe background. The third column is the bitrate obtained
example points out the importance of the ROI-based approagien encoding the entire volume, and the last one shows
For this dataset, only the 19%—on average—of the bitstredfi¢ percentage increase of the lossless rates for independent
corresponding to the entire volume is needed to represent gigoding of the objects (OBJ BGND) with respect to that
ROI. The random access to the objects allows fast access@sresponding to the entire volume (WHOLE). The increase
the important information, with considerable improvement iaf the lossless rate for independent object coding is measured
compressiorefficiency Fig. 10 shows the lossless rates foby the difference between the required rate (GBBGND)

the object (OBJ) when varying the shape of the support of thed the reference one (WHOLE). The differences between the
conditioning term in layergér— 1) and (v +1) for MLZC. As  compression ratios for the cases WHOLE and @EIGND are

was the case for WHOLE, the most performant is the (27tue to two causes. First, the entropy coder performs differently
with inter-band conditioning. Results also show that the sarire the two cases because of the different sources. Second,
conclusion holds for the background. the total number of coefficients to be encoded is larger for
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OBJ + BGND because of the generalized projections of both

the object and background. The size of the bitstream increases©

by about 7% forL =4 in case of separate object handling.
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TABLE 1l

SSLESSRATES (LR) FORHEAD MRI. THE FILTER IS5 X 3, L = 4.

GLOBAL CONDITIONING HAS BEEN USED IN THEMLZC MODE

According to Table IlI, the gain in compression efficiency due LR [bpp] OBJ | BGND | WHOLE | OBI+BGKND | A%
to the exploitation of the full correlation among data is about EZW-3D | 0.9045 | 3.9012 | 44598 48057 | 4775
4-5%. The improvement in compression efficiency provided MLZC (271) | 0.9188 | 3.8868 | 44560 48056 | +7.83
by MLZC over JPEG2000 depends on the working mode. EZW-2D | 09327 | 40835 | 46977 | 50162 | +6.78
Taking the OB} BGND as reference, the corresponding rate JPEG2000 10 | 10641 | 4.0656 | 46311 31207 | +10.20
reduction is about 2.2%, respectively 6.3%, for JPEG2000 JPEG2000 ROT 46511 | 49099 | +556

ROl and JPEG2000 IO.

The prioritization of the information inherent to separate
object processing leads to a significant improvement in codin
efficiency when relaxing the lossless constraint in the backlf
ground region. In this case, the BGND can be encoded/decod
at a lower resolution and combined with the object of in-
terest—which has been encoded/decoded without loss—in t
final composed image. Fig. 11 gives an example. Both th
object and the background have been compressed by the ML
scheme, with context (271) and using interband conditioning
The OBJ has been decoded at full quality (e.g., in lossleq
mode) while the BGND corresponds to a rate of 0.1 bit/voxels
in Fig. 11(a) and 0.5 bit/voxels in Fig. 11(b). The PSNR values

LT

for images of Fig. 11(a) and (b) are of 27.76 and 33.53 dBig. 11. Pseudo-losslesgime for a sample MRI image. The OBJ has been
respectively. Reconstructed images respecting the losslesgvered without loss, while the BGND has been decoded at (a) 0.1 bpv

constraint in the ROI and preserving a good visual appearar?é?g)(b) 0.5 bpv. The corresponding PSNR values are of 27.76 and 33.53 dB,
in the background can thus be obtained by decoding only the
20% of the information that would be required for a lossless
representation of the whole volume.

ectively.
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VI. CONCLUSIONS

We have presented two fully 3-D coding systems featuring (1]
object-based functionalities. The MLZC and EZW-3D coders
have been generalized for ROI processing by restricting the
information to be used for coding to the region taken by the [
object in every subband. Each object is encoded independentlys)
to generate a self-contained segment of the bitstream. The
implementation of the DWT via the lifting steps scheme in the |,
nonlinear integer version and the inherent embedding of the
encoded information resulting from the coding systems allow
the reconstruction of each object at a progressive up-to-lossles[g]
quality. Border artifacts are avoided by encoding some extra
coefficients (for each object). The compression efficiency of the[®!
3-D coding techniques has been evaluated by comparison with
the 2-D counterparts—namely EZW-2D and MLZC-2D—as [7]
well as the JPEG and JPEG2000 standards. The rate saving
provided by the 3-D coding techniques over JPEG2000 argg)
in the range 2-6.3%, depending on the working mode taken
as reference. The performances of MLZC and EZW-3D are 9
competitive with those of the others state-of-the-art techniques.
The ROIl-based processing enablepseudo-losslesseegime
where the object of interest can be encoded/decoded witholl")
loss, and combined with the background that can be represented
at a lower quality. In this way, images respecting the losslesg!l
constraint in the ROI and preserving a good visual appearance
in the background can be obtained at a significantly lower rate.
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