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Correspondence________________________________________________________________________

The Wyner–Ziv Problem With Multiple Sources

Michael Gastpar, Member, IEEE

Abstract—This correspondence provides bounds on the rate-distortion
region for the distributed compression scenario where two (or more)
sources are compressed separately for a decoder that has access to side in-
formation. Conclusive rate-distortion results are found for the case where
the sources are conditionally independent, given the side information.

Index Terms—Distributed source coding, rate-distortion, side informa-
tion, source networks, Wyner–Ziv problem.

I. INTRODUCTION

In the problem studied in this correspondence, two (or more) depen-
dent discrete memoryless sources have to be compressed separately
from each other in a lossy fashion, i.e., with respect to a fidelity
criterion. In addition, the decoder has access to a side information
stream that is statistically dependent on (“correlated with”) the two
sources that need to be compressed. This situation is illustrated in
Fig. 1. Clearly, each encoder could compress its respective source,
ignoring both the side information and the other encoder’s presence.
For such a scheme, the smallest rates are well known from (standard)
single-source rate-distortion theory, see, e.g., [1] or [2, Theorem 2.2.3].

It is well known, however, that both the fact that the two sources are
dependent as well as the side information Z permit to lower the neces-
sary rates (or the incurred distortions). The first gain, stemming from
the fact that the sources are dependent, has been studied and found
by Slepian and Wolf [3] for the case of lossless compression. They
considered the system of Fig. 1 without the side information Z . Their
surprising result is that the total rate needed for separate (lossless) com-
pression of two sources is the same as the rate needed for joint com-
pression of the two sources (i.e., their joint entropy). When the com-
pression is lossy, the dependence between the sources still permits to
lower the rates (see, e.g., [4]), but no conclusive results are available
to date. The second gain, stemming from the fact that side information
is available at the decoder, has been extensively studied for the case
of lossless compression (see e.g., [5, p. 458], with recent extensions to
network cases, see, e.g., [6], [7]), and for the case of lossy compression
of a single source by Wyner and Ziv [8], [9].

This correspondence investigates the Wyner–Ziv problem with
two (and more) discrete1 memoryless dependent sources and a side
information stream, modeled by the sequence f(S1;k; S2;k; Zk)g1k=1
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1The conjecture is that our main results extend without modification to the
case of continuous alphabets; however, the proofs in this correspondence are
limited to discrete alphabets, in line with the majority of the results in this area.
Notable exceptions to this include Wyner’s extension [9] of [8] to continuous
alphabets, and [10].

Fig. 1. Separate compression of two sources with side information at the
decoder.

of independent copies of a triplet of dependent random variables
(S1; S2; Z) which take values in finite sets S1, S2, and Z , respec-
tively, distributed according to a fixed and known pmf

p(s1; s2; z): (1)

The encoder outputs are binary sequences which appear at rates R1
and R2 bits per input symbol, respectively. The decoder output is a
sequence of pairs f(Ŝ1;k; Ŝ2;k)g1k=1 whose components take values in
finite reproduction alphabets Ŝ1, Ŝ2. The encoding is done in blocks of
length n, and the fidelity criteria, form = 1; 2, take the shape

E
1

n

n

k=1

dm(Sm;k; Ŝm;k) (2)

where dm(sm; ŝm) � 0, sm 2 Sm, ŝm 2 Ŝm, is a given dis-
tortion function, and E[�] denotes the expectation operator. We de-
fineRWZ

S ;S jZ(D1; D2) as the set of rate pairs (R2; R2) for which the
system of Fig. 1 can operate when n is large and the average distortions
given in (2) are arbitrarily close to Dm, form = 1; 2. The superscript
WZ honors [8] and emphasizes the fact that the side information is not
available at the encoders.
This correspondence provides bounds to the rate-distortion region

RWZ

S ;S jZ(D1;D2). More precisely, after defining notation and con-
ventions in Section II, an inner bound (that is, an achievable rate-dis-
tortion region)

Ra(D1;D2) � RWZ

S ;S jZ(D1;D2)

is determined in Section III. The coding technique that leads to this
region is an extension of the code of [3] (and its extension to the case of
lossy compression, given in [4]), combined with the code construction
of Wyner and Ziv [8] (based on [3]).
In Section IV, an outer bound

Rc(D1; D2) � RWZ

S ;S jZ(D1;D2)

is determined. This region does not appear to coincide with the pre-
sented inner bound Ra(D1;D2). This is not surprising since the cor-
responding rate regions for the problem without side information [4]
could not be shown to coincide, either.
However, for one special case, namely, when the sources are con-

ditionally independent given the side information, it is shown in Sec-
tion V, that the two regions do coincide. By contrast to earlier work
(as reported in [11], [12], [10]), this correspondence provides conclu-
sive rate-distortion results for a symmetric case, i.e., both sources are
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encoded, and both sources have to be reconstructed with respect to a
fidelity criterion.2

The results of this correspondence have natural applications to dis-
tributed compression and signal processing. One such extension is de-
scribed in [14]. At the same time, they are also useful to obtain certain
rate regions for multiple-relay channels. As a matter of fact, Fig. 1 can
be understood as a relay network: The two boxes labeled “encoder”
are two relays that observe S1 and S2, respectively, and the strategy
is for the relays to compress their observations for a final destination
that observes Z . Since S1, S2, and Z were all produced by the source
node in the relay network, they are generally correlated. This is further
explained in [15].

II. NOTATION AND CONVENTIONS

In this correspondence, random variables are denoted by capital let-
ters, such as X , and their realizations by lower case letters, such as
x. The (discrete and finite) alphabet in which the random variable X
takes values is denoted by X , and its cardinality by jX j. The pmf of
the random variableX is denoted by pX(x), or simply p(x) when this
does not create any confusion. Sequences xn = fxig

n
i=1 will be con-

sidered, where each component is sampled independently from a fixed
pmf p(x).

Moreover, we will make use of the concept of strong typicality as
introduced in [4].We use the definition as in [5, p. 358], which we quote
for convenience. For a sequence xn and any a 2 X , defineN(ajxn) to
be the number of occurrences of the symbol a in the sequence xn. The
sequence xn is said to be �-strongly typical with respect to a pmf pX(x)

if, i) for all a 2 X with pX(a) > 0, 1
n
N(ajxn)� pX(a) < �=jX j,

and ii) for all a 2 X with pX(a) = 0, N(ajxn) = 0. For a given
pmf p(x), the set of �-strongly typical sequences will be denoted by
A
�(n)
� (X), or simply A�(n)� , when this does not create any confusion.
Finally, the probability that a considered event E occurs is denoted

as ProbfEg.

III. AN ACHIEVABLE RATE REGION

An achievable rate region can be obtained by extending the coding
scheme introduced by Slepian and Wolf [3], and elegantly general-
ized to the concept of “binning” by Cover [16]. In summary, the code
leading to the inner bound to the rate-distortion region by Theorem 2
below is the cascade of a suitable vector quantizer with a binning oper-
ation for the codeword indices. In particular, the encoder of the source
S1 must apply a binning operation with respect to both the codeword
index of source S2 and the side information Z , and the encoder of the
source S2 must do likewise. Given the two bin indices selected by the
two encoders, the decoder then uses the side information to undo the
binning and retrieve the correct quantization cell indices. But this re-
quires the codewords associated with the two bin indices to be jointly
typical with the side information. More precisely, the fact that for each
bin index, the corresponding associated codeword is jointly typical with
its corresponding source sequence must imply that the two associated
codewords and the side information form a jointly typical triplet. The
key to such an implication is the Markov lemma.3

2Earlier work has found that the inner and outer regions of [4] coincide for
cases where one of the two sources is either not to be reconstructed, or encoded
perfectly (see [11], [12], [10]).Moreover, certain conclusive results are available
for the CEO problem [13].

3The lemma is quoted without proof in [5, Lemma 14.8.1, p. 436]; with ref-
erence to [4], [2]. In [4], the Markov lemma (Lemma 4.1) has a prominent role
as well as a proof.

Lemma 1 (Markov Lemma): Consider the three random variables
W1, S1, and Z whose joint pmf satisfies

p(w1; s1; z) = p(w1js1)p(s1; z):

For a fixed pair of sequences (sn1 ; z
n) 2 A

�(n)
� (S1; Z), draw a se-

quenceWn
1 according to n

i=1 pW jS (w1;ijs1;i). Then

lim
n!1

Prob (Wn
1 ; s

n
1 ; z

n) 2 A�(n)� (W1; S1; Z) = 1:

To understand the lemma, note that from the facts that i) a sequence
zn is jointly typical with sn1 , and ii) s

n
1 is jointly typical withwn1 , it does

not yet follow that the three sequences form a jointly typical triplet. One
sufficient condition to ensure that they do form a jointly typical triplet
is precisely the stated Markov relationship. This lemma is at the heart
of the presented achievable rate region; the necessary extension is given
in Appendix I. We did not find a weaker condition that permits to infer
the same conclusions.
Once the decoder has retrieved the correct codeword indices, it can

use the side information a second time in order to remove a part of
the quantization noise. This is possible because the side information is
available in unquantized form. The rates that can be achieved by this
coding scheme can be expressed as follows.

Theorem 2: Ra(D1; D2) � RWZ
S ;S jZ(D1;D2), where

Ra(D1; D2) is the set of all rate pairs (R1; R2) such that there
exists a pair (W1;W2) of discrete random variables with

p(w1; w2; s1; s2; z) = p(w1js1)p(w2js2)p(s1; s2; z)

for which the following conditions are satisfied:

R1 � I(S1; S2;W1jZ;W2) (3)

R2 � I(S1; S2;W2jZ;W1) (4)

R1 +R2 � I(S1; S2;W1;W2jZ) (5)

and for which there exist functions g1(�) and g2(�) such that

E[d1(S1; g1(W1;W2; Z))] �D1 and (6)

E[d2(S2; g2(W2;W1; Z))] �D2: (7)

Remark 1: In slight extension of [8, Theorem A2], it can also
be shown that it is sufficient to consider auxiliary random variables
(W1;W2) over alphabetsWm of cardinalities

jWmj � jSmj + 1 (8)

for m = 1; 2; . . . ;M .

The proof of this theorem is deferred to Appendix I.
The rate regionRa can easily be extended to more than two sources.

For brevity and in order to concentrate on the main result (Section V),
we omit an explicit statement and refer to [17].

IV. A GENERAL OUTER BOUND

In this section, we present a region Rc(D1;D2) which contains
the desired rate-distortion region RWZ

S ;S jZ(D1;D2). The region
Rc(D1; D2) follows from standard outer bounding arguments; it is a
slight extension of the arguments given in [4, Theorem 6.2].

Theorem 3 (Outer Bound):

Rc(D1; D2) � RWZ
S ;S jZ(D1;D2)
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whereRc(D1; D2) is the set of all rate pairs (R1; R2) such that there
exists a pair (W1;W2) of discrete random variables over alphabetsW1

andW2 with cardinalities jW1kW2j � 1 + jS1kS2j, distributed such
that p(w1js1; s2; z) = p(w1js1) and p(w2js1; s2; z) = p(w2js2), for
which the following conditions are satisfied:

R1 � I(S1; S2;W1jZ;W2) (9)

R2 � I(S1; S2;W2jZ;W1) (10)

R1 +R2 � I(S1; S2;W1W2jZ) (11)

and for which there exist functions g1(�) and g2(�) such that

E[d1(S1; g1(W1;W2; Z))] �D1 and (12)

E[d2(S2; g2(W2;W1; Z))] �D2: (13)

The proof of this theorem is deferred to Appendix II. The extension
to the case of more than two sources is explicitly stated in [17].

The region Rc(D1; D2) given in Theorem 3 cannot generally be
shown to coincide with Ra(D1; D2), and hence, no conclusive rate-
distortion result can be given for theWyner–Ziv rate-distortion problem
with multiple sources. More precisely, the mutual information expres-
sions in Theorems 2 and 3 are exactly the same both for Rc(D1; D2)

andRa(D1;D2); the difference occurs only in the degrees of freedom
in choosing the auxiliary random variables W1 and W2. More pre-
cisely, in Theorem 2, the joint pmf must factor as

p(s1; s2; z; w1; w2) = p(s1; s2; z)p(w1js1)p(w2js2):

By contrast, in Theorem 3, the joint pmf p(s1; s2; z; w1; w2) must
merely satisfy the marginal constraints

p(s1; s2; z; w1) = p(s1; s2; z)p(w1js1)

and

p(s1; s2; z; w2) = p(s1; s2; z)p(w2js2):

An illustrative example of the difference between these two sets is given
in [4] and concerns mixtures of the form

p(s1; s2; z; w1; w2)

= p(s1; s2; z)

M

k=1

�kp
(k)(w1js1)p

(k)(w2js2) (14)

where M

k=1 �k = 1. It is immediately clear that such a pmf al-
ways satisfies the constraints of Theorem 3, but not necessarily those
of Theorem 2.

V. PARTIAL CONVERSE: CONDITIONALLY INDEPENDENT SOURCES

While the two rate regions derived in this correspondence,
Ra(D1;D2) and Rc(D1; D2), do not coincide in general, we now
analyze a special case in which they indeed do coincide, hence estab-
lishing a conclusive rate-distortion result. This special case is when
S1 and S2 are independent given Z , i.e., when

p(s1; s2; z) = p(s1jz)p(s2jz)p(z): (15)

The first step in our derivation is to rewrite the inner bound to the rate-
distortion region, introducing the simplifications due to the assumption
that S1 and S2 are conditionally independent given Z .

Corollary 4: If S1 and S2 are conditionally independent given Z

Ra(D1;D2) � RWZ
S ;S jZ(D1;D2)

whereRa(D1;D2) is the set of all rate pairs (R1; R2) such that there
exists a pair (W1;W2) of discrete random variables with

p(w1; w2; s1; s2; z) = p(w1js1)p(w2js2)p(s1jz)p(s2jz)p(z)

for which the following conditions are satisfied:

R1 � I(S1;W1)� I(Z;W1) (16)

R2 � I(S2;W2)� I(Z;W2) (17)

and for which there exist functions g1(�) and g2(�) such that

E[d1(S1; g1(W1; Z))] �D1 and (18)

E[d2(S2; g2(W2; Z))] �D2: (19)

Proof: The achievability of the rate-distortion region of this
corollary can be inferred from the Wyner–Ziv rate-distortion function
of a single source. It can also be inferred from Theorem 2 by noting
that the rate conditions of can be expressed equivalently as (43)–(45).
The term I(W1;W2jZ) in the sum rate bound is zero. Therefore, the
sum rate bound, (45), becomes merely the sum of the two side bounds,
(43), (44), and hence can be omitted. The side bounds can be simplified
by writing out I(Z;W2;W1) = I(Z;W1) + I(W1;W2jZ), where
the last term is again zero. For the distortion D1, we know from
Theorem 2 that if p(w1; w2; s1; s2; z) satisfies (16) and (17), then the
distortion D1 is achievable if there exists a function ~g1(w1; w2; z)

such that E [d1(S1; ~g1(W1;W2; Z)] � D1. Consider

E [d1(S1; ~g1(W1;W2; Z))]

= EW ;S ;Z EW ;S jW ;S ;Z [d1(S1; ~g1(W1;W2; Z))]

= EW ;S ;Z EW ;S jZ [d1(S1; ~g1(W1;W2; Z))]

where the last equation follows because p(w1; s1jz; s2; w2) =

p(w1; s1jz). But then, define w�
2(z) such that

w
�
2(z) 2 argmin

w
ES ;W jZ=z [d1(S1; ~g1(W1; w2; z))] :

Clearly, for any z 2 Z

EW ;S jZ=z ES ;W jZ=z [d1(S1; ~g1(W1;W2; z))]

� ES ;W jZ=z [d1(S1; ~g1(W1; w
�
2(z); z))] : (20)

Therefore, introduce g1(w1; z) = ~g1(w1; w
�
2(z); z), and note that

E [d1(S1; g1(W1; Z)] � D1. In other words, for any p(w1js1)

satisfying (16), there exists ~g1(w1; w2; z) satisfying (6) if and only
if there exists g1(w1; z) satisfying (18). The proof for the second
encoder goes along the same lines.

The outer bound to the rate region derived in this correspondence,
Rc(D1; D2), can also be replaced by a simpler bound in the special
case when S1 and S2 are conditionally independent given Z , as
follows.

Corollary 5: If S1 and S2 are conditionally independent given
Z , R0

c(D1;D2) � Rc(D1; D2), and hence R0
c(D1; D2) �

RS ;S jZ(D1;D2), where R0
c(D1;D2) is the set of all rate

pairs (R1; R2) such that there exists a pair (W1;W2) of dis-
crete random variables with p(w1js1; s2; z) = p(w1js1) and
p(w2js1; s2; z) = p(w2js2) for which the following conditions are
satisfied:

R1 � I(S1;W1)� I(Z;W1) (21)

R2 � I(S2;W2)� I(Z;W2) (22)

and for which there exist functions g1(�) and g2(�) such that

E[d1(S1; g1(W1; Z))] �D1; and (23)

E[d2(S2; g2(W2; Z))] �D2: (24)
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Proof: This lower bound can be established by noting that the
rate of Encoder 1 is at least the rate for the single-source Wyner–Ziv
problem when the side information at the decoder is Z and S2, which
is known to be [8, Theorem 1]

R1 = min I(S1;W1)� I(Z; S2;W1) (25)

where the minimum is over all auxiliary random variables W1 whose
distribution satisfies

p(w1; s1; z; s2) = p(w1js1)p(s1; z; s2)

and for which there exists a function ~g1(w1; s2; z) such that

E [d1(S1; ~g1(W1; S2; Z)] � D1: (26)

First, the rate expression can be simplified by writing out

I(Z; S2;W1) = I(Z;W1) + I(S2;W1jZ) (27)

where the last mutual information expression is zero because
p(s2; z; w1) = p(s2jz)p(w1jz)p(z) (Markov property). For the dis-
tortion, consider a fixed choice of p(w1js1) and corresponding ~g1(�)

satisfying (25) and (26). The expectation in (26) can be computed as

E [d1(S1; ~g1(W1; S2; Z)]

= ES ;Z ES ;W jS ;Z [d1(S1; ~g1(W1; S2; Z))]

= ES ;Z ES ;W jZ [d1(S1; ~g1(W1; S2; Z))] (28)

where the last equation follows because p(w1; s1jz; s2) =

p(w1; s1jz). But then, define s�2(z) such that

s
�
2(z) 2 argmin

s
ES ;W jZ=z [d1(S1; ~g1(W1; s2; z))] :

Clearly, for any z 2 Z

ES jZ=z ES ;W jZ=z [d1(S1; ~g1(W1; S2; z))]

� ES ;W jZ=z [d1(S1; ~g1(W1; s
�
2(z); z))] : (29)

Therefore, introduce g1(w1; z) = ~g1(w1; s
�
2(z); z), and note that

E [d1(S1; g1(W1; Z)] � D1. In other words, for any W1 satisfying
(25), if there exists ~g1(w1; s2; z) satisfying (26), then, there exists
g1(w1; z) satisfying (23). Thus, any coding scheme for Encoder 1
must satisfy (21) and (23). For Encoder 2, the same proof argument
establishes (22) and (24).

The main result of this section follows by combining Corollaries
4 and 5, and by observing that the additional degrees of freedom in
Corollary 5 (more particularly, the additional freedom in choosing the
auxiliary random variables W1 and W2) do not permit to lower the
involved mutual information and distortion functionals. It follows that
the rate regions described by Corollaries 4 and 5 are actually the same,
and hence, that they correspond to the desired rate-distortion region
RWZ

S ;S jZ(D1;D2).

Theorem 6: If S1 and S2 are conditionally independent given Z ,
then

Ra(D1; D2) = Rc(D1;D2) = RWZ

S ;S jZ(D1;D2): (30)

Proof: Both rate regions have the same shape except that the
auxiliary random variables W1 and W2 in Corollary 5 have more de-
grees of freedom. However, since all of the involved mutual informa-
tion functionals only depend on the joint marginals of (S1;W1; Z)

and (S2;W2; Z), the additional degrees of freedom cannot lower their
values.
More precisely, for a choice of (W1;W2) satisfying the condi-

tions of Corollary 5 (and the corresponding rate pair (R1; R2) 2

Rc(D1; D2)), the resulting joint pmf can be written as

p(w1; w2; s1; s2; z) = p(w1; w2js1; s2)p(s1jz)p(s2jz)p(z):

But then, construct the auxiliary random variables (W 0
1;W

0
2) such that

pW jS (w1js1) =
w ;s

p(w1; w2js1; s2)p(s2js1) (31)

pW jS (w2js2) =
w ;s

p(w1; w2js1; s2)p(s1js2): (32)

The joint pmf

p(w0
1; w

0
2; s1; s2; z) = p(w0

1js1)p(w
0
2js2)p(s1jz)p(s2jz)p(z)

induces the same marginal distributions on (S1;W1; Z) and
(S2;W2; Z). Trivially, therefore, the mutual information and the
distortion functionals in Corollaries 4 and 5 must assume the same
values, butW 0

1 andW
0
2 are achievable since they satisfy the conditions

of Corollary 4.

By the nature of the arguments leading to Theorem 6, it is clear that
the result carries over to the case of more than two sources. This is
explicitly stated in [17].

VI. CONCLUSION

Distributed lossy compression as shown in Fig. 1 (without the side
information) is a long-standing open problem. The best known achiev-
able rate region is the one given in [4], and it does not coincide with any
converse bound; no conclusive rate-distortion results can be given. In
this correspondence, we investigate distributed lossy compression with
side information. In extension of [4], we present inner and outer bounds
to the rate-distortion region, and we establish conclusive rate-distortion
results for the scenario where the sources are conditionally indepen-
dent, given the side information. The extension of our results to the
case of more than two sources appears in [17].

APPENDIX I
PROOF OF THEOREM 2

Before sketching the proof of Theorem 2, we consider the following
extension of the Markov lemma (Lemma 1).

Lemma 7 (Extended Markov Lemma): Consider the five random
variablesW1,W2, S1, S2, and Z whose joint pmf satisfies

p(w1; w2; s1; s2; z) = p(w1js1)p(w2js2)p(s1; s2; z):



2766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 11, NOVEMBER 2004

For a fixed triple of sequences (sn1 ; s
n
2 ; z

n) 2 A
�(n)
� (S1; S2; Z), draw

a sequenceWn
1 according to n

i=1 pW jS (w1;ijs1;i), and a sequence
Wn

2 (independently of Wn
1 ) according to n

i=1 pW jS (w2;ijs2;i).
Then

lim
n!1

Prob (Wn
1 ;W

n
2 ; s

n
1 ; s

n
2 ; z

n)

2 A
�(n)
� (W1;W2; S1; S2; Z) = 1: (33)

Proof: Consider the three random variables (W1;W2), (S1; S2),
and Z . Clearly, (W1;W2) and Z are conditionally independent, given
(S1; S2). In order to apply Lemma 1, consider a fixed pair of sequences
((sn1 ; s

n
2 ) ; z

n) 2 A
�(n)
� , and select a pair of sequences (Wn

1 ;W
n
2 ) by

drawing from the pmf
n

i=1

pW ;W jS ;S (w1;i; w2;ijs1;i; s2;i): (34)

From Lemma 1, we know that then

lim
n!1

Prob (Wn
1 ;W

n
2 ; s

n
1 ; s

n
2 ; z

n) 2 A
�(n)
� = 1:

But by assumption, p(w1; w2js1; s2) = p(w1js1)p(w2js2), and
therefore, drawing (Wn

1 ;W
n
2 ) from the pmf in (34) is the same

as drawing Wn
1 from n

i=1 pW jS (w1;ijs1;i), and Wn
2 from

n

i=1 pW jS (w2;ijs2;i), which completes the proof.

An extension of a second technical lemma is needed, which, for
weakly typical sequences, is given, e.g., in [5, Theorem 8.6.1]. The
version for strongly typical sequences can be found in [4, p. 198] and
[5, Theorem 13.6.2].

Lemma 8: If ( ~Xn; ~Y n; ~Zn) � p(xn)p(yn)p(zn), i.e., they have
the same marginals as p(xn; yn; zn) but they are independent, then

Prob ( ~Xn
; ~Y n

; ~Zn) 2 A
�(n)
�

� 2�n(I(Z;X;Y )+I(Z;Y ;X)�I(X;Y jZ)�� ) (35)

where �0 ! 0 as � ! 0 and n ! 1.
Outline of the Proof: The lemma can be established along the lines

of [5, Theorem 13.6.2]. We here give the explicit argument for the case
of weak typicality, i.e., extending the proof of [5, Theorem 8.6.1],

Prob ( ~Xn
; ~Y n

; ~Zn) 2 A
(n)
�

=

(x ;y ;z )2A

p(xn)p(yn)p(zn)

� 2n(H(X;Y;Z)+�)2�n(H(X)��)2�n(H(Y )��)2�n(H(Z)��)

= 2�n(H(X)+H(Y )+H(Z)�H(X;Y;Z)�4�) (36)

where A(n)
� denotes the typical set as defined in [5, p. 51]. The expres-

sion in the exponent can be rewritten as I(Z;X;Y ) + I(Z; Y ;X)�
I(X;Y jZ), which completes the proof for weakly typical sequences.

Proof: (Proof Sketch of Theorem 2.) For m = 1; 2,
fix p(wmjsm) as well as gm(w1; w2; z) in such a way that
E[dm(Sm; gm(W1;W2; Z))] � Dm. Generate 2nR code-
words of length n, sampled independent and identically distributed
(i.i.d.) from the marginal pmf p(wm). Label these as wn

m(um),
with um 2 f1; 2; . . . ; 2nR g. Provide 2nR bins, indexed by
tm 2 f1; 2; . . . ; 2nR g. Randomly assign to every codeword
wn
m(um) one of the bin indices tm. Denote the set of codeword

indices um with bin index tm as Bm(tm).
Encoding: For m = 1; 2, given a source sequence Snm, encoder m

looks for a codeword Wn
m(um) such that (Snm;W

n
m(um)) 2 A

�(n)
� .

The probability of finding such a codeword can be made arbitrarily
close to 1 (as n ! 1) as long as

R
0
m > I(Sm;Wm): (37)

Encoderm sends the index tm for which um 2 Bm(tm).
Decoding: The decoder looks for a pair (Wn

1 (u1);W
n
2 (u2)) such

that u1 2 B1(t1), u2 2 B2(t2), and

(Wn
1 (u1);W

n
2 (u2); Z

n) 2 A
�(n)
� : (38)

If a unique (u1; u2) is found, the decoder outputs (Ŝn1 ; Ŝ
n
2 ), and it is

also true that then (Sn1 ; S
n
2 ;W

n
1 (u1);W

n
2 (u2); Z

n) 2 A
�(n)
� . By the

construction of Ŝn1 and Ŝn2 , this implies (using standard proof tech-
niques, see, e.g., [4, p. 212]) that

1

n

n

k=1

d(S1;k; Ŝ1;k)

=
1

n
a;b;c;d

d(a; g1(b; c; d))N (a; b; c; djSn1 ;W
n
1 ;W

n
2 ; Z

n)

�
1

n
a;b;c;d

d(a; g1(b; c; d))

npS ;W ;W ;Z(a; b; c; d) + n�
1

jS1kW1kW2kZj

where the second and third sum are over all a 2 S1, b 2 W1, c 2 W2,
d 2 Z . By assumption on the pmf pS ;W ;W ;Z(�), the last expression
tends to D1 as n ! 1. For the distortion D2, the argument follows
along the same lines.
In order to guarantee that the decoder finds a unique pair of codeword

indices (u1; u2), the following two error events must be considered.

1) The two true codewords and the side information do not form a
jointly typical triplet: The joint pmf p(w1; w2; s1; s2; z) has the
structure required in Theorem 2, and hence, by Lemma 7, the
probability of this event tends to zero as n ! 1.

2) There exists an alternative choice of two codewords that, to-
gether with the side information, form a jointly typical triplet:
Denoting the correct codewords indices by (u1; u2) and their
corresponding bin indices by (t1; t2), consider an alternative
choice in the first component, (u01; u2). By [5, Lemma 13.6.2]

Prob W
n
1 (u01);W

n
2 (u2); Z

n 2 A
�(n)
�

� 2�n(I(W ;W ;Z)�� ) (39)

where �1 tends to zero as � ! 0 and n ! 1 The number
of codewords with bin index t1 is at most 2n(R �R ) + �1(n),
where �1(n) tends to zero as n ! 1, and hence,

Prob 9u01 2 B(t1); u
0
1 6= u1 :

(w1(u
0
1); w2(u2); z) 2 A

�(n)
�

� 2n(R �R ) + �1(n) 2�n(I(W ;W ;Z)�� )
:

The same derivation applies to the case of an alternative choice
in the second component, (u1; u02). Finally, if both indices are
in error, Lemma 8 is needed, yielding

Prob W
n
1 (su01);W

n
2 (u02); Z

n 2 A
�(n)
�

� 2�n(I(Z;W ;W )+I(Z;W ;W )�I(W ;W jZ)�� )

where �12 tends to zero as � ! 0 and n ! 1. The
number of codewords with bin indices (t1; t2) is at most
2n(R �R +R �R ) + �12(n), where �12(n) tends to zero as
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n ! 1. Hence, the probability of the error event can be
bounded as

Prob 9(u01; u
0
2); u

0
1 2 B(t1); u

0
1 6= u1; u

0
2 2 B(t2);

u
0
2 6= u2 : W

n
1 (u

0
1);W

n
2 (u

0
2); Z

n 2 A�(n)
�

� 2n(R �R +R �R ) + �12(n)

� 2�n(I(Z;W ;W )+I(Z;W ;W )�I(W ;W jZ)�� )
:

In conclusion, this error event will have vanishingly small error
probability (as n tends to infinity) when the following rate con-
ditions are satisfied:

R
0
1 �R1 <I(Z;W2;W1) (40)

R
0
2 �R2 <I(Z;W1;W2) (41)

R
0
1 �R1 +R

0
2 �R2 <I(Z;W2;W1) + I(Z;W1;W2)

� I(W1;W2jZ): (42)

Combining (40)–(42) with (37) yields

R1 � I(S1;W1)� I(Z;W2;W1) (43)

R2 � I(S2;W2)� I(Z;W1;W2) (44)

R1 +R2 � I(S1;W1)� I(Z;W2;W1) + I(S2;W2)

� I(Z;W1;W2) + I(W1;W2jZ): (45)

To see that these are the conditions claimed in Theorem 2, observe that

I(S1; S2;W1jZ;W2) = I(S1;W1jZ;W2)

since I(S2;W1jZ; S1;W2) = 0. But then, write out
I(S1; Z;W2;W1) in two different ways as

I(S1; Z;W2;W1) = I(Z;W2;W1) + I(S1;W1jZ;W2)

= I(S1;W1) + I(Z;W2;W1jS1)

where the last term is zero, which implies that

I(S1;W1)� I(Z;W2;W1) = I(S1; S2;W1jZ;W2):

Similar transformations show that (44) and (45) are equal to (4) and
(5), respectively.

APPENDIX II
PROOF OF THEOREM 3

Along the lines of the proof of [4, Theorem 6.2], suppose that the
encoders and the decoder achieve average distortions (D1;i; D2;i) in
the reproduction of (X1;i;X2;i), and hence, overall average distortions

D1 =
1

n

n

i=1

D1;i and D2 =
1

n

n

i=1

D2;i:

The goal is to show that this implies that the corresponding coding
rates (R1; R2) 2 Rc(D1; D2). For an observed source sequence Sn1 ,
Encoder 1 must provide the decoder with an index, denoted by T1. The
following is true about T1:

nR1 �H(T1)
(a)

� H (T1jT2; Z
n)

�H (T1jT2; Z
n)�H (T1jT2; Z

n
; S

n
1 ; S

n
2 )

(b)
= I (Sn1 S

n
2 ;T1jT2; Z

n)

(c)
=

n

i=1

I S1;i; S2;i;T1jT2; Z
n
; S

i�1
1;1 ; S

i�1
2;1

(b)
=

n

i=1

H S1;i; S2;ijT2; Z
n
; S

i�1
1;1 ; S

i�1
2;1

�H S1;i; S2;ijT1; T2; Z
n
; S

i�1
1;1 ; S

i�1
2;1

(d)
=

n

i=1

H (S1;i; S2;ijW2;i; Zi)

�H (S1;i; S2;ijW1;i;W2;i; Zi)

(b)
=

n

i=1

I (S1;i; S2;i;W1;ijW2;i; Zi) : (46)

For (a), recall that further conditioning cannot increase entropy; (b)
is the definition of mutual information; and (c) is the chain rule for
mutual information [5, Theorem 2.5.2]. For (d), we define

W1;i = T1; S
i�1
1;1 ; S

i�1
2;1 ; Z

i�1
1 ; Z

n
i+1

and

W2;i = T2; S
i�1
1;1 ; S

i�1
2;1 ; Z

i�1
1 ; Z

n
i+1 :

Note that with this definition, it is indeed true thatW1;i is conditionally
independent of (S2;i; Zi) for given S1;i, and the corresponding is true
for W2;i.
For the sum rate bound, we find similarly

n(R1 +R2) �H(T1; T2)
(a)

� H (T1; T2jZ
n)

= I (T1; T2;S
n
1 ; S

n
2 jZ

n)

(b)
=

n

i=1

H S1;i; S2;ijZ
n
; S

i�1
1 ; S

i�1
2

�H S1;i; S2;ijT1; T2; S
i�1
1;1 ; S

i�1
2;1 ; Z

n

(c)
=

n

i=1

H (S1;i; S2;ijZi)

�H S1;i; S2;ijT1; T2; S
i�1
1;1 ; S

i�1
2;1 ; Z

n

(d)
=

n

i=1

H (S1;i; S2;ijZi)

�H (S1;i; S2;ijW1;i;W2;i; Zi)

=

n

i=1

I (S1;iS2;i;W1;iW2;ijZi) : (47)

For (a), recall that further conditioning cannot increase entropy;
(b) is the chain rule for mutual information; and (c) holds because
(S1;i; S2;i) is conditionally independent of Zi�1

1 , Zn
i+1, S

i�1
1 , Si�1

2 ,
given Zi. For (d), we use again the definitions of W1 and W2. Note
that the sum rate bound can be proved just like in the case of the
single-source Wyner–Ziv problem, see, e.g., [5, p. 440].
To complete the argument, define rate pairs (R1;i;R2;i) that sat-

isfy the constraints given by the summands with index i in the sums
in (46) (and its counterpart for R2) as well as in (47), and incur dis-
tortions (D1;i;D2;i). The result now follows from a standard con-
vexity argument that is no different from the one used in the proof of
[4, Theorem 6.2]. It can be shown that Rc(D1; D2) is convex in the
sense that if

(R1;i;R2;i) 2 Rc(D1;i;D2;i)

and

(R1;j ; R2;j) 2 Rc(D1;j; D2;j)
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then

(�(R1;i; R2;i) + (1� �)(R1;j ; R2;j))

2 Rc(�(D1;i;D2;i) + (1� �)(D1;j; D2;j))

implying that if the code achievesD1 andD2, the corresponding rates
R1 and R2 must satisfy the conditions stated in Theorem 3.

The bound on the cardinality of the alphabets of the auxiliary random
variables is a direct consequence of [8, Theorem A2].
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On Properties of Rate-Reliability-Distortion Functions

Ashot N. Harutyunyan and
Evgueni A. Haroutunian, Associate Member, IEEE

Abstract—Some important properties of the rate-reliability-distortion
function of discrete memoryless source (DMS) are established. For the
binary source and Hamming distortion measure this function is derived
and analyzed. Even that elementary case suffices to show the nonconvexity
of the rate-reliability-distortion function in the reliability (error exponent)
argument.

Index Terms—Convexity, error exponent, Hamming distance, rate-
distortion function, rate-reliability-distortion function, reliability, time-
sharing argument.

I. INTRODUCTORY NOTES

We treat the performance bound in the source coding problem under
fidelity and reliability (error exponent) criteria, namely, the rate-relia-
bility-distortion function. In this concise correspondence, we summa-
rize some basic facts and results on the properties of that function and
the concept at all.
Shannon [11] defined the rate-distortion function as the minimal

coding rate that can be asymptotically achieved for transmission of
an information source data with an average distortion less than a pre-
determined threshold. It is important also the study of the rate-distor-
tion problem under an additional coding characteristic—an exponen-
tial decay in the error probability. The maximum error exponent as a
function of coding rate and distortion, characterizing the same source
coding system was studied by Marton in [10]. An alternative order de-
pendence of the three parameters was introduced by Haroutunian and
Mekoush in [7], defining the rate-reliability-distortion function as the
minimal rate at which the messages of a source can be encoded and
then reconstructed by the receiver with an exponentially decreasing
error probability with increasing codeword length. In this approach,
the achievability of the coding rate R is considered as a function of a
fixed distortion level � � 0 and an error exponent E > 0.
A number of publications of the coauthors and their collaborators

during the past years have been devoted to the development of this idea
(and the equivalent approach applied to channel coding introduced in
[6]) toward the multiuser source coding problems. Among those are
the works concerning the multiple descriptions problem [9], successive
refinement of information [8]. Recently, this approach was adopted by
Tuncel and Rose [12].
Essentially, as an advantage of the approach considered in [7], we

can emphasize the technical ease of treatment of the coding rate as a
function of distortion and error exponent which, at the same time, al-
lows to convert readily the results from the rate-reliability-distortion
area to the rate-distortion ones looking at the extremal values of the
reliability, e.g., E ! 0, E ! 1. The importance of that fact is espe-
cially pronounced and evident when one deals with a multidimensional
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