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Abstract— In a situation where multiple sound sources are
concurrently active, the signals of the individual sources often
overlap in time and in frequency. This is particularly likely
for voiced instruments where the frequencies of some of the
partials of one single note coincide with the frequencies of some
of the partials of another instrument playing a harmonically
related note. A source separation algorithm suitable for musical
applications must address the problem of overlapping partials.

A method is proposed for the separation of overlapping
narrow-band partials in multi-channel mixtures. The method
is based on the observation that, for many instruments, all
the partials of a single note have similar temporal envelopes.
For narrow band partials these similarities can be exploited in
order to estimate demixing matrices in the frequency domain.
Effectively, one can recover estimates of the original partials
from a multi-channel mixture where they overlap. The method is
computationally efficient in that it works on highly downsampled
narrow frequency bands. It performs well for closely spaced
and colliding partials, and (to some extent) also for frequency
modulations such as vibrato effects.

Index Terms—source separation, harmonic instruments, over-
lapping partials.

I. INTRODUCTION

ANY INSTRUMENTS exhibit a strong sinusoidal

nature. For a single excitation, or single note, the
corresponding signal can be closely modeled as a sum of
sinusoids whose amplitudes and phases vary slowly in time.
In a suitable time-frequency representation these sinusoids can
be detected, and the parameters of the amplitude and phase
trajectories can be estimated as functions of time [1]. These
sinusoidal components are, in general, called partials, since
each of them constitutes an important part of the total signal.
When instruments play together in an ensemble there is a
high chance that their energy distributions overlap in time and
in frequency. Depending on the types of instruments being
played, and on the tuning of the various instruments, some of
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the partials of one instrument may overlap with the partials of
other instruments.

Several techniques for the separation of audio sources have
been proposed and studied in the literature. Many of these
work well for certain types of audio signals, such as speech,
whereas only few of them deal specifically with harmonic
instrument and music signals. In the following some of the
existing techniques are reviewed.

A. Separation by source properties

Some of the earliest techniques for source separation are
based on sinusoidal modeling. In sinusoidal models [1], each
partial is described as a sinusoidal trajectory, parametrized by
amplitude, frequency, and phase as functions of time. These
techniques have shown to be powerful for low bit-rate coding
of both speech and instruments. Only one sensor signal is
typically needed, and time-frequency analysis and spectral
peak picking techniques are employed in order to estimate the
individual partials. Separation is then achieved by applying
grouping principles on the identified partials [2], [3]. Time-
frequency analysis is a well suited tool for the detection
of overlapping partials. However, due to the time-frequency
uncertainty it may not be able to detect the individual partials
that overlap as separate trajectories.

Some attempts have been made to resolve closely spaced
partials. These include curve fitting techniques and least-
squares estimation of closely spaced sinusoids [4]-[7], inter-
polation and approximation of colliding trajectories [2], [5],
[8], and frequency resolution enhancement techniques [9].
However, none of these techniques are able to correctly resolve
the amplitude and phase trajectories of the individual partials.
In fact, frequency modulation, e.g. vibrato, is not preserved.
Even small errors in the estimated frequency of a partial may
cause that partial to sound harsh, or “out of tune”, with respect
to the other partials of the sound.

B. Separation by mixing model properties

More recently, with the availability of more processing
power, multi-channel source separation techniques have be-
come popular. Typically, these techniques do not depend on
any specific model for the source signals, but rather exploit
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properties of the mixing process. In other words, spatial
properties inherent to the sensor signals are used, implicitly
or explicitly, in order to separate sources at different physical
locations.

Beamforming techniques [10], [11] make explicit use of
spatial cues in order to design or estimate spatial filters, i.e.
filters that retain signals coming from a particular direction
while suppressing signals from all other directions. Time-
domain beamforming can achieve high spatial resolution, but
only in quite narrow frequency bands. For broadband signals,
the problem can be transformed into the frequency domain,
where each frequency band can be processed independently.
This enables a high spatial resolution for broadband signals as
well. However, spatial filtering and temporal filtering are not
independent. This means that when two sources at different
locations have overlapping partials, the length of the filters
needed for proper separation may exceed the length of the
signal being analyzed. This is analogous to the problem seen
in methods based on sinusoidal models.

Another type of technique is based on time-frequency
weighting [12]-[14], which can be seen as a generalization
of frequency domain beamforming. The sensor signals are
analyzed in time and frequency, typically using a Short-Time
Fourier Transform (STFT). Spatial cues, such as level and
phase differences, are estimated in this representation. The
sources can then be localized by detecting clusters in the spa-
tial cue parameter space. Separation is effectively achieved by
generating a time-frequency weighting mask for each source
(cluster), and multiplying the STFT of the sensor signals with
this mask. In other words, the energy of each time-frequency
bin is distributed among all the sources. This distribution is
determined by the weights, which are computed based on the
distances between the spatial cues of these bins and the spatial
cues of the cluster centers.

Blind source separation methods are iterative methods work-
ing under the assumption that all the sources are statistically
independent. These methods iteratively search for the demix-
ing matrix that best decorrelates the sources. The spatial infor-
mation in the mixing process is not used explicitly. Techniques
that work in the time domain [15]-[18] need to estimate quite
long mixing filters, and are computationally expensive. Since
these techniques work on the entire signals, they are able to
separate overlapping partials, implicitly. However, they are
not applicable to individual frequency bands, and generally
there cannot be more sources than sensors. It is possible
to transform the problem into the frequency domain [19].
This decreases the computational complexity at the cost of
introducing permutation ambiguities. Some approaches for
solving these exist [20]. In order to have sufficient data for
the statistical analysis, each of the frequency bands needs to
retain a high number of data points (samples). Consequently,
the individual frequency bands cannot be downsampled by a
large factor, so that the computational cost remains relatively
high. When partials overlap in narrow frequency bands, the
assumption about statistical independence may not hold in
each individual frequency band. For stationary sounds with
smooth partial envelopes, overlapping partials are correlated.
In such cases the statistical methods may not converge.

C. Proposed separation technique

We propose a method for separation of overlapping partials
in multi-channel mixtures. The method consists of an analysis
stage and a separation stage. In the analysis stage, distinct
regions in the time-frequency plane are identified, denoted
“partial regions”, such that each of these regions covers one or
more partials. Furthermore a mapping between these and the
various sources is established. This is achieved by employing
grouping principles on both spatial cues (multi-channel) and
partial cues (single channel). The information provided by the
analysis is then exploited in the separation stage. Each partial
region contains either overlapping partials or single (non-
overlapping) partials in frequency regions where the source
do not overlap. The partial regions that contain single partials
provide information about the characteristics of the underlying
sources. The separation uses this information and applies
an iterative search for a frequency domain demixing matrix.
When applied on regions that contains overlapping partials,
this matrix yields separated partials whose envelopes resemble
the envelopes of the given non-overlapping partials.

The structure of the paper is as follows. Section Il intro-
duces the model for multi-channel source mixing, as well
as some considerations about instruments and overlapping
partials. This is followed by Section Il in which our method
is presented. Section IV shows some experimental results.
Finally, conclusions are drawn in Section V.

Il. BACKGROUND
A. Multi-channel mixing model

In a general source separation setup the only known vari-
ables are the sensor signals z,(l), where m = 1..M is the
sensor index, and [ is the time index. In a general setup with
M sensors and N sources, each of the sensors records a
superposition of filtered source signals. This can be modeled
as

N
Em(1) =D hn(l) * sn(l), )

where ’x’ denotes convolution, z,,, denotes the signal at sensor
m, s, are the source signals, and h.,,,, are the filters modeling
the sound propagation from source n to sensor m, including
the direct path and room reflections.

By employing the Short-Time Fourier Transform (STFT),
the signals are represented in time and frequency, and the
mixing model can be approximated by:

X1(k,q) Hii(q) Hin(q)

Xulhq) | | Han(@) - Hun(a) | | Sx(k.0)

where X,,(k,q) and S, (k,q) are the STFT spectra of the
source and sensor signals, respectively, and H,,,(q) are the
discrete Fourier transforms of the mixing filters h,,,, (1), which
are assumed to be time-invariant. The arguments k& and ¢
are time frame and frequency indexes, respectively. This
mixing model can be written in matrix notation as X(k, q) =
H(q)S(k,q). In this general framework, source separation is

Sl(kaq)
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equivalent to the problem of estimating the mixing matrix
H(q) (or its inverse) for each frequency ¢. This is explained
in more details in Section IlI.

B. Overlapping energy in music signals

It is important to note that the notion of “overlap” depends
on the type of time-frequency analysis being applied. For
instance for long stationary sounds, where some partials are
closely spaced, it may be possible to sacrifice time resolution
in favor of frequency resolution in order to detect the indi-
vidual partials. Obviously, this is not practical for partials that
are only a few Hz apart, since the typical duration of a single
note is shorter than the analysis time interval length needed
for sufficient frequency resolution. Even worse, when there are
frequency fluctuations, such as vibrato, the partial trajectories
of different notes and instruments may cross each other. Due
to the uncertainty principle, no time-frequency analysis will
be fine enough to detect those individual partials accurately.

Harmonic instruments are instruments where the frequen-
cies of the different partials of a single note are in a harmonic
or quasi-harmonic relation to each other. In other words, the
frequency of each partial is approximately an integer multiple
of the fundamental frequency of the corresponding note. In
this case the partials are typically called harmonics. Other
instruments such as drums, bells, but also the piano in the
low register, feature partials that are not harmonically related.
Throughout this paper the general term partial is used in order
to keep the matter as general as possible.

Two tones having a frequency relation that is a ratio of small
integers are known to produce a pleasing harmony. A study
of psychoacoustical explanations for this “pleasingness” can
be found in [21]. In many music genres the most commonly
used intervals are those with high consonance. The frequency
relations for these intervals are approximately ratios of small
integers, such as a fifth (3:2), a third (5:4), a forth (4:3),
and an octave (2:1). Consequently, when harmonic instruments
play together, it is very likely that some of their partials will
overlap.

I1l. PARTIAL SEPARATION
A. Motivation

In the human auditory system, aspects of both groups of
methods discussed in Sections I-A and I-B are exploited in
order to analyze an auditory scene. Since a person has two
ears he/she is able to focus on sounds coming from particular
directions. In addition, as a complement, the person is also able
to exploit the structure of the individual sources in time and
in frequency. It therefore seems plausible to combine aspects
of these methods, i.e. spatial analysis and time-frequency
analysis.

Partial fusion denotes the phenomena when several partials
are perceived as one single auditory event, or as a single
note. Some of the cues that are important in order to achieve
partial fusion are harmonicity and synchronicity of onset,
offset, frequency and amplitude modulation [22, ch.3]. In
other words, the different partials of one single note typically
have these cues in common. Otherwise, they would not be
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Fig. 1. Amplitude envelopes of the first 6 partials of an A note played by an
alto trombone. A: Original source partials. B: Partials in a mixture, where
the third and sixth partials overlap with partials of other instruments.

perceived as one sound. If a few partials for a given note
are known, they give a rough idea of what the other partials
should resemble. Thus, if some non-overlapping partials can
be detected, these can be used as models for the unknown
partials that need be separated out of a superposition of
overlapping partials. This is the motivation behind the method
proposed in this paper. In particular, it can be observed that,
for a single note, the temporal envelopes of the partials have
quite similar onset/offset times and amplitude modulation. In
synthesis techniques this is well known in the form of a model
for attack, decay, sustain and release (ADSR model). Column
A in Fig. 1 shows the envelopes of the first six partials of
a single note being played by an alto trombone. The partial
envelopes change somewhat with frequency. For instance, the
higher partials have delayed onset times as well as faster
decay. However, there is a noticeable similarity between all
the partials, and in general the similarity is higher between
partials whose frequencies are close to each other.

The proposed method consists first of a time-frequency
analysis where distinct regions, denoted partial regions, are
detected in the time-frequency plane such that each region
covers the main energy of one or more (overlapping) partials.
Then grouping principles based on harmonicity, spatial cues,
and temporal envelope shapes of the partials are employed in
order to find a mapping between the sources and these regions.
This provides information about which sources contribute with
significant energy in each of the different regions, as well
as which regions contain only one partial (non-overlapping).
These latter partials are used as models for the unknown
overlapping partials. Finally, for each region containing over-
lapping partials the demixing matrix is estimated. This is
accomplished by an iterative search for the matrix which
gives separated partials whose temporal envelope shapes most
closely resemble those of the model partials.



4 SUBMITTED TO IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 200X

A: Spectrogram B: Spectral peaks  C: Partial regions  D: Power spectrum
3000 T T
|
i T

2500

2000

frequency [Hz]
=
u
o
o

1000

500

==
I ‘

S

0 1 2 0 1 2 0 20 0 -20
time [sec] dB

Fig. 2. Three notes (A minor chord) played by alto trombones, from left
to right: A: spectrogram, B: spectral peaks, C: partial regions around the
spectral peaks, D: power spectrum and detected partial regions for one
particular time frame index (indicated by dashed lines in the other panels).

B. Definition of partial regions

The STFT is a well suited tool for the detection of partials
and for the estimation of the parameters in sinusoidal models.
Like in most sinusoidal modeling techniques, the peaks in the
STFT are used in order to describe the partial trajectories.
However, unlike sinusoidal modeling, we are not trying to
characterize each of these partials by their amplitude and phase
trajectories. Trying to do this to a high degree of accuracy
would be useless since each spectral peak may actually be the
net result of several overlapping partials in its close neighbor-
hood. In addition, the sidebands of the partials also contain
information that may be important for the naturalness of the
sounds. Therefore, the goal is not to estimate the amplitude
and phase trajectories to a high degree of accuracy. Rather,
the aim is to define regions around the partial trajectories
(partial regions), such that any underlying partial is covered by
these regions. At each time frame &, for each detected spectral
peak, a frequency range is formed by including neighboring
frequency bins at lower and higher frequencies, as long as the
amplitude is strictly decreasing (up to some maximum region
width, e.g. 150 Hz was used in the examples in this paper).
These frequency ranges are then connected across time by
means of frame-to-frame frequency range matching, yielding
partial regions. This is entirely similar to the traditional frame-
to-frame peak matching used in sinusoidal models [1], but with
the advantage that, for a given time frame k&, multiple spectral
peaks may be assigned to the same partial region. This is
illustrated further in the following example.

Figure 2 shows an example for a signal consisting of three
notes, namely the notes A, C, and E, which together constitute
an A minor chord. Panel A shows the spectrogram of the
signal (one of the sensor channels). The sinusoidal nature of
the partials, as well as the harmonic structure, can be clearly
seen. Panel B shows the spectral peaks that were detected by
peak picking. For the examples in this paper the spectrum
of a single sensor channel (the first sensor) was used, and
a hard threshold was used for the detection of the spectral
peaks in this spectrum. This simple approach worked well
in our examples. In practice, however, a more robust peak
picking method should be chosen. This can be achieved by

taking into account all sensor channels and by employing more
sophisticated multipitch estimation techniques [23], [24]. Panel
C shows the partial regions that have been identified around
these spectral peaks. Panel D shows the power spectrum of
the signal for one particular time frame index. Its temporal
position is indicated by vertical dashed lines in the three
other panels. Around the most prominent peaks in the power
spectrum partial regions have been identified. These are shown
as horizontal, filled bars. The frequency widths of the partial
regions at the given time instant equals the extent of these
bars on the frequency axis (ordinate). Finally, the partials are
annotated with the names of the underlying notes and their
partial indexes, i.e. A denotes the second partial of the A
note. The relative fundamental frequencies of the three notes
are approximately 1, , and 2, respectively. The partials A3
and FE, overlap, introducing amplitude fluctuations, denoted
beatings. This can be seen as intensity variations at the
beginning of the corresponding partial region in panel A in
Fig. 2. Similarly, the partials Ag, C5 and E, overlap. The
peak picking algorithm is naturally not able to detect each
of these individually. This can be seen in panel B, where
the multiple peaks do not form one clear partial trajectory.
The effect of the overlapping partials can also be observed in
column B in Fig. 1 where the envelopes of the partial regions
corresponding to the first six partials of the A note are shown.
The overlapping partials with strong beatings and erroneous
envelopes are clearly seen in the third and sixth panel from
the top, respectively. Column A shows the envelopes of the
uncorrupted partials of the original source signal in the same
partial regions.

In traditional sinusoidal modeling there can be ambiguous
situations in which the frame-to-frame peak matching algo-
rithm needs to make a hard decision. When there are several
possible candidate peaks for the continuation of a partial, only
one of these peaks can be chosen. The other peaks must be
either discarded, or modeled as separate partials. The example
with the three overlapping partials in Fig. 2 illustrates this. For
some time frame &, two or more peaks are detected (panel B)
in the narrow band region where these partials overlap (about
2600 Hz). Neither is it possible to connect these peaks into
one single partial trajectory (without ambiguities), nor do these
peaks provide estimates of the phase and amplitudes of the
underlying partials.

When working with regions covering the partial trajectories,
rather than trying to accurately characterize them, multiple
candidate peaks no longer constitute a problem. Whenever
there are two (or more) possible candidate regions for the
continuation of a given partial region, any number of these
candidate regions, as well as any non-covered bins between
them, can be included in the given partial region. In panel D
in Fig. 2 it can be seen how two candidate peaks (about 2600
Hz) have been included in the same partial region. In panel C
it can be seen how the corresponding partial region effectively
covers the multiple candidate peaks.

Partial regions provide a means for dividing the entire time-
frequency plane into non-overlapping regions €2;, indexed by
i, where each region captures the main energy from one
or more partials. Each partial region can be described by
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the corresponding indicator function I;(k, ¢), which equals 1
for (k,q) € Q; and 0 elsewhere. For a given signal, each
such region may contain a single partial or a superposition
of overlapping partials. For notational convenience, we use
the term partial to denote the energy of any signal that is
contained in a single partial region, even when the region
actually contains a superposition of two or more overlapping
partials. The term sensor partial is used to denote the part
of a sensor signal that is contained in a given partial region.
A sensor partial may consist of one single partial, or a
combination of several overlapping partials. Similarly, for the
original (unknown) source signals, the term source partial is
used.

Even if the selected partial regions do not cover the entire
time-frequency plane, they capture most of the energy in the
signal. It can therefore be assumed that the entire plane is
covered such that any residue, or bins that are not part of
any partial region, is neglected. The residue is better handled
by other separation techniques, such as those based on time-
frequency weighting, as discussed in Section I-B. Under the
assumption that the entire time-frequency plane is covered,
each of the sensor signals may be written as a sum of sensor
partials:

where each sensor partial is simply the product of the corre-
sponding sensor signal and indicator function:

C. Partial temporal envelope similarity

The separation method that we propose in this paper is based
on the observation that, for many instruments, all the partials
of a single note have similar temporal envelopes. In order to
determine how similar two partial envelopes are, a measure of
partial similarity is needed. For a given partial region Q;, the
temporal envelopes Ep,, (k) of the sensor partials P;,, (k, q)
are defined as follows:

Ep, (k) = [3 [Pim(k, 0) 2. (5)

The temporal envelope of the signal in a partial region (5)
contains information about onset, offset, and amplitude mod-
ulation, which are the fusion cues mentioned in Section I11-A.
It does not contain frequency modulation information.

In order for the temporal envelope to have an intuitive
meaning in terms of signal strength (i.e. power) as a function
of time, the choice of analysis window w(l) and hop-size L in
the STFT is restricted. For any signal s(I) with STFT S(k, q),
the sum of local powers must equal the total signal energy (up
to some constant scaling factor C):

2D ISkl =32 [w —kL)sO)] = C ) s()*.
k q ko1 l
(6)

This means that the STFT basis functions constitute a tight
frame, and yields the following constraint:

> w(l—kL)>=C, VI )
k
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Fig. 3. Partial envelope similarity for two notes, A: trumpet, B: flute. Top
row: similarity relative to the first partial, Bottom row: similarity relative to
the neighbor partial.

For the examples in this paper, we have used the half-wave
sine window, with 50% overlap. A window length of about 50
ms was chosen.

The temporal envelope shape similarity 3 between two
partials, P, (k,q) and Pj,,(k,q), can be defined as the inner
product between their normalized temporal envelopes:

8(Pu, Py) = —eiitin W0 B

v Vi 1EP., ()P /3 |Ep,,, (F)P?

This is a measure with a range between 0 and 1, where
1 means that the two normalized envelopes are identical.
Figure 3 shows this similarity measure for two different
notes. In column A the similarity of the 25 first partials
(P, Py, ..., Py;) of atrumpet note are shown. The top graph
shows the similarity of each partial relative to the first partial,
B(P;, P1). The bottom graph shows the similarity of each
partial relative to its neighbor partial, 8(P;, Pi+1). Column
B shows similar graphs for a flute note with vibrato. The
amplitude modulations makes the partials less similar, but the
general trend is the same. Even though the similarity relative
to the first partial decreases as the partial index increases, the
local similarity remains high. Of course this depends on the
type of instrument and on the note being played, but for many
instruments, and harmonic instruments in particular, there is a
significant correlation between the envelopes of the different
partials of a single note.

D. Partial grouping

Each of the defined sensor partials contains one or more
partials. In order to process these, the number of sources N
and a mapping between the sources and the partial regions
must be known. In other words, for each source it must be
known in which partial regions its partials lie and for each
partial region it must be known which sources that contribute
a partial. Existing techniques can provide this information.
In particular, for the examples in this paper, the number of
sources N was obtained by applying clustering techniques
in a spatial cue parameter space, as explained in [14]. The
mapping between sources and partial regions was made based
on harmonicity considerations [2].
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Once this information has been established it is straightfor-
ward to find all the partial regions that contain only a single
partial, as well as which source each partial is part of. For
each source that has at least one non-overlapping partial, this
provides a rough estimate of the temporal envelope shapes of
all the other partials of that source. These rough estimates are
called model partials, @, (k,q), as they serve as models for
the partials that need to be separated out of a partial region
where they overlap. If all the partials of one source overlaps
with partials of other sources the proposed method is not able
to separate this source out of the mixture, unless additional
information can be supplied.

E. Partial demixing

For each of the sensor partials containing overlapping
partials from several sources, the mixing matrices H(q) (or
its inverse) in (2) need to be estimated in order to recover the
original source partials. This is achieved by an iterative search
in the space of mixing matrices. For each candidate matrix,
its inverse is applied to the sensor partials and the envelopes
of the resulting “separated” partials are computed. The matrix
that gives separated partials with envelopes whose shapes most
closely resemble those of the model partials is chosen as the
estimate of the mixing matrix for that corresponding partial
region.

For most harmonic instruments the partials are narrow band.
This means that the partial regions are also narrow band.
Given the mixing model (2) it is possible to treat the different
partial regions independently. The individual filters of the
mixing matrix, Hp,» (¢), depend on frequency. In other words,
they vary over the frequency range of a given partial region.
However, when the partial regions are narrow band, the filters
change little over the actual frequency range. Therefore, for
each partial region, the filters can be closely approximated
by complex constants (filters with constant amplitude and
constant phase). The separation problem is then equivalent to
the problem of estimating the complex elements of a constant
mixing matrix for each partial region ;. For larger frequency
ranges, it is possible to use filters with linear phase rather
than constant phase. This does not increase the number of
unknowns or the complexity of the problem. For notational
simplicity only the former case is discussed in this paper.

Combining (2) and (4) gives

Pi1(k,q) Hii(q) --- Hin(q) |[ Sii(k,q)

7

Pim(k,q) Hari(q) --- Hun(q) || Sin(k, q)
where S;n(k, q) = I;(k, q)Sn(k, q) are the source partials. The
mixing filters H,,(q) are different for the different partial
regions (different frequencies), but are assumed to be constant
within the coverage (frequency range) of the individual partial
region. For a given partial region 2;, the mixing matrix does
thus not depend on ¢, and is denoted H;. When the rank of the
mixing matrix for a given partial region is equal to or greater
than the number of partials in that partial region, separation
of these partials is possible. This, in general, means that there
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Fig. 4. Partial envelopes for mixture of alto trombones, from left to right:

A: model partials, As, C4, and E3 respectively (closest neighbors). B:
sensor partials each containing overlapping As, Cs, and Ey4. C: separated
partials, Ag, Cs, and E4 respectively. D: original source partials, shown for
comparison.

must be as many sensors as there are overlapping partials in
that region. However, the sources to which the overlapping
partials belong to must be in different locations (giving M
independent rows in the mixing matrix). For any estimate H;
of the mixing matrix H;, separation is achieved by applying
its (pseudo-)inverse H;L on the known sensor partials. This is
similar to frequency based blind source separation techniques.
The difference lies in the way the mixing matrix is estimated.

Left multiplying (9) with the estimated pseudo-inverse
gives:

Ril(kaq) f)il (kaq) Sil (kaq)
- HF = H'H; :

. 7 . 7 . ’

Rin(k,q) Pin(k,q) Sin (k. q)
10)

where S;,, are the source partials, and R;, are the separated
partials. Each R;, represents the contribution of a single
source S, in the partial region ;. It is obvious that under
the given assumptions and with a correct estimate H; of the
mixing matrix, the separated partials in (10) are identical to
the source partials, i.e. perfect separation has been achieved.

For each partial region £2; the mixing matrix H; is estimated
by a search for the estimate H; that gives a best match between
the separated partials R;, and the model partials @,. We
achieve this by applying a standard multi-dimensional opti-
mization technique (MATLAB f m nsear ch), maximizing
the L, norm of the following similarity vector:

/Bi: (/B(Rzlan)aa/B(R’tNaQN)) (11)

F. Practical considerations

1) Reducing complexity by disregarding reverberation: In
general, the mixing matrix for a system with N sources and
M sensors has M x N (complex) unknown elements. For a
3 x 3 system this gives an 18-dimensional space of candidate
mixing matrices (9 complex elements).
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A technique that can reduce the order of unknowns is to
force all the elements of one row in the mixing matrix H to
1 [14], [15]. This can be done without loss of generality, as
long as the real mixing filters Hy,, contains no zeros. Then,
(2) can be written:

1
Xl(kJQ) Hoy Hon Hllsl(kaq)
i _ Hi, Hin i
Xum(k,q) Hun ayy | L HinSn(k,q)
Hi Hin

(12)
In the mixing matrix, the number of (complex) unknowns
has been reduced by N. The formulation of the problem
is the same as before (see e.g. (2)). The difference is that
the real source signals S, (k,q), as emitted by the sources,
has now been replaced by the same source signals as they
would be received by the first sensor, Hy,, Sy, (k, ¢). This means
that no attempt is made to remove echoes or reverberation.
However, in the context of source separation this can in
general be accepted. The problems of echo cancellation, echo
suppression, and dereverberation will not be discussed in this
paper. It can be noted that other source separation techniques
use STFT based techniques [14], [19], [20]. Our method can
therefore easily be used as an extension to these existing
methods.

2) Convergence: Even after applying the dimension reduc-
tion technique, the dimension of the space of mixing matrices
remains high. When there are 3 sources and 3 sensors, the
optimization algorithm trying to maximize (11) performs a
search in a 12-dimensional space. The norm of the similarity
vector (11) is a function in this space. Needless to say, it
can take an arbitrarily complex form, and is not, in general, a
concave function. The optimization algorithm may get trapped
in some local maxima and not converge. In general, this de-
pends on the starting estimate of the mixing matrix that is used
in the iterative optimization algorithm. We have conducted
several experiments on different sources and setups. In these
experiments, although not being extensive, the choice of the
Ly norm in the optimization of 11 gave the best convergence
behavior. We also experienced that when several sources have
very similar temporal envelope shapes, this yields more local
maxima. In this case the starting estimate is more critical for
the convergence.

If the sensors and sources are in free field, each of the
mixing filters will consist of a simple scaling factor and a pure
delay. In this case it is possible to estimate these parameters
from the model partials. For other partial regions (at different
frequencies), the complex elements of the matrix H; are
obtained by using the same scaling factors, but correcting the
phases in order to yield the same delay. The pseudo-inverse
I:Ij can be computed directly, and the partials can be separated
as in (10). Even though this is not feasible in real situations,
the estimated free-field matrix H; can be used as the starting
estimate in the iterative optimization algorithm.

In specific physical setups, it may be possible to further
reduce the dimension of the problem. For instance, if the
sensors are very closely spaced, the scale factor in the mixing
filters can be approximated by the same constant for all the

A: Model B: Sensor C: Separated D: Source
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Fig. 5. Partial frequency trajectories for mixture of alto trombones, from left
to right: A: model partials, As, C4, and E3 respectively (closest neighbors).
B: sensor partials each containing overlapping Ae, Cs, and E4. C: separated
partials, Ag, Cs, and E4 respectively. D: original source partials, shown for
comparison.

filters, leaving only the phases as unknowns. This effectively
reduces the dimension by a factor of 2.

3) Special case: When there are only 2 sensors (and
maximum 2 simultaneously overlapping partials), each mixing
matrix contains only two (complex) unknowns, since

1 1
H, = . 13
[ Hy Ha ] 13)
In this case, the inverse matrix is very simple:
1 Hsy -1
H = —— . 14
? HQQ - H21 [ _H21 1 :| ( )

Each of the rows of the demixing matrix has only one complex
unknown, up to a scaling factor of Hys — Hsy. Since our
method is based on normalized envelopes, this scaling factor
can be disregarded. This gives two independent equations,
each with one unknown parameter. Thus, the original problem
of dimension 4 has been split into 2 individual problems of
dimension 2. This provides a fast computational method not
involving any matrix inversions. The separation formula (10)
consists of only 2 complex multiply-add operations for each
time frame index & in the sensor partial envelopes. This allows
for a more extensive, iteratively refined, search for the global
maximum, in each of the two separate problems.

IV. RESULTS

In order to demonstrate the performance of the presented
method, a number of numerical simulations were carried out.
In all the simulations, (2) was a good approximation of the
mixing model and the method converged to a good estimate
of the mixing matrix. Effectively, the overlapping partials
were truly separated, recovering the amplitude modulation
and frequency modulation of the original source partials. The
quality of the separated sources therefore depends on how the
residue is handled, i.e. the energy between the partials regions
as well as the higher frequencies where no clear partials can be
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detected. In an informal test we compared the DUET method
[14] with a combined method using the proposed technique
for different numbers of overlapping partials and DUET for
the residue. Since DUET does not aim at truly separating the
overlapping partials, it may introduce artificial beatings [8]
and leakage between the separated sources. In the combined
method the quality improved, even when the proposed method
was applied only to one or two of the overlapping partials.

A. Three overlapping partials

The first example is a simulated situation of three sources
and three sensors in free-field. The three notes A, C and E,
all played by an alto trombone, were chosen as the source
signals. These are the same notes as shown in Fig. 2. All
the source signals were present at all the sensors. However,
for each sensor, the source signals were scaled and delayed
in order to simulate the wave propagation path. This setup
provides us with three sensor signals. These sensor signals are
quite similar since they all record the same scene. When the
time-frequency analysis and grouping principles of section 1ll
are applied to either of these, the information shown in Fig. 2 is
obtained. This provides us with a set of partial regions, as well
as a mapping between these regions and the different sources
(the partial labels that have been annotated in the figure).

Figure 4 shows the separation of the three overlapping
partials in this signal. In column A the envelopes of the model
partials are shown. Each of these model partials, @, (k,q),
corresponds to a different source, Sy, (k, g). In this example the
closest non-overlapping partials were chosen as model partials,
namely As, C4, and Ej3, respectively. Two of the model
partials have quite similar envelopes, whereas the duration of
the last model partial is shorter. These panels clearly show
the smooth temporal envelopes of the original alto trombone
notes, without beatings and strong amplitude modulations. In
column B, the envelopes of the overlapping partials are shown
for each of the three sensor signals. None of these are very
regular or smooth since the three original partials interact and
create heavy beatings, or amplitude modulations. Only toward
the end, when one of the partials is silent (after about 1.5
sec), the envelopes are somewhat more regular. In column C,
the envelopes of the separated partials are shown. These are
Ag, Cs, and Ey, respectively. The three overlapping partials
have been well separated, and the resemblance to the model
partials is striking. In particular, we note that the beatings
have disappeared and that the shorter partial (E4) has been
correctly recovered: after about 1.5 seconds the energy of the
other two partials (longer duration) has vanished. Finally, in
column D, the original (unknown) source partials are shown
for comparison. The separated partials have accurately retained
the amplitude of the original signals. Both the scale and the
shape of the separated partials are more similar to the original
source partials than they are to the model partials that were
employed in the demixing algorithm.

Figure 5 shows the frequency trajectories for the same
partials. The figure layout is the same as Fig. 4. In column
A, the frequency trajectories of the model partials are shown.
These are quite smooth, and relatively constant since the alto

A: Model B: Sensor C: Separated D: Source

=

N A~ O OO

D
YD

60
40

-

60
40
20

=

envelope
NS~ OO

=

N~ OO

60
40
20

0 1 2 0 1 2 0
time [sec]

0
time [sec]

Fig. 6. Partial envelopes for mixture of alto trombones, from left to right: A:
model partials, A;, C1, and E; respectively (fundamental frequencies). B:
sensor partials each containing overlapping Ag, Cs, and Ey4. C: separated
partials, Ag, Cs, and E4 respectively. D: original source partials, shown for
comparison.

trombone exhibits no pronounced frequency modulation. If
one disregards the start, where the attack transients affect the
frequency estimates and the end, where the signal energy is
very low, the frequency estimates are indeed almost constant.
The ordinates also show how these model partials were chosen
in different frequency regions. In column B, the frequency
trajectories for the three sensor signals are shown. For each
time frame the strongest spectral peak (interpolated) in the
partial region was selected in order to form these trajectories.
As previously mentioned, they are erroneous due to the fact
that only one candidate peak can be chosen in each time frame
and anyway all the peaks are the result of a superposition
of overlapping partials. Consequently, the estimated frequency
trajectories are noisy, as seen in the figure. Column C shows
the frequencies of the separated partials. Qualitatively, these
show the same behavior as the model partials. Both the
constant frequency during the steady-state and the trend at
onsets and offsets have been recovered. Finally, in column D,
the frequency trajectories of the original source partials are
shown. The trajectories of the separated partials accurately
recover those of the original source partials.

Effectively, three different partials whose frequency trajec-
tories are less than 40 Hz apart and occasionally cross each
other have been accurately separated from a 3 channel mixture.

We repeated the same separation example with another
choice of model partials. When choosing model partials whose
frequency bands lie farther away from the partial region
containing overlapping partials, the envelopes of the model
partials and the original source partials are in general less
similar (see Fig. 3). In the new example the partial regions
corresponding to the fundamental frequencies of the three
sources, i.e. Ay, C1, and Ey, were chosen as model partials.
The separation result can be seen in Fig. 6. As in the first
example, most of the beating has been removed. However,
for the sources under analysis, the duration (offset) of the
partials decreases with frequency, as can be seen in Fig. 1.



VISTE AND EVANGELISTA: SEPARATION OF OVERLAPPING PARTIALS

A: Spectrogram B: Spectral peaks  C: Partial regions  D: Power spectrum
3000 T T T
| | |
PRI B o i PP A.C.E
2500 | | \ 6se
o L |
A 5
2000 mv | m Cag
z A
T Loy I | | oo || ‘e
S 1500 | | | 3
% —— T —— A, E,
= e e T
1000 | [RNSE—_ : i ! c,
A
‘ | — ‘
§ ; 1
o] | | | | — A G
: B 1
g el I I
i L I I
0 2 2 0 2 20 0 -20

time [sec]

dB

A: Model

B: Sensor

C: Separated

D: Source

25
20
15
10

5

=
N O 0O

j

25

20
15
10

5

envelope

=

N A O 0O

25
20
15
10

5

[

N A~ O 0O

Fig. 7. Three notes (A minor chord) played by violins, from left to right: A:
spectrogram, B: spectral peaks, C: partial regions around the spectral peaks,
D: power spectrum and detected partial regions for one particular time frame
index (indicated by dashed lines in the other panels).

This means that the chosen model partials slightly overestimate
the duration of the owverlapping partials. In this case, the
estimate of the mixing matrix becomes slightly erroneous,
resulting in some leakage between the separated partials. For
example, some of the energy of the long duration Ag and
Cs is still present in the separated Ey4. This can be seen as
a “tail” at the end of the envelope for the separated E4. A
possible explanation is that the tail increases the duration of
this separated partial and yields higher similarity in (8) to the
model partial whose duration was longer.

B. Frequency and amplitude modulation

A similar experiment, where the notes were played by a
violin, is shown in Fig. 7-9. The notes A and E were played on
open strings, without any pronounced frequency modulation.
The C tone was played with vibrato, and the frequency
modulations on its partials can be seen in Fig. 7. The vibrato
also introduces amplitude modulations, as can be seen in the
second row in Fig. 8. The amplitude modulation, although
slightly different from that of the original source, is retained
in the separated Cj. In the other two separated partials, which
were without vibrato, the amplitude modulations have been
correctly removed. Figure 9 shows the frequency trajectories
for the partials. In the separated partials the frequency mod-
ulation of the vibrato has been retained in the C' tone (with
some error), whereas is has been removed in the other two
partials.

When a note has strong amplitude modulations, the perfor-
mance of the separation technique may degrade. This depends
on the physics of the underlying instrument. For many in-
struments, frequency modulations are produced by varying the
excitation, e.g. shaking the finger on the violin string board. In
such cases, the frequency modulations of the different partials
are synchronized (due to the change in effective length of the
string imposed by finger movements). However, the amplitude
modulations of the various partials are strongly related to the
body modes of the instrument [25], that are, in general, not
synchronized. This means that, even though different partial
envelopes may look similar, their amplitude modulations may
be out of phase, or even have different modulation frequencies.

1)

0 2 0 2 0 2 0
time [sec] time [sec]

Fig. 8. Partial envelopes for mixture of violins, from left to right: A: model
partials, As, C4, and E3 respectively (closest neighbors). B: sensor partials
each containing overlapping Ae, Cs, and E4. C: separated partials, Ag, Cs,
and E4 respectively. D: original source partials, shown for comparison.

In such cases, the similarity measure in (8) is less meaningful.
In the example above, the two notes without vibrato have
led to correct estimates of the corresponding rows in the
demixing matrix. For the note with vibrato, the estimate of the
corresponding row in the demixing matrix is slightly erroneous
because of the asynchrony in envelope modulations between
the model and source partials. The difference in temporal
envelope shape can be seen in Fig. 8. The erroneous row in
the demixing matrix leads to scaling errors in the two other
separated partials (correct shapes, but incorrect scale/phase)
and errors in both the amplitude and frequency modulation of
the separated vibrato partial.

It is possible to smooth the partial envelopes before com-
puting the similarity in (8) in order to remove any strong
amplitude modulations. In this case, however, most of the
envelope information is lost and only the overall duration
of the partials is significant in the separation. A better so-
lution is to use similarity of frequency modulations as the
similarity measure in the optimization method, as opposed to
similarity of envelopes. For instruments where the frequency
modulations of the different partials are in synchrony, like
the violin, this can improve the separation quality. We have
achieved this in some manual experiments. However, it is not
clear how different similarity measures, namely similarity of
envelopes and similarity of frequency modulations, should be
combined in the similarity vector (11). In addition, there may
be convergence issues, since the space in which this vector is
to be maximized is rather complex.

C. Two overlapping partials

For a more realistic example, an artificial two-channel mix-
tures was generated by using head related impulse responses
(HRIR) from the CIPIC database [26] as the mixing filters.
These impulse responses are about 4.5 ms long filters (200
samples at 44.1kHz sampling rate), measured for a range
of azimuths and elevations around various heads. Figures
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Fig. 9.  Partial frequency trajectories for mixture of violins, from left to

right: A: model partials, A5, C4, and E5 respectively (closest neighbors). B:
sensor partials each containing overlapping As, Cs, and E4. C: separated
partials, Ag, Cs, and E4 respectively. D: original source partials, shown for
comparison.

10 and 11 show the envelope and frequency trajectories in
the separation of two overlapping partials in a two-channel
(binaural) mixture of two notes. One of the notes is played on
a violin with vibrato, and the other note on a trumpet without
vibrato. The figure shows the separation of the first overlap,
i.e. the partial region (with overlapping partials) at lowest
frequency. The closest neighbor partial regions were chosen
as models. The figure layouts are the same as in previous
examples, but with two panel rows in stead of three. The
amplitude and frequency modulations of the violin are seen in
the top panel rows in Fig. 10 and Fig. 11, respectively. In this
case, for the violin partials containing vibrato, the amplitude
modulations of the model partial and the original source partial
are relatively synchronous and the envelope similarity measure
gives nice separation. The separated partials have recovered
the shapes of the original source partials to a high degree of
accuracy, in both amplitude and in frequency.

We emphasize that the envelopes of the separated partials
(column C) are better than what could be expected. Their
shapes are closer to those of the perfect source partials
(column D) than to those of the model partials (column A).
Furthermore, even though the method works with normalized
envelopes, the separated partials have retained not only the
shapes of the original source partials, but also the correct
scaling.

V. CONCLUSIONS

We have presented a method for separation of overlapping
partials in multi-channel audio mixtures. The method com-
bines aspects of time-frequency analysis and spatial demixing
techniques. It is based on the maximization of the similarity of
normalized envelopes of the partials and is able to accurately
recover the amplitude and frequency modulation of the original
source partials from the sensor signals where they overlap.
The method works on partials individually, and can therefore
also work (to some extent) in scenarios where there are

A: Model B: Sensor C: Separated D: Source
30 70
25 60
50
@ 20
5} 40
g1 30
T 10 20
5 10
30 70
25 60
50
@ 20
g 5 40
[}
2 30
© 10 20
5 10
0 2 0 2 0 2 0 2

time [sec] time [sec]

Fig. 10. Partial envelopes, from left to right: A: model partials (closest
neighbors). B: sensor partials. C: separated partials. D: original source
partials.
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Fig. 11. Partial frequency trajectories, from left to right: A: model partials

(closest neighbors). B: sensor partials. C: separated partials. D: original
source partials.

more sources than sensors. Finally, it can easily be used in
conjunction with several of the existing source separation
methods.
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Amplitude envelopes of the first 6 partials of an A
note played by an alto trombone. A: Original source
partials. B: Partials in a mixture, where the third and

sixth partials overlap with partials of other instruments.

Three notes (A minor chord) played by alto trombones,
from left to right: A: spectrogram, B: spectral peaks,
C: partial regions around the spectral peaks, D: power
spectrum and detected partial regions for one particular
time frame index (indicated by dashed lines in the other

Partial envelope similarity for two notes, A: trumpet,
B: flute. Top row: similarity relative to the first partial,
Bottom row: similarity relative to the neighbor partial.
Partial envelopes for mixture of alto trombones, from left
to right: A: model partials, As, C4, and E3 respectively
(closest neighbors). B: sensor partials each containing
overlapping Ag, Cs, and E4. C: separated partials, As,
Cs, and E4 respectively. D: original source partials,
shown for comparison. . . .. .............
Partial frequency trajectories for mixture of alto trom-
bones, from left to right: A: model partials, As, C4, and
E3 respectively (closest neighbors). B: sensor partials
each containing overlapping As, Cs, and E4. C: sepa-
rated partials, Ae, Cs, and E4 respectively. D: original
source partials, shown for comparison. . . . . ... ..
Partial envelopes for mixture of alto trombones, from
left to right: A: model partials, A1, C1, and E; respec-
tively (fundamental frequencies). B: sensor partials each
containing overlapping As, Cs, and E4. C: separated
partials, Ag, Cs, and E4 respectively. D: original source
partials, shown for comparison. . . ... ... .. ..
Three notes (A minor chord) played by violins, from left
to right: A: spectrogram, B: spectral peaks, C: partial
regions around the spectral peaks, D: power spectrum
and detected partial regions for one particular time

frame index (indicated by dashed lines in the other panels).

Partial envelopes for mixture of violins, from left to
right: A: model partials, As, C4, and E3 respectively
(closest neighbors). B: sensor partials each containing
overlapping Ag, Cs, and E4. C: separated partials, As,
Cs, and E4 respectively. D: original source partials,
shown for comparison. . . .. .............
Partial frequency trajectories for mixture of violins,
from left to right: A: model partials, As, Cs4, and Es3
respectively (closest neighbors). B: sensor partials each
containing overlapping Ag, Cs, and E4. C: separated
partials, As, Cs, and E4 respectively. D: original source
partials, shown for comparison. . . . . . ... ... ..
Partial envelopes, from left to right: A: model partials
(closest neighbors). B: sensor partials. C: separated
partials. D: original source partials. . . ... ... ..
Partial frequency trajectories, from left to right: A:
model partials (closest neighbors). B: sensor partials.
C: separated partials. D: original source partials.
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