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Power, Spatio-Temporal Bandwidth, and Distortion
in Large Sensor Networks

Michael Gastpar, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—For a class of sensor networks, the task is to monitor
an underlying physical phenomenon over space and time through
an imperfect observation process. The sensors can communicate
back to a central data collector over a noisy channel. The key pa-
rameters in such a setting are the fidelity (or distortion) at which
the underlying physical phenomenon can be estimated by the data
collector, and the cost of operating the sensor network. This is a
network joint source-channel communication problem, involving
both compression and communication. It is well known that these
two tasks may not be addressed separately without sacrificing op-
timality, and the optimal performance is generally unknown.

This paper presents a lower bound on the best achievable
end-to-end distortion as a function of the number of sensors, their
total transmit power, the number of degrees of freedom of the un-
derlying source process, and the spatio-temporal communication
bandwidth. Particular coding schemes are studied, and it is shown
that in some cases, the lower bound is tight in a scaling-law sense.
By contrast, it is shown that the standard practice of separating
source from channel coding may incur an exponential penalty in
terms of communication resources, as a function of the number of
sensors. Hence, such code designs effectively prevent scalability.
Finally, it is outlined how the results extend to cases involving
missing synchronization and channel fading.

Index Terms—CEQ problem, information theory, joint source-
channel coding, sensor networks, separation theorem.

I. INTRODUCTION

ERFORMANCE limits for various types of sensor net-

works are currently under investigation, see, e.g., [1]-[4].
While a majority of the efforts concerns either the sampling
and compression problem, or the capacity problem, the present
paper investigates the joint problem of compression and com-
munication. The class of sensor networks in this study is
schematically illustrated in Fig. 1 and could be termed mon-
itoring sensor networks: Their goal is to observe a physical
system over time and space at the highest possible fidelity.
A simple example of such a sensor network was analyzed in
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Fig. 1. Schematic rendering of the considered sensor network. There are L =
4 underlying physical phenomena (depicted by the empty circles), M = 10
sensing devices (the black disks), and N = 4 base stations (the squares).

[5], [6], and extensions thereof in [7]. This paper generalizes
this analysis to multiple data sources and multiple base sta-
tions, with random parameters both in the source observation
mechanism and in the communication channel. The considered
network contains L (discrete-time) sources. The parameter
L models the number of degrees of freedom of the under-
lying physical process. Much of the paper concerns the case
where the source outputs are distributed according to a (joint)
Gaussian law. Each of the M sensors observes a different com-
bination of these L sources, subject to noise. The M sensors
communicate to /N base stations. For simplicity, we assume that
communication between the base stations occurs over separate
channels and is noiseless. Hence, the data collection point has
access to the received values of all N base stations and must
form an estimate of the underlying L sources. Moreover, we
allow K channel uses for each observation. Hence, K can be
interpreted as the temporal bandwidth of the communication
channel, while (under appropriate conditions) N models its
spatial bandwidth. The key goal of this paper is to characterize
the relationship between the number of underlying sources
L, the end-to-end distortion D, the total sensor power P,
and the temporal and spatial bandwidth of the communication
channel, K and N, respectively.

The remainder of the paper is organized as follows: In
Section II, we define the general sensor network topology
and model studied in this paper. In Section III, we specify a
particular case of the general topology, the Gaussian sensor
network. Sections III, IV, and V are devoted to this special case.
Using the definitions given in Section III-A, we determine in
Section III-B a lower bound to the distortion, revealing two
fundamentally different contributions. First, there is a distortion
due to the fact that the sensor measurements are noisy. This term
is independent of the communication resources and typically
decreases like 1/M, where M is the number of sensors. This
is an intuitively pleasing behavior, corresponding to the decay

0733-8716/$20.00 © 2005 IEEE
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Fig. 2. Sensor network topology considered in this paper: L sources are

observed in a noisy fashion by M sensors (the boxes labeled F; through F;)
that communicate to N base stations over a power- and bandwidth-constrained
interference channel. The sensors may have (generally limited) collaboration
capabilities (illustrated by the dotted lines in the figure), and there may be a
certain feedback signal from the destination (illustrated by the dashed arrows
in the figure).

of the mean-squared error when the sources can be estimated
directly based on the observations, ignoring the communication
stage. Second, there is a distortion due to the fact that the
channel is noisy and subject to interference. This distortion
can be decreased by allowing more power and/or bandwidth.
Clearly, there is an incentive to select these parameters in such
a way as to make the second distortion term decrease at the
same rate as the first term (as the number of sensors increases).
In Section III-D, we characterize the power and bandwidth
necessary to achieve this goal. Then, in Section IV, we discuss
schemes that achieve the optimum distortion scaling law for
particular power-bandwidth tradeoffs, and we illustrate that
separating source from channel coding can lead to exponen-
tially suboptimal scaling behavior. Up to this point, we assume
that the sensors operate with perfect synchronization. In Sec-
tion V, we extend our results to the unsynchronized case. For
simple examples of unsynchronized sensors, we show that our
scaling laws continue to hold.

II. SENSOR NETWORK MODEL

The sensor network model studied in this paper is shown in
Fig. 2. There is a physical phenomenon, characterized by L
variables, representing the degrees of freedom of the system or,
equivalently, its current state. We model each degree of freedom
as a random process in discrete time.! Generally, the degrees
of freedom cannot be observed directly. Rather, in typical sce-
narios, each sensor measures a (different) noisy version of a
combination of all of these variables. We model this observa-
tion process in a probabilistic fashion as a conditional distri-
bution of the observations given the state. As expressed by the
dotted lines in Fig. 2, the sensors may have the possibility to
collaborate to some (generally limited) extent, and there may be
feedback from the base stations to each of the sensors. Based on
the respective sensor readings, the intersensor communication,
and the feedback signals, each sensor has to produce an output

IThe discrete-time model is justified by arguing that the state of the system
does not change very rapidly. This may be a serious restriction for certain sce-
narios. The continuous-time extension is currently under investigation.

to be transmitted over the communication link (e.g., a wireless
link). This channel is again modeled in a probabilistic fashion
by a conditional distribution. The channel outputs are received
by the base stations. In this paper, we assume that the central
data collection unit is ideally linked (e.g., over a backbone net-
work) to the base stations, The goal of the data collector is to
get to know, not the raw sensor readings, but the values of the
underlying degrees of freedom (or state) of the physical system.

More precisely, and to fix notations, the physical phenom-
enon is characterized by the sequence of random vectors

{Sllhiez = (S Solil, - S1lDbie (D)

where ¢ is the time index. The analysis presented in this paper
addresses the case where {S[i]};cz is a sequence of inde-
pendent and identically distributed (i.i.d.) random vectors.
To simplify the notation in the rest of this paper, we denote
sequences as S7 = {STi] le- We use the upper case S to
denote the random variable, and the lower case s to denote
its realization. The distribution of S is denoted by Ps(s). To
simplify notation, we will also use the shorthand P(s) when
the subscript is just the capitalized version of the argument
in the parentheses. The random vector S[i] is not directly
observed by the sensors. Rather, sensor m observes a sequence
Ui, = {Uy[i]}7_, which depends on the physical phenomenon
according to a conditional probability distribution. For the
scope of this paper, the observation process is memoryless in
the sense that the observation at time ¢ only depends on the
source outputs at time 7. Hence, the observation process can
be characterized by P(u1,...,un|s1,...,s1). Sensor m may
also receive information from other sensors, as well as from the
destination, as illustrated by the dotted lines in Fig. 2. Denoting
the totality of this information as it is available to sensor m up
to time ¢ — 1 by Vi~1, the signal transmitted by sensor m at
time n can be expressed as

Xonli] = F) (U3, Vi) @)

The transmitted signals satisfy a power, or more generally, a cost
constraint of the form
E[p(X{“X;.”PXL)}SIY 3)
This is a generalization of the sum power constraint for all the
sensors together. In some variations of our problem, it is also in-
teresting to consider a family of simultaneous constraints, with
cost functions p;(-) and maximum expected cost I';. This is
a generalization of the individual power constraints for each
Sensor.
The final destination uses the outputs of the communication

channel Y7 = .(Ylj Y4, ..., Y1) to construct estimates 7 =
(57,53,...,57). The task is to design the decoder G such that
S9 = G(Y7) as close to S7 as possible, in the sense of an

appropriately chosen distortion measure d(s?, $7). For a fixed
code, composed of the encoders Fy, Fs, ..., Fi at the sensors
and the decoder GG, the achieved distortion A is computed as
follows:

A:Ewyﬁﬂ. @
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Fig. 3. The considered linear Gaussian sensor network: A and B are

appropriate matrices.

The relevant figure of merit is, therefore, the tradeoff between
the cost I' of the transmission (3), and the achieved distortion
level A (4). The problem studied in this paper is that of finding
the optimal tradeoffs (I', A), where optimal is understood in
an information-theoretic sense, i.e., irrespective of delay and
complexity, as j — 00.

Scaling Law Notation: In this paper, we establish scaling
laws, denoted by the symbol ~, which here is taken to mean
“asymptotic equivalence.” More precisely, we write scaling laws
as

f1(M) ~ fa(M) ©)

which simply means that limp; o f1(M)/f2(M) = e, for
some constant ¢ > 0. The special case when ¢ = 1 will be
called a strong scaling law, since it correctly reports both the

scaling behavior and the important constants, and will be de-
noted as f1(M) ~ fo(M).

III. GAUSSIAN SENSOR NETWORKS

A simple case of the sensor network defined in Section II
and illustrated in Fig. 2 is the scenario when all involved sta-
tistics are Gaussian, and the observation process, as well as the
communication channel are characterized by linear transforms.
This is illustrated in Fig. 3. In particular, there are L physical
sources (which, if desired, may be interpreted as the spatial or
temporal bandwidth of the source), M sensors, and NV receivers
(base stations). The receivers are assumed to be ideally linked
to each other: in the considered network model, the data collec-
tion point has access to the exact received value at each of the
N base stations. This example is of particular interest because
the scaling behavior can be cast in a simple, explicit formula.

A. Network Parameters

1) Source Bandwidth L and Observation Process: The
source is characterized by L i.i.d.2 circularly complex Gaussian

2In the Gaussian case under mean-squared error distortion, it is without loss
of generality to assume the sources S, S>, ..., S to be independent: Suppose
instead that they have covariance matrix Z s (~and mean zero). Then, we can
consider L independent random variables Sy, Ss, ..., S, and simply change
the matrix A in (7) below into AQ ', where () is the Karhunen—Loéve transform
of S, i.e., the unitary matrix ¢ such that Q¥ 3 _ @ is diagonal.

random variables with mean zero and variance o%. The obser-
vation process is modeled as

L
Um = Wm + Z am,KSZ (6)

=1
form = 1,2,..., M, where W,,, is i.i.d. circularly complex

Gaussian with mean zero and variance 0‘24,. We collect the co-
efficients a,,, ¢ into the matrix A € CM*L defined as

) ai,L
a1 a2 a2 [,

A= a3 1 a3,2 a3, I, . @)
ap,1  Qan2 aM,L

The matrix A has min{M, L} singular values that we denote by
a1, e, .. .. For the scope of this paper, the coefficients a,, ¢ are
chosen according to a given distribution, and we suppose that
their values are known throughout the network. Later, we argue
that under certain circumstances, the sensors need not know
these values, and the destination only needs limited knowledge,
without changing the scaling behavior.

In the sequel, we will use the shorthand notation E 4[] to
denote the expectation over the distribution of the entries of the
matrix A.

2) Spatial Bandwidth N of the Communication Channel:
The communication channel is the standard additive white
Gaussian multiple-access channel, modeled as

M
m=1
forn = 1,2,...,N, where 7, is i.i.d. circularly complex

Gaussian with mean zero and variance 0%. We collect the
coefficients by, ,, into the matrix B € CN*M defined as

big b2 bis b1,
B= : : : : 9)

bnvi bn2 bngs by,

where at first, the entries b, ,,, are assumed fixed for all times
and known throughout the network.3

The matrix B has min{/N, M} singular values that we de-
note by 1, 32, . . .. Each nonzero singular value corresponds to
a separate spatial channel. In this sense, the rank of B corre-
sponds to the spatial bandwidth of the channel. For the scope of
this paper, special interest is devoted to the case where N < M
and, hence, we denote the number of nonzero singular values by

o def

N = rank(B). (10)

The harmonic mean of the squares of the nonzero singular

values is denoted by
~1

N
H(B) = %Z;—Z (11)
n=1""

3In Section V, this assumption is relaxed; instead, we assume the coefficients
b, . to be randomly selected in every time slot, but known to the data collector,
in line with the standard models for fading channels.
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and their geometric mean by

12)

3) Temporal Bandwidth K of the Communication Channel:
The channel can be used K times for each source sample. This
is equivalent to multiplying the bandwidth of the channel by a
factor of K and, hence, permits to study the temporal bandwidth
of the channel.

4) Power on the Communication Channel: Let X, [j] be the
signal transmitted by sensor m in time slot j. The power on the
communication channel is constrained as

S5 Bxabl] < o2

j=1m=1

(13)

for some suitably large .J. That is, Pt denotes the average total
sensor power available per observation vector (Uy, ..., Uys).

5) Target Distortion: The goal of the sensor network is to
minimize the mean-squared error

1 L
D=2YF [|Sg - S*g|2]
=1

where the expectation is over the distribution of the source
vector .S, the distribution of all the noises W1, ..., W, Z, as

well as the distribution of the matrices A and B.

(14)

B. Lower Bound to the Optimal Distortion Scaling Law

In [6] and [7], we presented lower bounds to the distortion
that can be achieved in the Gaussian sensor network defined
in Section III-A for a fixed observation matrix A, and a fixed
channel matrix B. This paper extends these bounds to the case
where A is randomly chosen and known to the sensors.

Theorem 1: The distortion that can be achieved in the
Gaussian sensor network (defined in Section III-A) cannot be
smaller than*

Dlower<M7 Pt0t7L7K7 N)

KN

1

W N ey | s (15)
ool + a%v] ¢ + 22 G(P)

where « is distributed according to the unordered> singular
values of A, (1, 09,...,0% are the nonzero singular values

’

of B, o% is the variance of the underlying sources, o3 is the
variance of the observation noises, a% is the variance of the
noises in the communication channel, P, is the total sensor
transmit power for the K channel uses, N is the rank of the

matrix B, and
2 4
L ajo
EA|:l§ 10g—2552:|
¢ 2 L =1 aloZtol,

. _ 90
H(B)
4For “large” enough total sensor power P, see Remark 3.

SThat is, « is a generic random variable whose distribution is equal to the
distribution of the unordered singular values of A.

(16)
a7)

where aq, as, ..., ar are the singular values of the matrix A,
and F 4 denotes the expectation over the distribution of the
matrix A.

The proof of this theorem is outlined in Appendix I.

Remark 1: In typical cases (see the examples below in
Section III-C), ¢; and c» tend to a constant limit as M — oo
and, hence, are not directly scaling-law relevant.

Remark 2: This outer bound includes the case of arbitrary
collaboration between the sensors, and of arbitrary feedback sig-
nals from the data collection point to the sensors.

Remark 3: The statement of Theorem 1 is valid for “large
enough” P.¢. The full solution is given in Appendix I, where it
is shown that for some of the most interesting cases (including
both examples discussed next in Section III-C), as M — oo,
any Pt > 0 is “large enough.”

Remark4: For the lower bound (15), the spatial and temporal
bandwidth, N and K, only appear in the shape of the product
K N, which we sometimes refer to as the spatio-temporal, or
effective bandwidth of the communication channel.

C. Examples

Example 1 (Idealized Case): To illustrate Theorem 1, note
first that the dependence of the distortion on the number of sen-
sors M is through the singular values a, and 3,,. Suppose that
L, K, and N are fixed, while M increases. For the sake of
this simple example, consider the case where A has orthogonal
columns, and B has orthogonal rows. In particular, suppose that
all entries have the same magnitude, denoted by « and [, re-
spectively, but their phases are chosen such as to ensure orthog-
onality, like, e.g., in the Fourier matrix. Then

af y =Mog, for £=1,2,...,L (18)
721,1W :Mﬂgl for n= 1727 . 7N (19)
Hence, N = N and (15) evaluates to
Diower(M, Pooy, L, K, N) = o501y
lower s L tot, Ly L3y - MOZ%O'% + U%V
7
adod 1 20)

M Po 32

Gy

2
2.2 Tw
agos+3r \ 1

The key insight of this example is that the distortion scales at
best like

1
D(M‘,Ptot,L,K7N) ~ M

2D
irrespective of the available resources in terms of power
P;,t, temporal bandwidth K, and spatial bandwidth N of the
communication channel. We develop this analysis further in
Section III-D.

As another example, in [7], a special sensor network geom-
etry is considered that could be called circulant sensor network:
underlying sources, sensors, and base stations all lie on con-
centric circles. Such a geometry gives rise to circulant matrices
AH A and BB . The resulting behavior of the singular values
can be shown to exhibit (essentially) the behavior characterized
by (18) and (19), respectively, leading to a lower bound of the
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type of (20). Here, we continue to consider an example where
A is chosen randomly.

Example 2 (Semi-Circle Law): Suppose now that the entries
of the matrix A are selected i.i.d.6 according to a given distribu-
tion p(a) with zero mean and variance o'2. Then, we can define
the scaled matrix A as follows:

a1 01,2 ai,r

L a1 022 az,,
A=_—_| a31 asp as,L (22)

vM

ap,1 M2 an,L

Denote the singular values of the matrix A by a4, ..., and con-
sider the following probability distribution:
1 ~2

Py(z) = 7 |{¢: a7 < a}| (23)

where |{{ : & < z}| denotes the number of eigenvalues G2, for
{=1,2,..., L, that are smaller than z. It is well known that as
long as L. < M, the quantity P () converges in probability to
the following version of the semi-circle law [8], [9]

M

Pa (@) = 2w Lx

(:17 — dl)(dQ — 117) (24)

fordy < < da, where dy = (1 — \/L/M)? and d = (1 +
/L/M)?, when M — oo and the ratio L/M is fixed. While
the precise evaluation of the bound of Theorem 1 is beyond the
framework of this paper, (24) reveals that as long as L < M,
all eigenvalues &y are strictly larger than zero (in probability, as
M — o0). Clearly

o = Ma? (25)
Hence, we find that
- delly
“ a0l + o3 M a2 + %
ef C
e (26)

where, as a consequence of (24), ¢( tends to a constant as M —
00. Moreover, using our findings in (16), we can rewrite in terms
of &y as follows:

27

which tends to a constant as M — oo (also a consequence of
(24)). To conclude this example, suppose that the channel matrix

6Assuming the entries of A to be i.i.d. is certainly an inappropriate approach
for strongly “geometric” phenomena such as sound or image; it may be of in-
terest to other types of phenomena, including gas and liquid concentrations
under real-world conditions.

B is chosen like in Example 1. Then, we find the following
lower bound:

KN
L
Co 1
Diower(M, Piot, L, K, N) = Wi + 1 1+M—P‘°t33
(KNo%)
78

where ¢y and c¢; are the constants defined in (26) and (27), re-
spectively. In conclusion, we remark that this is essentially the
same behavior (as a function of M) as in the simple and ideal-
ized case studied in Example 1.

D. Necessary Power and Bandwidth

The lower bound to the distortion presented in this section,
(15), is expressed in an intuitively pleasing fashion in terms of
two separate contributions, the first of which is independent of
the communication capabilities. This term is solely due to the
fact that the underlying physical reality cannot be observed per-
fectly, but rather is always subject to measurement noise. As
the number of sensors M increases, the observation process is
characterized by a matrix sequence A" with singular values
aEM), and the behavior of the observation noise term is gov-
erned by the speed at which the slowest-growing singular value
of the matrix sequence A(*) increases.

For the considered Examples 1 and 2, the smallest sin-
gular value increases like VM, and as a consequence, the
first distortion term decreases like 1/M. In general, if the
slowest-growing singular value of the matrix sequence A(M)
increases like M%/2, the best distortion scaling behavior one
can expect is 1/M?®, and the key question becomes: What
resources are necessary in order to achieve this optimum
distortion scaling law? In other words, how much power and
bandwidth must be invested such that the second summand in
(15) decays at the same rate as the first? This question can be
answered based on Theorem 1. To summarize this insight:

Corollary 2: Suppose that the slowest-growing of the sin-
gular values aﬁM), { =1,2,..., L, of the observation matrix
sequence AM) grows like M%/2. Then, the optimal distortion
scaling law is at best 1/M' 4 and the power P;., and the band-
width K and N, required to sustain this distortion scaling law
must satisfy

=
2

1
VI, 62

Example 1, Continued: For the idealized sensor network
considered in Example 1, in order to achieve the optimal dis-
tortion scaling law of 1/M, the resource parameters Piot, K,
and N = N must be chosen such that

MP, 32\ T
14 - totfo ~ M.
< - (KNa%))

~a @)

Piot
2 + KNO’Z

(30)

Hence, we find the necessary total power to sustain the optimal
distortion scaling law of 1/M must scale at least as follows:

Pt ~ KNM®E~ 1, (31)
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According to this formula, provided that L = K NN, a constant
total power shared by all the sensors may be sufficient to achieve
the optimal scaling behavior. In Section I'V, we confirm this for a
class of sensor networks. Moreover, suppose that the number of
sources (i.e., the source bandwidth) L increases with M. Then,
the formula says that unless the effective channel bandwidth
KN also increases with M, the minimum required total power
increases exponentially in the number of sources L.

IV. CODING SCHEMES

In order to assess the value of the bound developed in
Section III, this section determines achievable (or approach-
able) cost-distortion tradeoffs.

First, in Section IV-A, we analyze the performance of a
scheme that separates source from channel coding. In partic-
ular, we present a lower bound on the distortion for any coding
strategy under which each sensor attempts to communicate a
separate message (a bit stream) to the destination with van-
ishingly small error probability. The corresponding scaling
behavior is exponentially worse than the fundamental lower
bound of Theorem 1, raising the question whether our lower
bound is too loose.

In Section IV-B, we show that this is not the case in gen-
eral: we present a class of networks for which the scaling be-
havior as predicted by Theorem 1 can indeed be achieved. In
extension of previous work [6], [7], [10], we analyze a simple
joint source-channel coding strategy where the sensors transmit
scaled sensor readings directly for the case L = N > 1 (while
K =1).

A. Separate Source and Channel Coding

It is well known that separate source and channel coding
does not lead to optimal performance in general networks,
but it is not known whether it leads to a different scaling be-
havior. To analyze the optimum performance for a scheme that
separates source from channel coding, one must evaluate the
optimum rate-distortion performance for the source network
side, and combine it with the capacity of the channel network.
This is illustrated in Fig. 4. The key characteristic of such a
strategy is that each sensor attempts to convey a message (a
bit sequence) across the communication channel in such a
way that the base station can decode it with vanishing error
probability. Unfortunately, only very few results are known
for the general rate-distortion behavior of source networks and
the capacity-cost behavior of channel networks. Consider the
special case where A and B are fixed matrices where all entries
have unit magnitude, and the columns of the matrix A, as well
as the rows of B are orthogonal. Then, a lower bound to the
optimum performance for the source coding problem in Fig. 4
(referred to as the CEO problem [11], [12]) has been found in
[13, eq. (6)]. The rate available to communicate the resulting
M bit streams to the destination cannot be larger than the ca-
pacity of the Gaussian multiple-input-multiple-output channel
with inputs X, ..., X and outputs Yy, ...,Y, (see Fig. 4),

—_— X —
A
2
U X
S B3, [T Fy 3
Sa
sref[ @ || A . B
SL
W
bl
L Ul M L

Fig. 4. Schematic rendering of separate source and channel coding for the
single-source Gaussian sensor network. The bit sequence that sensor m needs
to communicate to the base stations is denoted by T',,. F/ and F!' denote
source and channel encoding at sensor 12, respectively, and G/ and G’ denote
channel and source decoding at the base stations, respectively. Note that for
simplicity, we assume that the sensors cannot collaborate (see Remark 6), and
that no feedback is available.

which is well known [see, e.g., [14], [19], and (50)—(52)]. For
sufficiently large M, this evaluates to

J%’U‘%V

o352 10g, (1+ 2t ) + o,
(32)
To compare with the lower bound (Theorem 1), suppose for ex-
ample that P,s = MP, and that L, K, and N are constant.
Then, the resulting distortion behaves like

) 1

logo M P

D(M7Pt0t7L7K7N) Z

D(M, P (33)
or exponentially worse than the lower bound of Theorem 1, see
21).

Remark 5: In the special case where there are N = M base
stations and the matrix B is full rank, i.e., N=M , the distortion
scaling behavior of separate source and channel coding, given
in (32) becomes 1/M also, closing the gap. The simple case
where B is the (M -dimensional) identity matrix, and error-free
messages are transmitted (rather than Gaussian sources, as in
this paper) has been addressed in [4].

Remark 6: When the sensors can collaborate perfectly and
at no cost, it can be shown easily that the bound (32) no longer
applies. Rather, in that case, the overall scenario becomes a
point-to-point communication system for which the optimum
performance is known to coincide with Theorem 1.

B. Joint Source-Channel Coding

In this section, joint source and channel coding strategies are
analyzed. The goal is to reduce the exponential gap between the
performance established in (32), and the lower bound of (21).
From (31), we see that if the number of degrees of freedom of
the source L is equal to the spatio-temporal channel bandwidth
KN , then the total power P;.t, as a function of M, must be at
least constant. In this subsection, we present a class of sensor
networks for which a constant total power P, is also sufficient
to achieve the distortion scaling law given by the lower bound
determined in Section III-B.
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1) Single Base Station: The first special case we consider is
the scenario when N = N = 1. Hence, in order for source
and channel bandwidth to be equal, L = K. To keep notation
simple, the following theorem determines an achievable distor-
tion for the special case b,, = 1, form = 1,2,..., M. Itis
straightforward to extend the result to the case of general b,,, at
the expense of extra notation.

Theorem 3: For the Gaussian sensor network defined in
Section III-A with L = K and N = 1, and with b,,, = 1, for

m=1,2,..., M, the following distortion can be achieved:
0%0%
Dy (M, Pot(M)) = Eo | 55—
a? O’S + o“

2 2
alu[Z]JZ

1
+Ptot(M)EA Z (

2, .2 \2
o (i)
95

where oy, s, ..., ar denote the singular values of A, and «
is distributed according to their unordered distribution, ag is
the variance of the underlying sources, o3, is the variance of
the observation noises, a% is the variance of the noises in the
communication channel, P is the total sensor transmit power
for the K channel uses, and s denotes the /th largest of the

(34)

sensed POWTS Uy, U = S vey |am o|?0% + 02

To establish this theorem, it suffices to consider a scheme that
dedicates one of the L channel uses for each of the L sources.
In the dedicated channel use /, the sensors apply the filtering
coefficients appropriate to estimate the source Sy from the ob-
servations Uy, Us, ..., Uyy.

Interestingly, this achievable distortion does coincide (in a
scaling sense) with the lower bound of Thm. 1 in some cases:

Example 1, Continued: For the idealized sensor network
considered in Example 1, the bound evaluates to

2 2 2 4
L0, afo 1
D+(M. P, _ SYW ~ o¥s
(M, t0t7L)_Ma202—|—02, A s, o  MPu
0~'s 4% OZOO'S-FW (LQ(ré)
(35)

where ¢1 = (oo +03)/(ado%+ao%, /M) tends to a constant
as M — oo. Clearly, this describes the same scaling behavior
as the lower bound, (20) with [33 =1,K=L,and N =1, and
it also shows that a constant total power is sufficient to achieve
the optimum 1/M distortion scaling law, in line with (31).

2) Matched Observation and Channel Matrices, A and B:
When there are many base stations /V, a more efficient strategy
can be implemented: from each channel use, up to N sources
can be efficiently estimated, based on the N received values at
the base stations. Such a strategy works whenever the matrices
A and B are appropriately matched.

To keep matters simple, supposethat L. = N > land K =1,
and that the matrix A is fixed, rather than randomly chosen.
Then, a strong notion of “matched” matrices A and B can be
defined as follows.

Definition 1 (Matched Observation and Channel Matrices):
Denote the singular value decomposition of the matrix A €
CM*L by A = U,D,V,H, and of the matrix B € CV*M by
B = UbDbV;)H . The matrices A and B are called matched if

L = N and there exists a diagonal matrix A € CM*M guch
that

VT ApUs = Q diag(y1, 72, ., 70)Q" (36)
for some constants 7, € C, for / = 1,2,...,L, and some

permutation matrix Q.

It is appropriate to point out that while this matching require-
ment enables simple proofs, it is not a necessary condition to
achieve the scaling law predicted by Theorem 1.

Example 3: The following are examples of matched matrices
according to Definition 1.

1) When A and B are simply vectors (L = N = 1) with
enough nonzero entries, they are matched. This is a spe-
cial case of the analysis of Section IV-B1.

2) Circulant case (see [7]): When both A¥ A and BBy are
circulant matrices, then A and B are matched with Ap =

For matched matrices A and B, it is easy to establish the

following achievable distortion.

Theorem 4: If the matrices A and B are matched, then the

following distortion is achievable:

L
1 oo
Dy(M,Pioy,L=N,K=1)=—-) — 5 W
( o "L Z Yel2ajog + oy

VIM 1 & Ive|?>azod

Py 2
Do L& 32 (julPadod + o%y)

(37

where v = 1/LM(|ApAl30% + [Apllho%) and | - ¢ de-
notes the Frobenius norm.

The proof of this theorem is outlined in Appendix II.

Comparing this to Theorem 1, we find a scaling law whenever
the |y,|? remain strictly larger than zero as M — oo. This can
be phrased as follows.

Theorem 5: If the matrix sequences AM) and BX)
are matched for every M, the corresponding values of
|vel, ¢ = 1,2,...,L, remain strictly larger than zero as
M — oo, 1/LM(||AFA||FJS + ||AF||%0,) is bounded, the
slowest-growing of the singular values oz/\' increases at least

like VM, and, for n = 1,2,..., N, 8™ = B, fs(M), then
the dlstortlon scaling law is given by
L 2 9
0o L
D(M, Py, L=N,K=1)~ — S .
(M P IR S ]
(38)

For an example of Theorem 5, see [10].

Remark 7: Since our lower bound (Theorem 1) includes
both feedback and collaboration, Theorem 5 establishes that
in the matched case, neither feedback nor collaboration are
scaling-law relevant.

C. Extensions

Matchable observation and channel matrices. When L > N,
the matrices A and B are not matched according to Definition 1.
But suppose that the channel can be used K = L/N times. This
situation can clearly be handled by combining the arguments of
Sections IV-B1 and IV-B2.
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When the matrices are fundamentally mismatched, it be-
comes interesting for the sensors to collaborate: that way, they
can implement more general overall transforms. This leads to a
study of matrices for which there exists a coding scheme that
matches them favorably.

Feedback. Another way to incorporate unmatched matrices is
through the use of feedback. Such coding strategies are analyzed
in [15].

Limited knowledge of the parameters. An interesting feature
of the strategy used to establish Theorem 4 is its robustness. For
example, limited knowledge of the values of the observation
parameters can be shown not to be scaling-law relevant for a
nontrivial class of sensor networks.

V. SYNCHRONIZATION

The lower bound derived in Section III applies whether or not
perfect synchronization is available to the sensors. However, the
“uncoded forwarding” coding scheme presented in [6] and [10]
(and extended to more general cases in Section IV) seems to re-
quire perfect synchronization and, therefore, appears to be im-
practical. In this section, we study the case when the channel
is subject to fading effects. More precisely, each sensor’s trans-
mitted signal is multiplied by an independent complex random
variable b,,, form = 1,2,..., M, i.i.d. over time. The precise
value of this random variable is unknown to the sensors, but their
distribution is known. This may model the situation where the
sensors transmit modulated signals, but the carriers are not in
phase. It may also model a pulsed (e.g., ultra-wideband) com-
munication system, where the pulses do not arrive exactly at the
same time, but are distributed over an interval. We show how
our scheme performs under such conditions. In particular, we
establish that the optimal scaling law is achieved as soon as the
distribution of b,,, has a nonzero mean for enough of the sensors.
In the pulsed example above, this means that the distribution of
arrival times over the given interval is not uniform over the entire
interval. Rather, the pulse of sensor m is more likely to arrive,
say, around the center of the interval.

For the purpose of this exposition, and because it suffices to
illustrate the principles, we consider thecase L = K = N = 1.
The destination receives

M
Y =2+ buXn

m=1

(39)

where the coefficients b,,, are complex-valued and not known to
the sensors. This models the fact that the sensors are not syn-
chronized. Clearly, the properties of the coefficients b,,, deter-
mine the scaling behavior of the network performance. A lower
bound can be obtained by assuming that the destination knows
the coefficients b,,. Then, a slight extension of the lower bound
of Theorem 1 leads to the following lower bound:

odoly
a(M)o? + oy,
n 1 oa(M)
L+ Do 520 E (b [2] (M) + oy

Dlowor(M7 Ptot) =

where a(M) = Zﬁle |am|?. We consider a specific distribu-
tion of the coefficients b,,, for which this lower bound is achiev-
able (in the scaling sense): Suppose that b, and b; are indepen-
dent of each other (m # j), and have nonzero mean. Then, the
distortion achieved by a simple forwarding scheme is found to
be at most

E [1bm ] 0%
| E[bm] [ a?(M)

(7 [0279)
Dy(M, Proy) = — W Z'

m=1

oy
a2 (M)Ptot

|am|4Var(bm)
X e

m=1
(lam|*a + o7y)

|am|
Z | Elby]]?

Clearly, this distortion does not generally coincide with the
lower bound (40). However, in interesting cases, (40) and (41)
describe the same scaling behavior. One of these cases is de-
scribed by the following result.

Theorem 6: Suppose that 0 < apin < |am| < Umax < 0
and E[|b,,|?] < d3 < oo, form = 1,2,..., M. If at least a
fraction e M of the b,,, m = 1,2,....M have |Ebm]| > 6 >
0, and the total power P;,; is a nondecreasing function of M,
then the optimum distortion scaling law is

(41)

D(M7Ptot) _+

M M Ptot
where c3 and ¢4 are independent of M and P;. (but depend on
Omins @max, d3, €, and 5)

An outline of the proof of this theorem is given in
Appendix III.

(42)

VI. CONCLUSION

This paper analyzes the fundamental tradeoffs between the
number of sensors, their total transmit power, the number of de-
grees of freedom of the source, the spatio-temporal communi-
cation bandwidth, and the end-to-end distortion. In a nutshell,
it is found that for typical situations, the distortion goes down
at best like 1/M, where M is the number of sensors, irrespec-
tive of the communication resources available to the sensors.
Hence, it is meaningful to allocate communication resources in
such a way as to actually achieve this distortion behavior. It is
shown that if the communication scheme is designed according
to the traditional and omnipresent paradigm of separation into
a compression stage followed by a channel coding stage, an ex-
ponential waste of communication resources (as a function of
M) results. By contrast, for the specific situations studied in
this paper, a very simple joint source-channel communication
strategy can be shown to actually perform optimally. Extensions
of this work include the study of more general statistical and
topological sensor network models along the same lines.

APPENDIX 1

Proof: (Outline of the Proof of Theorem 1): Our lower
bound is the best achievable performance for an idealized
system where the sensors can collaborate arbitrarily (and for
free). This idealized system is a point-to-point system. The
optimum performance for point-to-point systems can be found
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from Shannon’s separation theorem [16, Th. 21]. For the case
at hand, there is a slight difference with respect to Shannon’s
scenario in that the source is not directly observed, but merely
in a noisy fashion. A modified version of the separation theorem
can be found in [17, p. 78] (see also [18, p. 136]). The only
modification is to replace the standard rate-distortion function
by the “remote” rate-distortion function. The minimum distor-
tion Dyy;y, for a given total power P;o satisfies

Dmin = Dremote (C(Ptot)) (43)

where Diemote(R) is the remote distortion-rate function,
given by Diemote(R) = min(1/L) Y1, E[|Se — Si?,
where the minimization is over all distributions P(§q, ...,
§L|U1, . 7’11,]\,[) that satisfy I(Uh Us,...,Uns; Sl, §27 RN
S 1) < R.In extension of the arguments in [17, p. 124ff,], the
remote rate-distortion function for the case at hand, assuming
that the matrix A is known both at the encoder and at the
decoder, can be expressed in parametric form as

Dremote(R) = EA

=1 £
L
1 a?ot
E4l|= A} 44
s Lgm”{a%aéwa’ H “
where
L 2 4 +
a,0
E lo ¢> =R. 45
2 Ea ( B aZat+ ok )

The first term in the distortion expression can be rewritten by
considering the unordered singular values of A as

1 oo, oo,
E - SYW =E, SYW ) 46
AL ; alod + o3y @20l + o3y (46)
More interestingly, if
2 2 2
a0+ oy
R > Z EA ( min"” S ;V) (47)
U s+ UW) X nin

where a2, denotes the square of the smallest singular value of
the matrix A over the ensemble of A from which A is selected
(and over which the expectation is evaluated), then the argument

of the logarithm in (45) is always larger than one, hence

a20
E5 |:10g IHH[ N a26§+d :| R
v=2 27T

(48)
and the remote rate-distortion function is found to be
2 2
o0
Dremote(R) = E(y [%}
a10g + oy
Eall L L “?”45
A llo8 HZ:I oZo2302 | R
+2 27L. (49)

Note that if o2 increases without bound as M — oo (as is

the case in the examples of Section III-C), then the RHS of (47)

tends to zero, and (48) becomes valid for any rate & > 0. Hence,
(44) can be simplified using formula (48).

The capacity C(P;ot) needed to complete the proof is simply
the capacity of the Gaussian vector channel characterized by the
matrix B, in parametric form given by

N
C(Piot) = Y (logs (77)) (50)
n=1
where < is chosen such that
N 1 +
(- 7 ) =P (51)

n=1

In order to obtain a more compact description, let us assume

a small spread of the singular values 3, forn = 1,2,..., N,

or alternatively a sufficiently large power P, the capacity of

K uses of the multiple-input-multiple-output channel charac-

terized by the matrix B and by additive white Gaussian noises
O(Prar) = KN log, (@ +4(9)

of variance 0% is given by
(52)
(D) Z)

where P;.t is the total power available for K channel uses. No-
tice that this is true whether or not feedback is available since
the capacity of a memoryless channel is not increased by feed-
back. Using this in (43) yields the claimed bound. ]

Ptot
KNo

APPENDIX II

Proof: (Outline of the Proof of Theorem 4): By assump-
tion, since the matrices A and B are matched, there exists a diag-
onal matrix A i that satisfies (36). Denote the diagonal entries of
Ar by Ay = {AF}mm. Let sensor m transmit X,,, = A, Upp,
where ¢ must be chosen to meet the power constraint. The data
collection point then simply uses the minimum mean-squared
error estimator of (S1,Ss,...,S5r) based on the observations
(Y1,Y2,...,YN). By standard arguments, the resulting mean-
squared error is found to be

L

Z lyel*a? 67
2
L 2|ve|?32 (0‘1 + Z‘f;) +

[/]ql\'J|NQN

To determine ¢, we calculate the total power

M M
STE[Xw’] = > AnPE[|Un]
m=1 m=1

M L
> Al <U§V+Z |am,g|2) (54
m=1

(=1

Hence, if c is such that (54) is at most F;.t, the power con-
straint is satisfied. Introducing this in (53) and using simple el-
ementary manipulation yields the claimed bound. ]

APPENDIX III

Proof: (Outline of the Proof of Theorem 6): Equation (40)
is established by adapting (52) to the case of fading with the co-
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efficients known at the receiver, see [14] and [19]. Specifically,
this can be expressed for the case K = N =1 as

2P0
C(Peot) = Eg, [Ing <1 + ﬁl_ﬁ)}
0z

(55)

where Fg, is the expectation over (31, the singular value of the
matrix B. By Jensen’s inequality, this is upper bounded

1)

Using this in (43) yields the claimed bound, noting that 3? =
Zn]\le |b,|>. —The lower bound (41) is simply the perfor-
mance for the scheme where each sensor with E[b,,] > 6 > 0,
in each time step, transmits an appropriately scaled version of
its observation U,,,, and the scaling law follows immediately by
combining (40) with (41). [ ]

Ptot

C(Priot) < log,y (1 + —Ep, (56)
0z
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