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Abstract. In this work we present a novel concept of augmenting a
search tree in a packet-processing system with an additional data struc-
ture, a Network of Shortcuts, in order to adapt the search to current
input traffic patterns and significantly speed-up the frequently traversed
search-tree paths. The method utilizes node statistics gathered from the
tree and periodically adjusts the shortcut positions.
After an overview of tree-search methods used in networking tasks such
as lookup or classification, and a discussion of the impact of typical traf-
fic characteristics, we argue that adding a small number of “direct links”,
or shortcuts, to the few frequently traversed paths can significantly im-
prove performance, at a very low cost. We present a shortcut-placement
heuristic, compare our method to a standard caching mechanism and
show how the use of different levels of aggregation in a search tree en-
ables to achieve similar results with much fewer entries.

1 Introduction
1.1 Networking and Search Trees

The explosive Internet growth requires complex tasks to be processed ever faster
by the intermediate systems such as routers or firewalls. Optimization of these
processes is necessary, yet often impossible a-priori, as the optimum often de-
pends on the particular traffic mix. Run-time self-reconfigurable devices offer a
solution with several advantages, i.e. optimized resource utilization, improved
performance and ease of programming and management.
In networking systems, several targets for dynamic reconfiguration can be

identified: resources re-mapping [1], codepath adaptation or data structure adap-
tation. Data structures comprise e.g. forwarding tables [2] and classification rule
bases [3], which can be very large (e.g. 100k prefixes or 32k rules [3]) and the
search speed is a major performance factor. As the search usually requires a
number of memory accesses, and memory latency lags behind processor and link
transmission speeds growth, optimization of data structures is critical. Typically
built based on the prefix tables or rule-bases and optimized for the worst case
traffic, the data structures may be grossly sub-optimal for the actual traffic.
Various techniques are used to perform these optimizations [3–7], e.g. hash

tables, compressed bitmaps or tree-like structures. HiCuts [4] and HyperCuts [3]
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Fig. 1. Example of tree-based packet classification, as in e.g. [3]. Here, the root test is
based on the IP source address, and the process is repeated at each node, where the
test may be based on different, possibly multiple, packet fields.

deploy search trees to perform packet classification, the process of identifying
the highest-priority rule applying to a packet. Both algorithms use heuristics to
guide the tree construction, trading-off memory space and speed. At each node,
a test is performed on the subset of the packet fields that narrows most the
amount of rules that may apply to the packet (see Fig. 1), until a leaf is reached.
The rules can be a combination of a fixed match, prefix match or a range match
over various fields of the packet header, and may span multiple tree leaves.
The input, Internet traffic, is typically studied as aggregation of flows, se-

quences of packets sharing the same 5-tuple flow ID3. Previous studies [8] con-
firmed that some of the flow parameters are correlated (e.g. rate and size) and
that small flows (mice) represent the majority, yet most of the traffic (in bytes) is
concentrated in few big flows (elephants). In traffic engineering [9] it is common
practice to identify flows that capture most of the traffic at a certain point in
time and treat those differently to optimize resources utilization. This relies on
such sets being persistent at least on a small time scale (shown to hold for flow
volumes [10]). Temporal locality, the likelihood of a recently observed flow being
referenced in the near future, is strongly present in the Internet traffic [11]. Crit-
ically, in search trees, the bias in flow lengths (many mice vs. few elephants) is
reflected as imbalance in the tree traversal patterns, as a vast majority of searches
typically end in a tiny subset of tree leaves (see example simulation in Fig. 2).

1.2 Objective: Adaptive Tree Search Optimization

In this work, we focus on run-time optimization of tree-based search data struc-
tures [3, 4]. It is critical to minimize the depth of the search tree to minimize
the number of memory accesses. As some parts of the tree are likely to be tra-
versed more frequently, we ask: “Assuming we knew the traversal pattern, how
could we optimize the tree for this pattern?” The assumption is realistic, as it
is possible to gather such statistics at line rate [12, 13]. The above observations

3 The 5-tuple flow ID is defined as: IP source and destination addresses, IP protocol
number and TCP/UDP source and destination port numbers.
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Fig. 2. Example: few tree paths are frequently searched. Tree depth 9, degree 4, gener-
ated packet flows conform to a measured length distribution (see Subsection 3.1). Left:
Hit count distribution at tree leaves. Right: Cumulative Hit count. 90% of the traffic
concentrated in less than 1% of the top searched paths.

about Internet traffic, such as the persistence property, motivate optimizing the
data structure for the current time frame using the tree hit statistics from the
previous time frame. Splay trees [14] and randomized binary search trees [15],
are known examples of adaptive tree data structures, however, not applicable in
this environment.
A common way of exploiting temporal locality is a cache of search keys,

e.g. flow IDs. The Least Recently Used (LRU) cache replacement scheme has
been shown to be near-optimal for networking workloads [16]. A cache cannot
exploit information from the search data structure itself, so if the data structure
is updated, there is a discrepancy between the contents and the cache must be
flushed, which negatively affects the hit rate. The cache works with fine-grained
fixed match keys (e.g. a 5-tuple flow ID), preventing aggregation of keys classified
the same way, which can be exploited by a Denial of Service (DoS) attack by
flooding with bogus entries. To achieve an acceptable hit rate, the cache needs
to have a considerable size (e.g. 12,000 entries [17]) for a typical networking
workload. With the increasing key size, this may become prohibitively large.
We propose a novel method to augment the existing search tree with an

additional data structure, a Network of Shortcuts (NoS), along the frequently
traversed paths. The objective is to capture a large fraction of traffic and reduce
the total number of memory accesses per time frame. The hierarchical aggrega-
tion of search keys in subsequent tree nodes is preserved and thus the method
scales well with the number of distinct search keys (e.g. flow IDs). Heuristics to
determine where to place the shortcuts are presented.
The combination of a search tree and statistics-based shortcuts may recall

the Huffman tree [18]. But a pure Huffman tree construction would alter the
node tests, and thus would not reflect the rule base structure.
Both caching and shortcuts reduce the number of memory accesses in the

average case, possibly affecting the worst case scenario. The affects on the worst
case can be limited by constraining a number of shortcuts along a single path,
as well as by adjusting the method parameters or disabling it altogether, should
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Fig. 3. Left: A shortcut is an additional edge between two nodes along a tree path.
Right: A multi-shortcut. Single-shortcuts (1) and (2) are combined.

the current traffic patterns not be favorable. We demonstrate that a controlled
adjustment of the worst case (i.e. keeping the worst case bounded) results in
massive gain in the average case. The tree-based packet classification is a working
example, but the shortcut method can be applied to various tree-search methods.
The paper is organized as follows: in Section 2 we present the shortcut method

and in Section 3 the performance results and a LRU cache comparison using
generated and real traces. Section 4 describes a possible implementation of the
method, and in Section 5 we discuss open problems and add concluding remarks.

2 The Network of Shortcuts (NoS) Method

2.1 Assumptions and Notation

1. We assume a tree-based search method, like HyperCuts [3], to be deployed.
Backtracking, or any other mechanism that may alter the way the tree is
traversed, must not be used.

2. We assume that statistics (hit count) about every node in the tree are peri-
odically available. Efficient gathering of such statistics is possible [12, 13].

3. The decision at each tree node has a cost in terms of memory accesses (e.g.
pointers to be fetched from the memory), which we assume equal to 1.

Let F (u) be the periodically measured hit-count at node u, f(u) the fraction
of traffic at node u, f(u) = F (u)

F (root) , d the tree node degree and l the tree depth.

Definition 1 Given a tree T = (V,E), a shortcut is an edge e /∈ E that connects
a non-leaf Starting Node SN ∈ V with its descendant in the tree T (as in
Fig. 3(a)).

A shortcut is specified by a list of nodes it bypasses: shortcut SC = (a, b, c, d, e).
Fig. 4 presents the search before and after the placement of a single shortcut. A
shortcut at a starting node SN enforces the search to test first the path using
a shortcut, and only in case of failure to continue through the search tree. Note
that this requires the ability for a shortcut SC = (a, b, c, d, e) to compress tests
at nodes b, c and d into one test stored at node a. When a packet fails to take a
shortcut, a cost α ≥ 1 (in terms of memory accesses) is incurred, as an additional
read may be required to read the child pointer. Fig. 5 shows the effects on the
traffic f(.) of a single-shortcut. The notation SCi(m : l) means “from the mth
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Fig. 4. In 4(a) there are no shortcuts. At each node, packets A and B perform a test
which direction to take, ending in leaves e and f respectively. In 4(b), both packets
first test the shortcut. Packet A succeeds and shortcuts to e directly, whereas B fails
and must retrieve the pointer along the normal path, incurring cost α.

node to the lth bypassed by the shortcut”. The notion of a shortcut is a logical
abstraction, for practical implementation issues please refer to Section 4.
Multi-Shortcut A multi-shortcut MSC is a set of single shortcuts with a
common starting node (e.g. MSC = {SC1, SC2}, SC1 = (a, b, c, . . .) and SC2 =
(a, f, g, . . .), as in Fig. 3(b)). Introducing multiple shortcuts allows to increase the
fraction of traffic making use of the SN. The memory access cost is independent
from the number of shortcuts if ∀MSC, MSC = {SC1, SC2, . . .}, SCi(2) 6=
SCj(2), ∀ i, j : i 6= j, i.e. there is at most one shortcut per outgoing edge to test.
Relaxing this constraint would allow more shortcuts to be placed but it could
also increase the number of memory accesses required at SN .

2.2 Local Shortcut Gain Functions

Let ki be the SN and si be the length of a shortcut SCi, placed between nodes
ki and (ki + si) (see Fig. 5). The number of memory accesses along the path
ki . . . (ki + si − 1) before placing the shortcut is:

BMAi =
si−1∑
j=0

f(ki + j) = f(ki) +
si−1∑
j=1

f(ki + j), (1)

where BMA stands for “Before Memory Accesses”. When the shortcut is added
we obtain:

AMAi = f(ki + si) + α[f(ki)− f(ki + si)]︸ ︷︷ ︸
(A)

+
si−1∑
j=1

[f(ki + j)− f(ki + si)]︸ ︷︷ ︸
(B)

, (2)

where AMA stands for “After Memory Accesses”. The expression (A) refers to
the number of memory accesses experienced at the SN . The first term indicates
that f(ki + si) (traffic taking the shortcut) traverses the SN at cost 1 , and the
remainder (f(ki) − f(ki − si)) at cost α. The expression (B) accounts for the
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Fig. 5. Left: Traffic along a generic path, center: Traffic along a heavily-hit path, Right:
Effect of placing a shortcut: packets skip intermediate nodes.

reduced number of memory accesses experienced in the intermediate nodes. We
define a metric to evaluate the impact of a shortcut:
Single-shortcut Local Gain: Given a single-shortcut SCi, the local shortcut
gain is defined as Gi = BMAi −AMAi. After some simple computations:

Gi = f(ki)[1− α+ (si + α− 2)γi], where γi =
f(ki + si)

f(ki)
. (3)

A shortcut is effective if the gain of placing a shortcut is positive: Gi > 0 ⇔
si > 2− α+ α−1

γi
.

Multi-shortcut Local Gain: The local gain of a multi-shortcut of degree p is:

GiMSC = f(ki)

(
1− α+

p∑
l=1

(sil + α− 2)γil

)
; γil =

f(kil + sil)
f(ki)

. (4)

If si1 = si2 = . . . = sip = si and γi =
∑

l γil/p is the average fraction of traffic
taking a single-shortcut, the gain simplifies to:
GiMSC = f(ki) (1− α+ p(si + α− 2)γi) and GiMSC > 0 ⇔ si > 2 − α + α−1

pγi
.

Thus, given an average fraction of traffic γi, the multi-shortcut achieves p times
higher gain than a single-shortcut.

2.3 Shortcut Placement Strategy

The shortcut placement problem is the following optimization problem:
Given: a tree T = (V,E) of variable degree and node statistics f : V → N .
Find: SC = {SCi}, a set of single- and multi-shortcuts.
Constraints (conditions to determine the validity of a set of shortcuts):
∀i, j : i 6= j; SCi, SCj are valid ⇔
(SCi(1 : 2) ⊂ SCj ∧ SCi(si − 1 : si) ⊂ SCj) ∨
(SCi(1 : 2) 6⊂ SCj ∧ SCi(si − 1 : si) 6⊂ SCj).
Objective function: max

∑
i Gi, where Gi is the local gain of SCi.



We maximize the total gain, a sum of the local gains. As the local gains are
not mutually independent, the optimization problem is non-linear. We conjecture
that the placement problem is NP-Complete, although we could not prove it.
We present a heuristic that provides good performance with few computations,
however, we are unaware how close our results are to the optimum:
Shortcut Placement Algorithm: Let Nodei (i = 1, . . . , N) be the ith node
in the tree (N nodes in total, numbered from the root, top-down, level-by-level);
and let Nodeij (j = 1, . . . , d) be the jth child of the ith node. Let γth and
gainth be the thresholds that discriminates the SNs, and BSSj the “best single-
shortcut” in the jth subtree. The pseudocode for the shortcut placement is:

1: for (i = 1; i <= N ; i++) do
2: if HitCount(Nodei) 6= 0 then
3: for (j = 1; j <= d; j ++) do
4: BSSj , γj , gainj ← BestSingleShortcut(Nodeij);
5: end for
6: γ ←

∑
γj ; gain←

∑
gainj ;

7: if (γ > γth) & (gain > gainth) then
8: PlaceShortcut(Nodei, BSS1, . . . , BSSd);
9: end if
10: end if
11: end for

BestSingleShortcut(.) identifies in the sub-tree rooted at node Nodeij the
single-shortcut that gives the highest gain, and returns the shortcut target node,
γj and gainj . The algorithm places shortcuts in a top-down fashion and reduces
the number of nodes under consideration at each step downwards. The complex-
ity is O(N logd N), where N is the total number of nodes.
Starting from the root allows to consider the longer shortcuts, along the few

paths where the traffic curve f(.) is completely flat, first. Note that changing
the threshold values will affect the number of accepted SNs, and that the traffic
pattern may not justify placing shortcuts at all.
Adaptation Period The shortcut placement is re-computed periodically with
period TA. Statistics collected in the previous interval are then used to place
shortcuts for the following interval. The initial length of the interval is de-
termined by the network workload and the tree size (the NoS method needs
“enough” packets in the tree to obtain a meaningful description).

3 Method Validation

In this Section we validate the NoS method through simulations involving both
synthetic and real traces and compare the method with a Least Recently Used
(LRU) Cache. We picked LRU for the comparison because it performed best in
our settings (we compared FIFO, RAND, LFU and LRU [16]). To make a fair
comparison, since the number of shortcuts placed is variable, we vary the cache
size accordingly (1 shortcut = 1 cache entry). We compare the relative gain in
memory access reduction, defined as GAIN = (

∑
i Gi)/(

∑
i BMAi), and the hit

rate, HITRATE = (Traffic taking the shortcuts or cache)/(Total traffic).



3.1 Traffic Generator, Real Traces and Simulation Parameters

Synthetic packet traces were generated using MATLAB R7 software. The traces
are characterized by a constant number of concurrent flows, Poisson new-flow
arrival times and 32 bit uniformly distributed flow-IDs. The flow length distri-
bution is obtained combining measured flow lengths with a tail fitted using a
Pareto distribution (parameter a = 0.9163). The uniformity of flow-IDs is not
realistic. However, as this leads to a uniform spread in the search tree, it is a
good “worst-case” test for the NoS method.
Throughout this study we also used real data collected by the network mon-

itor described in [19]. The monitored site connection is a full-duplex Gigabit
Ethernet. The dump * and the mon * traces contain approximately 3000 and
15000 unique flow-IDs respectively. The packet source/destination addresses and
source/destination port numbers (96 bits in total) were mapped into the 32 bit
flow-ID used in the simulations4.
In all the simulations, the parameters are set to: γth = 0.4, gainth = 4000,

TA = 10000 packets (synthetic traces), TA = 100ms (real traces), α = 2. All
trees are d = 4, l = 9 (no missing nodes), except where stated otherwise. The
trees are balanced, to avoid results biased due to the tree structure. At every
tree node, the search space is partitioned into consecutive chunks of equal size,
starting with the 32-bit space at the root. In each bar graph, the number on top
of the bars is the number of shortcuts placed.

3.2 NoS vs LRU Cache

Fig. 6 presents the results using synthetic traces. The NoS method achieves 4
times the cache gain in every condition given the same size and up to 50 times
when the number of flows increases. This is possibly due to several factors: the
aggregation of keys across shortcuts (improving scalability in the number of
flows), i.e. the cache works at the flow level, whereas shortcuts target intermedi-
ate nodes, grouping multiple flows together; in addition, the shortcuts allow to
capture all packets from the most populated flows, whose cache hit-rate is hurt
by the less populated flows. The NoS method likewise exhibits approximately 4
times higher hit-rate.
Fig. 7 shows the results using real traces. For dump 162 and dump 167 both

gain and hit rate are much higher than those observed in the synthetic case,
probably due to non-uniformity in the flow-IDs. The mon 1578 and mon 1584
traces contained a higher number of flow-IDs, with more uniform distribution.
Still, the NoS method managed to capture more than 50% of the traffic, achieving
gains 3 times higher than the cache.
Worst Case and Average Case: Fig. 8 shows detailed worst case and average
case statistics from one of the real traces. It illustrates that the NoS method
achieves a significant improvement in the average number of memory accesses,
while keeping the worst case bounded. The amount of the worst case instances

4 We combined the 10 most significant bits of the addresses with the 6 least significant
bits of the port numbers=2*10+2*6=32 bits.
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is marginal (10−4%). In spite of the average case improvement, fewer packets
are adversely affected by NoS than by the LRU cache.

3.3 Variable Root Degree

Real-life search trees are typically of variable degree; in particular, the root
degree tends to be significantly higher (e.g. 64). We present experiments with
root degrees of 8 and 16, using both synthetic and real traces, in Fig. 9 and
10. The boost in performance between degree 4 and degree 8 is remarkable (120
times the gain of a LRU cache). The higher degree of the root provides more
nodes at the top of the tree, with more starting nodes, and enables capturing
more traffic at a higher tree-level, increasing the gain. The same reasoning does
not apply to hit-rate and the results show little variation from root degree 4.

Tree LRU NoS
Search Cache

Average Case 10 8.5 6.4
Worst Case 10 11 14
% Worst Case 100 75 0.00068
% Worse Off 0 75 23.12
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Fig. 8. Detailed results from trace dump 167. Left: Per-packet memory accesses. Right:
Histogram of memory access distribution using the NoS method.
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4 Possible Implementation and Applications

A possible architecture of a NoS implementation is shown in Fig. 11. The data
plane performs the per-packet operations, whereas the control plane performs
the more complex but less frequent tasks. The data plane consists of one or more
forwarding engines and a fast memory (e.g. SRAM), while the control plane is
typically implemented on a general purpose processor. An example of such a
system is the Intel r© IXPTM Network Processor [20].
In the data plane, the actual per-packet tree search, including taking the

shortcuts, and the hit statistics collection are performed. The hit counters and
the shortcut-augmented search-tree reside in fast memory. The actual shortcut
entry in the search tree requires to change the memory layout of the original
data structure (see Fig. 12). The control plane processes include the creation
and update of the actual search tree (independent of NoS), the periodic hit
counter read and the periodic re-computation of the NoS shortcut placement.
The NoS results are periodically uploaded to the search method, updating the
shortcuts (but not the search tree itself). The period TA over which the update
is performed is set based on the traffic profile and system characteristics.
One possible NoS method application is a denial of service (DoS) attack pre-

vention. Where a cache can be flooded by random independent entries and thus
practically disabled, the aggregation of entries into tree nodes would allow the
shortcuts to capture such malicious traffic. On the other hand, malicious attacks
like the RoQ (Reduction of Quality) attacks [21] against adaptive methods like
NoS can be prevented by placing a second control loop around the adaptation
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period TA, adjusting it to the rate of changes in the current patterns, and by
introducing randomness into TA selection.

5 Conclusions

We have proposed an adaptive data structure to improve the performance of tree-
based search methods, using shortcuts along frequently searched paths. The NoS
method has been validated through simulation and the results show that NoS
outperforms a LRU cache of comparable size in terms of hit rate and memory
access reduction. NoS has shown scalable performance even with high number of
concurrent flows (70,000+), as the method does not rely on per-flow information,
but rather works with the data structure itself.
Despite the good performance when the number of shortcuts is small, it is

an open issue how to design a scalable placement strategy, i.e. one that would
increase the overall gain when increasing the number of shortcuts. Likewise,
efficient update of the shortcut placement remains an open problem. As for the
search database’s update, there are generally few changes in the search tree
structures. If the NoS method was made aware of the changes, the placement
could be adjusted, instead of entirely invalidated as in the cache case.
In summary, the shortcut approach offers a viable mechanism for dynamic

tree data structure optimization and represents a step towards a fully autonomous
packet processing system.

POINTERPOINTER 1 4POINTER 32POINTER

SC  POINTER SC  POINTER SC  POINTER SC  POINTER
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1 2 3 4NODE
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Fig. 12. Shortcut starting node possible memory layout. The entry stores the original
tree node test and child pointers and the shortcut compressed tests and target pointers.
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