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Preface

The matter exposed here is the organized outcome of three years of theoretical
research in the fields of production and micro-engineering which were guided
by a theoretical physicist and worked out by a mathematician. The work
therefore intrinsically inhibits an interdisciplinary flavor and I personally tend
to locate it – using a term introduced recently by S. Solomon and E. Shir in
[136]– into the realm of “applied theoretical sciences”.
When working between disciplines one takes several risks and in exchange,
one is offered several advantages. An omnipresent risk is to fall between the
disciplines such that the work is not recognized either by the specialists or
by the generalists. An advantage is the possibility to use and exploit existing
analogies which may suddenly pop up once a dialog between disciplines has
taken place. Both aspects, the risky and the advantageous ones, are present
in this work. A few chapters for example do have a strong mathematical
touch, even so they contain mainly results relevant for the engineering and/or
the physicists world. Nevertheless I hope that the chosen presentation of these
chapters helps non specialists to go through the argumentation and specialists
to appreciate new applications in their field. As far as the advantageous dialog
between disciplines is concerned, I am deeply indebted to my adviser Max-
Olivier Hongler. The relevant interdisciplinary dialog preceding this work was
(and still is) realized through his constant interplay with a varied scientific
and engineering community. The present work and my proper forthcoming
owe a lot to this dialog.
The fact that I started with this work is basically due to (reinforced) chance.
Max turned chance into fruitful work. A wonderful metamorphose for which I
am very grateful and for which I like to express my deep gratitude. I further
wish to thank the scientific jury the Professors C. van den Broeck, Y. Dallery,
J. Jacot and Prof. T. Mountford. Thanks are also due to the national research
foundation which partially supported the research project under the grant
number 2000-63377.00/1 and 200020-1011572/1. To complete the financial
support I had the opportunity to do tutorial work in the LPM lab and the
mathematical lab at the University of Neuchâtel. My thanks go to the lab



VI

headers Professor J. Jacot and Professor A. Vallet for employing me. Thanks
are further due to all the members of both labs for professional and social
interactions. I am indebted to Mark Coggins which greatly helped me through
many english revisions to prepare the final version.

Lausanne, January 2005 Roger Filliger



Summary

The purpose of this thesis is to show on explicit examples how various theo-
retical concepts, ranging from statistical mechanics to stochastic control and
from traffic theory to queuing systems, can be transferred to transport pro-
cesses, encountered in particular in manufacturing systems, with benefic im-
plications for their dynamical understanding, optimization and control. The
thesis collects several articles where such implications are exposed [38]-[43].

We start with the observation that car traffic and production flows share
several common dynamical properties (chapter 3). The main reason for the
similarities are the presence of non-linear interactions in both settings. In traf-
fic theory the interactions are between competing cars and originate from a
trade off between safe and fast driving. They directly influence the speed of
the cars. In production flow engineering the interactions are between cooperat-
ing work-cells forming the manufacturing system. They govern the production
policy and hence the throughput of the manufacturing system. We exploit this
analogy in case of a serial production line where the influence on the produc-
tion rate of a work-cell is determined by the contents of its adjacent buffers
(fig. 0.1) and derive a dictionary between the two fields. As a first result, this
analogy allows the recognition of free-flow and jamming-flow regimes –well
studied in traffic theory – in the context of production lines.
Applying a linear stability analysis to a given stationary flow regime, we draw
a flow diagram which defines the boundary between the free and the jammed
regime as a function of the control parameters. The relevant conclusions in-
clude the introduction of a dimensionless performance parameter, an enlight-
ening connection between transient and stationary performance measures for
production lines, a discussion of both the bull-whip effect and the stabilizing
effect of pull production controls in serial production lines.

The traffic models used in the analogy with serial production lines are so-
called optimal-velocity car following models which assume that the velocity
of a car is adapted to a distance dependent optimal velocity which reflects the
safety requirements of two neighboring cars. This optimal velocity is chosen
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Fig. 0.1. Above: Sketch of a serial production line composed of N machines Mi

with production rates vi and N −1 buffers Bi with buffer content yi. Below: Sketch
of a one-lane traffic system composed of N cars with velocities vi and headways xi.
Dynamical similarities between cars and work-cells: the production rates and the car
velocities, depend both on their environment e.g., the content of the next nearest
buffers vi = vi(yi−1, yi) resp. the distances to the next nearest cars vi = vi(xi−1, xi).

in an ad hoc fashion by traffic engineers and is not related to a cost functional
which defines “optimality” via a minimization procedure. Here we calculate in
the context of serial production lines the “optimal velocity” (i.e., the optimal
production control) based on a specific cost functional. We solve in chapter
4 an optimal control problem for the production rates where the cost struc-
ture penalizes the entrance of the buffer content into a boundary state. We
show that the optimal control is of four thresholds type and give the optimal
position of the thresholds.

The optimal control problem, explicitly discussed for a serial two-stage
production line, can not be solved analytically for longer lines. This forces us to
look in chapter 5 for other ways to describe relations between the throughput
and the work in process of production flows. The analogous quantities in
traffic theory – flow of cars and car density – are related in the so-called
fundamental diagram (fig. 0.2). It encodes in a single graph the functional
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Fig. 0.2. Generic form of the density-flow relation in one-lane car traffic.

relation between the flow of cars and the car-density. Inspired by the micro-
macro paradigm of mechanical statistics, we derive from a mesoscopic level
the fundamental diagram introduced by Greenshields in 1931. The study is
based on the Boltzmann equations introduced by Ruijgrok and Wu, which
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we derive from a space discrete interacting particle system. The fundamental
kinetic features of the microscopic model are migration, reaction and collisions
of particles. Performing the hydrodynamic limit of the model, we have that
the macroscopic density distribution ρ is governed by the Burgers equation
and that the macroscopic flow J is proportional to the logistic equation.

Another property of production flows shared with cars in traffic is the sim-
ple fact that the circulating items have spatial extensions. This is of foremost
importance especially when multiplexing structures are present in the produc-
tion line and/or the traffic network. The distribution of items flowing out of a
merge structure into a single collecting flow definitely depends on the physical
size of the circulating items. In chapter 6 we will study a discrete materials
flow merge system connected to a downstream station (fig. 0.3). The outflow
process from the merge as a function of the the items extensions is given.
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Fig. 0.3. Merging of N streams of items into a buffer B. A conveyor transports the
items from B to M . The spatial extensions of the items are crucial for the outflow.

The mentioned discrete velocities Boltzmann equations of Ruijgrok and
Wu are related to random evolutions. They are particularly well adapted to
model the dynamics of failure prone machines switching between their states
(e.g., between “on” and “off”). For the inhomogeneous two-states case (i.e.,
when the switching rates depend on the environment), we show in chapter
7 that the probability density and the associated probability current are in
a supersymmetric relation – a algebraic structure well known in quantum
mechanics.

The quest to optimize throughput in stochastic manufacturing systems and
vehicles flow in traffic systems can be unified through the following question:
Given the initial distribution of items (of workload or cars) how do I have
to influence the noisy dynamics in order to efficiently transport the items
involved (workpieces or cars) to a given final distribution?
This point of view seems natural to us and is directly related to a problem
addressed by E. Schrödinger in 1931. He asks for a Markov diffusion process
satisfying given initial and final conditions and which minimizes some en-
ergy functional. Based on this, we propose in chapter 8 an efficiency measure
relevant for a large class of diffusion-mediated transport processes.





Zusammenfassung

Die vorliegende Arbeit hat zum Ziel dynamische Vorgänge in stochastis-
chen Transportprozessen zu beschreiben, wie sie speziell in Massenproduk-
tionsprozessen auftreten, wo dynamische Vorgänge entscheiden auf Kontroll-
und Optimierungsmöglichkeiten einwirken. Sie zeigt an explizit ausgearbeit-
eten Beispielen wie Konzepte der statistischen Mechanik, der Kontroll- und
Warteschlangentheorie sowie der theoretischen Verkehrsdynamik zum besseren
Verständnis solcher Vorgänge beitragen können. Die Arbeit umfasst mehrere
Forschungsartikel die sich in diesem Sinne mit entsprechenden theoretischen
Konzepten beschäftigen [38, 39, 42, 40, 44, 41, 43].

Wir beginnen mit der Bemerkung, dass verschiedene dynamische Phänomene
wie sie im Strassenverkehr auftreten, ihr Analogon in Produktionsprozessen
finden (Kapitel 3). Die dynamischen Analogien sind auf Ähnlichkeiten in den
nichtlinearen Interaktionen zwischen den Prozessteilnehmer zurückzuführen.
In Verkehrssystemen sind diese Interaktionen auf die sich lokal konkurri-
erenden Verkehrsteilnehmer beschränkt, die zwischen schnellem und sicherem
Fahren optimieren. Dieses Verhalten ist bestimmend für die Geschwindigkeiten
der einzelnen Verkehrsteilnehmer. In Produktionsprozessen werden die Inter-
aktionen zwischen den kooperierenden Arbeitszellen lokalisiert, die als Ganzes
den Prozess definieren. Sie beeinflussen in entscheidendem Masse die Produk-
tionsstrategie und dadurch die globale Produktionskapazität des Prozesses.
Wir bedienen uns dieser Analogie im Fall einer mit Bufferzonen ausgestat-
teten seriellen Produktionslinie, bei der die Produktionsraten einer Arbeit-
szelle durch den Lagerbestand der nächstliegenden Bufferzonen determiniert
ist (Fig. 0.1). Ein erstes aus dieser Analogie sich ergebendes Resultat für Pro-
duktionsprozesse ist die Unterscheidung zwischen laminarem Produktionsfluss
und turbulentem Produktionsfluss. Es sind dies Phasenzustände für Materi-
alflüsse die in Verkehrssystemen seit langem intensiv studiert werden. Eine
lineare Stabilitätsanalyse ermöglicht die explizite Berechnung eines Phasendi-
agramms in Abhängigkeit der Kontrollparameter. Eine dimensionslose dy-
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namische Kennzahl ähnlich der Reynoldszahl wird eingeführt, der so genan-
nte “bull-whip” Effekt wird angesprochen und der stabilisierende Effekt einer
“Pull”-Produktionsstrategie wird disskutiert.

Die zur Beschreibung von seriellen Produktionsprozessen geeigneten Verkehrs-
modelle sind so genannte “optimale Geschwindigkeit Fahrzeugfolgemodelle”.
Die optimalen Geschwindigkeiten sich folgender Fahrzeuge sind in aller Regel
phänomenologisch angesetzte und von den Distanzen zu den nächsten Fahrzeu-
gen abhängige Funktionen, die die Sicherheitsbedürfnisse der Lenker mit ein-
beziehen. Die Bezeichnung “optimal” wird von Verkehrsingenieuren nicht
an eine Kostenfunktion gekoppelt und bezieht sich deshalb nicht auf ein
wohldefiniertes Optimierungsproblem. Diesem Umstand wird in Kapitel 4
Rechnung getragen. Wir berechnen in der produktionstheoretischen Interpre-
tation die Struktur der “optimalen Geschwindigkeit” (genauer, der “optimalen
Produktionsraten”) durch Einführung einer adäquaten Kostenfunktion und
anschliessendem Lösen des Optimierungsproblems. Es wird gezeigt, dass die
optimalen Produktionsraten durch vier Lagerbestandniveaus definiert werden
können. Die Niveaus werden explizit berechnet.

Das Optimierungsproblem kann explizit nur für serielle Produktionslinien
mit (nur) zwei Arbeitszellen disskutiert werden. Dieser Umstand lässt uns
in Kapitel 5 andere Wege suchen, um Durchfluss-Lagerbestandrelationen für
längere Produktionslinien anzugeben. Die analogen Grössen in Verkehrssys-
temen – Verkehrsfluss und Verkehrsdichte – werden im so genannten Fun-
damentaldiagramm zusammengeführt (Fig. 0.2). Es entschlüsselt in einem
einzigen Graphen die funktionale Beziehung zwischen dem Fahrzeugfluss und
der Verkehrsdichte. Inspiriert durch das Mikro-Makro Paradigma der statis-
tischen Mechanik leiten wir, ausgehend von einer mesoskopischen Beschrei-
bungsebene, das wohlbekannte Fundamentaldiagramm von Greenshields ab.
Die Studie basiert auf dem nichtlinearen, Boltzmann-ähnlichen Vielteilchen-
model von Ruijgrok und Wu. Die fundamentalen kinetischen Eigenschaften
der Teilchen sind (i) Migration, (ii) Reaktion und (iii) Kollisionen. Folgende
Interpretation als einfaches Verkehrsmodel ist möglich: (i) Fahren mit zwei
möglichen Geschwindigkeiten, (ii) spontaner Wechsel zwischen den beiden
möglichen Geschwindigkeiten (iii) Abbremsen eines schnellen Fahrzeugs das
sich einem Langsamen nähert. Interpretiert als einfaches Model für serielle
Produktionsprozesse, kann eingesehen werden, dass Migration eines Teilchens
dem Weitertransport zu einer nächsten Arbeitszelle entspricht, dass der Reak-
tionsterm einer spontanen Änderung des Operationszustandes der Zelle zuge-
ordnet werden kann und dass Kollisionen angrenzender Zellen dann eintreffen,
wenn der Lagerbestand dazwischen geleert wird. Im hydrodynamischen Limes
wird gezeigt, dass die makroskopische Dichte ρ durch die “Burgersgleichung”
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gegeben ist und das der makroskopische Fluss proportional zur logistischen
Gleichung ist J ∝ ρ(1− ρ).

Eine weitere Eigenschaft von Produktionsflüssen die mit Verkehrsflüssen
geteilt wird, ist die granulare, platzkonsumierende Struktur der sich bewe-
genden Teilchen. Diese Bemerkung ist speziell dann von Wichtigkeit, wenn
konvergente Strukturen, so genannte Multiplexer, vorhanden sind, die die
Flüsse zusammenführen oder teilen. Das Zusammenführen mehrerer Flüsse
zu einem gemeinsamen Materienstrom hängt klar von der räumlichen Aus-
dehnung der Teilchen ab und wird unter diesem Gesichtspunkt in Kapitel 6
untersucht (Fig. 0.3). Wir geben – unter geeigneten Hypothesen – die sta-
tionäre Ausflussverteilung als Funktion der granularen Ausdehnung.

Die oben angesprochene Boltzmanngleichung von Ruijgrok und Wu kann,
Dank einer logarithmischen Transformation, als “zufallsgesteuertes Evolu-
tionsmodel” (random evolutions) interpretiert werden. Solch evolutive Sys-
teme sind verbreitete Modellierungsmethoden die auch speziell geeignet sind,
Maschinenausfälle (“Null-Eins” Dynamik) in die Dynamik aufzunehmen. Wir
zeigen in Kapitel 7, dass im Falle einer Dynamik mit zwei möglichen Zuständen,
die Wahrscheinlichkeitsdichte und der zugehörige Wahrscheinlichkeitsfluss
(also die konstituierenden Grössen des Fundamentaldiagramms) in einer su-
persymmetrischen Beziehung stehen.

Auf Grund der inhärenten Fluktuationen in Fabrikations- und Verkehrssys-
temen kann den Optimierungsmöglichkeiten beider Systeme folgende proba-
bilistische Fragestellung zu Grunde gelegt werden:
Gegeben eine Anfangsverteilung von Teilchen (von Jobs in den Arbeitszellen
oder von Fahrzeugen auf dem Strassennetz), wie braucht die verrauschte Dy-
namik beeinflusst zu werden um die involvierten Teilchen (Jobs oder Fahrzeuge)
effizient auf eine gegebene Endverteilung abzubilden?
Diese Fragestellung scheint natürlich und kann direkt auf ein von E. Schrödinger
gestelltes Problem zurückgeführt werden. Es besteht darin, zu gegebenen
Anfangs- und Endbedingungen einen Diffusionsprozess zu konstruieren der
ein Kostenfunktional minimiert. Basierend auf dieser allgemeinen Betrach-
tung wird in Kapitel 8 ein konzeptuell neues Effizienzmass für diffusionsun-
terstützte Transportprozesse eingeführt.





Résumé

La nécessité de mâıtriser le pilotage des flux de produits délivrés par les pro-
cessus de production opérant en environnement aléatoire (les aléas sont essen-
tiellement dus aux enrayages des installations), nous a conduit à développer un
ensemble de modèles mathématiques permettant de caractériser la dynamique
et le contrôle de flux granulaires hors de l’équilibre thermodynamique. La thèse
fait donc un usage intégré de concepts et de méthodes relevant de la mécanique
statistique, de la théorie des files d’attentes, du trafic routier et de la théorie
du contrôle optimal stochastique. Le travail regroupe et met en relations un
ensemble de contributions dédiées aux phénomènes de transports d’objets cir-
culant dans des installations de production [38, 39, 42, 40, 44, 41, 43].

Nous débutons par l’observation que nombreux sont les phénomènes dy-
namiques propres au trafic routier qui trouvent un analogue dans le domaine
des flux de productions (Chapitre 3). Fondamentalement, ces similarités sont
dues aux interactions non-linéaires entre les constituants présents dans ces
deux types de systèmes. Dans le domaine du trafic routier, les interactions
interviennent via les conducteurs qui tentent d’optimiser leur comportement
en visant simultanément deux objectifs conflictuels à savoir, conduire avec
célérité et sûreté. Dans le domaine des systèmes de production, les interac-
tions interviennent entre les produits délivrés par les unités de production.
En effet, les unités de production sont couplées via des convoyeurs et des
zones de stockages dans lesquels les produits sont en interaction mutuelle.
L’assèchement d’une ou plusieurs zones de stockage ou à l’opposé, leur satu-
ration influe directement la dynamique des flux et détermineront les perfor-
mances des systèmes de gestion de production. Les similarités formelles entre
trafic routier et châınes de production sont explorées dans le cadre concret
d’une installation de type ” flow-shop ” (fig. 0.1), pour laquelle nous sommes
conduit à distinguer entre des flux laminaires et des flux turbulents traver-
sant l’installation. Par une analyse de stabilité, nous dérivons un diagramme
de phases qui caractérise l’appartenance à l’un ou l’autre de ces régimes, ceci
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en fonction des paramètres de contrôle. Le point de vue interdisciplinaire
adopté nous conduit à introduire un nouveau paramètre dynamique, jouant
pour les châınes de production, un rôle similaire au nombre de Reynolds en
hydrodynamique.

Les modèles de trafic que nous utilisons pour les flux productions sont connus,
dans le domaine du trafic de véhicules, comme étant du type ” modèle à vitesse
optimale ”. Ces modèles, de nature phénoménologique, tiennent compte si-
multanément de l’évolution en environnement aléatoire et des impératifs de
sécurité requis par les conducteurs. Au chapitre 4, nous calculons, pour un
dipôle de production, les ” vitesses ” optimales (i.e. la politique de produc-
tion optimale) en utilisant un ensemble de critères d’optimisation naturels et
pertinents pour les applications usuelles.

Une extension directe du problème à des multipôles de production ne per-
met plus une approche analytique. C’est la raison pour laquelle nous pro-
posons, au chapitre 5, un nouveau point de vue qui lui offre la possibilité
de relier, dans les régimes stationnaires, l’amplitude du flux de production
avec la densité locale des entités en circulation. Cette relation s’exprime via
un diagramme – flux et densité – connu sous le nom le diagramme fonda-
mental (fig.0.2) qui a été introduit par Greenshields en 1931. A partir de
considérations purement microscopiques et en s’inspirant très directement du
paradigme “micro-macroscopique“ emprunté à la mécanique statistique, nous
dérivons ce diagramme fondamental analytiquement. A cette fin, nous sommes
amenés à introduire un niveau de description intermédiaire (i.e. le point de
vue mésoscopique) qui fait appel à des équations de type Boltzmann avec
des vitesses discrètes (modèle de Ruijgrok et Wu). Initialement, les propriétés
cinétiques fondamentales des particules modélisées sont (i) migration, (ii)
réaction et (iii) collision se traduisent en termes de trafic routier par (i) con-
duire avec deux vitesses possibles, (ii) modifier sa vitesse (iii) ralentir à cause
de la présence d’une voiture plus lente en aval. Cette analogie exploitée dans
le cadre de la production, nous permet de construire un modèle dynamique –
fortement simplifié - qui décrit les multipôles de production. Les migrations et
les réactions du modèle initial deviennent respectivement l’avancement d’une
pièce et le changement d’état (i.e. marche- arrêt) d’une machine et une unité
affamée correspond à une collision dans le domaine du trafic. Dans cette ap-
proche, il est remarquable que dans la limite hydrodynamique, la densité ρ
obéisse à l’équation de Burgers alors que le flux J lui satisfasse à l’équation
logistique J ∝ ρ(1− ρ).

Une autre propriété fondamentale commune aux flux de produits et aux flux
de véhicules est l’extension spatiale des objets en circulation. La prise en
compte de cette extension est tout particulièrement nécessaire lorsque l’on
a affaire soit à des aiguillages soit à des multiplexeurs rassemblant plusieurs
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flux parallèles en un seul flux émergent. Cette problématique est discutée au
chapitre 6, où nous caractérisons le flux de sortie d’un multiplexeur en fonction
de la taille des objets en circulation (fig. 0.3).

L’équation de Boltzmann dans sa variante à vitesses discrètes, (i.e. le modèle
de Ruijgrok et Wu mentionné précédemment), est très intimement connectée,
via une transformation logarithmique, à des modèles d’évolution sujets à des
changements aléatoires de vitesses. Ce point de vue est lui également adapté
à la modélisation d’une unité de production sujette à des aléas et nous mon-
trons au chapitre 7 que, sous certaines hypothèses, la densité de probabilité et
son flux associé conjointement obéissent à une relation super-symétrique bien
connue en mécanique quantique.

Tout au long de notre travail, la présence ubiquitaire de fluctuations, nous
amène à repenser la nature des problèmes d’optimisation des flux en termes
purement probabilistes et directement inspiré par une ancienne mais fonda-
mentale contribution de E. Schrödinger ( 1925). Comment, à partir d’un état
initial aléatoire mais dont la distribution de probabilité est donnée, piloter
l’évolution afin de réaliser un état final lui aussi aléatoire mais dont la dis-
tribution de probabilités est définie à priori et ceci tout en minimisant une
fonction objectif donnée. Ce cadre général appliqué dans le domaine du trans-
port, nous permet de proposer de nouveaux critères de performance pour le pi-
lotage des flux granulaires et en particulier d’avancer une définition rigoureuse
de l’efficacité des moteurs browniens.
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1

Introduction

1.1 The Industrial Revolution, or the possible outcome
of a complex dynamical system

“In the eighteenth century, a series of inventions transformed the manufacture
of cotton in England and gave rise to a new mode of production – the factory
system. During these years, other branches of industry effected comparable
advances, and all these together, mutually reinforcing one another, made pos-
sible further gains on an ever-widening front. The abundance and variety of
these innovations almost defy compilation, but they may be subsumed under
three principles:

• the substitution of machines – rapid, regular, precise, tireless – for human
skill and effort;

• the substitution of inanimate for animate sources of power, in particular,
the introduction of engines for converting heat into work, thereby opening
to man a new and almost unlimited supply of energy;

• the use of new and far more abundant raw materials, in particular, the
substitution of mineral for vegetable or animal substances.

These improvements constitute the Industrial Revolution.”
These principles – stated in [92] by David S. Landes, Emeritus Professor of
Economics at Harvard University – are doubtless of foremost importance for
the emergence of the Industrial Revolution. But still, the phenomenon leaves
us with many questions: was the revolution in industry simply an issue of
new machinery or mechanical innovation? Was industrial capitalism nothing
more than a clever system devised by clever capitalists to exploit the labor
of ignorant workers? Was the revolution in industry the product of conscious
planning or did it happen spontaneously?
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Trying to answer these questions is an interdisciplinary task which goes far
beyond the scope of these notes. I will instead state – using Landes’ definition
– a related and more precise introductory question:

Why can we conceive factory systems?

From a purely philosophical point of view, H. Arendt gives a very concise and
convincing answer based on the principle of organization ([10] p.113). Remark-
ing that a factory system is based on a possible partition of a manufacturing
process into its essential constituents, she concludes that these constituents
have to co-operate and must therefore be organized (in order to manufacture
the desired goods). Hence, it is the capability of organizing specific operations
which conceptually allows to conceive manufacturing systems (MS).
In modern MSs these specific operations are realized in work-cells (i.e. the
essential constituents) capable to receive (resp. send) items from (resp. to)
other work-cells following the organization scheme. The resulting “flow” of
products routed through the cooperating work-cells makes the MS a complex
dynamical system.
Coming back to Landes’ characterization, we see that it was the interplay
of such dynamical systems – interacting either directly with each other or
by means of the shared economical environment – which gave rise to the
Industrial Revolution.
Yet the Industrial Revolution is a historical fact and we are not going to
prove such a macroeconomic outcome out of interconnected (microeconomic)
dynamical systems. The point is that, whenever the principle of workforce-
organization applies, manufacturers are – from a synergetic point of view
– confronted with an open complex physical system, itself organized in a
network-like structure which is driven and maintained far from the thermo-
dynamic equilibrium. Short, the flow dynamics of a MS is a complicated thing.
It is therefore natural to ask for theoretical concepts able to explain at
least qualitatively the issuing dynamical phenomena such as instabilities,
inefficiencies and self-organization in production processes and more gen-
erally in transportation processes. This is the main theme of the present work.
To be more concrete, let us consider a MS embedded in its environment as
depicted in figure 1.1. Flows of matter, energy and information are maintained
in the factory and contribute, as an out-of-equilibrium system, to the occur-
rence of the required finished goods. The production flows present in such
systems give emergence to dissipative structures (e.g. flow patterns) including
the following dynamical phenomena:

1. Clogging at bottlenecks (i.e. accumulation of matter at specific work-
cells) leading to inefficiencies in the production process due to blocking
and starving phenomena (i.e. full and empty buffers);

2. The so-called “bull-whip effect” (i.e. important oscillations in stock levels
due to (small) variations in the consumption rate) which is a hallmark of
dynamical instabilities in the production process.
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Fig. 1.1. Schematic view of a supply-production-customer chain. Energy, raw ma-
terial and information are gathered in the supply part, conveniently transformed in
the production part and transported towards the downstream-user (e.g. individual
customers), where the finished goods are consumed.

3. Self-organizing effects such as the synchronization of stock levels oscilla-
tions in buffered manufacturing systems.

The theoretical concepts we will use to help understand such dynamical
features come from:

1. Statistical Physics. The fundamental task of statistical mechanics indeed
culminates in the desire to understand the emergence of macroscopic col-
lective properties from microscopic interactions.

2. Traffic Theory. The observation that several dynamical phenomena of cars
in traffic share common properties with production flows is key and will
be exploited throughout this work.

3. Queueing Systems. A powerful and well developed modelling tool which
is the widely accepted modelling language for stochastic MSs.

Regrouped as a whole, these theoretical tools are concerned with the relation-
ships between entities moving in a network. The precise nature of the moving
entities is thereby downplayed in hopes of uncovering deeper laws (e.g. the
emergence of instabilities etc.). A simple but fundamental example of such a
law, directly relevant for this work, are current-density relations which may
take the following form:

J(x, t) = J(ρ(x, t)). (1.1)

The above relation – if it exists for the dynamics of a given system of moving
entities – says that J(x, t), the current of the moving entities on a given
location x at time t, depends exclusively on ρ(x, t), the density of these entities
at a given place x at time t. Such a relation is very rich in content as it encloses
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all the dynamic information specific for the system at hand and a large body
of theoretical work has been devoted to derive such macroscopic relations
starting from microscopic models. Depending on the physical nature of the
circulating entities (discrete items or continuous flow of matter), the function
ρ takes on values in {0, 1} or [0, 1] and we suppose that it describes, up to a
multiplicative normalization constant, the distribution of the entities among
the network (in view of our examples, one may think of x �→ ρ(x, t) as the
distribution of cars along the road at time t or as the workload distribution in
manufacturing systems at t). Such a relation is of crucial interest in particular
if we assume that the quantity of circulating items is conserved (i.e. the inflow
into and the outflow from the system are balanced). In this case we can add
to eq. (1.1), at least formally, the continuity equation:

∂tρ(x, t) + ∂xJ(ρ(x, t)) = 0 (1.2)

where ∂tρ is the variation of ρ with respect to t and where ∂xJ is to be
understood as the flow variation in the space variable. From these introductory
remarks we see that knowing that the stationary current is a function of the
density alone, is crucial for calculating the density profile ρ(x, t).
The point for “flow engineering” is that the knowledge of ρ(x, t) contains the
information on the density (e.g., the workload distribution upon the work-
cells or the distribution of cars along the road) and J(x, t) encodes the flow
behavior at time t on the location x (e.g., the throughput of a specific work
cell or the vehicles-flow at x). These are fundamental pieces of information
for production engineers and for traffic engineers which have to organize and
optimize production flows in MSs and respectively vehicles-flow in traffic sys-
tems. This active influence onto the dynamics lead us, together with the three
aforementioned theoretical concepts, to the fourth concept extensively used
in this work namely

4. Stochastic optimal control. It is the natural connection between the sci-
entific desire to understand a given process and the engineering need to
modify and control it.

The controlled state variables Ju(x, t) and ρu(x, t) now both depend on a
control u affecting the production rates of the work-cells respectively the speed
of the circulating vehicles and which can be chosen within a set U of possible
values. It is then mandatory to select the best control u∗ with respect to some
cost functional i.e., to select the control which minimizes the costs. Such an
optimization procedure is performed in Chapter 4 in the context of production
engineering.

It is amusing to note that this directed research (transfer from theoretical to
applied sciences) has generated two theoretical “by-products” in the oppo-
site direction. Firstly, the study of the mentioned current-density relation for
given stochastic dynamics indeed enables us to unveil a supersymmetric rela-
tion similar to the one arising in Quantum Mechanics. Secondly, the quest for
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optimal transport in stochastic manufacturing systems offered a new under-
standing of the currently used efficiency concepts employed in the domain of
diffusion mediated transport processes. I believe that with these two theoret-
ical results, the thesis gains on interdisciplinary character. This is, I believe,
an essential need on the way towards a better understanding of the emerg-
ing phenomena of complex systems such as the industrial revolution out of
interconnected manufacturing systems.

1.2 Background and Motivation

The increased international competition for manufactured products has made
clear that the quality of a product is not the single factor upon which the
life of a product depends. The competition indeed has created the need for
sophisticated MSs and manufacturing processes which has stimulated a lot of
academic research for problems related to manufacturing.
Traditionally, the academical problems that have originated from the man-
ufacturing environment belong to the sphere of Operations Research (OR).
Queueing theory is one of the many tools used by the OR community to model
and study MSs. Here the MS is modelled as a network of queues. Queue-
ing networks originating from manufacturing environments have proved to be
anything but trivial. Manufacturing processes seems indeed to be an endless
source of challenging problems and the related literature is simply immense
and bewildering.
Without checking all the available results in queueing networks, most of the
analytical results are and will remain – due to the inherent complexity of man-
ufacturing networks – of stationary character (i.e. only stationary performance
measures can be calculated). This is a serious drawback of this approach as it
does not account for time localized, transient dynamical phenomena. Produc-
tion dynamics however, based on the time localized cooperation of working-
cells, show very rich spatio-temporal flow patterns and their understanding is
of foremost importance for optimization purposes. An external reference cor-
roborating this point of view is Professor Buzacotts comprehensive lecture on
“Analysis and Modelling of Manufacturing Systems”. In this lecture, held in
Tinos Island Greece 1999, he emphasizes the importance to study cooperative
behaviors in complex manufacturing systems.
Soon after this lecture, my thesis adviser M.-O. Hongler came up with the
idea of using theoretical concepts from traffic theory, statistical mechanics and
transportation theory in order to help understanding cooperative behaviors
in production processes. The crucial helper for the breakthrough of the idea
was a series of discussions with the production engineers of a large chemical
group based in Geneva. They drew our attention to their need to understand
thoroughly the cooperative effects occurring in their production flows. They
observed that a relatively short time interruption in the production flow, (due
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for example to a “punctual” strike), induces an extremely robust and long
lived jamming in their process. The issuing question:

“Can we give critical conditions for the formation of robust jamming together
with the characteristic time needed for these perturbations to be faded out?”

was the starting point of this thesis and already demands for concepts capable
to deal with phase transitions between flow regimes, time localized perturba-
tions and stability.

Besides the restricted dynamical insight into production dynamics, queueing
systems modelling suffers from another drawback. While the modelling con-
cepts of queueing theory naturally takes into account the probabilistic nature
of stochastic manufacturing systems, all Markov network models share the
property that the circulating items are immaterial tokens. Tokens with van-
ishing spatial extensions can clearly be superposed or dispatched without any
physical constraints. This abstract point of view is often too naive for pro-
duction processes. Consider indeed the multiplexing of sever parallel flows of
items into a single stream as sketched in figure 0.3. A consistent description of
the flow dynamics at the merging point must imperatively take into account
the finite spacial extension of the items.

From an interdisciplinary point of view it is interesting to note that the
understanding of merging flows of physical objects at bottlenecks is rele-
vant for the modelling of the crowd dynamics of panicking pedestrians –
one of the most disastrous forms of collective human behavior (see e.g.,
http://www.panics.org). Observed and simulated current-density relations of
pedestrians jamming in escape situations unveil a “slower-is-faster effect”
which is to say that for sufficiently high densities, the escape rate (outflow
current) decreases when the individuals augment their speeds (see figure 1.2).
The driving force behind this effect is the existing discrepancy between the

Fig. 1.2. Simulation-analysis of pedestrians moving with identical desired speed v0

towards the exit. The figure is taken from the article Simulating dynamical features
of escape panics by D. Helbing et al. in [23]. It shows the slower-is-faster effect due
to clogging at the exit.

individual and the collective goals. Minimizing the individual outflow times
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does in fact not necessarily maximize the escape rate. The immediate les-
son to be learned for production engineering is that whenever the circulating
entities take local decisions (think for example of a state dependent local rout-
ing through a manufacturing system) they have to be optimized on a global
level. Note that the “slower-is-faster” paradigm has already been successfully
applied to production processes [122].

Two rather unexpected theoretical results popped up while having a closer
look at current-density relations in transport processes. They are exposed in
part III of the thesis. The starting point is that MS models with prone-to-
failure machines have many similarities with velocity-jump processes (think
of the velocity-jumps as sudden switches between production rates). Inspect-
ing a simple two-velocities jump process with space-inhomogeneous switching
rates, we became aware of a remarkable symmetry relation between the prob-
ability density and the associated probability current which appears to have
its analogy in the context of signal processing. This strong relation suggests
that one may be able to further reduce the number of relevant variables de-
scribing (and/or controlling!) current and density variables. Moreover, the
issuing results are suspected to be useable for the numerical studies of a class
of hyperbolic partial differential equations [79]. The second theoretical result
combines transport with stochastic control which lead naturally to optimal
transportation problems. We believe that the field of optimal transportation
contains a wealth of results of practical relevance for supply chains and logis-
tics.

1.3 Original contributions exposed in this thesis

The basic contributions of our research can be located in the domains of (i)
manufacturing modelling, (ii) traffic theory, (iii) optimal control, (iv) random
evolution and (v) diffusion mediated transport. In this order we:

(i) unveiled and explored a close analogy between the production flows de-
livered by serial production lines and cars in highway traffic. We draw a
phase diagram exhibiting two different flow patterns, namely the free and
jamming production regimes and identify the critical production control
parameter for stable free flow. We extract a dimensionless dynamic pa-
rameter (relevant for design purposes) which quantifies the part of the
stationary production inefficiency coming from the linear instabilities of
the production dynamics [42]. Moreover, we calculated the outflow pro-
cess of a merge system feeded by N independent streams of physical items
having finite spacial extensions and have drawn conclusions related to pro-
duction engineering [40].

(ii) derived from a mesoscopic Boltzmann-like traffic model the current-
density relation introduced in an ad hoc manner by B.D. Greeshields.
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The non-linear Boltzmann-like traffic model is derived from a space dis-
crete particle hopping model and explains on a minimal level of detailed
knowledge the kinetic features leading to congestion formation in traffic
flows [39, 38].

(iii) solved a production planing problem for a buffered two stage, failure prone
production system where the associated cost structure penalizes empty
and full buffer states [43].

(iv) discussed a two-velocity process with space dependent drift and show that
under some additional conditions, the probability current and the proba-
bility density obey a supersymmetric relation [41].

(v) propose an efficiency measure for a large class of diffusion mediated trans-
port processes based on a stochastic optimal control problem [44].

Note that the concluding sections given at the end of every Chapter
provide the detailed lists of all the new results and contributions of
the corresponding chapter.

1.4 Organization

This thesis is divided into five parts which, in turn, are subdivided into sev-
eral Chapters. Each Chapter is as self-contained as possible and contains an
introductory part which is conceived as an entry point into different ares of
the related literature. The different parts regroup the work as follows:

I introduction to the main phenomena of interests and the main concepts
necessary for their descriptions;

II modelling and control of production and traffic flows;
III mesoscopic modelling of stochastic transport;
IV conclusions and open research problems;
V a set of appendices providing computations;

Part I consists of Chapter 1 and 2. In Chapter 1 (the one you are actually
reading now) we give a gentle introduction to the main theme of the thesis,
provide the reader with some background information and industrial moti-
vations, state the main contributions and outline the plan of the thesis. In
Chapter 2, we briefly review the literature on related works.
Part II consists of Chapter 3, 4, 5 and 6. Chapter 3 sets out for the dynamical
analogies between serial N stage production processes and the flow of N cars
described by an ad hoc “optimal velocity” car following model. In Chapter 4
we rigourously calculate the “optimal velocity” in case of a tandem production
line with N = 2. In Chapter 5 we are looking for current-density relations for
N big. In Chapter 6 we study the outflow process of a discrete materials flow
merge system connected to a downstream buffer.
Part III consists of two theoretical results exposed in the Chapters 7 and 8. In
Chapter 7, we report on a supersymmetric relation in a space inhomogenous
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two-velocities transport process and in Chapter 8 we quantify the efficiency
of diffusion mediated transport processes using a stochastic optimal control
formulation.
Part IV regroups the overall-conclusion and perspectives in a word on com-
plexity.
Part V consists of Appendices. These provide some technical calculations used
in the notes.
An extensive bibliography, the subject index and the authors CV and publica-
tions follow the appendices. We conclude this section by drawing a flowchart
(fig. 1.3) depicting relationships between various Chapters.
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Fig. 1.3. Relationships between Chapters. Each Chapter is as self-contained as
possible and contains an introductory part which is conceived as an entry point into
different areas of the related literature.
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A brief review of related literature

2.1 Introduction

In this Chapter the literature related to our subject is briefly reviewed. The
references are classified into six topics. First we give a comprehensive review
of the literature that is directly related to the main themes. We then review
the related literature in the areas of:

• stochastic modelling and control of manufacturing systems,
• traffic theory,
• stochastic control,
• random evolution and
• diffusion mediated transport.

2.2 Directly related literature

The idea of using traffic theory to describe cooperative behaviors in production
processes came up to my adviser in the fall of 1999 and was, to the best of
my knowledge, at that time also new. However, we came aware by mid 2003
of works describing production processes using exactly the same idea. In my
opinion, this is rather encouraging and invites to pursue this direction. Here
I will briefly review these works.

• The first published work connecting supply chains and traffic theory is
to our knowledge the Springer Lecture notes in Economics and Mathe-
matical Systems “A theory of supply chain” by C.F Daganzo [25] (2003).
He relates the occurrence of the bull-whip effect to stability conditions on
the supply chain and discusses the stability of serial supply chains under
several production scheduling policies.

• The first published work connecting supply chains and concepts of sta-
tistical mechanics is the paper “Kinetic and Fluid Model hierarchies for
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supply chains” by D. Armbruster et al. [22] (2003). They present a model
hierarchy for supply chains analogous to the scale hierarchy leading from
the Newton-like description of the many body problem to the equations
of gas dynamics. They discuss possible mean-field models for the supply
chain and verify numerically their accuracies for serial supply chains. In
our micro-meso-derivation we use the limit theorems for Markov processes
established by W.A. Rosenkrantz and C.C.Y. Dorea [127]. On this work
is based the diffusion approximation for a whole class of Markov processes
exposed by W.A. Rosenkrantz and L.Z. Bing in [126] (1983). A variant of
this approximation theorem including also our microscopic hopping model
is given in Chapter 5.

• During 2003, Dirk Helbing, one of the leading traffic theorists, has gener-
alized some ideas suggested by Daganzo and Armbruster et al. published
in [65] (2003). The appealing title of this work declares a whole program:
“Modelling and Optimization of Production Processes: Lessons from Traf-
fic Dynamics.” This transfer of knowledge contains besides the discussion
of the “bull-whip effect” in the language of traffic theory also the connec-
tion with the“slower-is-faster effect” observed in pedestrian dynamics.

• The stochastic control paper [119] (1991) of P. Dai Pra and the paper
“Generalized Efficiency and its Application to Microscopic Engines” [74]
(1999) by I. Derényi et al. are directly relevant for Chapter 8 – the rigorous
definition of an efficiency measure for diffusion mediated transport. The
paper of Derényi et al. proposes an informal definition of a new efficiency
measure for micro-devices transported with the aid of noise. The definition
relies on the concept of “minimal energy cost of completing a task” which
is basically an optimal control problem. It is at this level where the paper
of Dai Pra gives a twist of rigor to Derényis definition by solving the
stochastic optimal control problem.

• The merging of cars in multi-lane traffic into a one lane stream of cars is
discussed in “On single-lane Roads”, a work by A.J. Koning [86] (1989).
Using the dictionary between production flows and cars in traffic, the
paper constitutes the main source of inspiration for Chapter 6. The paper
calculates the asymptotic behavior of the flow after the merge.

• Honglers’ paper on “Supersymmetry and signal propagation in inhomoge-
nous transmission lines” [68] made us discover supersymmetric relations
in two-velocities jump processes (Chapter 7). An excellent introduction
to Supersymmetry avoiding Grassmann-algebras and bra-cket notations
which includes however many many enlightening examples is [21].

2.3 Related literature on Stochastic modelling and
control of manufacturing systems

The modelling of stochastic manufacturing systems by means of queueing
systems is very vast and excellent and comprehensive reviews are available
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[14, 51, 111]. The nicely told story of “the evolution of manufacturing system
models” [15] (2003) by J.A. Buzacott gives a personal view on the domain and
motivates a reorientation of the field towards the understanding of competition
and cooperation of supply chain partners.
A lot of control research on MSs is based on the model described by the
inventory-production equation:

ẋ(t) = u(t)− d(t) (2.1)

relating the change of inventory ẋ with the production rate u and the demand
rate d. With this model the discrete nature of parts is neglected and it is
assumed that the material flows continuously between the components of the
MS. The literature in continuous materials flow MSs is briefly reviewed.
Stationary Performance Measures. The first approach to our knowledge
that treated a serial production line with a continuous flow model is due to B.
Zimmern [154]. This original contribution has stimulated a strong research ac-
tivity with the aim to calculate the average throughput and other performance
measures for failure prone flow- and job-shop manufacturing systems (see [26]
for a review). In particular J. Wijngaard [151] and similarly D. Dubois and
J.P. Forestier [31] quantify the benefic (stationary) effect of interstage storage
buffers on the output of two stage production lines. We make repeated use of
these results in Chapter 4.
Control. Pioneering contributions in manufacturing flow control include the
paper [5] by R. Akella and P.R. Kumar and the paper [13] by T. Bielecki
and P.R. Kumar. Akella and Kumar showed the optimality of the Hedging
point policy for the case of a single machine that produces one part type.
They used a discounted type of performance index and the optimization was
over an infinite time horizon. They also provided a closed form for the hedging
point. Interestingly enough, they found that the hedging point could be zero, a
result that is in compliance with the “just-in-time” manufacturing philosophy.
Bielicki and Kumar solved the same problem using as performance measure
the expected average cost. In order to find the hedging point, they derive the
probability distribution of the inventory of finished parts. Then the hedging
point is chosen to minimize the total expected cost of carrying the inventory
of finished parts. The same strategy is applied in Chapter 4 to derive the
optimal control of a two stage line for a specific cost structure.
Tandem two-machine MSs are studied by Ryzin et al. in [47], by Lou et
al. in [140] and by Veatch and Wein in [144]. These works aim to minimize
inventory holding and backorder costs and compare the performances of the
optimal controls with the performances of simpler ones.
In his master thesis, M.N. Eleftheriu analysis hedging point policies for multi-
stage MSs and finds hedging points for every buffer of the MS. The estimation
is based on the failure rate that a buffer sees and depends on the failure of all
the machines that are upstream with respect to the buffer [34].
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However, when the production line consists of more than two machines to-
gether with internal buffers, the optimal production planning control becomes
very complicated and optimal control policies cannot be described by hedging
points. A promising approach to the almost optimal dynamic scheduling for
production systems can be found in the PhD thesis of F. Dusonchet [33] where
the (close to) optimal control of stochastic processes by means of switching
indices is analyzed. Recognizing the complexity of the control problem, Sethi
and Zhang [134] have developed a hierarchical approach for solving it approx-
imately when the rate of change in machine states is much larger than the
discount rate of the costs. In this case, they show that the original problem can
be approximated by a deterministic problem and that the optimal solution of
the deterministic problem is asymptotically optimal for the initial problem as
the rate of change in machine state becomes large.

2.4 Related literature on Traffic theory

The works on traffic theory by D. Helbing form an important part of the actual
body of traffic research literature. His recent review [64] (2001) together with
the review of D. Chowdhury et al. [1] (2000) form an excellent overview on the
subject and guides the reader through the vast body of available literature.
Micro and Macro Models. The microscopic optimal velocity car traffic
model which inspires our dynamic description of the production line in Part
II is discussed by Bando et al. [3]. How to suppress instabilities in this optimal
velocity model by means of a delayed-feedback control is explained in [2] and
is of practical relevance for the stability of production lines and supply chains.
The related class of macroscopic traffic models, describing the collective ve-
hicle dynamics in terms of the vehicle density ρ(x, t) and the average flow
J(x, t), is the one introduced by Lighthill and Whitham in [95]. They assume
the existence of an equilibrium current-density relation

J(x, t) = J(ρ(x, t)). (2.2)

which together with the continuity equation (1.2) is the starting point of
an elaborate shock wave theory. On the basis of experimental observations,
Greenshields proposed in [55] an explicit choice for J(ρ) ∝ ρ(1− ρ) which we
will derive from a mesoscopic level of description in Chapter 5.
Current-density relations. Obviously, traffic flow phenomena strongly de-
pend on the occupancy of the road. Most important for traffic engineers are
flow-density relations (also current-density relations) which can be measured
on highways [45] and which show the generic form of an inverted V in the
density-current diagram. The precise nature of this so-called fundamental di-
agram is still not clearly understood since the details of the complex experi-
mental setup (such as the sample time between the monitoring of data) can
strongly influence the empirical data. Theoretical works explaining several
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features of the fundamental diagram include [98, 148, 90, 97, 9] and the fun-
damental diagram of an optimal velocity model is discussed e.g. in [139]. A
rigorous treatment of current-density relations out of interacting particles sys-
tems is delivered by the vivant hydrodynamic scaling theory which is exposed
in [84] (see also [94]).
Phase-transitions. The current-density relation already suggests the exis-
tence of at least two different dynamical phases of vehicular traffic on high-
ways, namely a free-flow phase and a congested phase. Works debating differ-
ent phases of traffic flow and the issues of phase transitions are [83, 138, 129].
The paper [105] by T. Nagatani investigate traffic jams induced by fluctua-
tions of a leading car. This is of some interest for the stability of production
lines facing a stochastic demand, where the fluctuating demands play the role
of the fluctuating leading car.
Micro-Macro link. The different hierarchies of traffic modelling (micro-
meso-macro) are explained e.g. in [85]. Derivations of macroscopic current-
density relations from mesoscopic models (i.e. gas-kinetic-like models based
on Boltzmann-like equations) start with a paper by I. Prigogine et al. [120].
The paper proposes a first gas-kinetic model for traffic dynamics. Several au-
thors considerably improved this model (e.g. [150, 114, 107]). Probably the
most advanced macroscopic, Navier-Stokes-like traffic model derived from a
mesoscopic level of description is given in [63]. It withstand the general crit-
icism of second-order models addressed by Daganzo [24]. A general outline
of the micro-macro link can be found in [64] (Chapter E). In its more math-
ematical form, the micro-macro link is also known as hydrodynamic limit
theory [84, 94, 125]. We mention in particular Derridas exact treatment of the
asymmetric simple exclusion process [29]. The paper is an important source
of inspiration for mathematical modelers trying to get full understanding of
transport processes via exactly solvable models.

2.5 Related literature on Stochastic control

In stochastic control systems, the main objective is to find a control sequence
that minimizes the expected value of a given performance functional. There
are two approaches to accomplishing the minimization. The first approach is
Pontryagin’s minimum principle, which leads to a nonlinear two-point bound-
ary value problem that must be solved to obtain an optimal control law [91].
The second method is Bellman’s dynamic programming which leads to func-
tional equations that are very amenable to solution by numerical methods [12].
Both approaches “converge” to the same functional equation, the Hamilton-
Jacobi-Bellman (HJB) equation, which must be satisfied by an optimal con-
troller and its trajectory. An excellent introduction to optimal stochastic con-
trol and HJB equations is the book by W.H. Fleming and H.M. Soner [46]. It
contains in particular a chapter on logarithmic transformations which is the
basis for a connection between non-linear HJB equations and linear evolution
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equations for the associated Markov processes. P. Dai Pra uses this connection
in [119] to solve an optimal transportation problem introduced by Schrödinger
[131]. Recently the logarithmic transformation has been applied by Hongler et
al. [103] to a simple class of jump Markov processes (i.e. random evolutions)
which occur also in stochastic MS modelling.

2.6 Related literature on Random evolution

Random evolutions are stochastic linear dynamical systems where the ran-
domness is in the equation of state. They are well adapted to the formaliza-
tion of the random inventory-production equation 2.1. The ultimate starter for
random evolutions is “the birth of random evolution” [66] (2003) by R. Hersh.
It gives an up to date overview over the development of random evolutions. A
comprehensive list of applications is e.g. [149] by G.H. Weiss (2002). To learn
about random evolutions we propose Pinsky’s “Lectures on Random Evolu-
tion” [117]. The lectures also include a stochastic treatment of the linearized
Boltzmann equation which can be related (by a logarithmic transformation!)
to the non linear Boltzmann model studied in Chapter 4.
Interesting applications for random evolutions concern transport in biological
systems [59, 60]. Particularly worthwhile are the studies in [67, 109], where
the authors apply the random evolution modelling to flagellated bacteria able
to adapt their speed with the environment.

2.7 Related literature on Diffusion mediated transport

The most common illustrations for diffusion mediated transport –noisy trans-
port far from equilibrum – are Brownian motors. A excellent comprehen-
sive review on Brownian Motors is the aricle [123] by P. Reimann (2002).
An overview on the energetics of Brownian Motors can be found in [112] by
J.M.R. Parrondo and B. J. De Cisneros (2002). Both reviews contain an up to
date list of important works done in the field. A connection with a variational
principle, similar to the one we propose, is made in [96] (2003).
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Flows in Manufacturing and Traffic systems
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Cooperative Flow dynamics in production lines
with buffer level dependent production rates

Summary. We study, in the fluid flow framework, the cooperative dynamics of a
buffered production line in which the production rate of each work-cell does depend
on the content of its adjacent buffers. Such state dependent fluid queueing networks
are typical for people based manufacturing systems where human operators adapt
their working rates to the observed environment. We unveil a close analogy between
the flows delivered by such manufacturing lines and cars in highway traffic where
the driving speed is naturally adapted to the actual headway. This close analogy is
thoroughly explored. In particular, by investigating the dynamic response of small
perturbations around free flow stationary regimes, we can draw a “phase diagram”.
This diagram exhibits two different flow patterns, namely the free and jamming pro-
duction regimes. The transitions between these regimes are tuned by the production
control parameters (i.e. the buffer capacities, the reaction sensitivity, the control
sampling time, etc.). The parameters range defining the boundary between the two
regions allow to extract a dimensionless dynamic flow-line-parameter Z which is
directly relevant for design purposes. Similar to the Reynolds’ number R in hydro-
dynamics, the value of Z indicates the flow-regime in which the production line is
in.

3.1 Introduction

It is already half a century that B. Zimmern [154] wrote a pioneering paper
devoted to the characterization of production flows in serial lines. This original
contribution has stimulated a strong research activity with the aim to calculate
the average throughput and other performance measures for failure prone
flow- and job-shop manufacturing systems (see [26, 14] for comprehensive
reviews devoted to this topic). Due to the tremendously growing role played by
computers in the seventies and eighties of the XXth century, it has long been
believed that the ultimate goal in manufacturing would consist in building
complete production plants without any human presence. According to this
“no-human presence” paradigm, most of the production flow research papers
have been oriented towards the study of shop floors equipped with automated
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machines with rigid behavior (i.e. either the machine is “on” and it delivers
with maximal speed or it is “off” and nothing is produced). Today, this no-
human factory is widely questioned and one indeed realizes that the inherent
flexibility of human operators offers irreplaceable advantages at reasonable
costs. In a very recent address, [15], Chap.3, J. A. Buzacott emphasized this
point and delivers the view that the main challenge for future research in
production systems should be oriented towards the study of models which
incorporate key features like the people incentives and capabilities.
While cooperative dynamics does already occur in purely automated multi-
stages lines (via the starving and blocking mechanisms), the presence of hu-
man operators introduces additional adaptability features. While in the purely
automated case, the production rates of the work-cells are generically of the
“bang-bang type” (i.e. produce at the maximal rate when “on” and no pro-
duction when “off”), human operators usually behave in a much more flexible
manner. It is for instance common for human operators to observe the content
of their up- and down-stream buffers and then, based on these observations,
to suitably regulate (i.e. increase or decrease) their processing rate in order
to avoid blocking and/or starving of the flows. This greater flexibility in their
dynamics behaviors obviously influences the overall production flows in either
a positive or sometimes also a negative way [118]. An illustration is given by
J.A. Buzacott ([15] Chap. 3.7) of an automated guided vehicles (AGV) based
assembly line in which the operators freely decide when to launch their AGV.
The key point here is the possibility for the operators to themselves freely
control their idle time (and hence their production rate).
The aim of the present chapter is i) to study how the production flows de-
pend on machines with flexible production rates typical in presence of human
operators and ii) to show how a synergetic approach can be used to study the
production flow dynamics. This is realized by means of a simple modelling
framework. The modelling is based on the close analogy which exists between
the production flows and the flow of cars in highway traffic (see [1, 64] for
an up-to-date review of traffic theory). The analogy enables us to study ana-
lytically some features of the underlying cooperative dynamics. Cooperation
gives rise to different flow regimes such as free-flows and jamming flows which
are tuned according to the values of external control parameters. A given flow
shop configuration, fixed by the content of the buffer levels and production
rates of the machines, is thereby said to be in the free flow regime (resp.
jamming flow regime) if time-localized perturbations of this configuration are
damped out (resp. can propagate through the entire system). Applying the
linear perturbation method to our simple production line, we are able to draw
a flow diagram which exhibits transitions from a free to a jammed regime. The
transitions are tuned by external control parameters such as the buffer con-
tents the reactivity of the human operators or the sampling time at which the
state of the system is monitored. The parameters range defining the boundary
between these flow regimes follow analytically from our synergetic approach.



3.2 Models 23

While the transitions from the free to the jammed flow regimes are well known
in the car traffic domain, such transitions have so far received very little at-
tention in the manufacturing literature. This is not surprising as, in manufac-
turing, one usually focuses on calculating stationary performance measures.
A notable exception is the related bullwhip effect which is extensively dis-
cussed in supply chain theory. The bullwhip effect describes how “inaccurate
information, a lack of transparency throughout the supply chain, and a dis-
connect between production and real-time supply chain information result in
lost revenue, bad customer service, high inventory levels and unrealized prof-
its” [20]. The main effect of these causes is to increase the demand variability
as one moves up the supply chain away from the retail customer, and small
changes in consumer demand can result in large variations in orders placed up-
stream. Similar to the buffer levels of a serial production line in the jammed
flow regime, the supply network can eventually oscillate in large swings as
each organization in the supply chain seeks to solve the problem from its own
perspective.
The chapter is organized as follows: In section 2, we jointly present a pro-
duction flow shop model and a single lane model for cars in traffic. A direct
correspondence between the models is established and differences as well as
similarities of the dynamics are discussed. The stability of the flows is ana-
lyzed in section 3 in the continuous and the discrete time framework. In the
former case we construct a dimensionless stability parameter which is rec-
ognized to play a central role also in the calculation of the throughput via
stationary probability measures. For discrete time, the dynamics is expressed
as a coupled-map lattice for which a phase diagram for the flow is derived.
Section 4 is devoted to conclusions.

3.2 Models

3.2.1 Buffered Flow Shop

Let us consider a flow shop producing a single final product. The flow shop is
made up by N machines in tandem {Mk}k=1..N separated by N − 1 buffers
{Bk}k=1..N−1 as showed in Fig. 3.1. We adopt here an hydrodynamic point of
view and assume that the buffer population can be modelled by a continuous
variable.
The buffer Bk is located between the machines Mk and Mk+1. The population
level of Bk at time t is yk(t) ∈ R. Hence, we shall have 0 ≤ yk(t) ≤ hk where
hk > 0 stands for the capacity of the buffer Bk. We assume a degree of
adaptability, to be defined below, of the production rate vk of machine Mk.
More specifically, we shall assume that vk can vary continuously in the interval
[0, Vmax,k], where Vmax,k is the maximal production rate of Mk.
The occasional breakdowns of random duration of the Mk’s are modelled by
independent Markov processes I1(t), ..., IN (t), where Ik(t) is an alternating
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Fig. 3.1. Sketch of a flow shop composed of N machines and N − 1 buffers. We
suppose perfect supply such that M1 is never starved (there is always enough raw
materials stored in “+∞”) and a high demand rate such that MN is never blocked
(i.e. all the final goods are absorbed in “−∞”).

renewal process with exponential holding times in the two states {0, 1}. We
say that the machine Mk is up whenever Ik(t) = 1 and Mk is down when
Ik(t) = 0. The Ik’s are characterized by the mean up and the mean down
times λ−1

k respectively µ−1
k .

For simplicity, the rate of demand d(t) facing the system is from now on
assumed to be large enough to systematically absorb the production. Accord-
ingly and for notational ease, we set vN+1(t) = d(t) and IN+1(t) ≡ 1. In
addition the following assumptions are made:

A1) yk(t) = 0 ⇒ vk+1(t) ≤ vk(t), k = 1, ..., N − 1, which means that when
the downstream buffer of Mk is empty, Mk+1 is starved. In this case the
production rate of Mk+1 is slaved by the production rate of Mk.

A2) yk(t) = hk ⇒ vk(t) ≤ vk+1(t), k = 1, ..., N − 1, which means that when
the upstream buffer of Mk+1 is plain, Mk is blocked. In this case the
production rate of Mk is slaved by the production rate of Mk+1.

A3) Transport time of items from Mk to Bk and from Bk to Mk+1, k =
1, ..., N − 1, are assumed to be short and will be neglected.

A4) Machine M1 is never starved (enough raw material) and MN is not influ-
enced by the market (enough demand).

The assumption A4 simplifies the “boundary” conditions and the assump-
tions A1-A3 can be summarised as follows: “while operating at time t and as
long as Mk is neither starved nor blocked, Mk can produce continuously and
independently of the other machines with the production rate vk(t) and its
output is instantaneously stored in Bk.” The evolution of the inventories can
then be written as follows:

dyk(t)
dt

= vk(t)Ik(t)− vk+1(t)Ik+1(t), yk(0) = yk, k = 1, ..., N, (3.1)

where the yk’s are fixed initial conditions with yk ∈ [0, hk]. The inventories
are naturally subject to the state constraints(

y1(t), ..., yN−1(t), yN (t)
) ∈ [0, h1]× ...× [0, hN−1]× R, (3.2)
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which must be satisfied at every instant. To complete the dynamics of the
flow shop model one has to specify the production rates vk of the machines
subject to the constraints:(

v1(t), ..., vN (t)
) ∈ [0, Vmax,1]× ...× [0, Vmax,N ]. (3.3)

This is customarily done (at least in automated systems literature) by ex-
pressing the production rates as being the solutions of a convex production
planning model which minimizes a specific cost functional (see e.g., [134]).
This approach involves heavy algebra even when N is small and is indeed
very unlikely to be explicitly solvable for N > 3. We will treat such a pro-
duction planning problem for N = 2 in chapter 4. Here we are not dealing
with such an optimization problem but we are interested in the dynamical
response of a flow shop with state dependent production rates to a perturba-
tion. Therefore we fix the dynamics (i.e. the production rates) by choosing a
class of production rate functions which take into account (3.2) and (3.3). For
this purpose we introduce below the so called “optimal-velocity” car traffic
model first studied by M. Bando et al. [3] in analogy to which we will derive
the “optimal” production rates. We stress here and at several occasions that
in this chapter the adjective “optimal” does have a purely phenomenological
meaning as it is not related to a cost functional of a production planing model.

3.2.2 Optimal-Velocity Car Traffic Model

We consider N cars {Mk}k=1..N travelling on a single lane as showed in Fig.
3.2. For k = 1, ..., N − 1, denote by xk(t) > 0 the headway between the cars

x1(t) x2(t)
� � �����

x3(t) xN−1(t)

� �
v2(t)

���� �
v1(t)

�� � �
v3(t)

��� � �
vN (t)

���

Fig. 3.2. N cars on a single-lane.

Mk,Mk+1 and for k = 1, ..., N denote by vk(t) ∈ [0, Vmax,k] the speed of Mk,
where Vmax,k is the maximal velocity of Mk.
The Optimal Velocity (OV) traffic model [3] states the existence of an optimal
velocity function Vk which depends on the headways xk, xk−1 and the presence
of a response delay time τk, required for a driver of Mk to adjust its speed,
such that:

Vk(t) not.= Vk

(
xk−1(t), xk(t)

)
= vk(t+ τk). (3.4)

Expanding Eq.(3.4) up to first order, adding the corresponding headway vari-
ations and specifying the optimal velocity yields the following class of OV-
models:
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dxk(t)
dt = vk+1(t)− vk(t), k = 1, . . . , N,

dvk(t)
dt = αk

(
Vk(t)− vk(t)

)
, k = 1, . . . , N,

(3.5)

where αk = τ−1
k and where the optimal velocity of Mk at time t is of the form:

Vk(t) = Vmax,k · Fk

(
xk−1(t), xk(t)

)
. (3.6)

In writing Eqs.(3.5) and (3.6), the following set of control parameters and
functions are introduced:
a) The set of parameters αk > 0 which have the physical dimension of frequen-
cies. They represent the sensitivity of the control mechanisms acting on the
speed of the cars and are given by the inverse of the delay times τk introduced
in (3.4) (i.e. αk = τ−1

k ).
b) The set of functions Fk, associating to given up- and downstream headways
xk−1 and xk a dimensionless factor Fk

(
xk−1, xk

) ∈ [0, 1]. When multiplied by
the maximum speed Vmax,k of Mk, Fk yields the optimal velocity of Mk. The
functions Fk model directly the speed adaptability of Mk as a function of
the headway to its adjacent neighbors. The type of controls that the Fk’s
introduce, are similar to those considered in [62] to describe the psychological
effects of car drivers.
Note that the functions Fk are, and hence so are the OV-functions, of phe-
nomenological nature and have to be chosen by the model builder. In partic-
ular, the OV-functions Vk are not directly related to an optimization prob-
lem and their generic features are based on common intuition. The functions
Fk(x, y) should certainly be non-increasing in the upstream variable x (no ten-
dency to accelerate if the upstream headway increases) and non-decreasing in
the downstream variable y (no tendency to brake down if the downstream
headway increases). For calculation purposes we further assume from now
on that the Fk’s are at least twice continuously differentiable in x and y.
Note that various explicit choices for OV-functions are used in traffic theory.
They are guided by criteria like simplicity and existence of explicit solutions,
low number of control parameters, existence of inflection points etc. (see e.g.,
[3, 62, 105]). They do all have their drawbacks and their advantages and com-
mon to all are the mentioned assumptions (monotonicity and differentiability).
Here the generic setting is pursued and no explicit choice is made.

3.2.3 Correspondence between Flow Shops and Optimal-Velocity
models

A glance at Figs. (3.1) and (3.2) and at Eqs. (3.1) and (3.5), suggests the
following correspondence:

machines in a flow shop ↔ cars in a single lane,

free buffer space hk − yk ↔ headway xk,

production rate ↔ car velocity,
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from where we deduce, keeping failure prone machines, that an optimal pro-
duction rate flow shop model can be written as:⎧⎨

⎩
dyk(t)

dt = vk(t)Ik(t)− vk+1(t)Ik+1(t), k = 1, . . . , N,

dvk(t)
dt = αk

(
Vmax,k · φk

(
yk−1(t), yk(t)

)− vk(t)Ik(t)
)
.

(3.7)

where the φk’s are directly related to the Fk’s by

φk(x, y) := Fk

(
hk−1 − x, hk − y

)
(3.8)

thereby realizing the correspondence “free buffer space = headway”.
In this setting, the functions φk

(
x, y

)
represent the production control policy

based on the adjacent buffer levels. The function y �→ φk

(
x, y

)
indeed encodes

for fixed x the influence of the free downstream buffer space on the production
rate of Mk and similarly for fixed y, the function x �→ φk

(
x, y

)
describes the

influence of the free upstream buffer space on the production rate of Mk. In
particular, the starving and the blocking mechanisms of Mk are taken into
account by imposing

starving: φk(hk−1, y) = Fk(0, hk − y) = 0, ∀y (3.9)

and
blocking: φk(x, 0) = Fk(hk−1 − x, hk) = 0, ∀x. (3.10)

Indeed, when Mk is starved, the free upstream buffer space equals hk−1 and
we have φk(hk−1, y) = 0 independently of the downstream buffer variable y.
Similarly, when Mk is blocked, the free downstream buffer space equals 0 and
we have φk(xk−1, 0) = 0 independently of the upstream buffer variable x.
Eq. (3.7) therefore implies vk(t) = exp(−αkt). Hence, in both cases (starved
resp. blocked) the production rate of Mk decreases exponentially fast. For
α 
 1, this behavior closely approaches the assumption A1: vk(t) ≤ vk−1(t)
(resp. A2: vk(t) ≤ vk+1(t)). In the limit when αk → ∞ one effectively has
a “bang-bang” type of reaction and the velocity is immediately adjusted to
its “optimum”. In this limiting case the assumptions made on Fk takes auto-
matically into account the buffer level constraints expressed in Eq. (3.2) and
Eq. (3.3). Note that A4 can be satisfied by imposing φ1

(
x, x1

)
= φ1

(
x1

)
and

φN

(
xN−1, xN

)
= φN

(
xN−1

)
which reflects the facts that M1 is never starved

(independent of the supply) and that MN is never blocked (independent of
the market).
Using the mentioned correspondence, the resulting optimal production rate
flow shop model can be summarized as follows: to each machine Mk and
at every time instant t, one can assign an “optimal” production rate Vk(t)
of phenomenological character which depends on the up- and downstream
buffers of Mk. This optimal production rate will be reached within a time
interval of length τk thanks to the adaptability of the operators.
Remarks.
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a) Depending only on xk−1 and xk, the production rate of Mk is constantly
adjusted by an operator who monitors the population levels in the up- and
downstream buffers. It is better to produce with the “optimal” production
rate Vk but deviations may exist between the optimal- and the real production
rate. The operator tries to reduce the deviation ∆ = Vk − vk by initiating an
acceleration αk∆ of its production rate. This response mechanism replaces
the state constraints given in Eqs. (3.2) and (3.3).
b) The “nearest neighbor-influence” on the production rates of the flow line is
reminiscent from the interactions occurring in tandem supply chains. It is well
known that unmanaged supply chains are not inherently stable (think e.g. of
the bullwhip effect) and the objective of supply chain management is precisely
to provide an uninterrupted and well timed flow of materials to customers.
The often phenomenologically chosen countermeasures to instabilities include
the shearing of production capacity and supply information. These approaches
can be seen as practical caricatures of the “optimal production rate models”
in the domain of supply chains (see also [65]).
c) The analogy between manufacturing- and traffic systems has its limits.
In particular, to breakdowns of machines will correspond sudden stops of
vehicles. Such “unitary crashes” are rather rare events on highways. In this
sense the OV-traffic model (3.5) is a special case of the optimal production
rate model (3.7). Indeed, setting Ik = 1 and removing the starving mechanism
A1)– absent in real traffic – we obtain exactly the OV-model (3.5) of Bando
et al.. At first sight, one could argue that focusing on Ik = 1 for production
lines is not relevant. Indeed for fully reliable machines, one barely sees the
need for introducing buffer places. This is however not so here. Indeed:

i) due to human presence, the production rates are not strictly constant but
may fluctuate around their averages. The very presence of these fluctua-
tions restore the importance of buffers as they increase the “compressibil-
ity” of the production flow. The transient response to a local fluctuation
of the production rate will be given by our model.

ii) In presence of adaptable production rates, the ability of the system to
respond to a non ideal production state which results after a failure is an
essential dynamic performance factor. Hence the study of the transient
response of the system to a state configuration out of the ideal one is
essential.

d) The proposed correspondence

free buffer space hk − yk ↔ headway xk,

between the free buffer space and the car headway identifies blocked machines
yk = hk (a situation taken into account by 3.10) with crashes of cars xk = 0.
The starving situation yk = 0 (taken into account by 3.9) would correspond
to an interaction between consecutive cars at the particular distance hk. Such
an interaction is of no direct interest in traffic theory and we therefore refrain
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to interpret the eq. (3.9) in the traffic setting. This does however not influence
the relevance of the model for production dynamics.
e) In the sense of remark d) one might prefer to realize a correspondence
between the buffer content and the car headway by setting

buffer content yk ↔ headway xk.

Such a correspondence would identify starved machines yk = 0 (a situation
which is taken care of by 3.9) with crashes of cars xk = 0. And this time it
would be the blocking situation yk = hk (taken into account by 3.10) which is
of no direct interest in traffic theory. Once again, this does not influence the
relevance of the model for production dynamics.

3.3 Linear stability analysis

Obviously, a steady state for cars in a line is given when all of them run
orderly with the same constant optimal velocity Vk = ve and with constant
headway xe

k, such that:

Vmax,kFk

(
xe

k−1, x
e
k

)
= ve k = 1, ..., N − 1. (3.11)

Here, we focus on the dynamic response of the flow shop to a single, time-
localized perturbation of the free flow regime. We consider a time interval
on which Ik = 1, k = 1, . . . , N i.e., on which all machines are operational.
During such time intervals a steady state (xe

1, ..., x
e
N−1, v

e) satisfying Eq.
(3.11), corresponds to a flow shop configuration where all stages have con-
stant production rates ve and where the buffers maintain the constant levels
(h1 − xe

1, ..., hN−1 − xe
N−1) (recall that xi = hi − yi where yi is the buffer

level). We shall call this state a free flow production regime when localized
perturbations are damped out. To formalize this definition we set

rk(t) :=
k−1∑
j=0

xj(t) k = 1, ..., N, x0 ≡ 0. (3.12)

for the ”absolute distance” of ”car” Mk from the first car M1 and undertake
the stability analysis of (3.5) which reads now:{

drk(t)
dt = vk(t), k=1,. . . ,N

dvk(t)
dt = αk

(
Vmax,kFk

[
rk(t)− rk−1(t), rk+1(t)− rk(t)

]− vk(t)
)
.

(3.13)

3.3.1 Time-continuous Analysis

Assume that MN produces with a constant rate ve := min{Vmax,k | k =
1, ..., N}. The dynamics (3.13) has the following steady state:
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re
k(t) =

∑k−1
j=1 x

e
j + vet,

ve
k(t) = Vk(t) = ve,

(3.14)

where the xe
k’s satisfy Eq. (3.11). To infer on the stability of the system we

introduce a small perturbation δrk(t)� re
k(t) :

δrk(t) := rk(t)− re
k(t).

Linearizing (3.13) around the steady state, we obtain the dynamical response
equation:

d2δrk(t)
dt2

= αk

[
Vmax,k

(
δrk+1∂yFk + δrk

(
∂xFk−∂yFk

)− δrk−1∂xFk

)
− dδrk

dt

]
(3.15)

where

∂xFk :=
∂Fk(x, y)

∂x

∣∣∣
x=xe

k−1

and ∂yFk :=
∂Fk(x, y)

∂y

∣∣∣
y=xe

k

. (3.16)

In expanding in a discrete Fourier series:

δrk(t) :=
1
N

N−1∑
j=0

cje
2πi·j k

N e

(
λ(j)−iω(j)

)
t, k ∈ {1, ..., N}, (3.17)

where i2 = −1, the set of dynamical equations (3.15) yields for every j ∈
{0, ..., N − 1} the characteristic relation:

Pk(λ− iω)δrk + αkVmax,k

(
∂xFkδrk−1 − ∂yFkδrk+1

)
= 0, (3.18)

where we have omitted the j dependance of λ and ω and where

Pk(λ− iω) := (λ− iω)2 + αk(λ− iω) + αkVmax,k(∂yFk − ∂xFk).

Any solution λ(j) − iω(j) of (3.18) with λ(j) > 0 gives rise to a growing
evolution of the perturbation and hence the initial state is not stable. The
stability is given when λ(j) < 0, for j = 1, ..., N − 1, (j = 0 corresponds to
the neutral mode). This yields the condition (see also [62] and Chapt. III/A.2
in [64]):

Vmax,k · (∂xFk + ∂yFk)2

αk · (∂yFk − ∂xFk)
<

1
1 + cos( 2πj

N )
. (3.19)

Thus, the most unstable mode is realized for j
N → 0. Accordingly stability

will be guaranteed provided:

αk(∂yFk − ∂xFk)
Vmax,k · (∂xFk + ∂yFk)2

> 2 ∀k ∈ {1, ..., N}. (3.20)
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We can now directly transfer this dimensionless stability condition to the
flow shop model (note that ∂yφk(x, y) = −∂yFk(x, y) and ∂xφk(x, y) =
−∂xFk(x, y)):

αk(∂xφk − ∂yφk)
Vmax,k · (∂xφk + ∂yφk)2

> 2 ∀k ∈ {1, ..., N}. (3.21)

Remarks
1) When (3.21) is satisfied for all k = 1, ..., N , the variation of velocity of

the upstream machine is damped out by the presence of the buffers and the
flow shop is running in a soft regime. When (3.21) fails for some k, the regime
of ”jamming” or ”chattering” may occur. This jamming flows are character-
ized by large fluctuations in the buffer population and hence the machines are
likely to be found in a starved or blocked state.

2) The monotonicity assumptions on Fk(x, y) go over to the production
policies φk an read as ∂xφk ≥ 0 and ∂yφk ≤ 0. When the upward and down-
ward influences of the buffer population onto the production rates are similar
we can have ∂xφk + ∂yφk = 0. This situation will be coined ”symmetric con-
trol”.

3) For a symmetric control (i.e., ∂xφk + ∂yφk = 0) the fundamental in-
equality (3.21) is always satisfied and hence the steady state (3.14) of system
(3.13) is unconditionally stable.

4) In close analogy with fluid mechanics where the Reynolds’ number (de-
termining whether a flow is laminar or turbulent) is used for design purpose,
the dimensionless stability criterion given in eq.(3.21) suggests that the num-
ber:

Z :=
α(∂xV − ∂yV)
(∂xV + ∂yV)2

(3.22)

is of direct interest for the modelling and design of serial production lines
with environment dependent optimal production rates V(x, y) = Vmaxφ(x, y)
and control sensitivity α.

5) The stability condition

Zk > 2, ∀k = 1, ..., N (3.23)

depends implicitly on the buffer capacities via ∂xφk and ∂yφk. To illustrate
this point we give an example in the following section.

6) Using the flow-shop model eq. (3.13) for the dynamic description of tan-
dem supply chains, the stability condition eq. (3.23) gives a practical guideline
to take countermeasures in presence of instabilities. It establishes a condition
between production adaptability and supply information and can be seen as
the reactivity exigence on each supplier with respect to the changing (nearest
neighbor) environment. The violation of this relation will finally lead to the
occurrence of the bull whip effect. It is conjectured that such instabilities form
the reason for the existence of business cycles [65].
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3.3.2 A worked example; the stability of a production line
following a pull production control.

Let us consider the case of a production line where in order to minimize work in
process, the famous just in time philosophy is applied. Just in time advocates
pull production control which says that inventories are not processed until
there is adequate space in the next downstream buffer. Hence no upstream
control is imposed (i.e. ∂xφk = 0). We further suppose that the φk’s are
independent of k and set:

φk

(
xk−1(t), xk(t)

)
= φ

(
xk(t)

)
=

⎧⎨
⎩

1 if xk(t) = 0,
1− xk(t)

hk
if 0 < xk(t) < hk,

0 if xk(t) ≥ hk.

(3.24)

Supposing such a linear influence of the downstream buffers on the production
rates to hold, the relation (3.21) reduces to:

Zk :=
αkhk

Vmax,k
> 2 ∀k ∈ {1, ..., N}. (3.25)

or equivalently
1
2

hk

Vmax,k
>

1
αk

= τk ∀k ∈ {1, ..., N}. (3.26)

Hence for stability, the reaction time has to be shorter than the
time required to empty a half filled buffer. Estimating the reaction
time of the operators the simple and intuitive condition Eq. (3.26) can be
used to determine the buffer capacities.
At this stage, it is worthwhile to bridge, at least partially, the conceptual
gap between the stability relation (3.25) and the behavior of the stationary
throughput 〈t〉 delivered by a production line. Remember that one method
to estimate the average throughput of a flow shop relies on the aggregation
methods based on the throughput delivered by two stage production lines
(i.e. production dipoles). For a production dipole with identical and operation
dependent failure prone machines the stationary measure analysis yields (see
e.g., [69] p.71 and [19]):

〈t〉 = Vmax
1

1 + Ieff
, with I :=

µ

λ
≤ Ieff := I

[
1 +

2
2 + F(1 + I)

] ≤ 2I,

where Vmax, λ and µ are respectively the common production rates, the mean
times to failure and the mean times for reparation of the two machines, I the
unavailability factor of the individual machines, Ieff the effective unavailability
factor of the dipole, and where F = µh

Vmax
is a dimensionless performance

parameter introduced in [69]. Note that one can write:

1/F =
1 + I

2
(
Ieff − I

)
/
(
2I − Ieff

)
, (3.27)
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Fig. 3.3. Sketch of 1/F and Ieff (F) with I = 0.2. As F ∝ h, an increase of
h reduces Ieff (F) and hence enhances the average throughput 〈t〉. Note that the
increase of 〈t〉, which is very rapid for small h, becomes very gradual for larger h
and is therefore less rewarding. By identifying the role played by µk (reparation
rate in the failure prone production lines) and αk (sensitivity in the human based
lines), the stability condition given in Eq. (3.28) shows that the significant gain in
production throughput are achieved by avoiding the jamming regimes.

which is the expected effective unavailability decrease due to an increase of
the buffer capacity h (see Figure 3.3). The dimensionless parameter Zk given
in (3.25) is directly related to F via:

1
F =

αk

µk

1
Zk

<
αk

µk

1
2
. (3.28)

Equation (3.28) relates the stationary (i.e. the expected) effective unavail-
ability decrease 1/F with the dimensionless number Zk which is derived on
the basis of a dynamical linear response analysis. Requiring stability for the
transient response to a perturbation, the inequality in Eq. (3.28) implies a
lower (upper) bound for the parameter F , (1/F). Therefore in view of Eq.
(3.28), we see that the increase of the average throughput –which results when
F is increased – can be interpreted as the ability of the production system to
quickly absorb local perturbations (the characteristic time is given by the pa-
rameter α). Hence Eq. (3.28) establishes an enlightening connection between
the properties of a single realization of the dynamics (transient performance
measures) with those resulting from stationary statistical ensemble averages
(stationary performance measure).
Taking F = 2 is common practice at the shopfloor level and with Eq. (3.28)
this leads to:

αk

µ
> 1 ∀k ∈ {1, ..., N}. (3.29)

We therefore see that stability is ensured when the reaction time 1/α is smaller
than the mean time needed for machine reparation 1/µ.
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3.3.3 Discrete time analysis

In practice it is likely that the state of the system will not be continuously
monitored in time but rather on a discrete basis. Due to this time sampling,
the production rate will itself be adapted only at discrete times. Let us now
study this situation by considering the discrete analog of the above analysis.
This is done by choosing a sampling time T > 0 and by updating the system
(3.5) at time-instants nT, n ∈ N. The resulting model has the form of a
coupled map lattice and reads for k = 1, . . . , N :{

xk(n+ 1) = xk(n) + [vk+1(n)− vk(n)]T,

vk(n+ 1) = vk(n) + αk

[
Vmax,k · Fk

(
xk−1(n), xk(n)

)− vk(n)
]
T,

(3.30)

where we write f(n) := f(nT ) with n ∈ N for an arbitrary function of time
f(t). As in the continuous case, we derive from Eqs. (3.30) a stationary regime:

xk(n) = xe
k and vk(n) = ve k = 1, ..., N,

provided that xe
k and ve satisfy the relations Eq. (3.11). Adding a perturbation

term δxk and linearizing around the steady state gives:

δxk(n+ 1) = δxk(n) + [δvk+1(n)− δvk(n)]T, (3.31)

δvk(n+1) = (1− αkT ) δvk(n)+αkVmax,k

[
∂xFk(xe

k−1)δxk−1 + ∂yFk(xe
k)δxk

]
T,

(3.32)
where ∂xFk(xe

k−1) =: ∂xFk and ∂yFk(xe
k) =: ∂yFk are defined as in Eq. (3.16).

To simplify the analysis of the above equations, we suppose ∂xFk ≡ 0; i.e.
there is no dependance of the production rate on the upstream buffer. Note
that the inequalities

αk · (∂yFk − ∂xFk)
Vmax,k · (∂xFk + ∂yFk)2

≥ αk · (∂yFk − 0)
Vmax,k · (∂yFk + 0)2

≥ 2 (3.33)

imply that systems which are stable without upstream controls (∂xFk ≡ 0)
remain stable when a monotone upstream control (∂xFk(x, xk) ≤ 0) is added.
Therefore, the subsequent calculations, performed with the auxiliary assump-
tion ∂xFk ≡ 0, will still give relevant stability criterions.
Under this auxiliary assumption, Eqs. (3.31) and (3.32) take the canonical
form of a discrete feedback system [2]:(
δvk(n+ 1)
δxk(n+ 1)

)
=
(

1− αkT αkVmax,kT∂yFk

−T 1

)(
δvk(n)
δxk(n)

)
+
(

0
T

)
δvk+1(n),

(3.34)

δvk(n) =
(
1 0

)( δvk(n)
δxk(n)

)
. (3.35)

The behavior of the above discrete time linear system is analyzed via the
transfer function Gk(z) from δvk+1(n) to δvk(n):
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Gk(z) =
(
1 0

)
Hk(z)−1

(
0 T

)t
, (3.36)

with the definition

Hk(z) :=
(
αkT + z − 1 −αkVmax,kT∂yFk

T z − 1

)
. (3.37)

Stability condition. The stability of the steady state is achieved when the
roots of the characteristic equation

det (Hk(z)) = z2 + z(αkT − 2) +
[
1− αkT + αkVmax,kT

2∂yFk

]
= 0 (3.38)

lie inside the unit circle. The use of the Schur-Cohn criterion for Eq. (3.38)
(stating equivalent conditions that the roots of the characteristic equation all
have magnitude less than unity, see e.g., pp. 56 in [75]) directly implies:

Stability ⇔
{

0 < Vmax,k|∂yFk|T < 1
0 < αkT < 4

2−Vmax,kT |∂yFk|
⇔

{
0 < Vmax,k|∂yFk| < 1/T
0 < αk < 4/T.

(3.39)
No-jamming condition. The global criterion attenuating velocity distur-
bances along the production line uses the so-called H∞-norm of the transfer
matrixes Gk and is given by:

max
|z|=1

|Gk(z)| ≤ 1 ∀ k ∈ {1, . . . , N − 1}. (3.40)

Using Eqs. (3.36) and (3.39) together with lengthy algebra, the no-jamming
condition (3.40) can be rewritten as (see also, [2]):

max
(
0,

1
T

8 + αkT (αkT − 8)
αkT (αkT − 6)

) ≤ Vmax,k|∂yFk| ≤ αk

2 + αkT
. (3.41)

Using |∂yφk(x, y)| = |∂yFk(x, y)|, we can reformulate the no-jamming con-
dition for the flow shop model (3.7):

max
(
0,

1
T

8 + αkT (αkT − 8)
αkT (αkT − 6)

) ≤ Vmax,k|∂yφk| ≤ αk

2 + αkT
(3.42)

or equivalently in terms of the dimensionless stability parameters Xk = αkT
and Zk := − αk

Vmax,k∂yφk
= αk

Vmax,k|∂yφk| :

max
(
0,

1
Xk

8 +Xk(Xk − 8)
Xk(Xk − 6)

) ≤ 1
Zk
≤ 1

2 +Xk
. (3.43)

The region for a soft-running regime (i.e. a free-flow traffic) defined by con-
dition (3.42) is sketched in the flow diagram Fig. 3.4 for different sampling
times T = 4, T = 2 and T = 1.5. The x- and y- axes are resp. spanned by
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the control parameters α and Vmax,k|∂yφk|. The Figure (3.4) shows the influ-
ence of an increasing sampling time T on the soft-running regime given by
(3.42). It clearly exhibits that when the state of the system is less frequently
monitored the control parameters must be chosen more carefully to guaran-
tee a soft-running production flow (homogeneous flow). Note that for T → 0
(i.e. continuous monitoring of the system states) condition (3.42) consistently
coincides with the time continuous stability relation (3.21) (remember that
by assumption, ∂xφk = 0). A dimensionless interpretation of the soft-running

y T=1.5

T=2

T=4

0.4

0.3

0.2

0.1

0

x

1.20.80.40

Fig. 3.4. Sketch of the free flow production regions enclosed by the x-axes and:
2/T+x(Tx−8)

Tx(Tx−6)
≤ y ≤ x

2+Tx
, for T = 4, 2 and T = 1.5. The x- and y-axis represent

respectively the sensitivity x = α and the parameter y = Vmax,k|∂yφk|. The free-flow
regions decrease with increasing sampling times T and vanish for T → ∞.

regime is sketched in the flow diagram Fig.(3.5) which is based on the condi-
tion (3.43). Here the x- and y- axes are resp. spanned by the dimensionless
parameters αT and 1/Z. The figure (3.5) illustrates that above a critical value
for αT no homogeneous production flow can be expected.

3.4 Concluding remarks

Among the numerous performance characteristics that modern production
systems have to fulfill, the ability to quickly react to sudden and often un-
expected changes of the environment is nowadays considered to be the most
crucial. It has been realized that this time dependent flexibility requirement
can often be achieved only at the expense of introducing human operators
in the production process. The presence of human operators together with
changing environments into a production line strongly complexifies the mod-
elling of the production flows. In particular, stationary performance measures
alone are not enough to suitably characterize the production flows and the
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free flow region
0.2

0.4

0
210

1/Z

αT

Fig. 3.5. Sketch of the free flow production region using the dimensionless quantities
αT (x-axis) and 1/Z (y-axis) delimited by the x-axis and the Eq. (3.43). Note that
no free-flow can be expected if αT > 2. For αT = 0 the free-flow condition equals
the time continuous stability condition Z > 2.

knowledge of the transient response of the system to fluctuations becomes
mandatory. The central role played by transient phenomena is obviously not
restricted to production. Indeed, since about a half of century, the ubiquitous
presence of transient regimes in vehicular traffic has stimulated an important
research activity which produces a wealth of methods and results developed
for their understanding. These methods were hardly so far being used in the
production flow and supply chain context. In this chapter, we have adopted
a synergetic view to explore some of the analogies between simple car traffic
models and production lines in which the production rates depend on the
contents of adjacent buffers. Thanks to a suitable dictionary, we are able to
identify production flow regimes which are realized for definite ranges of exter-
nal control parameters. The present study offers a view complementary to the
stationary performance measures analysis and is based on specific realizations
of the dynamics. Such an approach is mandatory for the study of the time
dependent response to perturbations around the “laminar” production flow
regimes and other transient behaviors such as the bullwhip effect encountered
in supply chains.

3.5 Contributions of Chapter 3

• We introduce a class of models describing the cooperative dynamics of
buffered production lines. Their mathematical form for a N stage tandem
line is: ⎧⎨

⎩
dyk(t)

dt = vk(t)− vk+1(t), k = 1, . . . , N,

dvk(t)
dt = αk

(
Vk

(
yk−1(t), yk(t)

)− vk(t)
)
.

(3.44)
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The “optimal” production rates Vk depend on the contents of adjacent
buffers yk−1, yk according to which the real production rates vk are ad-
justed proportionally to the sensitivity αk.

• We identify two production flow patterns for the model: the free-flow and
the jamming flow regimes.

• We extract the relevant dimensionless parameter Z governing the transi-
tions from free to jammed production flows:

Zk :=
αk(∂xVk − ∂yVk)
(∂xVk + ∂yVk)2

. (3.45)

The no-jam condition reads

Zk > 2, ∀k = 1, ..., N. (3.46)

The dynamical parameter is closely related to the stationary efficiency
gain due to an increase of the buffer capacity. The increase of the average
throughput –which results when the buffer capacity is increased – can
be interpreted as the ability of the production system to quickly absorb
local perturbations. The trade off between efficiency gain and stability is
quantified in case of a two stage line.

• Interpreting the model (3.44) as a the dynamic description of tandem
supply chains, the above stability condition gives a practical guideline to
take countermeasures in presence of instabilities. It establishes a condition
between production adaptability and supply information and can be seen
as the reactivity exigence on each supplier with respect to the changing
(nearest neighbor) environment. The violation of this relation will finally
lead to the occurrence of the bull whip effect.

• We draw an explicit “phase diagram” in terms of the control parameters
such as the buffer capacity, the reaction time inherent to the presence
of human operators or the choice of the sampling time when a discrete
monitoring is performed. The diagram differentiate between free flow and
jamming flow regimes and offers a new quantitative understanding of the
role played by the control parameters.
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Optimal thresholds control for failure prone
two stage tandem production systems

Summary. We consider the flow dynamics of a tandem production system formed
by two failure prone machines separated by a buffer stock. The production rates
of the machines are regulated by a feedback mechanism which solves an associated
optimal control problem with an average cost criterion. The cost structure penal-
izes both the entrance into and the sojourn on the buffer boundaries. The generic
structure of the optimal control involves four buffer content thresholds. When the
buffer content crosses these thresholds, the production rates are tuned to reduce the
tendency to enter into the buffer boundaries. Using the fluid modelling framework,
we obtain analytical results for the stationary buffer level distribution in case an
operating machine can produce with, either a “nominal” or a “reduced” rate. In the
stationary regime, the optimal positions of the buffer thresholds, the throughput
and the average buffer content are given.

4.1 Introduction

The presence of a buffer stock between two failure prone machines M1 and
M2 – a situation encountered in Chapter 3 for N = 2 – enhances the global
throughput of the installation and its quantitative effect is calculated for ex-
ample in [14, 51, 77, 99, 151]. A buffer does however not eliminate all inter-
ruptions of the production flow even when both machines are potentially able
to produce. Indeed starving interruptions of M2 which arise when the buffer is
empty and blocking interruptions of M1 occurring when the buffer is filled up
can occur. Besides reducing the overall throughput, the blocking and starving
interruptions do, in certain circumstances, generate additional nuisances with
strongly penalizing consequences. Typical examples arise in fluid installations,
the Internet or people based manufacturing and will be discussed below.

To reduce the probability of occurrences of starving or blocking states, one
obviously can increase the buffer capacity (called H thereafter). This solution
is however often not feasible as it may lead to prohibitive costs (presence of
large size installations incompatible with the available layout and creation of
large work-in process). If one is limited to a fixed buffer capacity, one can



40 4 Optimal control for two stage production systems

try to explore alternative solutions. One of these is to introduce a feedback
control mechanism based on both the buffer content X(t) ∈ [0,H] and the
operating states (“on” and “off”) of the machines. This feedback mechanism
is devised to reduce the sojourn times spent in and/or to reduce the entrance
frequency into the filled or empty buffer states. In this Chapter, we shall use
analytical methods to find the optimal feedback control in the simple case
where the possible production rates vk(t) not.= vk(X(t)) of Mk, k = 1, 2 can
achieve either a nominal value or a reduced one. Note that in contrast to
Chapter 3 where the term “optimal” refers to a phenomenological and hence
to an ad-hoc satisfaction measure, it will have a well defined meaning in this
Chapter.
Typical situations where buffer content dependent regulations of the produc-
tion rates can actually occur are:

i) Fluid installations. To prevent overflow losses or dry states in fluid in-
stallations involving pumps one introduces backoffs “replacing” the hard
constraints (here full or empty tank) by soft constraints (tank content high
or low). When the tank content violates the soft constraints, the inflow
resp. outflow rates of the tank are regulated in order to keep its content
away from the hard constraints.

ii) The Internet. Overflows of a buffer in the Internet may produce unac-
ceptable information losses. To cope with this situation, a Transmission
Control Protocol TCP is introduced. The TCP regulates the traffic rates
of the sources. It controls the transfer rates as follows: during overflows,
the buffer sends negative feedback signals to the sources in order to reduce
its sending rates. Otherwise the buffer sends positive feedback signals to
the sources to augment the sending rates [104].

iii) High production flows. When high production flows are involved, the rise
to the nominal production regime of the machines may not be instanta-
neous. Examples are paper wrapping installations where the paper tension
depends on the dynamics of adjacent machines. Sudden accelerations of
the installation scratch the paper. In such cases, reaching a buffer bound-
ary with maximal rate has therefore to be avoided. A solution is to reduce
the production rate when approaching the full or empty buffer states. Such
policy is also relevant when uncertainties concerning the actual physical
population level of the buffer exist.

iv) People based manufacturing. Tunings of the production rate occur natu-
rally when the flexible behavior of human operators influences the work-
force of the machines. In case of flexible workers, the problem of different
worker speed may be handled adopting an adaptative (i.e. state depen-
dent) production strategy. A simple workforce allocation policy prescribes
to operators to move from production cells with highly populated up-
stream buffers to cells with low populated downstream buffers and vice
versa. This production policy is effectively equivalent to a buffer depen-
dent control dynamics. Hence the feedback control problem considered
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here, can be viewed as a caricature of elementary allocation problems
arising in people based manufacturing (see e.g., [58] and especially [118]
where the benefic influence on the line efficiency of such state dependent
policies is studied).

From now on, we shall construct a control policy u(t) = (v1(t), v2(t)) which
optimally solves the production planning problem with a cost criterion ex-
hibiting the following features:

i) a cost term g(v2) depending on the production rate of the second machine
which penalizes slow production rates,

ii) a term penalizing large work-in-process,
iii) a term penalizing full and empty buffer states,
iv) a term penalizing the entrance rates into the full and empty buffer states.

Quantitatively, the above features are summarized into the performance mea-
sures of the form:

L
[
X(t), v2(X(t))

]
:= g

(
v2(X(t))

)
+ h

(
X(t)

)
, (4.1)

with g a positive function such that g(0) ≥ g(v2 = reduced) ≥ g(v2 =
nominal) and where the function h, defined on [0,H], does take into account
ii), iii) and iv) by specifically choosing:

h(X) = δ01{X=0} + γ01{transition from X>0 to X=0} + h̃(X)1{0<X<H} (4.2)
+δH1{X=H} + γH1{transition from X<H to X=H},

with h̃ being a strictly convex function and δ0 resp. δH being the extra costs
incurred when the buffer is empty resp. full (corresponding to the spots in
Figure 4.1). Finally γ0 resp. γH are the costs incurred each time the buffer
content enters the empty resp. the full state (corresponding to the arrows in
Figure 4.1 (A)).
Using the cost criterion Eq. (4.1), the following points will be addressed in
this Chapter:

1) use the associated Hamilton-Jacobi-Bellmann equation characterizing the
optimal control problem and, following the lines given in [5] and [13], show
that the optimal policy has a generic form involving four buffer thresholds
z∗, Z∗, y∗ and Y ∗. Specifically, when both machines are operating, the
control imposes the following dynamics:
• M1 and M2 produce with the nominal rates when X(t) ∈ [z∗, Z∗].
• M1 produces with the nominal and M2 with the reduced production

rate when X(t) < z∗.
• M2 produces with the nominal and M1 with the reduced production

rate when X(t) > Z∗.
When only one machine is operational, the thresholds control imposes the
following dynamics:
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Fig. 4.1. (A): Sketch of the generic cost structure h considered in this Chapter.
h is strictly convex and penalizes ii) large work-in-process, iii) states at the buffer
boundaries (indicated by the spots) and iv) transitions into the buffer boundaries
(indicated by the arrows). (B): The costs due to transitions into boundary states
can be adequately removed by attributing higher values to δ0 and δH (see Eq. (4.27)
below).

• in case M2 is under repair, M1 produces with the nominal rate when
X(t) ≤ Y ∗ and otherwise with the reduced rate.

• in case M1 is under repair, M2 produces with the nominal rate when
X(t) ≥ y∗ and otherwise with the reduced rate.

2) study the production flow dynamics resulting when the system operates
under the thresholds policy and derive the stationary probability distri-
bution of the buffer content.

3) calculate the long-run average costs associated with Eq. (4.1), namely:

V (z, Z, y, Y ) = lim
T→∞

1

T
E

[ ∫ T

0

(
L
[
X(s), v2(X(s))

])
ds
]

= ES

(
L
[
X, v2(X)

])
,

(4.3)

where ES is the stationary expectation and then obtain the optimal
thresholds z∗, Z∗, y∗ and Y ∗ by minimizing V (z, Z, y, Y ).

To derive analytical results, we shall use a fluid modelling approach. A contin-
uous state representation indeed avoids the combinatorial complexity inherent
to Markov chain models with large state spaces. For fluid queues, the problem
reduces to solve five coupled systems of linear partial differential equations
(the Chapman-Kolmogorov equations) together with appropriate boundary
conditions.
Related articles in the manufacturing flow control literature include [5] and
[13] for one stage lines and [47, 140, 144] for two stages. These contributions
aim to minimize the inventory holding and backorder costs. Here, the focus is
on the costs incurred when starvation and blocking occur. Such optimization
problems are less discussed (an exception being the decomposition method
of Hu in [73] where starving costs naturally enter into the cost structure).
For larger systems, the controls rely on heuristic policies. For example, Fuzzy
controllers related to two thresholds policies are investigated in [106].
The chapter is organized as follows: In section 2, we introduce the tandem
system and the production planning problem and derive the optimality of
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the four-thresholds feedback control. In section 3, we write the resulting
Chapman-Kolmogorov equation governing the buffer population dynamics.
The stationary probability measures solving the Chapman-Kolmogorov equa-
tions are derived in section 4. Performance measures and numerical examples
are given in section 5. Finally, section 6 is devoted to perspectives and con-
clusions.

4.2 The Model

Consider a single product transfer-line composed of two machines M1 and M2

separated by a buffer B with fixed finite capacity H > 0 (see Figure 4.2).

+∞

Buffer level: X(t), prod. rates: vk

(
X(t)

) not.
= vk(t)

demandraw mat.

��
��

M1

Machine

v1(t)� X(t)

B

Buffer
��
��

M2

Machine

v2(t)�

-∞��
��

Fig. 4.2. Sketch of a two-stages transfer-line with a permanent supply of raw ma-
terial and a permanent absorbing demand.

The machines M1 and M2 are failure prone, thus giving rise to breakdowns
and repairs with random durations. These random events will be modelled
by two Markovian renewal processes I1(t) and I2(t) which take on values in
{0, 1} (“0 =off”, “1 =on”) and which are defined on a common probability
space (Ω,F ,P). They are characterized by the first moments λ−1

i resp. µ−1
i

of their exponentially distributed holding times in the states {1} resp. {0}.
These failure processes are supposed to be operation dependent rather than
time dependent. This means that machines can fail only while processing
workpieces.
The processed material is assumed to behave as a (continuous) fluid and
the flow of products is from the upstream-buffer of M1 (which is permanently
supplied with raw material) to the downstream-buffer ofM2 (which can always
absorb the stream of finished goods). The transfer times from M1 to B and
from B to M2 are supposed to be negligible. The buffer content at time t is
denoted by X(t) and is subject to the state constraint X(t) ∈ [0,H]. With
these assumptions, the state of the tandem system is represented by the vector
valued process (X(t), I1(t), I2(t)) ∈ S := [0,H]×{0, 1}2. The state constraint
is realized by requiring that the production rates v1(·) and v2(·) satisfy the
boundary constraints:
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v2
(
X(t) = 0

)
I2(t) ≤ v1

(
X(t) = 0

)
I1(t), (4.4)

v1
(
X(t) = H

)
I1(t) ≤ v2

(
X(t) = H

)
I2(t). (4.5)

The boundary constraints express the fact that the production rate of M2

(resp. of M1) is slaved by the production rate of M1 (resp. of M2) in case the
storage buffer is empty (resp. full). We assume that the machine M1 (resp.
M2) can produce either with a nominal rate v+

1 (resp. v+
2 ) or with a reduced

rate v−1 < v+
1 (resp. v−2 < v+

2 ). The production rates are imposed a priori and
fulfill v−1 < v+

2 and v−2 < v+
1 in order to potentially respect the constraints

Eqs. (4.4) and (4.5). The buffer content process X(t) then reads:

X(t) = X(0) +
∫ t

0

(
I1(s)v1(X(s))− I2(s)v2(X(s))

)
ds. (4.6)

4.2.1 The production planning problem

For a given state (x, i1, i2) ∈ S, the dynamics of X(t) given by Eq. (4.6) is
controlled by the process of possible production rates u(x, i1, i2) ∈ U(x, i1, i2)
where for x �= 0,H, the state dependent control space U(x, i1, i2) is:

U(x, i1, i2) := {(v1, v2) | v1 ∈ {i1v+
1 , i1v

−
1 }, v2 ∈ {i2v+

2 , i2v
−
2 }}. (4.7)

For x = 0 or x = H we include in addition the boundary constraints expressed
in Eqs. (4.4) and (4.5). Note that when both machines are under repair, the
control does not enter into the dynamics and we have U(x, 0, 0) = {(0, 0)}. Our
goal is now to find a feedback policy u(X(t), I1(t), I2(t)) ∈ U(X(t), I1(t), I2(t))
which minimizes the long run average expected cost incurred per unit time

lim
T→∞

1
T

E

[ ∫ T

0

(
L
[
X(s), v2(X(s))

])
ds
]
, (4.8)

where E denotes the expectation and L = g + h stands for the running costs.
The assumptions on g (positive and monotone) and h (strictly convex) are
the usual ones (see [134] p.35). More specifically, h is of the form (see Figure
4.1 (B)):

h(x) = δ01{x=0} + h̃(x)1{0<X<H} + δH1{X=H}, (4.9)

with h̃, strictly convex satisfying h̃(0+) ≤ δ0 and h̃(H−) ≤ δH (hence, h also
is strictly convex).
To find the optimal policy minimizing Eq. (4.8), we follow the idea developed
in [13] and view the average cost criterion as being the limit of an associated
discounted cost criterion involving a discount factor β. As the structure of the
optimal control of the latter problem is independent of β, its generic structure
will be preserved for the average optimization criterion resulting in the β → 0
limit.
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Let us therefore introduce the discounted cost functional J(x0, i1, i2) with
x0 ∈ [0,H] and (i1, i2) ∈ {0, 1}2, associated to the running costs L given in
Eq. (4.1):

J(x0, i1, i2) = Ex0,i1,i2

[ ∫ ∞

0

(
L
[
X(s), v2(X(s))

])
e−βsds

]
, (4.10)

with β > 0 a discount parameter and where Ex0,i1,i2 is the conditional expec-
tation operator subject to the initial conditionsX(0) = x0 and (I1(0), I2(0)) =
(i1, i2). To simplify notations, we write l = 1, 2, 3, 4 for the four possible op-
erating states (i1, i2) = (0, 0), (0, 1), (1, 0), (1, 1) and define for x ∈ [0,H] and
l ∈ {1, 2, 3, 4} the value function minimizing the discounted costs:

x �→ φ(x, l) = min
(v1,v2)∈U(x,l)

J(x, l). (4.11)

Then x �→ φ(x, l) is the unique viscosity solution of the HJB dynamic pro-
gramming equation (see e.g., [46] Chapt. III Eq. (9.4)):

β

⎛
⎜⎜⎝
φ(x, 1)
φ(x, 2)
φ(x, 3)
φ(x, 4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

minx,1 g(v2)
minx,2 g(v2)− v2φx(x, 2)
minx,3 g(v2) + v1φx(x, 3)

minx,4 g(v2) + (v1 − v2)φx(x, 4)

⎞
⎟⎟⎠+A

⎛
⎜⎜⎝
φ(x, 1)
φ(x, 2)
φ(x, 3)
φ(x, 4)

⎞
⎟⎟⎠+h(x)

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

(4.12)
where the minimum “minx,l” is taken over the couples (v1, v2) ∈ U(x, l), where
φx is the derivative of φ with respect to x and where the matrix A is given
by:

A =

⎛
⎜⎜⎝
−µ1 − µ2 +µ2 +µ1 0

+λ2 −µ1 − λ2 0 +µ1

+λ1 0 −µ2 − λ1 +µ2

0 +λ1 +λ2 −λ1 − λ2

⎞
⎟⎟⎠ .

As we are mainly interested in the optimal feedback policy
(
v1, v2

)
holding

when both machines are operational (i.e. l = 4 = (1, 1)), let us focus on the
following minimum in more detail:

min
(v1,v2)∈U(x,4)

g(v2) + (v1 − v2)φx(x, 4). (4.13)

The strict convexity of φ(x, l) (see [46] p.149 and also [134] p.380) guarantees
the existence of a level Z ∈ [0,H] such that:

φx(x, 4)
{≥ 0 for x ≥ Z,
≤ 0 for x ≤ Z.

Setting C(v1, v2) := g(v2) + (v1 − v2)φx(x, 4), we have to compare the four
values {C(v±1 , v

±
2 )} separately for x ≥ Z and for x < Z. For x ≥ Z we have

φx(x, 4) ≥ 0 and therefore C(v−1 , v
+
2 ) = minx,4 C(v1, v2). For x < Z we have
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φx(x, 4) ≤ 0 and therefore C(v+
1 , v2) ≤ C(v1, v2) for all (v1, v2) ∈ U(x, 4)

(i.e. the minimum is realized with v1 = v+
1 ). Comparison of the two values

{C(v+
1 , v

±
2 )} yield:

C(v+
1 , v

+
2 ) ≤ C(v+

1 , v
−
2 )⇔ φx(x, 4) ≥ g(v+

2 )− g(v−2 )
v+
2 − v−2

=: c. (4.14)

Note that by the assumptions made on g, the constant c is negative. Define
now the storage level z ∈ [0,H] such that:

φx(x, 4)
{≥ c for x ≥ z,
≤ c for x ≤ z. (4.15)

The existence of z follows directly from the strict convexity of φ(x, l). The
convexity of φ(x, l) together with the fact that c < 0 imply z < Z. The policy
minimizing Eq. (4.13) then reads:

u(x, 1, 1) =
(
v1(x), v2(x)

)
=

⎧⎨
⎩

(v+
1 , v

−
2 ) for x < z,

(v+
1 , v

+
2 ) for z ≤ x ≤ Z,

(v−1 , v
+
2 ) for x > Z.

(4.16)

Following similar arguments when one of the two machines is under repair we
find:

(a) the policy realizing the minimum minx,3 g(0) + v1φx(x, 3):

u(x, 1, 0) =
(
v1(x), 0

)
=

⎧⎨
⎩

(v+
1 , 0) for 0 ≤ x < Y,

(v−1 , 0) for Y ≤ x < H,
(0, 0) for x = H,

(4.17)

where Y ∈ [0,H] is the smallest buffer level such that φx(x, 3) ≥ 0 for all
x ∈]Y,H].

(b) the policy realizing the minimum minx,2 g(v2)− v2φx(x, 2):

u(x, 0, 1) =
(
0, v2(x)

)
=

⎧⎨
⎩

(0, 0) for x = 0,
(0, v−2 ) for 0 < x < y,
(0, v+

2 ) for y ≤ x ≤ H,
(4.18)

where y ∈ [0,H] is the smallest buffer level such that φx(x, 2) ≥ c for all
x ∈]y,H] with c as defined in Eq. (4.14).
Remarks.

1) When both machines are on, the optimal control is defined via two
thresholds z and Z. When only one machine is operational, the optimal control
is determined via one threshold (Y if M1 is “on” and y if M2 is “on”).

2) A priori, the four thresholds z, y, Y, Z are different. However, in the
limit v+

1 → 0 resp. v+
2 → 0 we have Z = Y resp. z = y. In these limiting

cases, the drifts v+
1 − v2 resp. v+

2 − v1, resulting when both machines are
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operational, coincide with the drifts 0 − v2 resp. 0 − v1 arising when one of
the machines is under repair.
For v+

1 > 0 we have z ≤ y and for v+
2 > 0 we have Y ≤ Z. In fact, if

v+
1 > 0 and if both machines are “on”, the drift v2 − v+

1 directed toward
the boundary is strictly smaller than the drift v2 − 0 resulting when M1 is
under repair. Therefore, if both machines are “on” and if the optimal control
imposes to switch from v+

2 to v−2 in order to reduce the drift v+
1 − v+

2 toward
the {0} boundary, it will, a fortiori, impose to switch from v+

2 to v−2 when M1

is under repair, hence z ≤ y. A similar reasoning shows that for v+
2 > 0 we

have Y ≤ Z.
3) The optimal control is compatible with the boundary constraints ex-

pressed in Eqs. (4.4) and (4.5).
4) The derivation of the optimal control is independent of the ordering

relations among the possible production rates v1 and v2. This means that for
all four possible order relations (1) v−1 ≤ v−2 ≤ v+

1 ≤ v+
2 , (2) v−1 ≤ v−2 ≤ v+

2 ≤
v+
1 , (3) v−2 ≤ v−1 ≤ v+

1 ≤ v+
2 , (4) v−2 ≤ v−1 ≤ v+

2 ≤ v+
1 the optimal control

is of the form given by Eqs. (4.16-4.18) (recall that by assumption, v−i < v+
i ,

i = 1, 2 and v−i < v+
k , i �= k). The average cost criterion can therefore be

minimized with respect to (v−1 , v
−
2 ) without changing the structural form of

the optimal control. This offers the possibility to optimally choose the reduced
rates by a simple optimization of the average costs in case (v−1 , v

−
2 ) are not

fixed a priori.
5) Suppose that the rates vi i = 1, 2 can vary continuously within [v−i , v

+
i ]

and that g is twice continuously differentiable and strictly convex. Then the
structure of the optimal control still involves four thresholds as given by Eqs.
(4.16-4.18) provided the following modifications are introduced:

• replace in Eq. (4.16) the constant v−2 by

v2(x) = max
(
0, v+

2 −
g′(v+

2 )− φx(x, 4)
g′′(ξx)

)
with ξx ∈ (v2(x), v+

2 ) such that

g(v2(x)) = g(v+
2 ) + g′(v+

2 )(v2(x)− v+
2 ) + g′′(ξx)(v2(x)− v+

2 )2.

The threshold z is replaced by the lowest buffer level x ∈ [0,H] such that
g′(v+

2 ) = φx(x, 4).
• replace in Eq. (4.18) the constant v−2 by

v2(x) = max
(
0, v+

2 −
g′(v+

2 )− φx(x, 2)
g′′(ξx)

)
with ξx ∈ (v2(x), v+

2 ) such that

g(v2(x)) = g(v+
2 ) + g′(v+

2 )(v2(x)− v+
2 ) + g′′(ξx)(v2(x)− v+

2 )2.

The threshold y is replaced by the lowest buffer level x ∈ [0,H] such that
g′(v+

2 ) = φx(x, 2).
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Note that the optimal control (v1(x), v2(x)) is of bang-bang type in the first
argument v1 (switch between the minimum and the maximum speed) as given
in the discrete case Eqs. (4.16-4.18). In the second argument v2, the optimal
control increases with the gradient of the value function from v−2 to v+

2 .
6) Employing the analogy with cars in traffic (see Chapter 3) the optimal

velocity function V minimizing the amount of crash-scenarios between two cars
is of the form discussed in 5). In particular, the car which follows the leading
car tries to keep a safety distance by “switching” between two velocities.
This behavior is clearly caricatural as instantaneous velocity switches demand
for infinite acceleration forces. Nevertheless we will use this observation in
Chapter 5 to discuss analytically the dynamics of N cars following each other
on a one lane road admitting only two possible velocity states (fast and slow).

4.3 Chapman-Kolmogorov-equations

According to remark 2) above, the optimal production rates are defined by four
thresholds z, y, Z, Y verifying z ≤ y, Y ≤ Z and z < Z. It follows that in order
to exhaust the possible thresholds arrangements, five relevant configurations
for the control thresholds have to be treated, namely: (1) z < y < Y < Z,
(2) z < Y < y < Z, (3) Y < z < y < Z, (4) Y < z < Z < y, and (5)
z < Y < Z < y. Let us focus on configuration (1). The four alternative
configurations are discussed in the appendix.
Fix four thresholds z, Z, y, Y ∈ (0,H) with z < y < Y < Z and assume that
the production rates are regulated by the Eqs. (4.16-4.18). The resulting state
dependent production rates are listed in table 4.1. According to the ordering

0 < x < z < x < y < x < Y < x < Z < x < H

D1 D2 D3 D4 D5z1 z2 z3 z4 z5 z6

(v+
1 , v−

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v−
1 , v+

2 )

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v+
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

�
��

�
�
��

u(x, 1, 1)

u(x, 1, 0)

u(x, 0, 1)

Control

Buffer thresholds
��� ��� ���

���

Table 4.1. The production rates given by the control Eqs. (4.16-4.18) for fixed
thresholds z, Z, y, Y ∈ (0, H) with z < y < Y < Z. The thresholds divide the buffer
into five domains D1, ..., D5. We denote by zk the lower boundary of Dk and set
z6 = H.

z < y < Y < Z we set D1 = (0, z), D2 = (z, y), D3 = (y, Y ), D4 = (Y,Z)
and D5 = (Z,H). For a given state (x, i, j) ∈ S with x ∈ Dk we denote by
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vk
n;(i,j) the rate of Mn, n = 1, 2 prescribed by the control Eqs. (4.16-4.18). We

now introduce the probabilities:

Li,j(t) = P
(
X(t) = 0, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

zi,j(t) = P
(
X(t) = z, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

yi,j(t) = P
(
X(t) = y, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

Yi,j(t) = P
(
X(t) = Y, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

Zi,j(t) = P
(
X(t) = Z, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

Hi,j(t) = P
(
X(t) = H, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

(4.19)

and for k = 1, ..., 5 and for x ∈ Dk:

F k
i,j(x, t) = P

(
X(t) ∈ (zk, x], I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1}. (4.20)

The existence of the t → ∞ limits of Eqs. (4.19) and (4.20) (referred from
now on as the stationary distribution of the buffer level) follows from the
ergodicity of the process X(t) which is a direct consequence of the compact-
ness of S and the irreducibility of (X(t), I1(t), I2(t)). The notations for the
stationary distributions will be those given in Eqs. (4.19) and (4.20) with “t”
being omitted (e.g., Li,j := limt→∞ Li,j(t), F k

i,j(x) := limt→∞ F k
i,j(x, t) and

so on). Following the lines of [19, 51] and [31], let us now write the stationary
Chapman-Kolmogorov (C-K) equation which governs the buffer population
under the assumption z < y < Y < Z.

4.3.1 The absolutely continuous part of the C-K equations

For x ∈ Dk, the stationary distribution function solves the following system:

(µ1 + µ2)F
k
0,0(x) − λ1F

k
1,0(x) − λ2F

k
0,1(x) = 0 (4.21)

(λ1 +λ2)F
k
1,1(x) −µ2F

k
1,0(x) −µ1F

k
0,1(x) = (4.22)(

fk
1,1(x) − fk

1,1(z
k)
)
(vk

2;(1,1) − vk
1;(1,1))

(λ1 + µ2)F
k
1,0(x) − µ1F

k
0,0(x) − λ2F

k
1,1(x) = −(fk

1,0(x) − fk
1,0(z

k)
)
vk
1;(1,0) (4.23)

(λ2 + µ1)F
k
0,1(x) − µ2F

k
0,0(x) − λ1F

k
1,1(x) =

(
fk
0,1(x) − fk

0,1(z
k)
)
vk
2;(0,1), (4.24)

where fk
i,j denotes the derivative of F k

i,j .

4.3.2 The C-K equations at the boundaries 0 and H

For x ∈ D1 we have v1
1;(1,1) > v1

2;(1,1) and the storage level tends to increase
when both machines are on. The lower buffer boundary is reached only if M2

is operational and M1 has failed long enough. We then have [19]:

L0,0 = L1,0 = L1,1 = 0, L0,1 =
v−2
µ1
f1
0,1(0

+). (4.25)
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Similarly for x ∈ D5 with v−1 < v+
2 , the storage level tends to decrease. The

upper buffer boundary is reached only when M1 is operational and M2 has
failed long enough and we have:

H0,0 = H0,1 = H1,1 = 0, H1,0 =
v−1
µ2
f5
1,0(H

−). (4.26)

Note that Eqs. (4.25) and (4.26) directly connect the stationary probabilities
to enter into boundary states to those which stay on the boundary. Therefore,
under the assumption v+

1 > v−2 and v−1 < v+
2 , the cost functional Eq. (4.2)

can be rewritten in the equivalent form:

h(X) = (δ0 +
v−2
µ1
γ0)1{X=0} + h̃(X)1{0<X<H} + (δH +

v−1
µ2
γH)1{X=H}.(4.27)

4.3.3 The C-K equations at the thresholds y and Y

According to the optimal control, the rate of M2 (resp. M1) changes at y
(resp. at Y ) only if M1 (resp. M2) is under repair. The resulting drift v2 − 0
(resp. 0 − v1) at y (resp. Y ) does not vanish and no probability mass exists
at these points. Therefore the C-K equations at y and Y are trivial:

yi,j = Yi,j = 0, i, j ∈ {0, 1}. (4.28)

4.3.4 The C-K equations at the thresholds z and Z

When v+
1 �= v+

2 the drift v2(x) − v1(x) at x = z and x = Z does not vanish
and we have:

zi,j = Zi,j = 0, i, j ∈ {0, 1}. (4.29)

When v+
1 = v+

2 and when both machines are on, an increasing inventory
X(t) ≤ z sticks at z (unless a machine failure occurs) and similarly, a decreas-
ing inventory X(t) ≥ Z sticks at Z yielding non trivial C-K equations. Let
us investigate the probability z1,1 in detail (the upper threshold Z requires a
similar treatment).
Fix an infinitesimal h > 0. The probability z1,1(t + h) depends, up to order
O(h), on the following contributions:

state at time t transition rate state at time t+ h(
X(t) = z, 1, 1

)
1− (λ1 + λ2)h+O(h2)

(
X(t+ h) = z, 1, 1

)
(
X(t) ∈ [z − (v+

1 − v−2 )h, z[, 1, 1
)

1− (λ1 + λ2)h+O(h2)
(
X(t+ h) = z, 1, 1

)
(
X(t) ∈ [z − v+

1 h, z[, 1, 0
)

µ2h+O(h2)
(
X(t+ h) = z, 1, 1

)
(
X(t) ∈]z, z + v−2 h], 0, 1

)
µ1h+O(h2)

(
X(t+ h) = z, 1, 1

)
.
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Up to first order in h, the probabilities for
(
X(t), I1(t), I2(t)

)
to be at time t

in one of these 4 states are respectively:

z1,1(t); (v+
1 − v−2 )f1

1,1(z
−, t)h; v+

1 f
1
1,0(z

−, t)h; v−2 f
2
0,1(z

+, t)h.

Summing up the probabilities weighted with their associated transition rates
(and neglecting terms of order h2), we obtain in the h→ 0 limit:

ż1,1(t) :=
d
dt
z1,1(t) = −(λ1 + λ2)z1,1(t) + (v+

1 − v−2 )f1
1,1(z

−, t). (4.30)

Therefore, the stationary probability z1,1 is:

z1,1 =
(v+

1 − v−2 )
(λ1 + λ2)

f1
1,1(z

−). (4.31)

Similarly for all t and all h > 0, one finds:

ż0,0(t) = −(µ1 + µ2)z0,0(t),

z0,1(t+ h) = h
(
λ1z1,1(t) + µ2z0,0(t) + v2f

2
0,1(z

+, t)
)
,

z1,0(t+ h) = h
(
λ2z1,1(t) + µ1z0,0(t) + v1f

1
1,0(z

−, t)
)
.

The stationary C − K equations follow in the limit h → 0 and t → ∞ and
read as:

z0,0 = z0,1 = z1,0 = 0, z1,1 =
(v+

1 − v−2 )
(λ1 + λ2)

f1
1,1(z

−). (4.32)

Similarly, the stationary C −K equations at the level Z read as:

Z0,0 = Z1,0 = Z0,1 = 0, Z1,1 =
(v+

2 − v−1 )
(λ1 + λ2)

f5
1,1(Z

+). (4.33)

4.3.5 Constants of integration

We distinguish between two cases:

(i) Case where v+
1 = v+

2 (Figure 4.3 (A)). For k = 1 and k = 5, the Eqs. (4.21
- 4.24) form an ordinary linear differential system of order 3 and for k = 2, 3, 4,
they form a system of order 2 (the RHS of Eq. (4.22) vanishes). The linear
system is readily solved for the five regions Dk, k = 1, ..., 5 and the solution
is specified by determining 12 constants of integration. Two constants can be
extracted from the relations:

F k
i,j(z

k) = 0, i, j ∈ {0, 1} (4.34)

for k = 1 and k = 5. Two further constants are found by the boundary
constraints at 0 and H (see e.g., Eqs. (14) and (17) in [19]):
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f1
1,0(0

+) = f5
0,1(H

−) = 0. (4.35)

Similar to the above boundary constraints we have for k = 2, 3, 4 (Eq. (15) in
[19]):

vk
1;(1,0)f

k
1,0(z

k) = vk
2;(0,1)f

k
0,1(z

k) (4.36)

which fixes 3 further constants of integration. A flow balance argument at
the thresholds y, Y, z and Z (i.e. equating the flow rate of leaving a threshold
with the flow rate of entering it) gives four further constants (see section 4,
“matching at the thresholds”). The last integration constant comes from the
probability normalization:

L0,1 +
5∑

k=1

1∑
i,j=0

F k
i,j(z

k+1) + z1,1 + Z1,1 +H1,0 = 1. (4.37)

(ii) Case where v+
1 �= v+

2 (Figure 4.3 (B)). The Eqs. (4.21)–(4.24) form an
ordinary linear differential system of order 3 which can be solved for the five
regions Dk, k = 1, ..., 5. Hence, 15 constants of integration must be deter-
mined. Five constants can be extracted from the relations:

F k
i,j(z

k) = 0, i, j ∈ {0, 1} (4.38)

for k = 1, ..., 5. Two further constants are given by the boundary constraints
at 0 and H:

f1
1,0(0

+) = f5
0,1(H

−) = 0. (4.39)

Similar to the above boundary constraints we have for k = 2, 3, 4:

fk
1,0(z

k) = 0, if v+
1 > v+

2 , (4.40)

fk
0,1(z

k+1) = 0, if v+
1 < v+

2 , (4.41)

which fixes 3 constants. A flow balance argument at the four thresholds
z, y, Y, Z, given in section 4, will determine 4 further constants of integra-
tion. The remaining constant is given by the probability normalization Eq.
(4.37).

4.4 Stationary probability distribution

Here we recall from [19] the solutions of the stationary C-K equations and
match them together at the thresholds by using the conservation of probability
flow.
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(A) (B)

Fig. 4.3. Sketch of two possible sample paths of X(t) with random switches of ma-
chine states at t1, t2, t3. (A): v+

1 = v+
2 . The feedback control imposes the thresholds

z and Z to behave as semipermeable membranes. Indeed for operating machines
(I1, I2) = (1, 1), an increasing inventory gets trapped at z, while a decreasing inven-
tory crosses z (similar behavior at Z). (B): v+

1 < v+
2 . In principle, the thresholds z

and Z are both “permeable” for all machine states. Note that chattering at z occurs
because v2 − v1 changes its sign at z.

4.4.1 Solutions for the absolutely continuous part

We distinguish between two cases.

(i) Case where v+
1 = v+

2 . Integrating the linear system (4.23), (4.24), taking
into account the constraints (4.34) and using Eqs. (4.21), (4.22), we get for
x ∈ Dk, k = 1, 5:

F k
0,0(x) = 1

µ1+µ2

[
λ1

(
F k

1,0(x) + λ2F
k
0,1(x)

)]
,

F k
1,1(x) = 1

(vk
2;(1,1)−vk

1;(1,1))

[
vk
1;(1,0)F

k
1,0(x)− vk

2;(0,1)F
k
0,1(x)

]
,

(4.42)

which in case
vk
1;(1,0)

µ1

µ1 + λ1
= vk

2;(0,1)

µ2

µ2 + λ2
(4.43)

(i.e. both machines have the same productivity) are completed by:

F k
1,0(x) = B

DKk(e(A+D)(x−zk) − 1) + Sk
D

A+Dx,

F k
0,1(x) = Kk(e(A+D)(x−zk) − 1)− Sk

E
A+Dx,

(4.44)

and which in case vk
1;(1,0)

µ1
µ1+λ1

�= vk
2;(0,1)

µ2
µ2+λ2

are completed by:

F k
1,0(x) = Kk(ek1(x−zk) − 1) + Sk(ek2(x−zk) − 1),

F k
0,1(x) = Kk(ek1(x−zk) − 1)k1−A

B + Sk(ek2(x−zk) − 1)k2−A
B .

(4.45)

In both cases, the Eqs. (4.35) relate theKk’s with the constants Sk for k = 1, 5.
The Sk’s remain to be determined and k1 < k2 are the roots of:

ξ2 − (
A+D

)
ξ +AD −EB = 0, (4.46)
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with

A = λ2
vk
2;(1,1)−vk

1;(1,1)
− µ2(µ1+µ2+λ1)

vk
1;(1,0)(µ1+µ2)

, B = λ2
vk
1;(1,0)

(
µ1

µ1+µ2
− vk

2;(0,1)

vk
2;(1,1)−vk

1;(1,1)

)
,

D = λ1
vk
2;(1,1)−vk

1;(1,1)
+ µ1(µ1+µ2+λ2)

vk
2;(0,1)(µ1+µ2)

, E = − λ1
vk
2;(0,1)

(
µ2

µ1+µ2
+

vk
1;(1,0)

vk
2;(1,1)−vk

1;(1,1)

)
.

For x ∈ Dk, k = 2, 3, 4 we integrate the system Eqs. (4.23), (4.24). Taking
into account the Eqs. (4.36) and using Eqs. (4.21), (4.22), we get (see e.g.,
[19] Eqs. (2.1), (7.1), (8.1), (9.1)):

F k
0,0(x) = 1

µ1+µ2

(
λ1F

k
1,0(x) + λ2F

k
0,1(x)

)
,

F k
1,1(x) = 1

λ1+λ2

(
µ2F

k
1,0(x) + µ1F

k
0,1(x)

)
,

F k
1,0(x) =

vk
2;(0,1)

vk
1;(1,0)

F k
0,1(x).

(4.47)

Two cases are to be considered:

• λ2µ1v
k
1;(1,0) �= λ1µ2v

k
2;(0,1). In this case F k

0,1(x) is given by:

F k
0,1(x) = Sk

{
exp

[
U(

λ2µ1

vk
2;(0,1)

− λ1µ2

vk
1;(1,0)

)(x− zk)
]− 1

}
, (4.48)

with Sk ∈ R a constant and

U =
λ2 + λ1 + µ1 + µ2

(µ1 + µ2)(λ1 + λ2)
. (4.49)

• λ2µ1v
k
1;(1,0) = λ1µ2v

k
2;(0,1). In this case F k

0,1(x) is given by:

F k
0,1(x) = Sk(x− zk), (4.50)

with Sk ∈ R a constant, implying that the distributions F k
i,j on Dk are

uniform.

(ii) Case where v+
1 �= v+

2 . When Eq. (4.43) is satisfied the F k
i,j ’s k = 1, ..., 5,

are given by Eqs. (4.42) and (4.44). Otherwise they are given by Eqs. (4.42)
and (4.45). The constants Kk are related to the Sk’s by using the constraints
(4.39) for k = 1, 5 and the constraints (4.40) or (4.41) for k = 2, 3, 4 depending
on whether v+

1 > v+
2 or v+

1 < v+
2 . The parameters k1, k2, A,B,D and E are

related as above and the solutions are fully determined once the remaining
constants Sk, k = 1, ..., 5 are fixed.

4.4.2 Solutions at 0 and H

Due to the presence of a drift term (directed away from the nearest boundary),
the stationary boundary equations are decoupled. The solutions which are
identical for v+

2 �= v+
1 and for v+

2 = v+
1 are directly given by the Eqs. (4.25)

and (4.26).
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4.4.3 Solutions at z and Z

When v+
2 �= v+

1 no probability masses accumulate and the stationary solution
is trivial:

zi,j = Zi,j = 0, i, j = 0, 1. (4.51)

When v+
2 = v+

1 the stationary solutions Eqs. (4.32) and (4.33) can be sum-
marized for k = 2 by:

z0,0 = z1,0 = z0,1 = 0, z1,1 =
(vk−1

1;(1,1) − vk−1
2;(1,1))

(λ1 + λ2)
fk
1,1(z

k). (4.52)

and for k = 5 by:

Z0,0 = Z1,0 = Z0,1 = 0, Z1,1 =
(vk

2;(1,1) − vk
1;(1,1))

(λ1 + λ2)
fk
1,1(z

k). (4.53)

4.4.4 Solutions at y and Y

The C-K equations at y and Y are trivial and so are their solutions given by
Eqs. (4.28).

4.4.5 Matching at z and Z

The constants S1 and S2 resp. S4 and S5 are connected via a flow conservation
argument at z and Z. We distinguish between two cases.

(i) The case v+
1 = v+

2 . At z (and similarly at Z), four possible sample-path
configurations occur (Figure 4.4).

�
�
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!
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����

!
!"

�
�

��

����
��

x > z

x = z

x < z

x = 0

x = y

Buffer level

Machine states:
(I1, I2) = (i, j),

for i, j = 0, 1.

(1, 0) (1, 0)

(1, 1)

(1, 0)

(1, 1)

(0, 1)(0, 1)

(0, 1)

(1, 1) (1, 1)

Fig. 4.4. Sketch of the four possible sample paths “visiting” the lower boundary z.
The slope of the arrows are proportional to v1 − v2. The leftmost path, for example,
represents a change of buffer level due to a flow from the domain “< z” to domain
“> z” with velocity v+

1 −v−
2 in the region “< z”, with velocity zero at “z” and, after

failure of machine M2, with velocity v+
1 in the region “> z”.

Through the threshold z, it exists a probability flow connecting the regions
0 < x < z and z < x < Z. The flow “permeability” at z depends on the specific
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sample path (i.e. on the machine states). In particular no probability current
crosses z when both machines are operational. This allows the formation of
a finite probability mass z1,1 which splits up into a downward and upward
probability flow. The detailed balance equations for the upward and downward
flows at z and Z (i.e. at zk for k = 2 and k = 5) are:

vk
1;(1,0)f

k
1,0(z

k)− vk−1
1;(1,0)f

k−1
1,0 (zk) = zk

11λ2 (4.54)

vk−1
2;(0,1)f

k−1
0,1 (zk)− vk

2;(0,1)f
k
0,1(z

k) = zk
11λ1, (4.55)

Eq. (4.54) relates S1 with S2 for k = 2 and S4 with S5 for k = 5 (Eq. (4.55)
contains the same information).

(ii) The case v+
2 �= v+

1 . For x ∈ (0, z) ∪ (Z,H), the buffer content evolves
towards the buffer bulk [z, Z]. For z ≤ x ≤ Z, and when both machines are
on, the inventory approaches one of the two thresholds, say z (i.e. v+

2 > v+
1 ).

Due to the chattering at z no stationary probability mass can accumulate at
this point (the state (z, 1, 1) is transient). At Z the drift changes its value
but not its sign. No chattering occurs and no stationary probability mass
can accumulate at Z. Hence the three absolutely continuous parts must fit
continuously at z and Z. One actually fits the solutions at z and Z using the
flow balance at these thresholds (see Figure 4.5). For v+

1 < v+
2 (chattering at

z) the flow balance reads:

vk
1;(1,0)f

k
1,0(z

k) = vk−1
2;(0,1)f

k−1
0,1 (zk), k = 2 (4.56)

(vk−1
2;(1,1) − vk−1

1;(1,1))f
k−1
1,1 (zk) + vk−1

1;(1,0)f
k−1
1,0 (zk) = vk

2;(0,1)f
k
0,1(z

k), k = 5.(4.57)

Similarly for v+
1 > v+

2 (chattering at Z), the flow balance is:

vk
1;(1,0)f

k
1,0(z

k) = vk−1
2;(0,1)f

k−1
0,1 (zk), k = 5 (4.58)

(vk
1;(1,1) − vk

2;(1,1))f
k
1,1(z

k) + vk
1;(1,0)f

k
1,0(z

k) = vk−1
2;(0,1)f

k−1
0,1 (zk), k = 2. (4.59)

4.4.6 Matching at y and Y

(i) The case v+
1 = v+

2 . Equating the upward and downward flows at z3 = y
and z4 = Y yields (see figure 4.6):

vk
1;(1,0)f

k
1,0(z

k) = vk−1
2;(0,1)f

k−1
0,1 (zk), (4.60)

which relates S2 with S3 for k = 3 and S3 with S4 for k = 4.

(ii) The case v+
2 �= v+

1 . Equating the upward and downward flows at zk,
k = 3, 4 (see figure 4.7) yields in case v+

2 > v+
1 :

(vk−1
2;(1,1) − vk−1

1;(1,1))f
k−1
1,1 (zk) + vk−1

2;(0,1)f
k−1
0,1 (zk) = vk

1;(1,0)f
k
1,0(z

k) (4.61)
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Fig. 4.5. Sketch of the possible sample paths “visiting” the buffer levels Z (on top)
and z (bottom) in case v+

1 < v+
2 (flow inversion at z). The slope of the arrows are

proportional to v1 − v2. The machine state (1, 1) drives X toward z. The buffer
level gets trapped at z and chatters around it unless a machine failure occurs. The
probability flow trapped at z splits into an upward and downward flow.
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Fig. 4.6. Sketch of the possible sample paths crossing the buffer levels y (left) and
Y (right) in case v+

1 = v+
2 . The slope of the arrows are proportional to v1 − v2. In

the stationary regime, the upward flow equals the downward flow.

and in case v+
2 < v+

1 :

(vk
1;(1,1) − vk

2;(1,1))f
k
1,1(z

k) + vk
1;(1,0)f

k
1,0(z

k) = vk−1
2;(0,1)f

k−1
0,1 (zk). (4.62)

This relates S2 with S3 for k = 3 and S3 with S4 for k = 4.
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Fig. 4.7. Sketch of the possible sample paths crossing the buffer levels y (left) and
Y (right) for v+

2 > v+
1 . The slope of the arrows are proportional to v1 − v2. In the

stationary regime, the upward flow equals the downward flow.
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4.4.7 The cumulative distribution function

The normalization of probability given by Eq. (4.37) ultimately fixes the con-
stants Sk, k = 1, ..., 5. This fully characterizes the stationary distributions for
fixed thresholds z < y < Y < Z. The resulting marginal cumulative distribu-
tion function (CDF) F of the buffer population reads:

(i) in case v+
2 = v+

1 :

F (y) = L0,11{y≥0} +H1,01{y=H} + z1,11{y≥z} + Z1,11{y≥Z} +

+
5∑

k=1

1∑
i,j=0

F k
i,j(min(zk+1, y))1{y>zk}, (4.63)

where for k = 1, 5, the F k
i,j ’s are given by Eqs. (4.42) and (4.44) when Eq.

(4.43) is satisfied and by Eqs. (4.42) and (4.45) otherwise. For k = 2, 3, 4 the
F k

i,j ’s are given by Eqs. (4.47) and (4.48) in case λ2µ1v
k
1;(1,0) �= λ1µ2v

k
2;(0,1)

and by Eqs. (4.47) and (4.50) in case λ2µ1v
k
1;(1,0) = λ1µ2v

k
2;(0,1). The constants

Sk are fixed according to the Eqs. (4.37), (4.54) and Eq. (4.60). The resulting
CDF is sketched in Figure (4.8) for different values of v−1 and λ2.
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Fig. 4.8. Graph of the marginal distribution F for fixed thresholds z = 5, y = 10,
Y = 20, Z = 25 in case v+

1 = v+
2 . (A): The reduced speed v−

1 is varied and increases
from 0.2 (highest curve) over 0.4 to 0.8 (lowest curve). The fixed parameters are
λ1 = λ2 = 1/80, µ1 = µ2 = 1/20, v+

1 = v+
2 = 1, v−

2 = 0.6 and H = 30. (B): The
unavailability parameter I2 = λ2/µ2 of M2 is varied (I2 = 0.2 and I2 = 0.25) by
changing λ2. The fixed parameters are λ1 = 1/80, µ1 = µ2 = 1/20, v+

1 = v+
2 = 1,

v−
1 = v−

2 = 0.6 and H = 30. The discontinuities at z resp. Z are more pronounced for
I2 = 0.2 (upper curve) than for I2 = 0.25 (lower curve). This is due to an increase of
z1,1 resp. Z1,1 occurring when the machines are more likely to be (both) operational.
(C): The marginal distribution for a fully symmetric case (identical machines). The
reduced production rates v−

1 = v−
2 =: r are varied from 0 to 1.

(ii) in case v+
2 �= v+

1 :
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F (y)=L0,11{y≥0} +H1,01{y=H} +
5∑

k=1

1∑
i,j=0

F k
i,j(min(zk+1, y))1{y>zk}.(4.64)

For k = 1, ..., 5, the F k
i,j ’s are given by Eqs. (4.42) and (4.44) in case Eq. (4.43)

is satisfied and by Eqs. (4.42) and (4.45) if it is not. The constants Sk are
fixed according to the Eqs. (4.37), (4.56), (4.57) and Eq. (4.61) if v+

2 > v+
1

and otherwise according to the Eqs. (4.37), (4.58), (4.59) and Eq. (4.62). The
resulting CDF is sketched in Figure (4.9) for different values of v−2 and λ2.
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Fig. 4.9. The marginal distributions of the buffer level for fixed thresholds z = 5,
y = 10, Y = 20, Z = 25 in case v+

1 < v+
2 (i.e. flow inversion at z). Fixed Parameters:

v−
1 = v−

2 = 0.6, v+
1 = 1, λ1 = 1/80, µ1 = µ2 = 1/20 and H = 30. (A): Upper curve:

v+
2 = 2v+

1 ; Lower curve: v+
2 = 1.4v+

1 . In both cases we have λ1 = λ2. The chattering
at z is visibly less pronounced in case v+

2 is close to v+
1 . (B): Upper curve, λ2 = 0.4λ1.

Lower curve λ2 = λ1. In both cases we have v+
2 = 1.4v+

1 .

Remark. The function F 1 not.= F is the CDF of the buffer population con-
ditioned on the ordering relations z < y < Y < Z. In exactly the same way
one computes the CDF’s for the ordering relations (2) z < Y < y < Z, (3)
Y < z < y < Z, (4) Y < z < Z < y, and (5) z < Y < Z < y (see appendix).
The corresponding stationary CDF’s are denoted by F i, i = 2, ..., 5.

4.5 The optimal thresholds

The stationary distribution can now be used to calculate the optimal positions
of the thresholds z, y, Y and Z conditioned on the relations z ≤ y ≤ Y ≤ Z.
The long-run average cost reads:
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V1(z, y, Y, Z) = E
1
S(g(v2) + h(X)) =

∫ H

0

(g(v2) + h(X))dF 1(x) (4.65)

=
(
g(v−2 ) + δ0 +

µ1

v−2
γ0

)
L0,1 +

(
g(0) + δH +

µ2

v−1
γH

)
H1,0

+
(
g(v+

2 ) + h(z)
)
z1,1 +

(
g(v+

2 ) + h(Z)
)
Z1,1

+
5∑

k=1

1∑
i,j=0

∫ zk+1

zk

(g(vk
2;(i,j)) + h(x))dF k

i,j(x),

where E
1
S is the stationary expectation of the buffer population conditioned on

z ≤ y ≤ Y ≤ Z. Minimizing V1 yields (at least one set of) optimal thresholds
z∗1 , y

∗
1 , Y

∗
1 and Z∗

1 satisfying z∗1 ≤ y∗1 ≤ Y ∗
1 ≤ Z∗

1 . Similarly, for i = 2, ..., 5 one
finds a set of thresholds z2∗

i ≤ z3∗
i ≤ z4∗

i ≤ z5∗
i minimizing the expected costs

Vi(z2
i , z

3
i , z

4
i , z

5
i ) = E

i
S(g(v2) + h(X)) =

∫ H

0

(g(v2) + h(X))dF i(x). (4.66)

Here, F i is the stationary buffer level distribution conditioned on the threshold
ordering i, where for i = 2 we have z2

2 = z, z3
2 = Y, z4

2 = y, z5
2 = Z, for i = 3

we have z2
3 = Y , z3

3 = z, z4
3 = y, z5

3 = Z, for i = 4 we have z2
4 = Y , z3

4 = z,
z4
4 = Z, z5

4 = y and for i = 5 we have z2
5 = z, z3

5 = Y, z4
5 = Z, z5

5 = y. The
optimal thresholds z2∗

j , z3∗
j , z4∗

j and z5∗
j are the ones satisfying:

Vj(z2∗
j , z3∗

j , z4∗
j , z5∗

j ) = min
i=1,...,5

Vi(z2∗
i , z3∗

i , z4∗
i , z5∗

i ). (4.67)

Numerical example. A full discussion of the value functions Vi as a function
of the thresholds z, y, Y and Z for general parameters H,λ1, λ2, µ1, µ2 and
v1, v2 obviously involves heavy algebra. We therefore refrain here from writing
down explicit expressions but we rather sketch their behaviors for the specific
choice λ1 = λ2 = 1/80, µ1 = µ2 = 1/20, v+

1 = v+
2 = 1, v−1 = v−2 = 0.6 and

H = 30 (Figure 4.10). The Maple file generating the solutions is available in
[37]. In addition, we give the average inventory and the mean throughput of
the system.
The optimal thresholds z∗j , y

∗
j , Y

∗
j and Z∗

j . We impose the following cost
structure (in cost units per production unit):

γ0 = γH = 100,
δ0 = δH = 100,
h̃(x) = (x−H/2)2.

Numerical computations performed on a PC using Maple yield (see [37]):

min
i=1,...,5

Vi(z
2,∗
i , z3,∗

i , z4,∗
i , z5,∗

i ) = V2(Y ∗
2 , z

∗
2 , y

∗
2 , Z

∗
2 ). = 296, 2. (4.68)

The optimal thresholds ordering is (2) with Y ∗
2 = 12 ≤ z∗2 = 12 ≤ y∗2 = 16.6 ≤

Z∗
2 = 19.6. The cost function V2(12, z, 16.6, Z) is sketched in Figure (4.10).
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The average inventory E(X). The average inventory E(X) is given by:

E(X) = E2(X) =
∫ H

0

xdF 2(x)

which for our numerical example yields E(X) = 14.6. Fixing the thresholds
y and Y , the corresponding graph in figure (4.10) indicates that E(X) varies
almost linearly in both variables z and Z.
The mean throughput E(T ). The throughput of the controlled system is:

T
def.=

(
v−2 1{0<X<y} + v+

2 1{y≤X≤H}
)
1{(I1,I2)=(0,1)} +(

v−2 1{0<X<z} + v+
2 1{z≤X≤H}

)
1{(I1,I2)=(1,1)}.

Using the optimal thresholds ordering Y < z < y < Z, the average throughput
is:

E2(T ) = v+
2

(
F 4

0,1(Z) + F 5
0,1(H) + z1,1 + F 3

1,1(y) + F 4
1,1(Z) + Z1,1 + F 5

1,1(H)
)

+v−2
(
F 1

0,1(Y ) + F 2
0,1(z) + F 3

0,1(y) + F 1
1,1(Y ) + F 2

1,1(z)
)
.

The numerical example yields E(T ) = 0.70, a value close to the maximum
mean throughput 0.72 which is reached for y → 0 and Y → H (i.e. in case
operating machines produce at rate v+

i and no threshold control is applied).
Fixing the thresholds y and Y , the corresponding graph in figure (4.10) in-
dicates that E(T ) is increasing in Z and decreasing in z. Increasing Z or
decreasing z does indeed enlarge the region where the control assigns the
nominal speed to M2.

Fig. 4.10. Left: The stationary average costs V2(12, z, 16.6, Z) for 12 < z < 16.6
and 16.6 < Z < 30. Middle: The expected inventory E2(X)(12, z, 16.6, Z) for 12 <
z < 16.6 and 16.6 < Z < 30. Right: The expected throughput E2(T )(12, z, 16.6, Z)
for 12 < z < 16.6 and 16.6 < Z < 30. Parameters: µ1 = µ2 = 1/20, λ1 = λ2 = 1/80,
v+
1 = v+

2 = 1, v−
1 = v−

2 = 0.6 and H = 30.

4.6 Concluding remarks

Usually in manufacturing systems, the production flow dynamics is governed
by machines operating either with their nominal production rates or being
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stopped due to failures, blocking or starving mechanisms. For lines with rela-
tively low buffer capacities, this strict on-off machine operating mode do gen-
erate frequent and impulsive interruptions of the production flows. In a wide
class of inventory processes (e.g. fluid installations, data transfer in the Inter-
net, production installations involving high production flows as those arising
in food industries), the entrance into and the stay on the buffer boundaries
can be strongly penalizing. This penalty can be modelled by an ad-hoc cost
function and the benefits of any modification of either the line configuration
(the buffers contents in particular) or its operating mode can be evaluated by
solving an associated optimization problem. This is completely discussed for
a two speed tandem production system.
It is interesting to appreciate the resulting optimal production rate control
in the light of the analogy “traffic flow versus production flow” as studied
in Chapter 3. Transporting the formal structure of the optimal production
rate into the realm of traffic theory, we recover an optimal velocity function
V minimizing the amount of crash-scenarios between two cars according to a
well defined optimization problem.

4.7 Contributions of Chapter 4

• Using as performance measure the expected average cost induced by a
specific cost function, we derive the structural form of the optimal pro-
duction rates u∗(x, i1, i2) of a two speed tandem production system. Here
x indicates the buffer content and i1, i2 are the two possible machine states
of the two failure prone machines composing the production system. The
cost function includes the following features:
i) a cost term g(v2) depending on the production rate of the second ma-

chine which penalizes slow production rates,
ii) a term penalizing large work-in-process,
iii) a term penalizing full and empty buffer states,
iv) a term penalizing the entrance rates into the full and empty buffer

states.
The resulting optimal feedback control is characterized by four threshold
levels z, Z, y, Y for the buffer content (see Eqs. 4.16-4.18). When these
levels are crossed, the rates are adjusted to reduce the probability to enter
into or to stay on the boundaries.

• Exact stationary probability measures are derived which enable exact cal-
culations for the expected average costs as a function of the thresholds:

V (z, Z, y, Y ) = lim
T→∞

1

T
E

[ ∫ T

0

(
L
[
X(s), v2(X(s))

])
ds
]
. (4.69)

From this we deduce the optimal control u∗ by a simple optimization of
the expected average costs V (z, Z, y, Y ) over the thresholds.
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Multi-scale analysis for a simple traffic model

Summary. We apply the micro-macro program of statistical mechanics to a simple
one-dimensional interacting particle system with interactions joining on a minimum
level of detailed knowledge the kinetic features of migration, reaction and collision.
The application includes a micro-meso-macro link for cars in one-lane traffic where
the three mentioned kinetic features model respectively i) transport, ii) spontaneous
accelerations and decelerations and iii) anisotropic decelerations of cars due to slow
front-cars.
Starting from the space-discrete particle hopping model, we establish in a first step
its convergence to a space-continuous Boltzmann-like model which constitutes the
mesoscopic level of description. In a second step we derive the functional relation
between the vehicular density (i.e. the particles density) ρ(x, t) and the flux J(x, t)
which occurs also in a popular ad-hoc traffic model proposed by Greenshields.

5.1 Introduction

The understanding of the collective dynamics of coupled elementary cells
forming a complex physical, biological and/or socio-ecological system is a
formidable interdisciplinary task and the ubiquity of such cooperative mecha-
nisms in various fields generate a strong ongoing research activity in the basic
sciences [142, 84], the applied sciences [64, 57, 35] and in between (complexity
research [11, 136, 141]).
The origin of complex behavior is located in the interplay of the “microscopic”
(elementary) components of the system which give rise to new collective prop-
erties, qualitatively different from the microscopic properties. The main steps
toward a formal understanding of the collective dynamics are contained in
the micro-to-macro paradigm behavior formulated in analogy to the kinetic
theory of dilute gases. On the microscopic level of description the elementary
cells evolve under Newton-like dynamics. A reduced description is given by
the mesoscopic Boltzmann-like equation which describes the evolution of the
probability distribution of the components in the phase space [143]. When
the mean free path between the elementary cells goes to zero, the solution to
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the Boltzmann equation relaxes to a Maxwellian distribution and the process
yields a macroscopic description via fluid-dynamic-like equations. This ambi-
tious program of statistical physics has contributed to the understanding of
micro and macro properties of systems with great practical interest such as
granular and self driven many particle systems [52, 64].
In this chapter we like to pursue this generic program in a very simple one-
dimensional context. The main kinetics of the interacting particles defining
the space discrete stochastic hopping model derives from a dramatically sim-
plified view on cars in traffic including only migration, reaction and collision
terms. This view is simple enough such that the necessary mathematics can
still be handled, yet sharp enough to capture some of the basic mechanisms
of interacting cars in one-lane traffic. The micro-meso link is realized by a
discrete-space approximation of a Boltzmann-type equation introduced by
Ruijgrok and Wu which describes the mesoscopic regime. The meso-macro
link then involves a classical central limit procedure.
That our choice for the minimal model (reduction to migration, reaction and
collision terms) is not too simple is convincingly demonstrated by the micro-
macro link which unveils in the macro regime an experimentally founded traffic
model which is still used in traffic theory.
The chapter is organized as follows: In section 2 we establish the space dis-
crete microscopic model in a general setting, present the mesoscopic (space
continuous) model and derive the convergence of the former to the latter (i.e.
the micro-meso link). In section 3 we briefly recall a few concept of traffic
modelling and apply the result of section 2. In section 4, we derive the funda-
mental diagram defining the macroscopic limit model. In section 5, we discuss
the probabilistic background of the meso-macro derivation and the last section
is devoted to some conclusions.

5.2 Discrete derivation of Ruijgrok’s and Wu’s
non-linear two velocity Boltzmann model 1

5.2.1 Space discrete stochastic hopping model

We consider interacting particles which are spatially distributed over equally
spaced cells C(j) = [jh, (j + 1)h[ ⊂ R of length h. Particles can move to the
left and to the right with constant velocities v± = ±1. We denote the number
of particles in C(j) with speed 1, resp., −1, at time t by N+

h (jh, t), resp.,
N−

h (jh, t).
The particles with speed 1 migrate from C(j) to C(j + 1) and those with
speed −1 from C(j) to C(j − 1) both at rate |v±|/h = 1/h. Other migration
rates are zero. More precisely, we assume that for a time interval of length
∆t < h the (nonzero) migration probabilities are
1 The presentation of this section follows closely section 1 of Rosenkrantz and Bings

paper [126].
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∆t
h + o(∆t) = probability that a single particle with speed 1 moves

within ∆t from C(j) to C(j + 1)
= probability that a single particle with speed −1 moves

within ∆t from C(j) to C(j − 1),

where o(∆t) is a quantity verifying lim∆t↓0 o(∆t)/∆t = 0. Without interac-
tion, each particle travels on the set {C(j) | j ∈ Z}, which we identify with

Ih = {jh ∈ R | 0,±1,±2, . . . },

according to a continuous time Markov chain with infinitesimal generator
matrix Qi

h = (Qi
h(j, k))j,k∈Z, i = ±, given by

Q−
h (j, k) =

⎧⎪⎪⎨
⎪⎪⎩

0 for |j − k| > 1,
0 for k = j + 1,
1/h for k = j − 1,
−1/h for j = k,

Q+
h (j, k) =

⎧⎪⎪⎨
⎪⎪⎩

0 for |j − k| > 1,
1/h for k = j + 1,
0 for k = j − 1,
−1/h for j = k.

The quantities N i
h(jh, t) satisfy the Kolmogorov forward equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tN
−
h (jh, t) =

∑
k

N−
h (kh, t)Q−

h (k, j) = AhN
−
h (jh, t),

∂tN
+
h (jh, t) =

∑
k

N+
h (kh, t)Q+

h (k, j) = −AhN
+
h ((j − 1)h, t),

N±
h (jh, 0) = initial distribution of particles with speed ±1,

(5.1)

where Ahf(jh) := 1
h [f(jh+h)−f(jh)] is the difference operator acting on the

Banach spaceXh := C0(Ih) of all functions f : Ih → R with lim|jh|→∞ f(jh) =
0 and which is endowed with the sup norm ‖f‖h := supj |f(jh)|.
In addition to the migration rules we assume that particles react as follows:
in the small interval of time [t, t + ∆t[ the number of particles in C(j) with
speed +1 increases due to spontaneous transitions of −1 particles in C(j) to
+1 particles at rate α > 0 by the amount

αN−
h (jh, t)∆t+ o(∆t) (5.2)

and decreases by the amount

βN+
h (jh, t)∆t+ o(∆t) (5.3)

due to spontaneous transitions of +1 particles in C(j) to −1 particles at rate
β > 0. Similarly, the number of particles in C(j) with speed −1 decreases by
the amount αN−

h (jh, t)∆t+ o(∆t) and increases by βN+
h (jh, t)∆t+ o(∆t).

Moreover, particles in C(j) of different speeds can collide, thereby giving rise
to−1 particles in C(j). This collision rule decreases the number of +1 particles
and increases the number of −1 particles in C(j) according to
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µ

h
N−

h (jh, t)N+
h (jh, t)∆t+ o(∆t). (5.4)

The term µ
h reflects the fact that the rate of interactions depends not only

on the number of particles in each cell but also on its length; i.e., the same
number of particles crowded into an interval of smaller length will interact at
a proportionally higher rate.
Denoting −1 particles by (−) and +1 particles by (+), the migration and the
interaction (reaction and collision) mechanisms can be summarized as follows:

migration: (−) −→ C(j − 1), (+) −→ C(j + 1),
reaction: (−) −→ (+), (+) −→ (−),
collision: (+,−) −→ (−,−),

and the interactions are taken to be of mass action type. This means that the
rate of each interaction is proportional to the concentration of each type of
particle entering the interaction. Under this assumption and when ∆t → 0,
the functions N±

h (jh, t) satisfy the nonlinear forward equation:

∂tN
−
h (jh, t) = AhN−

h (jh, t) − αN−
h (jh, t) + βN+

h (jh, t) + µ
h
N−

h (jh, t)N+
h (jh, t),

∂tN
+
h (jh, t) = −AhN+

h ((j−1)h, t) + αN−
h (jh, t) − βN+

h (jh, t) − µ
h
N−

h (jh, t)N+
h (jh, t),

N±
h (jh, 0) = g±

h (jh),
(5.5)

with g±h ∈ Xh some given (positive) initial distribution of the interacting
particles.
If, in addition, we assume the existence of functions g± ∈ C10(R) and ρ± ∈
C2,1
0 (R× R

+) satisfying for all j ∈ Z and all h > 0

g±h (jh) = g±(jh) + o(h), (5.6)
1
h
N±

h (jh, t) = ρ±(jh, t), (5.7)

then ρ−(x, t)and ρ+(x, t) satisfy the nonlinear two-velocity Boltzmann equa-
tion of Ruijgrok and Wu introduced in [128]:⎧⎪⎪⎨

⎪⎪⎩
∂tρ

−(x, t) = Aρ−(x, t)− αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t),

∂tρ
+(x, t) = −Aρ+(x, t) + αρ−(x, t)− βρ+(x, t)− µρ−(x, t)ρ+(x, t),

ρ±(x, 0) = g±(x),
(5.8)

where A = ∂
∂x

is the differential operator on the Banach space X := C0(R)
(endowed with the supremum norm ‖f‖ := supx |f(x)|) with domain

D(A) = {f ∈ X | f absolutely continuous, f ′ ∈ X}. (5.9)

The physical content of the system (5.8) is briefly stated in the remark sec-
tion below. For the mathematical discussion of the explicit solutions which
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we recall in the next paragraph, we refer to [128]. Our concern is to derive
the “mesoscopic equations” (5.8) from the discrete equations (5.5) without as-
sumption (5.7) by showing that for all x ∈ R and uniformly for t in compact
subsets of R

+ the limit

lim
h↘0, jh→x

1
h
N±

h (jh, t) (5.10)

exists and that the pointwise defined functions

ρ±(x, t) := lim
h↘0, jh→x

1
h
N±

h (jh, t) (5.11)

solve equations (5.8). This is done in the next paragraph.
Remark.
The RW model (5.8) was originally motivated by practical considerations in
connection with controlled thermonuclear fusion. The interesting feature for
applications is that (5.8) can be solved explicitly for a large class of initial
conditions in terms of modified Bessel functions. Consequently, shock waves
and approach to equilibrium can be investigated analytically. In this chap-
ter we extend the fields of applications to a nonlinear transport phenomenon
encountered in vehicular traffic flow. At the proposed level of description,
the main ingredients for nonlinearity in traffic flows come from a certain
anisotropic collision behavior (a fast driver behind a slow one has to slow
down or to overtake if he can). This is taken into account by the RW model.
Indeed, it is seen from section 1 that there is one binary collision of the form
(+,−)→ (−,−). The presence of this collision mechanism, together with the
absence of the inverse collision (−,−) → (+,−), means the violation of the
detailed balance of momentum which is the mentioned desired anisotropic
collision feature encountered in vehicular traffic flow.

5.2.2 Micro-meso link

Before we derive (5.11) recall that the RW model (5.8) can be linearized by
means of the logarithmic transformation:⎧⎪⎨

⎪⎩
ρ+(x, t) = 2

µ (∂t −A)
(
ln
(
u(x, t)

)
+ β+α

2 t− β−α
2 x

)
,

ρ−(x, t) = − 2
µ (∂t +A)

(
ln
(
u(x, t)

)
+ β+α

2 t+ β−α
2 x

)
,

(5.12)

where the strictly positive function u := u(x, t) > 0 satisfies the hyperbolic
equation:

∂2
t u(x, t) =

(
A2 + αβI

)
u(x, t), (5.13)

with I the identity operator. The above linear PDE, equivalent to the tele-
graphist equation, has to be solved with the initial conditions:
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u0(y) = u(y, 0) = exp
{

1
2

∫ y

−∞
[µ(g−(x) + g+(x)) + α− β]dx

}
, (5.14)

u0
t (y) = ut(y, 0) =

1
2
u(y, 0)

(
µ(g−(y)− g+(y)) + β + α

)
. (5.15)

It is well known [53, Chap. 2.8] that the solution to the above Cauchy problem
(5.13), (5.14), (5.15) is formally given by

u(x, t) := C(t)u0(x) +
∫ t

0

C(s)u0
t (x)ds, (5.16)

where C(t) is the strongly continuous cosine operator function associated with
the infinitesimal generator B = A2 + αβI with domain

D(B) := {f ∈ X | C(·)f ∈ C2(R,X)}. (5.17)

The (strong) solution to (5.13) is explicitly given by (5.16) via the represen-
tation formula (see, e.g., [53, p. 121]):

C(t)f =
1

2

[
T (t)+T (−t)

]
f +

αβ

2
t

∫ t

0

(t2 − s2)−1/2I1

(
(t2 − s2)1/2)[T (t)+T (−t)

]
fds

(5.18)

for f ∈ X. Therein I1 is the modified Bessel function, and T = {T (t) | t ∈ R}
is the (C0) group of isometries on X associated with the generator A = ∂

∂x

given by [
T (t)f

]
(x) = f(x+ t). (5.19)

The fact that the (strong) solution to (5.13) is given by a strongly continuous
cosine operator function C(t) gives us—besides existence, uniqueness, and
continuous dependence on the initial data—the continuous dependence on A.
It is this bonus—exploited in a version of the Trotter–Kato approximation
theorem [89]—together with the obvious regularity properties of the explicit
solution (5.16) which enables the rigorous derivation of the limit (5.11). To
this end we rewrite (5.12) as an abstract inhomogeneous Cauchy problem in
the Banach space

Y := X ×X = C0(R)× C0(R),

equipped with the norm ‖(f1, f2)‖ = ‖f1‖+ ‖f2‖ and set

ρ(x, t) :=
(
ρ−(x, t), ρ+(x, t)

)
, (5.20)

ρ̇(t) :=
(
∂tρ

−(x, t), ∂tρ
+(x, t)

)
, (5.21)

F
(
ρ(x, t)

)
:=

(−αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t), (5.22)

αρ−(x, t)− βρ+(x, t)− µρ−(x, t)ρ+(x, t)
)
,

Aρ(x, t) :=
(
Aρ−(x, t),−Aρ+(x, t)

)
. (5.23)

Clearly, F (Y ) ⊂ Y , but F is otherwise nonlinear and unbounded. An elemen-
tary estimation for arbitrary ρ, ξ ∈ Y yields
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‖F (ρ(x, t))− F (ξ(x, t))‖ ≤ (
2max(β, α) + 2µmax(‖ξ+‖, ‖ρ−‖))‖ρ− ξ‖,

(5.24)
establishing that F is locally Lipschitz continuous in the sense that for all ρ, ξ
in the set {ρ ∈ Y | ‖ρ‖ ≤M}, where M > 0 is fixed, we have

‖F (ρ(x, t))−F (ξ(x, t))‖ ≤ (
2max(β, α)+2µM

)‖ρ−ξ‖ =: M̃‖ρ−ξ‖. (5.25)

Using this notation, (5.12) takes the form of an abstract semi-linear Cauchy
problem, namely,

ρ̇(t) = Aρ(t) + F
(
ρ(t)

)
, (5.26)

ρ(0) = g(0) =
(
g−, g+

)
. (5.27)

It is clear from (5.12), (5.16), and the representation formula (5.18) that the
initial value problem (5.26), (5.27) has a strong solution ρ ∈ D(A) × D(A)
whenever g− and g+ are sufficiently regular; typically, g± ∈ C2(R). Indeed,
using the representation formula (5.18) it is immediate to check that for all
fixed T > 0 the following implications hold:

(g−, g+) ∈ C2(R)× C2(R) ⇒ (ρ−(t), ρ+(t)) ∈ C1(R)× C1(R), t ∈ [0, T ],

and sup
0≤t≤T

∣∣∣∣∂ρ±(x, t)
∂x

∣∣∣∣ <∞. (5.28)

Clearly, the strong solution u is also a mild one; i.e., u is continuous and
satisfies the integral equation (see, e.g., [116, p. 183]):

ρ(t) = G(t)ρ(0) +
∫ t

0

G(t− s)F (ρ(s))ds, (5.29)

where the (C0) contraction semigroup G(t) is given by

G(t)
(
f1(x), f2(x)

)
=
(
T (t)f1(x), T (t)f2(x)

)
=
(
f1(x+ t), f2(x+ t)

)
.

Similarly, the space discrete RW model eqs.(5.5) takes the form

ρ̇h(t) = Ahρh(t) + F
(
ρh(t)

)
, (5.30)

ρh(0) = gh(0), (5.31)

where
ρh(jh, t) :=

(
h−1N−

h (jh, t), h−1N+
h (jh, t)

)
,

Ahρh(t) :=
(
Ahh

−1N−
h (jh, t),−Ahh

−1N+
h (jh, t)

)
.

Note that the Cauchy problem (5.30), (5.31) has to be solved in the Banach
space

Yh := Xh ×Xh = C0(Ih)× C0(Ih),

equipped with the norm ‖(f1, f2)‖h = ‖f1‖h+‖f2‖h. The existence of a unique
mild solution ρh of (5.30), (5.31) (defined on some maximal interval [0, T [ ,
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where T = T (M̃, g±)) relies on the local Lipschitz property established in
(5.25) (see, e.g., Theorem 1.4 in [116]). For t ∈ [0, T [ this solution satisfies

ρh(t) = Gh(t)ρh(0) +
∫ t

0

Gh(t− s)F (ρh(s))ds, (5.32)

where Gh(t) is the (C0) contraction semigroup on Yh given by

Gh(t)
(
f1(jh), f2(jh)

)
=
(
Th(t)f1(jh), Th(t)f2(jh)

)
.

Here Th(t) = exp(tAh) means the (C0) contraction semigroup generated by
the finite difference operator Ah (with domain D(Ah) = Xh) explicitly given
by (see, e.g., [53, p. 23])

Th(t)f(j) = e−t/h
∞∑

k=0

(t/h)k

k!
f(j + hk). (5.33)

Following [126] we define the bounded linear mappings

Ph : Y → Yh,
(ρ−, ρ+) �→ Ph(ρ−, ρ+) : R→ R× R,

x �→ (ρ−(jh), ρ+(jh)) for jh ≤ x < (j + 1)h

joining the evident properties:

(1) ‖Phf‖h ≤ ‖f‖;
(2) limh→0 ‖Phf‖h = ‖f‖;
(3) for any fh ∈ Yh there exists a f ∈ Y such that fh = Phf and ‖fh‖h ≤ ‖f‖.
It follows (by definition) that the sequence of Banach spaces Yh with the
sequence of bounded linear maps Ph approximate the Banach space Y for
h→ 0.
The convergence of the “linear” part Gh(t)ρh(0) of ρh given in the integral
representation (5.32) to G(t)ρ(0) follows from a variant of the Trotter–Kato
approximation theorem due to Kurtz (see, e.g., [127, Thm. 2.6]). The theorem
ensures that for every fixed s ∈ [0,∞[ and for every ρ ∈ D(A) × D(A) ⊂
C2
0(R)× C20(R) we have

lim
h↘0

sup
0≤t≤s

‖Gh(t)Phρ− PhG(t)ρ‖h = 0. (5.34)

In particular, for the initial condition ρ(0) we have

PhG(t)ρ(0) = Gh(t)Phρ(0) + o(h). (5.35)

To treat the inhomogeneous part within the time horizon T > 0, we apply Ph

to the integral representation (5.29) and use (5.35) to obtain
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Phρ(t) = PhG(t)ρ(0) +
∫ t

0

PhG(t− s)F (ρ(s))ds (5.36)

= Gh(t)Phρ(0) + o(h) +
∫ t

0

(
Gh(t− s)PhF (ρ(s)) + o(h)

)
ds

= Gh(t)Phρ(0) +
∫ t

0

Gh(t− s)F (Phρ(s))ds+ o(h)

for t ∈ [0, T ]. Therefore,

Phρ(t)− ρh(t) = Gh(t)
(
Phρ(0)− ρh(0)

)
+ o(h) (5.37)

+
∫ t

0

Gh(t− s)(F (Phρ(s))− F (ρh(s))
)
ds.

Set
φh(t) := ‖Phρ(t)− ρh(t)‖h (5.38)

and note that by assumption (5.6) we have

φh(0) = o(h). (5.39)

Applying the local Lipschitz property established in (5.25) and using the fact
that ‖Gh(t)f‖h ≤ ‖f‖h one concludes on the existence of a constant K de-
pending on T (and M̃) such that

φh(t) ≤ Kh+K

∫ t

0

φh(s)ds. (5.40)

Using Gronwall’s inequality, the above directly implies that φh(t) ≤ Kh exp(Kt)
for t ∈ [0, T ], and therefore

lim
h↘0

φh(t) = lim
h↘0
‖Phρ(t)− ρh(t)‖h = 0 for t ∈ [0, T ], (5.41)

which proves (5.10) and (5.11).
To conclude this technical section we resume that the proof establishes the
convergence of a space-discrete hopping model including migration, reaction
and collision mechanisms to the nonlinear two-velocity Boltzmann model of
Ruijgrok and Wu. The next paragraph aims to apply this convergence to car
traffic modelling.

5.3 Application to Traffic modelling

A traffic system composed of drivers, vehicles, and roadways, exhibits ex-
tremely complex behavior including congestion formation, stop-and-go traffic,
and hysteresis due to the heterogeneous drivers’ behavior, the highly nonlinear
group dynamics, and large system dimensions. Traffic theory proposes math-
ematical descriptions of the processes in order to understand the dynamics
of traffic flow. Two complementary approaches have dominated traffic-flow
modelling:
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(i) a purely microscopic approach in which the individual vehicular inter-
actions are taken into account (see [1, 105] and the references therein)
and

(ii) a macroscopic approach which is based on fluid dynamical equations de-
scribing the behavior of a compressible fluid (see [64, 95, 115] and the
references therein).

Even within the microscopic approach there are different types of mathemat-
ical descriptions. The so-called car-following theory, for example, provides a
deterministic, Newton-like description of the motion of individual vehicles.
In contrast, particle hopping modelling and stochastic microscopic modelling
describe traffic in terms of the stochastic dynamics of individual vehicles and
will be the point of view adopted in this application.
The macroscopic description is always based on a continuity equation,

∂tρ(x, t) + ∂xJ(x, t) = 0, (5.42)

and completed by a relation between the current J(x, t) and the vehicle den-
sity ρ(x, t), which is known in traffic engineering as the fundamental diagram.
This relation contains all the dynamic information specific to a particular
macroscopic model. Among the various fundamental diagrams which have
been explored, a very simple and popular one is the Lighthill–Whitham (LW)
equation [95], assuming that there exists an equilibrium flow-density relation-
ship of the form

J(x, t) = j(ρ(x, t))−D∂xρ(x, t), (5.43)

where D > 0 is a diffusion constant. Moreover, on the basis of experimental
observations, Greenshields [55] proposed the choice

j(ρ(x, t)) = Vmaxρ(x, t)
(
1− ρ(x, t)), (5.44)

where the phenomenological parameter Vmax is the maximum average speed
for ρ→ 0. Eq.(5.43) together with Eq.(5.44) is known as the improved Green-
shields traffic model.
For D → 0, the nonlinear model can explain the formations of shock waves
which correspond to congestion formation in traffic flow [95]. Indeed, the im-
proved Greenshields model together with Eq. (5.42) is reduced, via the linear
transformation (x, t) �→ (y, τ) := (x− Vmaxt, t), to

∂τρ(y, τ)− 2Vmaxρ(y, τ)∂yρ(y, τ) = D∂2
yρ(y, τ) (5.45)

which is directly recognized as the viscous form of the famous Burgers’ equa-
tion. For D → 0, solutions to the above equation, specified by some initial
condition ρ0, are known to develop discontinuities in finite time even in case
the initial data ρ0 is smooth.
Despite this success in describing congestion formation in traffic flow the LW
theory fails in describing more complicated traffic-flow phenomena such as
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stop-and-go traffic or hysteresis (see, e.g., [87]). This is due to the unrealis-
tic assumption that the traffic flow is always in equilibrium. In reality, the
dynamics is a result of the retarded response of drivers to various (mostly)
frontal stimuli [93]. Among different non-equilibrium models [115, 93, 64] we
propose here (see also [39]) the exactly solvable two-velocity RW model (5.8)
which takes into account acceleration behavior and anisotropic interactions
of vehicles with different speeds in the most simple manner. Despite its sim-
plicity, it will be remarked below that the RW model can partially explain
hysteresis and we will show in the next section that the model relaxes in a
diffusive limit to the improved Greenshields traffic model. This meso-macro
link explains the importance of the empirical density-flux relation (5.44) and,
reciprocally, corroborates the relevance of the RW model in traffic theoretical
contexts.
Remark.

The RW model shows the signature of hysteretic behavior for a specific
range of parameters. Indeed, for α > β there exists a class of spatially inho-
mogeneous equilibrium distributions of the RW model eqs. (5.8) indexed by
two continuous real parameters x0 ∈ R and C, 0 ≤ C ≤ (

√
α − √β)2, given

by (see [128, sect. 5]):

ρ+(x) =
µC + α− β

2µ
+

r

2µ
tanh((x− x0)r/2),

ρ−(x) =
−µC + α− β

2µ
+

r

2µ
tanh((x− x0)r/2),

with r depending on the parameters α, β, µ, and C only. The parameter C
corresponds to the equilibrium flow C = ρ+(x) − ρ−(x) and is determined
by the initial conditions g± given in (5.8). The equilibrium density ρ at x0 is
simply ρ(x0) = ρ+(x0) + ρ+(x0) = α−β

µ and hence independent of the flow
C. Therefore, without changing the equilibrium density ρ(x0), different initial
conditions lead to different equilibrium flow states at x0 which is a typical
signature for hysteresis (see e.g., [1, p. 264]).
Let us now apply the limit result of section 2 in order to realize the micro-
meso link. We start with the description of the stochastic microscopic model
(i.e., the particle hopping model).
We observe cars on a long highway without on/off ramps. We further suppose
that at any instant of time t the heterogeneous drivers’ behavior can be classi-
fied into “slow” resp., “fast” drivers corresponding to cars with speed v1 (slow)
resp. cars with speed v2 (fast). Informally, the basic modelling assumptions
are the following:

(A1) The fairly diverse driving habits of the people are modelled by spontaneous
(Markovian) transitions from one behavior to the other.

(A2) The interactions are typically short ranged in the sense that only consec-
utive cars (with different speeds) can interact. The rate of interactions
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within a short region is proportional to the number of drivers of each type
in this region.

(A3) The anisotropic character of traffic flow is taken into account by saying
that vehicles from behind should not influence the actions of their leading
vehicles.

(A1) implies transitions of the form v1 → v2 and v2 → v1. (A2), together
with (A3), states that (only) consecutive cars can interact in the following
way, (v2, v1)→ (v1, v1), or (v1, v2)→ (v2, v2), where (x, y) means an ordered
couple of consecutive cars with velocities x and y, respectively. The former
interaction is quite natural for highway traffic, saying that a fast car behind
a slow one has to slow down (or to overtake if it can). The latter interaction
is somewhat special (nevertheless not completely lacking in real traffic), and
we will neglect it. Hence we extend the assumptions by the following:

(A4) Slow cars behind fast ones do not interact.

With assumptions (A1)–(A4), which form our stochastic microscopic traffic
model, we are able to apply the convergence result of section 2. Indeed, de-
scribing the cars in a moving framework which links the coordinates to the
center of inertia,

(
x, t

) �→ (
y, τ

)
:=

(
x− v1 + v2

2
t, t

)
, (5.46)

the velocities of the vehicles are transformed as

v1 �→ −v0, v2 �→ v0, (5.47)

where v0 := (v2 − v1)/2. Partitioning the y-axes into equally spaced cells
C(j) = [jh, (j + 1)h[ of length h we see that in the moving coordinates cars
migrate from C(j) to C(j − 1) or C(j + 1) at the rate v0/h.
(A1) implies that within a time interval [t, t + ∆t[ the number of par-
ticles N+

h (jh, t) (resp., N−
h (jh, t)) in C(j) with speed v0 (resp., −v0) at

time t increases by an amount proportional to N−
h (jh, t)∆t + o(∆t) (resp.,

N+
h (jh, t)∆t+o(∆t)) and decreases by an amount proportional toN+

h (jh, t)∆t+
o(∆t) (resp., N−

h (jh, t)∆t+ o(∆t)).
From (A2)–(A4) we infer the local collision rule (v0,−v0) → (−v0,−v0). By
the second part of assumption (A2), this will increase (decrease) the number
of slow (fast) cars within the time interval [t, t+∆t[ by the amount

µ

h
N+

h (jh, t)N−
h (jh, t)∆t+ o(∆t).

Hence, using the convergence result of section 2, we see that under the stochas-
tic microscopic assumptions (A1)–(A4), the resulting mesoscopic description
of the cars in traffic is given by the RW model:
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∂tρ

−(x, t)− v0ρ−x (x, t) = −αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t),

∂tρ
+(x, t) + v0ρ

+
x (x, t) = +αρ−(x, t)− βρ+(x, t)− µρ−(x, t)ρ+(x, t).

(5.48)
It describes in a moving coordinate system the evolution of the distribution
functions of fast cars ρ+ and slow cars ρ−. An explicit solution of the traffic
density ρ = ρ− + ρ+ is sketched in Figure 5.1. The initial conditions reflect a
situation where a platoon of fast cars is behind a platoon of slow cars. When
the fast cars catch up with the slow ones the collision mechanism (+,−) −→
(−,−) increases (decreases) the concentration of slow (fast) cars, and only a
few fast cars pass the train of slow cars without undergoing collisions.

-1

-0.5
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1

SPACE

0
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1
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2

TIME

SLOW CARS

FAST CARS

COLLISIONS

Fig. 5.1. Sketch of the density profiles in a moving coordinate system for Gaussian
initial conditions. When the platoons meet (fast cars catch up with the slow ones),
the collision term will become important and decrease the amount of fast cars and
increase the amount of slow cars. The parameters are α = 50, β = 10, µ = 80, and
v0 = 1.

5.4 The Mesoscopic derivation of Greenshields
fundamental diagram

In this section we show that the RW model relaxes in a diffusive limit to the
improved Greenshields model. We indeed derive Greenshields flux relation Eq.
(5.44) starting from the mesoscopic RW model. This completes together with
the above microscopic description the micro-meso-macro link.

To underline the applicability of the two-velocities model to arbitrary
speeds (not only ±v0) let us rewrite the one-dimensional, nonlinear RW model
Eq. (5.48) in the form:{

(∂t + v1∂x)ρ̂− = µρ̂−ρ̂+ − αρ̂− + βρ̂+

(∂t + v2∂x)ρ̂+ = −µρ̂−ρ̂+ + αρ̂− − βρ̂+,
(5.49)
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where (x, t) ∈ R× R
+, ρ̂− := ρ̂−(x, t) and ρ̂+ := ρ̂+(x, t) are the distribution

functions of vehicles with velocities v1 and v2 respectively and where α, β and
µ are positive constants. As clear from the microscopic derivation, the model
takes into account three velocity exchange mechanisms contained on the right
hand side of Eqs. (5.49), namely:

(a) a binary collision of the form (v1, v2)
µ−→ (v1, v1), modelling a transition

from (v1, v2) to (v1, v1) with intensity µ,
(b) a spontaneous transition of the form (v1)

α−→ (v2), with transition rate α,
and

(c) a spontaneous transition of the form (v2)
β−→ (v1), with transition rate β.

Recall from the microscopic model that the absence of the inverse collision
of type (a) indicates violation of the detailed balance, which is an intrinsic
feature of vehicular traffic [29].
Suppose now (without loss of generality) that v1 = −v2 =: γ and that the
densities are given by a logarithmic transformation of the form:⎧⎪⎨

⎪⎩
ρ̂−(x, t) = 1

µ (∂t + γ∂x)
(

ln
(
u(x, t)

)
+ ax+ bt

)
ρ̂+(x, t) = − 1

µ (∂t − γ∂x)
(

ln
(
u(x, t)

)
+ ax+ bt

) (5.50)

for a strictly positive function u := u(x, t) > 0 and two constants a and b.
With these assumptions Eqs. (5.49) simplify to the linear hyperbolic PDE

∂2
t u+(α+β+2b)∂tu = γ2∂2

xu+γ
(
α−β+2γa

)
∂xu+u·((γa)2+γa(α−β)−b2−b(α+β)

)
.

(5.51)

By the ad-hoc choice of the constants a := β−α
2γ and b := −α+β

2 +
√

α2+β2

2 ,

Eq. (5.51) reduces to the famous telegraphist equation:

∂2
t u+

√
2(α2 + β2)∂tu = γ2∂2

xu. (5.52)

The logarithmic transform (L-T) which reduces the non-linear Eqs. (5.49)
to the linear telegraphist equation (5.52) plays a role similar to the well-
known Hopf-Cole transformation (H-C), reducing the Burgers’ equation to
the (linear) heat equation. This observation, thoroughly discussed in [70], and
the central role of the Burgers’ equation in traffic modelling (see e.g. [29]),
leads us to emphasize the importance of the RW-model in the traffic context.

5.4.1 Derivation of Greenshields’ Model

Let us now show how the Greenshields’ flux relation:

J(x, t) = Vmax · ρ(x, t)(1− ρ(x, t))−D∂xρ(x, t) (5.53)

can be mesoscopically derived. To this aim we link as in section 3 the car
coordinates to the center of inertia:



5.4 The Mesoscopic derivation of Greenshields fundamental diagram 77

(
x, t

) �→ (
x− v̄t, t

)
, v̄ :=

v1 + v2
2

. (5.54)

In this coordinates, the velocities of the vehicles are transformed as

v1 �→ −v0, v2 �→ v0, (5.55)

where
v0 :=

v2 − v1
2

. (5.56)

The second step is a diffusive re-scaling of the coordinates of the form

y := c(x− v̄t), τ := c2t, (5.57)

which is accompanied by the normalization transformation

ρ̂− �→ ρ− := ρ̂−/c, (5.58)
ρ̂+ �→ ρ+ := ρ̂+/c, (5.59)

where c is a dimensionless scaling parameter. The diffusive limit c → 0 (see
e.g., [143]) corresponds to the transition from a kinetic to a macroscopic de-
scription of the traffic. With the coordinates given by (5.55) and the diffusive
re-scaling (5.57), (5.59), the system (5.49) reads:{

(∂τ − v0
c ∂y)ρ− = µ

c ρ
−ρ+ − α

c2 ρ
− + β

c2 ρ
+

(∂τ + v0
c ∂y)ρ+ = −µ

c ρ
−ρ+ + α

c2 ρ
− − β

c2 ρ
+.

(5.60)

The macroscopic variables for the system (5.60) are the vehicle density ρ :=
ρ(y, τ) and the flux J := J(y, τ) respectively given by:

ρ(y, τ) = ρ−
(
x(y, τ), t(y, τ)

)
+ ρ+

(
x(y, τ), t(y, τ)

)
= 1

c

(
ρ̂−

(
x(y, τ), t(y, τ)

)
+ ρ̂+

(
x(y, τ), t(y, τ)

))
,

(5.61)

J(y, τ) = v0
c

(
ρ+

(
x(y, τ), t(y, τ)

)− ρ−(x(y, τ), t(y, τ)))
= v0

c2

(
ρ̂+

(
x(y, τ), t(y, τ)

)− ρ̂−(x(y, τ), t(y, τ))). (5.62)

By addition of both equations in (5.60), we immediately have the continuity
equation

∂τρ+ ∂yJ = 0. (5.63)

From Eqs. (5.61) and (5.62), we have:⎧⎨
⎩
ρ− = 1

2v0

(
v0ρ− cJ

)
ρ+ = 1

2v0

(
v0ρ+ cJ

)
.

(5.64)
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Introducing the linear combination of the two equations in the system (5.60):

−v0·(∂τ−v0
c
∂y)ρ−+v0·(∂τ+

v0
c
∂y)ρ+ = 2v0

(
−µ
c
ρ−ρ++

α

c2
ρ−− β

c2
ρ+

)
(5.65)

and performing a few elementary manipulations of Eqs. (5.64), we end up
with:

c2

v2
0

∂τJ + ∂yρ = ρ
(α− β
cv0

− µ

2v0
ρ
)

+ J
(µc2

2v3
0

J − α+ β

v2
0

)
. (5.66)

To explicitly connect the RW-model with Greenshields equation (5.53) we
introduce the relation:

α = β +
µ

2
c, (5.67)

and the definitions

D :=
v2
0

α+ β
, Vmax :=

µ

2(α+ β)
v0. (5.68)

With these definitions which we discuss below, Eq. (5.66) reduces in the dif-
fusive limit, c→ 0, to Greenshields’ flux relation:

J = Vmax · ρ(1− ρ)−D∂yρ. (5.69)

5.4.2 Discussion

At this point, it is worth-while to comment the physical content of Eq. (5.67).
First we see from the fact that the collisions (v1, v2)

µ−→ (v1, v1) steadily
increases the density of particles having velocity v1, the only possibility to
reach an equilibrium is to have a transition imbalance α > β. The derivation
of (5.67) shows that for an equilibrium to exist, the difference of transition
rats α − β should read as cµ/2. Note that the constant D as given in (5.68)
is consistent with the diffusion constant D of the telegraphist equation. In
fact, when replacing in (5.52) α by α

c2 , β by β
c2 , and γ by v0

c one finds the
telegraphist equation associated to (5.60):

∂tu =
v2
0√

2(α2 + β2)︸ ︷︷ ︸
=:D

∂2
xu−

c2√
2(α2 + β2)

∂2
t u, (5.70)

and using (5.67), we see that limc→0D = limc→0D = v2
o/(2α).

Let us now also examine the diffusive limit c → 0. For this, consider the
piecewise deterministic process solving the stochastic differential equation:

dXγ(t) := γI(γ2t)dt (5.71)
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where γ := v0
c and γI(γ2t) is a random telegraph process (i.e. a continuous

time two states Markov chain) which takes on values in {−γ,+γ} and whose
transition rate is given by

√
2(α2 + β2)/(2c2). The Master equation that can

be associated with the Markov process
(
Xγ(t), γI(γ2t)

)
has the form

dTtφ

dt
= GTtφ, (5.72)

where the operator Tt is the stochastic semigroup associated with the Markov
process

(
Xγ(t), γI(γ2t)

)
acting on locally bounded and measurable functions

φ defined on R× {−γ, γ}. It is defined as

Ttφ(x, y) = Ex,y

[
φ
(
Xγ(t), γI(γ2t)

)]
, (x, y) ∈ R× {−γ, γ}, (5.73)

where Ex,y is the expectation conditioned on the initial values
(
Xγ(0), γI(0)

)
=

(x, y). The infinitesimal generator G = dTt

dt

∣∣
t=0

of the semigroup Tt is given
by:

G =
(−γ∂x 0

0 γ∂x

)
+
√

2(α2 + β2)/(2c2)
(−1 1

1 −1

)
. (5.74)

These facts discussed in [117], can be used to determine the system of back-
ward equations describing the Markov process which reads:

∂

∂t

(
u−(x, t)
u+(x, t)

)
= G

(
u−(x, t)
u+(x, t)

)
(5.75)

where u−(x, t) := Ttφ(x,−γ) and u+(x, t) := Ttφ(x, γ) for φ of class C1. Ap-
plying the operators ∂x, ∂t to (5.75), it is seen that both field components u−
and u+ satisfy the telegraphist equation (5.70). This probabilistic connection
between Eq.(5.70) and stochastic processes was first noticed by [54] and [82].
Due to the central limit theorem (CLT), the random telegraph process defined
in (5.71) converges for c → 0 to a Gaussian white noise and in this limit we
can write (5.71) as:

dXt :=
√
DdWt (5.76)

with Wt being the standard Brownian motion (see e.g., [48] p. 210).
The Chapman-Kolmogorov equation associated with the process (5.76) is the
heat equation. Moreover, both the heat equation and the telegraphist equa-
tion are equivalent, up to nonlinear transformations (L-T) and (H-C), to the
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Burgers’ and the RW-model equations, respectively. This yields the global
picture given in the following table:

RW-model L−T−→ Telegraphist equation ←→ telegraph process

↓ ↓ c→ 0 ↓ CLT

Burgers’ equation H−C−→ Heat equation ←→ white noise

The previous analysis clearly shows that the improved Greenshields’ model
Eq. (5.44) follows from the mesoscopic model of vehicular traffic given in Eqs.
(5.60) and can be understood from a central limit procedure.

5.5 Application to serial production lines

The analogy between traffic and production flows discussed in Chapter 3 di-
rectly suggests to apply the multi-scale analysis to production lines composed
of N machines M1, ...,MN , N large, which are coupled in series through N−1
buffers. It is known that from a practical point of view, it is not reasonable
to conceive very long production lines as both, throughput and controllability
of the process decreases with N [76]. The multi-scale analysis indicates that
we have to add to these inconveniences another one namely, the fact that
long lines are very likely to produce unsteady flow dynamics. To make use of
the microscopic hopping model we look at machines as being ordered spots
(particles) moving on the real line R with speed −1 when operational (and
not blocked by a non-moving spot) and with speed 0 otherwise. Spots can not
overtake and hence, conserve their initial ordering. The content of the buffer
separating two adjacent machines is proportional to the euclidian distance D
of the associated consecutive spots on the line. In particular, an empty buffer
( say Bk−1) will correspond to two superposed spots (i.e., D(Mk,Mk−1) = 0).
Accordingly, the initial condition reflecting empty buffers corresponds to N
spots located all together at some point x0, say x0 = 0. The evolution of the
distance between consecutive spots encodes the evolution of the correspond-
ing buffer contents. The work in process is proportional to the spread of the
two extremal spots M1 and MN and the throughput of the line corresponds
to the evolution of MN .
Let us subdivide R into predefined cells Cj ∈ Z of length h (see figure 5.2).
The space continuous evolution of the ordered spots is now approached by
a space-discrete hopping dynamic. It consists of N spots which can, during
some small time window, either jump from one cell Ci to Ci−1 (if the internal
state is −1 =“on”) or stay in the cell Ci (if the internal state is 0 =“of”).
The internal state thereby changes according to a two-state Markov process.
In analogy to the traffic application discussed in section 3, we suppose now
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� �� � � � �Ci−1 Ci Ci+1 Ci+2 Cj Cj+1

��

M1 M2M3 M4 M5 MN−1 MN

D(M3, M2) = 0

Fig. 5.2. The black spots on R are identified with machines that can move along the
line with speed −1 when operational (and not blocked by a non-moving spot) and
with speed 0 otherwise. This evolution is replaced by a simpler mean field hopping
events dynamics, saying that spots in the “up” state can jump from cell Ci to Ci−1

with some probability.

that at any instant of time t the machines can be classified into operational
machines (state “up”) and non-operational machines (state “down”). The
former correspond to spots on the lattice which can perform downward jumps
within the infinitesimal time window [t, t+ dt] from the cells they are in, into
their neighboring downward cells with some given probability. The latter one
stay where they are during dt with probability 1. The modelling assumptions
are:

(B1) The prone to failure machines changes their operational states (“up” and
“down”) according to independent two-states Markov chains with switch-
ing rates α and β.

(B2) Downstream machine Mk+1 is starved when buffer Bk is empty. In this
case, Mk+1 will not be able to produce (i.e. it can not jump downwards
to the next cell). Starving is supposed to occur with some mean frequency
µ.

(B3) The buffer capacities are infinite (i.e. no blocking will occur).

(B1) implies transitions of the form “up” → “down” with rate α and “down”
→ “up” with rate β. (B2), together with (B3), state that only consecutive
spots can interact in the following way, “(down, up)”→ “(down, down)” with
rate µ, where “(x,y)” means an ordered couple of consecutive machines with
operational states “x” and “y”, respectively.
Hence, using the convergence result of section 2 (exactly as we did for the traf-
fic application in section 3), we deduce that under the stochastic microscopic
assumptions (B1)–(B3), the resulting mesoscopic workload distribution is re-
lated to the RW model in the following sense: Let (ρ−, ρ+) be the solutions
to the RW equations⎧⎪⎪⎨
⎪⎪⎩
∂tρ

−(x, t)− 1 · ρ−x (x, t) = −αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t),

∂tρ
+(x, t) + 0 · ρ+

x (x, t) = +αρ−(x, t)− βρ+(x, t)− µρ−(x, t)ρ+(x, t),(
ρ−(x, 0), ρ+

x (x, 0)
)

=
(
g1(x), g2(x)

)
,

(5.77)
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where the initial distribution (g1(x), g2(x)
)

has compact support. From the
modelling assumptions it follows that ρ−(x, t) can be interpreted as the spots
distribution (i.e. machines) which are in the “up” state and ρ+(x, t) the distri-
bution of spots in the “down” state. Let us define ρ(x, t) := ρ+(x, t)+ρ−(x, t)
and denote by supp

{
ρ(t)

}
the support of x �→ ρ(x, t) at time t. The support

of ρ(x, t) stays finite thanks to the finite support assumption made on the
initial condition. The simplified mean field picture gives now the following
new expressions:

1. The euclidian distance between the first and the last spot is given by
supp

{
ρ(t)

}
and is a measure for the work in process at time t.

2. The evolution of the last spot MN can be expressed as max
{
x ∈

supp
{
ρ(t)

}}
and corresponds to the throughput of the installation.

3. The location where the euclidian distance (i.e., the buffer content) be-
tween the spots is smallest is sup{x ∈ R | ρ(x, t)}. This quantity corre-
sponds to the location (or locations) where starvation is most likely to
occur at time t.

The explicit solutions allow to compute these quantities numerically for given
initial distributions. We refrain to write explicit expressions but we rather
focus on the qualitative salient feature. We namely point out that the discussed
diffusive relation with the Burgers equation (see discussion in 4.2.) shows, via
the emerging shock wave solutions, that unsteady flow dynamics are likely to
occurrence in long production lines.

5.6 Concluding remarks

One of the main aims in traffic theory is to unveil the decisive local interactions
(a microscopic model) among traffic participants contributing all together to
the complex emerging flow dynamics which we observe day by day. Such a
microscopic model will certainly not reproduce all the observable facts but
allows the recognition and the understanding of the prominent factors leading
to some of the observed real world phenomena. In this chapter we have shown
that emerging flow properties like shock waves and hysteresis can be explained
on the basis of local kinetic features including only migrations, reactions and
collisions.
Thanks to its simplicity, the microscopic model can, to some extent, be trans-
ferred to other domains where similar local interactions are to be expected.
This transfer has been realized for production lines where new mean field
expressions for the work in process and the throughput are derived.
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5.7 Contributions of Chapter 5

• We derive the macroscopic single-lane traffic model of Lighthill, Whitham
and Greenshields which links the car density ρ and the flow of cars J by
the set of equations:

∂tρ(x, t) + ∂xJ(x, t) = 0, (5.78)
J(x, t) = Vmaxρ(x, t)

(
1− ρ(x, t))−D∂xρ(x, t). (5.79)

The derivation shows that the kinetic features leading to this semi-
phenomenological traffic model are besides the migration term a reaction
and a collision mechanism of mass action type.

• The micro-macro scaling passes through the intermediate mesoscopic
regime where the phase-space dynamics are governed by the exactly solv-
able variant of the non-linear Boltzmann equations introduced by Ruijgrok
and Wu: {

(∂t + v1∂x)ρ− = µρ−ρ+ − αρ− + βρ+

(∂t + v2∂x)ρ+ = −µρ−ρ+ + αρ− − βρ+,
(5.80)

where (x, t) ∈ R × R
+, ρ− := ρ−(x, t) and ρ+ := ρ+(x, t) are the dis-

tribution functions of vehicles which migrate with velocities v1 and v2
respectively and where α, β and µ are positive constants governing the
reaction and collision rates. For a specific range of the parameters α, β
and µ, this mesoscopic model shows the signature of hysteresis which is
observable in real traffic systems.





6

On the outflow process of a merge system for
items with non-vanishing spatial extensions

Summary. In this study, a discrete material flow merge system connected to a
downstream station is presented. The arrival process into the merging system is
the superposition of N independent outflow processes of N different workstations
and is approximated by a Poisson process. We show that when the items processed
have finite spatial extensions, the Poisson structure of the arrival process into the
merge is lost. The resulting non-Poisson outflow process from the merging system
is explicitly calculated.

6.1 Introduction

Up to now we treated serial production flows thanks to the analogies with one-
line traffic flows. In actual flow-lines however, complex configurations with
merging, bifurcation or multiplexing of flows are the rule rather than the
exception. The multiplexing of several and usually stochastic production flows
into a single stream of items for example, is a very common situation in
many shop floors [51]. Multiplexing arises typically when highly flexible and
expensive stations are used to perform general tasks including quality control
or cleaning operations (see figures 6.1 and 6.2). Clearly the close study of the
production streams at splitting and merging points of the production network
is mandatory. Here we concentrate on merging flows and their study will be
related to the narrowing of cars passing from multi lane roads to one-lane
roads.
To characterize the flows through serial production lines or lines with more
complex topologies, the original configurations are usually decomposed into
series of production dipoles (two machines separated by a buffer) and the
global stationary performance (e.g. the throughput) are estimated by using
self consistent approximation schemes based on aggregation of dipoles [49, 50].
In parallel with the development of new and more sophisticated production
devices, the growing place taken by the telecommunication networks stimu-
lates, since about thirty years, a strong activity to derive general properties
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quality control/laser writing

Fig. 6.1. Acyclic merging and splitting nodes in a buffered manufacturing network.
For example, high speed quality control and/or laser writing installations (left) gives
rise to both splitting and merging nodes (right).

Carousel Topology

Rework Buffer

Machine Control

Reparation diversion

Fig. 6.2. Cyclic topology in a manufacturing network. For example, carousel topol-
ogy for flexible installations (left) or reparation diversion and rework (right) give
rise to cyclic structures.

for the information flows circulating in complex networks. A large corpus of
literature devoted to the so called queueing network systems is available in
this topic [7, 18, 56, 145]. While the probabilistic description enters naturally
into the queueing network modelling, they do however reduce the circulat-
ing items to immaterial tokens (i.e. points). Tokens with vanishing spatial
extensions can clearly be superposed and/or dispatched without any physi-
cal constraints. This offers the possibility to characterize these abstract flows
by studying superpositions of several parallel point processes. This abstract
point of view might be to simple for the production context. Consider indeed
the multiplexing of several parallel flows of pallets (e.g., fig. 6.1). A consistent
description of the flow dynamics at the merging point must imperatively take
into account the finite spatial extensions of the pallets. The distribution of
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time intervals between successive departures from a marge zone for example,
definitely depends on the physical size of the objects.
This chapter is devoted to the characterization of such a merging flow dynam-
ics in case the inflow process admits the simple Poisson structure. In general,
one would expect that the superposition of several parallel flows produces an
input into the merge system with complex statistical properties and that the
Poisson assumption is rather restrictive. However, in situations where several,
say N , parallel and approximately independent flows with small arrival rates
λi are superposed, the resulting input flow into the merge system is well ap-
proximated by a Poisson stream with a global arrival intensity λ = ΣN

i=1λi,
[6]. We always assume that this situation is realized and hence, we suppose
that a Poisson flow enters into the multiplexing structure.
Knowing the input process, we focus in the following on the outflow process of
the merge system. Now at the shopfloor, the merging operation is generically
performed by a conveyor system which converts the Poisson incoming stream
into an outgoing generally non-Poisson flow. The corruption of the incoming
Poisson structure originates from the fact that both, the size of the items and
the conveyor velocity are finite. Indeed, as the items cannot overlap on the
conveyor, their spatial extension together with the finite velocity of the con-
veyor introduces interactions between the items. As it will be shown in this
chapter, the merging structure acts, roughly speaking, as a non-Markovian
queueing system with service characteristics being directly related to the spa-
tial extension of the incoming parts.
The aim of this Chapter is to study the detailed nature of the resulting effec-
tive queuing system and in particular to determine the statistical properties of
its output flow. The knowledge of the probabilistic properties of the merging
dynamics and in particular its output is strongly relevant for several applica-
tions among which we mention:

a) Capacity of the merging zone. As the merging zone acts merely as a queuing
system, it is mandatory to determine the typical queue length in order
to estimate the capacity of the merge system which avoids too frequent
overflows.

b) Output stream characteristics. The detailed knowledge of the probabilistic
nature of the output process is mandatory as it often will be the arrival
process to a downstream queue. If, on the other hand, the output flow feeds
a finished goods inventory, the knowledge of the outflow behavior may
allow for variability reductions which reduces levels of optimal inventory.
It is indeed established that the variability of the production flows enters
directly into the calculation of the optimal hedging levels [4]. As we will
show, the distribution of the output process and in particular its variability
depends on the size of the circulating items. In fact, the output process
is intermittent and is formed of platoons of items (i.e. random size batch
process). The sizes of the platoons will be characterized in terms of the
spatial size distributions of the incoming items and the conveyor velocity.
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From an interdisciplinary point of view we remark that the understanding
of merging flows of physical objects at bottlenecks is relevant for the mod-
elling of the crowd dynamics of panicking pedestrians. Observed and simulated
current-density relations of pedestrians which jam in escape situations unveil
a “slower-is-faster effect” (see e.g., http://www.panics.org). This means that
for sufficiently high densities, the escape rate (outflow current) decreases when
the individuals augment their speeds (see figure 6.3). As far as we know, no
analytical results concerning the outflow-properties of such crowd dynamics
are known.

Fig. 6.3. Simulation-analysis of pedestrians moving with identical desired speed v0

towards the exit. The figure is taken from the article Simulating dynamical features
of escape panics by D. Helbing et al. in [23]. It shows the irregular outflow due to
clogging.

The driving force behind the “slower is faster” effect is the existing dis-
crepancy between the individual and the collective goals. Minimizing the in-
dividual outflow times does in fact not necessarily maximize the escape rate.
It seams that such effects are implicitly known for a long time to architects
which do build slowing-down obstacles in front of entrances since a while.
Adding obstacles (i.e. slowing down mechanisms) in production processes in
order to increase throughput is much less well known. A worthwhile exception
is a production line of the Germane Infineon Technologies AG [122] where D.
Helbing and D. Fasold managed to improve considerably the efficiency of the
line by “slowing down” a few robots.
The chapter is organized as follows. In section 2 we state the problem of
interest. In section 3 we analytically derive the stationary distribution of the
outflow process and show that it tends to a Poisson process as the extensions
of the items shrink to that of a material point. Based on these analytical
results, several quantities of interest are derived and related to the coefficient
of variation of the items size distribution. They include the number of items
in the merge system, the mean and variance of the number of items in a batch
of the outflow process and the busy period of the merge system. We conclude
the chapter with section 4. The appendix of Chapter 6 contains a comparison
of the analytical results with numerical simulation studies.
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6.2 Problem Formulation

Suppose items arrive from N independent workstations with mean intensities
λ1, ..., λN into a collecting buffer B (i.e. into a merging system) from where
they are transported on a conveyor system to some workstation M . (see Fig.
6.4).

M1

M2

MN
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--. � **/
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Fig. 6.4. Merging of N streams of possibly different items into a buffer B. The con-
veyor system transports the items from the buffer to the machine M with constant
velocity v. The output process is divided in following and leading items.

The superposition of the N streams of items forms the input process to the
buffer and we supposed that it behaves like a Poisson process with intensity
λ =

∑N
i=1 λi. This assumption is very reasonable especially when the individ-

ual intensities λi are small with respect to the outflow capacity of the merging
system. Indeed, Albin [6] showed that the superposition of N independent re-
newal processes having intensity λ/N and entering a service facility having
service rate µ > λ, behaves, for N →∞, like a Poisson process of intensity λ
entering the same service facility. The departure process however, physically
realized by a conveyor system, is Poisson only when the outgoing items do
not interact during the outflow process (i.e. no outflow delay for items leav-
ing the buffer due to other items queuing for exit in the buffer). In case of
no interaction, the distribution of the outflow process coincides with the dis-
tribution of the arrival process. When interactions occur (i.e. queuing at the
buffer exit), the conveyor system produces a stream of items, separated only
by a conveyor dependant minimal headway h. Streams of following items flow
toward M where they are processed further. We now divide items flowing out
of the buffer into two classes:

1) items separated from its predecessor by the minimal headway h called
following items and

2) items separated from its predecessor by headways exceeding h called lead-
ing items.

We address the problem of finding the distribution of following and leading
items after the merging as a function of λ (i.e. the intensity of the arrival
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stream of items into the buffer), the distribution of the possibly random finite
extension (length) of the items L and the constant velocity v of the conveyor
system. For ease of presentation, we suppose that the minimum headway h
on the conveyor system is zero (i.e. h = 0). This assumption can easily be
removed by replacing the length L of an item by a characteristic outflow length
L+ h.
Note that it is the finite spatial extensions of the items together with the finite
velocity v of the conveyor system which blocks the output process during L/v
(i.e. no other item than the outflowing one can leave the buffer during L/v).
This problem is clearly related to the class of counter problems of recording
apparatus when the finite resolving time is taken into account. A typical
example is an α-particle counter which is impeded during a certain interval
of time after a particle is recorded [30]. The direct connection with velocity
traffic models modelling the narrowing of a multi-lane road to a one-lane road
as described by A.J. Koning in [86] is even more relevant.

6.3 Exact analysis of the output process from the buffer

Enumerate the items in the order in which they leave the buffer. This enu-
meration {n} is the index set of a sequence of random variables Sn which we
interpret as the minimum exit time of item n from the buffer. This minimum
exit time of item n from the buffer is easily measured on the shop floor. In-
deed it corresponds to the time needed for the corresponding exit event to
take place. This event starts when item n reaches the conveyor system and
ends at the instant item n is entirely placed onto the conveyor system (see Fig.
6.5). Formally, Sn = Ln/v with Ln being the (possibly random) characteristic
length of item n and v the conveyor speed. The minimum exit times Sn are
assumed to form a sequence of i.i.d. random variables (i.e. independent and
identically distributed random variables) with cumulative distribution func-
tion G.

��
beginning ending

�� v v
(A) (B)

�� Ln

Fig. 6.5. The exit process of item n takes place during a time interval of length
Ln/v. (A) Beginning of the exit event of item n from the buffer to the conveyor
system with constant velocity v. (B) The exit of item n from the buffer is terminated.

Define On as the time instant at which item n starts to leave the buffer
(output process) and suppose for convenience that O0 = 0. Denote by Dn the
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time instant item n starts to leave the buffer if its beginning was not delayed
by the exit process of item n − 1. The crucial observation is that when the
characteristic lengths of all items vanish, the exit process is immediate and
therefore On = Dn. Moreover in this case the output process (On) from the
buffer and the arrival process into the buffer which by assumption is a Poisson
point process with intensity λ have the same distribution (indeed, the output
process equals the arrival process shifted by the deterministic time an item
needs to travel through the buffer). The above observation amounts to saying
that Dn is Poisson with intensity λ and we have similar as in [86] for n ≥ 1
the relation:

On = max
(
Dn, On−1 + Sn−1

)
, (6.1)

that is to say that the nth item starts to flow out of the buffer at time Dn

unless it is delayed by the exit process of item n−1. In the later case, n starts
to leave the buffer at time On−1 + Sn−1. Note that under the First in First
out (FIFO) buffer discipline, which is assumed throughout the chapter, the
ordering of On and Dn are the same (by definition of FIFO, the ordering given
by the exit enumeration {n} equals the ordering of the arrival process). The
later ordering is clearly independent of the characteristic length and coincides
therefore with the ordering given by Dn. The following auxiliary definition is
now meaningful:

Wn = On −Dn ≥ 0, n ≥ 1 (6.2)

which is the time the outflow process of item n is delayed by the exit of
item n− 1. We are now ready to characterize the output process by applying
Theorem 2.1. in [86] which for completeness is repeated here:

Theorem. Let (On)n∈N be a sequence of random variables such that there
exists a Poisson process (Dn)n∈N with intensity λ, and a sequence (Sn)n∈N

of independent random variables with identical distribution function G inde-
pendent of (Dn)n∈N, satisfying Eq. (6.1). If λE(Sn) < 1, where E(Sn) is the
expectation of Sn, the time Yn between the beginnings of the outflow processes
of items n− 1 and n given by

Yn = On −On−1 (6.3)

has an equilibrium distribution as n tends to ∞ with cumulative distribution
function

F (y) =
(
1− e−λ(y−θ)

)
G(y) (6.4)

where

θ =
1
λ

ln
(1− λE(Sn)

E(e−λSn)

)
. (6.5)

The theorem completely characterizes the outflow process and Eqs. (6.4, 6.5)
explicitly unveil the influence of the items size distribution on it. The proof
is based on the observation that the sequence of delays Wn is equivalent to a
queuing process induced by the sequence Sn− (Dn−Dn−1). The distribution
of Wn equals therefore the waiting time distribution W q

n of the nth customer
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of a M/G/1 queue with arrival intensity λ and service times Sn (see e.g.,
Feller [36] p.194, Definition 1 and Example (a)). Here “waiting time” means
the time from the customer arrival to the epoch where his service starts. In
this framework the hypotheses λE(Sn) < 1 reduces to the stability condition
for the queue length not to explode. Rewritten as E(Sn) < 1/λ, the stability
condition tells us that the mean minimum exit time must be smaller than the
mean inter arrival times of the items into the buffer.
In view of the theorem it is now immediate to check that for items with
vanishing characteristic length (i.e. Ln → 0, in probability) the output process
equals Dn and is in particular a Poisson point process. Indeed:

Sn
in Prob.→ 0⇒ G(y)→ 1{y≥0} ⇒ θ → 0⇒ F (y) = 1− e−λy.

Hence, Eq. (6.4) reduces to the cumulative distribution function of an expo-
nentially distributed random variable. In the case of non vanishing character-
istic length (i.e. Ln > 0 ⇔ θ �= 0) Eq. (6.4) clearly shows that the output
process is not a Poisson process.
Note that the value of θ given in (6.5) makes the (stationary) intensity of the
outflow process On equal to the (stationary) intensity of the arrival process.
Indeed,

E(Yn) =
∫ (

1− F (y)
)
dy =

∫ (
1−G(y) +G(y)e−λ(y−θ)

)
dy

= E(Sn) + eλθ

∫
G(y)e−λydy = E(Sn) +

eλθ

λ
E(e−λSn) =

1
λ
. (6.6)

Therefore stationary first order performance measures (i.e. performance mea-
sures involving only first order moments) such as the mean throughput of
the downstream machine M , will not be affected by the non-markovian be-
haviour of the flows due to the spatial extensions of the products. This is not
so for performance measures involving higher order moments. We elucidate
this point by applying standard results available for the M/G/1 queue (with
arrival rate λ and service Sn) to the merging process in the buffer. For exam-
ple, exploiting the Pollaczek-Kinchine formula (see e.g., [102] pp.259) we may
establish under equilibrium conditions:

(1) the waiting time will increase with increasing variability of the items
sizes. The simple relation between the mean delays for exponential exits
Sn and general exit distributions Sn (denoted resp. by E(Wn)[M/M/1] and
E(Wn)[M/G/1]):

E(Wn)[M/G/1] = E(Wn)[M/M/1]
1 + c2v

2
(6.7)

where cv =
√

Var(Sn)/E(Sn) is the coefficient of variation of Sn. Hence delays
will increase with increasing variability of the extensions of the circulating
items.
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(2) the population in the merge system will increase with increasing vari-
ability of the items sizes. The probability generating function V (s) of the
number of items in the buffer at the departure times On + Sn of items is

V (s) =
(1− λE(Sn))(1− s)E(e(λ−λs)Sn)

E(e(λ−λs)Sn)− s . (6.8)

As an illustration suppose for instance that the minimal exit time distribution
Sn is erlangian with parameter k ∈ N (including the markovian case k = 1
and the deterministic case k →∞) we have:

V (s) =
(1− λE(Sn))(1− s)

1− s(1 + (1− s)λE(Sn)
k

)k
, (6.9)

from where it directly follows that the mean number of items in the buffer at
the departure instants is:

Mk := lim
s→1

d
ds
V (s) =

λE(Sn)
1− λE(Sn)

(
1− λE(Sn)

2
(
1− 1

k

))
. (6.10)

Mk is visibly decreasing in k and indicates how a shrinking randomness in the
exit process (variance of Sn decreases to zero as k →∞) can allow for smaller
buffer design.

(3) the outflow delays from the merge system will increase with increasing
variability of items sizes. The Laplace-Stielties Transform (LST) W ∗

q (s) of the
outflow delays is:

W ∗
q (s) =

∫ ∞

0

e−stdWn(t) =
s(1− λE(Sn)

s− λ(1− E(e−sSn)
) . (6.11)

By differentiating k times W ∗
q (s) with respect to s and putting s = 0 we can

have the kth moment of Wq. For k = 1 and k = 2 we find in particular the
mean and the variance which read as:

E(Wq) =
λE(Sn)

2E(Sn)
(
1− λE(Sn)

)(1 + c2v
)
, (6.12)

V ar(Wq) =
λ

12(1− λE(Sn))2
[
4(1− λE(Sn))E(Sn)3 + 3λE(Sn)2

]
(6.13)

from where we in particular see, that the mean delays increase with increas-
ing variability of Sn. The LST permits moreover to unveil the probabilistic
information contained in θ. Indeed, for s = λ we have:

W ∗
q (λ) = E(e−λWn) =

1− λE(Sn)
E(e−λSn

) = eλθ; (6.14)

rewriting Eq. (6.14) in the form:
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E(e−λ(Wn+θ)) = 1 (6.15)

shows that θ is, thanks to the exponential form, a very sensitive measure for
the sample delays.

(4) the busy period of the merge system as a function of items sizes. By
Takàcs integral equation we know also the LST of the busy period T of the
merge system (loosely speaking this is the period of time a connected outflow
stream of items from the buffer is observed on the conveyor system):

T ∗(s) =
∫ ∞

0

e−stdT (t) = E

(
exp

(− (s+ λ− λT ∗(s))Sn

))
. (6.16)

For the first two moments we find:

E(T ) =
E(Sn)

1− λE(Sn)
, (6.17)

E(T 2) =
E(S2

n)
(1− λE(Sn))3

=
E(T )2(c2v + 1)
1− λE(Sn)

. (6.18)

Introducing the coefficient of variation of T by putting cv(T ) =
√

Var(T )/E(T ),
Eq. (6.18) can be rewritten in the form

cv(T )2 =
c2v + λE(Sn)
1− λE(Sn)

. (6.19)

Therefore the variability of the busy period of the merge system increases
with increasing variability of the extensions of the circulating items and is
very sensitive in case the inflow intensity λ is close to 1/E(Sn).

(5) the number of items in a busy period as a function of items sizes. The
probability generating function P (s) for the number of items which flow out
during a busy period N satisfies the following functional equation:

P (s) = s

∫ ∞

0

e−(λ−λP (s))tdG(t) (6.20)

with the explicit expressions for the first two moments:

E(N) =
1

1− λE(Sn)
, (6.21)

E(N2) =
1− λ2

E(Sn)2 + λ2
E(S2

n)
(1− λE(Sn))3

. (6.22)

Introducing the coefficient of variation ofN by putting cv(N) =
√

Var(N)/E(N),
Eq. (6.22) can be rewritten in the form

cv(N)2 =
λE(Sn)

1− λE(Sn)
(
c2vλE(Sn) + 1

)
. (6.23)

Therefore the variability of N increases with increasing variability of the ex-
tensions of the circulating items and is (as the busy period) very sensitive in
case the inflow intensity λ is close to 1/E(Sn).



6.4 Beyond the merge 95

6.4 Beyond the merge

Let us now study more closely the distribution on the conveyor system below
the merge. Recall that an item n finishes its outflow process at On +Sn; then
it is proceeded on the conveyor system with constant speed v towards M . This
process is supposed to be deterministic and independent of the downstream
stage M . In particular, we suppose that M (or the buffer system of M) is
capable to absorb the flow of products without inducing jamming on the
conveyor system. Under this assumptions M will receive batches of workloads
as illustrated in figure 6.4 rather than simple poisson flows of products. To
make this statement more precise we emphasize the following corollary which
is a direct consequence of the above theorem:

Corollary. The time headway between successive items flowing out of a
buffer which itself is filled by a Poisson process of intensity λ is not in general
a Poisson process but may be interpreted as the maximum of a shifted expo-
nential random variable with parameter λ and a minimal time headway Sn.
More precisely: there exists a sequence of mutually independent and exponen-
tially distributed random variables (Tn)n∈N with parameter λ, independent
of (Sn)n∈N such that for all n ≥ 1, Yn = max

(
Tn + θ, Sn

)
almost surely and

where θ is given by Eq. (6.5).
The corollary allows the following simple characterization of leading and fol-
lowing items:

1) Item n is a leading item iff Tn + θ > Sn. In that case Yn = Tn + θ and the
time headway is Tn + θ.

2) Item n is a following item iff Tn + θ ≤ Sn. In that case Yn = Sn and
accordingly, the time headway is Sn.

Using this characterization Eq. (6.4) can be rewritten as:

F (y) = P(max
(
Tn + θ, Sn

) ≤ y)
= P(Tn + θ ≤ y | Tn + θ > Sn) P(Tn + θ > Sn)

+P(Sn ≤ y | Tn + θ ≤ Sn) P(Tn + θ ≤ Sn)
= FL(y)(1− ρ) + FF (y)ρ (6.24)

with the obvious definitions:

FL(y) := P(Tn + θ ≤ y | Tn + θ > Sn)
FF (y) := P(Sn ≤ y | Tn + θ ≤ Sn)
ρ := P(Tn + θ ≤ Sn).

Eq. (6.24) interprets the distribution of outflowing items as a convex combi-
nation of the outflow of following and leading items. The somewhat lengthy
calculations of Appendix A show that the ratio of following items ρ (i.e. the
probability that n is a following item) is simply:

ρ = λE(Sn) (6.25)
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and that the distributions of leading and following items are given by:

FL(y) =

∫ y

0
λe−λtG(t)dt∫∞

0
e−λtdG(t)

, y ≥ 0 (6.26)

FF (y) =
G(y)− ∫ y

0
e−λ(t−θ)dG(t)

λ
∫∞
0
tdG(t)

, y ≥ 0. (6.27)

We define now in analogy to the M/G/1 queue the busy period and the free
period of the merge system. The busy period commences at an instant a
leading item, say item n, starts the outflow process and terminates at On+k +
Sn+k where k ∈ N is the smallest integer such that n+ k + 1 is a leading
item (i.e. it terminates at the instant the last following item connected to
the stream of items induced by n is placed on the conveyor system). The free
period is complementary to the busy period and formally given, using the
same notations as above, by On+k+1 −On+1.
From queueing theory we know that the epochs of arrivals of (lucky) customers
finding the server unoccupied constitute a renewal process and that the free
periods form a sequence of iid random variables (see e.g., Feller [36] p.197).
Hence, the leading items initiate a busy period of the merge system and the
arrival times of leading items form a renewal process. Its equilibrium distribu-
tion T can be found via Takàcs’ integral equation (see e.g., [102] p.278) and
the first two moments are given in Eqs. (6.17,6.18). Moreover, the number of
items flowing out during a busy period follows the distribution given in Eq.
(6.20) and depends visibly on the distribution G of the spatial extensions of
the items. In conclusion, the downstream station M receives batches of work-
load which form a renewal process (called hereafter “batch arrival process”).
The arrival of the first item in the batch at M is a renewal point of the batch
arrival process. The outflow process (leading and following items) however is
not a renewal process in general as Eq. (6.4) indicates (see also the remark in
[86] Eq. (2.13)). The batch sizes depend on the spatial extensions of the items
with the mean and the variance explicitly given in Eqs. (6.21,6.22). In case
of vanishing spatial extensions, every item is a leading item, all batches have
size one and the outflow process (which is now a renewal process) coincides
in distribution with the batch arrival process.

6.5 Concluding remarks

In the setting of discrete materials flow production systems we considered
the merging of N independent streams of items with finite spatial extensions
into a single stream. Also the input process is well approximated by a Poisson
process, the outflow process from the merging system is definitely not Poisson.
In fact, the outflow is a Poisson point process only in the limit case of vanishing
extensions of the items lengths. When the extensions of the processed items
are finite and independently drawn from a random variable L, the resulting
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outflow process may be interpreted as the maximum of a shifted exponential
random variable and a minimal time headway S = L/v where v is the conveyor
speed governing the outflow process.
A distinction between items with minimal time headway (following items) and
items exceeding the minimal headway (leading items) is drawn and their dis-
tributions are explicitly given. Leading items form a renewal process and the
downstream stage receives at the renewal events (and under some hypotheses
concerning the downstream stage) batches of workload with a size distribution
depending on the extensions of the items. The size distribution is equivalent
to the (well known) distribution of the number of served clients during a busy
period of a M/G/1 queueing system.
The results constructively show the limited use of the standard Markov chain
analysis at merging points of production systems when the circulating items
are supposed to have finite spatial extensions. We analyze the non-markovian
outflow process (On) by comparing it with a fictive poissonian outflow process
(Dn). The method is different from the more common perturbation analysis
of Markov processes and might find further impacts on non-markovian pro-
duction flow modelling.

6.6 Contributions of Chapter 6

• Under the hypothesis of Poisson inflow Dn of items n into a merge, the
outflow process On from the merge is defined via the recurrence relation

On = max
(
Dn, On−1 + Ln−1/v

)
, (6.28)

where v is the conveyor speed after the merge and where Ln is the size
distribution of item n. If G denotes the distribution function of the i.i.d.
exit times from the merge of an item (i.e. G(y) = P(Ln ≤ yv) ) and if
the inflow rate λ verifies λE(Ln/v) < 1, then the inter-departure times of
consecutive items On −On−1 have an equilibrium distribution as n tends
to infinity with cumulative distribution function

F (y) =
(
1− e−λ(y−θ)

)
G(y)

where

θ =
1
λ

ln
(1− λE(Ln/v)

E(e−λLn/v)

)
.

• The prove of the above stationary distribution is based on the observation
that the delay time Wn of item n, induced by the outflow process of item
n−1, equals the waiting time distribution of the nthe customer in aM/G/1
queue with arrival intensity λ and service time Ln/v. This offers to derive
quantitative statements which we list here in their qualitative form:
(0)We have E(Yn) = 1

λ . Therefore, stationary performance measures in-
volving only first order moments will not be affected by the delay dy-
namics.
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(1)The waiting time in the buffer increases with increasing variability of
Sn (i.e. with

√
Var(Sn)/E(Sn)).

(2)The mean population in the merge system increases with increasing
variability of Sn.

(3)The mean outflow delays from the merge system increases with increas-
ing variability of Sn.

(4)The variability of the busy period of the merge system increases with
increasing variability of Sn.

(5)The variability of the number of out-flowing items in a busy period
increases with increasing variability of Sn.



Part III

Mesoscopic Modelling of Stochastic Transport





Introductory remarks concerning Part III

Up to here, we considered flows of cars or products and proposed some mod-
elling tools for their dynamical understanding. A very synthetic macroscopic
understanding is thereby delivered by the deterministic flow-density relation
(i.e. the fundamental-diagram in traffic theory) obtained through a multi-
scale analysis. The important point for flow engineering is that such a deter-
ministic macroscopic relation reestablishes – at least approximatively – the
predictability of the complex many-body system.
In this part, we will do a step towards a more general view on flow-density re-
lations of interacting particles and on stochastic transport. This step is mainly
based on the assumption that the irregular motion of the transport processes
under investigation can be reformulated as stochastic processes which are so-
lutions to stochastic differential equations.
The assumption is fundamental and is related to the very existence of a macro-
scopic description of the system. This is indeed based on the possibility to
select a small set of system-variables in such a way, that they obey approxi-
mately an autonomous set of deterministic variables. Their approximate na-
ture appears in the existence of fluctuation terms, by which the eliminated
variables make themselves felt. As a consequence the macroscopic variables are
stochastic functions of time i.e., continuous-time stochastic processes ([143]
p.55-58). According to van Kampens notation, this stochastic description in-
cluding both the deterministic law and the fluctuations about them is coined
mesoscopic modelling [143].
Almost all the continuous-time stochastic process models of applied probabil-
ity consist of some combination of the following:

• diffusion,
• deterministic motion and
• random jumps.

A glance at the literature reveal that the techniques used in connection with
diffusion processes differ clearly from those employed with the other two
classes. As remarked by M.H.A. Davis in [28], an important exception is
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the large class of piecewise-deterministic Markov processes. This processes
– also called random evolutions or Markov jump processes – cover virtu-
ally most non-diffusion applications and can be studied, similarly to diffusion
processes, by means of the corresponding backward evolution operators. We
will encounter both, diffusions and random evolutions leading respectively to
parabolic and hyperbolic types of transport equations.
The stochastic formalism unifying on the mesoscopic level of description both
types of transport are stochastic differential equations. They will appear in
Chapter 7 and 8 in the form:

dXt

dt
= h(Xt, t) + “noise”, (6.31)

where to the deterministic law ẋ = h(x, t) – describing e.g. the evolution of the
center of mass of n particles – is superposed the noise term. The deterministic
part is the law that connects the change of a given system “in the immediate
future” to the present state and arises naturally from the concept of causality.
The choice of the noisy part is less straight forward and there is in fact a
wide variety of stochastic processes which can be used to model stochastic
transport.
In Chapter 7, the noisy term will be the so-called telegraph noise leading to
a random evolution Xt (hyperbolic). The interesting link with Chapter 5 of
part II is that under some hypothesis concerning the space inhomogeneity
of the noise, the flow-density relation resulting from eq. (6.31) does have a
special algebraic structure. To unveil this structure, which goes back to the
so-called Darboux transformation introduced in 1882 (!) by G. Darboux [27],
is the main topic pursued in Chapter 7.
In Chapter 8, the noisy term in eq. (6.31) will be Gaussian White Noise and
accordingly Xt is a diffusion process (parabolic). Here the connection with
part II is mainly through Chapter 4. In Chapter 4 we ask for the optimal
control u∗ minimizing some average cost functional. Eventually, the same
question is addressed in Chapter 7 in the context of diffusion mediated trans-
port processes. The fluctuations in these out-of equilibrium processes are vital
for the occurrence of directed transport and new transport phenomena occur
thanks to the interplay between the deterministic and the noisy part of eq.
(6.31). Loosely speaking, we ask for the optimal force field (i.e. how do I have
to chose the function h in eq. (6.31)) in order to minimize some appropriate
average cost functional. In contrast to Chapter 4, the choice for the average
cost functional is not clear in this case and its physically consistent derivation
must be considered as a result.
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Supersymmetric density-flow relations in
random two-velocities processes

Summary. We discuss a random two-velocities process on the line with space de-
pendent exogenous drift. For this process, the probability density and the associated
”probability current” are shown to be in a supersymmetric relation.

7.1 Introduction

Consider the inhomogeneous diffusion of particles on R described by the
stochastic differential equation (i.e. Langevin equation) in the form:

dXt = g(Xt)dBt (S), (7.1)

where dBt stands for the standard Brownian motion, g(x) > 0 controls the
diffusion process and where S means that the underlying stochastic integral
is interpreted in its Stratonovitch form. The probability density u(x, t) associ-
ated with the stochastic process Eq.(7.1) obeys to the Fokker-Planck equation
[48]:

∂tu(x, t) =
1
2
∂x

[
g(x)∂x[g(x)u(x, t)]

]
. (7.2)

The parabolic nature of Eq.(7.2) implies that probability propagates with an
infinite velocity. This feature may lead to difficulties for the physical interpre-
tation see for instance [59, 60].
To remove this structural difficulty, several alternatives to Eq.(7.1) have been
proposed. Among the simplest possibilities, K.P. Hadeler [59] emphasizes that
a tractable alternative which takes into account inertia and correlations are
random velocity (RV) jump processes. Basically, these models lead to motion
with finite propagation speeds and approaches Brownian motion in a diffusive
limit [67]. The simplest model belonging to the RV-class is based on a two-
velocity process on R given by the Langevin-type equation:

Ẋt = g(Xt)It, (7.3)
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where It is now a dichotomous noise taking values in the set of velocities
{−v, v} and having exponentially distributed holding times with parameters
λ > 0 (from v to −v) and µ > 0 (from −v to v). Langevin equations with
this type of telegraphic noise are thoroughly studied in [72]. It is established
that the probability densities u+ = u+(x, t) (resp. u− = u−(x, t)) of a particle
going to the right (resp. left) and subject to the dynamics Eq.(7.3) obey to
the hyperbolic system of partial differential equations:

∂tu
+ + v∂x[g(x)u+] = −λu+ + µu−, (7.4)

∂tu
− − v∂x[g(x)u−] = +λu+ − µu−. (7.5)

From Eqs. (7.4) and (7.5), we can draw the following elementary remarks:

• The system given by Eqs.(7.4) and (7.5) exhibits a hyperbolic structure.
Accordingly, the propagation of probability occurs at finite speed in con-
trast with the parabolic structure of Eq.(7.2).

• In both Eqs.(7.1) and (7.3), we can, supposing the integrability of x �→
g−1(x), introduce the new variable Y =

∫X
g−1(x) dx and then consider,

in terms of the variable Y , the associated (homogeneous) transport prob-
lem having a constant diffusion coefficient. Accordingly, without explicit
mention, we shall always consider the case where g(x) ≡ 1.

An alternative interpretation of Eqs.(7.4) and (7.5) is given by S. Goldstein
[54] who investigates particles performing independently persistent random
walks on a lattice. A suitable continuum limit of this transport process also
yields Eqs.(7.4) and (7.5) for the particles densities going to the right re-
spectively to the left. The first direct treatment of the telegraph equation in
continuous time as given in eq.(7.3) goes back to M. Kac [82] (see, [66] for a
recent comprehensive overview on the history of random evolutions). As em-
phasized in [59, 60], the persistent random walk provides a better description
of spatial spread in population dynamics than Brownian motion. Defining the
total density P (x, t) and the current Q(x, t) as:

P (x, t) = u+(x, t) + u−(x, t), (7.6)
Q(x, t) = u+(x, t)− u−(x, t), (7.7)

one finds from Eqs.(7.4) and (7.5) the one-dimensional Cattaneo-like system
[60]:

∂tP (x, t) + v∂xQ(x, t) = 0, (7.8)
∂tQ(x, t) + v∂xP (x, t) = [µ− λ]P (x, t)− [λ+ µ]Q(x, t), (7.9)

which describes a macroscopic spatial spread of particles on R. Separating the
fields P (x, t) and Q(x, t) by differentiating Eqs.(7.8) and (7.9) with respect
to t and x, it is immediate to obtain that P (x, t) and Q(x, t) both satisfy the
same dissipative wave equation:
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∂2
t φ(x, t) + (λ+ µ)∂tφ(x, t) = v2∂2

xφ(x, t) + (λ− µ)v
∂

∂x
φ(x, t). (7.10)

When λ = µ, Eq.(7.10) reduces to the standard telegraphist equation [54, 82].
Since these pioneering works, numerous alternative derivations of Eq.(7.10)
have been performed [108, 117]. A recent and comprehensive review devoted
to this topic is delivered by G.H. Weiss [149] who emphasizes several relevant
physical aspects of such transport processes.
While the space inhomogeneity in the Langevin Eqs.(7.1) and (7.3) is intro-
duced via the g(x) term as a noise amplitude modulation (see e.g., [121]), it
is important to emphasize that Eq.(7.3) does also offer the possibility to con-
sider inhomogeneity due to noise spectral modulations via spatial dependence
of the terms λ(x) > 0 and µ(x) > 0. Relatively little attention has so far been
devoted to these spectral modulation cases. Noticeable exceptions being i)
first passage time problems considered in [100] where inhomogeneities of the
spectral type occur naturally and ii) non-Markovian dichotomous processes
considered in [8] where the non-Markovian character of the holding times is
translated into the dependence of the switching rates λ and µ on x. In addi-
tion the relevance of spectral modulation for flagellated bacteria such as E.
coli or more generally for chemotaxis in living systems has also been recently
pointed out in [109].
The aim of the present paper is to show that for a special class of noise spec-
tral inhomogeneities (i.e. when λ(x) + µ(x) = const.) the resulting density
field P (x, t) and its associated current field Q(x, t) are connected via a su-
persymmetric relation similar to the one arising in quantum mechanics. This
exceptional structure offers the possibility to apply powerful algebraic tools
to discuss the relations between the transient behaviors of the fields P (x, t)
and Q(x, t) for these inhomogeneous transport problems.
The presentation is organized as follows: In section 1 we introduce the general
inhomogeneous random velocity process and derive formally the associated
stationary probability measures. In section 2, the supersymmetric structure
connecting the dynamics of P (x, t) and Q(x, t) is explicitly unveiled and a
simple illustration is given.

7.2 Two-velocities process with inhomogeneous
dichotomous noise

We consider as in [72] a stochastic process {Xt}t∈R+ defined on a standard
probability space (Ω,F ,P) with state space (R,B) and whose dynamical evo-
lution is given by the piecewise deterministic evolution:

Ẋt = h(Xt) + g(Xt)It(Xt) (7.11)

where h and g are given functions of class C1(R) with g > 0 such that
x �→ 1/g(x) is integrable and where It(Xt) is a state dependant dichoto-
mous noise with values in {−1,+1} (for simplicity velocity v is now set to
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1). The random holding time of It(x) in state 1 (resp. −1) is governed by a
space inhomogeneous probability density of exponential type with parameters
λ(x) ∈ C1(R) (resp. µ(x) ∈ C1(R)). For all x ∈ R, λ(x) (resp. µ(x)) is strictly
positive and gives the average frequency of switching from {1} to {−1} (resp.
from {−1} to {1}).
Observe that the pair process (Xt, It) is a Markov process. Its transition prob-
ability density is denoted by P(x, i, t|y, j, s), x, y ∈ R, i, j ∈ {−1, 1}, 0 ≤ s < t.
Fix a starting point X0 = x0 and an initial velocity i0 ∈ {−1, 1} and set:

u+(x, t|0) := P(Xt = x, It = +1, t|X0 = x0, I0 = i0, 0),
u−(x, t|0) := P(Xt = x, It = −1, t|X0 = x0, I0 = i0, 0).

It is easy to establish that, exactly as in the case of constant switching rates
(see e.g., [72] p.260), the time evolution of u+(x, t|0) and u−(x, t|0) reads:

∂tu
+(x, t|0) = −∂x

[(
h(x) + g(x)

)
u+(x, t|0)

]
−λ(x)u+(x, t|0) + µ(x)u−(x, t|0), (7.12)

∂tu
−(x, t|0) = −∂x

[(
h(x)− g(x))u−(x, t|0)

]
+λ(x)u+(x, t|0)− µ(x)u−(x, t|0). (7.13)

Integrating out the initial conditions, one directly sees that these equations
still hold for the unconditioned joint probabilities respectively denoted by
u+(x, t) and u−(x, t). We further define a probability density P (x, t) and the
associated probability flow Q(x, t) in the form:

P = P (x, t) := u+(x, t) + u−(x, t), (7.14)
Q = Q(x, t) := u+(x, t)− u−(x, t). (7.15)

Using Eqs.(7.12) and (7.13), the resulting Cattaneo-like system for these new
fields P and Q reads:

∂tP + ∂x

[
h(x)P + g(x)Q

]
= 0, (7.16)

∂tQ+ ∂x

[
g(x)P + h(x)Q

]
= −(λ(x)− µ(x))P − (λ(x) + µ(x))Q.(7.17)

For inhomogeneous rates λ(x) and µ(x), the elimination from Eqs.(7.16) and
(7.17) of one of the fields P or Q to obtain a simple hyperbolic system of the
telegraphist type is not possible in general. However, supposing that g(x)2 >
h(x)2 for all x ∈ R, the stationary solutions Ps(x) and Qs(x) can be formally
obtained in the closed form:

Qs(x) = −h(x)

g(x)
Ps(x) +

C

g(x)
, (7.18)

Ps(x) =
g(x)

g(x)2 − h(x)2
exp

( ∫ x

0

dy
(µ(y) + λ(y))h(y) + (µ(y) − λ(y))g(y)

g(y)2 − h(y)2

)
×
[
N − C

∫ x

0

[
dy

µ(y) + λ(y) + h′(y) − h(y)g′(y)/g(y)

g(y)

× exp
( − ∫ y

0

dz
(µ(z) + λ(z))h(z) + (µ(z) − λ(z))g(z)

g(z)2 − h(z)2
)]]

(7.19)
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with N and C being two constants. When interpreting Ps(x) as a probability
measure (and not as a particle density function), N stands for a normalization
constant which exists whenever we can find a positive K such that:

(µ(x) + λ(x))h(x) < (λ(x)− µ(x))g(x), ∀x > K, (7.20)
(µ(x) + λ(x))h(x) > (λ(x)− µ(x))g(x), ∀x < −K. (7.21)

The Eqs.(7.20) and (7.21) express, for h �= 0, the deterministic stability con-
dition introduced in [72]. For h = 0, which is the case we will focus on, the
following observations can be given:
A finite stationary solution Ps(x) exists only when the switching rates sat-
isfy µ(x) < λ(x) for all sufficiently large x and µ(x) > λ(x) for all sufficiently
large |x|, x < 0. Therefore the noise spectral modulation can generate noise in-
duced spatial structures. Moreover, when the conditions Eqs.(7.20) and (7.21)
are satisfied, the integration constant C vanishes (see [72] p. 266) and hence
Qs(x) ≡ 0.

7.3 Transient behavior and Supersymmetry

The importance of studying transient behaviour of probability densities asso-
ciated with stochastic differential equations is largely commented in far from
equilibrium processes (see for instance the recent works devoted to Brownian
ratchets and stochastic resonance [124]). In particular, diffusion processes are
abundantly described and explicit transient solutions of Fokker-Planck equa-
tions have been derived using, among other approaches, the connection with
supersymmetric quantum mechanics [80]. Explicit transient solutions of the
Chapmann-Kolmogorov equation associated to stochastic differential equa-
tions of the type given in Eq.(7.11) are so far much less discussed. Exceptions
worthwhile mentioning are the cases i) h(x) = 0 with homogenous rates λ and
µ leading to the telegraphist eq.(7.10) and ii) h(x) = −γx with γ a constant
and with homogenous rates λ and µ discussed in [135] and more recently in
[8] and [16]. As pointed out in [135], the basic difficulty when h �= 0 is due to
the lack of self-adjointness in the system of equations (7.12) and (7.13). Here
we consider the case h(x) = 0 together with space inhomogeneous λ(x) and
µ(x) with the restriction λ(x) + µ(x) = β = constant. The resulting class of
Langevin-type equations (indexed by β ∈ R

+) enjoys the following remarkable
properties:

i) The probability densities P (x, t) and the associated probability flows
Q(x, t) obey second order PDE’s with a spatial part similar to Fokker-
Planck equations corresponding to diffusive processes with a drift term.

ii) The probability density P (x, t) and the associated probability flow Q(x, t)
are in a supersymmetric relation.

To exhibit these properties, we introduce the potential V (x) =
∫ x

−∞(λ(y)−
µ(y))dy, and write the Cattaneo-like system Eqs.(7.16) and (7.17) as:
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∂tP + ∂xQ = 0, (7.22)

Q(x, t) +
1
β
∂tQ = − 1

β

(
∂xP + P∂xV

)
. (7.23)

Observe that the above system is identical to the modified Smoluchowski
diffusion equation discussed in [130] which approximately describes the motion
of a particle moving in a potential V (x) subject to Brownian movement at a
constant temperature. This observation leads us to introduce:

a) a drift force W (x) := µ(x)− λ(x) = −∂xV and
b) a constant parameter β := µ(x)+λ(x) which plays the role of an effective

temperature [130].

With these definitions and when separating the fields P and Q by differentiat-
ing Eqs.(7.22) and (7.23) with respect to t and x, one ends with the following
damped wave equations:

∂2
t P + β∂tP = ∂2

xP − ∂x[W (x)P ], (7.24)
∂2

tQ+ β∂tQ = ∂2
xQ−W (x)∂xQ. (7.25)

Note that Eqs.(7.24) and (7.25) are identical when W (x) = constant. More-
over due to the underlying probabilistic interpretation, the conservation of the
positivity of the solutions of Eqs.(7.24) is guaranteed even for inhomogeneous
λ(x) and µ(x). A purely analytical approach to establish the positivity has
been discussed in [70] and is the basis for the associated H-theorem exposed
in [17].
As mentioned in point i) above, the RHS of Eq.(7.24) (resp. Eq. (7.25)) for-
mally coincide with the Fokker Planck forward equation (resp. backward equa-
tion) associated with the diffusion process:

dXt =
1
β
W (Xt)dt+

1√
β
dBt, (7.26)

resp.

dXt = − 1
β
W (Xt)dt+

1√
β
dBt (7.27)

with dBt being standard Brownian motion and ±W (x)/β drift terms.
Let us now unveil the supersymmetric relation between P and Q. We write:

Ψ =
(
ψ−(x, t)
ψ+(x, t)

)
:= exp

[1
2
(
V (x)− V (x0)

)](Q(x, t)
P (x, t)

)
, (7.28)

where x0 ∈ R is a fixed starting point of the particle. With this notations,
Eqs.(7.24) and (7.25) can be written as:(

∂2
t,t + β∂t 0

0 ∂2
t,t + β∂t

)
Ψ = −

(
H− 0
0 H+

)
Ψ, (7.29)
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with
H± := −∂2

x,x +
1
4
W (x)2 ± 1

2
W ′(x) (7.30)

and where W ′(x) stands for the derivation with respect to x. This is pre-
cisely the formalism of supersymmetry (SUSY) applied in quantum mechanics
(QM) (see [80, 21] for recent reviews). In particular H± are the SUSY partner
Hamiltonians acting on L2(R) and the drift terms ±W (x) are the so-called
SUSY partner potentials. Hence the operators H+ resp. H− appear to be
partner Hamiltonians similar to those in Wittens model of SUSY QM [152]
and Eq.(7.29) establishes the mentioned supersymmetric relation between P
and Q.
Recall that the SUSY partner Hamiltonians H± with spectrum Spec(H±) are
related by means of the differential operator A and its adjoint A† by:

H+ = AA†, H− = A†A, (7.31)

where:
A := ∂x +

1
2
W (x), A† = −∂x +

1
2
W (x). (7.32)

It follows that the partner Hamiltonians are positive and essentially isospectral
(i.e. the strictly positive eigenvalues of H− and H+ coincide). Hence, the
transient behavior of the probability density P and the flow Q are identical
and the relaxation to the equilibrium is governed by the value of β and the
smallest non zero eigenvalue of the Hamiltonians. Indeed, for a large class of
time independent potentials W the spectrum of H± is of the form (see e.g.,
[72] Chapt. 6.7):

Spec
(
H±

) \ {0} = {ν1, ..., νn, ...} ∪ [a,∞[ (7.33)

where [a,∞[, a ∈ R∪ {∞} is the continuous (possibly empty) range of eigen-
values of H± and where {ν1, ..., νn, ...} is the countable (possibly empty or
finite) set of eigenvalues of H± satisfying 0 < ν1 ≤ ...νn ≤ ... ≤ a. For given
initial conditions ψ±(x, 0) and ψ±

t (x, 0) the solution to Eqs.(7.29) can formally
be expanded in a series of eigenfunctions as

ψ±(x, t) =
∑

cν(t)φ±ν (x) +
∫ ∞

a

cν(t)φ±ν (x)dν (7.34)

where the summation is taken over all discrete eigenvalues, the integral is
taken over the continuous range of eigenvalues and where the square integrable
eigenfunctions φ±ν are supposed to be normalized. Depending on the sign of
∆ν := β2 − 4ν the cν(t), solving the characteristic equation c′′(t) + βc′(t) +
νc(t) = 0, are given by:

i) cν(t) = exp(−β
2 t)

(
Aν cosh(t

√
∆ν/2) +Bν sinh(t

√
∆ν/2)

)
if ∆ν > 0

ii) cν(t) = exp(−β
2 t)

(
Aν cos(t

√−∆ν/2) +Bν sin(t
√−∆ν/2)

)
if ∆ν < 0

iii) cν(t) = exp(−β
2 t)

(
Aν +Bνt

)
if ∆ν = 0
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and where the Aν ’s and Bν ’s are determined by the initial conditions. If the
smallest non-zero eigenvalue ν1 ∈ Spec

(
H±

)\{0} is less than β2/4 (hence cν1

is not oscillating and of the form given in i)) the relaxation to stationary state
is governed by

(−β+
√
β2 − 4ν1

)
/2. In the contrary (ν1 ≥ β2/4) the approach

to equilibrium is governed by β/2 and oscillates (when the inequality is strict)
with a frequency

√
ν1 − β2/4 .

In the language of SUSY QM, the case where zero is an eigenvalue (i.e., 0 ∈
Spec(H−) ∪ Spec(H+)) is coined ”good SUSY” and when all eigenvalues are
strictly positive SUSY is ”broken”. Recall that for a non vanishing asymptotic
behavior of the drift force W (x), the dichotomy between ”good” and ”broken”
SUSY can be discussed using:

broken SUSY⇔ sign
(

lim
x→∞W (x)

)
= sign

(
lim

x→−∞W (x)
)
.

and
good SUSY⇔ sign

(
lim

x→∞W (x)
) �= sign

(
lim

x→−∞W (x)
)
.

The two previous alternatives allow to draw the following conclusions con-
cerning the existence of stationary solutions:

1a)In the case of good SUSY, with

sign
(

lim
x→∞W (x)

)
= −1 and sign

(
lim

x→−∞W (x)
)

= 1

we have:

0 = inf{ν | ν ∈ Spec(H+)} < inf{ν | ν ∈ Spec(H−)},

and therefore a non-trivial stationary distribution for P (solving A†P = 0)
exists but no (non-trivial) stationary flow Q (i.e. C = 0) does exist. The
solution P equals Ps given by Eq.(7.19) with N being the normalization
constant.

1b)In the case of good SUSY, with

sign
(

lim
x→∞W (x)

)
= 1 and sign

(
lim

x→−∞W (x)
)

= −1

we have:

0 = inf{ν | ν ∈ Spec(H−)} < inf{ν | ν ∈ Spec(H+)},

and therefore a non-trivial stationary distribution for Q (solving AQ = 0)
exists (C �= 0) but no (non-trivial) stationary distribution P does exist.
The solution Q equals Qs given by Eq.(7.18).

2) In the case of broken SUSY, there is no (non-trivial) stationary distribution
neither for P nor for Q.
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Remark. It is worthwhile noting that in the SUSY formalism the ”deter-
ministic stability condition”, expressed in Eqs.(7.20) and (7.21), correspond
exactly to the case 1a) above and expresses the fact that only H+ possesses
a normalizable zero energy ground state eigenfunction.
Example. As an illustration of case 1a, consider the transition rates:

λ(x) =
1
2

+
1
2

tanh(x), µ(x) =
1
2
− 1

2
tanh(x). (7.39)

The physical relevance of this example for inhomogeneous transmission lines
is given in [68]. Note that the interchange of the transition rates yields an
example for case 1b. We have β = 1 and the resulting exogenous drift function
W (x) = − tanh(x) is a special case of the shape invariant, good SUSY, Rosen-
Morse II potential (see e.g., table 4.1 in [21]). Apart from the ground state
eigenvalue 0 ∈ Spec(H+) the spectrum is purely continuous and is given by
ν = 1

4 + ν̃2, ν̃ ≥ 0. We specify the initial conditions by setting P (x, 0) =
Q(x, 0) = δ0(x) (corresponding to x0 = 0 and i0 = +1 in Eqs.(7.12,7.13))
where δ0(x) is the ordinary delta-function and by setting Pt(x, 0) = Qt(x, 0) =
0. The solution for P , calculated in [153] (see also [71] model B) reads:

P (x, t) =
1

cosh(x)

( 1
π

+
e−t/2

2π

∫ ∞

0

[
cos(ν̃t) +

1
2ν̃

sin(ν̃t)
]

×(φ+
−ν̃(x)φ+

ν̃ (0) + φ+
ν̃ (x)φ+

−ν̃(0)
)

dν̃
)

(7.40)

where the φ+
ν̃ are given in terms of the hypergeometric functions:

φ+
ν̃ (x) = exp(iν̃x) cosh(x)2F1

(
− 1/2, 3/2; 1 + iν̃;

1 + tanh(x)
2

)
. (7.41)

The SUSY-structure implies that Q = PsQ with Q solving Eq.(7.24) wherein
W is replaced by −W . Hence, for Q we obtain (see [71] model C):

Q(x, t) =
e−t/2

2π

∫ ∞

0

[
cos(ν̃t) +

1
2ν̃

sin(ν̃t)
]

×(φ−−ν̃(x)φ−ν̃ (0) + φ−ν̃ (x)φ−−ν̃(0)
)

dν̃ (7.42)

where the φ−ν̃ are given in terms of the hypergeometric functions:

φ−ν̃ (x) = exp(iν̃x) cosh(x)2F1

(
1/2, 1/2; 1 + iν̃;

1 + tanh(x)
2

)
. (7.43)

7.4 Concluding remarks

Hyperbolic transport equations such as the telegraph equation, describe pro-
cesses where perturbations in the physical field propagate with finite speed.
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This make them more suitable for the modelling of spacial spread of iner-
tial objects than parabolic equations such as the heat equation, where the
perturbations propagate with infinite speed. This is most easily seen by com-
paring the discrete derivations of the hyperbolic respectively the parabolic
equations starting from the correlated respectively from the non-correlated
random walks. The non-Markovian nature introduced via the inertia (i.e. the
correlation) into the hyperbolic type equations make them potentially more
difficult to handle mathematically than parabolic equations. Hence it is of
interest to search for relations simplifying the hyperbolic transport from a
mathematical and stochastic point of view. Such a relation between the prob-
ability density field and the associated probability flow field has been unveiled
in this Chapter allowing for example to identify the transient behavior of both
fields.

7.5 Contributions of Chapter 7

• Starting with the Langevin-type equation

Ẋt = It, (7.44)

where It is a dichotomous noise taking values in {−1, 1} and having ex-
ponentially distributed holding times with space-inhomogeneous param-
eters λ(x) > 0 (from 1 to −1) and µ(x) > 0 (from −1 to 1) verifying
λ(x) + µ(x) = β = const, we show that the probability density P and the
probability flow Q associated to the random evolution Xt verify(

∂2
t,t + β∂t 0

0 ∂2
t,t + β∂t

)
Ψ = −

(
H− 0
0 H+

)
Ψ, (7.45)

where

H± := −∂2
x,x +

1
4
W (x)2 ± 1

2
W ′(x), W (x) := µ(x)− λ(x) (7.46)

and

Ψ(x, t) := exp
[1
2
( ∫ x

0

W (y)dy
)](Q(x, t)

P (x, t)

)
. (7.47)

• We remark that the above relations eqs. (7.45) and (7.47) are identical to
the ones studied in supersymmetric (SUSY) Quantum Mechanics and draw
the relevant transient and stationary conclusions. As far as transience is
concerned, the SUSY formalism is well adapted to discuss the relaxation
speed to equilibrium via the spectral properties of H±. The relation also
shows that questions related to the existence of stationary solutions can
be handled by a simple asymptotic investigation of the drift force W (x).
The formalism provides us moreover with a whole class of exactly solvable
potentials studied in great detail in SUSY QM.
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Relative Entropy and Efficiency Measure for
diffusion-mediated transport processes

Summary. We propose an efficiency measure for diffusion-mediated transport pro-
cesses including molecular-scale engines such as Brownian motors (BMot) moving in
ratchet potentials acting as mechanical ”rectifiers”. The efficiency measure is based
on the concept of “minimal energy required to complete a task” and is defined via
a class of stochastic optimal control problems. The underlying objective function
depends on both the external force field (i.e. the fluctuation rectifier in the case
of BMot) and the amplitude of the environmental noise. Ultimately, the efficiency
measure can be directly interpreted as the relative entropy between two probability
distributions, namely: the distribution of the particles in presence of the external
rectifying force field and a reference distribution describing the behavior in absence
of the rectifier.

8.1 Introduction

Despite to an already vast available literature, the fact that micro-particles
immersed in a noisy environment can be transported by an ad-hoc rectification
of the fluctuations, continue to attract attention directed towards applications
[123]. The operations of these diffusion-mediated devices which essentially
act as mechanical diodes, require basically i) a fluctuating environment and
ii) a fluctuation rectifier which is driven by an external energy input. This
mechanism is able to generate a net particles current (see figure 8.1 for a
simple realization of a ratchet mechanism) which can be sustained even in the
presence of an opposing force i.e., an external load. It is therefore possible
to extract a net useful work from these devices, a property appealing for
applications in the molecular and microscopic size ranges.

The possibility to extract work legitimates to use the word motors and
also suggests that a suitable efficiency measure, namely the motor efficiency
(ME) should be defined for these devices – this is the goal of the present
contribution.

Yet, the issue of efficiency of molecular motors has been and remains an
important topic of its own (see e.g., [123] Chapt.6.9 and [112, 133]). The main
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Fig. 8.1. The so-called flashing ratchet at work. The figure represents three snap-
shots of the potential and the density of particles and is taken from J.M.R. Parrondos
and S. Dinis recent paper [113] (2004). Initially the potential is on (upper figure)
and all the particles are located around one of the minimum of the potential. Then
the potential is switched off and the particles diffuse freely. Once the potential is
connected again, the particles in the darker region move to the right-hand minimum
whereas those within the small grey region move to the left. Due to the asymmetry
of the potential, the ensemble of particles move, in average, to the right.

difficulty here is that on the microscopic scale the fluctuations do, simulta-
neously, favor and hinder the transport process. The external energy injected
into the system is indeed dissipated via two mechanisms, i) the driving energy
itself responsible for the transport process and ii) the heating of the medium
which hinders the directed transport thanks to the fluctuation-dissipation re-
lation.

In view of the conjugate actions played by the fluctuations, the study of
energetics requires a precise formulation of what the energy output of the
system really is. Here we essentially adopt the point of view of I. Dérenyi et
al. [74] which identifies the energy output with the minimum energy input
Emin

in required to accomplish the same task as the molecular motor. Following
[74], the generalized efficiency η is defined as:

η = Emin
in /Ein, (8.1)

where Ein is the external energy input.
The aim of this chapter is to derive a systematic method, to characterize the
efficiency of the molecular motor. This will be achieved via a stochastic opti-
mal control approach in which the objective function combines the conjugate
actions of transport and dissipation.
Formally, assume that a molecular motor operates according to the Langevin
dynamics:

γdXt = (−V ′(Xt, t)− F )dt+ σ(Xt, t)dBt, (8.2)

which describes a Brownian particle in an overdamped regime (i.e. inertia is
neglected). The stochastic equation is interpreted in the Stratonovich sense
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(see [101] for an account of Itô-Stratonovich modelling in the context of molec-
ular motors) and models the so-called Brownian motor (BMot). Here dBt

stands for 1D standard Brownian motion, σ(x, t) =
√

2γkBT (x, t) controls
the diffusion process with kB being Boltzmann’s constant, T (x, t) the abso-
lute temperature field and γ is the viscous friction coefficient. F is a constant
force modelling an external load and V (x, t) is the “ratchet” potential through
which the fluctuations are “rectified”.
The net effect of the rectifying force given by −V ′(Xt, t) is to drive an initial
probability distribution δx0 at time t = 0 to a final distribution µτ at time
τ > 0. In practice, there is a great freedom in choosing rectifying forces able
to complete this task. Hence the natural idea behind the efficiency concept is
to compare −V ′(x, t) to an optimal drift field u(x, t) which operates a similar
task (namely transporting δx0 to µτ within a time τ) and simultaneously
minimizes the objective functional:

u �→ Jτ (u) =
1
2

Ex0

∫ τ

0

(u(Xu
t , t)

σ(Xu
t , t)

)2dt, (8.3)

where Xu
t is evolving as:

γdXu
t = (u(Xu

t , t)− F )dt+ σ(Xu
t , t)dBt. (8.4)

Note that the objective functional (sometimes called cost functional) depends
on the stochastic dynamics via both the drift u and the diffusion σ fields.
Due to the structure of the cost functional, transport with small diffusion
is very costly – a property which reflects the diffusion-mediated transport
processes where fluctuations directly participate to the driving of particles.
Define now the optimal rectifier u∗(x, t) force field to be the one, able to
achieve the transporting task, namely δx0 �→ µτ while minimizing the global
value function Jτ (u∗) given by Eq. (8.3). With such an optimal rectifier at
hand, the generalized efficiency of a BMot subject to a potential V satisfying
0 < Jτ (V ′) <∞, is now simply defined as:

η(τ) =
Jτ (u∗)
Jτ (V ′)

. (8.5)

The ME η(τ) compares the expected costs incurred by both the optimal tra-
jectories Xu∗

t and the actual motor trajectories Xt and therefore takes fully
into account the probabilistic nature of the underlying process. This is, we be-
lieve, the conceptual advantage of the present approach over the one proposed
in [74] where the minimum energy input is defined via a purely mechanical
view not explicitly invoking the underlying stochastic dynamics.
From a mathematical point of view, the efficiency parameter given by Eq.
(8.5) is well defined. It directly relies on the possibility to assign to given
initial and final distributions (here δx0 and µτ ) a unique Markov process – a
problem first formulated by Schrödinger in [131]. A mathematically rigorous
exposition of this program is given by P. Dai Pra [119]. The optimal control
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interpretation of the stochastic dynamics is thereby realized by the concept of
logarithmic transformations introduced by Jamisson [78] and Flemming [46]
(see also 5.4.). Using this approach, the minimal value Jτ (u∗) – entering the
definition of η(τ) – coincides with the relative entropy K(µτ , µτ ) between the
distributions µτ and µτ with µτ being the probability distribution at time
τ describing the position Xτ of a particle evolving under the control free
dynamics

γdXt = −Fdt+ σ(Xt, t)dBt, X0 = x0 ∈ R. (8.6)

The efficiency of the Brownian motor then reads as

η(τ) = K(µτ , µτ )/Jτ (V ′). (8.7)

This way of writing the ME, which is equivalent to Eq. (8.5), does not explic-
itly use the underlying control and is therefore intrinsic. Its connection with
the control problem relies on the remarkable property that both:

i) the quasi-free evolution, i.e. the evolution in absence of an external
potential given by Eq. (8.6) and
ii) the evolution under the optimal control u∗

produce identical families of “most probable paths” [119]. The concept of
“most probable path” is based on a variational principle applicable for
Langevin equations driven by White Gaussian Noise. The associated tran-
sition probability measures (i.e. the solutions of the relevant Fokker-Planck
equations) can be expressed as the weighted sum over random trajectories
with given initial and final conditions. The relative weights entering into the
summation directly depend upon the drift and the diffusion coefficients and
are expressed by the Onsager-Machlup functional [32]. Intuition suggests that
the more probable a particular trajectory is, the more effectively it will con-
tribute to the global value function. The fact that the most probable path
under u∗ coincides with the most probable path under the quasi-free dynam-
ics physically shows that the optimal control u∗ does in fact interfere as little
as possible with the most probable trajectory of the quasi-free dynamics.
The chapter is organized as follows. In section 2, we specify the hypothesis
of the BM-model, state the optimal control problem and recall its solution.
In section 3 we calculate the efficiency for a generic class of examples and
indicate how to construct optimal rectifiers.

8.2 Problem Formulation

Consider the controlled diffusion process Xu(t) defined on some probability
space (Ω,F ,P) that solves the following Stratonovich stochastic differential
equation:

γdXu
t = (u(Xu

t , t)− F )dt+ σ(Xu
t , t)dBt. (8.8)
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Formally, the above Langevin equation is obtained by replacing in Eq. (8.2)
the force field −V ′(x, t) by a control u(x, t). The efficiency measure to be
constructed relies on the following optimal control problem:

Problem (P ). Find an admissible control u∗(x, t) such that:

(1) Xu∗
0 is distributed according to δx0 and Xu∗

τ according to µτ ,
(2) between all admissible controls satisfying (1), the control u∗ minimizes

the energy cost functional:

u �→ Jτ (u) =
1
2

E

∫ τ

0

(u(Xu
t , t)

σ(Xu
t , t)

)2dt. (8.9)

Remarks.

a) In order for Eq. (8.8) to admit a unique, t-continuous strong solution
Xu(t), σ and u must satisfy the following classical assumptions: σ and u
are linearly bounded in x uniformly for t ∈ [0, τ ] and satisfy a Lipschitz
condition in x for every fixed t ∈ [0, τ ]. These conditions ensure the unique-
ness of Xu

t and are supposed to hold from now on. In the autonomous case
i.e., when both u and σ do not explicitly depend on time, existence and
uniqueness of the solution are already guaranteed for u, σ ∈ C1(R) [72].

b) A control u(Xt(·), t) : Ω → R is admissible if: (i) u satisfies the regularity
conditions stated in a), (ii) u is adapted to the filtration Ft = σ{Xu

t } and
(iii) Jτ (u) < ∞. The potential V entering into Eq. (8.2) is supposed to
be admissible and non trivial i.e. Jτ (V ′) > 0.

c) A similar approach also holds for non-deterministic initial distributions
µ0. The only restriction on µ0 is the existence of a finite second moment,
i.e.

∫
x2µ0(dx) < ∞. In this case, the problem (P) does still have a well

defined solution.
d) The Stratonovich stochastic differential equation (8.8) – commonly en-

countered in physical modelling where the White Gaussian Noise is viewed
as the limit of shortly correlated colored noises – is equivalent to the Itô
stochastic differential equation:

γdXu
t =

[
u(Xu

t , t) − F +
1

2
σ′(Xu

t , t)σ(Xu
t , t)

]
dt + σ(Xu

t , t)dBt (8.10)

which, due to the fact that the noise term is a martingale, is more fre-
quently used in control theory.

For 0 ≤ s < t ≤ τ and y, x ∈ R, denote by q(s, y, t, x) the fundamental
solution to the backward Fokker-Planck equation of the Markov process Xt

defined in Eq. (8.6):

∂

∂t
q(s, y, t, x) = Lq(s, y, t, x), 0 ≤ s < t ≤ τ (8.11)

q(s, y, s, x) = δx,y (8.12)

where the operator L(·) is:
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L(·) = [−F +
1
2
σ′(x, t)σ(x, t)]

∂(·)
∂x

+
1
2
σ(x, t)2

∂2(·)
∂x∂x

. (8.13)

For µ and ν, two probability distributions on the real line, write dν/dµ for
the Radon-Nykodim derivative of ν with respect to µ (i.e. ν is assumed to be
absolutely continuous with respect to µ). Introduce now the relative entropy
(also known as the Kullback “distance” [88]) K(µ, ν) which quantifies the
“discrepancy” between µ and ν:

K(µ, ν) =
∫

R

log
(dµ
dν

)
dµ. (8.14)

The “distance” K(·, ·) is commonly used for fitting and classifying statistical
models, hypothesis testing and risk minimization. In the context of our min-
imization problem (P ), we have the following central result (Theorem 3.1 in
[119]):
Theorem. Suppose that K(µτ , µτ ) <∞ and define h : R× [0, τ ]→ R by

h(x, t) =
∫

R

q(t, x, τ, z)
dµτ

dµτ

(z)dz.

Then

a) u∗(x, t) = σ2(x, t) ∂
∂x log(h(x, t)) solves the control problem (P ) and

b) Jτ (u∗) = K(µτ , µτ ).

This result has three implications of practical relevance for the transport
processes under study, namely:

1) It establishes that the ME η(τ) takes values between zero and one (re-
member that Jτ (u) is positive). Moreover, η(τ) takes its maximum value
1 exactly if the motor realizes its task (δx0 → µτ ) in the energetically
most favorable way.

2) It allows an intrinsic (i.e. control free) definition of the efficiency:

η(τ) = K(µτ , µτ )/Jτ (V ′), (8.15)

which relates the relative entropy between the distribution of the parti-
cle subject to V and the distribution of the quasi-free particle with the
expected cumulated costs Jτ (V ′).

3) It furnishes an explicit formula for u∗ which can be used as a theoretical
guideline to physically realize optimal motors.

8.3 Applications for a class of pulsating ratchets

In the couple of examples which follow, we suppose that the Brownian particle
is released at time t = 0 from X0 = 0 and evolves under the isothermal
dynamics:
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γdXt =
[− V ′(Xt, ϕ(t))− F ]dt+ γ

√
2D0dBt, (8.16)

with D0 = kBT
γ constant. The next example 8.3.1 deals with a pulsating

potential V (x, ϕ(t)) which is space periodic with period L and where ϕ(t) is
either a periodic or a stochastic function of time. We calculate η in the central
limit regime. In 8.3.2 we impose the optimal efficiency η = 1 (i.e. the BMot
operates under optimal conditions) and derive the associated optimal force
field.

8.3.1 The efficiency for a pulsating ratchet in the central limit
regime

Consider a Brownian particle evolving according to the working model for
pulsating ratchets given by Eq. (8.16) (see e.g., [123] Chapt. 3.3 for a classi-
fication scheme for BMot). We make the simplifying assumption that ϕ(t) is
either periodic in t with a unique periodic long-time behavior or a stationary
stochastic process independent of the Brownian motion dBt. This allows, on
a sufficiently coarse grained space-scale (
 L), to approximately view the
evolution as the succession of single, independent and identically distributed
hopping events ([123] p.88). Invoking the central limit theorem, the particle
distribution for large τ approaches a Gaussian measure µτ with density:

f(x, τ) =
1√

4πDeffτ
exp

(− [(aτ − x)2]
4Deffτ

)
, (8.17)

where a = limt→∞Xt/t is the average particle current andDeff = limt→∞
(〈X2

t 〉−
〈Xt〉2

)
/(2t) is the effective diffusion coefficient – both quantities can be mea-

sured in actual applications [146].
According to Eq. (8.6), the quasi-free particle evolves under the dynamics:

Xt = −F
γ
t+

√
2D0Bt. (8.18)

Its distribution µτ at τ is therefore a Gaussian measure with density:

f(x, τ) =
1√

4πD0τ
exp

(− [x− F
γ τ ]

2

4D0τ

)
. (8.19)

The relative entropy of the two Gaussian measures Eqs. (8.17) and (8.19)
reads as:

K(µτ , µτ ) =
∫

R

ln
(
f(x, τ)/f(x, τ)

)
f(x, τ)dx

=
(F/γ − a)2

4D0
τ +{1

2
ln
( D0

Deff

)
+
Deff −D0

2D0

}
. (8.20)
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This expression, valid for large τ , enables to separately appreciate the influ-
ence of the potential V on the particles current and on the rectifying process.
The first term describes the external energy input necessary to maintain the
particles current a. The symmetry in the difference F/γ − a shows that ex-
ceeding or undergoing the quasi-free current F/γ by the amount |F/γ − a|
requires the same energy input. The second contribution – non-negative as
the former one – is related to the part of the energy input required to get
an effective diffusion Deff . In contrast to the current difference F/γ − a, the
diffusion difference D0 −Deff contributes non-symmetrically to the relative
entropy. Setting:

H(Deff ) := ln
( D0

Deff

)
+
Deff −D0

D0
, (8.21)

we indeed have:

H(D0 −∆) > H(D0 +∆), ∆ ∈ (0,D0). (8.22)

Hence, rectifying the diffusion to ensure that Deff = D0−∆ with ∆ ≥ 0 costs
more than to let it increase by the same amount (i.e. Deff = D0 + ∆). In
the limiting case where V “ties down” the effective diffusion to zero, we have
H(0) =∞ and consequently, the relative entropy K(µτ , µτ ) becomes infinite.
On the other hand, the cost functional for the given potential is:

Jτ (V ′) =
1

4γkBT0
E

∫ τ

0

V ′(Xt)2dt

=
τ

4γ2D0
E

1
τ

∫ τ

0

V ′(Xt)2dt, (8.23)

which due to ergodicity behaves asymptotically as:

Jτ (V ′) � τ

4γ2D0
〈V ′2〉, (8.24)

where the ensemble mean 〈V ′2〉 is taken over one space period of V . Using
Eqs. (8.20) and (8.24), we have:

η(τ) =
K(µτ , µτ )
Jτ (V ′)

=
(F − γa)2
〈V ′2〉 +O(

1
τ

) (8.25)

where explicitly the O( 1
τ ) term is given by:

O(
1
τ

) =
1
τ

2γ2Deff

〈V ′2〉
(
1 +

D0

Deff

[
ln
( D0

Deff

)− 1
])
. (8.26)

In the central limit regime, reached for τ →∞, only the part contributing to
the transport process influences the efficiency measure, namely:

η(τ) =
(F − γa)2
〈V ′2〉 , for, τ →∞. (8.27)

Remarks.
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a) The efficiency η(τ) compares an effective driving force, namely the differ-
ence between the load and the drag force with the external force field.

b) The parameters F, γ, V ′,D0, a and Deff entering into Eqs. (8.26) and
(8.27) are experimentally measurable as it is discussed in [146]. Hence,
the efficiency η(τ) can be calculated for actual applications. Note in addi-
tion that the time series of motor positions, measurable with the current
bioengineering technology, allow to solve a reverse problem, namely to
reconstruct the rectifying potential V [81].

c) When ϕ(t) ≡ 0, Eq. (8.16) models a so-called tilted pulsating potential.
In this case the asymptotic analysis can be pushed further. Indeed in this
cases both a andDeff are analytically related to the modelling parameters
entering into Eq. (8.16) through [110]:

a =
1− e−LF/kBT

1
L

∫ L

0
dxI+(x)

, (8.28)

Deff = D0

1
L

∫ L

0
dxI+(x)2I−(x)(

1
L

∫ L

0
dxI+(x)

)3 (8.29)

with

I±(x) =
1
D0

∫ L

0

dy exp(±V (x)∓ V (x∓ y)− yF )/(kBT ). (8.30)

From Eq. (8.28) we directly see that for a vanishing load F → 0, the
efficiency consistently vanishes. Indeed no work can be done in absence of
load.

8.3.2 Conceiving efficient Brownian Motors.

As stated by Derényi et al. in [74], it is only a matter of time before molecular
motors will be currently manufactured. One therefore is potentially interested
in building highly efficient transport motors. Starting from the quasi-free dy-
namics:

dXt = −F
γ

dt+
√

2D0dBt (8.31)

with F, γ and D0 constant, let us construct an optimal force field u∗(x, t)
realizing η(τ) = 1. The fundamental solution to the associated backward
evolution equation Eq. (8.12) is:

q(s, y, t, x) =
1√

4πD0(t − s)
exp

(
− [((x − y) − F

γ
(t − s))2]

2D0(t − s)

)
(8.32)

and µτ is Gaussian with density f(x, τ) =
∫

R
q(0, y, τ, x)δ0(dy) = q(0, 0, τ, x).

The minimum energy control u∗(x, t) is now:



122 8 Efficiency Measure for diffusion-mediated transport processes

u∗(x, t) = 2D0
∂

∂x
ln
(∫

R

q(t, x, τ, z)
f(z, τ)

q(0, 0, τ, z)
dz
)

(8.33)

which after lengthy but elementary calculations yields:

u∗(x, t) =
D0

(
F
γ t− x− τ(a− F

γ )
)

D0(τ − t) +Deffτ
. (8.34)

Setting F
γ = a and Deff = D0 and prolonging u(x, t) periodically in x resp. t

with period L resp. τ to R× R+, we find the optimal drift field:

u∗(x, t) =
at− x
2τ − t , 0 ≤ x ≤ L, 0 ≤ t ≤ τ

u∗(x+ L, t) = u∗(x, t), u∗(x, t+ τ) = u∗(x, t).

As it stands, u∗(x, t) is linear in x and depends explicitly on time. Note
that the space-linearity is expected from the fact that in this case the initial
and final measures are both Gaussian. The time-dependent drift field u∗(x, t)
defines an evolution belonging to the class of travelling ratchets (according
to the classification in [123]) and might serve as a simple guideline in the
attempts to actually realize isothermal molecular motors.

8.4 Concluding remarks

The stochastic optimal control formalism is well suited to define an efficiency
measure for diffusion-mediated transport processes governed by the Langevin
dynamics. The objective function to be minimized combines, in a single func-
tional, the competing effects of the drift and diffusion forces responsible for
the transport process. The explicit construction of the optimal force field that
minimizes the objective functional, offers a rigorous and systematic way to
conceive efficient diffusion-mediated transport devices.

8.5 Contributions of Chapter 8

• The main contribution of this chapter is to connect stochastic control the-
ory and diffusive transport. The connection is realized via a new concept
for the transport efficiency measure which is defined using stochastic op-
timal control techniques.

• The efficiency concept is applied to a class of pulsating ratchets defined
by the diffusive dynamics (see eq. 8.16 for details):

γdXt =
[− V ′(Xt, ϕ(t))− F ]dt+ γ

√
2D0dBt. (8.35)

For this case, the efficiency takes – in the central limit regime – the fol-
lowing form:
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η(τ) =
(F − γa)2
〈V ′2〉 , for τ →∞. (8.36)

In words, the efficiency η(τ) compares the square of the effective driving
force, namely the difference between the load F and the drag force γa with
the average of the squared external force field V ′.

• We show that diffusive transport using the time-dependent force field
u∗(x, t)

u∗(x, t) =
at− x
2τ − t , 0 ≤ x ≤ L, 0 ≤ t ≤ τ

u∗(x+ L, t) = u∗(x, t), u∗(x, t+ τ) = u∗(x, t).

is optimal in the sense of our definition in case the initial and final measures
are both Gaussian.
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Conclusions and perspectives in a word on
complexity

In order to understand things, science has proceeded for a long time by sub-
dividing problems into smaller pieces and by coming to know those pieces
completely. This programme has met with considerable success in many in-
stances, but it fails to account for properties that emerge from the interrelation
between constituents that can be seen in the system as a whole only [132].
Systems with emergent properties are indeed more than the sum of their com-
ponents. In a socio-ecological context such a system is given by the industrial
revolution – our introductory example. A typical report on the history of the
industrial revolution describes the probable interplay between a succession of
events. Each event has a small probability and limited impact in itself. Their
juxtaposition and chaining however lead to the observed global phenomenon.
During the last 30 years, the study of such emergent properties has made
popular the concept of complex systems in various scientific fields [136]. The
concept is based on systemic approaches (also synergetic approaches) which
include multi-scale analysis and the classification of critical phenomena as
bifurcations between phases [137, 61]. A glance at the available research lit-
erature in flow and production engineering shows that this system approach
is less well established than in the Natural Sciences. A worthwhile exception
is the holistic program presented in Warneckes “The Fractal Company” [147]
(1993). The author exposes convincingly the need for new approaches and
directions in performance optimization, staff management and manufacturing
structures. Existing forms of performance optimization have indeed attained
a degree of sophistication, where every supplementary effort offers only di-
minishing marginal utility.
The quest for new approaches in manufacturing modelling has been a leitmotif
during the realization of this work. The fairly new analogies and connections
presented here include:

Chapter 3. A connection between production flows and car traffic via
optimal velocity models.
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Chapter 4. A rigorous calculation of the “optimal velocity” strategy using
optimal stochastic control techniques.
Chapter 5. A multi-scale analysis applied to car traffic and serial pro-
duction lines.
Chapter 6. An analogy between the outflow process of a merge system
and the flow dynamics of cars at the narrowing of a multi-lane road into
a one-lane road.

These analogies and connections permitted us to add to the realm of stochastic
transport the following theoretical contributions:

Chapter 7. We reported on the structural similarity between density and
flow variables in a inhomogeneous hyperbolic transport model which is
also encountered in Quantum Mechanics.
Chapter 8. We established a connection between the efficiency concept
of diffusion mediated transport and stochastic optimal control.

These 8 points do certainly not exhaust all the manifold aspects of production
systems and stochastic transport processes. They in fact show that there is
plenty of research to do with benefic implications for both, the engineering
and the scientific community. To be more concrete, let us mention a few open
problems based on the several chapters which compose this work:

Chapter 3. The analogy with traffic theory led us to the notions of stable
and unstable flow phases in production lines governed by a dimensionless
flow parameter.
– Can we extend these notions to a production line where we fully take

into account the prone to failure character of the machines?
– In principle, the optimal production rate model given by coupled maps

dynamics can be extended to production systems with arbitrary topol-
ogy including feedback loops and multiplexing structures. Can we dis-
tinguish and characterize different flow phases in such an extended
case?

Chapter 4. The optimal control of the two-stage failure prone production
line led us to the notion of four thresholds control.
– Is an ad hoc four-thresholds control for longer tandem lines capable to

outperform other already existing controls?
– If this is the case, can we develop accurate aggregation methods for

longer lines which reduce the production planing problem for the whole
line to the two stage problem and can we still calculate the four-
thresholds for the intermediate buffers?

Chapter 5. The multi-scale analysis is based on a microscopic model
including the kinetic features of migration, reaction and collision.
– Can we do the multi-scale analysis when adding to these features a

blocking mechanism i.e., an extra collision term which prevent the
hopping particles not only from being too close to each other but also
from being too far away from each other?
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Chapter 6. The outflow process of the merge system is based on the FIFO
(first in first out) assumption and does not take into account friction forces
between out-flowing items.
– Can we deduce the stationary output flow from a merge when the FIFO

assumption is relaxed?
– Can we deduce the stationary output flow from a merge when the

interactions not only cause outflow delays (waiting “politely” your turn
to leave at the exit) but frictions (“fighting” for your turn to leave at
the exit)?

Chapter 7. The probability density and the associated probability flow
of a non-diffusive space-inhomogeneous transport process are supersym-
metrically related.
– Can we realize supersymmetric density flow relations for jump diffu-

sions and derive exactly solvable examples?
– Can we use the supersymmetric relation to construct simple ratchet

like systems – based on space-inhomogeneous switching rates – which
deliver prescribed stationary particles flows?

Chapter 8. The proposed efficiency measure for diffusion mediated trans-
port is connected to the notion of (information theoretical) relative entropy
and the optimal transport of probability masses.
– Can we connect the efficiency measure η to the existing efficiency con-

cepts based on the thermodynamical entropy?
– Can we use the formalism of optimal (probability mass) transport to

generalize the efficiency concept to non-diffusive stochastic processes?

It would be embarrassing to give to these questions a general research direc-
tion. However, if I was asked what is my best guess for new promising concepts
to tackle with complex manufacturing systems and transport processes my
answer would certainly include “Multi-agent network systems”. They form a
vivant branch in the realm of interacting many-body systems, where the inter-
acting parts are doted with specific decision-making capacities. This concept
seems to me viable in the long term and will form one of my personal research
interests for the near future.
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Appendix Chapter 4

In the setting of chapter 4, we derive the stationary CDF’s for the four re-
maining possible configurations (2) z < Y < y < Z, (3) Y < z < y < Z, (4)
Y < z < Z < y, and (5) z < Y < Z < y in case v+

1 = v+
2 . The case v+

1 �= v+
2

can be treated analogously.
(2) Fix the configuration z < Y < y < Z in [0,H]. According to eqs.

(4.16-4.18) the control-scheme in table (4.1) has to be replaced by the scheme
in table (10.1). The thresholds ordering z < Y < y < Z affects the C-K

0 < x < z < x < Y < x < y < x < Z < x < H

D1 D2 D3 D4 D5z1 z2 z3 z4 z5 z6

(v+
1 , v−

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v−
1 , v+

2 )

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

�
��

�
�
��

u(x, 1, 1)

u(x, 1, 0)

u(x, 0, 1)

Control

Table 10.1. The control-scheme for fixed thresholds z2 = z, z3 = Y , z4 = y, z5 = Z
with 0 < z < Y < y < Z < H. The differences from the scheme given in table 4.1
are written in bold characters.

equations for x ∈ D3 and the matching constraints at z3 and z4. Therefore,
the stationary CDF is as before except that one has to change the rates in
eqs. (4.60) for k = 3, 4 and in eq. (4.47) for k = 3 according to the rates given
in table (10.1).

(3) Fix the configuration Y < z < y < Z in [0,H]. According to eqs. (4.16-
4.18) the control-scheme in table (4.1) has to be replaced by the scheme in
table (10.2). With respect to the control-scheme 4.1, the thresholds ordering
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0 < x < Y < x < z < x < y < x < Z < x < H

D1 D2 D3 D4 D5z1 z2 z3 z4 z5 z6

(v+
1 , v−

2 ) (v+
1 , v−

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v−
1 , v+

2 )

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

�
��

�
�
��

u(x, 1, 1)

u(x, 1, 0)

u(x, 0, 1)

Control

Table 10.2. The control-scheme for fixed thresholds z2 = Y , z3 = z, z4 = y, z5 = Z
with 0 < Y < z < y < Z < H. The differences from the scheme given in table 4.1
are written in bold characters.

Y < z < y < Z affects the C-K equations for x ∈ Dk k = 2, 3 and the
matching constraints at z2, z3 and z4. Therefore, the stationary CDF is as
before except that one has to introduce the following modifications:

• for x ∈ D2, the solution is given by eqs. (4.42) and (4.44) (with k = 2)
in case Eq. (4.43) is satisfied and by Eqs. (4.42) and (4.45) (with k = 2)
in case it is not. In both cases, the rates are given in table (10.2) and the
constants S2 and K2 are related by Eq. (4.40).

• for x ∈ D3 the solution is given by Eqs. (4.47) and (4.48) in case
λ2µ1v

3
1;(1,0) �= λ1µ2v

3
2;(0,1) and by Eqs. (4.47) and (4.50) in case λ2µ1v

3
1;(1,0) =

λ1µ2v
3
2;(0,1). In both cases, the rates are given in table (10.2).

• matching at z2 = Y . As v+
1 > v−2 , the matching condition at Y is given

by Eq. (4.62) for k = 2 and with the rates according to table (10.2).
• matching at z3 = z. The matching condition at z is given by Eq. (4.54)

for k = 3 and with the rates according to table (10.2). In addition, the
threshold probability z11 is given by Eq. (4.52) with k = 3.

• matching at z4 = y. The matching condition at Y is given by Eq. (4.60)
for k = 4 and with the rates given in table (10.2).

(4) Fix the configuration Y < z < Z < y in [0,H]. According to Eqs. (4.16-
4.18) the control-scheme in table (4.1) has to be replaced by the scheme in
table (10.3). With respect to the control-scheme 4.1, the thresholds ordering
Y < z < Z < y affects the C-K equations for x ∈ Dk k = 2, 3, 4 and the
matching constraints at z2, z3, z4 and z5. Therefore, the stationary CDF is as
before except that one has to introduce the following modifications:

• for x ∈ D2 the solution is given by Eqs. (4.42) and (4.44) (with k = 2)
in case Eq. (4.43) is satisfied and by Eqs. (4.42) and (4.45) (with k = 2)
in case it is not. In both cases, the rates are given in table (10.3) and the
constants S2 and K2 are related by Eq. (4.40).
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0 < x < Y < x < z < x < Z < x < y < x < H

D1 D2 D3 D4 D5z1 z2 z3 z4 z5 z6

(v+
1 , v−

2 ) (v+
1 , v−

2 ) (v+
1 , v+

2 ) (v−
1 , v+

2 ) (v−
1 , v+

2 )

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

�
��

�
�
��

u(x, 1, 1)

u(x, 1, 0)

u(x, 0, 1)

Control

Table 10.3. The control-scheme for fixed thresholds z2 = Y , z3 = z, z4 = Z, z5 = y
with 0 < Y < z < Z < y < H. The differences from the scheme given in table 4.1
are written in bold characters.

• for x ∈ D3 the solution is given by Eqs. (4.47) and (4.48) in case
λ2µ1v

3
1;(1,0) �= λ1µ2v

3
2;(0,1) and by Eqs. (4.47) and (4.50) in case λ2µ1v

3
1;(1,0) =

λ1µ2v
3
2;(0,1). In both cases, the rates are given in table (10.3).

• for x ∈ D4 the solution is given by Eqs. (4.42) and (4.44) (with k = 4)
in case Eq. (4.43) is satisfied and by Eqs. (4.42) and (4.45) (with k = 4)
in case it is not. In both cases, the rates are given in table (10.3) and the
constants S4 and K4 are related by Eq. (4.41).

• matching at z2 = Y . As v+
1 > v−2 , the matching condition at Y is given

by Eq. (4.62) for k = 2 and with the rates according to table (10.3).
• matching at z5 = y. As v−1 < v+

2 , the matching condition at y is given by
Eq. (4.61) for k = 5 and with the rates according to table (10.3).

• matching at z3 = z. The matching condition at z is given by Eq. (4.54)
for k = 3 and with the rates according to table (10.3). In addition, the
threshold probability z11 is given by Eq. (4.52) with k = 3.

• matching at z4 = Z. The matching condition at Z is given by Eq. (4.54)
for k = 4 and with the rates according to table (10.3). In addition, the
threshold probability Z11 is given by Eq. (4.53) with k = 4.

(5) Fix the configuration z < Y < Z < y in [0,H]. According to Eqs.
(4.16-4.18) the control-scheme in table (4.1) has to be replaced by the scheme
in table (10.4). With respect to the control-scheme 4.1, the threshold ordering
z < Y < Z < y affects the C-K equations for x ∈ Dk k = 3, 4 and the
matching constraints at z3, z4 and z5. Therefore, the stationary CDF is as
before except that one has to introduce the following modifications:

• for x ∈ D3 the solution is given by Eqs. (4.47) and (4.48) in case
λ2µ1v

3
1;(1,0) �= λ1µ2v

3
2;(0,1) and by Eqs. (4.47) and (4.50) in case λ2µ1v

3
1;(1,0) =

λ1µ2v
3
2;(0,1). In both cases, the rates are given in table (10.4).

• for x ∈ D4 the solution is given by Eqs. (4.42) and (4.44) (with k = 4)
in case Eq. (4.43) is satisfied and by Eqs. (4.42) and (4.45) (with k = 4)
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0 < x < z < x < Y < x < Z < x < y < x < H

D1 D2 D3 D4 D5z1 z2 z3 z4 z5 z6

(v+
1 , v−

2 ) (v+
1 , v+

2 ) (v+
1 , v+

2 ) (v−
1 , v+

2 ) (v−
1 , v+

2 )

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v+
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v−
2 )︸ ︷︷ ︸

(v−
1 , 0)

(0, v+
2 )︸ ︷︷ ︸

�
��

�
�
��

u(x, 1, 1)

u(x, 1, 0)

u(x, 0, 1)

Control

Table 10.4. The control-scheme for fixed thresholds z2 = z, z3 = Y , z4 = Z, z5 = y
with 0 < z < Y < Z < y < H. The differences from the scheme given in table 4.1
are written in bold characters.

in case it is not. In both cases, the rates are given in table (10.4) and the
constants S4 and K4 are related by Eq. (4.41).

• matching at z3 = Y . The matching condition at Y is given by Eq. (4.60)
for k = 3 and with the rates according to table (10.4).

• matching at z4 = Z. The matching condition at Z is given by Eq. (4.54)
for k = 4 and with the rates according to table (10.4). In addition, the
threshold probability Z11 is given by Eq. (4.53) with k = 4.

• matching at z5 = y. As v−1 < v+
2 , the matching condition at y is given by

Eq. (4.61) for k = 5 and with the rates according to table (10.4).
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Appendix Chapter 6

11.1 Numerical simulation

To appreciate the accuracy of the analytical approach exposed in Chapter 6,
we compared the analytical distributions F , FL and FF with the results of
a discrete event simulation software (here, ”Taylor ED”). We simulated the
outflow events of about 60000 items from a merge buffer in the case where Sn

is i) constant and ii) exponentially distributed. The empirical distributions
presented in the figures below are in excellent agreement with the theoretical
distributions.

cumulated outflow distibution F(y) for Sn=cst.=0.1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

interdeparture times

simulated distr.
theoretical distr.

following and leading items beyond the merging
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interdeparture times
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F

Fig. 11.1. Upper diagram: Empirical and theoretical cumulated distributions for a
constant minimum exit time (Sn = 0.1). Lower diagram: The theoretical cumulated
distribution F splits up into the distributions of the outflow times of leading (FL)
and following (FF) items. As Sn = 0.1, inter-departure times from the merge are
bigger than 0.1.
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cumulated outflow distr. F(y) for S_n exponential with mean 0.1
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FL
FF
F(y)

Fig. 11.2. “Upper” diagram: Empirical and theoretical cumulated distributions for
a exponentially distributed minimum exit time (E(Sn) = 0.1). Lower diagram: The
theoretical cumulated distribution F splits up into the outflow times of leading (FL)
and following (FF) items (E(Sn) = 0.1).
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Appendix Chapter 8

12.1 Conditioned Probabilities

Given the independent random variables S, T : Ω → R defined on some proba-
bility space (Ω,F ,P) such that T is exponentially distributed with parameter
λ and such that the positive random variable S has the given cumulative
distribution G we show that:

ρ := P(T + θ ≤ S) = λE(S), (12.1)
FL(y) := P(T + θ ≤ y | T + θ > S)

=

∫ y

0
λe−λtG(t)dt∫∞

0
e−λtdG(t)

, y ≥ 0, (12.2)

FF (y) := P(S ≤ y | T + θ ≤ S)

=
G(y)− ∫ y

0
e−λ(t−θ)dG(t)

λ
∫∞
0
tdG(t)

, y ≥ 0 (12.3)

where θ is given by Eq. (6.5). Note that θ is negative. Indeed, based on the
well known inequality e−x ≥ 1 − x it is immediate to see that 1 > 1−λE(S)

E(e−λS)

and hence that θ < 0. This result is used twice in the following calculations
where we replace the lower integration boundary max(θ, 0) not.= θ ∨ 0 by 0.

We have:
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P(T + θ ≤ S) =
∫ ∞

0

P(S ≥ x+ θ)λe−λxdx

=
∫ ∞

0

(1−G(x+ θ))λe−λxdx

= 1−
∫ ∞

0

λe−λx
( ∫ x+θ

0

dG(t)
)
dx

= 1−
∫ ∞

0

( ∫ ∞

0

λe−λx1x≥t−θdx
)
dG(t)

= 1−
∫ ∞

0

λ
( ∫ ∞

t−θ

e−λxdx
)
dG(t)

= 1−
∫ ∞

0

e−λ(t−θ)dG(t) (12.4)

where on the first line we used the independence of S and T and on the forth
resp. fifth line Fubinis’ theorem resp. a usual integration by parts formula.

Hence replacing θ into the above formula we find:

ρ = 1− exp
(
ln

1− λE(S)
E(e−λS)

) ∫ ∞

0

e−λtdG(t)

= 1− 1− λE(S)
E(e−λS)

Ee−λS = λE(S)

thereby establishing the first formula Eq. (12.1). Next we have:

FL(y) := P(T + θ ≤ y | T + θ > S)

=
P(S < T + θ ≤ y)

P(T + θ > S)
.

Using Eq. (12.4) we see that the above denominator is given by eλθ
∫∞
0
e−λtdG(t).

For the numerator we have:

P(S < T + θ ≤ y) =
∫ ∞

0

P(S < x+ θ ≤ y)1{x≤y−θ}λe−λxdx

=
∫ y−θ

0

G(x+ θ)λe−λxdx

= eλθ

∫ y

θ∨0

G(t)λe−λtdt

which establishes the second formula Eq. (12.2). Finally,

FF (y) := P(S ≤ y | T + θ ≤ S)

=
P(T + θ ≤ S ≤ y)

P(T + θ ≥ S)
(12.5)

Using Eq. (12.4) we see that the above denominator (which in fact is ρ) can
be written as

∫∞
0
tdG(t). For the numerator we have:
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P(T + θ ≤ S ≤ y) =

∫ ∞

0

P(x + θ ≤ S ≤ y)1{x≤y−θ}λe−λxdx

=

∫ y−θ

0

(G(y) − G(x + θ))λe−λxdx

= G(y)(1 − e−λ(y−θ)) − λ

∫ y−θ

0

G(x + θ)e−λxdx

= G(y)(1 − e−λ(y−θ)) − λ

∫ y

θ∨0

G(u)e−λ(u−θ)du

= G(y)(1 − e−λ(y−θ)) − λeλθ

∫ ∞

0

1u≤y

∫ ∞

0

1t<ue−λudG(t)du

= G(y)(1 − e−λ(y−θ)) − λeλθ

∫ ∞

0

∫ ∞

0

1t<u≤ye−λududG(t)

= G(y)(1 − e−λ(y−θ)) + eλθ

∫ y

0

(
e−λy − e−λt)dG(t)

= G(y)(1 − e−λ(y−θ)) + e−λ(y−θ)G(y) −
∫ y

0

e−λ(t−θ)dG(t)

= G(y) −
∫ y

0

e−λ(t−θ)dG(t)

establishing the third formula Eq. (12.3).
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