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Abstract
This thesis proposes novel ways both to represent the static surfaces, and to parameterize
their deformations. This can be used both by automated algorithms for efficient 3–D shape
reconstruction, and by graphics designers for editing and animation.

Deformable 3–D models can be represented either as traditional explicit surfaces, such as
triangulated meshes, or as implicit surfaces. Explicit surfaces are widely accepted because
they are simple to deform and render, however fitting them involves minimizing a non-
differentiable distance function. By contrast, implicit surfaces allow fitting by minimizing
a differentiable algebraic distance, but they are harder to meaningfully deform and render.
Here we propose a method that combines the strength of both representations to avoid their
drawbacks, and in this way build robust surface representation, called implicit mesh, suit-
able for automated shape recovery from video sequences. This surface representation lets
us automatically detect and exploit silhouette constraints in uncontrolled environments that
may involve occlusions and changing or cluttered backgrounds, which limit the applicabil-
ity of most silhouette based methods.

We advocate the use of Dirichlet Free Form Deformation (DFFD) as generic surface de-
formation technique that can be used to parameterize objects of arbitrary geometry defined
as explicit meshes. It is based on the small set of control points and the generalized inter-
polant. Control points become model parameters and their change causes model’s shape
modification. Using such parameterization the problem dimensionality can be dramatically
reduced, which is desirable property for most optimization algorithms, thus makes DFFD
good tool for automated fitting.

Combining DFFD as a generic parameterization method for explicit surfaces and implicit
meshes as a generic surface representation we obtained a powerfull tool for automated shape
recovery from images. However, we also argue that any other avaliable surface parameteri-
zation can be used.

We demonstrate the applicability of our technique to 3–D reconstruction of the human
upper-body including – face, neck and shoulders, and the human ear, from noisy stereo and
silhouette data. We also reconstruct the shape of a high resolution human faces parametrized
in terms of a Principal Component Analysis model from interest points and automatically
detected silhouettes. Tracking of deformable objects using implicit meshes from silhouettes
and interest points in monocular sequences is shown in following two examples: Modeling
the deformations of a piece of paper represented by an ordinary triangulated mesh; tracking
a person’s shoulders whose deformations are expressed in terms of Dirichlet Free Form
Deformations.
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Résumé
Cette thèse propose de nouveaux outils génériques permettant de représenter des surfaces
statiques et de paramétrer leur déformations. Ces outils peuvent être utilisés à la fois pour
la reconstruction automatique de surfaces, et par un concepteur humain pour l’édition et
l’animation de modèles graphiques.

Un modèle tridimensionnel déformable peut être représenté soit par une surface explicite
classique tel qu’un maillage triangulé, soit par une surface implicite. Le rendu graphique
et la déformation de surfaces explicites sont relativement faciles à réaliser, et celles-ci sont
plus fréquemment utilisées. Néanmoins, les mettre en correspondance avec des données
tel qu’un nuage de points 3D nécessiterait la minimisation d’une fonction de distance non
différentiable. Les surfaces implicites, en revanche, permettent de définir facilement une
distance algèbrique différentiable, même si leur rendu est plus difficile et leurs déformations
moins intuitives. Nous proposons une méthode combinant les points forts de ces deux
représentations en une représentation robuste de surfaces, que nous appelons implicit mesh,
ou maillage implicite. Cette représentation nous permet alors de reconstruire des objets
tri-dimensionnels à partir d’une séquence vidéo. Les informations de silhouette peuvent
être prises en compte facilement pour contraindre cette reconstruction, même dans le cas
d’un environnement non controlé, où l’arrière-plan peut être complexe et des occultations
peuvent survenir.

Nous montrons également que les Dirichlet Free Form Deformation (DFFD) sont un bon
outil pour déformer des objets de géométrie arbitraire définis par un maillage explicite. Les
DFFD sont basées sur un petit ensemble de points de contrôle et une interpolation général-
isée. Les points de contrôle peuvent être utilisés comme paramètres, et leur modification
est répercutée sur la forme du modèle. Grâce à cette paramétrisation, la dimensionalité de
notre problème est considérablement réduit, ce qui facilite l’optimisation, et fait des DFFD
un très bon outil pour la reconstruction automatique.

En utilisant les DFFD pour la paramétrisation de surface explicite, et les implicit meshes
comme représentation de surface générique, nous obtenons un outil puissant pour l’estimation
automatique de formes à partir d’images.

Nous montrons que notre technique nous permet de reconstruire en 3D le haut du corps
d’une personne, en particulier le visage, le cou et les épaules, et aussi la forme d’une oreille,
à partir de données bruitées constituées de points 3D et de silhouettes 2D. Nous pouvons
également reconstruire la forme du visage avec une grande précision, le visage étant mod-
élisé en termes de Composantes en Analyse Principale. Cette reconstruction est faite à
partir de mises en correspondance de points d’intérêt et de silhouettes retrouvées automa-
tiquement. Le suivi d’objets déformables grâce aux implicit meshes, également à partir de
points d’intérêt et de silhouettes dans des séquences monoculaires, est démontré sur deux

5



exemples: La modélisation des déformations d’une feuille de papier représentée par un
maillage triangulé classique, et le suivi des épaules d’une personne, dont les déformations
sont exprimées en termes de DFFD.
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1 Introduction

In the last decades, Computer Graphics specialists have been looking for efficient meth-
ods to represent and manipulate 3–D objects. These models are usually created through
a painstaking manual design process, using Computer Added Design (CAD) tools, or by
reverse engineering of sculptured prototypes using modern scanning technology. Computer
Vision practitioners have tried to offer an alternative to this expensive technology that relies
on relatively cheap, passive sensors, such as ordinary cameras and automated algorithms. In
the Computer Vision literature this is referred to as the Shape from X problem. Many recon-
struction techniques, such as stereo, shape from silhouettes, space carving etc, have been
developed. However, data obtained using those techniques are usually noisy and incomplete
and the results cannot directly be used for further processing without first converting them
to a representation that can be easily manipulated for further processing, such as animation.
Model based approaches therefore appear to be more suitable. They usually involve fitting
generic models of objects of interest to image data such as stereo, silhouettes and interest
points.

Finding an efficient model surface representation that can take advantage of various im-
age data observations is interesting and challenging problem. Deforming such surfaces in
a generic fashion, which does not depend on the surface geometry and complexity, is also
important problem. In this thesis we address a novel surface representation that we call
implicit mesh, which can take advantage of various image data information, such as stereo,
silhouettes and interest points, for efficient automated shape recovery. We also propose to
use Dirichlet Free Form Deformation (DFFD) which provides parameterization of generic
surfaces. It is suitable for both, automated fitting algorithms of Computer Vision and for
free form shape modification required by Computer Graphics designers for surface editing
and animation. The implicit mesh surface representation can be parameterized using DFFD,
or it can be equally parameterized in terms of any other known surface parameterization.
We demonstrated its applicability in attractive Vision problems such as 3D reconstruction
and tracking of deformable objects.

1.1 Method Description and Applications

In the literature we can distinguish two main groups of surface representations that have
been used to represents a priori given generic models of the objects whose shape we want
to recover. These representations are known as explicit and implicit surfaces. Explicit
surface representations are intuitive and easy to manipulate, and they are widely accepted
among graphics designers. However, they are not necessarily ideal for fitting surfaces to po-
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Figure 1.1: Turning the explicit surface into implicit mesh. Top row: Simplified 2D case of
creating the implicit mesh by attaching spherical metaball to each line segment
on the left and by attaching more sophisticated triangular metaball on the right.
Bottom row: Converting real 3D explicit mesh into spherical, shown in the
middle, and triangular implicit mesh, shown on the right. Look at the Chapter 4
for detailed discussion on implicit meshes.

tentially noisy and incomplete data such as 3–D points produced by stereo systems or 2–D
points from image contours, because fitting them involves minimizing a non-differentiable
distance function. Implicit surfaces are well-suited for simulating physically based pro-
cesses [115, 117, 83, 88] and for modeling smooth objects [2, 118, 40]. Because the alge-
braic distance to an implicit surface is differentiable, they do not suffer from the drawbacks
discussed above when it comes to fitting them to 2 or 3–D data [110, 90, 31].

In short, explicit surface representations are well suited for graphics purposes, but less
so for fitting and automated modeling. The reverse can be said for implicit surface repre-
sentations. In this thesis, we propose to combine the strengths of both approaches to avoid
their drawbacks, and in this way build robust surface representation suitable for automated
shape recovery from video sequences. This is done by:

1. transforming explicit surfaces into implicit ones, whose shape closely approximates
that of the original triangulations

2. deforming the implicit and the explicit surfaces in tandem for fitting and rendering
purposes

As shown in Fig. 1.1, to create these implicit meshes, we attach triangular or spherical
metaballs to each facet of the explicit mesh. The implicit mesh can be simply created
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Figure 1.2: Examples of the Dirichlet Free Form Deformation (DFFD) applied to the ob-
jects of different geometry and complexity indicating its generality. In the first
column initial shape of the objects of different geometry are shown, followed
by their deformed versions obtained by appling DFFD to the their initial forms.
The deformation results are generated by Maya plug-in which we implemented
for DFFD.

from any polygonal or parametric surface by wrapping a thin shell around it. This shell
actually is an iso-surface of the potential field function, that represents implicit surface. It
is generated from the underlying explicit surface skeleton. The surface produced in this
way retains the shape and parameterization of the original explicit surface. The shape of
this surface depends only on the underlying explicit surface geometry. As a result, when a
explicit surface deforms, so does the corresponding implicit surface.

To simultaneously control the overall shape of the explicit and implicit meshes, we use
Dirichlet Free Form Deformations [84]. This kind of deformation appears to be generic,
and can be applied to the object of any geometry and topology as shown in Fig. 1.2. In
this way we have a tool for generic free form object modeling and deformation. The DFFD
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approach involves an arbitrary object model whose shape can be changed by moving a
number of control points. Here, DFFD control points can be placed at arbitrary locations—
that is, on the object, inside of it or outside—rather than on a regular lattice, as it is the
case in most Free Form Deformation (FFD) [100] approaches. In particular, some of the
control points can be important feature points that must be controlled in a specific way or
in general can be taken to represent decimated version of the surface we want to deform.
It is generality achieved by using generalized natural neighbor coordinates, also known
as Sibson coordinates[104] and using a generalized interpolant [42]. As a consequence
surface model vertices appear to be a weighted liner combination of local subset of the
control points. Expressing complex model surfaces in terms of much smaller number of
control parameters is a desirable property for optimization algorithms.

Because the shape of the implicit mesh strictly is a function of that of the explicit one,
we could use any other parameterization applied to the explicit mesh. To demonstrate this
we parametrized them both, directly in terms of the 3–D coordinates of their vertices and in
terms of PCA weights [7] that control the shape of the model. This means that the implicit
meshes are independent of the way the initial model is parameterized.

Our contribution is therefore twofold. First, we propose an approach to surface recon-
struction that lets us take an explicit surface model of arbitrary complexity and regularity,
turn it into an implicit mesh, and take advantage of the attractive properties of implicit sur-
faces for fitting purposes. Because the implicit surface closely approximates the explicit
one and they deform together, the reshaped explicit mesh is also available for rendering and
animation. This lets us handle arbitrary triangulations that were not necessarily designed
with fitting in mind. Second, we propose a generic model deformation approach based on
DFFD method. It allows to take any surface model represented as an explicit mesh, create
a control mesh as, either decimated version of the surface model or as a collection of char-
acteristic points of the surface model, and deform it by moving the control points around.
In terms of fitting the automated optimization procedure will provide the optimal control
points positions, such that deformed model confirms to the data. Such model can be further
used for additional editing and animation using DFFD.

We demonstrated power of implicit mesh representation in the task of 3–D shape re-
covery from images of the upper body, parametrized in terms of DFFD. The images are
coming from uncalibrated video sequence, which is registered thanks to the explicit part of
our model. Further, triangular implicit mesh is used for fitting it to stereo and silhouettes
simultaneously. In the top row of Fig. 1.3 we showed two frames of the original sequence
with overlaid silhouettes on the shoulders, together with the textured reconstruction results
shown besides the originals. Note that the reprojection of the reconstructed model correctly
aligns with the silhouettes indicating precision of the shape recovery. We also used high
resolution PCA face models to simultaneously recover the shape and camera motion. In
this case we used corresponding interest points between consecutive frames and automat-
ically detected silhouettes, as explained bellow, to fit our model to them as it is shown in
the second row of Fig. 1.3. Two original images and the reconstructed textured models ob-
tained using both interest points and silhouettes are shown together with the automatically
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detected silhouettes.

In this work we were especially interested in efficient handling of occluding contours,
that appear to be a key clue to recovering the shape of smooth and potentially deformable
surfaces in monocular sequences. However, because extracting them reliably against po-
tentially cluttered or changing backgrounds such as those of the third and bottom row of
Fig. 1.3, is difficult, most of the published work involves engineering the environment to
make this task easier. In this work, we show that representing generic 3-D surfaces as
implicit meshes allows us to automatically detect silhouettes in the images and to take ad-
vantage of occluding contour constraints. Furthermore, it also lets us effectively combine
silhouette information with that provided by interest points that can be tracked from image
to image. This is important because this may mean the difference between the ability or the
inability to exploit silhouettes in uncontrolled real-world situations where occlusions and
difficult backgrounds often degrade the output of even the best edge detection algorithms.

More specifically, the implicit meshes [61], allows us to robustly detect the occluding
contours on the 3-D surface as the solution of an ordinary differential equation [95]. Their
projections can then be used to search for the true image boundaries and deform the 3–
D model so that it projects correctly. This well-formalized approach yields a robust im-
plementation that we demonstrate for monocular tracking of deformable 3–D objects in a
completely automated fashion: We start with a generic 3-D model of the target object, find
its occluding contours, and use them to search for the corresponding contours in the images.
We then use the detected 2-D contours and the constraints they impose, along with some
feature information when available, to deform the model. On this procedure we based our
tracking algorithm that successively fits the deformable objects following nonrigid forms of
the objects.

This approach is effective independently of the specific way the deformations are parametrized.
As shown in Fig.1.3, we validated the tracker in two very different cases: Modeling the de-
formations of a piece of paper represented by an ordinary triangulated mesh; tracking a
person’s shoulders whose deformations are expressed in terms of Dirichlet Free Form De-
formations [84]. The results of paper tracking in case of changing background and partial
occlusions is shown in the bottom row of Fig. 1.3. The examples of deformable shoulders
tracking against the cluttered background are shown in the third row of Fig. 1.3.

We want to highlight that produced surfaces can be easily manipulated and animated
by the Computer Graphics practitioners. Results of deformable surface tracking appear to
be good clue for automatizing animation procedure, which might require days of manual
reshaping. Also, tracking of the structures that have certain physical properties, like a piece
of paper deformation, can help extracting important material properties and forces applied
to produce those deformations. This all can be suitable in entertainment industry, robotics,
structure mechanics of big deformations, or for augmented and virtual reality applications.
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Figure 1.3: Reconstruction and tracking results obtained using implicit mesh formalism.
Top row: 3D reconstruction of the human upper body, parametrized in terms
of DFFD transformation, from uncalibrated video sequence using stereo and
silhouette information. Original images and textured reconstructed models are
shown together with overlaid silhouettes. Model alignment with the silhouettes
and correct texture map indicate quality of the results. Second row: Face recon-
struction using PCA face model. First and third images are two input images
with overlaid silhouettes automatically detected using PCA face model turned
into implicit mesh. The images next to them depict textured reconstruction re-
sult. Note that the camera motion is recovered together with the shape. Third
row: Shoulders and head tracking in a cluttered scene using implicit meshes
highlights its ability to handle occluding contours in a robust way. Bottom row:
Tracking of deformable piece of paper in presence of the changing background
and partial occlusion. Silhouette information is again handled using implicit
meshes.
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1.2 Goals and Contributions

This work introduces novel surface representation called implicit mesh that combines good
properties of both explicit and implicit surface representations for automated shape recov-
ery from images. We focus on an approach to model based surface reconstruction, where
generic surface models of arbitrary geometry and complexity, can be taken and converted
into implicit meshes. The constructed implicit mesh model allows efficient fitting to the
various data sources coming from images, such as stereo, silhouettes and interest points.
We demonstrate all this in the challenging context of monocular video sequences where the
motion of the camera usually is not necessarily known a priori. In this case, existence of
the universal and robust generic models, which can take advantage of as many as possible
image clues simultaneously and in completely automated fashion, is very important. We
also proposed to use a generic approach to automated surface deformation based on DFFD
technique.

Many model based surface reconstruction and tracking approaches are based on purpose
built models. For example, approaches to face and body reconstruction require specially
designed and parametrized face and body models. By contrast, our implicit meshes do not
depend on the way the surface is parametrized. Furthermore, the models we use do not have
to be specially designed either with fitting or with some other specific application in mind.
In practice, we can take any polygonal surface model, even from the web, turn it into our
implicit mesh representation and use it for tracking and shape recovery. This representation
brought us possibility for the automated handling of occluding contours in the hard cases
of cluttered background, partial occlusions and background changes.

To summarize, implicit meshes as a novel surface representation approach have following
advantages:

• Generic surface representation that unifies good properties of both, explicit and
implicit surfaces representations: Easy manipulation, visualization and possibility
of modeling objects with complex geometry are inherited from the explicit surfaces,
and compact representation in terms of just one mathematical function, differentia-
bility and ability of fitting to the noisy data are inherited from the implicit surfaces.

• Generic approach to the surface deformation: Dirichlet Free Form Deformation
(DFFD) technique is used as a generic approach to object deformation that can be
applied to the objects of arbitrary complex geometry and topology.

• Effective use of various data sources, such as stereo, silhouettes and interest
points, separately or simultaneously: The implicit meshes induce the use of differ-
entiable distance function, and its dual representation allows alternative use of either
explicit or implicit part of the surface representation for fitting.

• Effective silhouette detection and their handling in the complex environments:
Presence of the implicit surface allows automatic computation of the occluding con-
tour of the surface model, that is further used for automatic detection of the object’s
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outlines in the images. Presence of the model is a strong clue that produces robust
silhouette handling in complex cluttered scenes, changing backgrounds and partial
occlusions, which definitely makes a difference compared to known methods.

• Independence from the surface parameterization: No matter how the initial ex-
plicit surface is parametrized, the implicit mesh inherits this parameterization, and
allows implicit surface deformation in tandem with the explicit skeleton.

Finally, we tested implicit meshes for surface reconstruction from uncalibrated video se-
quence of the human upper body including – head, neck and shoulders – parametrized in
terms of DFFD transformation. We also reconstructed the human ear, from the pair of
images under the structured light. The PCA face model was used for object shape recon-
struction and camera motion recovery from images. Tracking examples include upper body
motion tracking and tracking of the deformable piece of paper in monocular scenes.

Parts of this work have been published in various international conferences including:
[59, 60, 62, 61, 34, 63]

1.3 Thesis outline

In the reminder of the thesis, we first present related approaches to surface representa-
tion in order to compare them with our surface representation, which is given in Chapter
2. In Chapter 3, we introduce the Dirichlet Free Form Deformation (DFFD) as a generic
approach to surface deformations, and give the examples of their efficient use for object re-
construction from images, shape modification and animation. In Chapter 4, we discuss how
the implicit meshes are constructed and what are their properties. Optimization framework
is presented in Chapter 5, comparing our method to fitting with explicit meshes. Here we
present fitting to stereo and silhouettes appearing in various application where we tested
our method. Automatic silhouette handling using implicit meshes and fitting using interest
points is discussed in Chapter 6. The results of our reconstruction and tracking experiments
are presented in Chapter 7, followed by the conclusion.
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This thesis addresses the problem of building a robust surface model representation that can
be used for efficient 3–D reconstruction from uncalibrated video sequences and tracking
of completely nonrigid 3–D object deformation in monocular scenes. In the following
sections we review the various surface representations. We also discuss state-of- the-art in
using those representations for automated 3–D reconstruction and tracking of deformable
objects.

We will begin with the overview of surface model representations used for 3–D recon-
struction. Then, we will address the problem of tracking deformable object.

2.1 Surface Model Representations for 3D Reconstruction

In the last decades, Computer Science specialists from various domains, have shown broad
interest in representing three dimensional objects using computers. More specifically, Com-
puter Graphics specialists have been looking for efficient methods to represent and manip-
ulate 3–D objects. Advances in computer speed, memory capacity and hardware graphics
acceleration have made model representation and manipulation feasible. These models are
usually created through painstaking manual design process, using Computer Added Design
(CAD) tools, or by reverse engineering of sculptured prototypes using modern scanning
technology.

Even though Computer Vision practitioners sometimes dealt with active sensors, such as
laser scanners, they tend to focus on offering an alternative to this expensive technology
that relies on relatively cheap, passive sensors, such as ordinary cameras. In the Computer
Vision literature this is referred as Shape from X problem. A popular technique of recon-
struction from two or multiple camera views is stereo, where actual depth information is
recovered [43, 54]. Another approach is to use silhouette contours to recover shape from
multiple views [19]. Adding a photo consistency constraint to the shape from silhouettes
results in a the technique called space carving [72], where photo-consistency means that the
valid point in the scene surface appears with the same color over all images that are visible,
under the assumption that the surface is Lambertian. Data obtained using those techniques
are usually noisy and incomplete. In this thesis, in part, we will concentrate simultaneously
on shape recovery from stereo and silhouettes given a priory knowledge of the object we
want to reconstruct.

There are two main directions in 3–D reconstructions. One is direct reconstruction, al-
ready mentioned under the name Shape from X, of the scene without using predefined
models where the structure is retrieved directly from the data (either images or laser scanned
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3–D points). The other is model based reconstruction where we use the a priori knowledge
of the kind of objects we want to reconstruct and then fit such models to the data obtained
either from images or from Shape from X techniques. In Computer Graphics, where re-
searches deal more with the laser scanned data, various techniques of reconstructions from
unorganized data clouds are established. In Computer Vision model based reconstruction is
more spread, because of noisy and incomplete data produced by vision techniques.

For all surface models that we investigate, it is possible to define following criteria rele-
vant for shape recovery:

• Local Control or Deformability – represents ability of surface model to be easily and
intuitively deformed either by the graphics designers or some algorithms that control
the shape of the object

• Easy Visualization – concerns simple and well established rendering algorithms

• Differentiability – relates to the surface differential properties, which is important
when automated optimization procedures are applied for reconstruction and tracking

• Fitting noisy data – highlights the ability of certain representation to fit extremely
noisy and incomplete data such as stereo obtained by vision techniques

• Modeling object of complex geometry – underlines model’s ability to represent ob-
jects of any free form shape

In both Computer Vision and Computer Graphics various surface model representations
are used. We can divide them in two main groups: explicit surfaces, implicit surfaces.
In the following sections we will discuss those surface representations giving their brief
description and overview their use in 3–D model reconstruction and tracking.

2.1.1 Explicit Surface Models

Explicit surface models are models that can be explicitly defined by certain complete math-
ematical forms. In this section we will describe different types of explicit surface models
and overview their use in 3–D reconstruction and modeling.

We will start with polygonal meshes that are the most frequent in both vision and graph-
ics, then continue with parametric surfaces. Further, we will discuss superquadrics as very
popular representation in many vision applications that are actually a special class of para-
metric surfaces. Another parametric representation is based on B-spline basis functions. As
last in a row of parametric surfaces are discussed generalized cylinders. Finally, in recent
years a very popular way of representing surfaces in Computer Graphics community are the
subdivision surfaces.
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2.1.1.1 Polygonal meshes

Definition The most popular way of representing 3–D surfaces is the polygonal mesh.
A polygonal meshM can be defined a pair of ordered lists:

M = 〈V,F〉

V = {ν1, ν2, . . . , νNν} (2.1)

F =
{

φ1, φ2, . . . , φNp

}

where V is a list of Nν three-dimensional vertices νi = [xi, yi, zi]
T and F is a list of poly-

gons or facets each specified as a list of vertex indices φi =
{

νi,1, . . . , νi,nνi

}

. If nνi
= 3

the polygonal mesh is composed of triangles and we call it triangular mesh or triangulation.
This kind of polygonal representations is the most common in the literature. Thanks to the
convexity of the triangle the simpler rendering algorithms and compact memory represen-
tations are established. Further in this work we will refer to triangular polygonal mesh as
mesh.

Properties Given the definition of the mesh we can discuss properties of such represen-
tation that are already mentioned above. Polygonal meshes can be easily deformed either
by directly pulling their vertices or by using some algorithms that displace vertices by de-
forming the volume in which the mesh is enclosed. Enclosing polygonal mesh usually
involves putting control grid, composed of bunch of control points, around the mesh and
moving those control points freely in space. The volume they enclose is warped, which
is applied to the mesh inside of it. This will be discussed more in the following section
where the model parameterization is addressed. Various rendering algorithms are imple-
mented for fast polygonal mesh visualization. In recent years they are even implemented
in hardware to accelerate rendering of huge meshes. Meshes are widely used for fitting
noisy data. However, using them involves attaching observations to the closest facets that
involves search, which is slow in case of high resolution meshes. Also they suffer from the
non-differentiable distance function when it comes to the change of the attachments among
the facets during the optimization. From our practice it turned out that fitting them to sil-
houette data is where they usually fail. Finally, meshes can be used to model objects of any
geometry.

Literature overview Polygonal surface models are used in many contexts like structure
from motion, head modeling, body modeling, modeling of architectural objects and mod-
eling of physically based dynamic objects. Bundle-adjustment is a popular structure from
motion technique to refine, both 3D structure and camera motion, from the image sequence.
Objects/scenes can be represented either as point clouds or geometric models. Even though
a point cloud is a more general representation of the modeled scenes it has to address, yet
generally unsolved, vision problem of establishing reliable feature correspondences across
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the images. However, using the geometric models allows to additionally constrained the
problem and make it a better posed.

One of the pioneer works that uses complex polygonal meshes for fitting and tracking
is work of David Lowe [80]. The complex hand drilling machine is represented as set 3–
D polygonal meshes each of which has six degrees of freedom. The shape of the tool is
adapted to project correctly in the image. Further the moving parts are tracked by minimiz-
ing distance of the model’s occluding contour toward the image edges using Levenberg-
Marquardt [93] optimization algorithm.

Fua [47] used generic animation mask of a human head, represented as simple mesh, to
recover camera motion and rough shape of the face through model-driven bundle adjust-
ment procedure. The underlying model is also used for regularized optimization procedure
so that resulting mesh does not go too far from the generic model. The obtained resulting
model is additionally fitted to the stereo data cloud, computed according to the previously
registered images, in order to improve the quality of the result. Complexity of the optimiza-
tion procedure depends on the models complexity, i.e on the model’s mesh resolution. This
problem is addressed in work of Ilic and Fua [59] where Dirichlet Free Form Deformation
(DFFD) is used mainly to reduce model’s complexity. In [49] besides stereo data cloud the
silhouette information is used to correct the fitting result at the occluding contours. From
this work it turned out that searching for the silhouette facets is hard, depends on the model
resolution and results in an imprecise results.

Shan at al [102] presented a method for model-based bundle adjustment for face model-
ing with the polygonal mesh as a generic face model. Actually, face mode is represented
as a liner combination of the neutral face and number of face metrics representing vectors
that linearly deform a face in a certain way, such as to make head wider, nose bigger etc.
This diminishes number of model parameters to optimize. Here the model is not used as
a regularizer, but it is used directly as a search space that results in an elegant mathemati-
cal formulation. It involves transfer function that actually back projects feature point from
one image frame over the 3D polygonal model to the subsequent image frame. However,
the algorithm requires setting 3–D feature points whose projections are known, which, in
practice, results in a relatively complex processing chain.

Kang et al [69] proposed appearance based structure from motion using a linear combi-
nation of 3–D meshes of scanned human faces as their model space. The model space is
again used as regularization constraint to ensure that the resulting face is still close to the
human face. This model involves huge number of parameters to optimize and lots of con-
straints leading to the ill-posed problem, thus more difficult to achieve convergence. One of
the ways to overcome this problem is proposed by Blanz and Vetter [7], where the statistical
model based on Principal Component Analysis was used to reduce dimensionality. It in-
cludes shape and texture components that have been learned from the database of scanned
human faces. However, demonstrating excellent results, this approach might have prob-
lems when dealing with images containing cast shadows and strong specularities. Another
effective solution is proposed by Dimitrijevic et al [34], where texture component of the
model is replaced by a set of 2–D correspondences in all pairs of consecutive images. This
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is similar to [102], but with the increased automation by eliminating need for 3–D feature
points whose projections are known. Also, the high resolution model leads to the visually
more pleasing results.

Another work on structure from motion problem concerns work of Debevec et al [26]
that recover architectural models using polyhedral geometric primitives. Those primitives
represent basic architectural construction blocks, like cubes, prisms, pyramids etc. They are
parametrized in terms of their dimensions including length of their edges. Once the model
is reconstructed and images are registered, a model based stereo algorithm is run to refine
fine architectural details like windows, friezes and cornices to actually conform to its actual
appearance in a set of photographs.

Besides widely spread face modeling application, systems proposed by Hilton et al [56]
and Lee et al [74] allow for automatic or semi-automatic body modeling from three or four
orthogonal photographs. Both approaches involve complete polygonal body models and
have as a goal achievement of low-cost modeling of individual people for realistic computer
generated imagery in virtual worlds.

Work of De Carlo and Metaxas [27] on face modeling and tracking is based on dynamic
face model represented as a mesh. The optical flow is used to constrain motion of the de-
formable model. Face model is specially designed to respond to the certain set of physically
based deformations. Works of Cohen [20] and Terzopoulos [116] modeled dynamic objects
as the polygonal meshes and used them for 3–D reconstruction. Models are deforming
according to the physical properties of elastic objects.

As it can be seen from the literature overview that polygonal meshes appear as an indis-
pensable models, no matter how they are parametrized and in which context are used.

2.1.1.2 Parametric Surfaces

Parametric surfaces are another type of 3–D surfaces that represent generic surface shapes
as a 2–D manifolds embedded in 3–D given the set of variable parameters. A generic
mathematical formulation of 3–D parametric surface is:

S(u, v) = (X(u, v), Y (u, v), Z(u, v)) (2.2)

where u and v are varying parameters that can be limited to certain interval, e.g a unit
square [0, 1] × [0, 1]. In Computer Vision, most frequently used parametric surfaces, are:
superquadrics, Bézier and B-spline surfaces and generalized cylinders. These surfaces were
used in various contexts such as model reconstruction, object recognition and classification,
segmentation, 3-D modeling and image compression. Equally in Computer Graphics these
representations became parts of standard modeling softwares. Now, we will discuss each
of these representations separately by giving their definition, describing their properties in
favor of automated reconstruction and tracking and finally give the literature overview of
their use by the researchers worldwide.
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The Superquadrics

Definition Superquadrics appear as the generalization of the quadric surfaces first in-
troduced in Computer Graphics by Alan Barr [5]. Quadrics, like ellipsoids, hyperboloid,
paraboloid etc., are also used in Computer Vision, but because of their limited modeling ca-
pacity they were soon replaced by more general superquadrics. The actual extension from
quadrics to superquadrics is made by introducing “bulge factors” ε1 and ε2 to which various
terms are raised. The fact that superquadrics appear in parametric and implicit mathemat-
ical form made them suitable for both, efficient and easy rendering for graphics purposes,
and automated model recovery from images, for vision purposes. The interested reader can
find the excellent book of Ales Jaklic et al [65], on superquadrics and their use in computer
vision. The general parametric and implicit mathematical formulation for the superellip-
soid, centered at the origin and with the axes aligned with the axis of coordinate system, are
given respectively by:

Q(u, v) =





a1 cosε1 u cosε2 v
a2 cosε1 u sinε2 v

a3 sinε1 u



 ,
−π/2 ≤ u ≤ π/2
−π ≤ v ≤ π

(2.3)

Q(x, y, z) =

(

(

x

a1

)
2

ε2

+

(

y

a2

)
2

ε2

)

ε2
ε1

+

(

z

a3

)
2

ε1

− 1 (2.4)

Parameters a1, a2 and a3 are scaling factors along the three coordinate axes. ε1 and ε2 are
exponents of the two original superellipses whose spherical product actually led to Eq. 2.3.
ε2 determines the shape of the superellipsoid cross section parallel to the xy-plane, while
ε1determines the shape of the superelipsoid’s cross section in a plane perpendicular to the
xy-plane and containing z axis. Note that when the exponential coefficients are ε1 = ε2 = 2
we obtain a special case where the superquadric is transformed into quadric. In this case
we will obtain an ellipsoid.

Properties As already mentioned superquadrics are very easy to render. Thanks to their
parametric form it is straightforward to sample them and convert them into the polygonal
meshes that are easy to render. On the other hand, because of their implicit formulation,
superquadrics are suitable for model recovery from noisy range data, since the distance
function to minimize can be expressed as simple differentiable algebraic distance function
of 3–D observation points to the surface. Beside simple algebraic distance it is possible,
depending on the application, to use different distance metric as studied by White and Ferrie
in [122]. Also, superquadrics can be fitted to 2–D data such as silhouette edges. They are
good at capturing global coarse shape of the 3–D objects. Introducing global deformations,
such as tapering, twisting and bending it is possible to increase the expressive power of
superquadrics, but they are still limited to the global coarse shapes as opposed to the local
details. This can be remedied by adding local degrees of freedom. However, in that case
we end up with a large number of degrees of freedom that simply over-parameterize the
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Figure 2.1: Superquadric of different shapes: (a) superellipsoid (b) superhyperboloid of
one, and (c) two sheets and (d) supertoroid. The figure is courtesy of [65].

model. Recovering simple structures becomes hard in this case. Finally, superquadrics can
be efficiently used to model objects of limited complexity. In recent years, objects like
articulated structures of human body and human hand have been successfully represented
using those primitives.

Literature Overview After introducing superquadrics in Computer Graphics by A. Barr [5],
Alex Pentland brought them to the Computer Vision community [89]. He proposed, similar
to A. Barr, to use superquadrics models in combination with global deformations like ta-
pering, bending and twisting, for describing a scene structure which can be recovered from
images. Further, researchers like Gupta and Bajcsy [51], Solina and Bajcsy [106], Raja
and Jain [94] addressed problem of shape recovery from pre-segmented range data. On the
other hand Pentland [86], Leonardis et al. [76] tried to solve 3–D segmentation problem
together with shape recovery of simple objects in the scene. Other researcher, like Sclaroff
and Pentland [99], Metaxas and Terzopoulos [83], and DeCarlo and Metaxas [28], used
superquadrics for dynamic, physically based simulations and shape recovery. Recently,
superquadrics and quadrics became indispensable part of almost every articulated model,
such as human body and hand. We will mention works of D. Gavrila et al. [50] for ar-
ticulated human motion recovery in multiple camera environment, then tracking of human
body in monocular case by Sminchisescu and B. Triggs [105]. CAD system for garment
industry (Jojic and Huang 2000 [67]) recovered shape of human body parts, represented by
superquadrics enhanced by local deformation, from 2–D images and stereo, added by struc-
ture light. Also, hand model made of superquadrics for tracking was proposed by Stenger
et al. [107].
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Smooth B-spline Surfaces

Definition Spline curve P (t) is piecewise polynomial defined on a knot vector T =
[t0, t1, t2, . . .]. Elements of the knot vector are values of the curve parameter t where the
change of the polynomials occur, i.e. where the polynomials join together making a piece-
wise polynomial. A B-spline curve P (t) of order m, with the knot vector T and L + 1
control points Pk, k = 0, . . . , L is given by:

P (t) =
L
∑

k=0

PkNk,m(t) (2.5)

where Pk are control points and Nk,m(t) are B-spline basis functions of degree m − 1,
that are given by the recursive definition:

Nk,1(t) =

{

1 , if tk < t ≤ tk+1

0 , otherwise
(2.6)

Nk,m(t) =

(

t− tk
tk+m−1 − tk

)

Nk,m−1(t) +

(

tk+m − t

tk+m − tk+1

)

Nk+1,m−1(t)

To illustrate this we show in Fig. 2.2(b) an example of B-spline curve based on eight
control points and cubic (m = 4) B-spline blending functions shown in Fig. 2.2(a). The
knot vector T = (t0, t1, ..., tL+m) is created with multiple knots at the beginning(t0 =
t1 = ... = tm−1 = 0), and the end(tL+1 = tL+2 = .. = tL+m = 0) so that first and
last control points are interpolated, i.e. curve starts from the first control point and ends at
the last control point. Knots tm, . . . , tL increase in increments of 1, from 1 to the value of
L−m + 1. Such knot vector is called standard knot vector.

From above given definition of the B-spline curve we can easily define B-spline surface
as a tensor product of two B-spline curves, given like:

P (u, v) =

M
∑

i=0

L
∑

k=0

Pi,kNi,m(u)Nk,n(v) (2.7)

where Pi,k make a control polygon, while Ni,m(u) and Nk,n(v) are B-spline basis func-
tion (possibly of different orders m and n). An example of one such B-spline surface is
shown in Fig. 2.2(c). To model complex objects using one B-spline patch will lead to the
creation of extremely complex knot vector that became impractical to handle. For that rea-
son complex geometric objects are created by stitching B-spline patches together, similar
to one depicted in Fig. 2.2(d), taking care on surface continuity at the stitches.

A very popular generalization of B-spline surfaces are NURBS (non-uniform B-spline
surfaces) whose principal advantage over the B-spline surfaces is that they can model ex-
actly quadric surfaces and that they are invariant to the perspective projection. A NURBS
surface can be in general defined as:
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Figure 2.2: B-spline curve: (a) Cubic B-spline basis functions. (b) B-spline curve with eight
control points where the first and the last are interpolated. (c) B-spline surface
(d) Stitching continuously two B-spline patches. The figure is taken from [55].

P (u, v) =

∑M
i=0

∑L
k=0 wi,kPi,kNi,m(u)Nk,n(v)

∑M
i=0

∑L
k=0 wi,kNi,m(u)Nk,n(v)

where wi,kare user defined weights, while the other elements are the same as for B-spline
surfaces. Actually, setting all weights to one, the B-spline surface definition is obtained.

Properties As all parametric surfaces, smooth B-spline surfaces are easy to visualize.
Smooth B-spline or NURBS surfaces demonstrate great local control of the surface shape.
This is because of limited support of B-spline basis functions on the knot vector. Generally
speaking, the overall flexibility of the surface depends on the definition of the knot vector.
In theory, a very complex knot vector can be created so that B-spline surface can model
any kind of shape. However, in practice it is quite difficult to design such knot vector and,
for modeling objects of complex geometry, the B-spline surface patches network have to
be created. Each surface patch is a Cm−1 differentiable, where m is order of B-spline
piecewise basis function. In case of joining surface patches, the continuity at the joints has
to be preserved. Surface continuity can be simply achieved by duplicating control points
at the joints as it is shown in Fig. 2.2(d). However, such surfaces have only geometric
G1 continuity, that is sufficient for most design applications. Achieving parametric or C n

continuity is not trivial and requires more sophisticated computation. Parametric continuity
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is important in automated reconstruction tasks where optimization algorithms require those
derivatives to be provided. Also, for modeling objects of arbitrary complex geometry, one
will need a model with lots of surface patches. This means many control points, i.e. many
parameters to optimize. If fitted to noisy data, as here we are interested in, to preserve
continuity among patches sophisticated constrained optimization schemas are required.

Let us look in more details the problem of fitting B-spline based surfaces. We want to re-
trieve optimal position of the control points which compose a state vector S = [Pi,k]

T , i =
0,M, j = 0, L, by minimizing distance between B-spline surface and observation points
obsi. The objective function has the following form :

min
S

n
∑

i=1

‖P (ui, vi,S)− obsi‖
2 (2.8)

Note that for each observation obsi point we have to know its position in parameter
space (ui, vi). This is not a trivial problem and it is called parameterization of the sample
(observation) points. If the samples can be organized to make a grid then exist technique for
uniform parameterization of the sample points [81]. In practice sample points are usually
noisy and unorganized. Ma and Kruth [81] proposed a method that projects sample points
on the rough approximation of the surface to be fitted. The values of the base surfaces’
local parameters of the projected samples are then used as the parameter values (ui, vi) in
the fitting process. This can be iterated using the fitted surface as the base surface in the next
iteration. Nice book on fitting spline curves and surfaces is written by Paul Dierckx [33].

Literature Overview There has been a long history of using B-spline parametric sur-
faces for automatic object reconstruction from unorganized 3–D data. Kind of data used for
shape recovery range from laser scan and range images to occluding contours. Fitting those
kind of surface representations simultaneously to the stereo and occluding contours we did
not meet in the literature.

We will start by citing work of Zhao et al. [130] where they used bicubic regularized
B-spline patches for global reconstruction of the observed surface from its occluding con-
tours where the camera motion is known. They introduced direct regularization on the 3–D
surface to be reconstructed instead of smoothing the contours in the 2–D images. This is
based on regularized bicubic B-splines. Also, they proposed to globally recover surface
shape from small local patches. They fit patches separately and then stitch them smoothly
together. Han and Medioni [53] proposed to recover general free-form surfaces from sparse
range images using triangular B-splines defined over the meshes of arbitrary topology. The
overall surface, they use, is C1with preserved discontinuity at edges and junctions, mean-
ing that surface smoothness can be changed on the places where data show presence of
sharp edges or junctions. This is important because input data are pre-segmented into three
dense potential fields: the surfaces, edges and junctions using global voting method of the
same authors. Using triangular B-splines seems to offer generic way of coupling triangula-
tions with smooth surface representation. In this case each B-spline patch is defined on the
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domain of one facet, and is controlled with more control points then the three vertices of tri-
angle. To stitch all patches together control points along the stitches are usually duplicated
additionally increasing total number of control points. This may be impractical in case of
complex and high resolution meshes where burst in model parameters will overshot number
of mesh vertices. Also stays problem of maintaining continuity using strong regularization.
Sullivan and Ponce [109] used also triangular B-splines for shape recovery from several
registered photographs. The main source of information, they used, are the occluding con-
tours. Their splines are created from the arbitrary triangulation with three spline patches
per mesh facet. This additionally increases number of parameters to optimize.

Methods presented in [38, 57] are used to reconstruct surfaces from relatively clean laser-
scanner data. They are not based on the predefined models, but they automatically retrieve
structure from unorganized sets of data. However, when dealing with very noisy and in-
complete data such as the stereo data that we intend to use, they would fail. They require
initial surface polyginalization that is necessary for initial creation of the B-spline patch net-
work, that is rather hard to retrieve from noisy data. A generalization of this work is done
by Stoddart and Baker [108] where they used generalized bicubic B-spline surface. Their
method is known as “slime” because it can fit arbitrary topology surfaces with locally adap-
tive meshing. The algorithm has low computational complexity and can adaptively generate
control points of variable density in order to describe surfaces that are very detailed in some
places and very smooth in some others. However, the slime method is designed to work
well with optimal data sets where there is almost no noise and there is no gaps in the data.
Initially it retries structure from the data using volumetric field function and the marching
cube algorithm that generated triangular mesh. This mesh is further adapted by proposed
seeding algorithm that produces initial control mesh.

Besides usage of B-spline patch networks for surface reconstruction, there have been ef-
forts to use a single surface patch for shape recovery. Shen and Spann [103] addressed this
problem by using bicubic B-spline surface. They actually used strategy of converting the
surface estimation into curve estimation. In their experiments object surface is a closed sur-
face topological to a sphere. There are several hierarchical levels of surface representation.
Fitting is done from the coarse to the dense one, each time comparing change in parameters
between representations. When movement of control points between consecutive hierar-
chical levels is small enough the result is obtained. Sengupta et al. estimate shape from a
given set of depth maps computed from frame pairs in a video sequence. They use a bicu-
bic B-spline surface with unknown number of knots. The optimization procedure recovers
minimal number of spline basis functions that best fit given data.

2.1.1.3 Generalized Cylinders

Definition A generalized cylinder (hereafter GC) is a solid defined by its axis, cross-
section curve and scaling function. They are flexible, special class of parametric shapes
capable of modeling many real-world objects. We begin our discussion of GCs with its
formal definition:
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Definition 2.1.1. The generalized cylinder is the solid generated by a planar cross-section
curve as it is moved and deformed along an asis.

This definition is quite general and, in practice, there have not been algorithms for shape
recovery of general class of CG. Straight homogeneous generalized cylinders (hereafter
SHGC) are a strict subclass of GCs and are defined as follows:

Definition 2.1.2. An SHGC is a GC with the following restrictions:

1. the axis is straight;

2. the cross-section curve is a simple, smooth C 2 curve orthogonal to the axis;

3. the cross-section are deformed only by scaling;

4. the scaling factor can be parametrized as a C 2 function of position along the axis.

If we associate to the axis of SHGC an orthogonal coordinate system (O, i, j,k) , where
O is a point on the axis, and (i, j) is a vector basis of the reference cross-section’s plane.
The swept surface of a SHGC can be represented in the associated coordinate system by:

S(z, θ) = OP(z, θ) = r(z)ρ(θ)(cos θi + sinθj) + zk, (z, θ) ∈ [a, b]× [0, 2π] (2.9)

The function ρ(θ) define the reference cross-section, while the function r(z) defines
scaling sweeping rule of the SHGC. For a constant value of parameter θ the curves on
SHCG are called meridians, while for constant z they are called parallels.

Properties GCs and its special subclasses, like SHGCs and surfaces of revolution, are
strictly-defined parametric surfaces. In theory, GCs can model a large variety of objects, but
in practice it has never been used in this generic form. For shape recovery either SHGC or
surfaces of revolution were used. Its flexibility for modeling objects of arbitrary geometric
forms is rather limited. The shapes they can model are restricted to the rigid cylindrical
forms. There is no way to meaningfully deform them out of the scope of their parameters.
Local control of their shape cannot be achieved. As all other parametric surfaces they are
easy to turn into meshes and render afterwards. SHGCs are C 2 differentiable as long as
functions q and r are C2 differentiable. As we will discuss later SHGC are fitted mainly to
the image contours and range data what excludes noisy data we are interested in.

Literature Overview The invariant properties of the generalized cylinders and their sil-
houettes had been studied by various researchers [92, 58, 129, 78], and exploited for object
recognition, reconstruction and object pose estimation. Substantial amount of work had
been performed on shape recovery of GCs from image contours [97, 71, 58, 92]. Besides
that reconstruction from 3–D data [35, 71, 123], such as range images was also present in
the literature. Certain amount of work concentrated on shape and pose recovery from single
monocular image [124, 129, 92].
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2.1.1.4 Subdivision Surfaces

Definition Surface generation methods are important topic in Computer Graphics and
CAD design. Much of the important work to date has concentrated on surfaces like Bézier
and B-spline curves and surfaces represented by closed-form mathematical expression.
However, these methods require huge number of surface patches in order to model objects
of complex geometry.

A new set of methods, which utilize a meshes of polygonal shapes or a sequence of
meshes to describe a surface, is now becoming popular. By doing this, freedom from the
closed-form mathematical expression is achieved, and a wide variety of surface types can
be expressed. The surfaces are commonly called subdivision surfaces as they are based
upon the binary subdivision of the uniform B-spline curve/surface. In general, they are
defined by a initial polygonal mesh, along with a subdivision (or refinement) operation
which, given a polygonal mesh, will generate a new mesh that has a greater number of
polygonal elements, and is “closer” to some resulting surface. By repetitively applying the
subdivision procedure to the initial mesh, we generate a sequence of meshes that converges
to a resulting surface.

As it turns out, this is a well known process when the mesh has a “rectangular” structure
and the subdivision procedure is an extension of binary subdivision for uniform B-spline
surfaces. Therefore, we first present a somewhat extensive study of the uniform B-spline
case, and then show how these results can be generalized to treat the case when the mesh is
not based on a rectangular structure.

We can represent uniform biquadratic spline surface in a matrix form as follows:

P (u, v) =
[

1 u u2
]

BPBT





1
v
v2



 , P =





P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2



 (2.10)

where outer parts of vectors and matrices,
[

1 u u2
]

B and BT





1
v
v2



 create the

quadratic uniform B-spline blending functions, while matrix P defines the geometry of the
patch, that is in this case 3x3 control polygon with rectangular faces. If we introduce a
subdivision rule, represented by the refinement matrix S, that subdivides control polygon
P creating a new control polygon P

′

= SPST , we can represent a new subdivided surface
that is closer to the limit biquadratic B-spline surface as follows:

P
′

(u, v) =
[

1 u u2
]

BP ′BT





1
v
v2



 =
[

1 u u2
]

BSPST BT





1
v
v2



 (2.11)

Note that each new control point P
′

i,j is generated according to the four points on the face
it belongs to. The subdivision schema can be simply specified by using subdivision mask,
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Figure 2.3: Doo-Sabin’s subdivision schema applied to the cube. The images are found on
the web and are courtesy of Zheng XU [127].

which specify the ratios of the points on a face to generate the new points. In this case, the
subdivision masks are as follows:

9 _ 3
| |
3 _ 1

3 _ 1
| |
9 _ 3

1 _ 3
| |
3 _ 9

3 _ 9
| |
1 _ 3

(2.12)

These algorithms are from a class called “corner cutting” algorithms - that is, their action
can be described by cutting the corners off of polygonal meshes. The study of quadratic
and cubic B-spline surfaces led respectively to the two better known surface subdivision
schemes, the Doo-Sabin [36] and Catmull-Clark [16] methods. It is important to mentioned
a method by Charles Loop [79] that is based upon a mesh with a triangular based structure.
Doo-Sabin schema relays on the subdivision principle mentioned above, that is based on
bi-quadratic uniform B-spline surface subdivision and can deal with meshes of arbitrary
topology. In Fig. 2.3, it show how it behaves when subdividing a cube. Cutmall-Clark’s
schema is an extension of the Doo-Sabin’s work and is based on bi-cubic uniform B-spline
surface subdivision, that led to a better subdivision, as shown in Fig. 2.4.

Note that the Cutmull-Clark subdivision surface produces smoother corners compared to
the Doo-Sabin surfaces. This is because of using higher order B-splines as basis for the
refinement process. Finally, in Fig. 2.5 we depict Loop’s [79] subdivision schema, which is
designed for the triangular meshes.
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Figure 2.4: Cutmall-Clark’s subdivision schema applied to the cube. The images are found
on the web and are courtesy of Zheng XU [127].

Figure 2.5: Loop’s subdivision schema. Top row: Subdivision of the piece of mesh. Bottom
row: Subdivision of the generic human face model. The images are found on
the web and are courtesy of Zheng XU [127].
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Properties Subdivision surfaces appear as extension of B-spline surfaces. However,
they lost their closed-form mathematical formulation for the price of arbitrary mesh mod-
eling. The idea to start from the mesh of arbitrary geometry and topology and smoothing
it by subdividing that initial mesh is very attractive from the modeling point of view. How-
ever, the limit surface cannot be expressed directly as a function of initial control mesh.
When it comes to rendering and fitting, the subdivision surfaces can be considered exactly
as any other polygonal mesh. The main difference is that number of parameters sufficient
to control the shape of the mesh is equal to the number of control points of the initial mesh
(control mesh) that is subsequently divided. In practice, computing the distance function,
involves projecting the observation points onto the subdivision surface. Since this is not
feasible, as the surface is defined only as a limit of an infinite process of subdivision, the
observations are projected onto the piecewise approximation of the limit surface obtained
by subdividing r times initial surface. Points of this approximated surface can be expressed
as a linear combination of the initial surface vertices using the subdivision rules. Again,
as in a case of polygonal meshes, we have non-differentiable distance function, that is not
ideal, especially for fitting 2–D occluding contours.

Literature Overview In last decade subdivision surfaces became very popular in Com-
puter Graphics. However Computer Vision community did not show much interest in those
surface representations. Among first researchers that used subdivision surfaces for auto-
mated fitting to the unorganized laser-scanned data were Hugues Hoppe et al. [57], that
extended Loop’s subdivision schema so to model shape features, such as edges and creases.
Their algorithm consists of three phases: estimation of the objects geometry and topology
from unorganized data, optimization of the retrieved mesh structure and finally using this
mesh as a control mesh for fitting its subdivided version to the unorganized data. The last
phase is the one we are particularly concerned, and the optimization is performed by varying
number of control mesh vertices (initial mesh extracted from the data), their connectivity,
their position and the number and locations of sharp features. Distance function is obtained
by attaching laser scan data points to the closest mesh facet obtained by subdividing the
initial control mesh several times. Laser scan data are relatively noise free, so particular
regularization energy is not used in this work. Fitting of Cutmull-Clark subdivision sur-
face to a given shape within a prescribed tolerance is presented by Nathan Litke et al. [77].
Instead of using classical least-square fitting they used method of quasi-interpolation [25]
that offers fast and local fitting solution. However, authors did not address problem of es-
tablishing correspondences between the data points and the generic models. Since the data
were acquired by cylindrical scan, they use simple cylindrical coordinates for the corre-
spondences. Quasi-interpolation allows to infer new control points positions from the data.
Also, in this work each subdivided version of the initial control mesh is fitted to the data
and the process is finished when vertices of two successive subdivided meshes do not differ
more then the given tolerance. This is actually hierarchical fitting of the subdivision surface,
where each subdivided surface is considered as one item in the hierarchy of meshes going
from the coarse to fine ones. Scheib et al. [98] presented a method of fitting and render-
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ing of large scattered data using subdivision surfaces. They applied their technique to the
therein reconstruction, where the initial control mesh is actually planar surface with associ-
ated height. Their representation is adaptive triangulation obtained by binary triangle tree
hierarchy. They actually fitted locally to each data point a polynomial of degree less then
three. For each vertex point of subdivision surface they associated height that is obtained by
evaluating the value of the polynomial function at that vertex. Fitting is then performed lo-
cally by using SVD. Displaced subdivision surfaces proposed by A. Lee, H Moreton and H.
Hoppe [73] are interesting surface representation that offers compact solution for detailed
surfaces. The idea is to start from the given high resolution irregular mesh, that is hard to
manipulate, and represent it as a subdivision surface with associated displacement map. The
initial control mesh is very compact, its limit surface is called domain surface and represents
smooth approximation of the input mesh, and displacement map consists of scalar values
that denote how much each sample point on the domain surface is far from the fine details
on the input mesh. Fitting such surfaces from unorganized data points was proposed by
W.K.Jeong and C.H. Kim [66]. They compute the control mesh from the bounding box that
encloses the data, by subdividing it and shrink-wrapping it to the points with point-based
simplification algorithm whose error metric is the distance from the point to the mesh. After
that the algorithm is similar to one of original paper of displaced subdivision surfaces [73].
Also, this algorithm requires data without any noise. Another paper [18] of fitting subdi-
vision surfaces to the unorganized points introduced different distance metric. Instead of
using point distance minimization they used more complex distance function called surface
distance. This metric requires estimation of the normals and curvatures of the data points
what is not easy to do in case of the noisy data.

2.1.2 Implicit Surface Models

Implicit surfaces, as their name suggests, are surfaces that are not given explicitly. Instead,
they are given in closed mathematical form by a single equation. For example the equation
for a sphere: x2 + y2 + z2 − r2 = 0 describes infinite number of (x, y, z) points at the
distance r that lie on the common surface. If we take any other point in space, plug it in
the above equation, we will obtain some non-zero value. The returned value can be used
to determine whether the point is inside or outside an implicit surface. The equation of the
sphere can be rewritten as:

F (x, y, z) − T = 0 (2.13)

Now, by changing the value of constant T we obtain different surfaces (depending on
function F ) that can be visualized by collecting all those (x, y, z) points where the equation
Eq. 2.13 gives the value zero. Each such surface is called iso-surface and the function F is
called scalar field function, since it always returns scalar value.

There are three different ways to formulate implicit surfaces depending on the way of
its construction. First we will address implicit surfaces composed of simple volumetric
primitives. Then algebraic implicit patches similar to the parametric B-spline patches will
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Figure 2.6: Implicit surface made of volumetric primitives. When two primitives coincide
the overall scalar field results in a bigger sphere as shown in a first image. Fur-
ther, separating those two primitives the range of their influences less and less
overlap, until finally they become two separate primitives. The images are found
on the web and are courtesy of Paul Bruke [15].

be discussed. Finally, the family of variational based surfaces, also known as a thin plate
splines, will be described.

2.1.2.1 Volumetric Primitives

Definition There are a number of approaches to modeling using implicit surfaces. We
can categorize them into two groups: simple primitives and skeletal primitives. The first
category, simple primitives, refers to implicit modeling techniques that build the implicit
primitives by a scalar field around a single point creating volumetric primitives like spheres
and ellipsoids as depicted in Fig. 2.6. The skeletal primitives can create implicit surface
around more complex geometric primitives such as line segments and polygons as shown
in Fig. 2.8. The second one can be considered as a generalization of the first one. Basic
simple primitives, known in a literature are Blobby Molecules [8], Metaballs [39] and Soft
Objects [125]. They are all very similar, but their main difference is in using different scalar
field function as shown in Fig. 2.7 and discussed bellow.

For Blobby Molecules, Blinn uses Gaussian density function around a single atom (based
on behavior of hydrogen atoms):

D(X) = b exp−ar2

(2.14)
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where r is a distance of the point X = (x, y, z) to the center of the atom. For multiple
atoms the overall density at the given point X is calculated by summation of all densities
for all atoms:

D(X) =

N
∑

i=0

bi exp−air
2
i = T (2.15)

where ri is distance from the point X to the center of i-th atom. The blobbiness of the
model can be controlled by changing parameters ai and bi. The overall surface is defined
where all the points have value equal to some threshold T .

For Metaballs, the density function is piecewise polynomial, whose influence is not in-
finite, as it was for exponential one of blobby molecules, and is limited to the size of the
metaball. It is given as follows:

w(X) =











di(1− 3( ri

bi
)2) 0 ≤ ri ≤

bi

3
3di
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bi
)2 bi

3 ≤ ri ≤ bi

0 bi ≤ ri

(2.16)

where ri is a distance of the point X from the center of i-th metaball, di is the weight of
i-th metaball and bi is the radius of i-th metaball. Similarly for multiple metaballs the field
potentials are added as in Eq. 2.15.

Soft Objects replaced piecewise polynomial density function by simple polynomial. Ad-
ditionally, the scalar field value is truncated to zero at a certain distance (radius of influence):

C(r) =

{

a(1− 4
9

r6

b6
+ 17

9
r4

b4
− 22

9
r2

b2
) r ≤ b

0 r ≥ b
(2.17)

where r is the distance from X to the considered key-point and b is the radius of influence
of the key-point, while a is a scaling factor. Several primitives are blended together by
summing their contributions in the areas of influence as it was done in Eq. 2.15.

The skeletal primitives extend concept of density function that was computed from a
single point. Here, field potential is computed from more complex geometric (skeletal)
primitives such as lines and polygons. For this purpose the distance function that computed
distance of points in space from the primitive has to be employed. In [9] Bloomenthal
proposed two approaches to this: distance surfaces, where the potential is calculated from
the distance of the nearest point on the skeleton and convolution surfaces where it is found
from all points on the skeleton by integration.

Distance surfaces employ following scalar potential field function:

f(S,x) = max
s∈S

exp

(

−‖s− x‖2

2

)

(2.18)

where S is the skeleton, x is the point for which the potential is calculated and s is a
point on the skeleton. This function gives the union of the volumes generated by all the
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Figure 2.7: Scalar potential filed functions of Blobby Molecules, Metaballs and Soft Ob-
jects. Implicit surface creation on the left is made using simple potential filed
that is inversely proportional to the square of the distance, 1/r2, to the center of
the primitives.

individual points on the collective skeleton, S. Disadvantages of this formulation are: non-
differentiability obtained by introducing max function and that bulges and creases may
occur in the area where the skeletons of non-convex objects meet.

Convolution surfaces are proposed in the same work of Bloomenthal as a solution to
possible unwanted bulges and creases at the junctions of skeletal elements. A point x

in space has following potential field value computed from all points of the skeleton by
integration:

f(S,x) =

∫

S

exp

(

−‖s− x‖2

2

)

ds (2.19)

where S is the skeleton, x is the point for which the potential is calculated and s is a point
on the skeleton. However, convolution surfaces lose their analytical representation for the
resulting surface, since the integral cannot be solved analytically, and alternative methods
has to be proposed as it is done in [9].

Properties Implicit surfaces guarantee a continuous and smooth surface that has com-
pact mathematical representation given by a single formula such as the one of Eq. 2.13.
This representation allows direct minimization of the algebraic distance that is differen-
tiable over the parameters defining its shape and position in space. Having such properties,
implicit surfaces are ideal for automated fitting to the noisy data. By construction, the lim-
ited range of influence of the potential field function eliminates outliers. However, it is hard
to create arbitrary shaped objects of the complex geometry using only simple primitives,
such as metaballs, blobby molecules or soft objects. Some complex objects can be cre-
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Figure 2.8: Distance and convolution surface around star like skeleton made of line seg-
ments. The images are taken from [10].

ated using CSG and ability to easily apply boolean operation to their scalar potential fields.
Skeletal primitives are more efficient for creating arbitrary shaped objects, but because of
non-differentiability of distance surfaces and non-analytical form of the convolution sur-
faces they were not suitable for automated fitting. In general, implicit surfaces are hard to
deform in free form fashion and only well established operations, such as, bending, twisting
and tapering are easy to make. Visualization of implicit surfaces is an expensive operation,
since the surface has to be either turned into the polygonal representation or rendered by
ray tracing. Physically based surface deformation and animation are also well known good
properties of implicit surfaces. During the animation there are two problems that may ap-
pear: coherence loss happens when two implicit primitives are disconnected by placing
them too far from each other, and unwanted blending, that is characteristic for creating
bulges at the junction of two closely put primitives.

Literature Overview Implicit surfaces were first introduced to the Computer Graphics
by Blinn [8], whose Blobby Molecules were used to visualize electron density field. This
work was followed by Nishimura [39] and G. Wyvill [125] with their Metaballs and Soft
Objects where the scalar potential field function had been changed. Further in graphics,
many researches addressed problems of interactive modeling with implicit surfaces. We
can recommend an excellent book on implicit surfaces by J. Bloomenthal [12], that gives
complete overview on creating, modeling, deformation and rendering of implicit surfaces.

In Computer Vision, implicit surfaces were extensively used for reconstruction and track-
ing of deformable and articulated objects, such as hand and human body. Main ingredient in
those models are quadrics and superquadrics, which have both parametric and implicit rep-
resentation. Its implicit representation, as already reviewed in Section 2.1.2, demonstrated
good fitting properties for shape recovery [51, 106, 94, 86, 76]. Fitting dynamic, physi-
cally based implicit object took also interest by the researchers [99, 83, 28, 115, 117, 114].
Recently, Dewaele and Horaud [32] proposed to use complex 3D hand model made of ellip-
soids. They used separate ellipsoids attached to each part of the hand skeleton to track their
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rigid motion using well known iterative closest point algorithm(ICP) in its EM version. The
algorithm was adapted for articulated and deformable object, followed by another adapta-
tion called EM-ICPS, where point to point and point to surface distances are taken into
account. The problem of drift that might happen during tracking is solved using appropri-
ate implicit surface model created by blending separate ellipsoids attached to hand skeleton
parts. The problem of interest points displacents caused by skin deformation is solved by
introducing skinning technique taken from computer animation in order to compute motion
of the points on the skin.

We would like to distinguish work of Sullivan and Ponce [110] that addresses the prob-
lem of automatic construction of implicit surface models from set of 2–D and 3–D images
and uses this model for pose computation, motion and deformation estimation, and object
recognition. They minimize the mean-squared geometric distance between a set of points
or silhouette rays and implicit surface model. In modeling, the state vector is composed
of unknown surface parameters, while in pose and deformation it consists of global rota-
tion and translation vectors. Another interesting application of implicit surfaces is done by
Plaenker and Fua [91], where articulated body model with attached metaballs is used for
human body reconstruction and tracking from stereo and silhouettes.

An interesting work of Bajaj [1, 2, 3] addresses a modeling problem with algebraic im-
plicit patches. He used a Bernstein-Bézier form of trivariate polynomial within thetahedron,
such that the real zero contour of the polynomial defines a smooth algebraic surface patch.
Such patch they call A-patch, and is used to interpolate arbitrary surface triangulation or
fit unorganized data. If unorganized points are fitted, the Delaunay triangulation is used to
divide the data points into groups delineated by tetrahedron. There are two primary steps
in the algorithm: (1) creating the tetrahedron attached to each facet, edge and vertex of
triangulation, and (2) obtaining the coefficients of the Berstain polynomial that approxi-
mate enclosed facet or data. C1continuity is preserved between patches by forcing several
coefficients of each polynomial to be equivalent between neighboring patches. The sur-
face constructed in this way is a piecewise algebraic implicit surface and it losses compact
characteristics of global representation, that ordinary implicit surfaces posses. The oper-
ations, such as, collision detection, morphing, blending, and modeling with constructive
solid geometry become more difficult to perform since the representation is no longer a
single analytical function.

2.1.2.2 Variational Based Surfaces

Definition Given a set of 3–D data points X = {xi}i=1,N ⊂ R3 through which the
surface should pass, and also identifying interior and exterior surface points it is possible
to define a 3–D implicit function f(x, y, z) = 0 that interpolates those surface points.
The problem defined in this way is actually scattered data interpolation problem. The iso-
surface of such implicit function is called variational implicit surface according to Turk
and O’Brien [119]. Implicit surface created this way is radial basis function (RBF) that
appeared to be the smoothest interpolant that minimizes the energy function measuring an
aggregate squared curvature of the implicit function over its region of interest. In general,
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an RBF is a function of the form:

f(x, y, x) = p(x) +

N
∑

i=1

λiφ(‖x− xi‖) (2.20)

where p(x) is a polynomial of low degree, the coefficients λi are real numbers, the basis
function φ is a real valued function on [0,∞), usually unbounded, and xi are data points
usually called RBF centers. Popular choices for the basis function include the thin-plate
spline φ(r) = r2 log(r) (for fitting smooth functions of two variables), the Gaussian φ(r) =
exp(−cr2) (mainly for neural networks) and the multiquadratic φ(r) =

√

(r2 + c2) (for
various applications in particular for fitting topological data). For fitting functions of three
variables the good choices include biharmonic φ(r) = r and triharmonic φ(r) = r3 splines.
Everywhere r = ‖x− xi‖ is Euclidean distance of the point in space x to the RBF center
xi.

Properties RBFs have excellent interpolation properties and can turn cloud of scattered
data points into a single implicit function capturing the tiniest details. This in turn allows
conversion of arbitrary polygonal mesh into implicit surface. To overcome the trivial so-
lution of scattered interpolation problem, besides xi data points, one have to provide, so
called off-surface points defining interior and exterior of the resulting surface. This can be
done by adding new RBF centers at the certain distance on the both sides of the estimated
point normals. This additionally increases number of equations to solve and in a worst case
it is possible to end up with 3N equations, where N is initial number of data points, i.e
RBF centers. Finally, the resulting surface will be defined by 3N λ coefficients. Surface
obtained in this way depends uniquely on positions of RBF centers and its shape cannot
be changed intuitively, since λ coefficients do not have any geometric meaning. Deforma-
tion of such surfaces is almost impossible to perform, and if the position of data points is
changed the only way to obtain the new shape is by interpolating them again. If one wants
to perform fitting of surfaces represented in this way to the noisy data, the final result will
interpolate noise as the relevant information.

Literature Overview Variational implicit surfaces are studied by the Computer Graph-
ics researchers that wanted to interpolate unorganized scattered data points form laser scan-
ners and produce compactly represented surface which can be than used for re-meshing.
Turk and O’Brien used variational implicit surfaces [120, 118] for shape reconstruction
and shape transformation. Traditionally, shape transformation using implicit functions is
performed in two distinct steps: 1) creating two implicit functions, and 2) interpolating be-
tween these two functions. They combine these two tasks into a single step. They create a
transformation between two N-dimensional objects by solving a variational problem in N+1
dimensions. For the case of 2–D shapes, they place all data constraints within two planes,
one for each shape. These planes are placed parallel to one another in 3–D. We then create
a variational implicit surface in 3D from these constraints. Intermediate shapes are simply
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the zero-valued contours of 2–D slices through this 3–D function. Shape transformation
between 3–D shapes can be performed similarly by solving a 4–D interpolation problem.
The transformations produced by this method appear smooth and natural, even between ob-
jects of differing topologies. This allows to perform effective morphing between the object
of completely different geometries. As we already said, direct solving of this interpola-
tion problem requires lots of memory and time for obtaining its solution and for problems
where there are more there 2000 data points becomes impractical. Carr et al. [40, 41, 64]
proposed to solve this problem by using Fast Multiple Methods(FMM) [6]. They managed
to interpolate huge amount of data involving millions of points in a reasonable time. They
recently addressed problem of noisy data where the smoothing term was introduced and the
resulting surface is smoothed in the phase of conversion of implicit surface to the polygonal
mesh. This is not applicable to the stereo data where noise is much larger then the one
produced by the scanners.

2.2 Tracking of Deformable Objects

Motion of physical object in the world is generally nonrigid. In Computer Vision there
is a growing interest in recovering the motion of nonrigid or deformable objects. The de-
formable models can be categorized according to the their way and degree of deformation in
three groups: articulated, elastic and fluid. Articulated models are composed of rigid parts
associated to the skeleton. Even thought the motion of the rigid parts is not deformable
the overall motion is nonrigid. This kind of models was widely used for creating artic-
ulated models of the human body used for tracking and motion analysis. Elastic models
are designed to perform nonrigid motion that confirms to the certain degree of continuity
and smoothness. Fluid motion violates even the continuity assumption and may involve
topological variations and turbulence deformations.

In this work we are particularly interested in the elastic models and their use for recovery
of the nonrigid motion of deformable objects. The applications of elastic motion, for ex-
ample, relate to facial reconstruction, animation of nonrigid objects from images and their
use in augmented reality applications, clinical examination of the heart and soft tissues,
and model based image compression. Most of the approaches that involve nonrigid mo-
tion assume an object model and try to model deformation as the variation of the model’s
parameters. This approach has advantage of constraining the degree of freedom exhibited
by the deformable objects. The task of motion recovery is often reduced to the problem of
parameter estimation of the deformable model. We can distinguish two types of deformable
modes: parametric models and physically based models. This two deformable model types
will be overviewed in the following subsections.

2.2.1 Parametric Models

Parametric models are suitable for defining the global shape of the objects and a priori
knowledge of the object must be provided. Consequently, most parametric models are able
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to model limited class of objects and without proper modification are not ideal for modeling
of dynamically deformable objects. Throughout the review on the surface representation,
we already mentioned all sorts of surface models. All of them, including explicit and im-
plicit representations, are expressed in terms of certain parameters that control their shape
and are used for static shape recovery. We are going to mention those works that were used
for dynamic shape recovery.

One of often used deformable models is model of the human face. Human face model is
represented as polygonal mesh used for face reconstruction and animation. Capturing of the
face dynamics is an example of motion recovery of the deformable objects. There is a work
of Blanz and Vetter [7], on animating faces in images and videos. In order to animate novel
faces the deformable face model is build such that it captures common representations of
different faces and facial expressions in a vector space of 3–D shapes and textures. This
space is computed from 3–D scans of neutral faces and scans of facial expressions. DeCarlo
and Metaxas [27] build a dynamic face model that when coupled with optical flow and edge
data produces facial deformation. Physical models of faces have been proposed for analysis
of the facial motion as they allow for more degrees of freedom. Modeling is mainly focused
on solving the tracking of canonical facial expressions.

Reconstruction and tracking of the elastic motion of the heart’s left ventricle in [4] is
another example of deformable parametric model. This time model is represented as a
superellipsoid. Its shape is additionally parametrized by free form deformation (FFD) con-
trol points which are placed on the rectangular grid around the superelipsoid. Solina and
Bajcsy [106] recover the superquadrics with global deformations from range images.

In several papers Bookstein [13, 14] illustrated the potential applications of thin-plate
splines for modeling of biological shape changes, production of biomedical atlases and
image feature extraction.He demonstrated the decomposition of deformations by princi-
pal warps, which are geometrically independent, affine-free deformations of progressively
smaller scales. Terzopoulos [52] defined dynamic NURBS as a physics-based framework
for geometric design.

Implicit surfaces were used mainly for modeling in Computer Vision [110, 90]. The
paper of Desbrun and Cani [31] presents a hybrid model for animation of soft inelastic
substance which undergo topological changes, e.g. separation and fusion and which fit
with the objects they are in contact with. The model uses a particle system coated with a
smooth iso-surface that is used for performing collision detection, precise contact modeling
and integration of response forces. The animation technique solves those three problems
inherent in implicit modeling.

2.2.2 Physically Based Models

Physically based models are fundamentally dynamic and are governed by the lows of rigid
and nonrigid dynamics expressed trough a set of Lagrangian motion equations. A num-
ber of physically based models have been developed for image analysis, including snakes,
symmetry-seeking models, deformable superquadrics, deformable templates, and modal
models.
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The snake model is perhaps the most well known and widely used physically based
model. A great deal of attention has been devoted to the extension of the named prototype
first proposed by Kass et al. [70]. The original snake model is a class of active contours that
evolve under the influence of external potentials but are constrained by internal energies.
When augmented by Lagrangian mechanics, dynamic snakes with intuitive physical behav-
iors are developed [113]. It is not surprising that the snake model can also be generalized
to deal with 3D images, as shown by Cohen et al. in [20, 21]. This newly formed class
of deformable surfaces, called balloons, is able to conform to image features and external
forces in a way similar to the original snake model. An evolution equation similar to that
in dynamic snakes has also been formulated. Cohen et al. have successfully applied this
model to the segmentation of 3D MRI images as well as to establishing correspondence
between a deformable surface and an anatomical atlas. A more recent extension to snake
models can be found in [112], where the essential elements of physically based models
and probabilistic approaches are incorporated. A Bayesian framework is introduced and
the original energy-minimizing problem is transformed to an MAP problem. To further ex-
ploit the power of probabilistic modeling, Szeliski et al. [112] have developed a sequential
estimation algorithm using the Kalman filter. Known as the Kalman snake, this dynamic
system is able to integrate nonstationary, noisy observations over time. It provides the flex-
ibility to design behaviors that may not be possible with purely physically based models.
Moreover, model parameters can be derived from statistical models of sensors, rather than
chosen heuristically.

The free-form deformable surface model proposed by Delingette et al. [29, 30] is con-
ceptually similar to the active contour model [70]. They model an object as a closed surface
that is deformed subject to attractive fields generated by input data points and features. A
fundamental conflict in shape representation is that a modeling primitive should be general
enough to handle a wide variety of scenes, yet simple enough to be usable for tasks such
as recognition and manipulation. To balance these conflicting requirements, the authors
suggested a coarse/fine approach where features affect the global shape while data points
control its local shape.

Deformable templates, such as those employed by Yuille et al. [128] to extract facial
features, mark a blend of parametric representation and physical-based methods. The tem-
plate is described by a parametrized geometrical model. The goodness of fit between the
deformable model and the image is measured by the interaction energy, which contains
contributions from various image features. Optimal fit is obtained when the energy is min-
imized.

Deformable superquadrics [114] are dynamic surface models with global and local de-
formation properties inherited from superquadrics ellipsoids and membrane splines. The
combined local/global representation is aimed at solving the conflicting goals of shape re-
construction and recognition we addressed earlier. Additional deformational degrees of
freedom are gained from the incorporation of global deformation such as tapering, twisting,
and bending [23]. By casting the fitting of time-varying visual data into the Lagrangian me-
chanical framework, the equations of motion governing the behavior of the deformable su-
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perquadrics can be developed. When augmented by Kalman filter theory [82], the dynamic
system becomes a recursive shape and motion estimator which employs the Lagrange equa-
tion of dynamic surfaces as a system model. In [24], deformable superquadrics that combine
Kalman filter with additional constraints are employed to track articulated objects.

Inspired by modal analysis in linear mechanical systems, Pentland [86] developed a sys-
tem that is capable of automatically recovering deformable part models based on the finite
element method (FEM). Nonrigid object behavior is described by modal dynamics, i.e., by
the superposition of its natural strain or vibration modes. By limiting the number of modes
used in the representation, the analysis of nonrigid motion can always be transformed to an
overconstrained problem. Later, the same model combined with an extended Kalman filter
is applied to recover nonrigid motion and structure from contour [87] as well as optical
flow data [87]. A major limitation of the modal framework is that objects must be described
in term of the modes of some prototype shape. Such a procedure implicitly imposes an a
priori parameterization upon the sensor data. It is thus more suitable for modeling than for
tracking purposes. To address this problem, Sclaroff and Pentland [99] recently developed
a new method that computes the object s vibration modes directly from the image data.
Nastar and Ayache [85] followed similar physics principles and developed elastic models
for nonrigid motion tracking. The notable property of their model is that the governing dy-
namic equations are linear and decoupled for each coordinate, regardless of the amplitude
of deformation. Algorithmic complexity is therefore significantly reduced.

2.3 Summary

In this chapter we gave the overview of the surface representations used in Computer Vi-
sion and Computer Graphics for the automated reconstruction from images or laser scans.
In this thesis we are also interested in tracking of deformable objects, and also discussed
surface representations in this context. We divided all surface representations in two main
groups: explicit and implicit surface representations. We discussed their properties in terms
of automated fitting and their deformability. Also, various applications of those surface
representations for shape modeling, reconstruction and tracking are addressed and the liter-
ature overview has been given. In general it can be said that explicit surface representations
are well suited for graphics purposes, including rendering, editing and animation, but less
so for fitting and automated modeling, because of the non-differentiable distance functions
and difficulty of handling silhouettes. The reverse can be said of implicit surface repre-
sentations. In this thesis, we propose to combine the strengths of both approaches and to
avoid their drawbacks. For that reason we created implicit meshes, explained in Chapter 4,
which represent a robust surface representation that can be used for automated shape re-
covery from images and can efficiently take advantage of various data sources coming from
images.
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In the previous chapter we gave a wide overview of surface models used for reconstruction
and modeling. Those models are usually controlled by their internal parameters, integrated
inside of the model. They are directly responsible for its construction and shape modifica-
tion. For example, polygonal mesh is defined by positions of its vertices, parametric models
by its parameters, implicit surfaces by their volumetric primitive constants, subdivision and
tensor product surfaces by their control points etc. The surface parameterization is a way of
defining a surface shape and its deformations by a set of variable parameters. The already
mentioned parameterizations are imposed by model construction and appear to be internal.
However, besides this internal parameterizations there are the other ways of surface mod-
ification using the set of externally defined parameters. Usually, the surface model can be
expressed completely by using this external set of parameters, and only manipulation of
these parameters controls the existing shape and generates the new ones. Expressing the
surface model in terms of those parameters, besides efficient shape modification, intends to
dramatically decrease number of model’s internal parameters. This is very important when
automated fitting algorithms come to the interest.

In this chapter we advocate a parameterization that can be applied to the objects of any
geometry and complexity, thus appears to be generic. It allows efficient shape deformation
and significant dimensionality reduction. It is based on the free form deformation (FFD)
technique, that basically defines a control structure made of 3D vertices, which controls the
surface model. Surface model points are easily expressed in terms of control points (ver-
tices). More specifically we will use special type of FFD that is called Dirichlet Free Form
Deformation (DFFD). It is both suitable for automated fitting required by Computer Vision
algorithms and manual editing and animation required by Computer Graphics designers.

3.1 Dirichlet Free Form Deformations (DFFDs)

Free-form deformations (FFDs) constitute an important approach to geometric shape mod-
ification that has been extensively investigated for computer animation and geometric mod-
eling [100, 22, 68, 17, 84]. In the vision community, they have also been used to fit para-
metric models to medical data [111, 4] or animation masks to semi-automatically extracted
silhouette data [75]. That approach, however, takes silhouettes extracted from orthogonal
images as input and does not allow for potential errors in the data. In this work, we show
that FFDs are also very effective to fit deformable surface models to the kind of noisy 3–D
data that vision algorithms such as stereo tend to produce.

The initial FFD approach [100] and all subsequent ones involve embedding the object
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model into a volume whose shape can be changed by moving a number of control points.
Here, we take the embedded object to be a triangulated mesh and the embedding guarantees
that each model vertex is influenced by the deformation of the control grid. In the original
FFD, the control points must be placed on a regular lattice, which severely limits the range
of allowable deformations that can be modeled. Most FFD extensions aim at overcoming
this limitation, often by using a more sophisticated interpolant, but without addressing the
basic problem that there is little flexibility in the positioning of the control points.

By contrast, DFFDs [84] remove the requirement for regularly spaced control points that
is the main conceptual geometric limitation of FFDs This is achieved by replacing the typ-
ical rectangular local coordinates by generalized natural neighbor coordinates, also known
as Sibson coordinates[104] and using a generalized interpolant [42]. That property give us
the ability to place control points at arbitrary locations—that is, on the object, inside of it
or outside—rather than on a regular lattice, and thus much greater flexibility. In particu-
lar, some of the control points can be important feature points that must be controlled in
a specific way. This idea comes from the data visualization community that relies on data
interpolation and, thus, heavily depends on local coordinates.

We concentrate on upper body modeling but we will, however, argue that the approach
is generic and can be applied to any task for which deformable facetized models exist. In
particular, we will show that we can also use our approach for high-resolution modeling of
the human ear.

3.1.1 Sibson Coordinates

DFFD can be viewed as a data interpolation scheme where the interpolating function is a 3–
D function specifying point displacements. The displacement is known at the control points
and we want to interpolate it to the points of the object to deform. To this end, DFFD replace
standard rectangular or barycentric coordinates that constrain the control grid’s shape by
Sibson coordinates [104]. More precisely, given a set of control points, every vertex of
the explicit mesh is influenced by a subset of those control points. The Sibson coordinates
depicted by Fig. 3.1 quantify those influences and are computed as follows.

Let Q = {P1, . . . , PN} ∈ R3 be the set of all control points whose Delaunay trian-
gulation and Voronoi diagram we compute. Let p be a triangulation vertex and Qp =
{Pk}1≤k≤Np

be the subset of control points whose circumscribed spheres contain p, as
shown in Fig. 3.1(b). The elements of Qp are the natural neighbors of p. Their rel-
ative influences are obtained by computing the Voronoi diagram of the augmented set
Q′

p =
{

p, P1, . . . , PNp

}

depicted by Fig. 3.1(d) and taking the Sibson coordinate ui of
vertex Pi to be

ui =
V ol(Pi)− V ol′p(Pi)

V ol′p(p)
, (3.1)

where V ol(Pi) is the volume of the Voronoi cell of Pi in the Voronoi diagram of all the
control points and V ol′p(Pi) and V ol′p(p) are those in the Voronoi diagram of Q′

p. Note

that
∑Np

k=1 uk = 1 and uk > 0,∀k, 1 ≤ k ≤ Np. These coordinates are “natural” in the
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(a) (b)

(c) (d)

Figure 3.1: Sibson coordinates. (a) Subset of control points Qp = {P1, P2, P3, P4} sur-
rounding mesh vertex p. (b) Delaunay triangulation of the control point set with
circumscribed spheres around each Delaunay facet. (c) Corresponding Voronoi
diagram. (d) Voronoi diagram for set Q

′

p = {p, P1, P2, P3, P4}. The Sibson
coordinate for control point P1 is proportional to the area shaded in gray.

sense that points in P that are closer to the point p have greater influence on it because the
corresponding uk is larger.

3.1.2 Introducing Deformations

As discussed above, our goal is to deform a surface mesh using the vertices of a much
sparser control mesh, as our control points. We therefore take the control points to the ver-
tices of the control triangulation complemented by the corners of the surface triangulations
bounding box, so as to guarantee that the whole object is contained in their convex hull.

Let Q be this set of all control points and QS the set of vertices of the surface triangula-
tion. For each point p ∈ QS , we find its natural neighbors Qp⊂ P and the corresponding
Sibson coordinates. This is referred to as freezing the control mesh to the object. Once
computed, Sibson coordinates do not need to be changed when the object is deformed.
When we move some of the control points from the set Qp, the displacement of the model
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(a) (b) (c) (d)

Figure 3.2: Surface and control triangulations. (a,c) The generic low-resolution triangula-
tion we use of upper-body and the ear modeling. (b,d) A subset of its vertices
serve as DFFD control points, as discussed in this chapter. They are themselves
triangulated to impose the regularization constraints of Chapter 5.

points is computed as follows:

∆p =

Np
∑

k=1

∆Pkuk (3.2)

where ∆Pi is displacements of control point from Pk ∈ Qp, k = 1, . . . , Np . Finally,
new object point position is computed as:

pnew = p + ∆p, (3.3)

In short, the deformations are local and defined by the natural neighbors, which helps to
improve the flexibility of the approach and the realism in the final results.

In practice, we use a generic model of the human upper body, and its decimated version
as the control mesh. In the Fig. 3.2 we show this meshes together with the example of the
generic ear model and its accompanied control mesh.

3.2 Fitting DFFD Parameterized Models

In this section, we introduce the framework we have developed to fit surface models such
as the ones of Fig. 3.2(a,c) to noisy image data. Our goal is to deform the surface—without
changing its topology, that is the connectivity of its vertices—so that it conforms to the
image data. In this work data is made of 3–D points computed using stereo. In standard
least-squares fashion, for each stereo data point xi, we write an observation equation of
the form d(xi,S) = y + εi, where S is a state vector that defines the shape of the surface,
d is the distance measured from the data point xi to the surface defined by state vector
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S, y is distance estimation we want to obtain, that is usually taken to be zero. εi is the
deviation of the measured to the estimated distance value. In practice d(x,S) is taken to be
the orthonormal distance of x to the closest surface triangulation facet. This results in nobs
such observations forming a vector

F (S) = [..., d(xi,S)− y, ...]t1≤i≤nobs (3.4)

that we minimize in the least squares sense by minimizing its square norm

χ2 = 1/2||F (S)||2 .

In theory we could take the parameter vector S to be the vector of all x, y, and z coordi-
nates of the surface triangulation. However, because the image data is very noisy, we would
have to impose a very strong regularization constraint. For example, we have tried to treat
the surface triangulation as finite element mesh. Due to its great irregularity and its large
number of vertices, we have found the fitting process to be very brittle and the smoothing
coefficients difficult to adjust. This is why we chose to use the DFFD deformation approach
instead.

3.2.1 DFFD parameterization

We therefore introduce control triangulations such as the ones of Fig. 3.2(b,d). Their ver-
tices are points located at characteristic places on the human head or ear and defining their
rough shapes and serve as DFFD control points. Some of these control points also are ver-
tices of the surface model, while other are simply close to it and either inside or outside
of it. This ability to place the control points is unique to DFFDs as compared to all other
kinds of FFDs. The control triangulation facets will be used to introduce the regularization
constraint discussed below. We tried to use several levels of resolutions of control meshes,
but we found that increasing the number of control points does not influence final results
of the deformation. This means that keeping low number of the control points, as we did,
greatly saves time for computation.

In our scheme, we take the state vector S to be the vector of 3-D displacements of the
DFFD control points, which is very natural using the DFFD formalism: As discussed in
Section 3.1.2, we first freeze the control mesh to the model vertices. This means that for
each vertex on the model we compute the influence of certain subset of control points.
Those influences are expressed in terms of the Sibson coordinates from Section 3.1.2 and
allows us to express displacement of every model vertex as the linear combination of dis-
placements of control points which influence them.

3.2.2 3D observations

We use several sets of stereo pairs or triplets from the sequence of images of a given object
as our input data such as those of Fig. 3.3(a,b,c). We then ran a simple correlation-based
algorithm [45] to compute a disparity map for each pair or triplet and by turning each valid
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disparity value into a 3–D point. This resulted in a large cloud of 3–D points that form an
extremely noisy and irregular sampling of the underlying global 3–D surface. To reduce the
size of the cloud and begin eliminating outliers, we robustly fitted local surface patches to
the raw 3–D points [46]. We then fed the centers of those patches, shown in Fig. 3.3(d), as
input to our surface fitting algorithm.

The center of each patch can then be treated as an attractor. The easiest way to handle
this is to model it as a spring attached to the mesh vertex closest to it. This, however, is
inadequate if one wishes to use facets that are large enough so that attracting the vertices, as
opposed to the surface point closest to the attractor, would cause unwarranted deformations
of the mesh. This is especially important when using a sparse set of attractors. In our
implementation, this is achieved by writing the observation equation as:

di(xi,S) = y + εi (3.5)

where di(xi,S) is the orthogonal distance of the attractor to the closest facet, whose nomi-
nal estimated value y is zero. It can be computed as a function of the x, y, and z coordinates
of the vertices of the facet closest to the attractor.

Because some of the observations, derived on the way explained above, may be spurious,
we weigh them to eliminate outliers. Weighting is done as the preprocessing step, before the
real fitting is started. In each iteration after fitting is done, we recompute the attachments
and also recompute the observation weight wi and take it to be inversely proportional to the
initial distance di(xi,S) of the data point to the surface triangulation. More specifically we
compute wi weight of the xi as:

wi = exp(
di

di

), 1 ≤ i ≤ n (3.6)

where di is the median value of the di. In effect, we use di as an estimate of the noise
variance and we discount the influence of points that are more than a few standard deviations
away.

3.2.3 2D observations

In our optimization framework besides 3D stereo observations we introduce also 2D ob-
servations. For each vertex (xi, yi, zi) of the surface triangulation whose 2D projection in
image j is (uj

i , v
j
i ) is known, we can write two observation equations:

Pru(xi, yi, zi) = uj
i + εu

i

Prv(xi, yi, zi) = vj
i + εu

i

where Pru and Prv stand for the projection in u and v. In this way we do not need the
explicit 3D position of these feature points, only their 2D image location.
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3.2 Fitting DFFD Parameterized Models

3.2.4 Regularization

Because there are both noise and potential gaps in the image data, we found it necessary to
introduce a regularization term comparable the one proposed in [4]. Since we start with a
generic model, we expect the deformation between the deformed shape and the initial one
to be smooth. This can be effectively enforced by preventing deformations at neighboring
vertices of the control mesh to be too different. If the control points formed a continuous
surface parametrized in terms of two parameters u and v, a natural choice would therefore
be to take this term to be

ED =
∑

s∈x,y,z

EDs (3.7)

EDs =

∫∫
(

∂

∂u
δs(u, v)

)2

+

(

∂

∂v
δs(u, v)

)2

du dv ,

where δs(u, v) stands for the displacement along the x,y or z coordinates at each point of
this control surface. In fact, the control surface is a triangulated one and we only have de-
formation values at the vertices. We are therefore use a finite element approach to compute
EDsas shown in the following.

3.2.4.1 Stiffness Matrix for C0 Triangular Elements

We write the EDs term of Eq. 3.7 as

EDs = λ/2
∑

1≤j≤n

ED
j
s

where EDj
s represents a summation over a facet j and λ is a regularization coefficient. In

fact, we only know the deformations sj
1,sj

2 and sj
3 at the vertices of the facet and we treat it

as a C0 triangular element. Over this specific facet, we write

δj
s(u, v) = (1− u− v)sj

1 + usj
2 + vsj

3 (3.8)

where u, v ∈ [0, 1] and u + v < 1. It is then easy to show that ED
j
s is the quadratic term

[s1s2s3] K
j
s





s1

s2

s3



 ,

where Kj
s is a 3 × 3 symmetric matrix that only depends on the shape of the triangle and,

therefore, does not change during the optimization. These matrices can be summed into a
global stiffness matrix Ks so that EDs becomes

stKss
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where s stands for the vector of displacements at each vertex in one of the three coordi-
nates. By summing these three terms, we obtain the final quadratic form or our complete
regularization term

ED(S) =
λ

2
StKS (3.9)

where S is the complete state vector.

3.2.4.2 Incorporating the Stiffness Matrix into the Least-Squares Framework

We use the Levenberg-Marquardt algorithm [93] to iteratively minimize the square-norm
of the observation vector F (S) of Eq. 3.4. At each iteration, given the current state S, the
algorithm attempts to find a step dS that minimizes

χ2(S + dS) = 1/2||F (S + dS)||2 = 1/2F (S + dS)tF (S + dS) . (3.10)

At the minimum, we should have

0 =
∂χ2

∂dS

= AtF (S + dS)

≈ At(F (S) + AdS) ,

where A is the Jacobian of F . dS is therefore taken to be the solution of

AtAdS = −AF (S) . (3.11)

Adding a regularization term means that instead of minimizing simply the χ2 term of
Eq. 5.2, we minimize

χ2(S) + ED(S) =
1

2
||F (S + dS)||2 +

λ

2
(S + dS)tK(S + dS) . (3.12)

At each iteration, we therefore solve

0 =
∂χ2

∂dS
+ λK(S + dS)

≈ At(F (S) + AdS) + λK(S + dS) .

dS therefore becomes the solution of

(AtA + λK)dS = −AtF (S) − λKS . (3.13)

Note that solving Eq. 3.11 or 3.13 involves the same amount of computation so that our
regularization scheme adds very little to the computational complexity of the algorithm.
Note also that the proposed optimization scheme is a semi-implicit one very similar to the
one proposed for the original active contours [70] and that greatly improves the convergence
properties of the algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Calibrated video sequence: (a,b,c) Three images chosen from the calibrated
video sequence, courtesy of IGP, ETH Zürich. (d) Centers of local surface
patches fitted to the raw stereo data. (e,f,g) Automatically obtained shaded
model after fitting to the stereo data and projected using the same perspective
transform as that of the images. (h) Shaded model after interactive correction of
the ears.

3.3 Results

We demonstrate and evaluate our technique mainly in the context of complete head, that is
including face, ears and neck, from calibrated and uncalibrated video sequences.

3.3.1 Calibrated Video Sequence

We first illustrate the effectiveness of our approach using relatively clean stereo data. We
use the sequence of forty 512x512 images where some are depicted by the first row of
Fig. 3.3. They were acquired with a video camera over a period of a few seconds by turning
around the subject who was trying to stand still. Camera models were later computed using
standard photogrammetric techniques at the Institute for Geodesy and Photogrammetry,
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ETH-Zürich. The centers of the local surface patches fitted to the raw stereo data shown on
Fig. 3.3(d) are used as an input to our surface fitting algorithm.

We initialized the model by manually picking the five 2–D points overlaid in Fig. 3.3(b).
We used them to compute a 4x4 rotation-translation matrix Rt such that five specific 3–
D points on the generic model—outside corners of the eyes, corners of the mouth and
tip of the nose—once multiplied by this matrix project as close as possible to the hand-
picked 2–D location. Because these points are not coplanar, this guarantees that, when
we multiply the generic model by this Rt matrix, we obtain an initial head model that is
roughly aligned with the point cloud. We use it as the surface model that we deform using
our DFFD approach, yielding the results shown in Fig. 3.3(e,f,g). In this case we did not
use additional 2D observations provided manually. The resulting shape corresponds to the
real head shape except around the ears that stick out more from the real head then from
the reconstructed model. The reason for this behavior is because of well known fact that
minimizing orthonormal distance of data points to the closest surface triangulation facet
may have difficulty in deforming the model into concave objects [126]. More accurate
deformation can be obtained when 2D projected observation are included in the objective
function what is used in the examples of uncalibrated video sequence Fig. 3.4. One of the
advantages of DFFD is that this can be fixed manually very quickly and very intuitively by
moving one control point per ear to produce the model of Fig. 3.3(h).

3.3.2 Uncalibrated Video Sequence

Fig. 3.4 depicts two examples of reconstruction from uncalibrated images. First row shows
images from different image sequences: one image from the stereo pair of images Fig. 3.4(a)
and three frames from other uncalibrated video sequence. In both cases, we had no cali-
bration information about the camera or its motion. We therefore used a model-driven
bundle-adjustment technique [47] to compute the relative motion and, thus, register the im-
ages. We then used the same technique as before [46] to derive the clouds of 3–D points de-
picted by Fig. 3.4(e,f,g,h). Because we used fewer images and an automated self-calibration
procedure as opposed to a sophisticated manual one, the resulting cloud of 3–D points is
much noisier and harder to fit. Shaded models obtained after the fitting are depicted on
Fig. 3.4(i,j,k,l). Notice they shaded models are shown in the same projection as the corre-
sponding images on Fig. 3.4(a,b,c,d). In Fig. 3.4(d) and (l) we overlay on both the original
image and the shaded projection of the mask the outlines of the face. Note that they cor-
respond to the outlines predicted from the recovered 3–D geometry, thus indicating a good
fit. These models can also be reused to resynthesizes textured images such as the ones of
Fig. 3.5. We also animated generated models after the automatic fitting procedure using
DFFD and produced complex facial expressions Fig. 3.5(i,j).

Least-square adjustment is applied in several iterations for the same value of regulariza-
tion parameter λ. However, we tested how fitting to the uncalibrated data Fig. 3.4(b,c,d) is
influenced by different choice of regularization parameter, in our case ranging from λ = 1.0
to λ = 10, and checked median error of the model to observations distance for certain num-
ber of iterations what is depicted on the Fig. 3.6(a). It is easy to see that final results do not
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.4: Uncalibrated video sequence: (a) One image from the stereo pair of images with
overlayed manually provided 2D observations. (b,c,d) Three images from the
uncalibrated video sequence out of eight images. On the image (c) 2D observa-
tions are depicted. (d) The image with overlaid face outline. (e,f,g,h) Centers
of local surface patches fitted to the raw stereo data. (i,j,k,l) Automatically re-
covered shaded head model projected using the (a),(b),(c) and (d) image camera
models. (l) Face outlines overlaid on the shaded projection in image (d).

69



3 Generic Surface Parameterization

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.5: Textured models we created from the calibrated video sequence: (a,b,c), from
stereo pair: (d,e) and from uncalibrated video sequence: (f,g,h); Animated
model showing complex facial expressions (i,j)

depend on the choice of the regularization parameter since the median error of the model
to observations distance does not greatly change with the increasing of the regularization
parameter.

3.3.3 Performance measures

In our framework we use generic model of the human head including ears and neck identical
to head-neck part of Fig. 3.2(a), which consists of 1396 vertices and 2756 facets. This
generic model is used in all tests we performed to model heads. Control mesh is the one
identical to the head-neck part from Fig. 3.2(b). System is tested on ancient Silicon Graphic
Octane work station with R12000 processor working on 300MHz, and with 512Mb RAM
memory.

The process starts with freezing the control mesh to the surface triangulation computing
necessary Sibson coordinates. This is done once at the very beginning and it is used for all
input data. Freezing the control mesh of the head takes 65s. On the Fig. 3.6(b) is shown
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Figure 3.6: (a) Least square median error for different regularization parameter λ ranging
from 1.0 to 10.0 in respect to the number of iterations for video sequence whose
three images are Fig. 3.4(b,c,d). (b) Fitting time in respect to the input data
complexity

how the time for fitting depends on complexity of input data. Fitting time increases with
the complexity of the data, but also depends on its configuration. For this test the number
of fitting steps is fixed to three iterations and the stiffness parameter is set to λ = 1.0. Input
data of the size 103, are fitted for the shorter time then the one of the lower complexity
5 · 103, since its configuration is initially closer to the generic model, so the least-square
minimization converges faster.

3.4 Summary

In this chapter, we proposed to use the powerful DFFD extension to the conventional FFD
shape deformation approach to fit deformable surface models to noisy 3–D image data.
DFFDs give us the ability to place control points at arbitrary locations rather than on a
regular lattice, and thus much greater flexibility.We demonstrated the effectiveness and ro-
bustness of our technique in the context of complete head modeling. We also showed that,
in fact, we can model any complex shape for which a deformable triangulated model ex-
ists. For the specific application we chose, DFFDs offer the added benefit that they can
be used to animate the head models we create and to produce realistic human expressions.
The proposed framework is later extended to upper body motion tracking. In the following
chapters we address the possibility of using DFFDs to deform implicit surfaces as opposed
to the explicit ones we use here. In unrelated body-modeling work, we found that implicit

71



3 Generic Surface Parameterization

surface formulations lend themselves extremely well to fitting to the kind of data because
they allow us to define a distance function of data points to models that is both differentiable
and computable without search. Combining both approaches should therefore produce an
even more powerful modeling tool.
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In the world of Computer Graphics, 3–D objects tend to be modeled as explicit surfaces
such as polygonal meshes, parametric surfaces or subdivision surfaces. Because such rep-
resentations are intuitive and easy to manipulate, they are widely accepted among graphics
designers. These representations, however, are not necessarily ideal for fitting surfaces to
potentially noisy and incomplete data such as 3–D points produced by laser-scanners and
stereo systems or 2–D points from image contours. Fitting typically involves finding the
facets that are closest to the 3–D data points or most likely to be silhouette facets, which in-
troduces non-differentiabilities that degrade the convergence properties of most optimizers.

Implicit surfaces have received substantial attention in both the Computer Graphics and
Computer Vision communities. They are well-suited for simulating physically based pro-
cesses [115, 117, 83, 88] and for modeling smooth objects [2, 118, 40]. Because the alge-
braic distance to an implicit surface is differentiable, they do not suffer from the drawbacks
discussed above when it comes to fitting them to 2 and 3–D data [110, 90, 31]. However,
they have not gained wide acceptance, in part because they are more difficult to deform and
to render than explicit surfaces.

In short, explicit surface representations are well suited for graphics purposes, but less so
for fitting and automated modeling. The reverse can be said of implicit surface representa-
tions. In this thesis, we propose to combine the strengths of both approaches and to avoid
their drawbacks by:

1. transforming explicit surfaces into implicit surfaces, whose shape closely approxi-
mates that of the original triangulations

2. deforming the implicit and the explicit surfaces in tandem for fitting and rendering
purposes

This tandem of explicit and implicit surface we call implicit mesh. This is similar to the
distance and convolution surfaces of [11], but makes up their major disadvantage, that is
nonexistence of unique closed form mathematical expression describing the surface. Hav-
ing such compact representation of an arbitrary surface and controlling its shape with cer-
tain relatively small number of external parameters, opens a number of possibilities of us-
ing different parameterizations for efficient automated fitting thanks to good mathematical
properties of implicit surfaces.

To create the implicit surface we attach spherical or triangular volumetric primitives to
each facet of the explicit mesh as shown in Fig 4.1. The parameters of those metaballs are a
function of the facet geometry. As a result, when a facet deforms, so does the corresponding
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metaball. In this chapter, we use the deformation technique, called Dirichlet Free Form
Deformation (DFFD) [84, 59] introduced in previous Chapter 3, to control the shape, but in
general, since we can turn any mesh into its implicit representation one could have chosen
other methods, such as Free Form Deformations(FFDs) [100, 22], B-splines, subdivision
or PCA parameterization [7] to deform the explicit mesh and consequently the implicit one.

Figure 4.1: Converting an explicit surface into an implicit surface. Top row: From left to
right: initial explicit mesh facet, triangulated mesh, and deformed mesh. Middle
row: Explicit mesh converted into an implicit one using spherical primitives.
Bottom row: Explicit mesh converted using triangular primitives.

Our contribution is therefore an approach to surface reconstruction that allows to take an
arbitrary explicit surface model of any complexity, for example one that has been obtained
from the web and was not designed with fitting in mind, turn it into an implicit surface,
and deform it to obtain an optimal fit to image-data. Because the implicit surface closely
approximates the explicit one, we can keep the deformed explicit mesh and use it instantly
for rendering.

In the remainder of the chapter, we introduce our approach to creating implicit meshes
and deforming them. In more details we describe construction of spherical and triangular
implicit meshes, their smoothing and shape control.
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4.1 Implicit Mesh Models

4.1 Implicit Mesh Models

To create an implicit mesh that can deform in tandem with an explicit one, we define an im-
plicit surface that closely approximates the explicit shape and whose deformations depend
only on the motion of the explicit mesh vertices.

To this end, we attach a volumetric primitive, or metaball, to each facet. This can be done
in two different ways. The simplest is to use spherical primitives, such as those depicted
by the middle row of Fig. 4.1, which are only adapted to fairly regular and high resolution
meshes. A more sophisticated approach requires using the triangular metaballs depicted
by the bottom row of Fig. 4.1, which are more complex but can be used to accurately
approximate arbitrarily low-resolution or irregular meshes. We describe these two kinds of
metaballs, and implicit meshes created from them, in more detail below.

m1

m2

reg1

reg2

reg4

reg5

reg7

n=m3

reg3

y

x
z

reg6

P3

P2

P1

(a) (b)

Figure 4.2: Triangular facet enclosed with the (a) Spherical metaball and (b) Triangular
metaball, labeled according to the Eqs. 4.1 and 4.6.

4.1.1 Spherical Implicit Meshes

A spherical metaball [61] is created by circumscribing a spherical primitive around a facet
in such a way that the sphere center Ci lies on the facet and corresponds to the center of
the circumscribed circle around the facet, as shown in Fig 4.2(a). For facet Fi, it defines a
potential field that can be expressed as:

fi(x) = exp(−k(di(x)− ri)) , (4.1)

where x is a 3–D point, di(x) is the Euclidean distance of x to Ci, ri is the radius of the
spherical metaball, and k is a parameter that controls the smoothness of the overall implicit
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surface and will be discussed below. Ci is determined from:

Ci =
3Gi(P1, P2, P3)−Hi(P1, P2, P3)

2
, (4.2)

where Gi is facet’s center of gravity, and Hi its orthocenter, both defined by the facet’s
vertices P1, P2 and P3. We can then write

di(x) = ‖(x−Ci)‖ , (4.3)

ri = ‖(P1 −Ci)‖ . (4.4)

Note that both Ci and ri depend only on the positions of the facet vertices.
The implicit mesh is taken to be an isosurface of the sum of all these potential fields.

Formally, this isosurface is the set of 3–D points x ∈ R3 that satisfy

F (x) = T −

N
∑

i=1

exp(−k(di(x)− ri)) = 0 , (4.5)

where T is an arbitrarily chosen isovalue. Usually we take T to be one, so that all points
on the surface have a zero potential field value, the values smaller than zero are inside
and those greater than zero outside. Given the fact that each separate exponential field
function decreases quickly, when the model is close enough to the data, we can speed up
the computation by introducing an adaptive threshold t on the distance above which the
function does not need to be evaluated as depicted in Fig. 4.3.

The isosurface is approximately parallel to the mesh on both sides and encloses the vol-
ume shown in gray in the middle row of Fig. 4.1. Its thickness is a function of the ri radii
of the metaballs attached to the individual facets, and therefore of their sizes. As shown in
Fig. 4.3, for values of k greater than one, the exponential drops fast and the individual meta-
balls have influence only over a relatively short range. As a result, the isosurface closely
follows the shape of the metaballs and can be very bumpy if the facets are irregular. For
values of k smaller than one, the metaballs tend to blend into each other, which yields a
smoother but thicker isosurface. The first is desirable but the second can result in the prob-
lems depicted by Fig. 4.5. In practice, we found that by setting k to values around 1.0 both
requirements are fulfilled.

Because the spherical metaballs are circumscribed around the facets their radius ri de-
pends on the size of the triangle. As shown in the second row of Fig. 4.1, as long as
the explicit mesh is relatively regular or high resolution, this yields a valid approximation.
However, because large facets produce large primitives, the approximation becomes much
less accurate as the facets of the explicit mesh increase in size. When dealing with low
resolution irregular meshes, such as the one of Fig. 4.4(a), elongated facets produce an im-
plicit surface that enclose a volume whose thickness can change dramatically, as shown in
Fig. 4.4(b).

Up to a point, that can be remedied by refining the mesh as shown in the bottom row
of Fig. 4.4(a), so that it consists of many smaller size facets and produces the better ap-
proximation as depicted in Fig. 4.4(b). However, this results in a substantial computational
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Figure 4.3: Exponential potential field function of one metaball, showing how the smooth-
ing parameter k controls the range of influence of the primitive and, thus, the
amount of smoothing.

cost increase. Furthermore, the volume enclosed by the isosurface remains relatively thick,
unless the facets are made to be even smaller, which would become prohibitively expensive.

4.1.2 Triangular Implicit Meshes

To solve these problems, and create implicit surfaces that more closely approximate arbi-
trary meshes, we can replace the spherical metaballs by triangular ones [61], such as those
depicted by the bottom row of Fig. 4.1.

This is done by replacing the Euclidean distance to the facet’s center of Eq. 4.3 by a
distance d(x) that more closely approximates the orthogonal distance to the whole facet.
We could, of course, take d(x) to simply be the orthogonal distance to the facet plane but
that would mean that all points on that plane have a zero distance, no matter how far they
are from the facet. Instead, we define d(x) as a piecewise-polynomial function as follows.

For a given facet Fi, we compute the partition of the plane it defines in the seven regions
depicted by Fig. 4.2(b). Given a point x ∈ R3, we compute its projection on the facet plane
and, depending in which region it falls, we take its distance to Fi to be

d(x) =















(

n•(x−P1)
‖n‖

)2
, x ∈ reg1

‖(x−Pi)•e‖
2

‖e‖2 , x ∈ reg2, reg3, reg4

‖x−Pi‖
2 , x ∈ reg5, reg6, reg7

(4.6)

When the 3–D point x projects inside the facet, it falls within reg1 and d(x) is simply the
squared orthogonal distance to the facet plane, expressed in terms of its normal n and vertex
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(a) (b) (c) (d)

Figure 4.4: Conversion of low and high resolution explicit meshes to implicit ones. (a) Low
and high resolution meshes. (b) Corresponding implicit surfaces created using
spherical metaballs. The volume enclosed by the implicit surfaces is shown
transparent. (c) Corresponding implicit surfaces created using triangular meta-
balls. The enclosed volume is still shown transparent but, for both the low and
high resolution meshes, the implicit surface is now so close to the explicit one
that it is almost impossible to see at this resolution. (d) Magnified view so that
the small difference between the implicit and explicit meshes, which is a func-
tion of the d0 parameter of Eq. 4.7, becomes visible.

P1. If x projects outside of the facet but in the bands perpendicular to the edges, it falls
within regions reg2, reg3 or reg4 and d(x) becomes the squared Euclidean distance from
the closest edge passing respectively through Pi ∈ {P2, P1, P1} whose direction is given
by vector e ∈ {P1P2, P1P3, P2P3} respectively. In the remaining cases, the projection falls
within regions reg5, reg6 or reg7 and d(x) is taken to be the Euclidean distance to the
closest vertex Pi ∈ {P2, P3, P1}.

Fig. 4.6(a) depicts d(x) for a standardized facet lying in the z = 0 plane with vertices
P1 = {0, 0, 0}, P2 = {1, 0, 0} and P3 = {0, 1, 0}. Note that on the surface of the triangle
distance is uniformly zero while along the edges and at the vertices, we find well-behaved
parabolas that blend smoothly.

Note that the distance of a point to a facet’s edge that appears on the second line of Eq. 4.6
is the cylindrical distance to that edge. Similarly, the distance to a vertex that appears on the
third line of Eq. 4.6 is the spherical distance to that vertex. Intuitively, a triangular metaball
can be understood as being made of two planes, one on each side of the explicit facet, that
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(a) (b) (c) (d)

Figure 4.5: Relationship between the accuracy of the approximation and the quality of the
fitting results. (a) An explicit mesh is approximated using spherical metaballs,
which results in an implicit surface of a certain thickness. (b) If the original
mesh intersects the data represented by small circles, different sides of the im-
plicit surface may become attracted to the data, resulting in a poor fit. (c,d)
Using triangular primitives yields a much thinner implicit surface and a much
improved fit.

blend seamlessly with three implicit cylinders whose axes are aligned with the edges at
three implicit spheres centered at the vertices. The cylinders and spheres are represented
by dotted lines in Fig. 4.2(b). Latter we formalize this observation in terms of a matrix
representation. In Appendix 9.1, we then use this representation to give a formal proof that
the distance of Eq. 4.6 is C1 with respect to the 3–D coordinates of both the vertices and
the x data points.

Finally, the distance function can be incorporated in the same potential field function as
the one used for spherical metaballs

fi(x) = exp(−k(di(x)− d2
0)) , (4.7)

where d0 represents the constant thickness of the implicit surface and replaces the variable
spherical radii ri of Eq. 4.1. Fig. 4.6(b,c,d) depicts the potential field function of Eq. 4.7 for
different values of smoothing parameter k ∈ {0.5, 1.0, 2.0}. In this case, potential filed for
the points projecting on the facet (reg1 of Fig. 4.2(b)) has constant values greater then zero,
that results in function parallel to the facet plane at the height exp(kd2

0). The overall shape
of the function is similar to the one of the distance function, but has different scale over the
z-axis. Again, the total field is the sum of the individual metaballs fields, which yields the
final expression of the implicit surface as the set of points x ∈ R3 such that

F (x) = T −
N
∑

i=1

exp(−k(di(x)− d2
0) . (4.8)

Note that now, unlike in the case of spherical metaballs, the behavior of the potential field
has become independent from facet sizes and mesh resolution. It only depends on the C 1

distance function d(x) and the d0 and k parameters of Eq. 4.7 over which we have full
control.
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Figure 4.6: (a) Distance function of Eq. 4.6 and (b) potential field function of Eq. 4.7 with
different values of parameters k = {0.5, 1.0, 2.0}, for one facet laing in xy-
plane and fixed z coordinate.

As shown in Fig. 4.4, this lets us approximate arbitrary meshes much more closely,
no matter how irregular they may be. As a result, the fitting failure mode depicted by
Fig. 4.5(a,b) can now be overcome. As shown in Fig. 4.5(c, d), if d0 is taken to be small
enough, it does not really matter to which side of the implicit surface the data is closest
because its thickness has become negligible.

4.1.3 Smoothing the Triangular Implicit Meshes

In practice, both the d0 thickness and k smoothing parameters of Eq. 4.7 influence the
smoothness and accuracy of the implicit mesh. To illustrate this, we computed zero level-
sets around the three 2–D line segments aligned along the x-axis using a 2–D version of the
distance function of Eq. 4.6. In Fig. 4.7(a), we plot the zero level-sets for fixed d0 = 0.1 and
varying k, and in Fig. 4.7(b) for fixed k = 20.0 and varying d0. Increasing d0 or decreasing
k tends to smooth the implicit surfaces, but thickness of the volume they enclose becomes
huge, which is highly undesirable as depicted in Fig. 4.7(a,b). Our goal is therefore to find
the best possible compromise between accuracy and smoothness as a function of k and d0.
To quantify the influence of these two parameters, we introduce quantitative measures of
smoothness and accuracy that both depend on the thickness of the volume enclosed by the
implicit mesh.
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Figure 4.7: Top row: Zero level-sets of three unit line segments aligned along x-axis for (a)
d0 = 0.1 and varying k from 0.1 corresponding to the outer level-set, to 10.0 ,
corresponding to the inner level-set. (b) k = 20.0 and varying d0 from 0.0 for
the inner level-set to 0.1 for the outer level-set. Bottom row: Smoothness and
accuracy as a function of the k parameter. (c) Surface waviness and (d) surface
thickness as a function of k for different values of d0.

• Surface waviness: Average ratio of minimal and maximal volume thickness evalu-
ated respectively at the center of gravity of the facets and at their vertices:

w(k, d0) =

1
Nf

∑Nf
i=1 df

i

1
Nv

∑Nv
i=1 dv

i

=

1
Nf

∑Nf
i=1 ‖x

cn
i (k, d0)− x

cg
i ‖

1
Nv

∑Nv
i=1 ‖x

vn
i (k, d0)− xv

i ‖

• Surface thickness: Average volume thickness measured at the same locations as
those used to evaluate waviness:

t(k, d0) =
1

Nf

Nf
∑

i=1

‖xcn
i (k, d0)− x

cg
i ‖+

1

Nv

Nv
∑

i=1

‖xvn
i (k, d0)− xv

i ‖
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where xcn
i , F (xcn

i ) = 0 , is a point of the minimal volume thickness of the implicit mesh
measured from the facet center of the gravity x

cg
i , and xvn

i , F (xvn
i ) = 0, is a point of the

maximal volume thickness of the implicit mesh measured from the mesh vertex xv
i , and

Nf, Nv being a number of facets and vertices respectively.
In Fig. 4.7(c,d), we plot these values as a function of k for different values of d0 in the

case of the explicit mesh of Fig. 3.2(b). The behavior if entirely consistent with the 2–D
case depicted by the top row of Fig. 4.7. For each value of d0 the waviness of Fig. 4.7(c)
tends towards one when k is increased which means that the bulges disappear. However,
the higher the value of d0, the faster it goes to one. Similarly, as can be seen in Fig. 4.7(d),
the thickness is large for small values of k and asymptotically approaches d0 for huge ones.
In practice, we constrain d0 to be less then 10% of the average edge length and seek values
of d0 and k such that

w(k, d0) > 1.0− wmax , (4.9)

t(k, d0) < d0 + tmax , (4.10)

where wmax and tmax are two user specified thresholds, and for which k appears to be
minimal. This is important since choosing the high values for k will satisfy both conditions,
however such huge values of k will quickly cut off the influence of the potential field and
eliminate potential inliers. Note that for generic models such as the ones of Fig. 3.2(b), this
computation needs only be performed once and the optimal values of k and d0 stored and
reused for all subsequent fits to image data.

Formally, the proposed algorithm can be formalized as follows:

Algorithm 1 Determining optimal value of k and thickness d0 parameters
Require: Mesh,max_k, Step_d0, Step_k,wmax, tmax

Return: kmin, df
0

m_res←MeshRes(Mesh) {MeshRes returnes mesh’s average edge length}
min← + inf
for d0 = 0.0 to 0.1 ∗m_res step d0+ = Step_d0 do

for k = 0.01 to max_k step k+ = Step_k do
if w(k, d0) > 1− wmax then

if t(k, d0) < d0 + tmax then
K = k,D = d0

end if
end if

end for
if K < min then

min← K, kmin ← K, df
0 ← D

end if
end for
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(a) (b) (c)

Figure 4.8: Implicit mesh for fixed d0 = 0.75 and (a) k = 0.01, (b) k = 5.0, (c) k = 10.0
whose measured waviness and thickness values are shown in Fig. 4.7(c, d).

In order to demonstrate it on the real 3–D example of highly irregular mesh, we depicted
how smoothness constant k influences quality of the approximation. In Fig. 4.8 we depicted
implicit meshes for different values of the smoothness constant k = {0.01, 5.0, 10.0} and
fixed value of thickness constant d0 = 0.75, that actually correspond to the quality measure
graphics of Fig. 4.7(c, d). Our algorithm computed the best values for k = 10 and d0 =
0.75.

4.1.4 Matrix Representation of the Triangular Metaballs

As discussed in Section 4.1.2 a triangular metaball, can be understood as being made of
two planes, one on each side of the explicit facet, that blend seamlessly with three implicit
cylinders whose axes are aligned with the edges and three implicit spheres centered at the
vertices as shown in Fig. 4.2.

For a given facet Fi with vertices {P1,P2,P3}, let us consider a local coordinate frame
attached to it, with its origin at one of the vertices and x-axis aligned with one of the edges.
It can be represented in matrix form as

M =

[

m1 m2 m3 P1

0 0 0 1

]

=

[

A c

0 1

]

, A =
[

m1 m2 m3

]

3x3
, c = P1,

where m1,m2 and m3 are axes of the local coordinate frame, with m1 being aligned with
the x-axis, and m3 being the facet’s normal. A point xl in the local coordinate frame
is converted to point xg = Mxl in the global coordinate frame. Let Tr = M−1 =
[

AT −Ac

0 1

]

be the inverse of M . So, a point xg in the global coordinate frame is

converted to point xl = Trxg in the local coordinate frame.
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The coordinates of P1 are a function of the displacements of the control points and
therefore of the state vector S of Eq. 4.12. Let n(S) = [n1, n2, n3] be the facet normal,
which also is a function of S, and let xT =

[

x1 x2 x3 1
]

be the 3–D point in space
for which the distance is computed. The distance function of Eq. 4.6 can now be expressed
in matrix form as

d(x,S) =







dp(x,S) = xT L1L2x , x ∈ reg1
dc(x,S) = xT T T

r LcTrx , x ∈ reg2, reg3, reg4
ds(x,S) = xT T T

r LsTrx , x ∈ reg5, reg6, reg7
(4.11)

where

L1(S) =









n1 0 0 0
0 n2 0 0
0 0 n3 0
0 0 0 −nT •P1









and L2(S) =









nT | − n • P1

nT | − n • P1

nT | − n • P1

nT | − n • P1









are matrices that define the plane. Similarly, the matrices

Lc =









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









and Ls =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









respectively define a cylinder aligned with the x-axis in the global coordinate frame and a
sphere centered at the origin of the global coordinate frame.

Such matrix representation gives us an elegant and compact expression of the distance
function. Its main advantage is easy derivative computation and its still compact represen-
tation. Although, matrix multiplication is expensive operation it is less complex to compute
derivatives using matrix notation and for direct distance calculation to keep initial analyt-
ical expression of Eq. 4.6. The derivative computation will be addressed in the chapter
concerning our optimization framework.

4.2 Deforming Implicit Meshes

The shape of the implicit meshes of Section 4.1 depends only on the position of the 3–
D vertices of the corresponding explicit meshes. In theory, for fitting purposes, we could
optimize the shape with respect to the x, y, and z coordinates of these vertices. However,
in this case number of parameters can be very big and because image data is very noisy,
we would end up with ill posed optimization problem. Instead, we show how we can
use Dirichlet Free Form Deformations [84] to parameterize the surfaces, both explicit and
implicit, in terms of the positions of a much smaller number of control points. The same
can be said for any other potentially used parameterization.
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In other words, for any given set of the shape parameters, the overall surface shape is
entirely described by the state vector

S = [a1, . . . , an] (4.12)

formed by concatenating those parameters. In case of DFFD the state vector is composed
of the displacements of all the control points with respect to their original positions. For
PCA face models it is composed of PCA coefficients.

To deform an implicit surface created using either spherical or triangular metaballs, it
is sufficient to change the parameters that define the shape of the primitives. Let us first
consider one single facet and its attached spherical or triangular metaball. A spherical
primitive is defined by the distance function of Eq. 4.1 and the ri radius, which is a function
of the vertex positions. Similarly, a triangular metaball is defined by the distance function of
Eq. 4.6 and the d0 thickness parameter. In both cases, because the positions of the vertices
can be expressed as the weighted linear combination of Eq. 3.3 of the control points of
displacements, or PCA coefficient, the distance functions d(x) of Eqs. 4.1 and 4.6 depend
not only on x, the 3–D coordinates of the point whose distance is evaluated, but also on
the control points. We therefore rewrite the distance function of Eq. 4.6 and Eq. 4.3 so to
depend on state vector parameters of Eq. 4.12 like:

d(x) = d(x,S) , (4.13)

where S is the state vector of Eq. 4.12.
As a consequence, when considering all the facets together, we can also rewrite the field

potential functions F of Eqs. 4.5 and 4.8 that define the implicit mesh. When using trian-
gular metaballs, F becomes

F (x,S) = T −

N
∑

i=1

exp(−k(di(x,S) − d2
0)) , (4.14)

where x is a point in R3 and di is the distance to facet i defined by Eq. 4.13. Similarly, for
spherical metaballs, we write

F (x,S) = T −
N
∑

i=1

exp(−k(di(x,S)) − ri(S))) , (4.15)

since ri also is a function of the vertex positions.
In this fashion, we have parametrized both the explicit and the implicit surface in terms

of the S state vector. As discussed in the following section, this will allow us to deform both
representations in tandem to fit the corresponding surface to image data by minimizing a
differentiable objective function.
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4.3 Summary

We have presented an approach to combining explicit and implicit surface representations
that allows us to take advantage of the strengths of both. To this end, we have developed a
technique for creating implicit meshes from explicit ones by attaching triangular or spher-
ical primitives to their facets. These primitives are defined in such a way that their shape
depends only on the 3D location of the mesh vertices, which will allow us to simultaneously
fit both representations to image data by minimizing a differentiable objective function. We
also showed how this representation can be efficiently controlled by any set of parameters,
which control the underlying explicit mesh, for example by a set of DFFD control points of
Chapter 3. The compact matrix formulation of triangular implicit mesh is given, announc-
ing that it can be used for elegant derivative computation.
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In this chapter, we introduce a framework we have developed to fit generic models such as
ones of Fig. 3.2(a,c) to noisy data. Our goal is to deform such surfaces—without changing
the connectivity of their vertices—so that it conforms to the image data, which here comes
both, in the form of 3–D point clouds from stereo and 2–D silhouette points from occluding
contours. Latter, in the following Chapter 6, we introduce the use of interest points in our
optimization framework. To highlight the capabilities of our implicit meshes, we will per-
form the fitting using either the implicit or explicit representations in order to compare the
results. This framework is used both for 3–D reconstruction and tracking of 3–D nonrigid
motion of deformable objects. In case of our implicit meshes, using silhouettes is much
more efficient than the classical way of using silhouettes with explicit polygonal meshes.
The generic models we use can be parameterized differently. In this chapter we express
their deformations in terms of the state vector S of Eq. 4.12. In practice this state vector
contains DFFD control points, PCA coefficients or directly vertex coordinates of the model.

We start with a brief description of stereo and silhouette data retrieval. After, we ad-
dress objective functions used for fitting implicit meshes and explicit surfaces to those
data. Weighting data observations and their attachment to the generic model are further
discussed, and a regularization of our optimization procedure is explained in details. In the
end derivatives computation will be also addressed, where we especially want to demon-
strate valuableness of the matrix notation used to express triangular implicit mesh distance
function.

5.1 Stereo

Fig. 5.1(a,b,c) depicts three frames from uncalibrated video sequence. In this cases, as in
all following once, we had no calibration information about the camera or its motion. We
therefore used a model-driven bundle-adjustment technique [47] to compute the relative
motion and, thus, register the images. The generic models of Fig. 3.2 are used in the bundle-
adjustment procedure. They are initialized on one image where the subject is facing the
camera. It is done according to, at least five, manually provided feature points that can be
some of those provided in Fig. 5.1(b). We then used a simple correlation-based technique
of [46] to derive the clouds of 3–D points depicted by Fig. 5.1(d,e,f). Those data points are
centers of the local surface patches fitted to the raw stereo data and they are used, in part, as
an input to our surface fitting algorithm. Because we used fewer images and an automated
self-calibration procedure as opposed to a sophisticated manual one, the resulting cloud of
3–D points is much noisier and harder to fit. In some of our examples we used a more
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sophisticated max-flow stereo algorithms [96] to produce high quality stereo data.

Figure 5.1: Uncalibrated video sequence: Top row: Three images from the uncalibrated
video sequence out of eight images. In the middle image 2D manually provided
feature points, where some of them are used for initialization, are depicted.
Bottom Row: Data points obtained as centers of local surface patches fitted to
the raw stereo data.

5.2 Silhouettes

When we talk about silhouettes we think about the contours in the image that represent
projection of the object occluding contours. First we draw manually, an outline in whose
proximity there is a silhouette. In the top row of Fig. 5.2 we depicted initially outlined
contours. Such contours are used as an initial guess for already well known, active contour
algorithm of [70]. After the convergence of the algorithm we obtained good outlines that
represent the projection of the subject’s occluding contour. Sometimes, as depicted in the
right end image of Fig. 5.2, the snake algorithm diverges especially in the presence of the
strong edges around the potential silhouettes. To remedy this problem, fine tuning of the
snake algorithm parameters is required together with providing a new initial guess. This
way of providing silhouettes might be justified in case of short video sequences. However,
when we want to extensively use silhouettes for tracking of the nonrigid motion and for
more precise and error prone silhouette detection, we need a more sophisticated mechanism.
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Figure 5.2: Silhouette detection using active contours: Top row: Manually outlined initial
guesses used as an input for snakes algorithm. Bottom row: Final silhouette
contours after the snake algorithm converged. Note that in the last image snake
was attracted by the strong edges of the background.

This can be provided, thanks to the implicit meshes, and will be addressed in the following
chapter. In this chapter we will concentrate on fitting to the manually provided silhouette
contours, that take advantage of differentiable properties of the implicit meshes.

Their usage of once detected 2–D silhouette contours, will heavily depend on the generic
model and its properties. In case of the explicit meshes, one has to search for the silhouette
facets on the model, and use them in the fitting framework. On the other hand, the implicit
meshes provides more elegant way of handling silhouettes. We will discuss separately both
contexts of using silhouettes, compare them and highlight their differences.

5.3 Objective Functions

The generic models, such as once of Fig. 3.2(a,c), can be used as explicit polygonal meshes
or as implicit meshes. In order to demonstrate power of implicit mesh representations we
compare fitting both representations to noisy data. Since we are using data sources that are
different by its nature, such as stereo and silhouettes, we are going to associate separate
objective functions corresponding to each type of the observation. However, since we want
to put all of them together in a common fitting framework, we have to guarantee that their
influences are commensurate. Generally, all our objective functions minimizes the squares
of distances in a least-square sense. For that purpose we use Levenberg-Marquardt least
square algorithm.

In this section we continue with objective functions for implicit and explicit meshes. We
associate a particular objective function for each data type, including stereo and silhouette
data.
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5.3.1 Objective Function for Implicit Meshes

In the case of implicit meshes, we use the image data to write nobs observation equations
of the form

Obs(xj ,S) = T − F (xj ,S) = εi , 1 ≤ j ≤ nobs , (5.1)

where F is the field function of either Eq. 4.14 or 4.15, xj one of the data points, S the
state vector of Eq. 4.12, T is a given isovalue, and εi the corresponding residual. εi is the
algebraic distance to the implicit mesh and should be as small as possible. Fitting therefore
implies minimizing

χ2 = ObsT (S)WObs(S) (5.2)

where Obs(S) = [ε1, . . . , εnobs
] is the vector of residuals and W a diagonal weight matrix

associated to the observations. In practice, our system must be able to deal with observa-
tions coming from different sources. To guarantee that their influences are commensurate,
we assign a weight wtypei

to each kind of observation, where typei is the nature of the
observation, and minimize

χ2 = 1/2
∑

wtypei
ε2
i , (5.3)

where the wtypei
are chosen so that the contribution to the objective function gradients of

all the observations of a particular kind are of similar magnitudes [47] and it is explained
bellow.

5.3.1.1 Stereo Data

As already said, we use either a simple correlation-based technique [46] or a more sophis-
ticated max-flow stereo algorithms [96] to compute potentially noisy clouds of 3–D points.
Each one is used to produce one observation of the kind described by Eq. 5.1 and can be
written as follows for spherical implicit meshes:

Obsstereo(xj ,S) = T − F (xj ,S) = T −

N
∑

i=1

f(di(xj ,S), ri(S)) = εj , 1 ≤ j ≤ nobs

(5.4)
where f is exponential field function of each primitive, di(xj ,S) is a Euclidean distance

of the observation xj to the implicit surface depending on the state vector S, and ri(S)
is a radius of the spherical metaball that also depend on the state vector S that is directly
responsible for the surface shape. In case of the triangular implicit mesh the objective
function can be written like:

Obsstereo(xj ,S) = T − F (xj ,S) = T −

N
∑

i=1

f(di(xj ,S)) = εj , 1 ≤ j ≤ nobs (5.5)

Note that in this case the shape of the implicit surface does not depend on the size of
the facets. Minimizing the corresponding residuals tends to force the fitted surface to be
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as close as possible to these points. The distance function is an algebraic distance between
the 3–D data points and the implicit part of the implicit mesh. Finally, the explicit part
of the implicit mesh will be accepted as a final result, even thought it is placed on the
distance equal to the average implicit mesh thickness. This is because, that thickness is
chosen to be very small, thanks to the good approximation by the implicit part. In this way
it is not necessary to additionally convert implicit surface for the rendering purposes, which
significantly saves computation time necessary for visualization of the results. This is true
for triangular implicit meshes, while for spherical implicit meshes it is different. To obtain
the final result in this case, the explicit mesh inside has to be additionally extruded, so to
align to the parallelly placed implicit envelope.

The properties of the chosen distance function allow the system to naturally deal with
outliers and to converge even from rough initializations or estimates. The smooth shape
of the inverted exponential that is used in our field function is responsible for both effects.
Because it approaches zero asymptotically, distant data points have an influence, which
helps if the initial position is inaccurate, but it is limited. As a result, outliers are naturally
ignored because their contribution is dwarfed by that of inliers.

5.3.1.2 Silhouette Data

For each instance of the state vector S ∈ R, we define the implicit surface as a part of
implicit mesh like:

L(S) =
{

x ∈ R3, F (x,S) = T
}

(5.6)

Given the line of sight Slj defined by a silhouette point ej in the image and the camera
center c, let xj be the point along this line of sight where it is tangential to L(S). By
definition, xj satisfies two constraints

1. The point is on the surface, therefore F (xj ,S) = T ;

2. The normal nj(S) = [∂F
∂x

, ∂F
∂y

, ∂F
∂z

] to L(S) is perpendicular to the line of sight Slj
at xj , therefore nj(S) • Slj = 0.

We integrate silhouette observations into our framework by performing an initial search
along the line of sight Slj to find the point xj that is closest to the model in its current con-
figuration, which by construction satisfies the second constraint. We can distinguish three
cases for the search along the line of sight depicted in the Fig. 5.3(a, b, c). In Fig. 5.3(a) line
of sight does not intersect implicit surface at all, while in Fig. 5.3(b,c) it intersects implicit
surface. Since the implicit surface is created as an envelope around the explicit mesh, it
appears to be double-sided. In Fig. 5.3(b) line of sight completely passes two times thru
both sides of the implicit surface. On the other hand in Fig. 5.3(c) goes only thru the outer
side of the implicit surface. In order to speed up our search, we create the bounding box
around the object, and find intersection of the lines of sights with the front and back planes
of the bounding box. Then the search is performed between those intersection points. The
search is simple evaluation of the values of the potential field function of sampled points
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Figure 5.3: Silhouette point search for the implicit mesh: (a) Line of sight does not intersect
implicit surface. (b) Line of sight completely passes two times thru both sides
of the implicit surface. (c) Line of sight goes only thru the outer side of the
implicit surface.

that lay on the line of sight and are distributed at the certain step distance one from each
other. Potential field function will return positive values for the points outside the implicit
mesh, whose values will approach zero when they approach the iso-surface of the implicit
surface, and then become negative when they are inside of the implicit surface. There are
two ways of selecting the closest point to the model: one applies to the cases of Fig. 5.3(a,b)
and the point xj with the smallest positive potential filed value is selected, and the other
applies to the case of Fig. 5.3(c) where the point with the biggest negative potential field
value will be selected.

This selected point is used to add one of the observations described by Eq. 5.1 and mini-
mizing the corresponding residual tends to enforce the first constraint, in the same manner
as it is done for the stereo observations and is represented like:

Obssilh(xj ,S) = T − F (xj ,S) = T −
N
∑

i=1

f(di(xj ,S)) = εj, 1 ≤ j ≤ nobs (5.7)

Note that, as the model changes shape, xj must move along the ray to remain the point
that is closest to the model. During optimization, this must be taken into account when
evaluating the derivatives of the residual because the xj term has now become a function
of S, and has to be expressed as xj = xj(S). As discussed bellow, this involves evaluating
the first and second order derivatives of F .

To exploit this constraints in a least-square context one must compute:

∂F (x(S), y(S), z(S),S)

∂s
=

∂F

∂x

∂x

∂s
+

∂F

∂y

∂y

∂s
+

∂F

∂z

∂z

∂s
+

∂F

∂s
, s ∈ S (5.8)

which requires the computation of ∂x
∂s

, ∂y
∂s

and ∂z
∂s

. These can be derived as follows. The
line of sight is tangential to the surface at , therefore
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(

∂F (x(S),S)

∂x
,
∂F (x(S),S)

∂y
,
∂F (x(S),S)

∂z

)

• Slj = 0

Differentiating that with respect to S yields:

0 = ( ∂2F
∂x∂x

, ∂2F
∂x∂y

, ∂2F
∂x∂z

) • Sl(S)∂x
∂s

+( ∂2F
∂x∂y

, ∂2F
∂y∂y

, ∂2F
∂y∂z

) • Sl(S)∂y
∂s

+( ∂2F
∂x∂z

, ∂2F
∂y∂z

, ∂2F
∂z∂z

) • Sl(S)∂z
∂s

+( ∂2F
∂x∂s

, ∂2F
∂y∂s

, ∂2F
∂y∂s

) • Sl(S)

(5.9)

Furthermore, x(S) = [x(S), y(S), z(S)]T is constrained to move along the line of sight,
therefore:

N1x
∂x

∂s
+ N1y

∂y

∂s
+ N1z

∂y

∂s
= 0 (5.10)

N2x
∂x

∂s
+ N2y

∂y

∂s
+ N2z

∂y

∂s
= 0 (5.11)

where N1 = [N1x, N1y, N1z]
T and N2 = [N2x, N2y, N2z ]

T are two additional vec-
tors such that N1, N2, Slj form an orthogonal referential. Equations 5.9, 5.10, 5.11
are three linear equations in three unknowns ∂x

∂s
, ∂y

∂s
and ∂z

∂s
that can thus be computed.

∂F (x(S),y(S),z(S),S)
∂s

can then be derived using the chain rule of Eq. 5.8.
This approach to taking silhouette information into account does not require us to search

for specific facets and imposes no restriction on the topology and complexity of the triangu-
lated model we use. We will see below that such is not the case when using explicit meshes
as opposed to implicit ones. However, such search is computationally expensive since it
has to be performed after each iteration step of one optimization. In the next chapter we
will discuss how implicit meshes can be used for efficient silhouette detection, and facilitate
their use for monocular tracking and 3–D reconstruction.

5.3.2 Objective Functions for Explicit Meshes

For comparison’s sake, we have also implemented an objective function that lets us fit an
explicit mesh to the same stereo and silhouette data, but without using the implicit surface
formalism we advocate. This objective function is similar to the one of Eq. 5.1, except
for the fact that we must compute differently the εj residuals that appear in the χ2 term of
Eq. 5.3. As in Section 5.3.1, we distinguish between stereo and silhouette data, so here, we
will go down the same line.
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(a) (b)

Figure 5.4: Non-differentiability of the distance function used to fit an explicit mesh to a
cloud of 3–D points. (a) A data point xj is initially closest to the P1, P2, P3

facet. (b) After a certain number of iterations, the mesh has deformed and xj is
now closer to the P2, P3, P4 facet. Accounting for this change in the objective
function results in non-differentiability.

5.3.2.1 Stereo Data

For a 3–D data point xj , we replace the algebraic distance of Eq. 5.4 or Eq. 5.5 by the
orthogonal distance to the “closest” facet

Obsster(xj ,S) =
n(S) • (xj − p(S))

‖n(S)‖
= εstereo

j , (5.12)

where n(S) is a vector normal to the facet and p(S) one of its vertices.
Here we take the closest facet to be one of those that defines a triangular cylinder that

contains xj and, if no such facet exists, we simply ignore the data point. As shown in
Fig. 5.4, as the optimization progresses and the facets move, the closest facet may change,
which introduces non-differentiabilities if taken into account.

5.3.2.2 Silhouette Data

Given a silhouette point, we look for a triangulation facet that is almost parallel to the line
of sight it defines and such that there is a 3–D point along this line for which the distance
of Eq. 5.12 is small. If such a facet exists, it projects almost edge-on and is therefore likely
to produce an occluding contour that goes through the silhouette point.

Let Sl be the unit vector that represents the direction of the line of sight. To enforce the
silhouette constraint, we search for the facet whose normal is almost perpendicular to Sl,
that is such that |n • Sl| ≤ ζ where ζ is a small constant, and along which there is a point x
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such that the distance of Eq. 5.12 is smallest. We use this facet and this point to define two
residuals

Obssilh(x,S) =
n(S) • (x− p(S))

‖n(S)‖
= εsilh

Obsnorm(x,S) = Sl • n(S) = εnorm

whose weighted sum of squares replace the corresponding silhouette terms in Eq. 5.3.
In addition to the non-differentiabilities that looking for the “closest” facet introduces

and that we discussed above, the main problem with this formulation is that these residuals
are critically dependent on mesh resolution and regularity. If the facets are irregular or
large where the surface slants away from the camera, it will be difficult to find appropriate
“silhouette” facets. This results in one of the poor results shown in Chapter 7, that are
corrected by replacing the explicit meshes by implicit ones.

5.4 Weighting Observations

As already mentioned, our system must be able to deal with many observations coming from
different sources that may not be commensurate with each other. Formally we minimize the
the weighted chi square error of Eq. 5.3. To ensure that these matrices are well conditioned
and that the minimization proceeds smoothly we multiply the weight wtypei

of the ntype

individual observations of a given type by a global coefficient ctypecomputed as follows:

Gtype =

q

P

1≤j≤nobs,i=type wtypej
‖∇Obsi(xj ,S)‖2

ntype

ctype =
λtype

Gtype
(5.13)

where λtype is a user supplied coefficient between 0 and 1 that indicates the relative
importance of the various kinds of observations. This guarantees that, initially at least, the
magnitudes of the gradient terms for the various types have the appropriate relative values.

5.5 Attaching Observations

Before fitting is started, data points coming either from stereo or silhouettes are associated
to the generic surface model. The way of attaching them to the model depends on the choice
of the model and will be separately explained for the implicit meshes and for the explicit
meshes.

5.5.1 Explicit Mesh Attachment

In case of explicit meshes it is important to associate each facet to its closest observation
point. The brute force approach would be to check each data point against all the facets, that
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is very slow. Instead we create a bounding box around the data and the surface model, and
voxelize it by subdivision in all three directions. Then to each voxel we associate the list
of facets, whose centers of the gravity are contained inside. After we take every data point,
find the voxel to which it belongs, and traverse the list of associated facets of that voxel
to verify to which of those facets, the data point normally projects and is on the minimal
distance from it. In this way, every data point will end up to have a closes facet, to which
it projects, attached to it. This approach dramatically shortens the search for the closest
facets.

5.5.2 Implicit Mesh Attachment

Remember, that the implicit mesh is created by associating volumetric primitives, such as
spherical or triangular metaballs to each triangular facet of the mesh. Also, each metaball
creates scalar potential field around it that has some influence. The iso-surface taken around
one metaball collects all the points in space where their potential is zero, but going further
from that iso-surface the potential field exponentially decreases until it reaches the given
threshold t of Eqs. 4.7, 4.1. In order to speed up the computation, we then associate to each
data point, those metaballs, i.e. facets, which influence that data point. It happens that most
of the metaballs in the proximity are attached, while the great majority that is far away is
not considered. The re-attaching is performed after each minimization. This is valid for
both triangular and spherical metaballs.

5.6 Regularization

Because there are both noise and gaps in the image data, we still found it necessary to in-
troduce a regularization term. This term depends on the underlying model that is used to
parameterize surface model representation that is used to represent the model of the object
we want to track or reconstruct. We have been using three different model parameterizations
including: DFFD transformation for upper body modeling and tracking, PCA based statis-
tical model for face reconstruction and directly surface model vertices for tracking paper
deformation. Each of them involves different regularization terms, which smooth overall
deformation. Bellow, we discuss those regularization and deformation energies they add to
the main energy function which we minimize.

5.6.1 DFFD Regularization

Since, we expect the deformation between the initial shape and the original one to be
smooth, this can be done by preventing deformations at neighboring vertices of the con-
trol mesh to be too different. This is enforced by introducing a deformation energy ED that
approximates the sum of the square of the derivatives of displacements across the control
surface. By treating the control triangulation facets as C 0 finite elements, we write
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ED = ∆t
xK∆x + ∆t

yK∆y + ∆t
zK∆z (5.14)

where K is a stiffness matrix and ∆x,∆y and ∆z are the vectors of the x, y and z coordinates
of the control vertices’ displacements. The term we actually optimize becomes:

E =

nobs
∑

i=nobs

wtypei
ε2
i + λDED

where λD is a small positive constant. In the Section 3.2.4 this is explained in details.

5.6.2 PCA Regularization

In case of face modeling where PCA face model [7] is used a small regularization term is
added to the total energy function. The function we actually minimize is therefore:

E =

∑nobs
i=nobs wtypei

ε2
i

σ2
N

+

99
∑

i=1

α2
i

σ2
Si

(5.15)

where the σSi
are the eigen values of the shape covariance matrix provided with the model [7]

and σN an initially large constant that progressively decreases. αi are PCA coefficients
defining the state vector S.

5.6.3 Triangular Mesh Regularization

Tracking deformable piece of paper involves a simple planar triangulation used as a model.
In this case the state vector S is composed of mesh vertices. To keep the deformations
physically plausible, we define a deformation energy that is the sum of two terms. The
first one represents the inextensibility of the paper by penalizing the variations of the dis-
tance between a vertex and its neighboring vertices, and the second one models the bending
stiffness of paper by constraining the curvature of the mesh that can be written as follows:

ED =

Nvert
∑

i=1

(
∑

vj∈Neighbors(vi)

wext(‖vi − vj‖ − L)2 + (5.16)

+
∑

(vj ,vk)∈Neighbors(vi)

wbend ‖2vi − vj − vk‖
2) (5.17)

where vj is one vertex of the mesh, Neighbors(vi) represents the set of all its neighbors,
L is a given initial edge length equal for the whole mesh and wext and wbend are two user
defined weights.
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5.7 Objective Function Derivatives

Since we concentrate on the implicit meshes, especially on the triangular implicit meshes,
we are going to present the derivatives computation of the objective functions concerning
matrix representation of the triangular metaballs. This representation appears to be com-
pact and elegant way of expressing function derivatives. For the sake of comparison, the
derivative computation when the matrix notation is not used, will be also outlined.

5.7.1 Derivatives Without Matrix Notation

We will consider just derivatives of potential filed function of one triangular metaball ex-
pressed by the Eq. 4.7. The derivatives of overall potential filed function is obtained by
summation of all individual potential field derivatives. First we compute the derivatives of
the potential filed function, which is complex function depending on the distance function
d(x,S) and state vector parameters S:

∂f

∂s
= −k

∂d(x,S)

∂s
exp−k(d(x,S)−d2

0
), s ∈ S

Now, we have to compute derivatives of the distance function of Eq. 4.6, which is com-
posed of seven distances. We will only consider the derivatives of the distance from the
points to plane, while the others, such as distance point to line and point to point are simi-
larly computed. The facet normal is common for all distance functions, which depends on
the facet vertices, and consequently on the model parameters:

n(S) = [nx(S), ny(S), nz(S)]T = (P2(S)− P1(S))× (P3(S)− P1(S))

In order to compute other derivatives, one have to compute derivatives of the normal in
respect to the model parameters:

∂n(S)

∂s
= (P2(S)−P1(S))×

∂(P3(S)− P1(S))

∂s
+

∂(P2(S)− P1(S))

∂s
×(P3(S)−P1(S))

Further, derivative of the distance point to plane are computed as follows:

∂d(x,S)

∂s
= 2

n(S) • (x− P1(S))

‖n(S)‖

(

∂(n(S)•(x−P1(S))
∂s

‖n(S)‖ + (n(S) • (x− P1(S)))∂‖n(S)‖
∂s

‖n(S)‖2

)

where the derivatives of the normal vector’s norm is:

∂ ‖n(S)‖

∂s
=

nx(S)∂nx(S)
∂s

+ ny(S)
∂ny(S)

∂s
+ ny(S)

∂ny(S)
∂s

√

nx(S)2 + ny(S)2 + nz(S)2
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Fitting to silhouettes requires also computation of the first and second order derivatives
in respect to the point coordinates and parameters. So, the derivatives of the potential field
in respect to the x coordinate are:

∂f

∂x
=

∂f

∂d

∂d

∂x
= −k exp−k(d(x,S)−d2

0) ∂d

∂x

∂2f

∂x∂x
= −k exp−k(d(x,S)−d2

0)

(

∂2d

∂x∂x
− k

(

∂d

∂x

)2
)

The other derivatives that has to be computed are:

∂2f

∂x∂y
,

∂2f

∂x∂z
,

∂2f

∂y∂x
,

∂2f

∂y∂y
,

∂2f

∂y∂z
,

∂2f

∂z∂x
,

∂2f

∂z∂y
,

∂2f

∂z∂z

∂2d

∂x∂x
,

∂2d

∂x∂y
,

∂2d

∂x∂z
,

∂2d

∂y∂x
,

∂2d

∂y∂y
,

∂2d

∂y∂z
,

∂2d

∂z∂x
,

∂2d

∂z∂y
,

∂2d

∂z∂z

Note that the overall complexity of the derivatives computation is increasing. If we use
matrix notation, as it will be presented bellow, this is much easier to handle.

5.7.2 Derivatives Under Matrix Notation

In this section we will relay on the Eqs. 4.11, representing distance function in a matrix
form of the triangular metaball. Derivatives of the potential field function are the same
as explained above, while the distance function derivatives computation becomes far more
easier. First we will show you the first order derivatives of the distance function in respect
to the model parameters:

∂dp(x,S)

∂s
= xT ∂L1(S)

∂s
L2x + xT L1

∂L2(S)

∂s
x

∂dc(x,S)

∂s
= 2xT T T

r (S)Lc
∂Tr(S)

∂s
x

∂ds(x,S)

∂s
= 2xT T T

r (S)Ls
∂Tr(S)

∂s
x

while first order derivatives over independent variables x, y and z are:

∂dp(x,S)

∂xi
=

∂xT

∂xi
L1L2x + xT L1L2

∂x

∂xi
= 2L1L2

∂x

∂xi
, L1L2 = (L1L2)

T

∂dc(x,S)

∂xi
= 2xT T T

r (S)LcTr
∂x

∂xi

∂ds(x,S)

∂xi
= 2xT T T

r (S)LsTr
∂x

∂xi
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Consequently, second order derivatives over coordinates are:

∂2dc

∂xi∂xj

= 2
∂xT

∂xj

T T
r LcTr

∂x

∂x
i

∂2ds

∂xi∂xj

= 2
∂xT

∂xj

T T
r LsTr

∂x

∂x
i

∂2dp

∂xi∂xj
= 2

∂xT

∂xj
L1L2

∂x

∂x
i

and over the parameters are:

∂dc

∂xi∂s
= 4xT TrTLc

∂Tr

∂s

∂x

∂xi

∂ds

∂xi∂s
= 4xT TrTLs

∂Tr

∂s

∂x

∂xi

∂dp

∂xi∂s
= 2xT

(

∂L1

∂s
L2 + L1

∂L2

∂s

)

∂x

∂xi

where everywhere ∂x

∂xi
= [x1, x2, x3, 0]

T , xi = 1, xk 6=i = 0. Note the compactness of the
expression obtained using this matrix representation. Finally, in order to speed up overall
computation, it is possible to compute distance using non-matrix notation, since matrix
multiplication seems to be expensive for distance computation, and use matrix notation for
computing derivatives that appears to be faster then direct derivatives computation as shown
in the previous section.

5.8 Summary

In this chapter we have given our optimization framework that takes advantage of stereo
and silhouette data, and compares implicit meshes against explicit surface representations.
We would like to stress efficacy of silhouette fitting in case of implicit meshes, where dif-
ferentiability of our surface representation delivered mathematically elegant framework of
handling silhouettes. We also showed the explicit surface weakness in terms of distance
function non-differentiability and silhouette handling. In the end we compared, brute force
distance function derivatives computation in case of using directly Euclidean distances,
and the elegant derivatives computation in case of using matrix formulation of the distance
function.
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Occluding contours are a key clue to recovering the shape of smooth and potentially de-
formable surfaces in monocular sequences and they have been used extensively for this
purpose. However, because extracting them reliably against potentially cluttered or chang-
ing backgrounds such as those of Fig. 6.1, is difficult, most of the published work involves
engineering the environment to make this task easier. In a previous chapter we demon-
strated how implicit meshes take advantage of occluding contours in sense of least-square
optimization. However, silhouettes were detected using manually initialized active contour
models, and finding corresponding object’s occluding contours required expensive search
along the lines of sights.

In this chapter, we show that representing generic 3-D surfaces as implicit meshes allows
us to automatically detect silhouettes in the images and to take advantage of occluding
contour constraints in more robust way. Furthermore, it also lets us effectively combine
silhouette information with that provided by interest points that can be tracked from image
to image. This is important because this may mean the difference between the ability or the
inability to exploit silhouettes in uncontrolled real-world situations where occlusions and
difficult backgrounds often degrade the output of even the best edge detection algorithms.

More specifically, the implicit meshes [61], allows us to robustly detect the occluding
contours on the 3-D surface as the solution of an ordinary differential equation [95]. Their
projections can then be used to search for the true image boundaries and deform the 3–
D model so that it projects correctly. This well-formalized approach yields a robust im-
plementation that we demonstrate for monocular tracking of deformable 3–D objects in a
completely automated fashion: We start with a generic 3-D model of the target object, find
its occluding contours, and use them to search for the corresponding contours in the images.
We then use the detected 2-D contours and the constraints they impose, along with some
feature information when available, to deform the model. On this procedure we based our
tracking algorithm that successively fits the deformable objects following nonrigid forms of
the objects.

This approach is effective independently of the specific way the deformations are parametrized.
As shown in Fig.6.1, we validated the tracker in several very different cases: Modeling the
deformations of a piece of paper represented by an ordinary triangulated mesh; tracking
a person’s shoulders whose deformations are expressed in terms of Dirichlet Free Form
Deformations [84]; reconstructing the shape of a human face parametrized in terms of a
Principal Component Analysis model [7, 34].

In the remainder of the chapter it is shown how we use implicit meshes first to guide the
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6 Implicit Meshes Make for Better Silhouettes

search for silhouettes in the images, and second to enforce the corresponding differential
constraints on the surface. We also address the use of feature points in our fitting framework,
that can be combined with new silhouette fitting approach explained here.

Figure 6.1: Detecting and using silhouettes for tracking and reconstruction from monocu-
lar sequences. The detected silhouette points are shown in yellow, or white if
printed in black and white. First row: Tracking a deforming piece of paper with
a tiger on it and replacing the tiger by a picture, which involves accurate 3–D
shape estimation. This is done in spite of the moving book and the occluding
hand. Middle row: Tracking the head and shoulders of a moving person. The
reprojected 3–D model is shown as a shaded surface. Note that, even though
the background is cluttered, we did not need to perform any kind of background
subtraction. Bottom row: Precise reconstruction of a face from a short sequence
in which the subject faces the camera.

6.1 Silhouette Detection

Remember, that previously, the silhouettes were detected directly in the image using snakes
algorithm and the manual outlines. However, we cannot relay on such way of silhouette
detection for tracking of deformable objects in monocular sequences, since, on one hand,
it involves manual interventions and, on the other hand, very slow search along the line
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6.1 Silhouette Detection

(a) (b) (c) (d) (e)

Figure 6.2: Occluding contours on explicit versus implicit meshes. (a) High resolution
mesh of the face and low resolution mesh of the upper body. (b) Shaded model
with edges at the boundary between visible and hidden facets overlaid in yellow.
(c) The same edges seen from a different viewpoint (d,e) Shaded models with
the occluding contour computed using implicit mesh, corresponding to views
(b) and (c) respectively. Note the much greater smoothness and improved pre-
cision.

of sights for the real occluding contours. To automatize this process one has to use the
presence of the 3–D model to compute its 3–D occluding contours, project them into the
image and use that projection as a starting guess to find the corresponding image boundaries,
which should be the real silhouettes. This approach is essentially different then the previous
one, since we go from the model’s occluding contour and use that as a clue for silhouette
detection in the image.

In this section, we first show some of the problems involved in performing this task using
traditional techniques. We then show that our implicit mesh formalism solves them and
gives us cleaner and more consistent results, which can then be exploited to detect the right
image boundaries.

6.1.1 Occluding Contours from Explicit Meshes

In the absence of the implicit surface formalism we propose, one of the most popular ways
of finding occluding contours is to perform a visibility computation: For example, we can
use OpenGL to project the model into the images and flag the hidden facets. The edges
at the border between visible and invisible facets whose normals satisfy the appropriate
constraints can then be treated as candidate occluding contours.

As shown in Fig. 6.2(b,c), the results of this procedure are heavily dependent on mesh
resolution and the resulting contours are rarely as smooth as they should. Of course, more
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sophisticated heuristics would certainly yield improved results but we are not aware of any
existing technique whose results are as clean and mesh-resolution independent as those of
Fig. 6.2(d,e), which were obtained using our implicit surface formalism.

6.1.2 Occluding Contours and Ordinary Differential Equations

As shown in [95], occluding contours of implicit surfaces can be found by solving an ordi-
nary differential equation (ODE) as follows: Let x(t), t ∈ [0, 1] be a 3–D occluding contour
on the implicit surface L(S) of Eq. 4.14, such as the one depicted by Fig. 6.3. For all values
of t,

1. x(t) is on the surface and therefore F (x(t),S) = T,

2. the line of sight is tangential to the surface at x(t), and can be written as (x(t) −
COpt)5 F (x(t)) = 0.

Differentiating upper equations in respect to the parameter t we obtain:

∂F (x(t))

∂x

∂x(t)

∂t
= 5F (x(t))∂x(t)

∂t
= 0 (6.1)

∂x(t)

∂t
5 F (x(t)) + (x−COpt)H(x(t))

∂x(t)

∂t
= 0 (6.2)

Replacing Eq. 6.1 into Eq. 6.2, and having in mind orthogonality of the vectors ∂x(t)
∂t

,
5F (x(t)), (x − Copt)H(x(t)), this implies, similar to [95] that x(t), t ∈ [0, 1] is a
solution of the ODE:

∂x(t)

∂t
=

(H(x(t))(x(t)−COpt))×5F (x(t),S)

‖(H(x(t))(x(t)−COpt))×5F (x(t),S)‖
(6.3)

where H(x(t)) is the Hessian matrix of F , 5F (x(t)) its gradient vector and COpt the
optical center of the camera, as shown in Fig. 6.3.

Solving this ODE requires an appropriate starting point x(0), that is one 3–D point on the
occluding contour. To find one single vertex of the explicit mesh that is very likely to be an
occluding vertex, we use a visibility algorithm similar to the one described in Section 6.1.1.
We then project it onto the implicit mesh and search in the neighborhood of the projection
for a point that satisfies the two above stated constraints. Note that this is very different
from the approach of Section 6.1.1 because, since we only need one 3–D point, we can
impose very tight constraints and thus ensure that it really is on the occluding contour. This
results in the very clean contours of Fig. 6.2(d,e) that are quite insensitive to the resolution
of the mesh used to compute them.
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COpt

x(t) − model’s occluding contour

real 3D silhouette contour

n

3D silhouette point candidadtes

xi

ui,j
np

2D silhouette point candidadtes

model’s occluding contour projection

real silhouette edge

background edge

ui

ui,j+1

xi,j
xi,j+1

li

li,j

li,j+1

Figure 6.3: Finding multiple silhouette edge points in the image. Notations are defined in
Section 6.1.3

6.1.3 Finding Silhouette Edges in the Image

Given a 3–D occluding contour x(t) computed as described above, we project it into the
image and look for the true silhouette edge in a direction normal to its 2–D projection as
depicted in Fig. 6.3. This is geometrically consistent because, at a silhouette point xi ∈
x(t), t ∈ [0, 1], the 3–D surface normal n is perpendicular to the line of sight li and, as a
result, projects to the normal np of the 2–D contour.

In other words, at each point ui of the 2–D projection, we simply have to perform a 1–D
search along a scan-line for the true edge location and we are back to the old edge detection
problem, but in a much simpler context than usual. We use a technique that has proved
effective for edge-based tracking [121, 37]: Instead of selecting one arbitrary gradient max-
imum along the scan-line, we select multiple gradient maxima resulting in several potential
silhouette edge points u

j
i and corresponding lines of sight l

j
i for each xi. Along these new

lines of sight, we could choose the x
j
i where the line is closest to the surface as the most

likely point where the surface should be tangent to the line of sight. However, this involves
a computationally expensive search along the line of sight. In practice, as shown in Fig. 6.3,
a simpler and equally effective approach is to take each x

j
i to be the point on l

j
i that is at the

same distance from the optical center as the original xi. These x
j
i are then used as silhouette

observations, as explained in Section 5.3.1.2.
Silhouettes are a key clue to surface shape and deformation in monocular sequences,

but they are also a sparse one since they are only available at a few image locations. For
objects that are somewhat textured, point correspondences between interest points in pairs
of images complement them ideally. They can be established best where silhouettes are
least useful, that is on the parts of the surfaces that are more or less parallel to the image
plane.

In this section, we show that our formalism allows us to effectively combine these two
information sources. Given a set of correspondences and silhouette points, we fit our model
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6 Implicit Meshes Make for Better Silhouettes

to the data by minimizing a set of observation equations in the least-squares sense. To this
end we use the Levenberg-Marquardt algorithm and, at each iteration, we recompute the
occluding contours and corresponding silhouette points in the image using the technique of
Section 6.1.

As we will see, the silhouette-based constraints are best expressed in terms of the implicit
surface formalism while it is simpler to formulate the correspondence-based ones using
traditional triangulated meshes. Recall from Section 4.1 that both the implicit mesh and
the underlying explicit one deform in tandem when the state vector changes. As a result,
we can simultaneously use the implicit formalism when dealing with silhouettes and the
explicit one when dealing with correspondences as needed to simplify our implementation.
We view this as one of the major strengths of our approach.

6.2 Least Squares Framework

We use the image data to write nobs observation equations of the form given by Eq. 5.1. We
now turn to the description of these functions for the two data types we use silhouettes and
feature points.

6.2.1 Silhouettes

In Section 6.1, we showed how to use our formalism to associate 2–D image locations to
3–D surface points that lie on the occluding contours. If the shape and pose of the 3–
D model were perfect, the 3–D points would project exactly at those locations. In other
words, for each i, at least one of the candidate occluding points x

j
i introduced at the end

of Section 6.1.3 should be on the surface, as shown in Fig. 6.3. During the optimization,
this will in general not be true and we enforce this constraint by introducing a silhouette
function of the form

Obssilh(xj
i ,S) = wj

i (F (xj
i ,S)− T ), (6.4)

for each x
j
i , where wj

i is the weight associated to the candidate, F the field function of
Eq. 4.14, and T the isovalue defined in the same equation.

For each x
j
i , wj

i is taken to be inversely proportional to its distance to the line of sight
li. As a result, for each i only one of these candidates, xbest

i , will end up being on li while
the others will eventually be ignored. As the total energy of Eq. 5.3 is minimized, the
Obssilh(xj

i ,S) will collectively decrease in the least-squares sense and xbest
i will become

closer and closer to actually being on the surface. Note that, because xbest
i minimizes

the distance to the surface along the corresponding line of sight, the normal to the closest
surface point is perpendicular to it. Thus, xbest

i will eventually tend to satisfy the two
conditions that characterize a point on an occluding contour introduced in Section 6.1.2.
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6.2 Least Squares Framework

Figure 6.4: Back-projection procedure: First, the face area in the reference image, labeled
as the image i in the figure, is densely sampled. Then correlation based algo-
rithm is used to find corresponding feature points in one subsequent i + 1 and
one preceding i − 1 image. The sampled points from the reference image are
back-projected to the 3–D model, and intersection points on model’s facets are
found. These points are further projected to the side images. The sum of the
squares of the distances between these back-projections and the corresponding
points is minimized in terms of model parameters and camera parameters.

6.2.2 Correspondences

We use corresponding feature points in two similar contexts: one is for shape recovery of
the deformable objects where the camera is considered static, and the other is for shape and
camera motion recovery where camera is presumably moving around the subject. In the
first context, corresponding feature points, has been used for tracking of deformable objects
together with silhouettes. In the second context besides shape recovery, we also recover the
camera motion. An example of tracking deformable object is presented in the Chapter 7,
where the deformation of the moving piece of paper has been tracked. PCA based facial
models are used for shape and camera recovery in wider context of bundle-adjustment. Both
approaches use the notion of transfer function and the back-projection procedure.

First we will explain those concepts in case of simple shape recovery, and then we will
discuss the bundle-adjustment context of shape and camera motion recovery.
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6.2.2.1 Transfer Function in a Single Image Pair

We use 2–D point correspondences in pairs of consecutive images, as shown in Fig. 6.4
for pair of images i and i + 1. We find interest points in the first image of the pair and
establish correspondences in the second using a simple correlation-based algorithm. Given
a couple ui = (pk

i , p
k
i+1) of corresponding points found in this manner, where k denotes

feature point index of the i-th image frame, we define a transfer function Obstrans(ui,S)
as follows: We back-project pk

i from the i-th image to the 3–D surface and reproject it to
p̂k

i+1the second image i + 1. We then take Obstrans(ui,S) to be the Euclidean distance in
the image plane between this reprojection p̂k

i+1 and pk
i of the image i for all corresponding

points Qi =
{

pk
i , 0 ≤ k ≤ N

}

:

Obstrans(ui,S) =
∑

k∈Q

∥

∥

∥
p̂k

i+1 − pk
i

∥

∥

∥
=
∑

k∈Q

∥

∥

∥
4pk

i,i+1

∥

∥

∥
(6.5)

Note that the simplest and fastest way of backprojecting pk
i to the surface is to use OpenGl

and the graphics hardware of our machines to find the facet that is traversed by the line of
sight defined by pk

i . Therefore in our implementation, when computing Obscorr(ui,S) and
its derivatives, we use the explicit representation instead of the implicit one.

For the tracking of deformable objects we repeat this procedure for each consecutive pair
of images. However, when we also recover camera motion we can work with n images at
the time, that will be explained bellow.

6.2.2.2 Transfer Function in a Sequence of Images

We use the sequence of images for facial reconstruction and camera calibration which are
done simultaneously. For that purpose to the state vector S, defining the model’s shape, can
be added vectors Ci containing ith camera position and orientation. The approach outlined
above extends naturally to triplets of images i− 1, i, i + 1 in the sequence, given an an ap-
proximate value for Ci. We create Qi set of samples in image i, compute correspondences
in the other two, and form the three-image objective function:

Obstrans
3 (S,Ci−1,Ci,Ci+1) =

∑

j∈Qi

∥

∥

∥
4pj

i,i−1

∥

∥

∥

2
+
∥

∥

∥
4pj

i,i+1

∥

∥

∥

2
(6.6)

In [34], we argued that minimizing Obstrans
3 is a well conditioned least-squares problem

if we use enough correspondences and can therefore be used to derive reliable estimates of
both camera and shape parameters. We can further refine this estimate by using additional
images: We sample independently images i − 1 and i + 1 to create sample sets Qi−1 and
Qi+1, compute correspondences in images i− 2 and i + 2 and form the objective function:

Obstrans
5 (S,Ci−2,Ci−1,Ci,Ci+1,Ci+2) = Obstrans

3 (S,Ci−1,Ci,Ci+1)

+
∑

j∈Qi−1

∥

∥

∥
4pj

i−1,i−2

∥

∥

∥

2
+

∑

j∈Qi+1

∥

∥

∥
4pj

i+1,i+2

∥

∥

∥

2
(6.7)
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that we minimize with respect to all the parameters. This process can then be repeated
recursively for the whole sequence and the objective function we end up minimizing is:

Obstrans
N (S,C1, ...,CN ) =

∑N−1
i=io

∑

j∈Qi

∥

∥

∥
4pj

i,i+1

∥

∥

∥

2

+
∑i0

i=2

∑

j∈Qi

∥

∥

∥
4pj

i,i−1

∥

∥

∥

2
, (6.8)

where io is the index of the one image for which we need an initial pose estimate. Note,
that because Cio is optimized at the same time as the other extrinsic camera parameters, that
estimate need not be exact. This is made possible by the fact that in our approach, there is
never an explicit association between 2–D sample points in the images and specific vertices
or facets of the 3–D models. Instead, these associations are computed dynamically during
the minimization and can change. In practice, we developed an optimization schedule in
which the number of shape parameters that are allowed to vary progressively increases.

6.3 Summary

In this work we have presented a framework for the efficient detection and use of silhouettes
for recovering the shape of deformable 3–D objects in monocular sequences. We rely on
an implicit surface formalism that lets us look for occluding contours as solutions of an
ordinary differential equation and to enforce the resulting constraints in a consistent manner.

To demonstrate the range of applicability of our method, we applied it to three very
different problems: Reconstructing a PCA based face model from an uncalibrated video
sequence; tracking a deforming piece of paper undergoing a partial occlusion or with a
changing background; recovering head and shoulder motion in a cluttered scene.

In other words, our implicit surface based approach to using silhouettes is appropriate
for uncontrolled environments that may involve occlusions and changing or cluttered back-
grounds, which limit the applicability of most other silhouette-based methods. Furthermore,
our approach is independent from the way the surface deformations are parametrized, as
long as this parameterization remains differentiable.

109



6 Implicit Meshes Make for Better Silhouettes

110



7 Results

In this chapter we will demonstrate the possibilities of modeling with implicit meshes. We
addressed two important Computer Vision problems: 3-D reconstruction from the uncal-
ibrated video sequence, and tracking of deformable objects in monocular scenes. As we
already discussed, implicit meshes are designed to take advantage of as many as possible
data sources coming from the raw video sequences. We actually fitted the generic models
turned into implicit meshes to: 3–D stereo data points, 2–D silhouettes and 2–D corre-
sponding feature points depending on the application. The generic models we used are
parametrized in terms of DFFD control points, PCA coefficients and simply vertices of the
generic model. We tested our method for various examples of reconstruction and tracking,
that can be listed as follows:

• reconstruction of the human upper body, including – head, neck and shoulders – from
uncalibrated video sequences

• reconstruction of the human ear from pair of stereo images under the structured light

• reconstruction of the high resolution human face based on PCA parameterization
from uncalibrated video sequence

• tracking of the moving head and shoulders in monocular video sequence and

• tracking of the deformable piece of paper in monocular sequence

We will start with 3–D reconstruction. First reconstruction experiment will be done on
the synthetic example. This will be followed by the upper body and the ear reconstruction
parametrized in terms of DFFD. Face shape recovery from uncalibrated video under the
PCA parameterization will be addressed afterwards. Finally we will analyze performance
of our approach and compare it with standard fitting techniques, which involve ordinary
explicit surface representations. Also, the reconstruction examples will compare quality of
the results using explicit surfaces and implicit meshes.

Second part will be devoted to the tracking of nonrigid motion of deformable 3–D objects
in monocular sequences. Using the results of shape recovery from the reconstruction part
we will track motion of the rising shoulders with the head that is not moving and later we
will track both the head and shoulders motion, where the head performs rigid motion and the
shoulders nonrigid one. We also track the motion of the deformable piece of paper in case
of changing backgrounds and under partial occlusions in order to demonstrate robustness
of implicit meshes in detecting and exploiting silhouette information.
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Figure 7.1: Synthetic example of fitting spherical implicit mesh. Left column: front and
side view of the initial state–implicit mesh in light-grey, surface to fit in dark-
gray whose presence is simulated by stereo data shown as white dots and sil-
houette shown as white line in front and thick white dot in side view. On the
front view, we overlay the silhouette and, on the side view, we outline the top
of the dark-gray object with a thick white line. Middle column: Fitting results
using stereo alone. Right row: Fitting using both stereo and silhouette data
demonstrates correct fitting.

7.1 3D Reconstruction

In our 3–D reconstruction examples we start from the generic models represented as arbi-
trary explicit triangulated surface, like once in Fig. 3.2. We then turn that surface into the
implicit mesh as discussed in Section 4.1. Such representation is then used as generic model
and should be deformed in such a way that it confirms to the data extracted from the images
of the given video sequence. The video sequence we use are uncalibrated, with no a priori
knowledge of camera parameters and its motion. We have first to register the images and
recover camera motion, then to extract the data from images, such as 3–D stereo data cloud
and 2–D silhouettes, to initialize our algorithm by positioning the generic model toward the
data, and finally to optimize on the values of control parameters that deform the shape of
the generic model.

7.1.1 Synthetic Example

We created a synthetic example that simulates a difficult situation in which one must com-
bine stereo and silhouette data to achieve a good result. In this example, because the mesh is
regular, we can use spherical or triangular primitives indifferently. Bellow we show results
of fitting using first spherical and then triangular implicit mesh.
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Figure 7.2: Synthetic example. Left column: Front and side view of an initial mesh shown
in light-gray, with occluding contours of a cylindrical 3–D surface to be fitted
drawn as white lines. The large white dot in the side view corresponds to the
occluding contour in the front view. The smaller white dots represent simulated
stereo-data. Middle column: Fitting results using stereo alone. Right column:
Fitting results using both stereo and silhouette observations derived from the
occluding contour in the front view. Note again the quality of fitting when
silhouettes were used.

Spherical Implicit Mesh In the left column of Fig. 7.1, we show a side and a front view
of a dark gray object that we want to fit using simulated 2–D and 3–D data. On the side
view, we outline the top of dark-gray object with a thick white line. This object represents
the surface we want to obtain after fitting. To make the problem realistic, we assume that
we have stereo data, shown as white dots, only on the front side of the dark-grey patch, that
is the one that faces the camera, and silhouette data at the top of it. This silhouette data
is represented by the white line in the front image and by the white circle at the top of the
dark-gray object in the side view. In these views, we also show, in light gray, an implicit
mesh in its initial state. The middle column depicts the result of fitting using stereo alone.
Note that, in the front view, the occluding contour of the deformed surface, shown in light
grey, does not match the expected silhouette, again shown as a white line. Similarly, in the
side view, it does not reach the white outline. The right column depicts the result using
both stereo and silhouette data. The occluding contour of the fitted surface is now where it
should be and the top of the surface has moved appropriately. The back of the shape is, of
course, still inaccurate since there is neither silhouette nor stereo data to constrain it.

Triangular Implicit Mesh Fig. 7.2 depicts a synthetic example similar to one shown in
Fig. 7.1. However, here we use triangular implicit mesh, and since it provides much better
approximation of the explicit surfaces, we only show the explicit skeleton. The fitting is
performed using triangular implicit surface around it. The left column of the figure depicts
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Figure 7.3: Initial position of the generic model reprojected in the images.

the initial shape of an explicit mesh seen from the front and the side. Our goal is, again,
to turn this explicit mesh into an implicit one and then to fit it to a surface whose outlines
appear as white curved lines.

We assume that the cameras are in front of the surface we want to model and, therefore,
yield stereo data, depicted by the white dots, only on the side facing camera and for the part
of the surface that is close to being front-parallel. The middle column of Fig. 7.2 depicts
the result of fitting using this stereo data alone. As could be expected, only the bottom part
of the mesh is fitted correctly and the corresponding occluding contours do not match the
white outlines. The right column of Fig. 7.2 depicts the result obtained by combining stereo
and silhouette data. The top of the fitted mesh has moved appropriately and the occluding
contours it produces are now where they should be. The back of the shape is again, still
inaccurate since there is neither silhouette nor stereo data to constrain it.

7.1.2 Upper Body Reconstruction from Uncalibrated Video Sequence

We further demonstrate and evaluate our technique in the context of complete upper body
modeling, that is including head, neck and shoulders, from uncalibrated video sequences.
We use different image video sequences where we select only every fifth or tenth frame
resulting in a small number of images from which we do the reconstruction. They were
acquired with a video camera over a period of a few seconds where the camera is standing
still and the subject is turning on the rotating chair or opposite. First we have to initialize our
generic model, register the images, compute stereo and silhouettes and finally deform the
model by fitting it to the extracted data. For the sake of comparison we repeat reconstruction
process from the same video sequence using triangular implicit meshes, spherical implicit
meshes and explicit meshes.

7.1.2.1 Initialization

We initialized the model by manually picking at least five 2–D points on the face in one
reference image, that is one where the subject is facing the camera. We used them to
compute a 4x4 rotation-translation matrix Rt such that five specific 3–D keypoints on the
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generic model—outside corners of the eyes, corners of the mouth and tip of the nose—
once multiplied by this matrix project as close as possible to the hand-picked 2–D location.
Because these points are not coplanar, this guarantees that, when we multiply the generic
model by this Rt matrix, we obtain an initial upper body model that is roughly aligned in
the reference image.

In spite of relatively good alignment on the face as shown in Fig. 7.3, the shoulders are
significantly far from the image silhouettes. However, our method showed insensitivity to
this problem.

7.1.2.2 Image Registration

After the generic upper body model has been initialized we have to register the images
of the provided video sequence. In the example of Fig. 7.4 we use as input an initially
uncalibrated video sequence in which the subject is moving on the rotating chair in front
of the fixed camera. We selected seven frames out of thirty frames long video sequence.
Our generic model is initially aligned in the reference image. To register the images we
used a model-driven bundle-adjustment technique of [47]. In short the bundle-adjustment
algorithm goes through the following steps:

• Generate an initial 3x4 camera projection matrix Prj for the reference image, such
that its principal point is in the center of the image. For the focal length we chose
some approximate value. The intrinsic camera parameters are chosen some approxi-
mate values, while the camera position and orientation are not known.

• Compute initial camera position and orientation according to the already computed
Rt matrix used to initialize the model. The initial projection matrix that refers to
the reference image is taken to be Tr = Prj ∗ Rt. This is identical to moving the
camera such that it looks at the model where its keypoints project in the reference
image close to the selected 2–D points.

• We further densely sample the facial part of the generic model and project those sam-
ples into the reference image and in one preceding and one subsequent image. We
also match those points projected in the reference image to the preceding and sub-
sequent image. We use simple correlation based algorithm of [48] to find matched
points. We take the initial position and orientation of the two side cameras to be
equal to the one in the middle, i.e. the reference one. The observation equations sim-
ply minimize the difference between the estimated (matched) points and measured
(projected) points in respect to the camera position and orientation.

This yields the camera position for the two images on either side of the reference image. To
compute the following camera positions, the image immediately succeeding the reference
image becomes the new reference image. The procedure than repeats in triples of images
as already explained. The same is done for preceding images, and continues until the end
of the sequence.
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7 Results

Figure 7.4: Reconstruction from a shorter uncalibrated video sequence. Top row: 5 of 7
images from a short video sequence with overlaid silhouettes on the head, neck
and shoulders. Middle row: Clouds of 3–D points extracted from consecutive
image pairs using correlation-based stereo, after automated registration. Bottom
row: Textured reconstructed model with triangular implicit mesh model viewed
in the same perspective as the original images and with overlaid silhouettes to
highlight the quality of the fit.

7.1.2.3 Stereo and Silhouettes Computation

Having the whole image sequence calibrated we can easily compute stereo, that produces 3–
D data points as ones shown in Fig. 7.4. The data cloud produced in this way is very noisy,
because of assumptions made on the initial camera parameters, and also because of the
missed matched points resulting from the correlation based technique. In some examples we
used max-flow graph-cut algorithm [96] to derive disparity maps from consecutive image
and produce the clouds of 3–D points as shown in Fig. 7.6. In this example silhouettes are
computed using snakes starting from the manual outlines.

7.1.2.4 Reconstruction

Here we show reconstruction results, using real stereo and silhouette data. In the example
of Fig. 7.4 we use as input an initially uncalibrated 7–frame video sequence in which the
camera is static and subject is moving on the rotating chair. We first used a model-driven
bundle-adjustment technique [47], as explained above, to compute the relative motion and,
thus, register the images. We then derived the stereo data depicted by the middle row of
Fig. 7.4 using a correlation-based stereo technique [46]. We used snakes to outline the
silhouettes shown as white lines.
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7.1 3D Reconstruction

Figure 7.5: Comparing explicit and implicit approaches to fitting an upper body model
to the stereo and silhouette data of Fig. 7.4. Top row: Directly using explicit
surfaces yields a poor fit on the shoulders and the right side of the face, as
evidenced by the discrepancies between the surfaces’ occluding contours and
the true ones shown as white lines. Bottom row: Using triangular primitives
results in a much better correspondence.

The results of Fig. 7.4 were obtained using triangular implicit mesh. For comparison
purposes, in Fig. 7.5, we show the result of fitting the model to the same data using directly
the explicit surface without taking advantage of the implicit surface formalism proposed in
this paper. In all cases, the explicit mesh is parametrized in terms of the same DFFD control
points depicted by Fig. 3.2(b). When not using the implicit surfaces, we minimize the
objective function of Section 5.3.2, which unlike those of Section 5.3.1 is non-differentiable
and highly sensitive to the regularity of the mesh facets especially when it comes to handling
silhouette information. This results in the fit depicted by the top row of Fig. 7.5 that is
inaccurate in the shoulder area, which is where the silhouettes are the primary source of
information.

The spherical primitive result shown in the second row is better, but still imprecise at
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Figure 7.6: Reconstruction from an uncalibrated video sequence. Top row: 5 of 14 images
from a short video sequence with overlaid silhouettes for the neck and shoul-
ders. Middle row: Disparity maps computed from the image using a correlation-
based stereo algorithm, after automated registration. Bottom row: Textured re-
constructed models obtained by using a triangular implicit mesh model for the
upper body.

the junction of the neck and shoulders. Close examination of the results show that this is a
manifestation of the problem discussed in Section 4.1.1 and depicted by Fig. 4.5: Because
the facets of the neck and shoulder are of different sizes, the thickness of the implicit surface
varies and, at places, the wrong side of it ends up being attracted to the data.

As shown in the bottom row of Fig. 7.5, these problems go away when the spherical
primitives are replaced by triangular ones. Note that this is true, even though we fitted the
irregular low resolution mesh from the bottom row of Fig. 4.4 instead of the high resolution
one from the top row of Fig. 4.4 that we used both to directly fit the explicit surface and in
conjunction with the spherical metaballs.

Thus, the bottom row of the Fig. 7.4 depicts the reconstructed and textured model, ob-
tained using triangular implicit meshes and whose projections align correctly with the sil-
houettes in all views. This shows that the recovered shape is geometrically correct even at
places where the surface slants away from the cameras and, therefore, where stereo fails.
Note that these texture-mapped views were generated using standard OpenGL tools to ren-
der the explicit surface that was deformed in tandem with the implicit one. In other words,
having both kinds of representation simultaneously available at the same time spared us the
need to use sophisticated implicit surface rendering techniques.
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7.1 3D Reconstruction

In another example of Fig. 7.6 we show a similar behavior. Now we use as input an
initially uncalibrated 14–frame video sequence in which the subject moves in front of a
static camera. We again ran a correlation-based stereo algorithm [46] to derive disparity
maps from consecutive image, depicted by the middle row of the figure, and produce the
clouds of 3–D points. Our automated silhouette detection was used to outline the silhouettes
shown as white lines. The bottom row of the figure depicts the reconstructed and textured
model, obtained using triangular implicit meshes and whose projections align correctly with
the silhouettes in all views. Note that besides some noise in silhouettes we obtained accurate
reconstruction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7: Modeling an ear. (a,b) A stereo pair with overlaid occluding contours. (c)
The corresponding cloud of 3D points. (d) Projection of the initial ear model
into one of the images. (e,f) Projections into both images of the model fitted
using explicit surface. (g.h) Similar projections for the model using triangular
primitives.
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7.1.3 Ear Shape Recovery

In our next example, we consider a human ear, whose shape is more complex than the
comparatively simple upper body models we have used so far. The challenge also comes
from the fact that the model is taken from the web, and is not designed with fitting in mind.
It is heavily irregular and has variety of different sized facets.

As shown in the top row of Fig. 7.7, we projected textured light on an ear and acquired a
stereo pair of images, which allowed us to compute a fairly dense disparity map out of which
we computed stereo data cloud depicted in Fig. 7.7(c). We then outlined occluding contours
in both images and fitted a model we found on the web to this stereo and silhouette data,
using the explicit mesh and triangular implicit mesh. Spherical metaballs were not possible
to use in this case without additional re-meshing of the model. Re-meshing means increase
in the mesh resolution and regularization of the facets.

In Fig. 7.7(d) we projected the initial model into the image in order to depict the gap to be
filled between the model and the silhouette outlines. Result of fitting explicit mesh model
is depicted in the Fig. 7.7(e,f) and, obviously, is not correctly aligned with the silhouettes.
This comes from the fact, that silhouette facets are hard to determine on the thin border of
the ear surface. Again, only the results obtained using triangular primitives and shown in the
bottom row of Fig. 7.7(g, h) correctly line up with the silhouettes and appear realistic. Note
the importance of the silhouette information, since even with the relatively high quality
stereo data obtained from structure light, the result of fitting just to stereo could not be
sufficient.

7.1.4 PCA Face Shape Recovery from Uncalibrated Video Sequence

In this section, we show results of our approach to head modeling from uncalibrated image
sequences. We use 2–D point correspondences in pairs of consecutive images as our main
source of information because the disruptive effect of illumination changes are minimized
for images whose viewpoints are close and can be further attenuated by normalization.
The results obtained in this way are correct everywhere except on the places where the
surface slants away from the camera, actually on the occluding contours. For that reason
we included the silhouette information in a way explained in Chapter 6 including: automatic
silhouette detection in the images, and fitting the face model to those silhouettes in order to
correct reconstruction obtained using only correspondences.

In theory, given one image for which the 3–D head pose is roughly known and a second
one seen from a relatively similar viewpoint, we could recover shape and camera position
as follows:

• Sample the face area in the first image.

• Use a straightforward normalized cross correlation [44] technique to find correspond-
ing points in the second image.
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7.1 3D Reconstruction

Figure 7.8: Head modeling using PCA face models. Top row: Five images from a short
video sequence with image silhouette edges detected by using our technique.
Middle row: Recovered face shape using only interest points with the same sil-
houettes as before. Note that they do not match exactly. Bottom row: Recovered
shape using both silhouettes and interest points. The occluding contours of the
model now corresponds almost exactly to the silhouette edges.

• Minimize in the least-squares sense the image distance between these corresponding
points and those obtained by backprojecting the points in the first image to the model
and reprojecting them into the second image.

• Detect silhouettes in the images and minimize the distance between model and de-
tected silhouette points using implicit meshes together with the interest points

In practice, because correspondences can be expected to be noisy, we use an iterative
reweighted least square technique and, more importantly, we work with more than two
images simultaneously. Our complete approach therefore iteratively adds images at both
ends of the sequence by establishing correspondences between the first and last images that
have already been processed and neighboring ones that have not been considered yet. At
each step of this process, we perform a least-squares minimization that progressively re-
fines model shape and pose for all cameras. Unlike earlier approaches [102], our method
has no notion of a reference image and the pose in the first image does not need to be pre-
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Figure 7.9: Head modeling using PCA face models. Top row: Four images taken out of
the short video sequence . Middle and bottom row: Reconstructed face, viewed
from different recovered camera views, is shown as shaded and textured model
obtained by fitting matched interest points and superposed silhouettes. Note that
the model does align correctly the extracted silhouettes.

cise because it will be refined as all the others. Once the sequence is calibrated, we can
detect silhouettes in the images. To do this we convert the explicit face mesh model into our
implicit mesh and then find the occluding contour on the model for each camera position.
Than we correct model’s shape by fitting those silhouettes together with the interest points.

We used short video sequence from which we selected seven images. Five of them are
depicted in the top row of Fig. 7.8 together with automatically extracted silhouettes obtained
using implicit mesh models. Recovered face shape using only interest points with the real
silhouettes detected in the images is depicted in the middle row of Fig. 7.8. Note, that
the resulting shape is not correctly aligned with the real silhouette edges. Finally, in the
bottom row of Fig. 7.8 the recovered shape obtained when we added silhouette observations
corrected the miss-alignment appearing when only corresponding feature points were used
for shape recovery.

In Fig. 7.9 we depict another example of face shape recovery from the short video. The
lightening conditions are quite bad, and our silhouette detection algorithm did the best to
extract correct occluding edges. Note that the obtained result align correctly the extracted
silhouettes.
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7.1 3D Reconstruction

(a) (b)

Figure 7.10: Measured fitting errors and computation times as a function of increasing res-
olution. (a) Mean distance in millimeters of explicit and implicit mesh to the
silhouette data. (b) Computation times for explicit and implicit mesh fitting on
a 2.6GHz PC in seconds.

7.1.5 Accuracy and Computational Complexity

To quantify fitting error and computational complexity, we started with Ear0(1167 vertices,
1620 facets), the model of Fig. 3.2(c). We then subdivided its facets to obtain three addi-
tional models of increasing complexity: Ear1(3954 vertices, 6480 facets), Ear2(14388
vertices, 25920 facets) and Ear3(54696 vertices, 103680 facets). Fig. 7.10(a) depicts the
mean distance of the lines of sight defined by the silhouette points to the models fitted with
or without using implicit meshes. When using them, the accuracy varies little with mesh
resolution and, as observed before, is much better than the one obtained without them. As
shown in Fig. 7.10(b), there is a computational price to be paid for using implicit meshes.
Note however that, because the result is fairly insensitive to mesh resolution, there is no
advantage to subdividing the mesh and one need therefore not incur this penalty. Further-
more, even for the model with 103680 facets, the computation time remains manageable on
a modern machine.

To gauge the influence of the regularization constant λD of Eq. 3.9, in Fig. 7.10(c), we
plot the value of

√

(
∑

wtypei
ε2
i /
∑

wtypei
), the root mean square residual of our fit using

the notations of Eq. 5.3. For very small values of λD, the influence of the regularization
term is insufficient to “convexify” the problem and the optimizer tends to get trapped in
meaningless local minima. For very large values of λD, the model becomes too stiff again
resulting again in increased errors. However, between these extremes, there is a large range
in which the result is fairly insensitive to the exact value of λD , making it easy to pick an
appropriate value.
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Figure 7.11: Influence of the regularization constant λ on the root mean square error of the
fit.

Figure 7.12: Tracking of the moving head and shoulders. Top and third row: Images from
the original video sequence with detected silhouette edges overlaid. Second
row: Recovered model’s shape shown as the shaded model in the same position
as the original images above. Bottom row: Recovered model’s shape shown
as the textured model in the same position as the original images above. Note
that silhouette edges are correctly fitted.

7.2 Monocular Tracking

This section will be devoted to the tracking of nonrigid motion of deformable 3–D objects
in monocular sequences. Using the results of shape recovery from the reconstruction part
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Figure 7.13: Tracking of the rising shoulders. Top and third row: Images from the original
video sequence with detected silhouette edges overlaid. Second row: Recov-
ered model’s shape shown as the shaded model in the same position as the
original images above. Bottom row: Recovered model’s shape shown as the
textured model in the same position as the original images above. Note that
silhouette edges are correctly fitted.

we track the motion of the rising shoulders with static head and later we track simultaneous
the head and shoulders motion in video with very cluttered background. We also track
the motion of the deformable piece of paper in the cluttered and changing background and
under partial occlusions in order to demonstrate robustness of implicit meshes in detecting
and exploiting silhouette information.

7.2.1 Head and Shoulders Tracking

We shoot two video sequences of the person, which we already reconstructed as shown in
Fig. 7.4. New sequences are shot with different camera, and the person is wearing different
clothing then it was the case in the sequence used for reconstruction. The cameras were
fixed while the subject was moving. Here we apply our method to recovering the motion of
moving head and shoulders in monocular sequences, where the model is parameterized in
terms of DFFD control points.

We first build a 3–D model from a sequence where the camera does not move but the
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person does, as it is explained above and is shown in Fig. 7.4. This model is then used
for tracking in sequences such as the one in the Fig. 7.13 and Fig. 7.12. We initialize by
positioning previously reconstructed model according to the five points on the face. We
then, compute the occluding contour of the model that is used, and project it into the image.
Detected real silhouette edge is then fitted in order to correctly align the model’s outline
with the silhouette in the image. This procedure is subsequently repeated throughout the
sequence: silhouette of the model in time t − 1 is projected into the image in time t and
the distance between the model’s occluding contour and the real silhouette is minimized. In
the Fig. 7.13 we tracked just rising of the shoulders, where the head was not moving. For
this example we additionally, fixed all the control parameters controlling the shape of the
head, and optimized only on the neck and shoulders control points positions. In this case
tracking is only based on silhouettes. In Fig. 7.13 the first and third row depict image frames
from the original video sequence together with detected silhouette edges. In the second row
we show shaded model with overlaid the same detected silhouettes as depicted in original
images. Note that the reconstructed model correctly aligns the shoulders. In the bottom row
we showed the textured model again in the positions corresponding to the images above.
Since the model used for reconstruction comes from different video sequence, thus the
texture is not the one of the subject from the tracking sequence. Note that in this way we
augmented the scene by showing the same person but in different clothing.

In order to fully take advantage of our implicit mesh formalism we investigated another
case where the head and shoulders were simultaneously moving. In this case, interest points
are found on the head while occluding contours are used for the neck and shoulders. This
results in the reconstruction of Fig. 7.12. In this case rigid head motion is retrieved using
interest points, while nonrigid motion of the neck and shoulders is obtained according to the
silhouette information. Again, we showed, in first and third row images from the original
video sequence with detected silhouettes contours and bellow reconstructed model shown
as shaded and textured again with overlaid silhouettes in order to demonstrate tracking
precision.

As shown in Fig. 7.14, the reconstructed model can be used to resynthetize the subject
in front of a different background, thus eliminating the need for a blue screen. This, once
again, highlights the robustness of the silhouette detection guided by our implicit meshes.

7.2.2 Tracking a Deformable Piece of Paper

We model the paper as a rectangular mesh parametrized in terms of the coordinates of its
vertices. The piece of paper is put on the flat surface and is taped on the end closer to the
camera, while it is pushed forward from the other end as it is shown in Figs 7.15, 7.16.
There is one fixed camera filming the paper’s nonrigid motion. In the first frame, where the
paper is flat and is in its still position, we select four corners of the paper for which we know
corresponding models 3-D points. Considering the model as a plane z = 0 we can establish
homography between that plane and the image plane, which will give us the initial camera
position and orientation. We suppose to know the camera’s internal parameters. In this way
we initialized the model, so that upper left corner of the paper is used as the origin of the
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Figure 7.14: Tracking of moving head and shoulders. The model was first reconstructed
from an uncalibrated video sequence of Fig. 7.4 from which the texture was
taken. Top row: Original sequence used to track the person. Bottom row:
Recovered model placed in front of a different background.

global coordinate system, and the x and y axis are aligned with two sides of the paper.

We track paper’s motion according to the corresponding feature points established be-
tween consecutive image pairs and already explained transfer function and the backprojec-
tion of Section 6.2.2. Also, we use online computed occluding contours using our implicit
mesh formulation for robust silhouette detection. Besides occluding contours we fit our
model to the border edges. This helps in additional constraining of the model’s position to-
wards the edges. For that reason we write observation equation for border edges as follows:

Obsbord(xj ,S) =
∑

xj∈D

‖xj − edge(xj ,S)‖ (7.1)

where xj is the border edge point in the image from the set D of available samples and
edge(xj ,S) is the sample border edge point of the given model.

Fig. 7.15 shows the results obtained when the paper is partially occluded. The top and
third row show the deformed mesh we obtain overlaid as a white wireframe on the original
images. The second and bottom row show the side view of the same deformed mesh. We
can see that the back of the mesh also deforms in a coherent manner. Even though the
silhouette contours are partially hidden, our algorithm still retrieves the correct deformation
and keeps on tracking the piece of paper.

Fig. 7.16 highlights the robustness of our algorithm to a changing background. The top
and third row show the original sequence with the same tiger image as before and a moving
book behind. In the second and bottom row, we used the deformed mesh to map a new
texture onto the images. The new images look realistic and such results couldn’t have been
obtained by using a simple background substraction technique.
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Figure 7.15: Occlusion handling. The front of the paper is taped to the table and one hand
pushes the back of the page while the other passes in front. Top and third row:
The recovered mesh is overlaid on the images. Note that the hand is in front
of the paper even though the wireframed display gives the impression that it is
behind. Second and bottom row: Side view of the recovered mesh. Note that
its shape is undisturbed by the occlusion and that the back of the mesh also
deforms correctly.

7.3 Summary

We used the example of upper-body and ear modeling using stereo and silhouette data to
demonstrate the power of implicit mesh approach. The explicit models we used, and which
were easily converted to implicit meshes, were not tailored for fitting purposes and exhib-
ited both highly irregular facets and a complex topology, none of which had a significant
impact on the quality of the fitting. However, with pure explicit surfaces, we encountered
problems, especially when fitting them to silhouettes. This approach is effective indepen-
dently of the specific way the deformations are parametrized. Reconstruction of a human
face parametrized in terms of a Principal Component Analysis model [7, 34] is another
example we have shown here.

We also tested our implicit meshes for tracking deformable object. We validated the
tracker in two very different cases: Modeling the deformations of a piece of paper repre-
sented by an ordinary triangulated mesh and tracking a person’s shoulders whose deforma-
tions are expressed in terms of Dirichlet Free Form Deformations [84]. Note the robustness
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Figure 7.16: Handling a changing background. Top and third row: Original sequence with
book sliding in the background. Second and bottom row: A new texture is
applied on the deformed mesh and reprojected in the images. Note that back-
ground subtraction techniques could not have been applied in this case.

of silhouette handling in cases of cluttered and changing background, and in case of partial
occlusion.
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8 Conclusion

8.1 Contribution

We have presented an approach to combining explicit and implicit surface representations
that allows us to take advantage of the strengths of both. To this end, we have developed a
technique for creating implicit meshes from explicit ones by attaching triangular or spher-
ical primitives to their facets. These primitives are defined in such a way that their shape
depends only on the 3D location of the mesh vertices, which allows us to simultaneously fit
both representations to image data by minimizing a differentiable objective function. Such
surface representations allows efficient usage of various data sources coming from images.
In our experiments we demonstrated effective use of this representation to fitting stereo,
silhouettes and interest points observation data.

We also demonstrated the power of using DFFD shape deformation approach to param-
eterize deformable surface models and fit them to noisy 3–D image data. This resulted in
a generic approach to surface parameterization since it can be applied to surface models of
any geometry and complexity. In terms of fitting they offer significant dimensionality re-
duction by expressing the model surface with much smaller number of control parameters.
We demonstrated the effectiveness and robustness of DFFDs in the context of complete
head modeling from stereo data. We later used DFFDs to deform implicit surfaces as op-
posed to the explicit ones we used at the beginning. Combining both approaches therefore
produced an even more powerful modeling tool.

The implicit mesh framework have been also used for the efficient detection and use of
silhouettes for recovering the shape of deformable 3–D objects in monocular sequences.
This again relays on an implicit mesh formalism that lets us look for occluding contours
as solutions of an ordinary differential equation and to enforce the resulting constraints in
a consistent manner. We have chosen to use DFFD control points and PCA parameters, to
parameterize the position of the mesh vertices, which allows us to perform this minimization
with respect to a limited number of parameters. Our implicit meshes, however, are generic
and we could also have used another surface parameterization approach for this purpose.

To demonstrate the range of applicability of our method, we applied it to four different
problems: upper-body and ear modeling using stereo and silhouette data where the initial
generic explicit models we used were not tailored for fitting purposes and exhibited both
highly irregular facets and a complex topology, none of which had a significant impact on
the quality of the fitting; reconstructing a PCA based face model from an uncalibrated video
sequence, where we besides shape recovery we also recover the camera motion; tracking a
deforming piece of paper undergoing a partial occlusion or with a changing background; re-
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covering head and shoulder motion in a cluttered scene. In other words, our implicit surface
based approach to using silhouettes is appropriate for uncontrolled environments that may
involve occlusions and changing or cluttered backgrounds, which limit the applicability of
most other silhouette-based methods.

8.2 Extensions and Future Work

In this work we proposed algorithm which can convert arbitrary triangular mesh to the
implicit surface. In that case we used spherical or triangular metaballs. It is possible to
generalize this to meshes made of any kind of polygons. For that purpose, the generic
polygonal metaball has to be defined. This would be particularly useful if someone wants
to use NURBS or subdivision surfaces.

In the example of paper deformation, we already tried to model physically meaningful
object deformation. The best way to deal with such physically based deformations is to
use right model parameterization. Such parameterization will be based on the real physi-
cal properties of the materials whose nonrigid motion we want to recover. Usual way of
solving this problems is writing the deformation energy in terms of the model topology,
which is solved using Finite Element Methods (FEM). Implicit mesh can serve for handling
silhouette information, that is indispensable source of information in this case. In this way
we cloud still broaden the applicability of our model.

For tracking of deformable objects we did not consider potential global motion of the
deformable objects. This can be very useful in some particular applications, such as tracking
of the deformable sail, or shoulders tracking of the runners, where there is both global upper
body motion and deformable motion of the shoulders. In this case we should use separate
optimization procedure in two steps: one would retrieve global position in the current frame
from the position of the previous frame, and then the local adaptation would be performed
to obtain correct deformation.

More sophisticated edge search algorithms then the one which is based on the image
gradient and the search in the normal direction has to be used. One of these methods is
based on the texture boundary detection [101]. For those algorithms, it is sufficient to
provide the points of the occluding contour and its normals. The algorithm should provide
better silhouette edges on the boundaries where two textures differentiate.

132



9 Appendix

9.1 Differentiability of the Triangular Metaballs Field
Function

Theorem 1. Distance function d(x,S) defining distance of the point x ∈ R3 to the triangle
Fi, defined by vertices {P1,P2,P3} of the triangle whose position is controlled by the set
of control parameters S, is C1 differentiable and continuous both over the parameters S and
over independent variables x, y and z.

Proof: Considering separately distance functions representing distance of the point x to
the plane dp, to the line dc and to the point ds we can say that for every point which is
not on the border of connecting regions those functions are C 2 differentiable both over the
parameters and independent variables x, y and z. First order derivatives over parameters
are:

∂dp(x,S)

∂s
= xT ∂L1(S)

∂s
L2x + xT L1

∂L2(S)
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while first order derivatives over independent variables x, y and z are:
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Consider now derivatives at the border lines where different regions, thus different distance
functions are used. With no loss of generality proof will be done for:

1. points along half circles between regions reg4 and reg7 that is a border curve be-
tween cylinder aligned with x-axis and the sphere at the origin.
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2. points which are on the line passing through vertex P1 in the direction of the normal
n, where four regions reg1, reg4, reg7, reg3 meet, and which can be represented
as: x1 = P1 + λn

3. points along the lines parallel to the edge P2P1 = m1which separates regions reg1
and reg4, and can is given by: x2 = x1 + ηm1 = P1 + λn + ηm1

Since transformation matrix Tr can be created such that local coordinate frame is attached
to either of the triangle vertices, and aligned with either of the edges we can consider the
proof of upper three cases extendible to other border curves, points and lines.

CASE 1: This is a trivial case, since at the connection of the sphere and cylinder ma-
trix defining a sphere Ls becomes equal Lc since we consider sphere in the plane x = 0. For
clarity consider a simple case of standardized facet with vertices P1 =

[

0 0 0
]T

,P2 =
[

1 0 0
]T

,P3 =
[

0 1 0
]T , where Tr = I . In this case distance function from

the line along x-axis, in this case P2P1, becomes a cylinder equation dc(x) = y2 + z2, and
distance from the point, in this case P1, becomes sphere equation ds(x) = x2 + y2 + z2.
For the border curve between this cylinder and the sphere we consider all the points on the
circle y2 + z2, y > 0. In this case distance function from the sphere in the plane x = 0
becomes ds(x) = y2 + z2 that is actually identical to the cylinder distance dc. Having the
same functions along this curve in the plane x = 0 they certainly have the same first order
derivatives for all points on this curve.

CASE 2: Let us consider all the points x1 = P1 + λn on the connection of four regions
reg1, reg4, reg7, reg3 where those regions actually meet. We first compute first order
derivatives over parameters at these points for each of the four distance functions, and then
first order derivatives over the independent variables x, y and z.

First order derivatives over the parameters in the points x1 = P1 + λn:

1. Derivatives of the distance to plane dp function:

∂dp(x,S)

∂s
|x=x1

=
[

P1 + λn 1
]T ∂L1(S)

∂s
L2

[

P1 + λn

1

]

+
[

P1 + λn 1
]T

L1
∂L2(S)

∂s

[

P1 + λn

1

]

= A + B ⇒
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A = λ

(

n2
xλ

∂n

∂s
• n + n2

yλ
∂n

∂s
• n + n2

zλ
∂n

∂s
• n− n2

xn •
∂P1

∂s

−n2
yn •

∂P1

∂s
− n2

zn •
∂P1

∂s

)

=

= λ

(

λ
∂n

∂s
• n(n2

x + n2
y + n2

z)− n •
∂P1

∂s
(n2

x + n2
y + n2

z)

)

=

= λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

B = λ

(

λ
∂n

∂s
• n ‖n‖2 − n •

∂P1

∂s
‖n‖2

)

= A
∂dp(x,S)

∂s
|x=x1

= 2λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

.

2. Derivatives of the distance dc1 to the line aligned with m1-axis:

∂dc1(x,S)

∂s
|x=x1

= 2
[

P1 + λn 1
]T

T T
r Lc

∂Tr(S)

∂s

[

P1 + λn

1

]

=

= 2λ
[

0 0 ‖n‖2 0
]













∂mT
1

∂s
−

∂mT
1

∂s
•P1 −m1 •

∂PT
1

∂s
∂mT

2

∂s
−

∂mT
2

∂s
•P1 −m2 •

∂PT
1

∂s
∂nT

∂s
−∂nT

∂s
•P1 − n •

∂PT
1

∂s

0T 0













[

P1 + λn

1

]

= 2λ ‖n‖2
[

∂nT

∂s
−∂nT

∂s
•P1 − n •

∂PT
1

∂s

]

[

P1 + λn

1

]

= 2λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

.

3. Derivatives of the distance ds to the point P1:

∂ds(x,S)

∂s
|x=x1

= 2
[

P1 + λn 1
]T

T T
r Ls

∂Tr(S)

∂s

[

P1 + λn

1

]

=

= 2λ ‖n‖2
[

∂nT

∂s
−∂nT

∂s
•P1 − n •

∂PT
1

∂s

]

[

P1 + λn

1

]

= 2λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

.
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4. Derivatives of the distance dc2 to the line aligned with m2-axis:
In this case cylinder is aligned with m2-axis in the local coordinate frame, and trans-
formation matrix becomes:

Tr =









mT
2 −m2 •P1

mT
1 −m1 •P1

−nT n •P1

0T 1









, T T
r =

[

m2 m1 −n 0

−m2 •P1 −m1P1 n •P1 1

]

∂dc2(x,S)

∂s
|x=x1

= 2
[

P1 + λn 1
]T

T T
r Lc

∂Tr(S)

∂s

[

P1 + λn

1

]

=

= 2λ ‖n‖2
[

∂nT

∂s
−∂nT

∂s
•P1 − n •

∂PT
1

∂s

]

[

P1 + λn

1

]

= 2λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

.

First order derivatives over the independent variables x, y and z in the points x1 = P1 +
λn:

1. Derivatives of the distance to plane dp function:

∂dp(x,S)

∂xi

|x=x1
= 2

[

P1 + λn 1
]T

L1L2
∂x

∂xi

=

= 2λ ‖n‖2
[

nT − n •P1

]T ∂x

∂xi
=

= 2λni ‖n‖
2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}

2. Derivatives of the distance dc1 to the line aligned with m1-axis:

∂dc1(x,S)

∂xi
|x=x1

= 2
[

P1 + λn 1
]T

T T
r LcTr

∂x

∂xi
=

= 2λ ‖n‖2
[

0 0 1 0
]









mT
1 −m1 •P1

mT
2 −m2 •P1

nT −n •P1

0T 1









∂x

∂xi
=

= 2λ ‖n‖2
[

nT − n •P1

]T ∂x

∂xi
=

= 2λni ‖n‖
2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}
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3. Derivatives of the distance ds to the point P1:

∂ds(x,S)

∂xi

|x=x1
= 2

[

P1 + λn 1
]T

T T
r LsTr

∂x

∂xi

=

= 2λni ‖n‖
2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}

4. Derivatives of the distance dc2 to the line aligned with m2-axis:

∂dc2(x,S)

∂s
|x=x1

= 2
[

P1 + λn 1
]T

T T
r LcTr

[

P1 + λn

1

]

=

= 2
[

P1 + λn 1
]T
[

m2 m1 −n 0

−m2 •P1 −m1P1 n •P1 1

]

LcTr

[

P1 + λn

1

]

=

= 2λ ‖n‖2
[

0 0 −1 0
]









mT
2 −m2 •P1

mT
1 −m1 •P1

−nT n •P1

0T 1









∂x

∂xi
=

= 2λ ‖n‖2
[

nT − n •P1

]T ∂x

∂xi
= 2λni ‖n‖

2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}

CASE 3: Let us consider all the points x1 = P1 + λn + ηm1 on the connection of
regions reg1, reg4 where those regions actually meet. This is actually connection between
cylinder and the plane along the edge m1 aligned with the x-axis. We first compute first
order derivatives over parameters at these points for each of the two distance functions, and
then first order derivatives over the independent variables x, y and z.

First order derivatives over the parameters in the points x2 = P1 + λn + ηm1:

1. Derivatives of the distance to plane dp function:

∂dp(x,S)

∂s
|x=x2

=
[

P1 + λn + ηm1 1
]T ∂L1(S)

∂s
L2

[

P1 + λn + ηm1

1

]

+

=
[

P1 + λn + ηm1 1
]T

L1
∂L2(S)

∂s

[

P1 + λn + ηm1

1

]

=

= A′ + B′ ⇒
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A′ =
[

P1 + λn 1
]T ∂L1(S)

∂s
L2

[

P1 + λn

1

]

+

[

P1 + λn 1
]T ∂L1(S)

∂s
L2

[

ηm1 0
]T

+

[

ηm1 0
]T ∂L1(S)

∂s
L2

[

P1 + λn

0

]

+

[

ηm1 0
]T ∂L1(S)

∂s
L2

[

ηm1 1
]T

=

= λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

+ 0 + ληm1
∂n

∂s
‖n‖2 + 0 =

= λ ‖n‖2
(

∂n

∂s
(λn + ηm1)− n

∂P1

∂s

)

B
′

=
[

P1 + λn 1
]T

L1
∂L2(S)

∂s

[

P1 + λn

1

]

+

[

P1 + λn 1
]T

L1
∂L2(S)

∂s

[

ηm1 0
]T

=

=
[

ηm1 0
]T

L1
∂L2(S)

∂s

[

P1 + λn

0

]

+

[

ηm1 0
]T

L1
∂L2(S)

∂s
L2

[

ηm1 1
]T

=

= λ ‖n‖2 n

(

λ
∂n

∂s
−

∂P1

∂s

)

+

+ ληm1
∂n

∂s
‖n‖2 + 0 + 0 = A′

∂dp(x,S)

∂s
|x=x1

= 2λ ‖n‖2
(

∂n

∂s
(λn + ηm1)− n

∂P1

∂s

)

2. Derivatives of the distance dc1 to the line aligned with m1-axis:

∂dc1(x,S)

∂s
|x=x2

= 2
[

P1 + λn + ηm1 1
]T

T T
r Lc

∂Tr(S)

∂s

[

P1 + λn + ηm1

1

]

=

= 2λ
[

0 0 ‖n‖2 0
]

Lc
∂Tr(S)

∂s

[

P1 + λn + ηm1

1

]

=

= 2λ ‖n‖2
[

∂nT

∂s
−∂nT

∂s
•P1 − n •

∂PT
1

∂s

]

[

P1 + λn + ηm1

1

]

=

= 2λ ‖n‖2
(

∂n

∂s
(λn + ηm1)− n

∂P1

∂s

)

.

138



9.1 Differentiability of the Triangular Metaballs Field Function

First order derivatives over the independent variables x, y and z in the points x2 = P1 +
λn + ηm1:

1. Derivatives of the distance to plane dp function:

∂dp(x,S)

∂xi

|x=x2
= 2

[

P1 + λn + ηm1 1
]T

L1L2
∂x

∂xi

=

=
[

P1 + λn 1
]T

L1L2
∂x

∂xi

+
[

ηm1 0
]T

L1L2
∂x

∂xi

=

= 2λ ‖n‖2
[

nT − n •P1

]T ∂x

∂xi

+ 0 =

= 2λni ‖n‖
2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}

2. Derivatives of the distance dc1 to the line aligned with m1-axis:

∂dc1(x,S)

∂xi
|x=x2

= 2
[

P1 + λn + ηm1 1
]T

T T
r LcTr

∂x

∂xi
=

=
[

P1 + λn 1
]T

T T
r LcTr

∂x

∂xi
+
[

ηm1 0
]T

T T
r LcTr

∂x

∂xi
=

= 2λ ‖n‖2
[

nT − n •P1

]T ∂x

∂xi

+
[

‖m1‖
2 0 0 0

]









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









Tr
∂x

∂xi

=

= 2λni ‖n‖
2 , ni ∈ {nx, ny, nz} , xi ∈ {x, y, z}
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[76] LEONARDIS, A., JAKLIČ, A., AND SOLINA, F. Superquadrics for segmentation
and modeling range data. IEEE Transactions on Pattern Analysis and Machine In-
telligence 19, 11 (1997), 1289–1295.

[77] LITKE, N., LEVIN, A., AND SCHRÖDER, P. Fitting subdivision surfaces. In Pro-
ceedings of the conference on Visualization ’01 (2001), IEEE Computer Society,
pp. 319–324.

146



Bibliography

[78] LIU, J., MUNDY, J., FORSYTH, D., AND ZISSERMAN, A. Efficient recognition
of rotationally symmetric surface and straight homogeneous generalized cylinders.
Conference on Computer Vision and Pattern Recognition (1993), 123–128.

[79] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. Master thesis, Depart-
ment of Mathematics, University of Utah, 1987.

[80] LOWE, D. G. Fitting parameterized three-dimensional models to images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 13, 441-450 (1991).

[81] MA, W., AND KRUTH, J. P. Parametrization of randomly measured points for least
square fitting of b-spline curve and surfaces. Computer Added Design 1, 27 (1995),
663–675.

[82] METAXAS, D., AND TERZOPOULOS, D. Recursive estimation of shape and non-
rigid motion. In In IEEE Workshop on Visual Motion (October 1991), pp. 306–311.

[83] METAXAS, D., AND TERZOPOULOS, D. Dynamic Deformations of Solid Primitives
and Constraints. Computer Graphics, SIGGRAPH Proceedings 26, 2 (1992), 309–
312.

[84] MOCCOZET, L., AND MAGNENAT-THALMANN, N. Dirichlet Free-Form Deforma-
tion and their Application to Hand Simulation. In Computer Animation (1997).

[85] NASTAR, C., AND AYACHE, N. Frequency-based nonrigid motion analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18, 11 (November 1996).

[86] PENTLAND, A. Automatic extraction of deformable part models. International
Journal of Computer Vision 4, 2 (March 1990), 107–126.

[87] PENTLAND, A., HOROWITZ, B., AND SCLAROFF, S. Non-rigid motion and struc-
ture from contour. In MOTION91 (1991), pp. 288–293.

[88] PENTLAND, A., AND WILLIAMS, J. Good Vibrations: Modal Dynamics for Graph-
ics and Animation. Computer Graphics, SIGGRAPH Proceedings 23, 4 (1989), 215–
222.

[89] PENTLAND, A. P. Perceptual organization and representation of natural form. Arti-
ficial Inteligence 28, 2 (1986), 293–331.

[90] PLÄNKERS, R., AND FUA, P. Articulated Soft Objects for Video-based Body Mod-
eling. In International Conference on Computer Vision (Vancouver, Canada, July
2001), pp. 394–401.

[91] PLÄNKERS, R., AND FUA, P. Articulated Soft Objects for Multi-View Shape and
Motion Capture. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2003).

147



Bibliography

[92] PONCE, J., AND CHELBERG, D. Invariant properties of straight homogeneous gen-
eralised cylinders and their contours. IEEE Transactions on Pattern Analysis and
Machine Intelligence 11, 9 (1989), 951–965.

[93] PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. Numerical
Recipes, the Art of Scientific Computing. Cambridge U. Press, Cambridge, MA,
1986.

[94] RAJA, N. S., AND JAIN, A. K. Recognizing geons from superquadrics fitted to
range data. Image and Vision Computing 10, 3 (1992), 179–190.

[95] ROSTEN, E., AND DRUMMOND, T. Rapid rendering of apparent contours of implicit
surfaces for realtime tracking. In British Machine Vision Conference (Norwich, UK,
2003), vol. 2, pp. 719–728.

[96] ROY, S., AND COX, I. A Maximum-Flow Formulation of the N-camera Stereo Cor-
respondence Problem. In International Conference on Computer Vision (Bombay,
India, 1998), pp. 492–499.

[97] SATO, H., AND BINFORD, T. O. Finding and recovering shgc objects in an edge
image. Computer Vision, Graphics, and Image Processing 57, 3 (1993), 346–358.

[98] SCHEIB, V., HABER, J., LIN, M. C., AND SEIDEL, H.-P. Efficient fitting and
rendering of large scattered data sets using subdivision surfaces. Computer Graphics
Forum 21, 3 (2002).

[99] SCLAROFF, S., AND PENTLAND, A. P. Modal matching for correspondence and
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 6
(1995), 545–561.

[100] SEDERBERG, T., AND PARRY, S. Free-Form Deformation of Solid Geometric Mod-
els. Computer Graphics, SIGGRAPH Proceedings 20, 4 (1986).

[101] SHAHROKNI, A., DRUMMOND, T., AND FUA, P. Texture Boundary Detection for
Real-Time Tracking. In European Conference on Computer Vision (Prague, Czech
Republic, May 2004), pp. Vol II: 566–577.

[102] SHAN, Y., LIU, Z., AND ZHANG, Z. Model-Based Bundle Adjustment with Appli-
cation to Face Modeling. In International Conference on Computer Vision (Vancou-
ver, Canada, July 2001).

[103] SHEN, X., AND SPANN, M. 3d shape modelling through a constrained estimation of
a bicubic b-spline surface. In British Machine Vision Conference (1998), pp. xx–yy.

[104] SIBSON, R. A Vector Identity for the Dirichlet Tessellation. In Math. Proc. Cam-
bridge Philos. Soc. (1980), pp. 151–155.

148



Bibliography

[105] SMINCHISESCU, C., AND TRIGGS, B. Estimating articulated human motion with
covariance scaled sampling. International Journal of Robotics Research 22, 6 (June
2003), 371–391.

[106] SOLINA, F., AND BAJCSY, R. Recovery of parametric models from range images:
the case for superquadrics with global deformations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12, 2 (1990), 131–147.

[107] STENGER, B., MENDONCA, P. R. S., AND CIPOLLA, R. Model-based 3D tracking
of an Articulated Hand. In Conference on Computer Vision and Pattern Recognition
(Kauai, USA, December 2001), pp. 310–315.

[108] STODDART, A., AND BAKER, M. Surface reconstruction and compression using
multiresolution arbitrary topology g1 continuous splines. In International Confer-
ence on Pattern Recognition (1998), pp. Vol I: 788–791.

[109] SULLIVAN, S., AND PONCE, J. Automatic model construction and pose estimation
from photographs using triangular splines. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20, 10 (October 1998), 1091–1097.

[110] SULLIVAN, S., SANDFORD, L., AND PONCE, J. Using geometric distance fits for
3–d. object modeling and recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 16, 12 (December 1994), 1183–1196.

[111] SZELISKI, R., LAVAL, S., AND E. Matching anatomical surface with non-rigid
deformations using octree-splines. International Journal of Computer Vision 18, 2
(1996), 171–186.

[112] SZELISKI, R., AND TERZOPOULOS, D. Physically based and probabilistic models
for computer vision. SPIE 1570 (1991), 140–152.

[113] TERZOPOULOS, D. On matching deformable models to images. In Topical Meeting
on Machine Vision, Technical Digest Series (November 1986), vol. 12.

[114] TERZOPOULOS, D., AND METAXAS, D. Dynamic 3D models with local and global
deformations: Deformable superquadrics. IEEE Transactions on Pattern Analysis
and Machine Intelligence 13 (1991), 703–714.

[115] TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEICHER, K. Elastically De-
formable Models. Computer Graphics, SIGGRAPH Proceedings 21, 4 (1987), 205–
214.

[116] TERZOPOULOS, D., AND VASILESCU, M. Sampling and reconstruction with adap-
tive meshes. In Conference on Computer Vision and Pattern Recognition (1991),
pp. 70–75.

149



Bibliography

[117] TERZOPOULOS, D., AND WITKIN, A. Physically Based Model with Rigid and
Deformable Components. IEEE Computer Graphics and Applications 8, 6 (1988),
41–51.

[118] TURK, G., AND O’BRIEN, J. Shape transformation using variational implicit func-
tions. In Computer Graphics, SIGGRAPH Proceedings (1999), vol. 33, pp. 335–342.

[119] TURK, G., AND O’BRIEN, J. Variational implicit surfaces. technical report git-gvu-
99-15. Tech. rep., Graphics, Visualization, and Useability Center. Georgia Institute
of Technology, 1999.

[120] TURK, H., AND O’BRIEN, J. Modelling with implicit surfaces that interpolate,
2000.

[121] VACCHETTI, L., LEPETIT, V., AND FUA, P. Combining Edge and Texture Informa-
tion for Real-Time Accurate 3D Camera Tracking. In International Symposium on
Mixed and Augmented Reality (Arlington, VA, November 2004).

[122] WHAITE, P., AND FERRIE, F. From uncertanty to visual exploration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 13, 10 (1991), 1038–1049.

[123] WILLIAMS, J., JOHNSTONE, J., AND WOLFF, L. Rational discrete generalized
cylinders and their application to shape recovery in medical images. In Conference
on Computer Vision and Pattern Recognition (1997), pp. 387–392.

[124] WONG, K.-Y. K., MENDONÇA, P. R. S., AND CIPOLLA, R. Reconstruction of
surfaces of revolution from single uncalibrated views. Image and Vision Computing
22, 10 (2004), 829–836.

[125] WYVILL, G., AND WYVILL, B. Data Structure for Soft Objects. The Visual Com-
puter (February 1986), 2(4)227–234.

[126] XU, C., AND PRINCE, J. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans-
actions on Image Processing 7, 3 (Mar. 1998), 359–369.

[127] XU, Z. Subdivision surfaces: http://www.ke.ics.saitama-u.ac.jp/xuz/mid-
subdivision.html.

[128] YUILLE, A. L., HALLINAN, P. W., AND COHEN, D. S. Feature extraction from
faces using deformable templates. International Journal of Computer Vision 8, 2
(1992), 99–111.

[129] ZERROUG, M., AND NEVATIA, R. Three-dimensional descriptions based on the
analysis of the invariant and quasi-invariant properties of some curved-axis general-
ized cylinders. IEEE Transactions on Pattern Analysis and Machine Intelligence 18,
3 (March 1996), 237–253.

150



Bibliography

[130] ZHAO, C., AND MOHR, R. Relative 3d regularized b-spline surface reconstruc-
tion through image sequences. In European Conference on Computer Vision (1994),
pp. B:417–426.

151



Bibliography

152



Curriculum Vitae

General Data

Name Ilic Slobodan

Date of Birth 30. March 1973, Aleksinac, Serbia

Nationality Serbian

Languages Serbian (native), English and French fluent, Russian intermidiate

Education

2000 - 2005 PhD studies, Computer Vision Laboratory, EPFL, Switzerland

1999 - 2000 Doctoral School Program in Computer Science, EPFL

1992 - 1997 Electronic engineer with specialization in Computer Science, Faculty of
Electronic Engineering, University of Nis, Yugoslavia

1988 - 1992 Mathematical Gymnasium "Bora Stankovic", Nis, Yugoslavia

Professional Experience

2000 - 2005 Research assistant, Computer Vision Lab, EPFL, Switzerland

1997 - 1999 Research assistant, Faculty of Electronic Engineering, University of Nis,
Yugoslavia

1997 - 1998 VB and MS Access developer, Local TV station "TV5", Nis, Yugoslavia

153




