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Abstract. In this paper, we review methods used for macroscopic mod-
eling and analyzing collective behavior of swarm robotic systems. Al-
though the behavior of an individual robot in a swarm is often charac-
terized by an important stochastic component, the collective behavior
of swarms is statistically predictable and has often a simple probabilis-
tic description. Indeed, we show that a class of mathematical models
that describe the dynamics of collective behavior can be generated using
the individual robot controller as modeling blueprint. We illustrate the
macroscopic modelling methods with the help of a few sample results
gathered in distributed manipulation experiments (collaborative stick
pulling, foraging, aggregation). We compare the models’ predictions to
results of probabilistic numeric and sensor-based simulations as well as
experiments with real robots. Depending on the assumptions, the metric
used, and the complexity of the models, we show that it is possible to
achieve quantitatively correct predictions.

1 Vision

Swarm Robotics is an emerging area in collective robotics which uses a fully
distributed control paradigm and relatively simple robots to achieve coordinated
behavior at the group level. Swarm robotic systems are self-organizing, meaning
that constructive collective (or macroscopic) behavior emerges from individual
(or microscopic) decisions robots make. These decisions are based on purely local
information that comes from other robots as well as the environment. Swarm
Robotics takes its inspiration from examples of collective behavior exhibited by
biological systems, such as social insects [3], and the swarming, flocking, herding,
and shoaling phenomena in vertebrates. In all these systems, the abilities of the
collective appear to transcend the abilities of the constituent individuals.

The main advantages of the application of the swarm approach to the control
of a group of robots are: (i) scalability: the control architecture can be kept
exactly the same from a few units to thousands of units; (ii) flexibility: units can
be dynamically added or removed, they can be given the ability to reallocate



and redistribute themselves in a self-organized way; (iii) robustness: the resulting
collective system is robust not only through unit redundancy but also through
unit simplicity and an appropriate balance between exploitative and exploratory
behavior.

The main difficulty in designing swarm robotic systems with desirable self-
organized behavior is understanding the effect individual robot characteristics
have on the collective behavior. In the past, few analysis tools have been avail-
able to researchers. Experiments with physical robots are very costly and time
consuming, and systematically studying group behavior is often impractical.
Simulations, such as with embodied simulators [5, 13], attempt to realistically
model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and much more reliable than experiments,
their results are not easily generalizable. Exhaustive scan of the design parame-
ter space is often required to reach any conclusion. Moreover, simulations do not
scale well with the system size — unless computation is performed in parallel,
the greater the number of agents, the longer it takes to obtain results.

Macroscopic modeling and mathematical analysis offer an alternative to ex-
periments and simulations. Using mathematical analysis we can quickly and
efficiently study swarm robotic systems, predict their long term behavior, gain
insight into system design: e.g., how individual robot characteristics affect group
behavior. Additionally, mathematical analysis may be used to select parameters
that optimize group performance, prevent instabilities, etc. Finally, results of
analysis can be used as feedback to guide performance-enhancing modifications
of the robot controller.

In this paper we survey existing work on modeling collective behavior of
robot swarms with macroscopic models. The robots themselves in these systems
are simple, usually using reactive control: robots decide about future actions
based solely on input from sensors (including communication with other robots)
and the action they are currently executing. They do not rely on abstract rep-
resentation, planning, or higher order reasoning functions. Such robots can be
represented as stochastic Markov processes. An equation, known as the Rate
Equation, describes the dynamics of their collective behavior. The Rate Equa-
tion formalism can be derived from theory of stochastic processes [8], although in
practice, the equations are usually phenomenological and can be easily written
down by considering details of the individual robot controller. The Rate Equa-
tion approach has been applied to study several distributed robot systems [14,
10, 7, 11, 1]. Below we review the elements of the mathematical formalism and
illustrate with a few sample results from the robotics domain.

2 Methods for Modeling Swarm Robotic Systems

Models can generally be broken into two classes: microscopic and macrosco-
pic. Microscopic descriptions treat the robot as the fundamental unit of the
model. These models describe the robot’s interactions with other robots and the
environment. Solving or simulating a system composed of many such agents gives



researchers an understanding of the global behavior of the system. Examples
of such microscopic models are reported in [12, 6]; they have been used to
study collective behavior of a swarm of robots engaged in object aggregation and
collaborative pulling. Rather than compute the exact trajectories and sensory
information of individual robots, the robot’s interactions with other robots and
the environment are modeled as a series of stochastic events, with probabilities
determined by simple geometric considerations and systematic experiments with
one or two real robots. Running several series of stochastic events in parallel, one
for each robot, allows researchers to study the collective behavior of the swarm.

A macroscopic model, on the other hand, directly describes the collective be-
havior of the robotic swarm. It is computationally efficient because it uses fewer
variables. Macroscopic models have been successfully applied to a wide variety
of problems in physics, chemistry, biology and the social sciences. In these appli-
cations, the microscopic behavior of an individual (e.g., a Brownian particle in
a volume of gas or an individual residing in US) is quite complex, often stochas-
tic and only partially predictable, and certainly analytically intractable. Rather
than account for the inherent variability of individuals, scientists model the be-
havior of some average quantity that represents the system they are studying
(e.g., volume of gas or population of US). Such macroscopic descriptions often
have a very simple form and are analytically tractable. It is important to re-
member that such models do not reproduce the results of a single experiment
— rather, the behavior of some observable averaged over many experiments or
observations. The two description levels are, of course, related: we can start from
the Stochastic Master Equation that describes the evolution of a robot’s prob-
ability density and get the Rate Equation, a macroscopic model, by averaging
it [8]. In most cases, however, Rate Equations are phenomenological in nature,
i.e., not derived from first principles. Below we show how to formulate the Rate
Equations describing dynamics of a homogeneous robot swarm by examining the
details of individual robot controller.

The Rate Equation is not the only approach to modeling collective behav-
ior. Anderson [2], for example, shows how geometric analysis can be used to
predict distribution of individuals playing spatial participative games from the
microscopic rules each individual is following.

2.1 Stochastic Approach to Modeling Robotic Swarms

The behavior of individual robots in a swarm has many complex influences,
even in a controlled laboratory setting. Robots are influenced by external forces,
many of which may not be anticipated, such as friction, battery power, sound or
light signals, etc. Even if all the forces are known in advance, the robots are still
subject to random events: fluctuations in the environment, as well as noise in the
robot’s sensors and actuators. A robot will interact with other robots whose exact
trajectories are equally complex, making it impossible to know which robots will
come in contact with one another. Finally, the designer can take advantage of
the unpredictability and incorporate it directly into the robot’s behavior: e.g.,
the simplest effective policy for obstacle avoidance is for the robot to turn a



random angle and move forward. In summary, the behavior of robots in a swarm
is so complex, it is best described probabilistically, as a stochastic process.

searching

pickuphoming

start

Fig. 1. Diagram of a robot controller for the simplified foraging scenario

Consider Figure 1, it depicts a controller for a simplified foraging scenario.
Each box represents a robot’s state — the action it is executing. In the course of
accomplishing the task, the robot will transition from searching to puck pick-up
to homing. Transitions between states are triggered by external stimuli, such
as encountering a puck. This robot can be described as a stochastic Markov
process3, and the diagram in Figure 1 is, therefore, the Finite State Automaton
(FSA) of the controller.

The stochastic process approach allows us to mathematically study the be-
havior of robot swarms. Let p(n, t) be the probability robot is in state n at time
t. The Markov property allows us to write change in probability density as [8]

∆p(n, t) = p(n, t + ∆t) − p(n, t)

=
∑

n′
p(n, t + ∆t|n′, t)p(n′, t) −

∑

n′
p(n′, t + ∆t|n, t)p(n, t). (1)

The conditional probabilities define the transition rates for a Markov process

W (n|n′; t) = lim
∆t→0

p(n, t + ∆t|n′, t)
∆t

. (2)

The quantity p(n, t) also describes a macroscopic variable — the fraction
of robots in state n, with Equation 1 describing how this variable changes in
time. Averaging both sides of the equation over the number of robots (and
assuming only individual transitions between states are allowed), we obtain in
the continuous limit (lim∆t→0)

dNn(t)
dt

=
∑

n′
W (n|n′, t)N ′

n(t) −
∑

n′
W (n′|n, t)Nn(t), (3)

where Nn(t) is the average number of robots in state n at time t. This is the so-
called Rate Equation. It is sometimes also written in a discrete form, as a finite
3 A Markov process’s future state depends only on its present state and none of the
past states.



difference equation that describes the behavior of N(kT ), k being an integer
and T the discretization interval: (N(t + T ) − N(t))/T . Equation 3 has the
following interpretation: the number of robots in state n will increase in time
due to transitions to state n from other states, and it will decrease in time due
to the transitions from state n to other states.

Rate Equations are deterministic. In stochastic systems, however, they de-
scribe the dynamics of average quantities. How closely the average quantities
track the behavior of the actual dynamic variables depends on the magnitude of
fluctuations. Usually the larger the system, the smaller are the (relative) fluctua-
tions. In a small system, the experiment may be repeated many times to average
out the effect of fluctuations. The agreement increases as the size of the system
grows.

2.2 A Recipe for Model Construction

The Rate Equation is a useful tool for mathematical analysis of collective dy-
namics of robot swarms. To facilitate the analysis, we begin by drawing the
macroscopic state diagram of the system. The collective behavior of the swarm
is captured by an FSA that is functionally identical to the individual robot FSA,
except that each state of the automaton now represents the number of robots
executing that action [10, 7, 11]. Not every microscopic robot behavior need to
become a macroscopic state. In order to keep the model tractable, it is often
useful to coarse-grain it by considering several related actions or behaviors as a
single state. For example, we may take the searching state of robots to consist
of the actions wander in the arena, detect objects and avoid obstacles. When
necessary, the searching state can be split into three states, one for each behav-
ior; however, we are often interested in the minimal model that captures the
important behavior of the system. Coarse-graining presents a way to construct
such a minimal model.

The macroscopic automaton can be directly translated into the Rate Equa-
tions. Each state in the automaton becomes a dynamic variable Nn(t), with its
own Rate Equation. Every transition will be accounted for by a term in the
equation: a positive term for the incident (W (n|n′)Nn′) arrows and negative
term for the outgoing (W (n′|n)Nn) arrows.

Finding an appropriate mathematical form for the transition rates is the main
challenge in studying real systems. The transition is triggered by some stimulus
— be it another robot in a particular state, an object to be picked up, etc. In
order to compute the transition rates, we assume, for simplicity, that robots and
stimuli are uniformly distributed. The transition rates then have the following
form: W (n|n′) ≈ M , where M is the environmental stimulus encountered (e.g.,
number of sticks in the arena). The proportionality factor connects the model to
experiments, and it depends on the rate at which a robot detects sticks. It can be
roughly estimated from first principles (“scattering cross section” approach [10]),
measured from simulations or experiments with one or two robots, or left as a
model parameter. There will be cases where the uniformity assumption fails: e.g.,
in overcrowded scenarios where robots, depending on their obstacle avoidance



controller, tend to clump, forming “robotic clouds” [11]. If the transition rates
cannot be calculated from first principles, it may be expedient to leave them as
parameters of the model and obtain them by fitting the model to data.

3 Application to Swarm Robotic Experiments

The Rate Equation has been used to study a variety of distributed robot systems.
Below we illustrate the approach with a few sample results from swarm robotic
experiments, for which a body of experimental and simulations data exists.

3.1 Collaborative Stick Pulling

The stick-pulling experiments were carried out to study dynamics of collabora-
tion in robots [6]. The robots’ task was to locate sticks scattered around the
arena and pull them out of their holes. A single robot cannot complete the task
on its own: rather, when a robot finds a stick, it lifts it partially out of the
hole and waits for a period specified by its gripping time parameter for a second
robot to find it. If a second robot finds the first during this time interval, it will
pull the stick out; otherwise, the first robot releases the stick and returns to the
searching state.

Lerman et al. [10] studied a minimal continuous time model of the system.
A minimal model includes only the salient details of the process it describes.
They found that this model reproduced key experimental observations and qual-
itatively agreed with results of experiments and simulations (see Figure 2(a)).
Martinoli & Easton [11] formulated a more detailed model based on finite dif-
ference equations that accounts for every state in the robot control diagram.

Figure 2 depicts the collaboration rate, the rate at which robots pull sticks
out, as a function of the individual robot gripping time parameter for the minimal
(a) and the detailed (b) models. Figure 2(b) also shows results of embodied and
probabilistic numeric simulations for the same set of parameters. One can see
quantitative agreement already with swarms as small as 8 robots. The minimal
model shows the same qualitative behavior as the more detailed model.

3.2 Collective Object Collection

Mathematical models have been applied to study collective collection experi-
ments (aggregation and foraging). In the aggregation experiments, the task was
to gather small objects in a single cluster starting from a situation where they
were all randomly scattered in an arena [12, 1]. Swarms of robots of different
group size, or differing in the sensing and actuation capabilities, were used to
aggregate different types of objects. These publications considered both micro-
scopic and macroscopic models as well as a few metrics for measuring the evolu-
tion of aggregation (average cluster size, number of clusters, size of the biggest
cluster). Figure 3(a) shows the results of macroscopic model’s predictions com-
pared to realistic embodied simulation for swarm sizes of one and five robots (see
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Fig. 2. Collaboration rate per robot vs gripping time parameter for different robot
group sizes and 16 sticks. (a) Results of the minimal model for 8 (short dash), 16 (long
dash) and 24 (solid line) robots. (b) Results for detailed model (solid lines), embodied
simulations (dotted lines), the microscopic model (dashed lines).

[1] for details). It is worth nothing that, although certain swarm sizes considered
were extremely small, quantitative agreement between model and realistic sim-
ulation was achieved. The authors also report experiments using variable swarm
sizes, by enabling robots to decide whether to continue aggregating the objects
or rest. Also in this scenario, theoretical predictions were extremely faithful not
only in predicting dynamics of aggregation but also the number of active workers
over time.

In foraging experiments, Lerman and Galstyan studied the influence of phys-
ical interference on the swarm performance [7]. Interference is a critical issue in
swarm robotics, in particular in foraging experiments where there is a spatial
bottleneck at the predefined “home” region where the collected objects must
be delivered. When two robots find themselves within sensing distance of one
another, they will execute obstacle avoidance maneuvers. Because this behavior
takes time, interference decreases robots’ efficiency. Clearly, a single robot work-
ing alone is relatively more efficient, because it does not experience interference
from other robots (the larger the swarm, the greater the degree of interference).
However, parallel work helps speed up the foraging process and increases the
system robustness in case of individual robot failures.

Figure 3(b) shows the total time required to complete the task for two differ-
ent interference strengths, as measured by the avoiding time τ . For both cases
task completion time is minimized for some swarm size and increases for larger
swarms. The greater the effect of interference (larger τ), the smaller the optimal
swarm size. Results show good quantitative agreement with embodied simula-
tions with swarms of one to 20 robots.
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Fig. 3. (a) Evolution of the mean cluster size in an arena with 20 objects to gather
and swarms of one and five robots. Macroscopic model (dashed lines) and embodied
simulation (continuous lines) are compared. (b) Time it takes the swarm of robots
to collect objects in the arena for two difference interference strengths. Symbols are
results of embodied simulations, while lines give the model’s predictions.

4 Discussion

The macroscopic methods used to analyze collective behavior of robot swarms
are based on viewing individual robots as stochastic Markov processes. In order
to construct a description of the behavior of a swarm, we do not need to know
the exact trajectories of every robot; instead, we derive a model that governs
the dynamics of the aggregate, or average, swarm behavior.

A number of simplifying assumptions and specific conditions were used in the
methods presented in this paper. While these are not strictly necessary for the
validity of the overall approach, they are important for producing mathemat-
ically tractable macroscopic models. First, we assume that robot’s actions are
largely independent of one another (dilute limit), and the transition rates can be
represented by aggregate quantities that are spatially uniform and independent
of individual robots or their trajectories. Second, up to date we considered exclu-
sively nonspatial metrics for evaluating collective swarm performance. As long
as detection areas do not overlap between the objects placed in the arena and
the metric does not specifically address spatiality, these assumptions are correct.
Third, we assumed that modeled robots have perfectly centered, uniform, and
precise range of detection for each object they may encounter in the arena, in
contrast to the individual, heterogeneously distributed, noisy sensors available
to the real robots and in the embodied simulation. Fourth, modeled robots are
characterized by a set of parameters, each of them representing the mean value
of some real robot feature: mean speed, mean duration for performing a certain
maneuver, and so on. We do not consider parameter distributions in our models.
Fifth, further difficulties may arise due to behavioral granularity captured in the



models. For instance, certain controllers can be approximated by a FSA, though
certain routines (e.g., obstacle avoidance and interference) might rely on different
control architectures. For instance, proximal control architectures such as neural
networks are often used for such routines. They tightly couple actuators with
sensors without passing through a distal representation as, for instance, is the
case for behavior-based implementations. Parameters used to describe the states
corresponding to such routines can still be measured in systematic tests with
one or two real robots for achieving well calibrated models without using free
parameters but this usually implies some inaccuracies. While for predicting high
level metrics such as those considered in the distributed manipulation experi-
ments mentioned above, this approximation is quite sufficient, for other metrics
closer to the the robot movements (e.g., average number of robots in search or
in obstacle avoidance) such inaccuracies might have a more relevant effect. As a
consequence, it might be much more difficult to achieve quantitative agreement
between models’ predictions and experimental results without fitting the data.
Finally, depending on the type of experiment performed and the metrics used,
nonlinear mapping between microscopic and macroscopic representations might
generate prediction discrepancies between the two type of models simply because
average quantities in closed form at the macroscopic level cannot be calculated
from the linear combination of the individual Markov chains constituting the
microscopic model. As a general rule, discrepancies between the two modeling
categories are usually more important with smaller swarm sizes. In such cases
microscopic models are often more faithful than macroscopic ones.

5 Conclusion and Outlook

In this paper we have reviewed methods for macroscopically modeling and an-
alyzing the behavior of robot swarms. Our analysis is based on the theory of
distributed stochastic processes, which is applicable to robot swarms because
the behavior of each robot is inherently probabilistic in nature and often not
completely predictable, and its future state depends only on its present state.
Despite the inherent unpredictability, the probabilistic description of the col-
lective behavior is surprisingly simple. We showed that Rate Equations describe
how the average collective system properties change in time. These equations can
be easily written down from the details of the individual robot controller. We
illustrated the formalism by reporting a few sample results from swarm robotics
experiments presented in the past. Analysis yields important insights into the
system, such as what are the important parameters that determine the behavior,
how to optimize swarm performance, etc.

Much work remains to be done in extending stochastic mathematical models
to new domains and overcoming limitations of the current models. For example,
Lerman & Galstyan [9, 4] have moved beyond simple Markov processes to study
distributed systems composed of adaptive robots that can change their behavior
based on their estimates of the global state of the system. Another unexplored
area is in modeling systems in which position has to be taken into account.



Such systems include any that are based on diffusing pheromone fields. Another
research direction is to move beyond the mean-field approximation and develop
exact statistical formulations of problems. Such formulations will enable us to
study directly stochastic effects, including the strength of fluctuations.
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