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1 Introduction

Acrtificial swarm systems based on swarm intelligence
consist of relatively simple autonomous agents. They
are truly distributed, self-organized, inherently scal-
able, and exploit an adequate balance between ex-
plorative and exploitative behavior for robustly fac-
ing changes in the environment or task conditions
(Bonabeau, Dorigo, & Theraulaz, 1999).

Swarm systems can be homogeneous or hetero-
geneous. A homogeneous system usually consists of
physically identical entities with the same hardware
and software capabilities. Depending on the metric
used for assessing the swarm performance, different
entities might also generate a homogeneous swarm if
each of them performs the same function and con-
tributes in the same way to the swarm performance.
A heterogeneous system may differentiate at different
levels: at the hardware level, at the controller software
level, at the function/behavior level, etc. In this pa-
per, we use software agents emulating real robots that
differ exclusively at the controller level: they can be
endowed with different control parameters.

Several degrees of heterogeneity are possible:
from homogeneous swarms (one caste) to fully hetero-
geneous ones (the number of castes equal to the num-
ber of agents in the swarm) via multi-caste swarms.
Depending on environmental and task constraints, a
homogeneous solution may not achieve the best re-
sults. Learning, as an automatic way to adjust control
parameters or select behavioral rules without a priori
assuming the degree of swarm heterogeneity, repre-
sents an effective tool to explore not only homoge-
neous solutions (Hayes, Martinoli, & Goodman, 2003)
but also heterogeneous ones (Murciano, Millan, &
Zamora, 1997; Li, Martinoli, & Abu-Mostafa, 2002).
In this paper, we are interested in comparing dis-
tributed learning, where the adaptation process can
occur at the level of a single robot or a caste, with cen-
tralized learning, where a homogeneous swarm adapt
as a whole and the same set of control parameters char-
acterizes each individual.® In order to perform a fair
comparison, we have chosen a simple algorithm which
can be easily adapted to the different types of rein-
forcement signal and swarm diversity.

The global reinforcement signal, often equivalent
to the swarm performance, is stable and meaningful

for the goal of learning. However, when a global rein-
forcement signal is used in a distributed learning pro-
cess, the credit-assignment problem has to be solved
in some way. That is, the global signal measuring the
swarm performance has to be decomposed or trans-
lated so that it can be interpreted at the agent or caste
level (Murciano et al., 1997). In case of a poten-
tially heterogeneous swarm, agents might contribute
in different ways to the swarm performance. If their
contribution is a function of their control parameters,
a clear mapping between individual control solution
and swarm performance could be derived. Defining
this global-to-local mapping is equivalent to solving
the credit-assignment problem. For certain types of
tasks and software agents without communication or
memory limitations, this problem has been solved in
elegant ways (e.g., Wolpert & Tumer, 2001). How-
ever, if agents are characterized by limited communi-
cation and/or information processing capabilities, the
credit-assignment problem becomes much more diffi-
cult. An elegant way to bypass the credit-assignment
problem proposed in the literature for such systems is
to exploit a global communication network to broad-
cast the adaptation results to each agent, using some
centralized learning process, in combination with an
enforcement of the swarm homogeneity (Hayes et al.,
2003; Versino & Gambardella, 1997). As a matter of
fact, if each agent contributes (on average) in the same
way to the swarm performance, it should get the same
share of the merit achieved at the swarm level.

Depending on the availability of a signal assessing
the swarm performance and the communication capa-
bilities of real agents, a centralized or distributed so-
lution based on the global reinforcement signal might
be too expensive, if not infeasible. An alternative so-
lution is to use a local reinforcement signal (Mataric,
1998; Parker & Touzet, 2000). In this case, a dis-
tributed learning algorithm rewards a single agent
based on the local assessment of its contribution to
the swarm performance. Although this type of rein-
forcement signal is immediate and exploits the inher-
ent parallelism of the swarm, it often provides only a
noisy estimation of the swarm performance. The more
limited and local the communication and perception
capabilities are (e.g., in extreme cases ho communica-
tion at all and very short-range sensors), the noisier the
local assessment is, due to partial perception. In other
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words, for an individual agent it is extremely difficult
to assess whether the success of its actions has been
achieved because of its own merit or because the other
agents around it created a favorable situation.

A sort of solution between a fully heterogeneous
swarm and a homogeneous one is represented by a
caste-based swarm. In this scenario, distributed, caste-
centered learning can be implemented where each
caste interprets a reinforcement signal (either global
or collected by its members, i.e., caste-centered) and
adapts its control parameters or rules in a coordinated
way. Further information about variation on multi-
robot rewards function can be found in Balch (2002b).

In this paper, we consider different task constraints
and types of reinforcement signals, and quantitatively
measure the performance, diversity, and specialization
of a swarm. If agents do not belong to the same caste,
they are not allowed to communicate among them-
selves but can receive global reinforcement signals
broadcast from a central unit. Within a caste, agents
are networked and coordinate their adaptation process
so that caste homogeneity is maintained.> We sup-
port the discussion first with a concrete collaboration
experiment concerned with pulling sticks out of the
ground, and then with its generalized versions, where
the collaboration is extended to & sequential or parallel
operations within a certain time window—analogous
to pulling longer or heavier sticks. We show that spe-
cialization can arise in all versions of experiments as a
function of task constraints on the environment and the
swarm, no matter which type of reinforcement signal
is used. As long as the diversity in agents brings ad-
vantage to the swarm performance, learning can drive
the system to become specialized.

Finally, as we will further outline in Section 6,
the specialization analysis and synthesis presented in
this paper could be applied to completely different ex-
periments using distributed, embedded systems whose
units are supposed to solve a task in a collaborative
way. For example, self-locomoted sensor nodes char-
acterized by pseudo-random movement patterns, en-
dowed with local communication capabilities, and en-
gaged in a monitoring task over a well-delimited area,
could be represented in the same abstracted way as the
robots engaged in the stick-pulling experiment. In this
case, the metric used to assess the swarm performance
could be related to the number of successful event de-

tections reported by the swarm to a base-station know-
ing that, before emitting an alarm signal, at least %
nodes of the swarm should collectively agree to have
detected the same event.

2 Diversity and Specialization

Traditionally, swarm systems have been classified on a
bipolar scale as either heterogeneous or homogeneous,
depending on whether any of the agents differ from the
others. This view is limiting because it does not per-
mit a quantitative comparison between heterogeneous
systems. In this section, we introduce metrics to quan-
titatively measure the diversity and specialization of a
swarm system, which can enable the investigation of
issues such as the impact of diversity on swarm per-
formance and the impact of task constraints on spe-
cialization.

2.1 Diversity Measure

The essential idea behind the diversity measure is to
cluster similar agents according to a problem-specific
difference measure d and look at the pattern they form
in the feature space.

An intuitive and straightforward way is to use the
number of clusters the agents form in the feature space
as the diversity measure. Each cluster is believed to be
a group of specialists, and essentially, the more clus-
ters we have, the more diverse the system is. However,
in general cases where the difference measure is not
binary, finding the “right” number of clusters for a data
set is often ill-posed. Depending on different criteria,
one number may or may not be better than another. Li
(2002) used a heuristic criterion (maximizing the dif-
ference between the inter-cluster and the intra-cluster
distances) to select the “optimal” clustering.

Instead of just using the number of clusters, Balch
(2002a) introduced Shannon’s information entropy to
measure the diversity and named it the simple social
entropy. For a system R with m clusters of agents, we
use p; to denote the portion of agents in the i-th cluster
(i.e., the cluster size divided by the swarm size). The
simple social entropy is defined as

H(R) =) pilogp;. @
=1
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Input: a swarm system R = {ry,ro, ..
For different level h, the C,, clustering algorithm does:

. Initialize n clusters with cluster ¢; = {r;};

., } Of size n; a difference measure d.

. For each ¢;: for each r;: If d(r;,r;) < hforall rj, in ¢;, add r; to cluster ¢;;

1
2
3. Discard redundant clusters;
4

. Calculate p; and the entropy H (¢, ). Note that when r; belongs to s clusters including ¢;, its contribution

to p; is 1/sn.

Return [ H(R, h) dh as the hierarchic social entropy.

Figure 1: Hierarchic clustering and social entropy.

Here we still have to circumvent the problem of “op-
timal” clustering since even the same clustering al-
gorithm may give different sets of p; when different
algorithmic parameters are used. A solution to this
problem is to select a priori the clustering algorithm
and average the entropy over all possible parameters
characterizing the chosen algorithm. Balch combined
numerical taxonomic classification techniques and the
C,, clustering algorithm (Jardine & Sibson, 1971) to
order agents hierarchically according to the spatial
structure of the system and a taxonomic level param-
eter h (see Figure 1). The simple social entropy can
be then transformed in the so-called hierarchic social
entropy by integrating over the parameter h:

D(R) = /0 " H(R 1) dh. @)

It is worth noting that the C,, algorithm allows for
cluster overlapping. As a consequence, considering
the specific way for calculating p; illustrated in Fig-
ure 1, when clusters overlap the entropy may increase
when & increases.®

After some preliminary tests, we have verified that
the hierarchic social entropy achieves a stabler and
more meaningful diversity measure than that based on
the number of clusters, especially when the swarm size
is small. This is probably due to the fact that the so-
cial entropy encodes much more details of the feature
space (such as the spatial distribution of the clusters).
Thus we use the hierarchic social entropy (2) as our
diversity measure in this paper.

2.2 Specialization Measure

Specialization means more than just being diverse.
While diversity means difference among individuals
no matter whether the difference is good or bad in re-
spect to the swarm performance, specialization, with
the definition “structural adaptation of a part to a par-
ticular function,” also means adaptation in order to
fit. When diversity is obtained via an iterative process
such as learning or evolution, other reasons (e.g., noise
in the replication mechanism) can also cause the sys-
tem to become diverse. However, a system becomes
specialized when, given specific constraints of viabil-
ity or survival at the agent level, its diversity is evoked
for better swarm performance. In short, specialization
isthe part of diversity that is demanded for better per-
formance. Accordingly, a specialization metric should
measure the part of diversity that enhances the perfor-
mance.

When looking at a swarm system statically, it is
impossible to identify the part of diversity that cor-
responds to the performance improvement. We have
to couple the system with a dynamic process where
its performance and diversity can change and interact.
If the performance generally increases with higher di-
versity, the system benefits from being more diverse
than the initial status, and the degree of specialization
should increase accordingly; otherwise, if the greater
diversity does not help the performance, the degree of
specialization should decrease. That is, specialization
can be measured along a dynamic process as a result
of the correlation between the diversity and the perfor-
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Figure 2: Physical set-up for the original stick-pulling
experiment. Collaboration between two robots is nec-
essary to pull a stick out of the ground.

mance. If we assume the system starts from a homoge-
neous setting with no diversity or specialization, and
the diversity D and the swarm performance R change
with time as correlated random variables, the corre-
lation coefficient between D and R naturally acts as
the percentage of specialization in diversity. More for-
mally, the degree of specialization can be defined as

S = corrcoef(D; R) x D. (3)

Note that our specialization measure S is negative
when D and R are negatively correlated.

We should note that there are other definitions of
specialization. O’Donnell and Jeanne (1990) defined
specialization of an individual as the entropy of the
proportions of its activity. Low entropy means that
an individual focuses on less activities, i.e., it is spe-
cialized. Gautrais, Theraulaz, Deneubourg, and An-
derson (2002) considered a similar metric that is the
complement of the frequency of an individual chang-
ing tasks. The lower the frequency of changing tasks
is, the higher the individual is considered specialized.
However, their definitions focus on the specialization
of individuals, while we consider specialization as a
quantity of the whole swarm, which is more coherent
with the diversity measure we use in this paper.

3 Stick-Pulling Experiments

Martinoli and Mondada (1995/1997) and later Ijspeert,
Martinoli, Billard, and Gambardella (2001) investi-
gated collaboration in non-communicating robots en-
gaged in a stick-pulling experiment (Figure 2). We call
their experiment the original one since we will abstract
and generalize it later in Subsection 3.2.

Wall
Search Obstacle Avoidance
Robot
Interference
Stick
Grip2
Center Success Dance
Gripl
Grip & Wait successul
\ unsuccessful

Figure 3: FSM representing the robot’s controller.
Transitions between states are triggered by sensory
measurements.

3.1 Original Stick-Pulling Experiment

In the original experiment, robots equipped with grip-
per turrets and proximity sensors search a circular
arena and pull sticks out of the ground. The stick
length has been chosen so that a single robot is inca-
pable of pulling a stick out completely on its own, but
collaboration between two robots is sufficient for solv-
ing this task. Each robot is characterized by a gripping
time parameter (GTP) which is the maximal length of
time that a robot waits for the help of another robot
while holding a stick.

The behavior of a robot is determined by a simple
program (Figure 3). The default behavior is searching
for sticks, i.e., wandering in the arena until an object is
detected. If a stick is detected, the robot pulls it up and
determines whether another robot is already holding it
by measuring the elevation speed of the gripper arm.
If the elevation is fast, there is no other robot holding
the stick and we call such a grip gripl. Otherwise,
the robot assumes that another robot is already holding
the stick and therefore “braking” the elevation. Such a
grip is named grip2.

After a robot makes a gripl, two cases can oc-
cur: either a second robot helps the first one before
the GTP expires (we call this a successful collabora-
tion) or the first robot times out and resumes the search
for sticks. The specific GTP values play a crucial role
in the overall stick-pulling rate (defined as the number
of sticks pulled out per unit time) which is the metric
adopted in previous papers* (ljspeert et al., 2001; Li
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et al., 2002; Martinoli, Easton, & Agassounon, 2004)
and this one for the swarm performance. To ensure the
stick-pulling rate is reliably measured, experiments
usually take a long time and sticks are inserted back
by the experimenter after they have been completely
pulled out.

We use the microscopic model (ljspeert et al.,
2001) as the simulation platform, which represents
agents as separate probabilistic finite-state machines
(PFSM). The flowchart of a PFSM is based on the
blueprint of the corresponding real robot controller
and its transition probabilities are computed using
simple geometric considerations and systematic ex-
periments with one or two real robots. Unlike macro-
scopic models (see Martinoli et al., 2004, for the same
experiment) which intrinsically assume agents can be
clustered into certain castes, microscopic models al-
low us to study all levels of swarm diversity, from ho-
mogeneity to full heterogeneity, since each agent is
represented by a separate PFSM. Furthermore, this
model allows for gquantitatively accurate predictions
while being four or five orders of magnitude faster
than other popular simulation tools such as sensor-
based embodied simulations.® Therefore, although we
have not tested our results using real robots or real-
istic simulations, we believe that their validity is not
limited to abstract agents.

3.2 Generalized Stick-Pulling Experiments

The strict collaboration property of the stick-pulling
task has a major influence on swarm diversity and spe-
cialization. In order to emphasize this effect, we ab-
stract and generalize the original experiment so that a
successful collaboration requires now & (> 2) robots
instead of just two.

Sequential Collaboration: Pulling Longer Sticks
One way to extend the original experiment is to as-
sume longer sticks so that one robot can only pull a
stick up by 1/k of its length. & consecutive grips,
which may be called gripl, grip2, ..., and gripk, re-
spectively, are thus needed for pulling out a stick en-
tirely. If the robot currently holding the stick times
out, it will drop the stick so that further robots will
have to start over from gripl. We call this type of col-
laboration required for pulling longer sticks sequential

collaboration. Note that we do not really need more
than two robots in order to complete the task. Theo-
retically, two robots with very large GTPs are able to
pull out sticks of any length but inefficiently, if they
help each other alternately.

Parallel Collaboration: Pulling Heavier Sticks
Another way to extend the original experiment is to
suppose the sticks are shorter but heavier so that one
robot is too weak to lift a stick up. Exactly k robots
are needed simultaneously to lift a stick and pull it
out. When a robot finds a stick, it grips the stick un-
til timing out or until there are enough robots to lift
the stick, whichever comes earlier. Robots do not re-
set their timers when a new robot joins the pulling. In
contrast with the sequential case, unless all the robots
currently holding the same stick time out, the pulling
process does not need to be restarted from scratch. We
call this type of collaboration parallel collaboration.

4 Learning Algorithm

We proposed and tested an adaptive line-search al-
gorithm and found that it could achieve near-optimal
performance under different conditions in the original
stick-pulling experiment (Li et al., 2002). In this pa-
per, we use the same learning algorithm for both the
original and the generalized stick-pulling experiments.
As mentioned before, the algorithm has been designed
to work properly in both centralized and distributed
learning scenarios. It is worth recalling that we are not
trying to solve a global optimization problem off-line
based on our probabilistic model but rather to emulate
what would happen with different realistic scenarios,
including that where each agent is endowed with sim-
ple learning but no communication capabilities at all.
The algorithm is depicted in Figure 4. An agent
(or a caste, or the swarm as a whole) first tries to up-
date its GTP in a randomly chosen search direction s.
It then keeps the new GTP for a small period T},, and
monitors the performance by averaging the reinforce-
ment signal it receives. If the performance is better
than before, the agent continues in that direction; oth-
erwise, it undoes the last GTP update and switches to
the other direction. In addition to adapting the GTP,
the search step (A, and d,) also varies. When the
same direction has been selected twice, the search step
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randomly pick fip repeat s — —s

s from {4+, —} TO T repeat «— False
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]
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I

Algorithmic variables:

Range Description
s {+,-} search direction
Ay (2, 60] GTP offset (sec)
A_ [-60,—2] | GTP offset (sec)
Oy [1.1,5] GTP factor
d_ [0.2,0.9] | GTPfactor
o {void} UR | previous performance
r R current performance
repeat Boolean reinforcement flag
switch Boolean direction flag
Algorithmic parameters:
Value | Description
7. | 2400 averaging period for rein-
forcement signal (sec)
E 1.9 | GTP offset enlarge factor
F 0.3 | GTPfactor enlargeratio
U 2 GTP offset shrink divider
Vv 0.5 GTP factor shrink ratio

Figure 4: Flowchart of the learning algorithm and its parameters.

for that direction is increased (controlled by parame-
ters E and F') in order to speed up the convergence.
When the observed performance oscillates, which im-
plies that the current GTP is close to the optimal one,
the search step is accordingly decreased (controlled by
parameters U and V) to stabilize the performance.

Although at first glance this algorithm may appear
similar to a gradient-descent method, it has been de-
signed in a way that it neither requires the derivative
to be calculated nor assumes continuity in the search
space. Furthermore, the algorithm works well in a
noisy environment, since the monitoring of perfor-
mance implies an averaging process which low-pass
filters noise in the reinforcement signal, and the oc-
casional picking of a random search direction helps
to escape from unfavorable situations caused by the
noise. Finally, we did not implement a classical mo-
mentum term since the fitness landscape of the stick-
pulling dynamics (see Figure 5) does not present any
local maxima other than those created by noise. Their
time-variable characteristics, still present after filter-
ing, usually help the algorithm to avoid deadlock situ-
ations.

We use both types of reinforcement signals with
the learning algorithm. The local reinforcement sig-
nal rewards an agent when it makes a successful col-

laboration, i.e., when it completely pulls out a stick
or passes the stick to another agent. The global rein-
forcement signal is the swarm performance. The two
types of reinforcement signals “align” well in the orig-
inal experiment as well as its parallel extension since
a successful collaboration means exactly a stick pull-
out and vice versa. However, in sequential cases, a
successful collaboration only contributes to but may
not finally result in a stick pull-out, and without the
central unit broadcasting or other explicit communi-
cation forms among agents, an agent never knows its
true contribution unless it does the final grip. Thus
the local reinforcement signal in sequential cases is
not aligned with the global one, which leads to a clear
system bifurcation in terms of specialization (see Sub-
section 5.3).

5 Reaults

All the experiments we conducted started from a ho-
mogeneous system, i.e., the same initial GTP for all
agents. The experiments lasted long enough for the
learning to stabilize. Swarm performance and diver-
sity were recorded periodically along the experiments
so that specialization could be measured via Equa-
tion (3). We simulated 50 runs for each initial GTP
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and plotted the mean absolute or relative swarm per-
formance, diversity, and specialization over the runs.
The error bars represent one standard deviation per run
in Figure 5, and the standard error in all other figures.

Li (2002) suggested using a difference measure of
logarithmic form since both the performance and the
logarithm are less sensitive to GTP changes when GTP
is large. That is, for two agents with GTPs g; and
go respectively, the difference between them is d =
llog g1 — log g2|. This difference measure is used in
all of our experiments.

5.1 Validation of the Learning Algorithm

Before introducing results in diversity and special-
ization, we would like to compare the performance
of hardwired agents with learning agents engaged in
the original stick-pulling experiment. The experimen-
tal settings are the same as in some previous papers
(Ijspeert et al., 2001; Li et al., 2002; Martinoli et al.,
2004), i.e., 2 to 6 robots and 4 sticks in an arena of
40cm in radius. Figure 5 contrasts the learned per-
formance with that obtained by systematically vary-
ing the GTP value for this particular stick-pulling sce-
nario. The performance of the hardwired swarms
(dashed curves) is compared with that of a homo-
geneous learning swarm (i.e., a single GTP parame-
ter characterizes the whole swarm) using global re-
inforcement signal (Figure 5a and b), and a hetero-
geneous swarm (i.e., each agent is characterized by
its own GTP) using local reinforcement signal (Fig-
ure 5¢). Figure 5a has been generated by using a
shorter averaging period (7;, = 600s) than the de-
fault one (T, = 2400s, see Figure 4). We can im-
mediately see that the characteristics of the low-pass
filter embedded in the algorithm plays a relevant role
in the learning performance: a noisier reinforcement
signal translates into a higher standard deviation and a
lower mean of the learned swarm performance.

For these specific experimental constraints, the
system characterized by a homogeneous swarm with
a fixed GTP exhibits quite different dynamics depend-
ing on the robot/stick ratio. Roughly speaking, when
there are more robots than sticks, the stick-pulling rate
increases monotonically with the GTP until reaching
a plateau corresponding to the optimal rate for homo-
geneous swarms. In other words, with the specific

system constraints of the original stick-pulling exper-
iment, since there are always robots “free” to help,
waiting very long is a good strategy for robots hold-
ing sticks. On the other hand, when the number of
robots is equal to or smaller than that of sticks, wait-
ing in vain for a very long time may generate deadlock
situations where every robot holds a different stick and
waits for help. We thus define the deadlock threshold
as the maximal number of robots that could still incur
into a deadlock situation.® Previous research showed
that specialization was desired particularly in this sit-
uation (Ijspeert et al., 2001; Li et al., 2002), i.e., when
the swarm size is below the deadlock threshold.

The stick-pulling rate of the learning swarms in-
stead consistently achieved the same level of perfor-
mance independent of the initial GTP. Depending
on their low-filter parameter setting, the homogeneous
learning swarms almost reached the maximal perfor-
mance levels obtained by the hardwired agents, while
the heterogeneous ones often outperformed those lev-
els, especially for swarm sizes equal to or smaller than
four. As we will see in the following subsection the
increased performance of the heterogeneous swarms
is due to the specialization of their agents.

5.2 Specialization in the Original Stick-
Pulling Experiment

In this subsection and the following one, we will sys-
tematically analyze and compare the swarm perfor-
mance, diversity, and specialization for the same sys-
tem constraints. Since this paper focuses on special-
ization and its relationship to diversity and perfor-
mance, rather than plotting the absolute swarm perfor-
mance, we have considered the relative performance
in comparison to a homogeneous learning swarm.
Therefore, for each swarm size, we normalized the
performance after learning of a given heterogeneous
swarm by dividing it by that of the corresponding ho-
mogeneous swarm. Homogeneous swarms, of course,
do not appear on diversity and specialization plots
since their diversity and specialization are null. In all
the plots we compare three different learning condi-
tions under which the heterogeneous swarms become
specialized: fully heterogeneous swarms under the lo-
cal reinforcement signal, fully heterogeneous swarms
under the global reinforcement signal, and swarms
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Figure 5: Performance after learning in the original stick-pulling experiment. The dashed curves represent the
performance of homogeneous swarms with a fixed GTP (no learning); the solid curves show that of (a) homoge-
neous swarms using the global reinforcement signal and a shorter period for averaging the reinforcement signal
(T}, = 6005), (b) homogeneous swarms using the global reinforcement signal and default 7;,,, = 24005, and (c)
heterogeneous swarms after learning under the local reinforcement signal.

partitioned in castes under the global reinforcement 2001) or based on intuitive reasoning, does not nec-
signal.” essarily help a swarm to perform better. Indeed, al-
though with these particular experimental settings the
difference in performance between 2-caste and fully
heterogeneous swarms is minimal, it is interesting to
note that for odd swarm sizes the performance of the 2-
caste swarms are lower than those of the fully hetero-
geneous swarms under both types of reinforcements
(see Figure 6a, dashed curves). In other words, the
learning algorithm has a harder time compensating
unbalanced castes with a reduced number of GTPs
than distributing the appropriate individual GTPs to
all the members of the swarm. Second, constraining
the learning process reduces also the possible degree
of specialization of a swarm, as shown in Figure 6c.
In other words, we could consider the a priori caste
partitioning as a “low-pass filter” for the swarm spe-
cialization. Namely, a larger search space does not
prevent fully heterogeneous swarms from increasing
or reducing their level of specialization when the sys-
tem constraints prompt it in one direction or the other

By comparing the different learning constraints, (see Figure 6¢). Third, since the local reinforcement
we can also formulate the following remarks. First, signal is noisier than the global one, we expect that
the fully heterogeneous swarms achieve at least the  ynder the global reinforcement signal truly specialized
same level of performance as the 2-caste ones. This  yopots generate a larger portion of the diversity. This is
is an interesting result since it tells us that constrain- validated in Figure 6¢ since the diversity (and special-

ing the learning space using a priori information, ei- ization) under the global reinforcement signal dropped
ther collected with systematic studies (ljspeert et al.,

Figure 6a confirms the results in Figure 5: 2-caste
and fully heterogeneous swarms achieve better perfor-
mance for smaller swarm sizes. Diversity has a re-
duced impact on performance when there are more
robots than sticks and heterogeneous swarms achieve
even slightly worse results after learning than homoge-
neous ones with 6 (or more) robots. The explanation is
quite simple: the advantages of specialization fade out
with more robots than sticks and the increased search
space for heterogeneous swarms in combination with
noise and/or credit-assignment problem reduces the
optimization power of the learning algorithm. While
the diversity measure (Figure 6b) produces roughly
flat curves, the specialization measure (Figure 6c¢) out-
lines clearly this phenomenon: further diversity does
not necessarily improve the performance with more
robots than sticks, and it is even negatively correlated
with 6 (or more) robots.
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Figure 6: Results of the original stick-pulling experiments for different team sizes and learning constraints (homo-
geneous and 2-caste teams under the global reinforcement signal, heterogeneous teams under the global and local
reinforcement signals). (a) Relative performance after learning. (b) Swarm diversity. (c) Swarm specialization.

faster than under the local reinforcement signal when
the specialization was less relevant.

5.3 Specialization in the Generalized Stick-
Pulling Experiments

In order to accommodate more robots required by the
generalized experiments, we used a larger arena of
80cm in radius, 16 sticks, and 6 to 24 robots. We
simulated the generalized experiments with & from 3
to 5 and selected the case k = 4 for the plots reported
in this paper (see Figures 7 and 8). We also increased
the averaging period 7,,, to 36,000s since the prob-
ability of successful collaboration under such experi-
mental and learning conditions becomes smaller.

We first consider the results of the generalized se-
quential experiment (Figure 7). First, while in the
original stick-pulling experiment the local and global
reinforcement signals were aligned, this is no longer
the case here. As a consequence, results in per-
formance, diversity and specialization diverge more
clearly as a function of the reinforcement signal used.
Second, the deadlock threshold, which is now set at
16 robots, appears again to play a major role in the
system dynamics. Diversity brings advantages to the
swarms in terms of performance with swarm sizes
smaller than 16. However, the local reinforcement sig-
nal, due to more limited local perception in a larger
arena and a bigger swarm size as well as the non-
alignment between this signal and the swarm perfor-

mance, is much noisier under these conditions than in
the original stick-pulling experiments (compare Fig-
ure 6a and Figure 7a). This makes distributed learning
with a local reinforcement signal more difficult—the
performance is not as good as that obtained using the
global reinforcement signal (see Figure 7a). Finally,
since we have many more robots for the generalized
experiment, constraining the learning process with 4
castes reduces the search space dramatically. Learning
benefits from the smaller search space even though it
cannot explore the fully heterogeneous solutions, and
the performance of the 4-caste swarms is actually the
best overall: when the swarm size is smaller than the
deadlock threshold, it is similar to that of the fully
heterogeneous swarms with global reinforcement sig-
nal, and when the swarm size is larger than the dead-
lock threshold, it is close to that of the homogeneous
swarms.

Before looking at the results for parallel experi-
ments, we expected that the specialization in parallel
cases would be higher than that in sequential cases.
Our arguments were:

¢ In sequential cases, the requirements for robots
doing grips before gripk are similar—their
GTPs must be large enough to allow the next
robot to grip the stick and take over the extrac-
tion process. In parallel cases, & different GTP
values may be instead required—robots doing
gripl need the largest GTP and robots doing
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Figure 7: Results of the sequential stick-pulling experiments with & = 4 for different team sizes and learning
constraints. (a) Relative performance after learning. The horizontal line at level one represents the learned perfor-
mance of homogeneous teams. (b) Swarm diversity. (c) Swarm specialization.
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Figure 8: Results of the parallel stick-pulling experiments with k& = 4 for different team sizes and learning
constraints. (a) Relative performance after learning. (b) Swarm diversity. (c) Swarm specialization.

gripk need the smallest GTP.

e With the same number of sticks, the parallel
collaboration essentially requires more robots
working simultaneously. We know from the
original stick-pulling experiment that specialists
are more likely to arise if there are insufficient
robots compared to the number of sticks.

However, our predictions were confirmed only with
large swarm sizes (say, 18 robots or higher) and the
global reinforcement signal. An investigation of the
learned GTPs shows that when the number of robots
is small in parallel cases, all robots have similar GTPs

(~ 300s) and the diversity is low. This gives us hints
about the seemingly weird phenomenon.

Note that if there are ¢ sticks in the arena, the dead-
lock threshold is (k — 1)t in parallel cases, larger than
the threshold in sequential cases if £ > 2. Our expe-
rience with previous experiments made us believe that
specialization is high any time the number of robots
is less than the deadlock threshold, which is not al-
ways true. Just as in a company having many more
jobs than employees, when the deadlock threshold is
much higher than the number of robots, each robot
tends to have multiple roles, as every employee has
to take multiple jobs. Since a robot has only one GTP
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value, trying to specialize into too many directions just
makes all GTPs similar and results in a low diversity,
especially when £ is large in parallel cases. Under
these conditions, the much noisier local reinforcement
signal achieves better performance than the global re-
inforcement signal (see Figure 8a) since it helps to
break the equilibrium among possible different spe-
cialization directions and drives the system away from
homogeneity.

For both generalized experiments, when the num-
ber of robots is larger than the deadlock threshold,
the decreasing of specialization was observed with the
global reinforcement signal.2 It was, however, diffi-
cult to precisely predict what swarm sizes would have
maximally benefited from specialization under spe-
cific system and learning constraints. Finally, as was
the case in the original stick-pulling experiment, the 4-
caste solution exerts its low-pass filtering function on
specialization in all generalized stick-pulling experi-
ments.

6 Discussion

In this section we discuss some advantages and draw-
backs of our method, in terms of synthesizing and ana-
lyzing specialization in a collaborative swarm system.
In particular, instead of the specific stick-pulling case
study, we would like to consider the usefulness of this
method from a general system optimization perspec-
tive. We summarize our method using the following
four steps.

1. Given an embedded swarm system, generate a
quantitatively faithful microscopic model that
captures all the system parameters of interest.

2. Select the subset of parameters which can differ
on individuals and might play crucial roles in
the total swarm performance.

3. Let a given machine-learning algorithm search
in the space defined by this reduced set of pa-
rameters.

4. Analyze results according to the diversity and
specialization metrics presented in Section 2.

As every other method, the one reported here also
shows strengths and limitations. A first strength of our

method is that it is fast and selective. Thanks to the
modeling abstraction, only parameters of interest are
considered in the search space. From a computational
cost point of view the gain is double-sided: the search
is focused on a smaller parameter space and the eval-
uation of candidate solutions is achieved several or-
ders of magnitude faster than other popular simulation
tools used in mobile robotics (see also Martinoli et al.,
2004). A further strength is that the method is flexible
and generalizable. We have shown in this paper how
easy it is to transform a given concrete physical exper-
iment into more generalized ones when the description
is sufficiently abstracted. We therefore believe that the
methods introduced for learning and measuring spe-
cialization can be easily applied to completely differ-
ent tasks and experimental scenarios. For instance, a
collaboration constraint similar to that of the gener-
alized parallel stick-pulling experiment could arise in
a monitoring experiment where self-locomoted sensor
nodes have to detect events happening in a given re-
gion of space. The swarm performance could be as-
sessed as the number of successful event detections
reported by the swarm to a base station knowing that,
before emitting an alarm signal, at least &£ nodes of the
swarm should have detected the same event. Other ex-
amples of tasks which could benefit from the methods
proposed here could be concerned with foraging (La-
bella, Dorigo, & Deneubourg, 2004), collective trans-
portation (Kube & Bonabeau, 2000), and aggregation
(Agassounon & Martinoli, 2002).

Among the limitations of our method, we can cer-
tainly mention that the optimization and specialization
quality depends on the modeling and the learning al-
gorithm. If the underlying model is quantitatively cor-
rect, we can easily transport the optimization results to
the original real embedded system. Otherwise a fur-
ther optimization process might be required on real
hardware. Furthermore, the learning algorithm pre-
sented in this paper is certainly a good baseline but
it could be replaced with more powerful ones accord-
ing to the size of the search space and the amount of
noise characterizing the optimization problem. As we
mentioned before, the choice of the learning algorithm
depends also on the type of optimization one is inter-
ested in (i.e., on-line or off-line) and whether or not,
in case of on-line optimization, the algorithm is suited
for the computational and communication capabilities
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of the real embedded agents. Furthermore, the learn-
ing algorithm (including its algorithmic parameters)
influences the quantitative specialization results. Al-
though we did not carry out a full sensitivity analysis
on the robustness of our specialization measure, we
have noticed that certain specialization results in the
presence of noise (see for instance Figure 7c, the in-
crease of specialization after 18 robots with hetero-
geneous swarms and local reinforcement signal) are
quantitatively mitigated or stressed by the choice of,
for instance, the length of the time windows used for
measuring specialization or the total learning time.
Future work should assess precisely how much de-
pendence our specialization measure shows on the un-
derlying adaptation process. In contrast, the diversity
measure, being a static one, did not show any signifi-
cant quantitative changes as a function of the parame-
ter of the learning algorithm. Finally, as we have seen
in the generalized stick-pulling experiments, special-
ization results are not always easy to interpret. They
appear to be more meaningful than those obtained via
a diversity measure in order to decide whether or not
a swarm should be heterogeneous under certain sys-
tem constraints. Results also appear to confirm the
fact that our intuition might constrain the optimization
process in negative ways, for instance by introducing a
fixed number of castes. We believe that it is premature
at this point to draw any general conclusions about the
use of pre-established castes instead of letting an adap-
tation process discover the number of castes and their
corresponding parameters for us. We need to apply the
method presented in this paper to other case studies
and try to pin down general principles characterizing
the influence of the number of castes on the quality of
the final solution.

7 Conclusion

This paper presented our initial effort to measure spe-
cialization in collaborative swarm systems. Special-
ization is a mixed concept of both diversity and adap-
tation. We define specialization as the part of diversity
that is induced by the need of performance improve-
ment. Our experiments with the original and gener-
alized stick-pulling experiments showed that special-
ization, while being more sensitive to the underlying
adaptation process, was more meaningful than diver-

sity when properties related to performance and learn-
ing were under study. Our results validated some of
our intuitions about specialization in these collabora-
tive experiments but also revealed some properties that
we did not see at first.

In the discussion, we have outlined some of the
general properties of our method since we believe that
it can be applied to other tasks and other swarm sys-
tems. Future work will explore further the robustness
of this method in other experimental scenarios and the
dependence of the specialization measure on the dy-
namic process in which diversity and swarm perfor-
mance interact.

Notes

!Notice that it is only the adaptation process that happens in a
centralized way. Agents still act autonomously.

2This is just a possible illustration of how we could implement
a caste-centered adaptation. In principle, the adaptation algorithm
could also run on the central unit (which in turn will keep track of
the different caste parameters) or on a caste leader.

3For example, there are three agents r1, r2, and r3 in the
swarm system. d(ry,r2) = 6, d(r1,r3) = 4, and d(r2,r3) = 3.
When h is 3, the clustering algorithm gives ¢1 = {r:} and
c2 = {ra,r3}. Thus the entropy is H (%, 2). When h is increased
to 4, r3 is also included in c1, and the entropy becomes H (3, 1),
which is larger than the entropy at h = 3.

“The collaboration rate (the number of successful collabora-
tions per unit time) was in fact used in the previous papers. It
is equivalent to the stick-pulling rate when exact one successful
collaboration is required for a stick pull-out.

5Some environmental conditions, such as the stick positions
and the initial placement of the robots, have been abstracted in the
microscopic model. However, considering the probabilistic nature
of trajectories and collisions, such abstraction does not result in
statistically significant differences between the microscopic model
and the realistic simulation or real robots. See Martinoli et al.
(2004) for a detailed discussion on the impact of such abstracted
conditions, as well as different experimental and modeling levels.

8As demonstrated in Martinoli et al. (2004) the exact location
of the bifurcation point on the “number of robots” axis depends
not only on the robot/stick ratio but also on a physical interaction
parameter regulating the collaboration mechanism. Since we kept
this physical interaction parameter constant in all the experiments
of this paper, for sake of simplicity, we neglect such detailed ex-
planation.

"We also carried out experiments with teams partitioned in
castes in combination with a caste-centered reinforcement signal.
Since the results achieved under this learning condition were very
similar to those obtained with the same teams and a global rein-
forcement signal, we omit them in the plots for sake of clarity.

8For parallel cases, since the threshold is much higher, we ver-
ified this with 2 sticks, 4 to 9 robots, and k = 4.
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