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a su trouver le temps nécessaire pour poursuivre la recherche que nous avions débutée lors de mon
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Un grand merci va également aux autres membres de mon jury de thèse, le Professeur Tsuhan
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Lausanne (OSUL), et à tous les autres musiciens et amis que j’ai eu le plaisir de rencontrer.
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Abstract

The diffusion of network appliances such as cellular phones, personal digital assistants and hand-
held computers has created the need to personalize the way media content is delivered to the end
user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new
applications, such as intelligent visual surveillance, require novel forms of video analysis for content
adaptation and summarization. To cope with these challenges, we propose an automatic method for
the extraction of semantics from video, and we present a framework that exploits these semantics
in order to provide adaptive video delivery.

First, an algorithm that relies on motion information to extract multiple semantic video objects
is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector
produces the segmentation of moving objects from the background. This process is robust with
regard to camera noise and does not need manual tuning along a sequence or for different sequences.
In the second stage, feedbacks between an object partition and a region partition are used to track
individual objects along the frames. These interactions allow us to cope with multiple, deformable
objects, occlusions, splitting, appearance and disappearance of objects, and complex motion.

Subsequently, semantics are used to prioritize visual data in order to improve the performance of
adaptive video delivery. The idea behind this approach is to organize the content so that a particular
network or device does not inhibit the main content message. Specifically, we propose two new video
adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based
video encoder. Background simplifications resulting from this approach do not penalize overall
quality at low bitrates. The second strategy uses metadata to efficiently encode the main content
message. The metadata-based representation of object’s shape and motion suffices to convey the
meaning and action of a scene when the objects are familiar.

The impact of different video adaptation strategies is then quantified with subjective experiments.
We ask a panel of human observers to rate the quality of adapted video sequences on a normalized
scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-
noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer
in order to reflect the focus of attention of the human visual system. At last, we determine the
adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for
given client resources at the time of delivery.

By combining semantic video analysis and adaptive delivery, the solution presented in this dis-
sertation permits the distribution of video in complex media environments and supports a large
variety of content-based applications.
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Version abrégée

L’utilisation croissante de terminaux tels qu’ordinateurs personnels, téléphones portables et as-
sistants numériques personnels (PDA) a conduit à de nouveaux besoins en matière de distribution
personnalisée de données multimédia. Par ailleurs, de récents appareils comme les récepteurs de
radio numérique avec affichage d’informations visuelles, et de nouvelles applications telles que la
vidéosurveillance, nécessitent des outils d’analyse vidéo avancés afin de permettre l’adaptation et
la récapitulation automatique du contenu. Afin de répondre à ces besoins, nous proposons dans
cette thèse une méthode automatique d’extraction de données sémantiques, ainsi qu’une structure
exploitant ces données afin de permettre la distribution adaptative de contenu vidéo.

D’abord, un algorithme basé sur de l’information de mouvement afin d’extraire de multiples
objets sémantiques est proposé. Cet algorithme fonctionne en deux étapes. Dans une première
étape, un détecteur de mouvement statistique identifie les régions correspondant à des objets animés.
Cette approche est insensible au bruit de la caméra et ne requiert pas de réglages particuliers en
cours de séquence ou pour différentes séquences. Dans une seconde étape, les interactions entre une
représentation basée sur les objets et une autre représentation basée sur des régions homogènes sont
exploitées afin de suivre le parcours des objets au cours du temps. Ces interactions nous permettent
de faire face à des difficultés telles que la déformation et la séparation d’objets, les occlusions,
l’apparition et la disparition d’objets, et les mouvements complexes.

Ensuite, ces données sémantiques sont utilisées pour prioriser l’information visuelle afin d’améliorer
la distribution adaptative de la vidéo. L’idée sous-jacente à cette approche est d’organiser l’information
de telle manière à ce qu’un réseau ou un terminal particuliers n’entravent pas le message prioritaire.
Spécifiquement, nous proposons deux nouvelles stratégies d’adaptation. La première stratégie com-
bine l’analyse sémantique à un encodeur vidéo traditionnel. A bas débits, les simplifications des
parties d’images non prioritaires résultant de cette approche ne pénalisent pas la qualité globale
de l’image. La seconde stratégie emploie des méta-données afin d’encoder le message prioritaire.
La représentation ainsi obtenue suffit à communiquer la signification d’une scène lorsque les objets
décrits nous sont familiers.

L’impact de différentes stratégies d’adaptation est ensuite quantifié à l’aide d’expériences sub-
jectives. Vingt observateurs humains ont évalué la qualité résultant de l’adaptation sur une échelle
normalisée. De ces résultats, nous dérivons une mesure de qualité objective, le SPSNR, qui tient
compte de l’importance perceptuelle des différentes régions de l’images. Enfin, nous sélectionnons
la stratégie qui offre le plus de valeur à l’utilisateur au moment de la distribution en maximisant le
SPSNR pour un ensemble de ressources données.

Le regroupement proposé d’un mécanisme d’analyse sémantique et d’une structure de distrib-
ution adaptative soutient la distribution efficace de données au sein d’environnements multimédia
complexes. De plus, notre solution permet une grande variété d’applications basées sur le contenu
sémantique.
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Introduction 1
1.1 Motivations

The previous decade has seen a considerable growth of the amount of electronic information stored
and delivered throughout the world. Along with that growth, the means of information transport
and access have been widely diversified. The diffusion of network appliances such as cellular phones,
personal digital assistants and hand-held computers creates new challenges for content delivery:
how to adapt the media transmission to various device capabilities, network characteristics and user
preferences. Indeed, each device is characterized by certain display capabilities and processing
power. Moreover, such appliances are connected through different kinds of networks with diverse
bandwidths. Finally, users with different preferences access the same multimedia content. Therefore
there exists a need to personalize the way media content is delivered to the end user.

In addition to the above, recent devices, such as digital radio receivers, and new applications,
such as intelligent visual surveillance, require novel forms of video analysis for content adaptation
and summarization. Digital radios allow for the display of additional information alongside the
traditional audio stream to enrich the audio content. For instance, digital audio broadcasting (DAB)
allocates 128 Kb/s to streaming audio, whereas 8Kb/s can be used to send additional information,
such as visual data [63]. Moreover, the growth of video surveillance systems poses challenging
problems for the automatic analysis, interpretation and indexing of video data as well as for selective
content filtering for privacy preservation. Finally, the instantaneous indexing of video content is also
a desirable feature for sports broadcasting [181].

To cope with the above challenges, video content needs to be automatically analyzed and adapt-
ed to the needs of the specific application, to the capabilities of the connected terminal and network,
and to the preferences of the user. However, automatic video analysis is a difficult task. Specifi-
cally, machines scan visual scenes in raster fashion, thereby analyzing measurable features such as
the intensity and wavelength of incoming light. These features are not comprehensible for human
beings and need to be translated into meaningful concepts like objects and situations. The auto-
matic extraction of meaningful information from unstructured video data is referred to as semantic
video analysis. Semantics-based representations of video content provide the user with flexibility

1



2 Chapter 1. Introduction

in content-based access and manipulation. Moreover, this allows to achieve improved compression
efficiency with object-based coding methods such as MPEG–4.

Also, in order to adapt video content to the capabilities of the connected terminal and network,
adaptive video delivery is needed. The vast majority of present adaptation methods act on individual
coding parameters such as video resolution and bandwidth, and they do not account for semantics.
Such content-blind methods are generally suboptimal with respect to human perception. To make
up for this drawback, recent content-based adaptation techniques look to exploit semantics in order
to further improve performance and to provide novel functionalities such as transmoding and video
enhancement. The work presented in this dissertation comes within that framework.

1.2 Investigated approach

This dissertation deals with the problem of exploiting semantics in order to provide adaptive video
delivery. In this work, adaptive video delivery refers to the distribution of content that matches
individual appliance and network resources while providing maximum value for the end user. Se-
mantics represent a meaningful entity in the input data. In the digital video domain, this is called
a semantic video object.

Our solution operates in two stages. In the first stage, meaningful information is extracted by
means of semantic analysis. In particular, motion information is used to segment and track semantic
vide objects. In the second stage, the semantics are used to prioritize visual data in order to improve
the performance of adaptive video delivery. The idea behind this approach is to organize the content
so that a particular network or device does not inhibit the main content message.

Semantic video object extraction is organized as follows. First, objects are segmented from
the background using segmentation. In our implementation, a statistical change detection process
that is robust with regard to camera noise and that does not need manual tuning is used to this
end. Then, temporal tracking follows individual objects along the frames. The tracking mechanism
is based on feedbacks between a region partition and an object partition. One the one hand, the
region partition defines homogeneous groups of pixels corresponding to perceptually uniform regions.
These regions are produced by a multi-feature clustering algorithm that operates on both spatial
and temporal features. On the other hand, the object partition defines semantic video objects.
These correspond to meaningful entities in the real world and they do not usually have invariant
physical properties. With respect to the alternative approach of operating at the object level only,
the interactions between regions and objects enable us to cope with deformable objects, complex
motion and occlusions. The output of semantic video object extraction is then a set of video objects
that are coherently labeled over time.

Adaptive video delivery is improved by employing semantics to prioritize visual data. Relevant
areas are first extracted from video by means of semantic analysis. These areas are then encoded
at a higher quality level or summarized in a textual form. Specifically, we propose two new video
adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based
encoder. The areas not included in the region of interest are lowered in importance by using
background simplification. Using a simplified background aims at taking advantage of the task-
oriented behavior of the Human Visual System (HVS) for improving compression ratios. The second
strategy uses metadata to efficiently encode the main content message. The use of metadata enables
us to make the content more searchable and to improve visualization in video-based applications.

The impact of different video adaptation strategies is further quantified with subjective exper-
iments. We ask a panel of human observers to rate the quality of adapted videos on a normalized
scale. Statistical analysis is then used to derive quantitative observations from the results. From
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1. Introduction

Figure 1.1: A taxonomy of the content of the dissertation.

these observations, we derive an objective quality metric, the semantic peak signal-to-noise ratio
(SPSNR), that accounts for different image areas and for their relevance to the observer in order
to reflect the focus of attention of the HVS. The objective metric is needed to overcome the limita-
tions of subjective evaluation experiments that are expensive, time consuming and cannot be used
to assess video quality in real time. At last, we are able to determine the strategy that matches
individual appliance and network resources while providing maximum value for the end user. This
is achieved by measuring the objective quality of different adaptation strategies for given resources
at the time of delivery.

1.3 Organization of the dissertation

A taxonomy of the content of this dissertation is depicted in Figure 1.1. Background knowledge
related to our work is reviewed in Part I. Chapter 2 addresses the representation of video and reviews
state of the art techniques for the extraction of semantic video objects. First, digital video and its
properties are discussed. Then, a framework for the semantic modeling of video is presented. Finally,
state of the art techniques for object segmentation and tracking are categorized according to their
operations. Chapter 3 reviews state of the art strategies for video adaptation, such as simulcast,
scalable coding and transcoding/transmoding.

In Part II, our framework for adaptive video delivery using semantics is introduced. Chapter 4
discusses possible semantics for the extraction of meaningful objects and, in particular, it describes
the use of motion as semantics. An algorithm that relies on motion information and on temporal
tracking to extract semantic video objects in cluttered environment is proposed. Chapter 5 presents
a framework that relies on semantics to provide adaptive video delivery. First, a number of comple-
mentary adaptation strategies are discussed. Then, the impact of different adaptation strategies is
quantified with subjective and objective experiments. Finally, a mechanism for the selection of the
optimal strategy is proposed. Chapter 6 discusses experimental results obtained with standard test
sequences and proposes a validation of our work in real applications. The behavior of the proposed
semantic video object extraction algorithm in the presence of various difficulties is analyzed. Se-
mantic video objects and their associated description are further used to provide intelligent visual
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surveillance. Then, the impact of different adaptation strategies is quantified. At last, the adaptive
video delivery framework is tested with real sequences for different client resource profiles.

In order to set our work in the more general context of multimedia delivery, Appendix A discusses
the use of adaptive video delivery to provide Universal Multimedia Access (UMA).

1.4 Main contributions

The significant contributions of the work presented in this dissertation are summarized below.

. Definition of a general tracking strategy for multiple, simultaneous objects. The strategy is
based on feedbacks between an object partition and a region partition. These interactions allow
us to cope with deformable objects, motion of non-rigid objects, partial and total occlusions,
splitting, and appearance and disappearance of objects.

. Definition of two new video adaptation strategies. The first strategy combines semantic analysis
with a traditional frame-based video encoder. The second strategy uses metadata to efficiently
encode the main content message.

. Quantification of the impact of different adaptation strategies with subjective experiments. We
show that background alterations resulting from semantic prefiltering do not impair overall
quality at low bitrates. We also demonstrate that the metadata-based representation of ob-
ject’s shape and motion suffices to convey the meaning and action of a scene when the objects
are familiar.

. Definition of an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR),
that accounts for different image areas and for their relevance to the observer in order to
reflect the focus of attention of the HVS. The prediction performance of the objective metric
is quantified with respect to the subjective experiments.

. Definition of a strategy selection mechanism for adaptive video delivery. The method deter-
mines the video adaptation strategy that provides maximum value for the end user under given
appliance and network constraints. This is achieved by maximization of the objective video
quality.
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Video representation and

semantic video object

extraction 2
2.1 Introduction

By nature, humans and machines “see” in very different manners. Machines scan visual scenes
in raster fashion, thereby analyzing measurable features such as the intensity and wavelength of
incoming light. Biological vision on the other hand is foveated, highly goal oriented and task
dependent. The human camera-eye maneuvers for position and localizes the regions of interest
thanks to a sophisticated control [256]. This observation is now seriously being taken into account
by the computer vision community in order to represent raw visual data in a more structured form
that reflects the semantics (i.e., the meaning) of the scene. This is the aim of semantic modeling,
where the visual space is partitioned into meaningful entities and described by descriptors that
summarize characteristic features of the partition elements. These structured representations of
multimedia content provide the user with flexibility in content-based access and manipulation.

One of the most challenging problems in semantic modeling is the localization of regions of
interest within the image. For video, this is referred to as semantic video object extraction. A
semantic video object is defined as a collection of image pixels that corresponds to the projection
of a real object in successive image planes or frames of a video sequence [29]. To accurately define
the basic nature of semantic objects, the specifics of the vision task must be taken into account.
For example, in a highway surveillance application, semantic video objects are vehicles, whereas in
airport monitoring, semantic video objects might be people’s faces.

In this chapter, we address the problem of how to represent video in a structured form that
reflects content semantics, and we review different techniques for the extraction of semantic video
objects. Video representation is discussed in Section 2.2. First, we review digital video and its
properties. Then, we present the semantic modeling of video. In Section 2.3, state of the art
techniques for semantic video object segmentation and tracking are categorized according to their
operations and reviewed.

7
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Figure 2.1: The knowledge pyramid. Video representation can take place at different levels, both in
the iconic (pictorial) and in the symbolic (descriptive) domains. Increasing knowledge is provided by
structuring visual in the iconic domain, and by using high-level descriptors in the symbolic domain.
(Adapted from [29])

2.2 Video representation

Raw data delivered by a digital video camera does not by itself provide any knowledge about the
meaning of the captured scene∗. Such semantic information must first be extracted either by a
human observer or by computer vision, and should then be represented by an appropriate notation
and kept for further processing. Video representation can take place at different levels, both in
the iconic (pictorial) and in the symbolic (descriptive) domains. This is depicted by the “knowledge
pyramid” in Figure 2.1. The pyramid illustrates how increasing knowledge is provided by structuring
video in the iconic domain, and by using high-level descriptors in the symbolic domain.

At the lowest level of organization in the iconic domain, we find the unstructured visual data de-
livered by the camera. The corresponding frame descriptors might represent the brightness or color
histograms of the entire frame, for instance. Video might furthermore be structured into homoge-
neous regions and semantic video objects. Region descriptors summarize the values of features that
characterize the regions, like region position, motion, shape, color, etc. Similarly, semantic video
objects and object groups are described by semantic descriptors. The symbolic domain allows for
one additional abstraction level. Content descriptors represent high-level features that are not actu-
ally visible in the frame, but that reflect additional knowledge, such as actor’s names, geographical
location of the scene, etc.

Next, we review the different video representation levels found in the knowledge pyramid. First,
digital video and its fundamental properties are reviewed. Then, semantic objects and boundaries
are discussed. Finally, semantic video modeling is presented.

∗Note that, although mostly video will be discussed throughout this chapter, many of the addressed concepts apply

to still images as well.
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Figure 2.2: Perspective projection geometry. Point P with world coordinates (x, y, z) is projected
to point P ′ with coordinates (x′ = xf/z, y′ = yf/z) in the 2-D image plane. f is the focal length of
the camera lens.

2.2.1 Digital video and its properties

The real world that surrounds us is intrinsically three-dimensional (3-D). The image formed on the
human eye retina or captured by a TV camera is the result of a perspective projection [26] of the 3-D
scene (Figure 2.2). A still image can be modeled by a continuous image function of two variables.
A scalar function might be sufficient to describe monochromatic images, whereas vector functions
are used in image processing to represent multi-spectral (color) images. Function arguments are
the spatial coordinates (x, y). Similarly, video is modeled by a three-dimensional video function.
Function arguments are the spatial coordinates (x, y), together with a time variable t. Function
values correspond to the brightness or color at image points.

To process video by computer, it must be represented using an appropriate discrete data struc-
ture, like a matrix. Thus, the intrinsically continuous video signal must be converted to a digital
signal by digitization. The digitization process consists of two steps: sampling and quantization.
Sampling means that the video function f(x, y, t) is sampled into a 3-D matrix with M rows, N

columns and L layers. M corresponds to the vertical frame resolution, N is the horizontal frame
resolution, and L is the total number of video frames. Quantization assigns an integer value to each
continuous sample: the continuous range of the video function f(x, y, t) is split into K intervals.
For an in-depth discussion of the video sampling and quantization process, we refer the reader to
the vast literature that is available about these topics [59, 84, 169, 211, 247].

A digital image consists of picture elements with finite size. These pixels carry information
about the brightness/color of a particular location in the image. Usually (and we assume this
hereafter), pixels are arranged into a rectangular sampling grid. Such an image is represented
by a two-dimensional matrix whose elements are integer numbers or vectors corresponding to the
quantization levels in the brightness or color scale. Similarly, digital video is represented by a three-
dimensional matrix. Hereafter, we review some fundamental properties of digital video [211, 222].
Knowledge about these properties will be used throughout our work to extract and model the
semantics of video signals.
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Metric properties

Metric properties have a clear mathematical formulation that requires no other knowledge than the
video itself. These properties can be easily extracted and processed by machines. However, their
interpretation by the human viewer is awkward, as they do not reflect the way we look at images
[174].

- Distance. The distance between two points with coordinates (i, j) and (h, k) may be defined
in several different ways [19, 195]. The Euclidean distance DE is defined by

DE

[
(i, j), (h, k)

]
=

√
(i− h)2 + (j − k)2. (2.1)

The distance between two points can also be expressed as the minimum number of elementary
steps in the digital grid which are needed to move from the first point to the second point.
If only horizontal and vertical moves are allowed, the city block distance D4 is obtained. If
diagonal moves are allowed as well, we obtain the distance D8, often called chessboard distance:

D4

[
(i, j), (h, k)

]
= |i− h|+ |j − k| (2.2)

D8

[
(i, j), (h, k)

]
= max

{|i− h|, |j − k|}. (2.3)

- Adjacency. Pixel adjacency or connectivity describes the neighborhoods of a pixel [192, 195]
(Figure 2.3). Any two pixels are called 4-neighbors, or 4-connected, if they have distance
D4 = 1 from each other. Similarly, 8-neighbors, or 8-connected pixels, are two pixels with
D8 = 1.

(a) (b)

Figure 2.3: Pixel adjacency describes the neighborhoods of a pixel. (a) 4-neighbors. (b) 8-neighbors
of the central pixel.

- Regions and borders. Let us define a path from pixel P to pixel Q as a sequence of points
A1, A2, . . . , An, where A1 = P , An = Q, and Ai+1 is a neighbor of Ai, i = 1, . . . , n− 1. Then
a region is a contiguous set, that is, a set of pixels in which there is a path between any pair
of its pixels, all of whose pixels also belong to the set [211].

Assume that Ri are disjoint regions in the frame. Let region R be the union of all regions
Ri. We can then define a set RC which is the set complement of region R with respect to
the frame. The subset of RC which is contiguous with the frame limits is called background ;
the rest of RC is called holes. A region without holes is called a simply contiguous region. A
region with holes is called multiply contiguous.

The inner border of a region R is the set of pixels within the region that have one or more
neighbors outside R [6, 193]. This definition corresponds to an intuitive understanding of the
border as a set of points at the limits of the region. The outer border is the complement of
the inner border, that is, the border of the background. Regions and borders are illustrated
in Figure 2.4.
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R1

R2

RC

Figure 2.4: Regions and borders. The figure shows two grey regions on white background RC ; the
region R1 is simply contiguous, the region R2 is multiply contiguous (i.e., region with hole). Region
borders are highlighted.

- Edges. Edges are pixels where the intensity function (brightness) changes abruptly [53]. An
edge vector is given by a magnitude and direction; the edge direction is perpendicular to the
gradient direction which points in the direction of image function growth. Unlike border, which
is a global concept related to a region, edge is a local property of a pixel and of its immediate
neighborhood.

- Histograms. Histograms provide global information about video [211]. The brightness his-
togram hf (z) of a frame provides the frequency of the brightness value z in the frame. For color
video with N spectral channels, one might compute a separate histogram for each channel, or
a single N -dimensional histogram.

Perceptual properties

If video is to be analyzed by a human viewer, information should be expressed using variables
which are easy to perceive. These are psycho-physical parameters such as color, texture, contrast,
borders, etc. Therefore, principles of human perception should be taken into account by digital
image processing systems.

- Contrast. Contrast is defined as the ratio between average brightness of an object and the
background brightness [222]. The human eye is logarithmically sensitive to brightness. There-
fore, for the same perception, higher brightness requires higher contrast. It is worthwhile to
notice that apparent brightness depends very much on the brightness of the local background.
This is illustrated in Figure 2.5. Two squares of the same brightness are superimposed on a
dark and light background. Humans perceive the brightness of the squares as different.

Figure 2.5: Conditional contrast. Two squares of the same brightness are superimposed on a dark
and light background. Humans perceive the brightness of the squares as different.
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- Acuity. Spatial acuity is the ability to detect details in a frame. This is defined as the
reciprocal of the angular distance which must separate two contours in order that they may
be recognized as discrete [87, 190]. The human eye is less sensitive to slow and fast changes
in brightness (low or high spatial image frequency) than to intermediate changes. Moreover,
acuity decreases with increasing distance from the optical axis and depends on ambient light-
ning. Similarly, temporal acuity refers to the visual sensitivity to a temporally varying pattern
at different frequencies. It has also been found to be dependant on viewing distance, display
brightness and ambient lightning, and exhibits bandpass properties [190, 247].

Image resolution is tightly bounded with visual acuity; there is no sense in representing im-
ages with higher spatial or temporal resolution than that of the viewer (however, such high
resolutions might quite be useful for image processing and computer vision).

- Color. Two attributes describe the color sensation of a human being: luminance and chromi-
nance [68, 247]. Luminance refers to the perceived brightness of light, which is proportional
to the total energy in the visible band. Chrominance describes the perceived color tone of
light, which depends on the light wavelength. Chrominance is in turn characterized by two
attributes: hue and saturation. Hue specifies the color, which depends on the peak wavelength
of the light, whereas saturation describes how pure the color is, which depends on the spread
or bandwidth of the light spectrum.

The vast majority of color reproductions do not attempt to reconstruct the spectral composi-
tion of the original colors, but only to elicit the same or similar responses in the retina’s three
types of cones [100]. In television and computer monitors, these responses are produced by
causing individually modulated beams of red, green and blue light to excite the cones (CIE
RGB primary color system). On print media, color perception is produced by the combination
of the base colors cyan, magenta yellow and black (CMYK). For video transmissions, lumi-
nance/chrominance coordinate systems derived from CIE XYZ primaries are utilized (YUV
for PAL video signals, YIQ for NTSC, YDbDr for SECAM). Unlike the above, perceptually
uniform color spaces try to mimic the logarithmic response of the eye, i.e., numerical distance
in the space is proportional to perceived color difference. Popular perceptually uniform color
spaces include CIE 1976 Lab and Luv. Major color systems, as well as coordinate conversion
among these systems, are discussed in [247].

Video quality and noise

Video might be degraded during capture, transmission or processing, and quality measures can be
used to assess the degree of degradation. Video quality assessment methods are divided into two
categories: subjective and objective methods. Subjective quality assessment methods aid in the com-
pilation and statistical analysis of sample ratings generated by humans. Typically, a selected group
of viewers appraise video according to a list of criteria and give appropriate marks. The Interna-
tional Telecommunication Union ITU has issued a set of recommendations which standardize the
assessment of subjective video quality [115, 116]. Objective methods aim to mathematically estimate
the introduced impairment. The quality of the video under test f(x, y, t) is usually estimated by
comparison with a known reference video g(x, y, t). Early assessment methods use simple measures
such as the mean square error (MSE)

∑∑
(g − f)2, the mean absolute error

∑∑ |g − f |, or the
maximal absolute error max(|g − f |) [211]. Such methods fail to measure specific degradations due
for instance to signal compression, and they do not take into account the perceptual characteristics
of the human visual system (HVS). To meet these needs, perceptual video quality metrics predict
image quality using models of the HVS [89, 262].
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Noise is a particular class of image degradations due to random errors. Noise may be dependent
on, or independent of, image content. White noise has a constant power spectrum S(f) = c, meaning
that its intensity does not decrease with increasing frequency. A better approximation to noise that
occurs in many practical cases is obtained by white Gaussian noise. Its probability density function
is given by the Gaussian (normal) distribution with mean µ and standard deviation σ. Quantization
noise appears when insufficient quantization levels are used in image compression. In this case,
false contours appear. Impulsive noise is due to individual noisy pixels whose brightness differs
significantly from that of the neighborhood. Saturated impulsive noise is normally called salt-and-
pepper noise. Image quality degradations due to noise are generally assessed by the signal-to-noise
ratio SNR:

SNR = 10 log10

(F

E

)
, (2.4)

where F =
∑∑

f2 is the total square value of the observed signal f(x, y), and E =
∑ ∑

ν2 is the
total square value of the noise contribution ν(x, y).

2.2.2 Objects, boundaries and their properties

While the concept of regions only uses the property ‘to be contiguous’, secondary properties can be
attached to regions which originate in image perception. Regions that have a strong correlation with
objects of the real world are commonly called (semantic) objects. A semantic video object is defined
as a collection of image pixels that corresponds to the projection of a real object in successive
frames of a video sequence [29]. The semantics of objects may change according to the vision
task. For instance, a highway monitoring sequence might be looked at in many different ways.
For traffic incident detection, semantic objects are vehicles and people; for accident prevention,
semantic objects might be leafs, rain drops or snow flakes; for driver identification, semantic objects
are people’s face or license plate numbers, and so on. . . Thus, the definition of the nature of semantic
objects is a complex and sometimes delicate task.

Objects are characterized by a certain number of geometric properties∗ [211]. Because of the
discrete character of digital video, these properties are sensitive to spatial resolution. The simplest
and most natural property of an object is its area, given by the number of pixels of which the object
consists. Other properties are used as well. The eccentricity is the ratio of major and minor axes
of an object. Elongatedness can be evaluated as a ratio between the region area and the square of
its maximum thickness. This is often approximated by the ratio of the length and the width of the
object bounding rectangle. If the object is elongated, direction is the direction of the longer side of a
minimum bounding rectangle. Region compactness is given by the ratio of squared object boundary
length and object area. Some of the above geometric object properties are illustrated in Figure 2.6.
In addition, semantic objects are characterized by the value of object pixels, by their distribution
(e.g., texture), and by the variation of brightness patterns over time (optical flow).

Boundaries bear vital clues about the nature of an object. As a consequence, the human eye
is more attracted by object boundaries than by borders of regions that are not bound to objects
[222]. Boundaries exhibit a number of important properties such as perimeter, curvature and bending
energy [211]. Perimeter measures the length of the object boundary. Vertical and horizontal steps
have unit length, and the length of diagonal steps in 8-connectivity is

√
2. In the continuous case,

curvature is defined as the rate of change of slope. In the discrete space, this definition must be
slightly adapted to account for difficulties resulting from violation of curve smoothness. One scalar
curvature descriptor finds the ration between the perimeter, and the number of boundary pixels
where the boundary direction changes significantly. Another approach to calculating curvature from

∗These properties apply to homogeneous regions that are not bound to objects as well.
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Figure 2.6: Some geometric object properties. (a) Eccentricity is the ratio of the maximum chord
A to the maximum chord B which is perpendicular to A. (b) Elongatedness is often approximated
by the ratio between the length a and the width b of the object bounding rectangle. The object has
direction Θ. (c) Compactness is given by the ratio of squared object boundary length and object
area.

digital curves is based on convolution with a truncated Gaussian kernel [141]. The bending energy
of boundary may be understood as the energy necessary to bend a rod to the boundary shape. It
can be computed as a sum of squares of border curvature c(k) over border length L.

2.2.3 Semantic modeling of video

The aim of semantic modeling is to represent raw video data in a more structured form that reflects
the meaning of the scene. To emulate the goal oriented and task dependent properties of biological
vision, the visual space is partitioned into homogeneous regions, semantic video objects, and object
groups, as in Figure 2.7. Corresponding descriptors summarize characteristic features of partition
elements. An additional description level represents content features that are not visible in the
video. The below notations are based on those introduced by Cavallaro in [29].

Region-based representation

The lowest level of organization that video can take is its subdivision into non-overlapping, homo-
geneous regions. Regions might be represented in a region partition Πr. The region partition Πn

r

for frame n consists of non-overlapping elements Ri(n) satisfying the following criteria:




I =
⋃Nn

R
i=1 Ri(n),

Ri(n)
⋂

Rj(n) = ∅ if i 6= j,
(2.5)

where I is the entire frame, and Nn
R is the number of regions in frame n.
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Object borders

Region borders

Descriptor

Figure 2.7: Semantic modeling of video. The image space is partitioned into homogeneous regions
and semantic video objects. Corresponding descriptors summarize characteristic features of partition
elements.

Each region might furthermore be described by a region descriptor Φi(n). The region descriptor
is a vector that summarizes the values of features that characterize the region:

Φi(n) =
(
φ1

i (n), φ2
i (n), . . . , φKn

i
i (n)

)T

. (2.6)

Kn
i is the number of features used to describe region Ri(n). The number and the kind of features

may be different for each region. Typical features include position, motion vectors, color, etc.

Object-based representation

Semantic video objects are represented in an object partition Πo. Unlike regions, the union of all
objects is not the entire frame I, but a subset F (n) ⊆ I called foreground ; the background is the
set complement B(n) = I \ F (n). The object partition Πn

o for frame n consists of non-overlapping
elements Oi satisfying the following criteria:





F (n) =
⋃Nn

O
i=1 Oi(n),

Oi(n)
⋂

Oj(n) = ∅ if i 6= j,
(2.7)

where Nn
O is the number of semantic video objects in frame n.

Sometimes, it might be useful to group objects that share common properties such as behavior,
interactions or events. The group partition Πg is computed from the object partition Πo by merging
elements. The foreground partition F (n) is obtained by merging all objects of Πn

o in a single element.
Semantic video objects and object groups are described by semantic descriptors. The semantic

descriptor Ψj(n) can be expressed as a matrix of region descriptors:

Ψj(n) =
(
Φ1(n),Φ2(n), . . . ,ΦP n

j
(n)

)
. (2.8)

Pn
j is the number of region descriptors comprised in the jth semantic descriptor in frame n. Thus,

semantic video objects and groups are described by the descriptors of the regions they enclose.

Content-based representation

Regions and semantic video objects have representations both in the iconic and in the symbolic
domains. On the other hand, some high-level features such as actor’s names, geographical location
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and time & date of the filming, might not be actually visible in the video. Therefore, these features
have no representation in the iconic domain. Since such high-level content features nevertheless
provide useful knowledge about the captured scene, they should be expressed by a content descriptor.
The content descriptor Ω(n) is a set whose elements are content features ωk(n):

Ω(n) =
Qn⋃

k=1

ωk(n), (2.9)

where Qn is the number of features comprised in the content descriptor for frame n. Content features
can be of any type, including numerical values and text. As features may evolve over time (e.g.,
movie filmed at multiple locations), we use the frame-wise notation in Equation (2.9).

Interactions between representation levels

Region-based, object-based and content-based representations are tightly related. The joint repre-
sentation of region, object and content features allows advanced video access and manipulation for
Universal Multimedia Access (Appendix A). Therefore, interaction mechanisms between different
representation levels must be provided. In the combined region-object representation, a semantic
video object, Oi(n), is divided into Nn

Ri
spatiotemporal regions, such that





Oi(n) =
⋃Nn

Ri
j=1 Ri,j(n),

Ri,j(n)
⋂

Rl,m(n) = ∅ if (i, j) 6= (l,m).
(2.10)

The number of regions Nn
Ri

for semantic object i is allowed to vary from frame to frame to account
for possible object deformations, occlusion and rotation. Using Equation (2.7) and Equation (2.10),
the foreground partition F (n) can the be rewritten as

F (n) =
Nn

O⋃

i=1

Nn
Ri⋃

j=1

Ri,j(n). (2.11)

Similar to the foreground, the background may also be divided into homogeneous regions. The
background region partition B(n) then satisfies





B(n) =
⋃Nn

B
i=1 Bi(n),

Bi(n)
⋂

Bj(n) = ∅ if i 6= j,
(2.12)

with Nn
B the number of background regions in frame n.

Another important interaction is that between iconic and symbolic representations. The object-
metadata descriptor Ψm

j (n) is used to attach a content descriptor, Ω(n), to a semantic descriptor,
Ψj(n):

Ψm
j (n) =

{
Ψj(n),Ω(n)

}
. (2.13)

This enables us to attach metadata to individual objects.
The above representations require the visual space to be partitioned into meaningful entities.

For video, this is achieved by means of semantic video object extraction. Thus, we next review state
of the art video object segmentation and tracking techniques.
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(a) (b)

(c)

Figure 2.8: Semantic video object extraction. (a) Sample frame from the original video sequence.
(b) Video object segmentation. (c) Video object tracking.

2.3 Semantic video object extraction

Semantic video object extraction refers to the process of segmenting and tracking semantic video
objects (Figure 2.8). The goal of object segmentation is to divide the frame into parts that have
a strong correlation with objects or areas of the real world. Semantic video object tracking is the
problem of estimating and updating the configuration of an object over time. Semantic video object
extraction is a complex task, as the meaning may change according to the application. Moreover,
semantic video objects cannot generally be characterized by a simple homogeneity criterion (e.g.,
uniform color, uniform motion). In the following discussion, we constrain ourselves to the extraction
of semantic video objects in the 2-D space using a single, monocular camera. Extensions to the 3-D
space and multiple cameras are given by [15, 41, 52, 70].

2.3.1 Segmentation

Semantic video object segmentation, or complete segmentation, is a particular case of image segmen-
tation. Image segmentation is the partition of an image into a set of non overlapping homogeneous
regions whose union is the entire image or, equivalently, into the edges or boundaries of such regions
[27, 142, 207, 211]. These regions correspond to perceptually uniform areas. The goal of semantic
video object segmentation is to divide each frame into parts that have a strong correlation with
objects or areas of the real world that are visible in the video.

Common approaches to semantic video object segmentation include manual segmentation, match-
ing, thresholding, edge-based segmentation, region-based segmentation, and motion-based segmenta-
tion. These are reviewed next.
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Manual segmentation

In the case of manual segmentation, semantic video objects are marked directly by the user. This
procedure allows a perfect definition of object boundaries. However, it is extremely time consuming.
Manual segmentation is thus the preferred approach for specific applications such as high quality
film production [187]. It is also used to create a reference segmentation, for instance in order to
assess the quality of automatic or semi-automatic video object extraction techniques [44, 67, 145].

Matching

Matching is used to locate known objects in a frame. The goal might be to find objects that
are similar to a given template, or to locate occurrences of a selected object in successive video
frames (tracking). Match-based algorithms localize all positions at which close copies of the searched
template are located. Matching criteria need thus to be established to measure the similarity between
the template and parts of the frame. The most basic matching criterion is the exact match, where
an exact copy of the template is found. However, objects in natural video are usually corrupted by
noise, geometric distortion, occlusion, etc. Therefore, a search for locations of maximum match is
more appropriate. Popular distance metrics include the Euclidean distance as well as variants of the
Hausdorff distance [60, 206].

Basic match-based algorithms do not allow for any geometric transformation. This means that
the searched object must match the template in size and orientation. A simple but particularly
time consuming solution is to scale and rotate the template to all possible sizes and orientations.
A better strategy replaces the rigid template by parts connected by rubber links. The goal is the
search for good partial matches of template parts in locations that cause minimum force in rubber
link connections between these parts [211]. This concept has been used by Umeki and Mizutani [226]
to match local features using Dynamic Link Matching (DLM). DLM is inherently invariant against
distortion and various geometric transformations like shift, scaling and rotation.

Matching is the most effective approach to segment and track occurrences of a specific, known
object. However, the need for accurate object templates considerably restricts the application range
of matching techniques. Also, this is time consuming even in the simplest case with no geometric
transformations, but the process can be made faster if a good operation sequence is found [211].

Thresholding

Gray-level thresholding is the transformation of an input signal f to a binary output signal g, where
a pixel g(i, j, t) is classified into foreground if f(i, j, t) > T , and into background otherwise (or vice
versa). T is the threshold. Gray-level thresholding is a suitable object segmentation method if
objects do not touch each other, and if their gray-levels are clearly distinct from background gray-
levels. When more information than is contained in one spectral band is required, thresholding can
be extended to multi-spectral signals (e.g., color video). Sonka et al. [211] determine the thresholds
independently in each spectral band and combines them into a single segmented video. Better results
can be achieved by analyzing multi-dimensional histograms [85].

Basic thresholding as defined above has many variations. Band thresholding for instance classifies
pixels with values from a set D, f(i, j) ∈ D, into objects, and into background otherwise (or vice
versa). This approach is often used to segment objects photographed in front of a uniformly colored
background. In the TV and movie jargon, multi-spectral band thresholding is referred to as chroma-
keying or blue screening, and it is commonly used to immerse actors into virtual environments [187].
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(a) (b)

(c) (d)

Figure 2.9: Thresholding for semantic video object segmentation. (a) Original frame. (b) Thresh-
old segmentation. (c) Threshold too low. (d) Threshold too high. (Courtesy of [211])

Correct threshold selection is crucial for successful object segmentation (Figure 2.9). If some
property after segmentation is known a priori, the task of threshold selection is simplified. p-tile
threshold selection exploits prior information about the ratio between the frame area occupied by
objects and the background area. Based on the histogram, the method selects a threshold T such
that 1/p of the frame area has values less than T , and the rest has gray values larger than T .
However, such a priori knowledge is often not available. More complex threshold detection methods
are based on histogram shape analysis. If a frame consists of objects of approximately the same gray-
levels that differ from the gray-level of the background, the resulting histogram will be bi-modal.
Based on this observation, the mode threshold selection method finds the highest local maxima in
a bi-modal histogram and then detects the threshold as a minimum between them. The accuracy
of the method can be improved by taking gray-level occurrences inside a local neighborhood into
consideration when constructing a gray-level histogram. For instance, one might weight histogram
contributions to suppress the influence of object borders, thus improving the peak-to-valley ratio of
the histogram. Optimal thresholding methods approximate the histogram using a weighted sum of
two or more probability densities with normal distribution [188]. The threshold is set at the gray-
level corresponding to the minimum probability between the maxima of the normal distributions.

Thresholding is computationally inexpensive and fast, and can therefore easily be applied in real
time. However, this cannot be used reliably in cluttered environments [196].
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(a) (b)

(c) (d)

Figure 2.10: Hough transform – circle detection. (a) Original image. (b) Edge image. (c)
Parameter space. (d) Detected circles. (Courtesy of [211])

Edge-based segmentation

Edge-based object segmentation relies on edges found by edge detectors. Edges are combined into
edge chains that correspond better with borders in the frame. The final aim is to group local
edges into an image where only edge chains with a correspondence to existing objects are present
[65]. In very simple situations, edge image thresholding can produce object borders without any
prior information. Simple thresholding of an edge image is applied to remove small edge values
resulting from quantization noise, small lightning irregularities, etc. With most real-world videos,
this approach is affected by severe over- or under-segmentation. Considering edge properties in the
context of their mutual neighbors can improve the result. Rosenfeld et al. [194] for instance notice
that a weak edge positioned between two strong edges is highly probably part of an object border.
On the other hand, an edge positioned by itself is probably not part of any border. Edge relaxation
techniques thus evaluate the confidence of each edge regarding its local context [85].

Whenever some prior knowledge is available for boundary detection, general problem-solving
methods can be used [163]. Some authors have reformulated object border detection as a graph
searching problem [147]. A graph is a general structure consisting of a set of nodes, and of oriented
and numerically weighted arcs between the nodes. The border detection problem is transformed
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into a search for the optimal path in the weighted graph, the aim being to find the best path that
connects the given starting and ending points. This is achieved by cost minimization, where the
cost is generally given by the sum of all arc weights. Dynamic programming provides yet another
formulation of the border detection problem [79]. The main idea is similar to graph searching, namely
to find an optimal path from some starting point to some ending point. Unlike heuristic search
however, dynamic programming can search optimal paths simultaneously from multiple starting
and ending points. Thus, dynamic programming is the better approach when the location of these
points is not exactly known. Hough transforms provide an effective solution to object segmentation
which can even be used to segment partially occluded objects. The Hough transform is a tool that
allows recognition of global patterns (shapes) in an image space by recognition of local patterns
(ideally a point) in a transformed parameter space (Figure 2.10). Whereas the original Hough
transform [91] was designed to detected straight lines and curves using analytic equations of object
borderlines, generalized Hough transforms can find objects even when an analytic expression of the
border is not known [101].

Edge-based object segmentation methods provide pixel-accurate object contours when the nec-
essary a priori information is available. However, most of these methods are very sensitive to noise
[211]. Due to the need for prior information, edge-based methods are generally semi-automatic;
that is, some form of user intervention is needed to initialize the algorithm (manual definition of
approximate object contour, shape sketch, . . . ).

Region-based segmentation

Region-based methods construct object regions directly. The basic idea is to divide a frame into
zones of maximum homogeneity, and then to pick out the zones that correspond to semantic objects.
The criteria for homogeneity can be based on gray-level, color, texture, shape, semantic information,
etc. In general, region-based methods can be divided in two groups: region growing, and split-and-
merge. In region growing algorithms, a number of basic uniform regions (seeds) are given, and
different strategies are applied to join surrounding neighborhoods. Split-and-merge algorithms start
from nonuniform regions, subdivide them until uniform ones are obtained, and then apply some
merging heuristics to fit them to maximal possible area.

The basic mechanism underlying all region growing algorithms is to start from some seeds and
to grow them until they represent the entire frame. Therefore, a growth mechanism and a criterion
checking the homogeneity of the regions after each growth step need to be defined. The simplest
homogeneity criterion uses an average gray-level of the region, its color properties, or simple texture
properties. Several more advanced homogeneity criteria operating in RGB coordinates are suggested
by [223]. A basic growing rule simply considers all adjacent pixels using either 4-connectivity or
8-connectivity [219]. Instead, some approaches consider small adjacent blocks or use search windows
to account for features such as texture or edges during homogeneity check [72, 104]. Morphological
operators and watersheds have been used for region growing as well [152, 238].

Split-and-merge algorithms recursively split the frame into smaller and smaller regions until all
individual regions are coherent, and then recursively merge these to produce larger coherent regions.
The quadtree data structure is the most popular data structure in split-and-merge algorithms because
of its simplicity and computational efficiency. The quadtree is a tree in which each node has exactly
four descendants. The root of the tree corresponds to the entire frame, and each leaf node represents
a homogeneous region. Splitting and merging correspond to building or removing parts of the
quadtree. Merging of adjacent regions is allowed if they satisfy a homogeneity criterion. The
conventional split-and-merge algorithm [90] is lacking in the adaptability to semantics because of its
stiff quadtree-based structure. To directly reflect semantics to the segmentation results, Yang and
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Figure 2.11: Motion-based segmentation through simple differencing. (a) Current frame. (b)
Reference frame. (c) Difference image. (d) Binary change mask.

Lee [255] employ a thresholding technique in the splitting phase of the split-and-merge segmentation
scheme. Numerous other variations in the split-and-merge strategy are reviewed in [142]. They rely
on as diverse approaches as clustering, morphological operators, fuzzy expert systems, etc.

Region-based object segmentation techniques are generally better in noisy video, where borders
would be difficult to detect. However, they are often affected by either over-segmentation or under-
segmentation as a result of non-optimal parameter selection [211]. Thus, region post-processing is
sometimes applied to improve classification results [1, 137].

Motion-based segmentation

Motion-based segmentation aims at detecting regions corresponding to moving objects, such as
humans and vehicles. A significant approach for motion-based segmentation is change detection
[184]. The core problem of change detection is to identify the set of pixels that are significantly
“different” between a pair of images of the same scene, taken at two different times. Uninteresting
forms of change, such as those caused by sensor noise or illumination variation, are thereby to be
rejected. Change detection usually involves three distinct steps: pre-processing, application of a
decision rule, and post-processing. Some change detection methods integrate these steps together,
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while others may not perform pre-processing or post-processing.

A necessary pre-processing step is image registration, the alignment of image pairs in the same
coordinate frame. This is of particular importance when the camera is moving. Camera motion
estimation [37, 61, 172, 266] is usually followed by either camera control [25, 165], or global motion
compensation [117, 149]. Sometimes, the two steps of global motion estimation/compensation and
change detection are integrated together [51, 166]. Some of the earliest attempts at illumination-
invariant change detection made also use of intensity normalization [136]. The pixel intensity values
in the second image are normalized to have the same mean and variance as those in the first image.
Homomorphic filtering has been used to separate the illumination and reflectance components of
the intensity signal [221]; the reflectance component is provided as input to the decision rule step of
the change detection process.

The decision rule of change detection algorithms is the process that decides whether a pixel
has changed or not. It can be formulated independently at each pixel x, or it might be based on
a small block of pixels in the neighborhood of x. The latter is usually more robust to noise. A
widespread decision rule is simple differencing, where the difference image D(x) = I2(x) − I1(x)
is thresholded to generate the binary change mask (Figure 2.11). For color video, the pixel-wise
Euclidean distance is used instead [73]). The threshold is either chosen empirically, or computed for
a desired false alarm rate [210]. The decision rule might also be cast as a statistical hypothesis test.
The decision as to whether a change has occurred at a given pixel x or not corresponds to choosing
one of two competing hypothesis: the null hypothesis H0, or the alternate hypothesis H1, corre-
sponding to no-change and change decisions, respectively. The image pair (I1(x), I2(x)) is viewed
as a random vector. Knowledge of the conditional joint probability functions p(I1(x), I2(x)|H0)
and p(I1(x), I2(x)|H1) then allows to choose the hypothesis that best describes the intensity change
at x using the framework of hypothesis testing (e.g., significance tests, likelihood ratio test [2, 3],
probabilistic mixture models [16]). To exploit the close relationship between nearby pixels both in
space and time, sophisticated change detection algorithms replace the actual image pair by predic-
tive models. Spatial predictive models fit the intensity value of each image block to a polynomial
function of the pixel coordinates x [93, 208]. Temporal prediction models pixel intensities over time
as an autoregressive (AR) process [66]. The change mask is then generally obtained by statistical
hypothesis tests. The need for post-processing arises when the results of change detection are noisy
or inadequately smooth. This is typically resolved by morphological operators, contour relaxation,
and by imposing a minimum region size [211].

Of course, there are other approaches for motion-based segmentation. Optical-flow based segmen-
tation uses characteristics of flow vectors [9] over time to detect moving objects. Meyer et al. [151]
for instance compute the displacement vector field to initialize a contour-based tracking algorithm
for the extraction of articulated objects. Probabilistic approaches have been used as well. Fried-
man and Russell [75] implement a mixed Gaussian classification model for each pixel. This model
classifies the pixel values into three predetermined distributions corresponding to background, fore-
ground and shadow. According to the likelihood of membership, the model also updates the mixed
components automatically for each class.

Motion-based segmentation is commonly used to automatically detect moving objects in video
sequences. Change detection approaches are generally fast and can thus be used for real-time
applications. However, they often show poor performance with significant illumination changes and
noise. Robust methods based on local models tend to be slower [184]. Most optical-flow based
methods on the other hand are computationally complex and very sensitive to noise, but they can
be used to detect independently moving objects even in the presence of camera motion [96].
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2.3.2 Tracking

Semantic video object tracking is the problem of estimating and updating the configuration of
an object over time [88]. In this sense, tracking refers to a process that follows an object as
it moves around. Real-world scenes normally involve multiple interacting and deforming objects.
Therefore, tracking algorithms must be able to effectively deal with appearing and disappearing
objects, temporal variations of the 2-D shape of semantic video objects due to perspective and
deformable objects, occlusions and other interactions, and splitting of one object. The goal is to
establish a stable track for each object.

Tracking methods can be divided into four major categories [96]: feature-based tracking, active
contour-based tracking, region-based tracking, and model-based tracking. Algorithms from different
categories might also be integrated together to form hybrid tracking methods. Next, state of the art
tracking methods from each category are reviewed.

Feature-based tracking

Feature-based tracking algorithms provide estimates of the state of visual features, or targets, in
successive frames. The target state is a vector that summarizes the past history of the target
sufficiently in order to predict its future. It typically consists of both kinematic components (position,
velocity, etc.) and feature components (e.g., spectral characteristics). Depending on the task at
hand, global features, local features, dependance graphs or a combination of the above can be used.
Global features are centroids, perimeters, areas, colors, etc. Local features include line segments,
corner vertices, edges, and regions of high visual contrast. The features used in dependence graph-
based algorithms include a variety of distances and geometric relations between features [69].

Kalman filters are being widely used for feature tracking [119, 211]. The goal of Kalman filtering
is to combine the measurement taken from the target with the information provided by a motion
model in order to obtain an optimal estimation of the target state. A major drawback of the Kalman
filter in realistic tracking scenarios is the assumption of a single motion model. Targets undergoing
occasional maneuvers cannot be tracked reliably. An important state estimator for such scenarios
is the Interacting Multiple Model filter (IMM) [18, 148]. IMM filters use several possible motion
models and a probabilistic switching between these models. The target’s motion is described by one
of the models during each sampling period. A two-model IMM filter for instance uses one model
with a small maneuver level to represent motion when the target is not maneuvering, and another
model with a larger maneuver level to describe the maneuvering phase.

Whenever multiple targets are to be tracked, an additional data association stage must establish
which measurement, if any, is to be used in a state estimator. A number of data association
algorithms are reported in the literature. The Nearest Neighbor filter (NN) selects the closest
validated measurement to the predicted measurement to update the track [8, 134]. The Joint
Probabilistic Data Association filter (JPDA) uses a weighted average of all validated measurements
to update the track state [5, 8, 185]. The Multiple Hypothesis Tracker (MHT) [45, 186] forms a
number of plausible ways (hypothesis) to partition the measurements into tracks and false alarms.
Then, the probability of each hypothesis is evaluated. While NN filters works well with widely spaced
targets, JPDA and MHT algorithms lead to more accurate results in cluttered target environments.
Late research has also considered the use of assignment algorithms [182]. The combination of
IMM state estimation and assignment algorithm-based data association has been shown to perform
particularly well on multitarget feature tracking in complex scenes [4].

An adaptation of the above methods to object tracking is presented by Beymer et al. [12]. Here,
the parts to be tracked are the corners of the objects. Tracking parts of objects results in stable tracks
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for the features under analysis even in case of partial occlusion of the object. However, the problem
of grouping the features to determine which of them belong to the same object is a major drawback
of these approaches. A solution is provided by Rosenberg and Wermann [191]. For each target,
they measure the displacement probability, that is, the confidence that the target moves differently
than the background. The boundary of a moving object maximizes the displacement probability of
the targets it encompasses. This reflects the assumption that a moving object contains targets with
a motion different than the background. The measurements are further used to decide whether a
cluster belongs to a single moving object or to multiple objects.

As they operate on 2-D image planes, feature-based tracking algorithms are well fitted for real-
time processing and multiple object tracking. They can also handle partial occlusion by using
information on object motion, local features and dependency graphs. However, the stability of
dealing effectively with occlusion, overlapping and interference of unrelated structures is generally
poor [96].

Contour-based tracking

Contour-based methods track objects by representing their outlines as bounding contours and by
updating these contours dynamically in successive frames. In the simple algorithm proposed by Gu
and Lee [82], a human operator first indicates the rough boundary of a semantic video object in the
initial frame. The initial boundary is then refined using morphological segmentation. Semantic video
objects in the remaining frames are obtained using perspective motion compensation of the previous
video object plus morphological boundary refinement. Due to the rigid body motion compensation
followed by adjustments, large non-rigid movements cannot be handled by this method.

One improvement of the previous method is to use a deformable object motion model, such as
active contour models [121, 220] or 2-D meshes, instead of rigid motion. Paragios and Deriche [171]
address the detection and the tracking problem in a common framework that employs a geodesic
active contour objective function and a level set formulation scheme. To overcome the problem of
partial occlusion, Peterfreund [178] has introduced a Kalman filter and optical flow measurements
in the active contour model. During the update step of the snake state, spurious measurements
which are not consistent with previous estimation of motion are rejected. Isard and Blake [103]
describe complex motion models using stochastic differential equations and combine this approach
with deformable templates. They achieve robust tracking of agile motion in clutter in near real time.

2-D meshes have been used to track video objects as well. Günsel et al. [83] represent video
objects by 2-D triangular meshes, where all motion- and shape-related features of an object can
be computed as a function of only spatial node configurations and their motion trajectories. Mesh
propagation and refinement is then employed to compute the motion trajectories of all mesh node
points. Zhao et al. [267] introduce the concept of occlusion mesh models to track multiple interacting
and deforming objects. Essentially, they predict whether mesh nodes are going to be occluded by
using nodes motion estimation. Such nodes are considered to be unreliable and deleted.

In general, contour-based tracking methods lead to an accurate video object shape definition.
However, the tracking reliability is limited at the contour level [211]. Moreover, contour-based
algorithms are highly sensitive to tracking initialization, making it difficult to start tracking without
user intervention.

Region-based tracking

Region-based methods track objects according to variations of regions that roughly correspond to
the 2-D shapes of video objects. In contrast to contour-based algorithms, the tracking strategy relies
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on information provided by the entire region. Examples of such information are motion, color and
texture. Favalli et al. [71] exploit motion information contained in MPEG–2 bitstreams to roughly
track video objects marked by the user. Their procedure is very sensitive to motion estimation
errors and cannot operate at units smaller than one macroblock. To reduce the influence of motion
estimation errors on tracking accuracy, Lee et al. [127] assign a confidence measure to each motion
vector. MVs with low confidence are ignored by the tracking process. Sanchez and Dibos [198]
perform motion estimation at the pixel level by employing optical flow. In addition, they recover
the most likely trajectory of an occluded object from optical flow data at the border of the occlusion.

Color and texture have also been used for object localization and tracking. Comaniciu et al. [42]
propose a nonrigid object tracking method based on color histogram matching. Histograms regu-
larized by spatial masking with an isotropic kernel are used to model both the target object and
candidates. For target localization, a similarity metric derived from the Bhattacharyya coefficient
is minimized using the mean shift procedure. The algorithm successfully copes with camera mo-
tion, partial occlusions, clutter, and target scale variations. To account for possible non-rigidity of
objects, Liu and Chen [138] treat the color distribution as a weighted color histogram instead of
relying on kernel properties. They also include edge density as another tracking feature. Finally,
they replace the Bhattacharyya similarity metric by a weighted combination of the Kullback-Leibler
distance for color distributions, and a sigmoid function for edge density.

Although they work well in scenes containing only a few objects, region-based tracking algorithms
cannot reliably handle occlusion between objects [96].

Model-based tracking

Model-based tracking algorithms match projected object models, produced with prior knowledge, to
video data. Typically, these models reflect known geometric, kinematic, dynamic and/or appearance
features of the object. Model-based tracking methods can be divided in two distinct categories: rigid
object tracking, and non-rigid object tracking. One of the most common application of rigid object
tracking is model-based vehicle tracking. Early work by Gardner and Lawton [78] uses a wire-frame
surface model of the vehicle that is manually instantiated by the user. The model indicates the
initial position, size and orientation of the vehicle. A translation-based Kalman filter is used to
track local features. During feature extraction, the density of features at each frame position is
determined by the model. The model also allows the tracker to intelligently partition the features.
This simple system reliably tracks a single vehicle shot with an uncalibrated hand-held camera under
favorable lightning conditions. Yet it is not able to handle complex vehicle movements due to the
translational motion model of the tracker. To address this problem, Koller et al. [126] define a more
complex object model that takes into account the geometry, but also the motion of the vehicle. An
iterative approach is used to find the best correspondence between 3-D model edge segments and
2-D image segments in each frame. The inclusion of an illumination model allows to take shadows
of the vehicle into account during the matching process. Motion estimation is then performed by
a recursive estimator based on the vehicle motion model. The later kind of approaches has been
extended to provide multi-vehicle tracking [97]. Regions of interest that contain moving vehicles
are detected, and each is handled independently. So multi-vehicle tracking can be decomposed into
several single-vehicle tracking tasks, provided that there is only light occlusion.

Human body tracking is a very common application of non-rigid object tracking. To track a
walking person, Huang and Huang [99] introduce a 2-D articulated cardboard body model, where
each body part is defined by an isosceles trapezoidal. They set up a mixture motion model for body
movements and then solve body motion parameters in a statistical framework using the Expectation
Maximization (EM) algorithm. Instead of an articulated cardboard model, Ning et al. [164] use
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truncated cones to model arms, legs, the torso and the neck, and a sphere for the head. They
also define the posture of a walker by a 12-dimensional vector. The vector represents the global
body position as well as joint angles. Both boundary and region information are then combined
to achieve precise and robust pose estimation. Model-based tracking of individual body parts has
been proposed as well. Nickels and Hutchinson [162] combine a Kalman feature tracker and object
models to track complex articulated objects such as (robot-)arms. Five models are used: a general
nonlinear system model, an object geometric model, an object appearance model, an imaging model
and a dynamic model. The system model instantiates functions of the other models. The object
geometric model describes the size and shape of each link of the articulated object and how the links
move with respect to one another. The appearance model describes the color, texture and materials
used on each link. The imaging model describes the camera used to film the scene. The dynamic
model describes the assumptions about motion through the state space. These models serve to
generate state estimate of the object for each frame, which is updated by the feature measurements
obtained by the feature tracker. Pighin et al. [180] automatically recover the face position and facial
expression given video footage of a person’s face. They use a continuous optimization technique
to fit a 3-D face model to each frame. The face model is based on a set of 3-D texture-mapped
models, each corresponding to a particular basic facial expression, that are linearly combined using
morphing.

By making use of prior knowledge of the 3-D contours or surfaces of objects, model-based tracking
algorithms are intrinsically robust. They make it possible to solve the problem of tracking partially
occluded objects. The algorithms also naturally acquire the 3-D pose of objects after setting up the
geometrical correspondence between 2-D image coordinates and 3-D world coordinates by camera
calibration. However, model-based tracking is computationally expensive and presents two major
drawbacks. One is the need for object models with detailed geometry for all objects that could be
found in the scene, the other is the lack of generality. This last drawback prevents the system from
detecting objects that are not in the database.

Hybrid methods

The last group of tracking approaches is designed as a hybrid between some of the above techniques.
These approaches exploit the respective advantages of the different techniques that are combined
together. Rigoll et al. [189] design their solution to person tracking as a combination of model-
based and feature-based tracking. The shape model of a person’s body is automatically learned and
acquired by a Pseudo-2D Hidden Markov Model (P2DHMM). The measurement vector generated
by the P2DHMM is then used by a Kalman filter to track the person by estimation of a bounding
box trajectory indicating the person’s location within the entire video sequence. Zhou et al. [269]
combine contour-based and region-based tracking to track a single deforming object accurately.
They first extract a thin subregion that covers the contour of a video object. This subregion is then
tracked using any region-based algorithm.

Some researchers use a combination of region-based and feature-based techniques. Marqués and
Llach [146] and Tsaig and Averbuch [224] exploit the advantages of the two first by considering the
object as an entity, and then by tracking its parts. These algorithms exploit a video representation
as partition hierarchy and track video objects based on interactions between different levels of
the hierarchy. The hierarchy is composed of an object level and a region level. The object level
defines the topology of the video objects. The region level defines the topology of homogeneous
areas constituting the objects. This characteristic allows the tracking system to deal with the
deformation of objects. This flexibility is obtained at the cost of a higher computational complexity.
Such complexity is due to the use of complex motion models to project and adapt the regions from
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one frame to another.

2.4 Summary

In this chapter, we have addressed the problem of how to represent video in a structured form that
reflects content semantics. Structured video representations reflect the way human observers analyze
visual scenes, and they provide the user with flexibility in content-based access and manipulation.
In Chapter 5, semantics are employed to prioritize visual data in order to improve adaptive video
delivery. In Chapter 6, such information enables video enhancement in order to put important
objects in a conspicuous position for the monitoring personnel. Moreover, object descriptors are
used for automated event detection. In Appendix A, the joint representation of region, object and
content features enables us to provide Universal Multimedia Access.

In addition to the above, we have also reviewed state of the art techniques for the extraction of
semantic video objects. In Chapter 4, the advantages of region-based and feature-based techniques
are exploited to segment and track multiple moving objects in cluttered background. Our method
is able to cope with object deformation and with various track management issues including the
appearance and disappearance of objects, object splitting, and occlusions.



Video adaptation 3
3.1 Introduction

Today’s digital world is populated by a steadily increasing amount of multimedia content. Such
content exists in various modalities and formats, and is accessed over diverse networks and termi-
nals by different users. To cope with individual user preferences, and with different networks and
appliances, content adaptation is necessary. Content adaptation refers to the preparation of content
that matches the resources of the connected terminal/network, as well as user preferences, in an
optimal way. Typical adaptation parameters include the bitrate of the delivered stream, frame reso-
lution and frame rate, audio bandwidth, the coding format, etc. Although the principles underlying
content adaptation are similar for all modalities, the remainder of this chapter will focus on the
adaptation of video. Still images, audio and text adaptation are notably discussed in [157].

The simplest way to provide video adaptation is to encode several versions for all possible re-
source profiles. The most adequate version is then selected among the coded ones according to the
characteristics of the connected appliance and network. This approach is referred to as simulcast.
However, the diversity of networks and terminals in a realistic delivery environment usually makes
it unattainable to generate a distinct content version for each profile of resources. Scalable coding
eliminates the need for multiple coexisting content versions by obtaining lower qualities, spatial
resolutions and/or temporal resolutions by truncating certain layers or bits from the coded stream.

With simulcast and scalable coding, potential resource profiles need to be known prior to coding
in order to select adequate encoding parameters. With transcoding on the other hand, the input
bitstream is converted according to the needs of the connected appliance on the fly. Video transcoding
is the process of converting an existing compressed video signal into another compressed video signal
with different properties. Transmoding is a variation of transcoding, where the modality of the
content is changed (e.g., video-to-text). Simulcast, scalable coding and transcoding/transmoding
sometimes coexist in order to provide an optimal tradeoff between transcoding overhead and storage
requirements [143].

In this chapter, we review different video adaptation strategies. Video adaptation is essential to
provide adaptive delivery, where content needs to be prepared so as to matches individual appliance
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Figure 3.1: The InfoPyramid provides a multimodal, multiresolution representation for content
items and for their transcoded versions. (Adapted from [209])

and network resources while providing maximum value for the end user. Simulcast is discussed in
Section 3.2. Scalable coding methods are surveyed in Section 3.3. Transcoding and transmoding at
last are reviewed in Section 3.4.

3.2 Simulcast

To handle varying channel environments and terminal resources by simulcast, the same video is
simply coded several times, each with a different quality and/or resolution setting. The content
version or variation that best matches a set of given terminal and network characteristics is later
selected among these “pre-adapted” versions. This approach is very fast since no transformation
of the video is required at the time of delivery. The primary shortcoming however is that massive
storage capacity is needed to hold all content variations. Moreover, possible resource profiles must
be known a priori in order for the corresponding variations to be generated.

To handle content variations, Li et al. [132, 209] propose a progressive data representation scheme
called InfoPyramid (Figure 3.1). The InfoPyramid manages several variations of media objects with
different modalities (e.g., video, still image, text and audio) and fidelities (summarized, compressed,
scaled, etc.). Thus, it provides a multimodal, multiresolution representation for the content items
and for their transcoded versions. Mohan et al. [153, 154, 209] as well as Kim et al. [123] further
provide a mechanism for content selection. Their mechanism selects the best content variations
from the InfoPyramid in order to meet the client resources while delivering the most “value”. The
solution builds on Shannon’s Rate-Distortion (R-D) theory [205]. R-D theory is generalized to
a value-resource framework by considering different variations of a content item as analogous to
different compressions, and different client resources as analogous to the bitrate.

Simulcast is very inefficient, as higher-quality or resolution bitstreams essentially repeat the
information that is already contained in the lower-quality or resolution stream, plus some additional
information. Scalable video coding eliminates such redundancy by coding multiple fidelity levels
into a single stream. The objective is to obtain lower qualities, spatial resolutions and/or temporal
resolutions by simply truncating certain layers or bits from the scalable stream.
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3.3 Scalable video coding

Basic modes of scalability include SNR scalability, frequency scalability, spatial scalability, and tem-
poral scalability. SNR scalability provides gradual quality approximations of the original sequence.
Frequency scalability includes different frequency components in each layer, with the base layer
containing low-frequency components and the other layers containing increasingly high-frequency
components. Spatial scalability is the representation of the same video in varying spatial resolutions.
Temporal scalability is the representation in varying temporal resolutions or frame rates. Scalable
coders can furthermore have coarse granularity (two or three layers – such coders are also called
layered coders), or fine granularity. In the extreme case of fine granularity (embedded coding), the
bitstream can be truncated at any point. Content-blind scalability methods perform the same oper-
ation over the entire video frame. When scalable content can be accessed at the object level, this is
referred to as object-based scalability. Next, content-blind and object-based scalability methods are
reviewed. Scalable video coding has also been extensively discussed by Wang et al. [247].

3.3.1 Content-blind scalability

Content-blind scalability methods do not take into account the semantic content of video; they
perform the same operation over the entire frame. Many methods achieve scalability by first coding
a coarse video representation into a base layer ; the difference between the original frame and the
reconstructed base layer is then coded into one or more enhancement layers. Alternatively, the
temporal frame structure of predictive-coded video or intrinsic properties of waveform-based coding
can be taken advantage of to reach scalability.

SNR scalability

SNR or quality scalability allows for the decoding of appropriate subsets of a single bitstream to
generate gradual quality approximations of the original sequence. Typically, this is accomplished
by coarsely quantizing the color values (in the original or in a transformed domain) in the base
layer. The difference between the base layer and the original frame is then coded into one ore
more enhancement layers. The block diagram of a simple two-level, SNR-scalable codec is shown in
Figure 3.2. The raw video frame (or the motion compensated error frame) is DCT-transformed and
quantized at the base level Q1. The base-level DCT coefficients are then reconstructed by inverse
quantization and subtracted from the original DCT coefficients. The residual is quantized by a
quantization parameter Q2 that is smaller than that of the base level. Quantized bits are encoded
by Variable Length Coding (VLC). This is the mode of operation that has been chosen by H.263
and MPEG–2 to reach SNR scalability [107, 114].

The Fine Granularity Scalability (FGS) mode of MPEG–4 extends the above method to pro-
vide fine granularity [133, 183]. As before, a base-layer stream is produced using a relatively large
quantization parameter. Then, for every coded frame, the differences (refinement coefficients) be-
tween the original DCT coefficients and the quantized coefficients in the base layer are coded into
a fine-granularity stream. This is achieved by quantizing the refinement coefficients using a very
small quantization parameter, and then by representing the quantized indices through successive bit
plane coding [106]. Specifically, the absolute values of quantized refinement coefficients in each block
are specified in binary representation. Starting from the highest bit plane that contains nonzero
bits, each bit plane is successively coded using run-length coding, from the most significant bit to
the least significant bit. Adaptive Motion-Compensation FGS (AMC-FGS) and similar techniques
further enhance the coding efficiency of MPEG–4 FGS by exploiting temporal redundancies within
the video stream [231, 253].
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Figure 3.2: A two-level, SNR-scalable codec. The base layer is coarsely quantized, and the differ-
ence between the base layer and the original frame is coded into an enhancement layer. (a) Encoder.
(b) Decoder.

Frequency scalability

Frequency scalability is achieved by including different frequency components in each layer, with
the base layer containing low-frequency components, and other layers containing increasingly higher-
frequency components. This way, the base layer will provide a blurred version of the video, and
the addition of enhancement layers will yield increasingly sharper versions. In the MPEG–2 coding
standard, this is known as data partitioning [107]. Mode information, motion information, and
first few DCT coefficients of each macroblock are included in the base layer. The remaining DCT
coefficients are included in the enhancement layer.

Spatial scalability

Spatial scalability permits the transmission of video at different levels of spatial resolution in a
single bitstream. First, a multiresolution decomposition of the original video is obtained. The
lowest-resolution version is coded directly into the base layer. To produce the second layer, the
decoded video from the base layer is interpolated to the second-lowest resolution, and the difference
between the original and the interpolated video at that resolution is encoded. The bitstream for each
of the following layers is produced in the same way: first, the video is interpolated to that resolution;
then, the difference between the estimated and the original video at that resolution is encoded. A
two-level spatially scalable codec implementing the above algorithm is shown in Figure 3.3. This
method has been adopted to provide spatial scalability in MPEG–2 [107]. Dugad and Ahuja [62]
obtain similar results by using two non-scalable video codecs (e.g., MPEG–2 main profile), along
with a downsampler and an upsampler. Their motivation is to achieve the functionality of spatial
scalability with standard equipment. Wang et al. [245] obtain fine granularity in the enhancement
layer by utilizing bit plane techniques in a way that is similar to that used by MPEG–4 FGS to
achieve quality scalability.

In contrast to spatial domain techniques, DCT domain techniques remove the unnecessary de-
compression and recompression procedures, and thus have the advantages of reduced computational
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Figure 3.3: A two-level spatially/temporally scalable codec. The video at a reduced resolution is
coded into the base layer. The difference between the original video and the interpolated base layer
is coded into the enhancement layer. (a) Encoder. (b) Decoder.

complexity and storage requirements. In addition, significant processing speedup may be gained
because of the lower data rate in the compressed domain. To implement spatial scalability in the
DCT domain, DCT coefficients of lower-resolution frames are generated directly from the DCT co-
efficients of the original frames. This is typically achieved through linear operations on DCT blocks
[94, 95].

Temporal scalability

Temporal scalability is defined as the representation of the same video in varying temporal resolu-
tions. The block diagram of a temporally scalable codec is the same as that of a spatially scalable
codec (Figure 3.3). The only difference in the temporally scalable codec is the use of temporal down-
sampling and upsampling instead of spatial downsampling and upsampling. This procedure however
can be notably simplified by taking advantage of the temporal frame structure of predictive-coded
video (e.g., MPEG–x, H.26x). Temporal scalability from predictively coded video is provided by
strategic placement of reference frames, and selective decoding of frames. In [43, 216], the first
frame in a group of frames (GoF) is coded independently as a still image. The remaining frames are
predicted from the first frame either directly or recursively. Once the reference frame is decoded,
any of the other frames within the GoF can be immediately decoded. The result is a temporal
subsampling of the original sequence, where the decoded frames are exactly equal to those that
would appear in the full frame-rate decoded sequence. Similarly, non-reference frames are dropped
to achieve lower temporal resolution with the H.264/AVC video coding standard [249].
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Hybrid scalability

Hybrid scalability uses combinations of the basic schemes presented above to reach finer granularity.
Spatiotemporal scalable video coding is realized by combining layered coding as shown in Figure
3.3, and selective frame decoding [58]. To support both SNR and temporal scalability through a
single enhancement layer, van der Schaar and Radha [229, 230] multiplex the MPEG–4 FGS residual
signal (for SNR scalability) and the motion-compensation residual signal obtained by fine-granular
temporal scalability together. As compared to multilayer coding, where the SNR and the temporal
scalability enhancement layers are separate, this single-layer structure eases tradeoffs between both
scalability bandwidth overheads at transmission time.

Wavelet transform-based coding

The discrete wavelet transform provides a multiresolution/multifrequency expression of a signal
with localization in both time and frequency [144]. Thus, subband/wavelet transformations have
the benefit of naturally providing scalability. Wavelet-based scalable coding techniques for video
can be classified into three categories [247]: (1) spatial-domain motion compensation, followed by
2-D wavelet transform; (2) wavelet transform followed by frequency-domain motion compensation;
(3) 3-D wavelet transforms, with or without motion estimation. Techniques in the first category
remove temporal redundancies by using a motion-compensated temporal wavelet transform. The
transform follows the trajectory indicated by motion vectors obtained via spatial domain motion
estimation. Thereafter, the frames resulting from temporal filtering are spatially-decomposed us-
ing a 2-D wavelet transform in order to reduce spatial redundancies. So-called in-band predictive
schemes use a classical hybrid video codec architecture, with that exception that motion estimation
and compensation take place after the spatial wavelet transform and not before. Thus, the multires-
olution nature of the wavelet domain representation can be fully exploited. The above compression
technologies have been investigated in the framework of MPEG–4 Scalable Video Coding (SVC)
experiments [199]. Karlsson and Vetterli [120] first advocated the use of a separable 3-D discrete
wavelet transform (3D-DWT) for video compression. Recent extensions of their solution have lead
to video compression that is highly scalable all in the spatial, in the temporal and in the quality
domains [200, 201].

3.3.2 Object-based scalability

Instead of performing the same operation over the entire frame, object-based scalability selectively
enhances a particular region or object (Section 2.2.2). In object-based temporal scalability (OTS),
the frame rate of a selected object is enhanced such that it has smoother motion than the remaining
area. The MPEG–4 implementation of OTS, which is notably based on earlier work by Katata
et al. [122], provides two types of enhancement structures [108, 252]. Full temporal enhancement
is used when the texture information for the background object is fully available, whereas partial
temporal enhancement is used when this is not the case. An example of partial temporal enhance-
ment is shown in Figure 3.4(a). VideoObjectLayer 0 (VOL0) is the sequence of an entire frame with
both an object and a background, whereas VOL1 represents a particular object in VOL0. VOL0 is
coded at a low frame rate, and VOL1 is coded to achieve a higher frame rate. Figure 3.4(b) shows
an example of full temporal enhancement, in which VideoObject 0 (VO0) is the sequence of an
entire frame that only contains a background and has no scalability layer. VO1 is the sequence of a
particular object. VO1 has two scalability layers, VOL0 and VOL1. Since VOL1 is coded to achieve
a higher frame rate than VOL0, VOL0 is regarded as the base layer and VOL1 as an enhancement
layer. Note that VO0 is not required to have the same frame rate as other VOs.
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Figure 3.4: Object-based temporal scalability in MPEG–4. (a) Partial temporal enhancement of
a video object using P-frames. (b) Full temporal enhancement of VO1. (Adapted from [252])

To reach object-based SNR scalability, van der Schaar and Lin [228] have modified the MPEG–4
FGS coding scheme to perform quality enhancement of selected regions. Specifically, Adaptive
Quantization (AQ) is used to control the quantization factor on a macroblock basis. A lower quanti-
zation level is used for object macroblocks compared to the background. AQ is achieved through bit
plane shifting of selected macroblocks within an FGS enhancement layer frame. Bit plane shifting
is equivalent to a power-of-two multiplication of macroblock coefficients [56].

With simulcast and scalable coding, potential resource profiles need to be known prior to coding
in order to select adequate encoding parameters. With transcoding on the other hand, the input
bitstream is converted according to the needs of the connected appliance on the fly. Content-blind
and content-based transcoding methods are reviewed next.



36 Chapter 3. Video adaptation

3.4 Transcoding

Video transcoding is a process for converting an existing compressed video signal into another
compressed video signal with different properties. A basic transmission system including a transcoder
is illustrated in Figure 3.5. The coded input stream is transformed by the transcoder so as to match
the end decoder. Note that front encoding usually happens offline, whereas transcoding and end-
decoding are performed in real time at the time of delivery.

Front

encoder

End

decoder
Decoder Encoder

Input

bitstream

Transcoded

bitstream

TRANSCODER

Figure 3.5: Basic transmission system including a transcoder.

The video transcoding literature has been mainly focused on three functionalities: bitrate reduc-
tion, spatial resolution reduction, and temporal resolution reduction. Reducing the bitrate is used to
meet an available channel or storage capacity. Spatial resolution reduction and temporal resolution
reduction permit content distribution to devices with various display capabilities and processing
power. With the recent introduction of packet video services over mobile access networks, error-
resilience video transcoding has gained a significant amount of attention as well. The aim is to
increase the resilience of the original bitstream to transmission errors. Within each one of these
functionalities, a further distinction is made between homogeneous and heterogeneous transcoding.
With homogeneous transcoding, source and destination video are in the same compression format,
such as MPEG–2 to MPEG–2 transcoding. Heterogeneous transcoding on the other hand transforms
video from one compression format to another, such as MPEG–2 to MPEG–4 transcoding. Figure
3.6 illustrates some common transcoding operations. In this example, the original MPEG–2 video is
transcoded to (a) a reduced bitrate; (b) a reduced spatial resolution and (c) a different compression
format.

The remainder of this section provides a survey of video transcoding techniques. Content-blind
transcoding is reviewed in Section 3.4.1. The output format is determined based on network and
appliance constraints, independently of the characteristics of the content itself. Recent transcoding
techniques consider content features to minimize the degradation of important image regions. These
content-based transcoding techniques are reviewed in Section 3.4.2.

3.4.1 Content-blind transcoding

Content-blind solutions to video transcoding determine the output format based on network and
appliance constraints, independently of the semantics of the content. Common methods for bitrate
reduction, spatial resolution reduction, temporal resolution reduction and error-resilience coding are
discussed next. For an in-depth review of content-blind video transcoding, the reader may also refer
to the tutorial article on video transcoding architectures and techniques by Vetro et al. [233].

Bitrate reduction

The objective of bitrate reduction is to convert a compressed bitstream into lower rates without
modifying its original structure. Ideally, the quality of the transcoded stream should have the quality
of a bitstream directly generated with the reduced rate. The most straightforward way to achieve
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Figure 3.6: Illustration of some common video transcoding operations. The original video is
encoded in an MPEG–2 format (Main Profile at Main Level = MP@ML) at 15 Mb/s. The temporal
rate is 30 frames/s, and the input resolution is 720x576 i (interlaced). (a) The original video is
transcoded to a reduced bitrate of 10 Mb/s. (b) The original video is transcoded to the MPEG–2
SNR Profile at Low Level, at 4 Mb/s. The temporal rate is 30 frames/s, and the output resolution
is 352x288 i. (c) The original video is transcoded to the MPEG–4 Simple Profile at Level 2, at 128
Kb/s. The temporal rate is 10 frames/s, and the output resolution is 352x240 p (progressive).

bitrate reduction is to decode the video bitstream and fully re-encode the reconstructed signal at
the new rate. This is illustrated in Figure 3.7. Considering that the decoder decodes the incoming
bitstream down to the pixel domain, and that the encoder re-encodes the video to a different rate,
this structure is called cascaded pixel-domain transcoder (CPDT). The main advantage of the CPDT
is its flexibility. Since transcoding is carried out in the pixel domain, decoded video characteristics,
such as spatial size or color, can be modified, and extra information, such as digital watermarks,
can be inserted into the video stream. Moreover, the CPDT can achieve drift-free transcoding∗.
However, this solution has high computational and memory demands.

By reusing information from the incoming bitstream, decoder and encoder contained in a transcoder
can be significantly simplified to reduce the corresponding complexity, while still maintaining ac-
ceptable quality [130, 233]. Two examples of simplified architecture are shown in Figure 3.8. In
the open-loop system shown in Figure 3.8(a), the input video bitstream is first partially decoded
to the DCT coefficient level. The bitrate is then scaled down by re-quantizing all coefficients with
a larger quantization step-size Q2 [160]. This open-loop transcoder has very low complexity, as it
does not require entire decoding and encoding loops, nor frame store memories for reconstructed
pictures. However, open-loop architectures are subject to drift caused by re-quantization error. The
closed-loop system in Figure 3.8(b) aims to eliminate the mismatch between predictive and residual
components by using drift compensation. The re-quantization error is stored in a frame store and
is fed back to the re-quantizer Q2 to correct the re-quantization error introduced in the previous
frame. The main difference between the CPDT and simplified closed-loop architectures is that
reconstruction in the CPDT is requiring two reconstruction loops with one DCT and two IDCT,
whereas one single reconstruction loop with one IDCT is used in the closed-loop system. Decoding

∗Drift can be explained as the blurring or smoothing of successively predicted frames. It is caused by the loss of

high frequency information, which creates a mismatch between the actual reference frame used for prediction in the

encoder and the degraded reference frame used for prediction in the transcoder and decoder. As time goes on, this

error propagates, resulting in severely degraded reconstructed frames [233, 260, 261].



38 Chapter 3. Video adaptation

VLD (Q1)-1 IDCT

MC

MC

DCT

(Q2)-1

Q2 VLC

Frame

store

IDCT

Frame

store

+

+

+
+

-

DECODER ENCODER

Figure 3.7: Cascaded pixel-domain transcoding architecture for bitrate reduction.
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Figure 3.8: Simplified architectures for bitrate reduction. (a) Open-loop, partial decoding to
DCT coefficients, then re-quantization. (b) Closed-loop, drift compensation for requantized data.
(Adapted from [233]).
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to the pixel-domain can be avoided altogether by performing motion compensation in the frequency
domain as well. This is equivalent to removing the DCT and the IDCT from Figure 3.8(b). By
performing bitrate reduction entirely in the frequency domain, Assunção and Ghanbari [7] have
achieved computational complexity savings of up to 81% as compared to the CPDT.

Spatial resolution reduction

The emergence of mobile multimedia devices with limited display capabilities and the increasing de-
mand for rich content consumption on such devices have created a strong need for efficient ways to
reduce the spatial resolution of video. As for bitrate reduction, the cascaded pixel-domain transcoder
fully decodes the input stream, and re-encode the reconstructed video at lower spatial resolution.
Again, significant complexity savings with minimal loss of quality can be achieved by reusing in-
formation from the incoming bit-stream. For simplicity, the following discussion is limited to 2:1
spatial resolution reduction, e.g., CIF to QCIF. Rational downsizing video transcoding is discussed
in [38, 218].

Motion vector (MV) reestimation is avoided by mapping incoming MVs to the lower spatial
resolution [14, 202]. Usually, one new MV is calculated from an input set of four MVs, corresponding
to four 16x16 macroblocks (MB). This is referred to as 4:1 mapping. Commonly, 4:1 mapping is
achieved by applying a weighted average or median filters to the input vectors. The output vector’s
amplitude is scaled by two in order to account for the lower spatial resolution. Certain compression
standards, such as MPEG–4 Visual [108] and H.263 [114], support advanced prediction modes that
allow one MV per 8x8 luminance block. In that case, each input vector is mapped to one output
vector with appropriate scaling by two. This is referred to as 1:1 mapping. Both motion vector
mapping strategies are illustrated in Figure 3.9. 1:1 mapping provides a more accurate representation
of the motion, but also uses more bits in the transcoded stream, since four MVs must be encoded per
MB. Thus, an optimal strategy would adaptively select the best mapping based on a rate-distortion
criterion.

4:1

1:1

Figure 3.9: Motion vector mapping for spatial resolution reduction. One new motion vector (4:1
mapping) or four new motion vectors (1:1 mapping) are calculated from an input set of four motion
vectors.

Simply reusing motion vectors computed at the original bitrate in the reduced-rate bitstream
leads to non-optimal results due to the mismatch between prediction and residual components
[258]. This loss of quality can be overcome without full-scale motion estimation by using motion
vector refinement (MVR). The best-matching MV is searched in a small window around the point
indicated by the base motion vector obtained from motion vector mapping. Typically, a search
range of ±2 pixels instead of ±15 pixels or larger is used. This keeps the added complexity low
while eliminating significant amount of noise in the transcoded signal. Complexity can be kept even
lower by performing MVR entirely in the frequency domain [55].
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Figure 3.10: Simplified architecture for spatial resolution reduction in the frequency domain
(adapted from [203, 204]).

In addition to the mapping of MB-level motion information to the lower resolution, the spatial
dimension of the frame must be reduced. The easiest way to achieve this in the pixel domain is by
representing every 2x2 pixels by a single pixel of their averaged value. Better results are obtained by
DCT decimation [202]. The decimation is realized by retaining the 4x4 low-frequency coefficients of
each DCT-transformed 8x8 image block. These coefficients are then inverse-transformed to recon-
struct 4x4 pixels. Hence, four blocks become a new 8x8 pixel block. The attractive feature of this
method is that most energy of the original frame is conserved as it is concentrated at low frequencies.
Both pixel averaging and DCT decimation have been extended to the frequency domain [150, 204].
An example of architecture to perform spatial resolution reduction entirely in the frequency domain
is shown in Figure 3.10. This architecture has very low complexity.

Temporal resolution reduction

Temporal resolution reduction modifies the frame rate in order to allow the distribution of content to
devices with limited processing power, or so as to maintain higher quality of coded frames. Similar
to motion vector mapping for spatial resolution reduction, full-scale motion vector re-estimation is
avoided by motion vector composition [258]. As illustrated in Figure 3.11, a new motion vector
is estimated to predict the current frame from the latest non-dropped frame. One possible way to
generate such a motion vector is to use the vector sum of all intermediate motion vectors. In practice
however, the best-matching macroblocks are not located on a MB-boundary, thus intermediate
MVs might not be available. A way to estimate such intermediate vectors is to use the bilinear
interpolation of motion vectors in the previous dropped frame, where the weighting of each vector
is proportional to the amount of overlap with the predicted block. More accurate results can be
obtained by a dominant vector selection scheme, where the motion vector associated with the largest
overlapping region is chosen [39, 259]. Motion vector refinement is usually applied to the so-composed
motion vector to improve the quality of the transcoded signal.

In addition to new motion vectors, new residuals must be estimated for the lower temporal
resolution sequence. With pixel-domain architectures, the residual between the current frame and
the latest non-dropped frame can be easily computed given the new motion vector estimates. Fung
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Figure 3.11: Motion vector composition. Since frame (n-1) is dropped, a new motion vector to
predict frame (n) from frame (n-2) is estimated.

et al. [76] compute the new residual directly in the frequency domain. They achieve this by using
a direct addition of the DCT coefficients for macroblocks without motion compensation, and a
feedback loop for error compensation within motion-compensated MBs.

Error-resilience transcoding

The steadily increasing demand for multimedia content delivery over error-prone wireless transmis-
sion channels has motivated research on a new category of error-resilience video transcoders. The
operation of the transcoder is shown in Figure 3.12. The incoming bitstream is decoded to the degree
required to add resilience. Temporal and/or spatial resilience is then added by the transcoder. As
resilience is improved at the cost of an increase in the overall bitrate, rate reduction techniques are
used to recover the original rate. Finally, the resilient bitstream is requantized and variable-length
re-encoded.

Add 
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as required

Reduce rate

of bitstream

Re-quantize and
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as required

Incoming

encoded bitstream

Resilient bitstream 
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Figure 3.12: Error-resilience transcoding operation.

De los Reyes et al. and Dogan et al. [54, 57] consider two basic techniques of resilience: spatial
localization and temporal localization. Spatial localization prevents errors caused by a bit error
to propagate within a video frame. One approach to combat this effect is to shorten the length
of a bitstream slice by adding additional synchronization headers. Another possible method is to
limit spatial error propagation by limiting the reliance of motion compensation. If predictions are
only made within the spatial extent of the current slice, errors will not propagate outside that slice.
Temporal localization prevents the propagation of errors to subsequent frames. A common technique
is to add intra-frames or intra-blocks to the original stream. These frames or blocks are used as
references for subsequent temporal prediction, and thus reduce the duration of error propagation.

3.4.2 Content-based transcoding

Recent content-based transcoding techniques make use of content characteristics in order to min-
imize the degradation of important regions or to change the media nature of the input signal.
Intramedia transcoding reduces the bitrate, spatial resolution or temporal resolution of the video.
Unlike content-blind transcoding however, a different set of transcoding parameters is used for each
class of relevance. For instance, foreground objects might be encoded with higher quality than the
background. Intermedia transcoding, or transmoding, transforms the video to another modality, such
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Figure 3.13: General configuration of a content-based intramedia transcoder. The input stream is
split into a set of non-overlapping entities, such as video objects or shots. Each entity is transcoded
using a different set of parameters. The individual transcoded bitstreams are recombined and sent
through the network after buffering. (Adapted from [237])

as text or audio. This involves an additional analysis operation [10] in order to translate low-level
information, such as shape, color and motion, into a high-level description of the video.

Intramedia transcoding

Similar to content-blind transcoding, content-based intramedia transcoding deals with the reduction
of bitrate, spatial resolution, and temporal resolution. However, the transcoding process is controlled
by content characteristics. The general configuration of a content-based intramedia transcoder is
depicted in Figure 3.13. The input stream is split into a set of non-overlapping entities, such
as video objects or shots. Each entity is transcoded using a different set of parameters. The
individual transcoded bitstreams are recombined and sent through the network after buffering.
Transcoding parameters are controlled by content features, buffer data, network conditions and
terminal resources.

One class of content-based methods relies on global frame characteristics to control the transcod-
ing process. Liang and Tan [135] establish a set of rules to select the transcoding operation to be
applied to MPEG video frames (i.e., requantization, temporal resolution reduction, or spatial reso-
lution reduction) based on motion activity and spatial activity. Motion activity is inferred by the
average magnitude of the motion vectors of all the intercoded macroblocks in each frame. Spatial
activity reflects the number of spatial details and is measured by the mean quantization scale of
each frame. A wider set of frame-based characteristics of MPEG video is used by Huang et al. [98].
The proposed characteristics are region perceptibility, spatial complexity and temporal similarity.
Region perceptibility represents the visual importance of each region within a picture and can be
measured by the quantization scale of each macroblock. Spatial complexity indicates which region is
complex (and thus needs more bits to be encoded) and is given by the percentage of zero-quantized
DCT coefficients. Temporal similarity describes the temporal relationships of a video sequence, as
given by coding types of each MB and motion vector information. Lei and Georganas [131] use
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scene change location information to control frame skipping and allocate the frame bit budget in
MPEG–x and H.26x transcoding. They detect scene changes by considering the percentage of in-
tracoded macroblocks in each frame. Whenever that percentage exceeds 40%, a scene change is
detected. The algorithm then uses intracoding for all frames that follow a scene change.

Other methods consider the usage of semantic video objects as transcoding entities. This ap-
proach is called object-based transcoding. Vetro et al. [234, 236, 237] determine optimal quantization
parameters and frame skip for each video object individually. The bitrate budget for each object is
allocated by a difficulty hint, a weight indicating the relative encoding complexity of each object.
Frame skip is controlled by a shape hint, which measures the difference between two consecutive
shapes to determine whether an object can be temporally downsampled without visible composition
problems. Key objects are selected based on motion activity and on bit complexity. A similar
approach is followed by Cucchiara et al. [11, 46, 47, 48]. They subdivide the frame in a number of
classes of relevance. For instance, one class of relevance might contain all foreground objects, where-
as the background is allocated to a second class of relevance. Each class of relevance is furthermore
given a relevance measure (weight) by the user. The transcoding system can then be programmed
differently for each class of relevance. To measure transcoding performance, the authors introduce
the Weighted PSNR metric (WPSNR), which is a PSNR measure accounting for the different classes
of relevance present in the scene. The goal is to achieve higher quality on more relevant classes.
Kim and Choi [124] also achieve different transcoding quality for visually important and unimpor-
tant regions. They reduce bandwidth requirements for non-important DCT blocks by removing
high-frequency components through lowpass-filtering. To determine block importance directly in
the DCT domain, the authors use their discontinuity height measure [125], which gives the contrast
of dominant discontinuities within the block. Highly contrasted discontinuities are considered to be
visually important.

Transmoding

The aim of transmoding is to change the modality of input content, while preserving core information
(main content message). Examples of transmoding include speech-to-text (speech recognition) [156,
179] and text-to-speech (speech synthesis) [24, 77] translation. As for video, the most common
transformations are video-to-text, video-to-still images, and audio-to-video.

Video-to-text transmoding is used for automatic annotation, indexing, and structuring of video.
This is achieved through content extraction, followed by textual content representation. Content
extraction is the identification of semantic entities, typically shots and objects, within the video.
Content representation refers to the textual retranscription of such semantics. Harit et al. [86] use
change detection and EigenTracking [17] to segment and track moving video objects. The objects are
then grouped together in a semantically meaningful manner to form an appearance hierarchy. The
final video representation consists of the appearance spaces of objects, along with their projection
coefficients and affine location parameters in each frame in which they exist. This representation
is stored in eXtensible Markup Language XML [241]. In addition to the above, Nagao et al. [158]
use automatic scene detection to describe video clips using the Synchronized Multimedia Integra-
tion Language SMIL [240]. Another possible way to transform video into text is text information
extraction. This involves detection, localization, tracking, extraction, enhancement and recognition
of the text from a given video [118]. Such text data often provides valuable indications about video
contents and structure. For instance, character extraction of license plates permits automatic vehicle
identification for traffic surveillance [50].

Video summarization involves the transformation of input video into a series of representative still
images. This is achieved by temporal segmentation or key frame extraction, followed by summary
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representation. Temporal segmentation separates the video into shots based on color features [265],
edges [264], or feature point tracking [21]. Key frames are obtained either by simply selecting
the first frame in each shot [159], or by detecting camera stops using motion information [251],
for instance. Summary representations include sequential, hierarchical, pictorial and mosaic-based
summaries. The sequential summary is simply a concatenation of the key frames, which are shown
sequentially in time. In a hierarchical summary, key frames are grouped and organized so as to
obtain a coarse-to-fine hierarchy of summaries (e.g., tree) [268]. Pictorial summaries show all key
frames in a singe image. The frames are resized so as to reflect their importance in the video [257].
In a mosaic-based summary finally, multiple shot frames are aligned and integrated to construct a
mosaic of the scene [102].

Another possible transmoding operation is the mapping from speech to talking faces. This can be
used to improve the understanding of spoken text, and to animate virtual characters. Nakamura [161]
estimates facial parameters from audio input using a HMM-based method. These parameters control
deformations of a face model.

3.5 Summary

In this chapter, simulcast, scalable coding and transcoding/transmoding methods for video adapta-
tion have been reviewed. Object-based methods that account for different image areas have been
presented along with traditional frame-based methods. In Chapter 5 and Appendix A, content-based
transcoding is used to provide adaptive video delivery. Relevant areas are extracted by means of
semantic video analysis and encoded at a higher level of quality than the background. Transcoding
is particularly useful for adaptive delivery, since no a priori knowledge about the resource profiles
of the connected network and terminal needs to be available.
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Semantic video analysis 4
4.1 Introduction

In order to extract semantics from unstructured data, semantic analysis is used. Semantics represent
a meaningful entity in the input data. In the digital video domain, this is called a semantic video
object SVO (Section 2.2.2). Object-based representations of multimedia content provide the user
with flexibility in content-based access and manipulation. However, it is difficult to extract an SVO,
because: 1) a unique definition of an SVO does not exist. Anything that represents a meaningful
entity in the real world – for instance a ball, an aircraft, a building or a human body – could be
classified as an SVO; 2) SVO extraction is basically a segmentation process, which is still considered
one of the most difficult problems by the image analysis community; 3) traditional low-level visual
homogeneity criteria (e.g., intensity, color, texture) do not lead to regions that immediately corre-
spond to meaningful objects in the real world. Therefore, more sophisticated homogeneity criteria
must be employed.

In the following, we discuss possible homogeneity criteria for the extraction of semantics and, in
particular, we describe the use of motion. In Section 4.2, different semantics and the corresponding
homogeneity criteria are reviewed in the general context. Motion information is then used to extract
moving objects from video in Section 4.3. A statistical change detection process produces the
segmentation of moving objects from the background. The selected approach operates in cluttered
environment and is robust with regard to camera noise. A multilevel, temporal tracking strategy
further enables us to distinguish different video objects when they have similar motion or in the
presence of mutual occlusion. The tracking mechanism is based on feedbacks between an object
partition and a region partition. These interactions allow us to cope with multiple simultaneous
objects, motion of non-rigid objects, occlusions, and appearance and disappearance of objects. The
reliable extraction of moving objects is an important aspect of several applications, such as sport
broadcasting and visual surveillance. In Chapter 5, this will be used to prioritize visual data in
order to improve adaptive video delivery.

47
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4.2 Semantics

Although humans can identify meaningful information effortlessly, the automatic extraction of se-
mantics still remains one of the fundamental research problems in the signal processing community
[82, 139]. Semantic visual information extraction is difficult for various reasons: the definition of
“semantics” is vague and task-dependent, limited mechanisms are available for extraction (Section
2.3), and there is a problem with background noise sensitivity.

Basically, semantic visual information extraction is a segmentation process. The goal is to sep-
arate a meaningful entity from the remaining parts in the visual domain. In any segmentation
algorithm, the definition of homogeneity is a critical factor, and different definitions of homogene-
ity could lead to totally different segmentation results for the same input data. Also, a “good”
homogeneity criterion always depends on the task at hand.

Geometry, color and motion rank among the most commonly employed homogeneity criteria.
Geometry is used when the shape of the objects to be segmented is known a priori. In this case,
which notably includes the detection of captions and text, template matching methods search for
specific object features in terms of geometry [81]. For segmenting faces of people, regions-based
segmentation methods using a homogeneous color criterion can be employed. The face detection task
consists in finding the pixels whose spectral characteristics lie in a specific region in the chromaticity
diagram [92]. To extract moving objects, motion information can be used. Several applications, such
as sport broadcasting and visual surveillance, deal with segmenting moving objects. A typical tool
used to tackle this problem is change detection (Section 2.3.1).

In general, a semantic video object may contain multiple shapes, colors and motions. Therefore,
a single homogeneity criterion can only deal with a limited set of scenarios. This problem can be
overcome by combining multiple criteria. For instance, Mech and Wollborn [149] improve the results
of change detection by imposing spatial segmentation on each frame. Ueda and Mase [225] use an
energy formulation to detect shapes via user-selected points (supervised segmentation). Wang [243]
performs spatial segmentation for the initial frame, and temporal tracking for the successive frames.
The extraction method we propose next relies on a combination of change detection and temporal
tracking to extract moving objects. Temporal tracking allows us to distinguish multiple objects even
when they have similar motion or in the presence of mutual occlusions.

4.3 Motion-based semantic video object extraction

Motion is an important cue to produce semantic video objects, since an SVO often has different
motion features from the background. In this section, we propose an algorithm that relies on motion
information and on temporal tracking to extract objects from video in cluttered environment. The
algorithm is based on work that has been previously published by the author et al. in [31, 34]. First, a
change detection process produces the segmentation of moving objects from the background. Then,
temporal tracking is used to follow individual objects along the frames. The tracking mechanism is
based on feedbacks between an object partition and a region partition. These interactions allow us
to cope with multiple simultaneous objects, motion of non-rigid objects, occlusions, and appearance
and disappearance of objects. The output is a set of video objects that are coherently labeled over
time.

The block diagram of the proposed algorithm is depicted in Figure 4.1. The object segmentation
module receives the video input and produces the object partition that identifies moving objects.
In our implementation, change detection is used to this end. In the region segmentation step, each
object is further decomposed into a set of non-overlapping, homogeneous regions. These are detected
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Figure 4.1: Block diagram of the proposed semantic video object extraction algorithm.

using a multi-feature clustering approach, and every region is represented by a region descriptor.
The descriptor summarizes the value of the features in the corresponding region. Next, the tracking
mechanism operates at the region level. The future position of regions as well as the value of the
corresponding region descriptors are predicted by motion compensation. This step defines a tentative
correspondence between the object partition in the current frame, n, and the object partition in the
new frame, n + 1. The correspondence helps to anticipate track management issues, and it provides
an effective initialization for the clustering procedure of each object in the new frame. Whenever
a track management issue is detected, data association is employed to validate the track of each
region descriptor. At last, the tracks of objects are updated as a consequence of region tracking in
the object labeling stage.

4.3.1 Object segmentation

Moving objects are segmented from the background by change detection. Different change detection
techniques can be employed for moving camera and for static camera conditions (Section 2.3.1). If
the camera moves, change detection aims at recognizing coherent and incoherent moving areas. The
former correspond to background areas, the latter to video objects. If the camera is static, the goal
of change detection is to segment moving objects (foreground) from the static background.

The video object segmentation we use [29] addresses the static camera problem and is applicable
in the case of a moving camera after global motion compensation [37, 61, 172, 266]. The change
detector decides whether in each pixel position, the foreground signal corresponding to an object is
present. This decision is taken by thresholding the frame difference between the current frame and
a frame representing the background (background model). The background model is dynamically
generated based on temporal information [30]. The thresholding aims at discarding the effect of
camera noise after frame differencing. A locally adaptive threshold, τ(i, j), is used that models the
noise statistics and applies a significance test. To this end, we want to determine the probability
that the frame difference at a given position (i, j) is due to noise, and not to other causes. Let
us suppose that there is no moving object in the frame difference. We refer to this hypothesis as
the null hypothesis, H0. Let g(i, j) be the sum of the absolute values of the frame difference in an
observation window W(i,j) of q pixels around (i, j). Moreover, let us assume that the camera noise is
additive and follows a Gaussian distribution with variance σ. Given H0, the conditional probability
density function (pdf) of the frame difference follows a χ2

q distribution with q degrees of freedom
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(a) (b) (c) (d)

Figure 4.2: Change detection masks for different observation window sizes, q. (a) Details from the
sequence Hall monitor. (b) q = 9. (c) q = 25. (d) q = 49.

defined by

f
(
g(i, j)|H0

)
=

1
2q/2σqΓ(q/2)

g(i, j)(q−2)/2e−g(i,j)2/2σ2
, (4.1)

where Γ(·) is the Gamma function, that can be evaluated as Γ(x + 1) = xΓ(x), and Γ(x/2) =
√

π.
It is now possible to derive the significance test as

P
{
g(i, j) > τ(i, j)|H0

}
=

Γ
(
q/2, g(i, j)2/2σ2

)

Γ(q/2)
. (4.2)

When this probability is smaller than a certain significance level, α, we consider that H0 is not
satisfied at the pixel position (i, j). Therefore we label that pixel as belonging to a moving object.
Otherwise, we label the pixel as belonging to the background. The significance level α is a stable pa-
rameter that does not need manual tuning along a sequence or for different sequences. Experimental
results indicate that valid values fall in the range from 10−2 to 10−6.

The variable q in Equation (4.2) represents the number of pixels in the observation window W(i,j),
and thus the number of locations on which the statistics are computed. The effects of different values
of q on change detection are illustrated in Figure 4.2. Increasing q makes the statistics more reliable,
as it reduces the sensitivity to noise. However, the probability that the hypothesis H0 remains valid
for all the pixels in W(i,j) decreases as well. This leads to a wrong labeling along the edges of moving
objects and to the corresponding halo effect. To obtain a good tradeoff between robustness to noise
and accuracy in the detection, we choose q = 25 (5× 5 window centered in (i, j)).

Video object segmentation produces the object partition Πn
o at frame n. The object partition

identifies the objects from the background and provides a mask defining the areas of the image
containing the moving objects. Since the result of change detection is the classification of the pixels
into two classes, namely foreground and background, no information is provided about different
objects in the scene. For this reason, further processing is required to track the video objects
(Figure 4.3).

4.3.2 Region segmentation

Each object in Πn
o is processed separately and is decomposed into a set of non-overlapping regions to

produce the region partition Πn
r . Homogeneous regions are detected using a multi-feature clustering
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Figure 4.3: Example of object partition in two successive frames. The tracking algorithm is
responsible for solving the correspondence problem between two temporal instances of the same
object.

algorithm. The selected clustering method [27, 28] is based on spatially unconstrained fuzzy C-means
(FCM) [13], which can be considered as a fuzzy generalization of the hard C-means algorithm. The
feature space is composed of both spatial and temporal features. Spatial features are absolute
position values x and y, color components from the perceptually uniform color space CIE Lab
[247], and a measure of local texturedness based on variance [36]. The temporal features are the
displacement vectors from the optical flow, computed via block matching.

Let fk =
(
fk1, . . . , fkF

)
represent the feature vector corresponding to the kth pixel, where fkj is

the value of the jth feature at pixel k, and F is the number of features. Given the feature space
V =

{
v1, v2, . . . , vN

}
, which represents our data set, and the desired number of classes c, 2 6 c 6 N ,

the fuzzy partition U of the data set containing N elements is defined by

U | uik ∈ [0, 1] ∀i, k;
c∑

i=1

uik = 1 ∀k; 0 <

N∑

k=1

uik < N ∀i, (4.3)

where uik represents the degree of belongingness of feature vector fk to the class i. The clustering
algorithm aims at evaluating the partition that minimizes the functional

JFCM(U,v) =
N∑

k=1

c∑

i=1

um
ik

(D(vi, fk)
)2

. (4.4)

v =
(
v1, . . . ,vc

)
is the vector of the centroids corresponding to each of the classes, and m ∈ [1,∞)

is a weighting exponent that controls the amount of fuzziness. The similarity D(vi, fk) between
the ith centroid, vi, and the feature vector corresponding to the kth pixel, fk, is measured by the
weighted Mahalanobis distance:

D(vi, fk) =

√√√√
F−1∑

j=0

wkj
(fkj − vij)2

σ2
j

. (4.5)

To account for different ranges of variation, feature values are normalized with respect to their
standard deviation over the entire image, σj . The importance of individual features in the clustering
process is accounted for by weighting. wkj represents the relative weight of the jth feature at pixel
k. Castagno et al. [28] have obtained good results by giving the position information a constant
weight of 10%, and the texture information a constant weight of 5%. The motion and the color
information adaptively share the remaining 85% according to their reliability. Also, the fuzziness
amount has been set to m = 1.3.
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Figure 4.4: Example of region segmentation using multi-feature clustering. Homogeneous regions
are computed in each object based on position, color, texture and motion information.

The fuzzy C-means algorithm iterates, evaluating at each step new centroids and a new fuzzy
partition, until stability is reached. Once the iterations have stabilized, the fuzzy partition is hard-
ened. Each pixel is assigned to the class for which it shows the highest degree of belongingness.
Eventually, the motion-compensated segmentation results obtained for the current frame n will be
used as initialization for the FCM procedure at the new frame n + 1. This allows us to start the
initialization from a point which is likely to be close to a minimum. Thus, the segmentation results
show good temporal coherence with the solution obtained from the previous frames, as illustrated
in Figure 4.4.

4.3.3 Region tracking

Instead of tracking an entire object, our method relies on region tracking to achieve the correspon-
dence of video objects in successive frames (Section 4.3.4). Tracking object’s regions is an effective
strategy, since it can cope with deformations, complex motion and occlusion. Region tracking op-
erates in two steps. The first step projects the region descriptors from the current frame into the
next frame, and implicitly provides a predicted region partition. The second step refines the region
partition to account for the changes in the scene.

Region descriptor projection

The first step for tracking the region partition is the projection of the information at the current
frame n into the next frame n+1. Each region, Ri(n), is projected by applying motion compensation
to its region descriptor, φi(n). This operation is referred to as region descriptor projection. Region
descriptor projection updates the position values of a region descriptor by means of its estimated
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displacement. The region descriptor is defined as

Φi(n) =
(
φ1

i (n), φ2
i (n), φ3

i (n), φ4
i (n), . . . , φKi(n)

i (n)
)T

(4.6)

where Ki(n) is the number of features in frame n.
In our specific implementation, Ki(n) = 8. In particular,

(
φ1

i (n), φ2
i (n)

)
represents the position

of the region descriptor, and
(
φ3

i (n), φ4
i (n)

)
its motion vector. The position and the motion vector

of the region descriptor are given by the center of mass and by the mean displacement of the pixels
belonging to the corresponding region, respectively.

(
φ5

i (n), φ6
i (n), φ7

i (n)
)

represents the mean value
of the three color components in the corresponding region, and φ8

i (n) is the mean value of the texture
feature [36]. The number and the type of features can change according to the application at hand.

The position predicted through motion compensation is given by
{

φ̃1
i (n + 1) = φ1

i (n) + φ3
i (n)

φ̃2
i (n + 1) = φ2

i (n) + φ4
i (n)

(4.7)

The predicted region descriptor, Φ̃i(n + 1), retains the value of the other features unchanged from
frame n to frame n + 1, so that

Φ̃i(n + 1) =
(
φ̃1

i (n + 1), φ̃2
i (n + 1), φ3

i (n), φ4
i (n), . . . , φKi(n)

i (n)
)T

(4.8)

The result of region descriptor projection is a prediction of the region partition Π̃n+1
r in the next

frame.

Region partition refinement

The estimated feature values of the projected region descriptors should be refined to adapt the
representation to the changes in the scene, to correct the inaccuracies of the projection, to account
for region overlapping, and to compensate for changes in viewing conditions. In fact, besides the
changes related to the dynamics of the scene, the visual attributes of region descriptors are modified
over time due to noise from many sources. Examples of such sources are motion estimation errors,
local illumination variations, and sensor noise.

The refinement of the predicted region partition takes place naturally through region segmenta-
tion. The projected region descriptors Φ̃i(n + 1) provide an effective initialization for the clustering
process in the next frame. In addition, this initialization implicitly defines a correspondence be-
tween regions in frames n and n + 1. The updated region partition, Πn+1

r , is obtained through the
clustering process described in Section 4.3.2. An updated region descriptor, Φi(n + 1), defined as

Φi(n + 1) =
(
φ1

i (n + 1), φ2
i (n + 1), φ3

i (n + 1), . . . , φKi(n)
i (n + 1)

)T

, (4.9)

is finally associated to each region.
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Region descriptor projection

Region partition refinement

Object partition validation 

Figure 4.5: Multilevel region-object tracking. The temporal evolution of the object partition is
computed through interactions with the region partition. These interactions exploit the tracking of
the region partition (bottom) to associate the data from two successive object partitions (top).

4.3.4 Multilevel region-object tracking

The correspondence of video objects in successive frames is achieved through the correspondence of
objects’ regions. Given the object partition in the new frame and the region partition in the current
frame, the proposed region-object tracking procedure performs two different tasks:

1. It defines a correspondence between the object partition in the current frame n and the object
partition in the new frame n + 1;

2. It provides an effective initialization for the clustering procedure of each object in the new
frame n + 1. This initialization implicitly defines a preliminary correspondence between the
regions in frame n and the regions in frame n + 1.

The joint region-object tracking mechanism is organized in two major steps: object partition
validation, and data association. The object partition validation step is a feedback from the region
partition level to the object partition level, and results in a tentative correspondence. This helps
to detect track management issues. The data association step operates at the region level, and
validates the tracks through region descriptor correspondence. This second step generates the final
correspondence.

Object partition validation

The object partition validation step initializes the tracking process and improves the accuracy of
the object partition in case the physical objects in the scene are connected in the image plane.
This is achieved through a top-down and a bottom-up interaction with the region partition (Figure
4.5). Before initializing the tracking procedure, each video object is decomposed into a set of non-
overlapping regions by means of the multi-feature segmentation method in Section 4.3.2 (Figure
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4.5, frame n). Each region Rj(n) is characterized by its region descriptor Φj(n). To initialize the
tracking procedure, each region descriptor Φj(n) is associated to the corresponding object, Oi(n).
After this association, the region descriptor is denoted with Φi,j(n). This operation, referred to as
track initiation, can be expressed as

∀ Oi(n) i = 1, . . . , Nn
O ∃ Φi,j(n) j = 1, . . . , Nn

Ri
, (4.10)

with Nn
O number of video objects in frame n, and Nn

Ri
number of regions for object i. This ini-

tialization takes place at the beginning of the tracking process and every time a new video object
appears. In this context, a new video object is defined as a set of connected pixels in the object
partition which is not associated to another tracked object.

After the initialization, the region descriptors are projected into the next frame by means of
region tracking (Section 4.3.3). This operation implicitly corresponds to motion-compensating all
the pixels in each region. Let Φi,j(n) be the region descriptor for region Ri,j(n). Region descriptor
projection provides the predicted descriptor Φ̃i,j(n + 1), to which the predicted region R̃i,j(n + 1)
implicitly corresponds. The predicted region is defined as

R̃i,j(n + 1) =
{

(x′, y′, n + 1) : (x, y, n) ∈ Ri,j(n), x′ = x + φ3
i,j(n), y′ = y + φ4

i,j(n)
}

, (4.11)

where
(
φ3

i,j(n), φ4
i,j(n)

)
is the motion vector of Φi,j(n). After the projection, a bottom-up feedback

from the region partition refines the topology of the object partition. This feedback generates a
tentative correspondence by labeling the object partition Πn+1

o according to the predicted region
partition Π̃n+1

r . Once all the pixels in the next object partition are associated to the projected
regions, we have a prediction as follows:

Õi(n + 1) =
{

(x + φ3
i,j(n), y + φ4

i,j(n), n + 1) : ∀j ∈ Oi(n), (x, y, n) ∈ Ri,j(n)
}

. (4.12)

This procedure is straightforward in case each set of connected pixels in Πn+1
o receives projected

region descriptors, and receives them from one object only. In such a case, the foregoing proce-
dure suffices to guarantee the tracking. In reality, multiple simultaneous objects may occlude each
other and therefore be included in the same set of connected pixels. In these cases, the tentative
correspondence is verified through data association in order to define the final correspondence.

Detection of track management issues

Object partition validation permits to detect some of the track management issues, such as the
appearance of new objects in the scene, partial and total occlusions, and splitting.

• A new object is detected when a connected set of pixels S(n + 1) in Πn+1
o does not get any

region descriptor from the projection mechanism. The detection of a new object triggers a
track initiation (Equation (4.10)).

• An occlusion takes place when two or more objects interact, either by getting close one to each
other, or by passing one in front of the other. A partial occlusion is detected when a connected
set of pixels S(n + 1) in Πn+1

o receives projected region descriptors from several objects. The
object partition validation step separates the objects, that is, provides separate contours for
each different object. This refinement is made possible by using the knowledge of the track at
the region level, as shown in Figure 4.5 for frame n + 2.

In the event of a total occlusion, the occluded object disappears from the scene for a time
interval corresponding to the duration of the occlusion, and then reappears. If the object does
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Figure 4.6: Data association. In the data association stage, the region descriptors are put in
correspondence over time in order to validate their track.

not undergo massive deformation, maneuver or illumination changes during the occlusion,
then the region descriptors of the object just after the occlusion will be similar to the motion-
compensated region descriptors of the same object just before the occlusion. Thus, to relate
objects reappearing after total occlusion to their original trajectory, the data association step
should operate not only between subsequent frames, but also on a longer temporal window.
The size, L, of the temporal window must be superior to the duration of the occlusion.

• A splitting corresponds to the separation of a connected set of pixels in the object partition
into two or more subsets. This event is detected when two different disconnected sets of pixels
S1(n + 1) and S2(n + 1) in Πn+1

o get region descriptors projected from the same video object.

Data association

Data association validates the track of each region descriptor, and as a consequence updates the track
of the object partition. This step is particularly important when faced with track management issues.
In the data association stage, the region descriptors are put in correspondence over time. First, the
predicted region partition Π̃n+1

r is updated so as to obtain Πn+1
r (Section 4.3.3). Then, the region

descriptors corresponding to Πn+1
r are compared with those of the L past frames Πn−m

r , m ∈ [0, L−1].
The size of the temporal data association window, L ∈ N∗, must be superior to the duration of
total occlusions, but small enough to limit computational complexity. In our experiments, a good
compromise between reliability and complexity has been obtained by giving the temporal window
a size of L = 50 frames. With respect to the alternative approach of performing data association
between subsequent frames only, a longer temporal window has the following advantages: 1) it
enables us to handle total occlusions, as discussed above; 2) it favors tracking stability by reducing
the influence of individual data association errors.

Specifically, we consider the proximity between region descriptors in Πn+1
r and in Πn−m

r . The
proximity is computed by measuring the Mahalanobis distance in the feature space between the
region descriptors in frame n + 1 and those in past frames n − m (Figure 4.6). To reduce the
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dimensionality of the problem, a gating process is introduced prior to the distance computation.
The gating process allows us to preselect the candidates for data association by eliminating the
couples of region descriptors that are highly unlikely to be temporally related. This preselection is
based on an Euclidean distance criterion that considers the maximum allowable displacement of a
region descriptor between two frames. This results in a lower complexity and favors stability. In
our simulations, good results have been obtained by setting the maximum allowable displacement
to an Euclidean distance of 50 pixels.

After the gating process, a pair-wise distance metric is applied to all the remaining region de-
scriptors. The region descriptors include information from different sources that are encoded with
varying number of features. For example, three features are used for color, and two for motion.
We refer to such groups of similar features as feature categories. To avoid masking important in-
formation when computing the distance, we use separate distance measures, Df (·), for each feature
category. Since the results of the separate proximity measures will be fused together, it is desirable
that Df (·) returns a normalized result, especially in the case of poorly scaled or highly correlated
features. For this reason we choose the Mahalanobis metric. To compute the proximity of two region
descriptors, Φi,j(n−m) and Φk,l(n + 1), the Mahalanobis distance can be expressed as

Df

(
Φi,j(n−m),Φk,l(n + 1)

)
=

√√√√
K∑

s=1

(
Φi,j(n−m)s − Φk,l(n + 1)s)2

σ2
s

, (4.13)

where σ2
s is the variance of the sth feature over the entire feature space and K is the number of

features. The complete point-to-point similarity measure between Φi,j(n −m) and Φk,l(n + 1) is
obtained by fusing the distances computed within each category

D(
Φi,j(n−m),Φk,l(n + 1)

)
=

1
F

F∑

f=1

wfDf

(
Φi,j(n−m)s

,Φk,l(n + 1)s)
, (4.14)

where F is the number of feature categories and wf is the weight which accounts for the reliability of
each feature category. The value of F may change from frame to frame and from cluster to cluster.
The value of the reliability is wf = 0 for those features that have similar values in adjacent regions,
and wf = 1 otherwise. The use of the reliability parameter facilitates the data association process
by eliminating undiscriminating features from the computation of the distance.

The result of the distance computation can be represented as a matrix D = {dp,q}, where each
row, p, corresponds to a region descriptor in frame n+1, and each column, q, corresponds to a region
descriptors in past frames n −m. We refer to this matrix as distance matrix. Each element of the
distance matrix represents the distance between two region descriptors. The smallest element for
each row and for each column identifies a possible correspondence between two region descriptors.
This result is compared with that of the tentative correspondence to check if there is a conflict.
A tentative correspondence between the p̄th region descriptor in frame n + 1 and the q̄th region
descriptor in past frames n−m is confirmed if

dp̄,q̄ = min
q

(dp,q) = min
p

(dp,q) (4.15)

If the condition in Equation (4.15) is respected, the track is updated. Otherwise, the final corre-
spondence between region descriptors that do not satisfy Equation (4.15) is obtained by means of
an iterative process. During this process, the best point-to-point pairs are selected first. Then, the
remaining ones are iteratively paired to obtain the final correspondence. This final correspondence
is then exploited in the bottom-up feedback to update the object partition.
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Object labeling

The predicted partition may not cover all the pixels of Πn+1
o . For the object partition validation step

to be complete, each pixel in Πn+1
o has to be classified. If a connected component of Πn+1

o receives
region descriptors from one object only, all the unclassified pixels are assigned to that object. If a
connected set of Πn+1

o receives region descriptors from several objects, then the unclassified pixels
are assigned to the closest projected region. The proximity is computed by measuring the Euclidean
distance between the unclassified pixel and the center of mass of the projected regions. The output
is a set of video objects that are coherently labeled over time.

4.4 Summary

In this chapter, we have reviewed semantics in the general context, and we have proposed a motion-
based semantic video object extraction algorithm that operates in cluttered background. The seg-
mentation of moving objects from the background is produced by a change detection process. The
selected approach is robust with regard to camera noise and does not need manual tuning thanks
to the use of a locally adaptive threshold. The tracking mechanism is based on feedbacks between
an object partition and a region partition. Region descriptor projection produces a tentative cor-
respondence between the object partition in the current frame and the object partition in the new
frame. This correspondence is verified through data association in the event of track management
issues.

With respect to the alternative approach of computing two separate region partitions in the
current and next frames, and then pairing the region descriptors without considering any projection,
the proposed approach has several advantages:

• it is computed with data that are already available;

• it is a simple operation;

• it provides an additional element to the final decision for the correspondence;

• it provides an educated initialization for the region partition algorithm in the next frame.

Our solution is capable of dealing with multiple simultaneous objects. Also, track management
issues such as appearance and disappearance of objects, splitting and occlusions are resolved through
interactions between regions and objects. In Section 6.2.2, the simultaneous tracking of multiple
objects in real video will be employed to provide automated event detection and video enhancement
for visual surveillance. In Chapter 5, semantic video analysis will be used to prioritize visual data
in order to improve the performance of adaptive video delivery. The idea behind this approach is
to organize the content so that a particular network or device does not inhibit the main content
message.
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5.1 Introduction

In Chapter 4, semantic analysis has enabled us to extract meaningful information from video. In
this chapter, such information is employed to prioritize visual data in order to improve adaptive
video delivery. The idea behind this approach is to organize the content in such a way that a partic-
ular network or device does not inhibit the main content message. Adaptive video delivery consists
in distributing content that matches individual appliance and network resources while providing
maximum value for the end user. This is required whenever appliances and networks with different
characteristics and end users with various preferences access the same content. In the following, a
framework for adaptive video delivery is defined based on semantic video objects and on their asso-
ciated metadata. The proposed framework extends work that has been published by the author et
al. in [32, 33, 212, 213]. With reference to Figure 5.1, the input of the framework is a video sequence,
and the output is an adapted content stream. The main components are efficient video adaptation
methods or strategies, means of performance evaluation, and a strategy selection mechanism.

In Section 5.2, a number of complementary video adaptation strategies are discussed. In particu-
lar, two new strategies are proposed. The first strategy combines semantic analysis with a traditional
frame-based video encoder. The idea behind this semantic prefiltering approach is to emulate the
Human Visual System (HVS) to prioritize the visual data so as to improve the performance of frame-
based coders. The second strategy uses metadata to efficiently encode the main content message.
The use of metadata enables us not only to make the content more searchable, but also to improve
visualization and to preserve privacy in video-based applications. In Section 5.3, the impact of
different adaptation strategies is quantified with subjective experiments. We show that background
alterations resulting from semantic prefiltering do not impair overall quality at low bitrates. We
also demonstrate that the metadata-based representation of object’s shape and motion suffices to
convey the meaning and action of a scene when the objects are familiar. Moreover, we propose an
objective quality metric that mimics the behavior of human observers. The metric overcomes the
limitations of subjective evaluation experiments that are expensive, time consuming and cannot be
used to assess video quality in real time. In Section 5.4 at last, we determine the strategy that
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provides most value for the end user by maximizing performance for a given set of appliance and
network resources.

5.2 Video adaptation strategies

In this section, a number of complementary adaptation strategies that fit a wide variety of possible
appliance resources, network capacities and user preferences are discussed. An overview of the
proposed strategies is provided in Table 5.1. In order to improve the perceived content quality and to
provide additional functionalities, such as privacy preservation and automatic video indexing, some
of the strategies resort to video content analysis prior to encoding. Specifically, we use semantic
analysis to extract relevant areas of a video. These areas are encoded at a higher level of quality or
summarized in a textual form. The idea behind this approach is to organize the content so that a
particular network or device does not inhibit the main content message. The main content message
is dependent on the specific application. In particular, for applications such as visual surveillance
and sport video, the main content message is defined based on motion information.

The flow diagram of the video adaptation strategies is depicted in the left part of Figure 5.1.
The input video is split into foreground and background parts by means of semantic video analysis.
After background simplification, both parts are re-composited together and coded through a frame-
based encoder. This approach is referred to as semantic frame-based encoding. Alternatively, the
frame-based encoder may be used to code the original video sequence, or a subsampled version
of the sequence. With the object-based encoding method, foreground and background parts are
coded separately through an object-based encoder. The background might possibly be simplified
prior to coding. Furthermore, metadata are used to efficiently encode the main content message
and to enhance relevant parts of a low-quality coded video. These approaches are referred to
as metadata-based encoding and metadata-enhanced encoding, respectively. Some relevant video
adaptation examples are illustrated in Figure 5.2.

5.2.1 Background simplification

Background simplification is applied prior to video coding and fulfills two distinct purposes: en-
hancement of relevant objects, and reduction of background information in order to achieve im-
proved compression. The goal of objects enhancement is to lower the importance of the background
so as to put foreground objects in a conspicuous position. This is particularly useful in cluttered
environment. To achieve objects enhancement, superfluous visual details may be removed from the
background by using a lowpass filter, as shown in Figure 5.3(b). Alternatively, the original back-
ground might be replaced by a sketch that provides only the necessary contextual information. In
Figure 5.3(d), an edge image that indicates the position and direction of both highway lanes has
been used to this end.

Improved compression is achieved by reducing the background information that needs to be
coded. A possible solution is to suppress high-frequency components by using a lowpass filter, as
depicted in Figure 5.3(b). Another way to take into account less relevant portions of an image
before coding is to take advantage of the specifics of the coding algorithm. In the case of block-
based coding, DCT coefficients corresponding to high frequencies can be heavily quantized, or set
to zero. This is illustrated in Figure 5.3(c), where each background macroblock has been replaced
by its DC value. The original background can also be replaced by a static background shot. This
helps to eliminate inter-frame coding residues resulting from acquisition noise. At last, background
areas might simply be set to a constant value, as shown in Figure 5.3(e).
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Figure 5.1: Flow diagram of the framework for adaptive video delivery.

Encoding Description Use of

mode semantics

frame-based

(1) coded original sequence No
(2) spatial resolution reduction No
(3) foreground composited with simplified background

prior to encoding (semantic prefiltering) Yes

object-based
(4) foreground and background encoded at full bitrate Yes
(5) foreground encoded at full bitrate,

background simplified prior to encoding Yes
metadata-enhanced (6) original video enhanced by object descriptors Yes

metadata-based (7) object descriptors superimposed on background Yes

Table 5.1: Video adaptation strategies based on semantic video analysis and description.

(a) (b) (c) (d) (e)

Figure 5.2: Examples of video adaptation. (a) Sample frame from the sequence Soccer. (b)
Semantic frame-based encoding : the background is selectively lowpass-filtered prior to encoding.
(c) Metadata-based encoding : object shapes and color are superimposed on the background. (d)
Metadata-enhanced encoding : metadata are used to enhance relevant portions of a video. (e) Spatial
resolution reduction.
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(a)

(b) (c)

(d) (e)

Figure 5.3: Background simplification for objects enhancement and compression improvement.
(a) Sample frame from the Highway sequence. (b) The original background is lowpass-filtered. (c)
Each background macroblock is replaced by its DC value. (d) An edge image is used instead of the
original background. (e) Background areas are set to a constant value.
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The compression improvements that have been achieved by means of different background sim-
plification methods are compared in Table 5.2. Foreground and background parts of the Highway
sequence have been encoded separately through the MoMuSys MPEG–4 VM reference software ver-
sion 1.0 [109], using VM5+ global rate control. The overall bitrate has been set to 300 Kbit/s. The
average bitrate required to code the background is reduced by 14 Kbit/s when a lowpass filter is
used. It is more than halved when each background macroblock is replaced by its DC value. How-
ever, the human eye is not able to recover contextual information properly from such background.
The highest compression savings are achieved when an edge image is used, but this does not provide
any indications about the color or texture of the original background.

Background Original Lowpass filtered DC components Edge image
Bitrate (Kbit/s) 104 90 50 46

Table 5.2: Compression improvements achieved by different background simplification methods.
The table gives the average bitrate required to encode the background of the Highway sequence
using object-based MPEG–4. The overall bitrate has been set to 300 Kbit/s for all versions.

5.2.2 Semantic frame-based encoding

The semantic frame-based encoding mode exploits semantics in a traditional frame-based encoding
framework (e.g., MPEG–1 [105]). The use of semantic video analysis followed by background sim-
plification and compositing, referred here as semantic prefiltering (Figure 5.4), helps to support low
bandwidth transmission. The areas belonging to the foreground class, or semantic objects, are used
as region of interest. The areas not included in the region of interest are lowered in importance
by using background simplification. Using a simplified background aims at taking advantage of the
task-oriented behavior of the HVS for improving compression ratios. Recent work on foveation [113]
demonstrated that using nonlinear integration of low-level visual cues mimicking the processing in
primate occipital and posterior parietal cortex allows one to sensibly increase compression ratios.
Moreover, the work reported in [22] demonstrated that an overall increase in image quality can be
obtained when the increase in quality of the relevant areas of an image more than compensates for
the decrease in quality of the image background. An example of this solution is reported in Figure
5.5(a). On the other hand, filtering the entire image inhibits the main content message (Figure
5.5(b)).

Semantic

video analysis

Video

Background

simplification

Background

Foreground

Compositing
Frame-based

encoder

Bitstream

Semantic prefiltering

Figure 5.4: Semantic prefiltering is the process of semantic video analysis, followed by background
simplification and compositing.

5.2.3 Object-based encoding

With object-based encoding, the encoder needs to support the coding of individual video objects
(e.g., object-based MPEG–4 [108]). Each video object is assigned to a distinct object class, according
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(a) (b)

Figure 5.5: Selective lowpass-filtering simplifies the information in the background, while still
retaining essential contextual information. (b) Filtering the entire image inhibits the main content
message.

to its importance in the scene. The encoding quality can be set depending on the object class:
the higher the relevance, the higher the encoding quality. One advantage of this approach is the
possibility of controlling the sequencing of objects: video objects may be encoded with different
degree of compression, thus allowing better granularity for the areas in the video that are of more
interest to the viewer. Moreover, objects may be decoded in their order of priority, and the relevant
content can be viewed without having to reconstruct the entire video (network limitations). Another
advantage is the possibility of using a simplified background, so as to enhance the relevant objects
(appliance limitations).

5.2.4 Metadata-based and metadata-enhanced encoding

A further processing of the video content is performed to cope with limited device or network capa-
bilities as well as to automatically generate metadata (e.g., MPEG–7 [110, 111]). Such processing
transforms the foreground objects extracted through semantic analysis into quantitative descriptors
and permits video annotation. Video annotation is desirable for applications such as video sur-
veillance, where terabytes of data are produced and need to be searched quickly. Moreover, the
descriptors can be transmitted instead of the video content itself and superimposed by the terminal
on a still background (metadata-based encoding). This approach is useful to preserve privacy in
video surveillance applications as well as to reduce bandwidth requirements under critical network
conditions. For example, an object identifier, a shape descriptor and a color descriptor are used in
[212, 213]. The object identifier is a unique numerical identifier describing the spatial location of
each object in the scene. The shape descriptor is used to represent the shape of an object, ranging
from a bounding box to a polygonal representation with a different number of vertices. A pro-
gressive representation is used where the number of vertices corresponding to the best resolution
is computed, and any number of vertices smaller that this maximum can be used according to the
requirements of the application. The color descriptor defines up to eight dominant colors for each
object. An example is shown in Figure 5.2(c), where the shape and color of soccer players have been
superimposed on the background. Other features such as texture may be added in the description
process. The choice of these additional features depends on the application at hand.
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Conditions for evaluation According to ITU-T Recommendation P.910 [115]
Assessment method ACR (Absolute Category Rating)
Source of signals Personal Computer
Monitor 18” computer monitor with digital interface
Viewing distance 6-8 H
Test sequences Akiyo, Hall monitor, Children, Coastguard

(Cif, 25 frames/s)
Presentation duration 8 sec. + max. 10 sec. for vote
Assessors and presentations 20 non-expert observers,

2 sessions per observer:
75 presentations for frame-based session,
12 presentations for metadata-based session

Table 5.3: Conditions for subjective evaluation experiments.

In addition to the above, the descriptors can be transmitted along with the video itself and used
for rendering the video content. This solution, consisting in a mixture of video-based and text-based
modalities, is here referred to as metadata-enhanced encoding. Using metadata-enhanced encoding,
content descriptors help enhance parts of the video that are hidden or difficult to perceive due to
heavy compression. In this case, the video itself is the background and the descriptors highlight
relevant portions of the data. One example is shown in Figure 5.2(d), where the position of the ball
in a soccer game has been highlighted for transmission to a PDA or a mobile phone.

5.3 Performance evaluation

Perceptual video quality assessment is a difficult task already when dealing with traditional coders
[167]. When dealing with object-based coders and multiple modalities, the task becomes even
more challenging. For this reason, we use a combination of subjective and objective evaluation
techniques to quantify the impact of different video adaptation strategies. We show that background
alterations resulting from semantic prefiltering do not impair overall quality at low bitrates. We
also demonstrate that the metadata-based representation of object’s shape and motion suffices to
convey the meaning and action of a scene when the objects are familiar. In addition to the above, we
propose an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts
for different image areas and for their relevance to the observer in order to reflect the focus of
attention of the HVS. The metric overcomes the limitations of subjective evaluation experiments
that are expensive, time consuming and cannot be used to assess video quality in real time.

5.3.1 Subjective evaluation

Experimental setup

Four test sequences from the MPEG–4 Video Content Set are used for subjective performance evalu-
ation: Akiyo, Hall monitor, Children and Coastguard (Figure 5.6). The sequences include deforming
and rigid objects of different size, complex as well as simple background, and different types of mo-
tion. For frame-based encoding, the TMPGEnc 2.521.58.169 MPEG–1 codec with constant bitrate
(CBR) rate control is used. The coding structure is ‘IBBPBBPBBPBBPBBPBB’. Bitrates are cho-
sen so as to range from the lowest bitrate supported by the codec, up to perceptually lossless coding.
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(a) (b) (c) (d)

Figure 5.6: Sample frame from the test sequences for subjective performance evaluation. (a) Akiyo.
(b) Hall monitor. (c) Children. (d) Coastguard.

Since we expect results to stabilize at high bitrates, tested rates are distributed exponentially: 200,
250, 300, 500 and 1000 Kbit/s for all sequences, plus 150 Kbit/s for Akiyo and Hall monitor, and
100 Kbit/s for Akiyo. Semantic prefiltering is either achieved by lowpass filtering, or by replacing
the original background by a static background shot (Hall monitor). In the former case, the back-
ground is simplified using a Gaussian 9× 9 lowpass filter with µ = 0 and σ = 2. The foreground is
hand-segmented in order to avoid bias due to segmentation errors.

For metadata-based encoding, the Expway 02/11/07 MPEG–7 BiM Payload coder is used. Here,
coding bitrates depend on the complexity of the description. Video object’s location, bounding box
and approximate shape are summarized by MPEG–7 Visual Descriptors [110]. Motion trajectory

gives the spatial location of objects’ gravity center. Region locator defines the approximate shape
of objects using a bounding box or a 30-sided polygon. The descriptors are organized so as to
provide a layered description of the scene [213]. That is, location and shape can be defined in any
desired combination and order.

The conditions for subjective evaluation experiments in Table 5.3 follow the Absolute Category
Rating (ACR) method, according to ITU-T Recommendation P.910 [115]. ACR is well-suited for
qualification tests (i.e., to compare the performance of different adaptation strategies), as the method
does not use explicit references. Twenty non-expert observers of different ages and backgrounds
are presented a series of video sequences in random order; the presentation order is modified for
each observer. Each observer participates in two sessions: the frame-based session contains 75
presentations, and the metadata-based session contains 12 presentations. After each presentation,
observers rate the quality of the sequence on a scale ranging from 0 (bad) to 100 (excellent). The
presentation duration is 8 seconds, and a maximum of 10 seconds is allowed for voting. Before each
session, the range of qualities is presented to the observers in a training phase.

Statistical analysis of subjective evaluation results

Subjective experiments produce distributions of integer values, each number corresponding to one
vote. These distributions exhibit a number of variations due to the difference in judgement between
observers, and to the effect of a variety of conditions associated with the experiments. Specifically,
a session consists of a number of presentations L. A presentation is obtained by applying one
of a number of test conditions J , to one of a number of test sequences K. Each combination of
test sequence and test condition may be repeated a number of times R. The mean score for each
presentation, ujkr, is thus given by

ujkr =
1
N

N∑

i=1

uijkr, (5.1)
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1: Screening

for l = 1 to L do
Calculate mean score, ujkr

Calculate standard deviation, Sjkr

Calculate kurtosis coefficient, β2jkr

end
for j, k, r = 1, 1, 1 to J,K, R do

if 2 6 β2jkr 6 4 then
if uijkr > ujkr + 2Sjkr then Pi = Pi + 1;
if uijkr 6 ujkr − 2Sjkr then Qi = Qi + 1;

else
if uijkr > ujkr +

√
20Sjkr then Pi = Pi + 1;

if uijkr 6 ujkr −
√

20Sjkr then Qi = Qi + 1;
end

end
if Pi+Qi

J·K·R > 0.05 and |Pi−Qi

Pi+Qi
| < 0.3 then reject observer i;

where uijkr is the score of observer i for test condition j, sequence k, and repetition r. N is
the total number of observers. The associated confidence interval is derived from the standard
deviation and size of each sample. It is proposed to use the 95% confidence interval, which is given
by [ujkr − δjkr, ujkr + δjkr], where δjkr = 1.96 · (Sjkr/

√
N). Sjkr is the standard deviation for each

presentation.
Votes from unreliable observers are discarded using a screening procedure, organized in two stages.

The first stage ensures that responses were entered accurately and in accordance with the experi-
mental instructions. In the second stage, the variability of the data is reduced using the two-step
method described in Annex 2 of ITU-R Recommendation BT.500-11 [116]. This method operates
as follows (Algorithm 1). First, an expected range of values is calculated for each presentation. The
expected range depends on whether or not the subject distribution is normal. If the distribution
is normal, i.e., kurtosis coefficient β2jkr ∈ [2, 4], then the expected range is ujkr ± 2Sjkr. If the
distribution is non-normal, the expected range is increased to ujkr ±

√
20Sjkr. Then, the expected

ranges are applied to the judgement of each observer. To be rejected, observer i has to record
annoyance values outside the expected range for more than 5% of the presentations (Pi+Qi

J·K·R > 0.05).
In addition, the proportion of outlying observations on both sides of the range is required to be
roughly equal: |Pi−Qi

Pi+Qi
| < 0.3. Thus, a subject is rejected for being erratic on both sides of the

range, but not for being always above or always below the expected range. The results of subjective
quality evaluation experiments for the frame-based session and for the metadata-based session are
summarized in Figure 5.7 and in Table 5.4, respectively. The mean quality and associated 95%
confidence interval are given along with the coding bitrate.

Discussion: frame-based session

Following the classification of Table 5.1, the frame-based adaptation strategies under analysis are:
(1) coded original sequence; (2) spatial resolution reduction; (3a) semantic prefiltering with lowpass-
filtering; (3b) semantic prefiltering with static background (Hall monitor)∗. From Figure 5.7, it is

∗Semantic prefiltering with static background is only relevant for the sequence Hall monitor. Indeed, Coastguard

has a changing background that cannot be replaced by a static version without significant loss of contextual informa-

tion. The original backgrounds of Akiyo and Children are synthetic, and they are not corrupted by any noise. Thus,
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Figure 5.7: Subjective evaluation results for frame-based session. The graphs show the mean
quality and associated 95% confidence interval as a function of bitrate. (a) Akiyo. (b) Hall monitor.
(c) Children. (d) Coastguard.

possible to notice that semantic prefiltering has a positive impact at low bitrates, in particular when
the original background is replaced by a static frame or by a sprite representing the background
(3b). At bitrates up to 300 Kbit/s, this increases the mean quality by up to 10 points as compared
to the coded original (1). This is because inter-coded, static background blocks do not produce
residue, so most of the available bitrate can be allocated to foreground objects.

Lowpass-filtering (3a) has a lesser impact. Viewers notice the improvement of foreground quality
due to the additional bandwidth freed by the filter, but at the same time they are annoyed by the
loss of background information. For Akiyo, the quality of lowpass-filtered and coded original versions
is similar over the entire bitrate range. This is because the background of the original sequence is
out of focus, and thus it has few high-frequency components. For Hall monitor, the mean quality of
lowpass-filtering is slightly above that of the coded original (+1.5) at bitrates up to 200 Kbit/s. The
same is true (+1.3) for Children at bitrates up to 250 Kbit/s. For Coastguard, lowpass-filtering has

replacing the original background by a static version would have no effect.
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(a) (b)

(c) (d)

Figure 5.8: Frame details with and without semantic prefiltering. (Left/top) coded original.
(Right/bottom) semantic prefiltering with lowpass filtering. (a) Children. (b) Coastguard. (c)
Hall monitor. (d) Akiyo.

been rated above the coded original (+2.5) at bitrates of 250 and 300 Kbit/s, but below (-3.5) at
the lowest bitrate of 200 Kbit/s. This is because at 200 Kbit/s, foreground objects are corrupted by
heavy artifacts in both versions, whereas at 250 and 300 Kbit/s, lowpass-filtering notably reduces
artifacts that are still visible in the coded original. The improvement of foreground quality can be
verified in Figure 5.8. Semantic prefiltering notably enhances the face in Children and the boats
in Coastguard. Note that the subjective mean scores in Figure 5.7 are sometimes decreasing even
though they are expected to be increasing monotonically as a function of bitrate. This is due to the
difficulty in assessing video sequences that have almost identical quality, such as Akiyo coded at 500
Kbit/s and at 1000 Kbit/s.

Background simplifications resulting from semantic prefiltering do not penalize overall quality
at low bitrates (100-250 Kbit/s). In fact, image degradations are strong at such bitrates, and
improvements on important image parts due to the additional bandwidth freed by background
simplification are positively perceived. At high bitrates on the other hand, both foreground and
background are coded at high quality. Thus, background alterations are easily noticed by observers
and degrade the overall impression.
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Description (7a) Location (7b) Bounding box (7c) Polygon shape

Akiyo u = 5 (±6), r=4 Kb/s u = 11 (±8), r=11 Kb/s u = 32 (±14), r=20 Kb/s
Hall monitor u = 5 (±7), r=6 Kb/s u = 14 (±8), r=16 Kb/s u = 61 (±18), r=30 Kb/s
Children u = 9 (±6), r=12 Kb/s u = 25 (±9), r=32 Kb/s u = 71 (±13), r=58 Kb/s
Coastguard u = 3 (±4), r=8 Kb/s u = 9 (±7), r=21 Kb/s u = 55 (±8), r=39 Kb/s

Table 5.4: Subjective evaluation results for metadata-based session. The mean score u is given
along with the 95% confidence interval (in brackets), and with the encoding cost r.

(a) (b) (c) (d)

Figure 5.9: Metadata-based adaptation strategies. (a) Sample frame from the Hall monitor se-
quence. (b) Approximation of object’s shape with 30-sided polygons. (c) Description of object’s
bounding box. (d) Description of object’s location.

Discussion: metadata-based session

The metadata-based adaptation strategies under analysis are the following: (7a) description of
objects’ location; (7b) description of objects’ bounding boxes; (7c) approximation of objects’ shape
with 30-sided polygons. A sample frame from each representation is given in Figure 5.9 for the
sequence Hall monitor. Results in Table 5.4 demonstrate that the representation of objects’ shape
(7c) suffices to convey the meaning and action of a scene when the objects are familiar. The
sequences Hall monitor, Children and Coastguard have all been given mean scores above 50. This
is because the represented objects have familiar shape and behavior. However, missing texture and
color information are penalizing for Akiyo, which has close-up shots and few action.

The description of objects’ location (7a) has been rated below 10 for all test sequences. This is
not surprising, as this description does not convey sufficient knowledge about the scene in the gen-
eral case. In particular, the nature of the objects cannot be verified. However, location information
might be valuable for automated event detection, as discussed in Chapter 6.2.2. The representation
of bounding boxes (7b) has been rated low as well. Even though this representation does provide
indications about the occupation of the image space by objects, it does not convey sufficient knowl-
edge about the objects’ nature. In Children however, the dynamics of the box that represents the
bouncing ball enable the observer to partially understand the scene’s action. This explains why the
mean score is about 10 points higher for this sequence than for the remaining ones.

The bitrate required to code the objects’ shape (7c) using MPEG–7 BiM is about one fifth of
the bitrate for low-quality MPEG–1. However, subjective scores cannot be compared one-to-one
between these two adaptation methods, as observers tend to rate frame-based strategies in terms of
video quality, whereas they assess metadata-based strategies in terms of their ability to understand
the meaning and action of the scene.
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5.3.2 Objective evaluation

Quality metric

Subjective evaluation experiments are expensive, time consuming and cannot be used to assess video
quality in real time. An objective evaluation metric would therefore be desirable. The widely used
peak signal-to-noise ratio (PSNR) or its alternative, the mean squared error (MSE), cannot represent
the exact perceptual quality because it disregards the viewing condition and the characteristics of
human perception [80]. Perceptual quality metrics address this issue by taking into accounts certain
aspects of the HVS, such as color space, contrast sensitivity, masking and detection [167, 263].
Recent metrics account for different image areas, or object classes, and for their relevance to the
observer in order to reflect the focus of attention of the HVS [46, 47, 129, 140, 168, 177].

We take into account object classes through a distortion measure, the semantic mean squared
error, SMSE, defined as:

SMSE =
N∑

k=1

wk ·MSEk, (5.2)

where N is the number of object classes and wk is the weight of class k. Class weights are chosen
depending on the semantics, with wk > 0,∀k = 1, . . . , N and

∑N
i=1 wk = 1. The mean squared error

of each class, MSEk, can be written as

MSEk =
1
|Ck|

∑

(i,j)∈Ck

d2(i, j). (5.3)

Ck is the set of pixels belonging to the object class k, and |Ck| is its cardinality. The class membership
of each pixel (i, j) is defined by semantic video analysis. The error d(i, j) between the original image
IO and the distorted image ID in Equation (5.3) is the pixel-wise color distance. The color distance is
computed in the 1976 CIE Lab color space in order to consider perceptually uniform color distances
with the Euclidean norm and is expressed as:

d(i, j) =
√(

∆IL(i, j)
)2 +

(
∆Ia(i, j)

)2 +
(
∆Ib(i, j)

)2
, (5.4)

with ∆IL(i, j) = IL
O(i, j)−IL

D(i, j), ∆Ia(i, j) = Ia
O(i, j)−Ia

D(i, j), and ∆Ib(i, j) = Ib
O(i, j)−Ib

D(i, j).
The final quality evaluation metric, the semantic peak signal-to-noise ratio, SPSNR, is the following:

SPSNR = 10 log10

(
V 2

max

SMSE

)
, (5.5)

where Vmax is the maximum peak-to-peak value of the color range.
When the object classes are foreground and background, then N = 2 in Equation (5.2). If

we furthermore denote with wf the foreground weight, then SPSNR ≡ PSNR when wf = 0.5.
The larger wf , the more important the contribution of the foreground. When wf = 1, then the
foreground only is considered in the evaluation of the peak signal-to-noise ratio. An illustration of
the impact of wf in the distortion measure is given in Figure 5.10. The figure presents a comparison
of the average SPSNR of the sequence Hall monitor for the different adaptation strategies described
in Section 5.2 as a function of wf . The value of wf is computed as described in the following Section.

Foreground relevance

Subjective experiments quantify the amount of attention that we pay to the foreground and to
the background. The foreground weight, wf , is determined by maximizing the Pearson correlation
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Figure 5.10: Illustration of the impact of wf in the distortion measure: average SPSNR versus
foreground weight for the Hall monitor sequence. Content-blind coding methods (1)-(2) decrease
their performance when the foreground is given more importance. Methods based on semantic, (3a)
and (3b), increase their performance when the foreground is given more importance.

(Equation (5.7)) between SPSNR and subjective results. For the sequence Akiyo, where the fore-
ground covers a large area and the background is simple, the observers focused mostly on foreground,
thus leading to a value of wf = 0.97. For Hall monitor, whose background is more complex and
objects are smaller, the foreground attracted less attention (wf = 0.55). The sequence Children has
a very complex and colored background that attracted the observer’s attention, thus resulting in
foreground and background being equally weighted (wf = 0.5). The sequence Coastguard contains
camera motion. This prevented the observer from focusing on background steadily, even though it
is quite complex. In this case, wf = 0.7. In general, results confirm that large moving objects and
complex background tend to attract user’s attention.

Based on the data collected with subjective experiments, we predict the foreground weight using
the following formula:

wf = (α− β · σb) · r + γ · v + (σb + 1) · δ, (5.6)

where r represents the portion of the image occupied by foreground pixels: r = |Cf |/(|Cf |+ |Cb|),
with |Cf | and |Cb| representing the number of foreground and background pixels, respectively. The
standard deviation of the luminance of background pixels, σb, is a simple measure of the texturedness
of the background and represents the background complexity. The presence of camera motion is
considered with v: v = 1 for moving camera, and v = 0 otherwise. α, β, γ and δ are constants whose
values have been determined based on the results of the subjective experiments using least square
optimization: α = 5.7, β = 0.108, γ = 0.2 and δ = 0.01.

Equation (5.6) has been used to compute the foreground weight, wf , as a function of time. The
corresponding graphs are shown in Figure 5.11, where important content segments are highlighted.
As expected, wf is almost constant for Akiyo, since the background complexity, σb, and the portion
of the image occupied by foreground pixels, r, do not show any significant variations. This reflects
the fact that in this sequence, there is no change in the filmed action. The action in Hall monitor
is arranged in four segments. In the first segment (frames 1-24), a person enters the room from the
left. In the second segment (frames 25-81), the person walks away from the camera, and a second
person enters the room from the right. In the third segment (frames 82-249), the person on the right
walks toward the camera, and the person on the left walks away from the camera and leaves the
room. In the last segment (frames 250-300), the person on the right continues to walk toward the
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Figure 5.11: Foreground weight, wf , as a function of time. (a) Akiyo. (b) Hall monitor. (c)
Children. (d) Coastguard. Important content segments are highlighted.

camera. The foreground weight, wf , increases when the portion of the image occupied by foreground
pixels, r, increases as well. For instance, the average foreground weight in the first segment, where
the first person enters the room, is wf = 0.49, whereas wf = 0.55 in the third segment, where both
people are visible. This reflects the fact that large moving objects tend to attract the attention. The
foreground weight of the sequence Children goes through four local minima in the vicinity of frames
50, 130, 235 and 290. Each minimum corresponds to one of the children kneeling down to pick up
the ball. As a consequence, the portion of the image occupied by foreground pixels, r, decreases,
and the temporarily uncovered background tends to attract some additional attention. The action
in Coastguard at last is organized in four segments. At the beginning of the sequence, one boat is
visible in the scene. In the first segment (frames 1-50), a second boat enters the scene. In the second
segment (frames 51-97), both boats are visible and the camera moves up. In the third segment
(frames 98-120), the first boat leaves the scene. In the last segment (frames 121-300), only the
second boat is visible. The effect of these segments is not clearly perceptible in Figure 5.11(d). The
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Akiyo Hall monitor Children Coastguard

wf 0.97 0.55 0.50 0.7
rp(wf ) 0.95 0.90 0.95 0.92
rp(0.5) 0.87 0.89 0.95 0.90
rs(wf ) 0.90 0.84 0.95 0.93
ro(wf ) 0.10 0.11 0.07 0.07

Table 5.5: Characterization of the prediction performance of SPSNR. For each test sequence,
the table shows the foreground weight wf , along with the Pearson linear correlation coefficient rp,
Spearman rank-order correlation coefficient rs, and outlier ratio ro. The Pearson correlation of
PSNR, rp(0.5), is given for reference.

reason is that in Equation (5.6), fluctuations of the background complexity, σb, affect the foreground
weight to a larger extent than variations of the image portion occupied by foreground pixels, r. The
fluctuations of σb result from background illumination changes due to the moving camera.

Results in Figure 5.11 reflect the fact that observer’s attention tends to be attracted by large
moving objects and complex background. However, the impact of background complexity fluctua-
tions on the foreground weight is sometimes overrated (Coastguard). We would also like to point
out that wf is allowed to drop below 0.5, as in Figure 5.11(c). This accounts for the phenomenon
that in certain occasions (e.g., complex background), observers might devote more attention to the
background than to moving objects.

Discussion

The prediction performance of a visual quality metric with respect to subjective ratings is char-
acterized by a number of attributes. These attributes are accuracy, monotonicity and consistency
[239, 250]:

• Accuracy is the ability of a metric to predict subjective ratings with minimum average error.
It can be determined by means of the Pearson linear correlation coefficient. For a set of N

data pairs (xi, yi), the Pearson correlation, rp, is defined as:

rp =
∑

(xi − x)(yi − y)√∑
(xi − x)2

√∑
(yi − y)2

, (5.7)

where x and y are the means of the respective data sets.

• Monotonicity measures whether the increase/decrease in one variable are associated with in-
crease/decrease in the other variable, independent of the magnitude of the increase/decrease.
Ideally, differences of a metric’s rating between two sequences should always have the same sign
than the differences between the corresponding subjective ratings. The degree of monotonicity
can be quantified by the Spearman rank-order correlation coefficient, rs, which is defined as:

rs =
∑

(χi − χ)(γi − γ)√∑
(χi − χ)2

√∑
(γi − γ)2

, (5.8)

where χi is the rank of xi, and γi is the rank of yi in the ordered data series; χ and γ are the
respective midranks.

• The consistency of a metric’s prediction can be evaluated by measuring the number of outliers.
An outlier is defined as a data point (xi, yi) for which the prediction error is larger than a
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Figure 5.12: Scatter plot of subjective evaluation results versus model prediction for the complete
data set. Blue dots indicate scores obtained using SPSNR, and red crosses indicate scores obtained
using PSNR. The least-square linear fit of the data is shown in order to facilitate the visual estimation
of prediction error.

certain threshold, such as twice the standard deviation σyi of the subjective rating differences
for this data point: |xi − yi| > 2σyi . The outlier ratio, ro, is then defined as the number of
outliers determined in this fashion relative to the total number of data points N :

ro =
No

N
(5.9)

In the ideal match between a metric’s output and subjective results, rp = 1, rs = 1 and ro = 0.

Table 5.5 provides indicative information about the accuracy, monotonicity and consistency of
the SPSNR metric. The accuracy of PSNR, rp(0.5), is given for reference. Pearson correlation, rp,
and Spearman correlation, rs, are close to 1 for all sequences. Thus, accuracy and monotonicity of
SPSNR are high. Outlier ratio, ro, is in the vicinity of 10%, so the consistency of the metric is good
as well. By comparing the Pearson correlation of SPSNR, rp(wf ), with the Pearson correlation of
PSNR, rp(0.5), we further note that by taking into account semantics, accuracy is improved by up
to 8% (Akiyo).

Improvements due to the use of semantics can further be verified in Figure 5.12. In the scatter
plot, the SPSNR metric exhibits significantly less outliers than PSNR. I.e., scores predicted using
SPSNR (blue dots) are generally closer to the ideal, linear prediction function (blue line) than scores
predicted using PSNR (red crosses). This is established by computing the linear norm of residuals,
|e|, for both SPSNR and PSNR. The norm of residuals is a measure of the goodness of fit, where
a smaller value indicates a better fit than a larger value. Fit residuals are defined as the difference
between the ordinate data point and the resulting fit for each abscissa data point. For SPSNR, we
get |e| = 91.6, whereas for PSNR, we get |e| = 105.8. This indicates that the prediction performance
of SPSNR is superior to that of PSNR.

5.4 Adaptation strategy selection

Strategy selection is needed to work out the adaptation strategy that provides most value for the
end user, considering the individual resources of the connected appliance and network. Value [153] is
a subjective measure of fidelity that has been introduced to overcome the difficulty of formulating a
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Figure 5.13: Adaptation strategy selection. For some content item Ai, value is plotted as a function
of a single resource for three different adaptation operators Oi1, Oi2 and Oi3. For each operator, a
number of anchor nodes (colored circles) is defined. Also, a polynomial value function fVF

ij (dashed
lines) is fit to the anchor nodes corresponding to each adaptation operator. The optimal adaptation
strategy, O1, is given by the value function that has maximum value at R = Rclient.

meaningful distortion measure when the adaptation is drastic (e.g., transmoding). For frame-based
and object-based adaptation strategies, value can be measured using the objective video quality
metric SPSNR that has been introduced in Section 5.3.2.

Specifically, let Ai be some original item, e.g., a video. The adapted version Mijk is computed
by transcoding Ai using the adaptation operator Oj at resources k. Each adaptation operator Oj

implements an adaptation strategy in Table 5.1. The value of Mijk resulting from the adaptation
is denoted by V (Mijk). Let us furthermore define the item resource vector for the item Mijk as
R(Mijk) =

(
R(Mijk)1, R(Mijk)2, . . . , R(Mijk)r

)T , where r is the number of different resources that
have to be considered (e.g., bitrate, resolution, coding format, etc.). Similarly, the client resource
vector is denoted by Rclient =

(
R1

client, R
2
client, . . . , R

r
client

)T . The selection of the optimal adaptation
strategy can then be formalized by the following resource allocation problem [153]:

Problem 1 For item Ai, find the adapted version Mijk that has maximum value V (Mijk) such that
item resources R(Mijk) do not exceed client resources Rclient:

max
j,k

{
V (Mijk)

}
such that Rn(Mijk) 6 Rn

client for all 1 6 n 6 r (5.10)

The simplest solution to Problem 1 is to define a number of anchor nodes
(
Oj ,R(Mijk), V (Mijk)

)
.

An anchor node expresses the value V (Mijk) resulting from applying adaptation operator Oj at re-
sources R(Mijk). The optimal adaptation strategy is then given by the anchor node that satisfies
Equation (5.10). However, this solution might be suboptimal when the anchor nodes are unwisely
defined. This is illustrated in Figure 5.13. The value (e.g., SPSNR) of some content item Ai is
plotted as a function of a single resource (bitrate) for three different adaptation operators O1, O2

and O3. Anchor nodes are represented by colored circles. In the example, the anchor node with
R(Mijk) 6 Rclient that has maximum value corresponds to the operator O2. However, the optimal
adaptation strategy would be O1, applied at R(Mijk) = Rclient.

A more accurate solution is to fit a polynomial value function (VF) to the anchor nodes of each
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adaptation operator. The value function matrix for an item Ai is denoted as

FVF
i =

(
fVF
i1 , fVF

i2 , . . . , fVF
iJ

)T =




ai1,1 ai1,2 . . . ai1,p

ai2,1 ai2,2 . . . ai2,p

...
...

. . .
...

aiJ,1 aiJ,2 . . . aiJ,p




, (5.11)

where aij,k are the coefficients of the order p−1 polynomial value function, fVF
ij . J is the number of

adaptation operators. The solution to Problem 1 is then given by the VF that has maximum value
maxj,R

{
fV F
ij (R)

}
such that R 6 Rclient. In the particular case where all VFs are monotonically

increasing, the solution is located at R = Rclient. The latter is the case in Figure 5.13. A polyno-
mial function is fit to the anchor nodes corresponding to each adaptation operator. The optimal
adaptation strategy, O1, is given by the value function that has maximum value at R = Rclient.

In Section 6.3.2, the above selection mechanism is applied on real video sequences to select among
different adaptation strategies in realistic content delivery situations. We would like to point out
that the discussed method requires value to be computed explicitly for each candidate strategy.
Such calculations are time-consuming and need to be performed offline. A solution to this problem
is value function prediction [246], where the value is estimated for each strategy based on content
features instead of being actually measured.

5.5 Summary

We have defined a framework for adaptive video delivery based on semantic video objects and
on their associated metadata. First, a number of complementary adaptation strategies that fit
a wide variety of possible appliance resources, network capacities and user preferences have been
discussed. In particular, two new adaptation strategies have been proposed. The first strategy
combines semantic analysis with a traditional frame-based video encoder. The second strategy uses
metadata to efficiently encode the main content message.

Then, the impact of different adaptation strategies has been quantified with subjective experi-
ments. We have established that background alterations resulting from semantic prefiltering do not
impair overall quality at low bitrates. We have also demonstrated that the metadata-based repre-
sentation of object’s shape and motion suffices to convey the meaning and action of a scene when the
objects are familiar. The former is used to improve coding performance in bandwidth-critical appli-
cations such as wireless video delivery for mobile devices. The latter permits to preserve privacy in
video surveillance applications as well as to reduce bandwidth requirements under critical network
conditions. In addition to the above, we have proposed an objective quality metric, SPSNR, that
mimics the behavior of human observers by taking into account semantics. This has enabled us to
improve the prediction accuracy by up to 8% with respect to PSNR.

At last, we have proposed a strategy selection mechanism that provides optimal value for the
end user by maximizing the adaptation performance under a given set of appliance and network
constraints. In Chapter 6.2.2, metadata-based coding enables us to perform automated event de-
tection and to achieve privacy preservation for visual surveillance. Moreover, metadata-enhanced
coding is used to put relevant objects in a conspicuous situation for the monitoring personnel. In
Appendix A, adaptive video delivery will be used to deliver information to all types of users under
a wide variety of conditions in a transparent form.
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Results and validation 6
6.1 Introduction

This chapter discusses experimental results obtained with standard test sequences and proposes a
validation of our work in real applications. In Section 6.2, the motion-based video object extraction
algorithm proposed in Chapter 4 is used to segment and track multiple objects in cluttered back-
ground. Based on sample frames and on trajectory graphs, we analyze the behavior of our solution
in the presence of non-rigid objects, complex illumination conditions, and track management issues
such as appearance and disappearance of objects, occlusions and splitting. We then discuss how
semantic video objects and their associated description can be used to provide intelligent visual sur-
veillance. The description of objects’ features enables video enhancement in order to put important
objects in a conspicuous position for the monitoring personnel. Moreover, descriptors are used for
automated event detection.

In Section 6.3, the impact of different video adaptation strategies on the encoding performance
of frame-based as well as object-based coders is assessed by means of rate-distortion analysis and
by visual inspection. The additional cost of sending metadata for metadata-based and metadata-
enhanced encoding is evaluated too. Then, the adaptive delivery framework presented in Chapter
5 is tested with real sequences for different client resource profiles. This experiment shows that our
solution is capable of delivering content that matches individual appliance and network resources
while providing maximum value for the end user.

6.2 Semantic video analysis

In this section, the motion-based semantic video object extraction algorithm presented in Section
4.3 is tested with real sequences. The videos expound various difficulties that bring the strengths
and weaknesses of our solution to the fore. The algorithm is then used to provide intelligent visual
surveillance, where semantic video objects and their associated description enable video enhancement
and automatic event detection.

79
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6.2.1 Motion-based semantic video object extraction in real sequences

Next, the motion-based semantic video object extraction algorithm in Section 4.3 is applied on
real video sequences in order to segment and track multiple objects. With reference to Figure 4.1,
the input of the algorithm is a video sequence, and the output is a set of video objects that are
coherently labeled over time. The display of the results is organized as follows. First, the results
of object segmentation are shown. Object segmentation defines the shape of the moving objects.
The computed shape is represented as a mask (color coded in black) superimposed on the original
background. Then, the results of object tracking are displayed. Each object is given a label by the
tracking algorithm. Each label is coded with a different color for displaying purposes. Finally, the
trajectories of the semantic video objects along the frames are reported. We would like to point out
that the same set of parameters was used to generate all the results presented in this section.

Object segmentation and tracking results

(a) (b) (c) (d)

Figure 6.1: Extraction results for the sequence Highway. Top: object segmentation results. Bot-
tom: video objects tracked over time.

Figure 6.1 shows sample frames from segmentation and tracking results of the test sequence
Highway (330 frames, CIF, 25 Hz), from the MPEG–7 Video Content Set. This traffic surveillance
sequence represents a highway with vehicles of different sizes driving on four lanes. Here, the goal
of tracking is to manage multiple simultaneous objects, their merging, and their appearance and
disappearance from the scene. Column (b) shows that the two objects on the right hand side
are merged together in the object segmentation mask (top). The tracking algorithm is capable of
separating the two objects (bottom) and of providing them with a coherent label over time. This
is a consequence of region tracking (Section 4.3.3). Indeed, regions to keep their original label
even when they are merged together in the object segmentation mask. Column (c) and column (d)
show the status of the tracked vehicles after the van on the left hand side has left the scene. The
disappearance of the object does not alter the extraction performance. In fact, each region in the
object segmentation mask is processed independently and does not affect the extraction of other
video objects. In the same way, all the other objects in the scene are separately tracked along the
frames, as shown in Figure 6.8(a).
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(a) (b) (c) (d)

Figure 6.2: Extraction results for the sequence Hall monitor.

Results for the sequence Hall monitor (300 frames, CIF, 25 Hz), from the MPEG–4 Video
Content Set, are shown in Figure 6.2. As opposed to the previous sequence, Hall monitor represents
an indoor scene with deformable objects. The goal of tracking is to follow the two moving people
separately. In this sequence, we want to highlight the behavior of the tracking algorithm in case
of errors in object segmentation and in case of track management issues such as splitting. It is
possible to notice in column (b) that the man is casting his shadow on the wall. Since no descriptors
are projected into the region in the object segmentation mask that corresponds to the shadow, a
new track is initiated. The shadow is therefore correctly identified as a new object by the tracking
algorithm. The appearance of a new object, the shadow, does not alter the tracking of the man on
the left hand side. When the shadow and the man merge in the object segmentation mask (column
(c), top), the two objects are kept separated thanks to tracking (column (c), bottom). This allows
to overcome the problem introduced by the object segmentation module which wrongly detected the
shadow as an object. Another analysis module could be added to the system in order to identify
the shadows [197]. Finally, column (d) shows the splitting of the man and of his suitcase on the left
hand side. Despite the fact that the suitcase and the man are identified by two separate regions in
the object segmentation mask, the suitcase is not interpreted as a new object, and thus correctly
keeps the same label as the man.
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(a) (b) (c) (d)

Figure 6.3: Extraction results for the sequence Walkway.

Figure 6.3 shows sample frames of the test sequence Walkway (290 frames, CIF, 25 Hz), from the
MPEG–7 Video Content Set. The video represents two walking people in an outdoor setting. The
difficulties of this sequence are the presence of simultaneous non-rigid objects, total occlusion, and
the temporary disappearance of objects. In column (b), the smaller person is completely covered by
the bigger person, and his trajectory is lost (total occlusion). To relate the reappearing person to
his original trajectory (column (c)), the data association step operates not only between subsequent
frames, but on a longer temporal window (i.e., 50 frames). Later, the bigger person is leaving
the scene for about one second. As for total occlusion, the person’s identity is recovered when he
reappears in column (d).

(a) (b) (c) (d)

Figure 6.4: Extraction results for the sequence Surveillance.

Total occlusion and object deformations also take place in the sequence Surveillance (240 frames,
CIF, 25 Hz), from the MPEG–7 Video Content Set. Corresponding results are shown in Figure
6.4. Both persons are tracked correctly along the frames, despite the total occlusion of the person
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: Total occlusion handling by the tracking algorithm for the sequence Walkway.

walking from the right to the left by the other person. It is important to notice that even when
the segmentation mask does not separate the two persons (column (b), top), the tracking algorithm
keeps their individual identities (column (b), bottom).

The behavior of the tracking algorithm in the presence of total occlusions is further analyzed in
Figure 6.5. The figure shows a zoom from the tracking results of the sequence Walkway. In frame
(a), each person belongs to a separate region in the object segmentation mask and has a distinct
label. In frame (b), the two persons are merged together in the object segmentation mask, but
the tracking algorithm is capable of separating both objects. In frame (c), the smaller person is
totally occluded by the bigger one, and his trajectory is lost. When the head of the occluded person
reappears in frame (d), his trajectory is not yet recovered. The trajectory is recovered in frames
(e) and (f), where regions belonging to the occluded person are correctly identified and labeled. In
frames (g) and (f) at last, each person belongs again to a separate region in the object segmentation
mask and is labeled correctly. Note that in frame (g), one region of the bigger person is incorrectly
labeled. This has a negative impact on the computation of the object’s trajectory, as discussed later
in the text.



84 Chapter 6. Results and validation

(a) (b) (c) (d)

Figure 6.6: Extraction results for the sequence Caviar.

The behavior of video object extraction in the presence of complex illumination conditions is an-
alyzed in Figure 6.6. The sample frames are from the test sequence ’EnterExitCrossingPaths1front’
(180 frames, 384 × 288, 25Hz), from the EC-funded project Caviar. The video represents an in-
door scene with several reflective surfaces. The change detector erroneously includes image parts
corresponding to reflections into the object segmentation mask (top). Nevertheless, the tracking
algorithm is capable of putting the reflections in correspondence with the reflected persons. This is
the case even when both persons are merged in the same region of the object segmentation mask,
as shown in column (d), bottom.

Finally, we further analyze the behavior of the proposed tracking algorithm in case of errors
in the object segmentation results. Figure 6.7 shows a zoom from the sequence Surveillance. The
segmentation mask (top) does not define the shape of the person correctly. In particular (columns

(a) (b) (c) (d)

Figure 6.7: Example of robustness of the proposed tracking algorithm in case of errors in the
object segmentation module.
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(b) and (c)), a leg of the man is identified by a set of pixels which is not connected to the rest of
the body. Instead of initiating a new track for the unconnected part, the projection of the regions
allows one to keep the track of the full object, thus recovering the identity when the segmentation
is correct (column (d)). The interactions between the region partition and the object partition help
in overcoming this problem, and the objects are correctly tracked.

Object trajectories

The trajectories of the semantic video objects in the test sequences are plotted in Figure 6.8. The
trajectories are given by the position of video objects’ gravity centers along the frames. Results for
the sequence Highway are displayed in Figure 6.8(a). The algorithm is capable of tracking objects
separately even when they belong to the same region in the object segmentation mask (e.g., violet
and green trajectories on the right lane). Observe that all trajectories on top of the frame are
terminated before the cars reach the horizon. This is because video objects whose size is inferior to
20 pixels are suppressed in the post-processing stage, in order to limit the influence of noise on the
tracking process. In Figure 6.8(b), the trajectories of both persons in Hall monitor are displayed.
It is useful to point out that in order to obtain the trajectories of moving people, one might use the
center of video objects’ lower boundaries instead of their gravity centers. This might improve the
readability of the trajectories, but it does also increase the impact of possible segmentation errors
on the trajectories (e.g., erroneous inclusion of shadows). Results for Walkway are shown in Figure
6.8(c). The green trajectory is not interrupted when the corresponding person is totally occluded by
the other person. However, the trajectory becomes more erratic during the occlusion. This is due
to the erroneous inclusion of individual regions from one objects into the other object, as shown in
Figure 6.5(g). As a consequence, the object’s gravity center is displaced. At last, object trajectories
from the sequences Surveillance and Caviar are displayed in Figure 6.8(d) and in Figure 6.8(e),
respectively. These trajectories are not affected by occlusions or merging objects.

Next, we discuss how semantic video objects and their associated description can be used by a
content understanding step that monitors the behavior of objects in the scene. In visual surveillance
applications, this information helps the content understanding module in describing events in the
scene and in generating alarms in the event of dangerous situations. Furthermore, the description
of objects’ features enables video enhancement in order to put important objects in a conspicuous
position for the monitoring personnel.

6.2.2 Visual surveillance applications

The problem of remote visual surveillance of unattended environments has received growing attention
in recent years. Nowadays, applications include monitoring of indoor and outdoor environments,
quality control in industrial applications, and military applications. However, event monitoring by
human operators is rather boring, tedious and error-prone. Thus, intelligent surveillance systems aim
at employing video analysis to automatically select, enhance and interpret visual information [96].
Several approaches make use of artificial intelligence for incident detection [254], activity recognition
[170], and personal identification [244]. These methods are usually limited to specific situations due
to the use of machine learning. Selective enhancement is another interesting feature which highlights
important image regions (e.g., moving objects) by using visual markers [23], or by selective coding
(i.e., important regions are coded at a higher quality than the background [25]). However, semantic
information extracted by video analysis is not available individually at the receiver’s side. In order
to make up for this drawback, recent approaches summarize semantics in a content description. This
can be used alone or in conjunction with the coded video [49].
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Figure 6.8: Trajectories of semantic video objects. The trajectories are given by the position of
video objects’ gravity centers along the frames. (a) Highway. (b) Hall monitor. (c) Walkway. (d)
Surveillance. (e) Caviar.
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Figure 6.9: Block diagram of the system for real-time generation of annotated video.

In this section, we discuss how semantic video analysis can be used to generate annotated video
in real-time [214]. In the block diagram in Figure 6.9, semantic video objects are first extracted
by means of motion-based video object segmentation and tracking, and then coded with MPEG–4.
Moreover, an MPEG–7 description of object features is generated. In surveillance, the description
enables video enhancement in order to put important objects in a conspicuous position for the
monitoring personnel. Moreover, descriptors are used for automated event detection. Also, the
description can be stored in a database for further processing (video indexing). Our solution operates
in cluttered environment and enables interoperability with third-party applications by making use
of MPEG standards for video coding and description. While in similar work [49] content annotation
summarizes events detected by means of artificial intelligence, the proposed MPEG–7 description
captures high-level object features. Therefore, our solution is not bound to any particular setup.

Real-time video object extraction and description

In the motion-based semantic video object extraction algorithm presented in Section 4.3, a statis-
tical change detection process produces the segmentation of moving objects from the background.
The subsequent tracking mechanism relies on feedbacks between an object partition and a region
partition to follow multiple, simultaneous objects along the frames. The region partition is gener-
ated by a clustering method based on spatially unconstrained fuzzy C-means (FCM). This solution
produces regions that correspond to homogeneous areas of the objects. However, the computational
complexities of the object segmentation process and of the region segmentation stage do not enable
us to achieve real-time performance.

The effectiveness of visual surveillance systems however depends crucially on their short reaction
time. Thus, real-time performance is essential. In order to achieve real-time video object extraction,
the algorithm in Section 4.3 has been modified as follows:

• Preprocessing. High resolution input signals (e.g., from a digital video camera) are downsam-
pled to CIF resolution in order to limit the complexity of the change detection process. The
complexity is proportional to the input resolution, since change detection operates on each
individual image pixel to produce the object partition.

• VO segmentation. Instead of the statistical change detector, an RGB change detector is used
to segment moving objects from the background. The pixel-wise difference between each color
channel of the input frame and of the background model is thresholded to produce the object
partition Πn

o at frame n. Πn
o is further regularized by eliminating small connected sets of pixels,

and by suppressing small holes using morphology. Depending of the scene’s illumination and
contrast properties, RGB change detection requires manual threshold adjustments along a
sequence or for different sequences. Nevertheless, this simple method is capable of producing
reliable results with indoor and outdoor surveillance video, as shown in Figure 6.11.
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Frame n n+1 n+2 n+3 n+4

...

Frame n Frame n+4

Figure 6.10: Example of region segmentation using a “chessboard” grid. An individual grid is used
for each video object, which is centered on the object’s gravity center. The size of individual squares
has been set to 20× 20 pixels.

• Region segmentation. In place of the fuzzy C-means clustering, a “chessboard” grid is used to
define the object partition. An individual grid is used for each video object, which is centered
on the object’s gravity center. The size of the squares is selected by the user and should be
small enough to permit multiple regions per object. In our experiments, a size of 20 × 20
pixels has been used. With that region segmentation method, the tracking performance is
degraded in the presence of severe object deformations. However, inaccuracies resulting from
meaningless regions are mostly compensated for by the data association process (Section 4.3.4).
An example of region segmentation using a chessboard grid is shown in Figure 6.10. A similar
example using fuzzy C-means clustering is given in Figure 4.4.

After video object extraction, the video object’s location, shape and color are summarized by
MPEG–7 Visual Descriptors [110]. In Table 6.1, Motion trajectory gives the spatial location of
objects (e.g., gravity center). Region locator approximates the shape of objects by their bounding
box. Accurate shape is given by contour shape. Dominant color at last defines salient object
colors. The descriptors are organized so as to provide a layered description of the scene [212, 213].
That is, location, shape and color can be defined in any desired combination and order.

Feature descriptor Purpose

Location Motion trajectory Spatial location

Shape Region locator Bounding box

Contour shape Closed contour shape

Color Dominant color Salient color

Table 6.1: MPEG–7 Descriptors for object features.
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Next, the performance of the system in Figure 6.9 is demonstrated using four surveillance videos:
(1) Surveillance, from the MPEG–7 Video Content Set; (2) Hall monitor, from the MPEG–4 Video
Content Set; (3) PETS’2000 ; (4) PETS’2001, from the IEEE International Workshop on Perfor-
mance Evaluation of Tracking and Surveillance. In our experiments, the sequences were processed
in real-time (25 frames/s) on a 2.8 GHz Pentium 4 PC. The MoMuSys MPEG-4 VM reference
software version 1.0 video encoder is used. Binary MPEG–7 is generated by the Expway MPEG-7
BiM Payload encoder/decoder version 02/11/07.

Video enhancement

Video enhancement is illustrated in Figure 6.11. In the left part, moving objects are enhanced by
their bounding box. Boxes are defined by MPEG–7 Region locator and rendered by the terminal.
Video enhancement helps lowering fatigue of the monitoring personnel that is due to extended
concentration, since relevant objects are put in a conspicuous position. By comparison with the
common approach that consists in producing enhanced video at the encoder’s side, enhancement by
the receiver requires only low additional resources for transmission and provides additional flexibility.
For instance, the receiver might switch amongst available features or enhance individual objects.
In the right part of Figure 6.11, contour shape is rendered on a static background shot. With
this representation, the identity of moving objects (e.g., people) remains hidden, thereby enabling
privacy preservation. Also, the representation of object’s shape suffices to convey the meaning and
action of a scene when the objects are familiar (Section 5.3.1).

Description Location Box Shape

Surveillance 19 Kbit/s 52 Kbit/s 87 Kbit/s
Hall monitor 16 Kbit/s 45 Kbit/s 98 Kbit/s
PETS’2000 18 Kbit/s 49 Kbit/s 85 Kbit/s

Table 6.2: Average bitrate required to transmit MPEG–7 BiM description at different levels of
details.

The average bitrate for binary MPEG–7 description at different levels of details is shown in
Table 6.2. As compared to medium-quality MPEG–4 video coding (500 Kbit/s), these figures are
low. The cost for MPEG–7 encoding can further be reduced by updating description features only
in frames where significant changes arise (e.g., large object deformation).
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Zone 2

Zone 2

Zone 1

Figure 6.12: Automated event detection. The setup in PETS’2001 has been subdivided in two
distinct zones. Each time the trajectory of an object (solid lines) enters Zone 2 for more than one
second, an intrusion alarm is generated.

Automated event detection

To perform automated event detection, the setup in PETS’2001 has been divided into two distinct
zones, as shown in Figure 6.12. Zone 1 corresponds to the authorized area, whereas Zone 2 is
restricted. The goal is to automatically generate an intrusion alarm each time an object enters
Zone 2. To arrive at this, the location of object’s gravity center in successive frames is described by
Motion trajectory. When an object enters Zone 2 for more than one second, an alarm is generated.
To evaluate detection performance, we compare the number of automatic alarms to groundtruth.
For the entire sequence (1780 frames; 10 moving objects), the system has generated three correct
alarms, zero false alarms, and zero misses. This simple experiment illustrates how automated event
detection is achieved by taking advantage of the physical scene description provided by MPEG–7.

By using a calibrated camera, these results could be complemented so as to provide the tra-
jectories in the 3-D scene. Furthermore, the knowledge of the path of each object within a video
sequence permits interactive applications such as video-based hyperlinks, video editing, enhancement
of relevant objects, and object-based indexing.

Despite its simplicity, the presented visual surveillance application applies to various situations
and can be extended in several ways. Additional functionality for privacy preservation is provided
by scrambling image regions corresponding to moving objects. More object features and an object
recognition step might be considered for automated event detection. At last, video enhancement
can be used to highlight small objects, such as a football, in sports broadcasting. This metadata-
enhanced encoding approach has already been discussed in the context of adaptive video delivery in
Chapter 5. Results and validation experiments for adaptive video delivery are reported next.

6.3 Adaptive delivery

In this section, the impact of different video adaptation strategies on the encoding performance
of frame-based as well as object-based coders is assessed by means of rate-distortion analysis and
by visual inspection. The additional cost of sending metadata for metadata-based and metadata-
enhanced encoding is evaluated too. Then, the adaptive delivery framework proposed in Chapter
5 is tested with real sequences for different client resource profiles. The results show that our
solution is capable of delivering content that matches individual appliance and network resources
while providing maximum value for the end user.
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6.3.1 Evaluation of different adaptation strategies

Next, the performances of the adaptation strategies presented in Section 5.2 are compared by means
of objective quality evaluation using SPSNR (Section 5.3.2) and by visual inspection. The cost of
sending metadata for metadata-based and metadata-enhanced encoding is evaluated as well. Sample
results are shown from the MPEG–4 test sequence Hall monitor and from the MPEG–7 test sequence
Highway. Both sequences are in CIF format at 25 Hz. With respect to Table 5.1, the adaptation
strategies under analysis are: (1) coded original sequence; (2) spatial resolution reduction (from
CIF to QCIF); (3a,5a) semantic prefiltering with lowpass-filtering; (3b,5b) semantic prefiltering
with static background. In the former case, the background is simplified using a Gaussian 9 × 9
lowpass filter with µ = 0 and σ = 2. Semantic video analysis is carried out using the motion-based
video object extraction algorithm in Section 4.3.

The following coders have been used in the encoding process: (i) TMPGEnc 2.521.58.169 using
constant bitrate (CBR) rate control for frame-based MPEG–1; (ii) MoMuSys MPEG–4 VM reference
software version 1.0 using VM5+ global rate control for object-based MPEG–4; (iii) Expway MPEG–
7 BiM Payload encoder/decoder version 02/11/07 for MPEG–7 metadata. Coding bitrates are
chosen so as to range from the lowest bitrate supported by the codec, up to perceptually lossless
coding. The value of the foreground weight used in the objective evaluation is computed for each
frame using Equation (5.6). The average weights are wf = 0.55 for Hall monitor (r = 0.04, σb = 54,
v = 0), and wf = 0.53 for Highway (r = 0.07, σb = 48, v = 0).

Rate-distortion analysis

Figure 6.13 shows the rate-distortion diagrams for the test sequences. The average SPSNR (Equation
(5.5)) for four adaptation strategies is plotted against the encoding bitrate. Figure 6.13 (a) and (b)
show the rate-distortion diagrams for MPEG–1 at bitrates between 150 Kbit/s and 1000 Kbit/s.
At low bitrates (150-300 Kbit/s), semantic encoding with static background (3b) leads to a larger
SPSNR than the content-blind methods (1-2). This is because inter-coded static background blocks
do not produce residue and most of the available bitrate can be allocated to foreground objects.
The same can be observed in the temporal analysis in Figure 6.14. At 150 Kbit/s, the objective
quality of semantic encoding with static background (3b) is always larger than that of the coded
original sequence (1). In Figure 6.13 (c) and (d), foreground and background parts are encoded in
two separate streams using object-based MPEG–4 at bitrates between 100 Kbit/s and 500 Kbit/s.
Here, semantic analysis is used by all four adaptation strategies. It is possible to notice that
quality is improved at low bitrates by lowpass filtering the background (5a) or by using a still frame
representing the background (5b).

These improvements can further be verified by visual inspection. Figure 6.15 shows a sample
frame coded with MPEG–1 at 150 Kbit/s, with and without semantic prefiltering. Figure 6.16
shows magnified excepts of both test sequences coded with MPEG–1 at 150 Kbit/s. Figure 6.16
(top) shows the person that carries a monitor in Hall monitor. The amount of coding artifacts is
notably reduced by semantic prefiltering ((c) and (d)). In particular, the person’s mouth and the
monitor are visible in (d), whereas they are corrupted by coding artifacts with the non-semantic
strategies. Similar observations can be made for Figure 6.16 (bottom), which shows a blue truck
entering the scene at the beginning of the Highway sequence. Coding artifacts are less disturbing
on the object in (c) and (d) than in (a) and (b). Moreover, the front-left wheel of the truck is only
visible with semantic prefiltering ((c) and (d)). Next, we evaluate the cost of sending metadata for
metadata-based and metadata-enhanced encoding.
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Figure 6.13: Rate-distortion diagrams. (a) Hall monitor, MPEG–1. (b) Highway, MPEG–1. (c)
Hall monitor, MPEG–4 object-based. (d) Highway, MPEG–4 object-based.
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Figure 6.14: SPSNR as a function time for test sequences coded with MPEG–1 at 150 Kbit/s,
with and without semantic prefiltering. (a) Hall monitor. (b) Highway.
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(a) (b) (c)

Figure 6.15: Frame 190 of Hall monitor (top) and frame 44 of Highway (bottom) coded with
MPEG–1 at 150 Kbit/s using different adaptation strategies. (a) Coded original sequence. (b)
Static background. (c) Lowpass-filtered background.

Cost of sending metadata

Table 6.3 shows the bitrate required by three types of description for Hall monitor and Highway
using MPEG–7 binary format (BiM ). MPEG–7 binary format is used for sending summary in-
formation to terminals with limited capabilities and to enhance heavily compressed videos. The
descriptions are represented by the spatial locators of the foreground objects, their bounding boxes,
and an approximation of their shape with 30-sided polygons, respectively. The metadata size in-
creases with the description complexity and with the number of objects in the scene (Hall monitor
versus Highway). However, the cost for metadata-enhanced encoding can be reduced by sending the
description of critical objects only.

Description Location Bounding box Polygon shape

Hall monitor 21 Kbit/s 59 Kbit/s 94 Kbit/s
Highway 26 Kbit/s 66 Kbit/s 101 Kbit/s

Table 6.3: Average bitrate of MPEG–7 BiM sequence description.

In the following, the adaptation strategies that have been evaluated in this section are used in
order to provide adaptive video delivery.
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(a) (b) (c) (d)

Figure 6.16: Details of frame 280 of Hall monitor (top) and frame 16 of Highway (bottom). The
sequences are encoded with MPEG–1 at 150 Kbit/s using different adaptation strategies. (a) Coded
original sequence. (b) Spatial resolution reduction. (c) Static background. (d) Lowpass-filtered
background.
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Figure 6.17: Rate-distortion diagrams for strategy selection. Anchor nodes are represented along
with the corresponding cubic polynomial value functions. The client resources under analysis are
highlighted using vertical lines. (a) Hall monitor. (b) Highway.

6.3.2 Adaptive delivery of real sequences

In this section, the adaptive delivery framework proposed in Chapter 5 is tested with real sequences
for realistic client resource profiles. In particular, the mechanism discussed in Section 5.4 is applied
to the selection of the adaptation strategy that provides most value for the end user. The results
are verified by visual inspection and by objective quality evaluation using SPSNR.

In our experiments, the following frame-based adaptation strategies are compared: (1) coded
original sequence; (2) spatial resolution reduction; (3a) semantic prefiltering with lowpass-filtering;
(3b) semantic prefiltering with static background. A single resource, i.e. bitrate, is considered. In
order to assess the performance of the selection mechanism both for low-quality and for high-quality
video, the bitrate of the client is set to RUMTS

client = 176 Kbit/s and to RADSL
client = 1000 Kbit/s. The

former corresponds to the bandwidth supported by the UMTS multimedia protocol. The latter is
sometimes used for video streaming over asymmetric digital subscriber lines (ADSL).

Definition of the resource allocation problem

To solve the resource allocation problem defined in Section 5.4, we first set a number of anchor
nodes. These nodes are located at the following bitrates: 150, 200, 250, 300, 500 and 1000 Kbit/s.
In the rate-distortion diagrams in Figure 6.17, each data point represents one anchor node.

Then, a polynomial value function is fit to the anchor nodes of each adaptation strategy. In our
experiments, we have found cubic value functions to lead to optimal results. For Hall monitor, the
value function matrix (Equation (5.11)) is given by

FVF
Hall =




17.74 7.30 · 10−2 −1.14 · 10−4 5.86 · 10−8

22.28 2.87 · 10−3 −5.03 · 10−6 2.70 · 10−9

21.02 3.38 · 10−2 −6.14 · 10−5 3.37 · 10−8

21.63 5.85 · 10−2 −8.95 · 10−5 4.49 · 10−8


 . (6.1)



6.3. Adaptive delivery 97

For highway, the value function matrix is

FVF
Highway =




121.25 3.78 · 10−2 −8.74 · 10−5 4.41 · 10−8

22.98 2.86 · 10−3 −5.10 · 10−6 2.76 · 10−9

22.83 3.84 · 10−2 −6.82 · 10−5 3.71 · 10−8

23.80 4.53 · 10−2 −6.81 · 10−5 3.40 · 10−8


 . (6.2)

For Hall monitor, evaluating the value function at Rclient 6 176 Kbit/s leads to the following
maximal SPSNR: 27.4 dB for coded original (1); 22.6 dB for spatial resolution reduction (2); 25.3
dB for semantic prefiltering with lowpass-filtering (3a); 29.4 dB for semantic prefiltering with static
background (3b). Thus, according to Equation (5.10), the adaptation strategy that provides most
value for the end user is semantic prefiltering with static background (3b). At Rclient 6 1000 Kbit/s,
the maximal SPSNR is: 35 dB for the coded original; 22.8 dB for spatial resolution reduction; 27.2
dB for semantic prefiltering with lowpass-filtering; 35.6 dB for semantic prefiltering with static
background. Thus, the selected adaptation strategy is semantic prefiltering with static background
(3b) as well.

For Highway, the resource allocation problem is solved in a similar way. The adaptation strategies
that provide most value for the end user are found to be semantic prefiltering with static background
(3b) at 176 Kbit/s, and the coded original sequence (1) at 1000 Kbit/s. These results are next verified
by visual inspection and by objective quality evaluation. The former is done by inspecting sample
frames from sequences coded using different strategies. The latter is achieved by measuring SPSNR
at 176 Kbit/s and at 1000 Kbit/s for each strategy.

Results

In Figure 6.18, sample frames are shown for the sequence Hall monitor. At 176 Kbit/s (left column),
the person’s face and the monitor have slightly more details with the semantic strategies (c) and (d)
than with the non-semantic strategies (a) and (b). Also, the background is severely corrupted by
coding artifacts in the coded original (a). This is particularly visible on background edges. At 1000
Kbit/s (right column), spatial resolution reduction (b) and lowpass-filtered background (c) have
substantially lower quality than the coded original (a) and static background (d). On the other
hand, it is difficult to perceive differences between the coded original (a) and static background (d).

In Figure 6.19, sample frames are shown for the sequence Highway. At 176 Kbit/s, the back-
ground of semantic prefiltering with static background (d) has higher quality than the background
of the coded original (a). In particular, the white painted lines on the road are sharper with static
background (d). At 1000 Kbit/s however, the shadow cast by the truck stops in an unnatural way
in static background (d). These artificial boundaries result from the object segmentation process
used by the semantic prefiltering step. These boundaries are visually annoying and lead to a lower
perceptual quality for static background (d) than for the coded original (a).

The SPSNR for the two test sequences coded at 176 Kbit/s and at 1000 Kbit/s using different
adaptation strategies is given in Table 6.4. As expected, the highest objective quality for Hall
monitor is achieved by using semantic prefiltering with static background at both 176 Kbit/s and
1000 Kbit/s. For Highway, the highest SPSNR obtained by using semantic prefiltering with static
background at 176 Kbit/s, and by the coded original at 1000 Kbit/s.

Both visual inspection and objective quality evaluation results confirm that the adaptive delivery
framework proposed in Chapter 5 is capable of determining the adaptation strategy that leads to
the best perceptual video quality. In fact, the strategies that have been selected for delivery have
also the highest SPSNR in all tested cases. Also, the corresponding quality improvements are visible
in the sample frames for all cases but for Hall monitor at 1000 Kbit/s.



98 Chapter 6. Results and validation

(a)

(b)

(c)

(d)

Figure 6.18: Frame 190 from Hall monitor for different adaptation strategies. The coding bitrates
are: (left column) 176 Kbit/s; (right column) 1000 Kbit/s. The strategies under analysis are:
(a) Coded original. (b) Spatial resolution reduction. (c) Lowpass-filtered background. (d) Static
background.
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(a)

(b)

(c)

(d)

Figure 6.19: Frame 20 from Highway for different adaptation strategies. The coding bitrates are:
(left column) 176 Kbit/s; (right column) 1000 Kbit/s. The strategies under analysis are: (a) Coded
original. (b) Spatial resolution reduction. (c) Lowpass-filtered background. (d) Static background.
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Bitrate 176 Kbit/s 1000 Kbit/s

Hall monitor
Coded original 27.5 dB 35.0 dB
Spatial resolution reduction 22.7 dB 22.8 dB
Lowpass-filtered background 25.3 dB 27.2 dB
Static background 29.4 dB 35.6 dB
Highway
Coded original 29.0 dB 35.8 dB
Spatial resolution reduction 23.4 dB 23.5 dB
Lowpass-filtered background 27.7 dB 30.1 dB
Static background 29.8 dB 35.1 dB

Table 6.4: SPSNR for the sequences Hall monitor and Highway coded at 176 Kbit/s and at 1000
Kbit/s using different adaptation strategies.

6.4 Summary

In this chapter, we have discussed experimental results obtained with standard test sequences and
we have proposed a validation of our work in real applications.

In Section 6.2, the behavior of the motion-based semantic video object extraction algorithm
presented in Chapter 4 has been analyzed. The algorithm produces reliable results in the presence
of difficulties such as object appearance and disappearance, deformable objects, merging, occlusions,
splitting, and complex illumination conditions. The appearance and the disappearance of objects do
not to alter extraction performance. In fact, each region in the object segmentation mask is processed
independently and does not affect the extraction of other video objects. Deformable objects such
as people are coped with by tracking object’s regions rather than the entire object. Thus, the loss
of individual regions due to deformations does not corrupt the other regions’ tracks. The tracking
algorithm is further capable of separating multiple objects and of providing them with a coherent
label over time when several objects are merged together in the object segmentation mask. This is
a consequence of the region tracking process: regions keep their original label even when they are
merged in a single object partition. The correspondence obtained through region tracking is further
verified by data association between regions’ descriptors in successive frames. To relate objects to
their original trajectory after total occlusions, the data association step operates not only between
subsequent frames, but on a longer temporal window. This enables us to deal with occlusions of
objects by background elements, mutual occlusions, and temporal object disappearance. Object
splitting is handled by allowing separate regions in the object partition to get their label from the
same object. This mechanism further enables us to correct object segmentation errors: when an
object is identified by two separate regions in the object segmentation mask, the projection of the
region description allows us to keep the track of the full object instead of initiating a new track
for the unconnected part. The latter is particularly useful in the presence of background noise.
In the presence of complex illumination conditions at last (e.g., reflective surfaces), the tracking
mechanism allows to put superfluous regions in the object segmentation mask in correspondence
with the corresponding objects.

Semantic video objects and their associated trajectories have further been used by a content
understanding step that monitors the behavior of objects in the scene to provide event detection
for visual surveillance. A simple experiment has been performed, where authorized and restricted
areas have been defined in an outdoor surveillance video. By comparing the position of video
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objects to the coordinates of the respective areas, intrusion alarms were generated correctly. The
description of objects’ features also enables video enhancement in order to put important objects
in a conspicuous position. This helps lowering fatigue of the monitoring personnel that is due to
extended concentration.

In Section 6.3, the performance of different video adaptation strategies proposed in Chapter 5 has
been compared by means of objective quality evaluation and by visual inspection. At low bitrates,
the video quality is increased by taking into account content semantics with both frame-based
encoders (MPEG–1) and object-based encoders (MPEG–4). At such bitrates, the amount of coding
artifacts affecting foreground objects is notably reduced by using semantic prefiltering. Therefore,
semantic prefiltering is particularly useful to increase quality in bandwidth-critical applications such
as mobile video. The additional cost of sending the description of object’s shape and location for
metadata-based and metadata-enhanced encoding has further been found to be below 100 Kbit/s.
This cost is low as compared to medium-quality video coding with MPEG–1 or with MPEG–4.

Then, strategy selection has been used to provide adaptive delivery with real sequences for
realistic client resource profiles. Visual inspection and objective quality evaluation using SPSNR
confirm that the adaptive delivery framework is capable of determining the adaptation strategy
that provides the most value for the user. In all tested cases, the strategy that has been selected
for delivery by the mechanism leads also to the highest SPSNR. In most cases, the corresponding
quality improvements are clearly visible in the adapted sequences. We would like to point out that
with respect to the alternative approach of measuring value for each strategy at R = Rclient prior
to delivery, the use of value functions permits to select the optimal strategy without explicit value
computation for the present client resources. This helps to support resource fluctuations at the time
of delivery.

In Appendix A, adaptive video delivery is discussed in the more general context of Universal
Multimedia Access (UMA). In UMA, information is delivered to numerous users under a wide
variety of conditions in a transparent form. With respect to adaptive delivery, UMA does not only
handle the resources of access networks and terminals, but also the individual preferences of end
users and the preparation of content for efficient search and browsing.
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General conclusions 7
7.1 Summary of achievements

The increasing diversification of the means of information transport and access has created a need
to personalize the way media content is delivered to the end user. Moreover, recent devices, such
as digital radio receivers with graphics displays, and new applications, such as intelligent visual
surveillance, require novel forms of video analysis for content adaptation and summarization. To
cope with these challenges, we have proposed an automatic method for the extraction of semantics
from video, together with a framework that exploits these semantics in order to provide adaptive
video delivery.

After a short review of semantics in the general context, we have first introduced an algorithm
that relies on motion information to extract multiple, simultaneous video objects in cluttered en-
vironment. Several applications, such as sport broadcasting and visual surveillance, exploit motion
information to produce meaningful objects. The task of semantic video object extraction has been
split into two stages, namely object segmentation and object tracking. The object segmentation stage
deals with the segmentation of objects from the background. In our implementation, a statistical
change detector decides whether in each pixel position, the foreground signal corresponding to an
object is present. The selected approach is robust with respect to camera noise, and it does not
need manual tuning along a sequence or for different sequences. The latter is important in outdoor
surveillance applications, where slow illumination changes are common. This further enables our
solution to operate in a wide variety of situations.

The object tracking stage follows individual objects along the frames. Temporal tracking allows
to distinguish multiple objects even when they have similar motion or in the presence of mutual
occlusions. This is essential in complex environment, where several objects interact together, and
it further enables us to correct possible object segmentation errors. The tracking algorithm is
based on feedbacks between a region partition and an object partition. The region partition defines
homogeneous groups of pixels corresponding to perceptually uniform regions, whereas the object
partition defines semantic video objects. The correspondence of semantic objects in successive frames
is then achieved through the correspondence of individual regions comprising an object. With respect
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to the alternative approach of tracking semantic objects directly, region-object tracking provides
several significant advantages. Deformable objects such as people are handled correctly, since the
loss of individual regions due to self occlusions does not corrupt the tracks of the other regions. The
method is also capable of separating multiple objects in the presence of mutual occlusions, since
regions keep their original label when they are merged in a single area of the object segmentation
mask. This further helps to correct object segmentation errors. Finally, data association between
region descriptors in successive frames enables us to handle total occlusions and temporal object
disappearances.

Subsequently, semantics have been used to improve adaptive video delivery. The presented
framework comprises three connected parts: a number of complementary video adaptation strategies,
means of performance evaluation for individual strategies, and a strategy selection mechanism. Some
of the proposed video adaptation strategies use semantics in order to organize the content so that
a particular network or device does not inhibit the main content message. Specifically, semantic
prefiltering combines semantic video analysis with a traditional frame-based encoder. Relevant areas
are first extracted from video by means of semantic analysis. The areas not included in the region
of interest are then lowered in importance by using background simplification. Using a simplified
background aims at taking advantage of the task-oriented behavior of the Human Visual System
(HVS) for improving compression ratios. Metadata-based and metadata-enhanced encoding on the
other hand uses textual description of video object features to efficiently encode the main content
message. The use of metadata enables us to make the content more searchable and to improve
visualization in video-based applications.

Performance evaluation has been used to evaluate the perceptual quality resulting from different
adaptation strategies. A series of subjective experiments involving twenty human observers enabled
us to quantify the impact of semantic prefiltering and of metadata-based encoding. Results show
that background simplifications resulting from semantic prefiltering do not penalize overall quality
at low bitrates, and that the metadata-based representation of object’s shape suffices to convey the
meaning and action of a scene when the objects are familiar. This is particularly important for
bandwidth-critical applications such as mobile video. Based on these observations, we have derived
an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for
different image areas and for their relevance to the observer in order to reflect the focus of attention
of the HVS. The prediction accuracy of SPSNR is superior by up to 8% with respect to PSNR.
Moreover, the metric allows to quantify the amount of attention that we pay to the foreground and
to the background as a function of video content.

At last, a strategy selection mechanism that determines the optimal adaptation strategy with
respect to the resources of the connected client has been proposed. This problem is formalized by a
resource allocation problem, where content value is maximized under a given set of client resource
constraints. In our implementation, the selection mechanism relies on SPSNR to measure the value
of the delivered video.

To validate our approach, semantic video analysis and adaptive video delivery have been tested
with real sequences and used to provide intelligent visual surveillance and adaptive delivery for
realistic client resource profiles. Video object extraction is found to operate reliably in sequences
including various difficulties. Video objects and their associated description further enable us to
enhance surveillance video and to perform automated event detection. At last, the adaptive video
delivery framework is capable of selecting the adaptation strategy that leads to optimal perceptual
quality for low-quality as well as high-quality applications.

To conclude our summary, we would like to point out that each specific component of the system
may be replaced by a more adequate one, depending on the particular requirements of the application
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at hand. For instance, motion-based semantic video object extraction could be replaced by a face
detection process for crowds monitoring. This flexibility is a consequence of the modularity of the
proposed system.

7.2 Perspectives

The work proposed in this dissertation can be improved and extended in several ways. Some
directions for further work are proposed below.

. The semantic video object extraction algorithm discussed in Chapter 4 addresses the static
camera problem. One natural extension is to deal with moving camera sequences by integrating
global motion information.

. The semantic video analysis discussed in Chapter 4 has been laid out for a single camera. The
method could be extended to multiple, overlapping cameras in order to recover the perspective
of the scene (3D analysis). This might notably help to solve the problem of tracking occluded
objects. By considering multiple non-overlapping cameras, the method could further be used
for the surveillance of vast areas.

. Semantic video analysis operates at the region level and at the object level. In addition to
these, the content level could be considered by adding an additional object recognition step to
the system. This would allow the identification of the nature of visible objects, which could
in turn be used in order to refine the description of the video and to improve the reliability of
video object extraction by eliminating irrelevant objects.

. The video adaptation strategies proposed in Chapter 5 operate in the spatial domain. These
strategies could be extended to the temporal domain, for instance by using individual frame
rates for different image areas as a function of motion activity.

. In Chapter 5, the SPSNR video quality metric is proposed to assess the value of different
adaptation strategies. The metric operates on video, but does not lead to relevant results
for strategies such as metadata-based and metadata-enhanced encoding. An objective metric
for cross-modality performance evaluation would be very desirable. Such a metric might for
instance be created based on additional subjective experiments.

. The SPSNR video quality metric is in essence a PSNR, where image areas are weighted ac-
cording to their relevance to the observer. In some cases, it might be desirable to replace the
PSNR by more advanced quality metrics. Such extensions are notably addressed in [35].

. The adaptation strategy selection mechanism discussed in Chapter 5 operates on a finite
set of adaptation operators. Future work might consider the selection of optimal adaptation
parameters as well. This could for instance be used to control the variance of the lowpass filter
used to perform background simplification.

. The adaptation strategy selection mechanism requires value to be computed explicitly for each
candidate strategy. Such calculations are time-consuming and need to be performed offline.
Value function prediction [246] helps to predict value based on content features without explicit
computation.
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Universal Multimedia

Access A
A.1 Introduction

Adaptive video delivery is an important component of a wider framework where information is
delivered to numerous users under a wide variety of conditions in a transparent form. This is
referred to as Universal Multimedia Access (UMA) [175, 232]. A UMA environment enables us
to handle the individual preferences of multiple end-users, the technical characteristics of various
networks and appliances, and content items of different nature. Therefore, UMA has a wealth of
potential applications in broadcasting, the World Wide Web and mobile telecommunications, where
all types of users, content, appliances and networks coexist [173].

To target the specific challenges of UMA, several researchers have been relying on the MPEG
family of standards. Van Beek et al. [227] use MPEG–7 Variation and Summary tools to manage
alternative content versions. Fossbakk et al. [74] achieve similar results by using MPEG–21 Digital
Item Declaration. Sun et al. [176, 217] rely on MPEG–21 usage environment description tools to
provide resource adaptation in a streaming media environment. The use of MPEG–21 in order to
handle adaptive content delivery has also been considered by Bormans et al. [20]. Another concern
in the past has been the problem of generating and coding appropriate content items. Some of the
basic technology required for media conversion to support mobile users is reviewed by Vetro and
Sun [235]. Lee et al. [128] propose a scheme for generating transcoded video sequences that fit the
respective display size of a variety of client devices. Their scheme uses a transcoding algorithm
based on perceptual hints. MPEG–4 fine-granular scalability coding (FGS) has been adapted to
the transmission of video over wireless and mobile networks by van der Schaar and Radha [231].
Wang et al. [242] combine MPEG–4 FGS and MPEG–21 into a unique system for real-time video
streaming over heterogeneous networks with time-varying conditions. Finally, content adaptation to
different user profiles for digest video delivery and for mobile multimedia services have been reported
by Echigo et al. [64] and Chen et al. [40], respectively.

In this appendix, we present a complete UMA framework based on video [215]. Within that
framework, the method in Part II of our dissertation has been employed to provide adaptive video
delivery. The block diagram in Figure A.1 is subdivided into two connected parts, namely content
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Figure A.1: The presented universal multimedia access framework is subdivided into two connected
parts. (a) Content preparation. (b) Content delivery.

preparation and content delivery. The goal of content preparation is to create video summaries for
fast database browsing and to generate content-based description or metadata. Content delivery
deals with the adaptive streaming of video material to the connected client and with the person-
alization of the service according to individual users’ preferences. The power and novelty of our
solution ensue from the integration of automatic summarization, open standards-based annotation,
personalization and adaptive delivery in a unified framework that is transparent to the user. The
UMA framework has been developed, implemented and tested by the author et al. in the EC–funded
R&D project PERSEO.

The remainder of this appendix is organized as follows. Content preparation, i.e. the creation
of video summaries and the annotation of content using open standards, is addressed in Section
A.2. Personalization and adaptive delivery are discussed in Section A.3. At last, we report the
implementation of the proposed UMA framework by the PERSEO consortium in Section A.4.

A.2 Content preparation

Content preparation includes the creation of summaries for fast database browsing and the an-
notation of video using open standards. Video summaries are extracted by means of automatic
algorithms. For content-based annotation, a set of MPEG–7 descriptors is provided along with
SMIL descriptors for the authoring of interactive video.
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A.2.1 Creation of video summaries

The creation of video summaries is of particular interest in a UMA environment, where large content
collections are searched by devices with limited capabilities. Summary creation mainly consists in
segmenting the video into elementary units and then extracting representative frames from these
units. Figure A.2 shows the block diagram of a simple system for video summarization [4]. First,
the original video is processed in order to extract low-level visual primitives such as color, motion
and texture. Based on these primitives, the video is segmented into basic units called shots through
temporal segmentation. A shot is defined as a sequence of frames captured by one camera in a
single continuous action in time and space [155]. Once the shot boundaries are detected, the salient
content of each shot is represented in terms of a small number of frames, called key frames. Temporal
segmentation and key frame extraction make up the video parsing process.

Different summary representations are then created from the detected shots and from the ex-
tracted key frames. The main objective of these representations is to allow a content-based browsing
of the video. In the hierarchical summary, key frames are grouped and organized in order to obtain
a coarse-to-fine hierarchy of summaries, i.e., the content of video is represented at multiple levels
of detail, from coarse summaries to detailed summaries [268]. The sequential summary is simply a
concatenation of the key frames which can be shown sequentially in time, for example as an ani-
mated slide show. In the mosaic-based summary, each shot is decomposed into static and dynamic
components [102]. The static appearance is represented by a mosaic, which is constructed by align-
ing and integrating frames. The dynamic behavior of the moving objects is represented by their
trajectories and characteristic appearances. In the pictorial summary at last, key frames are resized
into corresponding subimages according to the importance of the frames (video posters) [257].

Primitives

Extraction

Video

Parsing

Summary

Representation

Video Summary
Color histogram,

motion, etc.

Key frames &

shots

Figure A.2: Block diagram of a simple system for video summarization.

A.2.2 Video annotation

To provide effective access to large content collections, metadata is associated to the video. Inter-
operability with third-party applications is allowed by the use of open standards. The MPEG–7
Multimedia Content Description Interface defines a standardized set of descriptors for multimedia
content features. The Synchronized Multimedia Integration Language SMIL permits simple author-
ing of interactive presentations.

MPEG–7 annotation

Table A.1 lists a set of MPEG–7 descriptors [111] for annotation that fit the specific needs of UMA.
Description metadata captures the version, author and history of the description. This is mainly
used to record the annotation history at the content provider’s side. Media information identifies
and describes media-specific information of the video. In particular, this defines a unique content
ID and URL, as well as information about the file and coding formats. Later on, this media-
specific information permits to determine whether the connected terminal has sufficient capabilities
to playback the content item without prior adaptation. Creation information describes information
about the creation, production and classification of multimedia content. The semantic description
is used to describe real-life concepts or narratives which are depicted by or related to the content.
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MPEG–7 Descriptor Purpose Extraction

Description metadata

DescriptionMetadata Description version, author and history Manual

Media information

MediaIdentification D Unique content identifier Automatic

MediaFormat D Information about file and coding format Automatic

MediaInstance DS URL of content file Automatic

Creation information

Creation DS Content title, abstract, creator and creation tool Manual

Classification DS Content form, genre, subject, purpose, language, . . . Manual

Usage description

Rights datatype Information about right holders and content usage Manual

Semantic description

AgentObject DS Who: describe persons or organizations Manual

Event DS What : describe a semantic activity Manual

SemanticPlace DS Where: describe location Manual

SemanticTime DS When: describe time Manual

Structure description

Segment DS Specify temporal segments in multimedia content Automatic

Access tools

SummarySegmentGroup DS Define video summaries using key frames and shots Automatic

Table A.1: MPEG–7 descriptors for video annotation.

These enable us to perform refined content search based on keywords. Additionally, this information
is matched with user preferences to sort content in terms of relevance. Usage description holds
information about right holders and content usage. This allows the system to restrict delivery to
entitled user categories. Structure description helps to access specific content segments rapidly. At
last, video summaries are defined by MPEG–7 access tools that capture the temporal location of
key frames and shot boundaries. At the time of delivery, this information is used by the terminal
to render the summary.

The extraction of several of the above features is performed automatically. Automatic feature
extraction is usually more effective in terms of extraction time, but might sometimes lead to inac-
curate results. These can be corrected by manual tuning. Key frames and shots are automatically
extracted using the method in Section A.2.1. Media information is read from the content file’s
header. The remaining features are annotated by hand.

SMIL annotation

Interactive video contains visual elements that the user can interact with. An interactive element
is defined by its shape and color, its starting time, its ending time, and its position or trajectory
throughout the video. The manual definition of these parameters is a lengthy and tedious process.
However, they can also be defined using the automatic extraction algorithm presented in Chapter
4, because interactive elements are normally related to semantic objects in the video. Interactive
elements are further assigned actions to be performed when clicking on them. Possible actions
include opening a web page, sending a message (e.g., email, SMS or MMS), and forwarding the
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SMIL Descriptor Purpose Editing mode

Media Object Modules

video Define interactive video Automatic

img Define interactive image Automatic

Layout Modules

layout Spatial layout of the links Auto. or Manual

region Spatial coordinates of a link Auto. or Manual

z-index Links layer hierarchy Automatic

Linking Modules

a Object-dependent link information (URL, behavior, . . . ). Manual

area Region-dependent link information Manual

Animation Modules

animate Temporal behavior of the links Auto. or Manual

Timing and Synchronization Module

par Parallel playback Automatic

Table A.2: SMIL 2.0 Modules and Elements for interactive video.

player to another multimedia element. Thus, interactive elements defines contextual links among
the items in the video database and on the internet.

Interactive video is created as SMIL objects referenced from the content description. This means
that no new video is created. Instead, the description is used by the terminal to provide interactivity
on the fly. Since no new media are created, multiple interactive video versions can be stored at
low additional cost. Table A.2 lists the SMIL 2.0 Modules and Elements [240] used to perform
the editing of interactive video. The media object module describes the media objects used to
embed dynamic links. The layout module is used for the positioning of the interactive areas on the
visual rendering surface. The linking module defines the attributes and elements of navigational
hyperlinks. The Animation Module contains elements and attributes for incorporating animations
into a timeline. The timing and synchronization Module finally is used for synchronization between
video and embedded links.

A.3 Content delivery

Content delivery involves two distinct parties: the UMA server and the client. The UMA server
is in charge of personalization according to individual users’ preferences, and it provides adaptive
video delivery. This process is transparent for the user, leaving him off the tough task of dealing
with hardware characteristics. The client, which comprises both the end user and the end user’s
access terminal, is characterized by a set of resources that are defined by MPEG–21 descriptors.
The interaction between the server and the client follows four steps:

1. Personalization. All available content items are sorted and listed according to the personal
preferences of the connected user. Preferred items are listed first; undesired items are sorted
out.

2. Generic search. The user searches the sorted list based on keywords (i.e., title, author, location,
action, etc.). For each item, a video summary is proposed.
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3. Content selection. The user selects the item to be delivered.

4. Adaptive delivery. The selected item is adapted and streamed to the terminal. Interactive
elements are rendered by the terminal.

The personalization mechanism is discussed next. User preferences are acquired from the user
in a questionnaire and updated by the server according to the user’s usage history. Then, the
description of client resources using MPEG–21 is addressed. This is exploited by the server to
provide adaptive delivery.

A.3.1 Personalization

Personalization is utilized by consumers for accessing multimedia content that fits their personal
preferences. By using the user’s preferences in conjunction with a history of the actions that he
has carried out over a specific period of time, the server dynamically updates the user profile. In
our framework, user preference and the usage history are described using MPEG–7 user interaction
tools [111]. These define two types of preferences: filtering and search preferences, and browsing
preferences. The former are used to describe filtering or searching preferences in terms of attributes
related to the creation, the classification and the source of the content. The latter describe user
preferences pertaining to navigation of and access to content. In particular, a user may express
preferences of the type and content of video summaries. User preferences and the usage history
are stored in the user preferences database maintained by the server. Initial user preferences are
acquired from the user in a questionnaire.

User preferences handling is based on a continuous check of the user’s interaction with the system.
Depending on the content the user is accessing, the system dynamically updates the MPEG–7 user
profile. Updates depend on the category the selected video item belongs to, and on past user’s
history accessing categorized video material. In order to take both these factors into account, the
user profile is update according to a Q-Learning based mechanism [248], where states (categories in
the user profile) belonging to branches with similar semantic meaning get rewarded; non selected
media are punished (negatively rewarded). As a result of the continuous process of dynamically
adjusting and updating the user profile, the system is able to select and to filter all the annotated
content according to the profile. The selection of content from the video database according to the
user profile is based on the following guidelines:

1. Content in the database is filtered based on the user’s preferences. That is, content belonging
to undesired categories is sorted out.

2. Content is sorted according to the usage history: the more relevant preferences (those that have
been more actively accessed in the past) are presented before those that have been accessed
less, or not at all.

As a result of the process, a list of classified, sorted and pruned video content regarding the user’s
preferences is generated.

A.3.2 Adaptive delivery and client resources description

The diversity of networks and terminals in a realistic UMA environment makes it unattainable to
generate a distinct content version for each profile of capabilities. Thus, adaptive delivery is needed.
As discussed in Chapter 5, the selection of the adaptation strategy that provides the most value for
the end user requires some knowledge about the resources of the connected client and network.
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MPEG–21 Descriptor Purpose

Codec capabilities

Decoding capabilities

TransportFormat Transport formats the terminal is capable of decoding

VideoFormat Video formats the terminal is capable of decoding

AudioFormat Audio formats the terminal is capable of decoding

Video parameters

BitRate Nominal bitrate in bit/s.

Maximum Max. value for BitRate in case of variable bitrate

Average Avg. value for BitRate in case of variable bitrate

Audio parameters

BitRate Nominal bitrate in bit/s.

Maximum Max. value for BitRate in case of variable bitrate

Average Avg. value for BitRate in case of variable bitrate

Input/output capabilities

Display capabilities

Resolution Resolution in pixels

BitsPerPixel Color depth in bits

ColorCapable Describes whether display is color capable

RefreshRate Refresh rate in Hz.

Audio output capabilities

LowFrequency Lower bound of audio frequency range in Hz.

HighFrequency Higher bound of audio frequency range in Hz.

NumChannels Number of supported audio channels

Table A.3: MPEG–21 descriptors for client resources.

In our context, the term client refers to both the user and the user’s terminal. The user can
be any person or agent, characterized by his own set of preferences. Possible access terminals
range from high-performance appliances like digital TV sets and personal computers (PC), down to
mobile devices such as personal digital assistants (PDA), mobile phones and wearable computers.
Each client is characterized by a set of resources that describe the terminal’s own technical features.
Client resources are stored in the appliance and accessed by the content server at the time of
connection. Alternatively, capabilities of devices with limited memory can be stored in the content
server and retrieved according to the client’s individual ID.

Client resources are described using the MPEG–21 DIA [112] usage environment descriptors
in Table A.3. Codec capabilities specify the decoding capabilities of a connected terminal. These
includes the transport, video and audio formats that can be decoded, as well as video and audio
bitrate specifications. Input and output capabilities describe the I/O capabilities of the terminal.
For video, resolution, color depth and refresh rate of the display are specified. Audio parameters
include the output frequency range and the number of audio channels.
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(a) (b) (c)

Figure A.3: Three video summary representations are supported by PERSEO. (a) Pictorial sum-
mary (video poster). (b) Sequential summary using key frames (slide Show). (c) Sequential summary
using key sequences (video Summary).

(a) (b)

Figure A.4: Graphical user interfaces of PERSEO’s content preparation software. (a) MPEG–7
content annotation. (b) Interactive video authoring.
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(i,ii) (iii)

(a)

(i) (ii) (iii)

(b)

(i) (ii)

 

(iii)

(c)

Figure A.5: Interaction of the UMA server with different terminals. (a) PC. (b) PDA. (c) GPRS-
capable mobile phone. Three successive operations are depicted: (i) Options menu. (ii) User
profile-based content catalogue. (iii) Video delivery.



118 Appendix A. Universal Multimedia Access

A.4 The PERSEO implementation

The presented content preparation and delivery framework has been implemented in the EC–funded
R&D project PERSEO and tested by selected groups of end-users. PERSEO is a UMA system that
covers all the aspects of multimedia production, post-production, annotation, database management
and final cross-media and multi-device publication. The PERSEO implementation comprises two
distinct modules: content preparation software, and the UMA server. The subdivision into two
modules reflects the organization of the framework in Figure A.1. Content preparation software
provides facilities for summary generation and for content annotation. Three summary representa-
tions are supported by the application: pictorial summaries, sequential summaries using key frames
and sequential summaries using shots. Pictorial summaries show the most important frames laid
out in a web page by chronological and importance criteria. Sequential summaries using key frames
display the key frames of the video with a latency of a few seconds between them. The sequential
summary using shots is a trailer of the video: a set of relevant shots in chronological order. These
summary representations are depicted in Figure A.3. MPEG–7 content annotation is done by means
of a graphical user interface (GUI). The customizable GUI in Figure A.4(a) is subdivided into input
areas corresponding to the different annotation features required by the application at hand. User
input is automatically translated to MPEG–7 by the software. Another GUI is provided for inter-
active video authoring in Figure A.4(b). Interactive elements are drawn onto the video frames, and
their temporal extent is specified in the timeline.

The UMA server handles personalization and adaptive delivery. Initial preferences are acquired
from the user by filling a questionnaire and updated dynamically according to a Q-Learning based
mechanism. Content adaptation operations performed by the server include bitrate reduction, spa-
tial resolution reduction and temporal resolution reduction. The interaction of the server with a
PC, a color PDA and a GPRS-capable mobile phone is depicted in Figure A.5∗. (i) After the login
procedure, possible options are displayed in a menu. The user can access a content catalogue sorted
according to his personal preferences or according to his current location (when available), perform
a generic search, edit his own profile, or access other services. (ii) The user profile-based catalogue
shows a sorted list of playable media items, together with available summaries. (iii) The selected
content is displayed using the adequate frame rate, resolution and color depth.

A.5 Summary

The PERSEO implementation of the presented UMA framework has been utilized to provide two
different applications to a selected group of end-users: e-learning and tourism information. The e-
learning application provides video course material to professional and non-professional users, using
static and mobile devices. In the tourism application, video material on various European cities is
accessed by mobile devices. Usability validation has been achieved by focus group techniques using
evaluation forms based on the quality attributes required for the developed services. Focus groups
validation considered two main segments to analyze: (i) a residential segment aged 18 to 35. This
segment was split in two focus groups, a first group of young people aged 18 to 25, and a second
group aged 25 to 35. (ii) Professional users. Here, only one focus group has been formed.

The evaluation of the service has been positive in general terms in all the groups, and somewhat
more critical in the segment of 25 to 35 years and in professional users. The service is considered
to be attractive, and has been very useful in specific situations. The user validation phase leads to
the following conclusions:

∗For improved readability, simulations that accurately reflect the actual PERSEO client display are shown.
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• Personalization is considered as a positive feature, due to the comfort, effectiveness and
speed that the service gains. Due to the very nature of personalization, these advantages are
not distinctly noticed in the everyday use of the service.

• Video Summaries are very well considered, as they help searching large content collections
efficiently.

• Generic search on the content list is considered easy to use and positive. The result list
should be limited in order to minimize rejection of the service. An extensive list of videos can
generate deception and rejection of the service. The user’s familiarity with internet search
engines contributes to the acceptance of the idea.

• The UMA service has been found particularly useful in mobile applications. This is
mainly because of adaptive video delivery that enables the user to get optimal content quality
on terminals with limited capabilities.

• The video must have strong and practical information content. The service can only be as
good as the proposed content.

• Regarding the usability of the developed applications, all the groups considered it as an easy
to use service. The basic nature of the groups made that they were used to manage mobile
phones and PDAs. The users felt confident that, with a little training, they would learn to
efficiently use all the features of the system in a short time period.

The present solution can be extended in several ways. The support of additional modalities
such as text, speech, stereoscopic video and 3-D will allow the emergence of novel applications and
the delivery to additional appliances such as digital radio receivers, text terminals and wearable
computers with head-mounted displays. Transmoding will be a key technology to the seamless
integration of multiple modalities. Also, additional personalization criteria such as geographical
location and time might be taken into account in order to provide selective services.
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