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Abstract 
 
 
 
The need of durable and abundant energy sources for future ages stimulates the studies of 

thermonuclear energy sources, based on hot plasma confinement by magnetic fields. The most 

developed concept of hot plasma trap is the tokamak, where the plasma confinement is obtained by a 

combination of external magnetic fields with the magnetic field of the current flowing in the plasma 

torus. The stability of the tokamak plasma is the main subject of the present work. 

The hot plasma is approximated by the model of the ideal magnetohydrodynamics (ideal MHD) as a 

superconductive liquid. Being relatively simple, this model describes basic plasma stability properties 

and establishes necessary stability conditions.  

The analytical ideal MHD theory is well developed, but some assumptions, required for analytical 

treatment may not be valid for the plasmas of modern tokamaks and for future tokamak-based 

reactors. To circumvent this numerical codes have been created. These codes are free from such 

limitations, but they are not as convenient in use as analytical formulae. In the present work the 

validity of the analytical approach for the conditions of tokamaks like TCV and MAST is examined in 

comparison with numerical code predictions by studying the dependence of the ideal MHD stability 

on plasma toroidicity and shape parameters. The experimental study of the plasma dependence on 

triangularity, carried out on the TCV tokamak, is consistent with the results of the numerical 

calculations. A new formula, describing the ideal MHD stability dependence on plasma toroidicity 

and shape parameters is proposed for use in modern tokamaks and future reactors. This formula could 

be used instead of analytical expansions, which are not valid in such conditions. 

The ideal MHD stability of highly elongated TCV plasmas has been studied using numerical codes 

and the optimum plasma shape, which allows higher plasma performance, was found. Experimental 

data on the high elongation plasmas in TCV are consistent with the numerical predictions. 

Advanced tokamak plasma configurations, which provide better plasma properties, are amongst the 

main goals of the TCV tokamak research activity. The ideal MHD stability analysis of such plasmas, 

using numerical codes, can be useful for optimization of plasma parameters, and designing new 

experiments with improved plasma performance. Reversed shear plasmas with internal transport 

barrier were analyzed and the influence of the plasma pressure and current profiles on the ideal MHD 

stability of these plasmas was examined in detail. By fine tuning of the electron cyclotron heating and 

current drive system of TCV it was found that it might be possible to improve the plasma 

performance in reversed shear plasmas, by creating the optimal current and pressure profiles. 

 

 



Version abrégée 
 

La nécessité de trouver des sources d’énergie durables et abondantes pour les siècles à venir stimule 

les recherches sur les sources d’énergie thermonucléaire, basées sur le confinement du plasma chaud 

dans un champ magnétique. Le concept le plus developpé est le tokamak, où le confinement du 

plasma est obtenu par une combinaison des champs magnétiques externes avec un champ magnétique 

dû au courant circulant dans le plasma toroïdal. La stabilité de plasma du tokamak est le sujet 

principal de ce travail. 

Dans le modèle de la magnétohydrodynamique idéale (la MHD idéale) le plasma chaud est modelisé 

par un liquide supraconducteur. Relativement simple, ce modèle décrit les propriétés de base de la 

stabilité du plasma et établit les conditions nécessaires de stabilité. 

La théorie analytique de la MHD idéale est bien developpée, mais certaines approximations, requises 

pour le traitement analytique, peuvent ne pas être valides pour les plasmas des tokamaks modernes et 

pour les réacteurs futurs basés sur le concept du tokamak. Pour circonvenir ces obstacles, les codes 

numériques ont été créés. Ces codes sont libres de ces limitations, mais ils ne sont pas aussi pratiques 

que les formules analytiques. Dans ce travail la validité de l’approche analytique dans les conditions 

des tokamaks comme TCV et MAST est examinée et comparée avec les codes numériques par une 

étude de la dépendance de la stabilité MHD idéale sur la toroidicite et les paramètres de forme du 

plasma. L’étude expérimentale de la dépendance du plasma sur la triangularité sur le tokamak TCV, 

correspond aux résultats des calculs numériques. Une nouvelle formule qui décrit la stabilité MHD 

idéale est proposée pour l’utilisation dans les tokamaks modernes et dans les réacteurs futurs. Cette 

formule peut être utilisée à la place des développements analytiques, non valides dans ces conditions. 

La stabilité MHD idéale des plasmas à haute élongation sur le TCV a été étudiée avec des codes 

numériques, et la forme optimale permettant la meilleure performance stable du plasma a été trouvé. 

Les données expérimentales sur les hautes élongations sur le TCV sont en accord avec ces 

prédictions. 

Les scénarios avancés dans les tokamaks, générant des meilleures propriétés du plasma, sont parmi 

les objectifs majeurs de l’activité expérimentale de TCV. L’analyse de la stabilité MHD idéale de ces 

plasmas peut être utile pour l’optimisation des paramètres du plasma et pour l’élaboration de 

nouvelles expériences plus performantes. Les plasmas avec cisaillement renversé avec une barrière du 

transport interne ont été analysés en détails. En ajustant le système du chauffage et la génération du 

courant par les ondes cyclotroniques électroniques du TCV, on peut améliorer la performance du 

plasma par création de profils optimaux de la densité de courant et de la pression. 
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Chapter 1. Introduction 
 

1.1 The thermonuclear fusion: why a hot plasma in magnetic fields?  
 

Successful control of thermonuclear fusion could provide the amounts of energy required for the 

future development of mankind for many centuries. Using the unlimited reserves of ocean water as the 

fuel, producing much less radioactive waste than the conventional fusion powered reactors, and zero 

emission of polluting and greenhouse gases, thermonuclear power stations could become the basis of 

the energy producing industry of the future, along with renewable energy sources. 

The idea of thermonuclear fusion is based on the nuclear reaction between nuclei of light elements 

(isotopes of hydrogen and helium) which by collisions can form a single nucleus of a heavier element 

and release a substantial amount of energy. The most promising reaction of this type involves two 

nuclei of hydrogen isotopes, one of Deuterium (D) and one of Tritium (T). As a result of their 

collision, a nucleus of Helium can be formed and some 17.6 MeV of energy produced. The 

temperatures of the initial Deuterium-Tritium fuel mixture has to be at least around 10 keV to 

maximize the probability of undergoing such reactions and the density has to be high enough to 

provide the amount of released energy required for the sustainment of the plasma temperature (so-

called ignition). At such temperatures the fuel is no more solid or liquid, it becomes a highly ionized 

gas, called plasma. It is extremely difficult to confine and control such matter in terrestrial conditions. 

In order to obtain the required number of fusion reactions to keep the plasma “burning”, the 

thermonuclear reactor has to be able to confine sufficient amount of particles of high energy inside the 

plasma to allow them to react. Formally, this requirement of keeping high temperature and density is 

expressed by the Lawson criterion [1],  

(1.1) 

 

where n is the plasma density in [m-3] and τE is the energy confinement time in seconds (D-T reaction 

at the temperature of 20 keV). 

Such a hot plasma confined in conventional materials will almost immediately loose all its energy and 

disappear, because the losses of energy and of particles will be enormous. It is only possible to deal 

with such matter by placing it in some kind of trap, constructed in a way that provides simultaneously 

the confinement of plasma and its thermal insulation. Since a small contact with solid matter can cause 

substantial losses of energy or destabilization and destruction of the plasma, a promising way of 

creating such conditions is based on the use of magnetic fields. 

sm10 321 −>Enτ
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For this reason since the early 1950s, much effort was concentrated on the design and creation of such 

magnetic field configurations. After many years, two concepts are considered now as being the most 

prominent ones for the creation of a magnetically confined thermonuclear reactor: the tokamak 

(artificial word, abbreviation of the Russian phrase “Toroidal’naja Kamera s Magnitnymi 

Katushkami”, meaning “Toroidal Chamber with Magnetic Coils”), which involves the magnetic field 

of the plasma current, flowing inside the plasma tore, and secondly the stellarator (“Stella”, the star in 

Latin), where complicated shapes of magnetic coils are required to create the effective magnetic trap. 

The first experimental thermonuclear reactor, ITER, is based on the tokamak concept [2]. 

The Lawson criterion involves two basic parameters: the plasma density and the energy confinement 

time. The energy confinement time is mostly determined by the microscopic phenomena that occur in 

the plasma, i.e. by collisions and microinstabilities that are usually treated by kinetic models. The 

plasma density depends essentially on macroscopic equilibrium; the highest achievable density at a 

given temperature is determined by the stability limits that are set by the magnetic geometry. Fluid 

models are most relevant here and the model of ideal magnetohydrodynamics is of particular interest. 

Ideal magnetohydrodynamics (ideal MHD) is one of the most developed and useful models, 

combining the relative simplicity with a wide range of validity. Ideal MHD describes the stability 

limits, determined by magnetic energy, thermal pressure and inertial forces in a perfectly conducting 

plasma placed in an arbitrary magnetic configuration. The past years of experiments show that the 

magnetic configuration has at least to fulfill the restrictions set by ideal MHD to confine successfully 

the plasma, i.e. ideal MHD is a necessary but not sufficient test of the stability properties of the plasma 

configuration. The phenomena that are not described by ideal MHD only make the restrictions more 

rigorous. Non-ideal effects, not included in the ideal MHD model, for example finite plasma 

resistivity, can cause instabilities that are weaker than ideal ones, but present in ideally stable 

conditions. Such non-ideal instabilities can deteriorate the plasma confinement or even lead to plasma 

disruption. Hence another important direction of plasma physics is the development of models 

describing the influence of these non-ideal effects. 

Ideal MHD is used presently as a general tool for the search of ways to optimize and improve 

magnetic trap configurations. If analytical solutions are available, they can be analyzed and the main 

parameters that can influence the macroscopic plasma stability can be easily found. Unfortunately, 

being simple in comparison with many other more elaborated theories, the model of ideal MHD is still 

difficult to deal with analytical solutions for the many magnetic geometries of practical interest. 

Moreover, the basic analytical approach, using expansions of the ideal MHD equations, is not 

necessarily valid for the conditions of the many modern experimental devices, because some 

parameters that are considered small, are not presently small any more (for example, the inverse aspect 

ratio ε, determined by the ratio of the minor radius of the torus to the major radius). In such cases, 
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numerical codes, solving the ideal MHD equilibria and stability problems for the given magnetic 

configurations should be used. 

 

1.2 A short history of the MHD theory 
 

The early concepts that can be considered as the precursors of the MHD theory appeared in the XIXth 

century. The famous British scientist Michael Faraday has carried out the first experiment that can be 

related to the MHD domain: he tried to measure the current, generated by the dynamo effect, caused 

by the magnetic field of Earth in the flowing water of the Thames river under the Waterloo bridge in 

London [3]. Unfortunately, the generated voltage was too small to be measured. 

Apart from these early experiments, MHD theory has its roots in the first decades of the XXth century. 

Larmor supposed in 1919 that the Earth's magnetic field was generated by dynamo action within the 

liquid-metal of its core and Hartmann started serious studies of the behavior of the mercury in the 

magnetic field. In 1918 he invented the electromagnetic pump, working on principles of what he called 

“Hg-dynamics”. 

Further studies of the behavior of conducting liquids and gases in electric and magnetic fields are 

associated with the name of Hannes Alfvén (1908 – 1995), who has put the basis of the modern MHD 

theory. The proof of the possibility of propagation of electromagnetic waves in highly conducting 

mediums, the theory of hydromagnetic waves, called now Alfvén waves (1942), the concept of the 

guiding-center approximation for the motion of charged particles in electric and magnetic fields and 

the concept of frozen-in magnetic flux are among his achievements. The Nobel Prize in Physics in 

1970 for these “contributions and fundamental discoveries in magnetohydrodynamics” was a well 

deserved recognition of his talent. 

Until 1940, MHD theory was developed with regards to astrophysical objects like space magnetic 

fields, radiation belts, etc. The studies of thermonuclear fusion that begun intensively in the late 1940s 

gave a strong impact to the MHD theory, because the thermonuclear plasma is a unique object, where 

MHD theory can be implemented and where experiments can be made. The basic outlines of ideal 

MHD theory in its implementation to the hot thermonuclear plasmas were formulated towards 1960: 

the concept of the MHD equilibrium [4, 5] of magnetic traps, the concept of the Energy Principle [6, 

7], basic types of ideal instabilities etc. Ideal MHD theory developed further in the ways of creation of 

more complicated models. In addition to the analytical approach, based on the expansion of the MHD 

equations on some small parameters, computer codes are widely used, allowing numerical solutions to 

the problems without assuming the smallness of these parameters. 

Ideal MHD theory describes only a limited number of physical effects arising in thermonuclear 

plasmas. Other theories have been developed, partially on the basis of the ideal MHD, the resistive 
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MHD for example. Nevertheless, ideal MHD theory is still under development and its applications are 

far from being completed. 

1.3 The motivation and the goals of the present work 
 

Ideal MHD studies are used extensively, in particular for the design of new experiments, like the 

ITER-FEAT experiments [2]. It was also used to design the TCV experiment almost 20 years ago [8]. 

These studies are useful because ideal MHD is known to set the maximum achievable beta value that 

can be reached for given current and pressure profiles, and given plasma boundary shape. The actual 

beta values reached in present experiments are often below the ideal limit. This is sometimes because 

of the lack of heating power, sometimes because of non-ideal MHD effects and sometimes because the 

ideal limit is lower than expected. However there has never been a systematic study of the relevance of 

ideal MHD calculations for the present TCV experiments. This is useful first to qualify if the design 

studies had some predictive merits. It is also useful to understand the present unstable modes which 

limits the TCV performances. Finally it is useful to know when ideal MHD cannot explain the 

measurements and non-ideal effects need to be included. 

The main study relates to the internal kink mode, which is responsible for periodic relaxations of the 

central temperature and current profile (see [9] and references therein). This cause for the trigger of 

this mode is also important because it can also destabilize other modes, in particular the neoclassical 

tearing modes [10], which can degrade the overall plasma performance [11]. The internal kink has 

been studied extensively, in particular with analytical work [for example in 12, 13, 14, 15, 16]. 

However the numerical analyses have not been systematic, in particular concerning the dependence on 

shaping parameters. This is why we have calculated numerically the growth rate of the internal kink 

mode for a wide variety of plasma elongation, triangularity and aspect ratio. We also compare with 

analytical results and show that they are not always applicable for present tokamak parameters. This is 

why we also propose a formula which is obtained by fitting the numerical results, in order to help 

rapid evaluation of the internal kink growth rate. 

We have also calculated the effects of higher order change in the plasma shape on the external kink 

mode stability at high elongation. This was required because TCV experiments have shown that it is 

difficult to find stable plasmas for elongations larger than about 2.2-2.4. Such results are in agreement 

with the design studies [8]. The analysis of the current limit of highly elongated plasmas varying the 

triangularity and squareness has enabled the development of optimised shapes. This has allowed TCV 

to reach elongation of 2.8 and a normalized current of 3.9 [MA/mT]. This study confirms the 

predictive capabilities of ideal MHD. 

Finally an important subject of experimental studies in TCV deal with advanced scenarios. These 

scenarios are related to obtaining internal transport barriers capable of improving both the energy and 
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particle confinement properties [17, 18]. These scenarios, in particular on TCV, are related to non-

monotonic current density profiles [19, 20, 21, 22 and references therein]. Such scenarios are known 

as reversed shear plasmas. It is known that such current profiles significantly change the ideal beta 

limit properties [for example 23, 24, 25]. However no systematic studies of the ideal limit of TCV 

advanced scenarios have been performed so far. The present work has analysed specific TCV 

discharges and shows that the observed disruptions are due to the ideal beta limit. In addition we have 

analysed the variation of the beta limit on the value and position of the minimum safety factor, the 

pressure gradient and the total current in order to describe the expected operational domain of TCV 

experiments with internal transport barriers. This study is also of interest to the many tokamaks which 

develop plasmas with non-monotonic current density. The latter is required in order to develop steady-

state scenarios for fusion tokamaks [17, 18].  

 
 

1.4 The organization of the work 
 

The present work is organized in the following way. 

Chapter 2 describes the ideal MHD model, its basic assumptions, validity, main methods of analytical 

analysis and their applications. The tokamak equilibrium and some results on the ideal MHD stability 

of the tokamak plasmas are presented with the emphasis on the internal kink mode stability. The 

analytical expansions that consider the plasma shaping are given and the roles of various terms are 

discussed. 

Chapter 3 is devoted to the numerical calculations of the MHD stability and to the MHD stability code 

KINX. The calculations schemes that were used are also discussed. 

Chapter 4 describes the results obtained for the ideal internal kink stability, including the analytical 

and numerical studies along with the experimental TCV data on the plasma shape variations. 

The theoretical and experimental results are compared and an approximative scaling for the ideal 

internal kink growth rate based on the numerical results is presented. 

Chapter 5 presents the contribution of the ideal MHD calculations for various shapes and very high 

elongations to the analysis and optimization of TCV experiments. 

Chapter 6 presents the TCV experiments with internal transport barrier and non-monotonic current 

density profiles and it is shown that the profiles at the disruption are consistent with the ideal MHD 

limit. The dependence of the ideal MHD limit of these scenarios on the position of the barrier 

(maximum plasma pressure gradient) and of the minimum safety factor is also presented. 

The summary and conclusions are presented in the Chapter 7. 
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Chapter 2. The linear ideal MHD model 
 
 

The ideal MHD model is presented in this chapter along with the basic predictions of this model on the 

ideal internal and external mode stability in tokamaks. The MHD system of equations is obtained by 

neglecting the electron inertia in the collision dominated plasma, thus providing the single fluid 

description of the plasma. Using the ideal MHD equations, it is possible to identify the major stability 

qualities of different types of plasma configurations, from purely abstract and simple models to more 

complicated ones, close to real experimental plasmas. 

 

2.1 Ideal MHD: formulation, assumptions, validity 
 
 
The equations that form the basis of the ideal MHD are given by the continuity equation, the 

momentum equation, the equation of state and the Maxwell equations: 

 
 

(2.1) 
 
 
 

(2.2) 
 
 
 

(2.3) 
 
 
 

(2.4) 
 
 

(2.5) 
 
 

(2.6) 
 
 

(2.7) 
 
 

where E is the electric field, B the magnetic field, J the current density, ρ the mass density, v the fluid 

velocity, p the pressure, Γ = 5/3 and d / dt = ∂ / ∂t + v⋅∇ is the convective derivative. 

p
dt

d ∇×= -BJ
vρ

0=







Γρ

p

dt

d

0=×+ BvE

t∂
∂−=×∇ B

E

JB 0µ=×∇

0=⋅∇ B

0=⋅∇+
∂
∂

vρρ
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This system of equations can be derived from the Maxwell equations and the general kinetic 

Boltzmann equations. The full derivation of the MHD equations itself is not the matter of the present 

work. It can be found for example in [26]. Nevertheless it is useful to list the assumptions, relevant to 

the MHD equations: 

• The plasma is fully ionized and consists of negative electrons and positive ions of hydrogen or 

 isotopes (H, D, T); 

• The low-frequency limit of Maxwell equations is considered, formally by letting ε0 → 0. 

Thus the displacement current ε0 ∂E/∂t and the net charge ε0 ∇⋅E are neglected. As a result, the phase 

velocities of electromagnetic waves have to be much slower than the speed of light, ω/k << c and the 

characteristic thermal velocities are limited to non-relativistic velocities, VTe, VTi << c, VTα ≡ 

(2Tα/mα)1/2. The plasma is considered quasineutral  

ni = ne ≡ n      (2.8) 

 

This requires that the macroscopic charge separation that can develop in the low-frequency 

phenomena is rapidly compensated by electrons, keeping the plasma in local quasineutrality. 

• The electron inertia is neglected formally by letting me→ 0 in the Maxwell equations. To satisfy 

 this condition, the consideration is limited to frequencies smaller than the electron plasma 

 frequency, ωpe= (n0e
2/meε0)

1/2and the electron cyclotron frequency, ωce = eB/me and to the scale 

 lengths longer than the Debye length λD =VTe/ωpe and the electron Larmor radius, rLe= VTe/ωce.  

• The plasma is considered as a single fluid by the following formal procedures: 

 - As the mass of electrons is neglected, the mass density of the single fluid becomes 

 

  ρ = min       (2.9) 

 

 - The momentum of the fluid is carried by the ions, so that the fluid velocity v corresponds to the 

 ion velocity vi. 

 - The current density is proportional to the difference in velocity between electrons and ions: 

 

J = en (vi – ve)            (2.10) 

 - The total plasma pressure and temperature are defined as follows: 

 

p = nT = pe + pi            (2.11) 

 

T = Te + Ti          (2.12) 
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• The plasma is dominated by collisions. This means that the electron and ion distribution 

 functions are nearly Maxwellian and the pressure is isotropic. It is important to mention that this 

 condition is sufficient for creating a closed system of equations and no other assumptions 

 about the character of collisions is required for that. To satisfy this condition, the considerations 

 have to be limited to macroscopic phenomena, where the characteristic times have to be 

 sufficiently long to allow the collisions to make the distribution function nearly Maxwellian and 

 whose characteristic lengths have to be longer than the mean free path of the plasma particles. 

 This can be expressed as follows: 

ωτii ~ VTiτii /a << 1         (2.13) 

 

ωτee ~ (me/mi)
1/2 VTiτii /a << 1             (2.14) 

 

 where τii is the ion-ion collision time, τee ~ (me/mi)
1/2τii, at Te ~ Ti, is the electron-electron 

 collision time, ω ~ VTi /a is the characteristic frequency of the MHD phenomena, a is the 

 characteristic plasma dimension. Since (me/mi)
1/2 << 1, it is clear that (2.14) is fulfilled if (2.13) 

 is satisfied. 

• Ideal Ohm’s law has to be satisfied. This implies that: 

 - the MHD frequencies are considered much slower than the ion gyro-frequency, or, similarly, 

 the ion Larmor radius is much smaller than the macroscopic plasma dimension: 

 

ω/ωci ~ rLi/a << 1;                     (2.15) 

 

 - the macroscopic plasma dimension a is large enough and the resistive diffusion time is long 

 compared to the characteristic MHD time, this implies that 

 

12
21

<<)
a

r
(

)m/m( Li

ii

/
ie

ωτ
      (2.16) 

 

• The energy equilibration time has to be longer than the momentum exchange time, implying that 

 

1
21

<<








a

V

m

m iiTi

/

e

i τ
      (2.17) 
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The assumptions required for the formulation of the ideal MHD equations define the formal validity 

range of the ideal MHD model. Generally speaking, they lead to three basic requirements: 

- high collisionality; 

- characteristic plasma size much greater than the ion Larmor radius;        

- large plasma size, so that resistive diffusion is negligible. 

These requirements are restrictive, and they are not fulfilled in all achievable plasmas. Let us consider 

the fusion plasmas that represent the greatest interest. The formal MHD validity conditions for 

deuterium plasma, formulated in terms of the density n and temperature T, ratio of plasma pressure to 

magnetic pressure βt ≡ 2µ0nT/B2  and plasma size a are given by: 

 

      3.0 × 103 (T2/an) << 1 

      2.3 × 10-2 (βt/na2)1/2 << 1        (2.18) 

      1.8 × 10-7βt/aT2 << 1, 

 

when a is expressed in meters, T in keV, n in 1020 m-3, and the Coulomb logarithm is set to 15. 

Let us substitute with the characteristic parameters for the devices  TCV and ITER-FEAT [2]. 

 

TCV, a typical experiment with electron cyclotron resonance heating and current drive: 

T=Ti ≈ 0.5 keV, a = 0.24 m, n ≈1.5×1019 m-3, β ≈ 0.005 (parameters of ohmic low density plasmas): 

 

         2.1×104 >> 1 

     1.75×10-2 << 1           (2.19a) 

         1.5×10-8 << 1 

 

ITER-FEAT, typical conditions: T ≈ 20 keV, a = 2.0 m, n ≈1.0×1020 m-3, β ≈ 0.035:    

 

          6.0×105 >> 1 

     2.2×10-3 << 1         (2.19b)  

         7.9×10-12 << 1 

 

It is clearly seen that the requirement of high collisionality is not satisfied in present tokamak 

experiments and it will not be satisfied in fusion plasmas (first conditions in (2.19a) and (2.19b)). 

Nevertheless, during many years of fusion researches, the ideal MHD theory was successfully used to 

explain some important phenomena in fusion-grade plasmas. This is because different ideal MHD 
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equations in (2.1 – 2.7) have different validity ranges and the parts of the model that imply the high 

collisionality are not determinant in the description of most macroscopic plasma phenomena. 

 

2.2 The plasma equilibrium. Grad-Shafranov equation. Tokamak 

 

2.2.1 The plasma equilibrium: basic considerations 
 
 

We consider static equilibria, where the velocity v and its derivative dv/dt are set to zero.  Thus, the 

MHD equations become: 

                          (2.20) 

 

                   (2.21) 

 
           (2.22) 

 

These equations show that the plasma pressure gradient force ∇p is balanced by the magnetic force 

J×B in the equilibrium. The magnetic trap has at least to satisfy these equations in order to be able to 

confine the plasma. Another important condition is the stability of the equilibrium in the trap against 

different kinds of distortions, as described in the next section. 

According to the ideal MHD equations, the plasma particles can freely move along the magnetic field 

lines. If the magnetic field lines leave the plasma, the particles, following them, will also leave the 

plasma, thus the plasma will disappear very soon. To avoid this, the magnetic field lines have to be 

contained inside the plasma. The simplest configuration that has this property is the torus. In the tore, 

the magnetic field lines do not leave the plasma and the losses in such a configuration are due to 

diffusion of heat and particles across the magnetic field lines. The perpendicular thermal diffusivity 

could be very small, but in reality there are numerous processes, like particle drift, instabilities of 

different kinds, convection etc, that enhance the losses of heat and particles. To close the most 

important channels of leak, the particle drifts, caused by various forces, the magnetic field lines have 

not only to be enclosed inside the plasma, but also they have to wind around the tore, going from the 

outer side to the inner side, thus they are twisted in both toroidal and poloidal directions. 

From equation (2.20) one can see that 

 

[ ] 0=×⋅=∇⋅ BJBB p       (2.23) 

[ ] 0=×⋅=∇⋅ BJJJ p            (2.24) 

p∇=× BJ

JB 0µ=×∇

0=⋅∇ B
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It follows that the magnetic lines lie on the p=const surfaces and the current lines are also following 

these surfaces. The magnetic field lines are turning around the torus within a magnetic surface. If the 

magnetic field line closes on itself after a rational number of toroidal turns, this surface is called a 

rational surface, since the ratio of the number of toroidal rotations to the number of poloidal rotations 

after which the field line closes on itself is a rational number. If the field lines do not close, then they 

cover the entire magnetic surface, which corresponds to ergodic surfaces. Most of magnetic surfaces in 

the configurations of interest are ergodic, but the rational surfaces are of great importance for the 

plasma stability. 

2.2.2 Equilibrium of the axysimmetric plasma tore: the Grad-Shafranov 
equation 
 

The cornerstone of the MHD theory of toroidal systems is the Grad-Shafranov equation [4, 5], which 

describes the two-dimensional equilibrium of a toroidal axysimmetric plasma. This equation provides 

the basis for subsequent stability analysis. The derivation of the Grad-Shafranov equation is given here 

according to [26]. 

The following plasma configuration is considered: the plasma torus, assumed symmetric with respect 

to the vertical axis Z (Figure 2.1). (R, φ, Z) form a cylindrical right-handed coordinate system.  

 

Figure 2.1: The geometry of the axysimmetric toroidal equilibrium 

 

The axial symmetry of the system implies that ∂S/∂φ = 0, where S is any scalar. Therefore equation 

(2.22) can be written as 

0
1 =

∂
∂+

∂
∂=⋅∇

Z

B

R

)RB(

R
ZrB       (2.22’) 

This yields a stream function ψ   for the poloidal magnetic field: 

 

RR
B,

ZR
B Zr ∂

∂=
∂
∂−= ψψ 11

                (2.25) 
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where ψ = RAφ  and Aφ  is the toroidal component of vector potential. In other terms, 

 

φφφ ψ eB ,BeB ×∇=+=
R

B pp

1
with             (2.26) 

 

The stream function is related to the poloidal flux in the plasma, ψp 

 

S∫ ⋅=
S

B dppψ         (2.27) 

 

Let us choose the integration area S as the surface, lying in the Z=0 plane, extending from the 

magnetic axis R=Raxis to an arbitrary ψ  contour defined by ψ=ψ(Rb,0) as shown in Fig. 2.2. Then, 

 

πψψψπψπψπφψ
ψ

ψ

π

20022
1

20
0

0

2

0

=−==
∂
∂=== ∫ ∫∫ ∫ )),R(),R((d

RR
dRR)Z,R(BRdRd axisb

R

R

),R(

),R(

R

R

Zp

b

axis

b

axis

b

axis

    (2.28) 

 

The integration constant is chosen such that the poloidal flux is equal to zero at the magnetic axis: 

ψaxis=ψ(Raxis,0)=0. It is convenient to label the flux surfaces by ψ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The surface through which the poloidal flux ψp  passes (the ring in the Z=0 plane, 

contoured by dashed lines) 

 

The Grad-Shafranov equation is obtained from equations (2.20-2.22, 2.26). Substituting (2.26) into 

(2.21), the following expression for the current density is obtained: 

Z 

Raxis 

Rb 

 R 
 
 
Poloidal 
flux ψp 

ψ contours 
 
 
   ψ = ψ(Rb,0) 

The S 
surface 
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ψµ

µµ

φ

φφφφ

*
R

J

)RB(
R

J

∆−=

×∇+=

1

1

0

0 eeJ 0

      (2.29) 

 

where the elliptic operator ∆* is given by 

 

2

2

2
2 1

ZRRR
R

R
R*

∂
∂+









∂
∂

∂
∂=







∇⋅∇=∆ ψψψψ           (2.30) 

 

Then equations (2.26) and (2.29) are substituted into the momentum equation (2.20). This equation is 

decomposed in three components, along B, J and ∇ψ, normal to the flux surface. 

The B component gives: 

 0=∇×∇⋅=∇⋅ pp ψφeB       (2.31) 

 

 

 

This implies that p is a flux surface quantity,   

 

p=p(ψ)                (2.32) 

For the J component one obtains: 

 

0=∇×∇⋅=∇⋅ )RB(p φφ ψeJ      (2.33) 

 

and thus RBψ is also a flux surface quantity,  

 

RBψ= F(ψ)                 (2.34) 

 

F(ψ) is related to the net poloidal current flowing in between the plasma and the toroidal field coils. 

The current flowing through a surface lying in the Z=0 plane and extending out to an arbitrary ψ 

contour defined by ψ=ψ(Rb,0), equals 

∫ ∫∫ −==−=⋅=
π

ψπφ
2

0 0

20
bR

zp )(F)Z,R(dRRJddI SJp     (2.35) 
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The Grad-Shafranov equation can be obtained by substitution of equations (2.32) and (2.34) into the 

∇ψ component of the momentum equation, resulting in [26, p. 111] 

 

ψψ
µψ

d

dF
F

d

dp
R* −−=∆ 2

0       (2.36) 

               φφφψ eBeeB
R

F

R

F

R p +=+×∇= 1
     

     (2.37) 

φφφ ψ
ψ

ψψ
ψ

µ eBeeJ *
Rd

dF
*

Rd

dF

R p ∆−=∆−×∇= 111
0    (2.38) 

 

where p(ψ) and F(ψ) are two free functions, and φψ eB ×∇=
Rp

1
is the poloidal magnetic field. 

The Grad-Shafranov equation (2.36) is a second-order nonlinear partial differential equation 

describing axysimmetric toroidal equilibria. Different types of magnetic traps are described by this 

equation, depending on the choices of the two free functions p(ψ) and F(ψ) and of the boundary 

conditions. 

 

2.2.3. The tokamak. Conception, figures of merit, aspect ratio and ordering 
 
 

The tokamak is the most advanced type of magnetic plasma trap at the moment. Most experimental 

devices for thermonuclear plasma researches are tokamaks and the project of the first international 

thermonuclear experimental reactor ITER is also based on the tokamak conception. 

The tokamak is a toroidal axysimmetric device, where the required confinement properties are 

obtained by combination of the toroidal magnetic field, produced by the toroidal coils surrounding the 

plasma, and the poloidal magnetic field produced by the current flowing inside the plasma torus. In the 

tokamak the plasma current is useful for the ohmic heating of the plasma, and it is required for the 

creation of a stable configuration of magnetic fields. Without the poloidal magnetic field of the plasma 

current the E×B drift would rapidly throw out the plasma to the wall. This current is usually created by 

the inductive effect, and the sustainment of a constant plasma current requires a constant increase or 

decrease of the current in the inductive coils (the primary current). Therefore, the tokamak is only able 

to work periodically, and breaks are required between pulses. Efforts are now devoted to the non-

inductive sustainment of the plasma current, in order to increase the length of plasma discharges in 

tokamaks, up to steady-state operations. 

The tokamak is presented schematically in Figure 2.3. 
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Figure 2.3 Basic elements of a tokamak  

 

It is useful to introduce here some plasma parameters that will be used later. 

The toroidal coordinate system r, θ, φ (Figure 2.1) is very convenient for the description of tokamak 

geometry, including the main shaping terms [27] 

 

θκ
θδθ

sinrZ

))sincos(rRR

=
++= 0       (2.39) 

 

This equation defines the shape of flux surfaces, ψ = const. The trajectory of the magnetic field line is 

described by 

p

p

B

dl

B

Rd =
φ

φ
           (2.40) 

 

where dlp={(dr)2+(r dθ)2}1/2 is the poloidal arc length and  

R
)BB(B /

rp

ψ
θ

∇
=+= 2122             (2.41) 

 

is the poloidal magnetic field. 
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The safety factor that describes the ratio of poloidal to toroidal rotations of the magnetic field line on 

the magnetic surface is defined as 

∫==
pBR

dlp)(F

d

d
)(q

22π
ψ

θ
φψ      (2.42) 

where the integral is taken on the flux surface where the magnetic field lines lie, defined by (2.40). 

The magnetic shear is given by 

   
ψρ

ρψ
d

dq

qq

'q

'V

V
)(s =















= 2       (2.43) 

 

where V is the flux surface volume, ρ represents the radial coordinate and the prime means 

differentiation with respect to ψ. The magnetic shear is very important for the plasma stability, as it 

will be shown later. The “toroidal beta”, the ratio of the plasma pressure and the magnetic pressure is 

given by 

 

2
0

02

B

p
t

µ
β =        (2.44) 

where  

∫=
0

00

1
V

dV)V(p
V

p       (2.45) 

 

is the volume average plasma pressure, V0=V(ψb) and ψb is the value of ψ at the plasma boundary 

The poloidal beta is defined as 

2
02

p
p B

pµ
β =       (2.46) 

 

where pB is an average poloidal magnetic field. 

The so-called “beta Bussac”, the key value for the stability of the ideal internal kink mode, as it will be 

discussed later, is given by 

 

1

2

1102

p
bu B

)pp( −
=

µ
β      (2.47) 

 

where p1 is the plasma pressure on the magnetic surface where q(ψ1) = 1, 
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∫∫ ==
11

0101
1

11
ψ

ψd'pV
V

dV)V(p
V

p
V

    (2.48) 

 

is the average plasma pressure inside the q = 1 surface, V1 being the volume inside the q = 1 surface 

and
1pB is the average poloidal magnetic field at  the q = 1 surface. 

One of the most important parameters of a tokamak is the aspect ratio 

a

R
A 0≡        (2.49) 

where R0 and a are the major and minor radii of the plasma tore, respectively. Often it is more 

convenient to use the inverse aspect ratio, 

 
0R

a≡ε               (2.50) 

The  major plasma parameters are of the following orders with respect to ε in present tokamaks: 

 

ε
φ

~
B

Bp       (2.51) 

2
2
02 εµβ
φ

~
B

p
~t      (2.52) 

1
2

2
0 ~

B

p
~

p
p

µβ          (2.53) 

1~
RB

rB
~q

p

φ       (2.54) 

 

The Grad-Shafranov equation can not be solved in quadratures in the general tokamak case. There are 

some “standard” equilibria that can be solved analytically [10, 28] and are used, for example, for 

testing the computer codes that solve the Grad-Shafranov equation numerically. Analytically, this 

equation is usually solved by expansion of basic values on small parameters that exist in the tokamak 

plasma. Corresponding linearized equations are then solved analytically. The solution is thus obtained 

as a sum of terms, corresponding to different orders of these small parameters. The most important 

small parameter is the inverse aspect ratio ε. Depending on the model, expansion on other small 

parameters can be combined with the expansion on ε. 

The early generation of tokamaks had ε ~ 0.1 and it was reasonable to consider this parameter as 

small. However, more recent tokamak experiments demonstrate the trend to increasing ε, mostly 

because of better confinement and stability properties that such configurations have. Tokamaks like 
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TCV have ε ~ 0.3 and the recently constructed tight aspect ratio tokamak MAST (Culham 

Laboratories, UK) and NSTX (Princeton Plasma Physics Laboratory, US) have inverse aspect ratios 

around 0.7 - 0.8, which clearly can not be considered as small anymore. The theory of many physical 

phenomena, nevertheless, is developed under the classical consideration of small and even moderate ε 

and therefore the question of the validity of these theoretical predictions in the case of high ε is 

important. 

 

2.3 Ideal MHD stability 
 

The MHD equilibrium is a state where the forces that act on the system are completely balanced. The 

perturbations of this state that occur inevitably in real systems change the force balance. The  

evolution of the equilibrium depends on the behavior of these perturbed forces that can either restore 

the initial equilibrium state or enhance the perturbations, leading to the partial or complete destruction 

of the plasma confinement. The instabilities, described by the ideal MHD theory, are very dangerous 

because they develop on the ideal MHD time scale, which is of the order of microseconds. Thus, the 

ideal MHD stability is a necessary condition of the good performance of the magnetic plasma trap. 

Different approaches to the task of determination of the ideal MHD stability of the plasma equilibrium 

will be shortly considered below. 

     

 2.3.1 Normal mode formulation. Eigenvalue problem 
 
Following the description in [26], one can formulate the linear stability equations by assuming that the 

deviations from the equilibrium state are exponential and can be expressed as 

tie)(Q)t,(Q
~ ω−= rr 11             (2.55) 

 

where 1Q
~

represents a small perturbation about the equilibrium value 0Q , such that 101 <<Q/Q
~

. 

If Im(ω) ≤ 0, the system is exponentially stable and (2.55) describes periodical oscillations around the 

equilibrium state. If Im(ω) > 0, then the initial deviation from the equilibrium increases exponentially, 

so the system is exponentially unstable. 

Under the assumption that, as other perturbed values, ti)e(t)(
~ ω−= rξr,ξ , equations (2.1, 2.3, 2.5) 

become 

      ξ)( 01 ρρ ⋅−∇=  

          ξξ ⋅∇−∇⋅−= 001 ppp γ          (2.56) 

)B(ξBQ 0××∇=≡ 1  
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Substitution of these expressions into (2.2) gives [26] 

 

     )(ξF=− ξρω 0
2 ,         (2.57) 

where 

 

  ξ)(ξBQ)(Q)B(ξF 0000 ⋅∇+∇⋅∇+××∇+××∇= pp)( γ
µµ 00

11
      (2.58) 

 

The equation (2.57) gives the normal-mode formulation of the ideal MHD stability problem. This 

equation can be interpreted as the eigenvalue problem for the eigenvalue ω2. This approach is often 

implemented in the linear stability numerical codes (see the next chapter). 

It is important to note that the operator )(ξF  is self-adjoint, i.e. [29] 

 

    rηFξrξFη d)(d)( ∫∫ ⋅=⋅          (2.59) 

 

This property of the operator )(ξF  is very useful. For example, it means that the eigenvalues ω2 of 

equation (2.57) are real. This can be seen by integrating the dot product of  equation (2.57) with ξ*(r) 

over the plasma volume: 

 

    ∫∫ ⋅= rξFξ-rξ * d)(d22 ρω          (2.60) 

 

Then integrating the dot product of the vector ξ (r) with the complex conjugate of (2.57): 

 

    ∫∫ ⋅= rξFξ-rξ * d)(d* 22 ρω          (2.61) 

 

Subtracting (2.61) from (2.60), one obtains for any displacement ξ 

 

( ) ( ) 0222 =⋅−⋅=⋅−⋅=− ∫∫∫∫∫ rξFξ-rξFξ-rξFξ-rξFξ-rξ **** d)(d)(d)(d)(d)( * ρωω      (2.62) 

Thus, 
22 *ωω = and ω2 is real. This guarantees that ω is either purely real, when ω2 > 0 and equation 

(2.55) describes the oscillations around the equilibrium or ω is purely imaginary, when ω2 < 0 and 

(2.55) describes exponential growth. The transition from stability to instability occurs at ω2 = 0. 
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The solutions of equation (2.57) gives a spectrum of eigenvalues. Typically, the spectrum consists of 

discrete negative unstable modes, if they exist, and of both discrete modes and continua in the 

positive, stable range [30, 31, 32]. The most negative eigenvalue ω2 < 0, if present, is the most 

unstable mode. In this case 22Im ωωγ −== )( gives the mode growth rate. 

 2.3.2 The potential energy variation and the energy principle 

 
The equation (2.57) has a direct relation with the change of potential energy δW of the system, 

associated with the perturbation ξ. δW can be obtained by integrating the dot product of  equation 

(2.57) and ξ* over the plasma volume: 

            

),(Kdpp
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ξξrξ)(ξBQ)(Q)B(ξ-
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11
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2
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⋅∇+∇⋅∇+××∇+××∇⋅=

=⋅−=

∫

∫
        (2.63) 

 

where ∫−= rξξξ d),(K * 2

2

1 ρ  is proportional to the kinetic energy of the plasma. 

δW can be interpreted as the work done against the force )(ξF , when the plasma displaces by ξ.  

It can be shown accurately [6] that it is necessary and sufficient that  

 

    0≥),(W * ξξδ                 (2.64) 

 

for all possible displacements ξ, for the plasma equilibrium to be stable. In other words, if for all 

displacements the minimum variation of the potential energy is positive, the equilibrium is stable, but 

if it is negative for a displacement, then the equilibrium is unstable. This is called the energy principle 

and is widely used for analysis of the ideal MHD stability of the plasma equilibria of different kinds. 

 

 2.3.3 Extended energy principle. Basic types of ideal MHD instabilities. 

External and internal kink modes 

 
There exist a variety of ideal MHD instabilities that can be unstable in the plasma. They can be 

classified by the main driving mechanism and by the type of plasma displacement, especially by the 

presence or absence of the plasma boundary perturbation. 
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Equations (2.57, 2.58) describe the plasma, directly surrounded by a conducting wall or separated 

from the wall by a vacuum region. In the first case the boundary condition is evident: the plasma 

cannot move across the wall, 

     0=⋅
wr

ξn           (2.65) 

 

where rw is the wall position and n is the normal vector of the plasma surface.  Thus, in this case 

ww
|| rr
ξξ = . The unstable modes in such configurations do not disturb the plasma boundary and 

therefore they are called internal modes. If there is vacuum between the wall and the plasma, then the 

mode can disturb the plasma boundary. Such modes are denoted as external modes if they become 

stable when the wall is on the plasma. In this case the energy principle has to be reformulated, 

including the influence of the vacuum and plasma-vacuum interface [26]. Another distinction is often 

used between pressure driven and current driven modes. Upon neglecting surface-vacuum and vacuum 

volume terms, this is seen by re-writing δW as follows [33, 34]: 

∫ 
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δ    (2.66) 

 

where κ ≡ (b⋅∇) b is the field line curvature, Q⊥ is the parallel component of Q, J0|| is the parallel 

component of J0. The terms in (2.66) have different physical meanings and describe the various 

factors determining the equilibrium stability. The term |Q⊥|2 is the energy required to bend the 

magnetic field lines. The second term represents the energy required to compress the magnetic field. 

The third term corresponds to the energy of plasma compression. These three terms are always 

positive, i.e. stabilizing. The fourth term is proportional to ∇p0, the gradient of the plasma pressure. 

This term can be negative and it can be shown that generally the high pressure gradient is a 

destabilizing factor [34]. The modes, where this term is predominating, are called pressure-driven 

modes. They can exist even if there are no parallel currents in the plasma, because they are driven by 

perpendicular currents (∇p0 ~ J0⊥ × B0). The most important pressure-driven modes are interchange 

modes and ballooning modes. 

The last term is proportional to J0|| and is negative. The modes that are driven by this term can exist 

even in zero-pressure force-free plasma with parallel current. Among these current-driven modes,  the 

modes with long parallel wavelengths and macroscopic perpendicular wavelengths (k||/k⊥ << 1, k⊥a~1) 

are the most dangerous and are called kink modes. Depending on the perturbation of the plasma 

boundary, they can be divided into internal kink modes and external kink modes. 
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The behavior of these modes is the subject of the present work and will be analyzed in more details 

below. It is important to mention that the division into pressure-driven and current-driven modes is 

rather academical. In realistic cases, both driving mechanisms are present and have to be taken into 

account. 

 

 2.4 The ideal kink mode stability: analytical approach 

 

Here the main aspects of the stability of the internal and external kink modes, representing the greatest 

interest for the present work, will be discussed. 

 

 2.4.1 The internal kink mode in a cylindrical “straight” tokamak 

 

To understand the main assumptions used to obtain an analytical formulation of the ideal internal kink 

mode, it is useful to use the result obtained in a straight tokamak. In such a simple geometry one can 

calculate the first contribution to the potential energy [26, p.340]. Since we are ultimately interested in 

the growth rate Ŵ
sa δπγτ
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and
0

1

R

r=ε , we discuss the order of the various contributions with respect to the normalized potential 

energy Ŵδ . It is important to note that W0 ~ O(ε2) which is why Ŵδ terms of order O(ε2) here 

correspond to O(ε4) in Ref. [26] for example. The first non-vanishing term is of 0th order in this 

notation: 
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where ξ is the radial displacement. For m > 1 and arbitrary n both terms in (2.68) are positive and 

nonzero. Thus, 0εδŴ  > 0 and  these modes are stable. With m = 1, the mode is also stable if q increases 

with r and if nq0 > q0 > 1. If a q = 1 surface exists in the plasma, then it is possible to construct a trial 

function for ξ  that will reduce 0εδŴ to zero: a step function that equals zero outside the q = 1 surface 
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and equals ξ0 inside q = 1 surface. It jumps from 0 to ξ0 in a small vicinity δ → 0 of the q = 1 surface 

(Figure 2.4). This special behavior of the m = 1 mode is caused by the coupling between the m = 1 

poloidal structure of the mode and  the poloidal curvature of plasma. 

 

Figure 2.4: The”top-hat” radial displacement function ξ  for the internal kink mode m = 1 in a 

“straight” tokamak 

 

Since 0εδŴ =0, the higher order expansion terms determine the mode stability, the next non-vanishing 

term being of  order ε2 [35]: 
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where r1 is the location of the q = 1 surface (see Fig. 2.4).  It is important to mention that contributions 

from both pressure gradient and parallel current are present and are negative, i.e. destabilizing. Thus, 

in the case of the “straight” tokamak the m = 1 mode is unstable with Ŵδ ~ ε2. The “straight” tokamak 

model, although useful for understanding the concepts of the ideal MHD stability of a tokamak, does 

not include important effects, arising in the realistic toroidal configurations, where the contribution 

(2.69) disappears in the most important case of n = 1. The toroidal effects will be discussed in the 

Section 2.4.3. 
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Figure 2.5 The m=1 kink mode 

 

2.4.2 The external kink mode 

 

The external kink modes are generally more unstable and mode dangerous than the internal modes, 

because their stability is determined by the ε0 contribution to γτa and because they alter the plasma up 

to the edge boundary. 

In the case of the external mode, Ŵδ  consists of the plasma, surface and vacuum terms 

 

VSF ŴŴŴŴ δδδδ ++=          (2.70) 

 

Assuming the conducting wall is at infinity, the first non-vanishing Ŵδ contribution is of the order ε0 

[26, p.342]: 
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The first term, corresponding to the fixed-boundary case (2.68), is always positive and nonzero and 

thus, the external mode stability is determined by the second term. Considering qa>0, m > 0 and 

arbitrary n, which does not affect the generality of the consideration, one can see that the second term 

is positive and the mode is stable if 
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aqm

n 1>        (2.72) 

or if 

0<
m

n
       (2.73) 

 

The mode can be unstable if and only if 

 

 
aqm

n 1
0 <<        (2.74) 

 

In the case of q increasing with the radius, as in tokamaks, this condition implies that the q = m/n 

surface lies outside the plasma, in the vacuum region. 

 

In the m = 1 case, the first term in (2.71) vanishes if the eigenfunction in plasma is ξ(r) = ξa = const. 

Such a choice is possible only for the external mode, because the internal mode requires that ξa = 0 

(2.65). The minimizing  eigenfunction is flat and does not depend on the q profile and thus, the 

stability is function of qa only: 
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For the most dangerous case, n = 1, the stability condition becomes 

 

qa > 1        (2.76) 

 

This criterion, named the Kruskal-Shafranov condition [36, 37], sets the limitation to the total toroidal 

current that can be created in the tokamak plasma with the circular cross-section: 
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2.4.3 The large aspect ratio tokamak: the role of toroidicity in the internal 

kink mode stability 

 
The next step towards the real plasma is the model of the large aspect ratio tokamak with circular 

cross-section. The stability of internal kink modes in such geometry was first analytically considered 

in [12]. Note that in the case of the toroidal tokamak the plasma represents a tore with the major radius 

R0 and the minor radius a. For the usual tokamak ordering and assuming that 
0R

a≡ε << 1, it was 

found after complicated calculations that in the case of the toroidal tokamak the term 2εδŴ becomes 

[12]: 

 tc Ŵ
n

Ŵ
n

Ŵ δδδ ε 22

11
12 +







 −=      (2.78) 

 

where cŴδ  is the contribution corresponding to the straight tokamak model, right-hand side of Eq. 

(2.69), rs being the radius of the surface where nq = 1. In the case of n = 1, 0
1

1 2 =






 −
n

 , thus this 

cylindrical contribution is completely cancelled by toroidal effects, even at ε → 0 , so that the 

remaining contribution is of toroidal origin. The reason for that is the matching between the n = 1 

toroidal mode structure with the toroidal curvature of the tokamak. 

tŴδ is the toroidal contribution and it is in general extremely complicated. It can be expressed 

analytically in the following particular case, assuming that 1
1 ε≤
a

r
and the shape of the q profile inside       

q = 1 surface defined as  























−∆−=

λ

1

11
r

r
q)r(q       (2.79) 

where  

01 qq −≡∆ .       (2.80) 

For a parabolic q profile (λ = 2) δWt becomes [12] 
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For n = 1, the most severe case, the term with Wc in (2.78) vanishes and (2.78) becomes  
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2 buqŴ βεδ ε       (2.82) 

 

Therefore the mode is stable if βbu is below some critical value  

 

    30
144
13

.crit ≈=β       (2.83) 

 

If n > 1, the picture is closer to the straight tokamak and at n  >>  1 it becomes identical to that model. 

The expression (2.82) represents a benchmark for all analytical and numerical calculations of the ideal 

internal kink mode stability researches. However this depends to a large part on the form of the q 

profile inside q = 1. Assuming a constant current density inside q = 1, it was shown in [38] that the 

critical βbu is much lower than (2.83). Furthermore, assuming that q0 is close to 1 such that ∆q ∼ ε2, 

equation (2.82) becomes O(ε4). This is why the next order term of order ε4 has been calculated in [13]: 
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2.4.4 The internal kink mode in a shaped large aspect ratio tokamak  

 
The minimization procedure, discussed in the example of the “straight” tokamak model is applied to 

more complex models. The shaped tokamak model, analyzed by numerous authors [14, 15, 39, 40] is 

of great interest for the present work, because the role of plasma shaping is considered here in details. 

The algebraic calculations, required for solving the equations that arise in this consideration are highly 

sophisticated and usually are performed with computational algebraic manipulations. They are mostly 

omitted here. The initial considerations and the basic results on the mode stability that are of interest 

for us are discussed. It is important to note that only the n=1 mode stability will be discussed here. 

The conventional notation of the shaped tokamak geometry is presented schematically on Fig. 2.6. 

Most important shaping parameters are the plasma elongation κ  and triangularity δ. For the circular 

tokamak κ = 1, δ = 0. It is often convenient to use a measure of elongation that equals to zero for the 

circular tokamak and can be used as an expansion parameter, the ellipcity: 

 

1

1
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−≡

κ
κ

e       (2.85) 

 

In most cases it has been assumed that κ ∼ 1, which yields  
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2

1−= κ
e       (2.86) 

 

We will also look at very high values of κ and this last approximation cannot be used. 

 

 

Figure 2.6 The geometry of a shaped tokamak: the arbitrary flux surface 

      

Other plasma shape parameters, like quadraticity, etc, can also be introduced. The shaped tokamak 

plasma is considered here, described by the following general expressions for the flux surfaces        

[16, 40]: 

 

∑ −+∆−+=
n

)n( )ncos()r̂(S)r̂(cosr̂RR ωω 10     (2.87) 

∑ −−=
n

)n( )nsin()r̂(Ssinr̂Z ωω 1     (2.88) 

 

where ω is the angular variable, non-orthogonal to the minor radius r and R0 is the major radius of the 

magnetic axis, n ≥ 2. Note that r̂ is not strictly equivalent to r. The latter is usually derived as the 

average minor radius, as shown in Figure 2.6. However r̂  contains information about the elongation 

and is related to r with 

e

r
r̂

−
=

1
       (2.89) 

where e is given by (2.85). It is important not to employ (2.86) instead of (2.85) since (2.89) would 

then diverge for κ = 3. 

The Grad-Shafranov equation is solved assuming that the flux surfaces are described by equations 

(2.87, 2.88), thus the solution of the Grad-Shafranov equation gives the dependences of the Shafranov 

Z 

R 

δ r 

r r 

κ r 

R0  
∆ 
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shift ∆( r̂ ) and the shaping coefficients for the Fourier harmonics S(n)( r̂ ) on r̂ . According to [16] the 

shaping coefficients dependence on r̂ can be described as 

 

)â(S
â
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n
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      (2.90) 

 

The coefficients S(2) and S(3) and their relation with the conventional shaping parameters can be found 

in [40]: 
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      (2.92) 

(higher harmonics are omitted). The inverse aspect ratio is considered as a small parameter ε  << 1. 

The plasma current profile is considered to be the same as it was in the case of the circular tokamak, 

i.e. the q profile is described by (2.80) with λ = 2, ε~
a

r1  and ∆q ~ ε. The shaping parameters e and δ 

are considered of the order of ε. 

The non-circular geometry adds new terms to the δW expansion, and some terms, existing in the 

circular case, are modified. For instance, the Bussac term (2.82) becomes [9] 

 








 −−∆≅ 212
1 503032 bu)

a

r
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where 111 κrr = and κaa = , thus taking into account the volume effect in the effective minor 

radius. 

The plasma shaping gives rise to the quasicylindrical terms [14, 16, 39], existing in the case of the 

shaped straight tokamak. They depend on the shaping parameters κ and δ and have the following form 

for our conditions: 
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The term (2.94) is rather small, but the term (2.95) can become important. 
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There are also terms arising due to the combined effects of toroidicity and shaping. They were 

identified for the ideal internal kink mode in [15] and in our conditions become 
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The terms O(∆q2) have been neglected. The terms (2.96, 2.97) are often referred to as the Mercier-like 

terms, because they are identical with the potential energy terms in the expression for the Mercier 

stability criterion [14]. 

Thus, the whole expression for Ŵδ in the shaped large aspect ratio tokamak reads [41]: 

 








 −∆++






 −−∆+−+

+∆+∆−






 −+++






 −−∆=

)(
q

eˆ)(
q

eˆ

q
e

q)(
)(ˆ)

a

r
..(qˆŴ
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where )e/(ˆ −= 1εε and all the terms are evaluated at the q = 1 surface. It is important to note that 

according to (2.96) and (2.97) the plasma elongation is a strong destabilizing factor. The plasma 

triangularity δ in the term 2δδŴ (2.95) is stabilizing both when negative and positive, but in the term 

δεδ eŴ (2.97) it is stabilizing when positive and destabilizing when negative (it is assumed here that      

κ > 1). Thus, at given ∆q, κ > 1 and βbu, the dependence of Ŵδ on δ  is a quadratic parabola, displaced 

slightly to the negative side (Figure 2.7). 

Knowing ,Ŵδ  it is possible then to find the growth rate of the mode γ, normalized to the toroidal 

Alfven time [42, 43]: 

Ŵ
sA δπγτ

1

−=       (2.99) 

 

where the toroidal Alfven time is aA /R v03=τ , va is the Alfven velocity and s1 is the magnetic shear 

(2.43) on the q = 1 surface. 

The internal kink mode with m/n = 1/1 is the most unstable internal mode. It has a simple physical 

explanation: the top-hat shape of the corresponding displacement function (Fig. 2.4) means that this 

mode does not cause deformations of the plasma cross-section, but only of the toroidal bending of the 
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magnetic lines (Fig. 2.5). Thus, less energy is involved in the development of this instability and it 

occurs earlier than for other modes which deform the plasma cross-section.  

0  

 

 

Figure 2.7 The characteristic dependence of Ŵδ on the plasma triangularity (κ > 1) 

 

Experimentally, this mode is relatively benign and occurs periodically. At each crash, the profile tends 

to relax to flat profiles inside q = 1 and then builds up until it is unstable again [9, 44]. This leads to a 

sawtooth-like behavior of the soft X-ray measurements or of the central temperature [45]. This is why 

they are called sawtooth crashes. In experiments with large plasma current, the q = 1 radius is large 

and more than half of the plasma minor radius is affected by these sawtooth crashes. 

 

2. 5 The infernal mode 
 

Another important ideal MHD instability that can appear in the tokamak is the infernal mode, which 

represents the features of both kink and ballooning modes. This mode can become unstable in low 

shear conditions, where the q profile becomes flat or reversed in the plasma core. Such conditions are 

met in some prominent advanced confinement regimes, widely studied on the present-day tokamaks, 

including TCV. The infernal modes limit the plasma performance in these regimes. The numerical 

analysis of ideal MHD stability of such plasmas is presented in the Chapter 6, and here a short 

description of the theoretical basis of these modes is given. 

The infernal modes were firstly derived from the implementation of the ballooning modes theory to 

the low-shear configurations. Ballooning modes are pressure-driven MHD modes with short 

perpendicular wavelengths, localized in the low field side of the magnetic surfaces, where the 

magnetic lines curvature is unfavorable for the mode stability. 

εδ /

Ŵδ
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The classical ballooning theory [45, 46] was developed by Connor, Hastie and Taylor on the basis of 

the extended energy principle (2.66), assuming n >> 1. Finite (non-zero) shear was an important 

assumption for this theory, and the basic result was that the instability growth rate is decreasing 

linearly with 1/n. The growth rate is a maximum at 1/n = 0, so the n → ∞ limit provides the stability 

limit for the ballooning modes. 

If somewhere in the plasma the magnetic shear reaches zero, however, the theory [45, 46] does not 

work and modifications are required. In [47] Hastie and Taylor have presented the modified 

ballooning modes description of low shear plasmas, assuming as before n >> 1 and showing that the 

growth rate dependence on n becomes more complicated, oscillations on n appear and allowing that 

the highest instability growth rate can occur at finite n, and not at  n→ ∞, as in the monotonic high 

shear q profile case. This was also found by Dewar et al [48]. 

The next revision of the ballooning theory [23, 24] included the lower n > 1 and lower shear values 

into consideration. Cases were found that were unstable even if the modified ballooning theory of 

Hastie-Taylor predicted the complete stability. The term “infernal mode” was introduced [23] to 

describe these modes. It was shown that the low n ~ 1 modes may be also very unstable and may be 

more unstable than higher n modes. 

Another important step was done by analyzing the stability of reversed shear modes [24], showing that 

at qmin ~ 1 the low n infernal modes with n > 1 can be the most unstable ones. The n = 1 mode was still 

classified as the kink mode, and thus identified separately from the infernal mode. Let us note that at 

low n, the characteristic feature of classical high n ballooning modes, namely the localization in 

perpendicular direction that is a clear characteristic for n >> 1, vanishes and the low n modes become 

more global and kink mode-like. Nevertheless the mode retains prominent  localization on the outer 

magnetic surface side with unfavorable curvature. 

Subsequent work [49, 115] has also considered n = 1 modes in the infernal mode studies, noting that in 

some cases the internal  n = 1 mode can be the most unstable one even if there is no q = 1 surface in 

the plasma. 

The development of ballooning theory for reversed shear cases is also continued. Recent publications 

[51, 52] have shown that for reversed shear plasmas with internal transport barrier, the n >> 1 mode 

stability is optimized at low qmin values. We shall see this is not the case for n = 1 infernal modes 

(Chapter 6). 

Thus, historically the meaning of the term “infernal mode” has evolved, going from high, but finite n 

ballooning modes towards low n and even n = 1 modes, existing in the low or reversed shear plasma 

even in the absence of corresponding resonant surfaces. The latter meaning of infernal modes is 

referred in this work. That is, infernal modes are low n modes (n ≥ 1) that remain unstable even in the 

presence of the ideal wall on the plasma boundary. They have a ballooning characteristic and yet are 
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similar to external kink. They are both pressure and current driven. The analysis of the reversed shear 

plasmas stability in the Chapter 6 is devoted to the low n infernal modes which, as it can be seen, are 

the most unstable modes in the cases of interest. 

 

2.6 Conclusions 
 

The ideal MHD equations and some important applications of the ideal MHD theory were reviewed in 

this chapter, for instance, the concepts of the MHD equilibrium and stability. Several approaches to 

the problem of the stability of the magnetically confined plasmas in the MHD equilibrium were 

discussed and the formulations of these problems, used in the analytical and numerical stability 

analysis were introduced. Some important analytical solutions of the stability problem in different 

plasma models were presented and discussed, including the internal kink mode stability in the straight, 

circular toroidal and shaped toroidal tokamak and the external kink mode stability in the straight 

tokamak. 

The analytical approach, presented in this chapter, is based on some important assumptions, the most 

important of which is that ε is considered as a small parameter. As it was mentioned above, modern 

tokamaks have increasing ε, so the validity of these results for moderate and tight aspect ratio 

tokamaks has to be examined. It will be done by comparing the analytical results with the results of 

numerical simulations, described in following chapters. 
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Chapter 3. The numerical approach to the ideal MHD stability. 
The numerical code KINX. The organization of calculations. 
 
 
In this chapter we present numerical approaches to solving the ideal MHD equations and describe the 

computer codes and procedures, used for calculations of the ideal MHD stability of the tokamak 

plasmas. 

 

3.1. The ideal MHD stability: numerical approach. 
 
In the previous chapter the ideal MHD equations and different formulations of the MHD stability 

problem were introduced. As it was also described in the previous chapter, the MHD stability can be 

investigated analytically, which often requires some assumptions and simplifications that are not 

always satisfied in real plasmas. Another approach to the stability problem is the use of numerical 

codes, solving the MHD equations in a more general form than it can be done analytically. Numerous 

computer codes, for example KINX [53], ERATO [54], GATO [55], PEST [56], PEST 2 [57], DCON 

[58], MISHKA [59], etc. are developed for the ideal MHD stability analysis. The numerical approach 

will be demonstrated here on the basis of the stability code KINX, used throughout the work.  

3.1.1 The stability problem in the KINX code 
 

The code KINX solves the ideal MHD stability problem for axisymmetric plasmas in the eigenvalue 

formulation, described in the Chapter 2, Sections 2.3.2 – 2.3.3: 

 

),(K),(W ** ξξξξ 2ωδ =       (3.1) 

 

where δW is the change of potential energy of the system, associated with an arbitrary perturbation 

ti)e(t)( ω−= rξr,ξ  and ∫−= rξξξ d),(K * 2

2

1 ρ  is proportional to the kinetic energy of the plasma, 

related to this perturbation. The sign of ω2 (note that ω2 is necessarily real, see Section 2.3.1) 

determines the stability of the perturbation: if it is positive, then the configuration is stable and the 

perturbation will cause harmonic oscillations with the frequency ω. If it is negative, then the plasma 

configuration is unstable and the initial plasma perturbation will grow with the rate:  

    22Im ωωγ −== )(       (3.2) 

The displacement vector ξ(r) is projected as 
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where D is the vector orthogonal to the magnetic field: 

 

DB ×∇= ψ  ,      (3.4) 

 

B is the equilibrium magnetic field (Section 2.2.2, equation 2.37) andψ is the poloidal magnetic flux 

stream function (Section 2.2.2., equations 2.25-2.28). 

It is assumed that the plasma is surrounded by a vacuum region and by an ideally conducting wall 

outside the vacuum region (there is also a possibility to consider a resistive wall realized in the code 

version KINX-R, but it was not used in our work). Then δW can be represented as the sum of the 

plasma and vacuum contributions 

 

VP WWW δδδ +=       (3.5) 

 

and the kinetic energy is evidently present only in the plasma. 

In the plasma the potential energy variation is 
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where J=∇×B is the current density, Γ = 5/3 is the adiabatic index, p is the plasma pressure, VP is the 

plasma volume. The last term in (3.6) describes the plasma compressibility, which makes difference 

with the incompressible theory, presented in Chapter 2. This term is positively defined and therefore is 

always stabilizing. The plasma incompressibility condition 0ξ =⋅∇ can be imposed by setting Γ = 0. 

The kinetic energy K is given by 
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where ρP is the plasma density. 

In the vacuum region, surrounding the plasma the contribution to the potential energy is 
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dVW
VV

V ∫ ×∇= 2

2

1
Aδ       (3.8) 

 

where VV is the vacuum volume and A is the vector potential of the vacuum magnetic field 

perturbation δBV=∇×A. The pseudodisplacement ξv is introduced [60, 61] in the vacuum region, such 

that the perturbed vector potential in vacuum can be represented as 

 

 A=ξv×Bps        (3.9) 

 

where Bps is an artificial magnetic field, which does not coincide with the equilibrium vacuum 

magnetic field, but ensures the correctness of the representation (3.9). In this case the field Bps can be 

represented similarly to (3.3) and the problem for the vacuum region is represented in a way similar to 

the plasma region, providing the same convergence properties to the whole plasma+vacuum system. 

 

The boundary condition at the ideally conducting wall reads 

 

0=× An         (3.10) 

 

where n is the normal vector of the ideally conducting wall surface and at the plasma-vacuum 

interface it is defined by the tangential electric field continuity condition: 

 

B)(ξnAn ××=×        (3.11) 

 

where n is the normal vector to the plasma-vacuum boundary. Imposing also the continuity of the total 

pressure at the plasma-vacuum interface, these equations form the stability problem, solved by the 

KINX code.  

The displacement ξ can be represented as sum of the Fourier modes, corresponding to different 

toroidal wave numbers n, ξn einφ. In axisymmetric geometry, these modes are decoupled and the 

stability problem (3.1) becomes a set of separate two-dimensional eigenvalue problems for each ξn. 

It is important to mention that the code can be implemented in a wide range of plasma geometries, 

current density and pressure profiles, because the formulation of the stability problem does not set any 

condition on these parameters. In complicated geometries with separatrix or in presence of several 



 37 

magnetic axis the whole plasma cross-section is decomposed into a number of nested flux domains, 

and the stability task is solved separately for each of these domains. 

3.1.2 The numerical methods, used in the KINX code. 
 
 

The code KINX uses the finite elements method. Equation (3.1) is solved by the PAMERA [62] 

matrix solver. Detailed description of numerical methods is given in [62, 63]. 

The procedure of eigenvalue computation by the KINX code consists of the following steps: 

1. The grid (s,θ) of the size Ns×Nθ is set, and the initial displacement ξ with its derivatives is 

discretized on this grid, forming the column vector z. The hybrid finite elements method [64] is used 

for this goal. The displacement components ξD, ξB, ξψ and their derivatives are expanded using 

different basis functions, so that all terms in the potential energy functional (3.6) are constant in each 

(s,θ) grid mesh. The equation (3.1) then becomes an eigenvalue equation 

 

BzAz λ=         (3.12) 

 

where A and B are Hermitian matrices of the potential and kinetic energy of displacement normalized 

to square of Alfven frequency at the magnetic axis ωa
2 and λ=ω2/ωa

2. 

 

2. An initial eigenvalue guess ω0 is set and the eigenvalue shift 
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is performed. This corresponds to the matrix and eigenvalue shifts A = A - λ0 B, λ = λ - λ0. Then 

(3.12) can be rewritten as 

 

Bz
~

zA
~ λ=        (3.14) 

 

3. Equation (3.14) is solved by inverse vector iteration [65], using the PAMERA package. The 

equation (3.14) is rewritten as 

 

kk BzA
~ 11 −+ =υ       (3.15) 
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where 
k

k
kz

υ
υ=  and the initial guess z0=1 corresponds to the initial trial displacement. 

The iterations (3.15) continue until λ converges to the eigenvalue closest to λ0 with convergence 

criterion 

 

0λλελ −<∆ normPAM       (3.16) 

 

where ∆λ is the change of λ between iteration steps, λnorm is the normalized eigenvalue, obtained from 

normalization λnorm = 1/|z| and εPAM equals to 10-3 in our calculations. 

The eigenvalue is also estimated by the Rayleigh quotient [66]: 
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The difference |λR -λnorm| is a measure of the round-off error by A matrix inversion. The solution ξ is 

the eigenfunction, corresponding to the eigenvalue λ. 

 

4. The kinetic energy matrix B is positively definite and therefore the Cholesky decomposition [65] 

can be performed: B = RH R, where R is an upper triangular matrix with positive real diagonal values, 

and H is the Hermitian operator. With the vector transformation u=Rz one obtains by multiplying the 

equation (3.14) from the left by (R-1)H : 

 

IuuRAR u
H λ=−− 11 ~

)(       (3.18) 

 

where 11 ~
)( −− RAR H   is the diagonal matrix, consisting of eigenvalues of u, λu. According to the 

Sylvester’s law of inertia [67] the number of positive, negative and non-vanishing eigenvalues of A
~

 

and 11 ~
)( −− RAR H  is the same. Counting the negative entries in the matrix 11 ~

)( −− RAR H , one can find the 

number of solutions more unstable than the initial guess. Thus, changing the initial guess, one can find 

the largest negative eigenvalue, the most unstable mode. The initial guess is increased gradually from 

a very negative value towards zero, until the most unstable negative eigenvalue is found or the 

maximum (closest to zero) preset initial guess value is reached, and the equilibrium is considered as 

stable. 
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The code KINX uses as input the Grad-Shafranov equation solution on a quasi-polar grid, which is set 

by the 2D tensor ρij, related to the orthogonal coordinates (Rij, Zij) by the mapping: 
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     (3.19) 

 

where Rmag, Zmag specify the magnetic axis and Rbound, Zbound define the plasma boundary. Ns elements 

of constant i describe magnetic surfaces and Nθ elements of constant j describe straight radial lines. 

Such equilibrium mapping is produced by the code CAXE [68] which can use the equilibrium, 

calculated by the CHEASE code [27], as input. 

The code benchmarks are described in [53] in comparison with other numerical codes. In our work, a 

partial benchmarking was also carried out by comparing the growth rates of the ideal internal kink 

mode, calculated by the KINX code, with analytical results in the low aspect ratio case, where the 

analytical expansions are justified (see Chapter 4, Section 4.1.3). Good correspondence between 

analytical predictions and those of KINX in this important particular case confirms the correctness of 

the problem formulation and of the numerical method used in the code. 

 

3.2 General organization of the calculations 
 

The organization of the calculations is presented in the scheme 3.1. The typical task consists of 

scanning the plasma parameters like elongation, triangularity, aspect ratio, safety factor and beta for 

given current density and pressure profiles and, determining of the stability of these configurations in 

order to outline the influence of these parameters on the plasma stability. Other kind of tasks consisted 

of the analysis of experimental TCV equilibrium, reconstructed on the basis of TCV experimental 

measurements by the LIUQE code [69]. In both cases the plasma parameters, either set artificially or 

taken from the LIUQE equilibrium reconstitution, were used as input data for the CHEASE code. The 

CHEASE equilibrium after some mapping procedure was used as input for the CAXE code, and then 

the KINX stability calculations were performed by iteration on the initial guess value. 

Perl and Unix shell scripts were written for controlling the plasma parameter scan and the general flow 

of calculations, according to the scheme 3.1. These scripts collect basic input parameters and the 

eigenvalue and write them to the output file. These scripts allowed for example the scans of elongation 

and triangularity for the internal kink mode stability studies (Chapter 4) and the scans of normalized 

beta and qmin in the studies of the stability of reverse shear plasmas (Chapter 6). 
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CHEASE 

Input : plasma profiles, shape, aspect ratio (arbitrary or from TCV) 

 

 

 

 

Initial equilibrium calculation. 

Iterations, if some prescribed  
 

values have to be obtained 
 

CHEASE to CAXE interface 

 

Equilibrium recalculation. 

Setting the optimized    ←  Mesh parameters 

flux mesh for KINX calculations 

 

Search of the lowest negative      Wall position  

eigenvalue. Iterations with   ←  toroidal number n  

eigenvalue guess adaptation   eigenvalue guess   

 

 

 

Output: plasma parameters and the lowest negative eigenvalue, if unstable solution was found, 

stable otherwise. 

 

 

Schema 3.1 General calculations flow 

 

The calculations were performed on the IBM pSeries 650 server of CRPP. Typical calculation cycle 

CHEASE – CAXE – KINX takes 10-30 minutes, depending on the grid sizes and stability of the 

mode: stable configurations required more computing time, because in this case the initial eigenvalue 

guess has to pass all the way from initial value to the lowest absolute preset value. In unstable cases 

iterations were aborted, when the most unstable eigenvalue was found. 

CAXE 

KINX 

xpq2cxa 
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Chapter 4. The internal kink mode stability dependence 
on plasma shape parameters and inverse aspect ratio 
 

In this chapter the numerical studies of the internal ideal kink mode stability are presented and 

discussed. The dependence of the internal kink growth rate on beta Bussac, aspect ratio, plasma 

elongation and triangularity, according to the KINX calculations is analyzed in comparison with 

analytical formulae. The experimental studies of the sawtooth period dependence on plasma 

triangularity on TCV, inspired by numerical predictions, are presented. An empirical scaling formula 

is proposed, describing the dependence of the growth rate as obtained by KINX, on basic plasma 

parameters. Most of the results presented in this chapter can be found in [41]. 

 

4.1 Internal ideal kink mode stability: comparison of numerical and 
analytical predictions. 

 

4.1.1 Important plasma parameters 
 
 
According to the analytical theory (see equations 2.98 - 2.99), the ideal internal kink mode stability 

depends on following plasma parameters (the range of variation of these parameters in our simulations 

is also presented): 

 

• βbu: “beta Bussac”, the poloidal beta inside q=1 surface, see equation (2.49); 0 < βbu < 2 

• ε1 : inverse aspect ratio at the q=1 surface; 0.001 < ε1 < 0.3 

• ∆q = 1-q0 : q0 being the value of the safety factor on the plasma axis; 0.05 < ∆q < 0.3   

• s1: the magnetic shear at the q = 1 surface   0.01 < s1 < 1.4; 

• e1 = (κ1-1)/( κ1+1) the ellipcity of q = 1 surface   -0.1 < e1 < 0.6; usually the elongation κ1 is 

used  instead of e1, 0.8 < κ1 < 2.2; 

• δ1 the triangularity of the q =1 surface -0.3 < δ1 < 0.3; 

• 111 κrr = and aaa κ= average minor radius of the q = 1 surface and the plasma 

 boundary. 

 

It is important to note that the formula (2.98) was obtained assuming parabolic q profile, expressed by 

(2.80) with λ = 2 and r1/a << 1 . Different shape of q = 1 profile will lead to expression for the growth 

rate different from (2.98). In our numerical calculations, the parabolic profiles as well as other q 
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profiles were analyzed in order to estimate the role of the q profile shape on the ideal internal kink 

mode stability.  

The above parameters, determining the ideal internal kink mode stability, are internal plasma 

parameters, i.e. they are defined at the q = 1 surface or at the plasma axis. In experimental conditions 

these parameters are in most cases not measured and not known exactly, but they are reconstituted on 

the basis of the available experimental measurements. These parameters cannot be controlled directly. 

On the contrary, the external plasma parameters are well known, because they can be directly 

measured and controlled. 

To be able to compare our numerical results with the experimental data and to study the role of these 

external parameters, we have also saved these parameters with the growth rate in the output file: 

 

• βp  the total poloidal beta 0 < βp  < 1; 

• εa : inverse aspect ratio on the plasma boundary 0.012 < εa < 0.8; 

• ea = (κa-1)/( κa+1) the ellipcity of the plasma boundary; usually the plasma edge elongation 

 was used, 1.0 < κa < 3.0; 

• δa the triangularity of the plasma boundary -1.0 < δa < 1.0; 

• qa the edge plasma safety factor 2.2 < qa < 100 (in some exotic cases); 

 

The role of these parameters was studied with an emphasis on those that can be controlled in 

experimental conditions: edge aspect ratio εa, edge safety factor qa or the total plasma current Ip, 

current density profile, plasma boundary elongation κa and triangularity δa. These parameters 

determine the plasma equilibrium and, consequently, the values of other parameters. 

It is important to mention that while the input parameters of the plasma equilibrium can be changed 

independently, corresponding variations of the output parameters are correlated. For example, at 

constant edge plasma triangularity the value of δ1 evolves with elongation, and so does the value of 

shear at q = 1 surface, the aspect ratio at q = 1 surface and other parameters. Therefore, this contrasts 

with the analytical approach described in Chapter 2 where the role of each parameter can be analyzed 

independently. The latter is evidently less representative of experimental conditions. 

 

4.1.2 The dependence on βbu 
 

The “beta Bussac”, βbu, is the most important value determining the ideal internal kink mode stability. 

According to the analytical formula (2.34), the increase of βbu causes the increase of the destabilizing 
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effect of toroidicity, so the growth rate becomes more unstable with βbu. If the mode is stable at low 

βbu, it is destabilized at higher βbu. The value of βbu, at which the mode becomes unstable, is called the 

critical beta Bussac and is denoted as crit
buβ .  The mode can also be unstable at low or even at zero βbu – 

usually in cases of high plasma elongation. Zero βbu means, according to the definition (2.49), that 

either the pressure profile is flat inside q = 1 surface or the plasma pressure equals to zero. 

The dependence of the ideal internal kink mode growth rate on βbu was studied for different plasma 

configurations. Some examples of this dependence are shown in Figure 4.1.  
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Figure 4.1 Different kinds of dependence of the ideal internal kink mode growth rate on βbu: 
crit
buβ is 

negative (downward triangles), crit
buβ is slightly positive (upward triangles), crit

buβ ~ 0.2 (squares). The 

dependence on βbu is essentially linear for  βbu of interest. 

 

It was found that this dependence can be well described by the following formula  

 

Ccrit
bubua )(A ββγτ −=      (4.1) 

 

The correspondence between this formula and the calculated growth rates is shown in Figure 4.2. The 

formula (4.1) is a significant simplification – as compared to (2.98), for example. Evidently, this 

formula outlines the leading term in the dependence, which generally is more complicated. But from a 

practical purpose it is very convenient (and sometimes more accurate) to analyze the elements A, 

crit
buβ and C of the simple formula (4.1), because such analysis can give important information on the 

mode stability. 
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Figure 4.2 a) An example of the growth rate dependence on βbu and of the corresponding 

approximation by the formula (4.1); b) The correspondence of the whole set of the calculated growth 

rates and of the formula (4.1), with different A, crit
buβ , C for each βbu scan. 

4.1.3 The inverse aspect ratio. 
 

The inverse aspect ratio at the q =1 surface, ε1, is one of the most important values in the analytical 

theory of the ideal internal kink stability. Usually it is considered as a small parameter, ε1 << 1, and 

the potential energy variation is expanded in terms of ε1 (see Section 2.4.1). In our numerical 

simulations we have looked at high values of ε1, corresponding to realistic geometries of TCV and 

tight aspect ratio tokamaks, like MAST, where ε1  ~ 0.1 - 0.3. It turns out that such ε1 can not be 

considered as a small parameter anymore. It is interesting to compare the numerical and analytical 

predictions for different values of ε1  and thus to determine the validity region of the analytic approach. 

Such comparison is presented in Figure 4.3 for parabolic current profile, corresponding to the profile 

used for (2.98). 

It can be seen in Figure 4.3, that at the lowest  εa  = 0.012 the KINX results correspond well to the 

analytical ones, especially in the case of circular cross-section and at moderate elongation. Up to        

εa  = 0.28 (ε1 ~ 0.1)  this correspondence remains good. This is assisted by the form of the  2εδW term 

(2.98), taking into account the volume effect in the effective minor radius. At high elongation (κa~2.0), 

however, this correction is too strong and analytical predictions are different from numerical ones for 

most values of εa. At larger βbu, corresponding to higher growth rates, the analytical predictions roll 

over and the difference between them and numerical calculations becomes significant. This saturation 

is caused by the stabilizing term 4εδW and by the term 
e

W 2εδ  which become too stabilizing at large βbu 

and ε. Note however that these cases are beyond the expected range of validity of Eq. (2.98):             

ε1 ≤ ~0.1, κ1 ≤ ~1.4, and beyond these limits the overstabilizing term 4εδW may not be applied. 
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Figure 4.3 The internal ideal kink mode growth rate, calculated with the analytic formula (2.98) at 

different inverse aspect ratios and βbu, compared with corresponding KINX results for a) circular 

plasma cross-section and for b) κa=1.4 and c) κa=2.0 

 

The aspect ratio influences the dependence of the growth rate on βbu. In Figure 4.4 analytical and 

numerical calculations are presented for εa = 0.28 (ε1 ~ 0.1)  and εa = 0.8(ε1 ~ 0.2). The character of 

this dependence varies with aspect ratio: at high εa the dependence has the tendency to roll over, while 

at lower εa the dependence is constantly increasing. The values of crit
buβ are not so dependent on the 

inverse aspect ratio and stay approximatively the same. The analytical predictions are substantially 

higher than the numerical predictions in the case of εa = 0.8. The roll over of the analytical formula 

which has been seen already in Figure 4.3, can occur at relatively low βbu for high values of 1ε̂ , in 

particular for  high κ. This is mainly due to the 4εδW term, which should not be applied at these values 

of 1ε̂ . 
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Figure 4.4 The internal ideal kink growth rate versus βbu for different plasma elongations and 

parabolic q profile at a) εa = 0.28 and b) εa = 0.8. Open symbols correspond to analytical prediction 

(2.98), solid symbols are KINX calculations. Shown are κa=1 (diamonds), κa=2.0 (up triangles) and 

κa=2.6 (circles). 

 
 
The role of the inverse aspect ratio can also be seen on the dependence of the coefficient C of the 

scaling (4.1) on εa, presented on the Figure 4.5. 
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Figure 4.5 Dependence of the coefficient C on a) εa and b) on ε1 

 

The coefficient C decreases with εa, going from values ≥ 2 at low εa as expected from analytical 

predictions to 1 and below 1 at high εa. This corresponds to the results shown in Figure 4.4, more 

convex  for small εa (γτa’’ > 0) and concave for large εa (γ’’ < 0). Thus, in the case of high εa, it is not 

legitimate to use the usual analytical approach, )( crit
bubua

22 ββγτ −∝ [9]. Instead, the approximation 

)( crit
bubua ββγτ −∝  looks more reasonable for high εa values, corresponding to modern tokamaks like 

TCV or MAST. 
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4.1.4 The plasma elongation. 
 

The plasma elongation is the most important shape factor influencing the internal kink mode stability. 

It modifies mainly the critical beta Bussac, as it can be seen in Figure 4.4, where the dependence of the 

growth rate on βbu  at different elongations and inverse aspect ratios is shown. The plasma elongation 

is a strong destabilizing factor, and it is expressed in the decrease of crit
buβ with elongation, as seen in 

Figure 4.6. When crit
buβ becomes negative, it signifies that the internal ideal kink mode is unstable at  

βbu  = 0 (as mentioned before this means a flat pressure profile). For finite εa values, crit
buβ ~ 0 typically 

at  κa ≥ 1.6. 
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Figure 4.6 The dependence of crit
buβ on the plasma elongation at different inverse aspect ratios. 

4.1.5 The plasma triangularity. 
 

The influence of triangularity on the internal kink mode growth rate is illustrated in Figure 4.7. The 

trend, discussed in Section 2.4.4 (Figure 2.7) is reproduced qualitatively on these plots: the growth rate 

decreases with increasing triangularity, both positive and negative, with the maximum growth rate 

shifted at negative triangularity. The effects of elongation and triangularity on crit
buβ can be seen 

simultaneously in Figure 4.8 [70] as obtained with the KINX code over a wide range of κ and δ. Note 

that at ka=1 the dependence on δa is different from the dependence at higher elongation. This is 

because the Mercier term δεδ eW equals to zero for circular plasma shape. 

The stabilizing effect of the negative triangularity was reported in [70, 71] in the initial stage of the 

present work and has motivated a series of experiments on the TCV tokamak, presented in the next 

Section. The effect can be partially understood examining the quasi-cylindrical term 2δδW  in (2.98) 

which is clearly stabilizing for positive and negative δ. 
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Figure 4.7 The ideal internal kink growth rate versus triangularity by KINX calculations (solid 

squares) and according to equation (2.98) (open circles) for κa = 1.7, βbu = 0.35 and                a) εa = 

0.012, b) εa = 0.28, c) εa = 0.8 
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buβ on plasma elongation and triangularity.  
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4.2 Experimental studies on the TCV tokamak 
 

4.2.1 The TCV tokamak 
 

The TCV tokamak at CRPP in Lausanne, Switzerland was designed especially for studies related to 

the shaping effects [72, 73, 74]. The design of this tokamak allows control of plasmas with various 

shapes, and even allows changing the plasma shape and position during shots. In Figure 4.9, some 

plasma shapes obtained on the TCV tokamak are presented. 

 

 

Figure 4.9 Some examples of plasma shapes obtained on the TCV tokamak 
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The main parameters of the TCV tokamak are: 

• Major radius    R = 0.9 m 

• Minor radius     a = 0.25 m 

• Toroidal field    Bt  = 1.5 T  

• Plasma current Ip up to 1 MA 

• Elongation κa up to 2.8 

• Triangularity δa between –0.7 and +0.9 

• Aspect ratio A = 3.6 

• Inverse aspect ratio εa  = 0.28. ε1 up to 0.15 – 0.2 have been obtained. 

 

The unique flexibility of the TCV tokamak makes it the best machine for the studies of the dependence 

of the internal kink mode stability on plasma triangularity. The growth rate of the ideal internal kink 

mode can not be measured directly, so in experimental studies other phenomena which are presumably 

triggered by this mode are studied: the sawtooth oscillations and in particular the sawtooth period. 

Another very important feature of the TCV tokamak is its very powerful and flexible electron-

cyclotron plasma heating and current drive system. Six launchers on the low field (external) side of the 

tokamak, independently controlled in toroidal and poloidal directions, can inject into the plasma each 

up to 450 kW of power at the frequency of 82.7 GHz (second harmonics of the electron-cyclotron 

resonance at 1.4T). Added to this from the top of the tokamak is 1.14 MW of the EC-power on the 3rd 

electron-cyclotron resonance harmonics (118 GHz). Using this system, arbitrary configurations of the 

power deposition and current drive can be created in the TCV plasmas. 

4.2.2 Sawtooth oscillations and the internal ideal kink mode. 
 

Sawtooth oscillations were discovered in 1974 on the ST tokamak [75]. These are periodic relaxation 

oscillations of temperature and density in the plasma center. The sawtooth oscillations are best seen on 

the traces of the soft X-ray emission from the plasma center.  A typical sawtooth trace is presented in 

Figure 4.10.  

 

Figure 4.10 An example of the sawtooth oscillations in the TCV tokamak. Central soft X-ray trace. A is 

at the top of the sawtooth crash, B is the end of the crash and the beginning of the slow ramp-up phase 
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A sawtooth crash is the fast drop of central temperature and density which occurs when q0 < 1. At this 

moment a fast instability process displaces the hot central part of the plasma out to the plasma 

periphery. After the crash the q value on the plasma axis can be above 1. Then the plasma is slowly 

recovering the initial profile, increasing the density and temperature at the plasma center, until the 

crash condition is met again and a new crash occurs. The condition q0 < 1 is necessary, but not 

sufficient for the sawtooth crash. The plasma has to accumulate enough energy within the q = 1 

surface to trigger the instability mechanisms, causing the crash. 

Several theoretical models were proposed for the explanation of the sawtooth crash mechanism and of 

the crash trigger conditions, for example [9, 44, 76, 77]. Although there is no complete agreement 

about this question, there is evidence that the m/n=1/1 MHD mode has a direct relation with the causes 

of the sawtooth crash. 

The sawtooth crash model, proposed in [9], relates the sawtooth crash occurrence with the 

development of the ideal or resistive internal kink mode. The sawtooth crash occurs when the kink 

mode growth rate overcomes the stabilizing ion and electron diamagnetic effects. Thus, in the 

situations where the ideal kink mode growth rate is higher than half of the ion diamagnetic frequency, 

the value of the ideal internal kink growth rate has a direct influence on the sawtooth crash conditions 

[9]: the higher is the growth rate, the sooner the sawtooth crash occurs and the shorter is the sawtooth 

oscillation period, which is easily measured by the soft X-ray emission traces. Thus, the sawtooth 

oscillations can presumably be used for analysis of the ideal internal kink mode growth rate 

dependence on the plasma shape. 

4.2.3 The TCV experiments 
 

First experimental studies of the dependence of the sawtooth behavior on plasma shape on the TCV 

tokamak [78, 79, 80] were performed in 1999 and their results are presented in Figure 4.11. 

These results confirm the trends discussed in the previous Section: the increase of the sawtooth period, 

corresponding to a decrease of the kink mode growth rate, occurs when triangularity increases (Figure 

4.11 a). The sawtooth period decreases with elongation, and this corresponds to an increase of the 

growth rate of the mode (Figure 4.11 b). 

When these experiments were performed, the fact that the negative triangularity has a stabilizing effect 

on the ideal internal kink mode was not yet realized, so the negative triangularity was really not 

explored. 

 



 52 

 

    δa       κa 

Figure 4.11 The sawtooth oscillations period dependence on plasma shape parameters. Ohmic 

discharges, results averaged over the stationary phase. 

 

A new series of experiments was performed in September - October 2003, and now the attention has 

been focused on the negative triangularity region. The edge triangularity δa was modified between -0.6 

and 0.3, thus the triangularity at q = 1 was between -0.1 and 0.06. Two sets of experiments were 

carried out. In the first set the total plasma current was kept fixed, and in the second set the q95 value 

was fixed in order to keep the q = 1 radius nearly constant [81]. Only a few shots have been performed 

in the second set because of difficulties with obtaining the required plasmas. Therefore the results of 

the first set will be mainly discussed here. 

The first set of experiments was carried out at the following plasma parameters: κa ≈ 1.5, Ip ≈ 280 kA, 

r1/a ≈ 0.4. There are no current density profile measurements in the TCV tokamak, so the q profile 

shape, s1 and ∆q are not well known. The reconstruction of the experimental equilibria was carried out 

using the LIUQE code [69], yielding ∆q ≈ 0.2, s1 ≈ 0.5 – 1. The value of q95 was between 2.8 and 3.6 

in these shots. The scenarios were typical for ohmic L-mode plasmas. 

The dependence of the sawtooth period on edge triangularity is shown in Figure 4.12. It is known from 

experiments [82] that the sawtooth period in ohmic plasmas is in general linearly proportional to the 

plasma density. Some theoretical models were proposed that explain this feature [83] and it was also 

recovered in transport simulations using a sawtooth trigger model [84]. The normalization of the 

sawtooth oscillation period is a standard procedure used in the TCV experimental studies in order to 

compensate the influence of the plasma density on the sawtooth period: 

]m10[ 319 −=
e

sawnormalized
saw n

ττ      (4.2) 

where en is the line-averaged electron density, obtained by the laser interferometer. 
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Figure 4.12 The sawtooth oscillation period normalized as in Equation (4.2), averaged over the 

steady-state discharge phase versus edge triangularity in TCV experiments with Ip ≈ 280 kA. 

 

This normalization is confirmed in TCV for different elongations (κa = 1.6 - 2.2), at similar measured 

inversion radii (rinv= 0.40 - 0.45) for densities ranging from 2⋅1019 to 5⋅1019 m−3. 

The minimum of the sawtooth oscillation period in Figure 4.12, corresponds to the maximum of the 

ideal internal kink growth rate versus triangularity for TCV conditions (Figures 4.7b, 4.8) at κ1 ≈ 1.3. 

The ideal kink growth rates were calculated using the experimental equilibria of the discharges shown 

in Figure 4.12 and the result is presented in Figure 4.13. The analytical predictions, according to 

equation (2.98), are also presented. The contributions of different terms of this equation are also 

shown in order to clarify the role of these terms. 

The maximum of the ideal kink mode growth rate is observed in the KINX results, but slightly less 

clearly on the analytical formula predictions. This is because, as it was mentioned above, not only the 

shape changes with triangularity but other plasma parameters, like pressure and current profiles, are 

also modified [85] in the self-consistent equilibrium solutions based on experimental data. For 

example, the shear at q =1 changes between 0.5 and 0.8 in these equilibria (Figure 4.14), although it is 

relatively constant for δa > -0.5. It is important to note, however, that in the absence of q profile 

measurements, the equilibrium reconstructions can give only approximate results. In these L-mode 

ohmic plasmas, though, this reconstruction should be relatively accurate. 
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Figure 4.13 Normalized growth rate γτa of the ideal internal kink for the discharges shown in Fig. 

4.12. The following results are shown: KINX calculations (solid squares), analytical predictions, 

according to equation (2.98) (solid triangles) and its contributing terms: toroidal terms 2εδW + 4εδW  

(downwards open triangles), quasi-cylindrical terms 2e
Wδ + 2δδW  (open circles), Mercier terms, 

e
W 2εδ + δεδ eW  (upwards open triangles).  
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Figure 4.14 Variations of the magnetic shear at q = 1 in the reconstructed equilibria, for the shots, 

shown on the Figure 4.12 

 

In the second set of experiments only 3 shots were performed, because it proved to be very difficult to 

create plasmas with negative triangularity and the required parameters. The normalized sawtooth 

period in these shots is presented in Figure 4.15. We see that a similar dependence is obtained for 

these discharges as well. 
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Figure 4.15 The normalized sawtooth period versus edge triangularity for the second set of shots with 

fixed q95 ≈ 2.4. Ip = 405, 414, 395 kA for shots withδa = -0.5, -0.25, 0.14 respectively. 

 

The qualitative agreement between the sawtooth period dependence on the plasma triangularity with 

the behavior of the ideal internal kink growth rate could be a coincidence. The ideal internal kink can 

be stabilized by diamagnetic effects, when γ < 0.5ω*i [9]. In our cases γ  ≈ 0.5ω*i, but in scenarios with 

positive triangularity in the TCV tokamak the ideal growth rate is usually lower than 0.5ω*i. In these 

cases the sawtooth crash is triggered by the onset of the resistive kink mode, for which two formulas 

are used, depending on the regime [9, 86, 87]. It is important to estimate the resistive kink growth rate 

in order to check whether it can trigger the sawtooth crash in our cases as well. The estimations of 

these two formulas are given in Figure 4.16. 
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Figure 4.16 Resistive internal kink mode growth rates, estimated in two ways, for the regimes, usually 

relevant for TCV [83] 
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There is no evident dependence on the plasma triangularity, so the resistive kink mode cannot explain 

the observed experimental dependence of sawtooth period on triangularity. 

On the contrary, the remarkable correspondence between the behavior of the ideal internal kink mode 

growth rate and the sawtooth period allows us to conclude that the sawtooth crash is triggered by the 

ideal internal kink mode in our experiments. It is seen from Figure 4.13 that increasing triangularity to 

positive values leads to a rapid decrease of γτa, according to KINX calculations. Thus, at positive 

triangularity, usual in many present experiments, the ideal internal kink mode growth rate is too small 

to be able to trigger the sawteeth and instead of the ideal mode, the resistive kink mode triggers the 

sawtooth crash. 

 

4.3 Shape, aspect ratio and pressure scaling of the ideal internal kink 
growth rate 

 

4.3.1 General considerations 
 
The utility of an empirical fit of the numerical data can be seen from the evident discrepancies 

between the analytical predictions and the numerical calculations, demonstrated in Figures. 4.3, 4.4, 

4.7. As it was also shown in the previous Section, the numerical predictions correspond qualitatively 

better to the experimental results than analytical results. But the numerical calculations are time-

consuming and in many cases the time required for the ideal MHD code to run is too long for the task 

to solve. For example, in the simulations of sawtooth oscillations by transport codes like PRETOR 

[88] and ASTRA [89] the sawtooth crash trigger condition includes the ideal kink mode growth rate. 

However it is not possible to wait a few minutes for the ideal MHD code to run at each time step, 

because the simulations of time evolution require usually tens of thousands of time steps. For such 

kind of tasks a fit of numerical results can be useful, and simple formula can be used for estimating the 

ideal internal kink mode growth rate instead of long computations. 

The scaling has been built on the basis of the approximation (4.1). The practical modification to this 

formula was done using the dependence of the coefficient C on the inverse aspect ratio (Figure 4.5), 

where it can be seen that at εa of interest for us (εa
  > 0.2), C is close to 1. Therefore this coefficient 

was fixed to C = 1 for simplicity and the scaling formula is chosen as 

 

)(A crit
bubu

fit

a
ββγτ −=      (4.3) 
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where for coefficients A and crit
buβ  separate scalings are constructed and then they are joined to form 

the resulting formula. 

4.3.2 The scaling for the critical beta Bussac 
crit
buβ  

 

The dependence of crit
buβ  on ε1/εa and κ1 is presented in Figure 4.17. It shows a small decrease of 

crit
buβ with increasing values of ε1/εa, which has motivated the correction to the term 2εδW , proposed in 

[9], equation (2.93). The latter also includes a small dependence on a/ κκ1 since 

aa //a/r κκεε 111 = . 

 

Figure 4.17 Dependence of the critical beta Bussac crit
buβ , obtained from fitting the numerical results, 

on κ1 and ε1/εa. 

 

Another kind of approximation for  crit
buβ  was proposed in [71], describing the dependence on plasma 

elongation and triangularity, presented in Figures. 4.6, 4.7, 4.8 and 4.17:  

 

)..(.
a

crit
bu 0405150 11

1 +−−≈ δκ
ε
εβ      (4.4) 

 

However, Figure 4.17 shows that the main dependence is clearly on the value of κ1. In order to 

simplify as much as possible the formula, an even simpler expression was chosen, which describes this 

main feature of crit
buβ , the dependence on κ1 (the validity of this choice will be discussed later): 
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 15070 κβ ..crit
bu −≈       (4.5) 

 

This reproduces the color coded horizontal lines in Figure 4.17 with crit
buβ = 0.2 for  κ1 = 1 and crit

buβ ≈ 0 

for κ1 = 1.4. The latter is consistent with the results shown in Figure 4.6 that the value of κ1, such that 

crit
buβ = 0, does not depend much on ε, except at very small ε. 

4.3.2 The scaling for the coefficient A 
 

The coefficient A depends mainly on ε1, as presented in Figure 4.18. 

 

Figure 4.18 Dependence of the coefficient A on κ1 and ε1. 

 

In Ref. [71] we have proposed the following approximation for A: 

 

).(.A 5050 11 −≈ κε       (4.6) 

 

However, when combining equations (4.5) and (4.6) to fit the actual growth rates calculated by KINX, 

a better fit is obtained using: 

11

11

701
450

s.
.A

ε
κε

+
≈       (4.7) 
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4.3.3 The general scaling for γτa 
 

Expressions (4.5) and (4.7), combined to the single formula (4.3), give  

 

[ ])..(
s.

. bu
fit

a 1
11

11 5070
701

450 κβ
ε

κεγτ −−
+

=     (4.8) 

 

The Figure 4.19 compares the fit with the whole set of the calculated data.  
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Figure 4.19 a) Global scaling obtained from fitting the numerical KINX results for the ideal internal 

kink versus the KINX results, b) Zoom of the scaling for γτa≤ 0.05.  

 

About 300 equilibria were used for the fitting, with the following parameter limits: 0.02 < εa < 0.8, 1< 

κa<2.8, -0.6 < δa <0.9, 0.02 < s1 < 0.75. Note that these results were obtained assuming an ideally 

conducting wall on the plasma boundary. Without the wall the results would be up to two times larger. 

The fit (4.7) describes well the set of KINX results, with the exception of some cases with low εa and 

small growth rate. These cases, however, are not of practical interest because low εa is not realistic for 

modern tokamaks and low growth rate means that the mode is likely to be stabilized by non-ideal 

effects.  

The fit has a functional form which is different from (2.98, 2.99). There is no dependence 1/s1, as 

predicted by (2.99): we did not find a good fit with such a functional dependence. Figure 4.20a shows 

the dependence of the growth rate on s1.  



 60 

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

s

γ τ
A

1

0.004
 0.040
 0.075

   0.11
  0.15
   0.18
  0.22
  0.25
  0.29

ep
s1

(a)

           

0.0006
  0.025
  0.050
   0.075
  0.100
   0.125
   0.150
   0.175
   0.200

ep
s1

 s
1

0 0.1 0.2 0.3 0.4

0

0.05

0.1

0.15

0.2

0.25

γ
fit1

  (1 + 7 ε
1
 s

1
)

y=x/2 

y=x 

γ τ
A

(b)

 

Figure 4.20 a) The growth rate dependence on s1, b) same as in Figure 4.19, but without correction    

1 / (1 + 0.7ε1 s1) 

 

Two distinct groups of points are seen in Figure 20a, corresponding to two different current density 

profiles used in our calculations: one with low shear and one with higher shear. It is seen that there is 

no pole characteristics, 1/s1, for small values of s1. If one removes the denominator 1 / (1 + 0.7ε1 s1) 

from the formula (4.8), the remaining fit gives the results presented in Figure 20b, spanning the values 

between one and two times the KINX results. The discrepancy increases with increasing ε1 s1 and the 

color groups are well “aligned”, confirming that the combination ε1 s1 is a good choice. 

The comparison of the analytical predictions (2.98-2.99) with the KINX results is presented in Figure 

21. It is clearly seen that the analytical formula describes the KINX data much worse than our fit. The 

analytical formula works much better than the fit for the case of low inverse aspect ratio, as shown on 

the Figure 21b, but at realistic εa it overestimates the growth rate. Therefore we argue that the fit (4.7) 

should be used instead of formulae (2.98-2.99) for realistic plasmas. 

The absence of a dependence of crit
buβ on triangularity in the fit (4.5) is astonishing at first, since it was 

present in the earlier version of the fit (4.4), and it was important to explain the experiments presented 

in Section 4.2.3. It can be explained by the fact that the role of triangularity in crit
buβ is a relatively small 

effect, especially at large γτa, even if in some cases it is important, as the above described experimental 

studies have shown.  
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Figure 4.21 a) Analytical formulae, (2.98-2.99) versus the KINX results, as in Figure 4.19. (b) Zoom 

for γτa ≤  0.05.  

 

In real experiments the edge elongation and triangularity are usually controlled, and the internal values 

self-adjust, following the variations of the edge geometry. The penetration of elongation into the 

plasma depends substantially on the triangularity: at high triangularity the elongation penetrates the 

plasma much less than at low or zero triangularity. Therefore the effect of triangularity on the ideal 

kink mode growth rate can partially be explained by variations of κ1 with δ at the same κa. Figure 4.22 

illustrates this. The growth rate dependence on δ1 is presented there for two cases: one with fixed κa = 

2.4 (dash-dotted line) and another with fixed κ1 ≈ 1.4 (solid line). It is seen that in the second case the 

growth rate is higher, because κ1 is larger. The current profile is the same and the shear at q = 1 

surface varies only slightly. For high triangularity, δa > 0.4, the edge elongation required to keep κ1 

constant, increases substantially (Figure 4.22b), in particular for δa > 0. On the other hand, at fixed κa 

the elongation at q = 1 decreases at high triangularity. This effect has the same trend as discussed in 

the previous Section and explains a substantial part of the stabilizing effect of positive and very 

negative triangularity, although not the whole effect: the solid line in Figure 22a still shows the 

tendency to stabilization at constant κ1 with increasing negative or positive triangularity. 

This shape effect is illustrated by the fit (4.8), shown in Figure 4.22a for both cases. They both 

reproduce the triangularity stabilization trend, even if it is not introduced explicitly in the formula. 

This trend is also seen in Figure 4.23, where the fit (4.8) is compared with the KINX results for our 

experiments. Even without an explicit triangularity term in the formula for crit
buβ , the Figure 4.8 

reproduces much better the KINX results than the analytical fits (see Figure 4.13). 
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Figure 4.22 Dependence of the ideal growth rate on triangularity, varying δa between -0.6 and 0.8 by 
steps of 0.2, with standard parabolic profiles and r1/a = 0.5. At larger positive δ, one needs a much 
larger κa to keep κ1  fixed and  elongation penetrates much less, leading to a 40% larger growth rate 
 

It should also be noted that the penetration of elongation into the plasma depends substantially on the 

shape of the q profile. For example, in the case of low shear the elongation penetrates the plasma much 

better and higher κ1 values are obtained for the same κa. In this case the fit (4.8) can overestimate the 

growth rate. The following correction to the fit is proposed in order to minimize this effect: 

( )[ ]11
11

11 106090
71

440 κβ
ε
κεγτ )s..(.

s
. bu

fit
a +−−

+
=    (4.9) 

 
This small correction improves the fit at very large elongation and at decreasing li1, where the 

sawtooth oscillations disappear [90], as well as in the case of experiments described above (Figure 

4.23, upward triangles). 

As follows from the discussion, the important feature of the fits (4.8) and (4.9) is that in order to 

obtain valuable results, one has to modify not only a single parameter to find its influence on the mode 

stability, but to modify in a self-consistent way the other parameters in the sense that they correspond 

to an equilibrium which can be obtained in experimental conditions. Thus, these fits are very 

convenient for the transport codes, where the equilibrium needs to be re-calculated at each time step 

[86] and these self-consistent parameters are readily available.  

 



 63 

−0.8 −0.6 −0.4 −0.2 0 0.2

0.000

0.004

0.008

0.012

γ 
τ A

δ
a

KINX         
γ
fit1

γ
fit2

 

Figure 4.23 KINX results as in Fig. 4.13 and the corresponding values using the fits (4.8)            
(downward triangles) and (4.9) (upward triangles). The non-monotonic dependence on δ is very well 
reproduced and it is consistent with the minimum in sawtooth period shown in Fig. 4.12. 
 

4.4 Conclusions 
 

• At low inverse aspect ratio the numerically calculated ideal internal kink growth rate corresponds 

well with analytically predicted values. The correspondance remains good until the aspect ratio 

of the TCV tokamak, εa ≤ 0.28, in particular for small and moderate βbu values, even up to 

κa~2.0.  At higher ε the agreement deretiorates and at εa ~ 0.8, which corresponds to the modern 

tight aspect ratio tokamaks like MAST, NSTX etc. the analytical formula (2.98) is not useful 

anymore, even if ε1 < 0.3 ( 1ε̂ < 0.6). 

• At moderate and high εa the dependence of the ideal internal kink growth rate on basic plasma 

parameters is different from that analytically predicted: the growth rate is linearly and not 

quadratically proportional to ε1 and the dependence on βbu is essentially linear and not quadratic. 

• The behavior of sawtooth oscillations in the TCV experiments with varying negative 

triangularity correlates very well with the dependence of the ideal internal kink growth rate on 

triangularity, and not with the behavior of the available formulae for the resistive kink mode 

growth rate. It is thus possible to conclude that in these experiments the sawtooth crash was 

triggered by the ideal internal kink mode. 

• A new approximate fit of the numerically calculated ideal growth rates for the wide variety of 

plasma conditions is proposed. This fit (4.9) should be used for the prediction of the ideal 

internal kink mode behavior instead of the analytically derived formulae in case of moderate and 

high inverse aspect ratio. Note that the effect of removing the wall on the plasma boundary can 



 64 

increase γτa typically by up to a factor of two. This also shows that the eigenmode is not a top-

hat and explains the discrepancy with analytical predictions. 

• When using the analytical formulae or the fit of numerical data for the kink mode growth rate, it 

is important to remember that in real plasmas the plasma parameters are interconnected. Thus by 

modifying only one parameter, leaving others intact, one can come to wrong conclusions 

regarding the effect of this parameter. When modifying one plasma parameter, one should 

change other values in a self-consistent way, as it happens in real plasmas or in equilibrium 

calculations. For example, the stabilizing role of the plasma triangularity can be partially 

explained by the weakening of the plasma elongation penetration from the plasma edge to the 

plasma core at increasing positive or negative triangularity. The proposed fit can be used in the 

transport codes, where the equilibrium is re-calculated at each time step. The transport codes can 

also be used for providing the “self-consistent” equilibria to be used for the MHD stability 

analysis when a given parameter is modified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65 

Chapter 5. The ideal stability of highly elongated TCV plasmas: 
shape optimization 
 
This chapter deals with the stability of ideal external kink mode for highly elongated TCV plasmas 

and with possible ways of obtaining the maximum possible plasma elongation with better 

confinement properties by plasma shape optimization [72, 73]. 

5.1 First numerical estimations of the ideal MHD stability of high κa 
plasmas 

 

One of the most important missions of the tokamak TCV is to study the influence of the plasma shape 

on various plasma properties, and in particular plasmas with very high elongation (κa up to 3.0). The 

predictions of the ideal MHD stability of such plasmas by numerical simulations were used for the  

TCV tokamak design [8]. Two different plasma shapes, the “racetrack” and D-shaped plasma were 

analyzed against the n = 1 external kink mode stability with different q profiles.  

 

 

Figure 5. 1 (Figure 1 in [8]) TCV geometry showing the racetrack and D-shape cross-sections 

 

The current limitations for these plasmas were established and expressed as the operating diagrams in 

the qa – q0 space. The beta optimization was also carried out for these two plasma shapes with 

elongation 2.5 and the maximum achievable βt was plotted versus the normalized current  

0

0

aB

I
I NA

µ=       (5.1) 

 

where µ0 = 4π⋅10-7 Hm-1 is the free space permeability, Ip is the plasma current [A], a is the plasma 

minor radius [m] and B0 is the vacuum toroidal field [T] in the plasma center. It is important to note 
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that a different and more practical notation of the normalized plasma current is used more widely than 

(5.1): 

NAN I.
Ba

I
I 80

[T][m]

[MA] ≅=      (5.2) 

 

As the stability measure, the  “normalized beta” is usually used: 

 

N

t
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N I
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][100 βββ ==      (5.3) 

 

where βt is the toroidal beta (2.44), which is often expressed in %. It was shown in [91] by Troyon et 

al that in different tokamaks and different plasma configurations the ideal MHD modes become 

unstable when βN exceeded some critical value. This led to the formulation of the Troyon limit: 

 

03.N ≤β        (5.4) 

 

which can be expressed in terms of βt and ΙΝ : 

 

Nt I.% 03][ ≤β       (5.5) 

 

Numerous experimental studies have confirmed (Ref. [92] for example) the existence of the Troyon 

beta limit and it is widely used as a reference for the search of better plasma configurations. The 

normalized beta is a convenient measure of the state of stability of the plasma relative to the Troyon 

beta limit. Furthermore it was shown that the effect of the current profile changes the actual limit, so 

that the following formula is often used:  

 

iN l4≤β        (5.6) 

 

The optimized beta corresponded to very flat q profiles in the plasma center, very close to 1 at the 

plasma axis. The value of q0 was set on purpose above one to avoid the internal kink mode discussed 

in the previous Chapter, since the operation limit set by the external kink mode was a goal of the 

study. The Figure 5.2 shows the results of the calculations of the operation range for D-shaped plasma 

and for the racetrack. The highest achievable normalized current is IN ≈ 3.4 in the racetrack 

configuration and IN ≈ 2.8 for the D-shaped plasma. The elongated plasmas allow to achieve much 
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higher βt than the circular ones, as seen from the comparison with the beta limit for the circular 

plasma, shown in Figure 5.2 (dashed line). Another important result is that the βt limit is lower than 

the Troyon limit, indicated by the solid lines in Figure 5.2 for high values of IN, IN ≥ 2.5*0.8 ≈ 2.0. 

 

Figure 5.2 (Figure 4 from [8]) Beta limit scaling with normalized current (5.1) for the racetrack and 

D-shape configurations   

5.2 The experimental studies of highly elongated plasmas on TCV 
 

   

                 a)                  t, s                           b) 

Figure 5.3 The plasma with record elongation (#19373), obtained in TCV:      IP = 750 kA, B = 0.8T, 

κa = 2.80, δa=0.3, λa=0.38,  IN = 3.9: a) the plasma shape, b) the time traces: plasma current IP, edge 

elongation κa, edge triangularity δa, edge squareness λa, normalized beta βN, normalized current IN , 

plasma density ne and  toroidal beta βt in % 
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During the TCV experimental activity much effort was devoted to the extension of the TCV operating 

limits towards higher elongation and higher normalized current. The highest elongation, obtained on 

TCV is κa ≈ 2.8 [72, 73], a world record and the maximum normalized current, obtained in these 

experiments, is IN = 3.9 (INA = 4.9), presented in Figure 5.3. These record values were obtained in 

conditions of off-axis plasma heating by the second harmonics ECCD, by the optimization of the 

vertical position system and by plasma shape optimization with respect to the ideal MHD stability. 

 

5.3 The TCV plasma shape optimization  
 

The plasma shape optimization was carried out in a way similar to the preliminary stability 

calculations. But instead of finding the dependence of the optimized βt on IN, only the maximum 

achievable current at constant βt = 1% was looked for. This value corresponds to the typical value 

obtained in these experiments with mainly ohmic heating, as in the shot presented in Figure 5.3. The  

n = 1 kink mode stability in plasmas of different shapes with very flat q profiles just above 1 in the 

center was studied. 

 

. 

Figure 5.4 The q, current and pressure profiles, used in the plasma shape optimization studies. j* is 

the surface averaged current density, jφ - the toroidal current density. 
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A number of plasmas with standard shapes, described by equations (5.4) with high elongation κa = 2.7 

and different edge triangularity δa and squareness λa were studied in order to define the dependence of 

the current limit on λa and δa, and to find the optimum plasma shape.  
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In Figure 5.5 the results of these studies for κa=2.7 are shown together with the n = 0 mode stability 

analysis of these plasmas, at the n = 1 current limit, by the code DPM [93], performed by F. 

Hofmann. 

 

Figure 5.5 a) The ideal MHD current limit in kA due to n = 1 mode; b) the growth rate of n = 0 mode 

in s-1 at the current limit. 

 

It is seen that the current limit increases with the triangularity and decreases with the squareness, but 

the n = 0 growth rate has a minimum around δa ≈ 0.6 and λa ≈ 0.25. These optimal conditions 

correspond to the TCV experimental results. In most cases the plasmas with κa > 2.5 were performed 

with almost the same shape parameters: 0.50 < δa < 0.63 and 0.22 < λa < 0.25. The deviations from 

this shape did not lead to improvement of the plasma stability. It is important to note that the optimum 

plasma shape depends to a large extent on the plasma wall shape. The conclusions about the plasma 

shape are not universal, but are valid for this particular tokamak. For example, the rectangular shape 

of the TCV vacuum vessel, serving as the stabilizing wall, implies the relatively high squareness of 

the plasma for better n = 0 mode stability. In tokamaks with a D-shaped vacuum vessel the optimum 

shape conditions would be different (lower λa and higher δa). 
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5.4 New plasma shapes 

 
In addition to the usual plasma shapes, described by equations (5.4), several alternative plasma shapes 

were also studied, as in Figure 5.6.  

The current and pressure profiles were the same, as in the previous Section (Figure 5.4). The 

parameters of these plasmas and the corresponding current limits at βt=1% are presented in Table 5.1. 

 

 Figure 5.6 Classical D-shaped plasma (a) and alternative shapes: (b) trapezoid, (c) peapod,   (d) 
racetrack, (e) triangle 
 
 D-shaped Trapezoid Peapod Racetrack Triangle 

Elongation κa 2.7 2.7 2.7 2.7 2.7 

q95 2.36 2.35 2.47 2.51 2.26 

IN 3.65 3.25 3.39 3.25 3.54 

γn=0, s
-1 2507 1327 >10000 3080 >10000 

 
Table 5.1 Parameters and current limits of various plasma shapes 

 

The trapezoidal plasma is the only configuration, having γn=0 better than the classical D-shaped 

plasma, although its n = 1 current limit is lower. Thus, the trapezoidal plasma can be an interesting 

target for experimental studies. 

The comparison of trapezoidal and D-shaped TCV plasmas is presented in Figure 5.7. In both cases  

κa = 2.6, βt ≈ 1.1%. The current limit manifested itself by the appearance of MHD modes, thus leading 

to the plasma disruption. The D-shaped plasma current limit is IN = 3.35, which is close to the 

calculated one (Table 5.1). In the case of the trapezoidal plasma shape, the highest achievable current 

was IN = 2.77. The growth rates γn=0 were 2730 and 2118 s-1, respectively. These results are consistent 

with the numerically calculated limits in Table 5.1. Although higher elongations were not obtained in 

the trapezoidal plasma shape, it is possible that by further shape and current profile optimization 

higher elongations could be reached. 
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       a)                 b) 

 

  c)                     d) 

   t, s                                                                                     t, s 

Figure 5.8 D-shaped and trapezoidal plasmas in TCV: plasma shapes (a,b)  and (c.d) the time traces: 

plasma current IP, edge elongation κa, edge triangularity δa, edge squareness λa, normalized beta βN, 

normalized current IN , plasma density ne and toroidal beta βt in % 

 



 72 

5.5 Conclusions 
 
• For TCV conditions, the analysis of the ideal MHD stability dependence on plasma triangularity 

and squareness revealed that the optimum conditions are met at δa ≈ 0.6 and λa ≈ 0.25. 

• The plasma shape, optimized with respect to the ideal MHD n = 1 and n = 0 modes, corresponds 

well to the experimental plasma shape, with which record elongated plasmas were obtained in 

TCV. 

• The current limits experimentally obtained with the alternative plasma shape (trapezoid), 

compared with the D-shaped plasmas are consistent with the numerically predicted values. 

• The ideal MHD stability of highly elongated plasmas determines the experimentally achievable 

operational limits, the latter can be predicted by means of numerical calculations. This has 

confirmed the predictive calculations performed earlier and it shows the value of ideal MHD 

calculations for designing experiments. 
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Figure 6.1 
The EC-power 
launch geometry  
 

Chapter 6. The ideal MHD stability of the reversed shear TCV 
plasmas 
 

This chapter is devoted to a very promising kind of tokamak equilibrium: the reversed shear 

configuration. The experiments on the TCV tokamak are described and then the ideal MHD stability 

of such plasmas is discussed in detail on the basis of numerical calculations. Infernal and external kink 

modes are discussed. On the basis of this analysis, possibilities of obtaining better plasma 

performance, while avoiding disruptions caused by ideal MHD instabilities, are proposed. 

6.1 The reversed shear plasmas: why create and study them? 
 

The search for plasma configurations, which provides better confinement conditions, is one of the 

major research areas of modern tokamak physics. One of promising directions is the creation of 

plasmas with an inverted q profile. In such plasmas, internal transport barriers (ITB) can be formed, 

leading to improved plasma performance [94, 95, 96, 97]. The so-called advanced regimes, with 

inverted q profiles, are very interesting for future thermonuclear reactors. In particular, such scenarios 

are of interest for steady state operations in the ITER reactor. These plasmas are investigated both 

experimentally and theoretically throughout the world. The TCV tokamak, because of its unique 

capability of modification of plasma current and pressure profiles by adjustment of its six independent 

EC-wave launchers, is an excellent tool for such studies [98, 99, 100, 101]. 

6.2 Fully non-inductive current sustainment and eITB creation in TCV 
 

The reversed shear plasma studies are intensively studied in CRPP and represent 

one of main objects of experimental studies on TCV tokamak [19, 20, 21, 22, 102, 

103] experimental program. In Ref. [102, 104, 105, 106, 107] TCV experiments are 

described where the full replacement of the plasma current by non-inductive current 

was achieved. The plasma current was sustained by the bootstrap current and by the 

EC-driven current. Two independent EC waves launchers were adjusted so that 

most of the EC-power was absorbed off-axis (beams A in Figure 6.1). The non-

inductive current jCD generated in the off-axis area of the EC power deposition led 

to a very broad current density profile [23]. The third gyrotron was turned on later 

and its power was absorbed on the plasma axis (beam B). The toroidal injection 

angle φ of this third EC-waves beam was changed between shots, so the influence 

of the pressure profile and on-axis plasma current modification to the confinement  

properties was studied, as shown in Figure 6.2. 
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Figure 6.2 TCV reversed shear discharges with different toroidal injection angle φ of the central 

beam:  #21654, φ= 0°;  #21655, φ = -5°;   #21653, φ= -15°;   

 

The hollow current density profiles in these experiments correspond to inverted q profiles (Figure 6.5). 

The confinement enhancement over the standard RLW scaling [108] HRLW ≡ τEe/τRLW, where τEe is the 

electron energy confinement time and τRLW is the RLW scaling is presented in Figure 6.3. Values of 

HRLW above 2 indicate the formation of an electron internal transport barrier (eITB) in these plasmas. 

It is clearly seen that counter current drive on the plasma axis leads to a confinement improvement. 

However, too much increase in the on-axis counter-current (by increasing the toroidal injection angle) 

leads to a disruption (#21653). 

 
Figure 6.3 The confinement enhancement factor for different on-axis toroidal injection angles 
 
The changes of the on-axis toroidal injection angle lead not only to modifications of the q profile (the 

stronger the counter-current, the deeper is the q profile inversion), but also to the pressure profile, as 

seen in Figure 6.4. 

The m/n = 3/1 and 2/1 components in the edge magnetic signal were observed during the disruption in 

the shot #21653 with the characteristic growth time of ~ 20 µs, which is a typical growth rate for ideal 

instabilities. It indicates the presence of m/n = 3/1 and 2/1 modes during the disruption. For this reason 

the main attention was devoted to the n = 1 stability, although for some cases the n = 2 stability was 

also examined. 
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          #21654, φ= 0°, t=1.5 s      #21655, φ = -5°, t = 1.5 s 
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      # 21653, φ= -15°, t=1.25 s 
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Figure 6.4 The pressure profiles (Thomson scattering) for different toroidal injection angles,             

t = 1.25 - 1.5 s, corresponding to the discharges shown in Figure 6.2. For the discharge #21653 the 

profile corresponds to the last measurement about 20 ms before the disruption. 

 

In Figure 6.4 and below in this chapter 
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      (6.1) 

where ψ is the poloidal flux (2.28), ψa is the value of ψ  at the plasma edge and ψ0 – on the axis. 

 

6.3 Numerical MHD stability analysis 
 

The TCV shot #21655 was used for the MHD analysis because it is situated in between two extreme 

cases, the shot #21654 with zero on-axis toroidal injection angle and shot #21653, for which the high 

toroidal injection angle caused a disruption. By varying the pressure and current profiles for shot 

#21655, it is possible to simulate both cases. 
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The Thomson scattering data of the pressure profile and the q profile for the shot #21655 are shown in 

Figure 6.5. Note that qmin ≈ 2.7 is close to 3. This q profile corresponds to the basic results obtained 

with the bootstrap current density and the EC current density jCD under assumption of a constant radial 

diffusion profile [109, 110]. The profile jCD is obtained using the Fokker-Planck code CQL3D [111]. It 

depends on the effective profile of the radial diffusion coefficient. If better confinement is assumed in 

the centre, even more reversed q profile is obtained [109, 110]. The effect of varying qmin and of the 

degree of current inversion will be discussed in Sections 6.3.5 and 6.3.6. 
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Figure 6.5 The Thomson scattering pressure profile with error bars (blue), its basic fit (red) and the q 

profile (green) for the TCV shot #21655 

6.3.1 Stability analysis of the shot #21655. Infernal mode. Stability 
dependence on qmin. 

 

For the experimental conditions of the TCV shot #21655 the KINX code calculations assuming fixed 

boundary conditions have revealed an unstable ideal mode m/n = 3/1, with the growth rate dependence 

on βN as shown in Figure 6.6 (βN
exp ≈ 1.0): 
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Figure 6.6 The dependence of the 3/1 ideal mode growth rate on βN for the shot #21655 
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The shot #21655 is close to the stability threshold, with the m/n=3/1 ideal mode close to the stability 

limit. The instability is possibly caused by a very high pressure gradient at ρ ≈ 0.5, where the eITB is 

formed. The value of qmin is also of great importance. The role of qmin can be seen in Figure 6.7, where 

the different q profiles analyzed are presented. Here the analytical pressure profile from Figure 6.5 and 

the experimental value of βN ≈ 1.0 were used. The profiles that proved to be stable are shown in green, 

whereas those with unstable modes are in red. 

 Fig. 6.8: 

  

       

 

 

      a)       b) 

Figure 6.7 The q profiles, for which the ideal modes are stable (green) and unstable (red) for the shot 

#21655: a) whole profiles, b) profiles near qmin. The correspondence of subfigures of Figure 6.8 to 

unstable zones is shown on the right. 

 

It is clearly seen that the “red” unstable profiles correspond to values of  qmin  close to integer values  

1, 2 and 3. The mode structures for these instability regions are presented in Figure 6.8. 

The mode, presented in Figure 6.8 is known as the infernal mode. This mode appears in the area of the 

low positive shear (just outside the minimum q surface for non-monotonic q profiles). In this area the 

ballooning theory breaks and the low-n ballooning instability becomes possible. This mode was first 

described in [23] for monotonic q profiles and then in [24] for reversed shear profiles.  
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a)   

b)   

c)   

 

Figure 6.8 The mode structure for unstable q profiles in Figure 6.7: poloidal cross-section and radial 

structure of  ξ⋅∇ψ  Fourier harmonics with different m: a) qmin ≈ 1.0, most unstable mode is m/n=1/1,           

b) qmin ≈ 2.0, m/n=2/1, c) qmin ≈ 3.0, m/n=2/1 and 3/1 

 

The influence of the qmin value and of the normalized beta βN  can be seen together, by following the 

“stability-instability” boundary in the qmin - βN space, calculated by a specially developed Perl script 

using the following scheme: the pressure and current profiles are given as input. Starting at some 

values of qmin and βN (qmin = 0.8 and βN = 0.7 in the case presented in Figure 6.9) the script calculates 

the equilibrium by means of the CHEASE code, using iterations in order to obtain the prescribed 

values of qmin and βN and then the equilibrium stability is analyzed by the KINX code. If the 

1 

2 

2, 3 
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configuration is stable, then the pressure is increased at fixed qmin until the unstable equilibrium is 

found. Then qmin is increased again and the procedure repeated until the maximum prescribed qmin is 

achieved. It is important to note that the current profile, and not the q profile, is kept constant, so the q 

profile is modified by changing qmin and the plasma pressure. The stability boundary is presented in 

Figure 6.9 for the same pressure profile as in Figure 6.5. 
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Figure 6.9 The n=1 mode stability boundary plotted in qmin - βN space. Green and red squares 

correspond to ideally stable and unstable configurations, respectively. Pressure and q profiles of the 

shot #21655. 

 

It is seen that at qmin ≈ 1.0 the instability begins at very low  βN, because of the m/n=1/1 internal kink 

mode. In most TCV reversed shear experiments qmin does not reach such low values and the internal 

kink mode is not dangerous.  Nevertheless, the internal and external modes with m=2, 3, 4 etc, develop 

when qmin is close to corresponding integers. Between these zones “stability windows” are seen, where 

the ideally stable plasma can be obtained at relatively high βN. These “stability windows” correspond 

to qmin values between integers. Thus, one way of improvement of the reversed shear plasma 

performance is to avoid the integer values of qmin by fine adjustment of the current drive and plasma 

heating. At increasing qmin > 3-4, the infernal mode is stabilized or becomes an external kink mode, 

which is less sensitive to the value of qmin. 

The m/n = 2/1 and 3/1 components were measured just before the disruption for the shot #21653 [112]. 

This would correspond to the qmin value near 3, as shown in Figure 6.8c. This is compatible with the 

slightly more reversed q profiles obtained assuming a lower radial diffusion coefficient in the CQL3D 

simulations [111]. This is also in agreement with more recent transport simulations using the ASTRA 

code [113]. 
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6.3.2 Fixed and free boundary. External kink mode. 
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Figure 6.10 The role of the plasma boundary in the infernal mode stability: a) stability-instability 

boundary with fixed plasma boundary (black) and free plasma boundary at rwall/a=10.0 (blue) 

regimes, b) dependence of the mode growth rate and of the square of the normal displacement. At the 

plasma boundary on the distance of the wall from the plasma boundary for qmin =1.6 and βN = 1.9 (red 

square in (a)); The normal displacement in the cases: c) rwall/a=1.0, d) rwall/a=10.0 
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As seen in Figure 6.10, the infernal mode stability limit does not depend substantially on the boundary 

conditions, although the growth rate varies between the fixed boundary and free boundary cases. 

Figure 6.11 illustrates this. 
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Figure 6.11 The dependence of the infernal mode growth rate on βN in similar conditions in fixed 

boundary and free boundary conditions. 

 

The difference of the βN limit for the fixed and free boundary cases is around 0.2 and is not substantial 

in comparison with variations of the βN limit with qmin, for example. 

With free boundary conditions and at qmin > 3 another ideal MHD mode becomes unstable: the 

external kink modes with different m, described in the Section 2.4.2. These modes are localized close 

to the plasma edge and their existence is not directly connected with the non-monotonic character of q 

profiles. The external kink mode is mainly a current driven mode, while the infernal mode is mainly 

pressure driven. However in a real configuration both drives are effective and the modes are not 

always distinguishable. The structure of the external modes is presented in Figure 6.12, which shows 

that the maximum amplitude of the radial displacement is more off-axis as compared to Figure 6.10. 

This is why the fact  that qmin is integer does not play a role any longer. 

 

Figure 6.12 An external kink modes at qmin ≈ 4.4 with free plasma boundary: the plot of the radial 

displacement in the poloidal cross-section and the radial displacement of Fourier harmonics with 

different m. 
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At qmin < 3, the large pressure gradients in regions with small shear, particularly when qmin is an 

integer, are the main drive and can lower the βN limit significantly. At intermediate qmin ≈ 3 to 5, both 

pressure and current density drives are important,  while at larger qmin the external kink is more 

important. 

The infernal modes are more localized in the plasma core and this could explain the minor disruptions, 

leading to a loss of the core transport barrier, but not of the whole plasma confinement [114]. 

6.3.3 The role of the pressure gradient 
 

The pressure gradient in the low shear region is considered as one of the main free energy sources of 

the ideal instability in the reversed shear plasma [23]. Several pressure profiles were studied: one 

broad profile with parabolic P’ profile, typical for standard L-mode plasmas and three profiles with 

steep and localized pressure gradient, similar to the profile presented in Figure 6.5 and characteristic 

for plasmas with an internal transport barrier. These profiles and corresponding stability limits are 

presented in Figure 6.13.  
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Figure 6.13 Four pressure profiles(a) and corresponding pressure gradients (b) at the low shear 

region and corresponding stability-instability boundaries in the qmin - βN space (c). 
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The stability limit in case of the wide “parabolic” pressure profile, reaching the Troyon limit βN ≈ 3.0, 

is substantially higher than in the case of eITB profiles. Evidently, the steepness of pressure profiles 

plays an important role for the infernal mode stability. The formation of eITB, while improving 

plasma confinement in the core region, leads to an increase of the pressure gradient in the barrier zone 

near qmin, thus lowering the ideal stability limit. This also causes an even higher current density 

inversion. As a result, the Troyon limit βN ≈ 3.0 can hardly be obtained in reversed shear plasmas 

without wall stabilization, unless the possibility to avoid the infernal mode development by profile 

optimization is found. 

The role of pressure profiles and of the type of q profiles can be seen in Figure 6.14. The pressure 

profiles from Figure 6.13a and the q profiles, presented in Figure 6.14a are of three types: monotonic, 

flat and reversed. 
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Figure 6.14 a) Different types of q profiles and b) βN limit dependence on the pressure profile peaking 

factor for monotonic (squares), flat (circles) and reversed (up triangles) q profiles. Colors correspond 

to colors of pressure profiles in Figure 6.13a, used for calculations. 

 

The highest ideal stability limit corresponds to the monotonic q profile, while flat and reversed q 

profiles are more exposed to ideal MHD modes because in the low shear zone the conditions for the 

infernal mode development appear, especially in case of high pressure gradient or peaked pressure 

profile. This also explains why fully sustained scenarios with too peaked pressure profile can disrupt 

even at relatively low βt values [104, 106]. 

Another way to see the effect of the localized pressure gradient is in the value of the pressure peaking 

factor P0/<P>V. It was shown that in reverse shear plasmas this parameter is very important [25], and 

high βt values can be obtained only at low peaking values, without wall stabilization. This is also seen 

in Figure 6.14b where βN limit almost doubles for the reversed shear case for peaking values between 

4.5 and 3. It is interesting to note that this is also the case for a monotonic q profile which has a βN 

limit about half the Troyon limit for peaking values greater than 5 (squares in Figure 6.14b). The li 
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variation between the cases in Figure 6.14b are negligible, li ≈ 1.3 in all these cases, thus the li 

variation cannot explain the stability limit changes as equation (5.6) would indicate. This is related to 

the low shear in the core which gives this sensitivity to the pressure drive, similarly to infernal modes. 

6.3.4 The q profile 
 

The q profiles in the reversed shear plasma can be very different. It is important to define, which 

parameters of the q profiles are important for the mode stability and have to be controlled, and which 

parameters can be left unattended, because they do not substantially influence the mode stability. 

To define the q profile parameters, a number of substantially different current profiles were studied at 

two values of qmin =2.2 and 4.4 with different pressure profiles (Figure 6.14). The current profiles were 

chosen so that a wide range of profile shapes and values of ρqmin, q0 and qa were covered, also at the 

same ρqmin different q0 and qmin values were represented. 
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Figure 6.15 a) The pressure and b) the surface averaged current profiles studied for the ideal MHD 

stability, and corresponding q profiles at c)  qmin ≈ 2.2, and d) qmin ≈ 4.4. Note the different scale in c) 

and d) 

 

The basic parameters of the q profiles for the case with qmin ≈ 2.2 varied in the following limits: q0 

between 2.6 and 6.0, qa between 4.5 and 12. At qmin≈ 4.4 they varied as follows:  q0 between 4.9 and 

9.5, qa between 8.8 and 23.  ρqmin in both cases varied between 0.35 and 0.66.  
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Note that in both cases, same plasma current profiles were used, but the corresponding q profiles are 

different. In some cases at qmin = 4.4 a second minimum appears in the q profiles. 

The pressure profiles, as shown in Figure 6.15a, varied by shifting the pressure gradient zone between 

ρ  = 0.3 and 0.6, the position of the gradient zone remained unchanged. 

The βN limit for the pressure and q profiles in Figure 6.15 is presented in Figure 6.16. The 

dependencies of βN on ρ, on εqmin/εa and on the square root of the volume within the surface of 

minimum q, relative to the total plasma volume, are shown. In the case of qmin ≈2.2 the infernal modes 

dominate, and at higher qmin ≈ 4.4 the external kink modes are most important. 
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Figure 6.16 The dependence of the  βN limit on ρ, εqmin/εa and aminq V/V  at qmin ≈ 2.2 and qmin ≈ 4.4 

for different q profiles and pressure profiles , shown in Figure 6.14. The colors correspond to the 

colors of pressure profiles in Figure 6.14 a. 
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It is seen in Figure 6.16 that at qmin = 2.2 and 4.4 the dependence of βN on εqmin/εa and on aminq V/V is 

close to linear. The linear dependence of βN on εqmin/εa and on aminq V/V in the case of q profiles with 

one minimum allows to suppose that the basic parameters that define the infernal mode stability in the 

reversed shear configuration are the minor radii of qmin and of the maximum of P’. On the contrary, q0, 

qmin and the shape of the q profiles in some limits are not so important for the infernal mode stability. 

The stability of infernal modes increases with the radius of the pressure gradient and with the radius of 

the minimum q. 
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Figure 6.17 The dependence of the ideal MHD stability limit on 1/qa at a) qmin ≈ 2.2. and b) qmin ≈ 4.4, 

on the pressure peaking factor (c,d)  

 

At qmin ≈ 4.4, when the external kink modes start to dominate, at large radius of pressure gradient the 

dependence on ρqmin also appears to be linear. In addition we clearly see in this case an ideal mode 

stability dependence on 1/qa, as shown in Figure 6.17b. At qmin ≈ 2.2 the relation to 1/qa depends more 

on the radius of the pressure gradient zone ρP, thus on the pressure peaking factor (Figure 6.17a,c). 

The dependence on the plasma pressure peaking factor P0/<P>V is linear in both cases (Figure 

6.17c,d). Note that the variations of the peaking factor for the same pressure profiles are due to the 

equilibrium difference at different q profiles. Therefore there is always a link between the q profile and 

the pressure profile which are difficult to separate. 
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In order to better understand the apparent dependence of βN on qa in Figure 6.17a,b, we show in Figure 

6.18 the dependence of βt on IN for both of these profiles. We see that in fact we recover the “Troyon 

curve”, except that the βt limits are slightly lower than βN ≈ 3.0 because of the high value of the 

peaking factor and of the reversed shear. The solid symbols (qmin ≈ 4.4), at small IN, have a quadratic 

dependence on IN which explains the linear dependence of βN on 1/qa in Figure 6.17b. However we see 

that both groups of profiles are in fact not so different from the normal external kink β limit. 
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Figure 6.18 The dependence of βt limit on the normalized current IN for cases shown in Figures 6.16 

and 6.17. Open symbols correspond to qmin = 2.2, solid symbols correspond to qmin = 4.4 cases. The 

Troyon limit βN = 3.0 is also shown 

6.3.5 The position of qmin and of the plasma pressure gradient 
 
 

The flexible system of EC current drive and plasma heating of TCV allows the creation of a wide 

range of reversed shear plasma configurations. The current and pressure profiles can be varied 

substantially and relatively independently. On the basis of the analysis of the stability of plasmas with 

various current and pressure profiles the configurations with enhanced ideal stability can be proposed 

for future experiments. Thus, it is important to study the role of the current and pressure profiles and 

of their combined influence on the ideal stability of such plasmas. 

The stability limit behavior in the space qmin - βN was studied for several current profiles, Figure 6.14, 

and for different pressure profiles with different ρqmin from Figure 6.14a. The results are presented in 

Figure 6.19.  

In most cases, the calculations started at qmin = 1.5, because at lower qmin the behavior of the stability 

limit was similar. At qmin below 4 to 5 one can see the resonant structure, characteristic of the infernal 

modes with “stability windows” between the integer values of qmin. At higher qmin in many cases the 

stability limit can go up, signifying the stabilization of the infernal mode. This happens mostly at low 
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ρqmin and at low ρP, whereas at high ρqmin and/or high ρP the external kink mode becomes unstable and 

the stability limit depends on 1/qa and not on qmin. The calculations aborted by βN increase because of 

convergence problems, appearing in equilibrium calculations by CHEASE. It is seen in Figure 6.19c,d 

that at high ρqmin the mode, localized near the plasma edge, remains unstable at higher qmin than at 

lower ρqmin, probably because of interaction with the external kink modes. One can also see in Figure 

6.17a that at very low ρqmin and at high ρP the external mode dominates the ideal MHD stability, 

starting from qmin ~ 1.6. The calculations in the fixed boundary regime have shown that for ρqmin =0.4 

the infernal modes are stable with ρP = 0.6 and 0.7, that is when there is little pressure gradient in the 

low shear region. 
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Figure 6.19 The dependence of βN limit on qmin for different q and pressure profiles. Free boundary 

case. 
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These specific features of the ideal MHD modes in the reversed shear plasmas can be used for 

optimization of the plasma pressure and current profiles in the TCV experiments in order to obtain 

better plasma performance. 

Possible ways of profiles optimization are: 

1. qmin in “stability windows” close to 1.5, 2.5 or 3.5; 

2. The pressure profiles with high radius of ρP, flat in the plasma center; 

3. Very high (~0.7) or very low (~0.3 - 0.4) radius of qmin. 

In this case the external kink modes are weak, and the ideal MHD stability is dominated by the 

infernal modes. 

Another way of optimizing the profiles is the high qmin > 6.0 and moderate or low ρqmin and ρP. In 

these conditions the infernal mode is stabilized and the external modes are not developed. 

Optimization of q and pressure profiles can probably allow to increase βN, achievable in the TCV 

reversed shear experiments, to βN ~ 2.0, two times higher than the values obtained in described TCV 

shots. 

6.3.6 The n = 2 stability  
 

As it was mentioned, in TCV reversed shear experiments the modes with m/n = 2/1 and 3/1 were 

observed during the plasma disruption. The n = 1 modes are considered as the most dangerous ones 

and the above analysis is devoted to the stability of these modes. It can be useful, however, to consider 

the stability of modes with higher n, especially with n = 2. The m/n = 3/2 mode can become unstable at 

qmin close to 1.5, where the “stability window” exists in the case of n = 1 mode. The analysis of n = 2 

mode stability in comparison with n = 1 mode is shown in Figure 6.20 for the same conditions as in 

Figure 6.19a. 

The n = 2 mode has a resonance at qmin = 1.5, thus reducing the stability window between qmin = 1 and 

2. Nevertheless, this stability window remains interesting for profiles optimization, because it still 

allows to reach higher βN than at qmin close to integer values. 
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Figure 6.20 The n = 1 (solid squares) and n = 2 (open circles) stability limits at different pressure 

profiles for the case shown in Figure 6.19a 

 

6.4 Conclusions  
 

• A series of TCV experiments with reversed shear profiles and internal transport barriers have 

been analyzed. The increase of the current inversion leads to a confinement improvement within 

the eITB zone and the local pressure gradient increases. The profiles just before the disruption 

are marginal with respect to the n = 1 mode. 

• The m/n = 3/1 and 2/1 components observed experimentally, are consistent with numerically 

calculated ideal modes with qmin near 3. The characteristic time of the disruption, ~ 20 µs, is 

consistent with the ideal growth rate. Thus it is shown that reversed shear scenarios with internal 

transport barrier are limited by ideal modes. The unstable mode is identified as an infernal mode, 

localized near the qmin, low shear region. This mode is mainly pressure driven. The marginal βN 

stability limit for the infernal mode is not very sensitive to the presence of an ideal wall on the 

plasma boundary, but it is very sensitive to integer qmin values. 
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• By increasing the position of the maximum pressure gradient, the mode is localized in the 

positive shear region and close to the edge. The transition to the external kink mode occurs. It 

becomes less sensitive to the actual qmin value, as expected for external kink modes. 

• The βN limit increases with increasing radius of the position of qmin and of the maximum 

pressure gradient. 

• The strong dependence on the pressure peaking factor is confirmed in these reversed shear 

scenarios. The localized pressure gradient due to the internal transport barrier reduces the βN 

limit with respect to the Troyon limit. This is also true for monotonic q profile with similar li if 

P0/<P>V ≥ 4-5. 

• The n = 2 mode, although not observed in disruptions of TCV reversed shear plasmas, decreases 

the βN limit near the resonance qmin ≈ 3/2, if the position of qmin and of the pressure gradient is 

close to the plasma centre. 

• By current and pressure profile optimization it is possible to obtain better plasma performance. 

Several ways of the profile optimization are proposed. 
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Chapter 7. Summary and conclusions 
 

Internal kink 
 
• The ideal MHD stability of modern tokamak plasmas has been examined by means of analytical 

and numerical calculations. The validity limits of the analytical approximations of the internal 

kink mode growth rate, based on an expansion on the inverted aspect ratio ε, have been analyzed. 

It has been established that the analytical approach cannot be used in the case of present tight 

aspect ratio tokamaks, due to the size of ε. This is true even though the value of ε at the q = 1 

radius, which determines the internal kink growth rate, is significantly smaller than the plasma 

boundary εa. Numerical corrections to inaccuracies, incurred by expansion in ε, are due to the 

combined treatment of toroidicity and plasma shaping. 

• The dependence of the ideal internal kink mode growth rate on the aspect ratio and on plasma 

shape parameters has been studied in detail, with an emphasis on the effects of elongation and 

triangularity. It is found in particular that the growth rate has a minimum at slightly negative 

triangularity, which does not depend on the plasma elongation. The dependence on beta Bussac 

at moderate and low ε was found to be essentially linear and not quadratic, as predicted 

analytically. It can even have a dependence on βbu, which is weaker than linear when ε is large 

• The critical value of βbu, 
crit
buβ above which the internal kink mode is unstable depends mainly on 

elongation for εa ≥ 0.2. It is found that crit
buβ = 0 for κa ≥ 1.5. That is, flat pressure profiles inside    

q = 1 are unstable at high elongation. This is in agreement with experimental measurements, 

which show that pressure profiles are not peaked just before sawtooth crashes when the crash is 

triggered by an ideal internal kink mode [80]. 

• Experiments with a variation of plasma triangularity were performed on the TCV tokamak 

including discharges with very negative triangularity. The experimental dependence of sawtooth 

oscillations on the plasma triangularity agrees well with the dependence of the numerically 

obtained results of the ideal internal kink mode growth rate on triangularity. Thus it is consistent 

with the sawtooth crash being triggered by the ideal internal kink mode in these experiments. 

The significant stabilization at positive triangularity explains why the resistive internal kink is 

more relevant for triggering sawtooth crashes in present experiments with δa>0.3. 

• On the basis of the numerical calculations a new formula is proposed, describing the dependence 

of the ideal internal kink mode growth rate on basic plasma parameters. This formula differs 

substantially from analytical formulae and is intended for the use at moderate and high values of 

ε, which is characteristic for modern tokamaks. The importance of self-consistent variation of 
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equilibrium parameters with the variation of each single parameter is highlighted, in particular in 

order to compare with experimental results. 

 

External kink at high elongation 
 

• The ideal MHD stability analysis of TCV plasmas with high elongation has been performed, 

using the numerical codes. This work has contributed to the experimental studies of high current 

plasmas on TCV. The calculations of the n = 1 external kink mode stability dependence on 

plasma shape have been carried out, and the optimum shape found. Some unusual plasma shapes 

have also been analyzed and possible candidates for experimental studies determined. The results 

of the experiments on TCV are in good agreement with the ideal stability analysis, which can be 

used for prediction and optimization of high elongation plasma beta limits. 

 

Reversed shear profiles 
 

• The stability of plasmas with non-monotonic current density profiles have been studied and the 

role of pressure and current profile parameters was examined. A series of TCV experiments with 

reversed shear profiles and internal transport barriers have been analyzed. With increasing 

reversed shear, the confinement is improved and the local pressure gradient increases. It was 

shown that the profiles just before the disruption were marginal with respect to the n = 1 mode. 

• The mode structure, with dominant 3/1 and 2/1 components observed experimentally, is 

consistent with an ideal mode with qmin near 3. The characteristic time of the disruption, ~ 20 µs, 

is consistent with the ideal growth rate. Therefore the study shows that reversed shear scenarios 

with internal transport barrier are limited by ideal modes. The unstable mode is identified as an 

infernal mode, localized near qmin, low shear region, and is mainly pressure driven. The marginal 

stability limit for this mode is not very sensitive to the presence of an ideal wall on the plasma 

boundary. The βN limit for the infernal mode is very sensitive to integer qmin values. 

• It has been shown that by increasing the position of the maximum pressure gradient, the mode is 

localized in the positive shear region and close to the edge. It becomes less sensitive to the actual 

qmin value, as expected for external kink modes. 

• It is found that the βN limit increases with increasing radius of the position of qmin and of the 

maximum pressure gradient. 

• The strong dependence on the pressure peaking factor is confirmed in these reversed shear 

scenarios. It was shown that the localized pressure gradient due to the internal transport barrier 

reduces the βN limit with respect to the Troyon limit. It has been shown that this is also true for 

monotonic q profile with similar li if P0/<P>V ≥ 4-5. 
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