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Abstract

Printed multilayered media with metallizations embedded between dielectric layers are one of
the most successful technologies for manufacturing planar structures with a good performance-
to-price ratio. These structures range from PC board circuits, through cavity backed antennas
and antenna arrays used in satellite communications, to waveguide filters. The approach
most commonly used to model and analyze the aforementioned structures is the Integral
Equation (IE) technique solved with Method of Moments (MoM). Applying IE-MoM with
subsectional basis functions to electromagnetically large structures is demanding in terms of
both computer memory allocation and time needed to solve the problem. Computationally
efficient techniques are thus needed to accelerate the IE-MoM procedures and allow modeling
of large circuits and antennas on standard desktop PCs. Subdomain Multilevel Approach
(SMA) with Macro-Basis Functions (MBF) is one of the acceleration techniques, developed in
our laboratory. Its application to modeling large antenna arrays has already proven to be very
efficient. However, this technique can be improved, especially when MoM matrix filling time
is concerned. This thesis proposes an improvement of the SMA using equivalent moments in
computing the interactions between macro-basis functions. It shows that, without significant
loss of accuracy, we obtain a two-fold gain in computational time for structures with the
number of unknowns of the order 104.

In structures operating at higher frequencies (thin films in millimeter and submillimeter
wave bands) or with self supporting metallic plates, the thickness of metallic screens must be
taken into account. Multilayered structures with apertures (holes) in thick conducting screens
can be accurately modeled using the equivalence theorem and magnetic currents introduced
at both aperture interfaces. This approach, however, doubles the number of unknowns as
compared to that one of the zero-thickness case. Moreover, the thick aperture problem asks
for the computation of cavity Green’s functions, which is a difficult and time-consuming task
for apertures of arbitrary cross-sections. This thesis addresses the problem of scattering by
apertures in thick conducting screens by introducing an approximate and computationally
efficient formulation. This formulation consists in treating the thick aperture as an infinitely
thin one and in using the correction term in integral equation kernel that accounts for the
screen thickness. The number of unknowns remains the same as in the zero-thickness screens
and evaluation of complicated cavity Green’s functions is obviated, which yields computa-
tionally efficient routines. The technique is successfully applied to self-supporting aperture
antennas and thick irises within multilayered rectangular waveguides giving good results for
apertures whose thickness is smaller than their lateral dimensions.
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Résumé

Les milieux stratifiés planaires avec des métallisations entre les couches diélectriques
représentent l’une des technologies les plus utilisées dans la fabrication des structures planaires
avec un bon rapport performance/prix. Ces structures s’étendent des circuits imprimés aux
filtres en guide d’ondes, en passant par les antennes à cavité et les réseaux d’antennes utilisés
dans les communications par satellite. La technique de l’équation intégrale (IE) résolue avec
la méthode des moments (MoM) est l’approche généralement la plus employée pour modéliser
et analyser les structures susmentionnées. L’application de l’IE-MoM avec des fonctions de
base subsectionnelles aux structures qui sont grandes du point de vue électromagnétique est
exigeante en espace mémoire et en temps d’exécution. Des techniques efficaces sont donc
nécessaires pour accélérer les procédures IE-MoM permettant de modéliser les circuits et an-
tennes à grande échelle avec des ordinateurs standards. L’une des techniques d’accélération,
développée au sein de notre laboratoire, est le “Subdomain Multilevel Approach” (SMA)
avec les macro-fonctions de base (MBF). Cette technique s’est montrée très efficace dans la
modélisation des réseaux d’antennes à grande échelle. Cependant, la technique peut être
améliorée, particulièrement le paramètre temps, nécessaire pour remplir la matrice des mo-
ments est concerné. Cette thèse propose une amélioration de la technique SMA en utilisant
les moments équivalents pour calculer les interactions entre les macro-fonctions de base. Elle
permet, sans perte significative de précision, d’obtenir des simulations qui sont au moins deux
fois plus rapides avec un nombre d’inconnues de l’ordre 104.

Dans les structures fonctionnant aux fréquences plus élevées, l’épaisseur des écrans
métalliques doit être prise en considération. Des structures en milieux stratifiés avec des
ouvertures (trous) dans les écrans métalliques épais peuvent être modélisées avec précision en
utilisant le théorème d’équivalence et en introduisant les courants magnétiques sur les deux in-
terfaces de l’ouverture. Cette approche double, cependant, le nombre d’inconnues par rapport
au cas de l’épaisseur-nulle. Par ailleurs, le problème d’ouverture épaisse demande le calcul des
fonctions de Green pour les cavités, ce qui devient une tâche difficile quant aux ouvertures de
formes transversales arbitraires. Cette thèse résoud le problème de la dispersion par des ou-
vertures des écrans métalliques épais en présentant une formulation approximative et efficace.
Cette formulation consiste à traiter l’ouverture en la considérant comme infiniment mince et
en appliquant le terme de correction, qui prend en compte l’épaisseur de l’écran, au noyau
de l’équation intégrale. Le nombre d’inconnues demeure le même que dans le cas des écrans
infiniment minces et le calcul des fonctions de Green pour les cavités est évité. La technique
appliquée avec succès aux antennes à ouvertures des écrans métalliques épais et aux iris épais
des guides d’ondes rectangulaires multicouches donne de bons résultats pour les ouvertures
dont l’épaisseur est plus petite que leurs dimensions latérales.
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Kratak Pregled

Planarni vǐseslojni dielektrici sa metalizacijama štampanim izmedju substrata predstavljaju
jednu od najčešće korǐsćenih tehnologija u proizvodnji planarnih struktura, koja istovremeno
ostvaruje dobar kompromis izmedju performansi i cene. Planarne strukture obuhvataju široki
spektar kola i antena: od štampanih ploča, preko mikrostrip antena i antenskih nizova do fil-
tera u talasovodima. Pristup koji se smatra najefikasnijim za analizu i dizajn ovih struktura
jeste korǐsćenje integralnih jednačina (IE) koje se rešavaju numerički upotrebom metode mo-
menata (MoM). Medjutim, ovaj pristup u kombinaciji sa baznim funkcijama definisanim na
delovima domena, na koje je čitava geometrija problema izdeljena, zahteva velike memorijske
resurse i vodi dugim kompjuterskim simulacijama. Iz tog razloga su neophodne tehnike koje
ubrzavaju IE-MoM procedure i omogućavaju analizu elektromagnetno velikih struktura na
standardnim računarima. Jedna od takvih ‘akceleratorskih’ tehnika koja se pokazala veoma
efikasnom, a koja je razvijena u laboratoriji za elektromagnetiku i akustiku (LEMA) na
EPFL-u, je Subdomain Multilevel Approach (SMA) sa makro-baznim funkcijama (MBF).
U ovoj tezi predložen je način kojim se SMA ubrzava korǐsćenjem ekvivalentih momenata
pri izračunavanju interakcija izmedju makro-baznih funkcija. Bez značajnijeg gubitka u pre-
ciznosti, simulacije štampanih antenskih nizova (sa brojem nepoznatih reda 104) postaju naj-
manje dva puta brže.

Ova teza zatim predlaže približnu ali efikasnu formulaciju za rešavanje problema rasejanja
na otvorima u metalnim ravnima konačnih debljina. Naime, konačna debljina metalnih ravni
u strukturama koje rade na vǐsim učestanostima (kao što je slučaj kod tankih metalnih filmova
na milimetarskim i manjim talasnim dužinama) mora biti uzeta u obzir u elektromagnetnim
simulacijama. Precizan način modelovanja vǐseslojnih sredina sa aperturama (otvorima) u de-
belim metalnim ravnima je korǐsćenjem teoreme ekvivalencije i uvodjenjem magnetskih struja
na obe strane otvora. Na ovaj način se, medjutim, udvostručava broj nepoznatih u poredje-
nju sa otvorima u beskonačno tankim ravnima. Štavǐse, ovaj pristup zahteva izračunavanje
Grinovih funkcija za talasovode što postaje numerički veoma zahtevno u slučaju otvora
proizvoljnog poprečnog preseka. U predloženom rešenju, metalna ravan konačne debljine
se aproksimira beskonačno tankom ravni dok se debljina pojavljuje kao korekcijski faktor u
jezgru integralne jednačine. Broj nepoznatih ostaje isti kao u slučaju beskonačno tanke ravni
a računanje zahtevnih Grinovih funkcija u talasovodima proizvoljnog poprečnog preseka je
izbegnuto. Ova tehnika pokazuje dobre rezultate u simulaciji antenna sa metalnim otvorima
u debelim metalizacijama kao i u simulaciji otvora konačne debljine u talasovodima, sve dok
je debljina manja od poprečnih dimenzija aperture.
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1 Introduction

Computational electromagnetics is a fascinating discipline that creates a symbiosis between
mathematics, physics, computer science, and various application fields ranging from the ana-
lysis of circuits and antennas to the study of biological media. The term electromagnetic
(EM) simulation implies the numerical solution of Maxwell’s equations for electromagnetic
fields for a given structure and specified environment (boundary conditions) [1]. These field
computations may be carried out either in time domain (when the response is obtained as a
function of time) or in frequency domain (when the solution is obtained for sinusoidal exci-
tation in a specified range of frequencies). Among the time-domain solution techniques, the
most commonly used approach is the finite-difference time-domain method (FDTD) [2, 3]
and is indispensable when nonlinear active devices (for which only time-domain models are
available) are included in the simulated structures. The most commonly used techniques for
frequency simulation are the the finite-element method (FEM) [2, 4] and the solution of inte-
gral equations by the method of moments (IE-MoM) [2, 5, 6]. The FEM is used for general
three-dimensional (3-D) structures, while the IE-MoM technique is especially well-suited for
analysis of planar microwave and millimeter wave circuits and antennas.

This thesis deals with EM phenomena in the micro and millimeter wave range. In these fre-
quency ranges, the dimensions of typical devices are comparable to the operating wavelength
and the “full-wave” version of Maxwell equations must be used. The computer aided design
(CAD) of microwave and millimeter wave structures has reached a significant level of maturity
and nowadays there exists a vast choice of commercial EM solvers with enhanced capabilities
in modeling these structures. A nonexhaustive list would include ANSOFT DESIGNER and HFSS

(based on FEM) [7], WIPL-D (IE-MoM) [8], ADS-Momentum (IE-MoM) [9], CST Microwave

Studio (time-domain Finite Integration Technique) [10], IE3D (IE-MoM) [11], and Empire

(FDTD) [12] to mention but a few. Although EM-field simulation based on Maxwell’s equa-
tions is rigorous, any practical implementation of EM-simulation methods does require some
approximations either in description of the structure (and surrounding environment) to be
analyzed, or in terms of boundary conditions, or in terms of the computational implementation
of the method itself [1].

Planar technologies, with metallizations embedded in layered dielectric media, have a good
performance-to-price ratio when manufacturing circuits and antennas at microwaves and mil-
limeter waves. IE-MoM based simulators of planar multilayered media assume infinite lateral
extent of the substrates and ground planes (or a rectangular boundary with electric and/or
magnetic walls). These assumptions allow the efficient construction and evaluation of the
associated Green’s functions. At the same time, the thickness of metallic patches and ground
planes is neglected. However, in many configurations such as cavity backed antennas, irises in
waveguide filters, aperture-fed patches, and thick coplanar lines, the conducting screen thick-
ness has to be accounted for, because of the technology (self-supporting metallic plates rather

1
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than printed sheets), the frequency (mm- and sub mm-waves) or both. The drive to analyze
more complex environments yields the much more involved Green’s functions, for which the
older numerical tricks and recipes do not apply anymore and any speed-up in the calculation
of Green’s functions and of their convolutions is of paramount relevance.

Other difficulties in application of EM simulators arise because of the intensive computer
central processing unit (CPU) time and memory occupation. The memory requirements of
a problem with N unknowns grow as O(N2), in case of fully populated matrices. Even
when the number of unknowns is such that it fits the available memory, another resource
becomes critical. The CPU time grows as O(N3) when a direct solution is applied leading to
prohibitively long simulations. Despite the constant growth in computer technology, the EM
simulation of electrically large structures is made feasible only with the development of fast
algorithms with reduced complexity and memory requirements [13]. Thus, the development
of fast solution methods that are efficient in terms of computational complexity and memory
requirements is of chief importance.

1.1 Objectives

The main research directions taken in this thesis, aside from a pure academic interest, are
strongly motivated and driven by three projects for the European Space and Technology
Center of the European Space Agency (ESA-ESTEC).

The ESA-ESTEC project number 11278/94/NL/PB: “Antenna CAD and Technology for
Future SARs” has been done in collaboration with Saab Ericsson Space. Space born Synthetic
Aperture Radars (SAR) for high resolution imaging of the Earth require antenna radiators
with large frequency bands and efficiency. A specific microstrip structure was proposed for
this purpose by Saab Ericsson Space and an IE-MoM electromagnetic solver especially suited
for the design of this type of microstrip antenna arrays, has been developed in our laboratory.
The numerical code is optimized to cope with microstrip structures having a large number
of radiating elements and containing thin dielectric skins between feeding lines and metallic
patches. The solver incorporates dedicated routines for computation of Green’s function
of microstrip structures with thin dielectric layers. In addition, the Subdomain Multilevel
Approach (SMA) is implemented to cope with the electromagnetically large microstrip designs.

Within the ESA-ESTEC project number 12996/98/NL/DS: “Modelling of wide band dual
polarization antenna arrays”, a software tool POLARIS for computationally efficient modeling
of the Low Tolerance Arrays (LTA) has been developed. The Low Tolerance Arrays belong
to the wide-band, dual-polarized, multiple slot array family. The design of these antennas
is of interest for several ground and space applications, including satellite TVRO (Television
Receive Only) systems, multimedia and Very Small Aperture Terminals (VSAT) on board,
large bandwidth array panels, and SAR (Synthetic Aperture Radar) antennas. POLARIS is an
IE-MoM based solver for modeling multilayered structures with dielectrics supporting slotted
ground planes and feeding printed lines, such as encountered in the LTA family. Since an LTA
element can be backed by a ground plane or a rectangular cavity, efficient treatment of rect-
angular cavities has been implemented by incorporating the boxed Green’s functions to the
existing IEs. Ground planes can have a sizeable thickness to provide self-supporting antennas
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and specially suited Green’s functions based on perturbation theory are developed in order to
model them without slowing down the simulation. Finally, the arrays are obtained by peri-
odical repetition of basic elements or subarrays including beam forming networks (BFN). In
order to speed-up the MoM procedure of structures with large number of unknowns, the sub-
domain multilevel approach with macro-basis functions is used. The graphical user interface
(GUI) is developed by JAST SA [14]. It is written in Tcl/Tk and allows object LEGO-like
approach to complex geometries with a structured mesher that follows the symmetry of the
structures to be analyzed.

Another ESA-ESTEC project (number 15538/01/NL/JSC: “Integrated Electromagnetic
Modeling of Satellite Antennas”) resulted in a planar multilayered circuit and antenna solver
MIXSOLVER. This solver has been integrated within ADF-EMS system [15] that is a global soft-
ware tool, under development at the European Space Agency, enabling the design of antennas
both in free-space and on a spacecraft. Apart from MIXSOLVER, ADF-EMS gathers together
several electromagnetic modeling tools from other partners in this project. The ADF-EMS

allows the designer to assess antenna performances when installed on the spacecraft taking
into account interactions with structures and with other radiating/receiving systems. The
equivalent current distributions (Huygens sources) are used to achieve large scale modeling
problems and antenna farm interactions. The efficient computation of the near-fields and
equivalent currents is thus a main feature of MIXSOLVER. In addition, output files in special
binary formats are used in order to communicate the geometry and simulation result data
with the rest of the framework. The Graphical User Interface is based on GiD [16] and again
developed by JAST SA using Tcl/Tk.

1.2 Outline

This section summarizes the contents of the chapters of the thesis. Every chapter contains a
selective literature review substantial for the material presented in it.

Chapter 2 surveys the basic steps in the efficient IE-MoM simulations of planar multilayered
circuits, antennas and waveguides. It gathers and presents in an organized way the
geometry discretization issues, the Green’s function computation in free space, laterally
unbounded and shielded multilayered media, the details of IE-MoM procedure, and the
computation of circuit and antenna parameters such as scattering parameters, far and
near-fields.

Chapter 3 presents an improved Subdomain Multilevel Approach (SMA), used to efficiently
solve large complex-shaped antenna problems. This chapter first outlines the details of
the SMA technique and the concept of Macro-Basis Functions (MBFs). Then it explains
the possible improvements in terms of MoM matrix filling and proposes an efficient way
of computing the MBF reaction terms by reducing them to equivalent moments. Finally,
this chapter demonstrates the accuracy and efficiency of the proposed improvement by
investigating three representantive examples, in which the technique is compared with
a conventional MoM, unrefined SMA and measurements.
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Chapter 4 focuses on a classical EM problem of scattering of an EM wave by an aperture
in a thick conducting screen. First, it presents a detailed bibliography overview of the
work previously done to successfully solve the aperture problem in both thick and zero-
thickness screens. Then it examines in detail the numerical solution for infinitely thin
metallic plates and apertures and establishes all the steps in applying the equivalence
theorem. Finally, it reviews the thick aperture integral equation formulation and mo-
difies it to make it continuously valid for any aperture thickness, including a vanishing
thickness. It proposes the simplification of this formulation and claims that this sim-
plification reduces significantly the computational burden while providing valid results
for apertures of arbitrary cross-sections whose thicknesses remain small compared with
their linear transverse dimensions.

Chapter 5 takes the approximate solution from Chapter 4 and incorporates it within the
traditional integral equations for aperture antennas embedded in stratified media. It
introduces the new complete set of integral equations for a printed-line fed slot antenna
and provides further numerical verifications. It validates the developed model by com-
paring its numerical predictions with measurements for a set of aperture antennas of
different shapes and thicknesses.

Chapter 6 extends the approximate solution to the problem of thick irises inside the multi-
layered rectangular waveguides. After a thorough overview of different techniques used
in solving waveguide discontinuities, this chapter illustrates an efficient IE-MoM ap-
proach for solving rectangular waveguide discontinuities where a thin iris is considered
as a new waveguide section. After validating the approach by comparing the simulated
values to results from other solvers and measurements, this chapter introduces two orig-
inal and efficient treatments similar to the approximate solution presented in Chapter 4
and 5. Finally, it discusses the accuracy of the two approaches by putting side by side
the simulated and measured results.

Chapter 7 summarizes the concluding remarks and outlines the possible future research di-
rections inspired by the work presented in this thesis.

1.3 Original Contributions

The primary original contributions of this thesis are summarized in what follows.

Chapter 2, Section 2.6.4 presents a “specially truncated set of images”, a technique used to
speed-up the convergence of the multilayered boxed Green’s functions. The results of
this work have been presented in one conference paper.

Chapter 2, Section 2.12 is a valuable benchmark for near-field computations in multilayered
planar circuits and antennas presented in a conference paper.

Chapter 3 proposes an improvement of the SMA technique that consists in the computa-
tionally efficient way of filling the MoM matrix by reducing the MBFs into equivalent
moments. This work has been presented in one conference and one journal paper.
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Chapters 4 – 6 introduce a novel model for apertures of arbitrary cross-sections in thick
conducting screens and extend the validity of the model to aperture antennas in stratified
media and to the thin irises in multilayered rectangular waveguides. At the moment
of writing this thesis, this work has resulted in three conference papers, two workshop
presentations and one published journal paper.

For a complete list of publications, the reader is referred to the page 179 of this thesis.
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2 Numerical Modeling of Planar Multilayered

Structures

2.1 Introduction

Planar technologies, in which thin metallizations are embedded within flat layered dielectric
media, are one of the most popular and successful approaches to build circuits and antennas
in microwaves and millimeter waves with a good performance-to-price ratio. Here, we broaden
a little the original definition and include under the generic name “planar structures” many
different geometries, ranging from shielded and boxed printed circuits, to cavity-backed mi-
crostrip antennas and waveguide discontinuities. The common denominator is the presence of
planar dielectric layers and of metallic structures that are essentially one- or two-dimensional
(printed lines, patches, apertures in ground planes).

In the microwave community, structures covered by metallic planes or partially or fully
shielded (boxed) by metallic enclosures are usually considered from a waveguide standpoint.
Here, we will formulate an “antenna” approach, where the problem is first formulated in an
unbounded medium and metallic walls are successively added. This is an interesting and com-
plementary vantage point, which allows the introduction of alternate numerical techniques.

From the point of view of mathematical and numerical modeling, one of the most successful
approaches, providing a general framework for this type of antennas and circuits, is the Integral
Equation model combined with a discretization procedure like the Method of Moments (IE-
MoM) [1, 2]. Any integral equation formulation starts by setting up the boundary conditions
that must be satisfied by electromagnetic field [3]. Boundary conditions can be used to
generate an integral equation, and depending on the type of boundary conditions used, one
can obtain the electric field integral equation (EFIE), magnetic field integral equations (MFIE)
or combined field integral equations (CFIE). The EFIE can be solved either in spectral domain
or in space domain introducing mixed potential integral equations (MPIE).

In addition, boundary conditions can be replaced by unknown equivalent sources using
surface and/or volume equivalent principles [4]. With conductors always represented by sur-
face equivalent sources and dielectric media replaced by either volume or surface equivalent
sources, there exist surface-volume or surface-surface formulations. In both cases homoge-
neous Green’s functions are used.

A computationally most efficient formulation for modeling multilayered structures, where
the substrates can be approximated by flat layers of infinite transverse extent, and ground
planes assumed to be of infinite dimensions, is by using surface equivalence theorem and
stratified media Green’s functions. In this formulation, conductors are replaced by surface
electric currents and slots in conducting planes by surface magnetic currents. Therefore this
kind of IE-MoM can be recognized as a technique belonging to the family of Boundary Element

7
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Methods (BEM). In this formulation, the boundary conditions on different dielectric regions
are included in the Green’s functions [2, 3, 5].

The key step in any IE formulation is the construction and evaluation of the associated
Green’s functions. By using a flexible scheme in the definition of these functions it is possible
to bring under the same roof all the mentioned geometries. Therefore, in addition to the
original multilayered printed antenna, where the dielectric substrates are usually considered
as of lateral infinite extent, the same approach is able to deal with boxed circuits, cavity-
backed antennas and waveguide discontinuities, thus providing a seamless transition between
the printed antenna and the waveguide worlds [6, 7].

In this chapter, a brief overview of all the steps that need to be undertaken in the effi-
cient numerical simulations of planar multilayered circuits, antennas and waveguides is given,
ranging from the geometry discretization, through the Green’s function computation, to the
recovery of the circuit parameters, such as input impedance, near and far fields. The last
section of this chapter illustrates near field computation for a set of stratified media circuits
and antennas. The examples of other circuit and antenna parameters, such as scattering
parameters and far fields, will be presented in other chapters of this thesis.

2.2 A Basic Survey of a Generic IE Procedure

The following essential steps can be defined and identified in most IE-MoM implementations:

1. Discretization of the geometry and definition of basis functions.

2. Analytical construction of Green’s functions.

3. Filling the MoM matrix.

3a) Calculation of Green’s functions.

3b) Calculation of coupling integrals associated to matrix elements.

4. Definition of an excitation vector.

5. Solving the matrix equation.

6. Recovering equivalent circuit or system parameters of the structure.

2.2.1 Geometrical Discretization

The first step, geometrical discretization, is a rather generic problem, where the electromag-
netics community has largely borrowed information from other technical communities, more
advanced in the routine use of finite elements and related techniques for solving large-scale
problems. Some specificities of the electromagnetic problems (for instance the need for vector
edge elements) must be taken into account and there is an ongoing effort to adapt existing
finite element tools and meshers from civil and mechanical engineering to specific electro-
magnetic problems. Nowadays, many directly usable tools are freely available and/or widely
distributed (see for instance Triangle [8] and GiD [9] websites).
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The basis functions used can be entire domain basis functions or subsectional basis func-
tions. The advantage of using subsectional basis functions is that any geometry can be treated
by dividing it into triangular, rectangular, quadrangular or more complex subdomains.

The fundamental reason for this subdivision is that the currents can be expanded in a basis
of simple linear divergence and curl-conforming vector functions, also called rooftop function
or surface doublets, which will satisfy the pertinent continuity equations and exhibit a locally
constant charge distribution. The most important current continuity condition, in order for
the currents to locally satisfy Kirchhoff’s law, is for the normal component to be continuous
across the boundaries of adjacent cells in the mesh.

Once the structure is discretized, the rooftop functions are associated with rectangular or
triangular cells [10], quadrangular [11, 12, 13] or generalized polygonal basis functions defined
over the arbitrary polygonal subdomains [14].

2.3 The Green’s Function Formulation

For the sake of simplicity, let us illustrate the Green’s function formulation with the specific
geometry of a cavity backed antenna, which already contains two types of boundary conditions
to be considered in this work [Fig. 2.1(a)]. The standard procedure [3] applies the equivalence
theorem to the ground plane. Equivalent magnetic currents, equal but of opposite sign MU =
−ML = M, are then defined in both sides of the “filled” aperture and the problem is split
into two parts (subproblems): an upper one ©1 and a lower one ©2 [Fig. 2.1(b-c)]. We define
now equivalent electric currents JP in the upper patch P and JL in the lower printed line L.
Assuming some excitation (incident) fields Ei, Hi existing in the lower part, and using the
usual convolution notation [3] we can write by direct inspection the following equations:

• Impedance (Leontovich) boundary condition for the tangential E-field in the upper
patch P:

n ×
(

↔

G
©1
EJ ⊗ JP +

↔

G
©1
EM ⊗ M

)
= n × ZsJP (2.1)

• Continuity of the tangential H-field in both sides of the slot S:

n ×
(

↔

G
©1
HM ⊗ M

)
= n ×

(
Hi +

↔

G
©2
HJ ⊗ JL +

↔

G
©2
HM ⊗ (−M)

)
(2.2)

• Impedance (Leontovich) boundary condition for the tangential E-field in the lower line L:

n ×
(
Ei +

↔

G
©2
EJ ⊗ JL +

↔

G
©2
EM ⊗ (−M)

)
= n × ZsJL (2.3)

These are the three coupled integral equations fully defining the problem of Fig. 2.1. In the
above equations,

↔

GN
PQ =

↔

GN
PQ(r|r′) is a dyadic Green’s function giving the vector field P at

point r created by the point vector source Q at r′ when both source and observer belong to
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Figure 2.1: Equivalence theorem: (a) Original problem, (b) Upper equivalent subproblem, (c) Lower
equivalent subproblem.

the subproblem N . And the convolution operator ⊗ is defined as:

↔

G ⊗ f =

∫

D

↔

G(r|r′)f(r′) dD,

where D is the domain of definition of the source vector f .

It is worth mentioning that alternative IE formulations do exist for many planar problems.
For instance, for the geometries of Fig. 2.1, an “all-J” formulation is possible. Instead of using
the equivalence theorem and “filling” the aperture with magnetic currents, the “holed” planes
are treated as standard metallizations and modeled by electric currents. In this case, there is
no need to deal with subproblems and the only required convolutions are of type

↔

GEJ ⊗ J.
But the number of unknowns can increase dramatically. Conversely, the equivalence theorem
can be systematically applied to all the layers, hence defining as many subproblems as layers
(“all-M” formulation). Any horizontal metallization is considered as a part of a ground plane

and the only required convolutions are of type
↔

GHM⊗M. Moreover, all the Green’s functions
correspond to a homogeneously filled parallel plate waveguide. This interesting approach
could be competitive when most interfaces are densely filled by metal.

2.3.1 Mixed Potentials

Basic electromagnetic theory teaches us that the fields E, H scattered by sources J, M can
be expressed not only as convolutions of the sources and the corresponding dyadic Green’s
functions, but also through auxiliary functions called potentials, namely a vector potential A
and a scalar potential V for electric sources and a vector potential F and a scalar potential
W for magnetic sources [4]:

E =
↔

GEJ ⊗ J +
↔

GEM ⊗ M = −jωA − ∇V − 1
ε∇ × F,

H =
↔

GHJ ⊗ J +
↔

GHM ⊗ M = −jωF − ∇W + 1
µ∇ × A.

(2.4)

The obvious question is whether we can define also Green’s functions for the potentials and
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how these new Green’s functions are related to their field counterparts. The answer is not so
straightforward as it could be expected and many publications have been dedicated to this
subject. For our planar structures, it is possible to define Green’s functions for the potentials
but some precautions must be taken [15]. The final result generalizes what is well known in
free space [3]

↔

GEJ ⊗ J = −jω
↔

GA × J − ∇(GV ⊗ qe),
↔

GEM ⊗ M = −∇ ×
(

↔

GF ⊗ M
)

/ε,
↔

GHM ⊗ M = −jω
↔

GF × M − ∇(GW ⊗ qm),
↔

GHJ ⊗ J = −∇ ×
(

↔

GA ⊗ J
)

/µ,
(2.5)

where qe and qm are respectively the electric and magnetic charge densities defined according
to the continuity equation as qe = −∇ · J/(jω), and qm = −∇ · M/(jω). As it is well
known [15], several numerical benefits can be drawn from the use of potentials. They have in
general simpler expressions and milder singularities than the fields. For instance, we have in
free space

↔

GA =
µ

4π
Ψ

↔

I, GV =
1

4πε
Ψ, Ψ =

e−jkR

R
, R =

∣∣r − r′
∣∣ , (2.6)

while several components of the Green’s functions for the fields have a strong singularity of
type R−3.

2.3.2 Method of Moments and Potentials

In the Method of Moments [1], the unknown currents are expanded as linear combinations of a
set of N vector basis functions fj and the integral equations are tested, via an internal product,
against a set of vector weight functions wi. Several choices of weight functions are especially
well suited, like “point-matching” (wi = δ(ρ − ρi), Dirac delta functions), “razor-testing”
(integrating the integral equations along 1-D segments belonging to the surfaces where the
currents are defined) [16], and Galerkin (wi = fi).

All of these choices transform the system of coupled integral equations into the system of
linear equations (also known as the MoM system), which can be shortly written in a matrix
form as

Ma = v (2.7)

where M = [mij ]N×N is the MoM matrix, v = [vj ]N×1 is the excitation vector, and a = [ai]N×1

denotes the unknown coefficients that expand the electric and magnetic currents into a set of
subsectional basis functions.

There are two types of interactions in the MoM matrix. If the source and the observer
rooftops (basis and weight functions) belong to the same type of source (electric or magnetic),
the potential Green’s functions are used in order to obtain a milder singularity (R−1 instead
of R−3 for fields). This allows for the integrals to be numerically solved in two possible ways.
The singularity can be extracted, computed analytically [17] and added to the remaining
regular part that can be computed using numerical integration. Another strategy is to solve
the integral in polar coordinates, where the Jacobian of the transformation will cancel out the
singularity, and the integral can be computed numerically [18, 19].

This means that in the final matrix of moments, every time that a convolution of type
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↔

GEJ ⊗ J appears in the integral equation, it will contribute to corresponding MoM matrix
element with the term

mij =
〈
fi,

↔

GEJ ⊗ fj

〉
= −jω

〈
fi,

↔

GA ⊗ fj

〉
− 1

jω
〈∇ · fi, GV ⊗ (∇ · fj)〉 , (2.8)

where the inner product is defined as

〈wi,hj〉 =

∫

Si

wi · hj dSi. (2.9)

In the case of two rooftops belonging to different types of sources, field GFs are preferred
(there is no singular interaction, since magnetic and electric currents are not supposed to
share the same z-level) and the contribution to the corresponding MoM matrix element is

mij =
〈
fi,

↔

GEM ⊗ fj

〉
, (2.10)

for the case when fi belongs to the electric and fj belongs to the magnetic source.

In all cases, the numerical integration is done using cubature rules specially adapted to
triangular or rectangular domains [20].

Concerning the excitation vector terms, they can be expressed as

vi =

{ 〈
fi,E

i
〉
, if fi belongs to an electric source〈

fi,H
i
〉
, if fi belongs to a magnetic source

(2.11)

The detailed expressions for MoM matrix elements and the excitation vector are given in
Chapter 4, where the scattering from an infinitely thin patch and aperture is treated.

2.3.3 Space and Spectral Domains

It must be clear that direct calculation of Green’s functions is not mandatory in the practical
implementations of IE-MoM algorithms. The final quantities to be computed are given by
equations of the type (2.8) combining internal products and convolutions. This has prompted
many IE practitioners to skip step 3a) (calculation of Green’s functions) and attack directly the
computation of MoM matrix elements. The main tool here is the Fourier transform. Parseval
theorem allows us to demonstrate that the expression in equation (2.8) can be written as

〈
wi,

↔

GEJ ⊗ fj

〉
= F−1

(
w̃i

↔

GEJf̃j

)
, (2.12)

where the tilde denotes a spectral magnitude obtained by Fourier transform g̃ = F−1(g). All
the techniques using this formulation can be called spectral domain approaches (SDAs) [21, 22,
23]. Reducing the calculation of every matrix element to the value at the origin of the inverse
Fourier transform of the product of three Fourier transforms looks very appealing. The Fourier
transforms of Green’s functions (spectral values) and of basis and test functions are usually
analytically known, and FFT techniques are readily available to compute Fourier transforms.
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However, the involved functions show a complex set of singularities and bad convergence
properties, which prevents a straightforward use of FFT, and special sophisticated numerical
devices must be used. Therefore, remaining in the original space domain is not necessarily a
drawback. Moreover, computing Greens functions could be an interesting investment in many
cases and for several reasons.

1. When computing interactions between basis and test functions defined in faraway located
domains, a reasonable approximation is:

〈
wi,

↔

G ⊗ fj

〉
=



∫

Di

wi dDi


 ↔

G(ri|r′j)



∫

Dj

fj dDj


 ,

where rk is the center of domain Dk.

2. Green’s functions show usually strong symmetries and can be advantageously precom-
puted and stored for later retrieval and interpolation.

3. Green’s functions properties offer a direct insight into the physical properties of the
problem.

2.4 Free-space Dyadic Green’s functions

In this section, the overview of formulas defining the Green’s functions in free-space for both
fields and potentials is presented.

2.4.1 Potential Green’s Functions

Potential Green’s functions in free-space are given by the following expressions

↔

GA =
µ0

4π
Ψ

↔

I, GV =
1

4πε0
Ψ, (2.13a)

↔

GF =
ε0

4π
Ψ

↔

I, GW =
1

4πµ0
Ψ, (2.13b)

where

Ψ =
e−jkR

R
,

the distance between source and observer points is

R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2,
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and the idem dyad expressed in matrix notation

↔

I = x̂x̂ + ŷŷ + ẑẑ =




1 0 0
0 1 0
0 0 1


 .

2.4.2 Electric Field Dyadic Green’s functions

Electric source

The electric field dyadic Green’s function for electric source can be expressed in terms of the
potential Green’s functions for an electric source in the following way

↔

GEJ(r|r′) = −jω
↔

GA(r|r′) − 1

jω
∇∇

′GV (r|r′), (2.14)

where the operator ∇∇
′, acting on the electric scalar potential Green’s function, will give as

a result a dyad.

Taking into account equations (2.13a) and (2.14), one can write all the components of the
electric field free space dyadic Green’s function as

↔

GEJ = µ0κP




(x − x′)2 − Q (x − x′)(y − y′) (x − x′)(z − z′)
(x − x′)(y − y′) (y − y′)2 − Q (y − y′)(z − z′)
(x − x′)(z − z′) (y − y′)(z − z′) (z − z′)2 − Q




with

κ =
jω

4π

e−jkR

kR3
,

P =
k2R2 − 3jkR − 3

R2
,

and

Q =
k2R2 − jkR − 1

P
.

Magnetic source

Having in mind that the electric field E can be expressed as a curl of the electric vector
potential F

E = − 1

ε0
∇ × F, (2.15)

the electric field dyadic Green’s function for a magnetic source can be written as

↔

GEM = − 1

ε0
∇ ×

↔

GF , (2.16)
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where the curl operator acting on a dyad acts on every column of the dyad. The electric field
dyadic Green’s function for magnetic sources can be written as

↔

GEM = − 1

4π

1 + jkR

R3
e−jkR




0 z − z′ −(y − y′)
−(z − z′) 0 x − x′

y − y′ −(x − x′) 0


 . (2.17)

2.4.3 Magnetic Field Dyadic Green’s functions

Electric source

Following the same procedure as in Section 2.4.2, the magnetic field dyadic Green’s function
for an electric source is given by

↔

GHJ =
1

4π

1 + jkR

R3
e−jkR




0 z − z′ −(y − y′)
−(z − z′) 0 x − x′

y − y′ −(x − x′) 0


 . (2.18)

Magnetic source

In an analogous way as presented in Section 2.4.2, the magnetic field dyadic Green’s function
for a magnetic source can be expressed as

↔

GEJ = ε0κP




(x − x′)2 − Q (x − x′)(y − y′) (x − x′)(z − z′)
(x − x′)(y − y′) (y − y′)2 − Q (y − y′)(z − z′)
(x − x′)(z − z′) (y − y′)(z − z′) (z − z′)2 − Q


 .

2.5 Green’s Functions for Laterally Unbounded

Planar Multilayered Structures

2.5.1 Spectral Domain

The study of Green’s functions associated to sources embedded in a planar multilayered
medium can be optimally done by solving an equivalent transmission line problem [2, 24]
(Fig. 2.2). The source becomes a lumped generator and every layer corresponds to a trans-
mission line section. The terminal impedance walls bounding the planar multilayered medium
correspond to loading impedances. For instance, a semi-infinite terminal will be simulated by
a matched load impedance.

Once the equivalent transmission line problem is solved, the knowledge of voltages and
currents at any z-level allows a full solution of the original electromagnetic problem. In
particular, voltages and currents at the connection points between transmission line sections
give the fields and the potentials at the interfaces of the layered medium. Table 2.1 and
Table 2.2 summarize the expressions that relate spectral domain field and potential Green’s
function components with voltages and currents in the equivalent transmission line model. In
these tables, the primed variables designate the source, and the non-primed – the observer,
kz is the propagation constant in the z-direction, k2

ρ = k2
0µrεr −k2

z = k2
x +k2

y is the transverse
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spectral variable, and the characteristic impedances for the TE and TM modes are given by,
respectively,

ZTE
c =

ωµ0µr

kz
and ZTM

c =
kz

ωε0εr
.

Note also that a transversal electric source Jρ and a normal magnetic source Mz correspond
to the parallel current generator of Ig = 1/(2π), while a transversal magnetic source Mρ and
a normal electric source Jz correspond to the series voltage generator with Vg = 1/(2π).

The Sommerfeld choice for vector potentials reduces the full dyadic into only five non-zero
components, but at the same time there is an additional component for the scalar poten-
tials [25, 26] (Table 2.2). Note that throughout this work, only planar electric and magnetic
sources (at z = const.) are considered.

+

#1

#i − 1

#i

#i + 1

#N

Upper terminal wall

Lower terminal wall

ZU

ZL

Ug
Ig

ε1, µ1

εN , µN

Figure 2.2: Equivalent transmission line model of the Green’s function problem [24].

2.5.2 Spatial Domain

If a function G depends on tangential coordinates only through the radial source-observer
distance ρ =

√
(x − x′)2 + (y − y′)2, then its spectral transform is only a function of the

radial spectral coordinate kρ =
√

k2
x + k2

y and we can write the 2-D Fourier transformation
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Electric Source

G̃xx
EJ = − 1

k2
ρ

(
k2

yV
TE
Jρ

+ k2
xV TM

Jρ

)
G̃xx

HJ = −kxky

k2
ρ

(
ITE
Jρ

− ITM
Jρ

)

G̃yx
EJ =

kxky

k2
ρ

(
V TE

Jρ
− V TM

Jρ

)
G̃yx

HJ = − 1
k2

ρ

(
k2

yI
TE
Jρ

+ k2
xITM

Jρ

)

G̃zx
EJ = − kx

ωεI
TM
Jρ

G̃zx
HJ = − ky

ωµV TE
Jρ

G̃xy
EJ =

kxky

k2
ρ

(
V TE

Jρ
− V TM

Jρ

)
G̃xy

HJ = 1
k2

ρ

(
k2

xITE
Jρ

+ k2
yI

TM
Jρ

)

G̃yy
EJ = − 1

k2
ρ

(
k2

xV TE
Jρ

+ k2
yV

TM
Jρ

)
G̃yy

HJ =
kxky

k2
ρ

(
ITE
Jρ

− ITM
Jρ

)

G̃zy
EJ = − ky

ωεI
TM
Jρ

G̃zy
HJ = kx

ωµV TE
Jρ

G̃xz
EJ = − kx

ωε′ V
TM
Jz

G̃xz
HJ =

ky

ωε′ I
TM
Jz

G̃yz
EJ = − ky

ωε′ V
TM
Jz

G̃yz
HJ = kx

ωε′ I
TM
Jz

G̃zz
EJ = − k2

ρ

ω2εε′
ITM
Jz

G̃zz
HJ = 0

Magnetic Source

G̃xx
EM = −kxky

k2
ρ

(
V TE

Mρ
− V TM

Mρ

)
G̃xx

HM = − 1
k2

ρ

(
k2

xITE
Mρ

+ k2
yI

TM
Mρ

)

G̃yx
EM = 1

k2
ρ

(
k2

xV TE
Mρ

+ k2
yV

TM
Mρ

)
G̃yx

HM = −kxky

k2
ρ

(
ITE
Mρ

− ITM
Mρ

)

G̃zx
EM =

ky

ωεI
TM
Mρ

G̃zx
HM = − kx

ωµV TE
Mρ

G̃xy
EM = − 1

k2
ρ

(
k2

yV
TE
Mρ

+ k2
xV TM

Mρ

)
G̃xy

HM = −kxky

k2
ρ

(
ITE
Mρ

− ITM
Mρ

)

G̃yy
EM =

kxky

k2
ρ

(
V TE

Mρ
− V TM

Mρ

)
G̃yy

HM = − 1
k2

ρ

(
k2

yI
TE
Mρ

+ k2
xITM

Mρ

)

G̃zy
EM = − kx

ωεI
TM
Mρ

G̃zy
HM = − ky

ωµV TE
Mρ

G̃xz
EM = − ky

ωµ′ V TE
Mz

G̃xz
HM = − kx

ωµ′ ITE
Mz

G̃yz
EM = kx

ωµ′ V TE
Mz

G̃yz
HM = − ky

ωµ′ ITE
Mz

G̃zz
EM = 0 G̃zz

HM = − k2
ρ

ω2µµ′ V
TE
Mz

Table 2.1: Analytical expressions of the field Green’s function components in a multilayered medium
in terms of currents and voltages in the equivalent transmission lines.

as a Henkel (Fourier-Bessel) transformation, also called Sommerfeld integral

G(ρ, z, z′) = Sn

{
G̃(kρ, z, z′)

}
=

=

∞∫

0

Jn(kρρ)kn+1
ρ G̃(kρ, z, z′) dkρ, (2.19)
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Electric Source Magnetic Source

G̃xx
A = 1

jωV TE
Jρ

G̃xx
F = 1

jω ITM
Mρ

G̃zx
A = jµkx

k2
ρ

(
ITE
Jρ

− ITM
Jρ

)
G̃zx

F = −jεkx

k2
ρ

(
V TE

Mρ
− V TM

Mρ

)

G̃yy
A = 1

jωV TE
Jρ

G̃xx
F = 1

jω ITM
Mρ

G̃zy
A = jµ

ky

k2
ρ

(
ITE
Jρ

− ITM
Jρ

)
G̃zx

F = −jε
ky

k2
ρ

(
V TE

Mρ
− V TM

Mρ

)

G̃zz
A = − jµ

ωε′ I
TM
Jz

G̃zz
F = − jε

ωµ′ V TE
Mz

G̃Vρ = − jω
k2

ρ

(
V TE

Jρ
− V TM

Jρ

)
G̃Wρ = jω

k2
ρ

(
ITE
Mρ

− ITM
Mρ

)

G̃Vz = − jω
k′

z
2 V TM

Jz
(z′, z) G̃Wz = − jω

k′
z
2 ITE

Mz
(z′, z)

Table 2.2: Analytical expressions of the potential Green’s function components in a multilayered
medium in terms of currents and voltages in the equivalent transmission lines.

where Jn is the Bessel function of order n and G̃ is a generic Green’s function depending

on the variable kρ =
√

k2
x + k2

y and the vertical positions of the observer (z) and source

(z′) points. In the case of simple functions like the ones involved in the expressions from
Tables 2.1 and 2.2, it can be shown that only the Sommerfeld transformations of order n = 0,
n = 1 or the combinations of the two are used. The correspondence between the spectral
and space domains for various expressions of G̃ can be summarized as in Table 2.3 (φ is the
angle in cylindrical coordinates). The numerical evaluation of Sommerfeld integrals can be
efficiently performed using specially tailored algorithms [2, 27].

Spectral domain Space domain

G̃ S0

{
G̃
}

jkxG̃ − cos φS1

{
G̃
}

jkyG̃ − sinφS1

{
G̃
}

jkxjkxG̃ cos(2φ)
ρ S1

{
G̃
}
− cos2 φS0

{
k2

ρG̃
}

jkyjkyG̃ - cos(2φ)
ρ S1

{
G̃
}
− sin2 φS0

{
k2

ρG̃
}

jkxjkyG̃
sin(2φ)

ρ S1

{
G̃
}
− 1

2 sin(2φ)S0

{
k2

ρG̃
}

Table 2.3: Correspondence between the spectral and space domain GFs.
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2.6 Green’s Functions for Shielded Planar

Multilayered Structures

The starting point in computing the shielded Green’s functions is the fact that the spectral
values of any Green’s function are readily available in closed-form for laterally unbounded
stratified media [15]. This includes as a particular case the “covered” stripline geometry,
where the layered medium is terminated by two metallic horizontal layers. From these spec-
tral values, the spatial Green’s functions are recovered as two-dimensional inverse Fourier
transforms.

2.6.1 Space or Image Formulation

Let us assume that we know the covered Green’s function GC for a specific problem, and
we want the shielded (boxed) Green’s function GB, corresponding to the introduction of four
lateral vertical walls at x = 0, a and y = 0, b (Fig. 2.3). Using the image theory, we first define
a “basic image set” (BIS) finding the images with respect to the walls x = 0 and y = 0. Thus,
we have

GBIS(x, y|x′, y′) =

GC(x, y|x′, y′) + sxGC(x, y|−x′, y′) + syGC(x, y|x′,−y′) + sxsyGC(x, y|−x′,−y′), (2.20)

where the dependence with z and z′ is understood and suppressed. The “signs” sx and sy

depend on the type of potentials [15]. Table 2.4 gives the values for the potential Green’s
functions for electric and magnetic sources.

x

y

a

b

x′

y′

Figure 2.3: Spatial images for a single point charge needed to satisfy boundary conditions at lateral
metallic walls.

Now, the boxed Green’s function is just an infinite double sum of basic image sets periodi-
cally translated along the coordinates x and y

GB =
∞∑

m=−∞

∞∑

n=−∞

GBIS(x, y|x′ + 2ma, y′ + 2nb). (2.21)
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- sx sy fx(k, x) fy(k, y)

Gxx
A +1 −1 cos(kx) sin(ky)

Gyy
A −1 +1 sin(kx) cos(ky)

GV −1 −1 sin(kx) sin(ky)

Gxx
F −1 +1 sin(kx) cos(ky)

Gyy
F +1 −1 cos(kx) sin(ky)

GW +1 +1 cos(kx) cos(ky)

Table 2.4: The signs associated to each electric and magnetic potential Green’s function.

2.6.2 Spectral or Modal Formulation

If Poisson’s sum formula [28] is applied to (2.21), we obtain the result

GB =
∞∑

m=0

∞∑

n=0

G̃(kxm, kyn)fx(kxm, x)fx(kxm, x′)fy(kyn, y)fy(kyn, y′), (2.22)

where kxm = mπ/a, kyn = nπ/b, and the factors f are sin / cos functions depending again on
the type of potential (Table 2.4).

This is the modal formulation of the boxed Green’s functions, since the functions f are
directly related to the eigenmodes of a rectangular waveguide of a cross section a×b . Indeed,
the modal formulation can directly be obtained by starting with an infinite (along z) waveguide
problem and matching all the necessary boundary conditions in the z = const. planes. For
other box sections (for instance circular cylindrical cavities), where the image approach is
cumbersome, a direct evaluation of the modal Green’s function, using the corresponding
waveguide analysis, could be the best approach.

2.6.3 Algorithms for Acceleration of Slowly Convergent Series

Both infinite sums in (2.21) and (2.22) are slowly convergent. The image sum is converging
faster when the observer point is close to the source point, since the singularity in the source
point is perfectly included in the expression. However, close to the lateral cavity or waveguide
walls, the image sum is converging very slowly, since the boundary conditions on the lateral
walls are going to be satisfied only when infinite number of images is taken into account. The
modal sum, on the other hand, behaves in the opposite way. Each term in the modal sum
satisfies the boundary conditions at the lateral walls, and hence, the convergence of this sum
is faster close to the walls. However, only infinite number of modes taken into account will
recover the singularity at the source point, leading, therefore, to the slow convergence of the
modal sum in the region close to the source point.

There is a number of acceleration techniques that can be used to speed-up the conver-
gence of the image or modal sums, a thorough overview of which can be found in [29]. They
can be divided into two main groups: general and specific methods. A general method can
be applied to any sequence, which can be obtained from an infinite series. Examples of such
methods are the Euler transformation [30], Shanks’ transformation [31, 32, 33], Wynn’s ε algo-
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rithm [34], the Chebyshev-Toeplitz algorithm [35, 36], the Θ-algorithm [37, 38], and the Levin’s
T-transform [39]. On the other hand, specific methods are derived by analytically working on
the kernel of a series and, therefore, can be applied only on their own types. In general, they
usually work better than the general methods. The Kummer’s transformation [32, 40, 41],
summation by parts algorithm [42, 43], specially truncated set of images [42, 44], and the
Ewald’s transformation [45] are the examples. In the following sections, we will treat in more
detail the specially truncated set of images technique, used to speed up the convergence of
image sums, and the Ewald transform, as an example where modal and image formulations
are successfully combined in a fast converging series.

2.6.4 Specially Truncated Set of Images†

This technique has been developed in order to try to alleviate the problem of the slow con-
vergence rate of the spatial image series derived in (2.21). The idea behind the technique is
simple and very intuitive, and it is based on the fact that there are two main features in any
shielded Green’s function that must be preserved in order to obtain accurate results, namely:

• The singular behavior when ρ → 0.

• The boundary conditions on all lateral cavity walls.

The singular behavior is naturally preserved in the developed series of images, because it
has been constructed using standard Green’s functions. What remains then is the accurate
imposition of the boundary conditions on the metallic walls. This can be approximately done
by simply adding the first few image layers of the series, and then computing the needed
strength of the images that remain in the last image layer so that the boundary conditions for
the fields are strictly satisfied at the points on lateral metallic walls. The approach is, thus,
based on the following approximation of the boxed Green’s function

GB(r|r′) ≈ GC(r|r′) +

Nin∑

k=1

s(r
(k)
in )GC(r|r(k)

in ) +

Nout∑

k=1

qkGC(r|r(k)
out), (2.23)

where r is the point inside the cavity at which the Green’s function is calculated and r′ is the
position of the source. In this approach the finite number of images Nin is taken with their

original signs s(r
(k)
in ) ∈ {−1, +1} depending on the position of the image and the type of the

source. The space of N layers contains Nin = (2N + 1)2 − 1 images. The sum is truncated

and the images around the last layer placed at the points r
(k)
out have complex coefficients qk

in order to satisfy the boundary conditions on the lateral cavity walls. The number of these
images is Nout = 8(N + 1). In Fig. 2.4(a) an example with N = 2 image layers is shown.

Let Sx and Sy represent two sets of points placed on x = 0, a and y = 0, b cavity borders,
respectively. The boundary conditions for potential Green’s functions for electric source in a

† I. Stevanović and J. R. Mosig (2002), in Proc. International Symposium on Antennas (JINA02), Nice, 12-14
Nov. 2002, vol. 1, pp. 35–38.
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Figure 2.4: (a) Spatial images for the presented approach. (b) Studied boxed microstrip structure.

cavity can be expressed now as follows

GBV (r) = 0, r ∈ Sx ∪ Sy (2.24)

Gxx
BA(r) = 0, r ∈ Sy,

∂
∂xGxx

BA(r) = 0, r ∈ Sx,

Gyy
BA(r) = 0, r ∈ Sx, ∂

∂yGyy
BA(r) = 0, r ∈ Sy.

(2.25)

After imposing the boundary conditions at points r
(l)
o , l = 1, 2, ..., Nout, placed at the lateral

cavity walls, the following systems of linear equations are obtained.

For the electric scalar potential Green’s function GBV one has

Nout∑

k=1

qkGCV (r(l)
o |r(k)

out) = −GCV (r(l)
o |r′) −

Nin∑

k=1

s(r
(k)
in )GCV (r(l)

o |r(k)
in ), l = 1, 2, ..., Nout (2.26)

The complex coefficients for the magnetic vector potential Green’s function Gxx
BA, are given

by the following system of equations

Nout∑

k=1

qkGCA(r(l)
o |r(k)

out) = − GCA(r(l)
o |r′) −

Nin∑

k=1

s(r
(k)
in )GCA(r(l)

o |r(k)
in ), (2.27a)
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where r
(l)
o ∈ Sy, l = 1, 2, ..., Nout and

Nout∑

k=1

qk

[
GCA(r(l)

o + ∆xx̂|r(k)
out) − GCA(r(l)

o |r(k)
out)
]

=

−
[
GCA(r(l)

o + ∆xx̂|r′) − GCA(r(l)
o |r′)

]
−

Nin∑

k=1

s(r
(k)
in )

[
GCA(r(l)

o + ∆xx̂|r(k)
in ) − GCA(r(l)

o |r(k)
in )
]

(2.27b)

where r
(l)
o ∈ Sx, l = 1, 2, ..., Nout.

An analogous system of equations is obtained for the second dyad component of the mag-
netic vector potential Green’s function Gyy

BA. In the above expressions, GCV and GCA are
covered scalar potential and vector potential GFs, respectively, calculated when no lateral
walls are taken into account, and ∆x is the vanishing distance used to numerically compute
the derivatives appearing in the Neumann boundary conditions on the walls.

The unknown coefficients for every GF are easily found by solving these systems of linear
equations. Then turning back to (2.23), the corresponding boxed Green’s functions are recov-
ered for every pair of source and observer points inside the cavity. It is interesting to note that
the procedure holds also for any field GF, and one needs only to apply the right boundary
conditions on the lateral metallic walls.

Some Numerical Results

As an example, we consider the geometry of Fig. 2.4(b) (a metallic box of dimensions 10.95×
10.95 × 5.635 mm3 along the x-, y- and z-axis, enclosing a ceramic-air configuration). The
dielectric substrate (ceramic) has a thickness h = 0.635 mm and a dielectric constant εr = 9.2.
We have located a point source in the air-dielectric interface at x′ = y′ = 2 mm (point B),
i.e., rather close to a vertical edge of the box. We explore the behavior of the Green’s
function for the scalar potential as the observation point moves, also in the interface, along
the straight line F, passing through the source [Fig. 2.4(b)]. Fig. 2.5 gives the obtained results
for several frequencies: well below resonance [4 GHz, Fig. 2.5(a)], at resonance [10.49 GHz,
Fig. 2.5(b)], and above the cavity’s second resonance [24 GHz, Fig. 2.5(c)]. The results are
computed using the new method developed in this section (solid line) and the summation by
parts algorithm (•) [42, 43], showing that there is a very good agreement between the two
approaches. In all computations, three image layers were taken into account (48 images with
their original signs and 32 complex images). Fig. 2.6 shows Gxx

A and Gyy
A components of a

dyadic magnetic vector potential Green’s functions computed at different frequencies.

The solution obtained using the truncated set of images fulfills the reciprocity theorem, as
it can be seen from Fig. 2.7. First, the source is fixed at the point B and the observer is being
moved along the diagonal of the box (solid black line). Then, the roles between the source and
the observer are interchanged, the observer is placed at the point B and the source is being
moved along the diagonal (dashed gray line). The relative difference between two Green’s
functions computed this way is less than 0.1 % at the operating frequency f = 24 GHz.
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Figure 2.5: Boxed potential Green’s functions for the structure shown in Fig. 2.4(b). The source is
at position B and the observer is moving along the line F. Boxed Green’s functions are
computed using the summation by parts algorithm (dotted) and specially truncated set
of images (solid line).

Fig. 2.8 shows the results at the second resonance of the cavity (f = 20.525 GHz) for obser-
vation points located anywhere in the air-dielectric interface. The singularity of the function
(lower-left corner) is dwarfed by the strong resonant behaviour of the boxed Green’s function.
The three-dimensional plot of Fig. 2.9 enlarges the information of Fig. 2.5(c), presenting the
results at 24 GHz. Here the complex behavior of the boxed GFs is evident, combining singu-
larity effects, zero values at the boundary and interesting patterns of standing waves, produced
by the interaction between the different cavity modes.
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Figure 2.6: Boxed magnetic vector potential Green’s functions for the structure shown in Fig. 2.4(b).
The source is at position B and the observer is moving along the line F. Boxed Green’s
functions are computed using the summation by parts algorithm (dotted) and specially
truncated set of images (solid line).
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Figure 2.7: The reciprocity theorem.
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Figure 2.8: Boxed electric scalar potential Green’s function for the structure shown in Fig. 2.4(b)
computed using specially truncated set of images. Second resonance of the box (f =
20.525 GHz).
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Figure 2.9: Boxed electric scalar potential Green’s function for the structure shown in Fig. 2.4(b)
computed using specially truncated set of images. Frequency 24 GHz.

Discussion

The specially truncated set of images in computing boxed Green’s functions uses Sommerfeld-
type Green’s functions for laterally unbounded stratified media. The computation of these
functions is a standard and well-known procedure. The approach is valid for any field and
potential Green’s functions, provided the right boundary conditions at the lateral metallic
walls. Convergence with the specially truncated set of images is relatively fast and using
three inner image layers yields good accuracy when compared to the summation by parts
algorithm.

However, there are some serious drawbacks in using this technique when solving boxed
structures. The major one is the time needed for computing the Green’s function.

For every position of the source point, there is a system of linear equations to be solved in
order to obtain the unknown complex image values. If N image layers are used, the dimension
of the system of linear equations is given by Nout = 8(N + 1) and so the time for solving the
system grows as O(N3) when direct inversion is used. As the number of image layers grows,
the accuracy of the computed Green’s function is higher, but the time needed for computing
the Green’s function becomes larger, thus leading to prohibitively long simulations.

2.6.5 Ewald Transform

The Ewald transformation is a powerful method for various periodic problems that efficiently
combines the modal and image formulations of the Green’s functions. It has been successfully
used in the efficient Green’s function computation of 2-D free-space periodic structures [45, 46],
rectangular waveguides [47], and rectangular cavities [48, 49]. The method has been extended
to multilayered planar periodic structures [50], and shielded planar structures [51], being



28 Chapter 2: Numerical Modeling of Planar Multilayered Structures

computationally more expensive as it involves the approximation of spectral domain Green’s
functions by the Generalized Pencil-of-Function (GPOF) method [52].

In this section, we present the details of the Ewald method used to compute the rectangular
cavity potential Green’s functions.

Ewald Method Applied to Rectangular Cavity Potential Green’s Functions

Any potential Green’s function inside a rectangular cavity has in its expression the infinite
sum of the basic image sets periodically translated along the x, y and z axes

Ψ =
1

4π

+∞∑

m,n,p=−∞

7∑

i=0

Si
e−jkRi,mnp

Ri,mnp
, (2.28)

where Si ∈ {Ass
i , F ss

i , Vi, Wi} represent the signs of the images in the basic image sets for
the corresponding potential Green’s function as defined in Tables 2.5 and 2.6. In the same
expression, Ri,mnp is given by

Ri,mnp =
√

(Xi + 2ma)2 + (Yi + 2nb)2 + (Zi + 2pc)2, (2.29)

where Xi, Yi and Zi are the distances between the observer and images in basic image set
and their values are defined for every image in a basic image set in the same tables. Variables
Xi, Yi and Zi depend on the position of the image in the basic image set. Figs. 2.10–2.13
illustrate the basic image sets for some potential Green’s function components.
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Figure 2.10: Basic Image Set for Gxx
A .

Following Ewald [45, 53], we use the identity

e−jkR

R
=

2√
π

∞∫

0

e−R2s2+ k2

4s2 ds. (2.30)

The Green’s function, given by (2.28), can be written in two parts by using (2.30) and splitting
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i position Xi Yi Zi Axx
i Ayy

i Azz
i Vi

0 (+x′, +y′, +z′) x − x′ y − y′ z − z′ +1 +1 +1 +1

1 (+x′, +y′,−z′) x − x′ y − y′ z + z′ −1 −1 +1 −1

2 (+x′,−y′, +z′) x − x′ y + y′ z − z′ −1 +1 −1 −1

3 (+x′,−y′,−z′) x − x′ y + y′ z + z′ +1 −1 −1 +1

4 (−x′, +y′, +z′) x + x′ y − y′ z − z′ +1 −1 −1 −1

5 (−x′, +y′,−z′) x + x′ y − y′ z + z′ −1 +1 −1 +1

6 (−x′,−y′, +z′) x + x′ y + y′ z − z′ −1 −1 +1 +1

7 (−x′,−y′,−z′) x + x′ y + y′ z + z′ +1 +1 +1 −1

Table 2.5: Basic Image Set parameters associated to potential Green’s functions of an electric source.

i position Xi Yi Zi F xx
i F yy

i F zz
i Wi

0 (+x′, +y′, +z′) x − x′ y − y′ z − z′ +1 +1 +1 +1

1 (+x′, +y′,−z′) x − x′ y − y′ z + z′ +1 +1 −1 +1

2 (+x′,−y′, +z′) x − x′ y + y′ z − z′ +1 −1 +1 +1

3 (+x′,−y′,−z′) x − x′ y + y′ z + z′ +1 −1 −1 +1

4 (−x′, +y′, +z′) x + x′ y − y′ z − z′ −1 +1 +1 +1

5 (−x′, +y′,−z′) x + x′ y − y′ z + z′ −1 +1 −1 +1

6 (−x′,−y′, +z′) x + x′ y + y′ z − z′ −1 −1 +1 +1

7 (−x′,−y′,−z′) x + x′ y + y′ z + z′ −1 −1 −1 +1

Table 2.6: Basic Image Set parameters associated to potential Green’s functions of a magnetic source.

the path of integration at E in (2.30):

∞∫

0

(·) =

E∫

0

(·) +

∞∫

E

(·). (2.31)

Thus we define
Ψ = Ψ1 + Ψ2, (2.32)

where

Ψ1 =
1

4π

∑

m,n,p

7∑

i=0

Si
2√
π

E∫

0

e−R2
i,mnps2+ k2

4s2 ds (2.33)

and

Ψ2 =
1

4π

∑

m,n,p

7∑

i=0

Si
2√
π

∞∫

E

e−R2
i,mnps2+ k2

4s2 ds. (2.34)

The integral in (2.33) can be solved using the Poisson 3-D summation formula, while (2.34)
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is obtained straightforwardly applying the identity

∞∫

r

e−p2s2+ q2

4s2 ds =

√
π

4p

(
e−jpq erfc(pr − j

q

2r
) + e jpq erfc(pr + j

q

2r
)
)

. (2.35)

Using the Ewald transformation, the potential Green’s functions in rectangular cavity can be
summarized by the following equations

G = κΨ (2.36a)

Ψ = Ψ1 + Ψ2, (2.36b)

Ψ1 =
1

abc

+∞∑

m,n,p=0

εmεnεpkmnpf(kxmx, kxmx′)g(kyny, kyny′)h(kzpz, kzpz
′) (2.36c)

where

kmnp =
e−

α2
mnp

4E2

α2
mnp

, (2.36d)

αmnp =
(mπ

a

)2
+
(nπ

b

)2
+
(pπ

c

)2
− k2 (2.36e)

εν =

{
1, ν = 0
2, ν > 0

(2.36f)

Ψ2 =
∑

m,n,p

7∑

i=0

Si

8πRi,mnp

(
e−jkRi,mnp erfc(Ri,mnpE − j

k

2E
) + e jkRi,mnp erfc(Ri,mnpE + j

k

2E
)

)

(2.36g)
where

Xi =

{
x − x′, i = 0, 1, 2, 3
x + x′, i = 4, 5, 6, 7

(2.36h)

Yi =

{
y − y′, i = 0, 1, 4, 5
y + y′, i = 2, 3, 6, 7

(2.36i)

Zi =

{
z − z′, i = 0, 2, 4, 6
z + z′, i = 1, 3, 5, 7

(2.36j)

Ri,mnp =
√

(Xi + 2ma)2 + (Yi + 2nb)2 + (Zi + 2pc)2 (2.36k)

and Ass
i , Vi, F ss

i , Wi being defined in Tables 2.5 and 2.6.

The complementary error function which appears in both series Ψ1 and Ψ2 makes these
series converge rapidly. The best choice for the splitting parameter E is the one that balances
the rate of decay of the two series, making Ψ1 and Ψ2 contribute an equal number of terms
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G κ f(x, x′) g(y, y′) h(z, z′) Si

Gxx
A µ cos x cos x′ sin y sin y′ sin z sin z′ Axx

i

Gyy
A µ sin x sinx′ cos y cos y′ sin z sin z′ Ayy

i

Gzz
A µ sin x sinx′ sin y sin y′ cos z cos z′ Azz

i

GV
1
ε sin x sinx′ sin y sin y′ sin z sin z′ Vi

Gxx
F ε sin x sinx′ cos y cos y′ cos z cos z′ F xx

i

Gyy
F ε cos x cos x′ sin y sin y′ cos z cos z′ F yy

i

Gzz
F ε cos x cos x′ cos y cos y′ sin z sin z′ F zz

i

GW
1
µ cos x cos x′ cos y cos y′ cos z cos z′ Wi

Table 2.7: The parameters for the potential Green’s functions in rectangular cavity, computed using
Ewald transformation.

to the final value Ψ. The approximation to the optimal value of E for 2-D series (rectangular
waveguide Green’s functions or 2-D periodic Green’s functions [45]), is given by

E =
π√
ab

.

In the case of 3-D sums, the optimal parameter is given by [54]

E =

(
π2

1
a2 + 1

b2
+ 1

c2

a2 + b2 + c2

)1/4

.

Convergence Study

The method is tested on a rectangular cavity whose side dimensions (a = b = c) are all
equal to L = 0.998λ0 (the case when the operating frequency is very close to the resonance
frequency of the cavity).

In Fig. 2.14 the convergence of the Green’s function computed using the Ewald sum method
for three different cases is shown. The source point is fixed at the center of the cavity (x′ =
y′ = z′ = 0.5L) and three observation points are selected along the diagonal of the cavity,
far from the source point (x = y = z = 0.1L), near the source point (x = y = z = 0.49L),
and around the midpoint of these two (x = y = z = 0.3L). The number of iterations Nit

means that m, n, p ∈ [0, Nit] for Ψ1 in (2.36c) and m, n, p ∈ [−N, N ], for Ψ2 in (2.36g), where
N = bNit

2 c. The reference values are obtained by the Ewald sum method with sufficiently
large number of terms (30 terms in both Ewald sums for every axis). Fig. 2.14 shows that
the calculations by the Ewald sum method has very rapid convergence in all three cases
considered.

2.7 Excitation and Port Description

The excitation and port description are very specific steps and tightly dependent on the
nature of the problem (see [55, 56, 57] for some practical examples). These steps provide
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Figure 2.14: Typical convergence behaviour of a cavity potential Green’s function computed using
Ewald sum method: x = y = z = 0.1L (◦), x = y = z = 0.3L (+), and x = y = z =
0.49L (�).

the roundtrip transition between the physical world and the mathematical model. On one
hand, the physical excitation (planar electromagnetic wave, waveguide mode, coaxial probe,
small aperture, microstrip or CPW printed line, etc.) must be cast in terms of mathematical
excitation, providing the vector of independent terms to the linear system. On the other
hand, once the linear system is solved, the vector of unknowns (equivalent currents) must be
translated into equivalent circuit or system parameters that are easily measurable in the real
world (resonant frequencies, port impedances, scattering parameters, radiation patterns, etc).
It must be said that although not time-consuming, those are frequently the most difficult steps
and the weakest link in the chain. In any case, the relevance of these steps cannot be ignored.
A superficial treatment will handicap the most sophisticated numerical implementation and
will produce predictions which compare poorly with measurements, regardless of the quality
of Green’s functions and of the precision of the geometrical discretization.

In this section, two excitation models are treated, the plane wave and the voltage delta-gap
model. The modal excitation for waveguides will be explained in Section 6.4 on page 142.

2.7.1 Plane Wave Excitation

Consider a plane wave (Ei, Hi) as shown in Fig. 2.15 with electric field Ei = (Eθ, Eφ) and
magnetic field Hi = (Hθ, Hφ) traveling in a homogeneous medium with propagation direction

k̂ = k/|k|
Ei = (θ̂Eθ + φ̂Eφ)e−jk·r, (2.37a)

Hi =
1

η
k̂ × Ei, (2.37b)
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where η =
√

µ/ε is the medium wave impedance.
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Figure 2.15: A uniform plane wave propagating in a homogeneous medium.

In this section the components of the electric field in Cartesian coordinates will be expressed
in terms of the components of the electric field in spherical coordinates. This way the tangen-
tial components of the electric/magnetic field of the plane wave impinging on the aperture or
metallic plate situated at z = 0 plane will be readily known.

From Fig. 2.15 directly follows
Ez = −Eθ sin θ, (2.38a)

Ey = Eθ cos θ sinφ + Eφ cos φ, (2.38b)

Ex = Eθ cos θ cos φ − Eφ sin φ, (2.38c)

and for the propagation direction one obtains

kz = −k cos θ, (2.39a)

ky = −k sin θ sinφ, (2.39b)

kx = −k sin θ cos φ. (2.39c)

Finally the equation of the plane wave in Cartesian coordinates can be written as

Ei =




Eθ cos θ cos φ − Eφ sinφ
Eθ cos θ sinφ + Eφ cos φ

−Eθ sin θ


 e jk(x sin θ cos φ+y sin θ sin φ)e jkz cos θ, (2.40a)

Hi =
1

η
k̂ × Ei. (2.40b)
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Consider a special case when Eφ = 0. This would mean, taking the plane z = 0 as a
reference, that θ is the angle of the incidence and φ is the polarization angle of the electric
field

Ei = E0




cos θ cos φ
cos θ sinφ
− sin θ


 e jk(x sin θ cos φ+y sin θ sin φ)e jkz cos θ, (2.41a)

Hi =
1

η
k̂ × Ei, (2.41b)

where E0 = Eθ.
Once the expressions for electric and magnetic fields of the plane wave are known, they are

plugged back in (2.11) to define the excitation vector needed to solve MoM matrix equation
and compute the unknown surface currents. The plane wave excitation is of paramount
importance in computing the radar cross section (RCS)

σu,v = lim
r→∞

4πr2 |Es
u|2

|Ei
v|2

(2.42)

where Es
u is the u-component of the scattered electric field coming from the induced surface

currents and Ei
v is the v-component of the incident electric field.

2.7.2 Delta-Gap Generator

The delta-gap voltage generator is a point-like ideal voltage generator. In the delta-gap
model, the port is assumed to be excited by a voltage source of magnitude V , applied within
an infinitesimally small gap of length δ → 0 and across the extended ground-plane and the
tip of the feeding line [58], as shown in Fig. 2.17.

Figure 2.16: The physical excitation.

The delta-gap voltage generator at each port provides an impressed (or incident) excitation
field described by the expression

Ei = Veδ(r − re)n̂e, (2.43)

where re is the location of the port and n̂e is the outward normal perpendicular to the side
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Figure 2.17: A delta-gap voltage generator exciting the microstrip line port (a) and the associated
MoM description (b). For the MoM description, the first half-rooftop participates in
the excitation vector.

on which the port is defined. As shown in Fig. 2.17, an induced current Ie flows through the
voltage source, which spreads into a half-rooftop located at re. Substituting (2.43) in the ex-
pression for MoM excitation vector (2.11) yields non-zero elements only for half-rooftop basis
functions. Once the MoM equation has been solved for the unknown current coefficients, the
circuit or antenna scattering parameters can be obtained in the way presented in Section 2.9.
More details about the delta-gap voltage excitation and its equivalent impressed-current ex-
citation can be found in [58].

2.8 Solving the Linear System

The discretization of complex planar geometries results in a very large number of unknowns.
Typical printed antennas being currently analyzed and routinely built have N = 104 − 106

degrees of freedom [59, 60]. This is a tough challenge, since no sparse matrix techniques
can be directly applied to BEM problems. Hence, solving the linear system has been usually
considered as the bottleneck for a successful implementation of IEs in large electromagnetic
problems. This is due to the well known fact that direct methods for solving linear systems
have a complexity O(N3), while filling the matrix is, in the worst case, O(N2). Excitation
and circuit parameter calculations are even faster O(N) procedures, and the Green’s functions
treatment is usually a fixed overhead scarcely depending on the number of unknowns N . These
considerations have led in the past to optimization strategies where any improvement in the
Green’s functions treatment was met by the experts with a knowledgeable smile and judged as
a waste of time and gray matter. However, the situation is quickly changing. On one side, the
drive to analyze more complex environments has led to much more involved Green’s functions,
for which the older numerical tricks and recipes do not apply anymore. On the other hand, a
big progress has been made in the last decade to solve large linear systems with full matrices
(see for instance [59, 60, 61] and references therein) and we have just now witnessed the advent
of the first “millionaire” techniques [62]. Therefore, it is expected that in the near future the
bottleneck could be displaced to the matrix filling, step 3), particularly if the environment is
complex and the number of unknowns not excessive. Then, any speed-up in the calculation
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of Green’s functions and of their convolutions will be of paramount relevance.

In this thesis, we address the problem of the approximate but efficient Green’s function com-
putation for multilayered planar structures containing apertures and irises in ground planes
with finite thicknesses. This matter is presented in detail in Chapters 4–6. At the same time,
Chapter 3 deals with the computationally efficient way of filling the MoM matrix when solving
large and complex electromagnetic problems.

2.9 Scattering Parameters

The input parameters of a multiport device (antenna or circuit) can be computed in a two
step procedure [2] using standard circuit theory. First, a canonical solution is computed,
employing consecutively voltage delta-gap excitations to one port of the device, while all
the other ports are short-circuited (Y-matrix definition). The elements of the intrinsic input
admittance matrix Y of dimensions Ng × Ng, where Ng is the number of input ports, are
computed as the following scalar product

yp,q = v(p) · a(q), (2.44)

where v(p) is the pth column in the excitation matrix corresponding to pth excitation (delta-
gap), and a(q) is the qth column in the solution matrix corresponding to the response on the
qth port of the device. The intrinsic input impedance matrix Z is obtained as

Z = Y−1. (2.45)

The intrinsic input impedance matrix can be obtained directly if, instead of voltage delta-gap
generator, an impressed-current excitation is used [2, 58]. In contrast to the voltage delta-
gap excitation, here we employ consecutively impressed current excitation to one port of the
device, while all the other ports remain open circuited. In that case, we would have

zp,q = v(p) · a(q), (2.46)

where v(p) is now the pth column in the excitation matrix corresponding to pth excitation
(impressed-current generator). The procedure explained here is equivalent to the classical
“quadratic form” approach [58].

The embedded currents need to be computed in order to take into account that all the
ports are simultaneously loaded and to find the radiation pattern, the near field, and the
active input impedances. This is done by computing the effective vectors Vemb and Iemb

at each excitation port as a function of the given excitation amplitudes V (Fig. 2.18). Let
G denote the matrix containing, along the main diagonal, the internal impedances of the
generators at each port

G = diag(Z(1)
g , Z(2)

g , . . . , Z
(Ng)
g ), (2.47)
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Figure 2.18: Two port network with the excitations.

then the input impedance at port p can be expressed as

Iemb =(Z + G)−1V,

Vemb =Z(Z + G)−1V,

Z in
p =

V emb
p

Iemb
p

, p = 1, . . . , Ng. (2.48)

The S-parameters can be obtained by simple matrix transform [63, 64]. Taking into account
the load matrix, which has the generator impedances on the main diagonal, and the matrix
F, whose ith diagonal component is given by

1

2

√
Re(Z

(i)
g )

,

the S-parameters can be expressed as

S = F(Z − GH)(Z + G)−1F−1, (2.49)

where the superscript H indicates the complex conjugate transposed matrix.

2.10 Far Field Computation

Far field radiated by an antenna is an important parameter which gives the information on
how the antenna radiates power in different directions of the space, on the directivity of
the antenna, and the polarization of the radiated signal. Once the electric and magnetic
currents induced in the structure are computed, the total radiated field can be computed
using the convolution integrals that relate the fields with the sources. The usual far-field
approximations [65] apply. However, for multilayered media, the Green’s functions have to
be computed for ρ → ∞. Although not a trivial task, this can be done using the extraction
of the asymptotic form of the multilayered media Green’s functions and the details can be
found in [5, 19].

Having computed the spherical component of the far field (Eθ, Eφ), the polarization and the
axial ratio of the radiated wave can be derived using standard analytical techniques [66], and
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the co- and cross-polarizations can be computed using different Ludwig’s definitions [67].

2.11 Near Field Computation

Near fields are of paramount relevance in electromagnetic compatibility (EMC). An impor-
tant cost reduction in complying to the EMC directives at system level can be gained by
minimizing the radiation and susceptibility of subsystems such as printed circuit boards and
high-frequency connectors. In this context, the characterization of the near fields in the vici-
nity of these subsystems is inevitable [68]. Computed or simulated near-field of an antenna
can be used to determine the equivalent current sources over a fictitious surface. Once deter-
mined, these currents provide a powerful equivalent model of the antenna that can be used
to compute its far fields but also to ascertain its interaction with any other close or far struc-
ture [69, 70, 71]. Some antenna platforms may impose unusual constraints, for example, the
requirement to place other sensors very close to or on the antenna itself. The examination of
the near field can give clues to the optimum location that minimizes an eventual degradation
of the antenna performance.

The computation of near field is a straightforward procedure. Once the MoM matrix
equation is solved for the unknown current coefficients, the electric and magnetic near fields
are obtained as convolution integrals of the pertinent Green’s functions and corresponding
surface current densities.

2.12 Application Examples†

After having illustrated the survey of all theoretical and numerical tools needed to model
planar multilayered structures, in this section we present first application examples that con-
cern the computation of the near field. Numerous examples with computation of scattering
parameters and far fields are going to be presented in other chapters of this thesis.

2.12.1 Near Field Computation and Probe Modeling

Providing information useful for diagnostic purposes, prototype design and an overall under-
standing of operational behaviour, near field computation and measurement has been given a
lot of interest. There is now a variety of methods used for analysis of printed circuits and an-
tennas and computation of their near field, ranging from hybrid FEM [72], time domain finite
differences [73] to MPIE method in combination with FFT and biconjugate gradient [74]. In
the latter, only rectangular basis functions and electric sources on one dielectric layer have
been used. Here, we extend this work to both triangular and rectangular basis functions and
mixed electric and magnetic sources embedded in a planar multilayered media structure. The
results of near field numerical computation, based on mixed field dyadic Green’s function,
are then compared to experimental results. An approximate near field probe model has been

† I. Stevanović, P. Crespo-Valero, and J. R. Mosig (2004), in Proc. International Symposium on Antennas
(JINA’04), Nice, 8-11 Nov. 2004, pp. 58–59.
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introduced that tries to interpret, in terms of the equations, the measurements method and
this way better match the measurements results.

We will concentrate here on the near E-field but a complete analogous procedure can be
established for the near H-field. After having solved the MoM system of equations, electric
near field is found as a convolution integral between the surface current densities and pertinent
field dyadic Green’s functions

E(r) =

Ne∑

i=1

αi

∫

Si
e

↔

GEJ(r|r′)fi(r′) dS′ +

Nm∑

j=1

βj

∫

Sj
m

↔

GEM(r|r′)gj(r
′) dS′, (2.50)

where αi is the electric current coefficient assigned to the ith basis function fi on the electric
planar surface Si

e, βj is the magnetic current coefficient assigned to the jth basis function gj on

the magnetic planar surface Sj
m, and Ne and Nm are, respectively, the number of electric and

magnetic planar surfaces in the structure. The surface on which the near field is calculated is
on a constant height from the antenna surface. The needed Green’s functions are evaluated
taking into account a supplementary dielectric layer of a height that corresponds to the height
of the probe from the antenna surface (Fig. 2.19).

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

ε0, µ0

εr1 , µr1

εr1 , µr1

εri
, µri

εri
, µri

εrn , µrn

εrn , µrn

h0

h0

h1
h1

hi

hi

hn

hn

z

Ig

V0
I0

Figure 2.19: Near field measurement of the multilayered structure and its equivalent network repre-
sentation.

In order to model the measurements procedure [75], an approximate model of the used near
field probe must be taken into account. The near field probe consists here of a metallic dipole
and a diode on its center that detects the field using the modulated scatterer principle [76].

Three main alternatives can be used for modeling the probe. In the first alternative, the
probe is assimilated to a Hertz dipole. The field detected by the probe is then directly given
by (2.50). The second approach consists of approximating the current density on the probe
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using a triangular pulse [Fig. 2.20(a)]. The probe is replaced by a subsectional basis function,
which has the same orientation and the same dimensions as the real probe. The measured near
field is proportional to the convolution of the simulated near field with a supposed current
density shape of the near field probe d(r)

∼
∫

Sd

d(r)E(r) dS. (2.51)

The third approach is the same as the previous one, but instead of triangular pulse, the sine
function is used to approximate the current density on the probe [Fig. 2.20(b)].

(a) (b)

Figure 2.20: Near field probe and the current distribution approximations: (a) Triangular pulse
approximation of the current distribution; (b) Sine approximation of the current distri-
bution.

2.12.2 Results

Several planar circuit and antenna geometries have been used for comparison of simulated
and measured near fields. The measured voltage is proportional to the square of the elec-
tric/magnetic field component of the device under test incident on the dipole and the details
of the measurements procedure can be found in [75].

Four-Patch Array

In this section, the results of the near field simulations for a four patch antenna shown in
Fig. 2.21 are presented. The results of the simulation using the above approaches are compared
to the measurements in Fig. 2.22(a) – Fig. 2.22(d) for the x-component and in Fig. 2.23(a) –
Fig. 2.23(d) for the y-component of the near electric field. The probe length is 10 mm and its
diameter is 0.5 mm. The distance between the probe and the antenna surface is 2 mm. The
measurements were done in 37 points along the x-axis and 9 points along the y-axis.

The slight asymmetry in the calculated results for the antenna structure which is perfectly
symmetric is due to the unstructured mesh used to discretize the metallization surfaces of the
antenna. It can be seen that the results that take into account the probe current distribution
are closer to measurements. However, there is almost no difference in results for the two
different shapes of the current distribution on the probe, which means that the triangular
pulse function can be also considered as a good approximation.
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Figure 2.21: Four-patch antenna geometry: l1 = 4, l2 = 42, l3 = 13, l4 = 9.5, h1 = 9.25, h2 = 7.5,
w1 = 5, w2 = 1.5, w3 = 4, R1 = 8, R2 = 30, φ1 = 30◦, φ2 = 60o, l = 20, w = 23, d = 7.
Dielectric layers: εr1 = εr2 = 2.33, tan δ1 = tan δ2 = 0.0012, h1 = 1.57, h2 = 0.51. All
dimensions given in mm.

(a) Measured |Ex|
2 (dB). (b) |Ex|

2 (dB) computed using approach 1.

(c) |Ex|
2 (dB) computed using approach 2. (d) |Ex|

2 (dB) computed using approach 3.

Figure 2.22: Comparison between simulations and measurements for the x-component of the electric
near field 2 mm above the antenna. Frequency 4.03 GHz.
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2 (dB) computed using approach 3.

Figure 2.23: Comparison between simulations and measurements for the y-component of the electric
near field 2 mm above the antenna. Frequency 4.03 GHz.
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Q-Hybrid

Canonical geometry of a Q-hybrid used to verify the results of simulation with both, measure-
ments and theory, is shown in Fig. 2.24. Lower left port is excited while all the other ports are
loaded with 50 Ω. From both, simulation in Fig. 2.25(b) and measurements in Fig. 2.25(a),
it can be seen that the normal component of electric field is equally distributed to both right
ports, while upper left port remains isolated.

l1l1 l2l2 l3

l4l4

h1

h1

h2

h3

h3

h4

Figure 2.24: Q-hybrid geometry: l1 = 24.4, l2 = 2.2, l3 = 26.3, l4 = 1.2, h1 = 2.75, h2 = 30,
h3 = 2.85, and h4 = 28.5. Dielectric: εr = 2.485, tan δ = 0.0018, h = 0.76, backed by a
ground plane. All dimensions are given in mm.

(a) Measured |Ez|
2 (dB). (b) |Ez|

2 (dB) computed using approach 1.

Figure 2.25: Comparison between simulations and measurements for the z-component of the electric
near field 2 mm above the circuit. Frequency 1.85 GHz.

SSFIP Antenna

The geometry of an SSFIP (Strip-Slot-Foam-Inverted-Patch [77]) antenna with more com-
plex vertical configuration and both electric and magnetic currents, is shown in Fig. 2.26.
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Figs. 2.27–2.28 show good agreement between measured and simulated tangential compo-
nents of the electric near field.
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©3

Figure 2.26: SSFIP antenna geometry: lf1 = 50,
lf2 = 28, wf1 = 1.5, la1 = 54, wa1 =
1, l = 60. Dielectric layers: εr1 =
2.33, tan δ1 = 0.0012, h1 = 0.51,
εr2 = 1.07, tan δ2 = 0.001, h2 = 7.2,
εr3 = 4.34, tan δ3 = 0.01, h3 = 0.8.
All dimensions given in mm.

x/a

(a) Measured |Ex|
2 (dB). (b) |Ex|

2 (dB) – approach 1. (c) |Ex|
2 (dB) – approach 2.

Figure 2.27: Comparison between simulations and measurements for the x-component of the electric
near field 2 mm above the antenna. Frequency 1.75 GHz.

(a) Measured |Ey|
2 (dB). (b) |Ey|

2 (dB) – approach 1. (c) |Ey|
2 (dB) – approach 2.

Figure 2.28: Comparison between simulations and measurements for the y-component of the electric
near field 2 mm above the antenna. Frequency: 1.75 GHz.



46 Chapter 2: Numerical Modeling of Planar Multilayered Structures

2.13 Conclusion

In this introductory chapter, an overview of all the necessary steps that are to be performed
in most IE-MoM implementations has been presented. The chapter addressed geometry dis-
cretization issues, the Green’s function computation in free space, laterally unbounded and
shielded multilayered media, integral equations and their solution using the method of mo-
ments, and the computation of all parameters needed to characterize planar circuits, antennas
and waveguides.

The present chapter was intended to give the basic tools that will be used in the subsequent
chapters of this work, when more specific problems are tackled: efficient solving of large
electromagnetic problems and scattering on apertures in metallic screens of finite thickness.
Nevertheless, it contains two novel and original contributions.

In Section 2.6.4, a “specially truncated image set” used to speed up the convergence of the
multilayered boxed Green’s functions is presented. The results obtained from this method
have been compared with another technique for fast calculation of boxed Green’s functions in
modal formulation. Numerical examples of Green’s functions for printed boxed circuits have
been presented and their properties discussed.

Section 2.12 illustrated the first application examples for the problem of the near-field com-
putation in multilayered media circuits and antennas. An extensive measurements campaign
has been performed in order to validate the developed and implemented models, resulting in
a valuable benchmark for near field computations.
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3 Efficient Evaluation of Macro-Basis

Function Reaction Terms in the Subdomain

Multilevel Approach†

3.1 Introduction

Using the conventional Method of Moments (MoM) with subsectional basis functions becomes
highly inefficient when large electromagnetic problems are to be solved. The size of the MoM
matrix grows rapidly as the dimensions of the EM problems become large (in terms of wave-
length) or a fine mesh density is used to guarantee good accuracy of results for structures
with complex shapes. The memory needed for solving a problem of N unknowns increases
with O(N2). Even when the number of unknowns is such that the MoM matrix fits into the
available memory, another resource becomes critical: the CPU time increases as O(N3) in the
direct solution, thus leading to prohibitively long simulations.

There are a number of techniques used to accelerate the MoM calculations and improve the
O(N2) and O(N3) factors [1]. The fast multiple method (FMM) [2], the multilevel fast multi-
ple algorithm (MLFMA) [3], the impedance matrix localization (IML) [4], the adaptive inte-
gral method (AIM) [5], and the multilevel matrix decomposition algorithm (MLMDA) [6] are
all iterative techniques keeping the same number of unknowns but using very efficient matrix-
vector product schemes. Another large group of approaches is based on the size-reduction of
the matrix and nonexhaustive list includes the diakoptics-based multilevel moments method
(MMM) [7], the synthetic basis function (SBF) [8], the characteristic basis function (CBF) [9],
and the sub-entire-domain (SED) basis function methods [10].

In this chapter we present further improvements in the subdomain multilevel approach
(SMA) with macro-basis functions (MBF) [11, 12, 13, 14], a technique that belongs to the
latter group and that has proven to be very efficient in modeling the large printed antenna
arrays. The basic idea of the method is to break a given complex geometry into smaller regions
(subdomains) and perform numerical solutions for them. The set of isolated solutions on the
individual subsectional basis functions belonging to a given subdomain is merged into so-called
macro-basis functions (MBFs). These are, in turn, fit into the global MoM system, taking
into account the symmetries and mutual coupling. The result is then a compressed MoM
system of equations for the global problem with a significantly reduced number of unknowns,
which is easily solved. Finally, the solution for every single unknown is recovered by a simple
expansion from the compressed solution.

This powerful method can be improved, especially when the interactions between two diffe-
rent MBFs are concerned. In a large electromagnetic problem, where the memory occupation

† I. Stevanović and J. R. Mosig (2004), Microwave Opt. Technol. Lett., Vol. 42(2):138-143
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and computational time have been already significantly reduced using the SMA, the calcula-
tion of MBF reaction terms remains the most time-consuming part of the procedure. This
thesis introduces a new and decisive improvement in the SMA by developing an original and
efficient way of computing MBF reaction terms. It will be shown conclusively in this chapter
that with this improvement, the SMA becomes a very competitive approach to solve large
and complex printed or planar structures. The strategy for improving the SMA in terms
of computational time is based on reducing MBFs to the equivalent moments. An MBF is
cut into subregions, the number of which depends on the size of the MBF with respect to
the operating wavelength. Instead of computing the reaction terms between every pair of
subsectional basis functions belonging to two different MBFs and then summing them up,
the MBF reaction term is computed as a sum of a significantly lower number of equivalent
moment-reaction terms.

This chapter is organized as follows. First, we illustrate the Subdomain Multilevel Approach
and the concept of the Macro-Basis Functions. Next, we explain an efficient way of computing
the MBF reaction terms by reducing them to equivalent moments. Finally, we compare
the numerical results obtained using the improved SMA with the conventional (brute-force)
MoM, the (unrefined or standard) SMA and the measurements, demonstrating conclusively
the power and efficiency of the new proposed technique.

3.2 Subdomain Multilevel Approach – the Basic Concept

To introduce the basic concept of the SMA, let us consider a wire antenna as shown in Fig. 3.1,
of the length L and placed horizontally at a height h above a ground plane. Let the wire be
excited on the left end by a current generator with an impressed current I0, and let it be
terminated with an open circuit on the right end. Depending on the electric length βL,
this structure will either behave as a nonradiating open-ended stub or as an antenna. The
current distribution on the line may be obtained using the Method of Moments (MoM) with
N subsectional basis functions, as is sketched in Fig. 3.1. This would lead to a linear system
of equations with the moment matrix [Z], whose elements Zij are the interactions between
rooftops i and j. However, we know that, at least at low frequencies (βL < 1), we should
obtain a current distribution, which closely follows the transmission-line prediction [15], that
is

I(z) = I0
sinβ(L − z)

sinβL
, 0 < z < L. (3.1)

Now, what will happen if we split the line into two sections of lengths d and L − d and
try to recover the behavior of the full structure by studying the two isolated parts? From
the point of view of antenna theory, the prospects are quite pessimistic. What we are trying
to do is to divide the original MoM matrix into four blocks, and to omit the out-of-diagonal
blocks, whose elements are obviously non-zero. This way we should expect to lose significant
information, and to arrive to incorrect results. On the other hand, from the transmission-line
point of view, we obviously can analyze the section of length d as a two-port device, alternately
excited at one port with the current generator I0 and leaving open-circuited the other one.
For the first section of the line (0 < z < d) with a source at z = 0 and an open end at z = d
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Figure 3.1: Wire antenna of length L, horizontally placed at height h above a ground plane and cut
at z = d.

(Fig. 3.1), the current distribution becomes

I1a(z) = I0
sinβ(d − z)

sin βd
(3.2a)

In turn, with an open end at z = 0 and a virtual generator at z = d, we obtain

I1b(z) = I0
sinβz

sinβd
(3.2b)

Similarly, the right-hand section of the line (d < z < L) is computed with a virtual generator
at z = d and an open end at z = L, leading to the current distribution

I2(z) = I0
sin β(L − z)

sin β(L − d)
. (3.3)

Finally, the global current I(z) on the whole wire as given in (3.1), can be recovered easily by
a linear combination of the latter three

I(z) =

{
c1aI1a + c1bI1b, 0 < z < d

c2I2, d < z < L
(3.4)

with the constants

c1a = 1, c1b = c2 =
sin β(L − d)

sinβL
.

What the previous developments tell us is that the non-radiation component of the current
in any structure can be reconstructed from the values obtained by analyzing unconnected
parts of them. Trivial as it may be from the point of view of circuit theory, the above fact is
overlooked in many numerical approximations used in antenna theory. In other words, mutual
coupling is irrelevant in the component of the current, which is controlled by transmission line
theory. This fact already has long-reaching consequences since, in many practical situations
(e.g., in printed antenna arrays), the antenna’s structure includes beamforming networks of
complex shape, which contribute heavily to the final MoM matrix size, but very weakly to
the overall antenna radiation.
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Concerning a printed radiating structure, it exhibits, in addition to the in-phase
transmission-line-like current, a second component, in-quadrature with the excitation cur-
rent [16]. This is the current responsible for radiation and the radiation resistance. As is well
known, its behavior depends on the shape and the size of the structure, that is, the current’s
shape is governed by the resonances and eigenvalues of the structure, and is practically inde-
pendent of the position of the generator. Thus, the quadrature component of the current has
a very different physical behavior than the in-phase component, and any numerical approach
giving the same treatment to both parts of the current will not provide accurate results.

This means that the linear combination of the isolated solutions should be separated with
respect to the real and imaginary parts. For example, in the case of the wire antenna, we
write, instead of (3.4),

I(z) =

{
cr
1aRe(I1a) + jci

1aIm(I1a) + cr
1bRe(I1b) + jci

1bIm(I1b), 0 < z < d
cr
2Re(I2) + jci

2Im(I2), d < z < L
(3.5)

where Re(·) and Im(·) denote the real and imaginary part, respectively. Indeed, for the case
of a dissipative transmission line [15], it can be shown analytically that such a decomposition
is necessary in order to exactly recover the global current from the partial solutions.

In practice, the success of this strategy will depend on the ability of introducing a block
decomposition of the original MoM matrix such that the original eigenvalue spectrum is
preserved as much as possible. This means to avoid cutting the structure at points where
obvious resonances are destroyed or heavily coupled parts are disconnected.

3.3 Subdivision of the MoM Computation

In this section, we will replace the used analytic approximations by a method of moments
computation of the wire problem. It will be shown how the numerical computation is split into
sub-problems, and how the isolated solutions are fit together into an accurate global solution.

Prior to applying the method of moments, we refer to the electric surface current model [16]
that formulates the wire problem by the following integral equation

L(J) = −Ei
t. (3.6)

Here, the operator L stands for the integral-equation kernel that acts on the unknown surface
current J and Ei

t is the tangential component of the impressed electric field on the wire surface
due to a known excitation.

Now, as sketched in Fig. 3.1, we will expand the current on the wire into a set of N
subsectional basis functions [17] with unknown amplitudes αi

J =
N∑

i=1

αifi (3.7)

including N − 1 rooftops distributed along the line and a half rooftop modeling the entering
current at the generator. Using this expansion, the method of moments [18] transforms the
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integral equation (3.6) into the system of linear equations

N∑

i=1

αi 〈wj ,L(fi)〉 =
〈
wj ,−Ei

t

〉
, j = 1, 2, . . . , N (3.8)

with wj being a set of so-called weighting or testing functions and 〈·, ·〉 an appropriate inner
product. Or, in matrix notation, the linear system (3.8) can be written as

[Z][J ] = [V ] (3.9)

with [Z] being the impedance matrix of dimension N ×N and the elements Zji = 〈wj ,L(fi)〉,
and the vectors [J ], [V ] of dimensions N × 1 and elements Ji = αi and Vj =

〈
wj ,−Ei

t

〉
,

respectively.

For large complex problems, the matrix system (3.9) is to be solved for typically thousands
of unknowns, which becomes difficult in terms of computer memory and computer running
time since they increase as O(N2) and O(N3), respectively. In this context, the idea to
break the large computation into several smaller subproblems seems to be an efficient way to
mitigate the practical difficulties linked to a brute-force computation.

Thus, in the wire problem of Fig. 3.1, we assume again to split the computation into two
parts, where the cut line is placed at z = d, defined by the rooftop M (1 < M < N). This
rooftop we call a “bridge rooftop”. The resulting right-hand part of the antenna d < z < L
is an open stub, which can be solved similarly to the original problem, introducing a virtual
generator at the cut position z = d (Fig. 3.2). This way, an isolated MoM system [Ẑ][Ĵ ] = [V̂ ]
of order N − M + 1 is set up. Excluding the terms linked to the virtual half-rooftop, the
impedance matrix [Ẑ] is a block-diagonal submatrix of the global impedance matrix [Z]. The
solution of the isolated problem yields a set of N − M coefficient α̂i, but obviously, they
are not a subset of the original solution αi. However, as shown in (3.5), the shape of α̂i

should follow closely that of αi, i = M + 1, . . . , N in the corresponding part of the antenna
d < z < L. Therefore, we merge the individual rooftop basis functions on the right-hand stub
into a macro-basis function (MBF), that is defined as [11]

m1 =
N∑

i=M+1

α̂ifi. (3.10)

If we insert the MBF m1 into the global expansion (3.7), the N unknowns are reduced to
M + 1 unknowns, namely, the remaining individual basis functions on the left-hand part and
an additional unknown β1 for the MBF

J =

M∑

i=1

αifi + β1m1. (3.11)

The computational steps of the SMA are schematically highlighted in Fig. 3.2. In corre-
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Computational Step I: Isolated solution Computational Step II: Compressed global solution
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Figure 3.2: Sketch of computational steps in the SMA applied to the wire antenna problem of Fig. 3.1.

spondance with (3.11), we define an appropriate set W ′ of Galerkin testing functions

W ′ = {f1, f2, . . . , fM ,m1} . (3.12)

Finally, we combine the reduced sets of expansion (3.11), which leads to a compressed MoM
system of equations of dimension (M + 1)




〈f1,L(f1)〉 〈f1,L(f2)〉 · · · 〈f1,L(m1)〉
〈f2,L(f1)〉 〈f2,L(f2)〉 · · · 〈f2,L(m1)〉

...
...

. . .
...

〈m1,L(f1)〉 〈m1,L(f2)〉 · · · 〈m1,L(m1)〉







α1

α2
...

β1


 =




〈
f1,−Ei

t

〉
〈
f2,−Ei

t

〉

...〈
m1,−Ei

t

〉


 . (3.13)

The solution of this shrunk MoM system of equations, yields the factor β1 for the MBF and
the remaining individual coefficients αi, i = 1, . . . , M . The current on the stub is recovered
from the compressed solution by a simple multiplication αi = βiα̂i, i = M + 1, . . . , N .

The general case of several MBFs is straightforward, and for the two MBFs, we write, for
instance




〈f1,L(f1)〉 〈f1,L(f2)〉 · · · 〈f1,L(m1)〉
〈f2,L(f1)〉 〈f2,L(f2)〉 · · · 〈f2,L(m1)〉

...
...

. . .
...

〈m1,L(f1)〉 〈m1,L(f2)〉 · · · 〈m1,L(m1)〉
〈m2,L(f1)〉 〈m2,L(f2)〉 · · · 〈m2,L(m2)〉







α1

α2
...

β1

β2




=




〈
f1,−Ei

t

〉
〈
f2,−Ei

t

〉

...〈
m1,−Ei

t

〉
〈
m2,−Ei

t

〉




. (3.14)

In order to guarantee high accuracy, the different physical behaviour of the in-phase and
quadrature part of the extracted MBFs are accounted for as suggested in (3.5). Therefore,
we split the MBF into its real and imaginary parts, giving an additional degree of freedom in
the expansion of the surface current

J =
M∑

i=1

αifi + βr
1Re(m1) + jβi

1Im(m1). (3.15)
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3.4 Three Basic Steps of the SMA

The SMA algorithm can be summarized in three steps [13].

A. Cut and Estimate: Cut the whole structure into a number of subdomains Sp (p =
0, 1, . . . , Ns). S0 is a special subdomain, called the root domain, that contains at least all the
excitations (subsectional basis functions where circuit ports are defined). The root domain
may include subsectional basis functions that have been considered irrelevant for the SMA
procedure and where no MBFs will be defined. The remaining subdomains Sp (p = 1, . . . , Ns)
will be the support for the MBFs in the SMA. Depending on the geometry, subdomains may
or may not be connected between them by subsectional basis functions fb

k , called “bridge
rooftops”. Each subdomain Sp (p = 1, . . . , Ns) is solved now independently, using some arti-
ficial excitations that somewhat translate the effect of the outside world on the subdomain.
Typically, bridge rooftops with unit current are used as excitations. Thus, a set of values for
the currents [α̂p

k] in the isolated subdomain under a given excitation is obtained and stored.

B. Compress: The pth MBF defined over the subdomain Sp is expanded using the stored
coefficients [α̂p

k]:

mp =
∑

k

α̂p
kf

p
k (3.16)

where fp
k denotes all the subsectional basis functions defined over surfaces σp

k ⊂ Sp. Now,
the global current is expanded using the subsectional basis functions [α0

k] on the root domain
S0, the MBFs [βp] defined over the subdomains Sp, and the bridge basis functions [αb

k] that
connect them:

J =
∑

k

α0
kf

0
k +

∑

k

αb
kf

b
k +

∑

p

βpmp

resulting in a compressed MoM matrix. The number of unknowns in the MoM matrix equation
is reduced, as all the subsectional basis functions belonging to a subdomain are merged into
an MBF. The compression of the MoM submatrices that contain all the interaction integrals
between two subdomains Sp and Sq can be done using vector-matrix-vector multiplication:

〈mp,Lmq〉 =

∫

Sp

∫

Sq

mp(r) ·
↔

G(r|r′) · mq(r
′) dS dS′

=
∑

k

α̂p
k

∑

l

α̂q
l

∫

σq
k

∫

σp
l

fp
k ·

↔

G · f q
l dS dS′ = [α̂p

k]
T [Zpq

k,l][α̂
q
l ] (3.17)

where

Zpq
k,l =

∫

σq
k

∫

σp
l

fp
k ·

↔

G · f q
l dS dS′

designates the elements of the MoM submatrix that correspond to the interactions between
subsectional basis functions belonging to the subdomains Sp and Sq. It should be noted here
that the mutual coupling between different subdomains is accounted for through these MoM
elements and that none of the MoM elements is set to zero. The final MoM matrix is reduced
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in size, but still fully populated.

The solution of the compressed system gives the unknowns for subsectional basis functions
over the root domain, for bridge basis functions and for MBFs βp, p = 1, . . . , Ns.

C. Expand: The solution over the compressed subdomains is finally recovered through a
superposition of the MBFs and their global solutions

αp
k = βpα̂

p
k.

This way the problem is solved for every single unknown. MBFs can be considered as
“entire-domain” basis functions numerically defined on every subdomain Sp for a set of specific
excitations. The different MBFs can be obtained by changing the position of the excitation
(orthogonal space harmonics) or by using different frequencies. Another very simple possibil-
ity, which performs very well for structures near resonance, is to consider as separate MBFs,
the real and imaginary parts of the original complex one. The success of this approach is due
to the different physical behaviour of in-phase and quadrature parts of the current, related
respectively to the radiation and induced fields [16]. The real part is close to the eigencurrent
and rather independent of excitations, while the imaginary part is strongly connected to the
specific nature and position of the excitation. A linear combination of both should fit better
the actual current. The proposed expansion shows now an additional degree of freedom:

J =
∑

k

α0
kf

0
k +

∑

k

αb
kf

b
k +

∑

p

βr
pRe{mp} + jβi

pIm{mp}.

3.5 Reaction Term Evaluation

Consider two subdomains p and q (Fig. 3.3) in a large electromagnetic problem being solved
using the SMA. Let the subdomains p and q have Np and Nq subsectional basis functions, each

defined on a couple of cells, (σi
p , σj

p) and (σi
q , σj

q), respectively. In the SMA, an isolated MoM
system of equations with virtual sources on the interfaces connecting the subdomain to the rest
of the structure is solved for every subdomain [13]. In our case, this yields the coefficient sets
α̂p

i , (i = 1, . . . , Np) and α̂q
i , (i = 1, . . . , Nq), corresponding to the two considered sub-domains

p and q. Each coefficient set and the corresponding set of subsectional basis functions define
a macro-basis function (MBF) as follows

mp =

Np∑

i=1

α̂p
i f

p
i , and mq =

Nq∑

j=1

α̂q
j f

q
j , (3.18)

where fp
i , (i = 1, . . . , Np) and f q

j , (j = 1, . . . , Nq) are the subsectional basis functions included
in the macro-basis functions mp and mq.

Now, the reaction term between two macro-basis functions can be expressed by the following
general expression

cp,q = 〈mp,L (mq)〉 (3.19)

where L(·) is a self-adjoint integral operator, and 〈·, ·〉 is a shorthand notation for the inner
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Figure 3.3: Two macro-basis functions split into subregions.

product of two functions.

In unrefined SMA procedures, the reaction term cp,q is computed by decomposing each
MBF into its subsectional basis functions (BFs) and evaluating the reaction terms between
every pair of BFs belonging to a couple of MBFs. The strategy for improving the SMA when
interactions between two MBFs are concerned is based on reducing MBFs to the equivalent
moments. An MBF is cut into subregions, the number of which depends upon the size of
the MBF with respect to the operating wavelength. This way, instead of computing reaction
terms between every pair of BFs belonging to two different MBFs and then summing them
up, we compute the equivalent moments for every subregion of the two MBFs. Once these
are known, the MBF reaction term will consist of the sum of a significantly lower number of
equivalent moment-reaction terms.

Let the MBF mp be defined over a surface Sp and the MBF mq over a surface Sq. Let these
two surfaces be subdivided into K and L subregions, respectively, given by

Sp =
K⋃

k=1

sk
p and Sq =

L⋃

l=1

sl
q

and let the centers of every subregion be denoted by rp
ck

∈ sk
p, k = 1, . . . , K and rq

cl
∈

sl
q, l = 1, . . . , L.

Then the MBF reaction term cp,q can be approximated as follows

cp,q = 〈mp,L (mq)〉 =

∫

Sp

∫

Sq

mp(r)
↔

G(r|r′)mq(r
′) dS dS′ ≈

≈
K∑

k=1

L∑

l=1



∫

sk
p

mp(r) dS




↔

G(rp
ck
|rq

cl
)



∫

sl
q

mq(r
′) dS′


 . (3.20)

One way of defining the subregions and corresponding moments in an MBF is as follows. A
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maximum area that a given MBF occupies, [xmin, xmax]×[ymin, ymax], is found and rectangular
subregions are equally distributed in it. Let λ be the operating wavelength and n given number
of moments per wavelength. The number of moments in the x and y directions is then defined
as

Nx = n

⌊
xmax − xmin

λ

⌋
+ 1, Ny = n

⌊
ymax − ymin

λ

⌋
+ 1

where bxc denotes the floor function. The subregions will be defined by the following grid

xi
min = xmin + (i − 1)∆x, xi

max = xmin + i∆x,

yj
min = ymin + (j − 1)∆y, yj

max = ymin + j∆y,

where
i = 1, . . . , Nx, j = 1, . . . , Ny

and

∆x =
xmax − xmin

Nx
, ∆y =

ymax − ymin

Ny
.

Once the subregions are defined, for each subregion, all the cells in MBF that belong to it
are found, and the overall moment of BFs defined on these cells is computed. The center of
the moment is computed as an arithmetic mean of all the centers of BFs taken into account.

In the following, the results obtained applying the SMA with fast MBF interactions are
given, showing good accuracy and a significant gain in computational time for large electro-
magnetic problems.

3.6 Results

3.6.1 Four-Patch Array Antenna

This antenna consists of four patches electromagnetically coupled to an underlying feeding
network (Fig. 3.4). The details concerning the geometry and the dielectric parameters of this
structure can be found in Fig. 2.21 on page 42. In the brute-force treatment of the problem,
the structure is subdivided into 1093 subsectional basis functions. In the SMA, we have four
isolated blocks, each of which includes a radiating patch together with a little portion of the
underlying feeding line. Another subdomain contains the remaining beam forming network,
including the excitation (Fig. 3.4). Each patch subdomain has 176 basis functions, and the
subdomain including the excitation consists of 345 basis functions.

In Fig. 3.5, the error in the computed input impedance for different moment densities
is shown. The unrefined SMA is taken as a reference for the error evaluation. The error is
shown for 1, 6, 10, 14 and 20 moments per operating wavelength. It can be seen that the error
decreases as the number of moments that approximate the MBF increases. Indeed, the error
falls below 1 % when 20 moments per wavelength (mpλ) are used to represent the MBF. In
Fig. 3.6, the input impedance for the four-patch array is shown. The solid line represents the
result obtained applying the brute-force approach, the line with circles represents the result
obtained applying the unrefined SMA and the dashed line – the results obtained applying
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0 50 mm

Figure 3.4: Four-patch antenna divided in subdomains. The dashed lines enclose the basic isolated
subdomains (the patches with parts of underlying feeding lines).

the SMA with 1 mpλ. Applying 20 moments per wavelength, we obtain practically the same
results as in the case of the unrefined SMA. The Smith’s chart in Fig. 3.6(b) shows that not
only the magnitudes of the reflection coefficients obtained using these three approaches are in
good agreement, but the phases as well.
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Figure 3.5: Relative error vs. number of moments per wavelength. The error decreases as the number
of moments grows: N = 1 (�), N = 6 (�), N = 10 (×), N = 14 (∗), N = 20 (◦).

On a PC with Linux operating system, a 1.4 GHz processor and 512 MB of RAM, the
computational time per frequency point was 70 s when the brute-force approach was applied.
Applying the unrefined SMA, the simulation time dropped to 17.4 s and further to 15.5 s,
when the SMA with 20 mpλ was used. Both the SMA and the fast SMA yield results that
coincide very well with the brute-force approach, the fast SMA having the advantage of a
faster computational time. The example shown here is chosen to prove the validity of the idea
behind the SMA with fast MBF interactions. The gain in computational time will become
significant when the number of unknowns increases (typically, 104 or more), and/or when
more complicated electromagnetic structures with a larger number of macro-basis functions
are used.
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Figure 3.6: Four-patch antenna. Results obtained using the brute-force approach (solid line), the
SMA (line with circles ◦) and the SMA with 1 mpλ (dashed line).

3.6.2 Subarray Element of a SAR Antenna

The second example is a dual polarized eight element subarray for a C-band SAR antenna
with center frequency f = 5.3 GHz. The design of the antenna was proposed by Saab Ericsson
Space and studied by our Laboratory within a common ESA research project [19].

The basic radiating element of this structure consists of two orthogonal slotted patches,
which are etched on the two faces of a thin substrate. The structure of the radiating element
is presented in Fig. 3.7. The distance between the lower skin-substrate and the ground plane
is 1 mm and the distance between the two skins is 2.6 mm. The slotted patches of the vertical
polarization are etched on the upper faces of the two skins, while the patches of the horizontal
polarization are on the lower faces. The feeding lines of the horizontal polarization are etched
on the upper face of the lower skin, while the vertical polarization feeding lines are on the
lower face of the lower skin. The spacings between different layers are obtained using steel
frames.

The subarray antenna as shown in Fig. 3.8 consists of eight radiating elements and the
design is completed with a corporate feeding network. A reasonably detailed modeling of this
antenna yields 8469 subsectional basis functions with rectangular or triangular supports. The
brute-force approach requires a large amount (1.15 GB) of computer memory. Using the SMA,
the problem is split into smaller subproblems. In Fig. 3.8, dashed lines define the subdomains
in which the whole structure is divided. Each of the eight subdomains consists of the radiating
elements with the end portions of the feed lines included and spans over the four metallization
levels. The two subdomains (extreme left and right) have three interfaces with the rest of
the structure (which defines the ninth subdomain), whereas the inner six subdomains have
four. The number of interfaces automatically defines the number of MBFs that are defined on
each subdomain. In the first computational step of the SMA, MoM equations of 858 and 900
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Figure 3.7: The structure of the radiating element. The thickness of the skin dielectric layers is
t = 0.15 mm and the dielectric properties are εr = 2.95, tan δ = 0.004 [19].

0 50 mm

Figure 3.8: The SAR antenna subarray layout.

unknowns, for the end and the inner block are solved, respectively. In the second step, the
MBFs are plugged into the global equation system, resulting in a compressed MoM equation
of only 1428 unknowns. Compared to 8469 unknowns from the brute-force approach, the SMA
brings the reduction in the memory occupation from 1.15 GB to 32 MB. On a PC with Linux
operating system, a 1.4 GHz processor and with 512 MB of RAM this leads to computation
time of 27.5 min. In the SMA with fast MBF interactions, the choice of having 20 mpλ results
in a sizeable drop of the CPU time, which is now only 20 minutes. The memory occupation
and time needed for solving the problem are shown in Table 3.1.

Method: Brute-force SMA Fast SMA

Step I Dim. - 858 / 900
Mem. - 11.8 / 13 MB

Step II Dim. 8469 1428
Mem. 1.15 GB 32.6 MB

Time - 27.5 min 20.8 min

Table 3.1: Matrix dimensions, memory requirements and time per frequency point needed for solving
the SAR subarray using the brute-force, the standard SMA, and the SMA with fast MBF
interactions.

Finally, we compare the computed radiation patterns against the measured ones, provided
by Saab Ericsson. The patterns are shown for the vertical polarization. Fig. 3.9(a) shows
the computed radiation pattern using the SMA and the measurements. In the measured
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field, solid and dashed lines represent the co- and cross-polarization components, respectively.
The computed results are depicted with circles (co-polar) and squares (cross-polar). The
simulated co-polarization pattern shows good agreement with the measured one, while the
predicted cross polarization is less accurate, but on a much lower dB-level. In Fig. 3.9(b)
we compare radiation patterns computed using the unrefined SMA (solid and dashed lines)
and the SMA with fast MBF interactions (circles and squares). The agreement in both co-
and cross-polarization components is very good (which implies an excellent stability of the
numerical technique) with a gain of 24 % in computational time, as compared to that of the
unrefined SMA.
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(a) Measured co-polar (solid line), measured cross-polar (dashed
line), co-polar (circles) and cross-polar (squares) components com-
puted using the standard SMA.
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(b) Co-polar (solid line) and cross-polar (dashed line) components
computed using the standard SMA. Co-polar (circles) and cross-
polar (squares) components computed using the SMA with fast
MBF interactions.

Figure 3.9: The radiation pattern of the SAR subarray in the φ = 0 plane for the vertical polarization.
f = 5.3 GHz.
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3.6.3 8 × 8 Corporate Fed Patch Array

As a third example, we consider the 8 × 8 corporate-fed array of patches based on [20].
The geometry of the array is shown in Fig. 3.10 and the layout of the built test-sample in
Fig. 3.11 [14]. The antenna consists of a single layered microstrip design with a combination
of lines entering straight into the patches.
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Figure 3.10: The geometry of the antenna array. w1 = 1.3, w2 = 3.93, d1 = 94.32, d2 = 47.16,
d3 = 23.58, d4 = 11.79, l1 = 12.32, l2 = 18.48, l3 = 10.08. All dimensions given in mm.
Printed on Duroid-5870 with εr = 2.35, tan δ = 0.0012 and h = 1.57 mm. The dashed
lines define the eight subdomains (fingers) in which the whole structure is subdivided.

The feeding lines and patches are densely meshed, which leads to a large number of N =
9947 triangular and rectangular basis functions for the whole antenna array and to the memory
occupation of 1.6 GB. An AMD Athlon 1.4 GHz PC with 512 MB of RAM has been used in
the simulations. Solving the problem using the conventional MoM could not be done on this
PC because of the lack of the available memory (1.6 GB needed against the available 512 MB).
The antenna structure with mesh density that yields 4000 unknowns is solved in 190 min per
frequency point on this PC. Taking into account that the time dependency on the number of
unknowns in the direct solution is O(N3), the time needed for solving the problem with the
mesh density fine enough to lead the accurate results (9947) would take about 54 hours per
frequency point. This value is extrapolated and it does not take into account the memory
resources. Actual time would be even longer due to the inevitable swapping to the hard disk.

Using the SMA, the structure is split into nine parts: the corporate feed network on the
left hand side and eight “fingers”, each including eight patches (Fig. 3.10). Although nothing
prevents theoretically the definition of MBFs on the corporate beamforming network, this
option has not been retained here. The beamforming network is a non-resonant structure
that appears only once in the problem. Approximating the currents on it would certainly
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Figure 3.11: The layout of the built test-sample [14].

require more than one complex MBF and the lack of geometric redundancy minimizes the
eventual benefits. The SMA computation starts with the evaluation of the currents on the
isolated fingers, each with N = 1131 BFs being merged into a complex MBF. The global
system of equations is then compressed to 923 unknowns, what corresponds to a memory
drop from 1.6 GB to 13 MB. The direct solution is used for solving the compressed MoM
system. The time needed per frequency point is 24.35 min. This is equivalent to a reduction
of computer time by a factor greater than 100.

Method: Brute-force unrefined SMA

Step I Dim. - 1131

Mem. - 20.5 MB

Step II Dim. 9947 923

Mem. 1.58 GB 13 MB

Time - 24.35 min

Table 3.2: Matrix dimensions, memory requirements and time per frequency point needed for solving
the 8 × 8 antenna array using the conventional MoM and the unrefined SMA.

By inspecting our 8×8 array, we can see that 8 subdomains (fingers) are identical. A block
of the MoM matrix for one subdomain could be filled, compressed, and repeated in the MoM
matrix 7 more times. In addition, the solution for the subdomain could be computed only
once and then reused in compressing the MoM submatrices that correspond to the interactions
between different subdomains. However, the eight subdomains need to have the same mesh
and basis function numbering scheme. However, all this presumes that the eight subdomains
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are not only geometrically equal, but that they have exactly the same mesh and exactly
the same basis function numbering scheme. By reconstructing the mesh and including the
concept of repeated subdomains in our solver, further improvements in the computational
time in addition to these obtained using the unrefined SMA (that does not take into account
the repetitive subdomains) are achieved. The same structure is solved in only 12 min per
frequency point, giving exactly the same input impedance and the radiation pattern as before.
The computational time as compared to that one of the unrefined SMA has been reduced to
49 %.

As a final step, we use the concept of equivalent moments to represent the Macro-Basis
Functions when computing their mutual interactions. With 20 equivalent moments per wave-
length, the antenna is solved in 5.7 min, which is only 23.5 % (four times faster) of the time
needed for the unrefined SMA.

In Fig. 3.12, the error in the computed input impedance for different moment densities is
shown. The unrefined SMA is taken as a reference for the error evaluation. The error is
shown for 2, 8, 14 and 20 moments per operating wavelength. The choice of 20 moments per
wavelength leads once again to an error of less than 1 %.
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Figure 3.12: The relative error in input impedance. The error decreases as the number of moments
per wavelength increases N = 2 (�), N = 8 (×), N = 14 (∗), N = 20 (◦).

Fig. 3.13 shows the CPU time as a function of the number of unknowns of the studied
problem. The CPU time needed to solve the problem using a conventional MoM with direct
solution grows with the number of unknowns as O(N3). The time for solving the problem
decreases as we use the unrefined SMA (∗), the SMA with repeated subdomains (+) and
it becomes minimal when the SMA with repeated subdomains and 20 mpλ in MBF mutual
interactions are used (�).

The reflection coefficient of the antenna is shown in Fig. 3.14. In this figure, three different
results can be seen. The unrefined SMA (solid line) and the SMA with repeated subdomains
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Figure 3.13: CPU time vs. number of unknowns using unrefined SMA (∗), SMA with repeated sub-
domains (+) and SMA with repeated subdomains and fast mutual interactions with
20 mpλ (�). In the upper left corner, the time needed for direct solution of the conven-
tional MoM system of equations is shown.

and 20 mpλ (◦) give practically the same results, the only difference being in more advanta-
geous computational time. The results taken from [6] and obtained using another approximate
technique, the Multilevel Matrix Decomposition Algorithm (MLMDA), are presented using a
dash-dotted line. By inspecting the third curve (dashed line), which represents the measured
values, one can conclude that the differences between the compared numerical methods are
of the order of the differences from the measured values. Our method provides, therefore, an
accuracy comparable to the MLMDA.

Fig. 3.15 shows the co-polar radiation patterns of the 8×8 corporate-fed patch array. Solid
lines represent measured values, dashed lines represent the results obtained using the SMA
with repeated subdomains and 20 mpλ in MBF mutual interactions, and circles – the results
obtained using the conventional MoM. In the conventional MoM, the solution of the problem
that takes 1.6 GB of memory on a PC with 512 MB of RAM was made possible using the
block ILU preconditioner scheme [21], where matrix blocks are stored on the hard disk and
swapped to memory. One can observe a very good agreement of the SMA results and the
ones obtained using the conventional MoM with the measurements in both E- [Fig. 3.15(a)]
and H-planes [Fig. 3.15(b)].
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Figure 3.14: The reflection coefficient of the 8× 8 corporate-fed patch array. Measurements (dashed
line), MLMDA [6] (dash-dotted line), the unrefined SMA (solid line) and the SMA with
repeated subdomains and 20 mpλ (◦).
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(a) E–plane.
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Figure 3.15: Co-polar radiation patterns of the 8 × 8 corporate-fed patch array at f = 9.43 GHz.
Measurements (solid lines), conventional MoM solved using [21] (◦), and SMA with
repeated subdomains and 20 mpλ (dashed lines).
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3.7 Conclusion

In this chapter, we have presented an improved Subdomain Multilevel Approach (SMA), used
to solve large complex-shaped antenna problems. The technique reduces the macro-basis
functions into equivalent moments, which are then used in the efficient evaluation of MBF
reaction terms. This procedure bypasses the bottleneck of the standard unrefined SMA, where
the potential advantages are hindered by the effort spent in the computation of the reaction
terms between macro-basis functions. Moreover, a welcome flexibility is introduced at the
level of these computations. The technique presented here can be viewed as the physical
counterpart of a matrix block decomposition, followed by an eigenvalue search or a singular
value decomposition [22] of the blocks. Although it may require a little manual tuning and
some expert system to divide the geometry under study, the technique presented here is very
simple, easy to implement and competitive when compared with other available approaches.

The accuracy of the proposed method has been verified by investigating three represen-
tative examples, in which this technique is compared with a brute-force approach, with the
unrefined SMA and with measurements. The results show excellent agreement between all the
approaches for both input impedance and radiation patterns. The computational gain versus
the unrefined SMA depends upon the size of the problem and upon the density of moments
used to represent the macro-bases. For the problems studied here (∼ 104 unknowns), a reduc-
tion of up to 50 % of the CPU time has been observed. The improvement factor will quickly
increase for larger problems or if a small reduction in accuracy can be accepted. Moreover,
the use of symmetries and equivalent moments, as shown in the last section of this chapter,
allows a further reduction in CPU time by a factor of four or better.
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4 Arbitrarily-Shaped Slots in Thick

Conducting Screens: An Approximate

Solution

4.1 Introduction

A classical problem in EM-theory is the scattering of an electromagnetic wave by an aperture
in a thick conducting screen. This problem has countless applications in modern technology,
ranging from waveguide filters using interconnecting wall holes and irises to cavity-backed
slot-fed antennas and passing through many problems of field penetration through slits and
holes, of paramount relevance in electromagnetic compatibility. In addition, very recently
discovered enhanced transmission of light through subwavelength hole arrays made in optically
thick metal films has numerous potential applications in photonics and optoelectronics [1, 2].

In a general case (Fig. 4.1), the screen may be curved and have a non-zero thickness,
the aperture will have arbitrary shape and dimensions and even the lateral metallic walls
associated to the aperture rim may have an irregular profile, thus leading to a truly three-
dimensional problem. In this work, we will concentrate on the case where the thick conducting
screen is bound by two parallel surfaces and is locally flat. Even with this simplification, the
problem remains three-dimensional and for analysis purposes, a reduction to two dimensions
has been traditionally obtained in two ways. With reference to Fig. 4.1, either the screen
thickness is neglected and then we formulate the problem in two coordinates (x, y) locally
tangential to the screen, or a translational symmetry along one tangential coordinate (y) is
assumed, and then we work in a two-dimensional cut of the problem defined by its profile in
the (x, z) coordinates.

Historically, the first model analyzed was the zero-thickness screen (frequently but im-
properly called the zero-thickness slot geometry). This problem can be traced back to Lord
Rayleigh in 1897 [3] and was extensively analyzed in a series of classical papers authored
by Bethe [4], Levine and Schwinger [5, 6], Collin [7], Bouwkamp [8], Van Bladel [9], and
Rahmat-Samii and Mittra [10] to mention but a few pioneers. In these studies, the transverse
dimensions of the aperture were always supposed to be small and, consequently, quasi-static
or low frequency approximations were used, together with the concept of polarizability [11].
On the other hand, specific techniques were also developed for large apertures, using geomet-
rical [12] and spectral [10] theories of diffraction. The rigorous formulation of a zero-thickness
aperture with arbitrary size and shape is made through the use of the equivalence theorem
and equivalent magnetic currents. This leads to an integral equation problem solved with the
use of dyadic Green’s functions [13]. This nowadays classical formulation is summarized in
both vintage [14] and recent [15] electromagnetic textbooks. It was also extensively discussed
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in an excellent review paper [16] and translated into the framework of a generalized network
approach [17].

The second 2-D model, assuming translational invariance and valid for long, thin apertures
(slits) was solved using asymptotic Wiener-Hopf techniques [18] or coupled integral equa-
tions [19]. These works deal essentially with thick slots having rectangular profiles in the
plane. The integral equation approach was extended to arbitrary profiles [20] and was also
combined with finite elements to cope with more general configurations possibly including
inhomogeneous media [21, 22].
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Figure 4.1: General geometry for an arbitrarily shaped aperture in a conducting curved screen of
variable thickness.

Back to the general 3-D aperture problem of Fig. 4.1, it can be formally solved by using
equivalence principles leading to a set of coupled equations. Typically, the two outer prob-
lems (outside the thick slot) will be formulated as integral equations and the inner problem
(inside the thick slot) as a cavity problem where the Helmholtz equation is to be satisfied.
In practice, the numerical implementation will be a difficult task, asking in the external re-
gions for complicated Green’s functions and 2-D-boundary elements, which must be coupled
to 3-D-finite elements inside the slot. A clever simplified implementation, based on the reci-
procity principle [23] has been used to analyze microstrip antennas fed through reasonably
thick rectangular slots [24].

Finally, it must be mentioned that the circular aperture case is of particular relevance
in optics, and that the thick case has been solved by Roberts in an optical context [25],
emphasizing the determination of plane wave reflection and transmission coefficients.

In the first part of this chapter, the problems of scattering from an infinitely thin metallic
plate and aperture are addressed. The problem of the scattering from an aperture perforated
in an infinitely thin metallic screen is, from the electromagnetic point of view, dual to the
problem of the scattering from an infinitely thin metallic plate. Having this in mind, we will
first develop the Mixed Potential Integral Equation (MPIE) for the thin plate problem and
numerically solve it using the Method of Moments (MoM). Next, we deal with the problem
of the infinitely thin aperture, which is less straightforward as it involves the use of magnetic
currents and the equivalence theorem. We present the steps in applying the equivalence
theorem in detail as they will be useful later when the problem of the thick aperture is solved.
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After having presented the solutions for both problems, we illustrate the duality among them,
by proving Babinet’s principle [26]. Finally, we show some numerical results that are in good
agreement with the results available in literature, and that are going to be used afterwards
when the problem of apertures in thick metallic screens is addressed.

The second part of the chapter follows closely the ideas introduced by Mosig [27] and
develops them in full detail. The integral equation formulation of the thick aperture problem
is reviewed and modified to make it continuously valid for any aperture thickness. Hence, the
new proposed thick aperture formulation is free from the difficulties usually encountered when
applying it to a vanishing thickness slot. Afterwards, a simplification of the formulation is
proposed, which reduces dramatically the computational burden while providing valid results
for apertures whose thicknesses remain small compared with their linear transverse dimensions
(or with the square root of their surface) but having otherwise arbitrary shapes and sizes.
Finally, some preliminary numerical results with scattering on thick metallic apertures and
slits are performed in order to validate the theory presented in this chapter.

4.2 Scattering from Infinitely Thin Plates and Apertures

4.2.1 Scattering from an Infinitely Thin Perfectly Conducting Metallic Plate

Let SP be a perfectly conducting plate of an arbitrary shape situated at the interface of two
semi-infinite homogeneous media (taken as the z = 0 plane). The plate is assumed to be
illuminated with an obliquely-incident plane wave. The geometry of the problem is shown in
Fig. 4.2.
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Figure 4.2: Infinitely thin metallic plate illuminated with an obliquely-incident plane wave.

An incident electric field Ei induces on the plate the surface currents of a density J, which
in turn produce a scattered electric field Es. Since the plate is perfectly conducting, the
boundary condition that has to be satisfied on its surface is

ẑ × (Ei(r) + Es(r)) = 0, r ∈ SP. (4.1)
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The scattered electric field, knowing the dyadic Green’s function
↔

GEJ, can be expressed as

Es(r) =

∫

S′

↔

GEJ(r|r′) · J(r′) dS′ =
↔

GEJ ⊗ J. (4.2)

where ⊗ is a shorthand notation [28] for the convolution integral from (4.2). Introducing the
potential Green’s functions yields

↔

GEJ ⊗ J = −jω
↔

GA ⊗ J − ∇ (GV ⊗ ρe) , (4.3)

where
↔

GA and GV are the magnetic vector potential Green’s function and electric scalar
potential Green’s function, respectively, and ρe is the surface charge density associated with
the surface current density through the continuity equation

ρe = − 1

jω
∇

′ · J. (4.4)

In the last equation ∇
′ is the operator that acts on the primed coordinates only. This way

(4.3) can be written in terms of the surface current density J as

↔

GEJ ⊗ J = −jω
↔

GA ⊗ J +
1

jω
∇
(
GV ⊗ ∇

′ · J
)
. (4.5)

The tangential component of the scattered electric field can be expressed now as follows

Es
t(r) = −jω

∫

S′

↔

GA(r|r′) · J(r′) dS′ +
1

jω
∇

∫

S′

GV (r|r′)∇′ · J(r′) dS′, (4.6)

where for the plate situated in free space
↔

GA = µ
4πΨ

↔

I, GV = 1
4πεΨ, Ψ = e−jk|r−r

′|

|r−r′| and for
only tangential component of the electric field taken into account, the idem dyad is defined
as

↔

I = x̂x̂ + ŷŷ.

Taking into account (4.1), we can write

Es
t(r) = −Ei

t(r), r ∈ SP (4.7)

and (4.6) becomes

−Ei
t(r) = −jω

∫

S′

↔

GA(r|r′) · J(r′) dS′ +
1

jω

∫

S′

∇GV (r|r′)∇′ · J(r′) dS′. (4.8)

where the ∇ operator can be introduced inside the integral as it affects the unprimed coordi-
nates only. In solving the integral equation (4.8), the method of moments technique (MoM)
is applied. The function of the electric current surface density is expanded using subsectional
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rooftop basis functions fl defined on rectangular or triangular domains

J =
∑

l

αlfl(r
′), l = 1, . . . , N. (4.9)

Introducing (4.9) into (4.8), one obtains

−Ei
t(r) =

∑

l

αl


−jω

∫

S′

↔

GA(r|r′) · fl(r′) dS′ +
1

jω

∫

S′

∇GV (r|r′)∇′ · fl(r′) dS′


 . (4.10)

The Galerkin procedure is now completed if we choose for the testing functions the same set
of functions as we have used before for the basis functions. Multiplying (4.10) with the set of
testing functions fk and integrating over the corresponding test surfaces, the following system
of linear equations is obtained

−
∫

S

Ei
t(r) · fk(r) dS =

∑

l

αl


− jω

∫

S

∫

S′

fk(r) ·
↔

GA(r|r′) · fl(r′) dS′ dS +

+
1

jω

∫

S

∫

S′

fk(r) · ∇GV (r|r′)∇′ · fl(r′) dS dS′


 . (4.11)

The surface divergence theorem is used to transfer the gradient from the scalar potential
Green’s function to the testing function. First we have

∫

S

fk · ∇GV dS =

∫

S

∇ · (fkGV ) dS −
∫

S

∇ · fkGV dS (4.12)

and then we apply the surface divergence theorem

∫

S

∇ · (fkGV ) dS =

∮

l

GV fk · êl dl = 0 (4.13)

where êl is the unit outward vector, normal to the line l that bounds the surface S. The last
integral is zero due to the definition of the rooftop functions. Namely, we have two parts of
the integration path, one where the value of the basis function is zero so the integral over this
part is also zero (valid for rectangular rooftops), and the other where the basis function vector
is perpendicular to the unit outward vector of the integration path and the scalar product
between them gives zero (valid for both rectangular and triangular rooftops).

When we incorporate ∫

S

fk∇GV dS = −
∫

S

∇ · fkGV dS (4.14)
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into (4.11), we obtain the following system of linear equations

∑

l

(ak,l + vk,l)αl = ek, (4.15a)

where, for k, l = 1, . . . , N ,

ak,l = jω

∫

S

∫

S′

fk(r) ·
↔

GA(r|r′) · fl(r′) dS′ dS, (4.15b)

vk,l =
1

jω

∫

S

∫

S′

∇ · fk(r)GV (r|r′)∇′ · fl(r′) dS′ dS, (4.15c)

ek =

∫

S

Ei
t(r) · fk(r) dS. (4.15d)

4.2.2 Electromagnetic Penetration through an Aperture

In this section we will treat a problem which is from electromagnetic point of view dual to
the problem discussed in the previous section. We will consider an aperture in a perfectly
conducting screen, of vanishing thickness and infinite extent, separating half spaces of different
electromagnetic characteristics. Fig. 4.3 depicts a step-by-step reduction of the lower half-
space (z < 0) problem to a simple equivalent problem in a form which readily suggests how
one may develop an expression for the lower half space total magnetic field H−. Fig. 4.3(a)
depicts the original problem, a plane wave impinging from the lower half space on the infinitely
thin metallic screen with an aperture (which can be of arbitrary shape). In Fig. 4.3(b) the
aperture-perforated screen is seen to be replaced by a perfectly conducting (shorted aperture)
plane with the original tangential electric field in the aperture at z = 0− (Ea

t ) restored by an
appropriate magnetic surface current density M, which is specified to have a value

M = −(−ẑ) × Ea
t = ẑ × Ea

t . (4.16)

Next, from the image theory, one removes the conducting screen and arrives at the lower half-
space equivalent problem of Fig. 4.3(c). In addition to the images of the magnetic surface
current M, the images of the sources producing the original incident plane wave (Ei, Hi)
have to be also taken into account. These images will produce so-called “mirrored” plane
wave (Em, Hm), which will assure that there will be no tangential component of the electric
field on the perfectly conducting metallic screen

ẑ × (Em(r) + Ei(r)) = 0, r ∈ {(x, y, z)|(x, y) ∈ R
2, z = 0} (4.17)

and in consequence

ẑ × (Hm(r) − Hi(r)) = 0, r ∈ {(x, y, z)|(x, y) ∈ R
2, z = 0}. (4.18)
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Figure 4.3: Lower half-space equivalent problems.

In Fig. 4.4 the equivalent problem valid for the upper half-space (z > 0) is shown.
The total lower half-space electromagnetic field (E−, H−) is the sum of the field radiated by

M plus its image and that radiated by the lower half-space sources plus their images, that is,
the incident and the mirror fields, all radiating in an infinite, homogeneous space characterized
by electromagnetic properties of the lower half-space medium. For the upper half-space, the
electromagnetic field (E+, H+) is the field radiated by magnetic surface current −M plus its
image radiating in an infinite, homogeneous space characterized by electromagnetic properties
of the upper half-space medium. Equations for the magnetic fields in the lower and the upper
half-spaces have the following form

H−(r) = Hi(r) + Hm(r) +

∫

S′

↔

G
(−)
HM(r|r′) · M(r′) dS′, (4.19a)

H+(r) = −
∫

S′

↔

G
(+)
HM(r|r′) · M(r′) dS′, (4.19b)

where
↔

G
(−)
HM and

↔

G
(+)
HM are the magnetic field dyadic Green’s functions for the lower and the

upper half-spaces, respectively. It must be highlighted that these two Green’s functions take
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Figure 4.4: Equivalent upper half-space problem.

into account the images from the infinite perfectly conducting metallic screen and that this is
the reason why in equations M is written instead of 2M.

Requiring that the magnetic field be continuous in any point belonging to the aperture
r ∈ A

ẑ × (H+(r) − H−(r)) = 0, (4.20)

denoting tangential components of the magnetic field with a subscript “t” and taking into
account (4.18), the following integral equation is obtained

−2Hi
t(r) =

∫

S′

(
↔

G
(+)
HM(r|r′) +

↔

G
(−)
HM(r|r′)

)
· M(r′) dS′ =

∫

S′

↔

GHM(r|r′) · M(r′) dS′. (4.21)

If the electric vector potential Green’s function
↔

GF and scalar magnetic potential Green’s
function GW are introduced

↔

GHM ⊗ M = −jω
↔

GF ⊗ M − ∇ (GW ⊗ ρm) , (4.22)

and the same MoM procedure from Section 4.2.1 is applied, one obtains the following system
of linear equations ∑

l

(fk,l + wk,l)αl = hk, (4.23a)

where, for k, l = 1, . . . , N ,

fk,l = jω

∫

S

∫

S′

fk(r) ·
↔

GF (r|r′) · fl(r′) dS′ dS, (4.23b)

wk,l =
1

jω

∫

S

∫

S′

∇ · fk(r)GW (r|r′)∇′ · fl(r′) dS′ dS, (4.23c)

hk = 2

∫

S

Hi
t(r) · fk(r) dS. (4.23d)
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If the perforated metallic screen is placed in a homogeneous medium of dielectric permittivity
ε and magnetic permeability µ, then the potential Green’s functions can be written as follows

↔

GF (r|r′) = 4
ε

4π

e−jk|r−r
′|

|r − r′|
↔

I, (4.24a)

GW (r|r′) = 4
1

4πµ

e−jk|r−r
′|

|r − r′| . (4.24b)

where the factor “4” comes from the equivalence theorem and image theory applied to the
thin aperture problem.

4.2.3 Babinet’s Principle

Consider a metallic, perfectly conducting rectangular strip situated in a homogeneous medium
with an intrinsic impedance η. Let the strip be excited by means of a generator at its center
[Fig. 4.5(a)]. The generator can be modeled as an external field (Ei

1, Hi
1) concentrated in a

small area at the center of the strip. The integral equation of the problem can be represented
as follows (see Section 4.2.1)

−Ei
1 =

↔

GEJ ⊗ J1, (4.25)

where
↔

GEJ is the free space dyadic electric field Green’s function for electric dipole excitation,
J1 the induced electric surface current density on the strip and the symbol ⊗ stands for the
convolution integral.

Consider the complementary problem, a rectangular slot of the same dimensions as dimen-
sions of the metallic strip, cut in an infinite, plane, perfectly conducting thin sheet of metal.
The slot is now excited by means of a generator connected between its opposite edges as shown
in Fig. 4.5(b). The generator is modeled by an external electromagnetic field (Ei

2, Hi
2), where

magnetic and electric quantities have the same values but interchanged directions when com-
pared to the original problem.

x

y

δx → 0

(a) Rectangular strip.

x

y

(b) Rectangular slot.

Figure 4.5: Rectangular strip and complementary slot.

It has been shown in Section 4.2.2 that, using the equivalence principle, the integral equation
for the complementary problem can be written as follows

−Hi
2 = 2

↔

GHM ⊗ M2, (4.26)
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where
↔

GHM is the free space dyadic magnetic field Green’s function for magnetic dipole
excitation and M2 induced magnetic surface current density over the slot.

Since both Hi
2 and Ei

1 have the same direction, and |Ei
1| = η|Hi

2|, the resulting surface
current densities will satisfy the following relation

J1

|Ei
1|

= 2
M2

|Hi
2|

, (4.27)

that is

J1 =
2

η
M2. (4.28)

In the following we demonstrate that the geometric mean of the driving-point impedances
of a strip and a complementary slot is equal to half the intrinsic impedance of the surrounding
medium (Babinet’s principle) [26].

Using the reaction concept, the driving point impedance of the metallic strip can be defined
as

Z1 = − 1

|I1|2
∫

S1

E1 · J∗
1 dS, (4.29)

with E1 being the scattered electric field, J1, as before, the electric surface current density
and I1 the driving current of the strip generator

I1 =

∫

y

J1 · x̂dy. (4.30)

For the complementary slot, the driving point admittance can be defined as

Y2 = − 1

|V2|2
∫

S2

H2 · M∗
2 dS, (4.31)

where the magnetic current, that is, the driving voltage of the generator, is obtained by
integrating across the width of the slot along the y axis

V2 =

∫

y

M2 · x̂dy. (4.32)

Using (4.28), we have the following relation between the current of the generator in strip
problem and the voltage of the generator in the slot problem

V2 =

∫

y

M2 · x̂dy =

∫

y

η

2
J1 · x̂dy =

η

2
I1. (4.33)

The equation corresponds to the equation (20) in [26]. From (4.29), (4.31) and (4.33) the
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product of the strip and complementary slot impedances can be written as follows

Z1Z2 =
Z1

Y2
=

|V2|2
|I1|2

∫
S1

E1 · J∗
1 dS

∫
S2

H2 · M∗
2 dS

=
η2

4

∫
S1

E1 · J∗
1 dS

∫
S2

H2 · M∗
2 dS

. (4.34)

The last step in the development will be to show that the ratio between the powers dissipated
by generators in both cases is equal to one, that is

∫

S2

H2 · M∗
2 dS =

∫

S1

E1 · J∗
1 dS. (4.35)

First, by applying the equivalence principle we have represented the original slot problem by
two free space problems: 1) in the lower half space we had magnetic surface current density
2M2 radiating in free space, and 2) in the upper half space we had magnetic surface current
density −2M2 radiating in free space. The whole generator power is therefore dissipated
equally in the upper and lower half spaces, so we can write

∫

S2

H2 · M∗
2 dS =

∫

S+
2

H2 · M∗
2 dS +

∫

S−
2

H2 · M∗
2 dS = 2

∫

S+
2

H2 · M∗
2 dS. (4.36)

The surface S+
2 of the slot (in the upper half space problem) corresponds to the surface S1 of

the strip, therefore

∫

S2

H2 · M∗
2 dS = 2

∫

S1

H2 · M∗
2 dS = 2

∫

S1

1

η
E1 ·

η

2
J∗

1 dS =

∫

S1

E1 · J∗
1 dS. (4.37)

Taking into account the last equation (4.37), from (4.34) directly follows

Z1Z2 =
η2

4
. (4.38)

Thus we have verified the validity of Babinet’s principle and found the particular form it
adopts in our case.

4.2.4 Numerical Results

Zero Incidence Plane Wave

Let us first consider an infinitesimally thin square metallic plate of dimensions λ×λ. The plate
is assumed to be situated in an unbounded homogeneous medium (air) and to be illuminated
with a plane wave. For convenience, the plate is assumed to be located in the xy plane of a
Cartesian system of coordinates, whose origin is at the center of the plate. The geometry of
the problem is shown in Fig. 4.6 with two possible cases of incidence
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• TE case [Fig. 4.6(a)], where Ei = −ŷE0e
−jk·r

• TM case [Fig. 4.6(b)], where Hi = ŷ 1
ηE0e

−jk·r

In the case when the incident angle θi is zero, TE incidence and TM incidence are equivalent,
so the results for zero TM incidence will be shown.

x

y

z

Ei

Hi

k
θi

−λ
2

λ
2

(a) TE incidence.

x

y

z

Ei

Hi

k
θi

−λ
2

λ
2

(b) TM incidence.

Figure 4.6: Infinitesimally thin square plate illuminated with a plane wave.

Let us suppose that the plane wave has the following form

Ei = x̂E0e
−jkz. (4.39)

Figs. 4.7 and 4.8 show distribution of the magnitude, the real and imaginary parts of the
x and y current components over the square λ × λ metallic plate, normalized with magnetic
field intensity of the incident plane wave. It is supposed that the magnitude of the plane wave
electric field is E0 = 1 V/m. These results are in excellent agreement with the benchmark
results that can be found in [29].
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Figure 4.7: The x-component of the electric surface current over λ× λ plate illuminated with a zero
incidence plane wave.
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Figure 4.8: The y-component of the electric surface current over λ× λ plate illuminated with a zero
incidence plane wave.

Next, we will consider an infinitely thin square aperture of the same dimensions as the
dimensions of the plate to be illuminated with a plane wave, whose magnetic field has the
following form (electromagnetically dual problem)

Hi = x̂H0e
−jkz, (4.40)

where H0 = 1 A/m. In Figs. 4.9 and 4.10, the x-components of the induced electric (magnetic)
surface current densities along the x = 0 and y = 0 lines are shown for the case of the plate
(aperture) with a zero incidence plane wave illumination. It can be noticed that the normalized
magnetic current (normalization being done with the magnitude of the electric field intensity)
is twice smaller than the corresponding normalized electric current.
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Figure 4.9: The x-component of the currents induced on a square patch/aperture along the x-axis.
Solid line: real part, dashed line: imaginary part, dash-dotted line: magnitude.
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Figure 4.10: The x-component of currents induced on a square patch/aperture along the y-axis. Solid
line: real part, dashed line: imaginary part, dash-dotted line: magnitude.
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Oblique Plane Wave Incidence

We consider the case of an oblique plane wave incidence on a rectangular narrow slot of
dimensions L = 10λ, W = λ/10, with its longer side oriented in the x direction. Let the
tangential component of the incident magnetic field have only the x-direction (Fig. 4.11).

x

y

z

Ei

Hi

k
θi

−L
2

L
2

Figure 4.11: TE case of a planewave incidence on a narrow rectangular aperture.

In Fig. 4.12, Fig. 4.13, and Fig. 4.14 the current distribution and radiation pattern of a long
aperture when illuminated with a plane wave impinging from the lower half space with incident
angles θi = 15◦, θi = 45◦, and θi = 75◦, respectively, are shown. As it can be seen from the
radiation patterns, the radiated field is maximum in the direction from which incident plane
wave impinges to the aperture. Radiation patterns are compared to the radiation patterns
obtained assuming that the electric field in the aperture follows the incident electric field, that
is, M = ẑ ×Ei. This last assumption is the equivalent of the Physical Optics (PO) model for
scattering from apertures. Since it assumes an unperturbated traveling wave in the aperture,
unaffected by edge effects, it is frequently called the “traveling wave approach”.
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Figure 4.12: θi = 15◦.
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4.3 Thick Slot Integral Equations

The procedure leading to the coupled integral equations which solve the problem of a thick
slot is well known [19, 21, 22, 30]. We will briefly recall it here for the sake of completeness and
for introducing the notation used throughout this chapter. Consider the generic problem of
Fig. 4.15(a), in which two arbitrary inhomogeneous regions ©1 and ©2 are originally separated
by a thick conducting wall. The region ©1 also includes a set of impressed currents Ji, Mi

(sources). A portion of the screen is suppressed, leaving a 3D-hole, which defines a new region
©C , connecting ©1 and ©2 [Fig. 4.15(a)]. As stated in the introduction, in most problems of
practical interest the conducting screen is limited by two parallel surfaces and is locally flat.
Also, the region ©C is usually a cylindrical volume with arbitrary but constant cross-section
in the xy-plane and with its axis parallel to the screen’s normal coordinate z. Nevertheless,
the theory which follows is also formally valid for the more general geometry of Fig. 4.1.
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Figure 4.15: Two arbitrary regions connected through a slot on a conducting screen of finite (a) and
zero (b) thickness.
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Following the standard procedure, we replace the two openings of the thick aperture by
zero-thickness conducting surfaces. The two sides of the surface separating regions ©1 and ©C
will be denoted S1 and SC1 , while the two sides of the surface separating regions ©C and ©2
will be denoted SC2 and S2. Now, according to the equivalence theorem, we define unknown
equivalent magnetic surface currents in the following way [Fig. 4.15(a)]

M1 on S1; −M1 on SC1 ; M2 on SC2 ; −M2 on S2. (4.41)

Since surface magnetic currents are cross products of unit normal vectors and electric fields,
the continuity of the tangential electric field is automatically fulfilled in the interfaces between
our three regions. The introduction of the conducting surfaces allows the consideration of three
formally independent problems, one for each region, that are indirectly coupled through the
equivalent magnetic currents. In particular the region ©C becomes a cavity fully bounded by
conducting walls. We use now the well known concept of “short-circuited excitation fields”
Eexc, Hexc [9], defined as the fields created by the impressed sources in the region where
they exist (here ©1 ) but with the aperture opening covered by the conducting surface. With
the introduction of the scattered fields H1, H2, HC existing in each region, the boundary
conditions imposing the continuity of the tangential components of the total magnetic field
across the two interfaces are written as

Hexc + H1|on S1
= HC|on SC1

H2|on S2
= HC|on SC2

(4.42)

where, to keep the notation simple, we have avoided to show the cross product with the
normal unit vector ẑ, but it is understood from now on that we only consider the tangential
x, y components of the fields.

The transposition of these boundary conditions into integral equations should be straight-
forward. Invoking linearity and superposition, we can write the scattered fields due to any
induced or equivalent source as a convolution of the source with the pertinent dyadic Green’s
functions over the source’s domain of existence S. For instance, the magnetic field of a mag-
netic current is

Hs(r ) =

∫

S

↔

GHM(r|r′) · M(r′) dS′ =
↔

GHM ⊗ M, (4.43)

where as before ⊗ represents the convolution integral. To develop the first boundary condition
in (4.42), we remark that the scattered magnetic field in the region ©1 is that created by
M1 onS1, while in region ©C the fields are due to −M1 on SC1 and to M2 on SC2 . When we
consider the fields at the interface, the three above mentioned currents act through convolution
with, respectively, the three Green’s functions

↔

G1
HM(S1|S1),

↔

GC
HM(SC1 |SC1) and

↔

GC
HM(SC1 |SC2)

that we abridge as, respectively,
↔

G11,
↔

GC1C1 and
↔

GC1C2 . These Green’s functions are also
“short-circuited”, i.e. they are the Green’s functions associated to the respective regions when
they are isolated (decoupled) from each other by conducting zero thickness walls placed in
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the thick aperture surfaces.

Applying an identical reasoning to the second boundary condition, we can now translate
directly the set (4.42) into the following system of two coupled integral equations

Hexc +
↔

G11 ⊗ M1 =
↔

GC1C1 ⊗ (−M1) +
↔

GC1C2 ⊗ M2,
↔

G22 ⊗ (−M2) =
↔

GC2C1 ⊗ (−M1) +
↔

GC2C2 ⊗ M2. (4.44)

The system of equations (4.44) for the unknowns M1 and M2 fully defines the thick slot prob-
lem. Although in theory they can be used for the general problem of Fig. 4.1, the calculation
of Green’s functions would be too much involved. Hence, we will restrict from now on our
analysis to the simpler geometries of the kind illustrated in Fig. 4.15(a), leaving the general
problem to numerically intensive techniques like finite elements or finite differences.

4.4 Cavity Green’s Functions and the Zero Thickness Slot

If we start from the very beginning considering a zero thickness slot, the cavity region ©C
shrinks to a null volume and we only need to consider two regions ©1 and ©2 separated by an
interface in whose sides S1 and S2 we define equivalent surface magnetic currents M and −M
[Fig. 4.15(b)]. The single integral equation is now [see the equation (4.21) on page 84]

Hexc +
↔

G11 ⊗ M =
↔

G22 ⊗ (−M). (4.45)

Therefore if we solve the system of equations (4.44) associated to the thick slot problem
in the limiting case of a vanishing slot thickness t → 0, we should end up with the result
M1 = M2 = M, which is the solution of the integral equation (4.45). Unfortunately, this is
not the case in practice, as the cavity Green’s functions show a divergent behavior when the
cavity thickness vanishes. This fact deserves further consideration and will be investigated
now.

The four cavity Green’s functions GCiCj
correspond to the four interactions shown in

Fig. 4.16(a). Electromagnetic reciprocity ensures that we must have

↔

GC1C2 =
↔

GC2C1 =
↔

Gm, (4.46)

where the subscript “m” reminds us that this Green’s functions correspond to a “mutual”
interaction between the two parallel surfaces bounding the slot and hence the cavity. With this
simplified notation, the set of coupled integral equations (4.44) can be cast into a convenient
matricial form [↔

G11 +
↔

GC1C1 −
↔

Gm

−
↔

Gm

↔

G22 +
↔

GC2C2

]
⊗
[
M1

M2

]
=

[
−Hexc

0

]
, (4.47)

where electromagnetic reciprocity ensures the symmetry of the Green’s functions matrix.
A further simplification can be used if the interior of the cavity is homogeneous or it is
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Figure 4.16: (a) The four cavity Green’s functions, (b) a generic situation, (c) its solution by images.

symmetrically filled with dielectric media, because then we would have by symmetry

↔

GC1C1 =
↔

GC2C2 =
↔

Gs, (4.48)

where the subscript “s” reminds us that this Green’s functions correspond to a “self” inter-
action of one of the surfaces bounding the slot and hence the cavity with itself.

In all cases, the four cavity Green’s functions GCiCj
correspond all to particular cases of

the situation depicted in Fig. 4.16(b). Formally, we can solve this problem by transforming
the cavity into an infinite waveguide. This is achieved by taking images of the source with
respect to both the lower and upper cavity walls as in Fig. 4.16(c). But in this situation, it is
well known that all the images will keep the sign of the original magnetic source. Therefore,
all the GCiCj

Green’s functions (which are of the HM-type) will diverge in the limiting case,
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as all the images coalesce into a single source of infinite intensity.

This heuristic conclusion will be confirmed later on by a rigorous analytic development in a
more specific geometry. At this time, let us simply point out the evident consequence: in its
current formulation (4.47), the thick aperture problem cannot be solved numerically in the
limiting case of a zero thickness slot, since all the elements in the Green’s function matrix
would diverge. Indeed, numerical difficulties should be expected when trying to solve (4.47)
for small values of the thickness t, and alternate forms must be investigated to provide a
smooth transition to the zero-thickness case.

4.5 An Algebraic Interlude

To throw some extra light on the problems revealed in the previous section, let us consider
the algebraic counterpart of the integral equation system (4.47), namely the linear system

[
g1 + c11 −c12

−c21 g2 + c22

][
x1

x2

]
=

[
h

0

]
, (4.49)

where the coefficients cij play the role of the potentially diverging cavity Green’s functions
and c12 = c21. The formal solution of this system is

x2 =
c21

(c11c22 − c12c21) + c22g1 + c11g2 + g1g2
h,

x1 =
g2 + c22

c21
x2. (4.50)

Now, we can easily see that if under a certain condition (t → 0) all the cij coefficients
diverge but in such a way that the following conditions are satisfied

lim
t→0

(c11c22 − c12c21) = 0; lim
t→0

c21

c11
= lim

t→0

c21

c22
= 1, (4.51)

then we obtain the limit solution

x2 = x1 =
1

g1 + g2
h, (4.52)

which is indeed the solution of the algebraic equation equivalent to the zero-thickness slot
integral equation (4.45). The conclusion is that the thick slot equations (4.47) contains as a
particular case the zero-thickness slot solution, if the cavity Green’s functions fulfill conditions
equivalent to (4.51). These conditions will be checked in a coming section. But even with these
conditions satisfied, the presence of the convolution operator prevents the use of the equation
(4.47) in situations approaching the zero thickness case and an improved formulation of the
thick slot problem must be sought after. To get some hints about what must be done, let
us progress a further step in the simplification of our problem and move from algebra to
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arithmetic by introducing a set of numerical values for the coefficients, namely

c11 = c22 = 1000, c12 = c21 = 998,

g1 = 2, g2 = 4, h = 10, (4.53)

which reproduce quite faithfully the numerical conditions arising in a typical thin-slot situa-
tion. The corresponding linear system is

1002x1 − 998x2 = 10,

−998x1 + 1004x2 = 0. (4.54)

A close look to this system with engineer eyes reveals two very similar equations (the infor-
mation about the field values in both sides of the slot). Therefore, the logical thought is to
replace the original equations by their sum and difference

4x1 + 6x2 = 10,

2000x1 − 2002x2 = 10. (4.55)

We also have two close unknowns (the values of the magnetic currents in both sides of the slot).
So, the meaningful quantities are their average and their deviation from average. Therefore,
we replace also the unknowns by their half-sum and half-difference

x1 = xΣ + x∆, x2 = xΣ − x∆, (4.56)

with the result

10xΣ − 2x∆ = 10,

−2xΣ + 4002x∆ = 10. (4.57)

We have here finally uncovered the clue for a successful attack to problem. The combination
−2x∆ in the first equation of (4.57) includes both a small coefficient and a small unknown and
hence can be safely neglected. Therefore by starting with x∆ = 0 , the first equation provides
directly the initial guess for the average value xΣ = 1. This is already an excellent estimation
of the true solutions of the original system (4.54), namely x1 = 1.0036, x2 = 0.9976. If we need
a better estimation providing different values for the unknowns, we just replace xΣ = 1 in the
second equation and obtain directly x∆ = 0.0030, and therefore x1 = 1.0030 and x2 = 0.9970.
If still better accuracy is needed, the cyclic iteration can be pursued indefinitely. Now, coming
back to formal algebra, let us symbolize our linear system (4.54) by the matrix equation

Ax = b. (4.58)

It is easy to show that replacing the original individual equations by their sum and difference,
is equivalent to pre-multiplication by a matrix R and the linear system (4.55) corresponds to
the matrix equation

RAx = Rb with R =

[
1 1
1 −1

]
. (4.59)
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By the same token, replacing the original unknowns by their half-sum and half-difference can
be also related to this R matrix since

x =

[
x1

x2

]
=

[
1 1
1 −1

] [
xΣ

x∆

]
= Rx∗ (4.60)

and therefore the final transformed problem (4.57), easily amenable to an iterative solution,
is formally given by

RARx∗ = Rb. (4.61)

But R is just a scaled version of the unitary 45 degrees rotation matrix

R =
√

2

[
cos(π/4) sin(π/4)
sin(π/4) − cos(π/4)

]
. (4.62)

Hence, we conclude that the potentially useful transformation of our linear system is just
achieved by pre- and post-multiplying by a 45◦ rotation matrix.

4.6 Thick Slot Integral Equations and Rotation Matrices

Let’s apply to our thick slot matrix integral equation (4.47) the pre- and post-multiplications
by the rotation matrix R as indicated in (4.61). The final result is given in (4.63)

[
−Hexc

−Hexc

]
=

[↔

G11 +
↔

G22 + (
↔

GC1C1
+

↔

GC2C2
− 2

↔

Gm)
↔

G11 −
↔

G22

↔

G11 −
↔

G22 + (
↔

GC1C1
−

↔

GC2C2
)

↔

G11 +
↔

G22 + (
↔

GC1C1
+

↔

GC2C2
+ 2

↔

Gm)

]
⊗
[
MΣ

M∆

]

(4.63)

where we have introduced the “average” and “deviation” values of the magnetic currents in
the slot

MΣ =
M1 + M2

2
, M∆ =

M1 − M2

2
. (4.64)

The matrix equation (4.63) looks much more complicated than the original one (4.47) and it
could be feared that we have worsened our chances. But, as in the numerical example of the
previous section, the first line in the system (4.63) is the clue, since none of its elements will
diverge when the slot thickness vanishes, if conditions (4.51) are fulfilled. We can therefore
start with the assumption M∆ = 0 and solve the first equation in the system (4.63) to obtain
a first estimation of MΣ. It is remarkable indeed that if media ©1 and ©2 in both sides of the
slot are identical (for instance, free space), then we have

↔

G11 −
↔

G22 = 0 and then the first
equation in (4.63) becomes uncoupled, directly providing the exact value of MΣ.

To clarify these ideas, let’s fully develop the proposed procedure in the case of a slot filled
by an homogeneous or symmetrically disposed dielectric medium, and therefore satisfying the
symmetry condition (4.48). In this case, the notation can be greatly simplified by introducing
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the combinations
↔

GΣ =
↔

Gs +
↔

Gm,
↔

G∆ =
↔

Gs −
↔

Gm (4.65)

that we can call the “sigma” and “delta” cavity Green’s functions (sigma = self + mutual
and delta = self − mutual). For a vanishing thickness slot, the sigma Green’s function will
diverge but the delta one will vanish. With this notation, it is a straightforward matter to
show that the matrix equation (4.63) is equivalent to

[↔

G11 +
↔

G22 + 2
↔

G∆

↔

G11 −
↔

G22
↔

G22 +
↔

G∆ −
↔

G22 −
↔

GΣ

]
⊗
[
MΣ

M∆

]
=

[
−Hexc

0

]
. (4.66)

This is a great improvement with respect to the original matrix equation (4.47)! When the

slot thickness vanishes, the only divergent term is
↔

GΣ. Therefore, the second line in (4.66)
automatically gives the result M∆ = 0, and the first line reduces to the zero-thickness slot
equation.

Hence, we can set up the following procedure for thin slots:

(i) assume M∆ = 0

(ii) solve a modified zero-thickness slot equation to obtain a first estimate of MΣ

(
↔

G11 +
↔

G22 + 2
↔

G∆) ⊗ MΣ = −Hexc (4.67)

(iii) estimate M∆ by solving the equation

(
↔

G22 +
↔

GΣ) ⊗ M∆ = (
↔

G22 +
↔

G∆) ⊗ MΣ

(iv) improve, if necessary, the estimation of MΣ by solving

(
↔

G11 +
↔

G22 + 2
↔

G∆) ⊗ MΣ = −Hexc − (
↔

G11 −
↔

G22) ⊗ M∆

(v) go to step (iii)

It is worth mentioning that all the above steps are single uncoupled integral equations. In
most cases, stopping after the step (ii) will be enough to predict the first order deviation
from the zero-thickness case introduced by a reasonable slot thickness. In fact, step (ii) is
identical to the zero-thickness slot integral equation (4.45), but with the Green’s function

kernel corrected by an additive term 2
↔

G∆. Therefore, if the “delta” cavity Green’s functions
could be approximated by an easily computable expression, the step (ii) would provide first
corrections for thick slots with no increase in the computational complexity. The next section
proposes some reasonable expressions for the “delta” Green’s function.
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4.7 Approximations for Delta and Sigma Green’s Functions

First of all we move from fields to potentials and introduce the convenient formalism of the
“Mixed Potential Integral Equation” [28, 31]. Till now, all the Green’s functions referred in
previous section are of the HM-type (magnetic field due to a magnetic current). Therefore
any generic convolution in the previous sections can be expanded in terms of potentials

H =
↔

G ⊗ M = −jωF − ∇W = −jω
↔

GF ⊗ M − ∇(GW ⊗ ρm), (4.68)

where F and W are the vector and scalar potentials associated with transverse magnetic
currents M and ρm is the equivalent magnetic charge.

As it is well known, in free space we have for the mixed potential Green’s functions the
values

↔

GF =
ε0

4π

↔

IΨ, GW =
1

4πµ0
Ψ, (4.69)

with the free space scalar Green’s function Ψ given by

Ψ = Ψ0 =
e−jk0|r−r′|

|r − r′ | . (4.70)

The question is how to compute these quantities in the cavity geometry. The problem is not
trivial and will depend obviously on the cavity’s shape and on the medium filling it. In general,
for arbitrary shaped slots, the answer can be obtained only by intensive numerical procedures.
But we may try to introduce a powerful approximation, which should lead to reasonable results
if the slot’s transverse dimensions are not smaller than the slot thickness: we just neglect the
lateral conducting walls of the cavity. Although the validity of this assumption can only be
judged a posteriori, its appeal is enormous. First, the cavity delta and sigma Green’s functions
will have “universal” expressions independent of the slot/cavity shape. And secondly, these
expressions will be reasonably simple.

Fig. 4.17 shows the parallel plate waveguide configuration which remains when we neglect
the lateral walls. In this case, relations (4.69) are still valid, but the scalar Green’s function
Ψ is no longer the free-space one (4.70). Its calculation is easily performed in the spectral
domain [28]. For a source located on the lower wall (z′ = 0) we get the result

Ψ̃ =
2

u

[
e−uz +

e−ut cosh(uz)

sinh(ut)

]
, where u2 = k2

ρ − k2
0. (4.71)

A partial check of the above result is provided by the fact that if we let t go to infinity (the
parallel plate waveguide reduces to its lower plate), we obtain Ψ̃ = (2/u)exp(−uz), which is
the expected result, twice the free space value. Keeping now t finite and particularizing to the
values z = 0 and z = t, we get the potential versions of our cavity “self” and “mutual” Green’s
functions (4.46), (4.48) and making sums and differences with them we get the potential
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Figure 4.17: Approximating arbitrarily shaped cylindrical cavities by a parallel plate waveguide.

versions of our cavity “sigma” and “delta” Green’s functions (4.65):

Ψ̃Σ =
2

u tanh(ut
2 )

, Ψ̃∆ =
2

u
tanh

(
ut

2

)
. (4.72)

We have here a clear confirmation of our theoretical predictions. While the “self”, “mutual”
and “sigma” cavity Green’s functions diverge for a vanishing slot thickness t → 0, the “delta”
function goes to zero. Moreover, it is straightforward to show that these Green’s functions
fulfill the conditions equivalent to (4.51). Moving from the spectral domain to the space
domain, we can write the “delta” potential Green’s function as a Sommerfeld integral

Ψ∆ =

∞∫

0

J0(kρρ)
2

u
tanh

(
ut

2

)
kρ dkρ, (4.73)

where ρ is the radial source-observer distance. A series expansion of the hyperbolic tangent
in the above equation will result in a series expression for the delta Green’s function. The
amazing result is that the delta Green’s function can be expressed as an alternating-sign
infinite series identical to the scalar potential of an electric point charge when both source and
observer are in the mid-plane of the parallel plate waveguide. To obtain specific information
about the near field (quasistatic) behavior, we look at the asymptotical spectral behavior for
kρ → ∞. Since in this case the hyperbolic tangent becomes unity, the delta Green’s function
corresponds in the near field to twice the free space Green’s function Ψ0. This behavior is
confirmed by the numerical evaluation of the Sommerfeld integral (4.73) using well tested
algorithms [32, 33].

Fig. 4.18 shows the normalized potential delta Green’s function Ψ∆/(2k0) for three slot
thicknesses of 0.001, 0.01 and 0.1 free space wavelengths. It is evident at a glance how in
the near field Ψ∆ behaves as 2Ψ∆, since the diagonal line in Fig. 4.18 is Ψ0/k0 = 1/(k0ρ).
As a rule of thumb, we could infer from Fig. 4.18 that the delta Green’s functions remain
close to twice the free space Green’s function while the radial distance is smaller than the slot
thickness (say ρ < t/(2π)). But for greater radial distances, the values of the delta Green’s
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function decay very fast and it should be possible to neglect it.
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Figure 4.18: Modulus of the normalized delta Green’s function for several slot thicknesses: t =
λ/1000 (dashed line), t = λ/100 (dotted line) and t = λ/10 (dash-dotted line). The
straight solid line is the free space Green’s function.

To put these results in perspective, let’s consider a slot in a thick conducting screen sepa-
rating two semi-infinite free spaces. The equation to be solved is (4.67) or rather its mixed
potential MPIE form. Hence, applying (4.68) to (4.67) we will get for instance a combination
GW11 +GW22 +2GW∆

for the scalar potential. We can easily demonstrate using image theory
that the potential Green’s functions GW11 and GW22 , associated with the seminfinite media,
are both given by twice the free space Green’s function Ψ0. Therefore, GW11 + GW22 is just
4Ψ0. But the correction term 2GW∆

also behaves in the near field as 4Ψ0 and therefore the
total kernel is expected to have a quasistatic behavior of type 8Ψ0. It could be objected
that an additive “correction” identical to the corrected term shouldn’t be called a correc-
tion, being much more than this. But this is only the limiting near-field situation, when the
source-observer distance is smaller than the slot thickness. For larger radial distances, the
delta Green’s function decays very fast (Fig. 4.18) and so does its “correcting” effect.

4.8 Preliminary Results

4.8.1 Scattering from a Square Slot

To check the validity of our assumptions and of our proposed equations, a very simple nu-
merical experiment has been performed on a rather thick square slot (transverse dimensions
λ0 × λ0 and thickness 0.1λ0) (Fig. 4.19). The slot has been made in a screen separating two
semiinfinite free space regions and it is excited with a normally incident plane wave having
its electric field along the y–coordinate. The main and more interesting component of the
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magnetic current is then along x. We have considered this component along the two medians
of the square slot, a “longitudinal” one x = λ0/2 and the transverse one y = λ0/2 (Fig. 4.19).
The problem has been first solved with a rigorous treatment, where the set of equations (4.44)
is used, together with exact expressions for the Green’s functions in the cavity. This “full wave
cavity” model gives then the most accurate expressions for the currents M1 and M2 in both
sides of the slot, represented by circles and squares in Figs. 4.20–4.21. They show the expected
behavior from a λ0 × λ0 slot. But it must be pointed out that the full wave cavity approach
is a time consuming method, mainly due to the bad convergence of cavity Green’s functions
and their lack of translational symmetry. And the situation will be much worse, not to say
untractable, for an arbitrarily shaped slot. Even disregarding the cavity problem, we should
expect an important slowdown with respect to the zero thickness case, since we have twice
more unknowns.
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Figure 4.19: Thick λ0×λ0 slot of thickness λ0/10 illuminated by normally incident plane wave having
its electric field along the y–coordinate.

The snag with the zero-thickness formulation (4.45) is that it gives unsatisfactory results,
since we get a unique current M (stars in Figs. 4.20–4.21) that only matches the true values
on one side of the aperture (in this case, the excitation side). Using our corrected equation
(4.67), we obtain a first estimation for MΣ, which happens to be an almost perfect average
value (diamonds in Figs. 4.20 and 4.21).

4.8.2 Scattering from a Rectangular Slit

In order to see the influence on the radiation pattern, the scattering from a rectangular slit
of length 10λ0 and width λ0/10, oriented with its longer side in the x-direction, has been
simulated. Radiation patterns in the E-plane (φ = 0◦) obtained using the presented and the
full-wave cavity approaches are shown in Fig. 4.22. Two different incidence angles θi = 15◦

and θi = 45◦ of a plane wave with magnetic field polarized in the x-direction impinging from
below were simulated. As expected, the difference between the two approaches in case of
λ0/100 thickness can hardly be seen. In the case of λ0/10 thickness, the difference, although
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Figure 4.20: Normalized x–component of magnetic current along the line y = λ0/2 over a square
λ0×λ0 aperture of thickness λ0/10. Normal incidence plane wave illumination. ◦ – M1,
� – M2, � – MΣ, ∗ – zero-thickness slot. Solid line – real part, dashed line – imaginary
part.
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Figure 4.21: Normalized x–component of magnetic current along the line x = λ0/2 over a square
λ0×λ0 aperture of thickness λ0/10. Normal incidence plane wave illumination. ◦ – M1,
� – M2, � – MΣ, ∗ – zero-thickness slot. Solid line – real part, dashed line – imaginary
part.
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not excessive, is noticeable in the side-lobe levels. The approximate approach already provides
a much better result than the zero-thickness approach (dash-dotted lines) and with no increase
in computational complexity.
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Figure 4.22: Radiation patterns produced by currents induced by a plane wave impinging on the
aperture from below for different thicknesses, computed using presented approach (solid
lines) and full-wave cavity approach (dashed lines) and for the case of the zero-thickness
(dash-dotted lines). (a) t = λ0/100 and incidence angle θi = 15◦. (b) t = λ0/10 and
incidence angle θi = 45◦.
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4.9 Conclusion

In this chapter, we have presented a rigorous integral equation formulation of the thick aper-
ture problem providing a smooth transition to the zero-thickness case, inspired by an analogy
with an algebraic problem. The full usefulness of the new formulation is only evident if the
cavity Green’s functions can be easily calculated or at least efficiently approximated. In this
chapter, we proposed to use as a starting point the zero-thickness case. Consequently, a
logical approximation is to neglect the internal lateral walls of the slot and to assume that
the equivalent cavity is a parallel plate waveguide. The final result is a new integral equa-
tion whose unknown is the average value of the magnetic currents in both sides of the thick
slot. And this new equation has exactly the same degree of complexity as the zero thickness
slot equation, since the only modification is the addition of a correcting “delta” term for the
Green’s functions, that can be analytically approximated and that disappears naturally in the
zero-thickness limiting case.

The formulation presented is this chapter is very flexible and combines naturally well with
the integral equation based models currently used for cavity backed antennas, thick irises in
waveguide filters, slot-fed patches and thick coplanar lines. These configurations and many re-
lated ones are of paramount relevance in innovative and emerging applications, where conduct-
ing wall thickness cannot be any more neglected, because of the technology (self-supporting
metallic plates rather than printed sheets), the frequency (mm- and sub mm-waves) or both.
In the next chapter we will present an intensive numerical exploration of some of these ge-
ometries, including predictions of very sensitive near-field quantities like multiport scattering
parameters, that provides a more detailed appraisal of the scope of this theory and of its
accuracy.
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5 Line-Fed Aperture Antennas in Thick

Conducting Screens†

5.1 Introduction

A number of radiating structures including apertures is traditionally analyzed considering the
aperture in a zero-thickness screen. These structures include slot-fed patch antennas, cavity
backed antennas with feeding irises, waveguide slot antennas and the simple slot antenna
fed by a printed line. However, the use of new technologies (for instance, self-standing bulk
ground planes instead of printed ones) and the drive for higher frequencies are calling for the
inclusion of finite thickness effects in the currently existing models.

Harrington and Mautz [1] were the first to address this problem employing a transmission
line model. Other researchers have recently followed this approach [2, 3] to compute aperture
coupled microstrip antennas. A similar approach, based on reciprocity has been reported
in [4]. Another way to tackle the problem is to treat the aperture volume as a cavity or
a waveguide. In [5] and [6] the Integral Equation (IE) formulation is combined with the
Finite Element Method (FEM) for the cavity. These methods are very versatile, and able to
model arbitrary cross sections filled with inhomogeneous dielectrics. However, both require a
separate FEM solution to be integrated into the IE framework. The MPIE formulation for the
outer regions combined with an IE field formulation for the cavity (aperture; inner region),
using a modal expansion of the Green’s function, is outlined in [7]. This method has the
advantage of a consistent IE approach, which produces well conditioned matrices and leads to
highly accurate results. Also several layers of dielectrics, even with embedded metallizations
can be treated within the apertures. A drawback of the method is the difficulty in computing
the required modal functions, since computations in cross sections other than rectangular and
circular ones becomes a difficult task. Moreover, for any aperture geometry, the summation
of the modal series calls for specially tailored acceleration schemes [8, 9]. The line-fed thick
aperture antennas have been one of the most important challenges for our Laboratory in the
last years. Therefore, two complementary ways of attacking the problem were planned and
successfully developed, each one leading to a Ph.D. thesis. In the approach developed by
Llorens del Ŕıo [10, 11], the thick slot is modeled by a parallel plate waveguide with vertical
electric currents added to account for the metallic walls. The method is capable of modeling
apertures of arbitrary thicknesses and shapes filled with arbitrary number of dielectric layers.
However, it introduces a very complex IE since boundary conditions for both the E and the
H field must be enforced inside the slot and therefore all four dyadic Green’s functions (EJ,
EM, HJ, HM) must be used.

†I. Stevanović and J. R. Mosig (2004), IEEE Trans. Antennas Propagat., Vol. 52(11):2896-2903.
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The above mentioned methods can deal with very general aperture problems. But they lack
the simplicity and internal coherence of the straightforward integral equation model that can
be used in the case of zero-thickness apertures. In Chapter 4, a new approximate approach
for slots on thick screens has been presented [12]. The slot thickness appears only as a
modification in the Green’s functions of the problem, but otherwise the slot is treated as a
two-dimensional object.

In this chapter we fully develop this conjuncture and show that the aperture model can
be, with minor modifications, fully incorporated into the traditional integral equations for
slots and patch antennas embedded in stratified media. Indeed, this brings the study of slot
thickness effects under the reach of traditional planar integral equation codes.

After introducing the new complete set of integral equations for a printed-line fed slot
antenna, which involves both electric and magnetic currents, this chapter explores and un-
threads some computational relevant aspects of the model presented in the previous chapter
and provides further numerical verifications. Finally, the new complete integral equation
model is validated by comparing its numerical predictions with measurements for a set of slot
antennas with different shapes and thicknesses.

5.2 Formulation of Integral Equations

Consider a structure composed of a planar printed line or patch and an aperture of finite
thickness t = z2 − z1 embedded into stratified dielectric layers as shown in Fig. 5.1. Using
the equivalence principle, the interfaces of the aperture are short-circuited, i.e., continuous
perfect electric screens are introduced at z = z1 and z = z2 and the continuity of the tangential
components of the electric fields on aperture interfaces is ensured by introducing the equivalent
surface magnetic currents M1,2 [13]. This way, the original problem can be decoupled into
three equivalent ones: lower region (z < z1), closed aperture or cavity region (z1 ≤ z < z2),
and upper region (z ≥ z2). Assuming an incident electromagnetic field (Ei, Hi) present in
the lower region z < z1, the boundary conditions at the patch and the lower and the upper
interface of the aperture become

ẑ × E(r0) = −ẑ × Eexc, r0 ∈ S0, (5.1a)

ẑ × [H+(r1) − H−(r1)] = ẑ × Hexc, r1 ∈ S1, (5.1b)

ẑ × [H+(r2) − H−(r2)] = 0, r2 ∈ S2, (5.1c)

where ri, i = 0, 1, 2 is the position vector with respect to the global coordinate system, H±

and E are the scattered fields produced by magnetic (M1,2) and electric (J) currents, and the
superscripts (+) and (−) refer to, respectively, the regions above and below the corresponding
z coordinate. Hexc is the sum of the incident magnetic field Hi(r1) and its image (so called
short-circuit magnetic field [14]), and Eexc = Ei(r0).

Following the procedure outlined in Chapter 4, all the scattered fields are expressed as
convolutions between the corresponding sources and the pertinent stratified media Green’s
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Figure 5.1: Aperture in a thick conducting shield embedded in a layered structure.

functions. Further, we introduce another couple of magnetic unknowns, the half-sum MΣ =
(M1 + M2)/2 and the half-difference M∆ = (M1 −M2)/2. Moreover, in the closed aperture
region, taking into account the symmetry and reciprocity [15], we only need two different

Green’s functions of the magnetic-magnetic (HM) type, namely,
↔

G
(c)=
HM (the cavity Green’s

function with source and observer at the same horizontal interface) and
↔

G
(c)×
HM (the cavity

Green’s function with source and observer at different horizontal interfaces). Then, according
to [12], we define the sum and the difference cavity Green’s functions as

↔

G
(c)Σ
HM =

↔

G
(c)=
HM +

↔

G
(c)×
HM , (5.2a)

↔

G
(c)∆
HM =

↔

G
(c)=
HM −

↔

G
(c)×
HM . (5.2b)

Introducing all these definitions in the boundary condition (5.1), we obtain, after some
straightforward algebraic manipulations, the following set of coupled integral equations
(Fig. 5.1)

↔

GEJ ⊗ J +
↔

GEM ⊗ MΣ +
↔

GEM ⊗ M∆ = −Eexc
t , (5.3a)

(
↔

G
(1)
HM +

↔

G
(c)∆
HM ) ⊗ MΣ −

↔

GHJ ⊗ J = (
↔

G
(2)
HM +

↔

G
(c)Σ
HM ) ⊗ M∆, (5.3b)

(
↔

G
(1)
HM +

↔

G
(2)
HM + 2

↔

G
(c)∆
HM ) ⊗ MΣ + (

↔

G
(1)
HM −

↔

G
(2)
HM) ⊗ M∆ −

↔

GHJ ⊗ J = −Hexc
t , (5.3c)

where ⊗ is, like before, a shorthand notation for the convolution integral, Eexc
t = ẑ × Eexc,

and Hexc
t = ẑ×Hexc.

↔

GEJ is the electric field Green’s function with both observer and electric

source situated at z = z0,
↔

GEM is the electric field Green’s function with observer at z = z0

and magnetic source at z = z1, and
↔

GHJ is the magnetic field Green’s function with observer
at z = z1 and electric source situated at z = z0. These three Green’s functions should satisfy
the boundary conditions for fields on the perfect electric screen situated in the plane z = z1.
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In addition to the cavity Green’s function, two more Green’s function of HM type are needed
↔

G
(1)
HM – Green’s function of the stratified lower half-space with both source and observer at

z = z1 and the boundary conditions for magnetic field satisfied on the perfect electric screen

at z = z1, and
↔

G
(2)
HM – Green’s function of the stratified upper half-space with both source

and observer at z = z2 and the boundary conditions for magnetic field satisfied on the perfect
electric screen at z = z2.

In apertures of practical thicknesses, there exists a rather strong correlation between M1

and M2 and therefore it is reasonable to assume that the difference of the two currents is zero
M∆ ≈ 0. This approximation, which is exact in the limiting zero-thickness case, transforms
the system (5.3) into

↔

GEJ ⊗ J +
↔

GEM ⊗ MΣ = −Eexc
t , (5.4a)

(
↔

G
(1)
HM +

↔

G
(2)
HM + 2

↔

G
(c)∆
HM ) ⊗ MΣ −

↔

GHJ ⊗ J = −Hexc
t . (5.4b)

The set of equations (5.4) clearly shows that the strategy introduced in Chapter 4 can be
generalized to more complex structures involving both, electric and magnetic currents. Indeed,
equations (5.4) are identical to the zero-thickness case save for the use of MΣ instead of a

unique current M and the correcting term 2
↔

G
(c)∆
HM . In principle, the remaining equation (5.3b)

could be used afterwards to find a non-zero estimation of M∆, and eventually start an iterative
process.

5.3 Calculation of the Cavity Green’s Functions

By introducing the electric and magnetic surface charge densities, ρe = − 1
jω∇ · J and

ρm = − 1
jω∇ · M, we can always set up the relation between the field and potential Green’s

functions [16]
↔

GEJ ⊗ J = −jω
↔

GA ⊗ J − ∇(GV ⊗ ρe), (5.5a)

↔

GHM ⊗ M = −jω
↔

GF ⊗ M − ∇(GW ⊗ ρm), (5.5b)

where
↔

GA and GV , and
↔

GF and GW are the dyadic and scalar potential Green’s function for
the electric and magnetic sources, respectively. With the MPIE formulation, the correction
term will consist of the self and mutual interactions of the potential cavity Green’s functions

↔

G
(c)∆
F =

↔

G
(c)=
F −

↔

G
(c)×
F , (5.6a)

G
(c)∆
W = G

(c)=
W − G

(c)×
W . (5.6b)

The cavity Green’s functions can be expanded in terms of the eigenfunctions that depend on
the shape of the cavity cross-section. However, if the lateral dimensions of the cavity are big
enough compared to its length (large aperture), the guiding properties of the corresponding
shallow cavity will be weak. And with the problem discretized into a number of subsectional
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basis functions, the appropriate currents in the center of the aperture will be only slightly
affected by the cavity borders. Therefore, the problem can be treated as a parallel plate
problem. The approximation will not be very accurate for the current coefficients belonging
to the basis functions near the cavity borders. However, the form of the cavity is taken into
account by the lateral distribution of the basis functions. Approximating the rigorous cavity
formulation we avoid at the same time the summation of slowly convergent modal series [8, 9],
and, maybe even more advantageous, the evaluation of the modal eigenfunctions for cavities
with cross-sections of arbitrary shapes. It should be noted however that this approximation
will remain valid for all shapes of the aperture as long as the aperture thickness is sufficiently
small compared to its minimal lateral dimension.

For a parallel plate problem, the equivalent transmission line network given in Fig. 5.2 is
valid. The excitation with a voltage generator corresponds to a magnetic surface current on
the interface and yields the two currents

ITM/TE

1 =
1

2π

1

jZTM/TE
c tan kzt

, (5.7a)

ITM/TE

2 =
1

2π

1

jZTM/TE
c sin kzt

, (5.7b)

where ZTM/TE
c is the characteristic impedance of the respective mode, namely kz/(ωε) for the

TM mode and ωµ/kz for the TE mode, kz =
√

k2
0 − k2

ρ and t = z2 − z1 is the thickness of the

considered aperture.

Let us define
ITM/TE

∆ = ITM/TE

1 − ITM/TE

2 . (5.8)

t

t, ZTM/TE
c

M1

M2

I1

I2

1
2π

Figure 5.2: Equivalent TL network for a parallel plate problem.

The correction terms of the potential Green’s functions are then obtained applying the zero
order inverse Sommerfeld transformation [17]

G
(c)∆ xx
F = G

(c)∆ yy
F = S0

[
1

jω
ITM
∆

]
, (5.9a)
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G
(c)∆
W = S0

[
jω

k2
ρ

(ITE
∆ − ITM

∆ ))

]
. (5.9b)

The same approach remains valid for the multilayered media inside the aperture. In this case
the equivalent circuit will consist of a cascade of transmission lines with different characteristic
impedances corresponding to different layers in the aperture. It should be noted that both
currents ITM/TE

1,2 go to infinity when the thickness of the aperture t approaches zero. However,
their difference

ITM/TE

∆ =
j

ZTM/TE
c

tan
kzt

2

converges to zero when t → 0, ensuring this way a smooth transition to the zero thickness
case.

Consider an aperture in a thick conducting screen separating two semi-infinite free spaces.
Using the MPIE form, the Integral Equation will have a Green’s function kernel that consist
of

↔

GF =
↔

G
(1)
F +

↔

G
(2)
F + 2

↔

G
(c)∆
F

for the electric vector potential and

GW = G
(1)
W + G

(2)
W + 2G

(c)∆
W

for the magnetic scalar potential. Fig. 5.3 depicts the normalized electric vector potential
Green’s function kernel Ψ = Gxx

F = Gyy
F computed using the presented approach for different

aperture thicknesses, as a function of normalized distance.
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Figure 5.3: Influence of the correcting term on the potential Green’s function. Zero-thickness case
(solid line), t = λ/1000 (dashed line), t = λ/100 (dotted line), t = λ/10 (dash-dotted
line).



Section 5.4: Results for Thick Slot Configurations 119

5.4 Results for Thick Slot Configurations

Extensive numerical experiments have been carried out to assess the performance and limita-
tions of the presented method. In this section we present comparisons against results obtained
with a full-wave cavity approach and with measurements.

5.4.1 Currents for a Plane Wave Excitation

Let us consider a square aperture of dimensions 3λ/2 × 3λ/2 milled in a metallic plate of
finite thickness. The aperture is assumed to be located in air in the xy plane and to be
illuminated by a plane wave impinging with the incident angle θi = 0 from below having the
magnetic field polarized in the x–direction: Hi = x̂H0e

−jkz. In Fig. 5.4 the magnitudes of
magnetic currents over the aperture are shown for the case of λ/10 thickness computed using
the full-wave cavity approach [7] and the presented approach. As can be seen, the shape
of the magnetic currents on the top and bottom aperture interfaces is similar to that on of
the magnetic current obtained with the presented approach. The x-components of magnetic
currents over the lines y = 3λ/4 (middle line) and y = 3λ/20 (line close to the aperture
border) are given in Fig. 5.5. The real parts of currents are shown with solid lines and the
imaginary parts using dashed ones. MΣ computed using our proposed approach is shown with
diamonds, while M1 and M2, computed using the full-wave cavity approach, are represented
with circles and squares, respectively. The figure shows that both real and imaginary parts
are close to half the sum of the currents on the lower and the upper interface of the aperture
[Fig. 5.5(a)]. This relation is, however, deteriorated close to the aperture border [Fig. 5.5(b)].

In Fig. 5.6 the simulation time needed for solving the considered problem as a function of
the number of unknowns is shown for both the full-wave cavity approach (circles) and the
approximate approach (crosses). Using the approximate approach, we have discretized the
aperture in 20 × 20 cells which corresponds to N1 = 760 unknowns and the time needed
for solving the problem on a Pentium IV processor with 2.4 GHz and 512 MB of RAM was
t1 = 17.6 s. If we want the same discretization density, using the full-wave cavity approach,
we have to discretize both (upper and lower) aperture interfaces into 20×20 cells, which leads
to twice as much unknowns N2 = 2N1 = 1520 and the time needed for solving the problem
is t2 = 248 s. The gain in computation time of 14 times is more than advantageous and it
is due to, on the one hand, the adoption of the parallel plate Green’s function for the cavity
which accounts for the bulk of the computational savings (as it obviates the time consuming
computation of the cavity Green’s function). On the other hand, the number of unknowns is
twice smaller as we consider the aperture having only one interface.
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Figure 5.4: Normalized magnitude of the x-component of magnetic currents over a 3λ
2

× 3λ
2

aper-
ture of thickness λ/10 illuminated by a plane wave impinging from below and having
magnetic field polarized in the x-direction. (a) Lower aperture interface (full cavity ap-
proach). (b) Upper aperture interface (full cavity approach). (c) Average value using
this technique.
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Figure 5.5: Normalized magnetic currents over the square 3λ/2 × 3λ/2 aperture of λ/10 thick-
ness. � – MΣ, ◦ – M1, 2 – M2. Solid line – real part, dashed line – imaginary part.
(a) y = 3λ/4. (b) y = 3λ/20.

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

N

t
[s

]

Figure 5.6: Computational time versus number of unknowns for the presented approach (×) and the
full-wave cavity approach (◦) for a 3λ
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aperture of thickness λ/10.
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5.4.2 Comparison with a Rigorous Full Cavity Approach

To test the accuracy and validity of the proposed approximate model, we have compared it
with a rigorous full-wave cavity approach in the case of a square aperture electromagnetically
fed by a microstrip line in a two-layer configuration (Fig. 5.7). In this case the incident field
is modeled in a standard way using the delta-gap model and introducing half-rooftops along
the edge the port is connected to. Fig. 5.8 gives the reflection coefficients obtained for a slot
thickness of 0.5 mm (∼ 0.01λ at the resonant frequency). For the sake of completeness, the
results obtained by the standard zero thickness integral equation are also included (dashed
line). It can be seen that our model matches the full cavity model and hence predicts correctly
the deviation from the zero thickness. Figs. 5.9 and 5.10 present similar predictions when the
slot thickness is two and four times larger (1 mm and 2 mm), respectively. As it could be
expected, here the predictions of the presented model start to deviate from those ones more
rigorously obtained with the full cavity model, but the agreement is still reasonable.

x
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z

45.37

t

25

0.
58
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25

h1

h2εr2

εr1

Figure 5.7: Square thick aperture antenna. Dielectrics: h1 = 1.0 mm, εr1 = 1.0, h2 = 0.635 mm,
εr2 = 10.7, tan δ = 0.0024. All dimensions given in mm.
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Figure 5.8: Aperture thickness t = 0.5 mm. Presented approach (solid line), full-wave cavity ap-
proach (dash-dotted line), and zero thickness case (dashed line).
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Figure 5.9: Aperture thickness t = 1.0 mm. Presented approach (solid line), full-wave cavity ap-
proach (dash-dotted line), and zero thickness case (dashed line).
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Figure 5.10: Aperture thickness t = 2.0 mm. Presented approach (solid line), full-wave cavity ap-
proach (dash-dotted line), and zero thickness case (dashed line).
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5.4.3 Thick Rectangular Aperture Antenna: Comparison with Measurements

In order to check the results of the presented method against real-life measurements of input
impedances, a set of rectangular aperture antennas with different aperture thicknesses has
been realized in our Laboratory (Fig. 5.11). The metallic screens are made of aluminum
and the apertures are carefully manufactured by electric erosion, what guarantees very sharp
corners of the rectangular shape. The aluminum bodies are mounted on the metallization of
the substrate and they are tied together with plastic bolts. For the sake of reduced weight,
the aluminum bodies do not cover the whole metallization of the substrate. This set of
variable thickness apertures has been carefully measured with the purpose of creating an
accurate benchmark. The validity of all the numerical models developed in our laboratory
and elsewhere can thus be checked, and the accuracy and range of validity of each one can be
easily ascertained. These considerations also apply to the dog-bone apertures considered in
the next section 5.4.4.

The computed and measured antenna input characteristics are shown in Fig. 5.12, for the
zero thickness aperture, and in Figs. 5.13 and 5.14 for two different metallization thicknesses
(t = 1, 3 mm). These two last figures include both a third curve reflecting the results obtained
with a full-wave cavity approach that considers the aperture as a cavity section.
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Figure 5.11: Test antenna sample. A set of conducting screens of various thicknesses and with rectan-
gular apertures can be fixed on the basic antenna. Dielectric made of RT-Duroid 6010:
h = 0.635 mm, εr = 10.5, tan δ = 0.0024. All dimensions given in mm.

The substrate thickness (and hence the distance between electric currents in the feeding line
and magnetic currents in the slot) is only 0.635 mm and it is smaller than the thinnest slot
considered (t = 1 mm). Therefore, this is a very challenging case for our approach (where the
effect of lateral electric walls in the slot is only included indirectly) and it must be considered
as a worst case revealing the limitations of our approach. However, the results presented
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in Figs. 5.13 and 5.14 are still quite satisfactory, although the presented approach does not
follow the measurements as well as the cavity approach, which is very good in this situation,
but at the expense of much more demanding computation time. The evaluation of the cavity
Green’s function is a time consuming process and results in about 10 to 20 times longer
simulations, when compared to the code with the new formulation. So, even in this worst-
case situation, the delta function remains an interesting alternative and its predictions should
improve dramatically when substrate layers thicker than the slots are used, like predicted in
the previous section.
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Figure 5.12: Reflection coefficient of the rectangular aperture antenna. Zero thickness case. Mea-
surements (dashed)and presented approach (solid line).

5.4.4 Thick Dog-Bone Aperture Antenna: Comparison with Measurements

A more general shape of the thick aperture antenna is investigated. The layout of the antenna
is shown in Fig. 5.15(a). The aperture is now extended to a dogbone-type shape, which can
be easily milled in a metallic shield. Fig. 5.15(b) shows the realized antenna with two thick
metallic shields of t = 1 mm and t = 3 mm.

The results of the three samples, with thicknesses t = 0, 1 and 3 mm are shown in the
Figs. 5.16–5.18. Here, it must be pointed out that already for the zero thickness slot
(Fig. 5.16), the theoretical prediction does not follow as closely the measurements as in the
case of the rectangular slot antenna. This shows clearly the numerical degradation associated
with the modeling of a complicated shape like the dog-bone. The good news is that, despite
the thin substrate (h = 0.51 mm), the presented approach does not seem to degrade the per-
formances of our integral equation code and the agreement remains quite fair. In particular,
the qualitative trend of the input impedance resonant loop opening with increased aperture
thicknesses is perfectly predicted.
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Figure 5.13: Reflection coefficient of the rectangular aperture antenna. Aperture thickness t = 1 mm.
Measurements (dashed), presented approach (solid), and full-wave cavity computation
(dash-dotted line).
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Figure 5.14: Reflection coefficient of the rectangular aperture antenna. Aperture thickness t = 3 mm.
Measurements (dashed), presented approach (solid), and full-wave cavity computation
(dash-dotted line).
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Figure 5.15: Dog-bone aperture antenna. Dielectric: Duroid 5870, εr = 2.33, tan δ = 0.0012,
h = 0.51 mm. All dimensions given in mm. (a) Layout of the antenna design. (b) Pic-
ture of the realized antenna samples.
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Figure 5.16: The reflection coefficient of the dog-bone aperture antenna. Zero thickness case. Mea-
surements (dashed line) versus simulation (solid line).
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Figure 5.17: The reflection coefficient of the dog-bone aperture antenna. Aperture thickness t =
1 mm = 0.015λ0. Measurements (dashed line) versus simulation (solid line).
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Figure 5.18: The reflection coefficient of the dog-bone aperture antenna. Aperture thickness t =
3 mm = 0.045λ0. Measurements (dashed line) versus simulation (solid line).
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5.4.5 Error Analysis

The accuracy of a method is usually subjectively discussed by comparing the results of the
method with other theoretical or experimental results. This is exactly what we have done in
the previous sections, where we have compared the curves of reflection coefficients, obtained
using the approximate approach, against the corresponding curves from the full-wave approach
or measurements.

In order to treat the error quantitatively one needs to have [18]

• an accurate benchmark to which one may apply the metric,

• a metric to measure the error.

In this section, the reflection coefficients obtained from the full-wave cavity approach will be
used as the accurate benchmark results. Again, this is not more than an empirical estimate of
the true error, which could only be found by comparison to the exact solution of the problem,
which is usually not available. A reasonably comprehensive and up-to-date survey of these
issues can be found in [19]. Concerning the error metric, two different functions will be used,
the correlation coefficient and the root-mean-square relative error (rms) that will give us the
complementary information about the error estimation.

The correlation coefficient is a quantity that gives the quality of the least square fitting
to the reference data [20, 21] and can be defined mathematically as follows. Let xi and
yi, i = 1, . . . , N be two sets of complex data samples. Let us define the covariance and the
standard deviation of these two data sets as

σxy = E {(x − x̄)(y − ȳ)} (5.10a)

σ2
x = E

{
(x − x̄)2

}
(5.10b)

σ2
y = E

{
(y − ȳ)2

}
(5.10c)

where E {·} denotes the expectation operator, and x̄ is the mean of the data set xi, x̄ = E {x}.
Now, the correlation coefficient is given by

rxy =
σxy

σxσy
. (5.11)

The correlation coefficient rxy = 1 means that the data sets x and y are perfectly correlated
or, in other words, that they behave in the same manner. However, since the correlation
coefficient is independent on both origin and scale, we need an additional information in
order to estimate how close the two data sets are one to another. For this, we can use the
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root mean square relative error defined as

εrms =

√√√√√√√√

N∑
i=1

|xi − yi|2

N∑
i=1

|yi|2
. (5.12)

Using the adopted metric, we can quantitatively measure the error of predicted results in the
approximate approach. Fig. 5.19 shows the reflection coefficients of the antenna from Fig. 5.11
for two aperture thicknesses: t1 = 0.05 mm ≈ λ/1000 (black lines) and t2 = 3.65 mm ≈ λ/10
(gray lines), the wavelength λ being computed at the maximum operating frequency in the
simulation (f = 8 GHz). The reference results obtained from the full-wave cavity approach
are shown in solid lines, and the results obtained from the approximate approach are presented
with dashed lines. The predicted results for the thickness t1 agree very well with the reference
results. A correlation coefficient very close to one, r1 = 0.9999, means that the two curves
share exactly the same behavior. A very small rms-error of εrms1 = 0.01 is a good indicator
that the approximate solution fits perfectly with the reference one (black lines). In the case
of a rather thick aperture, the approximate results are less good and this is reflected in both,
the correlation coefficient r2 = 0.94 and the rms-error which is now εrms1 = 0.35 (gray lines).
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Figure 5.19: The reflection coefficient of the antenna from Fig. 5.11 for two aperture thicknesses:
t1 = 0.05 mm ≈ λ/1000 (black lines) and t2 = 3.65 mm ≈ λ/10 (gray lines) at 8 GHz.
Solid lines represent the full-wave cavity results (reference) and dashed ones the results
obtained from the approximate approach. The correlation coefficients for the two pairs
of curves are r1 = 0.9999 and r2 = 0.94 while the corresponding root-mean-square errors
are εrms1 = 0.01 and εrms2 = 0.35.

Solid lines in Fig. 5.20 show the error in the reflection coefficient as a function of the
normalized aperture thickness (λ being calculated for the maximum operating frequency in
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the simulation, f = 8 GHz). The simulated structure is the rectangular thick aperture
antenna from Fig. 5.11. As the aperture thickness grows, the error is increasing and becomes
significant when the thickness starts to be comparable to the minimal lateral dimensions of
the aperture (b = 5 mm ≈ 0.13λ).

The same geometry, but with an additional high permittivity dielectric layer of the thickness
h between the aperture and the feeding line, has been simulated. Two different layer thick-
nesses were used, h1 = 0.635 mm ≈ 0.02λ (dashed lines), and h2 = 2h1 (dash-dotted lines).
Much better prediction in the reflection coefficient may be noticed for the distances between
the aperture and the feeding line that are larger than the aperture thickness. This behavior
remains the same when instead of the high permittivity dielectric of εr = 10.7(1− j0.0024), a
foam layer (εr = 1.0) is used (see Fig. 5.21).
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Figure 5.20: The error in the reflection coefficient of the approximate approach as a function of
the aperture thickness t. Solid lines: the antenna geometry from Fig. 5.11. The
same antenna with an additional high permittivity dielectric layer of the thickness
h1 = 0.635 mm (dashed lines) and h2 = 2h1 (dash-dotted lines).

Finally, Fig. 5.22 illustrates the error vs. aperture thickness, for the square aperture an-
tenna geometry. When compared to Fig. 5.20 and Fig. 5.21, much better predictions of the
approximate model can be remarked. In this case, even for rather thick apertures, the minimal
lateral dimension (a = b = 25 mm ≈ 0.7λ) of the aperture still remains an order of magnitude
bigger than its thickness.
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Figure 5.21: The error in the reflection coefficient of the approximate approach as a function of
the aperture thickness t. Solid lines: the antenna geometry from Fig. 5.11. The same
antenna with an additional air layer of the thickness h1 = 0.635 mm (dashed lines) and
h2 = 2h1 (dash-dotted lines).
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Figure 5.22: The error in the reflection coefficient of the approximate approach as a function of the
aperture thickness t. Solid lines: the antenna geometry from Fig. 5.11 with a square
aperture of dimensions a = b = 25 mm. The same antenna with an additional air layer
of thickness h1 = 0.635 mm (dashed lines) and h2 = 2h1 (dash-dotted lines).
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5.5 Conclusion

In this chapter we have presented the numerical and experimental study of the approximate
technique for the numerical treatment of scattering from apertures in metal screens of finite
thickness introduced in Chapter 4.

The original set of coupled integral equations developed and presented in this chapter is
rigorous and exact from a full-wave point of view. There are two approximations introduced:
one approximation has been introduced by replacing the cavity by parallel-plate Green’s
functions and another one in neglecting the magnetic current difference M∆.

The approach reduces significantly the simulation time compared to a full-wave cavity
treatment of the thick apertures. The gain in computational time is due to, on one hand, the
adoption of the parallel plate Green’s function for the cavity and, on the other, the number
of unknowns is halved as we consider the aperture having only one interface.

Various tests with increasing slot thicknesses have been performed and studied. The results
are compared to a both full-wave cavity approach and measurements. The error study from
the last section shows that the approximate model yields good predictions even for rather thick
apertures, as long as the thickness of the aperture remains an order of magnitude smaller than
its minimal lateral dimensions.

It must be pointed out that the upper limit reached in the current status of the method is
already highly satisfactory. Many technologies using self-supporting metallic patches in Ka–
and Ku–bands or thick conducting film in millimeter and submillimeter wave bands yield
electrical thicknesses within this limit.
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[9] J. R. Mosig and A. Álvarez-Melcón, “The summation-by-parts algorithm - A new efficient tech-
nique for the rapid calculation of certain series arising in shielded planar structures,” IEEE Trans.
Microwave Theory Tech., vol. 50, no. 1, pp. 215–218, Jan. 2002.
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6 An Integral Equation Technique for Solving

Thick Irises in Rectangular Waveguides†

6.1 Introduction

A thick iris, defined as an aperture in a metallic wall of finite thickness, is one of the most
common types of discontinuities encountered in waveguides. These apertures can arise in the
waveguide external walls (slot waveguide antennas, coupling holes between waveguides) or in
additional walls filling the waveguide cross-section and dividing the waveguide into coupled
cavities, useful to create filtering structures. From this second point of view, irises were first
analyzed in the early fifties, by means of approximate analytical and variational techniques,
well detailed in classical textbooks [1, 2, 3, 4]. Initially, these approximate expressions were
derived for small apertures in zero-thickness conducting walls, but correction factors for larger
apertures and/or finite thickness walls [5, 6, 7] were soon introduced. The first systematic
technique for the full-wave analysis of irises in waveguides was the Mode Matching (MM) tech-
nique [8, 9]. Specific applications for several regular iris shapes can be found in [10, 11, 12, 13].
Nowadays, in order to cope with arbitrary shapes and more complicated geometries, so-called
hybrid methods are used, where MM is combined with Integral Equation (IE) approaches [14]
or with Finite Element (FEM) algorithms [15, 16, 17]. See the excellent review paper by
Arndt et al. [18] for a comprehensive and up-to-date survey.

In parallel to these developments, slots in waveguides have been also analyzed with classical
integral equation approaches using the equivalence principle [19]. In this context, the problem
of thick irises inside waveguides is equivalent to the problem of apertures of a finite thickness in
printed multilayered antennas. The theoretical development and its experimental validation,
presented in Chapters 4 and 5, showed that the apertures of finite thicknesses can be treated
as infinitely thin apertures (Fig. 6.1). The aperture thickness appears only as a modification
in the Green’s functions of the problem, but otherwise the aperture is treated as a two-
dimensional object. This technique reduces two times the number of unknowns on the iris
and allows to treat the irises of arbitrary cross-sections.

In the first part of this chapter, we present an Integral Equation (IE) technique for solving
rectangular waveguide discontinuities including thick irises. Waveguide discontinuities here
are considered in wider sense being not only irises and interconnections of waveguides with
different cross-sections, but also dielectric layers of different dielectric properties and metallic
patches and slots embedded inside dielectrics. The technique presented is based on [20, 21] and
is recalled here for the sake of completeness. The new features added to it are the extension
to the rectangular waveguides of different cross-sections and the modal excitation, which is

†I. Stevanović, P. Crespo-Valero, and J. R. Mosig, IEEE Trans. on Microwave Theory Tech., submitted for
publication on 20 Jan. 2005
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Figure 6.1: Thin iris modeled as a zero-thickness iris.

explained in detail in Section 6.4. This formulation is then verified by a series of test cases,
where the results from our solver are compared to the simulations or measurements available
in the open literature.

The second part of the chapter treats the problem of thick irises inside the rectangular
waveguides. An original and efficient treatment, similar to the one presented in Chapters 4
and 5, is introduced. The technique is validated by comparing the results of simulations with
both full-wave cavity approach, where the iris is treated as a new waveguide section, and with
measurements of some real-life structures.

6.2 Integral Equations and Method of Moments

Consider a structure composed of a number of waveguides with different rectangular cross-
sections (Fig. 6.2). Any interconnection between waveguides of different cross-sections and
any zero-thickness iris is treated like a slot in the standard slot antenna formulation. An
iris with a non zero-thickness will be considered ab initio as a new waveguide cross-section.
However, for not very thick irises, an original and efficient treatment will be introduced later
on. On the other hand, any waveguide section can be filled by stratified dielectrics and include
conductive patches of arbitrary shapes localized in planes perpendicular to the propagation
direction.

In the integral equation formulation of the problem, the boundary conditions for the fields
are imposed. On every interconnection of two different waveguides and every slot, the surface
equivalence principle is applied and magnetic surface currents JH (on both sides of the inter-
face) are introduced in such a way as to insure the continuity of the tangential component of
the total electric field

E+
t = E−

t ⇔ J+
H = −J−

H. (6.1)

The continuity of tangential component of the total magnetic fields on the slots and the
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Figure 6.2: General multilayered waveguide structure composed of an arbitrary number of planar
printed patches and slots.

interconnections of two different waveguides has to be satisfied

H+
t = H−

t . (6.2)

Every patch surface is modeled using electric surface currents JE. Considering all the patches
to be made of perfectly conducting metallizations, the tangential component of the total
electric field (E) on them has to be set to zero

Et = Ei
t + Es

t = 0 (6.3)

where Ei and Es are the incident and the scattered electric fields, respectively.

Introducing field Green’s functions, the scattered fields can be expressed as convolution
integrals of the electric and/or magnetic sources and the corresponding Green’s functions.
The boundary conditions evolve this way into a system of integral equations with unknown
electric and magnetic surface currents.

The MoM technique has been used to numerically solve the system of integral equations.
The unknown electric and magnetic currents are expanded into a set of basis functions. In
order to model general shape of magnetic and electric planar sources, subsectional (rectangu-
lar/triangular) basis functions have been selected, so the unknown sources can be expanded
as follows

JQ(r′) =
∑

k

αQkfQk(r
′), k = 1, . . . , NQ (6.4)

where the source index Q is set to Q = E for an electric source (HED) or to Q = H for
a magnetic source (HMD). In the same expression, αQk are the unknown coefficients in the
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expansion of the currents and fQk are the NQ subsectional basis functions defined on electric
(Q = E) or magnetic (Q = H) surfaces.

Using the Galerkin procedure, the same set of functions as the one used for the basis
functions is chosen. This way, the original coupled system of integral equations is transformed
into an algebraic linear system of equations, with the coefficients αQk as unknowns

[
[REE] [REH]
[RHE] [RHH]

] [
[αE]
[αH]

]
=

[
[γE]
[γH]

]
. (6.5)

There are four different types of terms RPQ that appear in the final MoM matrix. The term
(k, l) in each submatrix can be written in a condensed form as

RPQ(k, l) =

∫

Sk

fPk(r) dS

∫

Sl

↔

GPQ(r|r′)fQl(r
′) dS′. (6.6)

Using the equivalent transmission line networks to represent the waveguide sections, the
field dyadic Green’s functions are given by

↔

GPQ(r|r′) =
∑

i

G̃Pi(z, z′)pi(x, y)qi(x
′, y′). (6.7)

It must be pointed out that the above is a compact notation where both the observer index
P and the source index Q can be either E (electric field, electric source) or H (magnetic field,
magnetic source). Accordingly, the vector modal functions p and q are either the modal
functions of electric (e) or of magnetic (h) type. Finally, the term G̃Pi(z, z′), depending only
on the observer index, is the associated spectral Green’s function that corresponds to either
the voltage (p = e) or the current (p = h). The index i represents the order number of
the rectangular waveguide mode (TEm,n where m, n = 0, 1, 2 . . . , mn 6= 0 or TMm,n where
m, n = 1, 2, 3, . . .). The expressions for ei and hi, the vector modal functions of electric and
magnetic type for the waveguides of rectangular cross-sections, can be found in [1].

Introducing the rectangular waveguide Green’s functions (6.7) into the expressions for MoM
coefficients, (6.6) becomes

RPQ(k, l) =
∑

i

G̃PiCP(k, i)CQ(l, i), (6.8)

where

CP(k, i) =

∫

Sk

fPk(x, y)pi(x, y) dxdy. (6.9)

It can be noticed from the above equations (6.8) that all MoM matrix coefficients are functions
of only two different overlapping integrals. In particular, the overlapping integrals of the e
and h vector modal functions with the vector basis functions. Having rectangular and/or
triangular subsectional basis functions, these integrals can be computed analytically [21].
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6.3 Efficient Evaluation of MoM Matrix

For efficient evaluation of the series in (6.8), the extraction of the quasi-static term of the
spectral Green’s functions is performed [20]. The main implication of this technique is that
the original series are separated into frequency independent and frequency dependent series.
The frequency independent series are evaluated only once for a given geometry, and are,
therefore, not recomputed for each new point in frequency. As for the frequency dependent
series, they are evaluated for each point in frequency, but due to the extraction of the quasi-
static part, the convergence is enhanced considerably. As a result, an important saving in
computational time for the analysis of multilayered media waveguide structures over a wide
range of frequencies is achieved.

Dropping the P and Q indices, any MoM matrix coefficient in (6.8) can be written in the
following general form

R(k, l) =
∑

i

G̃iCeh(i, k)Ceh(i, l), (6.10)

where Ceh is an overlapping integral of the e or h vector modal functions with the vector basis
functions, and G̃i is a voltage or a current coefficient computed using equivalent transmission
line networks (spectral quantity). The first step in the procedure is to add to and substract
from (6.10) the quasi-static term of the spectral domain quantity G̃i

R(k, l) =
∑

i

(
G̃i − G̃0

i

)
Ceh(i, k)Ceh(i, l) + R0(k, l), (6.11)

where G̃0
i is the quasi-static part of G̃i, and we have defined

R0(k, l) =
∑

i

G̃0
i Ceh(i, k)Ceh(i, l). (6.12)

To obtain the quasi-static part, the case of modes infinitely below the cut-off has to be
considered. The equivalent network for the quasi-static part is then composed only of two
semi-infinite transmission line sections, above and below the exciting generator, that is, the
source point.

For the case of a HED as a source (Q = E), the quasi-static part of the voltage coefficient
is non-zero only for the rooftops belonging to that electric interface and is given by [21]

R0(k, l) = jDTERTE
0 (k, l) +

1

jDTM
RTM

0 (k, l) (6.13a)

with

RTE
0 (k, l) =

∑

i

1

kρi
CTE

eh (i, k)CTE
eh (i, l) (6.13b)

RTM
0 (k, l) =

∑

i

kρiC
TM
eh (i, k)CTM

eh (i, l) (6.13c)



142 Chapter 6: An IE Technique for Solving Thick Irises in Rectangular Waveguides

DTE = ωµ0
µ+

r µ−
r

µ+
r + µ−

r
(6.13d)

DTM = ωε0(ε
+
r + ε−r ) (6.13e)

where CTE
eh and CTM

eh are the overlapping integrals between the subdomain basis functions
of a given electric interface with the TEm,n and TMm,n modal sets, respectively, kρi is the
transverse wave number of the ith mode, and the superscripts + and − are used to designate
the dielectric parameters of the layers above and below the considered interface, respectively.

Analogously, for a HMD as a source, (Q = H), the quasi-static part of the current coefficient
is non-zero only for the rooftops belonging to that magnetic interface and is given by [21]

R0(k, l) =
1

jDTE
RTE

0 (k, l) + jDTMRTM
0 (k, l) (6.14a)

where
RTE

0 (k, l) =
∑

i

kρiC
TE
eh (i, k)CTE

eh (i, l) (6.14b)

RTM
0 (k, l) =

∑

i

1

kρi
CTM

eh (i, k)CTM
eh (i, l). (6.14c)

The interesting feature of (6.13b), (6.13c), (6.14b) and (6.14c) is that all the quantities
depend only on geometry, and are, therefore, frequency independent. Consequently, the series
are computed only once for a given geometry and are not recomputed for each subsequent
frequency point. Once they are summed up, the total quasi-static matrix coefficients are
evaluated with the use of equations (6.13a) and (6.14a).

Substituting the quasi-static part in (6.11), the final MoM matrix coefficients are obtained,
this time frequency dependent. It is important to note, that since the quasi-static term is
extracted, the resulting series will converge much faster than the original ones.

6.4 Modal Excitation

Let the excitation of the waveguide be a source which produces a single mode, of unit ampli-
tude. This mode (usually the dominant mode) is denoted by the index i. The field transverse
to the z-direction can be expressed in terms of the incident power wave ai as

Hi =
ai√
Zi

hi (6.15)

where Zi is the characteristic impedance, and hi the vector modal function of the magnetic
field for the considered mode.

Suppose that we want to compute the reflection coefficient in the reference plane 1 − 1′

(Fig. 6.3). Let the aperture A1 in that reference plane be discretized into a number of sub-
sectional (rectangular and/or triangular) basis functions fHk, for all indices k = 1, . . . , NH for
which Sk ⊂ A1.
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1

1′

A1

ẑ

ai ;

bi

;

Figure 6.3: Waveguide excitation.

The excitation vector in the MoM system of equations (6.5) can be expressed then as follows

γHk = −2

∫

Sk

Hi · fHk dS (6.16)

where the coefficient 2 comes from the “mirrored” magnetic field [22].

After having solved the system, we obtain, among the others, the unknown coefficients βk,
used to expand the magnetic current on the aperture A1 in a given set of basis functions

JH =
∑

k

βkfHk. (6.17)

The tangential electric field in the aperture, now that magnetic current is known, can be
expressed as

E = ẑ × JH =
∑

k

βk (ẑ × fHk) . (6.18)

On the other hand, this field can be represented with a mode expansion, because it is also a
field solution in the waveguide

E =
∑

j

(aj + bj)
√

Zjej . (6.19)

By projecting the electric field onto the incident mode i over the aperture A1 and using the
orthonormality of the modes, (6.19) becomes

∫

A1

E · ei dS = (ai + bi)
√

Zi

∫

A1

ei · ei dS = (ai + bi)
√

Zi. (6.20)

Taking into account (6.18), yields

bi = −ai +
1√
Zi

∑

k

βk

∫

Sk

(ẑ × fHk) · ei dS (6.21)
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and finally, using
(ẑ × fHk) · ei = −fHk · hi (6.22)

one obtains

bi = −ai −
1√
Zi

∑

k

βk

∫

Sk

fHk · hi dS (6.23)

for all indices k for which Sk ⊂ A1. The reflection coefficient on the aperture A1 can now be
expressed as

ρ =
bi

ai
. (6.24)

Suppose that a waveguide is short-circuited (there is no aperture). This means that βk = 0
and from (6.23) directly follows bi = −ai, that is, the reflection coefficient in this case becomes
ρ = −1. In the case of an infinitely long waveguide, the aperture has the waveguide’s cross-
section. If the incident electric field is

Ei = ai

√
Ziei,

the magnetic current over the aperture will be given by

JH = −ẑ × Ei = −ai

√
Ziẑ × ei = −ai

√
Zihi.

Then, from (6.23), we obtain

bi = − ai −
1√
Zi

∑

k

βk

∫

Sk

fHk · hi dS =

= − ai −
1√
Zi

∫

A1

(
∑

k

αHkfHk

)
· hi dS

= − ai +
1√
Zi

∫

A1

ai

√
Zihi · hi dS

= − ai + ai

∫

A1

hi · hi dS = 0

which means, that there is no reflected wave and ρ = 0.

Suppose our structure has another port, defined at the reference plane 2− 2′ and we would
like to compute the transmission coefficient between the two ports. Let the second port be
attached to the right-hand side of the aperture A2 at this reference plane (Fig. 6.4) and let
the incident power wave that excites the port attached to the aperture A1 (Fig. 6.3) be a1

i .
The transmission coefficient between the two ports can be defined as (see Fig. 6.4)

τ21 =
b2′
i

a1
i

=
a2

i

a1
i

(6.25)
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a2
i

a2′
i

;;

b2
i

b2′
i

;; ẑ

A2

2

2′

Figure 6.4: Port for which the transmission coefficient is computed.

Taking into account that, by definition, the second port is perfectly matched a2′
i = b2

i = 0
and following the same procedure as in equations (6.17–6.23), for the transmission coefficient
one obtains

τ21 = − 1

a1
i

1√
Zi

∑

k

αHk

∫

Sk

fHk · hi dS (6.26)

for all indices k for which Sk ⊂ A2.

The developments presented in this section are valid for a two port waveguide structure,
but they can be easily extended to a structure with several ports.

6.5 Preliminary Numerical Results and Experimental Verifications

Before proceeding further towards the theory for the efficient solution of the thick irises,
the above formulation has been carefully tried on several classical benchmark problems. In
the following sections, the results of the numerical solutions using the presented theory are
compared to theoretical predictions, simulations obtained using other numerical solvers, and
with measurements.

6.5.1 Rectangular Waveguide Filled with Two Semi-Infinite Dielectrics

A rather simple example presented here is an infinitely long rectangular waveguide with
dimensions a = 22.86 mm and b = 10.16 mm. The waveguide is oriented in the z-direction
and filled with two semi-infinite dielectrics. The dielectric permittivity of the layer below
z = 0 plane is εr1 = 1 and the permittivity of the layer above z = 0 is εr2 = 80(1 − j0.125).

The characteristic impedance of the mode TE10 is given by

Zc =
jωµ0µr

kz
(6.27)

where kz =
√

k2
0εrµr −

(
π
a

)2
is the propagation constant of the mode.
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The reflection coefficient of the mode TE10 at the interface z = 0 between the two dielectrics
can be written as

ρ =
Zc2 − Zc1

Zc2 + Zc1
=

kz1 − kz2

kz1 + kz2
(6.28)

In Figures 6.5 and 6.6, the reflection coefficient obtained using the solver is compared to
the theoretical values obtained from (6.28), for frequencies bigger than the cut-off frequency
of the dominant mode. The excellent agreement with theoretical predictions can be observed.
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Figure 6.5: Simulated reflection coefficient (solid line) compared to the theoretical results (◦).
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Figure 6.6: Simulated reflection coefficient (solid line) compared to the theoretical results (◦).
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6.5.2 Capacitive and Inductive Irises

The following two test cases have been investigated in this section: a capacitive and an
inductive iris shown in Fig. 6.7(a) and Fig. 6.8(a). The structures have been simulated using
another program developed in our laboratory: FEST3.0 [23, 24]. The results obtained using
presented approach and shown in Fig. 6.7(b) and Fig. 6.8(b) are in excellent agreement with
the values obtained from FEST3.0.
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(a) The geometry.
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(b) Reflection and transmission coefficients.

Figure 6.7: Capacitive iris. Dimensions are in mm: a = 22.86, b = 10.16, b1 = 5.08, h = 15.2.
The results from the presented approach (solid lines) compared to results obtained from
FEST3.0 (dashed lines).
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(b) Reflection (decreasing function) and transmis-
sion (increasing function) coefficients.

Figure 6.8: Inductive Iris. Dimensions are in mm: a = 22.86, b = 10.16, a1 = 11.43, h = 2.
The results from the presented approach (solid lines) compared to results obtained from
FEST3.0 (dashed lines).
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6.5.3 Open-Ended Rectangular Waveguide

Reflection from an open-ended waveguide (Fig. 6.9) is a non-destructive technique used in
measurement of material properties [25]. Several medical applications of microwave energy
that use a rectangular waveguide placed against the surface of the body have been developed
in order to heat the tissue (hyperthermia), measure the tissue temperature (thermography)
or detect breast cancer (see [26] and the references therein).

The theory presented in this chapter and Chapter 2 is suitable for the efficient solution
of the reflection from an open-ended rectangular waveguide terminated either by an infinite
dielectric material or by a layered dielectric medium. Using the equivalence principle and
magnetic currents, the problem is decoupled into two equivalent problems. One is inside
the waveguide region and the other is in the laterally unbounded multilayered medium. The
MoM coefficients that correspond to the magnetic currents at the interface are computed
independently in the two equivalent problems, using the corresponding Green’s functions,
and then summed up in the global MoM matrix (Fig. 6.10).

εr = 1

εr = ε′r − jε′′r

;

;

aibi

Figure 6.9: Open-ended waveguide.

Consider a rectangular waveguide WR90 (with dimensions a = 22.86 mm, b = 10.16 mm)
open-ended on one side (Fig. 6.9). Suppose that the open-ended side is emerged in a dielectric
medium of a complex permittivity εr = ε′r − jε′′r .

This structure has been simulated at frequency f = 10 GHz for different values of the
complex permittivity. The results of the reflection coefficients are shown in Fig. 6.11. The
shaded rectangle in the lower left corner designates the area in the Smith’s chart covered
by the possible values of the reflection coefficient. Using these curves and the value of the
measured reflection coefficient, it is easy to deduce the complex permittivity of the medium
under test (inverse problem).

The numerical results for the homogeneous case have been verified against experimental
values for the open waveguide radiating into air. Simulated results are compared with the
measured ones [25] in Figs. 6.12 and 6.13, showing very good agreement with measurements.
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Figure 6.10: Combination of the MoM submatrices corresponding to the shielded ©1 and laterally
unbounded ©2 regions.
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Figure 6.11: The reflection coefficient from the open-ended rectangular waveguide (a = 22.86 mm,
b = 10.16mm) at f = 10 GHz for different values of the complex permittivity εr =
ε′r − jε′′r .
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Figure 6.12: VSWR: comparison of simulated results (solid line) with the measured values (•) [25]
for radiation in the air.
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Figure 6.13: Phase of the reflection coefficient: simulated results (solid line) and measured va-
lues (•) [25].
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6.5.4 Single Lattice of Printed Elements Inside the Rectangular Waveguide

In this section we present results of the scattering from the single lattice of printed elements
inside the rectangular Ka-band waveguide. The geometry of the problem is presented in
Fig. 6.14 and consists of a metallization embedded within the host dielectric layer. The
reflection coefficient of the dominant TE10 mode obtained using our model agrees very well
with the measured results taken from [27].

a

b

t

2r

Figure 6.14: Rectangular waveguide in Ka-band with one printed PBG layer. Dielectric parameters
of the host layer: εr = 11.1, tan δ = 0.0028. All dimensions in mm: a = 7.112, b = 3.556,
t = 2.68, r = 0.34a [27].
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Figure 6.15: Reflection coefficient. Solid line: full-wave approach, dashed line: measurements taken
from [27].
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6.5.5 Assessment of the IE Model for Waveguides

The four different structures analyzed in this section show clearly the interest of an IE model
for waveguides. The algorithm is flexible and general and can be applied not only to tradi-
tional discontinuities (waveguide steps and irises) but also to hybrid problems (open radiating
waveguides) and to complex structures like geometry of Section 6.5.4. In all cases the accu-
racy of the IE model is good. But there is more. The IE model is by its own nature perfectly
suited to include our thick slot formulation, also based on an IE approach. This will be shown
conclusively in the next sections of this chapter.

6.6 Efficient Numerical Treatment of Thick Irises

An iris of a finite thickness inside the rectangular waveguide can be solved, using the theory
presented in the previous sections, as a cavity region with magnetic currents on its both
interfaces. This problem is equivalent to the problem of apertures of a finite thickness in the
printed multilayered antennas. The theoretical development and its experimental validation
in Chapters 4 and 5 showed that the apertures of finite thicknesses can be treated as infinitely
thin (Fig. 6.1). The aperture thickness appears only as a modification in the Green’s functions
of the problem, but otherwise the aperture is treated as a two-dimensional object. This
technique reduces two times the number of unknowns on the aperture and, depending on how
the correction term is computed, allows to treat the apertures of arbitrary cross-sections. As
shown in Chapter 4, the approximate treatment of thick apertures led to a perturbation term
in the existing integral equation kernel. The integral equations remain the same, save for the
correction factor that is added to the Green’s functions at the aperture interface [see (4.67)
on page 102]

↔

GHM =
↔

G+
HM +

↔

G−
HM + 2

↔

G∆
HM (6.29)

where the superscripts + and − designate the region above and below the thick aperture.

The possibility of not being forced to consider the volume defining the thick aperture/iris
as a new waveguide region is the keystone of the efficient procedure presented in this chapter.
However, to implement a particular computational algorithm, we shall need a fast and accurate
way of evaluation of the GF correction term

↔

G∆
HM.

The correction term that accounts for a thick iris is given by [see (5.2b) on page 115]

↔

G∆
HM =

↔

G=
HM −

↔

G×
HM (6.30)

where
↔

G=
HM is the Green’s function of the thick iris region when both source and observer

points are on the same iris interface, and
↔

G×
HM the same Green’s function when they are on

the opposite iris interfaces.

One approach in efficient computing of the correction term is to neglect the iris’ walls and
use a parallel plate Green’s function when computing the correction factor. We will designate
this strategy as the “PP” approach. A second one, more accurate is to use the Green’s
functions of the rectangular waveguide. This will be called the “RW” approach. The “RW”
approach will give the exact correction factor for the irises of rectangular cross-sections.
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In the “PP” approach, the thick iris correction term is computed in the way presented in
Chapters 4 and 5. This approximation will remain valid for all shapes of the thick irises as
long as the iris’ thickness is sufficiently small compared to its minimal lateral dimensions [28].

The correction terms for potential Green’s functions are obtained applying the zero order
inverse Sommerfeld transformation to the parallel plate spectral domain Green’s function [29,
30]

G∆
Fxx = G∆

Fyy =
ε

2π
S0

[
1

kz
tan

kzt

2

]
(6.31a)

G∆
W =

1

2πµ
S0

[
1

kz
tan

kzt

2

]
(6.31b)

where t is the thickness of the considered iris and kz is the propagation constant inside the iris
in the z direction. The difference as compared to the approach presented in Chapters 4 and 5
is in the fact that the correction terms are not added on the level of the spectral domain
Green’s functions, but on the MoM coefficient level. The MoM coefficients of the iris are
computed as if it were infinitely thin using the theory presented in the previous sections.
Then, the correction terms in the MoM coefficients are computed using the mixed potential
integral equation (MPIE) and the potential Green’s functions (6.31), and added to the already
computed MoM coefficients.

In the “RW” approach, the Green’s function correction term for the field Green’s functions
is expressed as a sum of modes (rectangular waveguide modes), obtaining this way a consistent
FIE approach that uses always (for closed regions) the modal field Green’s functions. In this
approach, the correction term will necessarily depend on the thick iris cross section.

If we consider a rectangular iris, the Green’s function can be written as

↔

GHM =
∑

i

G̃Hi(z, z′)hi(x, y)hi(x
′, y′) (6.32)

where G̃Hi(z, z′) is the current evaluated at the coordinate z along the equivalent transmission
line network, when the exciting generator is set to one and placed at the coordinate z′ in the
direction of propagation, and hi is the vector mode of magnetic type for waveguides with
rectangular cross-sections.

Taking into account (6.30) and (6.32), the Green’s function correction term can be expressed
as

↔

G∆
HM =

∑

i

G̃∆
Hihi(x, y)hi(x

′, y′) (6.33)

where

G̃∆
Hi =

j

Zci

tan

(
kzi

t

2

)
. (6.34)
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6.7 Numerical Results For Thick Iris Problems

6.7.1 Comparison with Rigorous Full Wave Approach

The first test-structure simulated is a simple rectangular waveguide WR90 with a thin rect-
angular iris of dimensions a1 = a/2 and b1 = b/2 placed at the center of the waveguide’s
cross-section (Fig. 6.16).

a

b

t

b1

a1

Figure 6.16: Thin iris. a = 22.86, b = 10.16, a1 = 11.43, b1 = 5.08. All dimensions given in mm. t is
variable iris thickness.

The simulations were carried out for different iris thicknesses (t = 0.01, 0.05, 0.1, 0.5, and
1.0 mm). In Fig. 6.17, the reflection and transmission coefficients are shown simulated us-
ing the “PP” approach (◦), the “RW” approach (+), the full-wave cavity approach (�), and
supposing that the iris is infinitely thin (dashed line). In the full-wave approach, the simu-
lations were done with 5000 modes used in computation of the quasi-static terms (frequency
independent) and 1000 modes for computation of dynamic terms (frequency dependent). In
the “RW” approximate approach, the correction factor was computed taking into account
the dimensions of the rectangular iris cross-section. The quasi-static term was not extracted.
Number of modes used for computing dynamic terms was 1000. The results reached the nu-
merical convergence since we obtain the same response when the number of modes is doubled
and even three times bigger. The almost perfect matching of the “PP” and “RW” approaches
with the full-wave cavity approach taken as a reference, can be observed up to iris thicknesses
of t = 0.1 mm = λ/200 at the center frequency f = 15 GHz. Above this thickness, the approx-
imate models predict the scattering parameters less accurately but still better than the zero
thickness approach (dashed lines in Fig. 6.17). As the thickness grows, the “RW” approach
is shown to be more precise in predicting the scattering parameters than the “PP” approach,
which is especially true for the transmission coefficient, where the ideal transmission (of 0 dB)
is never reached [see the line with circles in Fig. 6.17(c)].

Fig. 6.18 shows the CPU time versus the number of unknowns for the problem from Fig. 6.16
solved using the full-wave approach (◦), the “PP” approach (•), and the “RW” approach (×)
on a PC with 2.4 GHz and 512 MB of RAM. The program is implemented in Compaq Visual
Fortran, operating system Windows XP. As it can be seen from the figure, the problem solved
using the approximate approaches with the same mesh density as in the full-wave cavity
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Figure 6.17: Reflection and transmission coefficients for different iris thicknesses: (a) t = 0.1 mm =
λ/200, (b) t = 0.5 mm = λ/40, and (c) t = 1 mm = λ/20. “PP” (◦), “RW” (+),
full-wave cavity approach (�), and zero thickness iris (dashed line).
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problem will have half the number of unknowns (the thick iris is accounted for as an infinitely
thin iris with the correction factor in the Green’s function) and the corresponding CPU time
will be significantly smaller. Note that in Fig. 6.18, the number of unknowns N corresponds
to the number of unknowns in the full-wave approach.
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Figure 6.18: The CPU time versus number of unknowns for a problem from Fig. 6.16 solved using
the full-wave cavity approach (◦), the “PP” (•) and the “RW” approach (×) with the
same mesh density.

6.7.2 Circular Iris Coupled Filter: Comparison with Measurements

The method has been verified by simulating a circular iris coupled resonator filter shown in
Fig. 6.19. For this problem, the “PP” approach did not provide accurate enough results and
the GF correction factor, calculated using the “RW” approach, has been prefered. For the
correction factors, rectangular waveguides of the cross-sections that circumscribe the cross-
sections of the circular irises are used. As can be seen from Fig. 6.20, the results of the
insertion loss simulated using our approach are in excellent agreement with the measured
values taken from [13], which demonstrates the precision of our technique.

The irises in this practical example are rather thin, being a hundredth of the operating
wavelength. However, neglecting this thickness when simulating the structure would lead to
erroneous results (dashed line in the same figure).
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Figure 6.19: Circular iris coupled rectangular waveguide three-resonator filter [13]. Filter dimensions
are in mm: a = 15.8, b = 7.9, t = 0.218, a1 = 2.577, a2 = 1.142, a3 = 1.125, a4 = 2.592,
l1 = 12.499, l2 = 12.819, l3 = 12.461.
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Figure 6.20: The insertion loss of the iris coupled resonant filter: simulation using the “RW” approach
(solid line) and measured values (+) taken from [13]. The dashed line represents the
simulation with infinitely thin irises.
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6.7.3 Thick Resonating Iris: Comparison with Mode Matching

Finally, a structure consisting of two identical thick irises separated by a distance l (Fig. 6.21)
has been analyzed. The iris thickness of approximately λ/10 in the operating frequency band
is out of the reach of simplified formulation (PP/RW) so we use here the full-wave approach.
The results are compared to the results that can be found in [31], obtained using the Mode
Matching technique. Good agreement between the two methods is observed for both reflection
and transmission coefficients (Fig. 6.22).
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Figure 6.21: Structure consisting of two identical thick irises in rectangular waveguide WR90. a =
22.86, b = 10.16, x = 14.79, y = 10.16, t = 2.67, l = 5.37884. All dimensions given in
mm [31].
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Figure 6.22: Solid lines – our full-wave solver, dashed lines – the Mode Matching technique [31], and
dash-dotted lines – the “RW” approximate method.
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6.8 Conclusion

In this chapter, we have presented and IE-MoM technique for solving rectangular waveguide
discontinuities including thick irises. Waveguide discontinuities here are considered in wider
sense being not only irises and interconnections of waveguides with different cross-sections, but
also dielectric layers of different dielectric properties and metallic patches and slots embedded
inside dielectrics.

The theory for solving this kind of structures is presented in the first part of this chapter. It
is based on the work presented by Eleftheriades et al. [20] and Álvarez-Melcón [21]. The pos-
sibility of having waveguides of different rectangular cross-sections and the modal excitation
are the new features as compared to the cited publications.

The theory has been implemented in a Compaq Visual Fortran program and it has been
verified using a set of benchmarks, ranging from the simple structure of a rectangular wave-
guide filled with two semi-infinite dielectrics, where the results are found to be in excellent
agreement with the theory, through capacitive and inductive irises, where the results are com-
pared to FEST3.0 numerical solver [24], to the case of an open-ended rectangular waveguide
and a single lattice of metallic patches printed on dielectric slabs, where the results are in
good agreement with the measured values found in [25, 27]. The above results would suffice
to justify the pertinence and interest of our developments.

The problem of irises of finite thickness is treated in the second part of this chapter. It is
obvious that above a certain thickness, only a rigorous model treating the irises themselves as
cavities can provide accurate results. But for moderate thicknesses, reasonable accuracy can
be obtained by combining the approximate model for finite thickness apertures introduced
in Chapter 4 with a classical integral formulation of waveguide discontinuities. Then, the
proposed technique reduces by a factor of two the number of unknowns in every iris and
thus includes the effect of irises’ thickness with no increase in the computational complexity
associated to zero-thickness irises. The key point of the approach is to include the thickness
as an analytical correction in the Green’s function that must be used when solving irises
with the equivalence principle. Two practical formulations of this correction factor have been
discussed and implemented with excellent results. The roughest and simplest one (called
PP, parallel plate) can be applied to irises of any shape, but they must be large and not very
thick, because the coupling phenomena corresponding to the irises’ lateral walls are neglected.
If this assumption cannot be made, an alternative way of computing the Green’s function
correction (RW, rectangular waveguide) is proposed, valid for shapes where the waveguide
modes have an analytical expression. This second alternative represents only a slight overhead
in computer time and hence it is always preferable to the zero thickness approach. Moreover,
our approach remains accurate when compared with a full wave approach up to thicknesses of
the order of several hundredths of wavelength. For these thicknesses, frequently encountered
in current technologies, the zero-thickness model does not provide the accuracy requested in
many modern applications.
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7 Conclusions and Future Work

7.1 Thesis assessment

A commonly used numerical procedure for solving Maxwell’s equations in planar microwave
and millimeter wave structures is the Integral Equation in combination with the Method of
Moments (IE-MoM). Although electromagnetic simulation based on Maxwell’s equations is
rigorous, any practical implementation requires some approximations either in the description
of the structure and surrounding environment, or in terms of boundary conditions. IE-MoM
simulators assume an infinite lateral extent of the dielectric layers and ground planes or
a boundary often with rectangular electric walls, for boxed multilayered structures. These
assumptions allow the efficient construction and evaluation of the associated Green’s functions
as shown in Chapter 2. At the same time, the thickness of metallic patches and ground
planes is neglected. However, in many configurations such as cavity backed antennas, irises
in waveguide filters, aperture-fed patches, and thick coplanar lines, the conducting screen
thickness has to be accounted for, because of the technology (self-supporting metallic plates
rather than printed sheets), the frequency (mm- and sub mm-waves) or both. The drive to
analyze more complex environments yields the much more involved Green’s functions, for
which the older numerical tricks and recipes do not apply anymore and any speed-up in the
calculation of Green’s functions and of their convolutions is of paramount relevance.

A fine mesh density used to discretize large and complex planar geometries to guarantee
good solution accuracy, brings, on the other hand, a heavy burden on the CPU in terms
of both memory and time. In a problem of N unknowns, the memory allocation increases
with O(N2) and the simulation time with O(N3). The efficient solution methods are needed
to accelerate the MoM calculations and allow simulation of large structures using standard
desktop computers.

In this thesis, both problems have been addressed. A computationally efficient way of
filling the MoM matrix when solving large and complex electromagnetic problems has been
dealt with in Chapter 3. An approximate but efficient Green’s function computation for
multilayered planar structures containing apertures and irises in ground planes with finite
thicknesses has been presented in detail in Chapters 4–6.

The Subdomain Multilevel Approach (SMA), is an efficient technique for accelerating the
Integral Equation Method of Moments analysis of large complex-shaped printed antennas.
The basic idea of the method is to divide the large electromagnetic problem into several
subproblems or subdomains, by inserting, where necessary, artificial ports. Each subdomain
is simulated separately and current density profiles, called macro-basis functions (MBFs),
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obtained. By demanding current continuity at the artificial ports introduced, the current
distributions are combined to form a set of basis functions for the global MoM system. The
SMA compresses the MoM matrix and reduces significantly the memory occupation. In
consequence, the time needed for inverting the MoM matrix becomes comparable and in some
cases even smaller than the time needed for filling it. This way, the computational bottleneck
is displaced to the filling of the MoM matrix, especially when the interaction between two
MBFs is concerned. Chapter 3 presented an efficient way of computing MBF reaction terms.
The strategy is based on reducing MBFs to equivalent moments. Each subdomain is further
subdivided into smaller subregions, the number of which depends on the size of the subdomain
with respect to the operating wavelength, and in each subregion, the equivalent moment is
found. The MBF reaction term is then computed as a sum of significantly lower number of
equivalent moment-reaction terms bypassing the bottleneck of the standard unrefined SMA.
The accuracy of the proposed method has been verified through several examples, in which
this technique is compared with a conventional MoM approach, with the unrefined SMA and
with measurements. The results showed excellent agreement between all the approaches for
both input impedance and radiation patterns with an improvement in computational time
that reaches 50 % of the CPU time needed for the unrefined SMA.

In parallel with the efficient solution of large complex-shaped antenna problems this thesis
addressed the improvements in the Green’s function computation for boxed and laterally
unbounded multilayered media including thick apertures and irises.

In Chapter 4, a new approximate method for scattering from apertures on thick screens has
been presented. The approximations introduced allow for the thick aperture to be modeled
as an infinitely thin one, where the thickness appears only as a modification in the Green’s
functions of the problem. The correction factor in the Green’s functions is computed sup-
posing that the lateral dimensions of the aperture are an order of magnitude larger than its
thickness. Under this hypothesis, the aperture’s side walls could be neglected and the parallel
plate Green’s functions in computing the correction term are used. This approach allows to
model thick apertures of arbitrary cross-sections and reduces significantly the simulation time
needed when a full-wave cavity treatment of the thick apertures is employed. The gain in
computational time is more than advantageous and it is due to, on the one hand, the adop-
tion of the parallel plate Green’s function for the cavity which accounts for the bulk of the
computational savings (as it obviates the time consuming computation of the cavity Green’s
function). On the other hand, the number of unknowns is twice smaller as we consider the
aperture having only one interface.

Chapter 5 showed that the thick aperture model can be, with minor modifications, fully
incorporated into the traditional integral equations for slots and patch antennas embedded
in stratified media. After having introduced the new complete set of integral equations for a
printed-line fed slot antenna, which involves both electric and magnetic currents, Chapter 5
explored some computationally relevant aspects of the approximate thick aperture model
and provided further numerical verifications. Various tests with increasing slot thicknesses
have been performed and studied. The results have been compared to both a full-wave cavity
approach (with the thick aperture modeled as a cavity section) and measurements. This study
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showed that the approximate model yields good predictions even for rather thick apertures, as
long as the thickness of the aperture remains an order of magnitude smaller than its minimal
lateral dimensions. It must be pointed out that the upper limit reached in the current status
of the method is already highly satisfactory. Many technologies using self-supporting metallic
patches in Ka– and Ku–bands or thick conducting film in millimeter and submillimeter wave
bands yield electrical thicknesses within this limit.

The problem of thick irises inside stratified media waveguides is equivalent to the problem
of thick apertures in multilayered circuits and antennas. However, some waveguide structures,
as resonator filters, are much more sensitive to tolerances and approximations than it is the
case in multilayered media antennas. This calls for more accurate approximations of the
correction factor that accounts for the aperture (or iris) thickness. Chapter 6 has discussed
and implemented two different approaches in computing the Green’s function correction term.
The first approach is the same as in Chapters 4 and 5 of this thesis, where the lateral walls
of the aperture are neglected and the correction term is computed using the parallel plate
Green’s function. This approach is designated as the “PP” method. A more accurate method
in computing the Green’s function correction term, denoted as the “RW” approach, does not
neglect the lateral walls of the iris and uses the rectangular cavity Green’s functions. Both
methods have been compared to the full-wave approach for the case of a thick rectangular
iris inside a rectangular waveguide. For very thin irises, both methods agree well with the
full-wave approach taken as a reference. However, as the thickness grows, the “RW” approach
is shown to be more precise than the “PP” approach. The “RW” approach gives very good
results as compared to the measurements in predicting the transmission coefficient of the thin
iris coupled resonator filter.

7.2 Perspectives

This thesis has resolved several problems in the efficient simulation of planar multilayered
structures that include electrically thick apertures or irises, or that need a large number of
unknowns to be accurately simulated. However, there are several possible improvements that
can be carried out in addition to the developments presented. These and the new ideas that
resulted from the work done in this thesis are discussed in the following paragraphs.

The accurate full-wave analysis of finite periodic structures is important, as they have
wide applications in the electromagnetic engineering, ranging from frequency-selective sur-
faces, photonic or electromagnetic bandgap (PBG or EBG) materials and metamaterials with
negative permittivity and permeability. These are all large-scale problems that require both
excessive memory and computational time. The Subdomain Multilevel Approach with macro-
basis functions is shown to be a successful technique for solving large-scale antenna arrays, and
as such, it is a promising candidate for solving other periodic structures. Its implementation
is simple since it does not depend on the type of the Green’s functions used to characterize
the problem and it can be easily extended to shielded structures. This would allow an effi-
cient modeling of PBG filters similar to the example presented in Section 6.5.4. The number
of lattices of printed elements in this example can be enlarged to five or more. Although
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the number of unknowns can be such as to yield prohibitively large memory occupation and
computational time when conventional MoM analysis is applied, the SMA technique would
bring the study of the problem under the reach of the standard desktop PCs.

In parallel to the application of the SMA to the periodic structures different from the
antenna arrays, some refinements in the definition of macro-basis functions can be investigated.
In the current version of the SMA technique presented and used in Chapter 3 of this thesis, the
MBFs are computed as solutions of small-sized problems that contain isolated subdomains in
which the whole large antenna structure is decomposed. The mutual coupling effects between
different subdomains are taken into account through the interactions between different MBFs
defined on them. Instead of using isolated solutions to obtain MBFs, some dummy cells that
represent the surrounding subdomains to the subdomain on which the MBF is computed,
could be introduced. This would allow to accurately capture the mutual coupling effects
already in the solution of a small-size problem. The number of dummy cells should be large
enough to properly represent the surrounding subdomains and at the same time small enough
not to influence the size and computational time needed to solve the small-size problem. The
MBFs defined in such a way should increase the accuracy of the SMA technique and allow
precise modeling of the mentioned periodic structures.

Thick aperture approximation could be applied to efficiently model the scattering from
periodic apertures in thick metallic screens. To this aim, the approximation can be successfully
combined with the Ewald transformation that is shown to have a very rapid convergence
rate in computing the periodic Green’s functions (Section 2.6.5). Applying the thick aperture
approximation would significantly decrease the simulation time as compared to the one needed
when the aperture is modeled as a waveguide (or cavity) section.

The thickness of the conductive patches and their resistivity are accounted for in most
of the present solvers in approximate manners through an equivalent surface impedance.
Taking into account the duality that exists between infinitely thin plates and apertures, it
would be interesting to investigate the efficient modeling of thick conductive patches, using
Green’s function correction terms as it was the case with apertures in thick conducting screens.
Recognizing, however, that there is no real duality between their thick counterparts, this
problem remains far from trivial.

Conductor losses increase as the square root of frequency and additional losses due to
surface roughness could also be considerably higher as we move from microwave to millimeter
and sub-millimeter bands. An accurate characterization of these losses is a prerequisite in
the mm-wave design. Our approximate model of thick apertures does not take into account
ground plane losses. An interesting issue would be to investigate this problem and try to find
an efficient way of introducing the ground plane losses into the existing model.
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1. I. Stevanović, P. Crespo-Valero, and J. R. Mosig, “An integral equation technique for
solving thick irises in rectangular waveguides,” IEEE Transactions on Microwave Theory
and Techniques, under review.
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3. I. Stevanović and J. R. Mosig, “Efficient electromagnetic analysis of line-fed aperture an-
tennas in thick conducting screens,” IEEE Transactions on Antennas and Propagation,
vol. 52, no. 11, pp. 2896–2903, Nov. 2004.
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6. I. Stevanović, P. Crespo-Valero, and J. R. Mosig, “Nearfield computation in planar
multilayered structures,” in Proc. International Symposium on Antennas (JINA’04),
Nice, France, Nov. 8–11, 2004, pp. 58–59.
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8. I. Stevanović, F. Tiezzi, and J. R. Mosig, “Model validation plan (MVP) of the mixpatch
solver,” LEMA-EPFL, Technical Report, ESA-ESTEC Activity 15538/01/NL/JSC: In-
tegrated Electromagnetic Modeling of Satellite Antennas, Feb. 2003.
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