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Abstract

The significant increase in the available computational power that took
place in recent decades has been accompanied by a growing interest in
the application of the evolutionary approach to the synthesis of many
kinds of systems and, in particular, to the synthesis of systems like
analog electronic circuits, neural networks, and, more generally, au-
tonomous systems, for which no satisfying systematic and general de-
sign methodology has been found to date. Despite some interesting
results in the evolutionary synthesis of these kinds of systems, the en-
dowment of an artificial evolutionary process with the potential for an
appreciable increase of complexity of the systems thus generated ap-
pears still an open issue.

In this thesis the problem of the evolutionary growth of complexity
is addressed taking as starting point the insights contained in the pub-
lished material reporting the unfinished work done in the late 1940s
and early 1950s by John von Neumann on the theory of self-reproducing
automata. The evolutionary complexity-growth conditions suggested in
that work are complemented here with a series of auxiliary conditions
inspired by what has been discovered since then relatively to the struc-
ture of biological systems, with a particular emphasis on the workings
of genetic regulatory networks seen as the most elementary, full-fledged
level of organization of existing living organisms.

In this perspective, the first chapter is devoted to the formulation
of the problem of the evolutionary growth of complexity, going from
the description of von Neumann’s complexity-growth conditions to the
specification of a set of auxiliary complexity-growth conditions derived
from the analysis of the operation of genetic regulatory networks. This
leads to the definition of a particular structure for the kind of systems
that will be evolved and to the specification of the genetic representa-
tion for them. A system with the required structure — for which the
name analog network is suggested — corresponds to a collection of de-
vices whose terminals are connected by links characterized by a scalar
value of interaction strength. One of the specificities of the evolution-
ary system defined in this thesis is the way these values of interaction
strength are determined. This is done by associating with each de-
vice terminal of the evolving analog network a sequence of characters



extracted from the sequences that constitute the genome representing
the network, and by defining a map from pairs of sequences of charac-
ters to values of interaction strength.

Whereas the first chapter gives general prescriptions for the defin-
ition of an evolutionary system endowed with the desired complexity-
growth potential, the second chapter is devoted to the specification of
all the details of an actual implementation of those prescriptions. In
this chapter the structure of the genome and of the corresponding ge-
netic operators are defined. A technique for the genetic encoding of
the devices constituting the analog network is described, along with a
way to implement the map that specifies the interaction between the
devices of the evolved system, and between them and the devices con-
stituting the external environment of the evolved system. The proposed
implementation of the interaction map is based on the local alignment
of sequences of characters. It is shown how the parameters defining
the local alignment can be chosen, and what strategies can be adopted
to prevent the proliferation of unwanted interactions.

The third chapter is devoted to the application of the evolutionary
system defined in the second chapter to problems aimed at assessing
the suitability in an evolutionary context of the local alignment tech-
nique and to problems aimed at assessing the evolutionary potential of
the complete evolutionary system when applied to the synthesis of ana-
log networks. Finally, the fourth chapter briefly considers some further
questions that are relevant to the proposed approach but could not be
addressed in the context of this thesis.

A series of appendixes is devoted to some complementary issues: the
definition of a measure of diversity for an evolutionary population em-
ploying the genetic description introduced in this thesis; the choice of
the quantizer for the values of interaction strength between the devices
constituting the evolved analog network; the modifications required to
use the analog electronic circuit simulator SPICE as a simulation en-
gine for an evolutionary or an optimization process.
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Riassunto

Il notevole aumento della potenza di calcolo disponibile verificatosi negli
ultimi decenni € coinciso con un crescente interesse per l'impiego di
metodologie evolutive per la sintesi di svariati tipi di sistemi, in parti-
colare per la sintesi di strutture quali i circuiti elettronici analogici, le
reti neurali e, piu in generale, i sistemi autonomi, per i quali non sono
state sviluppate finora delle tecniche di progettazione sufficientemente
generali e sistematiche. Sebbene l'approccio evolutivo applicato alla
sintesi di sistemi di questo tipo abbia prodotto risultati indubbiamente
interessanti, il problema costituito dalla definizione di un processo di
evoluzione artificiale in grado di dar luogo a un significativo aumento
della complessita dei sistemi cosi generati appare tuttora aperto.

Questa tesi affronta il problema della crescita evolutiva della com-
plessita prendendo come punto di partenza le intuizioni contenute nei
resoconti delle ricerche svolte (ma rimaste incompiute) verso la fine
degli anni "40 e I'inizio degli anni ‘50 del secolo scorso da John von Neu-
mann nel campo della logica degli automi e della loro auto-riproduzione.
Le condizioni per la realizzazione della crescita evolutiva della comples-
sita stabilite da von Neumann vengono qui integrate da una serie di
condizioni ausiliarie dettate da quanto si € scoperto nel frattempo in
merito alla struttura dei sistemi biologici in generale e al funzionamen-
to delle reti di regolazione genetica in particolare. L’attenzione speciale
dedicata a queste ultime ¢ motivata dal loro status di pit semplice
struttura che possa essere considerata a pieno titolo un livello di orga-
nizzazione degli organismi viventi esistenti.

In quest’ottica, il primo capitolo ¢ dedicato alla formulazione del
problema della crescita evolutiva della complessita, partendo dalla de-
scrizione delle condizioni suggerite da von Neumann per giungere alla
definizione delle condizioni ausiliare ispirate dall’analisi del funziona-
mento delle reti di regolazione genetica. Questa analisi conduce alla
definizione del tipo di struttura che dovranno possedere i sistemi og-
getto del processo evolutivo e alla specificazione della relativa rappre-
sentazione genetica. Un sistema dotato del tipo di struttura richiesto
— per il quale si suggerisce il nome di rete analogica — corrisponde
a una collezione di dispositivi i cui terminali sono collegati da con-
nessioni caratterizzate da un valore scalare che definisce l'intensita



Vi

dell'interazione da esse istituito. Una delle peculiarita del sistema evo-
lutivo definito in questa tesi ¢ la modalita di assegnazione dell'intensita
di queste interazioni. Essa si basa sull'uso di sequenze di caratteri
estratte dalla collezione di sequenze che costituisce il genoma della
rete analogica soggetta a evoluzione e associate ai terminali dei di-
spositivi della rete stessa. Una funzione opportunamente definita si
occupa di associare ad ogni coppia di sequenze il valore dell'intensita
dell'interazione corrispondente.

Se il primo capitolo si limita a dare una serie di indicazioni gene-
rali per la definizione di un sistema evolutivo dotato di potenzialita di
crescita evolutiva della complessita, il secondo specifica tutti i dettagli
di una implementazione di un sistema evolutivo corrispondente a quelle
indicazioni. Questo capitolo definisce dunque innanzitutto la strut-
tura del genoma e degli operatori genetici corrispondenti. Vengono poi
definite la codifica genetica per i dispositivi che costituiscono la rete
analogica e una possibile realizzazione della funzione che determina
I'intensita dell'interazione tra dispositivi del sistema evoluto e tra questi
e i dispositivi che costituiscono 'ambiente esterno del sistema evoluto.
La realizzazione della funzione in questione si basa sull’allineamento
locale di sequenze di caratteri. Vengono descritte le modalita di scelta
dei parametri dell’allineamento locale e alcune strategie che permet-
tono di evitare la proliferazione delle interazioni indesiderate.

Il terzo capitolo ¢ dedicato alla descrizione dei risultati dell’applica-
zione del sistema evolutivo definito nel secondo capitolo ad una serie
di problemi aventi lo scopo di verificare I'adeguatezza della tecnica di
allineamento locale delle sequenze a un ambito evolutivo e le potenzial-
ita del sistema evolutivo completo applicato a problemi effettivi di sin-
tesi di reti analogiche. Infine, il quarto capitolo si occupa brevemente
di alcuni ulteriori temi attinenti alle tematiche trattate nella tesi.

Una serie di appendici & dedicata ad argomenti complementari: la
definizione di una misura di diversita per una popolazione soggetta
a evoluzione che impieghi la rappresentazione genetica introdotta in
questa tesi; la scelta del tipo di quantizzazione dei valori di inten-
sita dell'interazione tra dispositivi che costituiscono la rete analogica
soggetta a evoluzione; le modifiche che & necessario apportare al simu-
latore di circuiti elettronici analogici SPICE al fine di poterlo utilizzare
come motore di simulazione nell’ambito di un processo evolutivo o di
ottimizzazione.
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Chapter 1

Introduction

Overview

This goal of this chapter is to state in informal terms the goal of the thesis,
and to describe graphically its overall structure. This description is meant to
help understand the role of the manifold elements that participate in the devel-
opment of the argument leading to the definition of the artificial evolutionary
system introduced in this thesis.



2 Chapter 1. Introduction

1.1 Autonomous systems and evolution

The Greek roots of the term “autonomous” refer to the capability of a
system of giving to itself (autds) a rule or law (némos). Usually this
law is intended in terms of a behavior suited to the prevailing cir-
cumstances. For example, from an engineering point of view a sys-
tem is considered autonomous if it is capable to perform a function
in a range of environmental conditions, without the need of external
control or guidance.

Biological systems are the living proof of the feasibility of autono-
mous systems capable of adapting themselves to an enormous range
of environments, and to rapidly varying external conditions. Nonethe-
less, the design of artificial systems having comparable characteristics,
appears still an open problem. Given the almost universally accepted
derivation of biological systems from an evolutionary process (Bate-
son, 1979; Bonner, 1988; Mayr, 2001), and the related designer’s lore
according to which (Gall, 1986) “a complex system that works is in-
variably found to have evolved from a simple system that worked”, evo-
lutionary design methodologies have been proposed as a tool for the
development of autonomous systems.

In short, an evolutionary design methodology maintains a popula-
tion of individuals in the form of a genetic description called genome or
genotype! for each individual. Each genotype is mapped by a suitable
function or process into an instance, called phenotype, of the system
to be designed, which can be tested with regard to the function that
it is expected to perform. A value of fitness for each individual en-
sues, which is used to subject the population to a process of differen-
tial reproduction accompanied by the action of genetic operators that
are intended to mimic the process of mutation and recombination that
characterizes the replication of the genomes of biological populations.

The evolutionary approach has been applied to the design of many
kinds of systems, and, in particular, within the realm of evolution-
ary robotics, to the development of control systems for autonomous
robots (Floreano and Mondada, 1996; Harvey et al., 1997; Nolfi and
Floreano, 2000). The evolution of autonomous robots able to perform
simple tasks in simple environments has indeed encountered consid-

!Genome and genotype will be used almost interchangeably in this thesis, al-
though, strictly speaking, “genome” refers to the genetic material considered as a raw
sequence of symbols, whereas “genotype” refers to the genetic description considered
as the structured repository of information which is used to produce the phenotype.
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Section 1.2. Darwinian evolution 3

erable success. However, the current approach met with considerable
difficulties when applied to the development of controllers for signifi-
cantly more sophisticated tasks (Brooks, 2001a,b).

The main difficulty, in this respect, appears to be the lack of a con-
vincing methodology for achieving an incremental increase of complex-
ity? during the evolution and for producing a truly open-ended evolu-
tionary process (Pattee, 1973). In fact, in their simplest form, evolu-
tionary approaches employ genotypes having fixed structures, along
with simple, direct mappings of the genotype space to the phenotype
space (Boers and Sprinkhuizen-Kuyper, 2001), which establish a one-
to-one correspondence between parts of the genotype and phenotypic
traits (Dellaert and Beer, 1994; Nolfi and Floreano, 2000; Boers and
Sprinkhuizen-Kuyper, 2001). It has been argued (Harvey, 1997) that
this amounts to the reduction of evolution to nothing more than a clas-
sical optimization technique, that is, to the search of a solution within
a fixed, predefined space. Clearly this has little chance of leading to
radical innovation (Schuster, 1996). The goal of this thesis is the defi-
nition of an evolutionary methodology for the synthesis of autonomous
systems, addressing explicitly the problem of the potentiality for an
evolutionary increase of complexity.

1.2 Darwinian evolution

In order to understand the origin difficulties encountered by evolu-
tionary approaches to the synthesis of systems it is useful to review
the ideas upon which is based the explanation of the evolution of nat-
ural organisms. The Darwinian theory of evolution by natural selection
derives the adaptation of organisms to their environment as a conse-
quence of the following four principles (Darwin, 1859; Lewontin, 1974;
Brandon, 1990).

The principle of variation. There is variation in the phenotypic traits
(physiology, morphology, and behavior) among the individuals of
a population.

The principle of heredity. The variation is to some degree inheritable.

2The term complexity can be temporarily interpreted with its ordinary meaning,
which refers loosely to the number and diversity of elementary units interacting to
produce a given function. The next chapter explores further the problem constituted
by the definition of this term.
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4 Chapter 1. Introduction

The principle of natural selection. Different variants leave different
numbers of offspring in subsequent generations.

The principle of the struggle for existence. Variations that are use-
ful to the organisms tend to increase their reproductive success.

The evolutionary design methodology described briefly in the previous
section is obviously meant to implement those principles: the value
of fitness associated with each individual system reflects its degree of
functionality and influences its differential reproduction, with the ob-
jective of implementing the principle of natural selection and that of
the struggle for existence; the action of the genetic operators acting on
the genomes of the reproducing systems is aimed at introducing new
variation in the offspring population while preserving to some degree
the characters of the genome of the parents, with the objective of im-
plementing the principle of variation and that of heredity.

The actual realization of the principle of heredity, however, is far
from trivial. The difficulty lies in the fact that it is not a simple resem-
blance of the phenotypic traits of an individual with those of its parents
that is sought but, rather, a resemblance of the variation of the pheno-
typic traits or, better, of the variation of the functionality corresponding
to those traits. This important and often overlooked point can be bet-
ter understood from an analysis of Figure 1.1, which is drawn from
an evolutionary genetics textbook (Maynard-Smith, 1998). In the con-
text of the evolution of artificial systems, the horizontal axis can be
thought of as corresponding to a measure of the functionality of the
system, the curves and the vertical lines represent the distribution and
the mean, respectively, of the functionalities of the unselected popu-
lation, of the collection of individuals selected as parents, and of the
offspring population.

Let us first imagine that the distance denoted by R in the figure
is actually zero, so that the distribution of the offspring population is
identical to that of the unselected population, despite the fact that —
due to the effect of selection — the distribution of the selected parents
population is shifted to the right relatively to that of the unselected
population. This would correspond to a case where the variation of
the functionality is not heritable (note that the parameter h* = R/S
defined as heritability in the original caption of the figure is indeed
zero in this case). It is easily seen that in this case the execution of
a cycle of selection and reproduction does not result in any change in
the distribution of the values of functionality of the individuals in the

28D MARCH 2005



Section 1.2. Darwinian evolution 5

l
[ Unselected
[ population
|
|
|
! Selected
parents
—3S
Offspring
generation
b R

Definition of some terms used in describing selection. The intensity of selection, I = S/o,,: the
realized heritability, h? = R/S.

Figure 1.1:  Figure 6.9 with its original caption from (Maynard-Smith, 1998)
illustrates the fact that the concept of inheritance in the theory of evolution by
natural selection refers to the variation exhibited by the evolutionary relevant
characteristics of the selected parents, rather than to the characteristics of the
parents. The effect of selection is to shift the distribution of the selected parents
relatively to that of the unselected population, but evolution can take place only
if the distribution of the offspring population is also shifted to some degree
relatively to that of the unselected population, that is, if the characteristics of
the variation of the selected parents are to some degree inheritable.

population and, therefore, no evolution of the functionality can occur,
no matter how many generations are observed.

If, on the other hand, the value of R is positive, so that the distrib-
ution of the functionality of the offspring population is shifted towards
larger values relatively to that of the unselected population, a selection
operated on the offspring population can result in a new collection of
selected parents (not shown in the figure) whose distribution is shifted
to the right relatively to the parents of the previous generation. As long
as the value of R remains positive — that is, as long as the variation
of functionality remains to some degree inheritable — the functionality
can thus evolve, whereas as soon as R becomes null the evolutionary

28D MARCH 2005



6 Chapter 1. Introduction

improvement of functionality comes necessarily to a halt.

Although this is a very simplified model of what we can expect to ob-
serve in an actual artificial evolutionary scenario, it conveys the spirit
of the principle of heredity in its referring to the inheritance of the vari-
ation of the functionality rather then in that of the phenotypic traits
per se. In other words, in order for evolution to proceed, the operation
of reproduction with mutation is required to produce the right kind of
variation in the offspring population and, on the other hand, once the
production of the right kind of variation is guaranteed, no additional
obstacles exist for the realization of an effective artificial evolutionary
process.

In the next chapter the problem of the realization of this condition is
considered, first from an abstract point of view, and then from the per-
spective of our current knowledge of the working of biological systems.
This will lead to the formulation of a series of prescriptions for the im-
plementation of an artificial evolutionary system. In Chapter 3 these
prescriptions will be turned into the details of an actual evolutionary
system that can be implemented on a digital computer. In Chapter 4
the newly defined evolutionary system will be applied to a series of evo-
lutionary problems, with the aim of assessing the evolutionary poten-
tial of its separate components and of the whole system when applied
to the synthesis of systems of engineering relevance. Finally, Chapter 5
is devoted to an analysis of the limitations of the proposed evolutionary
systems and to a description of the further developments that can be
expected from the application of the principles that presided over its
definition.

1.3 Structure of the thesis

The diagrams in the remaining pages of this chapter give a schematic
overview of the thesis. The diagrams are meant to be used as a refer-
ence during the reading, assisting in the comprehension of the struc-
ture of the thesis, in the situating of each subject in the global con-
text, and in the understanding of the relations between the different
parts of the thesis. The rectangles with a dark background refer to
the high-level nodal points of the argumentation, whereas the rounded
rectangles detail the structure of the nodal point from which they orig-
inate, with the horizontal links providing either a further level of detail
about particular subtopics (continuous lines) or a reference to related
accessory topics (dotted lines).
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Chapter 2

The growth of complexity!

Overview

The goal of this chapter is to introduce the problem of the evolutionary
growth of complexity and to frame the objectives of the thesis in the context of
that problem. The chapter starts with an analysis of the application of artificial
evolution to the synthesis of autonomous systems in relation with the problem
constituted by the necessity to obtain incrementality and open-endedness of
evolution. First, John von Neumann'’s insights on the problem of the growth
of complexity — which suggest the adoption of a system with a genotype dis-
tinct from the phenotype and a process of decoding of the genotype that can
tolerate major reorganizations of the genotype — are discussed. The status of
the complexity-growth conditions devised by von Neumann is then analyzed
and the need to integrate those conditions with some additional evolvability
conditions is argued. These additional conditions are investigated by analyz-
ing and abstracting the working of genetic regulatory systems, considered as
the first functional level of expression of the genotype-to-phenotype mapping.
Finally, the principles that will guide the assembly of the evolutionary sys-
tem presented in this thesis are formulated. The main points are the focusing
on the evolution of network-like systems called analog networks that are de-
coded from genomes whose bio-inspired structure and decoding tolerates the
action of a variety of genetic operators, which can produce both smooth and
abrupt transformations in the structure of the decoded network. The chapter is
concluded by a review of related work, focused on existing systems for the
evolution of genetic regulatory networks, analog electronic circuits, and neural
networks.

IParts of this chapter were published in (Mattiussi and Floreano, 2004b).
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2.1 Complexity

John von Neumann was probably the first to address in formal terms
the problem of the evolutionary increase of complexity. Although his
work on self-reproducing automata was left unfinished, his notes on
the subject were edited and published along with the transcript of a
series of lectures on the “Theory and Organization of Complicated Au-
tomata” (von Neumann, 1966). In these lectures von Neumann does not
attempt a formal definition of “complexity”; however, he clearly recog-
nizes the importance of this concept — to which he often refers with the
alternative term “complication” — to the point of entitling two of the lec-
tures that compose that work: “The Role of High and of Extremely High
Complication” and “Re-evaluation of the Problems of Complicated Au-
tomata - Problems of Hierarchy and Evolution”. In the latter he writes

There is a concept which will be quite useful here, of which
we have a certain intuitive idea, but which is vague, un-
scientific, and imperfect. This concept clearly belongs to the
subject of information, and quasi-thermodynamical consider-
ations are relevant to it. I know no adequate name for it, but
it is best described by calling it “complication.” It is effectivity
in complication, or the potential to do things. I am not thinking
about how involved the object is, but how involved its purpo-
sive operations are. In this sense, an object is of the highest
degree of complexity if it can do very difficult and involved
things. (von Neumann, 1966, p. 78) [emphasis added]

Today, we still do not have a satisfying formal definition for the intuitive
concept described by von Neumann (Edmonds, 1999). In this thesis
the term “complexity” will be used in the heuristic sense indicated by
von Neumann in the above quotation, that is, as an indicator of the
potential of a system to engage in purposive operation.

Remark: Concerning the problem of a formalization of the concept of
complexity, it interesting to quote von Neumann further

There is thus this completely decisive property of complex-
ity ... Now, none of this can get out of the realm of vague
statement until one has defined the concept of complication
correctly ... There is nothing new about this. It was exactly
the same with ... the concepts of energy and entropy ... The
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simplest mechanical and thermodynamical systems had to
be discussed for a long time before the correct conceptions
of energy and entropy could be abstracted from them. (von
Neumann, 1966, p. 80)

The history of Probability Theory as described by Jaynes (1986, 2003)
can suggest how an acceptable formalization will eventually emerge.
The crucial point is the realization that complexity - like entropy — can-
not be considered a property of the system alone. As the value of en-
tropy that we attribute to a system depends on our state of information
about the system? (without becoming arbitrary, since two observers
with the same state of information about the system will attribute to
it the same value of entropy), the value of complexity can probably be
defined only in relation to the kind of behavior of the system which
interests us (possibly in view of prediction or control of this behavior).
It is indicative, in this respect, that in relating the concept of com-
plexity to the subject of information von Neumann used an expression
that brings to mind the view of “Probability Theory as Extended Logic”
advocated by Jaynes (1990, 2003)

The view that probability is an extension of logics is not triv-
ial, is not generally accepted, and is not the major interpreta-
tion of probability. It is however the classical interpretation.
... There’s a great deal in other modern theories, for instance,
in quantum mechanics, which inclines one very strongly to
take this philosophical position, although the last word about
this subject has certainly not been said and is not going to
be said for a long time. (von Neumann, 1966, pp. 58-59)

2.2 Universal constructors

We owe to McMullin (1992, 2000) a persuasive analysis of the history
of the reception of von Neumann’s ideas in the scientific community.
According to this analysis, there has been since the publication of (von
Neumann, 1966) a tendency to assume that the problem that von Neu-
mann was trying to solve with the definition of his automaton was that
of self-reproduction, while in reality the focus of that work was the

2Although many physicist will object to this statement, this was the position of
von Neumann and also that of Wolfgang Pauli, as testified by the quotations included
in (Popper, 1982, Chapter I, Section 5). Note that in that essay Popper opposes
strongly the interpretation supporting the subjective status of entropy.
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14 Chapter 2. The growth of complexity

problem of the growth of complexity. Supporting this interpretation is
the fact that subsequent work (for example, Langton 1984) has proved
that self-reproduction alone can be obtained with much simpler means
than those employed by von Neumann.

A peculiarity of von Neumann’s work is the effort to include in his
automaton a universal constructor capable to interpret the description
of an arbitrary automaton and use that description to build an ac-
tual instance of it3. The radically simpler self-reproducing automata
introduced by subsequent authors, on the other hand, achieve their
simplicity by giving up this key property. The following extract from
(Langton, 1984) is eloquent in this respect

[In this paper] self-reproduction in cellular automata is dis-
cussed with reference to the models of von Neumann and
Codd. The conclusion is drawn that although the capacity
for universal construction is a sufficient condition for self-
reproduction, it is not a necessary condition. Slightly more
"liberal" criteria for what constitutes genuine self-reproduc-
tion are introduced, and a simple self-reproducing structure
is exhibited which satisfies these new criteria.

Langton’s self-reproducing automaton, like von Neumann’s, is com-
posed of a description and a constructor. The rules of the “universe”
where Langton’s automaton is defined ensure that the interaction of
the description with the constructor leads to the production of replicas
of the automaton. Moreover, like von Neumann’s, Langton’s replica-
tion process ensures that a copy of the description is transmitted to
the new automaton without being interpreted. The fundamental dif-
ference between Langton’s and von Neumann’s automata is that the
structure which acts as constructor in the former is not intended to
be universal but is instead specifically targeted to the particular de-
scription of that automaton. The resulting automaton is indeed self-
replicating and much simpler than von Neumann’s, but this simplicity
comes at a price: the constructor is not explicitly designed to tolerate
a large ensemble of mutations of the description. We could say that
Langton’s automaton is specified to be self-replicating, but not neces-
sarily self-reproducing (although, as shown in (Salzberg et al., 2004)
and in (Salzberg and Sayama, 2004), it still has some evolutionary po-

3The constructor is “universal” in the sense that it can build any machine that can
be described in the format required by the constructor, not in the sense that it can
build any machine tout court (Taylor, 2001).
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tential), whereas von Neumann’s is — at least in principle — defined to
be truly self-reproducing?*.

We can summarize all this saying that von Neumann had a double
insight: first, that to build a system with the potential of evolutionary
growth of complexity it is useful to maintain a description of the system
(a “genome”) distinct from the machinery that builds the system (the
constructor); second, that the constructor must be able to decode the
description when the description is subjected to a wide range of muta-
tions spanning the space of descriptions of a large collection of systems.
Note that we are talking here of a potentiality, which must not be con-
fused with the certainty of the growth of complexity. Intuitively, most of
the mutation paths will lead to non-viable systems or to systems with
smaller complexity (Edmonds, 1999; McMullin, 2000) and, in fact, nat-
ural evolution does not lead necessarily to an increase of complexity of
the evolved organisms (McShea, 1991; Maynard-Smith, 1994, p. 469).
However, in the spirit of von Neumann’s observation quoted above, ac-
cording to which complexity of an organism is related to “how involved
its purposive operations are”, if the evolutionary scenario can accom-
modate a niche whose exploitation requires the execution of involved
purposive operations, the exploitation of that niche has the potential of
complexity growth as a necessary prerequisite.

Note that von Neumann'’s analysis is based on the hypothesis of a
fixed constructor operating on a mutable description. One could con-
template the possibility of subjecting also the constructor to mutation
and therefore to evolution. Von Neumann considered briefly this pos-

4As observed by Sipper et al. (1997, p. 89)

It is important to distinguish between two distinct terms, replication
and reproduction, which are often considered synonymous. Replication
is an ontogenetic, developmental process, involving no genetic operators,
resulting in an exact duplicate of the parent organism. ... Reproduction,
on the other hand, is a phylogenetic process, involving genetic opera-
tors such as crossover and mutation, thereby giving rise to variety and
ultimately to evolution...

and in the same vein, von Neumann (1966, p. 86) writes

One of the difficulties in defining what one means by self-reproduction
is that certain organizations, such as growing crystals, are self-
reproductive by any naive definition of self-reproduction, yet nobody is
willing to award them the distinction of being self-reproductive. A way
around this difficulty is to say that self-reproduction includes the ability
to undergo inheritable mutations as well as the ability to make another
organism like the original.
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sibility but discarded it (von Neumann, 1966, p. 86) on the grounds
of the low probability of obtaining a working constructor. This was
probably a wise choice, given the goals of von Neumann’s work and the
simplifications that derive from keeping the constructor fixed. Nonethe-
less, the evolutionary potential of a system that can mutate both the
description and the constructor is arguably greater than that of a sys-
tem that limits the mutations to the description (McMullin, 1992, 2000;
McMullin et al., 2001). In fact, it is difficult to conceive the evolution
of existing organisms without the parallel evolution of both aspects,
given the great complexity of their constructing machinery. On the
other hand, once this complex “universal” constructor has evolved or
has been defined by an experimenter, it is probably true that — as con-
jectured by von Neumann — most mutations will interfere with its oper-
ation, and the evolutionary process will concern almost exclusively the
description.

Von Neumann also considered and discarded for fear of logical para-
doxes the possibility of a machine that does not use a separate descrip-
tion and reproduces by self-inspection (von Neumann, 1966, p. 122;
McMullin, 1992, p. 175; Pattee, 1995b, pp. 10-11). Laing (1977)
proved that von Neumann’s worries were unfounded. However, the
reproduction by self-inspection can present some practical difficulty
(Pattee, 1995b; McMullin et al., 2001) and apparently no existing or-
ganism reproduces using that approach. Looking for other possible
reproduction strategies not based on the use of a separate description,
we can consider that not all information is transmitted genetically in
the reproduction of existing organisms. For example, unicellular or-
ganisms display a reproduction mechanisms that is in part based on
the genetic information and in part on the structural information con-
stituted by the reproducing cell (Harold, 2001, pp. 99-115), and even in
sexually reproducing multicellular organisms there is a lot of informa-
tion that is conveyed by the spatio-temporal cellular organization of the
zygote (Jablonka and Lamb, 1995; Harold, 2001). However, the struc-
tural information transmitted by non-genetic means appears limited to
spatio-temporal configurational information, whereas a corresponding
transmission of, say, regulation or signalling network structure, or of
the global structural information of multicellular organisms appears
operationally much more problematic.

We can therefore conclude that the distinction of genotype (descrip-
tion) and phenotype (decoded description), the presence of a “univer-
sal” constructor for the description along with a high reorganizability
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of the description, and the possibility of generating in this way a po-
tentially unlimited variety of decoded systems are instrumental to the
implementation of an evolutionary system endowed with the potential
of growth of complexity. Let us call these conditions “von Neumann’s
complexity-growth conditions”.

2.3 Auxiliary conditions

The previous section was deliberately vague about the status of von
Neumann’s complexity-growth conditions. Are these conditions neces-
sary for the open-endedness and complexity-growthness® of an evolu-
tionary system? Are they sufficient?

In a mathematical sense these conditions are almost certainly not
necessary. As mentioned above, there appears to be no fundamental
logical obstacle in the reproduction of a system by self-inspection, or
using the existing system as template for the offspring, and both these
processes can include inheritable mutations. Hence, at least the dis-
tinction between genotype and phenotype does not appear a necessary
prerequisite for the evolutionary growth of complexity. On the other
hand, the production of a constructive proof of the sufficiency of von
Neumann’s complexity-growth conditions was presumably the goal of
the work reported in (von Neumann, 1966), and one of the reasons of
the choice of the formal universe of cellular automata for the imple-
mentation of the system.

From a practical point of view, however, the von Neumann condi-
tions are not sufficient for there being a reasonable probability of actu-
ally observing complexity-growth evolution within an artificial evolution
experiment. The difference is that from a mathematical point of view
a vanishingly small non-null probability of production of a certain out-
come is often sufficient to prove that in a suitably defined limit sense
a process will almost certainly produce that outcome. From a practi-
cal viewpoint, instead, we demand that the probability of the process
actually producing the desired outcome be sufficiently high given the
limited resources and time available for the experiment. More specifi-
cally, within an artificial evolutionary experiment we work with a finite
population that we can think of as moving from generation to gen-
eration within an abstract genotype space according to the effect of

5“Complexity-growthness” is admittedly a neologism, shaped on the technical term
“old-growthness” used in forestry (Holt et al., 1999).
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the genetic operators acting in the genotype space and of the selec-
tion operator acting in the phenotype space (Lewontin, 2001). Given
an initial population and preassigned resources for the evolutionary
experiment, we could in principle calculate the probability of the pop-
ulation accessing certain regions of the genotype and phenotype space
(Fontana and Schuster, 1998a,b; Stadler et al., 2001). The fact of sat-
isfying von Neumann’s complexity-growth conditions does not in itself
ensure a significant probability of access to all the regions of the phe-
notype space. For example, changes that require the concurrence of
two or more independent and improbable mutations of the genomes
of existing individuals, would have a negligible probability of being ob-
served (Conrad, 1972). If all the “interesting” phenotypes are confined
to regions of the space that have a negligible access probability, the
evolutionary process will almost certainly not produce any such phe-
notype. On the other hand, the remarks made in the previous section
about the difficulty of achieving a substantial growth of complexity us-
ing reproduction by self-inspection or by template copy, suggest that
the distinction of genotype and phenotype, although not necessary in
a mathematical sense for the evolutionary growth of complexity, is still
practically required for it (Pattee, 1981).

The moral of this story is that we must add some auxiliary con-
ditions to von Neumann’s conditions to obtain a set of evolutionary
complexity-growth conditions that will work in practice, that is, a sys-
tem that actually possesses evolvability (Kirschner and Gerhart, 1998;
Wagner and Altenberg, 1996). These conditions should ensure the
practical accessibility of all the phenotype and genotype space (or, at
least, of all its interesting regions - although this concept could be
difficult to define) on the part of the evolving population. It is clearly
easy to ensure the accessibility of all the regions of the genotype space,
since the “motion” of the population is due the genetic operators acting
in the genotype space, and we are free to define their properties and
to assign their probability at will. However, the probability of survival
and reproduction of the individuals is determined in the phenotype
space. Therefore, these auxiliary conditions for the growth of com-
plexity must concern primarily the mapping from genotype to pheno-
type (Wagner and Altenberg, 1996).

As discussed in Chapter 1, this can be rephrased in more Darwinian
terms. The march of an evolutionary process based on selection re-
quires the presence of genetic variation, or diversity, that is felt at the
phenotypic level and can be exploited by selection. A consequence of
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the action of the selection process is that the selectively useful variation
existing at a certain instant in the population tends to be “used up”,
and must be regenerated in order for evolution to continue its opera-
tion. The action of the genetic operators must ensure this regeneration
of variation. However, it is not sufficient to ensure the regeneration
of some arbitrary genetic diversity, and not even the regeneration of
phenotypic diversity if this diversity cannot be exploited by selection
to ensure the march of evolution. What we must instead ensure with
some auxiliary conditions is the generation of diversity that is useful
in selective, evolutionary terms. This means that, given a genotype
with its corresponding phenotype, the genotypes that can be accessed
with non negligible probability must permit the gradual evolutionary
exploration of the phenotype space, without being systematically frus-
trated by the generation of non-viable or evolutionary grossly inferior
phenotypes (Stadler et al., 2001).

The inquiry into these auxiliary “practical evolvability and complex-
ity-growth conditions” will proceed in the direction opposite to that fol-
lowed by von Neumann. When von Neumann formulated his condi-
tions, the molecular details of the workings of the genome where still
unknown, and his insights proceeded from the logic of the argument he
was about to prove.® Since the goal of this thesis is not the formaliza-
tion of evolvability and complexity-growth conditions but the definition
and implementation of an artificial system actually displaying those
properties, we will instead capitalize on the current knowledge of those
molecular details trying to capture the mechanism that in biological
organisms ensures the required evolutionary complexity-growth condi-
tions.

2.4 Levels of organization

In the previous section it was argued that it is worth examining in detail
the characteristics of the genotype-to-phenotype mapping of biological
organisms since it plays a crucial role in determining their evolution-
ary complexity-growth potential. The phenotype of a complex organism,
however, is organized into a functional hierarchy composed of several
levels of organization (Grene, 1987; Miller, 1978) and it would be un-
wise (as well as unpractical) to consider at this point the unfolding of

6 It is therefore telling that many of the concepts he formulated were later found
to have a biological counterpart.
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the genetic description into the whole hierarchy of levels. Fortunately,
this unfolding can be analyzed level by level, with each phenotypic level
of organization representing an ensemble of dynamic potentialities that
are constrained by the next higher level to determine both its func-
tionalities and a new ensemble of dynamic potentialities (Pattee, 1973;
Polanyi, 1968). These, in turn, are harnessed by yet another level, and
so on, up to the highest hierarchical level that does not transcend the
organism’s individuality (where, possibly, starts a sequence of social
levels of organization).

To assess the properties of genotype-to-phenotype mapping it is
therefore convenient to start by focusing on the mapping of the geno-
type into what is currently understood as one of the basic phenotypic
functional level of cell organization: that of the genetic regulatory net-
work (GRN)?. It is important to realize that this can be considered a
complete genotype-to-phenotype mapping, since genetic regulatory net-
works are the information processing infrastructure of unicellular or-
ganisms (Bray, 1995; Welch, 1996; Simpson et al., 2004a; Weiss et al.,
2003) and their operation has a fully realized functional significance
irrespective of any higher level of functional and morphological organi-
zation. Moreover, GRNs have the advantage of being a context where a
good part of the information exchange takes place internally, between
elements of the system, and the system is therefore in some measure
free to choose its own coding, unhampered by external constraints. As
will be shown in Section 2.7, this translates into a particular simplic-
ity of the interaction between the elements that constitute the nodes
of the network, and, therefore, into a particular simplicity of their ab-
stract models. Note that once a convincing evolutionary process has
been established at this basic level of organization, nothing prevents
us for exploring the possibility of enhancing the potential of evolution-
ary complexification of the system by considering also the unfolding
of further levels of organization, especially in relation to the process
of development of compartmentalized (for example, multicellular) and
hierarchically organized systems (Pattee, 1973; Conrad, 1990).

7Strictly speaking, one can identify functional substructures within the level of
organization of the genetic regulatory network of a cell (Alm and Arkin, 2003; Barabasi
and Oltvai, 2004). However, the properties of the genotype-to-phenotype mapping for
these substructures is the same as that of the whole network.
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2.5 Abstracting the biological constructor

Even moderately detailed reviews of what is currently known on the
mapping of genotypes into the phenotypes of biological organisms and
on the structure and function of GRNs, turn easily into bulky vol-
umes (for example, Alberts et al., 2002; Lewin, 2004; Watson et al.,
2003b). The exposition will therefore be limited to a brief, simplified,
and schematic description of some aspects in a perspective that is func-
tional to our goal.

From an abstract point of view, the genome of a biological organ-
isms is a symbolic description constituted by one or more sequences
of characters belonging to an alphabet of four letters (the genetic or
DNA alphabet). With some abuse of terminology,® a single sequence
will be called a chromosome. Mixing the abstract and molecular levels,
the characters that enter each chromosome can be called nucleotides.
Within each chromosome there are substrings (i.e., sequences of adja-
cent nucleotides)® called coding regions or transcriptional units that are
subject to a process called transcription by a molecular machine called
RNA polymerase. The result of the transcription of a coding region is
still a sequence of characters, which is the transliterated version of the
gene using another alphabet of four letters (the RNA alphabet), pos-
sibly with some transcription error. This new sequence of characters
is typically subjected to some reorganization such as the excision of
one or more substrings. The reorganized string can then have different
fates. In the case that interests us now,° it is subjected to a transla-
tion which corresponds to an encoding that substitutes — possibly with
some translation error — non-overlapping triplets of nucleotides with
characters belonging to an alphabet of 20 letters (the amino acid al-
phabet). Since there are 64 different nucleotide triplets, the mapping
from the set of nucleotide triplets to the 20 letter alphabet has a many-
to-one nature.

Up to this point, the symbolic description constituted by the original

8A real chromosome is composed of two sequences of nucleotides, but since these
two sequences are complementary each single sequence carries the information con-
tent of the complete chromosome.

9A subsequence of a sequence of characters (or, which is the same, of a string) is
a sequence obtained deleting zero or more elements of the original sequence. Hence,
a subsequence is composed of characters that are not necessarily adjacent in the
original sequence. On the contrary, a substring of a string is composed of adjacent
characters of the original string.

10We will consider later the direct use of fragments of the transliterated string as
control elements in GRNs.
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coding region has been simply converted into another symbolic descrip-
tion by a many-to-one mapping. We have remained within a symbolic
realm where the correspondence with an abstract space of character
sequences almost imposes itself. From this point starts a process that
leads to the formation of proteins and which is based heavily on the
real-world physical and chemical dynamics. To understand the impli-
cations of this further process from the point of view of the genotype-
to-phenotype mapping, it is preferable to describe it in concrete rather
than abstract terms. To this end, it is sufficient to specify that the re-
sulting sequences from the 20 letter alphabet are materially composed
of amino acids and correspond to polypeptide chains. A polypeptide
chain is a chemical structure existing in the three-dimensional space.
Due to the kind of chemical bonds that exist within amino acids and
between the amino acids, the polypeptide chain is not a rigid struc-
ture but can assume many different three dimensional conformations.
However, in an environment that allows the formation of weak chem-
ical bonds (e.g., an aqueous solution with suitable physico-chemical
characteristics and, of course, the interior of a living cell) a polypeptide
chain folds into a unique three-dimensional structure.!! The resulting
molecule is a protein, and the process of polypeptide chain folding is
called for short protein folding. The whole process that transforms a
gene into a protein is called gene expression.

2.6 Devices interacting via sequences

By changing how much the proteins encoded in the genome are pro-
duced - from a minimal, basal level of production to the maximum rate
of expression of the corresponding protein given the prevailing internal
conditions — a cell can adapt its activity to the changing requirements
of its environment and of its life cycle. This process is called regulation
of gene expression or, for short, gene regulation. The term gene is used
here to refer collectively to all the parts of the genome that are involved
in the production of a given protein (or group of proteins, if the coding
region corresponds to more than one protein) and in the regulation of
this production.!? This section will describe schematically how gene

In some cases the presence of additional proteins called chaperones is required to
guide the folding process (Lewin, 2004).

12More generally, the term gene will be applied to parts of genome that are in-
volved in the transcription of a given transcriptional unit and in the regulation of that
transcription. This includes the case leading to the production of proteins which is
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regulation is performed in cells. The goal of this analysis is to show
how gene regulation can be interpreted abstractly as the operation of
a network of devices whose interaction is determined by sequences of
nucleotides belonging to the genome.

As described above, gene expression starts with the transcription of
the coding region by a molecular machine called RNA polymerase, and
leads eventually to the production of one or more proteins. To initiate
transcription, an instance of RNA polymerase must be recruited to the
gene and put in the correct position relative to the start of the coding
region. This phase is the one where gene regulation is most commonly
performed (Ptashne and Gann, 2002, p. 5). A region of the genome
called promoter, positioned near the start of the coding region, is re-
sponsible for attracting the RNA polymerase to the gene. In most cases,
however, the mere existence of the promoter is not sufficient to guaran-
tee the correct initiation of the transcription, and the expression of the
gene proceeds at a very low level unless specific gene regulatory proteins
called activators are bound to the genome. An activator recognizes a re-
gion of the genome called activator binding site situated typically (but
not necessarily) in the vicinity of the coding region and interacts with
the RNA polymerase in a way that facilitates the initiation of the tran-
scription. The final result is positive regulation of the gene, that is, an
increase of its level of expression. An opposite effect is caused by other
gene regulatory proteins called repressors, which recognize and bind
to regions of the genome called (for historical reasons) operators and
interfere with the execution of the transcription. In these cases the re-
sult is negative regulation of the gene, that is, a decrease or a zeroing
of its level of expression. The regions of the genome that act as binding
sites for activators or repressors are called regulator binding sites or,
generically, regulatory regions or regulatory sequences.

Cells use these mechanisms of regulation in the biological circuits
that constitute the GRNs. In these circuits each type of molecule acts
as a signal whose amplitude is represented by the local concentration
of the molecule. The elementary circuit element is constituted by a
regulatory gene which is activated or repressed by a protein A and pro-
duces a protein B. In turn, the protein A is produced by another gene,
and the protein B can act as activator or repressor for still another
gene. We have thus a scenario where the sequence of nucleotides that
constitutes a regulatory gene leads to the production of a signal repre-

described here, and the case leading to the production of fragments of RNA endowed
with regulatory activity, which is described in Subsection 2.7.1, below.
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sented by the molecules of the protein encoded by the gene. This signal
interacts with another sequence of nucleotides to regulate the level of
expression of another gene, and so on.

We can reformulate all this saying that a gene (along with the tran-
scription machinery) acts as a device which accepts input signals and
produces output signals,!® and where the strength of the interaction
between the output of a device and the input of another device - i.e.,
the strength of the interaction between the genes - is determined by
the relationship between a pair of sequences of nucleotides. To ob-
tain a graphic description of this scenario, we can represent each gene
as a device having a sequence of nucleotides associated with each in-
put and with each output, as if each sequence constituted a label at-
tached to the corresponding input or output.'* In this representation
the regulatory regions contain the sequences of nucleotides attached as
sequences of characters (nucleotides) to the input terminals of the de-
vice, whereas the coding regions contain the sequences of nucleotides
attached as labels to the output terminals of the device (Figure 2.1).

Using this representation for the genes, a GRN can be represented
as a network of devices, where each gene is represented by a device,
and the connections between the devices is determined by the inter-
action between the gene products (which can be proteins or RNA frag-
ments) and the gene regulatory regions. It can be shown that the in-
teraction between a pair of genes can be summarized by a scalar value
that gives the strength of the interaction, and appears as a parameter
in the equations that model the GRN and are used for its numerical
simulation (Bower and Bolouri, 2001; Kitagawa and Iba, 2002; White-
head et al., 2004). Since the strength of the interaction between two
genes depends on the sequences of nucleotides that constitute the cod-
ing and regulatory regions of the two genes, we can think of the value
of interaction strength between two genes as obtained through a map!®
from pairs of sequences to scalar values of interaction strength. Since —
as explained above — the genes can be considered abstractly as devices,
we will call this map device interaction map. The final result is a net-

13In general, many regulatory proteins, that is, input signals, can control the ex-
pression of a gene, and many different proteins, that is, output signals, can be pro-
duced by a single gene.

4An even more fitting representation sees the RNA polymerase playing the role of
the device.

15Map (or mapping) is a synonymous of function, that is, it corresponds to a way of
associating unique elements of a set - in this case the set of real values of interaction
strength - to every element in another set — in this case the set of pairs of sequences
of nucleotides.
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regulatory
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coding
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S »! output terminal
N\ device
input terminal
Figure 2.1: A gene contained in a fragment of chromosome (represented

schematically in the top part of the figure) can be interpreted as a device with
input and output terminals, and with sequences of nucleotides associated with
the terminals (bottom). The regulatory regions of the gene correspond to the se-
quences associated with the input terminals, the coding regions correspond to
the sequence associated with the output terminals, and the RNA polymerase
acts as a device that mediates between the inputs and the outputs.

work of devices connected by links characterized by a scalar value of
interaction strength which is obtained using a device interaction map
that takes as arguments pairs of sequences of nucleotides belonging to
the genome (Figure 2.2).

We can identify in this representation of GRNs two issues that are
crucial to the success of their evolutionary synthesis. The first issue
concerns the possibility of changing the number and type of devices
that are present in the network. The second issue is the possibility to
change the strength of the interaction that characterizes the connec-
tions between pairs of devices, including the possibility of eliminating
altogether the connection and ensure the absence of any direct inter-
action between them. The evolutionary picture of biological GRN pro-
vided by molecular biology proves that biological systems have both
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Figure 2.2: A representation for a genetic regulatory network (GRN) can be
deduced from the collection of its genes using the representation for the genes
shown in Figure 2.1. Each gene corresponds to a device having some input and
output terminal, to which sequences of nucleotides are associated (top). The
strength of the interaction between two genes depends on the sequences of
nucleotides through a device interaction map W (s;, s;) from pairs of sequences
(sj,5:) to values w;; of interaction strength (bottom). The result is a networlk of
devices connected by links that are characterized by a scalar value w;;

these possibilities. In Section 2.8 we will tackle the problem of how to
implement these features in an artificial evolutionary system, having in
mind the problem of the evolvability of the resulting system. Before do-
ing that, however, we must deal with a serious problem concerning the
nature of the map that associates values of interaction strength with
pairs of sequences of nucleotides, i.e., a problem concerning the nature
of the device interaction map. The problem is that if it turns out that
the evolvability properties of biological system depend crucially on a
way of implementing that mapping that is intractable with the current
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computational resources, our analysis is bound to remain a theoreti-
cal speculation without possibility of actual implementation. The next
section is devoted to the analysis of this question.

2.7 The breakdown of the allosteric world

Proteins can carry out many functions in cells and organisms, from
being used as building material, to operating as molecular machines,
to acting as transducers of chemical signals, to being signals in them-
selves, and still many others. In all cases the execution of their function
depends critically on their three-dimensional shape. In many cases, it
depends also on their changing shape in response to some specific sig-
nal, a phenomenon called allostery.

At the beginning of the molecular biology era, when most molecular
details of gene regulation were still unknown, allostery was commonly
assumed to play a major role in all phases of gene regulation. It is
now recognized that the working of gene regulatory proteins depends
on allostery only in a minority of cases (Ptashne and Gann, 1997, 2002;
Watson et al., 2003b). In most cases the action of gene regulatory pro-
teins is instead limited to the identification of a subsequence!® of the
sequence of nucleotides constituting the regulator binding site. More-
over, the interaction of an activator with the transcription machinery
is typically limited to its recruitment to the corresponding gene via a
generic adhesive interaction. In other words, not only allostery but also
the complex details of the global three-dimensional shape of the gene
regulatory proteins have been found to play a minor role, the latter typ-
ically bringing specificity to the interaction only in terms of recognition
of a linear sequence of nucleotides.

The surprise of molecular biologists at these findings which over-
turn the “classical” assumptions is well testified by the following extract
(Ptashne and Gann, 2002, pp. 174-176)

Many of us, we suspect, came to assume, perhaps sub-
consciously, that allostery must lie at the heart of all bi-
ological regulation. Allostery appeals to our innate love of
complexity: each allosteric response requires evolution of a
protein that responds in an appropriate way to the allosteric
signal, and one would expect no general rules. That is, each

16See footnote 9 on page 21.
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allosteric enzyme would have its own complicated, integrated
structural features that would allow the proper conforma-
tional change to the signaling chemical.

. [W]e suspect that many of us tacitly assumed we lived
in an “allosteric world”, a world based on beautifully evolved
sets of machines that were turned on and off much as a car
engine is switched on and off by the turning of the key.

The language we have used for many years reflects this
bias: we speak of gene “activation” even for those cases (the
majority we have argued) where either the polymerase nor the
gene is activated in any traditional sense. Rather, the enzyme
[i.e., the polymerase] is merely apposed with the substrate (in
this case a specific gene) by an “activator”.

.. That so much of the specificity of regulation and hence
so much of development and evolutionary change depends
on simple binding interaction is (or we think should be) hard
to swallow. It certainly is for us. We, and we suspect many
others, had expected that the meanings of biological signals
would have been, somehow, more solidly based.

. But ... we realize that these systems evolved, stepwise.
And so it should hardly be surprising that underlying all the
complexities are certain rather simple mechanisms that, by
being reiterated and constantly added to, can produce living
systems.

For us, the importance of this finding is that it shows a much sim-
pler scenario for gene-to-gene interaction than was once thought. The
point is that the simulation of the process of protein folding for the de-
termination of its three dimensional structure is computationally very
complex (Haspel et al., 2003), and of course even more so the dynamic
simulation of the change of shape related to allostery. Should the gene-
to-gene interaction and its evolvability depend crucially on allostery or
on the details of protein folding that determine their complicated three-
dimensional shapes, we would be at a loss in abstracting and imple-
menting it within an artificial evolutionary system. The fact that in
most cases this interaction is governed by a “simple binding interac-
tion” aimed at the recognition of a linear sequence of nucleotides opens
the way to the possibility of implementing it in terms of a mapping of
low computational complexity.

Note that this must not be interpreted as saying that allostery and
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the three dimensional shape of proteins play a minor role in the op-
eration of biological systems. The working of the RNA polymerase in
performing transcription, for one thing, and that of the other molec-
ular machines operating in gene expression depend critically on their
three-dimensional shape and on the possibility to change it. More-
over, the recognition of the nucleotide sequence operated by a gene
regulatory protein is certainly highly dependent on the fit between the
surfaces of the molecules that constitutes the genome and the protein.
Finally, when proteins perform a structural function, metabolize nutri-
ents, or exchange signals with the external world, they must adapt to
the constraints of that world, a feat which depends crucially on shape
mouldability and allostery!”. However, typically the operation of those
molecular machines proceeds automatically once the expression is ini-
tiated. Hence, global three-dimensional shape and allostery concern
only the behavior of the molecular machines as devices, independently
from the interactions with other devices which determines the regu-
lation. Moreover, where proteins are used by an evolved system for
“internal communication purposes” and are therefore “free to choose
their own language”, they appear to operate in the simpler terms of
interactions between linear sequences of nucleotides.

Summing up, in the interactions between genes that take place in
GRNs, protein folding appears to play essentially the role of a process
that mediates between sequences of nucleotide so as to give the sys-
tem the possibility of going beyond the mere comparison of identical or
complementary sequences in the determination of their reciprocal in-
teraction.!® This possibility endows the system with several properties
that appear to play a central role in its evolvability. One of these prop-
erties is the possibility of varying the strength of the interactions with
graduality, thanks to the existence of aminoacid substitutions that al-
ter only slightly the shape of the folded protein. This graduality has
many favorable evolutionary consequences (Conrad, 1988). For exam-
ple, it facilitates the detailed exploration of the phenotype space, and
it permits the insertion of new devices that have initially a weak inter-

17 As will be explained below, the same problem is met in defining the connections to
what constitutes the “external world”, its signals and energy sources for an artificially
evolved system. However, for an artificial system we are free to attach an arbitrary
identity to those external entities, whereas biological systems must cope with the
arbitrary preassigned physical and chemical identity of those entities.

18Note, however, that the comparison of identical or complementary sequences is
way to determine interactions that is also used by GRN in the form of the mechanism
of RNA-mediated regulation described in the next subsection.
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action with the existing network and thus have a small initial impact
on its performance and are not systematically wiped out by the selec-
tion process. On the other hand this graduality does not preclude the
complementary possibility of altering radically the strength of the in-
teraction, since simple mutations in the sequence of nucleotides can in
some case alter substantially the characteristics of the folded protein
(Lewin, 2004).

This interpretation of the role of protein folding means that we can
hope to abstract the mechanism and evolvability of gene interaction
with mathematical models — which, as explained in the previous sec-
tion, take the form of maps from pairs of character sequences to values
of interaction strength — that do not require the simulation of protein
folding. Of course we must devise models with the required charac-
teristics, and this can be far from trivial. But the fundamental point
is that we must realize “just” the properties of this interaction that
are instrumental to the evolvability of the system, for example those
mentioned in the previous paragraph, and we are free to realize those
properties in the way that better suits the computational means at our
disposal. The carrying out (or the simulation) of protein folding is just
a way to implement this interaction; a way which may be the most ef-
ficient in a real, physical, biological substrate — that is, with the kind
of computational technology implemented in cells (Bray, 1995; Conrad,
1999) - but is not necessarily the only way to obtain the required evolv-
ability properties, nor the most efficient if we must count on a radically
different computational technology.

2.7.1 RNA-mediated regulation

So far the analysis has been focused on the role of proteins in gene
regulation. As described in Section 2.5, proteins can be thought as ob-
tained through a process that involves the successive translation and
reorganization of a sequence of characters from the genetic alphabet
into a series of intermediate sequences from different alphabets (RNA
alphabet, amino acid alphabet), followed by a process of protein fold-
ing. Since the product of this last step can no longer be considered
merely a sequence of characters, it was necessary to present and com-
ment at length on the evidence authorizing the interpretation of gene
regulation via regulatory proteins as an interaction between sequences
of characters.

Gene expression, however, does not appear to be controlled only by
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regulatory proteins. A growing body of evidence suggests that RNA se-
quences play a substantial role in the functioning of GRNs (Mattick,
2001; Lewin, 2004; Meister and Tuschl, 2004). Contrary to the case
of protein-mediated regulation, RNA-mediated regulation appears to be
often based on a direct interaction between pairs of sequences of char-
acters, without the additional complication of protein folding. There-
fore, the interpretation advocated above of GRN device interaction in
terms of an interaction between sequences of characters extends natu-
rally to the case of RNA-mediated regulation.

2.8 Mapping and mutating for evolvability

Having clarified the reasons that make it conceivable an actual im-
plementation of the auxiliary complexity-growth conditions within an
artificial evolutionary system, we can now go back to the issue of their
practical realization. In this section we will not try to describe the ac-
tual implementation details of such an evolutionary system (the next
chapter is devoted to this task) but we will try instead to formulate a
series of prescriptions that must be considered in the implementation.
As anticipated at the end of Section 2.3, the analysis will proceed from
biological facts to the characteristics with which to endow the artificial
evolutionary system. Since it cannot be hoped that conditions that en-
sure the evolvability of a given kind of system apply unchanged to the
evolution of another, arbitrary system,!® this implies that the artificial
evolutionary system to which we will apply our observations must have
a structure similar to that of a GRN.

From the analysis conducted in Section 2.6 follows that a biological
GRN can be seen as network of devices interacting through connections
whose strength is determined by the relationship - represented by a
device interaction map — between pairs of sequences of nucleotides ex-
tracted from the genome. Correspondingly, the individuals of our arti-
ficial evolutionary system will have a genome constituted by sequences
of characters, and a phenotype that consists of a network of devices —
whose nature will be elucidated in Section 2.10 - interacting through
connections whose strength will be determined by a device interaction
map taking as arguments pairs of sequences extracted from the artifi-
cial genome. In the biological context, the genome can be reorganized

9This can be considered a corollary of the No Free Lunch theorems (Wolpert and
Macready, 1997).
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by a collection of genetic operators and, correspondingly, the artificial
system will be endowed with a collection of genetic operators defined
on the artificial genome.

There are thus two aspects of the artificial evolutionary system for
which we would like to give a list of prescriptions: the device interaction
map, and the genetic operators. The two aspects are closely related and
it is difficult to disentangle them. In other words, the device interaction
map must ensure the required properties in the context of the genetic
operators, and vice versa. Nonetheless, for the sake of clarity, we will
to discuss the two aspects separately.

2.8.1 Prescriptions for the genetic operators

A biological genome is subject to many kinds of mutation and reorga-
nizations (Graur and Li, 2000). At the simplest level, single nucleotides
can be inserted, deleted, and substituted. More substantial reorganiza-
tions are the deletion of a whole fragment (that is, of a whole substring)
of the genome, its duplication, and its transposition. The duplication,
in particular, can concern whole chromosomes or the complete genome.
Finally, there are operations that combine fragments of genome of dif-
ferent individuals, such as the recombination of chromosomes in the
case of sexual reproduction and, more generally, the transfer of genome
fragments from one individual to another, not necessarily of the same
species.

All these operations can be assumed to play a role in the evolution
of biological GRN. This is obviously the case for the operations of mu-
tation of single nucleotides, which realize the smallest alteration that
can be done at the level of the sequence of nucleotides and permit, for
example, the fine control of gene interaction. The other operations of
genome reorganization have also a recognized evolutionary role. For
example, an important characteristic of proteins is their being typically
composed of several domains, each with a specific structure and in-
teraction properties (Alberts et al., 2002). The reorganization of gene
fragments by deletion, duplication and transposition can thus lead to
the additional phenomenon of reorganization of protein domains. In
the same vein, considering simultaneously the sequences constituting
a gene and those constituting its associated regulatory regions, some
modularity and reuse of structure can be achieved by letting evolu-
tion assemble in close proximity groups of genes that participate in the
realization of a given phenotypic function (Lawrence and Roth, 1996;

28D MARCH 2005



Section 2.8. Mapping and mutating for evolvability 33

Hurst et al., 2004). In this way, subsequent duplications of a genome
fragment that has been reorganized in this way, can lead to the duplica-
tion and reuse of that part of the network which realizes that function.
Another important consequence of the presence of operators of dupli-
cation is the possibility to generate new genes by copying existing genes
and then subjecting them to mutations, instead of relying only on the
(evolutionarily very improbable) generation from scratch of new genes.
Moreover, it is widely recognized that events of fragment, chromosome,
and whole genome duplication played an important role in the evolu-
tion and complexification of existing organism (Ohno, 1970; Sherman
et al., 2004). Finally, the evolutionary importance of the recombination
of the genetic material of distinct individuals, be it in the form of the
transfer of genetic material (Lawrence and Roth, 1996; Rosewich and
Kistler, 2000; Lewin, 2004), or in the form of sexual recombination of
chromosomes, is also generally recognized, although - in the case of
sexual recombination — without universal consensus on the evolution-
ary mechanism of action.

From this simplified review of the nature and of the effects on GRN
of biological genetic operators, we can now derive a set of prescriptions
for the genetic operators of our artificial evolutionary system. These
amount to saying that the set genetic operators must include

¥ Insertion, deletion, and substitution of single nucleotides.

¥ Duplication, transposition, and deletion of sequences of nucleo-
tides.

¥ Recombination and transfer of sequences of nucleotides belonging
to different individuals of the population.

It is readily seen that this prescription can be easily applied to an ar-
tificial genome constituted by one or more sequences of characters, as
will be the case for our artificial evolutionary system.

2.8.2 Prescriptions for the device interaction map

In our artificial evolutionary system the device interaction map deter-
mines the interaction between devices which corresponds to the inter-
action between genes in biological GRNs. The artificial implementation
of this map must thus possess the evolutionary properties of its bi-
ological counterpart. We remind that this map takes as arguments
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two sequences of nucleotides and gives the scalar value of interaction
strength between them.

As explained in Section 2.7, one of the mechanisms of interaction
between genes in biological GRN is mediated by the process of pro-
tein folding, a process that adds evolvability by allowing, for example,
the gradual change of the interaction strength and the corresponding
gradual evolutionary transformation of the network. It must be also
noted that many factors — from the existence of several synonymous
triplets of nucleotides coding for certain amino acids, to the similar-
ity of the chemical properties of some amino acids — result in a sub-
stantially many-to-one nature of the mapping from genes to protein
function, and this constributes to a further buffering of the effect of
small genome mutations. At the same time, the insertion or deletion
of just a few nucleotides of a gene can completely alter the result of
its translation into a sequence of amino acids and result in a dramatic
change of the corresponding protein. Another important property of the
biological device interaction map is its tolerance for the genome reor-
ganization described in the previous subsection. This reorganization is
evolutionary acceptable only if the interaction between genes is at least
partially independent from the position of the genes in the genome, so
that a device with its regulatory regions can be freely moved within the
genome.2?

From the introductory comments and this series of observation fol-
lows that the device interaction map must

'V Possess a many-to-one nature.

'V Permit both gradual changes and major reorganizations of the
structure of system and of the strength of the interactions be-
tween its parts.

'V’ Be compatible with a genome which has been subjected to the
action of an arbitrary sequence of genetic operators.

'V Be applicable to pairs of sequences irrespective from their original
position in the genome

A further characteristics of the interaction between genes in biological
GRN s is the possibility of having several regulatory regions control the

20In biological genomes this independence is not absolute, since the position of a
gene in the genome can influence its level of expression and its interaction with the
rest of the genome (Lewin, 2004).
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expression of a single gene, and to have a single gene produce several
distinct proteins. In the artificial implementation of the device interac-
tion map, this possibility of having multiple interactions is obtained by
default, by simply calculating the strength of the interaction between
all pairs of sequences associated with the input and output terminals
of the devices. However, if the device interaction map is defined so
as to operate globally on the whole length of the sequences associated
with the terminals, there is the possibility of interference in the deter-
mination of the interaction strength of, for example, several outputs
relatively to a given input, and this could have a negative impact on
evolvability. This problem can be solved in our artificial system admit-
ting the possibility of having more than one input and more than one
output terminals for each device. However, we could also consider the
possibility of determining several interactions with distinct fragments
of a single sequence. This corresponds to a device interaction map that
has the possibility of operating locally on the sequences in determin-
ing the value of the mapping (Figure 2.3). This property, although
not strictly necessary, contributes to the possibility to recombine in-
teracting sequences as if they were domains of proteins and fragments
of regulatory regions, a possibility that increases the evolvability of the
system (Ptashne and Gann, 1998). Therefore, we require from the de-
vice interaction map the additional possibility to

'V Determine multiple independent interactions operating locally on
distinct fragments of the sequences of nucleotides.

From a practical point of view, the efficient implementation of the evo-
lutionary process on a computer requires that the mapping

'V Be characterized by a reasonably low computational complexity.

Finally, following from a more high-level perspective on GRN, the map-
ping must

'V Permit the generation of large enough sets of independent se-
quences, that is, sequences with low interaction strength.

This last requirement guarantees the possibility of incrementally build-
ing networks with many devices without having to worry about the in-
terference of newly added genome sequences with those already present.
In general, given a device interaction map, we can expect that interfer-
ence between sequences to hamper the genetic representation of net-
works composed of a very large number of weakly connected devices. In
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Figure 2.3: Typically, several genes can influence the activity of a single gene

(and a single gene can influence the activity of many distinct genes). In the
network representation discussed in the text, this corresponds to the possibil-
ity that the outputs of several devices interact with the input of a device (or
the possibility that the output of a device interacts with the input of several
devices). If the device interaction map operates globally on the whole length of
the sequences associated with the terminals, there is the possibility of interfer-
ence in the determination of the interaction strength (top), and this could have
a negative impact on evolvability. This problem can be solved using several
input (and output) terminals (bottom, left), or defining a device interaction map
that can operate locally on distinct fragments of a single sequence (bottom,
right). Of course, the two strategies can be also used simultaneously.

any case, the interference between genome sequences is a problem also
for the GRN of biological organisms. It has indeed been hypothesized
that many of the additional regulatory mechanisms existing in higher
organisms have been evolved in order to exceed the limits that are im-
posed on the complexity of bacterial GRN by the relative simplicity of
their mechanism of gene interaction (Mattick, 1994, 2001; Mattick and
Gagen, 2001; Croft et al., 2003). Note, however, that the limit size of
bacterial genomes is estimated at about 10,000 genes (Schuster, 2004),
which is already a substantial number of devices for many kinds of
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engineered networks, for example an artificial neural network or an
analog electronic circuit. Moreover, the system developed in this thesis
and described in detail in the next chapter lends itself naturally to the
implementation of techniques of reduction of interference. An exam-
ple of this kind of technique inspired from the biological mechanism
of post-transcriptional gene silencing (Meister and Tuschl, 2004) will be
presented in the next chapter. In any case the example of biological
organisms suggests that the final remedy to the problem posed by un-
wanted interaction does not lie in the adoption of more complicated
mappings from pairs of sequences to values of interaction strength,
but in the modularization and hierarchical organization of the evolved
system (Pattee, 1973).

2.9 Sensing and signaling

So far, the analysis of the properties of biological networks has been
focused on the interaction between genes within the boundaries of a
single cell. A living cell, however, interacts with the rest of the universe
to absorb energy and matter, expel waste, exchange signals. This is
true both for unicellular organisms and for multicellular organism. In
this latter case, not only the survival but also the correct development
of the multicellular structure of the organism depends crucially on this
exchange of signals. Similar observations hold for artificial systems,
which must be connected to the external world and exchange with it
signals and energy in order to perform their function and, possibly, to
allow their developing into a multicellular structure. It is thus neces-
sary to specify how our artificial evolutionary system determines and
evolves the connections between external devices and the networks de-
fined by the genome, and between multiple copies of these networks.
As before, the derivation will proceed from the analysis of the corre-
sponding process at the cellular level of biological organisms to the
abstraction of the process of signalling that takes place at that level,
especially the signalling which influences gene expression.

Cells can detect and communicate to the genome the presence of
an external physical or chemical signal (Krauss, 2003; Pires-daSilva
and Sommer, 2003; Watson et al., 2003b; Weiss et al., 2003). With-
out entering in the detail of the process, we can just observe that the
original signal almost never influences the level of expression of the
genes directly. This is understandable when the signal is originated
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in the external environment and cannot be expected to be tailored to
the genome structure. Usually, however, this remains true even when
the signal is generated by other cells within a multicellular organism.
The reason is that there are typically physical constraints that are im-
posed on the signal in order to propagate in a suitable way from cell to
cell. In general, there is therefore a process that mediates between the
original signal and the genome. Typically, through a more or less com-
plex chain of events, the original signal influences the concentration or
the characteristics of one or more gene regulatory proteins and thus,
indirectly, the level of expression of one or more genes.

When the detected signal originates as a gene product in another
cell, the resulting interaction between genes can be abstracted just
like the interaction between two genes within a cell described in the
previous sections. The only difference is that a number of additional
steps of signal transmission and transduction are typically added to the
process of transcription, translation, protein folding, and gene regula-
tion that characterizes the simpler interaction between genes. Although
these additional steps typically depend crucially on allostery and pro-
tein shape, this is a consequence of the necessity to adapt the char-
acteristics of the signal to the physico-chemical requirements of the
path leading from the source to the target genes. Hence, we can hope
to capture the evolvability properties of this communication scheme
with a mapping from pairs of sequences of nucleotides to values of in-
teraction strength, just as in the case of the gene-to-gene interaction
within GRN abstracted by the device interaction map introduced in Sec-
tion 2.8. The only novelty lies in the necessity to mark the sequences
for “transport” and “exposure” outside the original “cell” constituting
the first level of organization of the phenotype of our artificial evolu-
tionary system. This shows that the sequence-based device interaction
map described in the previous section in the context of the single level
of organization of the network-like systems can be applied also to the
study of compartmentalized and hierarchically structured evolutionary
systems.

Going now back to the case of a signal originated by the environ-
ment external to the evolving system, it is clear that in this case the
signal can hardly be conceived as originating from a sequence of char-
acters. Nonetheless, the process that permits such a signal to influence
the level of expression of the genes can be interpreted as an adapta-
tion of the nature of these preassigned environmental signals to the
sequence-like nature of the regulatory regions of the genes. In the case
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of an artificial system, we can obtain the same result by associating a
sequence-like identity to the existing input and output signals required
by the external sensors, actuators, loads, and by any other preassigned
device. In this way, the use of a sequence-based device interaction
map can be extended to the evolution of the interactions between these
external devices and the evolved network-like system described in Sec-
tion 2.8. Note that, just like evolution permits the selection of the set of
external signals to which a biological cell (or multicellular system) will
respond, this technique permits to the artificial evolutionary process
the selection of the set of external signals and “features” to which the
evolved system is sensitive.?!

2.10 Devices, networks, and simulators

The description given in Section 2.6 shows that GRNs can be inter-
preted abstractly in terms of networks of devices. In this interpretation
the RNA polymerase plays the role of the device, and the links of the
network are determined by the relationship between the sequences of
nucleotides that constitute the regulatory regions and the sequence
that constitutes the gene. As the final step toward the determination of
the properties of our artificial evolutionary system, it is now necessary
to analyze the properties of these devices that are relevant to our effort.

Many functions within living cells are performed by proteins in their
role of enzymes, that is, of protein catalysts (Alberts et al., 2002; Creigh-
ton, 1993; Watson et al., 2003b). In the simplest scenario of enzyme op-
eration, a chemical substance generically called the substrate must be
converted into another substance called the product. The free energy
of the substrate is higher than that of the product. Hence, the former
would convert spontaneously into the latter. However, the conversion
requires the passage through a less favorable transition state. In the
absence of the enzyme, the barrier constituted by the transition state
keeps the reaction rate low. The effect of the enzyme is to lower the
barrier and thus accelerate the reaction rate. In other words, enzymes
permit the variation of the rate of a physical process. They are there-
fore the key to the implementation of constraints to the spontaneous

21An example of this phenomenon can be observed in the example of network shown
in Figure 4.44 on page 184, evolved in the context of Experiment 14, Chapter 4. In
this case, evolution connected the evolved neuron shown in Figure 4.44 only with a
subset subset of the available external signals, which are shown in Figure 4.42 on
page 180.
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dynamics of those physical processes. As argued by Pattee (1995a),
natural selection leads indeed to the formation of structures whose
presence influences the dynamics of the surrounding space-time in
ways that favor the persistence and, eventually, the self-reproduction
of these structures. The “devices” of GRNs — the RNA polymerases —
are precisely an example of such evolved structures. We could thus
mimic closely also this aspect of GRN by adopting for our artificial evo-
lutionary system, devices capable to influence the rate of a physical
process.

A good example of devices with this property is constituted by ac-
tive electronic devices such as transistors. Their principle of operation
is conceptually similar to that of enzymes. A bipolar junction tran-
sistor (BJT) is composed of three adjacent regions of semiconductor
having different physical characteristics (Cooke, 1990). These regions
are called the emitter, the base, and the collector. In the typical circuit
configuration, the voltages applied to emitter and collector make the
flowing of current carriers from emitter to collector energetically favor-
able. This current, however, must pass through the base. When the
base is left unconnected, it acts as a barrier to the current flow, which
is therefore small. A suitable voltage applied to the base lowers this
barrier with the effect of increasing the current flowing from emitter
to collector. This description reveals a striking analogy in the opera-
tion of enzymes and transistors (Figure 2.4). We can say that evolution
designed the basic devices of life just as engineers designed the basic
devices of electronics. The fact that in biological cells there are many
instances of only a few types of RNA polymerases just like in an elec-
tronic circuit there are typically many instances of only a few types of
active electronic device, corroborates this correspondence.

Of course, we can adopt for our artificial evolutionary system other
kinds of devices besides active electronic devices. For example, we
could imagine artificial neuron models, or dynamical models mimick-
ing the action of gene expression. There seem to be reasons, however,
to avoid devices that implement a static input-output relation (Harvey,
1995), such as, for example, classical artificial neuron models (Haykin,
1999), in favor of dynamical models like those used in continuous-time
recurrent neural networks (CTRNN) (Beer, 1995; Vohradsky, 2001).
The reason is still related to the necessity of considering the work-
ing of evolution as devising ways to constrain a rich, realistic dynamics
(Pattee, 1973; Polanyi, 1968). From this point of view, an additional
benefit of adopting electronic devices as devices of our artificial evolu-
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Figure 2.4: The analogy between the stages of a chemical reaction, and the
regions of a bipolar transistor. The vertical axis represents the free energy of
the substances (substrate, transition compound, product) in the course of the
chemical reaction or the energy of the current carriers in different regions (emit-
ter; base, collector) of the transistors body. The presence of the enzyme (i.e., of
the protein catalyst) decreases the height of the barrier that hinders the trans-
Jormation of the substrate into the products, just as a suitable polarization
of the transistors base decreases the barrier that hinders the flow of current
carriers from the emitter to the collector.

tionary system is that we can take advantage of the existence of analog
electronic circuits simulators (Vladimirescu, 1994). In these simula-
tors, the physics of the devices and of their interaction is modeled at
high level, through a set of algebraic and differential equations, which
embed the relevant laws of physics (and, in particular, conservation
laws). The resulting implementation is efficient and physically sound.
Moreover, it can reproduce the dynamics of chemical processes charac-
teristic of biological GRN (Bhalla, 2003, p. 56; Hiratsuka et al., 1999;
Simpson et al., 2003, 2004a,b). Finally, by using the models of energy
storing components such as capacitors, this approach allows the im-
plementation of different time scales in the dynamics, and the modeling
of delays to the propagation of signals, a phenomenon that affects also
chemical signals that must diffuse across spatially extended structures
in cells.

The interpretation of the RNA polymerase as the device of the GRNs
suggests also the way to encode the artificial devices in the artificial
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genome. The existence in the genome of a gene is “signaled” to the RNA
polymerase by the presence of the promoter at the start of the gene.
The regions of the promoter that are recognized by the RNA polymerase
belong typically to a few stereotyped structures. In other words, the
promoter acts as a token for the device. Correspondingly, we can insert
in the artificial genome a token for the artificial device. Note that the
RNA polymerase is also encoded in the biological genome, and thus
subjected to evolution. We can do the same in our artificial evolutionary
system, although in many case the encoding of some device’s parameter
besides the sequences that determine the connectivity is sufficient to
leave some room to the evolution of the devices.

2.11 Outline of an evolutionary system

Assembling all the arguments exposed in the previous sections it is now
possible to formulate a set of prescriptions for the synthesis of an arti-
ficial evolutionary system bringing together von Neumann’s complexity-
growth conditions and the auxiliary bio-inspired evolvability conditions.
In this evolutionary system:

V' Individuals have a genotype (genome) distinct from the phenotype.

V' The genome is a collection of sequences of characters belonging to
a finite alphabet.

vV The genome can be mutated and reorganized through the action
of a set of genetic operators complying with the conditions listed
in Section 2.8.

V' The phenotype is a network of devices connected through links
characterized by a scalar strength.

v The devices correspond to structures that act as constraints for a
non-trivial and physically consistent actual or simulated dynam-
ics.

V' The evolvable properties of the devices, if any, are represented in

the genome as sequences of characters.

V' The genome contains sequences of characters that are extracted
and associated with the terminals of the devices.

V' Sequences of characters are associated also with the terminals of
preassigned external devices.
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V' The presence in the genome of a fragment representing a device,
the presence of a sequence of characters that must be associated
to the terminals of a device, and the presence of a sequence of
characters that represents a device parameter, is signaled through
a series of specific tokens, that is, of sequences of characters spe-
cific to the device, to the terminals, or to the device properties.

V' The strength of the interaction between two terminals is given by
a device interaction map complying with the conditions listed in
Section 2.8, which transforms pairs of labels attached to the ter-
minals into scalar values.

The phenotypes prescribed by these guidelines — that is, networks of
devices linked by connections characterized by a scalar value of inter-
action strength — will be called analog networks. Besides analog elec-
tronic circuits, neural networks (Haykin, 1999) and, of course, GRN,
can be considered analog networks and can therefore be assumed as
the object of an evolutionary process following these guidelines. The
guidelines expressly state that the interaction between the devices rep-
resented in the genome is defined implicitly through the device inter-
action map, instead of being explicitly represented in the genome. As
emphasized by Lones and Tyrrell (2004a) this feature is the rule in bi-
ological systems and is fundamental in preventing the loss of meaning
of the genome following its reorganizations.

Note that usually in evolutionary computation (EC) the genotype-to-
phenotype map is related to the concept of genetic representation (Back
et al., 2000a; Rothlauf, 2002; Rothlauf and Goldberg, 2003). The word
“representation” evokes a priority of the phenotypic structure over the
genotype. The idea is that the problem defines a set of structures that
constitute a possible solution to the problem, and that in order to apply
an evolutionary approach we need to devise a genotype corresponding
to these structures interpreted as phenotypes (Eiben and Smith, 2003,
p- 18). In this sense, it is said that a genotype encodes a phenotype and
that a genotype is decoded into a phenotype. Contrary to this perspec-
tive, the derivation of the evolutionary system guidelines listed above
did not proceed from a predefined phenotype, that is, there were no pre-
defined structures waiting to be represented genetically. Rather, the
phenotypic structure and the corresponding “genetic representation”
followed as a consequence of the formulation of the complexity-growth
and evolvability conditions. This is the reason why the term “represen-
tation” was not used in the first place. Nevertheless, this term will also
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be used from now on to refer to the genotype-to-phenotype map.

Of course, given the atypical path that led to the phenotype struc-
tures, it is necessary to ascertain that they comply with the original
goal, that is, if they can act as a foundation for the synthesis of au-
tonomous systems. Since biological GRNs act not only as control and
information processing systems of single cells, but produce also the
dynamics on which to build more structured systems, it is possible to
answer in the affirmative to this crucial question.

Note that the guidelines for an artificial evolutionary system listed
above are just heuristic conditions, whose adoption is suggested by the
analysis that led to them. We could dispense with some of them, typ-
ically at the risk of jeopardizing the evolutionary properties that they
bring to biological organisms. For example, we could renounce the ex-
istence of a realistic dynamics constrained by the devices, probably at
the risk of not being able to open the system to the emergence of fur-
ther levels of organization. Since electronic devices and easily available
analog circuit simulators provide this realistic dynamic, this thesis will
mostly show examples of evolution of analog electronic circuits.

Note also that many aspects of the biological processes were in-
tentionally disregarded in the analysis that led to the formulation of
those guidelines. An incomplete list of missing features includes the
interaction of the dynamics of the expressed GRN with the genome, the
existence of non-local control of gene expression through the activation
and inactivation of fragments or of whole regions of the genome, and
many others. Other aspects, such as the importance of developmental
processes, modularity, and hierarchical organization for the achieve-
ment of evolutionary open-endedness have been just mentioned.

Finally, no mention has been made so far of the evolutionary algo-
rithm that must govern the artificial evolutionary system built accord-
ing to the guidelines listed above. The reason for this is that a standard
genetic algorithm will be used as the evolutionary algorithm. The only
novelty in this respect is the inclusion of the non-standard genetic op-
erators described in Section 2.8, whose implementation details will be
discussed in Section 3.6. Since this kind of algorithm is extensively
described in textbooks (Back, 1996; Back et al., 2000a,b; Eiben and
Smith, 2003; Fogel, 2000; Goldberg, 1989; Michalewicz, 1996), there is
no need to comment further on this topic at this point. Nonetheless,
the limitations of current artificial evolutionary algorithms is certainly
not a secondary issue - it would deserve, in fact, a separate thesis —
and will be discussed further at the end of Chapter 4.
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2.12 Related work

The guidelines listed in the previous section identify as the object of
this thesis the definition of an evolutionary system for analog networks,
that is, an evolutionary system for networks of devices linked by con-
nections characterized by a scalar value of interaction strength. As
said above, at least the following three kinds of systems fall into this
class of networks: GRN; analog electronic circuits; neural networks.
There is a vast literature dealing with the modelling and evolution of
this large collection of systems, and of systems including them as sub-
systems. Here, the review will be limited almost exclusively to works
dealing with the artificial evolution of analog networks using systems
that follow at least in part the guidelines listed in the previous section,
giving priority to those focused on the evolution of autonomous sys-
tems. The examples will be grouped according to the kind of analog
network considered.

2.12.1 Genetic regulatory networks

Circular proteins. A first example of application of GRN concepts to
the evolutionary design of control architectures for autonomous robots,
is due to Jakobi (2003)?2. In this work the artificial GRN controls the
development of a neural network, which is then used as a control sys-
tem for an autonomous robot. In this sense, this work is typical of the
majority of applications of GRN concepts to artificial evolution, where it
is not directly the functionality of the GRN that is evaluated, but rather
the functionality or the morphology of a further structure obtained via
a developmental process based on the GRN dynamics.

In Jakobi’s system, the genome is composed of a single string of
characters belonging to an alphabet of four letters. The genome con-
tains genes of fixed length whose starting point is identified by fixed,
predefined tokens. The coding region of the gene is preceded by re-
gions of fixed length defining the type of the protein, a threshold, and
a link template having a fixed length of three characters which plays
the role of regulator binding site. The protein corresponding to a gene
is obtained translating the gene into a 64 letter alphabet and joining
the ends of the resulting string to create a circle. The interaction be-
tween genes is obtained through a complicated process of multiple tem-
plate matching involving the proteins, the link templates, and a further

22This paper reports work realized in 1994.



46 Chapter 2. The growth of complexity

collection of predefined templates (Jakobi, 2003, p. 396). The evolu-
tionary process proceeds as follows. The genome of each individual of
the evolving population is attributed to a single cell located in a two-
dimensional space where a number of predefined protein sources is
present. The rules of interaction of genes and proteins within and be-
tween cells then lead to the development of a neural network, whose
performance in controlling an autonomous robot determines the fit-
ness of the individual.

In this system, the GRN interaction scheme was explicitly devised
with the aim of obtaining open-endedness, robustness relative to the
action of a wide variety of genetic operators capable of determining both
gradual and abrupt changes in network properties, and the possibility
to genetically encode reusable modular structures. The results eventu-
ally obtained were not judged satisfactory by the author, who observed
that the effects of the action of the genetic operators on the developed
network had the tendency to be either absent or catastrophic in terms
of functionality (Jakobi, 2003, p. 402). Considering that the network
is determined by the GRN through the mediation of a complicated de-
velopmental process, this unsatisfying behavior is not necessarily due
to the GRN implementation. As observed by Dellaert and Beer (1996):
“development completely transforms the structure of the space that
is being searched. If we're lucky, the transformation will allow us to
evolve interesting agents more easily. But if we're unlucky, we could
actually make the search problem harder.” In any case, the template
matching based technique of definition of the device interaction map
used by Jakobi appears a bit convoluted and interference-prone, due
to the use of only a handful of characters for the matching.

Sequence matching. The work of Reil (1999, 2003) and that of Geard
and Wiles (2003) (the latter taking inspiration from the former) are not
primarily concerned with artificial evolution, but rather with the effort
of defining models of GRN that are at the same time simple and capa-
ble to display a biologically plausible dynamics. It is worth examining
them here because the interaction map is based in both cases on the
comparison of sequences of characters extracted from the genome.

In both cases the genome is a sequence of characters from a finite
alphabet. The presence of a gene in the genome is signaled by the
presence of a “promoter”, that is, a predefined sequence — a token - of
fixed length. A gene is constituted by a fixed, predefined number of
characters following a promoter. In (Reil, 1999), an activated gene pro-
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duces another sequence of characters which is a transliterated version
of the gene. The new sequence is interpreted as a “regulatory protein”.
If a regulatory protein matches exactly a sequence of characters in the
genome, it regulates the expression of the gene that immediately fol-
lows the matched genome sequence. The regulation can be positive or
negative, and is of the on-off type, with repression prevailing over acti-
vation. Geard and Wiles (2003) refined this model by complexifying the
map that transforms a gene into a regulator protein, adding a further
level of regulation which mimics the action of small RNA regulation in
real genomes and defining regulation in terms of a weighted sum of
regulator proteins effects.

Implementing and running this kind of artificial GRNs produced be-
haviors featuring many properties observed in real GRNs. Reil’s orig-
inal experiments were not aimed at the assessment of the evolution-
ary properties of the system. More recent experiments (Watson et al.,
2003a; Hallinan and Wiles, 2004) provide only limited information on
the actual evolutionary potential of the system for complex control
tasks. We can however still consider the nature of the device inter-
action maps in the light of the requirements listed in Section 2.8. In
the case of (Reil, 1999), the interaction map is defined in terms of a
simple transliteration followed by exact sequence matching and on-off
activation. Hence, the result can be hardly expected to permit gradual
evolutionary changes of the GRN properties, and is not a good candi-
date for the implementation of a system complying with those require-
ments. Note, however, that Bongard (2002) reported interesting results
from the application of a GRN model similar to Reil’s to the development
of the morphology and of the neural networks controlling evolved simu-
lated autonomous agents. In any case, the more complicated mapping
defined in (Geard and Wiles, 2003) seems to adhere more closely to the
principles listed in Section 2.8.

Quick et al. (2003) is an example of the use of GRNs directly as
evolvable control systems for robots. The authors emphasize the fact
that in their system the structure of the genome continues to deter-
mine the nature of the interaction of the phenotype with the environ-
ment, whereas in in most experiments of artificial evolution based on
GRN concepts the genome “becomes totally redundant, having no fur-
ther role to play in the structure or behaviour of the resultant artificial
organism.” In this system the number of genes and proteins is fixed,
and each gene has the same number of regulatory regions, which can
result either in positive or negative regulation of gene expression. The
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interaction between genes is obtained through template matching of
proteins and regulatory regions — which are both binary sequences of
the same fixed length — weighted by a global evolvable parameter speci-
fying the proportion of available matching proteins that will bind to the
regulatory region.

Banzhaf (2003) devised another approach to the of use of sequence
matching for the definition of the interaction between the genes within
an artificial genome. In his system the genes are binary strings of
fixed length, and the mapping from “genes” to “proteins” is not a sim-
ple transliteration but a many-to-one transformation that associates
a single protein bit with several gene bits using a majority rule. The
interaction of the resulting protein with the regulatory regions of the
genome is implemented applying first a XOR operation to compute the
number of bits that are complementary in the genome and protein, and
then transforming exponentially the resulting number into a real value
of interaction strength between the gene that has produced the pro-
tein and the gene to which the regulatory region belongs. The resulting
interaction mapping is characterized by a high redundancy and - ac-
cording to the preliminary experiments reported in (Banzhaf, 2003) -
the whole system appears to possess good evolvability properties.

Morphogenesis. Eggenberger (1996, 1997b, 2003, 2004) pioneered
the application of artificial GRNs to the evolution of morphologies, and
later extended the approach to the evolution of neural networks (Eggen-
berger, 1997a; Eggenberger et al., 2002). In his system, the genome is
constituted by a sequence of digits, and is subdivided in a predefined
number of genes of fixed length. The interaction between genes is based
on the possibility to interpret suitably defined substrings of the string
constituting a gene as integers, and to operate arithmetically on them.
The resulting system is undoubtedly endowed with the possibility of
both fine tuning and changing radically the strength of the interac-
tion. With its fixed genome structure, however, this approach negates
the fundamental requirements for evolutionary complexity-growth ex-
pounded above, even if the presence of a developmental phase coupled
with a rich simulated physical dynamics permits in any case the pro-
duction of interesting evolutionary results (Eggenberger, 2003).
Dellaert and Beer (1996) have defined an evolutionary system that
uses a simple GRN model with gene interaction based on boolean func-
tions to develop and control agent morphologies. The operation of the
GRN leads first to the development of the morphology of the agent, and
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then, on top of it, of a neural structure controlling its behavior. Clearly,
a boolean function is a radical simplification of the process of gene in-
teraction in biological GRN described in Section 2.6.

Other interesting results in the field of evolutionary morphogene-
sis based on artificial GRN have been reported by Kumar and Bentley
(2003). Their system is based on the use of two genomes, one encod-
ing real-valued parameters as floating point numbers, and the other
encoding the GRN genes and their regulatory regions. The interaction
between genes, however, is based on a simple matching of symbols
associated with genes and symbols associated with the regulatory re-
gions.

Fractal Proteins. An original approach to the definition of gene in-
teraction in artificial GRNs is constituted by Bentley’s work on fractal
proteins (Bentley, 2003, 2004). In this work, the genome is constituted
by a collection of genes having a fixed, predefined structure. Each gene
contains a few parameters defining thresholds and gene type, and two
triplets of rational numbers, one corresponding to the promoter for the
gene, and one corresponding to the coding region of the gene. In the
interpretation of gene interaction given in Section 2.6, the two triples
correspond to the input and the output of the gene considered as a de-
vice. Each triple of numbers defines a square subset of the Mandelbrot
fractal set.

The genome is thought as existing in the cytoplasm of a virtual cell.
When a gene is activated, its “output triple”, that is, the triple corre-
sponding to the coding region of the gene, releases a “fractal protein”
into the cytoplasm. The activation or repression of a gene is determined
by the similarity between the fractal proteins existing in the cytoplasm
and the fractal set defined by the “input triple” of the gene. The purpose
of defining interaction using this technique is very similar to the ideas
that inspire the requirements for the device interaction map listed in
Section 2.8, namely, to obtain a mathematical model for gene inter-
action with reasonable computational complexity and still rich enough
to display some of the evolutionary potential of the interaction medi-
ated by protein folding. In particular, the fractal device interaction
map is redundant and permits both gradual and abrupt changes in the
strength of the interaction following the action of the genetic operators.

The experiments reported in Bentley (2004) witness the possibility
of generating small sets of proteins with low interaction, and to evolve
GRNs capable to generate predefined temporal patterns. A limitation
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of this work, relatively to the guidelines listed in Section 2.11, appears
the very simple dynamics of the implemented “devices”.

Artificial chemistry An interesting model of gene expression and reg-
ulation was devised and applied to the evolution of artificial organism
by Kennedy and Osborn (2000, 2001). In this model, the genome is a
string of bits and the presence of genes and regulatory regions is sig-
naled by predefined tokens. Active genes produce sequences of charac-
ters interpreted as proteins through the mediation of virtual molecules
called “spiders”, which play a role summarizing that of the RNA poly-
merase and of the translation machinery in real cells.

The interaction between genes is defined in terms of probability of
a gene product binding as regulator protein to a regulator binding site.
This probability is obtained comparing the sequence of characters that
constitutes the protein with the sequence constituting the regulator
binding site. This comparison is intended to mimic the binding inter-
action between the molecules represented by the two sequences. In
this sense, the approach can be considered as defining a kind of arti-
ficial chemistry inspired by the real chemistry of cells. In practice, the
comparison of two interacting sequences is implemented as a count of
the number of possible ways the protein can “bind” to the regulator se-
quence. The value obtained is converted into a binding probability via
the action of an exponential map. The resulting device interaction map
appears to comply with most of the requirements listed in Section 2.8
(the possibility to generate large sets of independent sequences remains
to be investigated). To reinforce the artificial chemistry flavor of this ap-
proach, and its correspondence with the precepts of Section 2.11, gene
expression is implemented by integrating a set of differential equations
which depend on the strength of the interaction between genes, thus
making of the “devices” actors of reasonably complex dynamics.

The evolutionary experiments reported in (Kennedy and Osborn,
2001) use a genome with fixed length, but there seem to be no ob-
stacle to the definition of operators changing the length of the genome.
The objective of the experiments was the evolution of cells able to exist
in a simple virtual environment, and the results suggest a promising
evolutionary potential for the system.

While the system defined by Kennedy and Osborn is not intended
as a definition of an artificial chemistry, Ziegler and Banzhaf (2001)
present an interesting example of evolution of a full-fledged artificial
chemistry used as control system. However, the genome of the system
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is used only to define and evolve the properties of the artificial chem-
istry, without the intervention of any GRN concepts.

2.12.2 Analog electronic circuits

Genetic programming. The most impressive results to date in the
evolutionary synthesis of analog electronic circuits have been obtained
by Koza and co-workers (Koza et al., 1999, 2003). This work is based
on the application of the evolutionary technique known as genetic pro-
gramming (GP) (Koza, 1992; Langdon and Poli, 2002). GP uses a tree-
based genetic description which allows the representation and evolu-
tion of all kinds of analog network, including analog electronic circuits
and genetic, metabolic, and neural networks. In the case of analog
electronic circuits, the tree that represents the genome of an individ-
ual contains the instructions to “develop” the circuit starting from a
preassigned initial circuit. To determine the analog electronic circuit
(phenotype) corresponding to a tree (genotype), the tree is parsed and
the resulting instructions are applied sequentially to to the developing
circuit. The definition of the genetic operators must ensure that mu-
tated and reorganized trees represent legal sequences of developmental
instructions.

Clearly, the GP approach does not take inspiration from the prin-
ciples that led to the complexity-growth and evolvability requirements
described in Section 2.8 and Section 2.11. The virtually complete ab-
sence of fitness graphs from the published reports makes it difficult
to estimate the characteristics of the evolutionary process leading to
functional circuits. Some of the author's comments, along with the
fact that the best-of-run circuits are obtained typically after only a few
dozen generations and using huge populations point to an evolution-
ary scenario where the results are obtained through recombination of
building blocks that in good part are already present in the initial popu-
lation. The outcome of the experiments described in (Koza et al., 1999,
2003) testify that this approach to artificial evolution (advocated also in
(Goldberg, 2002)) is certainly capable of producing interesting results.
However, it appears essentially an engineering search strategy loosely
related to the process of biological evolution. In any case, given the
state-of-the-art status of this approach to the evolutionary synthesis
of analog electronic circuits, many problems and results described in
(Koza et al., 1999, 2003) will be used as benchmarks and references for
the results obtained with the approach developed in this thesis.
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Genetic algorithms Genetic algorithms (GA) (Goldberg, 1989) are an-
other class of evolutionary algorithms that has been used extensively
for the synthesis of analog electronic circuits (Zebulum et al., 2002).
The genome used by GAs is typically a sequence of characters, thus,
the first step for the application of GAs to this field is devising a suitable
sequence representation for analog circuits (Zinchenko et al., 2003). If
the topology of the circuit is predefined and fixed, the representation
concerns only the component values and the problem is trivial. This
case, however, does not concern us here, since the GA operates merely
as an optimization algorithm and no evolutionary complexity-growth or
open-endedness can be envisaged.

A simple encoding scheme that permits the representation and evo-
lution of both the circuit connectivity and the component values was
proposed by Grimbleby (1995)?%. In this representation, each compo-
nent is represented by a gene, which specifies the type of component,
its value, and the nodes to which its terminals are connected. This
encoding allows the representation of arbitrary circuits, although ran-
domly assigned genomes would typically produce dangling nodes, un-
connected components, and multiply connected circuit graphs. Hence,
it is advisable to implement some curing of the decoded circuit, or some
additional encoding rules encouraging the production of circuits with a
reasonable topology (Kruiskamp and Leenaerts, 1995). Although inter-
esting result were obtained using this representation (Grimbleby, 1995;
Zebulum et al., 2000, 2002), the possibility of implementing gradual
changes and, more generally, the compliance with the principles listed
in Section 2.11, is scarce. Similar considerations apply to the repre-
sentations discussed in (Zinchenko et al., 2003).

Lohn and Colombano (1999) present an alternative approach to
the use of character sequences for the representation of analog cir-
cuits. Their approach is explicitly aimed at obtaining the possibility of
evolving both the component values and the topology, while keeping
low the computational complexity of the decoding and ensuring a non
catastrophic effect of the genetic operators. The genome is structured
as a list of instructions that are applied to an predefined initial circuit
and produce the actual phenotype. This representation is obviously
very similar to the one used by GP, and the remarks made for GP apply
to it.

23In Grimbleby’s original paper the component values were determined separately,
but the representation permits their evolution.
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Enzyme Genetic Programming. Strictly speaking, Enzyme Genetic
Programming (EGP) (Lones, 2004; Lones and Tyrrell, 2004a,b) does not
belong to the class of methods specifically devoted to the synthesis
of analog electronic circuits, since the examples of application of this
method concern the synthesis of digital electronic circuits. Nonethe-
less, the approach that led to the development of EGP has many points
in common with the approach advocated in the present work. First,
there is at the roots of EGP an explicit concern for the issue of evolv-
ability; second, the working of biological systems at the cellular level
are expressly taken as inspiration for the development of EGP; third,
the EGP genome contains the description of “devices” (implementing
boolean functions) and of “shapes” that can be though of as associated
with the terminals of the devices to determine the strength of the inter-
action between the devices. There are, however, major differences be-
tween EGP and the system described in this thesis: in EGP the circuit
decoded form the genome is obtained through a process of “develop-
ment” derived form genetic programming, and the interaction between
terminals is given in terms of presence or absence of connection and
not as a range of interaction strength values. Moreover, the descriptors
of the device and of the shapes are not represented homogeneously in
the genome as sequence of characters, and the interaction strength is
not determined by a mapping from pairs of sequences extracted from
the genome. As a consequence, EGP as originally formulated is not
suited to the synthesis of analog networks. It remains true, however,
that EGP approach appears methodologically very close to the one de-
scribed in the previous pages, in particular in its emphasizing the im-
portance of implicitly defining the interactions between devices encoded
in the genome, in order to increase the reorganizability of the genome.

2.12.3 Neural networks

Direct representation and developmental schemes As pointed out
by the review paper by Yao (1999), there are many examples of ap-
plication of evolutionary algorithms to the synthesis of neural net-
works (NN). These examples can be roughly divided into two classes:
the first using a genome that directly represents the NN (for example,
Whitley et al., 1990; Pujol and Poli, 1998; Kobayashi and Ohbayashi,
1999; Stanley and Miikkulainen, 2002, 2004) and the second using
the genome to define a developmental process leading to the NN (for
example, Kitano (1990); Belew (1993); Cangelosi et al. (1994); Gruau
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(1994, 1995a,b); Nolfi and Parisi (1995); Eggenberger (1997a); Astor
and Adami (2000); Eggenberger et al. (2002)).

The examples falling into the first class that go beyond simple weight
optimization, resort typically to a genetic representation where each
artificial neuron correspond to a gene. This gene specifies the type of
neuron, its parameters — if any —, and the other neurons of the network
to which the neuron represented by the gene is connected. This rep-
resentation is clearly analogous to that suggested by Grimbleby (1995)
for analog electronic circuits and examined in Section 2.12.2, and the
observations made for that representation therein apply to it.

The examples that fall into the second class, on the other hand, ob-
tain a NN only through the mediations of a developmental process and
tend to suffer from the problem signaled by Jakobi (2003), and dis-
cussed in Section 2.12.1, namely, the difficulty of relating the changes
in the genome to the changes in the phenotype and to define genetic op-
erators capable of mediating between the absence of phenotypic effects
and the production of catastrophic changes.

In any case, there do not appear to exist examples of evolution-
ary systems that directly interpret a GRN-like system as a network
of neurons (and neither as an analog electronic circuit, for that mat-
ter). Therefore, existing examples of evolutionary approaches to NN do
not appear related to the spirit of the approach adopted in this thesis.
Nonetheless, it is worth examining in more detail two examples that
have some feature relevant to our endeavour.

Cellular encoding. Gruau (1994, 1995a.,b) has defined a scheme
called cellular encoding that uses a tree-like genome to define the “de-
velopment” of a NN. In this sense the approach is similar to the tree-
based representation of GP. What is peculiar about Gruau’s approach is
his effort to define the properties of the encoding scheme. Two of these
properties, in particular, resemble two of von Neumann’s complexity
growth conditions. They are what Gruau has called the property of
closure and the property of completeness of an architecture encoding
scheme. According to Gruau, an encoding scheme is closed relatively
to a set of architectures if every description can be decoded in an ar-
chitecture belonging to the set, and is complete relatively to the set if
any element of the set can be encoded by the scheme. Gruau shows
that cellular encoding has these two properties and, therefore, that it
fulfils von Neumann'’s complexity growth conditions.
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NEAT. NEAT is an evolutionary system for NNs developed by Stanley
and Miikkulainen (2002, 2004). It uses a representation belonging to
the first of the classes identified above, that is, a genome whose genes
correspond to the neurons and to theirs connectivity. The peculiarity
of NEAT relatively to the other encoding schemes of this class, is its
including a series of features to increase evolvability, for example, the
presence of genetic markers that allow the implementation of fitness
sharing (Eiben and Smith, 2003) and the definition of a genetic opera-
tors of neuron creation that tries to minimize the perturbation caused
to the function of existing network.

2.12.4 Discussion

This review of existing evolutionary systems for analog networks shows
that, as could be expected, the examples most relevant to the approach
adopted in this thesis belong to the class of artificial GRN models. In
particular, the systems of Kennedy and Osborn (2000), Banzhaf (2003),
Bentley (2004), and Lones (2004), comply with some of the guidelines
listed in Section 2.11. There seems to be, however, room for improve-
ment with respect to all the systems considered, especially in the use
of a more realistic and physically sound dynamics, and in the defin-
ition of device interaction maps that are explicitly defined to comply
with those guidelines. On the other hand, the approaches used to de-
fine evolutionary systems for NNs and analog electronic circuits appear
to be based on rationales quite remote from that adopted in this the-
sis. In addition, none of the systems that belong to this group and
which use GRN-inspired concepts explore the possibility of directly in-
terpreting the GRN structure as a NN or as an analog electronic circuit.
Nonetheless, the examples of Gruau’s definition of the cellular encod-
ing properties, and that of the evolvability-increasing features of NEAT,
attest an awareness of the importance of the issues that led to the for-
mulation of the rationale on which this thesis is based, and which will
lead to the definition of the details of the evolutionary system. A task
that will be carried out in the next chapter.
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Chapter 3

An evolutionary framework
for analog networks!

Overview

In this chapter the guidelines for the definition of an artificial evolutionary
system derived in the previous chapter are transformed into the specification of
an actual evolutionary system for analog networks. The chapter starts with the
exposition of the characteristics and of the structure of the artificial genome,
and with the illustration of the basic idea on which the genetic representa-
tion rests, namely, the association of sequences of characters extracted from
the genome with the terminals of the devices that can appear in the networlk.
This operation is based on the use of tokens to identify the devices, the se-
quences associated with their terminals, and the sequences associated with
the evolvable parameters. The next step is the connection of the devices
decoded from the genome. This operation is based on the application of a de-
vice interaction map that associates a value of interaction strength with each
pair of sequences of characters. The device interaction map is described first
in abstract terms and then an actual example of this map is presented, and its
properties and implementation are discussed. Then, it is shown how the tech-
nique used to define the connection of the devices decoded from the genome
can be extended to define the connections between the evolved circuit and the
preassigned external devices, and to allow the evolution of compartmental-
ized networks. Finally, the ensemble of genetic operators that can be applied
to the artificial genome is defined and described.

'Parts of this chapter were published in (Mattiussi and Floreano, 2004b) and (Mat-
tiussi and Floreano, 2004a).
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3.1 The artificial genome

3.1.1 The genetic alphabet

Complying with the guidelines derived in the previous chapter, the
genome of the artificial evolutionary system defined in this thesis is
composed of one or more finite and nonempty sequences of characters.?
The sequences of characters that compose the genome are also called
chromosomes, and the characters that compose the chromosomes are
also called nucleotides. The nucleotides belong to a finite genetic al-
phabet G, whose size is denoted by |G|. The value of |G| is not defined
directly by the guidelines listed in the previous chapter, following only
indirectly from them. As will be shown later, this value influences in
particular the possibility of generating large sets of independent se-
quences, which can be analyzed only after the details of the device
interaction map have been specified. As this will be done only in Sec-
tion 3.4, the exposition of the arguments leading to the choice of |G| is
postponed to that section. In the meantime, the uppercase alphabetic
characters of the ASCII character set will be assumed without justifi-
cation as composing the genetic alphabet, and used to illustrate the
examples described in the text.

3.1.2 Devices, terminals and parameters

Figure 3.1 shows an example of a genome constituted by a single chro-
mosome. The chromosome is seen here as an unstructured sequence of
characters belonging to the genetic alphabet. According to the deriva-
tions of the previous chapter, this genome must represent a network of
devices, with each device possibly possessing some evolvable parame-
ter.

For each evolutionary experiment the experimenter assigns a device
set which specifies the kind of devices that can appear in the network.
For example, an evolutionary experiment aimed at the synthesis of an
analog electronic circuit could have a few types of transistors as the
elements of the device set, and an evolutionary experiment aimed at
the synthesis of a neural network could have a few types of artificial

2The possibility of having an artificial genome composed of several distinct se-
quences of characters — several chromosomes -, although not essential, can be use-
ful in many respects, for example in facilitating the evolution of compartmentalized
systems (Subsection 3.5.3), or in allowing the parallelization of the operations of repli-
cation, mutation, and decoding of the whole genome.
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Figure 3.1: A genome constituted by a single chromosome, that is, a single
sequence of characters belonging to the genetic alphabet.

neuron models as the elements of the device set.

The fundamental idea of the genetic representation proposed in this
thesis is the association of sequences of characters extracted from the
genome with the terminals and with the evolvable parameters of the
devices that will compose the network that is encoded by the genome.
To perform this association, a collection of specific sequences of char-
acters that we call tokens is defined. The role of the tokens is to signal
the presence of fragments of genome associated with the devices of the
network, and to delimit the sequences of nucleotides that must be ex-
tracted from the genome and associated with the terminals and with
the parameters of the devices. To permit the representation of all the
devices belonging to the device set, one specific device token is associ-
ated with each device belonging to the device set. The identification of
the sequences that must be extracted from the genome and associated
with the terminals and with the parameters is based on the specifica-
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Figure 3.2: A chromosome with two device tokens (highlighted), one signaling
the start of a fragment of genome potentially encoding an NPN BJT, and one
signaling the start of a fragment of genome potentially encoding a PNP BJT.

tion of a terminal token and of a parameter token®.

The role of the device tokens is to signal the start of a fragment
of genome potentially encoding the corresponding device. Figure 3.2
shows an example for the case of analog electronic circuits where the
start of a fragment potentially representing an instance of bipolar junc-
tion transistor of type N (NPN BJT) is identified by the device token
NBJT and the start of a fragment potentially representing an instance
of bipolar transistor of type P (PNP BJT) is identified by the device token
PBJT.

As hinted above, the presence of a device token in the genome is only
potentially indicative of the presence of a corresponding device in the
decoded network. A device is actually encoded in the genome only if all
the sequences of characters that must be associated with the terminals
and with the parameters of that device are present in the fragment of
genome that follows the device token. The role of the terminal and of

3Some additional tokens will later be defined for the connection of the evolved
circuit to the external world.
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Figure 3.3: A chromosome encoding two electronic devices: an NPN BJT de-
vice and a PNP BJT device, both with an evolvable parameter. The NBJT and
PBJT device tokens signal the start of the fragments of genome coding for the
BJTs. The terminal token TERM and the parameter token PARM signal the end
of a sequence of characters that is associated with a terminal or with a pa-
rameter of the device and, possibly, the start of another sequence associated
with a terminal or with a parameter. The fragments that do not correspond to
a token or to a sequence associated with a terminal or with a parameter, cor-
respond to non coding fragments of the genome. Apart from tokens, sequences
of identical characters for each coding and non coding fragment is used here
Jor illustrative purposes, to facilitate the visual identification of the sequences.
In an actual evolved genome these sequences will be typically heterogeneous

(see, for example, the evolved genome shown in Figure 4.46 on page 185).

the parameter tokens is to signal the end of a fragment of genome that
is associated with a terminal or with a parameter, respectively, and
the start of the successive fragment associated with a terminal or with
a parameter, if any. This means that all the terminal and parameter
tokens required by that particular device must be present in the corre-
sponding genome fragment. Figure 3.3 shows an example of a chromo-
some representing two BJTs (which are three-terminal devices). Here,
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besides the device tokens NBJT and PBJT introduced above, the token
TERM is used as terminal token, and the token PARM is used as device
token, and each BJT is assumed to have, besides its standard three
terminals, one evolvable parameter. The fragments of genome not cor-
responding to tokens and not associated with terminals or parameters,
correspond simply to non coding genome. Note that the use of evoca-
tive tokens like NBJT, PBJT, TERM, and PARM in the examples, derives
simply from the desire to facilitate the visual inspection of the genome.
The use of similar tokens like NBJT and PBJT for similar devices is a
choice that lets evolution transform one device into the other with a
mutation as simple as a single nucleotide substitution. This facilitates
the evolutionary production of circuits that have a given structure but
use different devices.

The length of the tokens and the size of the genetic alphabet de-
termine the probability of randomly generating the tokens. With an
alphabet of size |G| the probability p, of randomly generating a token
t of length |¢| is |G|™"!. Although the random generation of a token is
perfectly acceptable and can even benefit the evolutionary process, if
the value of p, is too large a randomly generated or randomly mutated
genome would be almost surely cluttered with spurious tokens, and
this would interfere with the evolutionary process. Given the genetic
alphabet and a maximum acceptable value for p, (typically following
from heuristic considerations), a minimal length for the tokens follows.
The examples shown in the previous figures use the values |G| = 26 and
|t| = 4 and correspond to a probability p, ~ 2.2 - 1075 which ensures that
on average very few spurious tokens are generated in a genome with a
length of some thousand nucleotides, as is the case for the examples
shown in the next chapter.

The number and kind of elements required for the correct decoding
of a device varies from device to device. For example — considering for
the moment only the terminals — a bipolar transistor always requires
the existence of three sequences associated with its three terminals, a
capacitor requires the existence of two sequences associated with its
two terminals, whereas an artificial neuron could be specified as re-
quiring the existence of two sequences associated with the input and
output terminals, respectively, or could instead be specified as requir-
ing the presence of at least one sequence associated with its output
and an arbitrary number of sequences associated with a correspond-
ing number of inputs.

The number of sequences associated with device parameters can
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also vary from device to device, and depends on how many evolvable
parameters a given device is attributed in a given experiment. For ex-
ample, an experiment could use completely predefined bipolar transis-
tors, in which case no evolvable parameters would be associated with
these devices; another experiment could assume as evolvable, say, the
transistor’s current gain g, in which case there would be one evolvable
parameters that would be associated with transistors; still another ex-
periment could use simultaneously both kinds of transistors, one with
evolvable parameters, and one without.

Devices for which no evolvable parameters are defined can still have
a separate evolvable global description of the device encoded in the
genome. The evolution of this global description would influence col-
lectively the characteristics of all the devices of the given kind, contrary
to what happens with parameters encoded in the fragment of genome
corresponding to a device, which refer only to that particular instance
of the device.

When the terminals of a device are not interchangeable, like in the
case of the base, collector, and emitter of a transistor, or of the input
and output terminal of an artificial neuron, a predefined association
order (for example collector—base—emitter, or output—input) is spec-
ified. If more than one evolvable parameter is present, a predefined
association order is specified also for the evolvable parameters. On the
other hand, since their tokens are different, terminals and parameters
cannot be confused; hence, they are left free to appear and mix in any
order in the fragment of genome that codes for a device. For example,
Figure 3.3 shows a fragment of genome coding for an NPN BJT where
the evolvable parameter is the last element of the fragment, but the
evolvable parameter could be the first element of the fragment, or the
third element, like in the case of the PNP BJT encoded in the same
chromosome. This freedom to mix terminal and parameter sequences
makes the decoder more tolerant to genome reorganizations.

3.2 Device extraction

The representation technique described in the previous section leads to
the following procedure for the extraction of the devices encoded in the
genome. Each chromosome is scanned in search of any of the device
tokens belonging to the device set used in the evolutionary experiment.
If one of the device tokens is found, the fragment of genome starting
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Figure 3.4: A fragment of the chromosome represented in Figure 3.3, encoding
an NPN BJT having one evolvable parameter. The decoding creates a device of
the type specified by the device token, and associates a sequence of characters
with each terminal and with each evolvable parameter of the device.

after the token is scanned in search of all the terminal and parameter
tokens required by the device. If all the required tokens are found
before the next device token or before the end of the chromosome, a
device — for the moment, unconnected - is created and the sequences
of characters delimited by the tokens are associated with the terminals
and parameters of the device. Then, the next device token is searched
in the genome, and so on until all the genome has been examined.
Figure 3.4 shows an example of decoding of a transistor from a frag-
ment of genome that contains all the tokens required by an NPN BJT
with one evolvable parameter. In this example, the sequence of nu-
cleotides comprised between the end of the device token NBJT and the
start of the first terminal token TERM, is associated with the first ter-
minal of the NPN BJT, the sequence of nucleotides comprised between
the end of the first TERM and the start of the second TERM is associated
with the second terminal of the NPN BJT, the sequence of nucleotides
comprised between the end of the second TERM and the start of the
third TERM is associated with the third terminal of the NPN BJT, and
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Figure 3.5: A genome composed of a single chromosome encoding the devices
of an analog electronic circuit (top), and the devices extracted from it following
the procedure described in the text (bottom).

the sequence of nucleotides comprised between the end of the third
TERM and the start of the PARM token, is associated with the evolvable
parameter that the BJT is assumed to possess in the evolutionary ex-
periment, for example, the current gain 3. Figure 3.5 shows the result
of extracting all the devices of an analog electronic circuit encoded in a
genome composed of a single chromosome.
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The procedure of component extraction described above does not
admit the overlapping of sequences of characters corresponding to dif-
ferent devices, but can be easily modified so as to permit this overlap-
ping. To this end, it is sufficient to stipulate that, once a device token
is found, the chromosome is scanned until all the tokens required by a
device are found or the chromosome end is reached, irrespective of the
presence of another device token. In this case, for example, if one of the
TERM tokens following the token NBJT and preceding the token PBJT of
the chromosome represented in Figure 3.5 is removed or invalidated,
the search of the third TERM token for the NPN BJT produces the first
TERM token following the PBJT token, and the whole sequence from the
end of the first PARM token to the start of this TERM token is associated
with the third terminal of the NPN BJT. Although gene overlapping
is known to occur in natural genomes (Graur and Li, 2000), prelimi-
nary experiments and the sequence matching experiments described
in Chapter 4 suggest that the presence of device overlapping tends to
speed the initial phases of evolution but also to generate an interaction
between devices that appears to hamper further evolutionary progress.
For this reason, in the experiments reported below the possibility of de-
vice overlapping is excluded. This corresponds to consider potentially
associated with a device only the fragment of genome that goes from
the end of the a device token to the start of the next one.

Figure 3.6 shows another example of chromosome encoding of the
devices of an analog network. In this case the analog network is a
neural network instead of an analog electronic circuit. The devices are
now artificial neurons, identified by the token NEUR, while the termi-
nals and the parameters are still identified by the tokens TERM and
PARM. Artificial neurons are typically characterized by one output and
one or more input terminals. Since — as explained in the previous
chapter — the device interaction map must allow the determination of
multiple interactions with a single sequence, it could be sufficient to
use and encode in the genome only one output terminal and one input
terminal for each device. To facilitate the task of evolution, however,
we might decide instead to permit the association with the input of
each neuron of more than one sequence of characters extracted from
the genome. This can be obtained by specifying that the first sequence
of characters delimited by a TERM token is associated with the output,
and the subsequent ones are associated with the inputs. Figure 3.6
presents an example of this kind of encoding. Here, one of the neu-
ron encoded in the chromosome has a single input sequence whereas
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Figure 3.6: A chromosome that encodes the devices belonging to an artifi-
cial neural networlk, and the two neurons extracted from it. Note that the first
neuron has a single input, whereas the second has two inputs. This is an
example of encoding that does not impose the presence of a fixed and prede-
fined number of terminals of a certain type. The possibility of having several
input terminals permits the definition of densely connected networks without
burdening the sequences of characters associated with the terminals with the
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necessity of generating too many independent interactions. Associated with
each neuron there is also an evolvable parameter «, for example, a parameter
determining the slope of a sigmoidal activation function.

the other neuron has two sequences associated with its inputs. Note
that the case of no associated input sequences could be also accepted,
for example to determine within the network bias neurons with fixed
output and no inputs (Haykin, 1999). If a distinction between excita-
tory and inhibitory neurons is desired, it can be obtained by defining
different device models, each with a specific device token, for example
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Figure 3.7: A chromosome that encodes the devices belonging to an artificial
genetic regulatory network, and the two genes extracted from it. An evolvable
parameter v is also associated with each gene.

NEUE and NEUI for excitatory and inhibitory neurons, respectively. If it
is instead required to distinguish excitatory and inhibitory inputs, it is
sufficient to use distinct terminal tokens for the output terminal, the
excitatory input terminals, and the inhibitory input terminals.

The other kind of analog network that was mentioned in the previ-
ous chapter is constituted by genetic regulatory networks (GRN). Fig-
ure 3.7 shows how a GRN can be encoded using the approach described
above. The devices are now genes, and the encoding corresponds, mu-
tatis mutandis, to that of the neurons illustrated in Figure 3.6. Like in
the case of the neurons, if the possibility of having more than one input
terminal is required, it can be obtained by stipulating that all terminals
tokens following the first must be decoded and interpreted as associat-
ing a sequence to an input. If several input and output terminals are
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required, it is sufficient to define two distinct terminal tokens for them.

3.3 Interaction strength and parameter values

The result of the device extraction process described in the previous
section is a collection of unconnected devices that have sequences of
characters associated with their terminals and with their evolvable pa-
rameters, as illustrated by Figure 3.5, Figure 3.6, and Figure 3.7. To
turn this collection of devices into an actual analog network we need
to connect the devices and assign actual values to their evolvable pa-
rameters.

3.3.1 Connecting the devices

As explained in Section 2.6, the connection of the devices is based on
the definition of a device interaction map, which transforms pairs of
character sequences associated with two distinct device terminals into
a scalar value that represents the strength of the direct interaction
between the terminals.* For example, if the analog network is an elec-
tronic circuit, the strength of the direct interaction between two device
terminals can be represented as a value g of conductance® inserted
between the terminals. If we denote with s; and s, the sequences of
characters associated with two distinct terminals, we can denote with
G(s1, s2) the device interaction map that produces the value of conduc-
tance that must be inserted between the two terminals (Figure 3.8).
Repeating this process for each pair of distinct sequences, we obtain a
value of conductance between each pair of terminals of the devices ex-
tracted from the genome. In this way, the collection of originally uncon-
nected devices is transformed into an actual analog network. Note that
the device interaction map can associate a null value of conductance

4We call direct interaction or direct connection between two device terminals the in-
teraction that is established externally relatively to the devices, through the action of
the device interaction map defined below. For example, in the case of electronic cir-
cuits, when the terminals belong to a single device, say a transistor, there is obviously
the physical interaction between the terminals mediated by the internal structure of
the transistor, but this interaction is not considered a direct connection in the sense
specified above. On the contrary, a resistor or a wire inserted between the terminals
constitutes a direct connection, and the two terminals are not directly connected
when there is no such wire or resistor connecting them.

5The electrical conductance g of a conductor (whose SI unit of measurement is the
siemens - symbol S) is the reciprocal of its electrical resistance r (whose SI unit of
measurement is the ohm - symbol ).
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Figure 3.8: The connection between two device terminals having sequences
of characters associated with them is determined by a device interaction map
that associates with each pair of sequences a value of interaction strength be-
tween the corresponding terminals. In the case of electronic circuits considered
here, the device interaction map G(s1,s2) produces a value g of conductance
that must be inserted between the terminals. Note that the process illustrated
in the figure is repeated for all pairs of distinct sequences of characters associ-
ated with the terminals, even if — for the sake of clarity — the bottom part of the
figure does no longer show the pair of sequences that have been processed to
produce g.

with certain pairs of sequences. This corresponds to the absence of
direct interaction between terminals carrying those pairs of sequences,
and prevents the need for each device terminal to be necessarily con-
nected to all other device terminals.
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Figure 3.9: Two artificial neurons extracted from a genome and having se-
quences of characters associated with their input and output terminals (top)
are connected and thus transformed into a neural network (bottom) applying
the device interaction map W (s, s2) that associates link weights w with pairs
of character sequences. An analogous illustration can be drawn for the genes
of the artificial GRN shown in Figure 3.7.

Contrary to the case of analog electronic circuits, where the termi-
nals of devices such as bipolar transistors do not have a clear char-
acterization as inputs or outputs, in the case of neural networks this
characterization exists and it makes sense to consider only the connec-
tion of output terminals to input terminals. The value of interaction
strength corresponds to what in the terminology of neural networks
is called the weight w;; of the link connecting the output of the j-th
neuron with the input of the i-th neuron (Haykin, 1999). The device
interaction map W (s, s2) that determines the connections will there-
fore associate values of weights with pairs of sequences of characters
associated with one output terminal and one input terminal of the neu-
rons decoded from the genome. Figure 3.9 shows the establishment of
the connections between two neurons, which transform the neurons
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assumed as extracted from a genome, into a neural network (for the
moment, without external inputs and outputs). In this case too, the
device interaction map might associate null values of weights to cer-
tain pairs of sequences,® thus giving the possibility of leaving pairs of
input and output terminals without a direct connection.

The case of genetic regulatory networks corresponds closely to that
of neural networks, and the corresponding remarks and illustrations
apply in general also to this kind of analog network. There is typically
just a difference in the meaning given to the value of the interaction
strength in GRN. Often this value is interpreted as a probability of oc-
cupation of a given regulatory site from the part of a regulatory protein.
If this is the case, the values of interaction strength must be eventually
normalized in order to actually represent probabilities. An alternative
approach, which eliminates the problem of proliferation of interactions
from the start, is to retain for each gene only the strongest of the inter-
actions potentially determined by all the pairs of sequences associated
with the input terminal of that particular gene and with all the output
terminals of all the genes present in the network, considering all other
potential interactions recessive (Lones and Tyrrell, 2004a).

3.3.2 Assigning parameter values

The assignment of a value to the evolvable parameters is based on the
definition of a parameter map P,(s) that transforms the sequence s of
characters extracted from the genome and associated with the parame-
ter into the value of the parameter (Figure 3.10).

There are obviously many ways to map a sequence of characters
into a real number. For example, the sequence of characters could be
interpreted as an integer number written in base |G|, and this integer
could be further mapped into an interval corresponding to the range
of variation selected for the parameter. Using this approach, however,
the nature of the parameter map would possibly be very different from
that of the device interaction map described above, which acts instead
on pairs of sequences. In particular, this would be true for the conse-
quences of mutations and reorganizations of the genome on the value
of interaction strength and parameter values. For this reason, it is

SAnticipating some material from Section 3.4, we observe that to facilitate the
evolution of sparsely connected networks it is sufficient to define a device interaction
map that associates a null value of interaction strength with a large set of pairs of
sequences, i.e., with an entire range of sequence alignment scores rather than with a
single value of alignment score.
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Figure 3.10: The value of an evolvable parameter is assigned by applying
a parameter map P;(s) to the sequence s of characters associated with the
parameter

worth considering the possibility of defining the parameter map P (s)
as Pi(s) = Pa(s, sp), where Ps(s,s,) is a map that associates a parameter
value with the pair constituted by the sequence s and a fixed sequence
of characters s, (Figure 3.11). In this way, both the device interaction
map and the parameter map correspond to a mapping from pairs of
sequences to scalar values.

3.4 Device interaction map

As explained in Section 2.6 and in Section 3.3.1 the role of the device
interaction map is that of transforming pairs of character sequences
associated with two distinct device terminals into a scalar value that
represents the strength of the direct interaction between the terminals.
This map is obviously specific of the kind of analog network consid-
ered. For example, in the case of electronic circuits the device inter-
action map will produce values of conductance (Figure 3.8), whereas
for neural networks it will produce weight values (Figure 3.9), which
are typically dimensionless, and for genetic regulatory networks it will
produce, for example, values of probability of activation of one gene on
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Figure 3.11:  The parameter map P;(s) can be defined in terms of a map
Py (s, s,) involving the sequence s associated with the evolvable parameter, and
a fixed, predefined sequence s,. In this way, both the device interaction map
and the parameter map correspond eventually to a map from pairs of character
sequences to scalar values.

the part of another gene. Since we need to ensure that the device inter-
action map always satisfies the requirements derived in the previous
chapter (Subsection 2.8.2), it is expedient to distinguish the network-
specific component of this mapping, from a generic component which
provides the required evolvability and complexity-growth potential. In
this way, we could reuse this generic component for any kind of ana-
log network evolution, and obtain in this way a device interaction map
complying with the given prescriptions, without the need to reconsider
each time the suitability of a device interaction map redefined from
scratch for each particular kind of analog network.

We pursue this distinction of generic component from a specific
component of the device interaction map by writing it as a composed
map N (L (s, s9)) formed by a generic sequence interaction map L(s1, s2)
that transforms pairs of sequences into abstract sequence interaction
values i, and by a network-specific interaction map N (i) that transforms
sequence interaction values i into network-specific values of interaction
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strength.” The current section is devoted to the definition of all the im-
plementation details of the device interaction map used in this thesis,
following the approach just mentioned.® Since many concepts and de-
finitions are introduced in the following pages, a schematic overview of
the principal elements that will be discussed is given in Figure 3.12,
along with a brief description of the role of the various elements in the
overall framework. The reader is encouraged to come back to this gen-
eral scheme each time a new element is added to the global picture
constituting the device interaction map.

3.4.1 Sequence interaction map

The sequence interaction map L(sy, s2) is a generic map that transforms
pairs of sequences into abstract sequence interaction values. Loosely
speaking, this map must implement a generic interaction between se-
quences of characters which abstracts the interaction between frag-
ments of biological genomes within genetic regulatory networks and
complies with the prescriptions listed in Subsection 2.8.2.

There are certainly many ways to approach the definition of the se-
quence interaction map. A general observation concerning the device
interaction map is that the fact of associating with pairs of sequences
a scalar value representing the strength of their interaction defines im-
plicitly a notion of similarity between pairs of sequences. Thus, we
could be tempted to base the definition of the sequence interaction
map on traditional ways to define the distance between two sequences.
The simplest example that comes to mind is the Hamming distance,
which counts the number of differences between two sequences of
equal length. It is clear, however, that this simple choice does not
comply with the prescriptions given in Subsection 2.8.2, if only for the
constraint constituted by the required equal length of the sequences,
which would restrict excessively the set of admissible genetic operators.

The use in the definition of the sequence interaction map of such a
simple technique of evaluation of the distance between two sequences
is in fact conceivable only if some additional transformation is defined,
which mediates between the original pair of sequences and the pair of

“The sequence interaction map can then be also used to define the map Ps(s, s,)
that is part of the parameter map.

8Note that other implementations of the device interaction map can be used in the
context of the approach proposed in this thesis. It is sufficient that the alternative
implementations of the sequence interaction map comply with the list of prescriptions
given in Subsection 2.8.2.
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Figure 3.12: A schematic representation of the elements that enter the de-
finition of the device interaction map. First, the sequence interaction map
L(s1,s2) gives for each pair of sequences of characters (s, s;) associated with
a pair of device terminals, a scalar sequence interaction value i. Then, the
network specific interaction map N (i) transforms each sequence interaction
value i into a scalar network specific interaction strength w between the termi-
nals of the devices. The device interaction map corresponds to the composed
map N (L (s1, s2)), which associates values of interaction strength with pairs of
sequences associated with the terminals of the devices. When the sequence
interaction map is defined in terms of sequence alignment, it is characterized
by a pair of scoring matrices.

sequences that are eventually compared, and which endows the com-
posite map with the desired properties. For example, a definition di-
rectly inspired from the mediating role of the process of protein folding
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in the biological context, could combine a map that realizes the em-
bedding of one of the sequences in a high dimensional space (mimick-
ing the mapping of the sequence of nucleotides coding for the protein
into the high-dimensional space of protein shapes), another map that
projects the result back in a space of character sequences (mimicking
the generation of a region of the protein that must recognize the se-
quence of nucleotides that constitutes a regulatory binding site along
the genome), and a final map that evaluates the distance of the re-
sulting sequence relatively to the other, unprocessed sequence of the
pair (mimicking the physical phenomena that determine the strength
of the interaction between the regulatory binding site and the above-
mentioned protein region). Unfortunately, devising a pair of mappings
that realize the embedding and the projection and endow the composed
map with the required properties when combined with an elementary
sequence similarity assessment, is a far from obvious task.

A simpler approach is to look for a more flexible definition of the
similarity between sequences and use it directly as sequence interac-
tion map. There is in fact a way to define a notion of similarity between
sequences of characters, which - as will be shown below — when used
directly as sequence interaction map endows it with the required prop-
erties. This notion of similarity corresponds to the concept of local
alignment of pairs of sequences of characters, and will be described in
the next section.

3.4.2 Global and local sequence alignment

A global alignment between two sequences of characters is a corre-
spondence between the two sequences that puts each character of one
sequence in correspondence with a character of the other sequence, or
with a special space character (Figure 3.13). Note that, given two se-
quences, many different global alignments can be typically established
between them.

The concept of global alignment can be used to define a measure
of similarity between two sequences, called global alignment score. To
define the concept of global alignment score it is sufficient to assign a
substitution score to each possible correspondence of two characters of
the two sequences, an insertion score to each correspondence of a char-
acter of the first sequence with a space, and a deletion score to each
correspondence of a space with a character of the second sequence.’

9These scores are typically grouped in the scoring matrices which are represented
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Figure 3.13: A global alignment of two sequences of characters puts each
character of one sequence in correspondence with a character of the other se-
quence, or with a special space character. The underlying idea is that one
sequence is transformed into the other through a sequence of operations of
substitution, insertion, and deletion of single characters. Here, substitutions
(which include as a particular case the substitution of a character with itself)
are represented by a solid arrow, whereas insertions and deletions are rep-
resented by a dotted arrow. Note that the figure represents only one of the
many different global alignments that can be typically established between
two given sequences.

The underlying idea is that one sequence is transformed into the other
using a series of character substitutions, insertions and deletions (ab-
breviated as indels), and that the more similar the characters put into
correspondence are, the higher their substitution score. For each par-
ticular global alignment of two sequences it is therefore possible to
assign an alignment value summing the scores of all correspondences
established by the alignment. The global alignment score of two se-
quences is then defined as the highest alignment value attainable con-
sidering all the possible global alignments of the sequences (Gusfield,
1997). Note that the highest alignment value can be attained by two or
more distinct global alignments of the two sequences.

If we compare the properties of the global alignment seen as a can-
didate for the implementation of the sequence interaction map, with
the prescriptions listed in Section 2.8, we notice at once that one of
the requirements is certainly not fulfilled, namely, the possibility for a
single sequence of determining multiple independent interactions (Fig-

schematically in Figure 3.12 and whose structure will be described in Section 3.4.4.
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Figure 3.14: As explained in Section 2.8, the evolvability of the analog net-
works can be expected to be favoured by the use of a device interaction map
that has the possibility of determining multiple independent interactions on a
single sequence. In terms of the sequence interaction map, this can be ob-
tained by defining a map that has the possibility to operate locally on several
distinct fragments of a single sequence, as shown in this figure. A sequence
interaction map that forces instead a global matching on the whole sequence
incurs the risk of producing interferences that can hamper the evolutionary
process (see also Figure 2.3 on page 36).

ure 3.14). This limitation follows from the global nature of the align-
ment, which forces the establishment of a correspondence between all
the characters of the two sequences. This problem can be solved con-
sidering instead of the global alignment of two sequences, their local
alignment. The difference is that in a local alignment not all charac-
ters of the two sequences must be put into correspondence, but only
the characters of two portions of the sequences, called matching re-
gions. The only condition is that the matching regions be composed of
characters that are adjacent in the original sequences, so that only the
initial and final portions of the sequences can be ignored in the align-
ment (Figure 3.15). In practice, this is obtained by assigning a negative
or null value of alignment score to some character substitutions and
indels, and ignoring in the alignments the leading and trailing char-
acters of the sequences that do not contribute with a positive score to
the alignment value.!® The end result is an alignment where a single
sequence can match independently many other sequences with several

10As a consequence, the local alignment score is a non-negative quantity.
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Figure 3.15: A local alignment of two sequences of characters puts adjacent
characters of one sequence in correspondence with adjacent characters of the
other sequence or with a special space character, possibly ignoring characters
before and after the matching region constituted by the characters that are
put in correspondence. Like in the case of the example of global alignment
given in Figure 3.13, this figure represents only one of the many different local
alignments that can be typically established between two given sequences.

distinct matching regions (Figure 3.16). Like for the global alignment,
given the substitution, insertion, and deletion score for single charac-
ters it is possible to assign to each particular local alignment of two
sequences an alignment value summing the scores of all correspon-
dences established by the alignment. The local alignment score of two
sequences is defined as the maximum alignment value attainable con-
sidering all the possible local alignments of the sequences (Gusfield,
1997).

The local alignment score is ideally suited to the implementation of
the sequence interaction map, being endowed with the following prop-
erties:

'V With a suitable choice of the character substitution and indel
scores it can be made highly redundant.

'V A single sequence can determine multiple independent interac-
tions.
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Figure 3.16: Using the local alignment rather than the global alignment, one
sequence can match independently many other sequences with multiple sep-
arate matching regions, although overlapping of the matching regions is still
possible.

'V It operates on pairs of sequences of arbitrary length and indepen-
dently from the original position of the sequences in the genome.

V' With a suitable choice of the character substitution and indel
scores, changes in the sequences can produce both small changes
and large variations in the alignment score.

Note that the fact that the alignment score is defined as the maximum
of all the alignment values attained by all the possible alignments im-
plies that an alignment realizing the maximum value (an optimal align-
ment) masks all the alignments with a smaller alignment value. A mu-
tation in the sequences can degrade the value of a formerly optimal
alignment, promoting as new champion one of the previously masked
alignments, which can thus be considered a “recessive” alignments rel-
atively to the previously dominant alignment. This is potentially useful
in an evolutionary perspective, and it is thus worth mentioning as an
additional property of local alignment

'V Besides the “dominant” interaction, two sequences can produce
several “recessive” interactions.

From the point of view of the computational complexity, at first
sight the calculation of the local alignment score of two sequences re-
quires the generation of all possible correspondences of all portions
(substrings) of one sequence with all portions (substrings) of the other
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sequence, a feat which is computationally unfeasible for even moder-
ate string lengths. There are, however, algorithms based on dynamic
programming that compute the global and local alignment score of two
strings of length m and »n with computational complexity of order mn in
time, order m in space (i.e., in memory), and order |G| in the alphabet
size. A dynamic programming algorithm to compute global alignment
was first described in (Needleman and Wunsch, 1970), while a dynamic
programming algorithm for local alignment was introduced in (Smith
and Waterman, 1981). Algorithms for global alignment are thus typi-
cally referred to as Needleman-Wunsch algorithms, whereas those de-
voted to local alignment are called Smith-Waterman algorithms. Since
both the global and the local alignment of sequences are heavily used
in bio-informatics, many references and textbooks exist on the subject
(for example, Crochemore et al., 2001; Crochemore and Rytter, 2002;
Gusfield, 1997; Mount, 2001; Sankoff and Kruskal, 1983). The reader
is referred to these texts for the details of these algorithms. The only
thing worth noting here concerning this aspect of the local alignment
is that

"V Its computational complexity is reasonably low.

The quadratic computational complexity suggests, however, the setting
of a limit for the length of the sequences extracted from the genome
and associated with the terminals and parameters of the devices.

Of the requirements listed in Section 2.8 for the device interaction
map it remains therefore to assess only the possibility of generating
large enough sets of independent sequences, that is, the possibility
of keeping low the unwanted interference between distinct sequences.
This aspect is related to the choice of the alphabet and of the substi-
tution and indel scores. To proceed with these choices, however, be-
sides considering the problem of interference between sequences, that
is, besides considering what we want to avoid in our interaction map,
we must ascertain what we positively want to obtain from it. This, in
turn, is related to the number of distinct interaction strength values
that we want to obtain from the map. Therefore, before considering
the problem of alphabet size and scores value, we turn to consider
briefly the nature of the network-specific interaction map whose role
was briefly described at the beginning of this section and is illustrated
in Figure 3.12.
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3.4.3 Network-specific interaction map

The role of the network-specific interaction map is to transform the
abstract sequence interaction values produced by the sequence inter-
action map into network-specific values of interaction strength between
the terminals of the devices. The domain of the sequence interaction
map is the set of pairs of character sequences built on the genetic al-
phabet. If we set an upper limit for the length of the sequences ex-
tracted from the genome, this domain is finite, otherwise it is count-
able. Hence, the range of the sequence interaction map is also finite
or at most a countable set. The network-specific interaction map must
thus associate with each element belonging to this set a value of inter-
action strength that is meaningful for the actual analog network con-
sidered in the experiment.

In practice, the finite resources available for the implementation of
our evolutionary system imply that the set of possible interaction val-
ues is always finite. This is not a serious limitation, provided that we
distribute wisely the finite number of interaction values that we can
actually represent, within the (typically continuous) range of network-
specific interaction values that we would like to represent. This is a
problem that exists each time we have at our disposal finite resources
to represent a continuous range of values. A first example is the choice
of the numerical representation for real numbers within a computer.
Another example is the choice of the finite set of standardized values
of passive electronic component such as resistors, inductors, and ca-
pacitors, that can be actually manufactured and put at the engineer’s
disposal for the design of electronic circuits. Still another example is
the finite set of coin and banknote values that is manufactured and
publicly circulated.

Appendix B is devoted to the problem of choosing the distribution
of a finite set of values within a continuous interval of real values. In
that appendix it is shown that in many cases, including the case of the
resistors in an analog electronic circuit, a logarithmic distribution of
the selected values within the interval appears the optimal choice. Note
that in the three examples considered above, if we assume as typical
the floating point representation for real numbers within a computer,
the distribution of the selected values is fundamentally logarithmic in
all three cases.

It is worth examining in some detail the distribution and range of
the standardized sets of resistors used in electronic circuit design, be-
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cause it gives some indication of the total number of values that is
considered sufficient in an actual, real-world scenario. The common-
est standardized series of resistors is the so-called E12 series, which
has 12 elements for each decade of electric resistance value and, con-
sequently, for each decade of electric conductance!! value (see Appen-
dix B for the actual values of the E12 series). The range of values
used by engineers goes typically from 12 to 10M(2. Values outside this
range are manufactured for special purposes, but are not considered
part of the standardized series. Hence, the set of available resistors
for the design of the typical electronic circuit comprises 85 elements,
with values approximately logarithmically distributed across 7 decades
of electric resistance. Note that limitations of printed board space and
reasons of circuit reliability rule out the use of combinations of several
resistors to produce a non-standard resistance value. By comparison,
coins and banknotes — which are instead usually combined to produce
“non-standard” monetary values — cover something like 5 decades with
about 15 elements almost logarithmically distributed in the spanned
range, using typically only 3 standardized values per decade.

To facilitate the task of evolution, we can stipulate that the number
of interaction strength values available must be sufficient to avoid the
need to combine several interactions to span the desired range of val-
ues. Note that we could be tempted to use many more elements than
strictly needed, but this would have the undesirable effect of unneces-
sarily enlarging the search space, since the set of interaction strength
values requires a corresponding number of sequence interaction val-
ues. In some cases it can be advisable to add to the required number
of interaction strength values a few values of sequence interaction cor-
responding to the absence of any direct interaction. For example, in the
case of electronic circuits, a range of low sequence interaction values
could be associated with the zero-valued conductance (corresponding
to the insertion of an infinite-valued resistor between the terminals,
that is, to the insertion of no resistor at all). This choice is typically
dictated by the desire to avoid the presence of too many connections
in the analog network decoded from the genome, which could slow the
simulations of the network or complicate their implementation. On the
other hand, if the presence of many connections is not a problem (for
example, if the simulation technique does not suffer from their pres-
ence), it is probably better to avoid the use of a “dead-zone” of absence

!1See Note 5 on page 69.
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of interaction, to give evolution the possibility of gradually probing the
effect of the various interactions.

Another useful expedient is the association with a predefined maxi-
mum value of interaction strength, of all the sequence interaction val-
ues above a certain limit. For example, in the case of electronic circuits,
the maximum interaction strength between two terminals corresponds
— theoretically — to a null value of resistance. i.e., to an infinite value of
conductance of the corresponding connection. Instead of considering
arbitrarily large values of conductance (which, in practice, are opera-
tionally unfeasible) as associated with increasing values of sequence
interaction strength, it is preferable to consider a finite and opera-
tionally reasonable maximum value of conductance as associated with
a given sequence interaction strength, and to transform all sequence
interaction strengths above that maximum value into a connection with
infinite conductance.

Example: Let us consider how a network-specific interaction map
i Y g from a range of integer sequence alignment scores ¢ to a set of
conductance values g complying with these indications can be actually
defined. Let us assume a logarithmic quantization of the conductance
range (Appendix B) determining a set of discrete conductance values
having n, elements per decade of conductance value. We denote by g,
the zero-valued conductance, by g,,;,, the minimum non null value of
conductance, by ¢,.. the maximum finite value of conductance, and
by ¢ the infinite-valued conductance. The sequence of conductance
values corresponds to

Nd

2 —1
{gov Imins CGmin, O Gmin, - -+ , & Gmin, 10 Gmin; 10 AGmin, - - - Imaz, goc}

where a = 10/"¢. Denoting by n, the number of elements in the sub-
sequence {gmin, --- ,gmast (that is, the number of discrete conductance
values excluding the connection with infinite conductance represented
by g, and the absence of connection represented by g,), gm., must sat-
isfy the condition g,,., = " "'g.;,. Denoting by i,,;, the positive integer
sequence interaction value associated with ¢,,;,, we obtain the network-
specific interaction map shown in Table 3.1.

Note that i,,, defines the “dead-zone” of sequence interaction val-
ues associated with g,, that is, with the absence of direct interaction.
If iin = 0, no dead zone exists and any positive sequence interaction
value (that is, any positive local alignment score) from two sequences
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Table 3.1: A theoretical example of network-specific interaction map using a
logarithmic distribution of interaction strength values with n, values of inter-
action strength per decade. The range i < i,,:, of sequence interaction values
is associated with the absence (or; more generally, minimum strength) of inter-
action g,, and the range i > in,q, 0of sequence interaction values is associated
with the direct (or, more generally, maximum strength) connection g... The in-
teger parameter ny corresponds to the number of discrete interaction strength
values besides the direct connection and the absence of connection.

associated with device terminals results in the insertion of a conduc-
tance between the terminals. The range i > i,,, of sequence interac-
tion values is associated with the connection having an infinite-valued
conductance which is represented by g... Setting ¢,,,, = +00 (or, equiv-
alently, n, = +00) produces an unbounded sequence of interaction val-
ues.

To illustrate in practice this technique of definition of the network-
specific interaction map, let us assign some actual values to the pa-
rameters and coefficients just introduced. Choosing a minimum resis-
tance value of 1) and a maximum resistance value of 1M, we obtain
Gmin = 1079S and g,,.. = 1S. The range of conductance values spans six
decades. Setting the number of values per decade to n, = 8 we obtain
ng = 6n4+1 =49 and a = 10"/® = 1.33. If we choose a value of i,,;, = 20
(this choice will be discussed further in the next subsection) we ob-
tain the actual network-specific interaction map i e g illustrated in
Table 3.2.

If the circuit to be synthesized must be realized with discrete com-

28D MARCH 2005



Section 3.4. Device interaction map 87

i <imin=20 — g=g,=0 (no connection)
i=20 — §= gmin=107%8
i=21 — = Qgmin~133x1076S
i=22 — g=0a%gmin~1.78x 10768

1= lmin +1g — 1=
=20449—-1=68 — ¢= gnar =185
1> Gz = 68— g = goo = 00 (direct connection)

Table 3.2: An actual example of a network-specific interaction map using a
logarithmic distribution of interaction strength values with ng = 8 values of
interaction strength per decade of conductance values, a minimum non-zero
value g, = 1078, a maximum finite value g,,.. = 1S of conductance, and

Imin = 20.

ponents, it is advisable to use directly the elements of one of the stan-
dard resistor series — for example the E12 series mentioned above —
rather than analytically defined logarithmically distributed values. In
that case, ¢, would correspond to the minimum resistance value of
the series, g,,;, would correspond to its maximum resistance value, n,
would be the number of elements in the series, and the device interac-
tion map would associate values of sequence interaction strength from
imin 1O ime With the resistance (conductance) values of the standard
series.

3.4.4 Scoring matrices

Now that the details and requirements of the network-specific interac-
tion map have been analyzed, we can go back to the definition of the
details of the sequence interaction map L(si, s2). To actually implement
the sequence interaction map in terms of local alignment of sequences
we must assign the genetic alphabet and the scores that are required
for the computation of the local alignment over that alphabet. This
means assigning the substitution scores c,_.,, the insertion scores c__,,
and the deletion scores ¢, for all characters x and y belonging to the
genetic alphabet. The scores are grouped into a substitution matrix, an
insertion vector, and a deletion vector, which, together, form the scoring
matrices.
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The choice of the scoring matrices is a central problem of parameter
assignment for an evolutionary system that uses the alignment of se-
quences to implement the device interaction map. In a sense, the scor-
ing matrices implicitly define the “physics” of the interaction between
the portions of the genome. To solve this parameter assignment prob-
lem, we can start by listing some elementary conditions that the scores
must satisfy. First, although the scores could be real numbers, there
is no loss of generality in considering them integers, since at this level
we are concerned only with the ordering of the interactions. It is the
role of the network-specific interaction map to transform these ordered
elements into actual values of interaction strength. Second, some non
negative scores must be present in the scoring matrices, otherwise the
local alignment algorithm will always return two empty matching re-
gions and a null alignment score. Third, not all entries of the scoring
matrices can be positive, otherwise the alignment algorithm will tend
to put in correspondence all the characters of the two strings instead
of ignoring some characters at the start or end of the sequences, and
the alignment would therefore tend to be global rather than local. Typ-
ically, there are some pairs of characters that are considered exact or
close matches and assigned a positive substitution score, and all other
pairs are considered mismatches and attributed a negative substitu-
tion score. Insertion and deletion scores are typically also assigned a
negative score. Fourth, the condition ¢,_., > ¢,._ + ¢__, must be ob-
served, otherwise the substitution z — y will never appear in an optimal
alignment, the pair formed bz the deletion of  and the insertion of y
achieving higher score than the direct substitution of = with y. Fifth,
since the pair of sequences that must be aligned is assumed as un-
ordered, the symmetry conditions ¢,_., = ¢,—, and ¢c__, = ¢,_._ must
be respected by the substitution, insertion, and deletion scores. This
means that the substitution matrix is symmetric and that the insertion
vector and the deletion vector coalesce into a unique indel vector of in-
del scores. Figure 3.17 shows an example of scoring matrices satisfying
all these requirements. Note that besides the conditions given above,
the substitution matrix shown in Figure 3.17 is also circulant, that is,
its rows are cyclically shifted versions of each other. Moreover, in Fig-
ure 3.17 the indel score is the same for all characters. Both choices,
although not indispensable, simplify the implementation of the align-
ment algorithm. All the scoring matrices considered in this work will
have both these characteristics and, therefore, only the first row of the
substitution matrix and the first element of the indel vector will be ex-
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substitution matrix
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An example substitution matrix (top) and indel vector (bottom).

Figure 3.17:

These scoring matrices comply with the conditions given in the text for the
substitution, insertion, and deletion scores. In addition, the substitution matrix

is a circulant matrix, and the indel score is the same for all characters in the

alphabet. These two additional properties simplify the implementation of the

alignment algorithm.

plicitly shown from now on.

The list of requirements given above puts a series of constraints on
the structure of the scoring matrices, but does not determine the size

of the genetic alphabet, nor the actual entries of the scoring matri-

ces. To proceed further in the parameter assignment we thus need to
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consider what we positively want to obtain from our sequence align-
ment. This, in turn, derives from the requirements specified by the
network-specific interaction map analyzed in the previous subsection.
A first requirement is the possibility to exceed with the local alignments
score a certain maximum value i,,,, that we want to associate with the
maximum network-specific interaction strength. At the same time we
want to avoid the necessity of dealing with extremely long sequences
in order to generate values of alignment score in the i,,,, range, since
that would require long genomes and long computation times for the
alignment algorithm. These two requirements can be met ensuring
that some of the substitution scores have large enough positive values.
These large positive values, however, would tend to favour the indis-
criminate production of “global-like” alignments with high alignment
scores. To avoid an excessive interference between sequences and to
keep local the alignment we must thus balance the positive score val-
ues with negative values. A reasonable policy is to ensure a negative
average score for the elements of the scoring matrices (Gusfield, 1997,
p- 235). It is especially easy to comply with policy, even in presence
of high positive scores, if the size of the genetic alphabet is large, as
this ensures the existence of many pairs of characters that can be con-
sidered mismatches and to which a negative substitution score can be
attributed. The increase of the size of the genetic alphabet has also
the beneficial effect of increasing the redundancy of the device inter-
action map. On the other hand, a larger alphabet enlarges the search
space and slows the sequence alignment algorithms, although the ad-
ditional redundancy can compensate for this, hopefully transforming
the search for a needle in a haystack into the search for a needle in a
haystack full of needles (Pattee, 2001, p. 18). Finally, the entries of the
scoring matrices must permit the production of all the possible values
of alignment score up to i,,,,, in order to permit the production of all
the values of interaction strength belonging to the range of the network-
specific interaction map. This means that there must be scores of vari-
ous magnitude in the scoring matrices which, when combined, must be
able to produce all values of sequence interaction strength composing
the domain of the network-specific interaction map. The scoring matri-
ces shown in Figure 3.17 comply with these requirements, with large
positive scores up to 5, an alphabet of 26 characters that permits the
balancing of the positive scores with many negative scores, and a grad-
ual transition from positive to negative substitution scores. Figure 3.18
and Figure 3.19 show two sets of scoring matrices still complying with
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substitution matrix

A[B|CID|E|F|[G|H|I[J|K|L[M|N|O[P|Q|R[S|T[U|V|W[X Z]
4[13[2])1[0]-1|-2]-3[-4]|-5[-5]-5[-5]-5[-5]-5[-5]-5[-4]-3]|-2|-1]|0| 1

=<

R ES

indel vector
Al---
_3]

Figure 3.18: An example of scoring matrices complying with the requirements
listed in the text and with a smoother transition from positive to negative values
of substitution score relatively to the case illustrated in Figure 3.17. Remember
that the substitution matrix is a symmetric circulant matrix, and the indel score
is the same for all characters in the alphabet.

substitution matrix

A[B[C[D[E[F[G]H] I [JTK[L]M[NTO[P]Q[R]S[TU]VIW][X]Y]Z]
2(1)0(-1]-2]-3|-3]-3]|-3[-3]-3|-3[-3]-3|-3[-3]-3]|-3[-3|-3[-3]-3|-2]-1

=3

e B

indel vector
Al---
_2]

Figure 3.19: An example of scoring matrices with a smaller maximum pos-
itive substitution scores relatively to the cases illustrated in Figure 3.17 and
Figure 3.18.

the above mentioned requirements but with a smoother transition from
positive to negative values in the substitution matrix relatively to the
case shown in Figure 3.17, and with progressively smaller magnitude
of the maximum substitution score.

3.4.5 Randomly generated interactions

In the preceding subsections it was shown that the value of i,,,, fol-
lows as a consequence of the number n, of interaction strength values
that we want to represent, and of the value i,,, defining the limit of
the dead-zone of sequence interaction values associated with the ab-
sence of direct interaction. The need for this dead-zone stems from
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the fact that pairs of randomly generated sequences will tend to have
a non null local alignment score. It can be convenient to have most
of these random alignment scores fall within the dead-zone, in order
to minimize their interference with the alignments determined by the
evolutionary process in its effort to functionally structure the evolving
network. On the other hand, it is also desirable to have some overlap
between the range of alignment scores that can be generated randomly
with non negligible probability, and the range of alignment scores that
are actually mapped to non null interaction strengths. In this way a
range of weak interactions can be generated randomly with non neg-
ligible probability, thus facilitating the “probing” from the part of the
evolutionary process, of the effect of the presence of the correspond-
ing connections between the devices encoded in the genome. We have
thus a scenario where, given a genetic alphabet size and a set of scor-
ing matrices, the value of i,,, is determined as the upper limit of the
range of alignment scores that are generated with non negligible prob-
ability aligning randomly generated pairs of sequences over the given
genetic alphabet and using the given scoring matrices. The value cor-
responding to a “non negligible probability” depends on the estimate of
the number of pairs of sequences associated with terminals in a typical
evolving network. A value of probability between 10-2 and 103 can be
considered reasonable for the experiments reported in this thesis!2.
The choice of the alphabet size and of the scoring matrices is an iter-
ative process. Given the number 7, of alignment score values required
by the kind of network that must be evolved, we start by assigning ten-
tative values to the alphabet size and to the scoring matrices. Then, we
determine the probability distribution of the alignment scores of pairs
of randomly generated sequences. We use this probability distribution
to assign i,,;, S0 as to obtain the slight overlapping of the range of the n,
active alignment scores with the range of random scores, as described

120ne could object that we should consider not only the interaction between pairs of
sequences, but the interaction between triples and, more generally, between n-tuples
of randomly generated sequences. We must consider, however, that Darwinian evo-
lution is driven by the active process of selection. Thus, we can expect artificial
evolution to be endowed with the power not only to counter, but indeed to exploit the
existing entropic effects, provided these effects are not overwhelming. The restriction
of the limitation of the interference to the case of pairs of sequences has the double
goal of ensuring that the random component is neither overwhelming, nor practically
absent. The experiments of sequence alignment described in the next chapter are
intended as a mean to probe if the remaining randomness is sufficient for evolution
to kick off and proceed, and if the process of selection is able to keep under control
and to exploit this residual randomness.
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above. There is however the problem that the local alignment score that
can be expected from two random sequences depends on the length of
the sequences. Hence we must estimate the length of the typical se-
quence associated to a terminal of an evolving network. This estimate
depends on the kind of network that must be evolved and is in gen-
eral difficult to obtain. A heuristic strategy is to assign the number n,
of terminals to which each terminal must be capable to independently
connect through a wire (i.e., a connection with infinite conductance).
This requires the possibility of generating n; independent alignment
scores exceeding the i,,,, limit (remember that ¢ > i,,,, is the range of
alignment scores that is associated with the maximum strength con-
nection). If ¢, is the maximum value existing in the scoring matri-
ces, a sequence capable of generating these n; independent alignment
scores has a minimum length | equal to 1 imax/Cmaz- SINCE 4140, follows
from the relation 4,4, = imin + ns — 1, which requires the knowledge of
imin,» W€ assume an initial value for our first iteration of i,,, = 0, from
which we obtain an initial estimate of ¢,,,, and of {. This value of [ is
used to generate the distribution of probability of the alignment score
of randomly generated sequences, from which an improved estimate of
imin 1S Obtained and reinserted in the computation loop, until a stable
estimate of i,,;, and, therefore, of i,,, is obtained. This value of 7,,4,
determines the minimum length i,,,./cm. Of a sequence that can pro-
duce an alignment score corresponding to a connection with maximum
strength. If this length is not judged excessive for the implementation
(in particular, for the computation time of the alignment scores and the
size of the resulting genome), the alphabet length, scoring matrices,
and the value of i,,;, obtained can be used in the evolutionary exper-
iments, otherwise the tentative values of the alphabet size and of the
scoring matrices are corrected and the computation is restarted.

In practice, once the tentative alphabet size and scoring matrices are
assigned the first iteration of this cycle often gives already a good idea
of the suitability of the choice. The only problem lies in the generation
of the probability distribution of the alignment scores for pairs of ran-
domly generated sequences, since the analytical determination of this
distribution given the alphabet size and scoring matrices is still an open
problem. It is known, however, that the distribution is not Gaussian
and belongs instead to the class of the so-called extreme value distri-
butions, which are asymmetric and have a long tail in the high score
range (Mount, 2001).!® For our purpose it is sufficient to estimate the

13Random variables characterized by an extreme value distibution are obtained, for
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form of these distribution by generating sets of random sequences.

As an example of application of this approach in the context of the
evolution of analog electronic circuits, let us consider as our tentative
choice the scoring matrices shown in Figure 3.17 with an alphabet size
|G| = 26. The maximum substitution score in this case is ¢, = 5. The
arguments and examples of the previous subsection have shown that a
value of n, ~ 100 is typically sufficient to span several decades of inter-
action strength. Let us assume also that number of terminals to which
each terminal must be capable to connect independently through a
wire is n; = 2. We thus obtain a first iteration value of typical sequence
length of | = n;ns/cmee = 40 characters. Figure 3.20 shows the es-
timate of the probability distribution of the values of local alignment
scores of randomly generated pairs of sequences of length 40 built on
an alphabet with size |G| = 26 using the scoring matrices shown in
Figure 3.17. Assuming a value of probability density of about 102 as
the upper limit of the range of random scores, we obtain a first it-
eration value of i,,;, = 30, which gives a value of i, ~ 130, and a
length i /cme: =~ 26 for a sequence that can produce an alignment
score corresponding to a connection with maximum strength. Using
the dynamic programming algorithm, the local alignment score of pairs
of sequences having lengths in this range can be computed in reason-
able time on present day computing machines. Moreover, the memory
occupation of a genome with some thousand sequences in this range
of length appears also reasonable. Hence, this choice of alphabet with
size |G| = 26 using the scoring matrices appears acceptable. Figure 3.21
(top) shows the probability distribution obtained with the same struc-
ture of scoring matrix, but reducing the alphabet size to |G| = 20. Com-
paring this distribution with that relative to |G| = 26 shown in Fig-
ure 3.20 reveals that the first iteration estimate of i,,;, has increased
from 4, =~ 30 tO iy, =~ 40, which corresponds to an increase of 4,4 /Cinax
from about 26 to about 28 characters. This slight increase appears
acceptable in terms of resulting memory and computation time. Fig-
ure 3.21 (bottom) shows the probability distribution obtained by re-
ducing the alphabet size still further to |G| = 12. With this reduction of
alphabet size the average of the entries of the scoring matrices is only
slightly negative. Now the first iteration estimate of i,,;, has increased

example, when a series of batches of random variables are drawn from a sufficiently
well-behaved distribution, and the maximum value of each batch is retained. The
definition of sequence alignment score corresponds manifestly to this kind of process,
since a whole collection of alignment values corresponds to each pair of sequences,
with the alignment score defined as the maximum attainable alignment value.
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Figure 3.20: The estimate of the probability distribution of the local align-
ment score of pairs of randomly generated sequences of length 40 built on an
alphabet with size |G| = 26 using the scoring matrices shown in Figure 3.17.
This histogram and those shown in the subsequent figures in this section were
obtained generating 100,000,000 pseudo-random pairs of sequences. Despite
the long tail of the distribution, the probability drops rapidly in the high score
range.

t0 imin ~ 70. This means that now the effects of random alignments
“waste” the equivalent of about 14 matching characters, with a value of
Imaz/Cmaz iNCreased to about 34. This makes this choice of alphabet size
less appealing than the previous ones. Moreover, with this large value
of the first iteration estimate of i,,;,, further iterations are advisable to
obtain a better estimate of i,,;, and 7,,.5.

Figure 3.22 shows the probability distributions relative to the choice
of the scoring matrices illustrated in Figure 3.18. Now the maximum
substitution score is ¢,,,, = 4, which leads to an increase to 50 char-
acters of the estimated typical sequence length for n, = 2. The case
|G| = 26 appears still acceptable, but now already with |G| = 20 the
range of random alignment scores extends above 60 characters, which
makes this choice of scoring matrices less suited to small alphabets.

Figure 3.23 shows the probability distributions relative to the choice

28D MARCH 2005



Chapter 3. An evolutionary framework for analog networks

probability

0 10 20 30 40 50 60 70 80 90 100

local alignment score

10
-2
10

-3
10

probability

0 10 20 30 40 50 60 70 80 90 100

local alignment score

Figure 3.21: The estimate of the probability distribution of the local alignment
score of pairs of randomly generated sequences of length 40 built on an alpha-
bet with size |G| = 20 (top) and |G| = 12 (bottom) using scoring matrices with the
structure shown in Figure 3.17. Comparing these plots with that for the case
|G| = 26 illustrated in Figure 3.20, we see that the peak moves progressively
toward larger values of alignment score and broadens, so that progressively
larger values of interference can be expected.
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Figure 3.22: The estimate of the probability distribution of the local alignment
score of pairs of randomly generated sequences of length 50 built on an alpha-
bet with size |G| = 26 (top) and |G| = 20 (bottom) using scoring matrices with the
structure shown in Figure 3.18.
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Figure 3.23: The estimate of the probability distribution of the local alignment
score of pairs of randomly generated sequences of length 100 built on an al-
phabet with size |G| = 26 using scoring matrices with the structure shown in
Figure 3.19. The small maximum positive value of substitution score and the

abundance of negative scores in the scoring matrices keeps small the upper
limit of the range.

of the scoring matrices illustrated in Figure 3.19 and to an alphabet
size |G| = 26. The maximum substitution score has further reduced
to ez = 2, which leads to an increase to 100 characters of the first
iteration estimate of the typical sequence length for n, = 2. Thanks to
the absence of large positive substitution scores, and to the balancing
of the existing positive scores with many negative ones, the random
alignment score region is limited to slightly more than 10 characters.
This small value is partially compensated by the effect of the small
value of c¢,,,,, which gives a value of i,,,/cinq: Of about 55 characters.
Summing up, the analysis conducted above and the examples pre-
sented suggest the choice of a genetic alphabet size greater than about
20, and the adoption of a set of scoring matrices following the pattern
of those shown in Figure 3.17 and Figure 3.18, with a sufficiently large
maximum positive substitution score and a sufficiently negative aver-
age of the entries of the scoring matrices. The suitability of this kind of
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choice will be further probed in the experiments of sequence matching
described in the next chapter (and also, of course, in the experiments
of analog network evolution reported in the same chapter). The ex-
ploratory experiments performed with the evolutionary system suggest
in any case that the behavior of the evolutionary experiments is not too
sensitive to the choice of the alphabet size and of the scoring matrices,
provided the general guidelines given above are followed.

3.4.6 Interaction silencing

In the previous chapter (Section 2.8) it was pointed out that an evolu-
tionary system for analog networks which uses pairs of character se-
quences to determine the interaction between the devices, is at risk of
being plagued by the problem of interference between the sequences.
When the sequence interaction is implemented using the local align-
ment technique detailed above, the judicious choice of the genetic al-
phabet and of the scoring matrices advocated in the previous subsec-
tion in order to keep at bay the effect of random interactions is a first
tactic against the excessive increase of the interferences. It is clear,
however, that above a certain level of complexity of the network, the
number of devices, terminals, and associated sequences will overwhelm
this kind of provision and will, for example, frustrate the evolution of
networks composed of a large number of weakly connected devices.
This problem can be addressed in several ways. A general approach
to the problem can be based on the assumption that two device termi-
nals must be considered for connection only if the associated sequences
comply with some specific condition. Subsection 3.5.3 below will de-
scribe the version of this approach that corresponds to the compart-
mentalization of the network. In that case, the assumption is that the
default condition for a pair of terminals is the absence of connection,
and that the presence in the sequences associated with the terminals
of a common motif defining the terminals as belonging to the same
compartment is required for their being considered for connection. The
present subsection describes the complementary approach, that we call
interaction silencing. This approach is based on the assumption that
the default condition for a pair of terminals is the potential existence
of an interaction, and that the presence in the sequences associated
with the terminals of specific motifs has the effect of the silencing of
the potential interaction. This determines a mechanism that has some
similarity with the post-transcriptional silencing of genes operating in

280 MARCH 2005



100 Chapter 3. An evolutionary framework for analog networks

biological GRNs (Lewin, 2004; Meister and Tuschl, 2004).

A possible implementation of interaction silencing (reminiscent of
the phenomenon of RNA interference in biological GRNs brought about
by complementary short RNA strands) is illustrated in Figure 3.24.
For each letter of the genetic alphabet a “complementary” character
is defined, chosen between those that have a large negative substi-
tution score relatively to that letter in the local sequence alignment
scoring matrices. When the sequence associated with a terminal con-
tains a substring of sufficient length (in the sense considered in Sub-
section 3.1.2 while discussing the length of the tokens) that matches
exactly the complementary substring in the sequence associated with
another terminal, the two terminals will not be considered for connec-
tion, irrespective of the value of interaction strength between the two
sequences. The minimal length of the matching substrings that deter-
mine the silencing of the interaction is chosen according to the same
criteria used to select the length of the tokens and described in Sub-
section 3.1.2, which ensure that randomly produced silencing is not
too frequent. Typically, a minimal length of just a few characters will
be sufficient to avoid an excessive amount of randomly generated si-
lencing.

Note that the use for interaction silencing of the exact matching
of substrings of complementary characters that are defined as badly
matched relatively to the local alignment parameters, ensures that
these substrings will not produce a positive value of interaction strength
according to the sequence interaction map. Thus, the sequence inter-
action determined by the local alignhment algorithm and the mechanism
of interaction silencing just described can coexist with minimal recipro-
cal disturbance. Note that once again the local nature of the sequence
alignment is instrumental in allowing the simultaneous presence of
fragments of genome with independent roles in the determination of the
network connectivity. The search for exactly matching complementary
substrings entails a computational complexity that is linear in time
relatively to the length of the sequences (Gusfield, 1997). Thus, the
computational complexity of the decoding of a genome where interac-
tion silencing is widespread, is reduced relatively to the same genome
where this mechanism is not implemented, since the sequence inter-
action map (whose computational complexity is quadratic relatively to
the length of the sequences) need not be applied to pairs of sequences
whose interaction has been silenced. To facilitate the evolutionary
emergence of interaction silencing, it is useful to define an additional
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Figure 3.24: Interaction silencing by complementary exact matching of motifs
in the sequences associated with the terminals whose interaction must be si-
lenced. For each letter s of the genetic alphabet a “complementary” character
5 is defined, chosen so as to minimize the disturbance of interaction silenc-
ing with the local alignment that determines sequence interaction. When the
sequence associated with a terminal contains a substring of sufficient length
that matches exactly the complementary substring in the sequence associated
with another terminal, the two terminals are not considered for connection,
irrespective of the value of interaction strength between the two sequences.

genetic operator of complemented chromosome fragment duplication,
where a genome fragment is chosen at random, duplicated, and the
duplicate is complemented and randomly inserted in the genome.

3.4.7 Genetic code

A final remark can be made about the different constraints imposed
on the genetic alphabet by the requirements of the sequence interac-
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tion mapping and by those of the interaction silencing. We said previ-
ously that the sequence interaction map must be a many-to-one map,
and allow a gradual transition from the absence of interaction to the
maximum magnitude of interaction strength. The interaction silencing
(and the evolvable compartmentalization described below in Subsec-
tion 3.5.3), on the other hand is based just on an on-off threshold
mechanism that does not require any graduality. For this reason the
two functionalities can be implemented with different techniques, such
as local sequence alignment for the former and exact string matching
for the latter. We have seen in Subsection 3.4.5 that the genetic alpha-
bet used with local sequence alignment cannot bee too small, to avoid
the excessive presence of high-valued random interactions. On the
other hand, for exact string matching this problem is of much less con-
cern, since - like in the case of the tokens examined in Subsection 3.1.2
- the probability of randomly generating a string that matches exactly a
given string of length [t| with an alphabet of size |G| is |G|~!l. This value
can be easily reduced to negligible values by increasing sufficiently |¢|,
even with small genetic alphabets.

From these observation it follows that would be conceivable to use
in our evolutionary system a small genetic alphabet |G|, and implement
interaction silencing (and evolvable compartmentalization) in terms of
exact matching between (possibly complementary) sequences of nu-
cleotides. In order to obtain a larger alphabet for the implementation of
device interaction, n-tuples of nucleotides could be univocally associ-
ated with the elements of a larger interaction alphabet |.4|. The interac-
tion map would be thus defined between pairs of sequences of n-tuples
of nucleotides, interpreted as sequences from this larger alphabet. This
scenario is clearly very similar to that observed in existing biological
systems, where the genetic code puts into correspondence triplets of
nucleotides (which belong to an alphabet of size |G| = 4) with amino
acids (which form an alphabet of size |A| = 20), and where interaction
silencing appears to be implemented in terms of (almost) exact match-
ing of sequences from the four-letter RNA alphabet, whereas protein-
mediated gene interaction works in more gradual terms and using the
larger amino acid alphabet of 20 letters.
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3.5 External connections

In Section 2.9 the problem of the exchange of signals between an evolv-
ing system and its environment was considered in general and abstract
terms. The result of the analysis carried out in that section was that
a sequence-based interaction map can be used not only to determine
the connections within the system, but also to define the connections
crossing the boundary of the evolving system. The present section
puts those conclusions into practice, showing how this extension of the
sequence-based approach to the external connections can be actually
defined and implemented.

The basic idea for the establishment of the connections of an evolv-
ing analog network with its environment is that the environment of
an evolving analog network is still an analog network, and is there-
fore constituted by devices possessing terminals, some of which may
be connected to the evolving analog network. Thus, in order to use
a sequence-based device interaction map for establishing the connec-
tions, we only need to associate sequences with the terminals of the
external devices that might possibly be connected to the evolving net-
work. For example, the external devices for an analog electronic circuit
might be a power supply and a resistive load, while the external devices
for an artificial neural network controlling a robot might be the sensors
and the actuators of the robot.

Note that not all terminals of the devices composing the external net-
work must necessarily be given the possibility to connect to the evolving
network. For example, the power supply of an electronic circuit or the
sensing circuitry of a robot can be complex networks, with only a small
subset of all the terminals of these networks considered as outputs
that can be possibly connected to the powered electronic circuit or to
the control system of the robot. On the other hand, the possibility for
the evolving network to connect to some prespecified terminals of the
external network must not be interpreted as a coercion to connect to
all these terminals. Evolution must instead be left free to select which
of those prespecified terminals are actually connected to the evolving
network. This corresponds to leaving the possibility that a kind of el-
ementary “feature selection” is performed on the raw collection of ter-
minals available for connection, just like a living organism “selects” the
external signals that it produces and to which it is responsive. A brief
reflection shows that this possibility follows directly from the nature
of the sequence-based mechanism of establishment of the connections
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Figure 3.25:  The evolution of connections between the preassigned exter-
nal network and the evolving networlk can be obtained associating a fixed
sequence of characters defined by the experimenter with the terminals of the
external devices. The device interaction map used to assign the strength of the
interaction between the terminals of the evolving network can than be applied
also to pairs formed with the fixed sequences. Note that not all the terminals
of the devices composing the external network must be necessarily given the
possibility to connect to the evolving networlk.

between terminals, since the evolved interaction strengths include val-
ues corresponding to the absence of any direct connection!* between
two terminals. We can therefore conclude that to connect the evolving
network to the external network in the spirit of the auxiliary evolvability
conditions given in the previous chapter, we need only devise a strat-
egy of association of sequences of characters with the terminals of the
external network that must be connectible to the evolving network. As
shown in the next sections, this can be done in many different ways.
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3.5.1 Fixed sequences

The first solution that comes to mind to associate a sequence of char-
acters with each external device terminal that must be given the pos-
sibility of connecting to the evolving analog network, consists in letting
the experimenter define a collection of predefined fixed sequence and
associate them with the connectible terminals (Figure 3.25). Once the
fixed sequences are associated with the connectible terminals of the
external devices, the connection strategy for the devices decoded from
the genome which is based on the use of a device interaction map can
be applied also to the external devices, and the evolution of these con-
nections becomes possible.

Although at first sight very simple, this approach has the disadvan-
tage of enlarging the collection of parameters that must be assigned by
the experimenter. Moreover, it requires a certain caution in the choice
of the sequences. For example, we must ensure that the structure of
the fixed sequences permits the establishment of a connection with in-
finite conductance towards the external components, should this con-
nection be required to achieve the desired functionality of the whole
network. This means that the fixed sequences must ensure the possi-
bility of exceeding the value of sequence alignment score that is associ-
ated with the maximum finite interaction strength value by the network
specific interaction map. As explained in the previous section, this
possibility depends, among other things, on the choice of the scoring
matrices, and requires an adequate length of the sequences involved
(remember from Subsection 3.4.5 that if the maximum substitution
score is ¢p., the maximum alignment score that can be realized by
a sequence of length [ is ¢, (). It follows that the choice of the fixed
sequences can be a complicated task, which opens the door to the sus-
picion that a possible failure of the evolutionary process is due to a poor
choice of the fixed sequences associated with the external components.

3.5.2 Transducers

The attribution by the experimenter of fixed sequences of characters
to some terminals of the external devices described in the previous
section, entails another potential problem. Each sequence must be
capable of generating all the interactions required by the evolved net-
work in order to display the expected functionality. These interactions

14See footnote 4 on page 69.
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can be manifold for some of the external connected terminals. For ex-
ample, when a power supply is connected to an electronic circuit, its
terminals are typically connected to many of the devices that form the
circuit. Obviously, we can hardly expect the experimenter to antici-
pate the number of connections that each external terminal needs to
establish, and to design the associated sequences accordingly. This
difficulty is not so great as might seem at first sight, since evolution
can overcome it by establishing a connection between the external ter-
minal and a terminal of a device belonging to the evolving circuit, and
then use the terminals of that device to extend the connection to the
rest of the evolving circuit.

This kind of evolved “device bridging” function, however, can be fa-
cilitated by defining a special transducer device (or simply transducer)
whose explicit role is the establishment of a connection linking the
external world to the evolved system (Figure 3.26). As for the other
devices of the network, the transducer is identified in the genome by
a specific token, and is characterized by one terminal that is consid-
ered as belonging to the external network, and one that is considered
as belonging to the evolving network. The association of sequences
of characters extracted from the genome proceeds exactly like for the
other devices, including the possibility of associating more than one
sequence of characters to one terminal. An advantage of explicitly
defining this new kind of device is that by duplicating and mutating
the representation of an existing transducer in the genome — which, as
explained in the next section, is easily done with the available genetic
operators — several independent connections can be easily established
with an external device.

3.5.3 Evolvable compartmentalization

The action of the transducer devices described above bears some simi-
larity to the function of a trans-membrane protein transmitting a signal
across the membrane that separates a cell from the surrounding en-
vironment, or across the membrane of some subcellular compartment
or organelle (Lewin, 2004; Krauss, 2003). The sequences of characters
associated with the terminals of a transducer belonging to the external
network and to the evolved network have a correspondence in the dis-
tinct domains that the trans-membrane protein has on the two sides
of the membrane. The sequences of characters of a transducer are en-
coded in the genome and, correspondingly, the characteristics of the
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Figure 3.26: The evolution of the connections between the preassigned devices
of the external network, and those of the evolving network can be facilitated
defining specialized transducer devices. A transducer; like any other device,
is represented in the genome using a specialized token. In the fragment of
genome shown here (bottom) the token TRSD identifies the transducer, and
tolkens TERM delimit the sequences of characters that must be associated with
the terminals of the transducer. Contrary to the other devices encoded in the
genome, however, one of the terminals of a transducer belongs to the evolving
network, while the other belongs to the external circuit, thus permitting the
establishment of a connection between the two environments.

domains of a trans-membrane protein are encoded in the genome of
the cell, and both can be induced by evolution to adapt to the fixed
nature of the external signals.

Note that trans-membrane proteins and the other mechanisms of
signal transduction (Krauss, 2003; Lewin, 2004) are used by cells not
only to exchange signals with their non-living external environment,
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but also to exchange signals between different compartments within a
cell, and to communicate with other cells of a cellular colony or of a
multicellular organism. In the same way, transducer devices can be
used to evolve compartmentalized or “multicellular” analog networks.
For example, a simple way of obtaining a compartmentalized network
would be to assume each artificial chromosome as specifying a sepa-
rated compartment of the network.

Another approach, which leaves more freedom to evolution in de-
termining a compartmentalized network was anticipated in subsection
3.4.6 in the context of the discussion on interaction silencing. The idea
is to consider device terminals for connection only if the associated
sequences comply with some specific condition, for example, the pres-
ence in the sequences associated with the terminals of a common motif
defining the terminals as belonging to the same compartment. This ap-
proach differs from that based on transducers in that the motifs that
determine the compartments are evolved rather than predefined like
the transducer tokens.

Figure 3.27 illustrates a possible implementation of this idea. The
letters of a subset of the genetic alphabet are defined as having a large
negative substitution score relatively to all the letters of the alphabet
(including the letter itself) in the local sequence alignment scoring ma-
trices. When the sequence associated with a terminal contains a sub-
string of sufficient length composed of letters in this special subset and
matching exactly a substring in the sequence associated with another
terminal, the two terminals are considered as belonging to the same
compartment. In this case the sequence interaction determined by
the local alignment score of the sequences is calculated, otherwise the
corresponding terminals are assumed as not directly connected. The
interaction between two distinct compartments is brought about by de-
vices that have terminals (either distinct or not) belonging to more than
one compartment.

The use of the exact matching of substrings of characters that are
defined as badly matched relatively to the local alignment parameters,
ensures that these substrings will not produce a positive value of in-
teraction strength according to the sequence interaction map. Thus,
the sequence interaction determined by the local alignment algorithm
and the mechanism of evolvable compartmentalization can coexist with
minimal reciprocal disturbance. Note that a simple variant of the ex-
act substring matching algorithms (which have linear computational
complexity relatively to the length of the sequences) can be used to
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Figure 3.27: A mechanism of evolvable compartmentalization of the network
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can be based on the presence of evolvable motifs contained in the sequences
associated with the terminals of the devices, rather than predefined genome
tokens. Two terminals are considered as belonging to the same compartment
only if the sequence associated with one terminal contains a substring of suf-
Jficient length composed of letters belonging to a special subset of the genetic
alphabet and matching exactly a substring in the sequence associated the
other terminal. In this case the sequence interaction determined by the local
alignment score of the sequences is calculated and the connection possibly es-
tablished, otherwise the corresponding terminals are assumed as not directly
connected.

check for the condition of membership of the same compartment, be-
fore the sequence interaction mapping (which has quadratic computa-
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tional complexity) is possibly applied to the sequence. The presence of
a genetic operator of genome fragment duplication facilitates the evo-
lutionary reorganization of the compartmentalized network structure,
although some bootstrap problem can be envisaged and could require
the seeding of the initial population genomes with suitable substrings.
The issue of compartmentalization and of the modular structure of the
evolved networks will be considered again from a more abstract point
of view in Chapter 5.

3.5.4 1/0 ports

The approach to the establishment of a connection between distinct
compartments that is based on transducers requires the definition of
the fixed sequences that must be associated with the connectible ter-
minals of the external network. When the external network and the
evolving network are the only existing compartments, there is the pos-
sibility of coalescing the fixed sequences and the transducers into a
unique device, which we will call I/O port (Figure 3.28). The idea is that
the connectible terminal of the external device and the transducer ter-
minal belonging to the external network are assumed as always being
connected through a wire. Hence, only one of the transducer sequences
remains and must be extracted from the genome, whereas the fixed se-
quence associated with the terminal of the external device disappears,
and no longer needs to be defined.

Note that now each external node that is assumed as connectible
to the evolving circuit must be associated with a particular I/O Port
device, and must therefore have a distinct device token. For example,
the external circuit shown in Figure 3.28 has three terminals marked
with the labels A, B, and C which are assumed as connectible, and
this requires the definition of three tokens I0PTA, IOPTB, and IOPTC.
In the decoding of a genome into an analog network, the fragments of
genome delimited by the I/O port tokens and by the terminal tokens are
extracted and associated with the correspondingly labeled terminals of
the external devices. At this point, the external devices are considered
as devices belonging to the evolving network and the device interaction
map is applied to determine the strength of the interaction between all
pairs of terminals that have a sequence of characters associated with
them.
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Figure 3.28: An example of application of the technique of connection of ex-
ternal devices to the evolving circuit by means of 1/O ports associated with
external terminals marked as connectible to the decoded circuit. The fragment
of genome represented above contains the tokens I0PTA, IOPTB and IOPTC
corresponding to the three connectible external terminals. The fragments of
the genome delimited by these tokens and by the TERM token are associated
to the terminals of the external devices.

3.6 Genetic operators

The genetic representation for analog networks described in this chap-
ter permits the execution of many kinds of reorganizations of the genome
without compromising its decodability. The only practical limit that
must be imposed on the genome concerns the length of sequences as-
sociated with the terminals and the parameters of the devices, in order
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to ensure that the sequence alignment algorithm that constitutes the
core of the device interaction map remains executable in reasonable
time and memory bounds. Apart from this limit, the fragments of the
genome coding for components can be of variable length and be lo-
cated anywhere within the genome. The genome itself is obviously a
variable length genome. This opens the way to the introduction in our
evolutionary algorithms of several genetic operations that are seldom
used in artificial evolution experiments (although they are known to be
common in the evolution of biological genomes (Graur and Li, 2000;
Shapiro, 2002)). In particular, the genetic representation introduced
above allows

¥ Operations on single nucleotides, such as insertion, deletion, and
substitution.

¥ Operations on chromosome fragments, such as duplication, du-
plication of complement, deletion, transposition, and insertion of
device descriptors.

¥ Operations on chromosomes, such as duplication and deletion
of single chromosomes, and crossover (reciprocal recombination
(Graur and Li, 2000, p. 29)) of pairs of chromosomes..

¥ Operations on the whole genome, such as duplication and trim-
ming.

Note that from the point of view of the genetic operators each chromo-
some is just a sequence of characters where the tokens for devices, ter-
minals and parameters have no special meaning. Therefore, the tokens
are not protected from the action of the genetic operators, whose action
can invalidate any device descriptor present in the genome, making
that particular descriptor undecodable.

Let us now consider one by one the genetic operators listed above.

3.6.1 Single nucleotide mutations

Nucleotide insertion A random character belonging to the genetic
alphabet is inserted, with probability p,,, between each pair of adjacent
nucleotides existing in the genome.

Nucleotide deletion FEach nucleotide in the genome is deleted with
probability p

nd*
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Nucleotide substitution FEach nucleotide in the genome is substi-
tuted, with probability p,,, with a random character belonging to the
genetic alphabet.!®

us?

3.6.2 Chromosome fragment mutations

Chromosome fragment duplication For each chromosome, with prob-
ability p,,, two random points are chosen and the intervening genome
fragment is duplicated and the duplicate is inserted at a randomly cho-
sen point of a randomly chose chromosome belonging to the genome.

Complemented chromosome fragment duplication For each chro-
mosome, with probability p, , two random points are chosen and the in-
tervening genome fragment is duplicated; the duplicate is then comple-
mented and inserted at a randomly chosen point of a randomly chose
chromosome belonging to the genome.

Chromosome fragment transposition For each chromosome, with
probability p,,, two random points are chosen and the intervening genome
fragment is transferred at a randomly chosen point of a randomly cho-
sen chromosome belonging to the genome.

Chromosome fragment deletion For each chromosome, with prob-
ability p,,, two random points are chosen and the intervening genome
fragment is deleted.

Device insertion For each chromosome, with probability p,., the de-
scriptor of a device randomly selected in the device set is inserted at a
randomly chosen point. The sequences of characters associated with

15The most direct (and most frequently adopted) technique for the implementation
of single nucleotide mutations on a computer consists in generating a pseudo-random
bit biased according to the required mutation probability for each nucleotide inser-
tion, deletion, and substitution. When the mutation probability p is very small and
the length n of the genome is large, however, this direct approach leads to the gener-
ation of an inordinate amount of calls to the routine producing the pseudo-random
bits, with only a few calls leading to an actual nucleotide mutation. To avoid wasting
computational resources on “useless” calls to the pseudo-random bit routine, it is
preferable in this case to generate for each kind of nucleotide mutation a pseudo-
random integer m drawn from a binomial distribution of n trials, each of probability
p (for example, Press et al., 1992, p. 295), and then to generate m random integers to
be interpreted as the indexes of the nucleotides that must be mutated. Although the
possibility of generating the same index more than once leads to a mutation proba-
bility different from p, the difference is usually negligible for small values of p.
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the terminals and the evolvable parameters of the devices can be ran-
domly generated or can be obtained by sampling the sequences associ-
ated with the terminals of the devices existing in the genome.

3.6.3 Whole chromosome mutations

Chromosome duplication Each chromosome is duplicated with prob-
ability p,,. The duplication can either append to the chromosome a copy
of itself, or create a new chromosome.

Chromosome deletion Each chromosome is deleted with probabil-
ity p,,.

Crossover (reciprocal recombination) In the simplest implemen-
tation of the crossover operator, the genomes of two individuals (the
“parents”) are first compared. If the number of chromosomes in the
two genomes is the same, the chromosomes are paired and, for each
pair, with probability p,, one point is randomly chosen within each
chromosome, and the fragments of chromosomes thus determined are
swapped to generate the new chromosomes. The limit of this kind of
crossover operator is that, when applied to chromosomes that — like
those of the genome used in this work — do not have a fixed structure
and length, it tends to produce macro-mutations rather than the re-
combination of homologous chromosome fragments (Harvey, 1995). It
is therefore advisable to redefine the crossover operator so as to favour
the recombination of fragments of chromosome that can be considered
homologous.

A possible candidate for this role of homologous crossover operator
starts by choosing randomly one tentative crossover point within one
of the chromosomes that must be recombined. A fragment of chro-
mosome of a predefined length [, belonging to the neighborhood of
the selected point is then considered as a template and a fragment
sufficiently similar to the template is searched in the other chromo-
some. The search for a fragment similar to the template can start with
the search of a fragment exactly matching a substring of the template
and then evaluating the global alignment score of the whole template
with the tentative matching region thus identified. If a fragment suffi-
ciently similar to the template is found, a crossover point in this second
chromosome corresponding in the template to the tentative crossover
point previously selected in the other chromosome is identified, and the
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fragments of chromosomes thus determined are swapped to generate
the recombined chromosomes. Thus, the recombination is performed
only in presence of a reasonable matching between the fragments of
genome adjacent to the crossover point (Harvey, 1995). This finds a
correspondence in the recombination of biological genomes, where the
recombination of poorly matched DNA sequences is prevented by spe-
cialized molecular proofreading machinery (Alberts et al., 2002). Since
the actual execution of the recombination requires the existence of a
certain similarity between the paired chromosomes, this operation will
be seldom performed if the population gene pool is highly heteroge-
neous. However, the selection built in the evolutionary process tends
to rapidly reduce the diversity of the population and to produce a de-
gree of genetic homogeneity that — both in the natural and in the artifi-
cial case — permits the actual accomplishment of most of the attempted
recombinations of chromosomes (Harvey, 1995; Goldberg, 2002).16

3.6.4 Whole genome mutations

Genome duplication The whole genome is duplicated with probabil-
ity p,,. The duplication can either append to each existing chromosome
a copy of itself, or create a new chromosome for each existing one.

Genome trimming The application of the genetic operators described
so far can result in the transformation into non coding genome of frag-
ments of genome previously coding for devices. The presence of this
non coding genome does not prevent the decoding of the remaining
genome, and can even conceivably play the role of an evolutionary use-
ful repository of genetic fragments and pseudo-genes. To test this last
hypothesis, it is useful to be able to make a comparison with the per-
formances of a genome that is periodically freed from most of the non
coding genome. To this end, a genome trimming operator is defined,
which eliminates from the genome of an individual all the non cod-
ing genome except possibly a short fragment of predefined or random
length that is retained in order to space the device descriptors and leave
in the genome some non-coding genome that can be possibly recruited
by evolution. At each generation the genome trimming operator is ap-
plied to each individual with probability p,,, and to all individuals with
probability p ,. Note that the procedure of genome decoding automati-

pt*

16Figure 4.47 on page 186 permits a visual appreciation of the degree of homogene-
ity of an evolved population.
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cally identifies the coding regions of the genome, and this information
can be used to implement the genome trimming operation with minimal
additional computational effort.

3.6.5 Generation of random populations

Although not strictly a genetic operator, the generation of a popula-
tion of random individuals is an operation that is traditionally required
to start the evolutionary process. This can be easily obtained by per-
forming one or more operations of device insertion on a background of
random nucleotides. A method of seeding evolution with nonrandom
genomes derived from existing circuits will be briefly described in the
next chapter.

3.7 Summary

In this chapter we have specified all the elements required to actu-
ally implement an evolutionary system for analog networks complying
with the guidelines given in the previous chapter. We have defined a
genetic representation for the devices of an analog network which tol-
erates major reorganizations of the genome; we have defined a way to
determine and evolve the connections between the devices of the net-
work and between the evolved network and the external network (or
other evolved compartments and networks) which is based on an ab-
stract definition of the interaction between fragments of genome; we
have defined a set of genetic operators that can reorganize the genome
and change the composition and the structure of the network, either
gradually or abruptly. We have in particular specified a definite imple-
mentation of the interaction between fragments of the genome in terms
of local sequence alignment (note, however, that other implementations
of this mapping could be conceived in the framework of the approach
proposed in this thesis). We are thus ready to proceed in the next chap-
ter to the examination of the behavior of this evolutionary system and
to its application to the evolution of analog networks.
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Chapter 4

Experiments!

Overview

This chapter describes three series of evolutionary experiments conducted
with the artificial evolutionary system introduced in the previous chapter. First,
a series of sequence matching experiments is devoted to the evolution of
genomes realizing given local alignment scores relatively to a preassigned col-
lection of sequences. In the analog network perspective these experiments
give some information about the possibility and the effort required to evolve
alignments between sequences of nucleotides, complementing the investiga-
tions about the properties of sequence alignment based on theoretical consider-
ations that were made in the previous chapter. A series of network match-
ing experiments extends this investigation to the case of alignments of se-
quences interpreted as interactions between the terminals of a collection of
preassigned analog network devices, with the aim of generating the values
of interaction strength that characterize simple analog networlks of known func-
tionality. These preliminary explorations are followed by a series of actual
analog network evolution experiments, where the evolutionary process is
required to synthesize analog networks realizing a preassigned functionality.
The chapter closes with a short discussion on the results obtained, including a
survey of other applications and experiments that can be performed with the
system.

'Parts of this chapter were published in (Mattiussi and Floreano, 2004b) and (Mat-
tiussi and Floreano, 2004a).
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4.1 Sequence matching experiments

The evolutionary system for analog networks described in the previ-
ous chapter is based on the association of sequences of characters ex-
tracted from the genome with the terminals of the devices that consti-
tute the network. The interaction between the terminals of the devices
is determined by a mapping from pairs of sequences of characters to
values of interaction strength, and this mapping is based on the local
alignment of the sequences.

An analog network is typically composed of several devices whose
terminals are selectively pairwise connected. Given the devices of the
network, the strength of the interactions between the terminals deter-
mines the behavior and the functionality of the network. This means
that one of the attributes that endow our evolutionary system with the
potentiality to synthesize analog networks with given functionality is
the possibility to evolve collections of sequences having the required
values of interaction.

In the previous chapter the properties of the local alignment of se-
quences were analyzed and the parameters of the sequence alignment
algorithm were assigned so as to ensure the possibility to generate both
small and large values of alignment score. In the present section we ex-
tend that analysis exploring the possibility to evolve preassigned values
of alignment score. More precisely, our goal is now the evolution of a
collection of sequences characterized by given alignment scores rela-
tively to a collection of fixed sequences. In other words, the target of
evolution is not the synthesis of an analog network but the generation
of a collection of sequences that match in a predefined way a series of
preassigned target sequences. The evolutionary experiments start with
the assignment of the genetic alphabet and of the scoring matrices for
the sequence alignment algorithm. Then, the number and length of the
target sequences is chosen, along with the target alignment score for
each target sequence. The goal of evolution is to generate a genome
that matches the target sequences in the required way, so that the lo-
cal alignment score of the genome relatively to the target sequences
corresponds to the required target alignment scores (Figure 4.1).

4.1.1 Experiment 1: High-strength matching

The goal of Experiment 1 is the evolution of a genome that matches
all the target sequences with alignment scores that are near the max-
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Figure 4.1:  In the series of sequence matching experiments the goal of the
evolutionary process is the generation of a genome that realizes a set of preas-
signed alignment scores (called target alignment scores) relatively to a collec-
tion of preassigned target sequences.

imum values achievable with the given length of target sequences and
the given scoring matrices. In the analog network perspective, this cor-
responds to the evolution of a genome that has a “strong interaction”
with all the target sequences. The idea is to verify the possibility of
achieving such an interaction, and to estimate the number of genera-
tions required to obtain it.

Genetic alphabet The genetic alphabet is denoted by G, and its size
is denoted by |G|. In the current experiment

¥ size of genetic alphabet |G| =26

Scoring matrices The scoring matrices used in this and all the sub-
sequent experiments have the structure of the matrices shown in Fig-
ure 3.17 on page 89, that is, the substitution matrix is a symmetric
circulant matrix, and the indel score is the same for all the letters of
the genetic alphabet. We can therefore limit the representation of those
matrices to the first row s; of the substitution matrix S and to a generic
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element d; of the indel vector d, as illustrated in Figure 3.18 on page 91.
In the current experiment

¥ first row of substitution matrix
s1=(5,21,0,-1, -2, =5, ... —5 —2,-1,0,1,2)

v generic element of indel vector d; = -3

Target sequences A collection of n, target sequences of length [;,
i =1,...,n, is randomly generated? from the genetic alphabet. In the
current experiment

¥ number of target sequences ny = 10

¥ length of target sequences [;=20 foralli

Fitness function The fitness function of an individual is calculated
as follows. The local alignment score of the i-th sequence relatively to
each chromosome of the genome of the individual is calculated, and
the maximum alignment score is assumed as representing the align-
ment score #; of that particular target sequence relatively to the whole
genome. This gives a vector t = (fy,...,%,,) that must be compared to
the vector of the target alignment scores t = (¢y,...,%,,). The fitness of
the individual is the negative of the distance between t and t induced
by the ||-||; norm, divided by the number of target sequences, that is,

.

1 ~
f:*;t ;{ti*ti}

This corresponds to a fitness that is negative when some of the targets
are not matched as required, and is zero — the maximum fitness value
—only when all the target alignment scores are attained. In the current
experiment

{ target alignment score t; =70 foralli

Note that with the given substitution matrix, which has a maximum
substitution score corresponding to s;; = 5, the maximum alignment
score that can be attained relatively to a target sequence of length I, =
20 is s1; - I; = 100. Since only the alignment of a character with itself

2Henceforth, we use the shorthand expression “randomly generated” to mean “ran-
domly generated with a uniform distribution of probability on the set of elements”.
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gives the maximum substitution score, this maximum alignment score
is attained only if the genome contains a substring that exactly matches
the target sequence. Asking evolution to achieve a value of ¢; = 70, on
the other hand, corresponds to requiring the generation of a value that
is close enough to the maximum attainable alignment score to make
evolution interesting, but without imposing an exact matching and the
corresponding absence of redundancy.

Evolutionary algorithm and parameters The evolutionary algorithm
used in the current experiment is a standard generational genetic algo-
rithm that uses tournament selection, elitism (Back, 1996; Back et al.,
2000a,b), and the genetic operators described in the previous chapter.
The actual values of the parameters are given below. Parameters cor-
responding to probabilities of genetic operators that were mentioned in
the previous chapter and are not listed here are assumed as having
zero value.

v population size n, = 100
tournament size n, =25
elite size ne =1

¥ probability of nucleotide substitution p,, = 0.001
probability of nucleotide insertion p,, = 0.001
probability of nucleotide deletion P,. = 0.001

v probability of fragment duplication p;, = 0.001
probability of fragment deletion p;y = 0.001
probability of fragment transposition p,, = 0.001

v probability of chromosome duplication p., = 0.001
probability of chromosome deletion p,, = 0.001

v probability of genome duplication P, =0

v probability of chromosome crossover P, =0.1
number of matching characters for crossover I, =10

Initial population Each individual of the initial population is gener-
ated with a genome composed of n;. chromosomes of length /;. randomly
generated from the genetic alphabet. In the current experiment

¥number of chromosomes in the initial genome nge = 10

¥length of chromosomes in initial genome lie =20
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Figure 4.2: The result of ten repetitions of Experiment 1, aimed at the evolution
of a genome characterized by high local alignment scores relatively to a collec-
tion of preassigned target sequences. The maximum fitness curves show that
all the runs eventually attained a fitness of zero, corresponding to the evolution
of a genome matching the target sequences in the required way. The curves of
the average genome length witness the action of the genetic operators and the
corresponding variation of the genome length during evolution.

Results Figure 4.2 shows the results of a series of ten repetitions of
this evolutionary experiment. The curves of the maximum fitness show
that with the given parameters, the evolutionary system was consis-
tently able to evolve a genome achieving the required local alignment
scores relatively to the target sequences. The number of generations
required on average to evolve the required alignment scores is of the
order of some hundreds. This is a first sign that the evolutionary
system based on sequence alignment presented in this thesis cannot
be expected to produce significant results in just a few generations,
although, as is suggested by the results of Experiment 7 below, in-
creasing the population size can help to reduce the required number of
generations. We must realize that the probability of the simultaneous
occurrence of multiple beneficial nucleotide mutations on a genome
can be expected to be very small (Conrad, 1990). Consequently, we
can expect to observe phases of the evolutionary process where the
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progress of the best individual proceeds at the pace of one “improved
nucleotide” per generation. Of course, the existence of operators that
alter the genome more radically — in particular the presence of oper-
ators of recombination of the genetic material of distinct individuals —
gives evolution the possibility to proceed on average at a faster pace,
especially if the size of the population is not too small.

The curves of average genome length® shown in Figure 4.2 reveal
a collective upward trend. This is not surprising in view of the fact
that the sequence alignment is local and, therefore, the addition of
genome fragments that do not belong to the regions matching the tar-
get sequences has no effect on the alignment and, consequently, on
the fitness. In particular, the duplication of a chromosome does never
perturb the fitness, whereas the deletion of a chromosome has typi-
cally a negative impact on the fitness, except in those cases where the
deleted chromosome does not contain a matching region. For this rea-
son, we cannot judge from this experiment if the presence of operators
of genome duplication plays a role in the attainment of the required
matching that is observed in all runs of the experiment, or if the in-
crease in the genome length is simply a consequence of this asymme-
try of the duplication and deletion operators relatively to their impact
on the fitness. Experiment 3 will be devoted to the analysis of this
question.

4.1.2 Experiment 2: Mixed-strength matching

Experiment 1 was aimed at the evolution of a genome “interacting”
strongly with the target sequences. As discussed in the previous chap-
ter (Subsection 3.4.5), apart from the evolution of strong interactions
we must also be concerned with the possibility of avoiding unwanted
interference between sequences. This corresponds to the possibility of
achieving small sequence alignment scores for all the pairs sequences
that must not interact. In this perspective, the goal of Experiment 2
is the evolution of a genome that matches half of the target sequences
with alignment scores that are near the maximum values achievable
with the given length of target sequences and the given scoring matri-
ces, and the remaining half with alignment scores that are near the
minimum feasible value of alignment score. In the analog network

3The average genome length and average number of devices decoded from the
genome mentioned here and in the subsequent sections refer to values calculated
by averaging at each generation over the individuals of the population.
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Figure 4.3: The result of ten repetitions of Experiment 2, aimed at the evolu-
tion of a genome characterized by large local alignment score relatively to half
of the collection of target sequences, and by a small local alignment score rel-
atively to the remaining target sequences. In the analog network perspective,
where the value of sequence alignment is transformed into a value of inter-
action strength between terminals, this corresponds to the ability of evolving
some strong interaction with some terminals, while keeping low the interfer-
ence with other terminals. The maximum fitness curves show that this kind of
mixed strength interaction can indeed be evolved, since all the runs eventually
attained a fitness of zero, corresponding to the evolution of a genome matching
the target sequences in the required way.

perspective, this corresponds to trying to evolve a genome that has
a “strong interaction” with half of the target sequences but a “weak
interaction” with the remaining half. This experiment uses the same
parameters as Experiment 1, except for the target alignment scores,
which are assigned the following values

/ target alignment scores t;=20 fori=1,...,5
t;i=70 fori=6,...,10

Results Figure 4.3 shows the results of a series of ten repetitions
of this evolutionary experiment. The graphs reveal that evolution pro-
ceeds in much the same way as in Experiment 4.2. This means that the
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evolutionary system can evolve a genome realizing strong interactions
with a collection of preassigned sequences while maintaining a low in-
terference relatively to another collection of preassigned sequences.

The comparison of the maximum fitness curves of Figure 4.3 with
those of Figure 4.2 reveals that the average number of generations
needed to attain the required mixed-strength matching is smaller than
that required by the high-strength matching, suggesting that the at-
tainment of high alignment scores is evolutionarily more challenging
than the control of the randomly generated alignment scores. We must
note, however, that the value ¢, = 20 assigned as low-valued target
alignment score has a relatively small probability of being obtained
from pairs of randomly generated sequences of length 20, given the ge-
netic alphabet and the scoring matrices used in this experiment. This
is suggested by the histogram of the estimated probability distribu-
tion of randomly generated alignment scores for the same evolutionary
setup shown in Figure 3.20 on page 95. This histogram indicates that,
especially with target sequences of length [; = 20, the peak of randomly
generated scores can be expected to be attained for values smaller than
t; = 20. Therefore, with the given choice of the genetic alphabet and
scoring matrices, this alignment score appears as relatively protected
from the effect of random interferences and, in any case, in a range
that permits evolution to effectively counter the existing random in-
terferences. Although these conclusions apply only to this admittedly
very simple evolutionary setup, we will tentatively adopt this value as
the alignment score i,,;, associated with the minimum non-null inter-
action strength in the experiments of network matching and network
evolution described in the forthcoming sections.

4.1.3 Experiment 3: Disabling duplication

It was noted in commenting the results of Experiment 1 that the ob-
served presence in the experiments of an upward trend in the average
genome length does not in itself imply that the operations of genome
duplication are actually required to successfully evolve a genome real-
izing the required matching with the target sequences. To explore this
issue, the current experiment replicates Experiment 1 but with the du-
plication operators disabled. In order to keep balanced the rate of oper-
ators that add and the rate of operators that subtract nucleotides from
the genome, the transposition and deletion operators are also disabled.
This corresponds to assigning
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v probability of fragment duplication P, =0
probability of fragment deletion P =0
probability of fragment transposition p;, =0

v probability of chromosome duplication p,=0
probability of chromosome deletion p,, =0

All the other parameters have the values that were assigned in Experi-
ment 1.

Results Figure 4.4 shows the results of ten repetitions of the experi-
ment with the duplication operators disabled. The bottom panel shows
a detail of the maximum fitness curves, revealing that in most runs
the evolutionary process gets stuck on a less than optimal value of fit-
ness. Note that the required matching was not achieved in a number
of generations that is four times that considered in the repetitions of
Experiment 1 reported in Figure 4.2. Apparently, with the genetic du-
plication operators disabled evolution is unable to produce a genome
matching the target sequences with the required alignment score.

To ascertain the reason of the phenomenon revealed by Figure 4.4,
the genome of the best individuals of the apparently stalled runs was
examined. The analysis revealed that the cause of the evolutionary
standstill is the overlap of matching regions of the genome relative to
distinct target sequences. Figure 4.5 illustrates a typical example of
this phenomenon. Here, two chromosomes are committed with largely
overlapping matching regions to the matching of two target sequences
each. The result is that, beyond a certain point, every improvement in
the alignment of the multiply matched chromosomes relatively to one of
the target sequences that they match, is detrimental to their alignment
relatively to the other matched target sequence. The phenomenon is
represented schematically in Figure 4.6 (top). Note that a similar phe-
nomenon can be observed in biological genomes, where it is called gene
overlap and where it is reputed to slow the rate of evolution (Graur and
Li, 2000, p 294).
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Figure 4.4: The result of ten repetitions of Experiment 3. This experiment
has the same goal as Experiment 1 (whose results are documented in Fig-
ure 4.2), except that the genome duplication operators that were active in Ex-
periment 1 are now disabled. Although the number of observed generations
was increased fourfold relatively to the runs shown in Figure 4.2, the maxi-
mum fitness curves reveal that with duplication disabled evolution apparently
stalls without realizing the required matching with the target sequences.
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66

target sequences evolved chromosomes

: VIQEWSEXJOLQKERDZCNB  1: HIZKIICBYCHFYHIQTYDNXDMEFACDMSAJC

: FGHLWHVMJLLXXNVIDTHJ  2: YNRCFGHYULTUHBVMJLLOXXNVNTCRTQGJCVO

: EQULGUYOVLYUDWZWUGRB  3: IZJURKOURLYETJNQOBSZOESPVWYAGQBTYH

: YULTUBTMJQUNNCRTQGCV  4: NGPODTVAKSSRRGHTVZNKE

: JURKORKYQOBUOERVWYAG  5: BWLFQCWXEXKOLQKERCZCMBYHXROQVHMBXDNR

: HYWAUCJEGIOGIRGOOTTH  6: FVYOYOJWRKA
JINIJCZKMCYUBSODLZBS  7: BTTQNATESXINITJBZMMCYUZOCLZBSVZ
URLYFTINPLSZOFSPXQBT  8: VJPCCLFEZBVHMNCYMRADVEJCPOKKBJCPVBUQGNEOGUNMYDXHOMIMKS
ADCLGEABVHMNCXMOBDXF  9: EGHFHAVEUDIEGIOGGRGNORTHYWV
STDDIYZYCHFYHIQTYDNX 10: ILTERYWIUEQTLGUYOULYSDWZW

local sequence alignments and corresponding alignment scores

FGH--L-WH-VMJLL-XXNV-TD-T-HJ
YNRCFGHYULTUHBVMJLLQXXNVNTCRTQGJCVO

target seq. 2
chrom. 2

70 YULTU-BTMJ--Q---UNNCRTQG-CV target seq. 4
69 JURKO-RKY----QOBU-OER-VWYAG target seq. 5
IZJURKOURLYETJNQOBSZOESPVWYAGQBTYH chrom. 3
68 URLYFTJNPL-SZOFSP--X--QBT target seq. 8
70 STDDIYZYCHFYHIQTYDNX target seq. 10
HIZKIICBYCHFYHIQTYDNXDMEFACDMSAJC chrom. 1
70 VTQEWSEXJOLQKERDZCNB target seq. 1
BWLFQCWXEXKOLQKERCZCMBYHXROQVHMBXDNR chrom. 5
70 JINI-JCZKMCYUBSODLZBS target seq. 7
BTTQNATESXINITJBZMMCYUZ-OCLZBSV2Z chrom. 7
70 ADCLGEABVHMNCXMQBDXF target seq. 9
VIPCCLFEZBVHMNCYMRADVEJCPOKKB. . . OGUNMYDXHOMIMKS chrom. 8
70 HYWAUCJEGIOGIRG-OOTTH target seq. 6
EGHFHAVEUDIEGIOGGRGNORTHYWV chrom. 9
70 EQULGUYOVLYUDWZWUGRB target seq. 3
ILTERYWIUEQTLGUYOULYSDWZW chrom. 10
Figure 4.5: An example of genome evolved to match a collection of target

sequences with the operators of genome duplication disabled. The figure also

shows the alignment of the chromosomes relatively to the target sequences,
along with the corresponding alignment score. Here, chromosomes 2 and 3
are committed to the matching of two target sequences each, and the matching

regions for the two overlap. The result is that evolution gets stuck without
attaining the required alignment score (70 in this particular case) relatively
to some of the target sequences, since the improvement of the matching of

these chromosomes relatively to one of the target sequences that they match

degrades the matching relatively to the other target sequence. As a result of
the double matching of chromosomes 2 and 3, chromosomes 4 and 6 are not
involved in the realization of the target sequence matching and do not appear

in the alignments show in the figure. Note that these chromosomes are shorter

than the other chromosomes, probably as a consequence of their being free

Jfrom any evolutionary constraint.
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Figure 4.6: A schematic representation of the phenomenon of gene overlap that
can be observed in the evolved genome shown in Figure 4.5. In gene overlap,
two distinct genes share a fragment of genome, so that any mutation in this
Jragment has potentially an effect on the function of both genes. In the case
of sequence matching, gene overlap corresponds to a fragment of genome that
is required to match two or more target sequences. The consequence is that
when only the region of the genome that is in common remains to be evolved
in order to achieve the required matching, the improvement of the matching
relatively to one sequence can degrade the matching relative to the other. This
Jact can slow evolution and eventually bring it to a standstill. Gene overlap can
be resolved by duplication of the genome fragments containing the overlapping
genes followed by specialization of each gene for a distinct function (bottom).
Typically the fate of the instances of the duplicate regions that are no longer
used for the matching is to degenerate into “pseudo-genes”.
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4.1.4 Experiment 4: Re-enabling duplication

Figure 4.6 (bottom) illustrates schematically how the presence of op-
erators of genome duplication can solve the problem of gene overlap
observed in Experiment 3. The duplication of the genome fragment
involved in more than one matching creates two distinct instances of
each matching region. The evolutionary process can then operate inde-
pendently on the two instances, and make them evolve to match only
one target sequence. To corroborate this hypothesis, in this exper-
iment we continue the evolutionary runs of the previous experiment
but re-enabling the duplication, transposition and deletion operators
that where previously disabled, by putting

v probability of fragment duplication p;, = 0.001
probability of fragment deletion p;y = 0.001
probability of fragment transposition p,, = 0.001

¥ probability of chromosome duplication p,, = 0.001
probability of chromosome deletion p,, = 0.001

All the other parameters are kept unchanged from Experiment 3, rein-
stating thus fully the setup of Experiment 1.

Results Figure 4.7 shows that after the re-enabling of the duplication
operators, evolution is no longer stalled and the required matching of
the target sequences from the part of the genome is rapidly achieved
in all the evolutionary runs. Inspection of the evolved genomes con-
firmed that the mechanism behind this phenomenon is indeed the one
schematized in Figure 4.6. This corroborates the hypothesis that the
presence of certain genome reorganization operators is instrumental to
the success of an evolutionary string alignment process.
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Figure 4.7: Experiment 4 continues Experiment 3 (whose results are reported

in Figure 4.4) but with the operators of genome doubling re-enabled. Up to
generation 4000 the curves shown are those of Experiment 3. Genome dupli-
cation is disabled and several runs are stuck with less than the optimal null
fitness as a consequence of gene overlap. At generation 4000 duplication is
enabled and the new part of the experiment starts. The detail of the maximum
Jfitness curves shown in the plots show that all the runs in which evolution was
stalled in the absence of genome duplication are rapidly brought to success in

the presence of genome duplication.
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4.1.5 Experiment 5: Varying the number of target sequences

Experiment 5 is meant to obtain an idea of the influence on the evo-
lutionary process of the number of sequences that must be matched.
Experiment 1 is repeated with all the parameters unchanged, except
for a doubling from 10 to 20 of the number of target sequences, which
gives

¥ number of target sequences ny =20

and a corresponding doubling from 10 to 20 of the number of chromo-
somes in the individuals of the initial population

¥ number of chromosomes in the initial genome ni. = 20
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Figure 4.8:  The result of five repetitions of Experiment 5. This experiments
has the same parameters and goal as Experiment 4.2 (whose results are doc-
umented in Figure 4.2), except that the number of target sequences is doubled
with respect to Experiment 4.2. The maximum fitness curves show that all the
runs eventually attained a fitness of zero, corresponding to the evolution of a
genome matching the target sequences in the required way, although — not un-
expectedly — more generations were on average required to obtain the desired
result relatively to Experiment 1.

28D MARCH 2005



Section 4.1. Sequence matching experiments 133

Results Figure 4.8 shows the result of five repetitions of this evo-
lutionary experiment. Comparing these curves with those relative to
Experiment 1 (Figure 4.2) reveals that evolution is still successful in all
the repetitions, and that the course of the evolution is similar to that
observed in Experiment 1, except that — as could be expected — the av-
erage number of generations required to achieve the required matching
has increased by some hundred generations due to the greater number
of target sequences that must be matched by the evolved genome.

4.1.6 Experiment 6: Varying the length of the target sequences

The aim of Experiment 6 is to estimate the influence on the evolutionary
process of the length of the sequences that must be matched. Exper-
iment 1 is repeated with all the parameters unchanged, except for a
doubling from 20 to 40 characters of the length of the target sequences
and a corresponding doubling from 20 to 40 characters of the length of
the chromosomes in the initial genome, and from 70 to 140 of all the
target alignment scores. This gives

/length of target sequences [;=40 foralli
I target alignment score t; =140 for all ¢
length of chromosomes in initial genome lie =40

Results Figure 4.9 shows the result of five repetitions of this evolu-
tionary experiment. The graphs show that evolution is still successful
in all the repetitions of the experiment. Comparing these curves with
those relative to Experiment 1 (Figure 4.2) reveals that — as could be
expected — the average number of generations required to match the
longer target sequences with larger target scores used in the current
experiment, has increased relatively to Experiment 1, due to the pres-
ence of longer target sequences and higher target alignment scores that
must be attained.

Summing up, Experiment 6 and Experiment 5 show the same qual-
itative behavior in the evolutionary process as Experiment 1, despite a
doubling in the number or in the length of the target sequences and in
the target alignment scores.
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Figure 4.9:  The result of five repetitions of Experiment 6. This experiments
has the same parameters and goal as Experiment 1 (whose results are doc-
umented in Figure 4.2), except that the length of the target sequences and
the target alignment scores is doubled with respect to Experiment 1. The maxi-
mum fitness curves show that all the runs eventually attained a fitness of zero,
corresponding to the evolution of a genome matching the target sequences in
the required way. As could be expected, more generations were on average
required to obtain the required matching relatively to Experiment 1.

4.1.7 Experiment 7: Varying the population size

Experiment 7 investigates the influence of the population size on the
evolutionary process. Experiment 1 is repeated with all the parame-
ters unchanged, except for a tenfold increase in population size, which
becomes

V' population size n, = 1000

Results Figure 4.10 shows the result of five repetitions of this evolu-
tionary experiment. As could be expected from the success of the ex-
periments performed with a smaller population (Experiment 1), evolu-
tion achieves the desired result in all the repetitions of the experiment.
Comparing these curves with those relative to Experiment 1 (Figure 4.2)
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Figure 4.10:  The result of five repetitions of Experiment 7. This experiments
has the same parameters and goal of Experiment 4.2 (whose results are doc-
umented in Figure 4.2), except that the number of individuals in the evolving
population is increased tenfold with respect to Experiment 4.2. The maximum
fitness curves show that the use of a larger population results in a significant
decrease of the number of generations required to obtain the desired matching
relatively to Experiment 1.

reveals that the average number of generations required to achieve the
required matching has decreased significantly. In other words, the size
of the population seems to influence appreciably the length of the evo-
lutionary runs required to attain a given sequence alignment score.
Consequently, it can be expected to influence also the speed of the evo-
lution of analog networks, although in that case the evolution of the
sequence alignments is only one of the factors determining the rate of
evolution and not necessarily the critical one.

4.1.8 Discussion

The goal of the sequence matching experiments reported in this section
was the collection of information about the process of local sequence
alignment in an evolutionary context. The setup was conceived so as to
have some similarity with the actual sequence alignment that we can
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expect to be required for the evolution of analog networks. Yet, the
evolutionary setup and goal were chosen to be very simple, in order
to avoid all the complexities of an actual analog network evolutionary
experiment and simplify the interpretation of the results.

The results obtained in this series of experiments confirm that the
values of genetic alphabet size and the scoring matrices that were ob-
tained in the previous chapter on the ground of theoretical considera-
tions, appear indeed capable of endowing the evolutionary system with
the possibility of attaining the basic functionalities that are expected
from it, namely, producing large alignment scores while keeping at bay
unwanted interactions. Another interesting result is the observation
that the presence of certain genome reorganization operators such as
the operators of duplication of genome fragments is instrumental to the
success of an evolutionary sequence alignment process. Still another
information that we obtained from this series of experiments concerns
the number of generations that we can expect to be necessary for the
evolution of analog networks using population sizes of the same order
of magnitude as those employed here. Given that the evolution of an
analog network involves the selection of the devices composing the net-
work, in addition to the generation of the connections between their
terminals mediated by the sequence alignment, we can expect evolu-
tion times comparable or greater than those observed here.

Many more experiments could have been performed to probe in a
systematic way the behavior of the evolutionary system relatively to the
sequence alignment task. However, in consideration of the fact that the
sequence matching task is a very different problem from the evolution
of a network achieving a required functionality, it is preferable to pro-
ceed instead to a series of tests that bring the analysis closer to the
final objective represented by analog network evolution.

4.2 Network matching experiments

The experiments of network matching reported in this section can be
considered a variation of the sequence matching experiments described
in the previous section. In the case of sequence matching experiments
considered above, the experimenter has complete control over the tar-
get sequences and is free to assign their length, number, and compo-
sition. Evolution is then asked to produce the required matching be-
tween the evolved genome and this collection of fixed target sequences.
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In an analog network perspective, this kind of matching is realized
when the connections of the evolved analog network with the exter-
nal devices is based on the use of fixed sequences associated with the
terminals of the external devices (Subsection 3.5.1). Even adopting this
technique for the external connections, however, most of the interac-
tions present in an evolved network will be realized between the ter-
minals of the devices decoded from the genome. Since those terminals
will have associated with them sequences extracted from the evolved
genome rather than fixed sequences, it is interesting to consider a set
of experiments where a collection of predefined matchings must be re-
alized between sequences of characters that are all evolved, rather than
between evolved sequences and fixed sequences. In this case, evolution
has the possibility to operate on both sequences in order to realize the
required alignment score, instead of being permitted to modify only one
sequence, with the other acting as a fixed constraint.

An evolutionary experiment requiring the matching between evolved
sequences can be realized by defining a genome with a fixed number
of chromosomes and assigning a matrix whose entries prescribe the
alignment score that must be realized by evolution between each pair
of distinct chromosomes. The required alignment scores could be ran-
domly generated within a reasonable range of alignment values. There
is however a way to generate the matrix of required alignment scores
that is much more relevant to the evolutionary synthesis of analog net-
works — which is our actual final goal - than the random generation of
required alignment scores.

The idea is to consider an existing analog network — let us call it
model-network — for instance a textbook example of analog electronic
circuit or neural network, and determine how this network could be
obtained using the network representation based on sequence align-
ment defined in the previous chapter. Figure 4.11 illustrates the ap-
plication of this idea to the case of a simple electronic circuit. All the
non-resistive devices existing in the model network are considered as
having a sequence of characters associated with each of their terminals
(downward arrow in Figure 4.11). A population of individuals having
a genome with a number of chromosomes equal to the number of ter-
minals thus determined is created. The goal of evolution is to produce
a collection of chromosomes whose pairwise sequence alignment score
gives the interactions between the terminals that exist in the model
network. In other words, the evolutionary process must find the se-
quences of characters that, when associated with the terminals of the
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Figure 4.11: In a network matching experiment a model network is given as
a target of the evolutionary process (top). The goal is to generate a collection
of sequences that, when associated with the terminals of the devices (bottom)
determines between the terminals — via a predefined device interaction map
— the terminal-to-terminal interactions of the model network and, thus, recon-
structs the network from the devices (upward arrow). Note that in the case
of electronic circuits considered here, the resistors determine the interaction
between the terminals and, therefore, are not considered in the collection of
devices that must be connected.

devices, reconstruct — or “match” — the model network (upward arrow
in Figure 4.11).

The formulation of a sequence matching evolutionary problem in
terms of network matching has several interesting properties, besides
the already mentioned fact that this approach permits the exploration
of the issue of the evolution of alignments between sequences that are
all evolved, instead of being partially fixed. The first property consists
in the fact that the statistics of sequence alignments that are required
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corresponds to that of actual, functional networks, instead of being
arbitrarily assigned. This brings the matching experiments closer to
the problem of evolving analog networks and makes the corresponding
results more telling relatively to the behavior and the choice of the pa-
rameters for the evolutionary system applied to that problem. A second
important property is the possibility to build a genetic representation
of a network and use it to seed the evolutionary process, thus permit-
ting the incremental evolution of pre-existing networks instead of being
forced to start evolution from randomly generated networks. To obtain
the genetic representation for a given analog network, it is sufficient
to use it as model network in a network matching evolution. Once the
sequences that match the model network are obtained, they must be
simply combined with the convenient device, terminal, and parameter
tokens (possibly with the addition of some randomly generated non-
coding genome, in order to make the resulting genome more similar to
actually evolved genomes) to obtain a genetic representation that will
be decoded into the desired network. This genetic representation can
then be used to seed the initial population of an evolutionary process,
which will thus have as starting point the network that has been en-
coded in this way.

4.2.1 Network matching for electronic circuits

When the model network is a neural network the implementation of
network matching is straightforward. The interactions that must be
considered in this case are those between the outputs and the in-
puts of the neurons, and the strength of the interaction corresponds
to the weight associated with the connection. As explained in Sec-
tion 3.4, a value of sequence alignment between two device terminals
is transformed into a value of interaction strength between the ter-
minals through the action of the network-specific interaction map. To
define an evolutionary network matching experiment for the model net-
work, we must therefore simply associate with each weight of the model
network — including the null weights that implicitly correspond to the
absence of connections — the subset of values of sequence alignment
that are transformed by the network-specific interaction map into that
particular weight, and ask evolution to produce for the pair of chro-
mosomes associated with the two terminals linked by that weight, a
sequence alignment score belonging to the subset thus determined.

If the model network is an electronic circuit rather than a neural
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Figure 4.12: In a network matching experiment using an electronic circuit as
model network (left), there are conditions where the resistors that are present
in the circuit do not determine univocally the value of each terminal-to-terminal
interaction strength. Thus, either an arbitrary assignment is done by the exper-
imenter, or the matching condition is enforced in terms of the equivalent conduc-

tance between the terminals that is determined by all the conductances pro-
duced by the alignments of the sequences associated with the terminals (right).

network there is a slight complication in setting up a network match-
ing problem. This is due to the fact that the model network does not
determine univocally the interaction between each pair of terminals of
the non-resistive devices. The source of this ambiguity can be appreci-
ated considering the example shown in Figure 4.12, where two nodes of
a circuit are connected through a resistor having a finite conductance
value. We could be tempted to assume the value of conductance of
the resistor as corresponding to the strength of the interaction between
the terminals of the devices connected by the resistor. However, upon
further thought we realize that it is not clear to which pair of termi-
nals this value of interaction strength must be attributed. We cannot
associate it with all pairs of terminals connected by the resistor, since
the resulting equivalent conductance between the nodes would have a
value corresponding to the parallel combination of several instances of
that resistor, which does not correspond to the desired value. An ob-
vious solution is to define the network matching problem in terms of
the matrix of equivalent conductances between the terminals, rather
than directly in terms of the pairwise matching of the sequences. In
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the network evolution perspective, this formulation has the further ad-
vantage of producing a more realistic evolutionary scenario, since the
alignment scores determined by the sequences interact in more com-
plex ways than by requiring directly the matching of the alignment
scores. However, it must be realized that this more realistic scenario
includes also potentially more conditions that can stall the evolutionary
process and, therefore, is probably less suited than the direct match-
ing approach to the generation of the genetic representation of a given
network.

4.2.2 Experiment 8: Matching a series of capacitors

The model network used in this first network matching experiment is
an electronic circuit composed of a collection of ten capacitors con-
nected in series (Figure 4.13, top). This corresponds to a model net-
work with 10 devices and 20 device terminals (Figure 4.13, bottom).
To reconstruct the model network from the collection of unconnected
devices, each device terminal must be connected through a wire to ex-
actly one terminal of another device, and have no direct connection
with all other terminals. In terms of conductance, this corresponds
to an infinite conductance between each terminal and one terminal of
another device, and a null conductance between that terminal and all
other terminals.

To see what this means in terms of required values of sequence
alignment scores between the sequences that are considered as as-
sociated with the terminals, we must examine the definition of the
network-specific interaction map. We remind from Section 3.4.3 that
the network-specific interaction map ¢ g g associates sequence align-
ment scores i with conductance values g belonging to a discrete set
{9os Gmins -+ s Gmaz» goo}» Where g, is the zero-valued conductance, g, is
the minimum non null value of conductance, ¢,,,, is the maximum fi-
nite value of conductance, and g, is the infinite-valued conductance.
If i, is the sequence alignment score associated with g,i,, and ing,
the alignment score associated with g, all the values of alignment
smaller than i,,, are associated with g,, and all those larger than i,
are associated with ¢... This means that each of the 20 sequences as-
sociated with a terminal of the devices composing the model network
must have a sequence alignment score ¢ > i,,,, relatively to exactly one
other sequence, and sequence alignment scores i < i, relatively to
all the other sequences (note that the interaction of a terminal with
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Figure 4.13: The model network that must be matched in Experiment 8 is
composed of 10 capacitors connected in series (top). The reconstruction of the
model network from the collection of unconnected capacitors (bottom) requires
the evolution of a collection of 20 sequences of characters that are considered
as associated with the 20 terminals of the capacitors. Each sequence must
interact strongly with just one other sequence, determining the infinite con-
ductance value that corresponds to a direct connection between the terminals.
Moreover; it must interact weakly with all other sequences, so as to determine
a zero-valued conductance that corresponds to the absence of a direct connec-
tion.

itself is not considered). Thus, the evolutionary problem constituted
by the matching of the circuit shown in Figure 4.13 has some anal-
ogy with the mixed-value sequence matching problem of Experiment 2,
since the two problems require the simultaneous generation of both
small and large alignment scores. However, the network matching ex-
periment is much more demanding and realistic, since it enforces both
requirements simultaneously on each sequence, instead of enforcing
the two kinds of alignment on different sequences.

The actual values of the parameters defining the network specific
interaction map are the following.

28D MARCH 2005



Section 4.2. Network matching experiments 143

Network-specific interaction map In the current and in the forth-
coming network matching experiments we use a logarithmic quantiza-
tion of the conductance values (see Appendix B and Subsection 3.4.3),
with

¥ minimum non null conductance value Gmin = 10768

maximum finite conductance value Gmaz = 19
v alignment score associated with g¢,,;, tmin = 20
¥ number of conductance values per decade ng =8

This gives

v number of conductance values # g, and g, ny =49
vV alignment score associated with g, fmaz = 08
¥ base of exponential decoder a=10"%~1.33

Figure 4.14 shows the resulting set of quantized values (apart from
go and g¢,,) and the associated sequence alignment scores. The other
functions and parameters necessary to fully specify the evolutionary
experiments are described below.

Fitness function The fitness function of an individual is calculated
as follows. Each chromosome is assumed as associated with a preas-
signed terminal of the non resistive devices of the model network. The
association is the same for all the individuals of the population and
does not change during the run. The local alignment score c;; of the i-th
chromosome relatively to the j-th chromosome (i # j) is computed. This
value is transformed into a terminal-to-terminal conductance value us-
ing the network-specific conductance map described above and illus-
trated in Figure 4.14. Using standard techniques of circuit analysis,
the terminal-to-terminal conductance values are transformed into the
equivalent conductances g;;" between pairs of terminals. This equiva-
lent conductance must be compared with the value of equivalent con-
ductance g;} existing between the same terminals in the model circuit,
which is computed in the same ways as gj;". To perform the compari-
son in terms of relative rather than absolute difference, both values are
converted to a logarithmic index using the relations

eq.
t;; = min <max (nd logy, Jis , 71> , n,g> (4.1)

Imin
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(alignment score) quantized resistance value

(68)1.00E+00 (67)1.33E+00 (66)1.78E+00 (65)2.37E+00
(64)3.16E+00 (63)4.22E+00 (62)5.62E+00 (61)7.50E+00
(60)1.00E+01 (59)1.33E+01 (58)1.78E+01 (57)2.37E+01
(56)3.16E+01 (55)4.22E+01 (54)5.62E+01 (53)7.50E+01
(52)1.00E+02 (51)1.33E+02 (50)1.78E+02 (49)2.37E+02
(48)3.16E+02 (47)4.22E+02 (46)5.62E+02 (45)7.50E+02
(44)1.00E+03 (43)1.33E+03 (42)1.78E+03 (41)2.37E+03
(40)3.16E+03 (39)4.22E+03 (38)5.62E+03 (37)7.50E+03
(36)1.00E+04 (35)1.33E+04 (34)1.78E+04 (33)2.37E+04
(32)3.16E+04 (31)4.22E+04 (30)5.62E+04 (29)7.50E+04
(28)1.00E+05 (27)1.33E+05 (26)1.78E+05 (25)2.37E+05
(24)3.16E+05 (23)4.22E+05 (22)5.62E+05 (21)7.50E+05

(20)1.00E+06

Figure 4.14: The set of quantized resistor values used in the network match-

ing experiments (and also in the circuit evolution experiments described in the

next section). The positive integers in round brackets give the sequence align-

ment score associated with the resistance (and corresponding conductance)

value by the networlk-specific interaction map. Sequence alignment scores i

greater than i,,,, = 68 are associated with the infinite-valued conductance,

which corresponds to the presence of a direct connection between two termi-

nals. Sequence alignment scores i less than i,,;, = 20 are associated with the

zero-valued conductance, which corresponds to the absence of a direct connec-

tion between two terminals.

~eq.
t,; = min <max (nd logy, 9y , 71) , nq>
Imin ’

4.2)

The min and max operators in these formulas represent the fact that the

number of quantized conductance values is finite, with ¢, and g¢., repre-
senting the ranges of conductance [0, g, (a+1)/2a] and (g, (a+1)/2, c0),
respectively. For this reason Equation 4.1 and Equation 4.2 clamp the
logarithmic index for g < (gmin/a) to t = —1, and the logarithmic index
for g > (@ gmas) to n,. Applying Equation 4.1 and Equation 4.2 to the
equivalent conductances between terminals gives two symmetric ma-
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trices T = (t;;) and T = (t;;). The fitness of the individual is defined
as the negative of the sum of the distance between the elements of T
and those of T, taking into account the symmetry of the matrix and the
irrelevance of the diagonal elements. This corresponds to

f:_z|tij_t~ij|

i<j

The resulting fitness is negative when some of the logarithmic indexes
t,; of the evolved equivalent conductances do not match the logarithmic
indexes t¢;; of the model network, and is zero — the maximum fitness
value - only when all logarithmic indexes are the same.

Genetic alphabet In the current experiment

¥ size of genetic alphabet |G| =26

Scoring matrices In the current experiment

v first row of substitution matrix
s1=(5,21,0,-1,-2 =5, ... —5, —2,-1,0,1,2)

v generic element of indel vector d; = -3

Evolutionary algorithm and parameters The evolutionary algorithm
used in the current experiment is a standard generational genetic al-
gorithm that uses tournament selection, elitism, and the genetic oper-
ators described in the previous chapter. Since the number of chromo-
some in the genome must remain constant and equal to the number
of terminals of the devices in the model network, the duplication of
chromosomes is performed by appending a copy of the chromosome to
the existing one, rather than by creating an additional distinct chro-
mosome. The deletion of a chromosome, on the other hand, leads to
the elimination of the individual from the population. The actual val-
ues of the parameters are listed below. Parameters corresponding to
probabilities of genetic operators that were mentioned in the previous
chapter and are not listed here are assumed as having null value.

v population size n, = 100
v tournament size n,=5

v elite size ne =1
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v probability of nucleotide substitution p,. = 0.001
probability of nucleotide insertion p,, = 0.001
probability of nucleotide deletion p,, = 0.001

v probability of fragment duplication p;, = 0.01
probability of fragment deletion p,, = 0.01
probability of fragment transposition p,, = 0.01

¥ probability of chromosome duplication p,, = 0.001
probability of chromosome deletion p,, = 0.001

¥ probability of genome duplication Py, =0

v probability of chromosome crossover P, =0.1
number of matching characters for crossover I, =10

Initial population Each individual of the initial population is gener-
ated with a genome composed of n;. chromosomes of length /;. randomly
generated from the genetic alphabet. Note that in the series of network
matching experiments, the number of chromosomes must be equal to
the number of terminals of the devices to which a sequence must be
associated. In the current experiment

¥number of chromosomes in the initial genome ni. = 20

/length of chromosomes in initial genome lie =20

Results Figure 4.15 shows the result of ten repetitions of Experi-
ment 8. The curves of the maximum fitness reveal that in all the runs a
set of sequences realizing the desired equivalent conductance between
the terminals could be evolved successfully. Comparing these curves
with those of Figure 4.2 obtained in Experiment 1, which requires the
production of alignment scores of similar magnitude, we see that the
average number of generations required to produce the intended result
is comparable. The curves of the average genome length show instead
a different trend in the two cases. Here, the genome length appears to
stabilize, contrary to what happens in Figure 4.2. This is probably due
to the fact that an increase in the length of the chromosomes in the
current experiment tends to produce unwanted interactions, which are
penalized in terms of fitness, whereas in Experiment 1 this penalization
was absent.

Figure 4.16 shows an example of evolved genome realizing the re-
quired interactions. The parameters of the network-specific interaction
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Figure 4.15:  The result of ten repetitions of Experiment 8. The goal of this
network matching experiment is the evolution of a collection of sequences that,
when associated with the terminals of the capacitors shown in Figure 4.13, re-
produce the series connection of the capacitors in the model circuit. A negative
value of fitness corresponds to an imperfect reproduction of the model circuit,
and the null fitness value corresponds to an exact reproduction. The curves
of maximum fitness reveal that all runs evolved successfully a collection of
sequences realizing the required interactions.

map used in this experiment specify that the sequence alignment score
corresponding to ¢a, 1S ime = 68 and the value corresponding to g, is
imin = 20. The realization of a connection with infinite conductance be-
tween two terminals requires therefore an alignment score : > 68, and
the absence of a direct connection between two terminals is realized
by values of sequence alignment score i < 20. Figure 4.16 represents
only the pairing of sequences that realize an alignment ¢ > 20 and thus
correspond to an actual connection existing between the corresponding
terminals. The figure reveals that the only connections realized corre-
spond to values of alignment with ¢ > 68, and result therefore in ten
connections having infinite conductance — ten wires. This is just the
kind of interaction required to connect each capacitor to its neighbor
in the model circuit of Figure 4.13.

Finally, note that this kind of experiment permits the generation
of collections of sequences that can be used as fixed preassigned se-
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alignment scores > 20

quences to be associated with the terminals of the external devices as
described in Section 3.5 on page 103, since the sequences obtained
do not interact pairwise and yet permit the production of a connection

evolved sequences

Chapter 4. Experiments

{ 1:JATCINGLHZGBWBBFSSZOPDUQSUHGK
96 2:MYZPUDBPNEPSCVIIGLHZGBWMYKSXSYDUEGTSCHGLGLHZGBWBBFSZOPYDUQSUZGAWQLP

{ 3:KWAVPCXDMBJLRKUQRVTUCZVODVZIYSRDFBMXQIPMETJ
74 4: EDDDWWQTQVTUZVODEVZIQRRDFBJQVQMTMFBJXZPFHQO

76 { 5: KOAQWJUUFIVBJAXFKZNNIPQKUHHXJVJIGYFNZJNNGZHQN
6
{ 7: UXIWGBQOCMSILUMMDSIKLTGAJ
72 8: RSXSIBMIXROCMSINUMMDS IKICMTGOMHSHEYMIGSULTNE

71 { 9: OGWQPJKVHUTIFHGCBPIQWCQDZZAVXUUFZOHKRPMB
10: APRLCQCZZALXUUGZFNPPQSWCQDZOZAVXUUFZO

69 { 11: MIQECCMCZDRUIMDNEIIG
12: HMCDSZRIONECDCMCZLDRIMDNEIIP

76{ 13: DGSJ! FXDOZXUQSZNDIWABXBDJGRBDXMJ
14: YEGELXDSZNJAXXCBEFPMDWHXLZDXYKHFXDOBXPSZNJSTXABHWBDJFDMDDXNMKD

. { 15: SHXZNXJNHATRVGAFGBFLKVHEKREDWCYMDP
16: GZEMYFEXAOVRMNHBTRVFRGFLKXHEKREYCCOZWPKF

7 { 17: WYDFQUIXYAGQPHZQUMOWAGQYJPJIG
18: FNUMXYAGQPHZQUNYOWAFPCHKIJZQAILVW

73{ 19: ZTUWYRWGIRZLAZBTASZXNMERBYUWRZWJIBRZMZBTASXWNYKM
20: ZJPFZVZULMEQMONBXUWRYITLIRZLZBTASZ

: DFIVFKNNZJUVPQKUHLDTFQIVBBJAXFKZNNZQJUPQKBUIDIDXIVFDMNQJUPQKUHIDIVJIJ

Figure 4.16: An example of genome evolved in the network matching exper-
iment using as model network a series of 10 capacitors (Experiment 8, Fig-
ure 4.13). The genome is composed of 20 chromosomes, each constituting one
of the evolved sequences for the network matching. To reproduce the model
network, each evolved sequence must realize an alignment score greater than
68 with exactly one other sequence, and values smaller than 20 relatively to all
other sequences. The figure shows the pairs of sequences realizing an align-
ment score greater than or equal to 20, and the corresponding alignment score.
Note that all the scores are above 68, corresponding to a direct connection be-
tween terminals. The alignments of the sequences that produce the reported
alignment score are not represented in the figure.

with maximum interaction strength.
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4.2.3 Experiment 9: Matching a resistor-capacitor series

In the previous experiment, the terminals of each capacitors were con-
nected through a wire to the terminals of the neighboring capacitors.
This has the consequence that the alignment score that must be re-
alized by the evolved sequences to produce the connections is rather
large (greater than 68 in the case of Experiment 8). Furthermore, the
alignment score that must be realized does not prescribe an exact value
of matching but consists in the entire range above i,,,,. It is therefore
interesting to consider also the case where a prescribed value of inter-
action is required. This can be obtained modifying the model circuit of
Experiment 8 shown in Figure 4.13 by inserting a resistor of finite con-
ductance in the place of the resistors with infinite conductance - i.e, in

1kQ 1kO 1kQ
1kQ
)
S 1 S SV S ¥4
4

I{J A ] [ {1

ﬁ |

A ] [ ] EI

I 4

o —— e ——

Figure 4.17: The model network that must be matched in Experiment 9 is a
series of capacitors whose terminals are connected through non null resistors
(top). The reconstruction of the model network from the collection of uncon-
nected capacitors (bottom) requires the generation of sequences each of which
has a small alignment score with all but one of the other sequences, relatively
to which it must realize exactly the alignment score corresponding to the con-
necting resistors.



150 Chapter 4. Experiments

2500 Frr— 0
maximum fitness
2000 -50
=
)
o 1500 -100
2 8
g 5
S 1000 150
g
o0 average genome length
500 -200
0 -250
0 100 200 300 400 500
generation

Figure 4.18:  The result of ten repetitions of Experiment 9, aimed at evolving
the sequences required to reconstruct the model network shown in Figure 4.17.
The maximum fitness curves are very similar to those shown in Figure 4.15,
whereas the average genome length of the population appears appreciably
smaller in the present case. This is a consequence of the smaller alignment
scores required by the current experiment.

place of the wires — connecting the capacitors. The resulting circuit is
shown in Figure 4.17.

A series of evolutionary experiments aimed at matching this circuit
was performed using the parameters of Experiment 4.13. Figure 4.18
shows the outcome of ten evolutionary runs. There seems to be no sig-
nificant difference in the fitness performance with respect to the case
of the previous experiment illustrated in Figure 4.15. The smaller se-
quence alignment scores that must be generated in this case appears
instead to produce an appreciable difference in the resulting average
genome length of the populations. This is confirmed by the inspection
of the genomes of individuals attaining the optimal fitness. Figure 4.19
shows an example of this kind of genome. Note how this genome is
shorter than that shown in Figure 4.16, and realizes exactly the align-
ment score corresponding to the value of the resistors present in the
model network of this experiment (Figure 4.17).
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evolved sequences

a4 { 1:VGQYVLDYTSVJIDZOLMPCU
2:RYVLDYTSVGLGYLEUSNDYBVWTSIJPYU

{ 3:WZXKWPTEHNQJXDMXAU
44 1| 4:EPCYTEEQRJXDMXATPSRMPFXGKKSWGIKCCMZ

{ 5:HCOQHJQZCGRVWEAC
441 6:SVRUCOHJQZCGLRVKXKNCIA

{ 7:LXBMCIPKQBVAXCUZAZCMAX
44 8:UVFXWPKQBVAXCAAOG

{ 9:GXRSQHHBBKXKKVE
44 10:RFSPHHBBHWKIVD

{ 11:WTEZYMWAYYKKYUPEXUZ
44 12:UDCXYKGYUPEXUYODCFUCNHSY

{ 13:QERRGEHLKRSOQBLGQIOB
44 14:SLJKRSOQBLGHQSDFMB

alignment scores > 20

{ 15:GKALAPPHCIBORNWIBM
44 16:XLFJKVAYZPQHCIBOSMHB

44{ 17:NFVZNONEHCDJBZEXYITCKNDWNUXUPP
18:MLLEVTHXNERVRYEZQONEHCJINBZEQUD

44 { 19:VBVCCRININGFCXXEFVFPALLTVQK
20:YTXBVCCRINYIKJFJTXVCVR

Figure 4.19: An example of genome evolved in the context of Experiment 9
and realizing the perfect matching of the model network shown in Figure 4.17.
Only the pairings realizing an alignment score greater than or equal to 20 are
represented. Note that with the series of quantized resistance values shown
in Figure 4.14 the resistance of 1k} present in the model network correspond
to an alignment score of 44, which is exactly realized in all the cases.

4.2.4 Experiment 10: Matching a typical analog electronic circuit

For the last network matching experiment the textbook example of elec-
tronic circuit shown in Figure 4.20 was chosen. The reason of this
choice is to test the possibility of evolving a collection of sequences re-
alizing the values of alignment with the kind of distribution that can
be expected to be found in a typical circuit. For example, electronic
circuits have typically a few power supply nodes that are connected to
many device terminals, and the rest of the nodes that are only sparsely
connected.

Apart from the model network, all the parameters used in this ex-
periment are those of Experiment 4.13. Figure 4.21 shows the result of
five evolutionary runs, with linear and logarithmic scales for the gener-
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Figure 4.20: The figure shows (top) the network that must be matched in Ex-
periment 10. The goal of the experiment is to evolve one sequence of characters
Jor each terminal belonging to a non-resistive device of the networlk (bottom),
such that the interaction strength determined by the sequences through the
device interaction map produces between the terminal the same equivalent re-
sistance existing in the given network. Contrary to the artificial cases consid-
ered before, the interaction of the sequences thus generated has the statistical
properties of a typical networlk.
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Figure 4.21: The result of five repetitions of Experiment 10, aimed at the
evolution of a genome whose chromosomes permit the reconstruction of the
electronic circuit shown in Figure 4.20. The bottom panel shows the same re-
sults of the top panel, redrawn with a logarithmic generation scale, to permit a
better appreciation of the initial phase of the evolutionary process. The greater
complexity of the circuit that must be reconstructed relatively to the preced-
ing examples results in a larger number of generations required to evolve the
required sequences which, however, are successfully evolved in all runs.
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ation axis. The maximum fitness curves reveal that the required char-
acter sequences could be generated also in this more realistic network
matching context and within a reasonable number of generations.

4.2.5 Discussion

The success of this small series of network matching experiments, and
that of the preceding series of sequence matching experiments is en-
couraging relatively to the choice of the technique of local sequence
alignment for the implementation of the sequence interaction map.
From this success, however, does not ensue that the evolutionary sys-
tem based on sequence matching must be able to evolve actual analog
networks performing a given function. These results indicate never-
theless that at least some of the basic ingredients required to evolve
analog network are within the system’s reach, in particular, the pos-
sibility to match fixed sequences and to generate fragments of genome
realizing high-valued sequence alignments while keeping interference
under control. Moreover, these series of experiments have confirmed
that the choice of parameters values based on the considerations of the
previous chapter is reasonable. The information gained will be used in
the next series of experiments, which will at last tackle the evolutionary
task that actually interests us: that of evolution of analog networks.

4.3 Network evolution experiments

In the series of experiments presented in this section the approach
proposed in this thesis is applied to the evolution of analog networks.
First, a series of three experiments of evolution of analog electronic
circuits in presented, followed by an example of evolution of a neural
network. The performance of the electronic circuits corresponding to
the individuals of the evolving populations in the experiments of circuit
evolution was evaluated in simulation, using SPICE as circuit simulator
(see Appendix C for additional details on SPICE and about its use in an
evolutionary context).

Any electronic design textbook could have provided manifold exam-
ples of circuit functionality to be assumed as target for our experi-
ments of electronic circuit evolution. However, in order to make our
results comparable to those of alternative evolutionary approaches to
the synthesis of analog networks, we based our experiments on three
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problems taken from (Koza et al., 1999), where genetic programming is
applied to this kind of evolutionary problem. Our choice is motivated
by the fact that the results reported in that work (and in the more
recent (Koza et al., 2003)) are arguably some of the most remarkable
examples of evolutionary synthesis of electronic circuit existing in the
literature. Moreover, the evolutionary experiments presented in those
two books have the additional advantage of assessing the performance
of the evolved circuits using the same circuit simulator used here.
From the set of problems considered in the above mentioned books,

we restricted our choice to problems that can be formulated as single-
objective problems, as opposed to multi-objective problems (Deb, 2001).*
The reason for this limitation is on the one hand the desire to avoid
in the interpretation of the first results obtained from our evolution-
ary system the complication that would have ensued from the use
of a multi-objective evolutionary algorithm, and, on the other hand,
from the questionable rationale behind the aggregation from the part
of the experimenter of several disparate evolutionary targets into a sin-
gle scalar-valued fitness function. For this reason the three examples
of circuit evolution presented below are taken from (Koza et al., 1999),
where the majority of problems can be formulated in single-objective
terms, rather than from the more recent (Koza et al., 2003) where the
focus has shifted on multi-objective problems. Of the single-objective
problems considered in (Koza et al., 1999), we chose those that ap-
peared to us as the most challenging for an evolutionary process, as
witnessed by the less than perfect conformity of the results presented,
with the assumed evolutionary target.

4.3.1 Experiment 11: Evolution of a voltage reference

The first experiment of network evolution is aimed at the synthesis of
a voltage reference electronic circuit. Figure 4.22 shows the devices
of the predefined external circuit, to which the evolved circuit must
connect in order to produce the required functionality. The external
circuit is composed of a variable voltage source V. connected in series
to a resistor R., and by a load resistor R,.

The goal of the evolutionary experiment is the synthesis of a circuit

“Despite this choice, we remain convinced that actual, real-world circuits synthe-
sis must be eventually formulated as multi-objective evolutionary problems. The final
part of this section contains some further comments on the issue of multi-objective
artificial evolution in general and in the context of network evolution in particular.
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producing a fixed output voltage V* = 2V across the load resistor when
the source voltage V. varies in the range 4V < V, < 6V and the circuit
temperature T varies in the range 0°C < T < 100°C. From these require-
ments we can derive the following fitness function for our experiment.

Fitness function Using the SPICE simulator the behavior of the cir-
cuit can be evaluated by assigning a fixed value of input voltage and
circuit temperature, and using the simulator to compute the corre-
sponding output voltage. The input voltage range was discretized by
subdividing it into intervals of width AV, = 0.1V, resulting in 21 discrete
values {V.,} = {4V,4.1V,4.2V,... 6V}. The temperature range was dis-
cretized into the five equispaced values of the set {7} = {0°C, 25°C, 50°C,
75°C,100°C}. The output voltage V,, is computed in correspondence
of each input voltage value V,, and circuit temperature 7; pair, and
the difference (V,,, — V) is calculated. A tolerance interval of width
2AV, = 0.02V centered on V) is defined, and the output voltage val-

Figure 4.22: The devices of the external network in the experiment of evolution
of a voltage reference. The connection of the evolved network with the devices
of the external network is based on the use of I/ O ports. The external network
is an electronic circuit composed of a variable voltage source V. with a series
resistance R., and by a load resistor R;, across which the output voltage V,
of the evolved network is measured. Note that, contrary to the case of the
evolved networlk, the resistors of the external network are preassigned devices
that are not obtained as a consequence of the interaction between sequences
of nucleotides extracted from the genome. Note also that there is no I/O port
associated with the wire connecting V. with R.. Consequently, the terminals
connected by this wire cannot be connected directly to the evolved network by
evolution.
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ues falling into that interval are not penalized in terms of fitness. This
choice was made in order to have the resulting fitness function reflect
a typical approach used in evaluating the results in electronic circuit
design, where the performance of a circuits relatively to a given specifi-
cation is judged acceptable without further qualification when it stays
within a given range. This leads to the following definition for the error
in correspondence of each input voltage and circuit temperature pair

o

oo Vo= Vo)?R it Vo, = V| = AWy
Y10 if [V, — V7| < A}

and to the following expression for the fitness f

f:*ZEij

4

This means that the values of fitness are negative when there is a dis-
crepancy exceeding the tolerance AV, between the computed output
voltage values V,,; and the desired fixed output voltage value V,". A null
value of fitness signals the attainment of an output voltage that falls
within the tolerance interval in correspondence of all the discrete input
voltage and temperature values used in the simulations of the circuit.

External connections As illustrated in Figure 4.22, the technique
adopted for the establishment of the connections between the exter-
nal and the evolved circuits is the one based on the use of I/O ports.
With this technique, some terminals of the external devices are marked
for (potential) connection by associating with them a special kind of
device that is represented in the genome and leads to the associa-
tion with the marked terminals of sequences of characters extracted
from the genome (see Subsection 3.5.4 and in particular Figure 3.28
on page 111 for the details).

Network-specific interaction map All the experiments of analog cir-
cuit evolution reported below use a the network-specific interaction
map based on the same logarithmic quantization of the conductance
values employed in the network matching experiments described in the
previous section. We have in particular

¥ minimum non null conductance value Gmin = 10768
maximum finite conductance value Gmaz = 1S
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v alignment score associated with g, Gmin = 20
¥ number of conductance values per decade ng =8

From which follows

¥ number of conductance values # gy and g ng = 49
v alignment score associated with ¢4, tmaz = 08
¥ base of exponential decoder a=10"%~1.33

The resulting set of quantized values (apart from g, and ¢.,) and associ-
ated sequence alignment scores is shown in Figure 4.14 on page 144.

Genetic alphabet
¥ size of genetic alphabet |G| =26

Scoring matrices

v first row of substitution matrix
s1=(5,21,0,-1,-2 =5, ... —5, —2,-1,0,1,2)

¥ generic element of indel vector d; = -3

Evolutionary algorithm and parameters The evolutionary algorithm
used in the current experiment is a standard generational genetic al-
gorithm that uses tournament selection, elitism, and the genetic oper-
ators described in the previous chapter. The values of the parameters
are listed below. Parameters corresponding to probabilities of genetic
operators that were mentioned in the previous chapter and are not
listed here are assumed as having zero value.

V' population size n, = 100
¥ tournament size n, =5
v elite size ne =1
v probability of nucleotide substitution p,, = 0.001
probability of nucleotide insertion p,; = 0.001
probability of nucleotide deletion p,, = 0.001
v probability of fragment duplication p;, = 0.01
probability of fragment deletion p;, = 0.01

probability of fragment transposition p;, = 0.01
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¥ probability of chromosome duplication p,, = 0.001
probability of chromosome deletion p,, = 0.001
v probability of genome duplication p,, = 0.001
¥ probability of individual genome trimming p, = 0.01
probability of population genome trimming p,, = 0.01
¥ probability of device insertion P, = 0.01
v probability of chromosome crossover P, =0.1
number of matching characters for crossover lm =10

Device set The device set for the current experiment contains only
one NPN bipolar junction transistor (the details of the SPICE transis-
tor model used can be obtained from the SPICE deck relative to this
experiment shown in Table D.1 on page 270 of Appendix D).

Initial population Each individual of the initial population is ob-
tained by generating a genome composed of n;. chromosomes. The
genome contains the representation of n;; devices randomly chosen in
the device set (in this experiment the device set contains only one el-
ement, but in the subsequent experiments it will contain more than
one element), and the representation of n;, copies of each kind of I/O
port associated with the external circuit. The representation for de-
vices and I/O ports is obtained appending to the token for the device
or I/0 port the required number of randomly generated sequences of
nucleotides of length /;;, each delimited by a terminal token at its end.
Fragments of genome representing distinct devices are separated in the
genome by randomly generated spacer sequences of length /;;. Spacer
sequences are also prepended at the start and appended at the end of
each chromosome. In the current experiment

Y number of chromosomes in the initial genome Nie = 1
number of devices in the initial genome Nig =1
number of copies of each I/0 port in the initial genome nyp =1

¥length of sequences for terminals in the initial genome Iy =20
length of spacer sequences in the initial genome lis =20

Results Figure 4.23 shows the result of 25 repetitions of Experiment 11.
The interpretation of the figure is hindered by the overlap of some of
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genome length
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Figure 4.23: The result of 25 repetitions of Experiment 11 aimed at the evolu-
tion of a voltage reference electronic circuit. A better performance corresponds
to higher values of fitness, with a maximum value of zero corresponding to the
exact realization of the required circuit function. The inspection of the tables of
values corresponding to curves of the maximum fitness (top) reveal that after
10000 generations 18 of the 25 runs have produced at least one circuit real-
izing a fitness very close to zero. The curves of the average genome length
(top) show that after an initial transient where several runs experienced a sus-
tained genome growth, all the experiments settled on moderate or null rates
of genome length growth. Some of the curves shown here are reproduced in a
less cluttered context in Figure 4.24.

fitness

the curves of maximum fitness for different experiments. An analysis
of the maximum fitness data reveals that 18 of the 25 experiments at-
tained a fitness very close to zero, corresponding to the evolution of a
circuit that achieves a good regulation of the output voltage. We will
examine later in more detail the kind of regulation behavior obtained
in the successful runs. The analysis of data collected during the runs
revealed that the runs that did not evolve a circuit with acceptable per-
formance within 10000 generations corresponded to evolved circuits
that had just one or two devices that were actually connected, and
that runs that appeared as stalled in terms of maximum fitness could
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Figure 4.24: The curves of maximum fitness and average number of devices
in the genome for a selection of three of the 25 runs shown in Figure 4.23. This
selection of runs is presented here to permit the appreciation of some typical
phenomena observed during the runs, such as the temporary high number of
devices in the initial generations of evolving populations, the correlation be-
tween an abrupt increase in the number of devices and a substantial increase
in maximum fitness, and the insufficient number of devices in the individuals
of the populations of the runs that did not evolve high fitness solutions within
10000 generations.

overcome the impasse following an increase in the number of encoded
devices. Figure 4.24 shows the relationship between the number of de-
vices encoded in the genome and the maximum value of fitness during
three of the 25 repetitions of the experiment, selected to illustrate this
and other typical behaviors observed during the runs.

Figure 4.25 shows an example of best evolved voltage reference cir-
cuit from one of the successful runs. The performance of this circuit is
illustrated in Figure 4.26. Figure 4.27 shows the best circuit produced
after 80 generations using a population size of 640,000 in the experi-
ment of evolution of a voltage reference with genetic programming (GP)
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described in Chapter 50 of (Koza et al., 1999), and Figure 4.28 shows
the schematics of the corresponding evolved circuit. Note that the re-
sults of the experiment performed in this thesis and of the experiments
described in (Koza et al., 1999) cannot be directly compared, since the
two sets of experiments use in some cases different sets of devices (for
example, including PNP transistors in the GP case), different SPICE
models for the devices, or different external circuits. The purpose of
presenting side to side the results of the two set of experiments is to
show that the evolutionary approach proposed in this thesis achieves
on this kind of problem a performance comparable with the best re-
sults of evolution of analog electronic circuits existing in the literature.
Moreover, the observation of the circuits evolved with the GP approach
and of those evolved with the sequence alignment approach introduced
in this thesis permits to appreciate the influence of the genetic encoding
on the structure of the evolved circuit. In particular, the abundance of
resistors connecting the terminals of the transistors in circuits evolved
with the sequence alignment approach, for example that of Figure 4.25,
reveals their crucial evolutionary role in the approach proposed in this
thesis.
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Figure 4.26:  The output voltage V, of the evolved voltage reference circuit
shown in Figure 4.25, plotted as a function of the input voltage V.. The marlk-
ers correspond to values of input voltage used to evaluate the circuit fitness.
The different curves correspond to the five temperatures at which the circuit is
tested. The curves show that the circuit achieves a remarkable performance,
since V, approximates to a few percent the desired fixed output voltage value
of 2V.
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Figure 4.27:  Figure 50.9 from (Koza et al., 1999) shows the output voltage
of the evolved voltage reference circuit shown in Figure 4.28. The circuit is
evaluated at the same values of input voltage and circuit temperature used to
plot the curves of Figure 4.26. The markers are drawn in correspondence of the
input voltage values used to evaluate the circuit fitness. The different curves
correspond to the five temperatures at which the circuit is tested.
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Figure 4.28: Figure 50.8 from (Koza et al., 1999) shows a voltage reference
circuit evolved with the genetic programming technique (GP). Relatively to the
circuit evolved with the sequence matching approach which is shown in Fig-
ure 4.25, this circuit uses more active devices and less non-null resistors. This
is a consequence of the different genetic representation used to evolve the two
circuits. In the case of the circuit evolved with GP shown here, the encoding
defines series of circuit transformation instructions that are used to build the
circuit starting from an elementary initial circuit, and does not assign a special
role to the resistors. In the case of the sequence matching encoding proposed
in this thesis and used to synthesize the circuit shown in Figure 4.25, the fo-
cus is on the genetic representation of the devices and of their interaction via
resistors connecting their terminals.
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4.3.2 Experiment 12: Evolution of a temperature-sensing circuit

The second experiment of network evolution is aimed at the synthe-
sis of a temperature sensing electronic circuit. Figure 4.29 shows the
devices of the predefined external circuit: it is composed of two fixed
voltage sources,V, and V; connected in series to the resistors R, and R;,
and by a load resistor R;. The goal of the evolutionary experiment is
the synthesis of a circuit producing across the load resistor an output
voltage V, that is proportional to the circuit temperature 7" in the range
0°C < T < 100°C, with a proportionality coefficient of v = 0.1V/°C. In
other words, when the circuit temperature varies from 0°C to 100°C,
the output voltage must vary linearly from OV to 10V.

R, = 1kQ
V. =15V =
VO
Vg =
R, = 1kQ

Figure 4.29: The devices of the external network in the experiment of evolution
of a temperature sensing electronic circuit. The connection of the evolved net-
work with the devices of the external circuit is based on the use of I/O ports
associated with the external devices. The external network is composed of
two fixed voltage sources V, and Vs, two series resistance R. and R, and a
load resistor R, across which the output voltage V, of the evolved network is
measured.

Fitness function Using SPICE the output voltage V,of the evolved
circuits is evaluated in correspondence of the discrete set {T;} = {T;, 11,
..., Ty} ={0°C, 5°C,10°C, 15°C, ..., 100°C} of 21 equispaced values of tem-
perature in the range of interest. The difference (V,, — V') between the
output voltage obtained at the temperature 7; and the desired output
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voltage V,; = 7 T; is calculated. The fitness function f is defined as fol-
lows

f==> (Vo =V;)
This means that the values of fitness are negative when there is a dis-
crepancy between any of the computed output voltage values V,, and
the desired output voltage value V,;. A null value of fitness signals the
attainment of an output voltage that complies exactly with the require-
ments.

Device set The device set for the current experiment contains an NPN
and a PNP bipolar junction transistor (the details of the SPICE transis-
tor models used can be obtained from the SPICE deck relative to this
experiment shown in Table D.2 on page 271 of Appendix D).

Initial population Using the same symbols used for the parameters
of the previous experiment

Y number of chromosomes in the initial genome Nie = 1
number of devices in the initial genome Nig=>5
number of copies of each I/0 port in the initial genome Nip = 2

length of sequences for terminals in the initial genome liy =20
length of spacer sequences in the initial genome lis =20

The only difference in the evolutionary parameters relatively to the pre-
vious experiments is the number of devices and I/O ports used in the
generation of the initial population. This choice was dictated by pres-
ence of two elements in the device set in place of the unique element
of the previous experiment. Increasing the number of devices inserted
in the genome of the individuals of the initial population guarantees
a higher probability of presence of both kinds of devices in the initial
genome. Interestingly enough, as Figure 4.30 reveals, the increase in
the number of devices randomly generated and inserted in the genomes
of the initial population resulted in the initial elimination of most of
these devices, and their later substitution with devices generated by
the evolutionary process. This observation indicates that — as could
be expected — randomly generated devices have a small probability of
cooperating to produce the required functionality, and that evolution
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statistics calculated over 25 runs of the
average number of devices decoded from the genome

1
0

0 50 100 150 200
generation

number of devices
N

Figure 4.30: A detail relative to the first 200 generations of the statistics of the
population average number of devices decoded from the genome in the runs
reported in Figure 4.31. The figure shows the mean value and the standard
deviation bars calculated over the 25 runs shown in Figure 4.31. Note that
although the number of devices assigned to each individual of the initial popu-
lation is 5, this number decreases initially, to increase again at the end of the
range of generations considered. This suggests an initial elimination of most
of the randomly generated initial devices and their substitution with devices
newly generated by the genetic operators during the evolutionary process.

proceeds instead complexifying incrementally elementary circuits com-
posed of one or two devices.

All the remaining evolutionary parameters are those specified in the
previous experiment.

Results Figure 4.31 shows the result of 25 repetitions of Experiment 12.
The maximum fitness data reveals that 15 of the 25 experiments at-
tained a fitness very close to zero within 8000 generations,® corre-
sponding to the evolution of at least one circuit that approximates
well the required linearity of the relationship between the output volt-

5This anomalous number of generations is due to the premature interruption of
the planned 10000 generations due to extraneous reasons.
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Figure 4.31: The result of 25 repetitions of Experiment 12 aimed at the evo-
lution of a temperature sensing electronic circuit. A better performance corre-
sponds to higher values of fitness, with a maximum value of zero correspond-
ing to the exact realization of the required circuit function. The inspection of
the curves of the maximum fitness (top) reveal that after about 8000 genera-
tions 15 of the 25 runs have produced at least one circuit realizing a fitness
very close to zero, with several of the remaining runs showing the signs of
an ongoing fitness progress towards zero. The curves of the average genome
length (bottom) show a behavior similar to that observed in Figure 4.23 for the
evolution of the voltage reference circuit.
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age and the circuit temperature. To these results apply the comments
made in the context of the previous experiment for the results shown
in Figure 4.23.

Figure 4.32 shows an example of evolved temperature sensing cir-
cuit from one of the successful runs. The performance of this circuit
is illustrated in Figure 4.33. Figure 4.34 shows the best circuit pro-
duced after 25 generations using a population size of 640,000 in the
experiment of evolution of a temperature sensing circuit with genetic
programming (GP) described in Chapter 49 of (Koza et al., 1999), and
Figure 4.35 shows the schematics of the corresponding evolved circuit.
The comparison of the circuit of Figure 4.32 with that of Figure 4.35
confirms the difference in the composition of the circuits evolved with
the two approaches, with a greater abundance of resistors in the circuit
evolved with the approach proposed in this thesis.
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output voltage V, (V)
wu
®
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Figure 4.33: The graph of the output voltage V, of the evolved temperature
sensing circuit shown in Figure 4.32 plotted as a_function of the circuit temper-
ature T'. The markers correspond to the discrete values of circuit temperature
used to evaluate the circuit fitness. The circuit displays an excellent perfor-
mance, as witnessed by the small distance of the marikers from the dotted line
that represents the ideal linear relationship between T' and V,.

o U(R4:1)

TEMP

Figure 4.34: Figure 39.3c (adapted) from (Koza et al., 1999) shows the out-
put voltage of the temperature sensing circuit shown in Figure 4.35 plotted as
a function of the circuit temperature T'. The circuit is evaluated at the same
values of input voltage and circuit temperature used to plot the curves of Fig-
ure 4.33. The markers correspond to the values of temperature at which the
circuit was simulated to evaluate its fitness, and the dotted line represents the
ideal linear relationship between T' and V,.
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Figure 4.35: Figure 49.5 from (Koza et al., 1999) shows a temperature sensing
circuit evolved with genetic programming (GP). The prevalence of the number
transistors over that of the non-null connecting resistors is even more appar-
ent here than in the evolved voltage reference circuit shown in Figure 4.28.
Correspondingly, the evolved temperature sensing circuit evolved with the se-
quence matching technique shown in Figure 4.32 confirms the prevalence of
the number resistors over that of the devices decoded from the genome in cir-
cuits evolved with the sequence matching technique, which was already ob-
served in the evolved voltage reference circuit drawn in Figure 4.25. Note that
contrary to the circuit of Figure 4.32, this circuit is not connected to a fixed
voltage source negative with respect to ground, although such a source was
available to the evolving circuit in this experiment.
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4.3.3 Experiment 13: Evolution of a Gaussian function generator

The third experiment of network evolution is aimed at the synthesis of
a Gaussian function generator electronic circuit. Figure 4.36 shows
the devices of the predefined external circuit: it is composed of a fixed
voltage source V), and a variable voltage source V, connected in series
to the resistor R., and by a “load” voltage source V;. The goal of the
evolutionary experiment is the synthesis of a circuit producing through
the load voltage source an output current /, that is a (non normalized)
Gaussian function of the variable input voltage V. in the range 2V <
V, < 3V, with a peak value I, = 80nA in correspondence of V. = 2.5V,
and a “standard deviation” ¢ = 0.1V. In formulas

(Ve=V¢)? (Ve—2.5)2
e

L(V)=1,,.¢e 327 =80x10"e omm 2V <V, <3V (4.3)

Omax ™

Like the previous two, this analog circuit evolution problem is derived
from (Koza et al., 1999), where its original ideation is attributed to
Adrian Stoica.

®

—
(e}

V, =25V

I

Figure 4.36: The devices of the external network in the experiment of evo-

lution of a Gaussian function generator circuit. The connection of the evolved
network with the devices of the external network is based on the use of I/O
ports associated with the external devices. The external network is composed
of a variable voltage source V, connected to a series resistance R.., a _fixed volt-
age source V,, and another fixed voltage source V;, through which the output
current I of the evolved network is measured.
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Fitness function Using SPICE the output current /,, of the evolved
circuits is evaluated in correspondence of the discrete set {V,} = {V.,, V,,,
o Vet = {2V,2.01V,2.02V,...,3V} of 101 equispaced values of voltage
in the range of interest. The difference (I, —I},) between the output cur-
rent /,, obtained for V. = V,, and the desired output voltage V;; = I,(V.)
given by equation 4.36 is calculated. The fitness function f is defined

as follows

f==10"> (I, ~I;)

where the leading multiplicative factor is used to scale the results in a
range comparable of that of the previous experiments. The definition
of the fitness implies that the values of fitness are negative when there
is a discrepancy between any of the computed output values of current
I,, and the desired output current value I;. A null value of fitness
signals the attainment of an output voltage that complies exactly with
the requirements.

Device set The device set for the current experiment contains two
MOSFET transistors: a PMOS and an NMOS. The two models have a
fixed channel length of 10ym and an evolvable channel width that can
vary in the range [10um, 200um]|. The presence of an evolvable parame-
ter in the elements of the device set implies the choice of a technique
of genetic representation and decoding of the parameters, that is, the
definition of the parameter map (Subsection 3.3.2 on page 72). In this
experiment the parameter map is obtained using a fixed sequence of
length [, = 20 randomly generated from the genetic alphabet, and a
logarithmic quantization of the parameter values, with

¥ minimum channel width Wppin, = 10 pm

maximum channel width Winae = 200 pm

¥ alignment score associated with w,,;, Ty = 20

¥ number of channel width values per decade Ny = 20
From which follows

¥ number of channel width values ng =27

¥ alignment score associated with w4, Imae = 46

¥ base of exponential decoder a=1.122
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The other details of the SPICE transistor models used can be obtained
from the SPICE deck relative to this experiment shown in Table D.3
of Appendix D. Note that the bulk terminal of the PMOS transistors
is connected by default to the positive terminal of V,, and the bulk
terminal of the NMOS transistors is connected by default to ground.

Initial population Using the same symbols used for the parameters
of the previous experiment

¥ number of chromosomes in the initial genome Nie = 1
number of devices in the initial genome niqg = 10
number of copies of each I/0 port in the initial genome Nip = 2

Vlength of sequences for terminals in the initial genome Ly =20
length of spacer sequences in the initial genome lis =20

All the other evolutionary parameters are those specified in Experi-
ment 11.

Results Figure 4.37 shows the result of 4 repetitions of Experiment 13.
The maximum fitness data reveals that the 10000 generations used in
the previous two experiments were not sufficient to synthesize a circuit
realizing the required function in an acceptable way. However, all the
four runs eventually attained that objective within 30000 generations.

Figure 4.39 shows an example of evolved Gaussian function gener-
ator circuit from one of the successful runs. The performance of this
circuit is illustrated in Figure 4.40. Figure 4.41 shows the best cir-
cuit produced after 36 generations using a population size of 640,000
individuals in the experiment of evolution of a Gaussian function gen-
erator with genetic programming (GP) described in Chapter 51 of (Koza
et al., 1999), and Figure 4.38 shows the schematics of the correspond-
ing evolved circuit.
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Figure 4.37: The result of four repetitions of Experiment 13 aimed at the evolu-
tion of a Gaussian function generator circuit. A better performance corresponds
to higher values of fitness, with a maximum value of zero corresponding to the
exact realization of the required circuit function. The trend of the maximum fit-
ness curves and the number of generations increased to 30000 from the value
of 10000 used in the two previous examples of network evolution suggest that
this problem poses a greater challenge to the evolutionary system. Nonethe-
less, the curves show that all the runs have eventually produced least one
circuit realizing fitness very close to the maximum attainable value of zero.
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Figure 4.38: Figure 51.17 from (Koza et al., 1999) shows a Gaussian function
generator circuit evolved with genetic programming.

28D MARCH 2005



Chapter 4. Experiments

178

24

R5
H 5.623E+05

R26

1.000E+06

1.000E+06
5 5

R7
7.499E+05
4 19
: AWV 9
H 18
23 R21 M5
. 53> Re 1.000E+06
— m 5.623E+05 16 21 8 18
R S k2 7
I - Me R0 °g ey 253282 383 o8
= : 1 q.\_wwm”wm Rm Rm Rw Rw _.,m_ R%
- — A\ Sz 8 % 8 ks 8 o %
5 R22 < < N -~ -~ ~
= 7.499E+02
< 22 18 R9
= 2 1.334E+05
H 2) p1 3
: M6 Wy 43
R4 5
2.371E+05 11 S
7 T ™3 S
0 Mo =
1 3 g Wv S 12
H S ESELSER o S R12
e 2 8 3 = S 7 4.217E+05
- 2 < %) M1 6 6 AMY 12
L = - M2 R11

Figure 4.39: An example of Gaussian function generator circuit evolved in the context of Experiment 13. The devices of the
preassigned external circuit are drawn outside of the dotted box. The SPICE input file corresponding to this circuit is shown

in Table D.3 of Appendix D.
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Figure 4.40: The output current I, of the evolved Gaussian function generator
circuit shown in Figure 4.39 plotted as a function of the input voltage V.. The
markers are drawn in correspondence of the values of input voltage used to
evaluate the circuit fitness. The dotted line represents the ideal Gaussian rela-
tionship between V. and I,. The circuit realizes a reasonable approximation of
the required function, as witnessed by the closeness of the mariers to the dot-
ted curve, although some appreciable discrepancy still remains between some
part of the curve and the markers.
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Figure 4.41: Figure 51.18 (adapted) from (Koza et al., 1999) shows the output
current of the evolved Gaussian function generator circuit shown in Figure 4.38
plotted as a function of the input voltage. The circuit is evaluated at the same
values of input voltage and circuit temperature used to plot the curves of Fig-
ure 4.40. The markers correspond to the values of input voltage at which the
circuit was simulated to evaluate its fitness, and the dotted line represents the
ideal Gaussian relationship between the input voltage and the output current.
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4.3.4 Experiment 14: Evolution of a XOR function neural network

The goal of this last experiment of network evolution is the synthesis
of a neural network realizing the XOR function. Figure 4.42 shows the
predefined external devices: two neurons X, and X; whose output con-
stitutes the input of the evolved network, a bias neuron with constant
output, and a neuron Y whose output is the output of the whole net-
work. The Y neuron is a sigmoidal neuron governed by the following

equation
1

=71 + exp(—5H Zj w;x;) (4.4)

Y

Figure 4.42: The devices of the external network in the experiment of evo-
lution of a neural network realizing the XOR function. The connection of the
evolved network with the devices of the external network is based on the use
of I/O ports associated with the external devices. X, and X; are the two
input neurons, the “+1” neuron is the fixed input bias neuron, and Y is the
sigmoidal output neuron. In order to simplify the logarithmic quantization of
the connection weights, all the input neurons produce also the inverted signal
(the inversion is represented graphically by the small circles). In this way the
quantization of the interaction strengths can be limited to non-negative values.
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where y is the output signal, the z;s are the input signals, and the w,
are the input connection weights. The evolutionary goal corresponds
to the requirement that the function Y (X,, X;) realized by the net-
work be the XOR function Y*(Xj, X;) defined by {Y*(0,0) =0, Y*(0,1) =
1, Y*(1,0) = 1, Y*(1,1) = 0}. Note that this evolutionary requirement
specifies the input-output mapping of the network only in correspon-
dence of binary values of the inputs X, and X; even if the network
realizes actually a mapping R? — R.

Fitness function Like in the case of the Experiment 11 of voltage ref-
erence circuit synthesis, to define the fitness function for the XOR evo-
lutionary experiment we define a tolerance interval of width 2AY = 0.002
centered on the required output values, and specify that output voltage
values falling into that interval will not be penalized in terms of fitness.
This choice is due to the fact that sigmoidal neuron models such as that
specified by Equation 4.4 realize binary-valued outputs only asymptot-
ically, and in the absence of a tolerance interval this would induce
evolution to produce larger and larger networks just to get closer and
closer to the asymptotic value even when the required binary function
has for all practical purposes already been realized. We thus define the
following expression for the error in correspondence of each input pair

(X0, X)) = YH(Xo, X0))? A [V (X0, X1) = Y (Xo, Xi)| > AY
Q(XQ.Xl) = i *
0 if [Y'(Xo, X1) = V*(Xo, X1)| < AV

from which we derive the following expression for the fitness f
f=—((0,0) +2(1,0) +£(0,1) + e(1, 1))

This means that the values of fitness are negative when there is a dis-
crepancy exceeding the tolerance AY between the computed output Y
and the desired output Y* for some of the binary input patterns. A null
value of fitness signals the attainment of an output that falls within the
tolerance interval in correspondence of all the binary input patterns.

Network-specific interaction map For the reasons explained in Ap-
pendix B, we use a network-specific interaction map that realizes a log-
arithmic quantization of the weight values assigned to the connections
between outputs and inputs of the neurons. We assign in particular

¥ minimum non null weight value Winin = 0.001
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maximum weight value Wnaz = 1000
V alignment score associated with w,;, iy = 1
¥ number of weight values per decade ng =6

From which follows

v number of weight values apart from wy, = 0 ng = 37
v alignment score associated with w;,,, Tmaz = 37
¥ base of exponential decoder o~ 1.468

With this definition of the network-specific interaction map we are
defining the genetic representation only for non negative weights. Since
we can expect our neural network to require in general signed weights
in order to realize the required functionalities, we define all the external
neurons constituting an input to the evolved network as being provided
with both the direct and the inverted output (Figure 4.42).

Device set The devices available to the evolving circuit are two kinds
of sigmoid neurons - one excitatory and the other inhibitory - imple-
menting the model specified by Equation 4.4.

All the other evolutionary parameters are those specified for Experi-
ment 11.

Results Figure 4.43 shows the result of 25 repetitions of Experiment 14.
The curves of the maximum fitness show that all the runs evolved
within 200 generations at least one network realizing the required func-
tion with the given tolerance. The runs were continued for several hun-
dreds of generations after the attainment of the required solution in
order to illustrate the interesting phenomenon of initial increase in the
number of neurons decoded from the genome, followed by the consis-
tent reduction of this number to one or two neurons (the length of the
genome shows an analogous trend of initial increase and subsequent
reduction). This behavior is interesting as it is known that the XOR
problem can be solved with just one hidden neuron (Haykin, 1999),
and the genome of the individuals in the initial population contain just
one hidden neuron. However, Figure 4.43 shows that the evolution of a
functional network appears to be facilitated by the initial expansion of
the network to higher levels of complexity in terms of hidden neurons.
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Figure 4.43: The result of 25 repetitions of Experiment 14 aimed at the syn-
thesis of a neural network realizing the XOR function. Better performance
corresponds to higher values of fitness, with a perfect solution having a fitness
value of zero. The curves of maximum fitness (top panel, top curves) show
that all runs evolve the required function within 200 generations. The curves
of the average number of neurons decoded from the genome (top panel, bot-
tom curves) reveal that most runs synthesized initially networks containing
several hidden neurons, but later progressed towards networks having one
or two hidden neurons on average. The curves of the average genome length
(bottom panel) show that the length of the genome follows a similar trend.
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Figure 4.44: An example of neural network evolved in the context of Exper-
iment 14, aimed at the evolution of network realizing the XOR function. The
devices of the preassigned external network are drawn outside of the dotted
box. The evolutionary process has generated a genome encoding a single neu-
ron N, realizing the simplest network that is known to be required to solve the
XOR problem with the model of neuron used in the experiment (Haykin, 1999).
Evolution has also produced the connections between the neuron N, the input
neurons X, X1, the bias neuron, and the output neuron Y. Note that evolution
used the inverted input signals for X, and X,, and an inhibitory neuron for N.
The genome corresponding to this network is shown in Figure 4.46.

Moreover, this figure reveals that the complexity of the networks can
both increase and decrease during the evolution, thanks to the action
of the genetic operators that can both create new device descriptors
and invalidate existing ones.

Figure 4.44 shows an example of evolved neural network realizing
the maximum fitness, and Figure 4.45 shows the plot of the input-
output function realized by that network. Figure 4.46 shows the genome
from which the network of Figure 4.44 was decoded, and Figure 4.47
shows the genome of the 100 individuals composing the evolved pop-
ulation from which this individual was extracted. Each individual of
the population corresponds in Figure 4.47 to a row in the color table,
and each letter in the genetic alphabet is represented with a a differ-
ent color. The genome shown in Figure 4.46 corresponds to the first
row of the table. The figure shows that there is a great deal of similar-
ity between the genome of the individual of the population, especially
in the initial fragment of the genome. This rapid convergence of the
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Figure 4.45: The function Y = f(Xo, X;1) realized by the evolved neural net-
work shown in Figure 4.44. The four dots at the corners of the bounding box
correspond to the specification of the XOR function, and reveal that the evolved
neural network realizes indeed the required XOR function.

UTEQABQXLMRGBNESINQOMZADGTPVYDDFPTFQFLCBYLMMJQBTUWGWUJTZ
VUTERMPPMYVYAPGAOBCBHEEJBOTERMOCMTMAYYMMGMRBYBIOPTGPQYRQ
TNSVKBZDLNPQKDFPBQLPMSPMIEODQHMCMXLIFQATVGNSTERMYQVIFJAK
EAMQXKYZKCVIOPTCJTGKZTFPMBWSKQLJAJHUOPTERMKMIVGLSBTHDUIC
IOPTGLPGCBNHQQALPMBJJTERMCWVQDJLKLPCIOPTGYJWGUXQGYPMBJIMZ
JLTERMEAZFRNOWHLLNFRIEGNGIOPTELPMSIXBSQKHGMRSIYFLTERMBIE
CIYXCQAOXTXOLWIOPTCUTLGAFPMBEXFSNHUXPNAETERMLSSRKDRJINMGT
KTAKMRJIOPTFHFHLCMAQDSJLMMLMFBROTZNBUETERMKMEIOPTEIOSPMY
WQAFBJHHLEOEFFXTERMZLGZBRBEJLOERNFIOPTFUQFYHLCMVYZMLMZPF
BEDMEPTERMDADGOMMIUDZFKLUAMF

Figure 4.46: The genome corresponding to the neural network shown in Fig-
ure 4.44. The genome is constituted by a single chromosome. The fragments
corresponding to the tokens for the neuron, the I/O ports, and the terminals
are underlined. In particular, the NESI token corresponds to an inhibitory sig-
moidal neuron without evolvable parameters. The genome sequences that are
associated with the device terminals are shown in boldface. The remaining
characters constitute non-coding genome.
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Figure 4.47: The genome of the 100 individuals composing the evolved popula-
tion from which the network shown in Figure 4.44 was extracted. The genome
of one individual corresponds to a row in this color table, and each letter in the
genetic alphabet is represented with a a different color. The genome shown in
Figure 4.46 corresponds to the top row of this table.
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evolutionary population to a few kinds of genome or, in other words,
this loss of diversity of evolutionary population (see also Appendix A
on the issue of population diversity) is not unexpected, as it has been
already observed, analyzed and commented in the past (for example
(Harvey, 1995; Goldberg, 2002)). Note that Figure 4.46 reveals that
the evolutionarily highly conserved initial fragment of genome contains
the sequence (the “gene”) coding for the hidden neuron of the network
shown in Figure 4.44.

4.3.5 Discussion

The examples of evolution of analog networks presented in this section
show that the evolutionary system based on sequence matching can
indeed synthesise high-performance exemplars of this kind of network.
There are certainly many ways in which the few examples shown here
could be extended. A first obvious extension in the case of neural net-
work is the use of dynamic neuron models in place of the static model
used in Experiment 14, in the context of more realistic problems than
the simple XOR function.

Concerning the examples of analog electronic circuits synthesis il-
lustrated above, it must be noted that the requirements represented
by the simple fitness functions used do not make the evolved circuits
comparable to circuits designed with traditional engineering synthesis
approaches. A real-world circuit is typically required to comply with
scores of specifications as can be inferred, for example, from the data
sheet of any commercial analog integrated circuit. Moreover, the cir-
cuit must realize the required specification with the parameters of the
devices that are not exactly specified but can vary from specimen to
specimen of a given type of device, whereas the SPICE simulations for
the evolutionary examples presented in this section were done with
fixed sets of device parameters. These problems can be tackled by run-
ning more than one circuit simulation for each individual, each testing
a different set of specifications, and by assigning to the device parame-
ters during each simulation different values randomly sampled in the
whole admissible range. Since the execution of each circuit simulation
is very costly in computational terms, especially for the simulations
performed in the time domain, this would result in more computation-
ally expensive evolutionary runs. The computational power required to
tackle non trivial circuit synthesis problems with this more inclusive
approach is just now becoming available, as witnessed by the results
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reported in (Koza et al., 2003). Even assuming as available the re-
quired computational resources, there remains the problem of using
evolutionary algorithms that can deal with the multiple specifications
that a single circuit is required to meet. Although many multi-objective
evolutionary algorithms exist for this purpose (see, for example, Deb,
2001), they must be tailored to the needs of electronic circuit synthe-
sis. This means in particular that it must be possible to remove the
evolutionary pressure on a certain aspect of the circuit behavior once
the corresponding specification is met, even if a better performance
than the one attained is conceivable for that particular behavior. This
corresponds to the fact that a commercial circuit is judged acceptable
when its performance meets the required specifications, without any
Pareto-ranking (Deb, 2001) being defined for the set of manufactured
circuits.

4.4 Summary

The results of the series of experiments described in this chapter demon-
strate that the system defined in the previous chapter displays a sat-
isfying evolutionary behavior at various levels. The series of sequence
and network matching experiments confirm the suitability of local se-
quence alignment for the implementation of the sequence interaction
map that contributes to compose the device interaction map, both in
the abstract evolutionary scenario focused on sequences of Experi-
ments 1 to 7, and in a more network-oriented context of Experiments
8 to 10. Finally, the experiments of network evolution described in the
last section show that the evolutionary system can be used to evolve
non trivial examples of analog networks with a reasonable computa-
tional effort and achieving results that compare favourably with the
best results existing in the literature.
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Chapter 5

Further issues and conclusions

Overview

Besides summarizing the results and pointing to possible extensions of the
work reported in the thesis, this last chapter examines the consequences of
the level of abstraction at which the workings of biological systems was im-
plemented in the evolutionary system defined in the thesis. In particular, it
considers the consequences of the absence of interaction of the genome with
the dynamics of the evolved analog network, which stems from the decision to
avoid basing the workings of the evolutionary system on the implementation a
low-level dynamics.
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5.1 The consequences of abstraction

The results presented in the previous chapter which illustrate the ap-
plication of the evolutionary system defined in this thesis to the evo-
lution of analog networks confirm the evolutionary potentialities of the
system and the validity of the approach that combines von Neumann’s
insights about the evolutionary growth of complexity and those derived
from the observation of the workings of the fundamental levels of orga-
nization of biological systems. Since the characteristics of our artificial
evolutionary system that were derived from the knowledge of biological
systems correspond to their biological counterparts only in an abstract
way, it is worth examining the main discrepancies between our system
and its biological source of inspiration, trying to estimate the conse-
quences of this abstraction.

In this analysis we must distinguish the many aspects of biological
systems that we have not considered in this thesis but which could
be easily accommodated in its framework since they comply with the
adopted approach, from the aspects where the difference between the
biological and the artificial system is substantial. To the first class be-
long properties like modularity, hierarchical organization, and the ex-
istence of a developmental process, which were only briefly mentioned
here and there, or for which possible implementation techniques were
described but were not required to solve the problems considered in
the previous chapter and thus were not exhibited in action. We will
still add some further remarks about these aspects below, in context of
the discussion about the importance of implementing and constrain-
ing a realistic dynamics. To the second class of properties belongs in
particular the absence of an interaction between the operation of the
analog network and the genome from which it has been decoded. As
argued in the next section, this limitation stems from the decision to
avoid the implementation of a low-level dynamics.

5.2 Low-level dynamics and constraints

In general, when it comes to combine the idea of evolution with a syn-
thetic approach, we are confronted with the issue of defining the en-
tities and the rules that form the backcloth of our endeavor. We can
opt for a very fine granularity, or choose a higher-level description that
abstracts many details of the low-level entities. The option of a fine
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granularity, corresponding to the implementation of a rich low-level
dynamics, is very tempting, since in theory it permits the faithful repli-
cation of all the relevant details. This, however, is accompanied by the
risk of also implementing many irrelevant details. Before the advent of
molecular biology, it was not clear if the workings of biological systems
could be understood in terms of the hitherto known laws of physics.
Molecular biology has since shown us that biological systems flourish
on the harnessing of those laws. Howard Pattee (Pattee, 1995a) has ex-
pressed this harnessing in terms of constraints that biological systems
impose on the dynamics ensuing from physical laws. In other words,
natural selection leads to the formation of structures whose presence
influences the dynamics of the surrounding space-time in ways that
favor their persistence and, eventually, their self-reproduction and evo-
lution.

Implementing a physically convincing low-level dynamics in our ar-
tificial evolutionary systems we could hope to observe the same phe-
nomenon of emergence of dynamic constraints in our evolutionary ex-
periments. As argued by Toffoli (1994), it is not too difficult to obtain
a physically convincing dynamics from a very finely grained system
implemented, for example, with a cellular automaton. To obtain this
result, it is in fact sufficient to endow the rules of the automaton with
some basic conservation and symmetry properties. However, a lot of
averaging is required to observe anything interesting within such a sys-
tem. This means that the computational effort required to implement a
dynamics allowing the evolution of Pattee’s life-like constraints is prob-
ably huge. On the other hand, the definition of a low-level dynamics
where no massive averaging is required in order to observe interest-
ing evolutionary phenomena appears as a quite challenging problem
in itself. This was suggested by the results of a series of exploratory
experiments conducted in the context of the research that led to this
thesis, similar in spirit to those reported in (Taylor, 2004). Those ex-
ploratory experiments based on the use of cellular automata suggested
the presence of a difficulty in reconciling the existence of non-trivial
dynamic phenomena at the lowest level of definition of the dynamics,
and the robustness of the structures that could be evolved to act as
constraints for the same dynamics. Probably the same kind of obser-
vations led in (Taylor, 2004) to the use of a genome layer generating the
constraints which is separate from the cellular automaton layer where
the low-level dynamics unfolds. With this choice, however, the problem
of the absence of interaction between the genome and the dynamics
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which it controls remains unsolved.

The approach adopted in this thesis accepts this absence of inter-
action but tries at least to define a rich dynamics at the next level, that
of the analog network. The particular emphasis that was put on the
use of electronic circuit simulators, which implement in an efficient
and physically sound way the dynamics of real-world devices, was mo-
tivated precisely by the desire to obtain this kind of dynamics at least
at this level. As noted in Chapter 2, active electronic devices like tran-
sistors can be considered as structures that constrain the physical dy-
namics just like the structures that evolved in biological systems for
the same purpose. Adding to this fact the particular attention that was
put in this thesis on the representation of the interactions between the
devices (possibly belonging to different compartments of the evolved
system) results in the possibility of realizing the evolutionary scenario
suggested by Pattee at least from the level of the analog network up to
higher levels of organization of the evolved system

The absence of interaction of our genome with the analog network
that is decoded from it has of course some consequences. Three of them
appear of particular importance in an evolutionary context. The first
consequence is the absence of an intrinsic mechanism of activation and
inactivation of parts of the genome from the part of the dynamics of the
analog network. In biological system it is known that the analog net-
work defined by the genome is in a state of constant flux concerning
its structure, and that the genome can be marked for activation and
inactivation of parts of it as a consequence of the activity of the signal-
ing and genetic regulatory network, including the possibility of have a
long-term memory of this state of activation and inactivation (Lewin,
2004; Marijuan, 1996). This has important consequences in terms of
specialization of the cells and in terms of the developmental processes
that can be based on that mechanism. Since our artificial system is
decoded once an for all, this possibility of a dynamic network structure
is not directly accessible. Our artificial system, however, has the pos-
sibility of evolving something similar in terms of, for example, memory
cells (for example bistable network structures) generating signals that
inhibit selectively parts of the network (possibly in response to signals
coming from higher levels of organization). At most, an additional in-
hibitory input must be added to the devices used in the evolutionary
experiment to permit their activation and deactivation. Thus this first
limitation can be easily overcome with simple modifications of the ex-
isting system.
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A second consequence of the absence of interaction of the genome
with the dynamics of the evolved analog network is the absence of a
mechanism of evolution of the “constructor”, that is, of the rules that
determine the decoding of the genome into the analog network. Al-
though some kind of mechanism could be defined and encoded in the
genome to implement some kind of evolvability of this aspect of the evo-
lutionary system, in the absence of an actual low-level dynamics there
seem to be no obvious way to define this mechanism in an evolutionary
open way, that is, without deciding from the start what kind of changes
are permitted to occur to the decoding process. This approach is thus
a palliative rather than a cure, and would not endow our artificial evo-
lutionary system with the same flexibility and open-endedness of the
constructor possessed by biological systems. There seems to be there-
fore no solution other than to accept this limitation of our system and
focus our efforts — like we did in the previous chapters — on a definition
of the decoding system aimed at endowing it from the start with the
required evolutionary properties.

The third consequence of the absence of interaction of the genome
with the dynamics of the evolved analog network is the absence of
a natural way to redefine the kinds of reorganizations to which the
genome can be subjected, and the rate at which these reorganization
occur. The first aspect, like the redefinition of the constructor dis-
cussed in the previous paragraph, has no obvious evolutionarily open
solution in the context of our system. Therefore we must also accept
it, focusing our efforts on the definition of the operators that we build
from the start into our system. The second aspect, that is, the variation
of the mutation rates, can instead be solved at least partially by genet-
ically encoding the reorganization rates, possibly making them depend
on the activity of the analog network. Since the reorganizability appears
more and more to play an central role in the evolution of existing living
organisms (Shapiro, 2002), the next section is devoted to the analysis
of this important topic.

5.3 Natural genetic engineering

The conventional view of the evolution of the genome of biological or-
ganisms sees a genome subject to a small rate of mutation — consisting
mostly of substitutions, deletions and insertions of single nucleotides —
possibly accompanied by the recombination of pairs of chromosomes.
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The mutation process is typically seen as an effect suffered by the or-
ganism given the impossibility to correct all the errors that, for various
reasons, accumulate in the genome. The current scenario of genome
reorganization offered by molecular genetics, however, is much more
complex and much more active than that, as witnessed by the follow-
ing extract

Evolutionary genomic change occurs largely by a process of
Natural Genetic Engineering. Systemic genome organization
means that new functions arise by the cut-and-splice re-
arrangements of genetic modules. Living cells possess mo-
bile genetic elements and other biochemical functions which
carry out the underlying DNA rearrangements. Cells regulate
the activation of natural genetic engineering functions. Thus
cells have a capacity for major genome reorganization in re-
sponse to evolutionary crisis. Moreover, the fact that natural
genetic engineering changes are neither random in nature
nor restricted to a single site in the genome means that they
can create novel distributed (multilocus) systems and new
genome system architectures. (Shapiro, 2002, p. 746)

Note that the statement that the genetic changes are not random refers
to the fact that the recombination takes into account the structure
of the genome, for example, that corresponding to genes, regulatory
regions, or protein domains, instead of operating on the genome seen
as a collection of unstructured sequences of nucleotides.

The good news that come to our artificial evolutionary system from
the realization of the existence of this phenomenon of natural genetic
engineering, is the fact that our system is intrinsically endowed with
all the required genetic operators and with the possibility of reorga-
nizing the genome taking into account its structure (which consists in
the existence of device descriptors, tokens, sequences associated with
terminals and parameters, and so on). Moreover, the process of de-
coding of the artificial genome produces all the information about this
structure, without the need of additional computational effort for its
exposure and exploitation. An example of recombination that uses this
kind of information is the insertion of new device descriptors in the
genome using as sequences associated with the terminals fragments of
sequences associated with the terminals of the devices already encoded
in the genome (Subsection 3.6.2, page 113).
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The fact that the activation of major genome reorganization hap-
pens as a response to evolutionary crisis, on the other hand, requires
some additional thought since it is not clear what must be considered
an evolutionary crisis in our artificial evolutionary context. A possible
candidate could be the presence of a phase of stagnation of the evo-
lutionary process, signaled for example by a plateau of the maximum
value of fitness attained. This simple approach, however, does not ap-
pear to capture the essence of the concept of an evolutionary crisis, if
only for the fact that the stagnation of the fitness does not necessar-
ily correspond to a stagnation of the population in the genome space.
A more promising approach is based on the concept of viability of the
evolved systems (Aubin, 2000; Mattiussi and Floreano, 2003). It de-
fines an evolutionary crisis as a condition where the individuals of the
population are not able to maintain a sufficient margin of viability in
the prevailing environmental conditions.

An example of this kind of condition taken from the experiments
of Chapter 4 would be a change in the range of variation of the in-
put voltage in the experiment of evolution of a voltage reference de-
scribed in Subsection 4.3.1. To reformulate the original evolutionary
problem in terms of viability, we must redefine the goal of the evolu-
tionary process. From the original goal constituted by the attainment
of the highest possible value fitness, we turn to a goal constituted by
the preservation of the viability represented by the maintenance of the
output voltage within a given range. Assuming that the individuals
of an evolved population can comply with this viability constraint, the
change in the input voltage range would precipitate an evolutionary
crisis by taking the output voltage of most individuals near its ad-
missible limits of variation.! It is clear, however, that this approach
implies a major redefinition of the traditional approach to evolution-
ary computation (Mattiussi and Floreano, 2003) that cannot be under-
taken here and now. We are therefore content with the observation
that the kind of genetic representation defined in this thesis is ideally
suited to the implementation of a process corresponding to Shapiro’s
natural genetic engineering. Note, finally, that in addition to the ex-

'Note that it is possible to have the activity of the network determine the rate
of genetic reorganization by considering, for example, some external components to
which the evolved network can connect to localize a value of voltage or current that is
interpreted as a modifier of the default rate of application of a given genetic operation.
Thus, an evolutionary crisis of the kind described above for the voltage reference
circuit would have the possibility of producing consequences in terms of genome
reorganization.

28D MARCH 2005



196 Chapter 5. Further issues and conclusions

istence of environment-dependent variations of the process of genome
reorganization described above, it is possible to conceive the existence
of heritable variations of the rate and form of the process of genome
reorganization, acting either at a local or at a global level (Metzgar and
Wills, 2000), and that those phenomena can be also implemented in
the context of the evolutionary system defined in this thesis.

5.4 Conclusion

In this thesis we have described a new kind of evolutionary system that
was explicitly defined to accommodate the possibility of the growth of
complexity of the evolved systems. It applies to a class of systems that
we called analog networks and which include many systems of consid-
erable practical interest, such as analog electronic circuits, neural net-
works, and metabolic, signaling, and genetic regulatory networks, the
systematic design and reverse engineering of which constitutes still an
open problem. The experiments of analog network evolution reported
in this thesis confirm the compliance of the evolutionary system that
has been developed, with its stated aims.

Many aspects of the proposed evolutionary systems, such as the
compartmentalization and hierarchical organization of the evolved sys-
tems, the mechanism of interaction silencing, the application to fields
other than electronic circuits and neural networks, and still others,
like those considered in this chapter, were described or mentioned but
were not required to solve the problems considered, or their exploration
could not find place in the research effort reported in this thesis. Most
of these topics can be expected to represent, not trivial applications of
the principles expounded, but interesting fields of enquiry for further
research efforts, exciting and potentially rewarding as that reported in
this thesis. Far from considering it a limitation, we see this fact as
an additional strength of the present work. In the words of Richard
Bellman (1968), “successful research depends, not upon the solution
of a succession of isolated individual problems, but upon the forging
of connected chain of both problems and solutions. [...] Each prob-
lem should lead naturally to further problems; each solution, to further
solutions.”
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Appendix A

New measures of diversity for
populations and distances
between individuals with highly
reorganizable genomes!

Overview

This appendix considers the problem of defining a measure of diversity for
a population of individuals whose genome can be subjected to major reorgani-
zations during the evolutionary process. First, a measure of diversity for popu-
lations of strings of variable length defined on a finite alphabet is introduced.
A semi-metric distance between pairs of strings is derived from the measure
of diversity for populations. The definitions are based on counting the number
of substrings of the strings, considered first separately and then collectively.
This approach is related to the concept of linguistic complexity, whose defini-
tion we generalize from single strings to populations. Using the substring count
approach a new kind of Tanimoto distance between strings is also defined. It
is shown how to extend the approach to representations that are not based on
strings and, in particular, to the tree-based representations used in the field of
genetic programming. The concept of suffix tree of a string is introduced and it
is shown houw it allows the implementation of the measures of diversity and dis-
tances just defined with a computational cost that is linear in both space and
time relatively to the length of the strings and the size of the population. The
definitions were devised to assess the diversity of populations having genomes
of variable length and variable structure during evolutionary computation runs.
In particular, these definitions apply to the genome introduced in this thesis _for
the representation and evolution of analog networks, but applications in quan-
titative genomics, proteomics, and pattern recognition can be also envisaged.

A version of this Appendix was published as (Mattiussi et al., 2004).
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A.1 Introduction

In evolutionary computation (EC) there is often the need to measure
the diversity of two or more individuals of a population. This necessity
can be dictated by many reasons, for example: the desire to prevent
premature convergence of the population; the utility of restarting or
stopping an evolutionary algorithm when the population diversity drops
below a certain threshold; the requirement of evolving a population
of distinct Pareto-optimal solutions in a multi-objective optimization
problem; the effort of maintaining a population able to adapt rapidly
to a changed environment in the case of dynamic problems (de Jong
et al., 2001; Leung et al., 1997; Tomassini et al., 2004; Wineberg and
Oppacher, 2000, 2003a,b; and still many others).

The diversity of individuals and populations can be measured either
in the genotype or in the phenotype space. When the phenotype or the
genotype are constituted by a fixed number p of real parameters, the
standard tools of mathematical analysis and those of cluster analysis
in the p-dimensional real space R? can be directly applied for the defi-
nition of a measure of diversity (Theodoridis and Koutroumbas, 2003).
It is often the case, however, that the structure of the phenotype does
not lend itself well to such a straightforward approach; this happens,
for example, when the phenotype is a structure - say, a network - with
variable topology and number of parameters. In those cases, one is
left with the option of either defining a specialized distance between
such phenotypic structures, or focus on the genotype space, where
the structure of the elements is usually much simpler, for example a
sequence of characters. We will assume in the rest of the Appendix
that the elements of the genotype space, i.e., the genomes of the in-
dividuals, are finite character strings over a finite alphabet. Note that
there are contexts, where the genomes have structure more complex
than a string, and where the measures defined below and based on the
count of strings and substrings cannot be applied directly but must be
adapted to the particular genome structure. We will describe below an
example of extension of the string-based diversity measure to the case
of tree-based genomes used in the field of genetic programming (Keijzer,
1996; Langdon and Poli, 2002).

If the strings that constitute the genomes have fixed length and uni-
form structure, the definition of a diversity measure for two individuals
is typically based on the use of the Hamming distance (although other
approaches are possible, see for example (Leung et al., 1997)), that is,
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on the count of the number of mismatches between the pair of strings
that constitute the genomes of the individuals. With the expression
“genomes having uniform structure”, we mean that all the individuals
have a genome with the same number of subblocks, or genes, with the
same phenotypic meaning for the subblocks, and arranged in the same
order in the genome. A diversity measure for the whole population can
be then obtained from the diversity measure for pairs of individuals
by combining all the pairwise distances between individuals (Morrison
and De Jong, 2002; Wineberg and Oppacher, 2003a,b).

The case of strings with variable length but still with uniform struc-
ture can be treated similarly, provided the Hamming distance is gen-
eralized to permit the comparison of strings having different length.
A good candidate for this generalization is the so-called edit distance,
which is based on the use of three elementary operations - insertion,
deletion, and substitution of characters - to transform a string into an-
other. A cost is associated with each elementary operation, and the
distance is defined as the minimum cost of the sequence of operations
that leads from one string to the other. The correspondence estab-
lished by this minimum cost sequence of operations is called a global
alignment of the two strings, and algorithms with computational cost
proportional to mn exist to perform this task, where m and n are the
lengths of the two strings (Gusfield, 1997; Keller and Banzhaf, 1994;
O'Reilly, 1997; Sankoff and Kruskal, 1983).

The problem of defining a measure of diversity for a population be-
comes more complicated if we assume that besides having variable
length, the genomes of the individuals may also have different struc-
ture. For example, the genome of one individual might have a certain
set of genes arranged in a certain order, and another individual might
have the same set of genes but ordered differently, or it might even have
a different set of genes. In these cases, the methods described above for
genome comparison cannot be applied. On the other hand, the genome
introduced in this thesis for the representation and evolution of ana-
log networks falls obviously in this class and, more generally, variable
structure genomes are particularly interesting, especially in the light of
high reorganizability of biological genomes, which has been observed
as a response of organisms to a crisis and is coming more and more
into focus as one of the key players in the evolutionary potential of or-
ganisms (Shapiro, 2002). If, despite its variability, one is aware of the
presence of a set of structural motifs (such as, for example, promoter
sequences and specific protein coding regions in biological genomes) in
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the genome of every individual, the global string alignment approach
based on the edit distance can still be applied by localizing and com-
paring one by one the corresponding motifs in the two genomes, and
by assigning a cost to unmatched motifs. Alternatively, one can re-
sort to algorithms that implement local alignment in place of global
alignment (Gusfield, 1997; Sankoff and Kruskal, 1983). The difference
is that the costs that were associated with the elementary operations
in the definition of the edit distance, are now interpreted as rewards
for matches, and the best matching subsequences - presumably corre-
sponding to functionally significant motifs - are located and evaluated
by the algorithm itself within the genomes of pairs of individuals. The
computational cost of these approaches, however, becomes rapidly un-
manageable, especially in an EC perspective where the population is a
highly dynamic entity, whose diversity must be repeatedly calculated
during an evolutionary run.

The approach adopted in the present appendix tries to bring to-
gether the best of both worlds, by defining a measure of diversity for in-
dividuals and populations that applies to genomes with variable length
and structure, but does neither assume the knowledge of the genome
structure, nor incur the computational cost entailed by the automatic
identification of the actual genome motifs. To achieve this result, it
looks for potential motifs contained in the genomes, and bases its mea-
sure of diversity on a combination of their number. This leads to a
definition that applies to generic genomes, and which is capable of tak-
ing into account at least partially the structure of the genomes, while
remaining computationally inexpensive. Moreover — as can be expected
from a diversity measure — the definition gives a minimal value of di-
versity for the case of uniform populations and a maximal value for
pairwise maximally distinct individuals, and becomes a (semi-metric)
distance when the population reduces to two individuals.

Despite being targeted to highly reorganizable genomes, and, in par-
ticular, to the kind of genome used in this thesis, the measures of diver-
sity that are defined below apply also to simpler kinds of genomes, such
as those having fixed length and uniform structure. Moreover, the def-
initions can find applications beyond EC, in any domain that requires
the comparison of sequences of symbols - such as genomics, pro-
teomics, chemical structure similarity assessment, and pattern recog-
nition in general - and, even more generally, to domains that require
the comparison of generic collections of "individuals” that can each be
associated in a meaningful way with a set of features.
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A.2 Population diversity

The genomes that we consider are strings of characters. Let us denote
with s; the string that constitutes the genome of the individual i; of
the population P = {iy,is,...,i,}. In the following, we will identify an
individual with its genome, and define diversities and distances for in-
dividuals in terms of their genome only. We are interested in counting
the number of potential motifs contained in each individual genome
and in the population genome. Since we do not assume any knowledge
of the genome structure, the potential motifs of a string s; constituting
the genome of individual ¢, are all its substrings, that is, all the strings
of characters that appear contiguously in s;. Let us denote with S; the
set of substrings of s;, and with |S;| its cardinality. Correspondingly,
the potential motifs of a set of individuals, for example the popula-
tion P = {iy,is,...,i,}, are all the substrings that appear in the strings
{si,8i,,- -5, }. We will denote this set of substrings with Sy; ;, ...} and
its cardinality with |Sg;, ;,...,}|- Note that Sy 4, ...y = U};l S,

Example 1: Consider three individuals 4y, s, i3, whose genomes are the
strings s; = aba, 8i, = abbe, iy = babc. We have:

V'S, = {a,ab,aba,b,ba}, |S; | =5
V'S, = {a, ab, abb, abbe, b, bb, bbe, be, c}, |S;, | = 9
V'Si, = {b,ba, bab, babc, a, ab, abe, be, ¢}, |S;,| = 9

V'S, iy, = {a, ab, aba, b, ba, abb, abbe, bb, bbe, be, ¢, bab, babe, abe}, |Sg, 4, .4,3] =
14

We define the measure D(P) of diversity of a population P = {iy,s,...,4,}

as follows:
‘S{'f'l i yeevin } |

i 1S

In words, the diversity of the population is defined as n times the ratio

D(P)ZD({“J‘Zv'--»ifz}):"L (Al)

of the total number of substrings in the population genome (that is,
considering only once those appearing in the genome of multiple indi-
viduals) to the cumulative number of substrings in the genome of the
individuals considered separately.
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Example 1 (continued): For the population constituted by the three
individuals 4,, i,, i3 defined above, we have:

|S{1:l,1:2,1:3}\ _3 14
[Si, | + 1S, | + 1S4, 54+9+9

D({i177:2,i;3}) =3 ~ 1.83

Let us analyze the properties of this definition by examining some
particular cases:

¥ Homogeneous population. The population is constituted by n in-
dividuals having the same genome s and, consequently, the same
set of substrings S. Therefore, the set of substrings of the pop-
ulation coincides with the set of substrings of each individual:
Sl sigrin} = Si]:S . From the definition of D follows that
D({ihig,...,in}) = n,li =1 (A2)
251 1S
an intuitively appealing result, since the population corresponds
actually to a collection of clones of a single individual.

Note that the converse of this property is also true, that is, if the mea-
sure of diversity of a population is unitary, all the individuals have
necessarily the same genome. This can be proved by the following argu-
ment. If D = 1 then from the definition of D follows that n ‘S{il‘iz‘-"rin}‘ =
nlUj, Si| = 257, 1S;,|. Let us assume that there exists a pair of indi-
viduals such that Sij #+ Sik. This means that there exist at least one
substring that belongs to one of these two sets but not to the other.
This substring will be counted n times in n|U;_, ;| but less than n
times in )7, S;,|. Thus the condition n| Ui, Syl = > |S;,| could not
be realized, which contradicts our assumption. This proves that all
the individuals in the population must have the same set of substrings
in their genome, and, consequently, that they must have the same
genome.

¥ Population of pairwise maximally distinct genomes. The population
is constituted by individuals whose genomes, considered by pairs,
do not have any substring in common, that is, S;NS, = @ for j # k.
This means that each substring belonging to S 4, .., belongs
only to one of the sets S; and therefore |Sy 4.3 = Z;":l \Sz-j
from which follows that D({i, i, ...,i,}) = n.

B
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As before, the converse is also true, that is, if D({i,i2,...,i,}) = n the
individuals have, pairwise, no substrings in common. This can be
proved by the following argument. If D = n then from the definition
of D follows that [Sy; i,...i,}| = U= Si,| = 227_, [S;,|. Let us assume that
there exists a pair of individuals such that Sij n Sik # @. This means
that there exist at least one substring that belongs to both sets. This
substring will be counted only once in |J;_, i |, but at least twice in
> j=11Si,|- Thus the condition |U}_, ;| = >°7_, |S;,| could not be real-
ized, which contradicts our assumption.

With analogous deductions, it can be proved that the values of diver-
sity obtained in these two cases constitute actually a bound for D(P),
that is, that we always have 1 < D(P) < n, where n is the size of the
population. This fact, along with the interpretation of Equation A.1 in
terms of average number of substrings that will be presented shortly,
suggests the interpretation of the value of D(P) as the number of equiv-
alent individuals of the population. For example, the three individuals
of Example 1 above, correspond to about 1.83 equivalent individuals, a

population of clones of a single individual corresponds to 1 equivalent
individual., and a population of n individuals that have, pairwise, no
genetic motifs in common, corresponds to n equivalent individuals.

¥ Population with two kinds of genomes. As a final example, consider
a population constituted by a fraction « of its n individuals having
the genome ¢/, and the remaining fraction (1 — a) of individuals
having a genome s” that has no substrings in common with s'. We

obtain
IS + 18"

a8+ (1-a)ls]
If o = 0.5, that is, if the population is equally divided into individu-
als of type s’ and individuals of type s”,we have D(P) = 2 indepen-
dently from the values of |S’| and |S”|. The same is approximately
true when |§’| ~ |§”| and « varies. If, on the other hand, we have
|S'] > |8 or |§'| < |S"”
the range (1,n).

D(P) (A.3)

, we can obtain almost any value of D(P) in

This last example reveals the limitations of the measure of diversity
defined above, and provides further insight into its operation. We can
rewrite Equation A.1 as follows

_ S iyein)
1 n -
n Z]‘:l |Si,| ISzl

_ ‘S{iviz"":’u}

D(P) = (A.4)
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This shows that the measure of diversity compares the total number
of different substrings in the population genome to the average num-
ber of substrings |S;|. Therefore, if one or a few individuals possess a
number of substrings that greatly exceeds the average number of them
in the population, the formula overestimates the diversity of the pop-
ulation, since it implicitly distributes evenly the substrings among the
individuals.

A.2.1 Linguistic complexity

The diversity measure defined above is loosely related to the concept
of linguistic complexity for a string defined on a given alphabet A. The
linguistic complexity of a string s is defined as the ratio of the number
of substrings of s, to the maximum number of substrings that can be
obtained from a string of the same length on the same alphabet (Tri-
fonov, 1990; Troyanskaya et al., 2002). In the spirit of our definition
of population diversity given by Equation A.1, we can generalize the
concept of linguistic complexity from single strings to populations, as
follows

LC(P) = LC({i,.i,,....i,}) = (A.5)

where maxp,.p |S(,v,l e, 3| is the maximum number of substrings that
can be obtained with a population P/ built on the same alphabet A of P,
and having the same number of individuals and with the same length.

The value of the linguistic complexity LC(P) complements the infor-
mation constituted by the value of the diversity D(P). LC(P) gives a
measure of how well the population realizes the potential of motif exis-
tence constituted by the kind and number of its individuals. In other
words, it gives an idea of how effectively the population is exploring the
genome space, relatively to what can be done with the same number
of individuals, with the same genome lengths, and on the same alpha-
bet. Thus, it is a relative measure of diversity, whereas D(P) — which
estimates the number of different individuals that the population con-
tains — looks more like an absolute one. For example, a population P
of a thousand random binary strings of length two will contain almost
certainly all the six possible substrings of length one and two, and will
therefore result in a value of LC(P) = 1 that testifies the fulfillment
of the population potential. On the other hand, the six possible sub-
strings, given the expected value of two and a half substrings for binary
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string of length two, will result in D(P) ~ 2.4, which suggests that only
a handful of different individuals exist in the population but does not
inform us about how many could be housed by a population having the
same structure.

A.3 Distance between individuals

The diversity of a population is closely connected to the concept of dis-
tance between individuals. For example, a measure of diversity for a
population can be obtained summing all pairwise distances between its
individuals. Moreover, the distance between individuals can be used
to define the distance between populations (Wineberg and Oppacher,
2003a). Hence, it is worth considering the possibility of using the sub-
string count approach to define a distance between individuals belong-
ing to populations with genomes of variable length. We will start by
trying to derive a distance d between individuals applying our formula
for population diversity (Equation A.1) to pairs of individuals {iy,é}.
From the inequalities given above, we know that D({i;,i,}) satisfies the
inequality 1 < D({i1,i2}) < 2, with the lower bound achieved only for
identical individuals. Hence, for the expression

Sz‘ i
d(i1,i2) = D({i1,i2}) — 1 =2 |10,

=212 1 (A.6)
[Si, | + 1S3, |

we have d(iy,i3) > 0, with d(iy,i2) = 0 if and only if i; = i,. Moreover, d is
obviously symmetric in its arguments, that is d(i,i2) = d(is,4;) for any
pair of individuals. The triangle inequality d(i,i2) + d(ia,i3) > d(i1,13),
however, which would qualify d as a metric and its value as a distance
between individuals and between strings, is not satisfied. For example,
for the individuals i, is, i3, with genomes si, = baaaa, s;, = baaaab, and
si, = aaaab, we have d(i1,i2) = d(iz,i3) ~ 0.217, and d(i1,i3) ~ 0.444, so
that d(iy,i2) + d(ia,i3) < d(i1,i3). This makes of d a semi-metric distance
in the space of strings. Note that in the following we will not mention
explicitly the qualifier “semi-metric” for d. The distance thus defined
satisfies the inequality 0 < d(i,42) < 1.

Example 2: Consider the three individuals iy, i, i3, with genomes i, =
abab, i, = abch, and iy = cbab. We have

V'S, = {a, ab, aba, abab, b, ba, bab}, |S; | =7
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V'Si, = {a,ab, abc, abed, b, be, beb, ¢, cb}, |S;,| =9

V'S, 4,y = {a, ab, aba, abab, b, ba, bab, abe, abeb, be, beb, ¢, b}, |Sp, i,y = 13
V'8, i,y = {a, ab, aba, abab, b, ba, bab, ¢, cb, cba, chab}, |Sp iy = 11

from which we obtain

1S, ,3] 13
inyig) = 2 e e — 1 =220 — 1= 0.625
d(iy,iy) = AR 59

S, i3 11
d(1y, 1 O L L LA =2— —1=0.375
(i) = 275 T+184 749 ?

This example shows a characteristic of d that appears at first disturb-
ing. We can consider both the genome of i; and that of i; as obtained
from that of 4, with a single character substitution, and yet the dis-
tance of i; from i, is greater than that of ¢; from i;. The reason is that
the substitution that leads from the genome of i; to that of i, is located
towards the center of the genome, whereas that leading from i, to i3 is
located at one extreme of it. This permits the first substitution to cre-
ate a bigger set of motifs Sy; ;,) relatively to S, i,3» and this is reflected
in the difference of distances. As we observed in the introduction, to
define our diversity measure we do not assume any knowledge of the
structure of the genomes. Hence, the number of potential motifs pro-
duced by a substitution can depend on its position in the genome. If we
knew where the genes or the motifs boundaries are located, we could
exclude from the count of substrings those crossing those boundaries,
and obtain a new definition of diversity and distance still based on the
count of substrings but now taking into account our knowledge of the
genome structure. In that case, the phenomenon illustrated by Exam-
ple 2 would not appear. The definition of d, on the other hand, does not
suffer the problem of “extraordinary genomes” mentioned in the previ-
ous section. If two individuals 7, and i, are such that [S; | > |S;, |, we
obtain simply d(i,i2) = 1, as expected.

A.3.1 Population diversity as sum of pairwise substring distances

We can use d to define a new measure of population diversity D’ based
on the traditional pairwise comparison of individuals (Wineberg and
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Oppacher, 2003a), as follows:

n—1 n

D/(P) = D/({il,iz, ’Ln}

n>1 (A.7)
Jj=1 k=j+1

Note that this definition takes advantage of the fact that d(i,i) = 0 and
of the symmetry of d, while the multiplying factor keeps the values of
D' in the range [0, n].

A.3.2 Tanimoto distance

We can define another distance between individuals based on the count-
ing of substrings, using the Tanimoto measure of similarity between
two generic sets X and Y (known also as Jaccard similarity (Levandowsky
and Winter, 1971)), which is defined as (Theodoridis and Koutroumbas,
2003)

_|xny]
a(X,Y A.8
The similarity of two individuals can therefore be defined as
ISi, N 5@'2\ ISi, NS, |
[ (L] Lg) = (Ag)

[Si, USLT 1S4,y

from which we can derive the Tanimoto substring distance between two

strings

ISi, N S, |
\S{zlml

This distance can be substituted to d in Equation A.7 to obtain a Tani-

moto diversity measure D; for a population of strings

d(ir,in) =1 — ay(iy,in) =1 — (A.10)

n—1 n
2

Dy(P) = Di({i1,d2,....in}) = Z Z di(ijir) , n>1  (A.1])

G=1 k=j+1

Example 2 (continued): For the population constituted by the three
individuals 4, i, i3, with genomes 8i, = abab, i, = abch, and Siy = chab,
introduced above, we have

:/Sl] I’TSLZ = {(l,(ll)7 I)}, |Sl] I’WSLZ\ =3
VS NS, = {a, ab, b, ba, bab}, |S;, ﬂ8¢3| =5
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from which we obtain

[Si, NS, | 3
diinig) =1— o Tl 2 o7
|3{nm\ 13
dy(iy,iz) =1 1S, 08l _ 5 s
i, 3) =1 ———F=1-——=0.
IS5, 4,3 11

A.3.3 Generalized distance and diversity

To define the Tanimoto substring distance, we specialized the general
definition given by Equation A.13 to the case of strings. We can go in
the opposite direction with our distance d between strings defined by
Equation A.6, and see it as particular case of the distance between two
generic sets X and Y, defined by

XUY| . [XUY|[-[XNnY]
| X |+ Y] T X UY|+|XNnY

dX,Y) = (A.12)
This reveals the similarity of d with the Tanimoto distance d;,, which

corresponds to
[XUY|—-|XNY|

X UY|
Contrary to the case of d, however, d; satisfies the triangle inequal-
ity and is therefore a metric distance (Levandowsky and Winter, 1971;
Lipkus, 1999).

In an analogous way, we can interpret Equation A.1 as a particular
case of the following measure of diversity for a collection (or multi-
set (Monro, 1987)) {X;, X,,..., X, } of finite and not all empty sets X;

| Uiz X
Z]:1 X1

This means that D can be used to measure the diversity of a generic
population of “individuals” i,, provided there is a way to associate with
each of them a set X; which is representative of its relevant substruc-
tures and features for the application at hand. For example, remaining
in the realm of strings, we could deem more meaningful for the as-
sessment of the diversity of a population of them, the use of the set of
subsequences (i.e., of characters that do not necessarily appear con-
tiguously) instead of the set of substrings of the individual strings; in

d(X,Y) = (A.13)

DU{X1, Xo,.. ., X, }) =n—=0 (A.14)
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the field of image classification, one could associate with each image a
set of its subimages, and so on.

A.3.4 Tree-based representations and genetic programming

As an example of application of the generalized distances and diversity
measures defined in the previous subsection to genetic representations
not based on strings we can consider the field of genetic programming
(GP). In GP the genome of individuals has usually the structure of a
tree (Langdon and Poli, 2002). Following an approach proposed by Kei-
jzer (1996) we can associate with each individual i; the set X; of all
the subtrees of the tree that constitutes its genome. With this choice,
Equation A.14 gives a subtree-based measure of diversity for GP pop-
ulations. Similarly, interpreting X and Y as the set of subtrees of the
trees that constitute the genomes of two individuals, Equation A.13
becomes a Tanimoto distance and Equation A.12 becomes a subtree
distance between individuals.

A.4 Implementation issues

The definitions of diversity and distance given above are practically
useful for EC runtime calculations only if there exist efficient ways
to compute the number of substrings of a string and of a collection of
strings.

The number of substrings of a string can be calculated efficiently
building the so-called suffix tree of the string. This is a data structure
that represent compactly the substring structure of a string and which
is based on a less compact structure called trie. The trie associated with
a string is a rooted directed tree where the edges are labeled by letters,
any path down the tree spells a substring of the string, such that all
paths from root to leafs are suffixes of the string and all suffixes of
the string are labels of paths from the root (Crochemore and Rytter,
2002) (Figure A.1). Note that paths corresponding to suffixes do not
end necessarily in a leaf. Nodes of the trie where paths corresponding
to suffixes end are called essential nodes. The property of a trie that
interests us here is the fact that the number of its edges corresponds
to the number of substrings of the string (Troyanskaya et al., 2002).

The trie associated with a string can be compacted by suppressing
non-branching non-essential nodes and associating with the edges of
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the tree thus obtained the substrings obtained from the chain of origi-
nal edges (Figure A.1). The resulting structure is called the suffix tree
of the string (Crochemore et al., 2001; Crochemore and Rytter, 2002;
Gusfield, 1997). Since the labels associated with the edges of the suffix
tree correspond to substrings of the original string, they can be sub-
stituted with pointers to the substring within the string. This allows a
further compaction of the suffix tree relatively to the corresponding trie
(Figure A.1).

Figure A.1: The trie and suffix tree of the string abbaaab, whose characters
are indexed from 0 to 6 (bottom). The trie (top) has a single letter associated
with each edge and the number of its edges corresponds to the number of
substring of the string. Nodes represented in black are essential nodes and
correspond to suffixes of the string, which can be obtained traversing the tree
Jrom the root (which corresponds to the empty suffix) to the node. The trie can
be compacted by suppressing non-branching non-essential nodes and asso-
ciating with the new edges the substrings obtained from the chain of original
edges. This gives the suffix tree of the string (center, left). An alternative, more
compact representation of the suffix tree can be obtained by substituting the
substrings associated with each edge with a pair of integers (p,l) that gives
the position of the start of the substring in the original string, and the length of
the substring (center, right).

28D MARCH 2005



Section A.5. Experimental results and comparisons 213

Several algorithms exist that build the suffix tree of a string with
a computational cost that grows linearly with the length of the string,
both in terms of computation time and memory occupation. Two pop-
ular algorithms are Ukkonen’s (Ukkonen, 1995) and McCreight's (Mc-
Creight, 1976): a detailed description of these algorithms including the
pseudocode can be found in (Crochemore et al., 2001; Crochemore and
Rytter, 2002; Gusfield, 1997). These algorithms build the suffix tree by
adding successively the characters that correspond to the edges of the
trie to which the suffix tree corresponds. Hence, to obtain the number
of substrings of a string we must simply count the number of charac-
ters added during the construction of its suffix tree. This permits an
efficient computation of the number |S,;] |of substrings of the genome of
an individual of a population.

The algorithms that build the suffix tree of a single string can be
modified to allow the construction of a structure representing the suf-
fixes of a collection of strings which is called the generalized suffix
tree (Gusfield, 1997, p. 116). The basic idea is to append to each string
in the collection an end string marker not belonging to the alphabet
from which the strings are formed. To build the generalized suffix tree,
one starts by constructing the suffix tree of the first end-marked string
using one of the algorithms listed above. Then, the second end-marked
string in the collection is matched against the existing suffix tree start-
ing from the root, until a mismatch occurs. At this point the construc-
tion of the suffix tree resumes with the first non-matched character of
the string. Proceeding in this way for all the strings in the collection
results in the construction of the generalized suffix tree. Counting the
number of characters added during the construction one obtains the
number of substrings of the strings in the collection and, in particular,
the number of substrings [Sy; ;,....,}| of the genomes of a population.

s pene

A.5 Experimental results and comparisons

We now compare the measures of diversity introduced above with those
currently used in EC and in other fields that make use of string com-
parison. In what follows we will denote with n the size of the popula-
tion, with [ the length of the genomes of the individuals, and with A the
alphabet over which the genomes are defined.
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A.5.1 Computational cost

We consider the following kinds of diversity measures for populations
of n individuals

V' Leung-Gao-Xu diversity. Leung, Gao, and Xu (Leung et al., 1997)
introduced a measure of diversity D,(P) for populations whose in-
dividual genomes are binary strings s, of fixed length /. D,(P)
is defined as the number of components of the string of integers
27:1 s, (with the sum performed componentwise in N) whose val-
ues are not equal to 0 and n. The time computational complexity
of the direct implementation of this definition is O(l - n).

¥ Moment of inertia diversity, pairwise Hamming diversity, and en-
tropic diversity: We group under a unique heading three diversity
measures that are slight variations on the same theme (Morrison
and De Jong, 2002; Wineberg and Oppacher, 2003b). In the ex-
periments that will follow we will report the results only for the
moment of inertia measure, since the other two require almost
the same computation time and have a value that differs from the
moment of inertia only by a scaling factor and, possibly, by terms
of second order and higher in the character frequencies (Wineberg
and Oppacher, 2003b).

- The moment of inertia diversity for populations of binary strings
of fixed length [ is defined by

HM~

Z sy — ci)? (A.15)

where s;; is the character in position ¢ of the j-th string, ¢; is
the i-th coordinate of the centroid

1 n
== sy (A.16)
n <
j=1

and the operations are performed in R. The time complexity of
the direct implementation of Equation A.15 is O({-n) (Morrison
and De Jong, 2002).
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- The pairwise Hamming diversity is defined as

n—1 n
Dy(P) = > dulisir) (A.17)

=1 k=j+1

where dj,(i;,4;) is the Hamming distance between the individ-
ual genomes. D, (P) is defined for populations with genomes
of fixed length [ over an arbitrary finite alphabet. The time
complexity of the naive implementation of Equation A.17 is
O(l - n*) but there exist implementations of this measure that
reduce the time complexity to O(l - n) (Morrison and De Jong,
2002; Wineberg and Oppacher, 2003b). For the case of binary
genomes it can be shown (Morrison and De Jong, 2002) that
Dy(P) = n D,,(P). Hence, D,(P) differs from D,,(P) only by a
scaling factor and can be implemented with the same com-
plexity. For arbitrary genomes, D,(P) can be calculated with
O(l - n) complexity using the following expression (Wineberg
and Oppacher, 2003b)

9
Du(P) =33 ful@) (1~ fila) (A.18)

2 k=1 acA

where f;,(«) is the frequency of the character « at the position
k in the population genomes.

- The entropic diversity is defined as

1
D.P) = =7 373 file)log fula) (a19)

k=1 acA

where fi(«) is the frequency of the character « at the position
k in the population genomes. The first term of the Taylor ex-
pansion of D.(P) is proportional to the pairwise hamming dis-
tance D, (P), which is therefore a good approximation. D.(P)
can be implemented with time complexity O(l - n) (Wineberg
and Oppacher, 2003b).

V' Substring diversity. It is defined by Equation A.1. Using suffix
trees it can be implemented with time complexity O(l - n).

¥ Pairwise substring diversity and pairwise Tanimoto diversity. They
are defined by Equation A.7 and Equation A.11, respectively. Us-
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ing suffix trees to compute the number of substrings, and then
applying the definitions directly, the time complexity of the imple-
mentation is O(l - n?).

To give an idea of the actual computation time of a typical implementa-
tion on a present day personal computer, we have plotted in Figure A.2
the computation time for these measures of diversity as a function of
genome length and population size for a randomly generated popula-
tion of fixed genome length over a binary alphabet. The substring diver-
sity measure is implemented with McCreight suffix tree algorithm (Mc-
Creight, 1976). As anticipated, the results for the pairwise Hamming
diversity and for the entropic diversity are not shown, since they are
almost indistinguishable from the values obtained for the moment of
inertia diversity.

The curves of Figure A.2 confirm the predicted time complexities
and show that the substring diversity measure D(P), although more
computationally expensive than existing diversity measures for fixed
length genomes, is sufficiently inexpensive to be usable for runtime
diversity measurements on present day computers. Note that the pair-
wise substring and pairwise Tanimoto curves are almost coincident,
and that their O(/ - n?) complexity makes the direct implementation of
these measures rapidly impractical for runtime diversity assessment
when the population size grows.

A.5.2 Fixed genome length

To give an example of computation of the various kinds of diversities
in an actual EC setting, we performed a series of runs of a genetic
algorithm on a function optimization problem. The genomes considered
in this section have fixed length. Hence, both the conventional non-
string-based and the string-based diversity measures can be used. The
goal is to show that in this simple setting — the only one where the
comparison can be performed - the string-based measures give results
comparable to those of the conventional measures.

The function to be optimized was the two-dimensional sine envelope
sine wave function (Leung et al., 1997) defined by

siny/z?+ 22— 0.5 (A.20)

(1—0.001(z? + z2))?

f(z1,22) =05 —

The optimization was performed in the domain [—100, 100] x [—100, 100],
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Figure A.2: Computation time vs. genome length and population size of dif-
ferent measures of diversity for the implementations described in the text and
run on a PC with Pentium III microprocessor clocked at 850MHz.

where the unique global maximum is f(0,0) = 1. Each parameter z; was
binary encoded by a string of length 22, so that | = 44. The population
size was n = 50. The algorithm used tournament selection with tour-
nament size ¢ = 2, with mutation probability p,, = 0.01 and crossover
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Figure A.3: The various population diversity measures computed on the pop-
ulation evolved with a genetic algorithm applied to a function optimization ex-
periment.c

probability p. = 0.85. Figure A.3 reports the results average over ten
runs, starting with randomly generated populations.

Figure A.3 does not show the pairwise Hamming diversity, since
it differs from the moment of inertia diversity only by a scale factor,
nor the entropic diversity, since, after suitable scaling, it is almost in-
distinguishable from the moment of inertia diversity. The values of
the pairwise substring and pairwise Tanimoto diversities are close to
those of the Leung-Gao-Xu diversity. To avoid an excessive overlap-
ping of curves, all the substring-based diversities are represented in
Figure A.4 for the same set of runs of Figure A.3. In this case, the
substring diversities for the genes that represent each parameter were
also separately computed as substring columnwise diversity. This was
done to show that the substring approach can be applied to evaluate
the diversity of each genome substructure when these are known. Note
that the substring diversity calculated on the whole genome is not the
sum of the two substring columnwise diversities, which is instead the
case for most kinds of diversity measures currently used, since they

28D MARCH 2005



Section A.5. Experimental results and comparisons 219

average over 10 runs
pop. size =50 pm=0.01 pc=0.85 genome length = 44

50

45 |

40

35

301 Pairwise
25 | Tanimoto

diversity

generation

Figure A.4: The substring-based population diversity measures computed for
the evolutionary runs of Figure A.3. The substring columnwise curves refer to
the genomic diversity computed for each parameter separately.

obtain the global diversity summing the contribution of each locus in
the genome string.

Figures A.3 and A.4 show that in this conventional setting consti-
tuted by populations with fixed genome length, the measures of diver-
sity based on the substring approach behave very much like the famil-
iar diversity measures based on the Hamming distance, or based on the
count of the converged bits like the Leung-Gao-Xu measure. In other
words, when applied to fixed genome length populations the substring-
based measures conform to the behavior expected from a conventional
measure of diversity.

A.5.3 Variable genome length

So far we have considered only examples of population diversity calcu-
lations made on fixed genome length populations. This was necessary
to allow the comparison with conventional diversity measures, which
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apply only to the fixed genome length case. However, the measures
of diversity introduced here find their justification mainly in the case
of populations with variable genome structure, where the approaches
based on the Hamming distance cannot be used. To illustrate the ap-
plicability of the substring approach to the variable genome length -
which is just the first step towards a truly variable structure, to which
the substring approach still applies - we modified the encoding of the
function optimization experiment described above to allow the variable
length encoding of each parameter. More precisely, the parameters z;
were encoded by a binary string whose length was allowed to be differ-
ent for the two parameters of an individual, and to vary from individual
to individual. We started the evolutions with randomly generated pop-
ulations where each parameter was represented by a gene with length
randomly chosen between 2 and 20 bits. To allow the variation of the
genome length of individuals during the evolution, the mutation op-
erator was extended to include character insertion and deletion with
probabilities p; = p; = 0.001, in addition to substitution with probability
pm = 0.01. Individuals that, following a mutation, were found to have
an empty gene were simply removed from the population.

Figure A.5 shows the result of a single evolutionary run of function
optimization with variable length genome. Note that the substring-
based measures of population diversity introduced above apply unal-
tered to the case of variable genome length, whereas the traditional
population diversity measures cannot be applied to this case.

A.5.4 Highly reorganizable genome

In the previous examples all individuals had a genome with the same
structure, that is, the number, meaning, and order of the genes was
predefined and at most the length of each gene could vary. We consider
now the application of the measure of diversity defined in this appen-
dix to the genome introduced in this thesis for the representation and
evolution of analog networks. We consider in particular an example
of evolution of an artificial neural network. Figure A.6 reminds briefly
the elements involved in the representation and shows an example of
the resulting genome. Since, as was abundantly emphasised in the
previous chapters, the genome can be subjected to the action of many
genetic operators, a given structure can appear in any position in the
genome and can be present in several instances as more or less diverg-
ing copies. We are therefore in presence of the kind of highly reorga-
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Figure A.5: The substring diversity measure computed on the population
evolved with a genetic algorithm applied to a function optimization experiment
with variable length genome. From generations 30 to 60 there is probably an
episode of migration of the population from two distinct regions of the genetic
space; this is accompanied by a decrease in average fitness and is reflected
in an increase of diversity of the population. Note that in this experiment the
length of the genome of distinct individuals of the population can be different
and, therefore, the Leung-Gao-Xu, pairwise Hamming, moment of inertia, and
entropic diversity measures cannot be used.

nizable genome whose relevance for artificial evolution was discussed
in the introduction of this appendix and for which the substring-based
diversity and distance measures come to full fruition.

Figure A.7 reports the result of a single evolutionary run aimed at
the synthesis of a neural network solving the XOR problem (Haykin,
1999, p. 175). The setup of the system provides two predefined in-
put neurons and an output neuron. The neurons decoded from the
genome are thus inserted as hidden neurons (Haykin, 1999). An exact
solution is characterized by a fitness value of zero, and is first found at
about generation 120. It is known (Haykin, 1999) that the simplest net-
work that can solve the problem has a single (hidden) neuron decoded
from the genome. The curve of the average number of decoded neurons
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Figure A.6: A fragment of genome (top), the devices decoded from it (center),
and an example of weighted connection established between the devices
(right, bottom). A set of predefined tokens (“NEUR”, “TERM”, . ..) identifies the
regions coding for devices and delimit the strings that will be associated with
the terminals by the decoding process. The weight of the connections between
the output and the inputs of all neurons is obtained by applying a function f
that maps pairs of strings associated with the terminals, to numeric values.

testifies that the evolutionary process produces networks more com-
plex than this while proceeding towards the exact solution. The same
curve shows that these networks are subsequently simplified by the
evolutionary process until, at about generation 300, the population is
composed almost exclusively by individuals whose genome encodes a
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Figure A.7: An evolutionary run aimed at the synthesis of a neural network
for the XOR problem. The meaning of the curves is detailed in the text.

single neuron. This is due to the presence of a “dead zone” around the
required output values, which eliminates any selective pressure among
networks that can produce outputs within the dead zone and, in par-

ticular,
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to better approximate the exact output values. The curves reporting
the average and maximum genome length during the evolution testify
the presence of several episodes of duplication and deletion of genome
fragments. The duplication episodes in particular appear instrumental
to the first attainment of an exact solution. The curve of the population
substring diversity shows that the diversity remains low before an ex-
act solution is found, that is, while the selective pressure is high. Suc-
cessively, the population diversity assumes consistently higher values
relatively to the pre-solution phase, irrespective of the value of genome
length. This observation supports the hypothesis of the existence of
several alternative solutions. Moreover, it indicates that the substring
diversity measure is able to capture the essential dynamics of the pop-
ulation diversity. Note that all the non-substring-based diversity mea-
sures considered above are defined only for fixed genome lengths and
cannot be applied to this kind of variable-length and variable-structure
genome.

A.5.5 Nucleotide diversity and substring diversity

In molecular and population genetics the measurement of the polymor-
phism of a population is based on the nucleotide diversity measure II,
defined on a DNA sequence by

II= Z Z TjTET K (A.2 1)
J k

where the sum is performed on all the kinds of different sequences, z;
and z, are the frequencies of the j-th and k-th type of sequences, and
7, is the proportion of different nucleotides between the two types of
sequences (Graur and Li, 2000). It follows from this definition that IT
corresponds to

n—1 n
1 o
M= Z Z dn(ij, k) (A.22)
J=1 k=j+1

that is, it is a normalized pairwise Hamming diversity measure (Wineberg
and Oppacher, 2003b) which gives the average number of nucleotide
differences per site (Graur and Li, 2000).

Figure A.8 shows two examples of calculation of II for a population
of four DNA sequences. Note that the value of IT in the two cases is the
same, since the number of nucleotide differences is the same, even if
the differences are spread among more individuals in the second case.
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Conversely, the value of D is different in the two cases, since D is
sensitive to the number of DNA sequences affected by the differences.
Hence, the information provided by the substring diversity measure D
can complement that conveyed by II in assessing population polymor-
phism.

_[GIT|A]C]T[G]|G[T[C]A[A[T[G]A[G]A[T]A[G[A]A[G]C|T]A]
_lG[Tja[c|T|G|G|T[C|A[A|T|G]A[G]A|T[A|G[|A[A]G[C|T]A]
_[G[T|A[C|T[G|G|T|C[A[A[T[G|A|G]|A[T|A|G[A[A[G|C|T]A]
_le[Tja[c[TGIM TIC G[A[A[G[C|T]A[
I1=0.071 D = 1.888
_[a[T|alC[T[G]G][T[C A[G[C|T[A]
_lG[Tja[c|T][G]G|T AlG[C|T]A]
_[GlT|A[C|T@G] T AlG[C[T[A]
“[GIT|A[C|TIGIE T AlG[C|T|A]

Figure A.8: The nucleotide diversity measure II is used in molecular genetics
to assess the polymorphism of a population. It measures the average number
of nucleotide differences per site in DNA sequences of the population. As such,
11 is not affected by the distribution of the differences among the individuals.
On the contrary, the substring diversity measure D is sensitive to this differ-
ence, and can therefore complement 11 in assessing the polymorphism of the
population.

A.6 Conclusion

There is a growing interest in the field of evolutionary computation in
the definition of genomes that can be subject to major reorganizations
- such as insertions, deletions duplications and transpositions — and
still remain decodable. The reason for this interest is the hope to fos-
ter in this way the exploration of the search space, the emergence of
modularity, the reuse of evolved substructures, and, eventually, the
open-endedness of the evolutionary process. At the same time, the ef-
fort to improve the performance of evolutionary algorithms results in a
tendency towards the integration in the algorithms of a certain degree
of control of the population diversity. There follows a need for measures
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of diversity that apply to populations with genomes of variable length,
and, more generally, to populations with highly reorganizable genomes.

To fulfill this need, we have defined measures of diversity and dis-
tances between individuals, that apply to populations and individuals
whose genome is constituted by finite strings of variable length on fi-
nite alphabets. The definitions are based on the counting of substrings
of the population genomes, considered first separately and then collec-
tively. The motivation behind the substring counting approach is the
possibility to estimate in this way the potential genomic motifs con-
tained in the genomes. For example, there is the possibility to recog-
nize the similarity of individuals whose genomes are constituted by the
same motifs differently arranged. The measures thus obtained do not
require any detailed knowledge of the structure of the genome and,
therefore, apply to generic genomes. However, information about the
genome structure can be taken into account when available by applying
the counting procedures to the substructures present in the genomes.
The measures introduced are based on properties of the genomes that
can be computed in linear space and time, thus making them suit-
able for runtime application during an evolutionary process. Moreover,
these measures and their generalizations can be used for the assess-
ment of the diversity of other kinds of populations, such as tree-based
genetic programming populations, biological sequences, and generic
collections of sets.
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Appendix B

Evolutionary quantization

Overview

This appendix is devoted to the issue of the representation of real-valued
parameters in evolutionary algorithms. The issue is_ formulated as a problem of
quantization of real variables. First, a cost of the quantization is defined in gen-
eral terms, considering the effect of the elementary acts of quantization. Then,
actual expressions for the cost are proposed and their relevance to the encod-
ing of real-valued evolutionary parameters is discussed. Some classical results
from the communication engineering literature on quantization are reported, and
new optimality results are derived for some error functions, probability distri-
butions of the quantized variables, and expressions of quantization cost that
are especially relevant to the evolutionary encoding of real variables in general,
and to the genetic encoding of the interaction strength of analog networks in
particular. The analysis is focused on the characteristics of uniform, logarith-
mic, and floating-point quantizers in relation to the dynamic range, invariance
properties, and arithmetic role of the quantized variables.
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B.1 Introduction

The implementation of an algorithm on a digital computer implies the
use of a finite representation for the parameters and variables of the
algorithm. When the objects to be represented are a range of real num-
bers, the choice of the representation corresponds to the selection of
a finite subset of a continuum of real numbers. Numbers which are
not in the selected subset must be approximated by numbers in the
subset, and a representation error ensues.

The scenario just described is well known in the field of commu-
nication engineering, where it is referred to as the process of quanti-
zation (Gray and Neuhoff, 1998; Jayant and Noll, 1984). In the com-
munication perspective, a signal source generates a sequence of real
numbers z belonging to an interval X = [in, Tma|, and the quantiza-
tion process transforms each element z of the sequence into a quan-
tized value z; = q(r) belonging to a finite set of quantized values!
Q= {r;ie€Z},withZ ={1,...,N}, N> 1, and? z; = Tpin, TN = Trmaz
(Figure B.1).

q
X r Q
R R
Xonin Xnax Xonin X1 %2 Xy = Xomax
Figure B.1: In the classical quantization scenario, a real interval
X = [Zmin, Tmas| IS mapped into a set Q = {z;} C R of quantized values by

a quantizer function ¢(z).

The association of z; with x is based on the partition of the interval X
into a collection of subsets called cells C = {C;; i« € Z}, with the condi-
tion that z; = ¢(z) for z € C;. If we assume N as given, the quantizer

More generally, one can define Q as a countable set. In the actual cases that
interests us here, however, Q is always finite.

2The conditions z; = 2, and zx = 2,4, are not strictly necessary for the defini-
tion of a quantizer, and correspond to the additional requirement that the boundaries
ZTmin and 2,4, of the range of reals that must be quantized are values that must be
represented exactly and, therefore, must coincide with two quantized values. This is
the case of the quantization of resistance values in the example of analog electronic
circuit design described in the text, where the boundary values 1Q and 10M2 of the
resistance range are assumed as represented exactly, and the representation error
outside this range is of no concern.
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optimization task of the communication engineer consists in defining
the quantizer - that is, choosing the quantized values z; and the cells
C; — so as to minimize a suitably defined quantization cost.

In an evolutionary perspective, there is no explicit input variable
z but a genetic encoding of real-valued phenotypic parameters. The
finite size of the genome limits the values of phenotypic parameters
that can be accessed by the evolutionary process to a given finite set
Q = {x;; i € T}. For example, in the case of the evolutionary system for
analog networks described in this thesis, given a maximum length for
the sequences of characters extracted from the genome and associated
with the terminals of the network devices, the sequence interaction
map produces a finite set G composed of sequence interaction values.
Without loss of generality we can think of this set as mapped onto the
finite sequence of integers 7 = {1, ..., N}. The network-specific interac-
tion map associates a value z; € Q with each element : € 7 (Figure B.2).

- I - Q
0O0OO0OO0O0OO0OO0OO
12 .. N X =X X X =X

min =1 2 N max

Figure B.2: In an evolutionary scenario, the quantization is not explicit but
corresponds to the implicit constraint imposed on the values of the phenotypic
parameters by the use of a mapping of a finite set G of genetically encoded
elements, onto a set Q C R of quantized values indexed by the integers of a
setZ={1,...,N}. Themap d:Z — Q is called the decoder of the quantizer.

In a more traditional evolutionary computation scenario, the value of a
real parameter is encoded into a finite fragment of the genome which
can represent N distinct parameter values. We can imagine the N dis-
tinct configurations of the fragment of genome coding for the parameter
as forming a finite set G. This set is mapped onto the finite sequence
of integers Z, which is further bijectively mapped onto the set of quan-
tized values Q. Although in these evolutionary scenarios — contrary to
the communication engineering case described above — no explicit un-
quantized variable = and, therefore, no explicit association = — z; of a
variable = with a quantized value z; is given, we can still think of the
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evolutionary process as “wishing” to employ a real value = and being
forced to approximate it with one of the quantized values z; € Q. In
other words, the evolutionary process can be thought of as a source of
real numbers z that must be quantized. This permits us to think in
terms of an evolutionary quantization problem, and to adopt the quan-
tizer optimization perspective of communication engineering.

Note that the scalar quantization scenario just described is clearly
a simplification, since the evolutionary process evaluates in reality the
fitness of the whole phenotype. Assuming for simplicity that the phe-
notype can be described by a vector of real parameters, we should thus
think in terms of vector quantization, that is, in terms of a quantization
of the whole parameter space, rather than in terms of a quantization
of each real parameter separately. In practice, however, we cannot
predict the distribution of the vector of unquantized phenotypic para-
meters that would be produced by evolution and which is necessary for
the determination of the optimal vector quantizer. Moreover, an actual
optimization of the quantizer should be based on an estimate of the
evolutionary cost of the quantization, or, at least, of its cost in terms of
fitness. Apart from trivial cases, an analytic expression of this cost is
either not available, or is a highly nonlinear function of the phenotypic
parameters. Thus, the pursuit of an actual optimal vector evolutionary
quantization appears in fact chimeric.

Another implicit characteristic of the simple quantization scenario
described above is that of being static (or nonadaptive), that is, of being
defined at the start of evolution and kept unchanged afterwards. It
is however conceivable that a better use of the finite representation
resources available could be obtained by allowing the reassignment of
the quantization during the evolutionary run. This corresponds to the
adoption of a dynamic or adaptive quantization (Goodman and Gersho,
1974).3

To simplify the implementation of the quantizer, a typical and sim-
ple solution is to disregard the possibility of defining an adaptive vector
quantizer, and to define separately the quantization of each phenotypic
parameter before the start of the evolutionary experiment, assuming
a quantization cost that is a function of the approximation error of
each phenotypic parameter seen as an independent real variable, in
the hope that the minimization of this error leads to a minimization of

3The Dynamic Parameter Encoding technique introduced by Schraudolph and
Belew (1992) is an example of this kind of approach, where the range of each real
phenotypic parameter is resized during the run.
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the evolutionary consequences of the quantization. This approach cor-
responds to a static scalar quantization, and will be implicitly assumed
in the rest of this appendix. This assumption appears more accept-
able if we consider that it is commonly adopted in many technological
fields, where a finite set of standardized components are manufactured
and put at the designer’s disposal before the start of any actual design
process.

B.2 The cost of quantization

Given the number N of quantized values, and the range [zin, Tmaz] Of
the input value, the optimal (scalar) quantization problem consists of
choosing the set Q of quantized values and the set C of cells in order to
minimize the cost of the effects of quantization. To set up an optimiza-
tion problem we define an error function ¢(z, z;) that specifies the effect
of the single act of quantization, and derive from it an estimate £(Q,C)
of the cost of the whole quantization strategy, taking into account the
probability of the different acts of quantization, and their relevance.

In communication problems, a common choice for ¢(z,z;) is the
squared error (z—1;)?, with £(Q,C) corresponding to the expected mean
squared error

N N
£(90,0) = Z/ e(x, ;) p(z) dz = Z/ (z —z,)?p(x) do (B.1)

where p(z) is the probability density function of the variable x that must
be quantized. The use of the squared error as a measure of cost is
justified by the fact that, in communicating an analog signal, the term
(z — x;) can be considered noise, and the expected cost represented
by Equation B.1 is proportional to the average energy or power of the
quantization noise (Gray and Neuhoff, 1998).

From an evolutionary analog network point of view, the mean squa-
red error choice for the cost function does not appear as the only rea-
sonable one. To understand why, it is useful make a short detour in the
field of analog electronic design. Analog electronic design can be seen
as the art of selecting and connecting a collection of components such
as transistors, capacitors, batteries, and still many others, via elec-
tric resistors, in order to obtain an electronic circuit realizing a given
functionality. When working with discrete components (as opposed to
designing analog integrated circuits), the designer has only access to a
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finite number of standardized electric resistance values. For example,
a common standardized series of resistors is the so-called E12 series,
which has twelve resistance values for each decade of resistance value,
corresponding to the base value of the decade (a power of 10) multiplied
by a coefficient in the set

{1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2} (B.2)

The range of actual values goes typically from 12 to 10M2. This means
that, for example, the available resistors include the 1, 1.2, and 1.5
resistance values, but also the 102, 12, and 15 values, and so on,
up to 10MQ.

In designing a circuit, the engineer computes real values of resis-
tance which typically do not correspond to the values of the available
standard series. Hence, a further design step consists of substituting
the theoretical values with standard resistance values.* The example
of the quantized values of the E12 series shows that what concerns
the electronic designer in this quantization step is neither the absolute
error |z — x;| nor any of its powers such as the squared error (r — z;)? or
the generic p-th power |z — z;?, but, rather, the relative error |z — z;|/x.
For example, a theoretical value of 12.7Q2 could be quantized to 12,
and a theoretical value of 127 could be quantized to 1202, committing
a substantially different absolute and squared error, but the same rela-
tive error. One of the reasons behind the relevance of the relative error
is the fact that a resistor is typically used to convert a value of voltage
into a value of current, or vice versa. This conversion implies the mul-
tiplication or division of a quantity by the resistance value, and it is
well known that for these operations, under rather general conditions
for the distribution of the error, it is the relative error of the factors - in
the form of squared relative error — that is relevant in the determina-
tion of the error of the result (Gillespie, 1983; Sivia, 1996; Taylor, 1996;
Silverman et al., 2004; Coutinho et al., 2004). This multiplicative per-
spective is even more relevant if we consider that to minimize the effect

4Usually the designer does not quantize the values of the resistors appearing in the
circuits separately, but, rather, identifies subsets of resistors that contribute to the
realization of a circuit subfunction and quantizes simultaneously the whole subset.
Nonetheless, as explained above, the choice of the static scalar quantization per-
spective in the optimization of the quantizer is the only realistic one, and is actually
implied by the very definition of the sets of standardized resistance values. Note that
for reasons of cost and reliability of the resulting circuit, the use of combinations of
standard resistance values to obtain a non-standard value is almost never considered
in practice.
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of external perturbations acting on the whole circuit, the critical per-
formances of a well-designed circuit are typically made to depend on
the ratio of resistance values appearing in the circuit, rather than on
their absolute value. Note that this does not mean that only the rela-
tive error or its powers must be considered relevant in an evolutionary
context. We must not forget that when operations of sum and subtrac-
tion are performed on real values, it is instead the absolute error of
the factors - in the form of squared absolute error — that is relevant in
the determination of the error of the result (Sivia, 1996; Taylor, 1996).
A later section of this appendix examines these issues — in particular
the multiplication and division vs. sum and subtraction aspect — in
more depth.

We can expected to find the prominence of the relative error in all
cases where operations of multiplication or division are systematically
performed on real values. One obvious example is the representation of
real numbers used in computer implementations of algorithms imply-
ing multiplications and divisions. In this case, if the computer is digi-
tal, we have a finite set B of binary strings that is mapped onto the set
Q of quantized values represented in the computer. In an analog net-
work perspective, another important case where the relative error plays
a crucial role is that of the representation of the input weights of the
neurons of artificial neural networks, since the weights are multiplied
by the amplitude of the incoming signals in the equations defining the
behavior of the artificial neurons (Haykin, 1999). We can extend these
considerations applying to analog electronic circuit and artificial neural
network design and evolution to the general case of analog network de-
sign and evolution. We have defined an analog network as a collection
of connected devices where the links between devices are character-
ized by a scalar value of interaction strength. Typically, this scalar
value will transform multiplicatively the amplitude of a signal and this
means that the relative error is the relevant quantity in representing
the interaction strength values.

In evolutionary computation, apart from the questionable preferen-
tial use of the squared error as the function ¢(z,z;), there is another
exceptionable aspect of Equation B.1 defining the cost £(Q,C) of the
quantization strategy, namely, the implicit hypothesis that the cost de-
pends on the average approximation error over the whole range of the
x variable. The limit of this assumption lies in the fact that in many
design problems the resulting system is as good as the worst of its sub-
systems. For example, in an analog circuit design problem a badly ap-
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proximated resistor value can alter the performance of a subcircuit in
such a way that the performance of the whole circuit is compromised,
irrespective of the quality of the other parts of the circuit. In this case,
as will be shown below, the cost of the approximation does not depend
on the average error, but on the maximum error. It is therefore worth
to also examine the case of the optimal quantization when the cost
depends on the maximum (relative or absolute) quantization error. In
this case, there is the advantage that the detailed specification of the
probability density function is not required for the optimization.

Summing up, in defining the cost of the quantization in view of its
optimization in an evolutionary scenario, we must consider the role of
the parameters that are being quantized, and, in particular, the kind
of mathematical operations in which they are involved, and the func-
tional consequences of the quantization error. In some cases it makes
sense to consider the absolute error or its powers as the indicator of
the quantization cost; in other circumstances it is better to assign this
role to the relative error. Moreover, in some circumstances it makes
sense to use as quantization cost the expected error, whereas in other
circumstances the adoption of the maximum error as cost is prefer-
able. In the forthcoming sections we will consider the properties of
some quantization schemata in relation to these kinds of errors. Since
the communication engineering literature has dealt abundantly with
the quadratic error case (see for example the review paper by Gray
and Neuhoff (1998), and references therein), and since the quantiza-
tion scheme that is best suited for the absolute error case is already
extensively used in evolutionary computation and needs no further ad-
vocacy, we will evaluate the performance and optimality of the different
quantization schemata focusing on their behavior with respect to the
relative quantization error.

Besides the quantization suited to the genetic encoding technique
for analog networks based on the device interaction map, we will also
consider quantizations used in association with more conventional ge-
netic representations of real parameters defined by mappings which
associate univocally a real value to a binary string of fixed length ex-
tracted from the genome. In particular, we will compute the number of
bits required to achieve a given relative error performance, since this
value has an effect on the dimension of the genome and, therefore, of
the size of the genetic search space. In this perspective, we will analyze
also the properties of the floating point representation of real numbers,
which is another option for the direct encoding of real parameters as
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fixed length binary strings.

B.3 Specifying a quantizer

We assume as given an interval X = [Zin, Tmee] C RT of positive real
numbers, which we want to quantize into a predefined number N > 1
of discrete values.® To this end we define a set of quantized values
Q={z;z eR,iel}, withZ ={l,...,N}, z;y1 > z; for all i, x1 = Tpnin,
TN = Tmag» and a quantizer function ¢ : X — Q associating a quantized
value z; = ¢(z) with each = € X. It is useful to decompose the quantizer
function into two functions: the (lossy) encoder ¢ : X — Z, which trans-
forms the input value z into the index i = e(z) of the quantized value,
and the decoder® d : T — Q, which is an order-preserving map that
transforms the index 7 into the quantized value z; = d(i). The quan-
tizer function is defined by the assignment of a collection of sets called
cells C = {C;; C; C X, i € I} that constitute a partition of X, and by
the condition that z; = ¢(x) for x € C;. The definition of the quantizer
corresponds thus to the assignment of the set Q of quantized values
and of the set C of cells.

The choice of the quantizer can be formulated as an optimization
problem by defining a cost £(Q, C) of the quantization. The cost function
£(Q,C) is defined in terms of an error function ¢(x, z;), which we assume
to be non negative, and to vanish only for = z;. We will examine in
particular the properties of quantizers using one of the following two
types of error function

v absolute error
eo(T, ;) = o — 2] (B.3)

5We assume that the interval X to be quantized is composed only of non negative
real numbers, that is, we assume z,,;, > 0. This ensures that relative quantization
error is always defined (on the other hand, while dealing with the absolute error, this
limitation can be relaxed). The quantization of intervals including non positive real
numbers is done by considering separately the positive and the negative subintervals
(possibly representing separately the null value). The quantization of an interval
[=Zmazs —Tmin] SUch that [T,,in, Tmae.] C R is obtained quantizing [,,in, T1ma.| and then
reinserting the negative sign.

SEncoder and decoder are terms derived from the typical role of the quantizer in
a communication system. In the simplest scenario, the input variable z is quantized
and then encoded into a codeword which is transmitted through a channel. The re-
ceived codeword is then decoded and the corresponding quantized value is generated
as output.
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V' relative error
(i) = 220 (B.4)
xT
Concerning the cost of the quantization, we will consider the following

four possibilities

V expected absolute error

M-

£a(9,C) = /C col(z, z;) p(z) dz (B.5)

i=1

¥ expected relative error

N .
&er(Q.C) = Z/ e (z, ;) p(x) d (B.6)
i=1 7 Ci
¥ maximum absolute error
Ema(Q,C) = [ max  &,(z, ;) (B.7)
¥ maximum relative error
Emr(Q,C) = max ]ET(CL‘,ZL‘i) (B.8)

Tmin,Tmaz

where p(z)is the probability density function of x.

B.4 Optimizing for expected error

Using the expected error as quantization cost, the generic expression
for the cost is

&(9,C) = Z/c e(x,z;) p(z) do (B.9)

and we can formulate the following two necessary optimality conditions
(Max, 1960; Lloyd, 1982)

1. If we assume the cells C; € C as preassigned and fixed, the nec-
essary conditions for a minimum relatively to the position of the
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quantized values, are

0€.(Q,C)

-0 i=2,...,N—1 (B.10)
ox;

where the range of the index is determined by the fact that we
assume z;, and zy to be fixed at the boundaries of the quantized
interval X. Applying the condition expressed by Equation B.10 to
Equation B.9 gives

v 9 ( f,, e(w;) pla) da

; ( . Jx; - > -
B d (fc e(z, z;) p(x) dT)
B ox;

Differentiating under the integral sign’ we obtain

=0 i=2,...,N-1 (B.11)

/Mp(:c)dwzo i=2,... N-1 (B.12)
o, O

2. If we consider the quantized values z; € Q as preassigned and
fixed, we can minimize &.(Q,C) by assigning to each cell C; all the
values z € X which can actually appear as the input of the quan-
tizer (i.e., for which p(z) # 0) and for which ¢(z, z;) is minimized by
the choice x; = z;. This leads to the condition

Cio{re X : e(z,z;) <e(x,x;) forallj # i, p(x) # 0}
i=1,....,N (B.13)

Note that for a generic error function ¢(z, z;) and probability den-
sity p(z) this condition does not uniquely determine the cells.
However, with some simple additional conditions on both &(z, z;)
and p(z) which will be satisfied in the cases considered below,
there is no ambiguity in partitioning X into a collection of cells C;
according to Equation B.13.

For generic error functions ¢(z,z;) and probability density functions
p(z), these conditions are necessary but not sufficient to ensure the
presence of a minimum of the cost and, therefore, of an optimal quan-

A sufficient condition for the differentiability under the integral sign is that e(z, z;)
be continuous and with continuous derivative with respect to z;, although the differ-
entiability may subsist with weaker conditions (Courant and John, 1989, p. 74).
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tizer. Trushkin (1982) stated a series of sufficient conditions for the
error function and probability density functions. His proofs are based
on the observation that assuming the validity of a series of hypothesis
corresponding to those listed at the start of the previous section, Equa-
tion B.9 has at least a minimum in the interior of the domain. Hence,
if the unicity of the solution to Equations B.12 and Equations B.13 can
be proved, the solution corresponds necessarily to the optimal quan-
tizer, which is unique. Whereas Trushkin (1982) formulates general
conditions for ¢(z,z;) and p(z) that are then proved to ensure the unic-
ity of the above mentioned solution, we will be content to consider in
the following sections some particular cases of p(z) which, when com-
bined with one of the two instances of ¢(z,z;) considered above, lead
to a manifestly unique solution of Equations B.12 and Equations B.13
and, therefore, ensure the optimality of the quantizer.

B.4.1 Absolute error

Substituting ¢,(z, z;) = |z — z;| for ¢(z, z;) in Equation B.13 we obtain

Cio{reX :|v—u| <|v—ua forallj#i, plx)#0}

i=1,...,N (B.14)

This means that, apart from the points where p(z) = 0, whose assign-
ment to a particular cell is in any case immaterial, the generic cell C;
is constituted by the points of X’ that are closer to z; than to any other
quantized value z;. Points that are equidistant from two quantized val-
ues z; and z; can be assigned equally well to C; or to C;. This means
that the cells can be assumed to correspond to subintervals C; = (t;_1, ;]
determined by a set 7 = {ty,...,ty} of thresholds — we will call subin-
terval quantizer this kind of quantizer — that bisect the quantization
interval [z;, z;41], so that

t:% i=1,... ,N-1 (B.15)
with the exception of ¢, = z; and ¢y = zy. Using this result in Equa-
tion B.12, with the current expression ¢,(z,z;) = |x — z;| for the error
function (z, z;), we obtain

Zit g

/ ! Mp(x)dmzo i

i—114 (97’1
2

Il
o

LN —1 (B.16)
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which corresponds to

TitTiq
2

/"%p(x)dx:/ p(z) dx i=2,...,N—1 (B.17)

For a generic probability density function the system of equations in the
unknowns z; and ¢; constituted by Equation B.15 and Equation B.17
cannot be solved analytically. Lloyd (1982) introduced two iterative
algorithms for the determination of the quantizers in the general case.

Uniform distribution of probability In the particular case where p(z)
is the uniform probability density function

p(x) = { é i;i (B.18)

where £ is the normalizing constant, Equation B.17 becomes simply
Tit1 — T =T — Tj—1 7::2,....,]\[71 (Blg)

and this shows that the unique optimal quantizer in this case is the
uniform quantizer satisfying the conditions (Kassam, 1978)

xi+1—zi:W:A i=1,...,N—1 (B.20)
T1 = Tmin , TN = Tmaz
t = T +2-T/71+1 i=1,...,N—1 (B.21)

which distributes uniformly the quantized values in the interval [z;,in, Zmax)
while complying with the conditions z; = T, TN = Tme.. The corre-
sponding decoder d,(-) is described by
i = du(z> = Tppin + (Z - 1) A=
. Tmaz — Tmin - 2
:a,mme(zfl)-ﬁ i=1,...,N (B.22)
An example of this kind of decoding function is illustrated in Figure B.3.
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Figure B.3: The graph of the linear decoder corresponding to the uniform
quantization of the interval [Z,,in, Tmas| = [1,100] using N = 32 quantized values
with the conditions ©1 = Tpin, TN = Tmaz-

B.4.2 Relative error

=2l for e(z,z;) in Equation B.13 we obtain

x

Substituting ¢, (z, z;) =

|z — a4 - |z — ;]

Cio{reX: for allj # 4, p(z) # 0}

i=1,...,N (B.23)

Since we assume z > 0, this condition is equivalent to Equation B.14
and leads once again to the result that the quantizer can be assumed
to be a subinterval quantizer whose cells C; = (t;_1,t;] are determined
by thresholds that bisect the intervals [z;, ;1]

T+ T

t; 5

=1,...,N—-1 (B.24)

apart from the cases ¢, = z; and ¢ty = zy. Equation B.12 now becomes

Titwip) lo—zi]
TS ydr =0 i—2, . N-1 (B.25)
T,,ym, ox; ’ ’
and corresponds to
T4

/:En lp(ﬂc)dx:/ lp(ac)da: i=2,...,N—1 (B.26)

i—1t%
2
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Once again, for a generic probability density function the system of
equations constituted by Equation B.24 and Equation B.26 cannot be
solved analytically and iterative methods such as those proposed by
Lloyd (1982) must be applied to determine the optimal quantizer.

Reciprocal distribution of probability In the particular case where
p(z) is the reciprocal probability density function

p(z) = { k(/f f ;; (B.27)

where k is the normalizing constant, Equation B.26 reduces to

Tl % 9 N1
€T Ti-1
and this shows that the unique optimal quantizer in this case is the
logarithmic quantizer satisfying the conditions

1
“‘—“:3:(2> i=1,...,N—1 (B.28)
Zi Lnin
T1 = Tmin s TN = Tmaz
r:% i=1,.. N-1 (B.29)

where (3 is the base of the quantizer. Note that the quantizer is named
after the encoder ¢ : X — Z, which is based on a logarithmic function,
whereas the decoder d, : Z — Q is an exponential function d,(-) that can
be written as follows

i—1

. i1 Tmaz \ ¥ . I
i = (1) = Tin - 07 = Tppin - | —— i=1,...,N (B.30)

Lnin

An example of this kind of decoder function is shown in Figure B.4.

Remark In communication engineering a composite quantizer that is
called logarithmic is obtained by first subjecting the input signal x to
the action of a device known as compressor that — disregarding scal-
ing factors - gives as output a signal with amplitude y = logs(z + 1),
and then quantizing uniformly y (Panter and Dite, 1951; Smith, 1957;
Jayant and Noll, 1984). It is easily verified that the thresholds of the
composite quantizer do not follow the distribution prescribed by Equa-
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Figure B.4: The graph of the exponential decoder corresponding to the logarith-

mic quantization of the interval [Z,,in, Tmaez] = [1,100] using N = 32 quantized

values with the conditions x1 = Tyin, TN = Tmaz-

tion B.29 and the distribution of the quantized values does not conform
to Equation B.28. Therefore, the composite quantizer differs from what
we have called logarithmic quantizer. It is interesting to note, however,
that for z < 1 the compressing transfer function is approximately lin-
ear, and for x > 1 it approximates y = logs v (Figure B.5). Consequently,
the composite quantizer appears as approximating the distribution of
the quantization values of a uniform quantizer for small z, and the dis-
tribution of quantization values of a logarithmic quantizer for large =z,
with a smooth transition between the two.

B.5 Optimizing for maximum error

Using the maximum error as quantization cost, the expression for the
cost is
En(9Q,C) = max e(z,q(x)) (B.31)
p‘(;)#O
Since ¢(z) = z; when z € C}, and the cells C; partition X we can rewrite
Equation B.31 as
En(Q,C) = max max e(z, x;) (B.32)
,€Q zeC;

p(x)#0
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1
1
)
]
i
X
Figure B.5: A composite quantizer used in communication engineering is based
on the use of a compressing function y = logg(x+1) (continuous curve) followed
by a uniform quantizer. The compressing function approximates a linear func-
tion (top dashed curve) for small  and a logarithmic function (bottom dashed
curve) for large x. Hence, the composite quantizer approximates the distrib-
ution of the quantization values of a uniform quantizer for small z, and the
distribution of quantization values of a logarithmic quantizer for large x.

B.5.1 Absolute error

Substituting ¢,(z, z;) = |z — z;| as ¢(z, z;) in Equation B.32 we obtain
Ema(Q,C) = max max |x — x4 (B.33)
,€Q zeC;
p(z)#0

This means that the cost of the quantization corresponds to the maxi-
mum distance determined by the quantizer between a value z € X and
the value z; = ¢(x) into which it is transformed. Assuming as given and
predefined the set Q of quantized values z;, a policy that minimizes this
distance for all the points = € X" is the by now familiar expression

Cio{reX :|v—u| <|v—ua foralj+#i, plx)#0}
i=1,...,N (B.34)

This assignment realizes thus a minimum of &,,,(Q,C) for the given Q,
although other quantizers achieving the same cost can in general exist
for the same Q. Following the arguments that led to Equation B.15 we
can infer that for each set of quantized values Q there exists a subin-
terval quantizer that minimizes &,,,(Q,C) and whose cells correspond to
subintervals C; = (t;_1,¢;] that are determined by a set 7 = {¢¢,...,ty} of
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thresholds that bisect the quantization interval [z;, z;1], according to

T+ T

t;
2

i=1,...,N—1 (B.35)
apart from ¢, = z; and ty = xy. Let us call this quantizer the subin-
terval quantizer associated with Q. The interesting consequence of the
minimality of the cost of the subinterval quantizer for a given Q is that if
there exists a quantizer achieving a cost &,,,(Q,C) for X, there certainly
exists a subinterval quantizer for X which has equivalent or better per-
formance. We can use this fact to prove that the uniform quantizer on
X realizes the unique global optimum. To this end it is sufficient to
consider that for a generic subinterval quantizer, assuming p(¢;) # 0 for
all 7, the cost corresponds to

Tiv1 — T A;

gma(Q«, C) (B36)

- i=1
(where A; = z;;1 — x;). The cost corresponds thus to the half-width of
the largest of the subintervals determined by the quantized values. In
particular, for the uniform quantizer we have

Tmaz — Tmin . _
AifAfﬁ i=1,...,N—1 (B.37)
and
A Pmaz — L
Ema(Q,0) = = = Tmaz — Tmin (B.38)

2 2(N -1)
Should there exist a quantizer achieving a smaller cost than that given
by Equation B.38, there would also exist a subinterval quantizer with
that cost, or smaller. From Equation B.36 and Equation B.38, this can
be expressed as

A T — Tmin

A
v T Tmer  Tmun B.
N2 T2 2(N —-1) (B.39)

where the left-hand side of the inequality refers to the hypothetical
subinterval quantizer that outperforms the uniform quantizer, to which
the right-hand side refers. This leads to

Tmaz — Tmi
A, < Lmax T Lmin i=1. .. N—-1 B.4
ST o (549
and finally to
N-1

i=1
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In words, all the N —1 subintervals determined by the quantized values
of the hypothetical subinterval quantizer that outperforms the uniform
quantizer must have a length which is less than % Therefore,
these subintervals cannot possibly span the interval X =[Zin, Timaz)
which they are supposed to partition. This contradicts the hypothe-
sis of the existence of a quantizer achieving a smaller cost than the
uniform one. Note that in this case — contrary to the case where the
cost is the estimated instead of the maximum error — the optimality
of the uniform quantizer is independent from the probability density
function p(z).

B.5.2 Relative error

Substituting ¢, (z, z;) = 2=%l as ¢(z,z;) in Equation B.32 we obtain

-z

|z — a4

Emr(Q,C) = max max (B.42)

7,€Q z€eC; x
p(x)#0

Using arguments similar to those just used in the absolute error case,
we can show that the subinterval quantizer defined by the bisecting
thresholds of Equation B.35 realizes the (not necessarily unique) mini-
mum cost &,,.(Q,C) for a given set of quantized values Q. For a generic
subinterval quantizer, assuming p(¢;) # 0 for all 4, it can be easily veri-
fied that the cost corresponds to

% 1 ﬁz_l
Enr( QO = o Ea T TR B (©49

with ; = % > 1. For a logarithmic quantizer (Equation B.28) we have
in particular

ﬂ;g:(%)ﬁ i=1,...,N—1 (B.44)
and
_p-1
Enr(Q,C) = RS (B.45)

We can repeat, mutatis mutandis, the arguments used to prove the
optimality of the uniform quantizer in the case of the absolute error
to prove that the logarithmic quantizer is the optimal quantizer for the
maximum relative error. Should there exist a quantizer achieving a
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smaller cost than that given by Equation B.45, there would also exist a
subinterval quantizer with that cost, or smaller. This can be expressed

as -1 _p-1
Gi+1 G+1

max (B.46)
i=1,..,N—1
where the left hand side of the inequality refers to the hypothetical
subinterval quantizer that outperforms the uniform quantizer, to which
the right hand side refers. This leads to

Bi—1 pB-1 .
< i=1,..., N -1 B.47
Gi+1 [f+1 ! T ( )
Since the % is a strictly increasing function of 5 for 5 > 1, this gives
G < i=1,...,N—1 (B.48)
and thus
= ; Trmaz
[[8<pV == (B.49)
Lmin

i=1
However, by definition we have x,,,, = 2y = Ov-12n-1 = Oyv—20n-1ZNn-2 =
cee = Hfi Il Bixy = Hf:l BiTmin, which contradicts Equation B.49 and the
hypothesis of the existence of a quantizer achieving a smaller cost than
the logarithmic one.

B.6 Uniform quantizer

It is instructive to examine the behavior of the absolute and relative
error functions or the two optimal quantizers that we have determined
above: the uniform and the logarithmic quantizer. Figure B.6 shows
the graph of the absolute error function ¢,(z) and of the relative er-
ror function ¢,(z) for a uniform quantizer. Both error functions have a
series of local maxima, one within each subinterval defined by two adja-
cent quantized values. The value of these local maxima for the absolute
error does not depend on the index i of the interval [z;, z;,1], and is given
by Equation B.38. The value of the local maxima of the relative error
depends instead on the index i, and is given by the following expression

1
max _&,(z) =
faiszi] 2i+1+2(N—1)/ (— - 1)

T
min

i=1,...,N—1 (B.50)
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Figure B.6: The graph of the absolute and relative quantization error functions
eq(x) and ,(x) of the uniform quantizer with N = 32 quantized values distrib-

uted in the interval [Zmin, Tmas] = [1,100]. Both error functions show a series of
local maxima, one within each subinterval defined by two adjacent quantized
values.

with a maximum value of

£mr(Q.0) = max =) !

= (B.51)
[Zmin,Zmas] 1+2 (N _ 1) / (M _ 1)

T
min

For N > 1 Equation B.51 is a strictly increasing function of what in
engineering parlance is called the dynamic range .4,/ %m:, of the quan-
tized interval. Figure B.7 shows the graph of the function defined by
Equation B.51 as a function of the dynamic range for various values
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of N. This figure reveals that the maximum relative quantization er-
ror of the uniform quantizer increases rapidly with 2,4, /%m:, and for
small values of N becomes unacceptable beyond moderate values of the
dynamic range.

100 100

10 10

0.1 0.1
0.01 0.01
1 2 5 10 20 50 100 200 500 1000

Kinax / Xinin

Figure B.7: The dependence of the maximum relative quantization error of
the uniform quantizer as a function of the dynamic range .,q;/%min of the
quantized interval for various values of the number N of quantized values.

In the perspective of conventional genetic representation of real pa-
rameters using binary strings, it is interesting to consider the number
of bits n necessary to keep the maximum relative quantization error
below a given limit z,.8 Considering that with n bits we can represent
N = 2" quantized values, we obtain

‘/L‘”LU"I} - . 1 ‘/L‘T’L(LIIJ 1
n(m,s,‘) = {log2 {5 (m — 1) (a — 1) + IH (B.52)

where [-] is the function that gives the smallest integer greater than
or equal to its argument. The graphs of the function defined by Equa-
tion B.52 for some values of error and interval ranges are shown in
Figure B.8.

Figure B.7 and Figure B.8 suggest that if we are concerned with
the value of the relative quantization error, the uniform quantizer is

8This is related to what in communication engineering is called the rate of the
quantizer.
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Figure B.8: The number of bits of the binary representation of a real parameter
needed to keep the relative quantization error of the uniform quantizer below
a certain limit, plotted as a_function of the dynamic range .mqz/Tmin -

adequate only if we need to represent intervals characterized by small
values of the dynamic range z,,,,/Zmin. If we need instead to represent
intervals with large values of that ratio, the behavior of the error near
xmin forces the adoption of large values of n to prevent the quantization
cost from becoming unacceptably large.

B.7 Logarithmic quantizer

Figure B.9 shows the graphs of the absolute error function ¢,(z) and
of the relative error function ¢,(z) for the logarithmic and the uniform
quantizer. The graphs of the error functions show a series of local
maxima, one within each subinterval defined by two adjacent quantized
values. The value of the local maxima of the absolute error — which
was independent from ¢ for the uniform quantizer — does depend on the
index i of the interval [z;,z;,,] in the case of the logarithmic quantizer.
This is due to the fact that the distance A; between pairs of adjacent
quantized values is not constant across the interval [2,.in, Tyas], being
equal to

Aj = Tpin - (B—1) - g1 i=1,...,N—-1 (B.53)
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Figure B.9: The graph of the absolute and relative quantization error functions
ea(z) and e,.(x) of the logarithmic quantizer (continuous line) compared with
the corresponding graphs of the uniform quantizer (dashed line) with N = 32
quantized values distributed in the interval [Zmin, maz] = [1,100].

with 3 defined by Equation B.44. The value of the local maxima of the
absolute error corresponds to 4§, with a global maximum of
1
gma(ch) = [ max Ea(l’) = §Tmm : (ﬁ - 1) . 6N72 (B54)
Contrary to the case of the uniform quantizer, the value of the lo-
cal maxima for the relative error of the logarithmic quantizer does not
depend on the index i of the interval [z;,z;41], and is given by Equa-
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tion B.45, which can be rewritten as

-1
<zm.u> _1
Enr(Q,C) = max e(r)= """ — (B.55)
[®minsTmaz] (mm”) N1 11

Tmin

For N > 1, Equation B.55 is a strictly increasing function of the dy-
namic range .../ Tmi, of the quantized interval. Figure B.10 shows the
graphs of the maximum relative error of the logarithmic and uniform
quantizer as a function of the dynamic range, for various values of N.
This figure reveals that the magnitude of the maximum relative quanti-
zation error of the logarithmic quantizer — which is optimal for this cost
criterion — increases slowly with .4, /%, With respect to the uniform
quantizer.

100 100

10

N—_—4096 0.1

0.01 0.01

1 2 5 10 20 50 100 200 500 1000

xmax /xmin

Figure B.10: The maximum relative quantization error of the logarithmic quan-
tizer (continuous line) and of the uniform quantizer (dashed line) as a function
Of Tyaz/Tmin JOr various values of the number N of quantized values. The mag-
nitude of the maximum relative quantization error of the logarithmic quantizer
remains acceptable for much larger values of the dynamic range xa./Tmin
with respect to the uniform quantizer.

Like in the case of the uniform quantizer, we can determine the
number of bits n of a binary string encoding the quantized values, re-
quired to keep the maximum relative quantization error below a given
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limit &,, which is given by the following expression

log <27naz>
e log, [ 1+ ——& (B.56)
Tmin log (irg )

L( LTmax 77.) _

The graphs of the function defined by Equation B.56 for some values
of error and interval ranges are shown in Figure B.11. The comparison
of Figure B.11 with Figure B.8 shows that the number of bits required
to achieve a given error is much smaller in the case of the logarithmic
quantizer.
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Figure B.11: The number of bits of the binary representation of a real parame-
ter needed to keep the relative quantization error of the logarithmic quantizer
below a certain limit, plotted as a function of the dynamic range ,,q;/min-

Remark I Equation B.55 for the maximum relative error could be
rewritten to accommodate the case z,,;,, = 0. The result, however, is
Enr(Q,C) = 1, independent of ,,,,. This property does not depend on
the kind of encoding used, but on the definition of the relative error
and the fact that when z,,;,, = 0 some values of = are approximated by
zo = 0. Those values obviously suffer of a 100% relative representation
error. This means that if we assume that the representation is accept-
able for our purposes only if the relative error is below a given limit
L < 1, when we select z,,;, = 0 we are actually representing, at best, a
set X = {0} U [2),:, Tmae) With 2!, = 2/ . (L) > 0, and not the interval

‘min
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Figure B.12: Due to its definition, the relative representation error equals 100%
JSor the values = > 0 that are quantized to x, = 0. This means that even when
the set of quantized values includes z, = 0, the set X (represented by the
shaded region in the figure) that is quantized with a relative error smaller than
a predefined value L < 100% has the form {0} U [],,,,,, Tymas] With 2,

Lnins min

> 0.

[0, 2mqz] since there always is at least an interval (0, z/,,,) where the ap-
proximation error is above the limit (Figure B.12). For the same reason,
when we want to represent an interval of the form [—Z.0_, Zmas, ], With
Tmaz_ > 0 and 4., > 0, the actual set that we can represent faithfully

has the form X = [~@yee , =0, JU{0} U [20,, , Trmaa, |-

Remark II So far we have considered only codes which distribute N
points z;, i € {1,...,N} across an interval [Z,in, Tmaz)s Tmin > 0, While
satisfying the constraints z; = x,;, and xy = T4, These constraints
guarantee that the representation error vanishes at the boundary of
the interval. However, it is clear that for any given maximum error L
achieved by the code in [ in, Tma:|, there are two additional intervals —
let us call them [z},,,,(L), Zmin] and [Tyaz, ),., (L)] — Where the error stays
below that limit. Therefore, if the goal of the code is only to keep the
error below a certain limit using a minimum amount of resources, it is
preferable to allow the points z; and 2y to migrate to the interior of the
interval [Z,n, Tme:) and let the thresholds ¢, and ¢y coincide with the
boundaries of the interval (Figure B.13). The optimality results derived
above for the case z; = xp;, and xy = ., can be easily extended
to this case.
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Figure B.13:  Dropping the constraints ©; = @, and ty = T;,. the quan-
tized values x; and xy of the logarithmic quantizer migrate to the interior of
the interval [z ,in, Tmas), thus producing a smaller maximum relative error with
respect to the constrained case.

Information entropy The definition of a quantizer (Q,C) entails the
association with each quantized value z; € Q of a value of probabil-
ity P, = |, ¢, p(z) dz, where p(z) is the probability density function of the
quantized variable z, and C; € C is the quantization cell associated
with z;. The information entropy of the quantized variable is defined
by H = — )", P,log P,, and is maximized when all P, are equal (Shannon,
1948; Jaynes, 2003). It is easily verified that the uniform quantizer
satisfies this maximization condition for a uniform probability distrib-
ution, since in this case we have P, = j:jf kdzr = kA, which does not
depend on i. Correspondingly, the loga;iti'lmic quantizer satisfies the

information entropy maximization condition in presence of a reciprocal
( B

x(BEL
probability distribution, since we have P, = fl( @%? )> Edo =k Ing.

B.8 Floating-point quantizer

The floating-point (FP) quantization is the most common way to repre-
sent real numbers in present-day general purpose digital computers.
It is obtained mixing a logarithmic quantizer and a uniform quantizer.
To obtain an FP quantizer we can image to define first a logarithmic
quantizer with base § > 1 and N. quantization values. According to
Equation B.30 the corresponding decoder is described by

Ti, = dl(/i’ﬁ) = Tmin * ﬁiail 1 = 17 ceey N@ (B.57)
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Now we define a uniform quantizer with V,, + 1 quantization values for
each interval [z;,, §z;,], whose decoder corresponds to
Bxi, — i,

T, = du(/i’m) = Xj, + (im - 1) . T =

. (1 +(im—1)- Bz\; 1) im=1,....Nn (B.58)

The combined action of the logarithmic and uniform quantizer gener-

ates the FP quantizer, whose decoder takes as argument the pair of
indexes (i.,,) and corresponds to

-1
Lig iy, = dFP(Z-Esim) = Tmin * H1671 (1 + (Zm - 1) . ﬁN )

ie=1,...,N. , im=1,....Nn (B.59)

Note that although we define a uniform quantizer with N, + 1 values
for each interval [z;,, Sz, |, the (N,, + 1)-th value is indexed by the pair
(i + 1,1) and not by the pair (i, N,, + 1). Therefore, we need to use only
N,, values of the index i,,, and the total number of quantized values
corresponds to N = N, - N,,. An example of FP decoder is shown in
Figure B.14. In this case, given N, N,,, Zmin, and z,,,., the value of 5 is
obtained solving the equation

Tomaz = Lmin <1 + (8- 1)M> BNt (B.60)
NTTL
although, typically, the value of j is preassigned rather than calculated.
Figure B.15 shows the graph of the relative error ¢,(z) function for
an FP quantizer. The distance A; between pairs of adjacent quantized
values is not constant across the interval [Zin, Tma:|, DUt is obviously
constant within each uniformly quantized subinterval [z;, , z;,+1], with

B-1)

ie—1
AiF = Tmin * /3 N : ;
Np

ie=1,...,N,—1 (B.61)

Aig

The value of the local maxima of the absolute error corresponds to =<,

with a global maximum of

En(0.C) = max eofz) =z - g2 B

[@min,Tmaz] 2N,

(B.62)
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Figure B.14: The graph of the floating-point (FP) decoder corresponding to the
FP quantization of the interval [Z,,in, Tmasz) = [1,100] using N = 32 quantized
values generated by N, = 4 exponent elements and N,, = 8 mantissa elements.
Here the value of the base (3 is determined as a consequence of the values of
the other parameters of the FP quantization, even if in practice the value of 3
is preassigned and the value of some other parameter is computed instead.

The global maximum of the relative error is equal to

Emr(Q,C) = max e.(x) !

= L 2Na B.63
[@min,Tmax] 1+ % ( )

The graph of the relative error for the FP quantizer shown in Fig-
ure B.15 is similar to the corresponding graph for the logarithmic de-
coder shown in Figure B.9. Given the greater complexity of the FP
decoder relatively to the logarithmic decoder, there seems to be no rea-
son to opt for the latter. The reason for defining and using an FP quan-
tizer resides in the difficulty of implementing operations of addition and
subtraction with a fully logarithmic representation. On the other hand,
multiplication, division, and root extraction are greatly simplified, and
this has prompted many efforts aimed at the development of efficient
algorithms with the corresponding circuit implementations for logarith-
mic arithmetic (Anuta et al., 1996; Arnold et al., 1990, 1992, 1998;
Barlow and Bareiss, 1985; Coleman, 1995; Coleman and Kadlec, 2000;
Coleman et al., 2000; Swartzlander and Alexopoulos, 1975; Volkov and
Pakshin, 1992; Yu and Lewis, 1991).
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Figure B.15: The graph of the relative quantization error function ,(z) of the
FP quantizer with N, = 4 and N,,, = 8 in the interval [,,in. Tmaz] = [1,100]. The
action of the linear part of the quantizer makes the local maxima vary within
each subinterval, whereas that of the logarithmic part of the quantizer makes
the sequence of maxima replicate in the different subintervals.

Choosing the base § of the FP quantizer properly, it is possible to
obtain a representation that does not seriously compromise the error
performances of the logarithmic quantizer while allowing an easy im-
plementation of all the arithmetic operations. On a binary computer the
choice is typically § = 2. This corresponds to uniformly quantize inter-
vals with a dynamic range %,,a:/%Tmin = 2. As Figure B.16 shows, with
this small dynamic range, the performance of the uniform quantizer
is comparable to that of the logarithmic quantizer. For example, the
IEEE single precision format, has g = 2, N, = 2% = 28, N,, = 2"m = 223,
and 7,,;, = 27 = 27?7, which corresponds to z,,;, ~ 5.877 - 107, and
gives Ty =~ 6.806 - 103, &,,.(Q,C)pp ~ 5.960 - 108, For comparison, a
logarithmic code using the same total number of quantized values on
the same interval would have &,,,(Q,C),, ~ 4.131 - 1078, which corre-
sponds to a ratio &,,(Q,C)rp/Enr(Q,C)ey ~ 1.443.° In view of this not
dramatic difference in error performance, and considering the advan-
tages in arithmetic manipulation, the adoption of FP as the standard

9In general, lmy,, o0 (Emr(2,C) rp/Emr(Q,C)iog) = (6 — 1)/ In(3), where (3 is the base
of the FP quantizer. The result given in the text for the case of the IEEE single
precision FP format (for which $ = 2) corresponds to an approximation of the limit
value 1/1n(2).
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Figure B.16:  The detail of the maximum relative quantization error of the
logarithmic quantizer (continuous line) and of the uniform quantizer (dashed
line) as a_function of «,q./ Tmin for various values of the number N of quantized
values. Comparing these graphs with those of Figure B.10 shows that in this
limited interval of dynamic ranges ma./Tmin. the performance of the uniform
quantizer is comparable to that of the (optimal) logarithmic quantizer.

representation of real values on digital computers is understandable.
If, however, as is often the case in evolutionary computation, there is
the need to efficiently represent many real parameters spanning a large
dynamic range, with the possibility to convert them to FP prior to their
algebraic manipulation, the logarithmic quantization is a good alterna-
tive, and becomes a necessity if a custom genetic encoding is required.

B.9 Discussion

The uniform quantizer is commonly assumed as the default quantizer
in evolutionary experiments, and is indeed the optimal quantizer if the
cost criterion is the maximum absolute error, or the expected absolute
error in presence of a uniform probability density function. However,
the analysis of the previous sections has shown that if the cost criterion
is the maximum relative error, or the expected relative error in pres-
ence of a reciprocal probability density function, the optimal choice is
the logarithmic quantizer. The pervasiveness of the floating-point rep-
resentation of real numbers, and the example of the standard series
of electric resistors mentioned before testify that the logarithmic and
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quasi-logarithmic quantization is of great practical importance. Fig-
ure B.17 shows that the distribution of the multipliers of the E12 stan-
dard series (Equation B.2) approximates well that of the values of a
logarithmic quantizer with 8 = 1012 ~ 1.21.

1.01.5 2.2 3.3 4.7 6.8

e
O O~ N

=N WP oo N

1.218 27 3.9 5.6 8.2

Figure B.17: The distribution of the resistance values of the E12 standardized
resistor series within each decade of resistance value is shown here to follow
closely the graph of the logarithmic function corresponding to the encoder of a
logarithmic quantizer with 8 = 107z ~ 1.21.

Disregarding the special case of ad-hoc quantizers that are neither
uniform nor logarithmic, we can consider the criteria that can deter-
mine the choice between these two latter types of quantizer in setting
up an evolutionary experiment. In some cases — like that of the resis-
tors in electronic design — the choice is suggested by the evidence of
the existing design practice, and the optimality criterion can be used
in the reverse direction to reveal the kind of error that is presumably
relevant to the problem at hand (in the case of electrical resistance val-
ues in analog electronic circuits, the relative error) and, possibly, the
probability distribution of the values that are subject to quantization
(for electrical resistance values, a reciprocal distribution). In most cir-
cumstances, however, this kind of empirical evidence is not available.
Hence, we must proceed by asking first what kind of error appears as
most relevant with respect to the quantity that is quantized as a conse-
quence of its genetic encoding. We have already argued in Section B.2
that the preeminence of the relative error is typically a characteris-
tic of quantities that appear as multiplying or dividing factors, whereas

28D MARCH 2005



260 Appendix B. Evolutionary quantization

quantities appearing in sums and subtractions are best associated with
an absolute error criterion of cost.

When the expected error rather than the maximum absolute or rel-
ative error can be assumed as the quantization cost criterion (see com-
ments in Section B.2 on the assessment of this issue), it is necessary
to verify also if the probability density function can be assumed as
uniform or reciprocal. Once again the relevance of multiplication or
summation operations can guide the choice. If no other information
about the probability distribution of a variable is known except that is
must be translation-invariant, then invariance considerations lead to
the choice of a uniform probability density function. If, on the other
hand, the only information available is that of scale-invariance, in-
variance considerations lead to the choice of the reciprocal probability
density function (Jeffreys, 1961; Jaynes, 2003). Note that this must
not be interpreted as saying that our information about the invariance
properties determines the actual frequency of the quantity values as
uniform or reciprocal, but that these assignments of the probability
density function are the best guesses that we can make, based on the
information available.

Another useful information for the estimation of the probability dis-
tribution of a variable is the knowledge that it is the result of the re-
peated summation and subtraction of many factors, since in this case
we know that, considering each term as a random variable, our best
guess for the probability distribution of the result is a Gaussian with a
large variance, which approximates a uniform distribution. If the vari-
able is instead the result of repeated multiplications and divisions, it is
the probability of the logarithm of the results that approximates a uni-
form distribution, and, therefore, the probability of the result tends to
a reciprocal distribution (Pietronero et al., 2001). For example, it is an
observed fact that the probability density distribution of the first digit
of numbers from many kinds of numerical tables is not uniform but
tends to follow closely a reciprocal density distribution (Raimi, 1976;
Pietronero et al.,, 2001). This fact - known as Benford’s law - was
attributed by Hamming (1970) to the effect of repeated application of
arithmetic operations, especially multiplications and divisions.

Finally, in the context of natural evolution, the optimality of the
logarithmic quantization in the presence of conditions that can be con-
sidered as plausible for signal encoding in biological organisms — espe-
cially in the case of sensory and actuation signals with high dynamic
range — can motivate the presence of this kind of encoding in some stage
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of biological signal processing thought of as “optimized” by evolution.

B.10 Conclusion

We have formulated and analyzed the problem of the representation
of real parameters in evolutionary algorithms as a problem of quan-
tization, and have derived some conditions for the optimality of the
uniform and logarithmic quantizer. We have given some criteria for the
assessment of the suitability of either of these quantizers. These cri-
teria can assist the experimenter in the choice of a genetic encoding
for real parameters that realizes a quantization which is adapted to
the characteristics of the represented parameters. The expected result
is a reduction of the effect of the quantization on the outcome of the
evolutionary process. In particular, the multiple connections that have
been revealed between the relevance of the multiplication for a vari-
able, the pertinence of the relative error, and the optimality of the log-
arithmic quantization, justify its extensive use within this thesis in the
context of the genetic representation of interaction strengths of analog
networks. Moreover, the signaled connections suggest the examination
of the possibility of adopting a genetic encoding realizing a logarithmic
quantization in some cases — we think in particular to the encoding of
the neuron weights in artificial neural networks — where a genetic en-
coding implementing a uniform quantization is typically adopted out of
habit rather than with deliberation.
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Appendix C

Curing SPICE

Overview

This appendix describes the code modifications that were required in order
to use SPICE as a simulation engine for the evolutionary runs described in
Chapter 4. In particular, it details how the problem of the numerous memory
leaks existing in the original SPICE code was solved.
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C.1 SPICE

SPICE (Simulation Program with Integrated Circuit Emphasis) is an
analog electronic circuit simulator developed and released in the pub-
lic domain by a group of researchers at the University of California at
Berkeley. The beginnings of the program date back to the early 1970s.
In the original batch simulation scenario, the user prepares a descrip-
tion of the circuit that must be simulated and of the kinds of analysis
required. This description is constituted by a series of lines of text
complying with a suitably defined SPICE syntax (for the details see the
SPICE User’s Manual (Quarles et al., 1989), or (Vladimirescu, 1994)).
Since originally the description consisted of a deck of punched cards,
the input file containing the description is usually called the “SPICE
deck”. To use SPICE the user submits a SPICE deck to the program
and obtains an output file with the results of the analysis performed
by the program.!

C.2 SPICE for evolution and optimization

The first two versions of SPICE — SPICE1 and SPICE2 - were written in
FORTRAN and were especially targeted to the batch modality of sim-
ulation. At the beginning of the 1980s SPICE was partially ported to
the C programming language and a simple interactive interface was
added to the simulation environment. This porting effort resulted in
the realization of the last release of the program - SPICES3 - from the
part of the group of its creators. Since many bugs were found in the
first release of SPICE3, a series of patched version followed, up to the
version 3f4, which is the last official version released in the public do-
main. SPICE3f4 is the version used as a starting point for the electronic
circuit simulation code used in this thesis.

Like almost all complex software systems, SPICE3f4 is not exempt
from bugs and fragments of unpolished code. In particular, the pro-
gram is plagued by the presence of innumerable operations of mem-
ory allocation that are not matched by the corresponding operations of
memory release that should normally be invoked once the memory is
no longer used. This produces what in the jargon of computer science
is called a “memory leak” and corresponds to the presence of a certain
amount of no longer accessible physical memory during the course of

!Appendix D shows some examples of SPICE decks.
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the execution of the program. Inspection of the SPICE source code re-
vealed that most, if not all, of these memory leaks is produced in the
initial phase of the program execution, where the conversion the input
deck into the internal matrix representation of the circuit is performed.
This means that in the typical one-shot simulation scenario the pres-
ence of the memory leaks does not pose a serious obstacle to the use of
SPICES3, since the program reads the input deck only once and then, af-
ter the execution of the required analyses, terminates releasing all the
program memory (including the leaked parts) to the operating system.

In the context of an evolutionary system or of an optimization process,
however, the presence of this kind of memory leak is not acceptable,
since a large number of circuits must be simulated without terminat-
ing the program. Given that the simulation of each circuit requires the
processing of an input deck, this would result in a progressive and po-
tentially unbounded growth of the amount of leaked memory, leading
eventually to the abnormal termination of the program. This means
that a preliminary step for the use of SPICE3 as circuit simulation en-
gine in our evolutionary system is the elimination of the memory leaks.

The inspection of the SPICE3f4 source code and some preliminary
attempt at tracing and correcting the leaks one by one revealed the in-
tricacy of this low-level approach and suggested the devisement of a
higher level remedy. The solution eventually adopted is based on the
supervisory control of the SPICE code by means of some lines of C++
code that, during a SPICE run, intercept all the memory management
calls and build a table of pointers to the allocated memory. In this
way, at the end of each circuit simulation the table can be used by the
supervisory code to release the memory left unallocated by SPICE. Fig-
ure C.1 shows the memory management statistics generated by tracing
the operations executed on the allocation table as a consequence of the
intercepted memory management operations invoked by SPICE while
simulating a circuit. The figure reveals that most of the memory ex-
plicitly allocated by SPICE during the simulation was never released by
the original code, a phenomenon that was consistently observed in the
simulation executed with the memory management tracing active. The
use of the supervisory code solved completely the memory leak prob-
lem. Moreover, the increase in computational cost imposed on each
simulation run by the presence of the additional supervisory code was
found to be typically negligible when compared even only with the op-
eration of translation of the input deck into the internal representation
of the circuit.
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STDOUT

Number of “malloc” calls : 1012

Number of “calloc” calls : 0

Number of “realloc” calls: 127

Number of “free” calls : 214

Number of memory leaks : 798

Max size of set of allocated pointers: 804

Max size of allocated memory: 41578 bytes

Size of originally leaked memory: 41346 bytes

Time spent managing the set of pointers (s): < 0.01
Duration of the SPICE run (s): 0.06

STDERR

CP_OUT

CP_ERR

RAWFILE

Output values:
sweep voltage: 2.00e+00 2.01e+00
vl branch current: -1.25e-09 -1.19e-09

Figure C.1: Memory management statistics of the SPICE run for the deck of the
Gaussian function generator circuit shown in Table D.3 on page 272. The lines
boldface reveal that the original SPICE code did not release most of the mem-
ory allocated during the simulation of this circuit. If not cured, this behavior
would result in an unbounded growth of the memory occupation during an evo-
lutionary run using the original SPICE code as simulation engine. This memory
lealc phenomenon was observed in the simulation of all the circuits whose al-
location statistics was analyzed. The presence of lines referring to STDERR,
CP_OUT, CP_ERR, and RAWFILE streams along with the STDOUT stream used to
collect the statistics, signals the fact that all the I/O and file streams used by
the original C code of SPICE were redirected to C++ standard template library
string streams. The resolution of the timers used to generate the timing data is
0.01 s.

Appendix C. Curing SPICE
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Another modification that is required to efficiently use SPICE as a
simulation engine in an evolutionary and optimization context is the
redirection to the physical memory of all the input and output activities
of the program targeted at files resident on disk. This was obtained by
intercepting all the original I/O calls referring to disk files (and also
to the standard I/O streams) and redirecting them to C++ standard
template library string streams resident in the physical memory.
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Appendix D

SPICE decks

Overview

This appendix contains the SPICE input files (“SPICE decks”) of the evolved
circuits whose schematic is shown in Chapter 4.
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* Voltage reference problem Q5 16 17 18 BC846B
* Q6 19 11 12 BC846B
.dc Vc 4 6 0.1 Q7 22 23 24 BCB846B
.save dc V(3) *

.temp 0 25 50 75 100 R1 0 16 2.371E+05
* R2 0 17 1.778E+02
* R3 0 24 7.499E+05
.options R4 2 3 1.909E+03
+ABSTOL=10.0E-09 RS 2 5 3.750E+05
+VNTOL=100.E-06 R6 2 6 5.623E+05
+RELTOL=1.00E-04 R7 2 15 2.699E+05
+GMIN=1.00E-10 R8 2 18 7.366E+04
+ITL1=500 R9 3 6 5.623E+05
+ITL2=200 R10 3 14 9.955E+02
+ITL4=50 R11 3 15 5.623E+05
+ITL6=0 R12 3 18 1.724E+02
+METHOD=TRAP R13 4 14 6.817E+02
+MAXORD=2 R14 4 15 3.065E+04
* R15 4 16 1.000E+06
.MODEL BC846B NPN R16 4 22 5.620E+01
+IS=1.822e-14 NF=0.9932 R17 5 11 9.529E+03
+ISE=2.894e-16 NE=1.4 R18 5 23 4.217E+05
+BF=324.4 IKF=0.109 VAF=82 R19 6 12 1.302E+03
+NR=0.9931 ISC=9.982e-12 R20 6 15 2.812E+05
+NC=1.763 BR=8.29 IKR=0.09 R21 6 19 4.217E+05
+VAR=17.9 RB=10 IRB=5e-06 R22 6 23 7.499E+05
+RBM=5 RE=0.649 RC=0.7014 R23 6 24 4.800E+02
+XTB=0 EG=1.11 XTI=3 R24 11 16 1.000E+06
+CJE=1.244e-11 VJE=0.7579 R25 11 23 2.699E+03
+MJE=0.3656 TF=4.908e-10 R26 12 14 5.623E+05
+XTF=9.51 VIF=2.927 R27 12 15 1.000E+06
+ITF=0.3131 PTF=0 R28 12 17 7.499E+05
+CJC=3.347e-12 VJC=0.5463 R29 12 22 1.000E+06
+MJC=0.391 XCJC=0.6193 R30 12 23 2.812E+05
+TR=9e-08 CJS=0 VJS=0.75 R31 12 24 1.581E+05
+MJS=0.333 FC=0.979 R32 14 15 7.499E+05
* R33 14 17 4.217E+05
* R34 14 18 1.778E+02
Ve 1 0 10 R35 14 22 7.499E+05
Rc 1 2 1k R36 15 16 7.499E+04
R1 0 3 10k R37 15 22 1.000E+05
* R38 16 22 7.499E+05
Ql 4 5 6 BC846B R39 16 24 5.623E+05
Q2 4 5 6 BCB846B R40 17 24 2.371E+02
Q3 10 11 12 BC846B *

04 13 14 15 BC846B Lend

Table D.1: SPICE deck of the evolved voltage reference circuit shown in Fig-
ure 4.25 on page 163
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* Temperature sensor problem

*

.op

.save dc V(3)

.step temp 0 100 5

*

.options

+ABSTOL=10.0E-09 VNTOL=100.E-06
+RELTOL=1.00E-04 GMIN=1.00E-10
+ITL1=500 ITL2=200 ITL4=50
+ITL6=0 METHOD=TRAP MAXORD=2

*

.MODEL BC846B NPN

+IS=1.822e-14 NF=0.9932
+ISE=2.894e-16 NE=1.4 BF=324.4
+IKF=0.109 VAF=82 NR=0.9931
+ISC=9.982e-12 NC=1.763 BR=8.29
+IKR=0.09 VAR=17.9 RB=10
+IRB=5e-06 RBM=5 RE=0.649
+RC=0.7014 XTB=0 EG=1.11

+XTI=3 CJE=1.244e-11 VJE=0.7579
+MJE=0.3656 TF=4.908e-10
+XTF=9.51 VTF=2.927 ITF=0.3131
+PTF=0 CJC=3.347e-12 VJC=0.5463
+MJC=0.391 XCJC=0.6193 TR=9e-08
+CJs=0 VvJs=0.75 MJIS=0.333
+FC=0.979

*

.MODEL BC856B PNP

+IS=2.014e-14 NF=0.9974
+ISE=6.578e-15 NE=1.45 BF=315.3
+IKF=0.079 VAF=39.15 NR=0.9952
+ISC=1.633e-14 NC=1.15 BR=8.68
+IKR=0.09 VAR=9.5 RB=10
+IRB=5e-06 RBM=5 RE=0.663
+RC=0.718 XTB=0 EG=1.11 XTI=3
+CJE=1.135e-11 VJE=0.7071
+MJE=0.3808 TF=6.546e-10
+XTF=5.387 VIF=6.245 ITF=0.2108
+PTF=0 CJC=6.395e-12 VJC=0.4951
+MJC=0.44 XCJC=0.6288 TR=5.5e-08
+CJS=0 VJs=0.75 MJIS=0.333
+FC=0.9059

*

Vs 4 0 -5
Ve 1 0 15
R1 0 3 10k
Rc 1 2 1k
Rs 4 5 1k

*
Q11 36 37 38 BC856B
Q10 33 34 35 BC856B

09
08
01
02
03
04
05
Q7

R1

R2

R3

R4

R5

R6

R7

R11
R15
R16
R17
R18
R19
R20
R12
R13
R9

R10
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30

30
27

12
15
18
24

OUUIUUWWWWWWWNNDNNDNDNDN

W WNMNDNNDMNDNDNDNDNDNDEREE PP PP
GO WWOoO U U OO WOWOWOU WWwNN O W

32
29

11
14
17
20
26

AR WRE 9P NOdYdFR 9P PRS0 O 0N W O 0NN PR W WS PO

BC856B
BC856B
BC846B
BC846B
BC846B
BC846B
BC846B
BC856B

.623E+05
.217E+05
.778E+02
.217E+05
.162E+05
.000E+06
.162E+05
.000E+06
.371E+03
.217E+05
.499E+05
.334E+02
.499E+05
.217E+05
.162E+05
.499E+05
.125E+05
.623E+05
.778E+05
.499E+05
.499E+05
.778E+05
.623E+05
.623E+05
.217E+05
.334E+05
.217E+05
.778E+05
.000E+05
.499E+04
.000E+06
.499E+05
.499E+05
.371E+05
.000E+02
.499E+05
.000E+06
.162E+05
.000E+06
.499E+05

Table D.2: SPICE deck of the evolved termperature sensing circuit shown in

Figure 4.32 on page 171
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* Gaussian function problem
*

*

.dc Ve 2 3 0.01

.save dc I(V1)

*

*

.options

+ABSTOL=10.0E-09
+VNTOL=100.E-06
+RELTOL=1.00E-04
+GMIN=1.00E-10

+ITL1=500

+ITL2=200

+ITL4=50

+ITL6=0

+METHOD=TRAP

+MAXORD=2

*

.MODEL NMOS_VAR_CH_W NMOS
.MODEL PMOS_VAR_CH_W PMOS

< <o o
=g a a
[ R N e
o O N O
N O =

*

*

M1 56 70
+NMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M2 8 9 10 O
+NMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M3 11 12 13 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M4 14 15 16 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

Table D.3:

M5 17 18 19 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M6 20 21 22 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M7 23 24 25 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

M8 26 27 28 4
+PMOS_VAR_CH_W
+L=1.000E-05
+W=1.000E-05

*

R1 0 14 7.499E+05
R2 0 20 1.000E+06
R3 2 4 1.000E+03
R6 2 15 5.623E+05
R4 2 20 2.371E+05
R5 2 24 5.623E+05
R8 3 12 1.000E+06
R9 3 21 1.334E+05
R10 3 27 7.499E+05
R7 4 19 7.499E+05
R11 5 8 1.000E+06
R12 6 12 4.217E+05
R13 7 19 1.334E+05
R14 8 21 1.000E+06
R26 9 0 1.000E+06
R15 10 17 3.162E+03
R16 11 18 4.217E+02
R17 11 26 7.499E+01
R18 13 18 4.217E+05
R19 13 28 1.000E+06
R20 14 17 7.499E+02
R21 16 21 1.000E+06
R22 18 22 7.499E+02
R23 19 25 3.162E+05
R24 20 28 1.000E+06
R25 21 23 7.499E+05
*

.end

SPICE deck of the evolved Gaussian function generator circuit
shown in Figure 4.39 on page 178
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Timings

Overview

This appendix gives some information about the actual evolution times for
the examples of analog network evolution presented in Chapter 4.
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time (s)
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Figure E.1: The timings of evolution of the voltage reference circuit reported
in Figure 4.23 on page 160 (Experiment 11) and of the XOR function neural
network reported in Figure 4.43 on page 183 (Experiment 14). The curves
refer to the averages calculated over the 25 repetition of the experiment, of the
population averages of the time required for the decoding of the genome, and
the time required to simulate the decoded analog network. The evolutions were
run on a PC with a Pentium 4 microprocessor clocked at 2.4 GHz.

28D MARCH 2005



Bibliography

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland, New York, 4th edition, 2002.

E. Alm and A.P. Arkin. Biological networks. Current Opinion in Structural
Biology, 13(2):193-202, 2003.

M.A. Anuta, D.W. Lozier, and P.R. Turner. The MasPar MP-1 as a computer
arithmetic laborator. J. Res. Natl. Inst. Stand. Technol., 101(2):165-174,
1996.

M.G. Arnold, T.A. Bailey, J.R. Cowles, and J.J. Cupal. Redundant logarithmic
arithmetic. IEEE Trans. Comput., 39(8):1077-1086, August 1990.

M.G. Arnold, T.A. Bailey, J.R. Cowles, and M.D. Winkel. Applying features
of IEEE 754 to sign/logarithm arithmetic. IEEE Trans. Comput., 41(8):
1040-1050, August 1992.

M.G. Arnold, T.A. Bailey, J.R. Cowles, and M.D. Winkel. Arithmetic co-
transformations in the real and complex logarithmic number systems.
IEEE Trans. Comput., 47(7):777-7860, 1998.

J.C. Astor and C. Adami. A developmental model for the evolution of artificial
neural networks. Artificial Life, 6(3):189-218, 2000.

J.-P. Aubin. Elements of viability theory for animat design. In J.-A. Meyer
et al., editors, From Animals to Animats 6: Proceedings of the Sixth Interna-
tional Conference on Simulation of Adaptive Behavior, pages 13-22, Boston,
MA, 2000. MIT Press.

W. Banzhaf. Artificial regulatory networks and genetic programming. In
R.L. Riolo and B. Worzel, editors, Genetic Programming Theory and Practice,
pages 43-62. Kluwer, Boston, MA, 2003.

A.-L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell’'s
functional organization. Nature Reviews Genetics, 5(2):101-113, February
2004.

J.L. Barlow and E.H. Bareiss. On roundoff error distribution in floating point
and logarithmic arithmetic. Computing, 34:325-347, 1985.

G Bateson. Mind and Nature. Fontana, London, 1979.

T. Back, editor. Evolutionary Algorithms in Theory and Practice. ~Oxford
University Press, Oxford, 1996.



276 Bibliography

T. Back, D.B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation
1: Basic Algorithms and Operators. Institute of Physics, Bristol, 2000a.

T. Back, D.B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 2:
Advanced Algorithms and Operators. Institute of Physics, Bristol, 2000b.

R.D. Beer. On the dynamics of small continuous-time recurrent neural net-
works. Adaptive Behavior, 3(4):469-509, 1995.

R.K. Belew. Interposing an ontogenic model between genetic algorithms and
neural networks. In S.J. Hanson, J.D. Cowan, and C.L. Giles, editors,
Advances in Neural Information Processing, NIPS5, pages 99-106. Morgan
Kaufmann, San Mateo, CA, 1993.

R. Bellman. Some vistas of modern mathematics. University of Kentucky
Press, 1968.

P.J. Bentley. Evolving fractal gene regulatory networks for robot control. In
W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Zieglre, editors, Pro-
ceedings of the European Conference on Artificial Life, ECAL 2003, volume
2801 of LNAI pages 753-762, Berlin, 2003. Springer.

P.J. Bentley. Fractal proteins. Genetic Programming and Evolvable Machines,
5(1):71-101, 2004.

U.S. Bhalla. Understanding complex signaling networks through models
and metaphors. Progress in Biophysics and Molecular Biology, 81(1):45-65,
2003.

E.JW. Boers and I.G. Sprinkhuizen-Kuyper. Combining biological
metaphors. In M. Patel, V. Honavar, and K. Balakrishnan, editors, Ad-
vances in the Evolutionary Synthesis of Intelligent Agents, pages 153-183.
MIT Press, Cambridge, MA, 2001.

J.C. Bongard. Evolving modular genetic regulatory networks. In Proceedings
of the IEEE 2002 Congress on Evolutionary Computation, CEC2002, pages
1872-1877, Piscataway, NJ, 2002. IEEE Press.

J.T. Bonner. The Evolution of Complexity by Means of Natural Selection.
Princeton University Press, Princeton, NJ, 1988.

J.M. Bower and H. Bolouri, editors. Computational modeling of genetic and
biochemical networks. MIT Press, Cambridge, MA, 2001.

R.N. Brandon. Adaptation and Environment. Princeton University Press,
Princeton, NJ, 1990.

D. Bray. Protein molecules as computational elements in living cells. Nature,
376:307-312, 27 July 1995.

R. Brooks. The relationship between matter and life. Nature, 409:409-411,
2001a.

28D MARCH 2005



Bibliography 277

R. Brooks. Steps towards living machines. In T. Gomi, editor, Evolutionary
Robotics: : From Intelligent Robotics to Artificial Life, volume 2217 of LNCS,
pages 72-93, Berlin, 2001b. Springer.

A. Cangelosi, D. Parisi, and S. Nolfi. Cell division and migration in a ‘genotype’
for neural networks. Network: Computation in Neural Systems, 5(4):497—-
515, November 1994.

J.N. Coleman. Simplification of table structure in logarithmic arithmetic.
Electronics Letters, 31(22):1095-1096, 1995.

J.N. Coleman and J. Kadlec. Extended precision logarithmic arithmetic. In
Proceedings of the 34th Asilomar IEEE Conference on Signal, Systems and
Computers, pages 124-129, 2000.

J.N. Coleman, Chester E.I., C.I. Softley, and J. Kadlec. Arithmetic on the eu-
ropean logarithmic processor. IEEE Trans. Comput., 49(7):702-715, 2000.

M. Conrad. Information processing in molecular systems. Cuwrr. Modern Biol.,
5:1-14, 1972.

M. Conrad. The price of programmability. In R. Herken, editor, The Universal

Turing Machine: A Half Century Survey. Kammer and Unverzagt Verlag,
Hamburg, 1988.

M. Conrad. The geometry of evolution. Biosystems, 24:61-81, 1990.

M. Conrad. Molecular and evolutionary computation: the tug of war between
context freedom and context sensitivity. Biosystems, 52:99-110, 1999.

M.J. Cooke. Semiconductor Devices. Prentice Hall, New York, 1990.

R. Courant and F. John. Introduction to Calculus and Analysis. Volume II.
Springer, New York, 1989.

F.A.B. Coutinho, L.F. Lopez, and E. Massad. Comment on "The distribution
of composite measurements: How to be certain of the uncertainties in what
we measure," by M. P. Silverman, W. Strange, and T. C. Lipscombe [Am.
J. Phys. 72 (8), 1068-1081 (2004)]. Am. J. Phys., 72(12):1530, December
2004.

T.E. Creighton. Proteins: Structures and Molecular Properties. W.H. Freeman,
New York, 2nd edition, 1993.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, Sin-
gapore, 2002.

M. Crochemore, C. Hancart, , and T. Lecroq. Algorithmique du texte. Vuibert,
Paris, 2001.

L.J. Croft, M.J. Lercher, M.J. Gagen, and J.S. Mattick. Is prokaryotic com-
plexity limited by accelerated growth in regulatory overhead? Genome
Biology, 5(1), 2003.

280 MARCH 2005



278 Bibliography

C. Darwin. On the origin of species by means of natural selection, or The
preservation of favoured races in the struggle for life. ~Murray, London,
1859.

E.D. de Jong, R.A. Watson, and J.B. Pollack. Reducing bloat and promot-
ing diversity using multi-objective methods. In L. Spector et al., editors,
GECCO 2001, pages 11-18, San Francisco, CA, 2001. Morgan Kaufmann.

K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
New York, 2001.

F. Dellaert and R.D. Beer. Toward an evolvable model of development for
autonomous agent synthesis. In R. Brooks and P. Maes, editors, Artificial
Life IV, Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems, pages 246-257, Cambridge, MA, 1994.
MIT Press.

F. Dellaert and R.D. Beer. A developmental model for the evolution of com-
plete autonomous agents. In P. Maes, M.J. Mataric, J.-A. Meyer, J. Pol-
lack, and S.W. Wilson, editors, From Animals to Animats IV, pages 393-401,
Cambridge, MA, 1996. MIT Press.

B. Edmonds. What is complexity? - the philosophy of complexity per se with
application to some examples in evolution. In F. Heylighen and D. Aerts,
editors, The Evolution of Complexity, pages 1-16. Kluwer, Dordrecht, 1999.

P. Eggenberger. Cell interactions as a control tool of developmental processes
for evolutionary robotics. In P. Maes, M.J. Mataric, J.-A. Meyer, J. Pol-
lack, and S.W. Wilson, editors, From Animals to Animats IV, Cambridge,
MA, 1996. MIT Press.

P. Eggenberger. Creation of neural networks based on developmental and
evolutionary principles. In W. Gerstner, A. Germond, M. Hasler, and J.-
D. Nicoud, editors, Proceedings of the International Conference on Artificial
Neural Networks, ICANN’97, Lausanne, Switzerland, October 8-10, 1997,
volume 1327 of LNCS, pages 337-342, Berlin, 1997a. Springer.

P. Eggenberger. Evolving morphologies of simulated 3d organisms based
on differential gene expression. In P. Husbands and I. Harvey, editors,
Proceedings of the 4th European Conference on Artificial Life, ECAL97, pages
205-213, Cambridge, MA, 1997b. MIT Press.

P. Eggenberger. Combining developmental processes and their physics in an
artificial evolutionary system to evolve shapes. In P.J. Bentley S. Kumar,
editor, On Growth, Form and Computers, pages 302-318. Academic Press,
London, 2003.

P. Eggenberger. Comparing direct and developmental encoding schemes in
artificial evolution: A case study in evolving lens shapes. In P. Maes, M.J.
Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson, editors, Proceedings of
the Congress on Evolutionary Computation, CEC 2004. IEEE Press, 2004.

28D MARCH 2005



Bibliography 279

P. Eggenberger, G. Gomez, and R. Pfeifer. Evolving the morphology of a neural
network for controlling a foveating retina — and its test on a real robot. In
R.K. Standish, M.A. Bedau, and H.A. Abbass, editors, Artificial Life VIII,
pages 243-251, Cambridge, MA, 2002. MIT Press.

A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,
Berlin, 2003.

D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile
robot. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 26(3):
396-407, 1996.

D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, 2md edition, 2000.

W. Fontana and P. Schuster. Continuity in evolution: On the nature of
transitions. Science, 280:1451-1455, May 1998a.

W. Fontana and P. Schuster. Shaping space: the possible and the attainable
in RNA genotype-phenotype mapping. J. theor. Biol.,, 194:491-515, 1998b.

J. Gall. Systemantics: The Underground Text of Systems Lore. The General
Systemantics Press, Ann Arbor, MI, 2nd edition, 1986.

N. Geard and J. Wiles. Structure and dynamics of a gene network model
incorporating small RNAs. In R. Sarker, R. Reynolds, H. Abbass, K.-C.
Tan, R. McKay, D. Essam, and T. Gedeon, editors, Proceedings of the 2003
Congress on Evolutionary Computation, CEC2003, pages 199-206, Piscat-
away, NJ, 2003. IEEE Press.

D.T. Gillespie. A theorem for physicists in the theory of random variables.
Am. J. Phys., 51(6):520-533, June 1983.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989.

D.E. Goldberg. The Design of Innovation. Kluwer, Boston, MA, 2002.

D.J. Goodman and A. Gersho. Theory of an adaptive quantizer. IEEE Trans-
actions on Communications, 22(8):1037-1045, August 1974.

D. Graur and W.-H. Li. Fundamentals of Molecular Evolution. Sinauer Asso-
ciates, Sunderland, MA, 2nd edition, 2000.

R.M. Gray and D.L. Neuhoff. Quantization. IEEE Transactions on Information
Theory, 44(6):2325-2383, October 1998.

M. Grene. Hierarchies in biology. American Scientist, 75:504-510,
September-October 1987.

J.B. Grimbleby. Automatic analogue network synthesis using genetic algo-
rithms. In Proceedings of the First IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems, GALESIA 95, Sheffield, 12-14
September 1995, pages 53-58, London, 1995. IEE.

28D MARCH 2005



280 Bibliography

F. Gruau. Neural Network Synthesis Using Cellular Encoding And The Genetic
Algorithm. PhD thesis, Ecole Normale Supérieure de Lyon, 1994.

F. Gruau. Automatic definition of modular neural networks. Adaptive Be-
haviour, 3(2):151-183, 1995a.

F. Gruau. Genetic programming of neural networks: Theory and practice. In
S. Goonatilake and S. Khebbal, editors, Intelligent Hybrid Systems, pages
245-271. Wiley, New York, 1995b.

G. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, Cambridge, 1997.

J. Hallinan and J. Wiles. Evolving genetic regulatory networks using an
artificial genome. In Y.-P. Chen, editor, Proceedings of the 2nd Asia-Pacific
Bioinformatics Conference, APBC2004, Dunedin, New Zealand., pages 291-
296. Australian Computer Society, 2004.

R.W. Hamming. On the distribution of numbers. Bell Syst. Tech. J., 48(8):
1609-1625, October 1970.

F.M. Harold. The Way of the Cell. Oxford University Press, Oxford, 2001.

I. Harvey. The Artificial Evolution of Adaptive Behaviour. PhD thesis, Univer-
sity of Sussex, 1995.

I. Harvey. Cognition is not computation: evolution is not optimisation. In
Proceedings of ICANN97, 7-10 October 1997, Lausanne, Switzerland, Berlin,
1997. Springer-Verlag.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary
robotics: the Sussex approach. Robotics and Autonomous Systems, 20
(2-4):205-224, 1997.

N. Haspel, C.-J. Tsai, H. Wolfson, and R. Nussinov. Reducing the compu-
tational complexity of protein folding via fragment folding and assembly.
Protein Science, 12(6):1177-1187, 2003.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
Upper Saddle River, NY, 2nd edition, 1999.

M. Hiratsuka, T. Aoki, and T. Higuchi. @ Enzyme transistor circuits for
reaction-diffusion computing. IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 46(2):294-303, February 1999.

R.F. Holt, T.F. Braumandl, and D.J. Mackillop. An index of old-growthness for
two BEC variants in the Nelson Forest Region. Technical report, University
of British Columbia, Faculty of Forestry, Vancouver, April 1999.

L.D. Hurst, C. Pal, and M.J. Lercher. The evolutionary dynamics of eukaryotic
gene order. Nature Review Genetics, 5(4):299-310, April 2004.

E. Jablonka and M.J. Lamb. Epigenetic inheritance and evolution. Oxford
University Press, Oxford, 1995.

28D MARCH 2005



Bibliography 281

N. Jakobi. Harnessing morphogenesis. In P.J. Bentley S. Kumar, editor,
On Growth, Form and Computers, pages 392-404. Academic Press, London,
2003.

N.S. Jayant and P. Noll. Digital coding of waveforms: principles and applica-
tions to speech and video. Prentice-Hall, Englewood Cliffs, NJ, 1984.

E.T. Jaynes. Bayesian methods: general background. In H. Justice, editor,
Maximum Entropy and Bayesian Methods in Applied Statistics, pages 1-25.
Cambridge University Press, Cambridge, 1986.

E.T. Jaynes. Probability theory as logic. In P.F. Fougére, editor, Maximum
Entropy and Bayesian Methods, pages 1-16. Kluwer, Dordrecht, 1990.

E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, Cambridge, 2003.

H. Jeffreys. Theory of Probability. Oxford University Press, Oxford, 3rd
edition, 1961.

S.A. Kassam. Quantization based on the absolute-error criterion. IEEE
Transactions on Communications, 26(2):267-270, February 1978.

M. Keijzer. Efficiently representing populations in genetic programming. In
P. Angeline et al., editors, Advances in Genetic Programming, volume 2,
chapter 13, pages 259-278. MIT Press, Cambridge, MA, 1996.

R.E. Keller and W. Banzhaf. Explicit maintenance of genetic diversity on
genospaces. Unpublished manuscript. Available online at Citeseer, 1994.

P.J. Kennedy and T.R. Osborn. Operon expression and regulation with spi-
ders. In GECCO 2000, pages 161-166, San Francisco, CA, 2000. Morgan
Kaufmann.

P.J. Kennedy and T.R. Osborn. A model of gene expression and regulation in
an artificial cellular organism. Complex Systems, 13(1), 2001.

M. Kirschner and J. Gerhart. Evolvability. Proc. Natl. Acad. Sci. USA, 95(15):
8420-8427, July 1998.

J. Kitagawa and H. Iba. Identifying metabolic pathways and gene regulation
networks with evolutionary algorithms. In G.B. Fogel and D.W. Corne,
editors, Evolutionary Computation in Bioinformatics, chapter 12, pages 255—
278. Morgan Kaufmann, San Francisco, CA, 2002.

H. Kitano. Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4(4):461-476, 1990.

K. Kobayashi and M. Ohbayashi. A new indirect encoding method with vari-
able length gene code to optimize neural network structures. In Proceed-
ings of the International Joint Conference on Neural Networks, IJCNN 99,
10-16 July 1999, pages 4409-4412, Piscataway, NJ, 1999. IEEE Press.

J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

28D MARCH 2005



282 Bibliography

J.R. Koza, F.H. Bennet III, D. Andre, and M.A. Keane. Genetic Programming
III. Morgan Kaufmann, San Francisco, CA, 1999.

J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer, Norwell, MA, 2003.

G. Krauss. Biochemistry of Signal Transduction and Regulation. Wiley-VCH,
Weinheim, 3rd edition, 2003.

W. Kruiskamp and D. Leenaerts. DARWIN: CMOS opamp synthesis by means
of a genetic algorithm. In Proceedings of the 32nd ACM/IEEE conference on
Design automation, June 12-16, 1995, San Francisco, CA, pages 433-438,
New York, 1995. ACM Press.

S. Kumar and P.J. Bentley. Biologically inspired evolutionary development.
In A. Tyrrell, P. Haddow, and J. Torresen, editors, Proceedings of the 5th
International Conference on Evolvable Systems: From Biology to Hardware,
ICESO03, volume 2606 of LNCS, pages 57-68, Berlin, 2003. Springer.

R. Laing. Automaton models of reproduction by self-inspection. J. theor.

Biol., 66:437-456, 1977.

W.B. Langdon and R. Poli. Foundations of Genetic Programming. Springer,
Berlin, 2002.

C.G. Langton. Self-reproduction in cellular automata. Physica D, 10(1-2):
135-144, January 1984.
J.G. Lawrence and J.R. Roth. Selfish operons: Horizontal transfer may drive

the evolution of gene clusters. Genetics, 143:1843-1860, 1996.

Y. Leung, Y. Gao, and Z.B. Xu. Degree of population diversity - a perspec-
tive on premature convergence in genetic algorithms and its Markov chain
analysis. IEEE Trans. Neural Networks, 8(5):1165-1176, 1997.

M. Levandowsky and D. Winter. Distance between sets. Nature, 234(5):
34-35, 1971.

B. Lewin. Genes VIII. Prentice-Hall, Upper Saddle River, NJ, 2004.

R.C. Lewontin. Adaptation. Scientific American, 239(9):156-169, 1974.

R.C. Lewontin. Natural history and formalism in evolutionary genetics. In
R.S. Singh, C.B. Krimbas, D.B. Paul, and J. Beatty, editors, Thinking About
Evolution, volume 2, pages 7-20. Cambridge University Press, Cambridge,
2001.

A.H. Lipkus. A proof of the triangle inequality for the Tanimoto distance. J.
of Mathematical Chemistry, 26:263-265, 1999.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28(2):129-137, March 1982.

28D MARCH 2005



Bibliography 283

J.D. Lohn and S.P. Colombano. A circuit representation technique for au-
tomated circuit design. IEEE Transactions on Evolutionary Computation, 3
(3):205-219, September 1999.

M.A. Lones. Enzyme Genetic Programming: Modelling Biological Evolvability
in Genetic Programming. PhD thesis, University of York, 2004.

M.A. Lones and A.M. Tyrrell. Modelling biological evolvability: implicit context
and variation filtering in enzyme genetic programming. BioSystems, 76(1-
3):229-238, August-October 2004a.

M.A. Lones and A.M. Tyrrell. Enzyme genetic programming. In M. Amos,
editor, Cellular Computingt, pages 19-42. Oxford University Press, Oxford,
2004b.

P.C. Marijuan. Gloom in the society of enzymes: on the nature of biological
information. BioSystems, 38(2-3):163-171, 1996.

J.S. Mattick. Introns: evolution and function. Current Opinion in Genetics &
Development, 4(6):823-831, 1994.

J.S. Mattick. Non-coding RNAs: the architects of eukaryotic complexity.
EMBO Reports, 2(11):986-991, 2001.

J.S. Mattick and M.J. Gagen. The evolution of controlled multitasked gene
networks: The role of introns and other noncoding RNAs in the development
of complex organisms. Mol. Biol. Evol., 18(9):1611-1630, 2001.

C. Mattiussi and D. Floreano. Elimination and extinction in evolutionary
computation. Unpublished manuscript, 2003.

C. Mattiussi and D. Floreano. Evolution of analog networks using local string
alignment on highly reorganizable genomes. In R.S. Zebulum et al., editors,
Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, 24-
26 June 2004, Seattle, pages 30-37, Los Alamitos, CA, 2004a. IEEE Com-
puter Society.

C. Mattiussi and D. Floreano. Connecting transistors and proteins. In
J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, editors,
ALife9: Proceedings of the Ninth International Conference on Artificial Life,
pages 9-14, Boston, MA, 2004b. MIT Press.

C. Mattiussi, M. Waibel, and D. Floreano. Measures of diversity for popula-
tions and distances between individuals with highly reorganizable genomes.
Evolutionary Computation, 12(4):495-515, 2004.

J. Max. Quantizing for minimum distortion. IEEE Transactions on Informa-
tion Theory, 6(1):7-12, March 1960.

J. Maynard-Smith. The major transitions in evolution. In G.A. Cowan,
D. Pines, and D. Meltzer, editors, Complexity: Metaphors, Models, and Real-
ity, pages 457-470. Addison Wesley, Reading, MA, 1994.

28D MARCH 2005



284 Bibliography

J. Maynard-Smith. Evolutionary Genetics. Oxford University Press, Oxford,
2nd edition, 1998.

E. Mayr. What Evolution Is. Basic Books, New York, 2001.

E.M. McCreight. A space-economical suffix tree construction algorithm. J.
ACM, 23(1):262-272, 1976.

B. McMullin. Artificial Knowledge: An Evolutionary Approach. PhD thesis,
University College Dublin, Department of Computer Science, 1992.

B. McMullin. John von Neumann and the evolutionary growth of complexity:
Looking backward, looking forward. Artificial Life, 6(4):347-361, 2000.

B. McMullin, T. Taylor, and A. von Kamp. Who needs genomes? In At-
lantic Symposium on Computational Biology, Genome Information Systems
and Technology (CBGI), March 2001, Duke University, USA, 2001.

D. McShea. Complexity and evolution: what everybody knows. Biology and
Philosophy, 6(3):303-324, 1991.

G. Meister and T. Tuschl. Mechanisms of gene silencing by double-stranded
rna. Nature, 431:343-349, 16 September 2004.

D. Metzgar and C. Wills. Evidence for the adaptive evolution of mutation
rates. Cell, 101:581-584, 2000.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 3rd edition, 1996.

J.G. Miller. Living Systems. McGraw-Hill, New York, 1978.

G.P. Monro. The concept of multiset. Zeitschr. f. math. Logik ung Grundlagen
d. Math., 33:171-178, 1987.

W. Morrison and K.A. De Jong. Measurement of population diversity. In
P. Collet et al., editors, EA 2001, volume 2310 of LNCS, pages 31-41, Berlin,
2002. Springer.

D.W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring
Harbor Lab. Press, Cold Spring Harbor, New York, 2001.

S.B. Needleman and C.D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol,
48:443-453, 1970.

S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press, Cambridge, MA, 2000.

S. Nolfi and D. Parisi. ’genotypes’ for neural networks. In M.A. Arbib, editor,
The Handbook of Brain Theory and Neural Networks, pages 431-434. MIT
Press, Cambridge, MA, 1995.

S. Ohno. Evolutionary by Gene Duplication. Springer, Berlin, 1970.

U.-M. O'Reilly. Using a distance metric on genetic programs to understand
genetic operators. In IEEE International Conference on Systems, Man, and
Cybernetics, volume 5, pages 4092- 4097, 1997.

28D MARCH 2005



Bibliography 285

P.F. Panter and W. Dite. Quantization distortion in pulse count modulation
with nonuniform spacing of levels. Proc. IRE,, 39:44-48, January 1951.

H.H. Pattee. The physical basis and origin of hierarchical control. In H.H.
Pattee, editor, Hierarchy Theory: The Challenge of Complex Systems, pages
73-108. G. Braziller, New York, 1973.

H.H. Pattee. Symbol-structure complementarity in biological evolution. In
E. Jantsch, editor, The evolutionary vision, pages 117-128. Westview Press,
Boulder, CO, 1981.

H.H. Pattee. Artificial life needs a real epistemology. In F. Moran et al.,
editors, Advances in Artificial Life, pages 23-38. Springer, Berlin, 1995a.

H.H. Pattee. Evolving self-reference: matter, symbols, and semantic closure
communication and cognition. Artificial Intelligence, 12(1-2):9-27, 1995b.

H.H. Pattee. The physics of symbols: bridging the epistemic cut. BioSystems,
60(1-3):5-21, 2001.

L. Pietronero, E. Tosatti, V. Tosatti, and A. Vespignani. Explaining the uneven
distribution of numbers in nature: the laws of Benford and Zipf. Physica
A, 293:297-304, 2001.

A. Pires-daSilva and R.J. Sommer. The evolution of signalling pathways in
animal development. Nature Reviews Genetics, 4(1):39-49, January 2003.

M. Polanyi. Life’s irreducible structure. Science, 160:1308-1312, June 1968.

K.R. Popper. Quantum theory and the schism in physics. Hutchinson, Lon-
don, 1982. Postscript to the Logic of scientific discovery, Vol. 3, Edited by
W.W.Bartley III.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, 2nd edition, 1992.

M. Ptashne and A. Gann. Transcriptional activation by recruitment. Nature,
386:569-577, 10 April 1997.

M. Ptashne and A. Gann. Imposing specificity by localization: mechanism
and evolvability. Current Biology, 8(22):R812-R822, 5 November 1998.

M. Ptashne and A. Gann. Genes & Signals. Cold Spring Harbor Lab. Press,
Cold Spring Harbor, New York, 2002.

J.C.F. Pujol and R. Poli. Evolving the topology and the weights of neural
networks using a dual representation. Applied Intelligence Journal, 8(1):
73-84, 1998.

T. Quarles, A.R. Newton, D.O. Pederson, and A. Sangiovanni-Vincentelli.
SPICE3 Version 3f4 User’'s Manual. University of California, Berkeley, CA,
1989.

28D MARCH 2005



286 Bibliography

T. Quick, C. L. Nehaniv, K. Dautenhahn, and G. Roberts. Evolving em-
bodied genetic regulatory network-driven control systems. In W. Banzhaf,
T. Christaller, P. Dittrich, J. T. Kim, and J. Zieglre, editors, Proceedings of
the European Conference on Artificial Life, ECAL 2003, volume 2801 of LNAI,
pages 266277, Berlin, 2003. Springer.

R.A. Raimi. The first digit problem. American Mathematical Monthly, 83:
521-538, 1976.

T. Reil. Dynamics of gene expression in an artificial genome - implications
for biological and artificial ontogeny. In D. Floreano, F. Mondada, and J.D.
Nicoud, editors, Proceedings of the 5th European Conference on Artificial
Life, Berlin, 1999. Springer Verlag.

T. Reil. Artificial genomes as models of gene regulation. In P.J. Bentley
S. Kumar, editor, On Growth, Form and Computers, pages 256-277. Acad-
emic Press, London, 2003.

U.L. Rosewich and H.C. Kistler. Role of horizontal gene transfer in the evolu-
tion of fungi. Annu. Rev. Phytopathol., 38:25-63, 2000.

F. Rothlauf. Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag, Heidelberg, 2002.

F. Rothlauf and D.E. Goldberg. Redundant representations in evolutionary
computation. Evolutionary Computation, 11(4):381-415, 2003.

C. Salzberg and H. Sayama. Complex genetic evolution of artificial self-
replicators in cellular automata. Complexity, 10(2):33-39, November-
December 2004.

C. Salzberg, A. Antony, and H. Sayama. Complex genetic evolution of self-
replicating loops. In ALife9: Proceedings of the Ninth International Confer-
ence on Artificial Life, pages 262-267, Boston, MA, 2004. MIT Press.

D. Sankoff and J.B. Kruskal. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading,
MA, 1983.

N.N. Schraudolph and R.K. Belew. Dynamic parameter encoding for genetic
algorithms. Machine Learning, 9(1):9-21, 1992.

P. Schuster. How does complexity arise in evolution. Complexity, 2(1):22-30,
1996.

P. Schuster. The disaster of central control: An impressive example from
nature. Complexity, 9(4):13-14, 2004.

C.E. Shannon. A mathematical theory of communication. Bell Syst. Tech.
dJ., 27:379-423, 623-656, July, October 1948.

J.A. Shapiro. A 21st century view of evolution. J. Biol. Phys., 28(4):745-764,
2002.

28D MARCH 2005



Bibliography 287

D.B Sherman et al. Genome evolution in yeasts. Nature, 430:35-44, 1 July
2004.

M.P. Silverman, W. Strange, and T.C. Lipscombe. The distribution of com-
posite measurements: How to be certain of the uncertainties in what we
measure. Am. J. Phys., 72(8):1068-1081, August 2004.

M.L. Simpson, C.D. Cox, and G.S. Sayler. Frequency domain analysis of
noise in autoregulated gene circuits. Proc. Natl. Acad. Sci. USA, 100(8):
4551-4556, 15 April 2008.

M.L. Simpson, C.D. Cox, G.D. Peterson, and G.S Sayler. Engineering in the
biological substrate: Information processing in genetic circuits. Proceed-
ings of the IEEE, 92(5):848-863, May 2004a.

M.L. Simpson, G.S. Sayler, J.T. Fleming, J. Sanseverino, and C.D. Cox. The
device science of whole cells as components in microscale and nanoscale
systems. In M. Amos, editor, Cellular Computingt, pages 74-106. Oxford
University Press, Oxford, 2004b.

M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauf-
fer. A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hard-
ware systems. IEEE Transactions on Evolutionary Computation, 1(1):83-97,
April 1997.

D. S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford University Press;,
Oxford, 1996.

B. Smith. Instantaneous companding of quantized signals. Bell Syst. Tech.
dJ., 36(3):653-709, May 1957.

T.F. Smith and M.S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147:195-197, 1981.

B.M. R. Stadler, P. Stadler, G. Wagner, and W. Fontana. The topology of the
possible: Formal spaces underlying patterns of evolutionary change. J.
theor. Biol., 213(2):241-274, November 2001.

K.O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99-127, 2002.

K.O. Stanley and R. Miikkulainen. Competitive coevolution through evo-
lutionary complexification. Journal of Artificial Intelligence Research, 21:
63-100, 2004.

E.E. Swartzlander and A.G. Alexopoulos. The sign/logarithm number sys-
tem. IEEE Trans. Comput., 24(12):1238-1242, 1975.

J.R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements. University Science Books, Sausalito, CA, 2nd
edition, 1996.

28D MARCH 2005



288 Bibliography

T. Taylor. Creativity in evolution: individuals, interactions, and environ-
ments. In P.J. Bentley and D.W. Corne, editors, Creative evolutionary sys-
tems, pages 79-108. Morgan Kaufmann, San Francisco, CA, 2001.

T. Taylor. Redrawing the boundary between organism and environment. In
J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, editors,
ALife9: Proceedings of the Ninth International Conference on Artificial Life,
pages 268-273, Boston, MA, 2004. MIT Press.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press,
Sand Diego, CA, 2nd edition, 2003.

T. Toffoli. Occam, Turing, von Neumann, Jaynes: How much can you get for
how little? In Proceedings of ACRI’'94, pages 1-9, Berlin, 1994. Springer.
M. Tomassini, L. Vanneschi, F. Fernandez, and G. Galeano. A study of diver-
sity in multipopulation genetic programming. In Pierre Liardet et al., edi-
tors, EA 2003, Artificial Evolution: 6th International Conference, Marseilles,
France, October 27-30, 2003, volume 2936 of LNCS, pages 243-255, Berlin,

2004. Springer.

E.N. Trifonov. Making sense of the human genome. In R.H. Sarma and M.H.
Sarma, editors, Structure and Methods, volume 1, pages 69-77. Adenine
Press, New York, 1990.

0O.G. Troyanskaya, Y. Arbell, O.and Koren, G.M. Landau, and A. Bolshoy.
Sequence complexity of prokariotic genomic sequences: A fast algorithm
for calculating linguistic complexity. Bioinformatics, 18(5):679-688, 2002.

A.V. Trushkin. Sufficient conditions for uniqueness of a locally optimal quan-
tizer for a class of convex error weighting functions. IEEE Transactions on
Information Theory, 28(2):187-198, March 1982.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260,
1995.

A. Vladimirescu. The SPICE Book. Wiley, New York, 1994.

J. Vohradsky. Neural network model of gene expression. FASEB Journal,
15:846-854, March 2001.

V.L. Volkov and P.V. Pakshin. The logarithmic number system in control
algorithms and information processing. Soviet Journal of Computer and
Systems Sciences, 30(1):132-138, 1992.

J.von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, IL, 1966. Edited and completed by A.W. Burks.

G.P. Wagner and L. Altenberg. Complex adaptations and the evolution of
evolvability. Evolution, 50(3):967-976, June 1996.

J. Watson, J. Wiles, and J. Hanan. Towards more relevant evolutionary
models: Integrating an artificial genome with a developmental phenotype.
In H.A. Abbass and J. Wiles, editors, Proceedings The Australian Conference
on Artificial Life, ACAL 2003, pages 288-298, 2003a.

28D MARCH 2005



Bibliography 289

J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levine, and R. Losick. Mole-
cular Biology of the Gene. Benjamin-Cummings, San Francisco, CA, 5th
edition, 2003b.

R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and
I. Netravali. Genetic circuit building blocks for cellular computation, com-
munications, and signal processing. Natural Computing, 2(1):47-84, 2003.

G.R. Welch. The enzymatic basis of information processing in the living cell.
Biosystems, 38(2-3):147-153, 1996.

D.J. Whitehead, A. Skusa, and P.J. Kennedy. Evaluating an evolutionary ap-
proach for reconstructing gene regulatory networks. In J. Pollack, M. Be-
dau, P. Husbands, T. Ikegami, and R. A. Watson, editors, ALife9: Proceed-
ings of the Ninth International Conference on Artificial Life, pages 427-432.
MIT Press, 2004.

D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural
networks: optimizing connections and connectivity. Parallel Computing, 14
(8):347-361, August 1990.

M Wineberg and F. Oppacher. Enhancing the GA’s ability to cope with dy-
namic environments. In D. Whitley et al., editors, GECCO 2000, pages
3-10, San Francisco, CA, 2000. Morgan Kaufmann.

M. Wineberg and F. Oppacher. Distance between populations. In E. Cantu-
Paz et al., editors, GECCO 2003, volume 2724 of LNCS, pages 1481-1492,
Berlin, 2003a. Springer.

M. Wineberg and F. Oppacher. The underlying similarity of diversity mea-
sures used in evolutionary computation. In E. Cantu-Paz et al., editors,
GECCO 2003, volume 2724 of LNCS, pages 1493-1504, Berlin, 2003b.
Springer.

D.H. Wolpert and W.G. Macready. No Free Lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, April 1997.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):
1423-1447, September 1999.

LK. Yu and D.M. Lewis. A 30-b integrated logarithmic number system
processor. IEEE J. Solid-State Circuits, 26(10):1433-1440, 1991.

R.S. Zebulum, M.A. Pacheco, and M. Vellasco. Evolving control metabolisms
for a robot. Evolutionary Computation, 8(1):93-120, Spring 2000.

R.S. Zebulum, M.A.C Pacheco, and M.M.B.R Vellasco. Evolutionary Electron-
ics: Automatic Design of Electronic Circuits and Systems by Genetic Algo-
rithms. CRC Press, Boca Raton, FL, 2002.

J. Ziegler and W. Banzhaf. Evolving control metabolisms for a robot. Artificial
Life, 7:171-190, 2001.

28D MARCH 2005



290 Bibliography

L. Zinchenko, H. Muihlenbein, V. Kureichik, and T. Mahnig. A comparison
of different circuit representations for evolutionary analog circuit design.
In A.M. Tyrrell, P.C. Haddow, and J. Torresen, editors, ICES 2003, volume
2606 of LNCS, pages 13-23, Berlin, 2003. Springer.

28D MARCH 2005



Index

G - genetic alphabet, 56
p.,. 111
Py 112
Py» 111
P, 111
p,., 111
P,r 111
Py, 111
P,.» 113
p,.» 113
P 110
p,.» 110
p,., 110
p,, 60

activator, 23
active electronic device, 39
alignment
global, 75
local, 77
matching region, 77
optimal, 79
score, 78
allostery, 26
alphabet
amino acid, 21
DNA, 20
genetic, 20
RNA, 21, 30, 100
amino acid
alphabet, 21
analog
electronic circuit, 50
simulator, 40
network, 42, 44
automaton
self-reproducting
Langton’s, 14
von Neumann’s, 12

autonomous system, 2

Benford’s law, 258
bipolar junction transistor, 39, 58

BJT, see bipolar junction
transistor

catalysis, 39
cellular

automaton, 189

encoding, 53
chaperone, 22
chromosome, 21, 56
circulant matrix, 86
coding region, 21
compartmentalization, 97, 105
complexity, 3, 12

growth of, 12, 15
complexity-growthness, 17
computational complexity, 35, 80
conductance, 67
conservation laws, 41

continuous-time recurrent neural net-

works, 40
CTRNN, see continuous-time recur -
rent neural networks

darwinian evolution, 3
deletion
score, 75, 85
vector, 85
device, 56
encoding, 56
interaction map, 25, 31, 37, 42,
67,71
overlapping, 64
parameter, 57
token, 58
set, 56
terminal, 24, 42, 57



292

Index

token, 58
token, 42, 57
distance
between sets, 208
substring, 205
subtree, 209
Tanimoto
between sets, 208
substring, 207
diversity
computational cost, 211
entropic, 213
for a collection of sets, 208
Leung-Gao-Xu, 211
moment of inertia, 212
nucleotide, 222
pairwise Hamming, 212
pairwise substring, 207, 213
pairwise Tanimoto, 207, 213
substring, 201, 213
DNA
alphabet, 20
Dynamic Parameter Encoding, 228
dynamic programming, 80
dynamic range, 244
dynamics
low-level, 189

EC, see evolutionary computation
electrical
conductance, 67
resistance, 67
entropy, 13
enzyme, 39
enzyme genetic programming, 52
evolution
theory of, 3
evolutionary
computation, 42
robotics, 2, 44
evolvability, 18, 48
experiment
network evolution, 152

network matching, 134
sequence matching, 116
timings, 271
external connection, 100
extreme value distribution, 91
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p., — deletion, 112
p,, — crossover, 112
chromosome fragment
p,, — duplication, 111
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