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Abstract

This work is dedicated to developing algebraic methods for channel coding. Its goal

is to show that in different contexts, namely single-antenna Rayleigh fading channels,

coherent and non-coherent MIMO channels, algebraic techniques can provide useful tools

for building efficient coding schemes.

Rotated lattice signal constellations have been proposed as an alternative for trans-

mission over the single-antenna Rayleigh fading channel. It has been shown that the

performance of such modulation schemes essentially depends on two design parameters:

the modulation diversity and the minimum product distance. Algebraic lattices, i.e.,

lattices constructed by the canonical embedding of an algebraic number field, or more

precisely ideal lattices, provide an efficient tool for designing such codes, since the design

criteria are related to properties of the underlying number field: the maximal diversity is

guaranteed when using totally real number fields and the minimum product distance is

optimized by considering fields with small discriminant. Furthermore, both shaping and

labelling constraints are taken care of by constructing Zn-lattices. We present here the

construction of several families of such n-dimensional lattices for any n, and compute

their performance. We then give an upper bound on their minimal product distance,

and show that with respect to this bound, existing lattice codes are optimal in the sense

that no further significant coding gain could be reached.

Cyclic division algebras have been introduced recently in the context of coherent

Space-Time coding. These are non-commutative algebras which naturally yield families

of invertible matrices, or in other words, linear codes that fullfill the rank criterion. In

this work, we further exploit the algebraic structures of cyclic algebras to build Space-

Time Block codes (STBCs) that satisfy the following properties: they have full rate, full

diversity, non-vanishing constant minimum determinant for increasing spectral efficiency,

uniform average transmitted energy per antenna and good shaping. We give algebraic

constructions of such STBCs for 2, 3, 4 and 6 antennas and show that these are the only

cases where they exist.

We finally consider the problem of designing Space-Time codes in the noncoherent

case. The goal is to construct maximal diversity Space-Time codewords, subject to a

fixed constellation constraint. Using an interpretation of the noncoherent coding problem
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in terms of packing subspaces according to a given metric, we consider the construction

of non-intersecting subspaces on finite alphabets. Techniques used here mainly derive

from finite projective geometry.
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Version abrégée

Ce travail est consacré au développement de méthodes algébriques pour le codage de

canal. Son objectif est de montrer que dans différents contextes, à savoir les canaux à

évanouissement de Rayleigh pour une antenne et les canaux à antennes multiples pour

les cas cohérent et non-cohérent, des méthodes algébriques peuvent fournir des outils

efficaces pour la construction de codes.

Des constellations de signaux formées à partir de réseaux tournés ont été proposées

comme alternative pour la transmission sur des canaux à évanouissement de Rayleigh

pour une antenne. Il a été montré que la performance de tels schémas de modulation

dépend essentiellement de deux paramètres: la diversité en modulation et la distance

produit minimale. Les réseaux algébriques, i.e., les réseaux construits par plongement

d’un corps de nombres, ou plus précisément les réseaux idéaux, s’ avèrent être un outil

adapté, puisque les critères de performance peuvent être exprimés en terme de propriétés

du corps de nombres sousjacent: la diversité maximale est garantie lorsque l’on considère

des corps totalement réels, alors que la distance produit minimale peut être optimisée

en considérant des corps de petit discriminant. De plus, les contraintes de forme de

la constellation ainsi que son étiquettage sont prises en compte en construisant des

réseaux Zn. Nous présentons ici la construction de plusieurs familles de tels réseaux

n-dimensionaux pour tout n, et calculons leur performance. Nous donnons ensuite une

borne supérieure à la distance produit minimale, et montrons que par rapport à cette

borne, les codes en réseaux existants sont optimaux, dans le sens qu’il n’est pas possible

d’obtenir de gain de codage significatif.

Les algèbres cycliques à division ont été introduites récemment dans le cadre du

codage spatio-temporel cohérent. Ces dernières sont des algèbres non-commutatives qui

fournissent naturellement des familles de matrices inversibles, ou en d’ autres mots, des

codes linéaires qui satisfont le critère du rang. Dans ce travail, nous exploitons les

structures algébriques des algèbres cycliques pour construire des codes spatio-temporels

qui possèdent les propriétés suivantes: ils ont un débit maximal, une diversité maximale,

un déterminant minimum constant qui ne diminue pas lorsque l’ efficacité spectrale

augmente, une énergie moyenne transmise par antenne qui est uniforme et finalement
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aucune perte de forme. Nous présentons des constructions algébriques de tels codes pour

2, 3, 4 et 6 antennes et montrons que ces dimensions sont les seules qui existent.

Nous considérons finalement le problème du codage spatio-temporel dans le cas non-

cohérent. Le but est de construire des codes spatio-temporels ayant diversité maximale,

et sujets à une contrainte sur la constellation de signaux utilisée. En utilisant l’ in-

terprétation du codage dans le cas non-cohérent en terme d’empilement de sous-espaces

en fonction d’ une certaine métrique, nous considérons la construction de sous-espaces

qui ne s’ intersectent pas sous la contrainte d’ un alphabet fini. Les techniques utilisées

ici découlent principalement de géométrie projective finie.
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Introduction

Elementary number theory was the basis of the development of error correcting

codes in the early years of coding theory. Finite fields were the key tool in the design of

powerful binary codes and gradually entered in the general mathematical background of

communications engineers. Thanks to the technological developments, attention moved

to the design of signal space codes in the framework of coded modulation systems.

Here, the theory of Euclidean lattices became of great interest for the design of dense

signal constellations well suited for transmission over the Additive White Gaussian Noise

channel.

More recently, the incredible boom of wireless communications forced coding theo-

rists to deal with fading channels. New code design criteria had to be considered in order

to improve the poor performance of wireless transmission systems. It is in that context

that rotated lattice signal constellations have been proposed for transmission over the

single-antenna Rayleigh fading channel. It has been shown that algebraic lattices, i.e.,

lattices constructed by the canonical embedding of an algebraic number field, provide

an efficient tool for designing such lattice codes. The reason is that the two main design

parameters, namely the modulation diversity and the minimum product distance, can be

related to properties of the underlying number field: the maximal diversity is guaranteed

when using totally real number fields and the minimum product distance can be related

to the field discriminant. Furthermore, both shaping and labelling constraints are taken

care of by constructing Zn-lattices.

The first part of this work is dedicated to algebraic lattices for a single-antenna

Rayleigh fading channel. In Chapter 1, we recall the channel model considered, and

explain how design criteria are derived. In Chapter 2, we introduce the definition of

ideal lattices, and prove some of their properties that are related to the lattice code

parameters. Finally we present in Chapter 3 the construction of such n-dimensional

1



2 INTRODUCTION

lattices and compute their performance. We then give an upper bound on their minimal

product distance, and show that with respect to this bound, existing lattice codes are

optimal in the sense that no further significant coding gain could be reached.

These last ten years, the need for higher data transmission has led to consider commu-

nication channels using multiple antennas. Efficient coding schemes for MIMO channels

are still today a very active area of research. The second part of this work considers the

design of such codes, in the so-called coherent and noncoherent case.

More complicated channel models required more sophisticated tools for code design,

and only recently cyclic division algebras have been introduced in the context of coherent

Space-Time coding. These are non-commutative algebras which naturally yield families

of invertible matrices, or in other words, linear codes that fullfill the rank criterion.

In Chapter 5, we first recall well known results on cyclic algebras, before exploiting

further the algebraic structures of cyclic algebras to show why there are an adapted

tool for building Space-Time Block codes (STBCs). Thanks to the properties derived,

we construct in Chapter 6 STBCs that satisfy the following properties: they have full

rate, full diversity, non-vanishing constant minimum determinant for increasing spectral

efficiency, uniform average transmitted energy per antenna and good shaping. We give

algebraic constructions of such STBCs for 2, 3, 4 and 6 antennas and show that these

are the only cases where they exist.

We finally consider in Chapter 7 the problem of designing Space-Time codes in the

noncoherent case. The goal is to construct maximal diversity Space-Time codewords,

subject to a fixed constellation constraint. Here we first recall how the noncoherent

coding problem can be interpreted in terms of packing subspaces according to a given

metric. Using techniques that are mainly derive from finite projective geometry, we then

consider the construction of non-intersecting subspaces on finite alphabets.



CHAPTER 1

Code Design Criteria for the Rayleigh Fading Channel

We consider the transmission of data over a single antenna fading channel. In this

chapter, we focus on the design criteria for such a channel. We start by detailing both

the channel and the transmission system model that we consider. Though most of

the analysis we present is valid for any code constellation, we focus on lattice codes.

We then present the design parameters related to the model: diversity and product

distance. Finally, we discuss how the labelling and shaping problem motivate the choice

of particular lattice code constructions.

1. The Fading Channel Model

We consider a wireless channel modeled as an independent Rayleigh flat fading chan-

nel. We assume that perfect Channel State Information (CSI) is available at the receiver

and no inter-symbol interference is present. The discrete time model of the channel is

given by

(1) r′ = α′x+ n′

where x is a symbol from a complex signal set, n′ is the complex white Gaussian noise

and α′ the complex zero mean Gaussian fading coefficient (see Fig. 1). The complex

Transmitter
Channel
α′, n′ Receiver

x r′

α′

Figure 1. The channel model: the transmitter sends a complex symbol
x, the channel attenuates the signal (this is modeled by the fading α′) and
adds noise (n′), so that the receiver gets the modified symbol r′ = α′x+n′.
We assume the receiver estimates the channel (i.e. α′).

3



4 1. CODE DESIGN CRITERIA FOR THE RAYLEIGH FADING CHANNEL

fading coefficients are assumed to be independent from one symbol to the next. This

assumption can be made reasonable by introducing a channel interleaver which breaks

up the actual fading process correlations.

Since CSI is available at the receiver, the phase ϕ of the fading coefficient α′ = |α′|eiϕ

can be removed, so that we get

(2) r = αx+ n,

where α = |α′| is now a real Rayleigh distributed fading coefficient and n = n′e−iϕ

remains the complex white Gaussian noise. In this case, both in-phase and quadrature

components of the transmitted symbol are subject to the same fading. In order to

fully exploit the diversity capabilities of the codes, we will additionally introduce an

in-phase/quadrature component interleaver which will enable us to consider the fading

channel model in (2), where we assume that x ∈ R, n is a real Gaussian random variable

and the fading coefficients are independent from one real transmitted symbol to the next.

When considering coded transmissions, codewords will be n-dimensional real vectors

x = (x1, . . . , xn) taken from some finite signal constellation S ⊆ Rn. Each vector

component is assumed to be affected by an independent real fading coefficient1. This is

possible by implementing the modulator as follows (see Fig. 2). Given a pair of codewords

x and y, the component interleaver swaps the quadrature components between the two

codewords in a chosen way. For example, x2j ↔ y2j , j = 1, . . . , n/2, n even, as shown

in Fig. 2-(a). Then, a pairing of the components yields complex symbols (of the form

xj+iyj+1, j odd). Each of them is sent over a time interval T (see Fig. 2-(b)) and affected

by the fading (that we can now assume real) and the complex noise: (xj+ iyj+1)αj+nj .

Finally, the deinterleaver at the receiver rebuilds a real vector

xjαj + iyj+1αj + <(nj) + i=(nj)↔


 xjαj + <(nj)

yj+1αj + =(nj)




from which it restores the two initial codewords, now affected by real independent fading

coefficients (see Fig. 2-(c)).

1This assumption will be of importance later for the computation of the channel error probability.
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5T

x4 x6
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y5y3y1 x2y6x5y4x1 y2

(a)

(b)

(c)

Figure 2. The channel component interleaver/deinterleaver: (a) before
interleaving at the transmitter, (b) on the channel, (c) after deinterleaving
at the receiver.

Remark 1.1. We considered a real fading channel model. An alternative approach

is the complex fading model, consisting of the model described in (1) with a complex

fading. In this case, the I/Q component interleaver is no more required.

2. The Transmission System

Based on the above considerations on the channel model, we consider the commu-

nication system shown in Fig. 3. The mapper associates an m-tuple of input bits to a

signal point x = (x1, x2, . . . xn) in the n-dimensional Euclidean space Rn. Each point is

labeled with an m-bit binary label. The spectral efficiency will be measured in number

of bits per two dimensions

(3) η =
2m

n
.

When using lattice codes, x belongs to an n-dimensional signal constellation S (of car-

dinality 2m) carved from the set of lattice points Λ = {x = uM}, where u is an integer
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Info

Bits
- Bit

Mapper
-

u Lattice

Enc. M

x

?
∗ ¾

α

?
+¾

n

¾
rML

Detection
¾
x̂, û

?

α

Figure 3. Transmission system model: the information bits are mapped
to a signal point x ∈ Rn. In the case of lattice codes, they are first mapped
to a point u ∈ Zn, which is then mapped to a signal point x ∈ Rn using
a lattice encoder.

vector and M is the lattice generator matrix. The information bits are used to label the

integer components of u, as detailed in Section 4.

The constellation points are transmitted over an independent Rayleigh fading chan-

nel as described in Section 1, i.e.,

r = xH+ n.

Recall that r = (r1, . . . , rn) is the received point, n = (n1, n2, . . . nn) is a noise vector,

whose real components ni are zero mean, N0 variance Gaussian distributed independent

random variables and H = diag(α1, α2, . . . αn) is the diagonal channel fading matrix,

where the αi are independent real Rayleigh random variables with unit second moment

(i.e., E[α2
i ] = 1), that is, the channel power gain is assumed normalized.

Assuming perfect CSI, Maximum Likelihood (ML) detection requires the minimiza-

tion of the following metric

(4) m(x|r,α) =
n∑

i=1

|ri − αixi|2.

In other words, the decoded point x̂ satisfies

(5) x̂ = argmin
x∈S

‖r− xH‖2 = arg min
x′∈S′

‖r− x′‖2,

where S′ = HS is the “faded signal constellation”. The minimization of (5) can be a

very complex operation for an arbitrary signal set with a large number of points.



3. SEARCHING FOR OPTIMAL LATTICE CONSTELLATIONS 7

Remark 2.1. In the case of lattice codes, a more efficient ML detection is done by

applying the Sphere Decoder, a universal lattice decoder [53]. Having decoded x̂, we

then obtain the corresponding integer component vector û from which the decoded bits

can be extracted.

3. Searching for Optimal Lattice Constellations

In order to derive code design criteria for the above system, we estimate its error

probability.

Denote by Pe(S) the probability of error when sending a point of the finite signal

constellation S, and by P (x → x̂) the pairwise error probability, the probability that,

when x is transmitted, the received point is “closer” to x̂ than to x according to the

metric defined in (4).

For an arbitrary signal constellation S, we have

Pe(S) =
1

|S|
∑

x∈S
Pe(S|x transmitted).

This can be simplified a lot in the case of lattice codes. Since an infinite lattice is

geometrically uniform, we may simply write the probability of error when sending a

point of the lattice Pe(Λ) = Pe(Λ|x) for any transmitted point x ∈ Λ. Let us then

assume that S is a finite constellation carved from Λ.

We now apply the union bound which gives an upper bound to the point error

probability

(6) Pe(S) ≤ Pe(Λ) =
⋃

x̂6=x

P (x→ x̂) ≤
∑

x̂6=x

P (x→ x̂)

where the first inequality takes into account the edge effects of the finite constellation S

compared to the infinite lattice Λ.

We first derive an upper bound for the conditional error probability P (x → x̂|α).
An error occurs while decoding with the ML rule (4) if the received point r is closer to

x̂ than to x, i.e., if m(x̂|r,α) ≤ m(x|r,α). The conditional pairwise error probability is
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given by

P (x→ x̂|α) = P (
n∑

i=1

|ri − αix̂i|2 ≤
n∑

i=1

|ri − αixi|2 | x transmitted)

= P (
n∑

i=1

|αi(xi − x̂i) + ni|2 ≤
n∑

i=1

|ni|2)

= P (
n∑

i=1

α2
i (xi − x̂i)

2 + 2
n∑

i=1

αi(xi − x̂i)ni ≤ 0) .

Let χ =
∑n

i=1 αi(xi − x̂i)ni be a linear combination of the Gaussian random variables

ni, that is, χ is Gaussian with zero mean and variance

σ2χ = N0

n∑

i=1

α2
i (xi − x̂i)

2 .

Let A = 1
2

∑n
i=1 α

2
i (xi − x̂i)2 be a constant. We can write the conditional pairwise error

probability in terms of χ and A:

P (x→ x̂|α) = P (χ ≥ A) = Q(A/σχ)

where Q(x) = (2π)−1
∫∞
x exp(−t2/2)dt is the Gaussian tail function. Since Q(x) can be

upper bounded by an exponential Q(x) ≤ 1
2 exp(−x2/2), the conditional pairwise error

probability becomes

P (x→ x̂|α) ≤ 1

2
exp(− A2

2σ2χ
) =

1

2
exp(− 1

8N0

n∑

i=1

α2
i (xi − x̂i)

2) .

The pairwise error probability P (x→ x̂) is computed by averaging P (x→ x̂|α) over
the fading coefficients α:

P (x→ x̂) =

∫
P (x→ x̂|α)p(α)dα ≤ 1

2

∫
exp(− 1

8N0

n∑

i=1

α2
i (xi − x̂i)

2)p(α)dα.

The differential probability is p(α)dα = p(α1) · · · p(αn)dα1 · · · dαn, where p(αi) = 2αie
−α2

i

is the normalized Rayleigh distribution. Replacing in the last inequality we obtain

P (x→ x̂) ≤ 1

2

n∏

i=1

∫ ∞

0
exp(− 1

8N0
α2
i (xi − x̂i)

2)p(αi)dαi

=
1

2

n∏

i=1

∫ ∞

0
2αi exp(−Ciα2

i )dαi

where Ci = 1 + (xi − x̂i)
2/(8N0). Computing the integral, we obtain

(7) P (x→ x̂) ≤ 1

2

n∏

i=1

1

1 + (xi−x̂i)2
8N0

.
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For large signal to noise ratios

(8) P (x→ x̂) ≤ 1

2

∏

xi 6=x̂i

1
(xi−x̂i)2

8N0

=
1

2

(8N0)
l

d
(l)
p (x, x̂)2

where

(9) d(l)p (x, x̂) =
∏

xi 6=x̂i
|xi − x̂i|

is the l-product distance of x from x̂ when these two points differ in l components.

Rearranging equation (6), we obtain

(10) Pe(S) ≤
n∑

l=L

1

2

(8N0)
l

d
(l)
p (x, x̂)2

,

where L is the minimum number of different components of any two distinct constellation

points. It is called modulation diversity or diversity order of the signal constellation. In

other words, L is the minimum Hamming distance between any two coordinate vectors

of the constellation points.

The dominant terms in the sum (10) are found for L = min(l). Among the terms in

(10) satisfying L = min(l), the dominant term is found for dp,min = min d
(L)
p . This thus

gives us all the ingredients to obtain a low error probability asymptotically. In order of

relevance we have to

(1) Maximize the diversity L = min(l).

(2) Maximize dp,min = min(d
(L)
p (x, x̂)).

Remark 3.1. The diversity is obviously bounded by the dimension n of the constel-

lation, so that the maximal diversity is L = n. Consequently, high diversity is obtained

in high dimension.

Remark 3.2. Note that the bound (10) still holds in the case of complex fading.

The performance between two systems S1, S2 having the same diversity can be com-

pared via their minimum product distance [8], that we denote by dp,min(Si), i = 1, 2.

Definition 3.1. The asymptotic coding gain between two systems having the same

spectral efficiency and the same diversity L is given by

(11) γasympt. =

(
dp,min(S1)

dp,min(S2)

)1/L

with the definitions given above.
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In general, the asymptotic coding gain may not be defined for systems with different

diversities L1 and L2; in such cases the coding gain varies with the signal to noise ratio.

4. Rotated Zn–lattice Constellations

In the design of signal constellations, two more fundamental operations should always

be kept in mind: bit labelling and constellation shaping. These issues may be very critical

for the complexity of practical implementations and are strictly related to each other.

Recall that the bit labelling consists in mapping the input bits to the points in the

signal constellation. If we want to avoid the use of a huge look-up table to perform bit

labelling, we need a simple algorithm that maps bits to signal points. When considering

a lattice constellation

Λ = {x = uM : u = (u1, . . . , un) ∈ Sn0 },

the simplest labelling algorithm we can use is obtained by performing the bit labelling

on the integer components ui of the vector u. These are usually restricted to a so-called

2η/2-PAM constellation S0 = {±1,±3, . . . ,±(2η/2− 1)}, where η is the number of bits

per 2-dimension as defined in (3). Gray bit labelling of each 2η/2-PAM one dimensional

component proved to be the most effective strategy to reduce bit error performance.

If we restrict ourselves to the above simple labelling algorithm, we observe that this

induces a constellation shape similar to the fundamental parallelotope of the underlying

lattice.

On the other hand, it is well known that constellations bounded by a sphere have

the best shaping gain. Unfortunately, labelling a spherically shaped constellation is not

always an easy task, without using a look-up table. Thus a good trade-off is to choose

a lattice whose fundamental paralletope shape won’t induce too much energy loss.

Cubic shaped lattice constellations are good candidates:

they are only slightly worse in terms of shaping gain but

are usually easier to label.

We conclude this chapter by summarizing some of the reasons why lattice codes

provide good codes for the fading channel model considered.
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• The computation of the error probability shows that the diversity is the first

parameter to optimize. As pointed out (see Remark 3.1), we need to build

constellations in high dimension, and lattices have a structure convenient to

handle in dimension n, even for n big.

• The decoding complexity is an important issue. Maximum likelihood can be

performed efficiently on lattice codes using the Sphere Decoder (see Remark

2.1).

• As shown above, restricting to Zn–lattice codes offers both efficient shaping and

labelling.

The problem that can now be addressed is the construction of such Zn-lattices with

maximal diversity and optimal minimum product distance. This will be discussed in the

next chapters, through the concept of ideal lattices.





CHAPTER 2

Ideal Lattices

Algebraic lattices are lattices obtained via the ring of integers of a number field.

This chapter is dedicated to ideal lattices, i.e., more general algebraic lattices endowed

with a trace form. We will define both real and complex ideal lattices, and focus on

two properties: their diversity and minimum distance. Motivated by the communica-

tion problem of Chapter 1, we look for both maximal diversity and maximal minimum

product distance.

1. First Definitions

Let K be a number field, i.e., a finite extension of Q, of degree n = [K : Q]. Let

¯ : K → K denote a Q-linear involution of K, i.e., an additive and multiplicative map

such that ¯̄x = x for all x ∈ K. The set F = {x ∈ K | x̄ = x} is a field, called the fixed

field of the involution.

Let OK be the ring of integers of K. Recall that OK , as well as more generally any

non-zero ideal of OK , is a free Z-module of rank n. It thus has a Z–basis with n elements,

called an integral basis of K. Let DK/Q be the different of K/Q. It is an integral ideal,

whose inverse D−1K/Q = {x ∈ K | TrK/Q(xOK) ⊆ Z} is called the codifferent of K/Q.

An integral lattice is a pair (L, b), where L is a free Z-module of finite rank n, and

b : L × L → Z is a symmetric, Z-bilinear form. The lattice (L, b) is said to be positive

(resp. negative) definite if b(x, x) > 0 (resp. b(x, x) < 0) for all 0 6= x ∈ L.

Definition 1.1. Let I be an ideal of OK , and let α ∈ F be such that αIĪ ⊆ D−1K/Q.
An ideal lattice is an integral lattice (I, bα), where

bα : I × I → Z, bα(x, y) = TrK/Q(αxȳ), ∀x, y ∈ I.

Note that the condition αIĪ ⊆ D−1K/Q guarantees the lattice to be integral, and α is

chosen to be in F , so that the trace form is symmetric:

bα(x, y) = TrK/Q(αxȳ) = TrK/Q(ᾱx̄y) = bα(y, x),

13
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where last equality holds since TrK/Q(z) ∈ Q for all z ∈ K. Given a number field K,

definite ideal lattices do not always exist. We have the following result, proven in [3].

Proposition 1.1. There exists a definite ideal lattice (I, bα) if and only if F is

totally real, and either K = F , or K is a totally imaginary quadratic extension of F .

In other words, K has to be totally real or CM.

Definition 1.2. A number field K is called a CM-field if there exists a totally real

number field F such that K is a totally imaginary quadratic extension of F .

Note that in the case of CM-fields, the Q-linear involution is given by the complex

conjugation.

Remark 1.1. Denote by KGal the Galois closure of K. Notice that if K is a CM

field, then complex conjugation commutes with all the elements of Gal(KGal/Q).

2. Embeddings and Diversity

Let K be a number field of degree n and denote by {σj}nj=1 its embeddings into

C. Let r1 be the number of real embeddings and r2 the number of pairs of imaginary

embeddings of K, so that we have n = r1 + 2r2. The pair (r1, r2) is called the signature

of K. Let us order the σi’s so that, for all x ∈ K, σi(x) ∈ R, 1 ≤ i ≤ r1, and σj+r2(x) is

the complex conjugate of σj(x) for r1 + 1 ≤ j ≤ r1 + r2.

Definition 2.1. We call canonical embedding the homomorphism σ : K → Rr1×Cr2

defined by

σ(x) = (σ1(x) . . . σr1(x), σr1+1(x), . . . σr1+r2(x)) ∈ Rr1 × Cr2 .

If we identify Rr1 × Cr2 with Rn, we define σ : K → Rn by

(12)
σ(x) = (σ1(x), . . . σr1(x),

<σr1+1(x),=σr1+1(x), . . . ,<σr1+r2(x),=σr1+r2(x)) ∈ Rn

where < and = denote resp. the real and imaginary part.

Thanks to the canonical embedding, a basis of K can be embedded into Rn so as to

give a basis in Rn.

Theorem 2.1. [47, p. 154 ] If {ω1, . . . , ωn} is a basis for K over Q, then σ(ω1), . . .,

σ(ωn) are linearly independent over Rn.
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Proof. It is sufficient to prove that D = det(σ(ωi)
n
i=1) is non-zero, where σ(ωj)

is the canonical embedding of ωj as defined in (12). Denote by cR(j), resp. cI(j),

the column (<σr1+j(ωi))ni=1, resp. (=σr1+j(ωi))ni=1, j = 1, . . . , r2. Replace cR(j) by

cR(j) + icI(j), then cI(j) by (−2i)cI(j), and finally add cR(j) to cI(j), so as to obtain

a new determinant E = (−2i)r2D. Since E2 = disc(ω1, . . . , ωn) 6= 0, it follows that

D 6= 0. ¤

The above notions can be slightly generalized, adjoining a twisting element to the

embedding [3].

Definition 2.2. Let α be a totally real, totally positive element of K, i.e., σi(α) is

real and positive for all i. Set αi = σi(α). Let σα : K → Rn be the embedding defined by

(13)

σα(x) = (
√
α1σ1(x), . . . ,

√
αr1σr1(x),

√
2αr1+1<(σr1+1(x)),

√
2αr1+1=(σr1+1(x)),

. . . ,
√
2αr1+r2<(σr1+r2(x)),

√
2αr1+r2=(σr1+r2(x))).

We call it a twisted embedding.

The proof of Theorem 2.1 easily extends to the case of twisted embeddings, using

that

(σα(ωj))
n
j=1 = (σ(ωj))

n
j=1diag(

√
α1, . . . ,

√
αr1 ,

√
2αr1+1, . . . ,

√
2αr1+r2),

so that the twisted embedding of a basis of K also gives a basis in Rn.

Corollary 2.1. Let G be a free Z-module of rank n of OK with Z-basis {ω1, . . . , ωn}.
Then the image σα(G) of G in Rn is a lattice with generators σα(ω1), . . . , σα(ωn).

So far, the main ingredient to define both the canonical and the twisted embedding

of K into Rn is a Z-basis with n elements. Since an ideal I ⊆ OK also has such a

basis, we assume in the following that we are working with I ⊆ OK (I being possibly

OK itself). Let {ω1, . . . , ωn} be a Z-basis of I. By Corollary 2.1, the lattice σα(I) has
generators σα(ω1), . . . , σα(ωn).

Recall that a lattice Λ can be defined by means of its generator matrix M , i.e.,

Λ = {x = λM |λ ∈ Zn},
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and its corresponding Gram matrix is defined by G = MMT , where T denotes the

transpose. The lattice σα(I) has a generator matrix M given by

(14)


√
α1σ1(ω1) . . .

√
αr1σr1(ω1)

√
2αr1+1<σr1+1(ω1) . . .

√
2αr1+r2=σr1+r2(ω1)

... . . .
...

... . . .
...

√
α1σ1(ωn) . . .

√
αr1σr1(ωn)

√
2αr1+1<σr1+1(ωn) . . .

√
2αr1+r2=σr1+r2(ωn)




where αj = σj(α), ∀j.

Proposition 2.1. [3] Let K be either totally real or CM. Then the lattice σα(I) is
a positive definite ideal lattice.

Proof. We show that the associated bilinear form is a trace form. We have G =

MMT = (gij)
n
i,j=1, with

gij =

r1∑

k=1

αkσk(ωiωj) +

r2∑

k=1

2αr1+k[<(σr1+k(ωi))<(σr1+k(ωj)) + =(σr1+k(ωi))=(σr1+k(ωj))]

=

r1∑

k=1

αkσk(ωiωj) +

r2∑

k=1

2αr1+k<(σr1+k(ωi)σr1+k(ωj))

=

r1∑

k=1

αkσk(ωiωj) +

r2∑

k=1

αr1+kσr1+k(ωiωj) +

r2∑

k=1

αr1+kσr1+k(ωiωj)

= TrK/Q(αωiωj)

The second equality holds since the complex conjugation commutes with all σi, i =

1, . . . , n (see Remark 1.1). The lattice is definite (by Proposition 1.1), and positive

definite since α is chosen totally positive. ¤

Notice the hypothesis on α, compared to Definition 1.1. Here α is no more asked

to satisfy αIĪ ⊆ D−1K/Q. Thus, the lattice is not necessarily integral. This condition

has been replaced by requiring α to be totally real and totally positive, so that
√
αj is

well-defined for all j.

The determinant of a lattice gives the squared volume of the fundamental region

[11]. In the case of ideal lattices, it is related to dK , the discriminant of the number

field K. We denote it either det(Λ) or det(b) if Λ = (L, b).
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Proposition 2.2. [3] Let (I, bα) be an ideal lattice. We have

| det(bα)| = N(α)N(I)2|dK |.

Proof. Since I is a free Z-submodule of rank n of OK , there exists (see [47, p.31])

a basis u1, . . . , un for OK and positive integers q1, . . . , qn such that q1u1, . . . , qnun is a

basis for I. Expressing the generator matrix of (I, bα) in this basis, it is a straighforward

computation to show that

| det(bα)| = N(α)N(I)N(Ī)|dK |.

¤

The concept of ideal lattices has two faces. One may see a lattice in Rn given by

its generator matrix, while one may prefer the algebraic point of view given by the

embedding of a ring of integers. Before going on further, we emphasize the correspon-

dance between the two points of view, that is between points x ∈ Λ ⊆ Rn and algebraic

integers. Using the generator matrix (14), a lattice point can be expressed as

x = (x1, . . . , xr1 , xr1+1, . . . , xr1+r2)

= (
n∑

i=1

λi
√
α1σ1(ωi), . . . ,

n∑

i=1

λi
√

2αr1+1<σr1+1(ωi), . . . ,
n∑

i=1

λi
√

2αr2+r1=σr2+r1(ωi)),

λi ∈ Z, i = 1, . . . , n

= (
√
α1σ1(

n∑

i=1

λiωi), . . . ,
√

2αr1+1<σr1+1(
n∑

i=1

λiωi), . . . ,
√

2αr1+r2=σr2+r1(
n∑

i=1

λiωi)).

Thus

x = (
√
α1σ1(x), . . . ,

√
2αr1+1<σr1+1(x), . . . ,

√
2αr1+r2=σr1+r2(x)) = σα(x)

for x =
∑n

i=1 λiωi ∈ I an algebraic integer. This correspondance between a vector x in

Rn and an algebraic integer x in OK makes easier to compute some properties of lattices

that are difficult to find in general.

Recall that given two vectors x and u in Rn, their diversity (or minimum Hamming

distance) is the number of components which differ, i.e., #{i | xi 6= ui, i = 1, . . . , n}.
Given a set S of vectors in Rn, the diversity or minimum Hamming distance of S is

min
x,u∈S

#{i | xi 6= ui, i = 1, . . . , n}.
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This definition applies to S = Λ, a lattice in Rn. Since the lattice has a group structure,

that is, the sum of two vectors of Λ is still in Λ, the Hamming distance between two

vectors can be reformulated as the number of non-zero components of any vector in Λ.

Definition 2.3. The diversity of a lattice Λ ∈ Rn is defined by

div(Λ) = min
06=x∈Λ

#{i | xi 6= 0, i = 1, . . . , n}.

The following has been proved in [19] for α = 1.

Theorem 2.2. Ideal lattices Λ = (I, bα) exhibit a diversity

div(Λ) = r1 + r2,

where (r1, r2) is the signature of K.

Proof. Let x 6= 0 be an arbitrary point of Λ:

x = (
√
α1σ1(x), . . . ,

√
αr1σr1(x),

√
2αr1+1<σr1+1(x), . . . ,

√
2αr1+r2=σr1+r2(x))

with x ∈ I ⊆ OK . Since x 6= 0, we have x 6= 0 and the first r1 coefficients are non

zero. The minimum number of non zero coefficients among the 2r2 that are left is r2

since the real and imaginary parts of any one of the complex embeddings may not vanish

simultaneously. We thus have a diversity L ≥ r1+r2. Applying the canonical embedding

to x = 1 gives exactly r1 + r2 non zero coefficients, which concludes the proof. ¤

3. The Minimum Product Distance

We study the problem of computing the minimum product distance of ideal lattices.

Let Λ be a lattice in Rn. If Λ has diversity l ≤ n, we define its l minimum product

distance by

dlp,min(Λ) = min
x6=u∈Λ

∏
|xi − ui|,

or equivalently, since we may consider the distance of x = (x1, . . . , xn) from the origin,

by

dlp,min(Λ) = min
06=x∈Λ

∏
|xi|,

where both products are taken over the l non zero components of the vectors.

By Theorem 2.2, ideal lattices built over a totally real number field (i.e., of signature

(n, 0)) have maximal diversity. In the following, we will focus on this case, and thus we

assume that the diversity is always maximal.
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Definition 3.1. Given an n-dimensional lattice Λ with full diversity div(Λ) = n, we

define the minimum product distance

dp,min(Λ) = min
06=x∈Λ

n∏

i=1

|xi|.

We are interested in giving a closed form expression for dp,min.

Let K be a totally real number field of degree n with discriminant dK . The minimum

product distance of an ideal lattice is related to algebraic properties of the underlying

number field.

Theorem 3.1. Let I be an ideal of OK . The minimum product distance of an ideal

lattice Λ = (I, bα) of determinant det(bα) is

dp,min(Λ) =

√
det(bα)

dK
min(I),

where min(I) = min06=x∈I
|N(x)|
N(I) .

Proof. Let x = σα(x) be a lattice point in Rn, with x ∈ I ⊆ OK its corresponding

algebraic integer. We have:

dp,min(Λ) = min
06=x∈Λ

n∏

j=1

|xj | = min
x∈I

n∏

j=1

|
√
σj(α)σj(x)|

=
√
N(α) min

x6=0∈I
|N(x)|.

We conclude using Proposition 2.2. ¤

Corollary 3.1. If I is principal, then the minimum product distance of Λ is

dp,min(Λ) =

√
det(bα)

dK
.

Proof. This is immediate from the theorem, since minx6=0∈I |N(x)| = N(I) when

I is principal. ¤

We already mentioned that the construction of ideal lattices starts from a Z-basis

with n elements. So far, we have considered OK and its ideals. However, there are other

ways of obtaining such a basis. In other words, there are other free Z-modules of rank

n in K than OK and its ideals.

Definition 3.2. An order O in K is a subring of K which as a Z-module is finitely

generated and of maximal rank n = [K : Q].
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We can show that O ⊂ OK for any order of K, so that OK is also called the maximal

order of K. Let I be a non-zero ideal of O. Then I is a Z-module of maximal rank n.

What we have seen so far easily extends to an ideal of an order O. First note that

Corollary 2.1, the definition of generator matrix (14), as well as Proposition 2.1 still

hold. Proposition 2.2 also holds, replacing dK , the discriminant of K, by disc(O), the

discriminant of the order. The minimum product distance is slightly different.

Theorem 3.2. Let O be an order of K, and I be an ideal of O. The minimum

product distance of an ideal lattice Λ = (I, bα) of determinant det(bα) is
√

det(bα)

dK

min(I)
[OK : O]

,

where [OK : O] is the index of O in OK .

Proof. Let x = σα(x) be a lattice point in Rn, with x ∈ I ⊆ O its corresponding

algebraic integer. We have, as in the proof of Theorem 3.1,

dp,min(Λ) =
√
N(α) min

06=x∈I
|N(x)|.

Proposition 2.2 for the case of a general order gives | det(bα)| = N(α)N(I)N(Ī)|disc(O)|.
Since disc(O) = dK · [OK : O]2, we conclude as follows:

dp,min(Λ) =

√
det(bα)

disc(O)
min(I).

¤

Corollary 3.2. If I is principal, then the minimum product distance of Λ is
√

det(bα)

dK

1

[OK : O]
.

¤

4. Bounds on the Minimum Product Distance

We discuss the existence of upper bounds on the minimum product distance. The

aim is to figure out what would be the maximal minimum product distance attained by

ideal lattices.

It is straightforward to observe that given a number field K of degree n, it is better

to use the ring of integers OK (Theorem 3.1) rahter than one of its orders (Theorem

3.2). We thus focus on the former case.
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Figure 1. Odlyzko’s bounds for small dimensions

Consider the case when I ⊆ OK is principal. Then, for a given lattice Λ = (I, bα),
the quantity dp,min only depends on dK , the discriminant of K, so that we can use

Odlyzko’s bounds. Odlyzko [35] derived lower bounds for the root discriminant d
1/n
K .

Asymptotically, we have the following behaviour:

(15) d
1/n
K ≥ (60.8395...)r1/n(22.3816...)2r2/n −O(n−2/3).

Bounds for lower dimensions are given in an analytic form which is hard to evaluate.

Tables containing these values are available (see for example [2]). Odlyzko’s bounds for

small dimensions are shown in Figure 1.

The dp,min in the non-principal case gives rise to the quantity min(I) which is hard

to evaluate. Recall that by Theorem 3.1, we have

dp,min(Λ) =

√
det(bα)

dK
min(I), where min(I) = min

x6=0∈I
|N(x)|
N(I) .

The problem is to determine whether a better dp,min can be obtained considering non-

principal ideals. Since min(I) increases when the ideal is non-principal, the question is

whether the discriminant increases proportionally. What seems to be true according to

known tables of number fields is that the discriminant of a number field increases with

its class number. The same behaviour can be observed using Odlyzko’s bounds.
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Example 4.1. Let K be a number field of degree n and class number h(K). The

Hilbert class field H of K is the unique maximal unramified abelian extension of K. It

satisfies the following properties:

(1) [H : K] = h(K),

(2) m
√
dH = n

√
dK where m = [H : Q].

Take now for example K a totally real number field of degree 8. Using Odlyzko’s bound,

8
√
dK ≥ 10.568, that is

dK ≥ (10.568)8.

Suppose now we add the extra constraint that h(K) = 2. Then there exists H with

16
√
dH = 8

√
dK . Using again Odlyzko’s bound, we get 16

√
dH ≥ 18.684. Thus now

dK ≥ (18.684)8,

instead of dK ≥ (10.568)8.

However one may argue that min(I) may increase as much as the discriminant, and

there is no counterargument since known bounds on min(I) depend on the discriminant,

as for example Minkowski’s bound:

min(I) ≤ n!

nn

(
4

π

)r2 √
dK ,

where K is a number field of degree n and signature (r1, r2).

Though determining dp,min in the non-principal case is still an open question, we

will see later on some examples (see Section 4.4 of Chapter 3) that non-principal ideals

yield worse values for dp,min.

5. Complex Ideal Lattices

All the theory explained so far considered lattices over Z. We show here that such

a theory can be applied to lattices over Z[i]. This gives rise to what we call, following

[11], a complex lattice, namely

(16) Λc = {x = λM : λ ∈ Z[i]n},

where M ∈Mn(C) is the lattice generator matrix and MMH is the Gram matrix, where

H denotes the transpose conjugate.
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Let L be an extension of degree n over Q(i) endowed with an involution given by

complex conjugation. Let OL be the ring of integers of L. Since Z[i] is principal, OL is

a free Z[i]–module of rank n.

Definition 5.1. A complex ideal lattice is a Z[i]–lattice Λc = (I, b), where I is an

OL-ideal and

(17) b : I × I → Z[i], b(x, y) = TrL/Q(i)(xȳ), ∀x, y ∈ I

where ¯ denotes the complex conjugation.

We denote by {σ1, . . . , σn} the n embeddings of the relative extension L/Q(i) into

C and define the relative canonical embedding of L into Cn as

(18)
σ : L→ Cn

σ(x) = (σ1(x), . . . , σn(x)).

Let {ω1, . . . , ωn} be a Z[i]–basis of I ⊆ OL.

Similarly to the real case, the generator matrix of the complex algebraic lattice σ(I)
is

(19) M =




σ1(ω1) . . . σn(ω1)
...

...

σ1(ωn) . . . σn(ωn)


 .

Let us verify that complex ideal lattices are well-defined via their generator matrix M .

Lemma 5.1. The matrix M as defined in (19) is the generator matrix of a complex

ideal lattice if and only if complex conjugation commutes with all σj, j = 1, . . . , n.

Proof. We have

MMH =




σ1(ω1) . . . σn(ω1)
...

...

σ1(ωn) . . . σn(ωn)







σ1(ω1) . . . σ1(ωn)
...

...

σn(ω1) . . . σn(ωn)




=




∑n
i=1 σi(ω1)σi(ω1) . . .

∑n
i=1 σi(ω1)σi(ωn)

...
...

∑n
i=1 σi(ωn)σi(ω1) . . .

∑n
i=1 σi(ωn)σi(ωn)



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L

Q(i) K

Q

n

2n

2

2 n

Figure 2. The compositum of a totally real field K and Q(i): relative
degrees are shown on the branches

while the matrix of the trace form is given by




∑n
i=1 σi(ω1ω1) . . .

∑n
i=1 σi(ω1ωn)

...
...

∑n
i=1 σi(ωnω1) . . .

∑n
i=1 σi(ωnωn)




so that the complex conjugation must commute with all σi, i = 1, . . . , n. ¤

By Remark 1.1, we know that if we take L a CM field, then complex conjugation

commutes with all σi, i = 1, . . . , n.

Proposition 5.1. Let L/Q be a CM field containing Q(i), then L is the compositum

of Q(i) and K, its totally real subextension of degree 2.

Proof. Recall that K is the subfield fixed by the complex conjugation. Since L

contains both Q(i) and K, it contains, by definition, KQ(i), the compositum of Q(i)

and K. Now

(20) [KQ(i) : Q] = [K : Q][Q(i) : Q] = [L : Q]

where the first equality holds since K ∩Q(i) = Q. This concludes the proof. ¤

The constructions we will deal with (see Section 6 of Chapter 3) are based on a to-

tally complex number field L, which is the compositum of Q(i) and a totally real number

field K as illustrated in Fig. 2. Then L is a CM field.

We now define, similarly to the real case, a complex diversity and a complex mininum

product distance.
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The complex diversity of a complex lattice is still the minimum Hamming distance

between any two complex vectors, i.e., min 06=x∈Λc #{i | xi 6= 0, i = 1, . . . , n}, with
x = (x1, . . . , xn), xi ∈ C for all i.

Proposition 5.2. The complex diversity of Λc = (I, b), I ⊆ OL, is n and we say

that the lattice has full complex diversity.

Proof. Let x = (x1, . . . , xn), xi ∈ C for all i, be a lattice point different from the

origin. Suppose that there exists an xj = 0 for some j = 1, . . . , n, then we get

(21) 0 = xj =
n∑

i=1

λiσj(ωi) = σj(
n∑

i=1

λiωi), λi ∈ Z[i] for all i.

This implies
∑n

i=1 λiωi = 0, a contradiction since {ωi}ni=1 is a Z[i]-basis. ¤

The definition of minimum product distance can be derived from Definition 3.1.

Definition 5.2. Let x = (x1, . . . , xn) ∈ Λc, xi ∈ C, we define the complex minimum

product distance as

(22) dp,min(Λ
c) = min

06=x∈Λc

n∏

i=1

|xi|.

We show now that the complex minimum product distance of complex ideal lattices

is related to the relative discriminant.

Proposition 5.3. Let I = (α)OL be a principal ideal of OL, where L = KQ(i) (see

Fig. 2). Let Λc = (I, q) with

(23)
b : I × I → Z[i]

(x, y) 7→ cTrL/Q(i)(xȳ)

be a complex ideal lattice over Z[i], where c is a normalization factor. Then

(24) | det(Λc)| = cn|NL/Q(i)(α)|2 |dL/Q(i)|

where dL/Q(i) denotes the relative discriminant of L over Q(i).

Proof. Let {ωj}nj=1 be a Z[i]–basis of OL. By definition,

| det(Λc)| = | det
(
cTrL/Q(i)(αωjαωk)

)
|.
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Notice that TrL/Q(i)(αωjαωk)
n
j,k=1 is a matrix of the form MAAHMH where M is the

matrix of the embeddings as defined in (19) and A =diag(σ1(α), . . . , σn(α)). Thus

| det(Λc)| = cn|NL/Q(i)(α)| · | det(TrL/Q(i)(ωjωk)| · |NL/Q(i)(α)|.

Since det(MMH) = det(M) det(MH) = det(M)det(M), we have

(25) | det(TrL/Q(i)(ωjωk))| = |dL/Q(i)|

which concludes the proof. ¤

Theorem 5.1. Let Λc denote a complex ideal lattice as described in Proposition 5.3,

with | det(Λc)| = 1, we have

(26) dp,min(Λ
c) =

1√
|dL/Q(i)|

.

Proof. Let {ωi}ni=1 be a Z-basis of OL, and x =
∑n

i=1 λiωi, λi ∈ Z.

dp,min(Λ
c) = min

x6=0∈Λc

n∏

j=1

|√c
n∑

i=1

λiσj(αωi)|

=
√
cn min

x6=0∈OL

|NL/Q(i)(α
n∑

i=1

λiωi)|

=
√
cn|NL/Q(i)(α)|

We conclude using Proposition 5.3:

(27) dp,min(Λ
c) =

√
cn

√
| det(Λc)|
|dL/Q(i)|

1√
cn

=
1√

|dL/Q(i)|
.

¤

Corollary 5.1. If K has an odd discriminant dK , then dp,min(Λ
c) = 1√

dK
.

Proof. If dK is odd, it satisfies (dK , dQ(i)) = 1, since dQ(i) = −4. Thus, a Z[i]–basis

of L is given by the Z–basis of K [48, p. 48], and dL/Q(i) = dK . ¤

Remark 5.1. Since Odlyzko’s bounds are valid for number fields of any signature,

the bounds described in Section 4 also hold here.



CHAPTER 3

Lattice Codes

In the first chapter, we derived code design criteria for a single antenna Rayleigh

fading channel. Modulation diversity, minimum product distance and shaping appeared

to be, in this order of importance, the parameters to optimize. In the second chapter,

we showed that in terms of algebraic lattices, these parameters can be expressed in a

closed form and related to the structure of the underlying number field. Namely, the

diversity depends on the signature, while the minimum product distance is related to

the discriminant. Recall that in order to build efficient lattice codes, we have to satisfy

the following conditions:

(1) Maximize the diversity, i.e., consider totally real number fields.

(2) Maximize the minimum product distance, i.e., minimize the discriminant of the

number field.

(3) Ensure easy labelling and good shaping, i.e., build the Zn–lattice.

In this chapter, we show how to build lattice codes that fulfill these criteria. We develop

four complementary methods for constructing Zn–ideal lattices in all dimensions.

(I) The cyclotomic construction: using the ring of integers of the maximal real

subfield of a cyclotomic field Q(ζp), we build the Zn–lattice in dimension n =

(p− 1)/2, p ≥ 5 a prime.

(II) The cyclic construction: using the inverse of the codifferent of a cyclic field, we

build the Zn–lattice in prime dimensions.

(III) The mixed constructions: we explain how to combine known constructions in

order to find lattices in missing dimensions.

(IV) Krüskemper’s method: we present an algorithm which, given a Gram matrix of

a lattice, computes a generator matrix.

The cyclotomic construction is the first systematic construction that was found, though

it is not available in all dimensions. The cyclic construction fills the gap in prime di-

mensions. The last method approaches the problem differently. It provides an algorithm

27
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which builds lattices over a number field, but with a degree of freedom on the latter.

It thus allows to look for number fields with small discriminant, which optimizes the

minimum product distance.

Finally, since the question of complex lattice codes has been addressed, we discuss

the constructions of Z[i]n–lattices, and give some constructions.

1. The Cyclotomic Construction

Consider the cyclotomic field Q(ζp) where p ≥ 5 is a prime and ζ = ζp = e−2iπ/p is a

primitive pth root of unity. Let K = Q(ζ + ζ−1) be the maximal real subfield of Q(ζ),

whose degree over Q is n = (p− 1)/2.

Let Λ = (OK , qα) be an ideal lattice. A necessary (but not sufficient) condition for Λ

to be isomorphic to (
√
cZ)n, a scaled version of Zn, is that det(Λ) = cn, since the Gram

matrix of (
√
cZ)n is cIn, c an integer. In order to fulfill this condition (see Prop. 2.2 of

Chapter 2), we need to find α ∈ K such that

N(α)dK = N(α)p(p−3)/2 = c(p−1)/2.

An element α ∈ K with norm p is easily found. We have

(p)Z[ζ] = (1− ζ)p−1Z[ζ]

in Q(ζ) so that NQ(ζ)/Q(1− ζ) = p. Using the transitivity of the norm, we get

NQ(ζ)/Q(1− ζ) = NK/Q(NQ(ζ)/K(1− ζ))

= NK/Q((1− ζ)(1− ζ−1)).

Thus (1− ζ)(1− ζ−1) is an element of Z[ζ + ζ−1] whose norm is p.

As we already mentioned, this is not enough to guarantee the existence of a scaled

version of Zn. To show its existence, we build it explicitly.

Recall that the ring of integers of K is OK = Z[ζ+ζ−1]. Let {ej = ζj+ζ−j}nj=1 be its

canonical Z-basis. Another basis is given by {e′i}ni=1, where e
′
n = en and e′j = ej + e′j+1,

j = 1, . . . , n− 1.

Proposition 1.1. Let α = (1− ζ)(1− ζ−1) = 2− (ζ + ζ−1). Then

1

p
TrK/Q(αe

′
ie
′
j) = δij .
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Proof. It is a direct computation. Denote by σj(ζ) and αj = σj(α), j = 1, . . . , n

the conjugates of ζ and α, respectively. Since

(28) TrK/Q(ζ
k + ζ−k) =

n∑

j=1

σj(ζ
k + ζ−k) = −1, ∀ k = 1, . . . , n,

we have

n∑

j=1

αjσj(ζ
k + ζ−k) = −2−

n∑

j=1

σj(ζ
k+1 + ζ−k−1 + ζ−k+1 + ζk−1)

=




−p if k ≡ ±1 (mod p)

0 otherwise
(29)

We first compute TrK/Q(αeiej) (using (29) and (28)), for all i, j = 1, . . . , n.

TrK/Q(αe
2
i ) =

n∑

j=1

αjσj(ζ
2i + ζ−2i) + 2

n∑

j=1

(2− σj(ζ + ζ−1))

=





p if i = n, i.e., 2i ≡ −1 (mod p)

2p otherwise

TrK/Q(αeiej) =
n∑

k=1

αkσk(ζ
i+j + ζ−(i+j)) +

n∑

k=1

αkσk(ζ
i−j + ζ−(i−j))

=




−p if |i− j| = 1

0 otherwise

Thus the matrix of 1
pTrK/Q(αxy) in the basis {e1, . . . , en} is given by




2 −1 0 · · · 0

−1 2

0
. . . −1 0

−1 2 −1
0 · · · 0 −1 1




.

This matrix is isomorphic to the identity matrix, which can be checked choosing the

basis {e′1, . . . , e′n}. ¤

In other words, the ideal lattice Λ = (OK ,
1
pbα) with α = (1−ζ)(1−ζ−1) is isomorphic

to Zn.
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n dp,min n
√
dp,min n dp,min n

√
dp,min

2 1/
√
5 0.66874 15 1/317 0.20138

3 1/7 0.52275 18 1/
√
3717 0.18174

5 1/112 0.38321 20 1/
√
4119 0.17136

6 1/
√
135 0.34344 21 1/4310 0.16678

8 1/
√
177 0.28952 23 1/4711 0.15859

9 1/194 0.27018 26 1/
√
5325 0.14825

11 1/235 0.24045 29 1/5914 0.13967

14 1/
√
2913 0.20942 30 1/

√
6129 0.13711

Table 1. Minimum product distances for the cyclotomic construction.

Corollary 1.1. The minimum product distance of the ideal lattice Λ = (OK ,
1
pbα)

of dimension (p− 1)/2 is

dp,min(Λ) = p−
n−1

2 .

Proof. By Corollary 3.1 of Chapter 2, the minimum product distance is given by

dp,min = 1/
√
dK = p−

n−1
2 , since dK = p

p−3
2 = pn−1. ¤

Numerical values of the minimum product distance are given in Table 1. A lattice

generator matrix of the Zn–lattice is easily computed. Since the n embeddings of K are

σk(ej) = ζkj + ζ−kj = 2 cos

(
2πkj

p

)
, k = 1, . . . , n,

it is given by
1√
p
TMA

where M = (Mk,j)
n
k,j=1 =

(
2 cos

(
2πkj
p

))n
k,j=1

gives the embeddings of the canonical

integral basis of K, A = diag
(√

σk(α)
)
and T is an upper triangular matrix with non

zero coefficients 1 that gives the basis transformation matrix from {ej} to {e′j}.

2. The Cyclic Constructions

Let K be a cyclic extension of Q of prime degree n > 2. Based on [16], we consider

lattices constructed using the ideal A of OK such that its square is the codifferent, i.e.,

(30) A2 = D−1K/Q.

Since a Galois extension of odd degree is totally real, we construct lattices with full

diversity L = n. The construction in [16] shows there exists a trace form over A which
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Q(ζp)

K

Q

〈σ〉 p− 1

〈σn〉 p−1
n

n

Figure 1. Extension tower for Case I

is isomorphic to the unit form up to a scaling factor. Let p be an odd prime. Depending

on the ramification of p in OK , we derive three different classes of lattices.

(1) Case I: p > n is the only prime which ramifies.

(2) Case II: p = n is the only prime which ramifies.

(3) Case III: there are at least two primes p1 and p2 that ramify.

We present these three constructions which result in prime dimensional lattices not

available from the cyclotomic constructions.

2.1. Case I: only p > n ramifies. If only the prime p > n ramifies in K (the

extension is tamely ramified), we can embed K into the cyclotomic field Q(ζ), where

ζ = ζp is a primitive pth root of unity. Denote by G =Gal(Q(ζ)/Q) the Galois group

of Q(ζ) over Q. Then G is cyclic of order p − 1. Let σ be a generator of G. Since

[Q(ζ) : K] = p−1
n , the element σn is a generator of the cyclic group Gal(Q(ζ)/K) (see

Fig. 1). Let r be a primitive element (mod p) (i.e., rp−1 ≡ 1 (mod p) and p − 1 is the

smallest positive integer having this property), α =
∏m−1
i=0 (1 − ζr

i
), m = p−1

2 and let

λ be such that λ(r − 1) ≡ 1(mod p). Note that rm ≡ −1 (mod p). According to the

definition of r, we take σ : ζ 7→ ζr.

Let us first compute some equalities.

Lemma 2.1. The following equalities hold:

(a) σ(α) = −ζp−1α.
(b) σ(ζλα) = −ζλα.
(c) (ζλα)2 = (−1)mp.
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Proof. (a). We have

σ(α) = (1− ζ)−1(1− ζ)

m−2∏

i=0

(1− ζr
i+1

)(1− ζr
m
) = −ζp−1α,

where the last equality derives from

(1− ζ)−1(1− ζ−1) =
1− ζp−1

1− ζ
= ζp−2 + · · ·+ ζ + 1.

(b). Using the previous equality and the definition of λ, we have

σ(ζλα) = ζλ+1(−ζp−1α) = −ζλα.

(c). Evaluating the cyclotomic polynomial of degree p− 1

Φ(x) = xp−1 + xp−2 + · · ·+ x+ 1 =

p−2∏

i=0

(x− σi(ζ))

in x = 1, we get

p =

p−2∏

i=0

(1− ζr
i
) =

m−1∏

i=0

(1− ζr
i
)
m−1∏

j=0

(1− ζ−r
j
)

= (−1)mα2
m−1∏

j=0

ζ−r
j
= (−1)mα2ζ2λ.

Last equality holds since ζ−1−r···−r
m−1

= ζ
1−rm

r−1 , and λ is the inverse of r−1 (mod p). ¤

Another technical lemma will be useful.

Lemma 2.2. Let ωd,t = ζr
nd+rt, d, t integers such that t ∈ {0, . . . , n − 1}, d ∈

{1, . . . , (p− 1)/n}. Then

ωd,t = 1⇔ t = 0 and d =
p− 1

2n
.

Proof. We have

ωd,t = 1 ⇔ rnd ≡ rm+t (mod p)(31)

⇔ t = nd−m+ k1(p− 1).

Thus t is a multiple of n belonging to {0, . . . , n− 1}, that is t = 0. Equation (31) then

reduces to

rnd ≡ −1 (mod p)⇔ d = k2

(
p− 1

2n

)
, k2 odd

so that k2 = 1 and d = p−1
2n , which concludes the proof. ¤
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The lattice construction is given by the following result.

Proposition 2.1. Define z = ζλα(1− ζ) and

x = TrQ(ζ)/K(z) =

p−1
n∑

j=1

σjn(z).

Then we have TrK/Q(xσ
t(x)) = δ0,t p

2, t = 0, . . . , n− 1.

Proof. Let us begin with a straightforward computation.

TrK/Q(xσ
t(x)) =

n−1∑

a=0

σa{xσt(x)} =
n−1∑

a=0

p−1
n∑

c,j=1

σa+cn(z)σa+t+jn(z)

=
∑

a

∑

c,j

(−1)a+cnζλα(1− ζr
a+cn

)(−1)a+t+jnζλα(1− ζr
a+t+jn

)

= (−1)t
∑

c

(−1)c
∑

a,j

(−1)j(ζλα)2(1− ζr
a+cn

)(1− ζr
a+t+jn

)

= (−1)t+mp
∑

c

(−1)c
∑

a,j

(−1)jζra+cn+ra+t+jn

where the second equality (resp. the last) comes from Lemma 2.1-(a)-(b) (resp. 2.1-(c)).

One can check that

p−1
n∑

c=1

(−1)c
∑

a,j

(−1)jζra+cn+ra+t+jn
=
∑

d

(−1)d
∑

a,k

ζ(r
nd+rt)ra+kn

by letting all the indices run through all summation terms and verifying that they cover

the same set of exponents of ζ (mod p).

Then note that ra+kn, a = 0, . . . , n−1, k = 1, . . . , p−1n takes on the values s = 1, . . . , p−1,

so that denoting ωd,t = ζ(r
nd+rt), we get

(32)
∑

d

(−1)d
∑

a,k

ζ(r
nd+rt)rnk+a

=
∑

d

(−1)d
p−1∑

s=1

ωsd,t

where by Lemma 2.2

p−1∑

s=1

ωsd,t =





p− 1 if t = 0 and d = (p− 1)/2

−1 otherwise.

Thus for t 6= 0, equation (32) yields

(−1)t+mp
∑

d

(−1)d
p−1∑

s=1

ωsd,t = (−1)t+mp
p−1
n∑

d=1

(−1)d(−1) = 0
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while for t = 0 we have

(−1)t+mp
∑

d

(−1)d
p−1∑

s=1

ωsd,t = (−1)mp
p−1
n∑

d=1,d6= p−1
2n

(−1)d(−1) + (−1)mp(−1) p−1
2n (p− 1)

= p+ p(p− 1) = p2.

Last equality holds since (−1)m+ p−1
2n = 1 and

(−1)m
p−1
n∑

d=1,d6= p−1
2n

(−1)d(−1) =





(−1)m+1(−1) = 1 if p ≡ 1 (mod 4) (m even)

(−1)m+1(1) = 1 if p ≡ 3 (mod 4) (m odd).

This proves that

(−1)t+mp
∑

d

(−1)d
∑

a,k

ζ(r
nd+rt)rnk+a

=





0 i.e if t 6= 0

p2 i.e if t = 0.

¤

The previous result gives a concrete method to construct x such that

1

p2
TrK/Q(xσ

t(x)) = δ0,t, t = 0, . . . , n− 1.

The corresponding lattice generator matrix can be constructed as follows. Choose a

prime dimension n > 2 and a prime p such that p ≡ 1 (mod n). Then compute (in the

basis {1, ζ, . . . , ζp−2} of the cyclotomic field)

(1) a primitive element (mod p) r and an element λ such that λ(r − 1) ≡ 1(mod

p).

(2) the elements α =
∏m−1
i=0 (1− ζr

i
) and zζλα(1− ζ), with m = (p− 1)/2.

(3) the element x and its conjugates, using σn : ζ 7→ ζr
n
.

The lattice generator matrix contains as first column σi(x), i = 0, . . . , n−1 and as other

columns a cyclic shift of the first column (it is thus a circulant matrix). Finally, we

normalize the matrix to get its determinant equal to 1.

Examples of parameters are given in Table 2. The lattices in dimensions marked

with an ∗ coincide with the ones built in Section 1 from K = Q(ζp + ζ−1p ).

Note that the value of p is not unique and that any choice of p satisfying p ≡ 1 (mod

n) will give a well defined cyclic field K. More precisely:
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n p r λ
3* 7 3 4
3 13 2 1
5* 11 2 1
5 31 3 16
7 29 2 1

11* 23 5 6
11 67 2 1
13 53 2 1
17 103 5 26
19 191 19 138
23* 47 5 12
29* 59 2 1

Table 2. Examples of parameters for Case I. The ∗ means that K =
Q(ζp + ζ−1p ).

Lemma 2.3. Let n be an odd prime. If p is an odd prime satisfying p ≡ 1 (mod n),

then there exists a cyclic field K of degree n such that p is the only prime which ramifies

in K.

Proof. Let G be the cyclic subgroup of Gal(Q(ζp)/Q) generated by σn of order

(p−1)/n, which is an integer since p ≡ 1 (mod n). Let K = KG be the subfield fixed by

G. The extension K/Q is a Galois extension because Q(ζp)/Q is cyclic. Furthermore,

K inherits the property that p is exactly the only prime which ramifies from Q(ζp). ¤

Example 2.1. We build a lattice generator matrix in dimension n = 3. We compute

a prime p such that p ≡ 1 (mod 3) and choose p = 13. These two parameters determine

the field K in which we will work. Note that we do not need to know it explicitly, but

in this case K = Q(θ) where θ3 − θ2 − 4θ − 1 = 0. It has discriminant 132 which shows

that only p = 13 ramifies in K.

(1) We compute r = 2 and λ = 1.

(2) We get z = (3, 1, 4, 0, 2, 4, 2, 2, 2, 0, 2, 4) in the basis {1, ζ, . . . , ζ11} of Q(ζ),where

ζ = ζ13.

(3) We compute x = σ0(z) + σn(z) + σ2n(z) + σ3n(z), where σn : ζ 7→ ζr
n
= ζ8.

Then x = (5, 0, 3, 3,−1, 0,−1,−1, 0,−1, 3, 3). Using that σ : ζ 7→ ζ2, we get

σ(x) = (6, 0, 1, 1, 4, 0, 4, 4, 0, 4, 1, 1), and

σ2(x) = (2, 0,−4,−4,−3, 0,−3,−3, 0,−3,−4,−4).
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Q(ζn2)

K

Q

〈σ〉 n(n− 1)

〈σn〉 n− 1

n

Figure 2. Extension tower for Case II

Replacing ζ = e2iπ/13, we compute the lattice generator matrix

M =




x σ(x) σ2(x)

σ(x) σ2(x) x

σ2(x) x σ(x)


 .

Normalizing by 1/p, we get

1

13
M =




0.90636 −0.24824 0.34188

−0.24824 0.34188 0.90636

0.34188 0.90636 −0.24824


 .

2.2. Case II: only p = n ramifies. If only the odd prime p = n ramifies in K (the

extension is widely ramified), we can embed K in Q(ζn2),where µ = ζn2 is a primitive

n2th root of unity. Denote by σ the generator of Gal(Q(µ)/Q). If r is an element such

that rn(n−1) ≡ 1 (mod n2), where n(n− 1) is the smallest integer having that property,

then σ may be defined as σ : µ 7→ µr.

We have a result similar to the tamely ramified case.

Proposition 2.2. Let T = TrQ(µ)/K(µ) =
∑n−1

j=1 σ
nj(µ). Then

TrK/Q((1 + T )σt(1 + T )) = δ0,tn
2, t = 0, . . . , n− 1.
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Proof. Straightforward computations yield

TrK/Q((1 + T )σt(1 + T )) =
n−1∑

a=0

σa((1 + T )σt(1 + T ))

= n+
∑

a

n−1∑

j=1

σa+t+nj(µ) +
∑

a

n−1∑

j=1

σa+nj(µ) +
∑

a

n−1∑

j,k=1

σa+nj(µ)σa+t+kn(µ)

= n+

n(n−1)−1∑

s=0

µr
s+t

+

n(n−1)−1∑

s=0

µr
s
+
∑

a

n−1∑

d,c=1

µr
a+nd+nc+ra+t+cn

since the set of values a + nj, a = 0, . . . , n − 1, j = 1, . . . , n − 1 is the same as

s = 0, . . . , n(n − 1) − 1. The change of variables in the triple sum can be verified

by enumerating the values taken on by the different powers as in the proof of Prop. 2.1.

Since

TrQ(µ)/Q(µ) =
n(n−1)−1∑

s=0

µr
s
=

n(n−1)−1∑

s=0

µr
s+t

= 0, t = 0, . . . , n− 1,

we get

(33) TrK/Q((1 + T )σt(1 + T )) = n+
n−1∑

d=1

n(n−1)−1∑

s=0

µ(r
nd+rt)rs = n+

n−1∑

d=1

TrQ(µ)/Q(ωd,t)

where ωd,t = µr
nd+rt . The expression TrQ(µ)/Q(ωd,t) in (33) can take on three different

values depending on ωd,t:

(1) ωd,t = 1 ⇒ TrQ(µ)/Q(ωd,t) = n(n− 1).

(2) ωd,t is a n
2th primitive root of unity ⇒ TrQ(µ)/Q(ωd,t) = 0.

(3) ωd,t is a root of unity which is not primitive: ωd,t is of the form µk1n, k1 =

1, . . . , n− 1, which is a nth root of unity ⇒ TrQ(µ)/Q(ωd,t) = −n.

To prove the proposition, we distinguish the two cases t = 0 and t 6= 0. In each case we

determine whether ωd,t is primitive or not.

• First case: t = 0.

We have ωd,t = 1 only in this case. In fact

rnd + rt ≡ 0 (mod n2) ⇐⇒ t = nd− n(n− 1)

2
+ k2n(n− 1) ⇐⇒ t = 0

and it occurs for d = (n− 1)/2:

rnd ≡ −1 (mod n2) ⇒ d =
n− 1

2
.
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We now verify that when d 6= n−1
2 , ωd,t is a primitive root of unity. Suppose it

is not primitive, then

rnd + 1 ≡ 0 (mod n2) ⇒ rnd + 1 ≡ 0 (mod n) ⇒ d =
n− 1

2
+ k3

n− 1

n
.

Since d ≥ n − 1 we must have k3 = 0, which gives the case ωd,t = 1. Putting

all together, we obtain

n+
n−1∑

d=1

n(n−1)−1∑

s=0

µ(r
nd+rt)rs = n+ n(n− 1) = n2 for t = 0.

• Second case: t 6= 0.

We determine the primitive roots of unity:

rnd + rt ≡ 0 (mod n) ⇒ d =
t− k4
n

+
n− 1

2
+ k4.

We need to take k4 = t (since d ≥ n − 1, we cannot take k4 = t + k5n). Thus

there is only one d such that ωd,t is not primitive. Putting all together, we

obtain

n+
n−1∑

d=1

n(n−1)−1∑

s=0

µ(r
nd+rt)rs = n− n = 0.

¤

Let us now compute the corresponding lattice generator matrix. Choose a prime

dimension n > 2 and an element r such that rn(n−1) ≡ 1 (mod n2), with n(n − 1) the

smallest integer k such that rk ≡ 1 (mod n2). Compute the element 1 + T and its

conjugates in the basis of the cyclotomic field using σn : µ 7→ µr
n
. The lattice generator

matrix can be computed and normalized similarly to the tamely ramified case.

Example 2.2. We compute a lattice generator matrix in dimension n = 3. This

corresponds to the field K = Q(θ) where θ3 − 3θ − 1 = 0, whose discriminant is 34. We

compute r = 2, and in the basis of Q(ζ9), 1 + T and its conjugates:

1 + T = (1, 1,−1, 0, 0,−1)

σ(1 + T ) = (1,−1, 1, 0,−1, 0)

σ2(1 + T ) = (1, 0, 0, 0, 1, 1)
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Q(ζp1p2)

Q(ζp1) Q(ζp2)

K1K2

K1 K2

Q

n

n2

n

n n

Figure 3. Extension tower for Case III.

Finally

1

3
M =




0.84402 −0.29312 0.44909

0.44909 0.84402 −0.29312
−0.29312 0.44909 0.84402


 .

2.3. Case III: at least two primes ramify. Suppose now that K contains at

least two primes that ramify. We will use two fields where only one prime ramifies as

building blocks to construct K.

Lemma 2.4. Let n be an odd prime. Take two distinct odd primes p1, p2 such that

pi ≡ 1 (mod n), but pi 6≡ 1 (mod n2), i = 1, 2. Let K be a cyclic field of degree n such

that p1 and p2 ramify. Then K is contained in the compositum K1K2 of two fields such

that Ki is the cyclic field of degree n where only pi ramifies, i = 1, 2.

Proof. Since pi ≡ 1 (mod n), i = 1, 2, we have the extension tower of Fig. 3. It is

clear that K is a subextension of Q(ζp1p2). What is left to prove is that K ⊆ K1K2. Let

G=Gal(Q(ζp1p2)/Q).

G ∼= Z/(p1 − 1)Z× Z/(p2 − 1)Z

∼= Cn × Cn × Z/

(
p1 − 1

n

)
Z× Z/

(
p2 − 1

n

)
Z.

Recall that an abelian group has a unique decomposition into its Sylow subgroups.

G is thus the direct product of a n-Sylow subgroup and of Sylow pi-subgroups where

(pi, n) = 1.
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K1K2

K1 K K2

Q

〈τ〉
n

〈σmτ〉 n
〈σ〉

n

n

〈σ〉
〈γ〉 n

n

〈τ〉

Figure 4. Detail of the extension tower for Case III

LetH=Gal(Q(ζp1p2)/K1K2). H is a subgroup ofG of order p1−1
n

p2−1
n . Because (|H|, n) =

1, we deduce that H corresponds to the direct product of the Sylow pi-subgroups of

G where (pi, n) = 1. Let I=Gal(Q(ζp1p2)/K) a subgroup of G. Since I is of order

(p1−1)(p2−1)
n = np1−1n

p2−1
n , this implies that I contains a subgroup J of order p1−1

n
p2−1
n .

We use the same technique as before to obtain that J is also the direct product of the

pi-Sylow of G where (pi, n) = 1, so that H ⊆ I, implying that K ⊆ K1K2. ¤

Remark 2.1. We do not prove the case when p1 or p2 is equal to n, which can be

handled in a similar way by replacing Q(ζp1p2) with Q(ζp1n2).

Proposition 2.3. Let K1,K2 be two disjoint Galois extensions of Q, whose discrim-

inants are relatively prime. Let Gi =Gal(Ki/Q) for i = 1, 2 and G1 = 〈σ〉, G2 = 〈τ〉 be
cyclic of order n. Let K ⊆ K1K2 be another cyclic extension of order n. If there exist

xi ∈ Ki, i = 1, 2 which satisfy

(1) TrK1/Q(x1σ
t(x1)) = δ0,tp

2
1, t = 0, . . . , n− 1

(2) TrK2/Q((x2τ
t(x2)) = δ0,tp

2
2, t = 0, . . . , n− 1

then there exists x ∈ K, given by x =TrK1K2/K(x1x2), such that

TrK/Q(xγ
t(x)) = δ0,tp

2
1p

2
2, t = 0, . . . , n− 1

where 〈γ〉 = Gal(K/Q).
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Proof. We will use the fact that

TrK1K2/Q(x1x2) =

n∑

i=1

n∑

j=1

σiτ j(x1x2)

=
n∑

i=1

σi(x1)
n∑

j=1

τ j(x2)

= TrK1/Q(x1)TrK2/Q(x2).

Let 1 ≤ m ≤ n− 1 be such that 〈σmτ〉=Gal(K1K2/K). Choose γ = σ−mτ as generator

of Gal(K/Q), so that

x =

n−1∑

b=0

(σmτ)b(x1x2)

xγt(x) =
n−1∑

b,c=0

σmb(x1)τ
b(x2)σ

−mtτ tσmc(x1)σ
−mtτ tτ c(x2)

=
n−1∑

b,c=0

σmb(x1σ
m(c−t−b)(x1))τ

b(x2τ
t+c−b(x2))

and

nTrK/Q(xγ
t(x)) = TrK1K2/Q(xγ

t(x))

=
n−1∑

b,c=0

TrK1K2/Q(σ
mbτ b[(x1σ

m(c−t−b)(x1))(x2τ
c+t−b(x2))])

=
∑

b,c

TrK1/Q(x1σ
m(c−t−b)(x1))TrK2/Q(x2τ

c+t−b(x2)).(34)

Finally, the terms in the sum of (34) are different from zero only when m(c− b− t) = 0

and c+ t− b = 0, which is equivalent to ask that t = 0 and c = b. This means that (34)

is non-zero if and only if t = 0, and it is equal to np21p
2
2. ¤

If we know that two primes p1 and p2 ramify in a cyclic field K of prime degree n,

we know how to find an element x ∈ K which gives the unit form. Note that no explicit

knowledge of K is required to construct the lattice.

Choose a prime dimension n and two primes p1 and p2 that satisfy the hypotheses

of Prop. 2.3. Then compute

(1) the elements x1, x2 and their conjugates using the techniques of Cases I and II,

and embed them into either Q(ζp1p2) if p2 > n or into Q(ζp1n2) if p2 = n.

(2) the element x using the knowledge of σt(x1) and τ
t(x2), t = 0, . . . , n− 1.
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(3) the conjugates in K of x using Gal(K/Q). The cyclic group Gal(K/Q) of order

n must be carefully selected among the subgroups of order n of Gal(K1K2/Q).

Example 2.3. As an example, we use the two cases computed previously in dimen-

sion n = 3. Choose p1 = 13 and p2 = 3.

(1) Let ζ = ζ117. In the basis of Q(ζ) of degree 72, we have for example that

x1 = ( 5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,−3, 0, 0, 0, 0, 0, 3, 0, 0,−3, 0, 0,

0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0,−3, 0, 0,−1, 0, 0, 0, 0, 0,−3, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0).

Similarly we embed x2 in Q(ζ).

(2) We compute x = x1x2 + σ(x1)τ(x2) + σ2(x1)τ
2(x2), which gives

x = ( 13, 5,−9, 0,−2, 7, 0, 2, 0, 0, 7,−9, 0,−3, 7, 0, 0, 2, 0, 0,−2, 0,−2,

2, 0,−5, 3, 0, 7,−9, 0, 0, 0, 0,−5, 2, 0, 7,−7, 0, 5,−7, 0, 0, 7, 0, 2,

−7, 0, 0,−7, 0,−4, 7, 0, 7, 0, 0,−2,−2, 0, 0, 9, 0, 0,−3, 0, 0,−7, 0,−5, 2).

(3) Using the generator γ : ζ 7→ ζ40 of Gal(K/Q), we compute the conjugates of x.

Finally the lattice generator matrix is given by



0.55329 0.76837 −0.32166
−0.32166 0.55329 0.76837

0.76837 −0.32166 0.55329




2.4. The minimum product distance. Since the idealA given in (30) is principal

for all the dimensions considered, we know, using Corollary 3.1 of Chapter 2, that the

minimum product distance is given by

dp,min =
1√
dK

.

Some numerical values of dp,min for the Cases I and II are reported in Table 3. We have

seen that for each prime dimension n, several constructions of lattices are available, all

yielding maximum diversity. The minimum product distance gives us a way to rank

them. For example, for n = 5, we can build the following lattices depending on the

choice of the primes p.

(1) only 11 ramifies, with dp,min = 1/121 (Case I)
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n N dK dp n
√
dp,min

3 7 72 1/7 0.52275

3 13 132 1/13 0.42529
5 11 114 1/112 0.38321
5 31 314 1/312 0.25319
7 29 296 1/293 0.23618

11 23 2310 1/235 0.24045
11 67 6710 1/675 0.14789
13 53 5312 1/536 0.16002
17 103 10316 1/1038 0.11292
19 191 19118 1/1919 0.08308
23 47 4722 1/4711 0.15859
29 59 5928 1/5914 0.13967

3 9 92 1/9 0.48074

5 25 58 1/54 0.275945932
7 49 712 1/76 0.188638463

Table 3. Some minimum product distances for Cases I and II, N is such
that K ⊆ Q(ζN ).

(2) only 31 ramifies, with dp,min = 1/961 (Case I)

(3) only 5 ramifies, with dp,min = 1/625 (Case II)

(4) 11 and 31 ramify, with dp,min = 1/(121 · 961) (Case III)

(5) 11 and 5 ramify, with dp,min = 1/(121 · 625) (Case III).

Since our aim is to maximize the dp,min, the best choice in this example is to take the

first construction in the above list, i.e., when only one prime ramifies, this prime being

the smallest possible. This appears to be true in general.

Proposition 2.4. For a given prime dimension n > 2, the construction of Case I,

with the smallest possible p, maximizes the minimum product distance.

Proof. (1) We first show that the discriminant of K in Case I is dK = pn−1.

Since p is totally ramified in K, pOk = pn. This implies, since p - n, that

pn−1|DK/Q but pn - DK/Q [48]. Thus we have N(DK/Q) = dK = pn−1, since

DK/Q = pn−1. In order to maximize dp,min, one has to take the smallest p > n

that ramifies. This also shows that Case III is always worse than Case I as

dK = (p1p2)
n−1.
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(2) Using the same technique as in the previous case, we find pn|DK/Q, but now we

can have pk|DK/Q, for k > n. Consider the transitivity formula for the different:

(35) DQ(ζ)/Q = DQ(ζ)/KDK/Q.

Denote p = (1 − ζ)Z[ζ], pK = p ∩ OK and note that pKZ[ζ] = pn−1 as p is

totally ramified. It is known that DQ(ζ)/Q = pn(2n−3) and that DQ(ζ)/K = pn−2.

From (35) we then obtain that DK/Q = p2(n−1)
2
= (pn−1)2(n−1) = p

2(n−1)
K . We

have dK = NK/Q(p
2(n−1)
K ) = p2(n−1). It follows that as long as n2 > p (true for

n > 2), the minimum distance is smaller than in the case where p > n.

¤

3. Mixed Constructions

We now present a technique to combine the previous constructions to build Zn–

lattices in other dimensions.

Proposition 3.1. Let K be the compositum of N Galois extensions Kj of degree

nj with coprime discriminant i.e., (dKi , dKj ) = 1, ∀i 6= j. Assume there exists an αj

such that the trace form over Kj, Tr(αjxy), is isomorphic to the unit form 〈1, . . . , 1〉 of
degree nj for j = 1, . . . , N . Then the form over K

Tr(α1xy)⊗ · · · ⊗ Tr(αNxy)

is isomorphic to the unit form 〈1, . . . , 1〉 of degree n =
∏N
j=1 nj.

Proof. Let us consider the caseK = K1K2. Denote by {ω1, . . . , ωn1} and {ω′1, . . . , ω′n2
}

the integral bases of K1 and K2, respectively. As K1 and K2 are Galois extension over Q

with coprime discriminants, we have that {ωjω′k | j = 1, . . . , n1, k = 1, . . . , n2} defines

a basis for OK [48] . We conclude using the fact that

TrK/Q(α1ωiωjα2ω
′
kω
′
l) = TrK1/Q(α1ωiωj)TrK2/Q(α2ω

′
kω
′
l).

¤

The lattice generator matrix can be immediatly obtained as the tensor product of

the generator matrices R(j) corresponding to the forms Tr(αjxy), for j = 1, . . . , N

R = R(1) ⊗ · · · ⊗R(N).

In the case of the cyclotomic construction, Prop. 3.1 yields
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Corollary 3.1. Let m = p1 · · · pN be the product of N distinct primes, ζj = e−i2π/pj

for j = 1, . . . , N and K be the compositum of Kj = Q(ζj + ζ−1j ), j = 1, . . . , N , (i.e., the

smallest field containing all Kj). Let αj = (1− ζj)(1− ζ−1j ) then

1

p1
Tr(α1xy)⊗ · · · ⊗

1

pN
Tr(αNxy)

is isomorphic to the unit form 〈1, . . . , 1〉 of degree n =
∏N
j=1(pj − 1)/2.

The above generalizes the cyclotomic construction to Q(ζm), where m is a square-

free product of primes. The cyclotomic and cyclic constructions together allow to get

lattice constructions in almost all dimensions. The missing ones are obtained by using

Prop. 3.1.

Example 3.1. The only missing dimensions below 30 are 4 and 25.

(1) The case n = 4 can be obtained combining two rotated square lattices.

(2) The case n = 25 can be obtained combining the two rotated cubic lattices of

dimension 5 constructed using Cases I and II of cyclic constructions.

3.1. The minimum product distance. For the mixed construction, we have the

following:

Proposition 3.2. Let K = K1K2 be the compositum of two Galois extensions of

degree n1 and n2, with coprime discriminant. The discriminant of K is dK = dm1
K1
dm2
K2

,

where mj = [K : Kj ] = n/nj, j = 1, 2.

Proof. Since DK/Q = DK1/QDK2/Q (see [48]), we directly deduce that

NK/Q(DK/Q) = NK/Q(DK1/Q)NK/Q(DK2/Q) = NK1/Q(DK1/Q)
m1NK2/Q(DK2/Q)

m2 ,

which proves the result, recalling that NK/Q(DK/Q) = dK . ¤

A direct consequence is that we have for the mixed construction

dp,min =
1√

dm1
K1
dm2
K2

.

Numerical values of dp,min are given in Table 4. We note that the lattices in dimensions

n = 4 and 25 have minimum product distance 1/40 and 1/(5201110) given by Proposition

3.2.
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n dp,min n
√
dp,min n dp,min n

√
dp,min

4 1/(5 · 8) 0.39763 22 1/
√
5112320 0.16080

6 1/
√
5374 0.34958 24 1/

√
7161721 0.15134

10 1/
√
55118 0.25627 25 1/(5201110) 0.10574

12 1/
√
561310 0.22967 27 1/

√
7181924 0.14124

15 1/
√
7101112 0.20032 28 1/

√
5142926 0.14005

16 1/
√
581714 0.19361 30 1/

√
11241325 0.13161

18 1/
√
591916 0.18068

Table 4. Minimum product distances for the mixed constructions.

4. Krüskemper’s Method

This section is dedicated to an algorithm which computes the generator matrix of an

integral lattice, given its Gram matrix. This yields an algebraic lattice, in the sense that

the lattice is built via the embedding of a number field. We will see there is a degree of

freedom in choosing the number field we are working on, so that it allows to “optimize”

the lattice we are looking for.

4.1. Taussky’s and Krüskemper’s theorems. We present two theorems which

prove that any integer lattice can be constructed as an ideal lattice of some algebra

Z[X]/(f(X)) where f(X) ∈ Z[X] is monic and irreducible.

We denote byM a finitely generated free Z-module of rank n and by b :M×M → Z

a symmetric bilinear form. Let f(X) ∈ Z[X] be a monic irreducible polynomial of degree

n and θ be a root of f . Then Z[X]/(f(X)) = Z[θ] with basis {1, θ, . . . , θn−1}. If I is an

ideal of Z[θ], we set I# = {c ∈ Q(θ) | Tr(cI) ⊆ Z}.

Theorem 4.1. (Taussky)[37, p. 142] Let B ∈ Mn(Z) be a non-singular symmetric

matrix. Let A ∈ Mn(Z) be such that its characteristic polynomial χA is irreducible and

B−1AB = AT . Then B is the matrix of an ideal lattice.

Proof. Let θ ∈ C be a root of χA. It is an algebraic integer since χA is monic with

coefficients in Z.

By Theorem 1 of [51], there exists an eigenvector vθ = (v1, . . . , vn)
T of A associated

to θ, with vi ∈ Z[θ] and such that {v1, . . . , vn} is a Z-basis of an ideal of Z[θ].

By the first proof of Theorem 1 of [52], there exists an eigenvector v′θ = (v′1, . . . , v
′
n)
T of
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AT associated to θ, with v′i ∈ Q(θ) and such that

(36) TrQ(θ)/Q(viv
′
j) = δij , ∀i, j.

It follows from AT = B−1AB that ATB−1vθ = B−1Avθ = θB−1vθ, so that v′θ and

B−1vθ are both eigenvectors of AT associated to θ. Since χAT = χA is irreducible over

Q, it is separable, that is the eigenvalues are distinct and consequently, the associated

subspaces are of dimension 1. Thus there exists α ∈ Q(θ) such that v′θ = αB−1vθ, i.e.

Bv′θ = αvθ. Denote B = (bij)i,j . We have

(37)
n∑

j=1

bijv
′
j = αvi, ∀i ⇒

n∑

j=1

bijv
′
jvk = αvivk, ∀i, k,

so that
n∑

j=1

bijTrQ(θ)/Q(v
′
jvk) = TrQ(θ)/Q(αvivk).

Using (36), we get bik = TrQ(θ)/Q(αvivk) and we conclude that B is the matrix of an

ideal lattice I = Zv1 ⊕ . . .⊕ Zvn. ¤

We show now that a matrix A such as described in the hypothesis of Theorem 4.1

always exists.

Theorem 4.2. (Krüskemper) [31] Let (M, b) be an integral lattice. Then there exists

an algebraic integer θ, an ideal I of Z[θ] and α ∈ (I2)# ⊆ Q(θ) such that b is isomorphic

to

I × I → Z

(x, y) 7→ TrQ(θ)/Q(αxy).

Furthermore, θ can be assumed to be totally real.

Proof. By Theorem 4.1, it is enough to show that there always exists a matrix

A ∈Mn(Z) whose characteristic polynomial χA is irreducible and totally real, and that

satisfies B−1AB = AT .

Let N = (Xij) be the symmetric n× n matrix where the coefficients Xij = Xji are

indeterminates. It is shown in [31] that the characteristic polynomial χBN of BN is

irreducible. By Hilbert’s irreducibility theorem, there exists xij = xji ∈ Q such that

χB(xij) is irreducible and totally real. Let A = B(xij). It satisfies B
−1AB = AT . ¤
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4.2. The lattice construction algorithm. Based on the proof of Theorem 4.1,

we give an algorithm which takes as input a lattice Gram matrix B and outputs a

lattice generator matrix. More precisely, it computes a set of elements {v1, . . . , vn} and

an element α such that I = Zv1 ⊕ . . .⊕ Zvn and the ideal lattice (I, bα)

bα : I × I → Z

(x, y) 7→ TrQ(θ)/Q(αxy)

has Gram matrix B.

Let B be a lattice Gram matrix.

Step 1: Computation of the matrix A

A matrix A ∈ Mn(Z) satisfying AB = BAT and whose characteristic polynomial

is irreducible can be either generated randomly, or (possibly) constructed in order to

obtain a specific number field with minimal polynomial χA.

Step 2: Computation of a Z-basis of I
Recall from the proof of Theorem 4.1 that there exists an eigenvector vθ of A asso-

ciated to θ, a root of χA, such that I = Zv1 ⊕ . . .⊕ Zvn.

In [51], it is shown that

(38) vj := (−1)i+j∆ij(A− θIn)

where ∆ij is the jth minor of a given fixed row, say the ith row, of A− θIn.

Let us verify that this vector is indeed an eigenvector of A.

Proposition 4.1. The vector vθ is an eigenvector of A associated to θ .

Proof. We prove that Avθ = θvθ.

Denote by (A)i the ith row of A, and A = (aij)
n
i,j=1. Without loss of generality, we

choose i = 1. We first show that (A)1vθ = θv1.

(A)1vθ = a11∆11(A− θIn) + a12(−1)∆12(A− θIn) + . . .+ a1n(−1)1+n∆1n(A− θIn)

= det(A− θI) + θ∆11(A− θIn) = θv1

A similar computation holds for i = 2, . . . , n.

(A)ivθ = ai1∆11(A− θIn) + ai2(−1)∆12(A− θIn) + . . .+ ain(−1)1+n∆1n(A− θIn)

= det(Ã) + θvi
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where Ã is obtained from A−θI, replacing the first row by the ith row. Since det(Ã) = 0,

this concludes the proof. ¤

Step 3: Computation of α

Recall again from the proof of Theorem 4.1 that there exists an eigenvector v′θ =

(v′1, . . . , v
′
n)
T of AT associated to θ, with v′i ∈ Q(θ) and such that TrQ(θ)/Q(viv

′
j) =

δij , ∀i, j. The computation of v′θ is an intermediate step to the computation of α [6].

Proposition 4.2. Let v′θ be a dual basis of Z[θ] for the trace form, namely Tr(viv
′
j) =

δij ∀ i, j. Then

(39) v′j :=
n∑

i=1

mijθ
i−1

where (mij)
n
i,j=1 = G−1(V T )−1 with

G = (TrQ(θ)/Q(θ
i−1θj−1))ni,j=1

and V = (v1, . . . , vn) is the matrix of the coordinates of v1, . . . , vn in the basis {1, θ, . . . , θn−1}.

Proof. The elements {vi}ni=1 of the basis can be expressed in the dual basis as

vi =
∑n

i=1 aijv
′
j . Multiplying by vk and taking the trace form, we get Tr(vivk) =

∑n
i=1 aijTr(v

′
jvk) = aik. We thus conclude that

vi =
n∑

i=1

Tr(vivj)v
′
j ,

which can be formulated as follows:

(v′1, . . . , v
′
n) = (v1, . . . , vn)(Tr(vivj)

n
i,j=1)

−1

= (1, θ, . . . , θn−1)V (V TGV )−1

= (1, θ, . . . , θn−1)G−1(V T )−1.

This yields v′i =
∑n

j=1mijθ
j . ¤

The element α is given by (37) αvθ = Bv′θ. Note that if B is diagonal, it is enough

to compute one of the v′i’s.

Step 4: Computation of the generator matrix of the lattice
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We have

M =




√
α1σ1(v1) . . .

√
αnσn(v1)

√
α1σ1(v2) . . .

√
αnσn(v2)

... . . .
...

√
α1σ1(vn) . . .

√
αnσn(vn)




where σi, i = 1, . . . , n denote the real embeddings of Q(θ) and αi = σi(α), i = 1, . . . , n.

Let us illustrate the algorithm.

Example 4.1. We build a lattice generator matrix of Z4.

(1) Take A as follows.

A =




0 2 0 0

2 0 1 0

0 1 0 1

0 0 1 0




Its characteristic polynomial χA(X) = X4− 6X2 +4 is irreducible over Q, and

A satisfies B−1AB = AT , i.e., A = AT .

(2) Let i = 1. We get vTθ = (−θ3 + 2θ,−2θ2 + 2,−2θ,−2).
(3) We compute the matrices G and V as explained,

G =




4 0 12 0

0 12 0 56

12 0 56 0

0 56 0 288




and V =




0 2 0 −2
2 0 −2 0

0 −2 0 0

−1 0 0 0



,

so that

v′θ =
(

7
40θ − 3

80θ
3, 3

40 − 1
40θ

2, −11
40θ +

1
20θ

3, −11
40 +

1
20θ

2
)
.

Using for example the last row, we compute α = 11
80 − 1

40θ
2.

(4) Recall that θ is a root of χA(X) = X4 − 6X2 + 4. The set of roots of χA is

{−1
2

√
10− 1

2

√
2, 12
√
10 + 1

2

√
2,−1

2

√
10 + 1

2

√
2, 12
√
10− 1

2

√
2}. This means that

the real embeddings of θ are σ1(θ) = −2.28824, σ2(θ) = 2.288245, σ3(θ) =

−0.87403, and σ4(θ) = 0.87403. The generator matrix of the lattice is thus
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n minimal polynomial dK
2 X2 −X − 1 5
3 X3 −X2 − 2X + 1 49
4 X4 −X3 − 3X2 +X + 1 725
5 X5 −X4 − 4X3 + 3X2 + 3X − 1 14641
6 X6 −X5 − 7X4 + 2X3 + 7X2 − 2X − 1 300125
7 X7 −X6 − 6X5 + 4X4 + 10X3 − 4X2 − 4X + 1 20134393
8 X8 + 2X7 − 7X6 − 8X5 + 15X4 + 8X3 − 9X2 − 2X + 1 282300416

Table 5. Number fields with the smallest discriminant in dimension 2
to 8. Note that for all of them [OK : Z[θ]] = 1 and h(K) = 1.

given by

M =




0.60150 −0.60150 −0.37174 0.37174

−0.68819 −0.68819 0.16245 0.16245

0.37174 −0.37174 0.60150 −0.60150
−0.16245 −0.16245 −0.68819 −0.68819



.

4.3. Zn-lattices with optimized dp,min. We apply the algorithm of Section 4.2

to build Zn–lattices with optimized minimum product distance.

Recall that in the case of a principal ideal I ⊆ O, we have by Theorem 3.2 (of

Chapter 2)

dp,min =

√
det(bα)

dK

1

[OK : O]
,

where [OK : O] is the index of O in OK . Since we are looking for the lattice Zn,

optimizing dp,min leads to look for symmetric matrices (the condition B−1AB = AT

simplifies to A = AT ) such that their characteristic polynomial is the minimal polynomial

of an order of minimum determinant. Since the totally real number fields with smallest

discriminant are known in dimensions up to 8 (see Table 5), we naturally try to find a

symmetric matrix A whose characteristic polynomial is the minimal polynomial of the

desired field.

Example 4.2. Consider the number field K given by X2−X−1, with discriminant

dK = 5. The matrix

A =


 1 1

1 0




satisfies χA(X) = X2 −X − 1. We thus have [OK : Z[θ]] = 1 and the lattice built over

OK will have maximal minimum product distance dp,min = 1/
√
5.
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n previous constructions Krüskemper’s method
2 0.66874 0.66874
3 0.52275 0.52275
4 0.02500 0.43899
5 0.38321 0.38321
6 0.34958 0.34958
7 0.23618 0.30080
8 0.28952 0.29382

Table 6. d
1/n
p,min for all known constructions in dimension 2 to 8

Suitable matrices A have been found in dimensions 2 up to 7 by means of a random

search. There is, to our knowldege, no systematic way to construct, if it exists, a sym-

metric matrix with integer coefficients given a polynomial. Using Krüskemper’s method,

we obtain the Zn–lattice over the field with minimum discriminant in all dimensions from

2 up to 7. The totally real field with smallest discriminant is also known in dimension

8 (see [39]). However, we have not found the corresponding matrix. We use instead the

polynomial p(X) = X8−7X6+14X4−8X2+1 with discriminant 324000000. See Table

6 for the new values of dp,min compared to the known ones (namely the cyclotomic and

cyclic constructions). We use Krüskemper’s method to build lattices over number fields

with smaller discriminant in dimensions 7, 13, 17 and 19.

4.4. Zn–lattices over non-principal ideals. All the lattice constructions consid-

ered so far are built over principal ideals. The algorithm of Section 4.2 is the first tool

that we found that yields lattice constructions also over non-principal ideals. We thus

use it for trying to understand what happens in the non-principal ideals case.

Though a closed form for the minimum product distance is available, namely (by

Theorem 3.2 of Chapter 2),

dp,min =
1√
dK

min(I)
[OK : Z[θ]]

,

it is difficult to evaluate the performance of lattice codes over non-principal ideals, since

min(I) is difficult to compute. Let us first give an example.

Example 4.3. Consider the number field K given by p(X) = X2 −X − 3292 with

discriminant dK = 13169, [OK : Z[θ]] = 1 and h(K) = 4. The Z2–lattice is built over

the ideal I = 〈−56, 13 − θ〉, where θ is a root of p(X). We compute N(I) = 56 while

the norm of an element x = a(13 − θ) − 56b) ∈ I is N(x) = 3136b2 − 1400ab − 3136a2
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which is minimal in a = −1 and b = 1. We thus obtain

min(I) = minx∈I
N(x)

N(I) = 1400/56 = 25

so that dp,min = 25√
13169

= 0.217853.

For comparison, the maximal dp,min when h(K) = 1 is given by 0.4472. This nat-

urally addresses the question of knowing whether a quadratic number field K with

h(K) ≥ 2 where we get the lattice Z2 can give a dp,min > 0.4472.

We show that the answer is no for n = 2.

Proposition 4.3. In dimension 2, the minimum product distance is maximized for

the number field given by X2 −X − 1.

Proof. Let A =


 a b

b c


 such that χA(X) = X2 + X(−a − c) + ac − b2 is the

minimal polynomial of a number field K of degree 2. The ideal I over which we build Z2

is given by I = 〈c− θ,−b〉. The norm of an element y ∈ I, y = y1(c− θ)− by2 is N(y) =

−y21b2−y1y2(bc−ba)+y22b2. The norm of the ideal I is N(I) = | det


 c −1
−b 0


 | = |b|.

We obtain that

min(I) = miny1,y2∈Z
−y21b2 − y1y2(bc− ba) + y22b

2

|b|

=
min(b2, |ba− bc|)

|b|
= min(|b|, |a− c|).

Since dK = (−a − c)2 − 4(ac − b2), min(I)√
dK [OK :Z[θ]] =

min(|b|,|a−c|)√
(a+c)2−4(ac−b2)C

, where C = [OK :

Z[θ]]. We may assume that Tr(θ)=1, so that a = −c+ 1, which implies that

min(I)√
dKC

=
min(|b|, |1− 2c|)√
(2c− 1)2 + 4b2C

We obtain a function which is decreasing for all values of b and c in Z. The maximum is

thus given by the smallest values of b and c such that X2 +X(−a− c) + ac− b2 defines

a number field, that is b = 1 and c = 0. ¤

To get some insight of what happens in higher dimensions, we look at some examples

in dimension 3. When this is possible (i.e., when the matrix A exists), we compute

min(I) for some number fields whose class number is more than 1 (cubic number fields
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minimal polynomial dK [OK : Z[θ]] h(K) min(I) dp,min
X3 −X2 − 111X − 14 217981 5 2 80 0.03426
X3 −X2 − 123X − 449 254872 2 5 1 0.00099
X3 − 198X − 720 473688 6 3 91 0.02203
X3 − 57X − 57 653049 1 6 7 0.00866
X3 − 179X + 162 1389548 4 4 4 0.00084
X3 −X2 − 88X + 253 1407153 1 2 69 0.05816
X3 − 101X − 315 1442129 1 2 35 0.02914
X3 − 367X − 2133 1528201 7 2 183 0.02114
X3 −X2 − 373X + 12 1717325 11 2 11 0.00076
X3 −X2 − 359X − 906 1940509 9 5 300 0.02392

Table 7. Cubic fields whose class number is greater than 1 and the dp,min

datas come from the tables of PARI [2]). It appears (see Table 7) that the dp,min are far

smaller than the best one, dp,min = 0.1428, reached with the number field with smallest

discriminant, that is given by X3 −X2 − 2X + 1. We conjecture in general that when

h(K) ≥ 2, min(I) can be large, but not large enough to compensate the increase of the

discriminant dK .

5. Performance Analysis

We briefly recall all the constructions and summarize the best choice in terms of

dp,min for each dimension.

5.1. A summary of the constructions. We shortly recall the constructions pre-

sented and give some comments: it appears that some constructions are built over the

same number fields, while some of them give exactly the same lattice constellations.

Construction I: the cyclotomic case. Let p be an odd prime, and ζp be

a primitive pth root of unity. The Zn–lattice is built over the ring of integers

of K = Q(ζp + ζ−1p ). The available dimensions are n = (p − 1)/2. We have

dp,min = p−
n−1

2 .

Construction II: the cylic case. We consider K a cyclic extension of Q of

odd prime degree n. The Zn–lattice is constructed using the ideal A of K such

that its square is the inverse different A2 = D−1K/Q, so that prime dimensions

are found. The minimum product distance of this lattice is dp,min = 1
p(n−1)/2 .
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Construction III: the mixed case. Constellations in other dimensions are

derived from Constructions I and II via the compositum of the two fields in-

volved. In terms of lattice generator matrices, we consider the tensor product

of matrices from Constructions I and II.

Krüskemper’s method. We obtain the rotated Zn–lattice over the number

field with minimum discriminant in all dimensions from 2 up to 7. We use

Krüskemper’s method to build lattices over number fields with small (though

not minimal) discriminant in dimensions 7, 13, 17 and 19, where the other

available constructions appeared to yield a poor dp,min.

Remark 5.1. Note that in the case when n = (p − 1)/2, Constructions I and II

give the same field, and consequently the same minimum product distance. Indeed, if

n = (p − 1)/2, Construction I is available over Q(ζ + ζ−1). Also, we have that p ≡ 1

(mod n) which implies that Construction II exists and is defined over a totally real

subextension of degree 2 of Q(ζp).

Remark 5.2. In dimensions 2, 3 and 5, we notice that Construction I and Krüskemper’s

construction give indeed the same lattice. This is not true in general. We illustrate why

this happens in dimension 2.

First note that we are working on the same number field Q(
√
5).

Construction I: α = 2− (ζ + ζ−1). The generator matrix is given by



1√
5
σ1(
√

2− (ζ + ζ−1)(ζ2 + ζ−2)) 1√
5
σ2(
√

2− (ζ + ζ−1)(ζ2 + ζ−2))

− 1√
5
σ1(
√

2− (ζ + ζ−1)) − 1√
5
σ1(
√

2− (ζ + ζ−1))




Krüskemper’s construction: α = 2
5 +

1
5θ. The generator matrix is given by




1√
5
σ1(
√
2 + θ(1− θ)) 1√

5
σ2(
√
2 + θ(1− θ))

− 1√
5
σ1(
√
2 + θ) − 1√

5
σ1(
√
2 + θ)




Because θ = 1.61803 = −(ζ2 + ζ−2) = −2cos(4π5 ) and 1− θ = −0.61803 = −(ζ + ζ−1) =

−2cos(2π5 ), we immediately see that up to a sign, we have the same matrix, so that we

have the same lattice. The same thing happens in dimension 3 and 5.

In Figure 5, we compare the discriminants found to Odlyzko’s bounds. We observe that

they are close to the bounds, except in dimensions 7, 13, 17, 19 and 25. Though the

found discriminants are not in the continuity of the others (as shown in Figure 5), we
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Figure 5. dp,min of the known (cyclotomic and cyclic) constructions
compared to Krüskemper’s method and Odlyzko’s bounds.

n coding gain
7 0.0301
13 0.0855
17 0.1179
19 0.2064
25 0.2461

Table 8. Values of coding gain in dB

show that they are almost optimal in the sense that any improvement would bring a

negligeable coding gain.

Recall (Definition 3.1) that the coding gain is given by:

γ = 10 log10

(
dp,min(1)

dp,min(2)

)1/n

[dB]

where dp,min(i), i = 1, 2 are the minimum product distances of two constellations with

the same maximal diversity. We compute the coding gain obtained using a number field

whose discriminant would reach Odlyzko’s bound (relatively to our constructions), see

Table 8. We observe that the maximal gain would be of 0.2 dB, which is negligeable.

5.2. Simulation results. A rotated Zn–lattice with diversity L is obtained by

applying the rotation matrix R to the integer grid Zn, i.e.

Λ = {x = uR, u ∈ Zn}



5. PERFORMANCE ANALYSIS 57

n Cyclotomic constructions Cyclic constructions Mixed constructions
2 0.66874 - -
3 0.52275 0.52275 -
4 - - 0.02500
5 0.38321 0.38321 -
6 0.34344 - 0.34958
7 - 0.23618 -
8 0.28952 - -
9 0.27018 - -

10 - - 0.25627
11 0.24045 0.24045 -
12 - - 0.22967
13 - 0.16002 -
14 0.20942 - -
15 0.20138 - 0.20032
16 - - 0.19361
17 - 0.11292 -
18 0.18174 - 0.18068
19 - 0.08308 -
20 0.17136 - -
21 0.16678 - -
22 - - 0.16080
23 0.15859 0.15859 -
24 - - 0.15134
25 - 0.10574
26 0.14825 - -
27 - - 0.14124
28 - - 0.14005
29 0.13967 0.13967 -
30 0.13711 - 0.13161

Table 9. Comparison of the values of d
1/n
p,min for cyclotomic, cyclic and

mixed constructions.

The finite signal constellation is carved from this lattice by restricting the elements of

u to a finite set of integers such as {±1,±3, . . . ± (2η/2 − 1)}, where η is the spectral

efficiency measured in bits per two dimensions.

The rotated Zn–lattice constellations have been simulated over an independent Rayleigh

fading channel as described in Chapter 1. Best minimum product distance lattices among

the families we considered are summarized in Table 9. Note that the mixed construction

yields a higher dp,min, only for n = 6 and that d
1/n
p,min decreases with n, suggesting that

it vanishes asymptotically.
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Figure 6. Cyclotomic construction with QPSK
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Figure 7. Cyclotomic construction with 16-QAM

Figures 6, 7, 8 and 9 show the bit error rates of the rotated Zn constellations for

η = 2, 4 and for the cyclotomic and cyclic constructions. For comparison, the perfor-

mance of a standard component interleaved QPSK (resp. 16 QAM) over Gaussian and

Rayleigh fading channels is reported in the figures. We can observe how the bit error rate

performance over Rayleigh fading channel approaches the one over the Gaussian chan-

nel as the diversity increases. Clearly, this gain is obtained at the expense of a higher

decoding complexity due to the greater lattice dimension [53], but no extra bandwidth

is used.
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Figure 8. Cyclic construction with QPSK
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Figure 9. Cyclic construction with 16-QAM

6. Complex Constructions

This section discusses various constructions of complex lattices. We first recall a

known construction over cyclotomic fields, in order to compute its minimum product

distance, before introducing two new types of constructions.

6.1. Cyclotomic fields Q(ζ2r). Complex lattice constructions from cyclotomic

fields were found in [19, 12]. Here we show that these lattices may be seen as ideal
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lattices, which allows to evaluate the complex minimum product distance (see Definition

5.2 of Chapter 2) in terms of field discriminants.

Let L = Q(ζ), where ζ = ζ2r .

Proposition 6.1. We have that OL = Z[ζ] is a free Z[i]-module of rank 2r−2 and a

Z[i]–basis is given by {1, ζ, ζ2, . . . , ζ2r−2−1}.

Proof. We show that {1, ζ, ζ2, . . . , ζ2r−2−1} is a Z[i]–basis of Z[ζ]. Let x be in Z[ζ].

Since {1, ζ, ζ2, . . . , ζ2r−1−1} is a Z–basis, we have:

x =
2r−2−1∑

k=0

akζ
k +

2r−1−1∑

k=2r−2

akζ
k, ak ∈ Z

=
2r−2−1∑

k=0

akζ
k +

2r−2−1∑

l=0

iãlζ
l, ãl = al+2r−2 ∈ Z

=
2r−2−1∑

k=0

(ak + iãk)ζ
k

and this representation of x is unique. ¤

The following result was proved in [19].

Proposition 6.2. Consider the ideal lattice Λc = (OL, b) where L = Q(ζ) is of

degree n = 2r−2 over Q(i) and b(x, y) = 1
2r−2TrL/Q(i)(xȳ), for all x, y ∈ OL. Then Λc is

isomorphic to the Z[i]n–lattice.

Let us now consider the product distance of Λc. Since Q(ζ) = Q(ζ + ζ−1)Q(i), we

apply Theorem 5.1 of Chapter 2.

Proposition 6.3. The relative discriminant dQ(ζ)/Q(i) satisfies

(40) |dQ(ζ)/Q(i)| = (2r−2)2
r−2

Proof. The relative discriminant |dQ(ζ)/Q(i)| is given by |NQ(ζ)/Q(i)(f
′(ζ))| [41,

p. 49], where f is the minimal polynomial of Q(ζ) over Q(i) and ζ = ζ2r . Since

f(X) = X2r−2
+ i, f ′(ζ) = 2r−2iζ−1. Thus

(41) NQ(ζ)/Q(i)(f
′(ζ)) = (2r−2i)2

r−2
NQ(ζ)/Q(i)(ζ

−1),

and we conclude taking the absolute value. ¤
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The minimum product distance of the above ideal lattice Λc is then given combining

Theorem 5.1 and Proposition 6.3

(42) dp,min(Λ
c) = (2r−2)−2

r−3
.

6.2. Complex constructions from real ones. We show a simple method to

derive unitary complex matrices (i.e., rotated Z[i]n–lattices) from known constructions

of rotated Zn–lattices from totally real number fields. Then we compute their minimum

product distance.

Let K be a totally real number field, and L be the compositum of K and Q(i). We

are interested in the extension L/Q(i). A Z[i]–basis is easily derived.

Lemma 6.1. (a) Suppose K has an odd discriminant (so that dK and dQ(i) are

coprime). Let BK = {νj}nj=1 be a Z–basis of K. Then BK is a Z[i]–basis of L.

(b) Let BL = {ωj}nj=1 be a Z[i]–basis of L. Then {iωj}nj=1 is a also a Z[i]–basis of L.

Proof. (a) Let x be in L. Since (dK , dQ(i)) = 1, a Z–basis of L is given by

{ν1, . . . , νn, iν1, . . . , iνn} [48, p. 48]. Thus x =
∑n

j=1(aj + ibj)νj , aj , bj ∈ Z ∀j.
(b) This is clear since i is a unit of Z[i].

¤

The previous Lemma clearly extends to a basis of any ideal of OL, which may be

used to construct an ideal lattice as explained in the following proposition.

Proposition 6.4. Let BI = {ωj = iνj}nj=1 be a Z[i]–basis of an ideal I ⊆ OL. We

have

(43) TrL/Q(i)(ωjωk) = TrK/Q(νjνk).

Proof. We have

TrL/Q(i)(ωjωk) = TrL/Q(i)(νjνk) = TrK/Q(νjνk)

where the last equality holds since Gal(L/Q(i)) = Gal(K/Q) [48, p. 47]. ¤

This construction always yields a purely imaginary lattice generator matrix. In

practice, the same rotation may be obtained by directly applying the real generator

matrix of Λ, obtained from the field K, to a complex vector in Z[i]n. However, our point
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of view enables to evaluate the complex minimum product distance from Corollary 5.1

of Chapter 2

(44) dp,min(Λ
c) = dp,min(Λ) .

The following example shows how to build a Z[i]n–lattice using a Zn–lattice.

Example 6.1. Let K = Q(ζ7 + ζ−17 ) and α = 2 − (ζ7 + ζ−17 ). A Z3–lattice is built

using the ideal IK = (α)OK of Z[ζ7+ ζ−17 ] as follows. A Z–basis of the ideal IK is given

by {α(ζ37 + ζ−37 ), α(ζ37 + ζ−37 + ζ27 + ζ−27 ),−α} = {νi}3i=1. By direct computation we have

1

7
TrK/Q(νiνj) = δij i, j = 1, 2, 3.

The lattice generator matrix of Λ(IK) can be used to define a Z[i]3–lattice Λc(IL), where
L = Q(ζ7 + ζ−17 , i) and IL = (α)OL. Using Proposition 6.4, the lattice generator matrix

of Λc(IL), becomes




0.327985277i −0.736976229i −0.591009048i
−0.736976229i −0.591009048i 0.327985277i

−0.591009048i 0.327985277i −0.736976229i


 .

Since dK = 49, the complex minimum product distance of this lattice is given by

dp,min(Λ
c) = 1/7 .

6.3. Some other constructions. The previous method gives lattice generator ma-

trices that are purely imaginary. One may ask if fully complex coefficients could be

obtained. We discuss this question in some particular cases.

As in the previous section, we work with the compositum field L = KQ(i). Instead

of starting from the real Zn–lattice from K, we attempt to directly construct the Z[i]n–

lattice on a particular ideal I of OL. Our approach is the following:

• Consider the ramification in L/Q. The prime factorization of the discriminant

dL/Q =
∏
prii contains the primes which ramify, i.e., (pi)OL =

∏
j Pei

ij where

ei > 1.

• Considering real lattices, we know that vol(Λ(OL)) =
√
|dL/Q|. We look for a

sublattice Λ(I) of Λ(OL), which could be a scaled version of Z2n, i.e., Λ(I) =
(
√
cZ)2n for some integer c.
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• Since Λ(I) is a sublattice of Λ(OL), vol(Λ(OL)) =
√
|dL/Q|must divide vol(Λ(I)) =

cn, i.e.,
∏
prii divides c2n.

• This gives a necessary condition for the choice of I. In terms of norm of the

ideal I [41, p. 69], we need

(45) N(I) = |OL/I| =
vol(Λ(I))
vol(Λ(OL))

=
cn√∏
prii

.

• In order to satisfy (45), we must find an ideal of the form

(46) I =
∏

P
sij
ij

with norm
∏
p
n−ri/2
i .

From Corollary 5.1 of Chapter 2, the minimum product distance is

(47) dp,min(Λ
c) =

1√
dK

.

6.3.1. Dimension 2. Denote θ = ζ5 + ζ−15 and let L = Q(i, θ). The Galois group

Gal(L/Q(i)) is of order 2, generated by σ, that acts on θ as follows: σ(θ) = −1− θ. We

have

(5)OL = P2
1P

2
2 = (1− iθ)2(1− iσ(θ))2

so that N(P1) = N(P2) = 5.

We take the principal ideal I = P1 = (α)OL with α = 1 − iθ, which satisfies (45).

A Z[i]–basis of I is {α, αθ}. Using the change of basis given by the matrix


 1 0

1 1




we get for (α)OL the new Z[i]–basis {νi}2i=1 = {1− iθ, 1− i+ θ}. Then it is a straight-

forward computation, to show that

1

5
TrL/Q(νiν̄j) = δij i, j = 1, 2.

For example

TrL/Q(i)((1− iθ)(1− iθ)) = TrL/Q(i)(1 + θ2)

= TrL/Q(i)(2− θ)

= TrQ(θ)/Q(2)− TrQ(θ)/Q(θ) = 5.
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The generator matrix of the lattice is given by


 ν1 σ(ν1)

ν2 σ(ν2)


 =


 1− iθ 1 + i+ iθ

1− i+ θ −i− θ


 =


 0.447− 0.276i 0.447 + 0.723i

0.723− 0.447i −0.276− 0.447i


 .

The lattice generator matrix is fully complex as opposed to the one obtained with the

method of Section 6.2 using K = Q(θ) and α = 2− θ. Its minimum product distance is

dp,min(Λ
c) =

1√
5
.

6.3.2. Dimension 3. In Example 6.1 we found a purely imaginary generator matrix

for dimension 3, using K = Q(θ), θ = ζ7 + ζ−17 . We have

(7)OK = P3 = (2− θ)3

so that NK/Q(P) = 7. The prime above 7 in L = Q(i, θ) is (2− θ) and has norm 7. So

if we consider (2− θ) as an element of L, it has norm 49. No other ideal with this norm

can be found, hence we only find the Z[i]n–lattice with a purely imaginary matrix as

given in Example 6.1.

6.3.3. Dimension 4. Let θ = ζ15 + ζ−115 and L = Q(θ, i). Consider the ideal (α) =

((1 − 3i) + iθ2) of OL. A Z[i]–basis of (α) is given by {αθi}3i=0. Using the change of

basis given by the following matrix




1 0 0 0

0 1 0 0

0 −3 0 1

−1 −3 1 1



,

one gets a new Z[i]–basis {νi}4i=1 = {(1− 3i)+ iθ2, (1− 3i)θ+ iθ3,−i+(−3+4i)θ+(1−
i)θ3, (−1 + i)− 3θ + θ2 + θ3}. Then by straightforward computation we find

1

15
TrL/Q(νiν̄j) = δij i, j = 1, . . . , 4

using

TrQ(θ)/Q(θ) = 1, TrQ(θ)/Q(θ
2) = 9,TrQ(θ)/Q(θ

3) = 1, TrQ(θ)/Q(θ
4) = 29.
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n Section 6.1 Section 6.3
2 0.5 0.44721359
3 - 0.14285714
4 0.0625 0.02981423

Table 10. Comparison of dp,min for constructions in Section 6.1 and 6.3

We compute as example the diagonal coefficients to show that they are all equal to 15:

TrL/Q(i)(|νi|2) =





TrL/Q(i)(10− 6θ2 + θ4) if i = 1

TrL/Q(i)(1 + 3θ + θ2 − θ3) if i = 2

TrL/Q(i)(5 + 6θ − θ2 − 2θ3) if i = 3

TrL/Q(i)(−5θ + 2θ2 + 2θ3) if i = 4

Using the basis {νi}4i=1, we find the lattice generator matrix




0.2582− 0.3122i 0.3455− 0.4178i −0.4178 + 0.5051i −0.2136 + 0.2582i

0.2582 + 0.0873i 0.4718 + 0.1596i 0.1596 + 0.054i 0.7633 + 0.2582i

0.2582 + 0.2136i −0.5051− 0.4178i −0.4178− 0.3455i 0.3122 + 0.2582i

0.2582− 0.7633i −0.054 + 0.1596i 0.1596− 0.4718i −0.0873 + 0.2582i



.

Its minimum product distance is

dp,min(Λ
c) =

1√
1125

.

Remark 6.1. It is an open question whether fully complex matrices can be obtained

for dimensions other than 2 and 4.

7. Performance of Complex Lattices

Performance of ideal Z[i]–lattices depends, as in the real case, on both diversity

(which is already maximal) and minimum product distance, which has to be maximized.

As shown in Theorem 5.1 of Chapter 2, the minimum product distance of complex

lattices depends on a relative discriminant dL/Q(i). For example, some numerical values

of the dp,min for constructions given in the previous section are available in Table 10.

In order to compute relative discriminants, we use a transitivity formula [48]:

(48) dL/Q = dnQ(i)/QNQ(i)/Q(dL/Q(i))
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where n is the degree of L over Q(i). Since NQ(i)/Q(dL/Q(i)) = |dL/Q(i)|2, we get

(49) |dL/Q(i)| = 2−n
√
|dL/Q|

where L is a totally complex number field.

We already noticed in Corollary 5.1 of Chapter 2 that when dK is odd, then the

relative discriminant is nothing else than dK itself, i.e., dL/Q(i) = dK .

As explained in Section 5 of Chapter 2, we can use Odlyzko’s bounds to give a lower

bound on totally complex number field discriminants. Knowing that |dL/Q|1/2n ≥ C2n,

we consequently get a bound on the relative discriminant:

(50) |dL/Q(i)|1/n ≥ C2n/2

In Figure 10, we compare Odlyzko’s bounds for |dL/Q(i)|1/n to known values of dK and

relative discriminants obtained from cyclotomic constructions. One easily notices that

the bound for |dL/Q(i)|1/n grows very slowly. This can be explained by the fact that

discriminants of totally complex number fields are much smaller than the ones of totally

real number fields. The large gap from the bound can be explained by the fact that

the family of number fields L necessary to produce complex ideal lattices is limited to

CM fields containing Q(i). On the other hand, Odlyzko’s bound is valid for arbitrary

number fields.



CHAPTER 4

Code Design Criteria for MIMO Channels

In order to achieve high data rate over wireless channels, we need multiple antennas

at both transmitter and receiver ends (MIMO stands for multiple input/ multiple output

channel). This is a generalization of the model considered in Chapter 1, where there

were one transmit and one receive antenna.

1. The MIMO Channel Model

As an example, consider the case in which we have two transmit and three receive

antennas (see Fig. 1). The symbols x1, . . . , x4 are to be transmitted. The first (resp. the

second) antenna has to send the symbols x1, x3 (resp. x2, x4). First, the two symbols

x1, x2 are sent over the channel, and are received by the three antennas, which yields the

received symbols y1, y2, y3, where each yi is a combination of x1, x2 attenuated, similarly

to the case of one antenna, by fading coefficients hij . Next, the two other symbols x3, x4

will be sent, and similarly, we will have at the receiver three received symbols y4, y5, y6.

If we summarize, the transmitted codeword can be written as a matrix X containing the

four symbols x1, . . . , x4, and the received codeword is a matrix Y which is of the form

(51) Y = HX+ Z,

where H is the channel matrix and Z is a noise matrix.

coding

x1, x3

x2, x4

decoding

y1, y4

y2, y5

y3, y6

X Y = HX+ Z

Figure 1. Channel model for two transmit and three receive antennas

67
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This can be generalized for any number of antennas (note that the number of transmit

and receive antennas do not need to be the same).

Let the number of transmit antennas be Mt and the number of receive antennas be

Mr. If y(k) ∈ CMr is the received (column) vector at time k, we can write

(52) y(k) = H(k)x(k) + z(k) ,

where the matrix H(k) ∈ CMr×Mt represents the channel, the column vector x(k) ∈
CMt is the channel input and z(k) ∈ CMr is zero mean i.i.d. Gaussian noise with

E[z(k)z(k)H ] = N0I. We assume a Rayleigh flat fading model, i.e. that the elements of

H(k) are i.i.d. with a zero mean complex Gaussian distribution of unit variance. The

channel is assumed to be block time-invariant, that is, H(k) is independent of k over a

transmission block of m symbols, say H(k) = H (although H(k) may vary from block

to block). Looking at a single block of length m, during which the channel is assumed

to be time-invariant, we can write

Y = [y(1), . . . ,y(m)]

= H[x(1), , . . . ,x(m)] + [z(1), . . . , z(m)] = HX+ Z ,(53)

which is a generalization of (51). The transmitted codeword X belongs to a codebook

(or space-time code) C. Information symbols are taken from a signal constellation (or

alphabet) A, and are encoded into the codewords X.

Notice that in the case of MIMO channels, there are two ways of defining the rate

of a code.

Definition 1.1. Let A be the signal constellation and C be a codebook. The rate in

bits per channel use is defined by

R =
1

m
log|A|(|C|)

where |C| denotes the cardinality of the codebook.

An alternative definition imitates the classical definition of rate used in the case of

linear error correcting codes.

Definition 1.2. The rate of a Mt ×Mr space-time code C is given by

R =
#{information symbols}

Mt ·Mr
.
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There is traditionally a distinction depending on whether the receiver knows the

channel. The case where the receiver is assumed to know the channel matrix H is called

coherent. It is called non-coherent otherwise. In the two next sections, we will give the

code design criteria for each of these cases.

2. The Coherent Case

We consider the coherent case in which the receiver has perfect knowledge of all the

channel coefficients (perfect CSI). Recall that the received signal is:

(54) YMr×m = HMr×Mt ·XMt×m + ZMr×m

where X is the transmitted codeword of duration m taken from the codebook C, H is

the channel matrix with i.i.d. Gaussian entries and Z is the i.i.d. Gaussian noise matrix.

The conditional pairwise error probability is bounded by [50]

P ( X→ X̂ | H ) ≤ exp (−d2(X, X̂)Es/4N0),

where Es is the signal power per transmit antenna. The distance d2(X, X̂) is given by

d2(X, X̂) =

Mr∑

j=1

HjB(X, X̂)B(X, X̂)HHH
j ,

where Hj is the jth column of H and B(X, X̂)i,j = xj,i − x̂j,i, i = 1, . . . ,Mt, j =

1, . . . ,m. Expressing d2(X, X̂) in terms of the eigenvalues λi, i = 1, . . . ,Mt, of the

matrix A(X, X̂) = B(X, X̂)B(X, X̂)H , we get

P ( X→ X̂ | H ) ≤
Mr∏

j=1

exp

(
−(Es/4N0)

Mt∑

i=1

λi|βi,j |2
)

where |βi,j | are independent Rayleigh distributed random variables (see [50] for more

details). An upper bound on the average probability of error is computed by averaging

with respect to the independent Rayleigh distributions of |βi,j |. This yields

(55) P ( X→ X̂ ) ≤
(

1
∏Mt
i=1(1 + λiEs/4N0)

)Mr

.

Let r denote the rank of the matrix A(X, X̂), and say the nonzero eigenvalues of A(X, X̂)

are λ1, . . . , λr. Then it follows from Equation (55) that for high SNR

(56) P ( X→ X̂ ) ≤
(

r∏

i=1

λi

)−Mr

(Es/4N0)
−rMr ,
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meaning that a diversity order of rMr and a coding gain of (λ1 ···λr)Mr are achieved. The

coding gain is an approximate measure of the gain over an uncoded system operating

with the same diversity order.

Consequently, minimizing the above probability of error requires to consider two

criteria.

(1) The rank criterion: in order to achieve the maximum diversity MtMr, the

matrix B(X, X̂) has to be full rank for any pair of codewords X and X̂. Codes

that achieve the maximal diversity are called fully diverse.

(2) The determinant criterion: if a diversity of MtMr is the design target, then

the minimum of the determinant of A(X, X̂) taken over all pairs of distinct

codewords must be maximized.

Note that the diversity order corresponds to the slope of the error probability with

respect to SNR in log-log plot.

3. The Noncoherent Case

We assume now that the receiver will not attempt to estimate the channel matrix

H, i.e. that we have a noncoherent receiver. Again, a received codeword is given by

(57) YMr×m = HMr×Mt ·XMt×m + ZMr×m.

It has been shown in [26] that

P (Y|X) =
exp(−Tr[YΨ−1YH ])

det(πΨ)Mr
,

where Ψ = Im+EsX
HX is the covariance matrix of the received symbols at a particular

antenna and Es is the signal power per transmit antenna.

In the absence of channel state information at the receiver, Hochwald and Marzetta

[26] argue that for high SNR, one should use unitary codewords X, that is satisfying

XXH = mIMt . Thus the Maximum Likelihood (ML) detection rule is that we should

decode Y as that codeword X̂ which maximizes

(58) X̂ = arg max
XXH=mI

P (Y|X).

Using the matrix inversion lemma [28, p. 19], it follows that

(59) X̂ = arg max
XXH=mI

exp
(
−Tr

{[
Im − 1

1+1/(mEs)
XHX

]
YHY

})

πmMr(1 +mEs)MtMr
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so that X̂ should be chosen to maximize

(60) Tr[YXHXYH ] .

This implies that the decoder should project the received signal onto the subspace defined

by each of the codewords and declare the codeword with the maximal projection to be

the winner.

The probability that a transmitted codeword X is decoded as the codeword X̂ using

a ML decoder is

P (X→ X̂) = P (Tr(YX̂HX̂YH) > Tr(YXHXYH)|X).

Using a Chernoff bound argument, we find that the pairwise error probability is upper

bounded by [26]

(61)
1

det(IMt +
ρ2m2

4(1+ρm) [IMt − 1
m2 X̂XHXX̂H ])Mr

,

where ρ = Es
N0

is the signal-to-noise ratio (SNR). If the SNR is large, this pairwise error

probability behaves like

1

|ρm4 [IMt − 1
m2 X̂XHXX̂H ]|Mr

+

= (
Λρ

4
)−Mrν ,

where ν is the rank of [IMt − 1
m2 X̂XHXX̂],

Λ = Λ(X, X̂) = |mIMt −
1

m
X̂XHXX̂H |

1
ν
+ ,

and | · |+ denotes the product of the nonzero eigenvalues. Note that

det




 X

X̂



[
XH X̂H

]

 = det


 mI XX̂H

X̂XH mI




= det(m2IMt − X̂XHXX̂H) ,(62)

which shows that ν =Mt is equivalent to the condition that the rows ofX, X̂ are linearly

independent [29]. For this to happen we must have m ≥ 2Mt.

Similarly to the coherent case, a way to compare these codes is by using the notion

of diversity order (cf. [50]). It follows from (61) that the diversity order of the coding

scheme is equal to Mrν. The maximal diversity order that can be achieved is therefore
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MrMt. Again, we call codes that achieve this bound fully diverse codes. The interpre-

tation in terms of the slope of the error probability with respect to SNR is the same as

in the coherent case.



CHAPTER 5

Cyclic Division Algebras

This chapter is dedicated to cyclic algebras in general, and to cyclic division algebras

in particular. After having reviewed some well known results, we explain how cyclic

algebras provide a tool for space-time coding. It will appear that working with cyclic

division algebras is a crucial point, and that deciding whether a cyclic algebra is a

division algebra reduces to deciding whether a given element is a norm. This requires a

tool from Class Field Theory, namely the Hasse norm symbol. We end this chapter by

explaining how it can be computed for our purpose.

1. Cyclic Algebras: known Results

Let L/K be a cyclic extension of degree n, i.e., a Galois extension such that the

Galois group G = Gal(L/K) is cyclic, with generator σ. Denote by K∗ (resp. L∗)

the non-zero elements of K (resp. L). We choose an element γ ∈ K∗ and construct a

non-commutative K-algebra, denoted A = (L/K, σ, γ), by considering the right L-vector

space

A = L⊕ eL⊕ . . .⊕ en−1L

such that e satisfies

en = γ and λe = eσ(λ) for all λ ∈ L.

Such an algebra is called a cyclic algebra. It is a has dimension (A : L) = n.

It will be very useful for the following to know that cyclic algebras belong to the

family of central simple algebras.

Theorem 1.1. [42, p. 316] The cyclic algebra A = (L/K, σ, γ) is a central simple

algebra over K.

A central simple K-algebra A has the property that there exists a field extension E

of K which splits A. This means that there is an isomorphism of E-algebras

h : A⊗K E ∼=Mm(E), where (A : K) = m2,

73
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and Mm(E) denote the m-dimensional matrices with coefficients in E. We call (A : K)

the dimension of A over K and
√

(A : K) = m the degree of A.
In the particular case of a cyclic algebra A = (L/K, σ, γ), where L/K is a cyclic

extension of degree n, the degree of A is equal to n. Moreover, the field extension L of

K splits A and an isomorphism

(63) h : A⊗K L→Mn(L)

can be given explicitly. Since each x ∈ A is expressible as

x = x0 + ex1 + . . .+ en−1xn−1, xi ∈ L for all i,

it is enough to define h(xi ⊗ 1) and h(e⊗ 1). We have that

xi ⊗ 1 7→




xi 0 0

0 σ(xi) 0
...

. . .
...

0 0 σn−1(xi)




for all i, e⊗ 1 7→




0 0 0 γ

1 0 0 0

0 1
. . .

...

0
. . .

0 1 0




.

Thus the matrix of h(x⊗ 1) is easily checked to be

(64)




x0 γσ(xn−1) γσ2(xn−2) . . . γσn−1(x1)

x1 σ(x0) γσ2(xn−1) . . . γσn−1(x2)
...

...
...

xn−2 σ(xn−3) σ2(xn−4) . . . γσn−1(xn−1)

xn−1 σ(xn−2) σ2(xn−3) . . . σn−1(x0)




.

The above isomorphism h will be the key for using cyclic algebras for coding, together

with the notion of reduced norm.

Definition 1.1. Let x ∈ A. With the above notations, we call the reduced norm of

x, that we denote by N(x), the determinant det(h(x⊗ 1)) of the matrix h(x⊗ 1).

The reduced norm of a cyclic algebra inherits, by Theorem 1.1, of properties of the

reduced norm of a central simple algebra.

Proposition 1.1. [40, p. 113] Let A be a central simple algebra over K. For all

x ∈ A, the reduced norm N(x) of x belongs to the center K of A.
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Finally, we need a criterion to decide whether a cyclic algebra is a division algebra.

Proposition 1.2. [38, p. 279] Let L/K be a cyclic extension of degree n with Galois

group Gal(L/K) =< σ >. If the order of γ ∈ K∗ modulo NL/K(L∗) is n, then the cyclic

algebra (L/K, σ, γ) is a division algebra.

Remark 1.1. Since NL/K(L∗) ⊂ K∗, we consider the quotient group K∗/NL/K(L∗).

Obviously, NL/K(γ) = γn, so that the order of γ in the quotient group has to divide n.

This simplifies the computation, since in order to check that a cyclic algebra is a division

algebra, it is enough to check that γk is not a norm for k | n.

2. Cyclic Algebras: a Tool for Space-Time Coding

Based on the previous section, we now explain how to use cyclic algebras to build

space-time block codes (STBCs). This application of cyclic algebras has been first thor-

oughly studied in [44].

Again, let L/K be a cyclic extension of degree n, with Galois group Gal(L/K) =<

σ >, where σ is the generator of the cyclic group. Consider A = (L/K, σ, γ) its corre-

sponding cyclic algebra.

Via the isomorphism (63), we associate to an element x ⊗ 1 of the split algebra

A ⊗K L a matrix representation, as given in (64). Based on the latter, the following

space-time block code is then obtained

C∞ =








x0 x1 . . . xn−1

γσ(xn−1) σ(x0) . . . σ(xn−2)
...

...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)



| xi ∈ L, i = 0, . . . , n− 1





.

Let X ∈ C∞ be a codeword. With the above notations, X = h(x⊗ 1)T for some x ∈ A,
thus det(X) = det(h(x⊗ 1)T ) = det(h(x⊗ 1)) = N(x).

Remark 2.1. By abuse of language, we say that a codeword X ∈ C∞ is a matrix

representation of an element x ∈ A, and we call det(X) the reduced norm of x.

The code C∞ is obtained by considering a discrete subset of the base field K as

information symbols. Following the terminology of [44], we may say that the STBC is

over K. Since L can be seen as a vector space of dimension n over K, the code matrix
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entries (belonging to L) are linear combinations of n information symbols:

x` =
n−1∑

k=0

u`,kνk, ` = 0, . . . , n− 1

where {νk}n−1k=0 is a K-basis of L. There are thus n2 information symbols u`,k ∈ K

encoded into a codeword X ∈ C∞.

In order to build STBCs with “good” properties, we restrict the codebook to a subset

of C∞, obtained by restricting the coefficients x0, . . . , xn−1, to be in I ⊆ OL, an ideal of

the ring of integers of L. We denote by CI this codebook:

(65)

CI =








x0 x1 . . . xn−1

γσ(xn−1) σ(x0) . . . σ(xn−2)
...

...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)



| xi ∈ I ⊆ OL, i = 0, . . . , n− 1





Note that in order to guarantee all the coefficients to be in OL, we need to take γ ∈
K ∩OL = OK . This time, we have n2 information symbols u`,k ∈ OK that are encoded

into a codeword X ∈ CI by

x` =
n−1∑

k=0

u`,kνk, ` = 0, . . . , n− 1

where {νk}n−1k=0 is a basis of the ideal I.

Remark 2.2. In the following, we will focus on information symbols carved from two

different types of constellations: the QAM constellations and the HEX constellations.

Since they can be seen as subsets of Z[i] resp. Z[ζ3] (where ζ3 is a primitive third root of

unity), we will consider number field extensions L/K, where K is either Q(i) or Q(ζ3).

The code CI is obviously linear and the information symbols are dispersed in linear

combinations over space and time. Such codes are refered to as Linear Dispersion Space-

Time Block Codes (LD-STBCs) [24]. The LD-STBCs built over cyclic algebras have the

following two key advantages.

(1) We have a criterion to decide whether the STBC C∞ satisfies the rank criterion

[50]. Namely, when the cyclic algebra is a division algebra, all its elements are

invertible hence the codeword matrices have non zero determinant. Proposition
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1.2, as already noticed in [44], gives a sufficient condition for a cyclic algebra

to be a division algebra.

(2) Thanks to linearity, the minimum determinant of the infinite code C∞ is

δmin(C∞) = min
X1,X2∈C∞,X1 6=X2

| det(X1 −X2)|2 = min
X∈C∞,X6=0

| det(X)|2.

Since the rank criterion is fullfilled by considering a division algebra, much of the work

will be on deriving a lower bound for the minimum determinant. This is the purpose of

the next two sections.

2.1. Discreteness of the determinants. The goal of this section is to investigate

the determinant properties of STBCs built over a cyclic algebra A = (L/K, σ, γ). We

prove that if we restrict the coefficients of the codes to be in OL, under the assumption

that γ ∈ OK , the determinants are in OK . When OK = Z[i] or Z[ζ3], they are then

discrete.

Let us begin with the simplest example.

Example 2.1. Consider a cyclic algebra A = (L/K, σ, γ) of degree 2 with γ ∈ OK .

Let x = x0 + ex1, x0, x1 ∈ OL, which can be written as

X =


 x0 x1

γσ(x1) σ(x0)


 .

Since x0 and x1 are chosen to be in OL, they are by definition elements of L that satisfy

a linear equation with coefficients in Z. Thus σ(x0) and σ(x1) also belong to OL. The

reduced norm of x is given by the determinant of X:

det(X) = x0σ(x0)− γx1σ(x1).

Recalling that γ ∈ OK , det(X) ∈ OL. By Proposition 1.1, det(X) ∈ K, so that det(X) ∈
K ∩ OL = OK .

In this example, there are two other ways to obtain the same result. First, notice

that det(X) = NL/K(x0) + γNL/K(x1), as already done in [4, 5]. Since x0, x1 ∈ OL,

their norms belong to OK , and we deduce that det(X) ∈ OK . Unfortunately, such a

nice expression holds only for dimension 2. Second, it is clear that det(X) is invariant

under the action of σ, that is σ(det(X)) = det(X). This implies that det(X) is in K,

more precisely in K ∩ OL = OK .
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Example 2.2. Consider now a cyclic algebra A = (L/K, σ, γ) of degree 3 with

γ ∈ OK . Let x = x0 + ex1 + e2x2, which can be represented as

X =




x0 x1 x2

γσ(x2) σ(x0) σ(x1)

γσ2(x1) γσ2(x2) σ2(x0)


 .

Again the norm of x is given by the determinant of X:

det(X) = N(x0) + γN(x1) + γ2N(x2)− γTr[x0σ(x1)σ
2(x2)].

Obviously the norm of the algebra cannot be related to the norm of the number field,

as in the previous example, though an expression in terms of both norms and traces is

enough to conclude that det(X) ∈ OK .

An explicit computation of the determinant in higher dimensions becomes soon in-

tractable. However, these two examples illustrate the following general result. Since the

reduced norm of A belongs to K (Proposition 1.1), restricting the coefficients x0, . . . , xn

to be in OL results in the reduced norm to be in OK . More precisely:

Proposition 2.1. Let A = (L/K, σ, γ) be a cyclic algebra with γ ∈ OK . Denote its

basis by {1, e, . . . , en−1}. Let x ∈ A be of the form

x = x0 + ex1 + . . .+ en−1xn−1

where xk ∈ OL, k = 0, . . . , n− 1. Then, the reduced norm of x belongs to OK .

Proof. Recall from Definition 1.1 and Remark 2.1 that the reduced norm of x is

the determinant of its matrix representation. Since xi ∈ OL implies σ(xi) ∈ OL for all

i and γ ∈ OK by hypothesis, all coefficients of the matrix representation belong to OL,

hence so does its determinant. By Proposition 1.1, the reduced norm of x belongs to K,

so it belongs to OL ∩K = OK . ¤

Recall (Remark 2.2) that we are interested in having K = Q(i) or Q(ζ3) as base

field. In these cases, we get from Proposition 2.1 that

det(X) ∈ Z[i] (resp. ∈ Z[ζ3]), for X ∈ CI .

We thus have discrete determinants.
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2.2. The minimum determinant. We discuss now the value of the minimum

determinant of the code CI in the case where K = Q(i) or Q(ζ3). Recall that

δmin(CI) = min
06=X∈CI

| det(X)|2.

We show that if I is principal, then δmin(CI) is easily computed. Otherwise, we give a

lower bound on it.

Proposition 2.2. Let CI be a STB code built over the cyclic division algebra A =

(L/K, σ, γ) of degree n where γ ∈ OK . Let I = (α)OL be a principal ideal of OL. Then

δmin(CI) = NL/Q(α).

Proof. For all x ∈ I, we have x = αy for some y ∈ OL. Thus codewords of CI are

of the form

(66) X =




α 0 · · · 0

0 σ(α)
. . .

...
...

. . .
. . . 0

0 · · · 0 σn−1(α)



·




y0 y1 . . . yn−1

γσ(yn−1) σ(y0) . . . σ(yn−2)
...

...

γσn−1(y1) γσn−1(y2) . . . σn−1(y0)




where yi ∈ OL, i = 0, . . . , n− 1. The determinant of the second matrix is in OK = Z[i]

or Z[ζ3], so that its square modulus is at least 1. The minimum is achieved by taking

y0 = 0 and y1 = . . . = yn−1 = 0 (the corresponding codeword is x0 = 1 and xk = 0 for

k = 1 . . . n−1, that is there is a single information symbol u00 = 1 and all the remaining

n2 − 1 equal to 0). We easily deduce that

(67) δmin(CI) = min
06=X∈CI

| det(X)|2 = |NL/K(α)|2 = NL/Q(α),

where last equality holds for K = Q(i) or Q(ζ3), since |x|2 = NK/Q(x), for x ∈ K. ¤

We consider now the more general case, where we make no assumption on whether

I is principal. We have the following result.

Proposition 2.3. Let CI be a STB code built over the cyclic division algebra A =

(L/K, σ, γ) of degree n where γ ∈ OK . Then

δmin(CI) ∈ N(I)Z,

where N(I) denotes the norm of I.
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Proof. Recall first that

det(X) =
∑

s∈Sn
sgn(s)

n∏

i=1

(X)i,s(i),

where Sn is the group of permutations of n elements. Denote by Iσ the action of the

Galois group on I. Since (X)i,s(i) ∈ Iσ
i
for all i, we get [17, p. 118]

det(X) ∈
∏

σ∈Gal(L/K)

Iσ = NL/K(I)OL,

where NL/K(I) stands for an ideal of OK called the relative norm of the ideal I. By

Proposition 2.1, we deduce

det(X) ∈ OK ∩NL/K(I)OL = NL/K(I).

Thus | det(X)|2 ∈ NK/Q(NL/K(I)). We conclude using the transitivity of the norm [17,

p. 99]

min
X∈CI ,X6=0

|det(X)|2 ∈ NL/Q(I) = N(I)Z.

¤

Bounds on δmin(CI) are easily derived from the above proposition.

Corollary 2.1. Let CI be a perfect code built over the cyclic division algebra A =

(L/K, σ, γ) of degree n. Then

min
x∈I

NL/Q(x) ≥ δmin(CI) ≥ N(I).

Proof. The lower bound is immediate from Proposition 2.3. Taking x0 6= 0 ∈ I
and x2 = . . . = xn = 0 yields the upper bound. ¤

The result obtained in Proposition 2.2 for the principal case alternatively follows:

Corollary 2.2. If I = (α)OL is principal, then

δmin(CI) = NL/Q(α).

Proof. If I is principal, the lower and upper bounds in Corollary 2.1 coincide. ¤
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3. The Hasse Norm Symbol

In this section, we introduce the Hasse Norm Symbol. It is a tool derived from Class

Field Theory, that allows to compute whether a given element is a norm. We will need

it in the next chapter. Our exposition is based on [22].

In the following, we consider extensions of number fields L/K that we assume abelian.

Denote by Lν the completion of L with respect to the valuation ν. We denote the

embedding of L into Lν by iν .

Definition 3.1. [22, p. 105] Let L/K be an abelian extension of number fields with

Galois group Gal(L/K). The map
(
• , L/K

ν

)
: L∗ → Gal(L/K)

x 7→
(
iν(x), L/K

ν

)

is called the Hasse norm symbol.

The main property of this symbol is that it gives a way to compute whether an

element is a local norm [22, p. 106-107].

Theorem 3.1. We have
(
x, L/K

ν

)
= 1 if and only if x is a local norm at ν for L/K.

In order to compute the Hasse norm symbol, we need to know some of its properties.

Let us begin with a property of linearity.

Theorem 3.2. We have
(
xy, L/K

ν

)
=

(
x, L/K

ν

)(
y, L/K

ν

)
.

We then know how the symbol behaves at unramified places [22, p. 106].

Theorem 3.3. If ν is unramified in L/K, then we have, for all x ∈ K∗:
(
x, L/K

ν

)
=

(
L/K

ν

)v(x)
,

where
(
L/K
ν

)
denotes the Frobenius of ν for L/K, and v(x) denotes the valuation of x.

Corollary 3.1. At an unramified place, a unit is always a norm.

Proof. It is straightforward since the valuation of a unit is 0. ¤

A remarkable property is the product formula [22, p. 113].
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Theorem 3.4. Let L/K be a finite extension. For any x ∈ K∗ we have:

∏

ν

(
x, L/K

ν

)
= 1,

where the product is defined over all places ν.

By Corollary 3.1, we know that a unit is always a norm locally if the place is un-

ramified. Since we will be interested in showing that a unit γ is not a norm (see next

chapter), we will look for a contradiction at a ramified place. We explain briefly how.

The idea is to start from the product formula, and to simplify all the terms except two

in the product over all primes, so that we get a product of two terms equal to 1:
(
γ, L/K

ν

)(
x, L/K

ν ′

)
= 1, x ∈ K∗.

Hopefully, one of the two terms left will involve γ, the other will be shown to be different

from 1, so that since the product is 1, we will deduce that the term involving γ is different

from 1, thus γ is not a norm. In order to make it easier to simplify the product formula,

we introduce an element y ∈ L such that yγ is a unit locally at ramified primes, and we

compute the product formula

∏

ν

(
yγ, L/K

ν

)
= 1.



CHAPTER 6

Codes for coherent MIMO Channels

Thanks to the tools developped in the previous chapter, we are now ready to concen-

trate on the space-time block codes construction itself. In this work, we consider square

linear dispersion STBCs with full-rate.

As a preliminary, we refine the code design criteria introduced in Chapter 4. This

gives rise to the notion of perfect codes. In short, we define perfect STBCs to have full

rate and full diversity, uniform average transmitted energy per antenna, a non-vanishing

minimum determinant for increasing spectral efficiency and good shaping. The so-called

Golden code [5] is the first example of 2 × 2 perfect codes. In Section 2, we extend

it to an infinite family of codes for two transmit antennas. We then give a scheme to

generalize the 2×2 constructions to higher dimensions. It allows to build perfect STBCs

in dimensions 3, 4 and 6. We conclude by showing that these dimensions are the only

ones where perfect codes exist.

1. Code Design Criteria for “Perfect Codes”

As recalled in Chapter 4, the most important code design parameter for coherent

MIMO channels is the diversity, which is ensured to be maximal when the rank criterion

is satisfied. In previous work such as [44, 14, 18], the emphasis is then on having a

non-zero minimum determinant.

Here we consider square M ×M LD-STBCs (M = Mt = Mr) using cyclic division

algebras, so that the maximal diversity is already guaranteed. We thus focus on further

requirements, namely we want a lower bound on the minimum determinant, and we ask

for a shaping constraint on the signal constellations, that we consider to be either QAM

or HEX symbols.

• Minimum determinant. When the minimum determinant is dependent on

the spectral efficiency, though it is non-zero, it vanishes when the constellation

size increases. This means that the set of determinants of the infinite code is

a dense subset of C. We impose here that the minimum determinant of the

83
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STBC is lower-bounded by a constant. Namely, the infinite code C∞ must

have a non zero minimum determinant δmin(C∞) which corresponds to a non

vanishing behaviour of this determinant when the spectral efficiency increases.

• Shaping. In order to optimize the energy efficiency of the codes, we introduce

a shaping constraint on the signal constellation. It is enough to introduce this

shaping constraint on each layer as the codes considered all use the layered

structure of [15].

Let M be the number of transmit antennas. Since QAM and HEX symbols are

finite subsets of Z[i], resp. Z[ζ3], we need to construct for each layer a Z[i]–

lattice RZ[i]M (resp. a Z[ζ3]–lattice RZ[ζ3]
M ), where R is a complex unitary

matrix (RRH = I), so that there is no shaping loss in the signal constellation.

When working over Z[ζ3], the Hermitian transposition uses the conjugation in

Z[ζ3], that transforms ζ3 into ζ23 . Note that the matrix R may be viewed as a

precoding matrix applied to the information symbols.

Finally, the 2M2–dimensional real lattice generated by the vectorized codewords

where real an imaginary components are separated is either Z2M2
or AM

2

2 , where

A2 is the hexagonal lattice [11], with generator matrix


 1 0

1/2
√
3/2


 .

Finally, it was already noticed in [44] that uniform average transmitted energy per

antenna in all m time slots is required.

This leads to the definition of a perfect STBC code.

Definition 1.1. A square M ×M STBC is called a perfect code if and only if:

• it is a full rate (in the sense of Definition 1.2 of Chapter 4) linear dispersion

code using M2 information symbols, either QAM or HEX.

• the minimum determinant of the infinite code is non zero (so that in particular

the rank criterion is satisfied).

• the 2M2–dimensional real lattice generated by the vectorized codewords is either

Z2M2
or AM

2

2 .

• it induces uniform average transmitted energy per antenna in all m time slots,

i.e., all the coded symbols in the code matrix have the same average energy.
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The 2 × 2 STBC presented in [5] is the first example of perfect STBC. In the next

section, we generalize its construction to an infinite family of codes for 2 transmit an-

tennas.

2. An infinite Family of Codes for two Antennas

In this section, we explain how to construct an infinite family of perfect codes for

two transmit antennas.

Let p be a prime. Let K/Q(i) be a relative extension of degree 2 of Q(i) of the form

K = Q(i,
√
p). We can represent K as a vector space over Q(i):

K = {a+ b
√
p | a, b ∈ Q(i)}.

Its Galois group Gal(K/Q(i)) = 〈σ〉 is generated by σ :
√
p 7→ −√p. Let A =

(K/Q(i), σ, γ) be its corresponding cyclic algebra.

We prove that when p ≡ 5 (mod 8), γ = i, and using a suitable ideal I, we obtain

perfect codes as defined in Section 1.

2.1. The lattice Z[i]2. We first search for the ideal I giving the rotated Z[i]2

lattice. Since Z[i]2 is the only unimodular Z[i]–lattice in dimension 2 [43], it is enough

to find an ideal I such that the complex lattice Λc(I) is unimodular. By definition, a

unimodular lattice coincides with its dual defined as follows.

Definition 2.1. The dual lattice of the integral lattice (L, b) is defined by

L# = {x ∈ LQ | b(x, y) ∈ Z ∀ y ∈ L} .

Let Λc(I) be a complex algebraic lattice with basis {v1,v2} = {σ (ν1) , σ (ν2)}, fol-
lowing the notation of Section 5 (Chapter 2). Translating the above definition, we get

Definition 2.2. The dual lattice of Λc(I) = (I, b) is defined by

Λc(I)# = {x = a1v1 + a2v2, a1, a2 ∈ Q(i)| 〈x,y〉 ∈ Z[i], ∀y ∈ Λc(I)}

where the scalar product between the two vectors can be related to the trace of the corre-

sponding algebraic numbers as

〈x,y〉 = TrL/Q(i) (xy) .

The dual of a complex algebraic lattice can be computed explicitly.
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Lemma 2.1. We have Λc(I)# = Λc
(
I#
)
with

I# = I−1D−1L/Q(i)

where D−1L/Q(i) denotes the codifferent [48, p. 44],[3].

Proof. Let x ∈ I−1D−1L/Q(i). For all y ∈ I, we have to show that TrL/Q(i)(xy) ∈ Z[i].

Since x = uv, with u ∈ I−1 and v ∈ D−1L/Q(i), we have xy = uyv, with uy ∈ OL. The

result follows now from the definition of D−1L/Q(i). ¤

Let L = Q(i,
√
p), with p ≡ 1 (mod 4). The factorization of p in OL is

(68) (p)OL = P2P
2

where P, P are prime conjugate ideals.

Proposition 2.1. The Z[i]–lattice 1√
pΛ

c(P) is unimodular

Proof. Note first that DL/Q(i) = DQ(
√
p)/Q = (

√
p)OQ(

√
p) = (

√
p). Using Lemma

2.1 and (68), we compute the dual of P,

P# = P−1(
√
p)−1 =

1

p
P.

Now the dual lattice is
(

1√
p
Λc(P)

)#

=
√
p
(
Λc(P)#

)
=

1√
p
Λc(P)

which concludes the proof. ¤

2.2. A norm condition. We need to prove that the algebra A = (L/Q(i), σ, i) is a

division algebra. By Proposition 1.2, it is enough to show that i is not a norm in L/Q(i).

We first recall the characterization of a square in finite fields. Let p be a prime and

denote by Fp the finite field of p elements.

Proposition 2.2. Let x ∈ F∗p. We have

x is a square⇐⇒ x
p−1
2 = 1.

Proof. Let Fp be an algebraic closure of Fp. Let y ∈ Fp such that y2 = x. We have

y ∈ F∗p ⇐⇒ yp−1 = 1 ⇐⇒ x(p−1)/2 = 1.

¤
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Corollary 2.1. If p ≡ 1 (mod 4) , −1 is a square in Fp.

Let us come back to our case where p is a prime such that p ≡ 5 (mod 8) and

L = Q(i,
√
p) is a relative extension of Q(i). Let x ∈ L, x = a + b

√
p, a, b ∈ Q(i). Its

relative norm is

(69) NL/Q(i)(x) = (a+ b
√
p)(a− b

√
p) = a2 − pb2.

Our goal is to show that the equation NL/Q(i)(x) = i has no solution. We prove that

this equation has no solution in the field of p-adic numbers Qp, and thus, no solution for

x ∈ L. Let Zp = {x ∈ Qp|νp(x) ≥ 0} be the valuation ring of Qp, where νp(x) denotes

the valuation of x in p. There are embeddings of Q(i) into Qp if X2 + 1, the minimal

polynomial of i, has roots in Zp. Using Hensel’s Lemma [21, p.75], it is enough to check

that −1 is a square in Fp. By assumption, p ≡ 5 (mod 8), thus p ≡ 1 (mod 4), then, by

Corollary 2.1, −1 is a square in Fp.

Proposition 2.3. The unit i ∈ Z[i] is not a relative norm, i.e., there is no x ∈ L

such that NL/Q(i)(x) = i where L = Q(
√
p, i) with p ≡ 5 (mod 8).

Proof. This is equivalent, by (69), to prove that

(70) a2 − pb2 = i, a, b ∈ Q(i)

has no solution.

Using the embedding of Q(i) into Qp, this equation can be seen in Qp as follows:

(71) a2 − pb2 = y + px, a, b ∈ Qp, x, y ∈ Zp,

where y2 = −1. If there is a solution to (70), then this solution still holds in Qp. Thus

proving that no solution of (71) exists would conclude the proof. We first show that in

(71), a and b are in fact in Zp. In terms of valuation, we have

νp(a
2 − pb2) = νp(y + px).

Since x ∈ Zp, the right term yields νp(y + px) ≥ inf{νp(y), νp(x) + 1} = 0, and we have

equality since the valuations are distinct. Now the left term becomes 0 = νp(a
2− pb2) =

inf{2νp(a), 2νp(b) + 1}. The only possible case is νp(a) = 0, implying a ∈ Zp and
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consequently b ∈ Zp.

We conclude showing that

(72) a2 − pb2 = y + px, a, b, x, y ∈ Zp

has no solution. Reducing (mod pZp), we see that y has to be a square in Fp. Since

y2 = −1, y(p−1)/2 = (−1)(p−1)/4 = −1 by choice of p ≡ 5 (mod 8). By Proposition 2.2,

y is not a square, which is a contradiction. ¤

Remark 2.1. This result does not hold for p ≡ 1 (mod 8) since, in this case,

y(p−1)/2 = (−1)(p−1)/4 = 1 and we get no contradiction. The fact that this proof does

not hold anymore is not enough to restrict ourselves to the case p ≡ 5 (mod 8). We thus

give a counterexample.

Example 2.1. Consider L = Q
(√

17, i
)
, and x = 3(i−1)

4 − (i−1)
√
17

4 . It is easy to

check that NL/Q(i)(x) = i.

2.3. The minimum determinant. We first show that the ideal P in (68) is prin-

cipal for all p ≡ 1 (mod 4). Since N(P) = p, it is enough to show that there exists

an element α ∈ P with absolute norm NL/Q(α) = p. Using the fact that p = u2 + v2

for some u, v ∈ Z [41], the element α =
√
u+ iv satisfies the condition and generates

P (resp. α =
√
u− iv generates P). Now, take θ =

1+
√
p

2 and let θ =
1−√p

2 be its

conjugate. We have OL = Z[θ]. The codewords have the form

X =
1√
p


 α(a+ bθ) α(c+ dθ)

iᾱ(c+ dθ̄) ᾱ(a+ bθ̄)




with a, b, c, d ∈ Z[i]. Each layer of the STBC can be encoded by multiplying the vectors

(a, b)T and (c, d)T by the matrix

 α αθ

α αθ


 ,

which generates the Z[i]2–lattice. We observe that this lattice generator matrix may

require basis reduction in order to be unitary.

Determinants are given by

det(X) = 1
pNL/Q(i)(α)

(
NL/Q(i)(a+ bθ)− iNL/Q(i)(c+ dθ)

)
.(73)
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As the second term in (73) only takes values in Z[i] and its minimum modulus is equal

to 1 (take for example a = 1 and b = c = d = 0), we conclude that

(74) δmin(C∞) =
1

p2
|NL/Q(i)(α)|2 =

1

p2
|u+ iv|2 = 1

p
.

Remark 2.2. As p ≡ 5 (mod 8), the largest minimum determinant is given by p = 5

corresponding to the Golden code [5].

3. Space-Time Codes in higher Dimensions

We are now interested in generalizing perfect codes in higher dimensions.

In this process, the choice of γ in building the cyclic algebra A = (L/K, σ, γ) is

critical. It determines whether A is a division algebra and is furthermore constrained by

the requirement that |γ| = 1, so that the average transmitted energy by each antenna

in all time slots is equalized. In [44, Proposition 12], Sethuraman et al. have chosen the

element γ to be transcendental, with |γ| = 1. Hence, they work in the cyclic division

algebra (L(γ)/K(γ), σ, γ). This is where our approach completely differs. Perfect codes

require a non-vanishing minimum determinant. In order to fullfill that condition, we

know by Proposition 2.1 that γ has to be in OK .

Putting together all the constraints to build perfect codes, we obtain the following

construction scheme:

(1) We consider QAM or HEX symbols with arbitrary spectral efficiency as infor-

mation symbols. Since these constellations can be seen as finite subsets of Z[i]

(resp. Z[ζ3]), we take as base field K = Q(i) (resp. K = Q(ζ3)).

(2) Let M be the number of transmit antennas. We take a cyclic extension L/K of

degree n =M with Galois group Gal(L/K) = 〈σ〉 and build the corresponding

cyclic algebra:

A = (L/K, σ, γ).

We choose γ such that |γ| = 1 in order to satisfy the constraint on the uniform

average transmitted energy per antenna.

(3) In order to obtain the non-vanishing determinants, we choose γ ∈ Z[i], or

γ ∈ Z[ζ3] (see Section 2.1 of Chapter 5). Adding the previous constraint |γ| = 1,

we are limited to γ ∈ {1, i,−1,−i} ⊂ Z[i] or γ ∈ {1, ζ3, ζ23 ,−1,−ζ3, ζ23} ⊂ Z[ζ3],

respectively.
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(4) Among all elements of A, we consider those of the form x = x0 + ex1 + . . . +

en−1xn−1, where xi ∈ I, an ideal of OL. We know by by Proposition 2.1 of

Chapter 5 that this guarantees a discrete minimum determinant. Recall that

the codebook is given by

(75)

CI =








x0 x1 . . . xn−1

γσ(xn−1) σ(x0) . . . σ(xn−2)
...

...

γσn−1(x1) γσn−1(x2) . . . σn−1(x0)



| xi ∈ I ⊆ OL, i = 0, . . . , n− 1





.

The n2 information symbols u`,k ∈ OK are encoded into a codeword X ∈ CI by

x` =
n−1∑

k=0

u`,kνk, ` = 0, . . . , n− 1

where {νk}n−1k=0 is a basis of the ideal I.
(5) We choose an ideal I so that the signal constellation on each layer is a finite

subset of the rotated versions of the lattices Z[i]n or Z[ζ3]
n.

(6) We show that A = (L/K, σ, γ) is a division algebra by selecting an appropriate

field extension L, which reduces to show that γ, . . . , γn−1 are not a norm in L∗.

The last point to explain is how to choose the ideal I so as to get rotated versions of

the lattices Z[i]n or Z[ζ3]
n.

3.1. Construction of the Z[i]n and Z[ζ3]
n lattices. In our approach, the cu-

bic shaping constraint requires the construction of rotated versions of Z[i]n and Z[ζ3]
n

lattices. These can be obtained as complex algebraic lattices (see Section 5 of Chap. 2).

Let L be a relative Galois extension of K = Q(i) (resp. K = Q(ζ3)) of degree n, with

OL its ring of integers. In the following, we focus on the case where L is the compositum

of K and a totally real Galois number field Q(θ) of degree n with coprime discriminant,

that is (dK , dQ(θ)) = 1. We write the compositum as L = KQ(θ) (see Fig. 1). This

assumption has the convenient consequence that [48, p. 48]

(76) dL = d2Q(θ)d
n
K ,

where dK = −4 for K = Q(i) and dK = −3 for K = Q(ζ3). Denote by {σk}nk=1 the

Galois group Gal(L/K).
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L

K Q(θ)

Q

n

2n

2

2 n

Figure 1. The compositum of a totally real field Q(θ) and K = Q(i)
or Q(ζ3) with coprime discriminants: relative degrees are shown on the
branches.

Definition 3.1. We denote by Λc(I) the complex algebraic lattice corresponding to

an ideal I ⊆ OL obtained by the complex embedding σ of L into Cn defined as

σ : L → Cn

x 7→ σ(x) = (σ1(x), . . . , σn(x)).

The basis of Λc(I) is obtained by embedding the basis {νk}nk=1of I. Consequently

its Gram matrix G is given by

G =





(
TrL/Q(i)(νkνl)

)n
k,l=1(

TrL/Q(ζ3)(νkτ(νl))
)n
k,l=1

where the trace form is defined as either

TrL/Q(i) : L× L → Q(i)

(x, y) 7→ TrL/Q(i)(xy)

where x denotes the complex conjugation of x, or as

TrL/Q(ζ3) : L× L → Q(ζ3)

(x, y) 7→ TrL/Q(ζ3)(xτ(y))

where τ denotes the conjugation in Q(ζ3), i.e., τ(ζ3) = ζ23 .

We illustrate now how to choose an ideal I ⊆ OL in order to get the rotated versions

of the Z[i]n or Z[ζ3]
n lattices. This is the same method as explained in Subsection

6.3 (Chapter 2), but we recall it here for convenience. First consider the real lattice

Λ(I) obtained from Λc(I) by vectorizing real and imaginary parts of the complex lattice

vectors. We want Λ(I) to be a rotated version of Z2n or An2 . The basic idea is that the

norm of the ideal I is closely related to the volume of Λ(I). We will thus look for an

ideal with the right norm.
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• Consider the ramification in L/Q. The prime factorization of the discriminant

dL/Q =
∏
prkk contains the primes which ramify [41, p. 88], i.e., (pk)OL =

∏
` Iekk` where ek > 1 [41, p. 86].

• Considering the real lattice Λ(OL), we know that vol(Λ(OL)) = 2−n
√
|dL|. We

look for a sublattice Λ(I) of Λ(OL), which could be a scaled version of Z2n

(resp. An2 ), i.e., Λ(I) = (
√
cZ)2n (resp. (cA2)

n) for some integer c.

• Since Λ(I) is a sublattice of Λ(OL), vol(Λ(OL)) = 2−n
√
|dL| must divide

vol(Λ(I)) =





vol(
√
cZ)2n = cn

vol(cA2)
n = cn

(√
3
2

)n

i.e., dL/Q =
∏
prkk divides 22nc2n (resp. 3nc2n).

• This gives a necessary condition for the choice of I. In terms of norm of the

ideal I, we need

(77) N(I) = |OL/I| =
vol(Λ(I))
vol(Λ(OL))

=





(2c)n√∏
p
rk
k

(
√
3c)

n

√∏
p
rk
k

Recall from (76) that dL = 22nd2Q(θ), when L is the compositum of Q(i) and Q(θ)

with coprime discriminants and that dL = 3nd2Q(θ), when L is the compositum

of Q(ζ3) and Q(θ) with coprime discriminants.

• In order to satisfy (77), we must find an ideal of the form

I =
∏
Isk`k`

with norm
∏
pk 6=2 p

n−rk/2
k (resp.

∏
pk 6=3 p

n−rk/2
k ).

This procedure helps us in “guessing” what is the right ideal I to take in order to

build a Z[i]n or Z[ζ3]
n lattice. To prove that we indeed found the right lattice, it is

sufficient to show that

(78) TrL/Q(i)(νiν̄j) = δi,j resp. TrL/Q(ζ3)(νiτ(νj))) = δi,j , i, j = 1, . . . , n

where {νi}ni,j=1 denotes the basis of the ideal I, and δi,j is the Kronecker delta.

Let us come back to the context of STBCs, and consider A = (L/K, σ, γ) a cyclic

algebra. In the case where L is the compositum of K = Q(i) (or Q(ζ3)) and a totally

real field Q(θ), we show that the minimum determinant of the corresponding STBCs CI
is linked to the discriminant of the number field Q(θ).
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Proposition 3.1. Let CI be a perfect code built over the cyclic division algebra

A = (L/K, σ, γ) of degree n where γ ∈ OK , L = KQ(θ) and I is principal. Then

δmin(CI) =
1

dQ(θ)
,

where dQ(θ) is the absolute discriminant of Q(θ).

Proof. Let {νi}ni=1 be a basis of the principal ideal I = (α) and Λ(I) denote the

real lattice over Z. Recall that

(79) det(Λ(I)) = vol(Λ(I))2 = 4−nN(I)2dL,

where dL denotes the absolute discriminant of L. Using (76) and considering the real

lattice, we have for K = Q(i)

det(Z2n) = 1 = 4−nNL/Q(α)
2d2Q(θ)4

n

and for K = Q(ζ3)

det(An2 ) = (3/4)n = 4−nNL/Q(α)
2d2Q(θ)3

n.

Both cases reduce to

NL/Q(α) =
1

dQ(θ)
,

and we conclude using Proposition 2.2 of Chapter 5. ¤

Corollary 3.1. Let CI be a perfect code built over the cyclic division algebra A =

(L/K, σ, γ) of degree n where γ ∈ OK and L = KQ(θ). Then

1

vol(Λc(I)) min
x∈I

NL/Q(x) ≥ δmin(CI) ≥ N(I) = 1

dQ(θ)
.

Proof. The lower bound is immediate from Proposition 2.3 and the equality comes

from (79), similarly as in the proof of Proposition 3.1 of Chapter 5.

Taking x0 6= 0 ∈ I and x2 = . . . = xn = 0 and normalizing yields the upper

bound. ¤

4. 4× 4 perfect STBC Construction

Let L = Q(i, ζ15+ ζ−115 ) be the compositum of Q(i) and Q(ζ15+ ζ−115 ). The extension

L/Q(i) has degree 4 and cyclic Galois group 〈σ〉, with σ : ζ15 + ζ−115 7→ ζ215 + ζ−215 .

We consider the corresponding cyclic algebra A = (L/Q(i), σ, i) of degree 4 .
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4.1. The Z[i]4 lattice. We search for a complex lattice RZ[i]4 following the ap-

proach given in Subsection 3.1. Since the relative discriminant of L is dL/Q(i) = 1125 =

32 · 53, a necessary condition to obtain RZ[i]4 is that there exists an ideal I ⊆ OL with

norm 45 = 32 · 5. The geometrical intuition is that the sublattice Λ(I) has fundamental

volume equal to 2−4
√
dLN(I) = 34 · 54 =

√
15

8
, which suggests that the fundamental

parallelotope of the lattice Λ(I) could be a hypercube of edge length equal to
√
15.

An ideal I of norm 45 is found from the following ideal factorizations

(3)OL = P2
3P3

2
,

(5)OL = P4
5P5

4
.

Let us consider I = P3P5. It is a principal ideal I = (α) generated by α = ((1−3i)+iθ2),
where θ = ζ15 + ζ−115 .

A Z[i]–basis of (α) is given by {αθi}3i=0. Using the change of basis given by the

following matrix



1 0 0 0

0 1 0 0

0 −3 0 1

−1 −3 1 1



,

we get a new Z[i]–basis {νi}4i=1 = {(1− 3i) + iθ2, (1− 3i)θ+ iθ3,−i+ (−3 + 4i)θ+ (1−
i)θ3, (−1 + i)− 3θ + θ2 + θ3}. Then by straightforward computation, we check that

1

15
TrL/Q(i)(νkν̄`) = δk` k, ` = 1, . . . , 4

using

TrQ(θ)/Q(θ) = 1, TrQ(θ)/Q(θ
2) = 9, TrQ(θ)/Q(θ

3) = 1, TrQ(θ)/Q(θ
4) = 29.

For example, we compute the diagonal coefficients:

TrL/Q(i)(|νk|2) =





TrL/Q(i)(10− 6θ2 + θ4) if i = 1

TrL/Q(i)(1 + 3θ + θ2 − θ3) if i = 2

TrL/Q(i)(5 + 6θ − θ2 − 2θ3) if i = 3

TrL/Q(i)(−5θ + 2θ2 + 2θ3) if i = 4

.

We finally get
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• Codeword matrices. The generator matrix of the lattice is given by

M = (σ`(νk))
n
k,`=1

=




0.2582− 0.3122i 0.3455− 0.4178i −0.4178 + 0.5051i −0.2136 + 0.2582i

0.2582 + 0.0873i 0.4718 + 0.1596i 0.1596 + 0.054i 0.7633 + 0.2582i

0.2582 + 0.2136i −0.5051− 0.4178i −0.4178− 0.3455i 0.3122 + 0.2582i

0.2582− 0.7633i −0.054 + 0.1596i 0.1596− 0.4718i −0.0873 + 0.2582i



,

so that X ∈ CI is given by

X =
3∑

k=0

diag

(
1√
15
M(x4k, x4k+1, x4k+2, x4k+3)

T

)
Ek

where

E =




0 1 0 0

0 0 1 0

0 0 0 1

γ 0 0 0



.

• The minimum determinant. By Proposition 2.2 of Chapter 5, the minimum

determinant of the infinite code is equal to

δmin(CI) =
1

154
NL/Q(α) =

45

154
=

1

1125
.

Similarly, Proposition 3.1 gives

δmin(CI) =
1

dQ(θ)
=

1

1125
.

4.2. The norm condition. We now show that A = (L/Q(i), σ, i) is a division

algebra. By Proposition 1.2 and Remark 1.1 (both of Chapter 5), we have to check that

i and −1 are not norms of elements in L.

Proposition 4.1. The unit −1 is not a norm in Q(i, ζ15 + ζ−115 )/Q(i).

Proof. We consider the field extension L = Q(i, ζ15 + ζ−115 )/Q(i). We have

5Z[i] = (i+ 2)(i− 2) = p5q5 and 3Z[i] = (3) = p3.
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We show that i is not a norm locally in p5, thus i is not a norm in L.

Let y = 12i− 25. We have that

y ≡ 1 (mod i+ 2)(80)

−y ≡ 1 (mod i− 2)(81)

−y ≡ 1 (mod 3)(82)

and (y)Z[ζ3] = p769. Let
(
x,L/K
ν

)
denote the Hasse norm symbol. By the product

formula

(83)
∏

ν

(−y, L/K
ν

)
= 1.

The product on the ramified primes yields
(
−y,L/K

p5

)(
−y,L/K

q5

)(
−y,L/K

p3

)
, since the ram-

ification in L/Q(i) is in 5 and 3 only. Since y ∈ p769, its valuation is zero for ν 6= p769.

The valuation of a unit is zero for all places, so that we get for the product on the

unramified primes

∏

ν unramified

(−y, L/K
ν

)
=

∏

ν unramified

(−1, L/K
ν

)(
y, L/K

ν

)
=

(
y, L/K

p769

)
.

Thus equation (83) simplifies to
(−y, L/K

p3

)(
y, L/K

p5

)(−1, L/K
p5

)(−y, L/K
q5

)(
y, L/K

p769

)
= 1.

The first, second and fourth terms are 1 by the choice of y (see equations (80), (81) and

(82)), so that finally we have
(−1, L/K

p5

)(
y, L/K

p769

)
= 1.

Since p769 does not split completely, the second term is different from 1, so that
(
−1,L/K

p5

)
6=

1, which concludes the proof. ¤

It is left to prove that i is not a norm in L.

Lemma 4.1. We have the following field extensions:

Q(i) ⊂ Q(i,
√
5) ⊂ L.

Proof. We show that Q(i,
√
5) is the subfield fixed by 〈σ2〉, the subgroup of order

2 of Gal(L/Q(i)) = 〈σ〉. Let σ2 : ζ15 + ζ−115 7→ ζ415 + ζ−415 and x =
∑3

k=0 ak(ζ15 + ζ−115 )k,
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ak ∈ Q(i) be an element of L. It is a straightforward computation to show that σ2(x) = x

implies that x is of the form x = a0 + a3(ζ
3
15 + ζ−315 ). ¤

Proposition 4.2. The algebra A = (L/Q(i), σ, i) is a division algebra.

Proof. We know by Proposition 4.1 that −1 is not a norm. We now prove by

contradiction that i is not a norm either.

Suppose i is a norm in L∗, i.e., there exists x ∈ L∗ such that NL/Q(i)(x) = i. By Lemma

4.1 and transitivity of the norm, we have

NL/Q(i)(x) = NQ(
√
5,i)/Q(i)(NL/Q(

√
5,i)(x)) = i.

Thus i has to be a norm in Q(
√
5, i). By Proposition 2.3 in the case p = 5, we know i is

not a norm, which is a contradiction. ¤

Note that the argument of the previous proof does not apply for −1 since it is clearly

a norm in Q(
√
5, i)/Q(i).

5. 3× 3 perfect STBC Construction

Let L = Q(ζ3, ζ7 + ζ−17 ) be the compositum of K and Q(ζ7 + ζ−17 ). The extension

L/Q(ζ3) has degree 3 and cyclic Galois group 〈σ〉 with σ : ζ7 + ζ−17 7→ ζ27 + ζ−27 .

Consider the corresponding cyclic algebra A = (L/K, σ, ζ3) of degree 3.

5.1. The Z[ζ3]
3 lattice. In this case, we look for a complex lattice RZ[ζ3]

3, where

R is a complex unitary matrix but in the sense of the Hermitian transposition defined

with the τ -conjugation. The relative discriminant of L is dL/K = 49 = 72 while its

absolute discriminant is dL = −33 · 74. A necessary condition to obtain RZ[ζ3]
3 is the

existence of an ideal I ⊆ OL with norm 7. In fact, the lattice Λ(OL) has fundamental

volume equal to 2−3
√
|dL| = 72

(√
3
2

)3
and the sublattice Λ(I) has fundamental volume

equal to 2−3
√
|dL|N(I) = 73

(√
3
2

)3
, where the norm of the ideal N(I) is equal to the

sublattice index. This suggests that the algebraic lattice Λ(I) could be a homothetic

version of A3
2, namely, (7A2)

3.

An ideal I of norm 7 is found from the following ideal factorizations

(7)OL = P3
7P7

3
.
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Let us consider I = P7. It is a principal ideal I = (α) generated by α = (1 + ζ3) + θ,

where θ = ζ7+ ζ−17 . A Z[ζ3]–basis of (α) is given by {αθi}2i=0 = {(1+ ζ3)+ θ, (1+ ζ3)θ+

θ2, 1 + 2θ + ζ3θ
2}. Using the change of basis given by the following matrix




1 0 0

0 −1 1

2 1 0


 ,

one gets a reduced Z[ζ3]–basis {νi}3i=1 = {(1+ζ3)+θ, (−1−2ζ3)+ζ3θ
2, (−1−2ζ3)+(1+

ζ3)θ + (1 + ζ3)θ
2}. Denote by τ : ζ3 7→ ζ23 , the ζ3-conjugation. Then by straightforward

computation we check that

1

7
TrL/Q(ζ3)(νkτ(νl)) = δkl k, l = 1, 2, 3

using TrQ(θ)/Q(1) = 3, TrQ(θ)/Q(θ) = −1, TrQ(θ)/Q(θ
2) = 5.

We compute, for example, the diagonal coefficients

TrL/Q(ζ3)(νkτ(νk)) =





TrL/Q(ζ3)(1 + θ + θ2) = 7 if k = 1

TrL/Q(ζ3)(2− θ) = 7 if k = 2

TrL/Q(ζ3)(4− θ2) = 7 if k = 3

We finally get

• Codeword matrices. The generator matrix of the lattice is given by

M = (σl(νk))
n
k,l=1

=




1.03826 + 0.32732i −0.462069− 0.145674i 0.832620 + 0.262495i

−0.11412 + 0.32732i −0.142307 + 0.408169i 0.063332− 0.181652i

0.39873 + 0.32732i −0.718498− 0.589822i −0.895953− 0.735496i


 ,

so that X ∈ CI is given by

X =
2∑

k=0

diag

(
1√
7
M(x3k, x3k+1, x3k+2)

T

)
Ek

where

E =




0 1 0

0 0 1

γ 0 0


 .
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• The minimum determinant. The ideal I is principal, so that we can use

Proposition 2.2 of Chapter 5 to get

δmin(CI) =
1

73
NL/Q(α) =

7

73
=

1

49
=

1

dQ(θ)
,

by Proposition 3.1.

5.2. The norm condition. By Proposition 1.2 and Remark 1.1, it is enough to

show that the unit ζ3 is not a norm in Q(ζ3, ζ7 + ζ−17 )/Q(ζ3).

Proposition 5.1. The cyclic algebra A = (Q(ζ3, ζ7 + ζ−17 )/K, σ, ζ3) is a division

algebra.

Proof. We consider the field extension L = Q(ζ3, ζ7 + ζ−17 )/Q(ζ3). We have

7Z[ζ3] = (ζ3 − 2)(ζ3 + 3) = p7q7.

We show that ζ3 is not a norm locally in p7, thus ζ3 is not a norm in L.

Let y = 7− 3ζ3. We have that

y ≡ 1 (mod ζ3 − 2)(84)

ζ3y ≡ 1 (mod ζ3 + 3)(85)

and (y)Z[ζ3] = p79. Let
(
x,L/K
ν

)
denote the Hasse norm symbol. By the product formula

(86)
∏

ν

(
ζ3y, L/K

ν

)
=

∏

ν ramified

(
ζ3y, L/K

ν

) ∏

ν unramified

(
ζ3y, L/K

ν

)
= 1.

The product on the ramified primes yields
(
ζ3y,L/K

p7

)(
ζ3y,L/K

q7

)
, since the ramification

in L/Q(ζ3) is in 7 only. Note that
(
xy,L/K

ν

)
=
(
x,L/K
ν

)(
y,L/K
ν

)
by linearity. We now

look at the product on the unramified primes. Since y ∈ p79, its valuation is zero for

ν 6= p79. The valuation of a unit is zero for all places, so that we get

∏

ν unramified

(
ζ3y, L/K

ν

)
=

∏

ν unramified

(
ζ3, L/K

ν

)(
y, L/K

ν

)
=

(
y, L/K

p79

)
.

Thus equation (86) simplifies to

(
ζ3, L/K

p7

)(
y, L/K

p7

)(
ζ3y, L/K

q7

)(
y, L/K

p79

)
= 1.
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The second and third terms are 1 by the choice of y (see equations (84) and (85)), so

that finally we have
(
ζ3, L/K

p7

)(
y, L/K

p79

)
= 1.

Since p79 is inert, the second term is different from 1, so that
(
ζ3,L/K

p7

)
6= 1. In words,

ζ3 is not a norm in p7 which concludes the proof. ¤

6. 6× 6 perfect STBC Construction

Let L = Q(ζ3, ζ28 + ζ−128 ) be the compositum of K and Q(ζ28 + ζ−128 ). The extension

L/Q(ζ3) has degree 6 and cyclic Galois group 〈σ〉 with generator σ : ζ28+ζ
−1
28 7→ ζ228+ζ

−2
28 .

Consider the corresponding cyclic algebra A = (L/Q(ζ3), σ,−ζ3) of degree 6.

6.1. The Z[ζ3]
6 lattice. First note that the discriminant of L is dL = 212 · 36 · 710.

Following the approach given in Subsection 3.1, we need to construct a complex lattice

RZ[ζ3]
6, where R is a complex unitary matrix (in the sense of the hermitian product

defined with the τ -conjugation).

A necessary condition to obtain RZ[ζ3]
6 is that there exists an ideal I ⊆ OL with

norm 7. In fact, the lattice Λ(OL) has fundamental volume equal to 2−6
√
|dL| = 75 ·

26 ·
(√

3
2

)6
and the sublattice Λ(I) has fundamental volume equal to 2−6

√
|dL|N(I) =

76 · 26 ·
(√

3
2

)6
, where the norm of the ideal N(I) is equal to the sublattice index. This

suggests that the algebraic lattice Λ(I) could be a homothetic version of A6
2, namely,

(√
14A2

)3
, but this needs to be checked explicitly.

An ideal I of norm 7 can be found from the following ideal factorizations

(7)OL = P6
7P7

6
.

Let us consider I = P7. Unlike in the preceeding constructions, the ideal I is not

principal. This makes harder the explicit computation of an ideal basis, and in particular

of the ideal basis (if any) for which the Gram matrix is the identity. We thus adopt the

following alternative approach. We compute numerically a basis of I, from which we

compute a Gram matrix of the lattice. We then perform a basis reduction on the Gram

matrix, using an LLL reduction algorithm (see Subsection 6.3 for more details). This

gives both the Gram matrix in the reduced basis and the matrix of change of basis. We
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get the following change of basis




0 1 0 0 0 0

1 + ζ3 0 1 0 0 0

−1− 2ζ3 0 −5 0 1 0

1 + ζ3 0 4 0 −1 0

0 −3 0 1 0 0

0 5 0 −5 0 1




.

The lattice generator matrix in numerical form is given by

M =




1.9498 1.3019− 0.8660i −0.0549− 0.8660i −1.7469− 0.8660i 1.5636 0.8677

0.8677 −1.7469− 0.8660i 1.3019− 0.8660i −0.0549− 0.8660i −1.9498 1.5636

1.5636 −0.0549− 0.8660i −1.7469− 0.8660i 1.3019− 0.8660i −0.8677 −1.9498

−1.9498 1.3019− 0.8660i −0.0549− 0.8660i −1.7469− 0.8660i −1.5636 −0.8677

−0.8677 −1.7469− 0.8660i 1.3019− 0.8660i −0.0549− 0.8660i 1.9498 −1.5636

−1.5636 −0.0549− 0.8660i −1.7469− 0.8660i 1.3019− 0.8660i 0.8677 1.9498




.

This matrix satisfies MMH is the identity matrix, so that we indeed get a rotated

version of the Z[ζ3]
6 lattice.

• Codeword matrices. Using the lattice generator M above, X ∈ CI is given

by

X =
5∑

k=0

diag

(
1√
14
M(x6k, x6k+1, x6k+2, x6k+3, x6k+4, x6k+5)

T

)
Ek

where

E =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

γ 0 0 0 0 0




.

• The minimum determinant. Since the ideal I is not principal, we use the

bounds of Corollary 3.1

1

146
min
x∈I

N(x) =
72

2676
≥ δmin(CI) ≥

1

146
NL/Q(I) =

1

2675
=

1

dQ(ζ28+ζ
−1
28 )
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6.2. The norm condition. By Proposition 1.2 and Remark 1.1, it is enough to

show that γ = −ζ3, γ2 = ζ23 and γ3 = −1 are not a norm in L.

We first prove that −1 is not a norm in Q(ζ28 + ζ−128 , ζ3)/Q(ζ3).

Proposition 6.1. The unit -1 is not a norm in Q(ζ28 + ζ−128 , ζ3)/Q(ζ3).

Proof. We consider the field extension L = Q(ζ28 + ζ−128 , ζ3)/Q(ζ3). We have

7Z[ζ3] = (ζ3 − 2)(ζ3 + 3) = p7q7 and 2Z[ζ3] = (2) = p2.

We show that −1 is not a norm locally in p7, thus −1 is not a norm in L.

Let y = 3− 8ζ3. We have that

y ≡ 1 (mod ζ3 − 2)(87)

−y ≡ 1 (mod 3 + ζ3)(88)

−y ≡ 1 (mod 2)(89)

and (y)Z[ζ3] = p97. Let
(
x,L/K
ν

)
denote the Hasse norm symbol. By the product formula

(90)
∏

ν

(−y, L/K
ν

)
= 1.

The product on the ramified primes yields
(
−y,L/K

p7

)(
−y,L/K

q7

)(
−y,L/K

p2

)
, since the ram-

ification in L/Q(ζ3) is in 7 and 2 only. Since y ∈ p97, its valuation is zero for ν 6= p97.

The valuation of a unit is zero for all places, so that we get for the product on the

unramified primes

∏

ν unramified

(−y, L/K
ν

)
=

∏

ν unramified

(−1, L/K
ν

)(
y, L/K

ν

)
=

(
y, L/K

p97

)
.

Thus equation (90) simplifies to
(−y, L/K

p2

)(
y, L/K

p7

)(−1, L/K
p7

)(−y, L/K
q7

)(
y, L/K

p97

)
= 1.

The first, second and fourth terms are 1 by choice of y (see equations (87), (88) and

(89)), so that finally we have
(−1, L/K

p7

)(
y, L/K

p97

)
= 1.

Since p97 does not split completely, the second term is different from 1, so that
(
−1,L/K

p7

)
6=

1, which concludes the proof. ¤
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Lemma 6.1. We have the following field extensions:

Q(ζ3) ⊂ Q(ζ3, ζ7 + ζ−17 ) ⊂ Q(ζ3, ζ28 + ζ−128 )

Proof. The proof is similar to that of Lemma 4.1. One has to show that Q(ζ7 +

ζ−17 , ζ3) is the subfield fixed by 〈σ2〉, the subgroup of order 2 of Gal(Q(ζ3, ζ28+ζ
−1
28 )/K) =

〈σ〉. ¤

Proposition 6.2. The algebra A = (L/K, σ,−ζ3) is a division algebra.

Proof. By Proposition 6.1, we know −1 is not a norm. We prove, by contradiction,

that −ζ3 and ζ23 are not a norm in L∗. Suppose that either −ζ3 or ζ23 are a norm in

L∗, i.e., there exists x ∈ L∗ such that NL/K(x) = −ζ3 (resp. ζ23 ). By Lemma 6.1 and

transitivity of the norm, we have

(91) NL/K(x) = NQ(ζ3,ζ7+ζ
−1
7 )/K(NL/Q(ζ3,ζ7+ζ

−1
7 )(x)) = −ζ3 (resp. ζ23 ).

Thus ζ23 has to be a norm in Q(ζ3, ζ7 + ζ−17 )/Q(ζ3), which is not the case, by Remark

1.1 (Chapter 5).

For −ζ3, Equation (91) yields, since [Q(ζ3, ζ7 + ζ−17 ) : K] = 3,

NQ(ζ3,ζ7+ζ
−1
7 )/K(−NL/Q(ζ3,ζ7+ζ

−1
7 )(x)) = ζ3,

which contradicts Proposition 5.1. ¤

6.3. The LLL reduction algorithm over Z[ζ3]. The standard LLL reduction

algorithm [23] over Z can be easily modified to work over Z[ζ3] [34]. The two main

points to be careful about are

• the Euclidean division: the quotient of the Euclidean division over Z[ζ3] is

defined as follows: let x = x1 + ζ3x2 and y = y1 + ζ3y2, x1, x2, y1, y2 ∈ Z. The

division of x by y yields x
y = z1 + ζ3z2, with z1, z2 ∈ Q. Then we have that

x = yq + r, where q = [z1] + ζ3[z2].

• the conjugation: the usual complex conjugation is replaced by the τ -conjugation,

that sends ζ3 onto ζ23 .
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7. Existence of Perfect Codes

Perfect space-time block codes must satisfy a large number of constraints. Thus,

when they are constructed from cyclic algebras, they do not exist for every value of M

(number of transmit antennas). We show here that the only values of M for which they

exist are 2, 3, 4 and 6.

In order to have non vanishing determinants when the spectral efficiency increases,

determinants of the infinite code C∞ must take values in a discrete subset of C. We

have shown in Subsection 2.1 (Chapter 5) that the determinants of CI are in OK , when

I ⊆ OL and γ ∈ OK . But OK is discrete in C if and only if K is a quadratic imaginary

field, namely K = Q(
√
−d), with d a positive square free integer.

Remark 7.1. It is important to note that a base field K of degree higher than 2

yields dense determinants.

We now have the further constraint |γ| = 1. Since |γ|2 = NQ(
√
−d)/Q(x) = 1 and

γ ∈ OQ(
√
−d), γ is a unit.

Lemma 7.1. [41, p.76] Let d be a positive square free integer. The only units of

K = Q(
√
−d) are ±1 unless K = Q(i) or K = Q(ζ3).

Finally, we require the algebra A = (L/K, σ, γ) of degree M to be a division algebra,

i.e., γk, k = 1, 2, . . . ,M − 1 cannot be a norm.

Proposition 7.1. Perfect codes exist exactly when the number of transmit antennas

M is 2, 3, 4 and 6.

Proof. By Lemma 7.1, the only possible values for γ are −1, ±i, ±ζ3 and ±ζ23 .
Since they are resp. 2nd, 3rd, 4th and 6th roots of unity, we have M ≤ 6 antennas.

We then show that there does not exist a perfect code in dimension 5. Since the

dimension is 5, we need to choose γ = −ζ3, and thus the base field is Q(ζ3). Consider

now a number field extension L/Q(ζ3), where L is any cyclic extension of Q(ζ3). The

element 1 + ζ3 belongs to L, and its norm is

NL/Q(ζ3)(1 + ζ3) = (1 + ζ3)
5 = −ζ3.

Thus we cannot find a cyclic division algebra of degree 5 with base field Q(ζ3). ¤



CHAPTER 7

Codes for noncoherent MIMO Channels

We finally consider the construction of codes for non-coherent MIMO channels. Note

that this chapter is not in the continuity of the others, since the algebraic techniques

used here are different from the ones used so far.

The problem of designing codes for non-coherent MIMO channels has been shown

(see [26],[55]) to be equivalent to one of packing subspaces according to a certain notion

of distance, as we will briefly recall in Section 1. From that point of view, the diver-

sity order was shown to depend on the dimension of the intersection of the subspaces.

Maximal diverse codes are thus obtained by building “nonintersecting” subspaces, that

is subspaces which intersect only at the origin. The aim of this chapter is the construc-

tion of nonintersecting subspaces, subject to the extra constraint that the codewords are

defined using symbols from a fixed, small constellation. We focus on two cases: one in

which the symbols are taken from a finite field (Section 2) and the other where they are

taken from a PSK arrangement, i.e., are complex roots of unity (Section 3). Our aim

is to find constructions that give the largest number of nonintersecting subspaces (i.e.,

have the highest rate) subject to these constraints.

A similar problem has been studied in the context of designing differential codes

for the multiple-antenna channel [27], [29], [49]. An extensive characterization and

classification of group differential space-time codes was given in [45]. The focus of much

of this work is on constructing codes which have the nonintersecting subspace property

without imposing any constraints on the number of different symbols used to define the

codewords—that is, the codewords are allowed to use a signal constellation that is larger

than the minimum possible.

It is worth remarking that a recent paper by Lusina et al. [36] discusses an analogous

problem for the case of coherent decoders. Another related paper by Lu and Kumar

[32] explores code constructions with fixed alphabet constraints for achieving different

points on the rate-diversity trade-off. Again, only coherent decoders are considered.

A very recent paper by Kammoun and Belfiore [30] directly addresses the problem of

105
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constructing codes for non-coherent systems with a large value of Λ(X,X′) between

subspaces (see (93) below), though with a different approach.

1. Code Design Criteria: nonintersecting Subspaces

We give here a geometric interpretation of fully diverse codewords in term of non-

intersecting subspaces, before formalizing the problem statement, introducing the extra

constraint of a fixed alphabet.

1.1. A geometric interpretation of the pairwise error probability. Let Mt

(Mr) be the number of transmitting (receiving) antennas, and let m be the block length

during which the channel is assumed to be time-invariant. Recall from Chapter 4 that

the pairwise error probability when the channel is not known at the receiver is upper

bounded as follows:

P (X→ X̂) ≤ 1

det(IMt +
ρ2m2

4(1+ρm) [IMt − 1
m2 X̂XHXX̂H ])Mr

→ (
Λρ

4
)−Mrν ,

where we consider the behaviour when the signal-to-noise ratio (SNR) ρ = Es
N0

is large.

With our previous notations, ν is the rank of [IMt − 1
m2 X̂XHXX̂], and

(92) Λ = Λ(X, X̂) = |mIMt −
1

m
X̂XHXX̂H |

1
ν
+ ,

where | · |+ denotes the product of the nonzero eigenvalues. The diversity of the codes

is given by Mrν, so that fully diverse codes reach a diversity order of MrMt.

A geometric interpretation of the pairwise error probability can be given by con-

sidering subspaces as corresponding to pairs of codewords. It furthermore requires the

notion of principal angles. The principal angles between two subspaces X and X′ are

given by cos θi =
1
mσi(X

′XH) where σi(·) is the i-th singular value of the matrix ([10],

[20]). Using this definition, we rewrite Equation (92) as

(93) Λ(X,X′)ν = m
ν∏

i=1

[1− cos2 θi] = m
ν∏

i=1

sin2 θi .

Note first that if an eigenvalue of [IMt− 1
m2 X̂XHXX̂] is zero, then there exists a principal

angle θ such that 1 − cos2(θ) = 0. Thus θ ∈ {0, π} and the codewords intersect. This

can be reformulated as: in order to have maximal diversity (that is, no zero eigenvalue),

we need to construct subspaces which intersect only at the origin.
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Remark 1.1. By a slight abuse of notation, we will say in the following of the

chapter that two vector spaces are “nonintersecting” if their only common point is the

zero vector.

Equation (93) provides a further measure of how good a code is. Since the error

probability will be dominated by the pair of codewords with the smallest rank ν and

the smallest “distance” Λ(X,X′), not only should the subspaces be nonintersecting, the

value of Λ(X,X′) should be large for every pair X, X′ of distinct subspaces.

In brief, to get a diversity order of MrMt, we need to construct nonintersecting

subspaces which are far apart in the metric defined by (93).

The first goal is to obtain maximal diversity order by con-

structing families of subspaces which are nonintersecting.

In order to further improve performance, we need to maximize Λ(X,X′) over all

pairs X, X′ of distinct subspaces.

1.2. Statement of the problem. Let us first formalize our code design criterion

in terms of nonintersecting subspaces.

Definition 1.1. Let F be a field. A codeword or subspace will mean an Mt-

dimensional subspace of Fm. Two subspaces Π1 and Π2 are said to be nonintersecting

over F if their intersection is trivial, i.e. if Π1 ∩Π2 = {0}.

Suppose Π1 is generated by (row) vectors u1, . . . , uMt ∈ Fm, and Π2 is generated

by vectors v1, . . . , vMt ∈ Fm. Let P :=


 Π1

Π2


 denote the 2Mt ×m matrix with rows

u1, . . . , uMt , v1, . . . , vMt . Then the following lemma is readily established.

Lemma 1.1. The following properties are equivalent:

(i) Π1 and Π2 are nonintersecting,

(ii) P has rank 2Mt over F, and

(iii) if m = 2Mt the determinant of P is nonzero.

Suppose now that instead of allowing the entries in the matrices Π1 and Π2 to be

arbitrary elements of F, we restrict them to belong to a finite subset A ⊆ F, called the
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alphabet. In other words, the vectors u1, . . . , uMt , v1, . . . , vMt must belong to Am. The

question that we address is the following:

Given Mt, m and a finite alphabet A ⊆ F, how many sub-

spaces can we find which are generated by vectors from Am

and which are pairwise nonintersecting over F?

Furthermore, if the size of A is specified in advance, which choice of A permits the

biggest codes? Since the rate of a code C is R = 1
m log(|C|), in trying to construct the

maximal number of nonintersecting subspaces, we attempt to get the highest rate codes

(in the sense of Definition 1.1 of Chapter 4) that achieve maximal diversity order.

We first dispose of the trivial case when Mt = 1. Two nonzero vectors u, v are said

to be projectively distinct over a field F if there is no a ∈ F such that u = av. Then

if Mt = 1, the maximum number of nonintersecting subspaces is simply the maximum

number of projectively distinct vectors in Am.

In the following sections, we will investigate the first question for two kinds of al-

phabets:

(a) A is a finite field F (Section 2), and

(b) Mt = 2 and A ⊆ Cm is a set of complex roots of unity (Section 3).

Of course, for the application to multiple-antenna code design, the subspaces need to be

disjoint over C. In Theorem 2.3 of Section 2, we translate the results obtained over F to

this case by “lifting” the subspaces to the complex field.

Remark 1.2. For this application, the case m = 2Mt is the most important. Indeed,

as follows from Equation (62), we need m ≥ 2Mt in order to get full diversity. But at the

same time, we want the highest rate possible. The trade-off is thus to take m = 2Mt.

2. Finite Fields

In this section we assume that the alphabet A and the field F are both equal to the

finite field GF (q), where q is a power of a prime p. At the end of the section, we show

how to “lift” these planes to the complex field (see Theorem 2.3). In this case there is

an obvious upper bound which can be achieved in infinitely many cases. Let V denote

the vector space GF (q)m.
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Theorem 2.1. The number of pairwise nonintersecting Mt-dimensional subspaces

of V is at most

(94)
qm − 1

qMt − 1
.

Proof. There are qm − 1 nonzero vectors in V and each subspace contains qMt − 1

of them. No nonzero vector can appear in more than one subspace. ¤

It is convenient here to use the language of projective geometry, c.f. [33, Appendix

B]. Recall that the points of the projective space P (s, q) are equivalence classes of nonzero

vectors from GF (q)s+1, where two vectors are regarded as equivalent if one is a nonzero

scalar multiple of the other.

A spread [25] in PG(s, q) is a partition of the points into copies of PG(r, q).

Theorem 2.2. Such a spread exists if and only if r + 1 divides s+ 1.

Proof. This is a classical result, due to André ([1] [25, Theorem 4.1.1]). ¤

Corollary 2.1. The bound (94) can be attained whenever Mt divides m, and only

in those cases.

Proof. This is immediate from the theorem, since a set of points in a projective

space represents a set of projectively distinct lines in the corresponding vector space. ¤

Note that the condition is independent of q. If a set of nonintersecting subspaces

meeting (94) exists over one finite field then it exists over every finite field.

Furthermore, it is straightforward to construct the nonintersecting subspaces meeting

the bound in (94), as we now show. The nonzero elements of a finite field F form a cyclic

group which will be denoted by F∗.

Suppose Mt divides m, and consider the fields F0 = GF (q), F1 = GF (qMt), F2 =

GF (qm). Then F0 ⊆ F1 ⊆ F2. By regarding GF (qm) as a vector space of dimension m

over GF (q) we can identify F2 with V . Similarly we can regard F1 as a Mt-dimensional

subspace of V . The desired spread is now obtained by partitioning F ∗2 into (multiplica-

tive) cosets of F ∗1 .

Example 2.1. We consider the case Mt = 2, m = 4 and A = GF (2) = {0, 1}. Then
F0 = GF (2), F1 = GF (4), F2 = GF (16). Each plane in GF (2)4 contains three nonzero

vectors, and GF (2)4 itself contains 15 nonzero vectors. We wish to find a spread of
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PG(1, 2)’s inside PG(3, 2), that is, a partitioning of the 15 vectors into five disjoint sets

of three, where each set of three adds to the zero vector.

Let GF (16) = GF (2)[α], where α4 + α + 1 = 0. Then GF (4) is the subfield

{0, 1, α5, α10}, so F ∗1 = {1, α5, α10}, and we obtain the desired partition

F ∗2 =
4⋃

j=0

αjF ∗1 .

Only two of the three vectors are needed to define each plane, so we have the following

generators for the five planes:

(1, α5), (α, α6), (α2, α7), (α3, α8), (α4, α9) .

We convert these to explicit generator matrices for the five nonintersecting planes:

 1000

0110


 ,


 0100

0011


 ,


 0010

1101


 ,


 0001

1010


 ,


 1100

0101


 .

The problem is therefore essentially solved as long as Mt divides m. If not, we can

use partial spreads – see the surveys in [13] and [46].

We end this section by observing that a set of nonintersecting subspaces over a finite

field A = GF (q), q = pk, p prime, can always be “lifted” to a set of nonintersecting

subspaces over a complex alphabet Ā of the same size.

This can be done as follows. Suppose GF (q) = GF (p)[α], where α is a root of a

primitive irreducible polynomial f(X) ∈ GF (p)[X]. Let n = pk − 1 and ζn = e2πi/n.

Let Q(ζn) be a cyclotomic field , with ring of integers Z[ζn]. It is a classical result

from number theory that the ideal (p) in Z[ζn] factors into g = ϕ(n)/k distinct maximal

prime ideals p1, p2, . . . , pg, where ϕ(·) is the Euler totient function. Furthermore, for each

pj , the residue class ring Z[ζn]/pj ∼= GF (q) (see for example [9, Theorem 10.45], [54,

Theorem 2.13]). If we choose pj to be the ideal generated by p and f(ζn), then Z[ζn]/pj

is exactly the version of GF (q) that we started with. Note that since pj contains (p), it

acts as reduction mod p on Z. We therefore have a ring homomorphism from Z[ζn] to

GF (q) given by

(95) φ : Z[ζn]
mod p→ Z[ζn]/pj

∼=→ GF (q) .

In this way we can lift vectors over GF (q) to vectors over the alphabet Ā consisting of

0 and the q − 1 powers of ζn.
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Example 2.2. Let GF (8) = GF (2)[α] where α is a root of X3+X+1. Then q = 8,

n = 7, ζ7 = e2πi/7. To lift GF (8) to C we write GF (8) = {0, 1, α, α2, . . . , α6}, and lift 0

to 0 and αj to ζj7 for j = 0, . . . , 6.

Let Π be an Mt-dimensional subspace of GF (q)m. By lifting each element of a gen-

erator matrix we obtain an Mt-dimensional subspace Π̄ ⊆ Cm, defined over an alphabet

Ā of size q.

Theorem 2.3. If two subspaces Π1,Π2 of GF (q)m are nonintersecting, so are their

lifts Π̄1, Π̄2.

Proof. Let P :=


 Π1

Π2


 and P̄ :=


 Π̄1

Π̄2


. By Lemma 1.1, P has a 2Mt × 2Mt

invertible submatrix. Since φ is a ring homomorphism, the lift of this submatrix is also

invertible. ¤

It follows that the subspaces constructed in Corollary 2.1 are also nonintersecting

when lifted to the complex field.

This construction gives full diversity order non-coherent space-time codes when the

elements of the codewords are restricted to belong to a finite field. Their rate is

R =
1

m
log(qm − 1)− 1

m
log(qMt − 1) < log(q) ,

which according to Theorem 2.1 is the maximal achievable rate for diversity orderMtMr.

Moreover, the above relationship implies that for fully diverse codes constructed from a

finite field, we cannot achieve a rate higher than log(|A|).

3. PSK Constellations

Throughout this section we assume that the alphabet A consists of the set of complex

2r-th roots of unity, that is, A = {e2πij/2r , 0 ≤ j < 2r}, for some r ≥ 1. Let ζ = e2πi/2
r

be a primitive 2r-th root of unity; A is a cyclic multiplicative group with generator ζ.

In this section we assume that Mt = 2, that is, the code consists of a set of pairwise

nonintersecting planes.

Example 3.1. Some examples of roots of unity:

(1) If r = 1, ζ = −1 and the alphabet is A = {1,−1}.
(2) If r = 2, ζ = i and the alphabet is A = {1, i,−1,−i}.
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(3) If r = 3, ζ = (1 + i)/
√
2 and the alphabet is A = {eπij/4, 0 ≤ j ≤ 7}. This is

the 8-PSK constellation.

There is a trivial upper bound.

Theorem 3.1. Let A be the set of 2r roots of unity, r ≥ 1. Then the number of

pairwise nonintersecting planes is at most 1
2 |A|m−1 = 2(m−1)r−1.

Proof. If v1, v2 ∈ Am are the generators for a plane, that plane also contains all

multiples ζjv1 and ζjv2, a total of 2|A| vectors. Since these sets of vectors must all be

disjoint, the number of planes is at most |A|m/(2|A|). ¤

The same argument shows that there are at most 1
Mt
|A|m−1 nonintersecting Mt-

dimensional subspaces of complex m-dimensional space for any finite alphabet A. The

implication of this in terms of rate is that

R ≤ m− 1

m
log(|A|)− 1

m
log(Mt) < log(|A|) .

Hence, for fully diverse codes constructed from PSK constellations, we cannot achieve a

rate exceeding log(|A|).

Example 3.2. Let A be the set {1, i,−1,−i} and take m = 4. The total number of

vectors in A4 is 44. Each vector has 4 multiples, so each plane accounts for at least 8

vectors. Therefore there are at most 44

8 = 32 planes.

In the other direction we will prove:

Theorem 3.2. Assume r ≥ 1 and that m ≥ 2 is even. There exist N = |A|m−2 =

2(m−2)r pairwise nonintersecting planes in Cm defined using the complex 2r-th roots of

unity.

Note that the upper and lower bounds coincide in the case r = 1, that is, when

A = {1,−1}.
The proof is simplified by the use of valuations (cf. [21]). If x ∈ Q, x = 2a b

c with

a, b, c ∈ Z, c 6= 0, b and c odd, then the 2-adic valuation of x is ν2(x) = a. Similarly,

suppose x belongs to the cyclotomic field Q(ζ). Since 1 − ζ is a prime in Z[ζ], we can

write x uniquely as (1 − ζ)a b
c with a ∈ Z, b, c ∈ Z[ζ], c 6= 0, b and c relatively prime to

1 − ζ. The (1 − ζ)-adic valuation of x is then ν1−ζ(x) = a. It is easy to check that for

k ∈ Z, k 6= 0, ν1−ζ(1− ζk) = 2ν2(k). In particular, if k ∈ Z is odd, ν1−ζ(1− ζk) = 1.
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We will also need a lemma:

Lemma 3.1. Let Π be a plane in Cm generated by vectors v1, v2, and denote by

Π̃1 =


 v1 x11 x12

v2 x21 x22




and

Π̃2 =


 v1 y11 y12

v2 y21 y22




two different embeddings of Π into Cm+2. Then Π̃1 ∩ Π̃2 = {0} if and only if

∣∣∣∣
y11 − x11 y12 − x12

y21 − x21 y22 − x22

∣∣∣∣ 6= 0.

Proof. By Lemma 1.1, it is necessary and sufficient that the matrix P :=


 Π̃1

Π̃2




have rank 4. Subtracting the first and second rows of P from the third and fourth rows,

we get the matrix 


v1 x11 x12

v2 x21 x22

0 y11 − x11 y12 − x12

0 y21 − x21 y22 − x22



.

and the result follows. ¤

We now give the proof of the theorem, for which we use induction on even values of

m. For m = 2 we take the single plane


 1 1

1 −1


 .

Suppose the result is true for m. For each of the |A|m−2 pairwise nonintersecting planes

in Cm we will construct |A|2 planes in Cm+2, such that full set of planes so obtained is

pairwise nonintersecting; this will establish the desired result.

If two planes are nonintersecting in Cm then they are certainly nonintersecting when

embedded in any way in Cm+2. So we only need to show that the |A|2 embeddings of

any single plane are pairwise nonintersecting.
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Let Π be a plane in Cm generated by vectors v1, v2, and denote by Π̃(a, b) the plane

in Cm+2 with generator matrix

 v1 ζa ζb

v2 ζa+b ζa+2b+1


 ,

for a, b = 0, 1, . . . , 2r − 1.

We will use Lemma 3.1 to show that all the planes {Π̃(a, b) | a ∈ A, b ∈ A} are

pairwise nonintersecting. For this we must show that

∣∣∣∣
ζc − ζa ζd − ζb

ζc+d − ζa+b ζc+2d+1 − ζa+2b+1

∣∣∣∣ = 0

if and only if a = c and b = d.

The above determinant is equal to

(96) ζ2c+2d+1(1− ζa−c)(1− ζ(a−c)+2(b−d))− ζc+2d(1− ζb−d)(1− ζ(a−c)+(b−d)) .

If the determinant is zero, the (1− ζ)-adic valuations of the two terms on the right must

be equal, that is,

(97) 2ν2(a−c) + 2ν2(a−c+2(b−d)) = 2ν2(b−d) + 2ν2(a−c+b−d) .

We must show that this is true if and only if a = c and b = d. We consider four cases,

depending on the parity of a− c and b−d. If a− c ≡ 1, b−d ≡ 1(mod 2) then (96) reads

1 + 1 = 1 + 2ν2(a−c+b−d) ≥ 3 (since a − c + b − d is even), a contradiction. Similarly, if

a− c ≡ 1, b−d ≡ 0(mod 2) we get 1+1 = 2ν2(b−d)+1, and if a− c ≡ 0, b−d ≡ 1(mod 2)

we get 2ν2(a−c) + 2ν2(a−c+2(b−d)) = 1 + 1, which are also contradictions. The fourth

possibility is a− c ≡ b− d ≡ 0 (mod 2). Let a− c = 2sx and b− d = 2ty, where x and y

are odd, s, t ≥ 1. We have

ν2(a− c+ 2(b− d)) =





s if s < t

s if s = t

≥ t if s > t

and

ν2(a− c+ 2(b− d)) =





s if s < t

≥ s if s = t

t if s > t
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Substituting these valuations in equation (97) again gives a contradiction. This concludes

the proof of Theorem 3.2.

4. Summary of the Results

The following table compares the codes constructed in Sections 2 and 3 in the case

Mt = 2, i.e., codes which are pairwise nonintersecting 2-dimensional subspaces of Cm,

for m = 4, 6 and 8, and alphabets A of sizes 2, 4 and 8. The top entry in each cell gives

the number of planes obtained from the finite field construction (Corollary 2.1). The

bottom entry gives the lower and upper bounds obtained using complex |A|-th roots of

unity, from Theorem 3.2 and Theorem 3.1.

m = 4 m = 6 m = 8

|A| = 2 5 21 85

4− 4 16− 16 64− 64

|A| = 4 17 273 4369

16− 32 256− 512 4096− 8192

|A| = 8 65 4161 266305

64− 256 4096− 16384 262144− 1048576

Table I. Number of pairwise nonintersecting planes in Cm for various

sizes of the alphabet |A| (see text for details).

Note that the construction via finite fields results in codes for which alphabet consists

of 0 and the complex (|A| − 1)-st roots of unity, whereas the construction via PSK

constellations produces codes in which the symbols are the complex |A|-th roots of

unity (and 0 is not used).

Asymptotically, the rates of the two constructions are very similar. Both satisfy

log( number of codewords )/m ≈ log(|A|), for m large, and so both asymptotically

achieve the maximal rate possible for fully diverse codes.
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Teaching assistant for the course ”Algèbre linéaire”

• EPFL(10/2002-3/2003, 10/2003-3/2004 and 10/2004-3/2005).

Teaching assistant for the course “Algèbre pour les communications numériques”

• Supervisation of student projects:

(1) Méthodes algébriques pour la construction de codes sur les canaux à évanouissement

de Rayleigh, J.F. Crisinel, diploma work, winter 2003-2004.

(2) Corps finis appliqués au codage, T. Martins, semester project, summer

2004.
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• Full name: Frédérique Elise Oggier.

• Telephone: +41 21 691 29 93

• Date and Place of Birth: February 28th, 1977, Monthey, Switzerland.

Publications

Papers at Refereed Conferences

(1) F. E. Oggier, S. D. Servetto. “Codes for Delay-Constrained Network Com-

munication”. DCC 2001.

(2) F. Oggier, E. Bayer-Fluckiger, E. Viterbo. “New algebraic constructions of

rotated cubic lattice constellations for the Rayleigh fading channel”. ITW

2003, Paris.

(3) F. Oggier, E. Bayer-Fluckiger.”Best rotated cubic lattice constellations for

the Rayleigh fading channel”. ISIT 2003, Yokohama.

(4) E. Bayer-Fluckiger, F. Oggier and E. Viterbo. ”Bounds on the Performance

of Rotated Lattice Constellations”. ISIT 2004, Chicago.
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(5) F. E. Oggier, N. J. A. Sloane, S. N. Diggavi and A. R. Calderbank. ”Non-

intersecting Subspaces Based on Finite Alphabets”, ISIT 2004, Chicago.

(6) F. E. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo. “Perfect Space-

Time Block Codes”. Allerton Conference 2004. Invited paper.

Papers in Refereed Journals

(1) E. Bayer-Fluckiger, F. Oggier, E. Viterbo. ”New algebraic constructions

of rotated Zn-lattice constellations for the Rayleigh fading channel”, IEEE

Transactions on Information Theory, vol. 50, n.4, pp. 702-714, April 2004.

(2) B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and

H. S. Wilf. ”Acyclic digraphs and eigenvalues of (0,1)-matrices” Journal

of Integer Sequences, vol.7, August 2004.

(3) F. E. Oggier, E. Viterbo. “Algebraic number theory and its applications

to code design for Rayleigh fading channels”, to appear in “ Foundations

and Trends in Communications and Information Theory”.

Submitted Papers

(1) F. E. Oggier, N. J. A. Sloane, S. N. Diggavi and A. R. Calderbank. ”Non-

intersecting Subspaces Based on Finite Alphabets”, submitted to IEEE

Transactions on Information Theory , January 2004.

(2) E. Bayer-Fluckiger, F. Oggier, E. Viterbo. ”Algebraic lattice constella-

tions: bounds on performance”, submitted to IEEE Transactions on Infor-

mation Theory , April 2004.

(3) F. E. Oggier, G. Rekaya, J.-C. Belfiore, E. Viterbo.”Perfect Space Time

Block Codes ”, submitted to IEEE Transactions on Information Theory ,

August 2004.

Invited seminars

(1) “Codes algébriques pour le canal de Rayleigh”, November 21 2002, Université

Le Mirail, Toulouse, France. Host: Prof. Christian Maire.

(2) “Two problems in coding theory”, February 26 2003, Cornell University, NY.

Host: Prof. Sergio Servetto.

Research Projects

I) Design of Codes for Delay-Constrained Communication in Networks.

We are interested in the problem of Multiple Description source coding. We
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work on a characterization of good codes as the rank-constrained solution of

a semidefinite program. This also involves programming a semidefinite solver.

(This is joint work with Prof. S. Servetto).

II) Algebraic lattice codes for channel coding.

Rotated lattice signal constellations have been proposed as an alternative for

transmission over the Rayleigh fading channel. The performance of such mod-

ulation schemes depends essentially on two design parameters: the modulation

diversity and the minimum product distance. Algebraic lattices, i.e., lattices

constructed by the canonical embedding of an algebraic number field, provide

an efficient tool for designing such codes, since the design criteria are related to

properties of the underlying number field. For example, the maximal diversity

is guaranteed when using totally real number fields. Using the notion of ideal

lattice, we build several infinite families of lattice constellations satisfying a fur-

ther property of shaping. We are also able to give a bound on the performance

of such lattice codes, and we show that with respect to this bound, existing

constellations are good enough, in the sense that no significant coding gain can

be obtained. (This is joint work with Prof. E. Bayer Fluckiger and Prof. E.

Viterbo).

III) Cyclic Algebras for Coherent Space Time-Coding.

Cyclic Division algebras for coherent Space-Time Coding have been recently

introduced. These non-commutative algebras naturally yields a family of in-

vertible matrices, or in other words, a linear code that fullfills the rank criterion.

We further exploit the algebraic structures of cyclic algebras to build Space-

Time Block codes that satisfy the following properties: they have full rate, full

diversity, non-vanishing constant minimum determinant for increasing spectral

efficiency, uniform average transmitted energy per antenna and good shaping.

(This is joint work with G. Rekaya , J.-C. Belfiore and E. Viterbo).

IV) Non-Coherent Space-Time Coding.

We consider the problem of designing Space-Time Codes in the non-coherent

case. Our goal is to construct maximal diversity space-time codewords X, sub-

ject to the constraint that the elements of X are taken from a fixed constellation.
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Using an interpretation of the well-known pairwise error probability for nonco-

herent receiver in terms of principal angles between subspaces, we consider the

construction of non-intersecting subspaces on finite alphabets. (This is joint

work with N.J.A. Sloane and S. Diggavi).




