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pour avoir accepté d’évaluer mon travail de thèse.
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Abstract

The objective of the thesis is to study the possibility of using

input-output feedback linearization techniques for controlling
nonlinear nonminimum-phase systems. Two methods are devel-

oped. The first one is based on an approximate input-output
feedback linearization, where a part of the internal dynamics is

neglected, while the second method focuses on the stabilization
of the internal dynamics.

The inverse of a nonminimum-phase system being unstable,

standard input-output feedback linearization is not effective to
control such systems. In this work, a control scheme is devel-
oped, based on an approximate input-output feedback lineariza-

tion method, where the observability normal form is used in con-
junction with input-output feedback linearization. The system is

feedback linearized upon neglecting a part of the system dynam-
ics, with the neglected part being considered as a perturbation.

Stability analysis is provided based on the vanishing perturba-
tion theory. However, this approximate input-output feedback
linearization is only effective for very small values of the per-

turbation. In the general case, the internal dynamics cannot be
crushed and need to be stabilized.

On the other hand, predictive control is an effective approach
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iv Abstract

for tackling problems with nonlinear dynamics, especially when

analytical computation of the control law is difficult. Therefore,
a cascade-control scheme that combines input-output feedback

linearization and predictive control is proposed. Therein, input-
output feedback linearization forms the inner loop that com-
pensates the nonlinearities in the input-output behavior, and

predictive control forms the outer loop that is used to stabilize
the internal dynamics. With this scheme, predictive control is

implemented at a re-optimization rate determined by the inter-
nal dynamics rather than the system dynamics, which is par-

ticularly advantageous when internal dynamics are slower than
the input-output behavior of the controlled system. Exponential

stability of the cascade-control scheme is provided using singular
perturbation theory.

Finally, both the approximate input-output feedback lineariza-
tion and the cascade-control scheme are implemented success-

fully, on a polar pendulum ’pendubot’ that is available at the
Laboratoire d’Automatique of EPFL. The pendubot exhibits

all the properties that suit the control methodologies mentioned
above. From the approximate input-output feedback lineariza-
tion point of view, the pendubot is a nonlinear system, not input-

state feedback linearizable. Also, the pendubot is nonminimum
phase, which prevents the use of standard input-output feed-

back linearization. From the cascade control point of view, al-
though the pendubot has fast dynamics, the input-output feed-

back linearization separates the input-output system behavior
from the internal dynamics, thus leading to a two-time-scale

systems: fast input-output behavior, which is controlled using a
linear controller, and slow reduced internal dynamics, which are
stabilized using model predictive control. Therefore, the cascade-
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control scheme is effective, and model predictive control can be

implemented at a low frequency compared to the input-output
behavior.
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Résumé

L’objectif de la thèse est d’étudier la possibilité d’utiliser les

techniques de linéarisation en entrée-sortie par retour d’état afin
de commander les systèmes non linéaires à non minimum de
phase. Dans cette optique, deux méthodes de commandes ont

été développées. La première est basée sur une approximation
de la linéarisation en entrée-sortie du système, où une partie de

la dynamique interne du système est compensée, La deuxième
méthode se concentre sur la stabilisation de la dynamique in-

terne.

Vu que l’inverse d’un système non linéaire à non minimum
de phase est instable, la technique standard de linéarisation
par retour d’état n’est pas efficace pour commande ce type de

systèmes. Dans ce travail de thèse, une technique de commande
a été développée, basée sur une méthode d’approximation de

la linéarisation par retour d’état. Le système est linéarise via
un retour d’état, en négligeant une partie de la dynamique du

système. La partie négligée est alors considérée comme pertur-
bation. La preuve de stabilité d’un tel schéma de commande est

établie sur la base de la théorie des perturbations qui s’annulent
(vanishing perturbations). Cependant, cette technique de lin-
earisation approximative n’est efficace que pour des valeurs con-
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sidérablement faibles des perturbations. Ainsi, en règle générale

il est préférable si possible de stabiliser tout le système, en in-
cluant la dynamique interne.

D’un autre cote, la commande prédictive est une approche ef-
ficace pour traiter de la stabilisation de systèmes non linéaires,

particulièrement lorsque le calcul d’une loi analytique de com-
mande est difficile. Ainsi, un schéma de commande en cascade
a été développé, combinant les techniques de linéarisation en

entrée-sortie par retour d’état et la commande prédictive. Dans
la boucle interne de la commande en cascade, la linéarisation

du système en entrée-sortie est appliquée au système afin de
compenser les non linéarités existantes dans le comportement

en entrée-sortie du système. La boucle externe de la commande
en cascade consiste en une commande prédictive, qui a pour

objectif de stabiliser la dynamique interne du système.

Avec ce schéma en cascade, la fréquence de ré-optimisation de

la commande prédictive est fixée par la vitesse de la dynamique
interne, et non par celle de la dynamique entière du système.
Aussi, le schéma de cascade peut être très avantageux dans le

cas de dynamique interne lente par rapport à la dynamique en
entrée-sortie du système. L’étude de stabilité de la commande de

cascade a été menée, sur la base de la théorie des perturbations
singulières. Une extension du schéma de cascade a été établie,

en utilisant des concepts de théorie des extremums au voisinage
(neighboring extremals), afin de robustifier la commande, mais

aussi de permettre l’utilisation de la commande prédictive à une
fréquence de ré-optimisation lente.

Les deux méthodologies de commande développées dans ce
travail ont été appliquées sur un double pendule polaire in-
versé ’pendubot’, disponible au laboratoire d’automatique. Les
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résultats d’implémentation ont été très concluants. Le pendubot

est un exemple approprié pour les deux méthodologies de com-
mande développées dans ce travail. Du point de vue de la com-

mande par approximation du linéarisé par retour d’état, le pen-
dubot est un système qui n’est pas entièrement linéarisable par
retour d’état, et la dynamique interne résultant de la linéarisation

en entrée-sortie standard est instable. Du point de vue de la
commande en cascade, bien que le pendubot a une dynamique

rapide, la linéarisation en entrée-sortie par retour d’état sépare le
comportement en entrée-sortie du système de sa dynamique in-

terne. Ceci donne lieu à un système a deux échelles de temps: un
sous système rapide, qui consiste en le comportement en entrée-

sortie, et qui est commandé via une commande linéaire; et un
sous système lent, qui consiste en la dynamique interne, et qui
est stabilisée en utilisant une commande predictive. Ainsi, le

schéma de commande en cascade est efficace et la commande
prédictive implantantée à une faible fréquence de ré-optimisation.
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General Notations

Here are the main acronyms used in this document. The meaning
of an acronym is usually indicated the first time it occurs in the

text. English acronyms are also used for the French summary.

SISO Single-input single-output

MIMO Multiple-inputs multiple-outputs
FL Feedback linearization

IOFL Input-output feedback linearization
ISFL Input-state feedback linearization
MPC Model predictive control

NMPC Nonlinear model predictive control
NMP Nonminimum phase

QSS Quai-steady state
NE Neighboring extremals

LQR Linear quadratic regulator
(·)T Transpose operator

s.t. Such that
R The set of real numbers
Rn The set of real vectors of length n

t Time variable
h Sampling time

1



2 Notations

u System input

x Vector containing the state variables
y System output

ẋ Time derivative of the vector x

‖.‖ Norm 2 operator
∂
∂x

Partial derivative with respect to x



Chapter 1

Introduction

1.1 Motivation and Problem Statement

Control is a very wide and common concept. The term ’control’
is used to refer to: (i) purely human activity (self control...), (ii) a

specific human-machine interaction (driving a car...), (iii) an ac-
tivity without human presence (automatic piloting of a plane...).

The automatic control field focuses on the third category, deal-
ing with the analysis and control of dynamical systems.

In industry, most machines or processes are controlled using
PID-type controllers. The control parameters are tuned on-line

on the machines in order to reach a prescribed range of per-
formance. However, in some domain applications, such as aero-

nautics, robotics or machine too industry, high-precision con-
trol is needed. In this case, more sophisticated control strate-

gies are required. For this task, the system needs first to be
modeled, in order to describe mathematically the system behav-
ior. Depending on the system nature, the mathematical model
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4 Chapter 1 Introduction

can be continuous-time, discrete-time, hybrid (contains both

continuous-time and discrete-time elements), stochastic, alge-
braic, static, dynamic, etc ...

For a continuous-time dynamical system, a mathematical model
of the plant consists of a set of differential and algebraic equa-
tions linking the system inputs to the system outputs. Two ma-

jor classes of mathematical models for continuous-time systems
are commonly distinguished in the literature: linear models and

nonlinear models. Analysis and control of linear models have
been widely addressed in the literature, and strong theoretical

tools have been developed to cover this class of models. How-
ever, this is not the case for nonlinear models, as the theoretical

tools for their analysis and control are very limited. Thus, the
use of linear models is usually preferred to describe nonlinear
systems, in order to make the analysis easier.

An effort has been made to transform a nonlinear system into
a linear one using feedback control. The idea of using feedback

to achieve (or enhance) system linearity is all but a new one.
It can be traced back to the origin of feedback system theory

in 1934: ”... feeding the output back to the input in such a way
as to throw away the excess gain, it has been found possible to

effect extraordinary improvements in constancy of amplification
and freedom from nonlinearity” [1, 2].

The control of nonlinear systems using feedback linearization

techniques is summarized in the following diagram:
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Control of Nonlinear Systems

using Feedback Linearization (FL) Techniques

State transformation and Feedback control

�
�

�
�

�
��

�
�

�
�

�
��

Input-state FL

(Very Small Class of Systems)

Input-output FL

�
�

�
�

�
��

�������������

Minimum-phase Systems

(Stable Internal Dynamics)

Nonminimum-phase Systems

(Unstable Internal Dynamics)

�
�

�
�

�
��

�������������

Approximate Feedback

Linearization Techniques

Stabilization

of Internal Dynamics



6 Chapter 1 Introduction

In the early 1980s, the exact conditions under which a nonlin-

ear plant can be input-state linearized by static state feedback
and coordinate transformation were stated [3, 4, 5, 6]. Such a

scheme is referred to input-state feedback linearization, where af-
ter the coordinate transformation and static state feedback, the
state equations are completely linearized. However, the condi-

tions for input-state linearization of a nonlinear system are only
satisfied for a very small class of systems.

This has given rise to the idea of linearizing only part of the
dynamics, i.e. the dynamics between the inputs and the outputs

[4]. In such a scheme, referred to as input-output feedback lin-
earization, the input-output map is linearized, while the state

equation may be only partially linearized. Residual nonlinear
dynamics, called internal dynamics, occur. These dynamics do

not depend explicitly on the system input, and thus are not
controlled. The main limitation of the input-output lineariza-
tion is that the internal dynamics, which can be unstable at the

equilibrium point, are not controlled. Such systems are called
nonminimum-phase systems.

Two different ideas for the control of nonlinear nonminimum-
phase systems will be exploited in this work:

(i) The internal dynamics are neglected such that the resulting
approximate system is input-state feedback linearizable.

(ii) The internal dynamics are taken into account and are sta-

bilized simultaneously with the control of the input-output
behavior of the system. Nonlinear model predictive control

will be used as a systematic way to control the internal
dynamics.
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1.2 State of the Art

In this section, the control of nonlinear systems, first using ap-

proximate input-state feedback linearization, then using stabi-
lization of internal dynamics, are detailed. Although this work

considers the case of affine-in input nonlinear systems, this sec-
tion treats nonlinear systems in a general case, in order to pro-
vide a complete overview of the existing techniques available in

the literature.

1.2.1 Approximate Feedback Linearization Techniques

Given a nonlinear system, the objective of input-state feedback
linearization is to find a state feedback control and a change of

variables that transform the nonlinear system into an equivalent
linear one [4, 7, 8]. The main difficulties with input-state feed-

back linearization of nonlinear systems are its limited applicabil-
ity, as well as the complexity, sensitivity and design difficulties of

the exact linearizing compensators [9]. When the system is not
input-state linearizable, an alternative is the input-output lin-

earization. For nonminimum-phase systems such an alternative
is not effective.

As an alternative to the input-state feedback linearization,

there has been an increasing amount of work searching for ap-
proximate solutions to the problem of linearizing nonlinear sys-

tems by state or output feedback. The main approximate lin-
earization methods available in the literature can be classified
according to the following scheme (Figure 1.1):
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Approximate feedback
Linearization techniques

Partial linearization
-Higher-order approximate
 linearization
-Pseudo-linearization
-Extended linearization

Linearization-oriented 
modeling
-Numerical methods
-Rigorous theoretical methods

Linear model following
-Model-based techniques
-Data-based techniques

Figure 1.1: Approximate feedback linearization methods

(a) Partial linearization

These methods consist of local approximations of the system.
Therein, a Taylor series expansion of the system dynamics is first

computed. Then, state feedback and local coordinate transfor-
mation are computed to transform the system locally around the

origin, or within a set of operating points, to an approximately
linear one. The main disadvantage of partial linearization tech-

niques is that the stability results are only local.

Partial linearization techniques presented in the literature
are known as higher-order approximate linearization, pseudo lin-

earization and extended linearization:

Higher-order approximate linearization local state feedback
and local coordinate transformation are computed such that

a number of higher terms of the Taylor series expansion
around the operating point become zero.

Some important results of higher-order approximate lin-
earization reported in the literature can be summarized in
Table 1.1.
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Necessary and sufficient conditions for the existence [10, 11, 12]
of static state feedback and coordinate transformation

Extension to dynamic feedback [13]
Extension to discrete systems [14, 15, 16]

Numerical algorithms to compute state feedback [17, 18, 19]
and coordinate transformation

Table 1.1: Higer-order approximate linearization

The disadvantage of nonlinear control design by lineariza-
tion about a constant operating point is that the character-

istics of the linearized closed-loop system will change with
changes in the operating point.

Pseudo linearization: In opposite to higher-order approximate
linearization, in pseudo linearization, state feedback and co-
ordinate change are computed such that the Taylor series

linearization of the transformed system at a constant oper-
ating point has input-output behavior that is independent

of the considered operating point, within a local set that
contains it.

Some important results of pseudo linearization reported in
the literature can be summarized in Table 1.2.

Necessary and sufficient conditions for the existence [20, 21, 22]
of static state feedback and coordinate transformation

Numerical methods for designing the linearizing feedback [23, 24, 25]
Generalization, extensions and specific methods [26, 27, 28]

to construct state feedback laws

Table 1.2: Pseudo linearization

Extended linearization The objective therein is similar to
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that of pseudo linearization. However, extended lineariza-

tion deals with the input-output feedback linearization prob-
lem while pseudo linearization does not require the defi-

nition of an output since it focuses on the input-to-state
behavior of the control system.

Some important results of extended linearization reported
in the literature can be summarized in Table 1.3.

First results for the design of an [29, 30]
output-feedback linearizing controller

Extension to single-input multiple-outputs nonlinear systems [31]
Extended linearization using parameterized linear systems [32, 33]

Table 1.3: Extended linearization

(b) Linear model following

Partial linearization techniques lead to local results, since the

system is linearized at an operating point or a local set of oper-
ating points. In linear model following techniques, the idea is to

use a feedback to match a prescribed linear behavior. In other
words, the problem is to find a feedback compensator such that
the behavior of the closed-loop system gets as close as possible,

in a sense to be specified, to a linear model referred to as refer-
ence model. The design of such a feedback compensator is based

on optimization methods.
Linear model following techniques can be tackled by either

model-based techniques, if the available description of the plant
is a mathematical model, or data-based techniques, if the de-

scription of the plant is only a set of input-output data.
Some important results of linear model following reported in

the literature can be summarized in Table 1.4.
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Model-based techniques [34, 35, 36, 37]
Data-based techniques [38, 39, 40, 41, 42, 43, 44]

Table 1.4: Linear model following

Since the design of the feedback compensator in linear model
following techniques is based on optimization methods, the main

difficulty which occurs using these techniques is the possibility of
nontrivial optimization tasks to be solved and very demanding

computations.

(c) Linearization-oriented modeling

In the linearization-oriented modeling, the system is approxi-
mated everywhere, in contrast to the partial linearization tech-
niques. The approximation can be achieved using numerical

methods, or rigorous theoretical methods.

Some important results of linearization-oriented modeling re-

ported in the literature can be summarized in Table 1.5.

Numerical methods [45, 46, 47, 48, 49, 50, 51]
Rigorous theoretical methods [52, 53, 54, 55]

Table 1.5: Linearization oriented modeling

However, as for linear model following techniques, numer-
ical methods can be very demanding computations. Thus, the

linearization-oriented modeling using theoretical methods is more
interesting to approximate globally a nonlinear system to a lin-
ear one.

Linearization-oriented modeling techniques applied to the par-
ticular case of nonminimum-phase systems have been widely ad-
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dressed in the literature. In [52], a stable but non-causal inverse

is obtained off-line, and is incorporated into a stabilizing con-
troller for dead-beat output tracking. In [53], the control design

uses synthetic outputs that are statically equivalent to the origi-
nal process outputs and make the system minimum phase. A sys-
tematic procedure is proposed for the construction of statically

equivalent outputs with prescribed transmission zeros. These
calculated outputs are used to construct a model-state feedback

controller.

Kravaris and Soroush have developed several results on the
approximate linearization of nonminimum-phase systems [56,

54, 55, 57]. In particular, in [55, 57], the system output is dif-
ferentiated as many times as the order of the system, instead of
stopping at the relative degree as would be done with standard

input-output feedback linearization. As an approximation, the
input derivatives that appear in the control law are set to zero,

in the computation of the state feedback input. [58] extends
the above results to the multiple-inputs multiple-outputs case.

The particular case of second-order nonminimum-phase systems
is considered in [59]. The main disadvantage of Kravaris and
Soroush results is that they require the open-loop system to be

stable. In [60], an extension of the controller is developed for
unstable systems. However, the feedback is dynamic, and only

asymptotic stability has been provided therein. In [61], new out-
puts are introduced, so as to approximately factor the nonlinear

system as a minimum-phase factor and an all-pass factor. The
system is then linearized using a dynamic state feedback. The

main disadvantage of this method is its restrictive applicability
domain as the approximate factorization can only be derived
for maximum-phase systems, i.e. systems with only anti-stable
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zero dynamics. In [62], the system is first input-output feedback

linearized. Then, the zero dynamics are factorized into stable
and anti-stable parts. The anti-stable part is approximately lin-

ear and independent of the coordinates of the stable part. The
main difficulty with this method is that very conservative con-
ditions have been stated under which the zero dynamics can be

separated into stable and anti-stable parts, so that only a few
practically-relevant nonminimum-phase systems can be trans-

formed into this form.

1.2.2 Stabilization of Internal Dynamics

A cascade structure involving feedback linearization and sta-
bilization of the internal dynamics has been considered in the
literature. The system is first input-output feedback linearized,

and then the internal dynamics are stabilized. In [63], the desired
output trajectory is redefined so as to maintain the internal dy-

namics stable. [64] tackles the problem of designing a nonlinear
multiple-inputs multiple-outputs voltage and speed regulator for

a single machine infinite bus power system. Therein, the inter-
nal dynamics are stabilized using a Lyapunov-based scheme. In
[65], the internal dynamics are stabilized using output redefini-

tion and repetitive learning control. [66] addresses the problem
of swinging up an inverted pendulum and controlling it around

the upright position. The internal dynamics are stabilized us-
ing elements of energy control and Lyapunov control. Moreover,

[67] considers the problem of controlling a planar vertical takeoff
and landing (PVTOL) aircraft. The internal dynamics are sta-

bilized using a Lyapunov-based technique and a minimum-norm
strategy. However, none of the above results provides a system-
atic stabilization procedure. For this purpose, the present work
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makes use of predictive control.

The interplay between input-output feedback linearization
and model predictive control has been addressed in the liter-

ature. For example, it is shown in [57] that the input-output
feedback linearization is in fact a continuous version of an un-

constrained model predictive controller with a quadratic per-
formance index and an arbitrarily small prediction horizon. In

[58], a control law is derived based on approximate input-output
feedback linearization and used for predictive control of stable
nonminimum-phase nonlinear systems. In [68], a control law is

derived based on extended linearization and predictive control.
The main issues therein are robustness and the use of predictive

control with convenient calculation. In [69, 70, 71, 72], input-
output feedback linearization is chosen as a systematic way of

pre-stabilizing the possible unstable system dynamics in order
to use predictive control. The emphasis therein is on handling

constraints [69, 70, 71] or robustness [72], while the present work
emphasizes on the possibly unstable internal dynamics.

Model predictive control (MPC) originated in the late 1970s
[73, 74, 75]. It refers to a class of computer control algorithms
that use a process model to predict the future response of a

plant. At each implementation interval, an MPC algorithm at-
tempts to optimize future plant behavior by computing a se-

quence of future manipulated variable adjustments. The first
input of the optimal sequence is then applied to the plant, and

the entire calculation is repeated at subsequent implementation
intervals. Originally developed to meet the specialized control

needs of power plants and petroleum refineries, MPC technol-
ogy can now be found in a wide variety of application areas in-
cluding chemicals, food processing, automotive, and aerospace
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applications [76, 77].

Several recent publications provide a good introduction to
theoretical and practical issues associated with MPC technol-

ogy. [78] provides a good introductory tutorial aimed at control
practitioners. [79] provides a comprehensive review of theoretical
results on the closed-loop behavior of MPC algorithms. Notable

past reviews of MPC theory include those of [80, 81, 82, 83].
Also, several books on MPC have been published [84, 85, 86].

Predictive control presents a series of advantages over other
methods [85, 78, 87], namely:

• It can deal with a very large variety of processes, such

as nonlinear systems, nonmininmum-phase systems, and
multiple-inputs multiple-outputs systems.

• It can easily deal with constraints.

• The resulting control law is easy to implement.

• It introduces a natural feedforward control action to com-
pensate measurable disturbances.

• Since it is a numerical method of control, it can be more

effective when the analytical computation of a control law
is difficult.

1.3 Objectives of the Thesis

This work aims to address the problem of synthesizing a global

control for nonlinear nonminimum-phase systems. Two direc-
tions are explored:

• Neglecting the internal dynamics, thus approximating the
system by an input-state feedback linearizable one; and
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• Stabilizing the internal dynamics, while controlling the input-

output behavior of the system.

1.3.1 Neglecting the internal dynamics

This work seeks global stability results. This precludes the use

of partial linearization techniques, as these would only provide
local stability results. Moreover, linear model following methods
are not exploited because they lead to non trivial optimizations

and are computationally very demanding.

Linearization-oriented modeling techniques are preferred for

the control of nonlinear nonminimum-phase systems. These tech-
niques provide an approximate input-state feedback lineariza-
tion using static state feedback and coordinate transformation.

The objective is to develop an approximate feedback lineariza-
tion of the system which (i) guarantees global stability of the

closed-loop form, and (ii) does not require any precondition on
the stability or instability of the open-loop system or on the

structure of the zero dynamics.

1.3.2 Stabilizing the internal dynamics

The objective is to control the input-output behavior, as well

as to stabilize the internal dynamics using a systematic method.
This is done by designing a cascade-control scheme, where input-
output feedback linearization forms the inner loop and model

predictive control forms the outer loop. The use of model predic-
tive control provides a systematic way of stabilizing the internal

dynamics in the outer loop.

Predictive control is chosen as a systematic way of stabilizing
the internal dynamics because it is a numerical control method,
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i.e. it is more effective when the analytical computation of a

control law is difficult.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the

main definitions and concepts used throughout the document.
It also reviews the tools and material that are necessary to un-

derstand the following chapters. Chapter 3 presents the approx-
imate input-output feedback linearization of nonlinear systems

using the observability normal form. It also provides the de-
tails of the control structure and a stability analysis. Chapter 4
addresses the theoretical results of the cascade-control scheme.

These results are based on input-output feedback linearization,
model predictive control and singular-perturbation theory. Sta-

bility issues are discussed, and a robust extension of the cas-
cade control based on the neighboring extremal theory is in-

troduced. Chapter 5 addresses the problem of controlling the
pendubot, which is a double inverted polar pendulum. The ap-

proximate input-output feedback linearization and the cascade-
control scheme with its robust extension are applied to the pen-
dubot. The corresponding experimental results are presented

and discussed. Finally, Chapter 6 draws concluding remarks and
presents future prospects.



18 Chapter 1 Introduction



Chapter 2

Preliminaries

The aim of this chapter is to give the main definitions and con-
cepts used in the thesis. It sets the notations used throughout
the document and gives the necessary tools and material to un-

derstand contents of the forthcoming chapters.

This chapter is divided into two parts: Section 2.1 empha-

sizes nonlinear systems analysis, while Section 2.2 is dedicated
to the problem of nonlinear systems control. On the analysis

side, different classes of nonlinear systems are described and
Lyapunov stability results are presented. On the control side,

concepts of nonminimum-phase systems and zero dynamics are
first defined. Then, two classical methods to control nonlinear

single-input single-output affine-in-input systems: input-output
feedback linearization and nonlinear model predictive are re-
viewed.

19
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2.1 Analysis

2.1.1 Nonlinear Dynamical Systems

This work considers continuous, nonlinear, affine-in-input single-
input single-output (SISO) systems. However, different forms of
nonlinear systems are discussed in this section. In particular,

autonomous systems are defined to address concept of Lyapunov
stability, and singularly perturbed systems are defined for their

stability properties, which will be used later in this work.

Nonlinear Affine-in-input Systems

A nonlinear, affine-in-input, single-input single-output system
of order n consists of n coupled first-order ordinary differential

equations, and is represented as follows:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0

y(t) = h(x(t))
(2.1)

where x(t) ∈ Rn is a vector of states, u ∈ R is the input, y ∈ R is
the system output, x0 is a vector containing the value of vector

x(t) at time t = 0 (initial conditions of vector x) and f : Rn →
Rn and g : Rn → Rn are nonlinear functions describing the

system dynamics. ẋ(t) denotes the derivative of the vector of
states x(t) with respect to time t and h : Rn → R is a nonlinear

function giving the output expression y. In what follows, the
time index is dropped where there is no confusion. In all this

work, functions f , g and h are assumed to be sufficiently smooth
in Rn, and therefore the mappings f : Rn → Rn and g : Rn →
Rn are vector fields on Rn.
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Equilibrium Point A point (xeq, ueq), where xeq ∈ Rn and ueq ∈
R, is said to be an equilibrium point of System (2.1) if it satisfies
the following equation:

f(xeq) + g(xeq)ueq = 0 (2.2)

Without loss of generality, it will be assumed everywhere in this

work that (x, u) = (0, 0) is an equilibrium point of System (2.1),
with f(0) = 0 and h(0) = 0 such that, at the equilibrium, the

output is zero.

To verify this assumption, consider the change of states x̄ =
x− xeq and the change of input ū = u− ueq. Replacing them in

(2.1), then using (2.2) yields:

˙̄x = ẋ − ẋeq = ẋ

= f̄(x̄) + ḡ(x̄)ū
(2.3)

where
f̄(x̄) = f(x̄ + xeq) + g(x̄ + xeq)ueq

ḡ(x̄) = g(x̄ + xeq)
(2.4)

At the equilibrium of System (2.3), (x, u) = (xeq, ueq). There-

fore, (x̄, ū) = (0, 0). Replacing the point (x̄, ū) in (2.3) with its
value (0, 0), the right hand side of (2.3) is found to be zero.

Then, the point (x̄, ū) = (0, 0) is an equilibrium point of (2.3)
with f̄(0) = 0.

Nonlinear Autonomous Systems

Consider a nonlinear affine-in-input system (2.1) and let the

input u be specified as a given function of the states, u = γ(x).
Substituting u = γ in (2.1) eliminates u and yields an unforced
state equation:
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ẋ = f(x), x(0) = x0 (2.5)

where x0 ∈ Rn is the initial condition of the vector of states.
If the function f does not depend explicitly on time, System

(2.5) is said to be autonomous.

As seen in the above section, without loss of generality, the
origin x = 0 is considered as an equilibrium point of System

(2.5). The autonomous systems are used for stability analysis.

Singularly Perturbed Systems

A singularly perturbed system is one that exhibits a two-time-
scale behavior, i.e. it has slow and fast dynamics, and is modeled

as follows:

η̇ = Fη(η, ξ, u, ε) η(0) = η0 (2.6)

εξ̇ = Fξ(η, ξ, u, ε) ξ(0) = ξ0 (2.7)

where ξ ∈ Rr, η ∈ Rn−r, u ∈ R and ε ≥ 0 is a small parameter.

Functions Fη and Fξ are assumed to be continuously differen-
tiable. ξ0 and η0 are the initial conditions of vectors ξ and η

respectively. The origin is considered as an equilibrium point,
such that Fη(0, 0, 0, ε) = 0 and Fξ(0, 0, 0, ε) = 0.

The term singular comes from the fact that System (2.6)-

(2.7) contains a singularity when the perturbation parameter ε

is equal to zero. In fact, setting ε = 0, the dynamic equation

(2.7) degenerates into the algebraic equation 0 = Fξ(η, ξ, u, 0).

2.1.2 Mathematical Tools

In this section, some mathematical definitions are stated, which
are necessary in this work.
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a) Lipschitz Functions [7]

In this section, the conditions of existence and uniqueness of
solution of ordinary differential equations will be discussed.

Let the following equation:

ẋ = f(x), x(0) = x0 (2.8)

be the mathematical model of a physical system, where x ∈ Rn

is a vector containing the states, x0 the initial conditions on the
state variables and f is a nonlinear function describing the sys-

tem dynamics. For the model (2.8) to predict the future state
of the system from its current state at initial time t = 0, the

equation in (2.8) must have a unique solution.

In the next Theorem, sufficient conditions for the existence

and uniqueness of a global solution to the equation (2.8) will be
presented. It will be assumed that the function f(x) is continu-

ous in x. Therefore, the solution x(t) if it exists, is continuously
differentiable.

Theorem 2.1 Global Existence and Uniqueness Given Sys-

tem (2.8) with function f(x) ∈ Rn continuous in x. If f satisfies
the Lipschitz condition:

∀x1, x2 ∈ Rn : ∃L > 0 : ‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖ (2.9)

then, the equation (2.8) has a unique solution over Rn.

Definition 2.1 A function f(x) satisfying the Lipschitz condi-
tion (2.9) is said to be global Lipschitz in x and the real positive
number L is called the Lipschitz constant.
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From the Lipschitz condition in Theorem 2.9, it is easily seen

that the property of Lipschitz functions provides a limit on the
growth or decay of the states. In fact, the Lipschitz condition

(2.9) implies that on a plot of f(x) versus x, a straight line join-
ing any two points of f(x) cannot have a slope whose absolute
value is greater than L, and the solution of the differential equa-

tion of System (2.8) is bounded. The next theorem gives these
bounds.

Theorem 2.2 Lipschitz Property[7] Consider System (2.8).
If f(x) is Lipschitz in x on Rn with the Lipschitz constant L,

then

‖x0‖ exp[−L t] ≤ ‖x(t)‖ ≤ ‖x0‖ exp[L t] (2.10)

In this manuscript, global Lipschitz property is assumed ev-
erywhere.

b) Stability of Linear Systems

Consider the following linear system:

ẋ = Ax with x(0) = x0 (2.11)

with A ∈ Rn is a matrix of order n, x a vector containing the

states and x(0) = x0 the initial conditions of the vector of states
x at time t = 0. Let define the following matrix:

Φ =
∫ ∞
0

eAT tMeAtdt (2.12)

where M ⊂ Rr×r is a positive definite matrix.

The following results shows important properties of the ma-
trix Φ:
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Theorem 2.3 Positivity Property of Φ [88] If all eigenval-

ues of the matrix A have negative real parts, then the matrix Φ
defined in (2.12) is positive definite and satisfies the following

Lyapunov equation:

ATΦ + ΦA = −M (2.13)

2.1.3 Lyapunov Stability Theorems

Stability plays an important role in system theory and engineer-

ing. In this section, the focus is on the stability of equilibrium
points of nonlinear dynamical systems with emphasis on Lya-

punov’s method [89].

This work focuses on exponential stability, although it is a
strong property. The interest in exponential stability is justified
by the fact that if a system is exponentially stable, then there

exists a margin which can be used to accommodate eventual
disturbances or model errors.

In order to illustrate the stability of the origin x = 0 of Sys-
tem (2.5), the following definition and theorems are introduced.

Definition 2.2 Lyapunov Function [7] Let x = 0 be an equi-

librium point of System (2.5). A continuously differentiable func-
tion V (x) : Rn → R is called a Lyapunov function if it satisfies

• V (0) = 0;

• V (x) > 0 for x ∈ Rn − {0},
• V̇ (x) ≤ 0 for x ∈ Rn.

Theorem 2.4 Stability and asymptotic stability of non-
linear systems using Lyapunov functions [7] Let x = 0 be
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an equilibrium point for System (2.5). If there exists a Lyapunov

function V (x), then the origin x = 0 is stable. If in addition
V̇ (x) < 0 in Rn − {0}, then x = 0 is asymptotically stable.

Theorem 2.5 Exponential stability of nonlinear systems
using Lyapunov functions [7] Let x = 0 be an equilibrium

point for System (2.5). If there exist a Lyapunov function V (x)
and positive real constants c1, c2 and c3 such that

• c1‖x‖2 ≤ V (x) ≤ c2‖x‖2,

• V̇ (x) ≤ −c3‖x‖2,

then the origin x = 0 is exponentially stable.

Theorem 2.6 Converse theorem on exponential stability

of nonlinear systems using Lyapunov functions [7]

Consider System (2.5). If the origin x = 0 is exponentially
stable, then there exists a Lyapunov function W (x) and positive

constants c1, c2, c3 and c4 such that:

• c1‖x‖2 ≤ W (x) ≤ c2‖x‖2,

• Ẇ (x) ≤ −c3‖x‖2,

• ‖∂W
∂x

‖ ≤ c4‖x‖.

From an analysis point of view, the above theorems provide

sufficient stability conditions, where a Lyapunov function is cho-
sen to be an energy of the system. The energy is dissipative

such that function V (x) decreases to zero along the solution
of the equations of System (2.5) subject to an initial condition
x(0) = x0.
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2.1.4 Vanishing Perturbation Theory

In this section, results on Lyapunov stability will be applied to
the stability analysis of perturbed autonomous systems.

Consider the autonomous system (2.5), and assume that it
constitutes the nominal model for the following perturbed sys-

tem:
ẋ = f(x) + ∆(x), x(0) = x0 (2.14)

where f(x) represents the nominal dynamics, with f(0) = 0,
and ∆(x) represents the perturbed dynamics. Both f and ∆ are

Lipschitz in x.
Since ∆(x) is Lipschitz then

∃δ > 0 : ‖∆(x)‖ ≤ δ‖x‖ (2.15)

The vanishing perturbation theory is based on the assump-

tion that ∆(0) = 0, such that the perturbation vanishes to zero
at the origin. The main result is that, if the nominal system is

exponentially stable and δ is smaller than a predetermined limit,
then the perturbed system is also exponentially stable.

Theorem 2.7 [7] Let x = 0 be an exponentially stable equilib-

rium point of the nominal system (2.5). Let V (x) be a Lyapunov
function for the nominal system satisfying

∂V

∂x
f(x) ≤ −c1‖x‖2 (2.16)

∥∥∥∥∥
∂V

∂x

∥∥∥∥∥ ≤ c2‖x‖ (2.17)

where c1 and c2 are positive real constants. Also, let ‖∆(x)‖ ≤
δ‖x‖, where δ is a nonnegative constant. If δ < c1

c2
, then, the ori-

gin is an exponentially stable equilibrium point of the perturbed
system (2.14).
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Based on Lyapunov analysis, the above theorem provides suf-

ficient exponential stability conditions for the perturbed system
(2.14). If an autonomous system (2.5) is exponentially stable,

then there exists a margin in the reduction of the Lyapunov
function, which, in turn, can be used to accommodate the per-
turbations ∆(x).

2.1.5 Singular Perturbation Theory

a) Approximation of a Singularly Perturbed System

Singular perturbation theory provides an asymptotic method to

approximate the solution of nonlinear differential equations.
Consider a singularly perturbed system (2.6)-(2.7). The asymp-

totic solution of its differential equation consists of computing

an approximate trajectory, based on the decomposition of the
singularly perturbed model, which exhibits a two-time-scale be-

havior, into a reduced (slow) model and a boundary-layer (fast)
model.

In fact, as ε → 0, the dynamics of ξ in (2.7) vary rapidly. This
leads to a time-scale separation, where the vector η represents
the slow states and the vector ξ represents the fast states. Thus,

ξ can be approximated by its quasi-steady state solution:

ξ̄ = φ(η, u) (2.18)

which is obtained solving the following algebraic equation:

Fξ(η, ξ̄, u, 0) = 0 (2.19)

Replacing the state vector ξ by its quasi-steady state solution
ξ̄, the reduced (slow) dynamics arise:

η̇ = Fη(η, φ(η, u), u, 0)

= F̄η(η, u), η(0) = η0 (2.20)
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System (2.20) is called the reduced subsystem and is an ap-

proximation of Subsystem (2.6) under the quasi-steady state
assumption of the state vector ξ.

Using the changes of variables ξ̃ = ξ−ξ̄ and τ = t
ε
, Subsystem

(2.7) can be rewritten as:

dξ̃

dτ
= Fξ(η, ξ̃ + ξ̄, u, ε) − ε φ̇(η, u) (2.21)

Setting ε = 0 yields

dξ̃

dτ
= Fξ(η, ξ̃ + ξ̄, u, 0)

= F̄ξ(η, ξ̃ + ξ̄, u), ξ̃(0) = ξ̃0 (2.22)

System (2.22) is called the boundary-layer subsystem, and
consists of the quasi-steady state model of System (2.6), con-

sidered at a different (fast) time scale than the one (slow) of the
reduced subsystem (2.20).

Singular perturbations cause a multi-time scale behavior of
System (2.6)-(2.7): the slow response (2.6) is approximated by

the reduced model (2.20), while the discrepancy between the
response of the reduced model and the response of the overall

system (2.6)-(2.7) is the fast transient.

Since ε in (2.6)-(2.7) is a small parameter, the quasi-steady
state solution ξ̄ of the fast transient (2.7) is considered instead

of the real state vector ξ. Therefore, System (2.6)-(2.7) is ap-
proximated by System (2.20)-(2.22). The solution of the above

system subject to the initial conditions ξ̃(0) = ξ̃0, η(0) = η0

is then an approximation of the solution of System (2.6)-(2.7)
subject to the initial conditions ξ(0) = ξ0, η(0) = η0.
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b) Exponential Stability of a Singularly Perturbed Sys-

tem

Stability is an important property of the approximated form

(2.20)-(2.22) of a singularly perturbed system (2.6)-(2.7). Once
the input u is fixed u = k(η, ξ̄), stability analysis of the singu-

larly perturbed system in its closed-loop form can be obtained
from the analysis of the stability of its approximated form. The

following theorem gives the dependency between the stability of
the singularly perturbed system in its approximate form (2.20)-
(2.22) and the stability of the singularly perturbed system in its

original form (2.6)-(2.7).

Theorem 2.8 [7] Consider System (2.6)-(2.7) and assume that
the following conditions are satisfied:

• The origin (η, ξ) = (0, 0) is an equilibrium point,

• The solution φ(η, k(η, ξ̄)) is unique, and φ(0, 0) = 0,

• The functions Fη, Fξ and their partial derivatives up to
order 2 are bounded for ξ in the neighborhood of ξ̄,

• The origin of the boundary-layer subsystem (2.22) is expo-

nentially stable for all η,

• The origin of the reduced subsystem (2.20) is exponentially

stable.

Then, there exists ε∗ > 0 such that, for all ε < ε∗, the origin of
2.6)-(2.7) is exponentially stable.

The above theorem indicates that the exponential stability
analysis of System (2.6)-(2.7) directly follows from the stability
results of the reduced subsystem (2.20) and the boundary-layer
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subsystem (2.22). Indeed, if (2.20)-(2.22) is exponentially stable,

then the singularly perturbed system in its original form (2.6)-
(2.7) is exponentially stable.

2.2 Control of Nonlinear Systems

The above section tackled the analysis of nonlinear systems,
while the present section describes the control of nonlinear sys-

tems.

2.2.1 Input-Output Feedback Linearization

A classical way to control System (2.1) is to compute a lin-

ear controller using the first-order approximation of the system
dynamics around the origin x = 0, which gives a local linear ap-

proximation of the system. A non-approximating linearization
called input-output feedback linearization (IOFL) is discussed

here. It consists of inverting the system dynamics given a non-
linear change of coordinates and a feedback law. IOFL is a sys-
tematic way to linearize globally part of, or all, the dynamics of

System (2.1).

In order to compute the input-output feedback linearization
of System (2.1), some definitions and geometric tools are re-
called.
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Lie Derivatives

Consider System (2.1). Differentiating the output y with respect
to time yields:

ẏ = ∂h
∂x

ẋ

= ∂h
∂x

[f(x) + g(x)u]

= Lfh(x) + Lgh(x)u

where Lfh(x) = ∂h
∂x

f(x), Lgh(x) = ∂h
∂x

g(x)

(2.23)

The function Lfh(x) is called the Lie Derivative of h(x) with

respect to f(x) or along f(x), and corresponds to the derivative
of h along the trajectories of the system ẋ = f(x). Similarly,
Lgh(x) is called the Lie Derivative of h with respect to g or

along g, and corresponds to the derivative of function h(x) along
the trajectories of the system ẋ = g(x).

Continuing the differentiation of the output y = h(x) of Sys-
tem (2.1) with respect to time, the derivatives of the output

y along the different possible directions of the trajectories of
System (2.1) can be computed.

Relative Degree of a Nonlinear System

For linear systems, the input-output property of relative degree
corresponds to the difference between the number of poles and

the number of zeros of the system. For nonlinear systems, the
relative degree r of System (2.1) corresponds to the number of

times the output y = h(x) has to be differentiated with respect
to time before the input u appears explicitly in the resulting
equations.
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Definition 2.3 Relative Degree of a Nonlinear System

System (2.1) is said to have a relative degree r, 1 ≤ r ≤ n in
Rn if ∀x ∈ Rn:

LgL
i−1
f h(x) = 0 i = 1, 2, · · · , r − 1 (2.24)

LgL
r−1
f h(x) �= 0 (2.25)

where LgL
i
fh(x) = Lg[L

i
fh(x)], Li

fh(x) = Lf [L
i−1
f h(x)], i =

1, 2, · · · , r − 1 and L0
fh(x)

∆
= h(x).

Input-Output Feedback Linearization

System (2.1), with relative degree r < n in Rn, where n is the

order of the system, is input-output feedback linearized into
Byrnes-Isidori normal form (Figure 2.1), according to the fol-
lowing steps [4]:

η̇ = Q(y, ẏ, · · · , y(r−1)), η ∈ Rn−r

∫∫∫ yy(r−1)v = yr

yxuv
u(x) ẋ = f(x) + g(x)u h(x)

Figure 2.1: Input-output feedback linearization
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1. Apply a state feedback law that compensates the nonlin-

earities in the input-output behavior:

u =
v − Lr

fh(x)

LgL
r−1
f h(x)

(2.26)

Since r is the relative degree, then

∀ x ∈ Rn : Lr−1
f Lgh(x) �= 0

∀ i < r − 1 : Li
fLgh(x) = 0

2. Use the nonlinear transformation z = T (x), z = [ξT ηT ]T ,

where (·)T is the transpose operator, ξ = [y ẏ · · · y(r−1)]T is
of length r and η is of length n − r. System (2.1) is then

rewritten as:

y(r) = v, y(0) = y0 (2.27)

η̇ = Q(y, ẏ, · · · , y(r−1), η), η(0) = η0 (2.28)

where η is chosen so that T (x) is a diffeomorphism 1. Q is

a nonlinear function defining the time derivative of η, and
y(i) is the ith time derivative of y. Note that the dynamics

(2.28) do not depend on the input u. In fact, it is always
possible to choose a vector η such that its time derivative
is independent of the input u [4].

The new form (2.27)-(2.28) of System (2.1) is called the Byrnes-

Isidori normal form, and the dynamics (2.28) are called the in-
ternal dynamics of System (2.1).

Input-output feedback linearization decouples the input-output
behavior of a nonlinear system (2.1) from the internal dynamics,

1Function T : Rn → Rn, x �−→ z = T (x) is a diffeomorphism if ∀x ∈ Rn, ∃T−1 : Rn →
Rn, z �−→ x = T−1(z)
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i.e. η has no effect on y. System (2.27)-(2.28) can be rewritten

as a function of the new coordinates as follows:

ξ̇i = ξi+1, i = 1, . . . , r − 1 (2.29)

ξ̇r = v (2.30)

η̇ = Q(η, ξ) (2.31)

with ξ1(0) = y0 and η(0) = η0

System (2.1) is then globally linearized in its input-output
behavior, and a simple linear controller v can be used to con-

trol the system output. However, the internal dynamics are not
controlled, which can be problematic if they are unstable.

Zero Dynamics

Consider System(2.1), with relative degree r < n. Since the

equilibrium point of System (2.1) is the origin x = 0, then the
first r coordinates ξi (i = 1 · · · r) of the transformed System

(2.29)-(2.30) are equal to 0. At x = 0, η = 0 as its value can be
fixed arbitrarily [4]. Therefore, (ξ, η) = (0, 0) is an equilibrium

point of System (2.1) written in its transformed form (2.27)-
(2.28) with Lr

fh(0) = 0 and Q(0, 0) = 0.

Consider now the problem of zeroing the output. This is

equivalent to finding all the pairs (x, u) of initial states x and
input u, defined for all t in the neighborhood of t = 0, such that

the corresponding output y(t) of System (2.1), which is zero at
time t = 0, stays at zero in the neighborhood of t = 0. The pair
(x, u) = (0, 0) is a trivial solution of the problem. However, all

the pairs satisfying this property have to be found.

Let b(ξ, η) = Lr
fh(x), a(ξ, η) = Lr−1

f Lgh(x) denote the Lie
derivatives of the transformed System (2.27)-(2.28), written with
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the new coordinates (ξ, η). Since y(t) = 0 in the neighborhood

of t = 0, then ẏ(t) = ÿ(t) = · · · = y(r−1)(t) = 0, yielding ξ(t) = 0
and ξ̇(t) = 0. Therefore, the new input v(t) in (2.27)-(2.28) is

zero and the input vector of the original system u must satisfy
the following equation:

u = − b(0, η∗)
a(0, η∗)

(2.32)

where η∗(t) is the solution of the following equation:

η̇∗ = Q(0, η∗) (2.33)

The dynamics defined in (2.33) are called the zero dynam-
ics of the nonlinear system (2.1). It correspond to the internal

dynamics of System (2.1) when the value of u constrains the
output y = h(x) to remain 0.

The concept of zero dynamics of a nonlinear system is related
to that of zeros of a linear system. Indeed, the poles obtained

when linearizing (2.33) at the origin η = 0 are equal to the zeros
obtained when linearizing System (2.1) around the equilibrium

point (x, u) = (0, 0).

Nonminimum-phase Systems

Nonminimum-phase property (NMP) is an input-output prop-

erty. The output y = h(x) of System (2.1) is said to be non-
minimum phase if System (2.27)-(2.28) contains unstable zero

dynamics (2.33). In the case of linear systems, a system is non-
minimum phase if it contains unstable zeros. When input-output

feedback linearization is applied to a nonminimum-phase sys-
tem, the unstable zero dynamics prevent the use of the standard
IOFL technique for the state control.
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2.2.2 Nonlinear Model Predictive Control (NMPC)

Model predictive control (MPC) is an effective feedback control
approach for tackling problems with constraints and nonlinear

dynamics [75, 87]. MPC makes use of a model in order to predict
the future system output, based on past and current values and

on the proposed optimal future actions [87, 85, 78]. These future
actions are obtained by minimizing an objective function, taking

future tracking errors as well as constraints into consideration.

Formulation of NMPC

The current control u(t) at time t is obtained by computing
online a finite-horizon open-loop optimal control u(τ) over the

interval τ ∈ [t, t+T ], where T is called the prediction horizon. A
part of the obtained signal u([t, t+ δ]) is then applied to System

(2.1) during the interval [t, t+ δ], where δ < T is the implemen-
tation interval. This calculation is repeated continuously at the
frequency rate 1

δ
, called re-optimization frequency, less than or

equal to the sampling frequency fe. Since u(t) depends on the
states x(t), this procedure leads to feedback control. The design

of a model predictive control is based on the following elements:

Prediction Model A model (2.1) of the real system is used to
calculate the predicted output. Therefore, it has to be as

close as possible to the real system. Different strategies are
used in the literature to define the prediction model [85].
For example, a disturbance model can be taken into account

in order to describe the behavior that is not reflected by the
basic model, such as the effect of model errors or noise.

Formulation of the optimization problem At time t, the
optimization problem consists of the minimization of a cost
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function, which depends on the states x(τ) and input u(τ),

over the interval τ ∈ [t, t + T ]. The optimization is per-
formed under equality or inequality constraints (Figure 2.2).

0 1 2 3 4 5 6
0

1

u(t + T )u(t)

T

Predicted states x(τ)

t + Tt

Figure 2.2: Model predictive control strategy

In this work, the selected cost function consists of two terms:

• An integral term, which consists of the time integral over

the interval [t, t + T ] of the norms of the state vector x(τ)
and the input u(τ). The integrands are respectively weighted

by positive definite matrices S, R, to enhance the impor-
tance of certain elements in the computation of the optimal

input. The integral term is expressed as:

J1 =
1

2

∫ t+T

t

(
x(τ)TS x(τ) + R u2(τ)

)
dτ (2.34)
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• A final term, which consists of the value of the states at

the end of prediction x(t + T ), weighted by a positive defi-
nite matrix, to enhance the importance of final states. The

expression of the final term is:

J2 =
1

2
x(t + T )TP x(t + T ) (2.35)

Then, the overall cost function used in this work for the model

predictive control of System (2.1) is given as:

J = J1 + J2

=
1

2
x(t + T )TP x(t + T )

+
1

2

∫ t+T

t

(
x(τ)TS x(τ) + R u2(τ)

)
dτ (2.36)

such that ẋ = f(x) + g(x)u

x(t) = xt

and u(·) ∈ U , x(·) ∈ N , x(t + T ) ∈ Nf

where xt is the vector of measured or estimated states at time
t; P , S, and R are positive-definite weighting matrices of appro-
priate dimensions; T is the prediction horizon; N is the set of

eligible states; U is the set of eligible inputs; and Nf ⊂ N is a
closed set containing the origin ((x = 0) ∈ Nf).

The cost function can also contain equality or inequality con-
straints on the state variables x(τ) or the input u(τ). However, in

this work, the effect of additional constraints to the optimization
problem is not studied. Therefore, unconstrained model predic-
tive control is used everywhere.
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Computing the Control Law: The control law is obtained by

solving the following minimization problem :

min
u([t,t+T ])

{J =
1

2
x(t + T )TP x(t + T )

+
1

2

∫ t+T

t

(
x(τ)TS x(τ) + R u2(τ)

)
dτ}(2.37)

such that ẋ = f(x) + g(x)u

x(t) = xt

and u(·) ∈ U , x(·) ∈ N , x(t + T ) ∈ Nf

To solve the optimization problem (2.37), input u needs to

be parameterized. This is usually performed using piecewise-
constant functions, which is the case in this work. However, al-

ternative functions such as exponential functions or state feed-
back can be used.

Solving the minimization problem (2.37) yields the control
sequence u∗([t, t + T ]), of which only the part u∗([t, t + δ]) is

applied in an open-loop fashion to the plant on the interval [t, t+
δ]. Then, numerical optimization is repeated every δ seconds.
Therefore, although System (2.1) is continuous, model predictive

control is applied in a discrete time.

Asymptotic Stability of Nonlinear Model Predictive Con-
trol

In general, nonlinear predictive control design does not guaran-
tee stability. However, an appropriate choice of parameter set-

tings in (2.36) can guarantee stability. The most frequently used
methods to guarantee the stability of model predictive control
are listed in the following.



2.2 Control of Nonlinear Systems 41

(i) End-point constraint: The states are constrained to be

equal to the desired ones at the end of the prediction hori-
zon [90, 91]. This method can make the problem unfeasible,

especially if the input parameterization is not adequate.

(ii) Infinite horizon: The prediction horizon is infinite [92,
93]. However, the integration for prediction of the system

dynamics over an infinite horizon can be computationally
difficult, especially if the dynamics are unstable.

(iii) Contraction constraint: A contraction constraint on the
states is introduced [94, 95]. Note that the choice of the con-
traction domain is of crucial importance for this method.

(iv) Final set constraint: Using an appropriate final cost, the
output at the end of prediction belongs to an invariant

set where a local controller of the system exists [96, 97].
This method is less restrictive than the end-point constraint

method

In this work, stability analysis is conducted using the final set
constraint method.

The issue of stability becomes more complicated in the case of

constrained model predictive control. The main problem therein
is ensuring feasibility, and the existence of a stabilizing control

law is not trivial. However, in this work, only unconstrained
nonlinear model predictive control is studied.

The results of Jadbabaie [96, 97] on asymptotic stability of
nonlinear model predictive control using final set constraint are

presented here. In [96, 97], asymptotic closed-loop stability of
nonlinear predictive control requires the following three elements:

• An invariant set Nf and a control law, where the state
evolves within the set,



42 Chapter 2 Preliminaries

• A function F (x) = 1
2x

TPx defined in Nf and a positive

function q(x), with q(0) = 0, satisfying Ḟ + q ≤ 0,

• The existence of a prediction horizon T such that, at the

end of the prediction horizon, the system is inside Nf .

The first two elements presented above state that, within the

invariant set Nf , there exists a control law (not necessarily the
one computed from predictive control) such that the system is

exponentially stable. The last element states that, even if Nf

is arbitrarily small, the prediction horizon is chosen such that

the system can reach Nf at the end of the prediction horizon.
Using the above elements, the following theorem ascertains the
asymptotic stability of the predictive control part.

Theorem 2.9 [96] Let (x, u) = (0, 0) be an equilibrium point
for the nonlinear system (2.1). If the following statements are

satisfied:

• the function f(x) is Lipschitz in x,

• P , S and R used in (2.36) are positive definite,

• there exists a local controller k(x) of (2.1), defined in Nf ,
for which q(x, k(x)) satisfies the inequality Ḟ + q ≤ 0, with

q(0, k(0)) = 0,

• the set Nf is positively invariant 2 with respect to u,

• the prediction horizon T is sufficiently large to ensure that

x∗(t + T ) ∈ Nf , where x∗(.) represents the states obtained
under predictive control,

2See [7] for calculation details
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then, Controller (2.36) stabilizes System (2.1) asymptotically.

In this work, these results are extended to the case of expo-
nential stability, and the pertaining results are presented in the

next chapter.
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Chapter 3

Approximate Input-output
Feedback Linearization of
Nonlinear Systems Using the
Observability Normal Form

3.1 Introduction

The previous chapter has shown that input-output feedback lin-

earization allows compensating for the nonlinearities of the sys-
tem using nonlinear state feedback and nonlinear state trans-
formation. A linear controller can then be designed to control

the linearized system [4]. However, there exist many systems for
which the entire system nonlinearity cannot be compensated for.

Hence, various ideas related to linearization have been explored
in the literature, for systems that are not input-state feedback

linearizable [9].
In this work, two methods will be discussed to solve this prob-

45
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lem. The first method is presented in this chapter. The idea is to

neglect a part of the system dynamics so as to make the approx-
imate system input-state feedback linearizable. The neglected

part is then considered as a perturbation. A linear controller is
designed so as to account for the nonlinearities that have not
been compensated for but simply ignored. Stability is analyzed

using the vanishing perturbation theory.
Section 3.2 develops the proposed approximate linearization

approach, while the stability analysis of the control scheme is
provided in Section 3.3. The obtained results are discussed in

Section 3.4. Section 3.5 concludes the chapter.

3.2 Approximate IOFL Control Scheme

The proposed controller is computed in three steps:

1. System (2.1) is transformed into its observability normal
form;

2. The transformed system is approximated as a chain of in-
tegrators, with the neglected part considered as a pertur-

bation;

3. A linearizing feedback controller is applied to the approx-

imate system, leading to a linear system that can be con-
trolled using linear feedback.

3.2.1 System Transformation

Consider the nonlinear SISO affine-in-input system (2.1), and
assume that:

∀x ∈ Rn : span
{[

∂h
∂x

∂Lfh

∂x

∂L2
fh

∂x
· · · ∂Ln−1

f h

∂x

]}
= n (3.1)
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The above condition states that ∂h
∂x

, ∂Lfh

∂x
,

∂L2
fh

∂x
, · · ·, ∂Ln−1

f h

∂x
are

linearly independent1.

Condition 3.1 will be referred to as “strong observability”. It
is a more restrictive condition than the one required for the ob-

servability of System (2.1), where there is no restriction on the
number of Lie derivatives necessary to span the n-dimensional

space. Strong observability implies that the time-varying lin-
earized system is observable around all operating points [98].
Consider (2.1) which satisfies the strong observability condition

(3.1), with relative degree r strictly less than the system order
n. Consider also the state transformation

z = T (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h

Lfh

L2
fh
...

Ln−1
f h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

Note that the strong observability condition is essential here as it
ensures that the transformation T is a diffeomorphism, implying

that the inverse transformation x = T−1(z) exists and is unique
for all x ∈ Rn.

Using the state transformation (3.2), System (2.1) takes on

1See [98] for calculation details
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the following form:

ż1 = z2

ż2 = z3
...

żr = zr+1 +LgL
r−1
f h u

żr+1 = zr+2 +LgL
r
fh u

...

żn = Ln
fh +LgL

n−1
f h u, z(0) = z0

(3.3)

where LgL
i
fh(x) = 0, ∀i < r − 1 and LgL

i
fh(x) �= 0, for i =

r − 1, since System (2.1) is of relative degree r. System (3.3)
corresponds to the observability normal form of System (2.1).

3.2.2 Approximation of the Transformed System

Note that, even if LgL
i
fh(x) �= 0, for r − 1 ≤ i < n, it can

still be close to zero and therefore neglected. The approximation
LgL

i
fh(x) = 0 for i = r−1, · · · , n−2 is then introduced in (3.3),

yielding the following approximate system:

ż1 = z2

ż2 = z3
...

żr = zr+1

żr+1 = zr+2
...

żn = Ln
fh +LgL

n−1
f h u, z(0) = z0

(3.4)

The resulting system (3.4) consists of a chain of n integra-

tors. However, the following question arises: “How close to zero
does LgL

i
fh(x), r − 1 ≤ i < n need to be in order for the ap-

proximation to be effective?”. The next section shows how to
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design a controller to accommodate the perturbation resulting

from the approximation. Then, the subsequent section provides
a sufficient condition on the perturbation size that ensures the

stability of the controlled system.

3.2.3 Linearizing Feedback Control

Consider System (2.1), after transforming it into its observabil-

ity normal form and approximating it with a chain of integra-
tors. If LgL

n−1
f h �= 0 for all x, then the following “linearizing”

feedback can be imposed:

u =
v − Ln

fh

LgL
n−1
f h

, (3.5)

Then, System (3.4), with the feedback law (3.5), can be rewrit-

ten in the following form:

ż1 = z2

ż2 = z3
...

żr = zr+1

żr+1 = zr+2
...

żn = v, z(0) = z0

(3.6)

which can be rewritten as:

ż = Az + Bv, z(0) = z0 (3.7)
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with A ∈ Rn × Rn and B ∈ Rn, and are given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . 0
0 0 1 . 0
...

...
...

...
...

0 0 0 . 1

0 0 . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

The resulting system (3.7)-(3.8) consists of a linear system,
and corresponds to an approximate input-state feedback lin-

earization of System (2.1). Therefore, the following linear con-
troller

v = −Kz, K =
[

k1 · · · kn

]
(3.9)

can be applied to the approximate linearization (3.7)-(3.8), yield-

ing the following linear closed-loop system:

ż = Acl z, z(0) = z0 (3.10)

with

Acl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . 0

0 0 1 . 0
...

...
...

...
...

0 0 0 . 1
−k1 −k2 −k3 · · · −kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

The parameters of the vector of gains K are chosen such that
the real parts of the eigenvalues of the matrix Acl in (3.11) are

all negative.

3.3 Stability Analysis

Applying the linear controller (3.9) on the transformed system

(3.3) leads to:

ż = Acl z + ∆(z), z(0) = z0 (3.12)
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with

∆(z) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

.

.

LgL
r−1
f h

.

LgL
n−2
f h

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Kz + Ln
fh)

LgL
n−1
f h

(3.13)

and Acl is given in (3.11).

The main advantage of the developed control method is that,

using the observability normal form, the resulting perturbation
(3.13) is vanishing, i.e. going to zero at the equilibrium. In fact,

replacing (z, u) by their values at the equilibrium (z, u) = (0, 0)
in (3.3) gives Ln

fh(z = 0) = 0. Replacing it in (3.13) yields

∆(0) = 0. Therefore, the perturbation is indeed vanishing, and
the theory of vanishing perturbations presented in Chapter 2
can be used.

The stability analysis of the approximate input-output feed-

back linearization addresses the existence of a non-zero range of
∆(z) for which System (3.12) can be stabilized. The following

theorem gives sufficient conditions for the exponential stability
of System (3.12).

Theorem 3.1 Consider System (2.1), and let the following as-

sumptions be verified:

• ∀x ∈ Rn : span
{[

∂h
∂x

∂Lfh

∂x

∂L2
fh

∂x
· · · ∂Ln−1

f h

∂x

]}
= n,

• ∃δ1 > 0 : |Ln
fh| ≤ δ1‖z‖,

• ∃δ2 > 0 : |LgL
n−1
f h| ≥ δ2,
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• The gains ki, i = 1, · · ·n are chosen such that all the eigen-

values of the matrix Acl in (3.11) have negative real parts,

• Consider the function ∆1(z) defined as follows:

∆1(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.

.

LgL
r−1
f h

.

LgL
n−2
f h

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

and a matrix P , the solution of the Lyapunov equation
PAcl +AT

clP = −I, where I is the identity matrix and Acl is

given by (3.11), with the following inequality being satisfied:

‖∆1(z)‖ <
δ2

2λmax(P )(δ1 + ‖K‖) (3.15)

Then, the feedback law (3.5)-(3.9) stabilizes (3.3) exponentially.

The above theorem indicates that, if the norm of the pertur-

bation vector ∆1(z) defined in (3.14) is smaller than a certain
value, then the overall system (3.12) is exponentially stable. In

particular, when ∆1(z) = 0, the perturbed system (3.12) coin-
cides with the nominal system (3.10).

The assumption |Ln
fh| ≤ δ1‖z‖ used in Theorem 3.1 is a

global Lipschitz condition, which is a strong restriction. How-

ever, this restriction is necessary to ensure the global stability
of the system. If local Lipschitz conditions are imposed instead,
local stability results could be obtained.
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Proof: Consider the Lyapunov function V = zTPz for the
nominal system (3.10), where P is a positive symmetric matrix

which satisfies the Lyapunov equation PA + ATP = −I. Then,

∂V
∂z

Aclz = zTPAz + zTATPz

= zT (PA + ATP )z

= zT (−I)z

= −‖z‖2

(3.16)

∂V
∂z

= zTP + Pz

⇒
∥∥∥∂V

∂z

∥∥∥ =
∥∥∥zTP + Pz

∥∥∥
≤
∥∥∥zTP

∥∥∥+ ‖Pz‖

≤ 2 ‖z‖ ‖P‖

≤ 2λmax ‖z‖

(3.17)

Consider now the same Lyapunov function applied to the

perturbed system (3.12). Then

V̇ =
∂V

∂z
Aclz +

∂V

∂z
∆(z)

≤ −‖z‖2 + 2λmax(P )‖z‖ ‖∆(z)‖ (3.18)

Noting that |Ln
fh| ≤ δ1‖z‖ and |LgL

n−1
f h| ≥ δ2 > 0, then using

the expression of ∆(z) (3.13) yields:

‖∆(z)‖ ≤ δ1 + ‖K‖
δ2

‖∆1(z)‖ ‖z‖ (3.19)
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Replacing (3.19) in the expression (3.18) gives:

V̇ ≤ −‖z‖2

⎛
⎝1 − 2λmax(P )

δ1 + ‖K‖
δ2

‖∆1(z)‖
⎞
⎠ (3.20)

Therefore, if (3.15) is satisfied, the term between the parenthesis
in (3.20) is positive. Hence, from Theorem 2.5, the feedback law

(3.5)-(3.9) stabilizes (3.3) exponentially.

The following corollaries follow from Theorem 3.1.

Corollary 3.1 For a given gain vector K, the closed-loop sys-
tem (3.12)is exponentially stable for all ‖∆1(z)‖ < δ2

2λmax(P )(δ1+‖K‖).

The above corollary states that, for any given gain vector K,
there exists a non-zero range of ∆(z) for which System (3.3)

can be stabilized. However, the converse is not true, i.e., given a
perturbation ∆(z), it is not always possible to find a gain vector
K that stabilizes the system.

Corollary 3.2 Let δ1 and δ2 be as defined in Theorem 3.1, and

δ∗ = maxK
δ2

2λmax(P )(δ1+‖K‖)

s.t. eig(Acl) < 0

(3.21)

For ‖∆1(z)‖ < δ∗, there exists a gain vector K such that the
feedback law (3.5)-(3.9) stabilizes System (3.3) exponentially.

The maximization in Corollary (3.2) can be done numerically
for given values of δ1 and δ2.
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3.4 Discussion

There exists in the literature several methods based on an ap-

proximation of the input-output feedback linearization of a non-
linear system. In particular, in [55, 57, 58], the outputs are dif-
ferentiated as many times as the order of the system instead of

stopping at the relative degree as would be done with standard
input-output feedback linearization. As an approximation, the

input derivatives that appear in the control law are set to zero in
the computation of the state feedback input. Though global sta-

bility can be established, the main disadvantage of this method
is that it requires the open-loop system to be stable. In [60], an

extension of the controller has been developed for unstable sys-
tems. However, the feedback is dynamic, and only asymptotic
stability has been provided therein.

The idea of the methodology proposed in this work is simi-
lar to [55, 57], though a more standard representation, i.e. the

observability normal form will be exploited. The system is trans-
formed into its observability normal form, neglecting part of the

dynamics so as to make the approximate system feedback lin-
earizable, which will be considered as perturbation. The main
advantages of the approximate input-output feedback lineariza-

tion technique developed in this work is that:

• Since the idea is to design the linear controller so as to

account for the nonlinearities that have not been compen-
sated but simply neglected, there is no necessity that the

open-loop system be stable for the stability of the closed-
loop system;

• The perturbation is vanishing at the origin, thus allowing
the use of the vanishing perturbation theory to prove the
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global exponential stability of the synthesized state feed-

back.

In Soroush work [55, 57], the stability analysis is based on
the small gain theorem 2, which requires the open-loop system
behavior to be stable. In this work, the objective of the approx-

imate input-output feedback linearization is that no precondi-
tion on the stability of the open-loop system behavior is needed.

Thus, vanishing perturbation theory for the stability analysis is
used instead of the small gain theorem, in order to deal with

unstable systems.
However, the main limitation of the developed approximate

input-output feedback linearization is essentially due to the use

of vanishing perturbation theory for the stability analysis, such
that the stability results presented here can be very conserva-

tive. In reality, as it will be shown with experimental results in
Chapter 5, a much larger perturbation could have been accom-

modated than that predicted by the theoretical results. On the
other side, It may be possible to enlarge the domain of stability

by including the perturbation into the control law instead of just
neglecting it. This will be investigated in future work.

3.5 Conclusion

This chapter has presented a control scheme based on an ap-
proximate input-output feedback linearization technique, where

System (2.1) is first transformed into its observability normal
form. The latter is in turn approximated as a chain of integra-

tors, neglecting part of the dynamics, and is finally controlled
via a linearizing feedback.

2See [7, 99]



3.5 Conclusion 57

The neglected part is considered as a perturbation, which

is vanishing at the origin. Thus, stability analysis is provided
based on vanishing perturbation theory. Unfortunately, the sta-

bility results presented here can be very conservative. Indeed,
the perturbation predicted by the theoretical results can be
much smaller than the perturbation that could otherwise be

accommodated.
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Chapter 4

Cascade Structure with
Input-output Feedback
Linearization and Predictive
Control

4.1 Introduction

In this thesis, solutions are developed for the control of nonlin-

ear nonminimum-phase systems with relative degree strictly less
than the system order. The first one was presented in the previ-
ous chapter. It consists of finding a stabilizing controller, based

on an approximation of the system, by neglecting the internal
dynamics.

The second method to control the considered class of sys-

tems is addressed in this chapter. The idea is to stabilize the
internal dynamics instead of neglecting them as was done in the
case of the approximate input-output feedback linearization in

59
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Chapter 3.

The proposed methodology is based on input-output feedback

linearization, model predictive control and singular-perturbation
theory. The system is first input-output feedback linearized, by

separating the input-output system behavior from the internal
dynamics. Predictive control is then used to stabilize the inter-

nal dynamics, using a reference trajectory of the system output
as the manipulated variable. This results in a cascade-control
scheme, where the outer loop consists of a model predictive con-

trol of the internal dynamics, and the inner loop is the input-
output feedback linearization. Model predictive control is then

performed on this scheme, at a re-optimization rate determined
by the internal dynamics rather than the system dynamics. This

can be advantageous if the internal dynamics are slower than
the system dynamics. Stability analysis of the cascade-control

scheme is provided using results of singular-perturbation the-
ory [7].

This chapter is organized as follows: Section 4.2 develops the

cascade-control scheme, while the stability analysis is provided
in Section 4.3. In Section 4.4, an extension of the cascade-control
scheme is proposed, using neighboring extremal theory, in order

to make the cascade scheme more robust. Section 4.5 concludes
the chapter.

4.2 Cascade-control Scheme

The idea of the cascade-control scheme is to use the input-output

feedback linearization in the inner loop and predictive control
in the outer loop. The input-output feedback linearization can
be seen as a pre-compensator prior to applying predictive con-
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trol, whereas predictive control can be viewed as a systematic

way of controlling the internal dynamics. The following control
structure is proposed (Figure 5.7):

+ 
 
   _

Predictive
 Control

  Linear

Feedback

Input-output
Linearization  System

yref

y

u

x

v η

y

II

I

I : y(r) = v

II: η̇ = Q(η, y, ẏ, · · · , y(r−1), ε) ≈ Q̄(η, yref , ẏref , · · · , y(r−1)
ref , 0)

Figure 4.1: Cascade-control scheme using IOFL and NMPC

4.2.1 Inner loop: Linear Feedback Based on Input-output

Feedback Linearization

Using the control law (2.26), System (2.1) is first input-output

feedback linearized as in (2.27)-(2.28). Then, a linear output
feedback is applied to the linearized input-output dynamics:

y(r) = v, y(0) = y0 (4.1)

v =
k1

εr
(yref − y) −

r−1∑
i=1

ki+1

εr−i
y(i) (4.2)

where yref (t) is the reference trajectory for the output and its
successive derivatives, ε → 0 a small parameter, and k1, · · · , kr

are coefficients of a Hurwitz polynomial [7].
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The gains are chosen as shown since, for any choice of ε > 0,

the closed loop is stable and ε can be used as a single tuning
parameter.

System (2.28), (4.2) can be written in the form of a singularly
perturbed system (2.6)-(2.7) by defining the fast variables

ξi = εi−1y(i−1), i = 1, . . . , r (4.3)

Replacing ξ given in (4.3) in (2.28) yields:

η̇ = Q(η, ξ, ε), η(0) = η0 (4.4)

and replacing it in (4.2) yields:

εξ̇r = ε
d

dt

(
εr−1y(r−1)

)

= εry(r)

= εrv

= εr

⎛
⎝k1

εr
(yref − y) −

r−1∑
i=1

ki+1

εr−i
y(i)

⎞
⎠

= k1 (yref − y) −
r−1∑
i=1

ki+1ε
iy(i)

=
r−1∑
i=0

ki+1

(
ξ̄i+1 − ξi+1

)
(4.5)

where

ξ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

yref

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.6)

Therefore, (4.3) can be rewritten as follows:

εξ̇i = ξi+1, i = 1, . . . , r − 1 (4.7)

εξ̇r =
r−1∑
i=0

ki+1

(
ξ̄i+1 − ξi+1

)
, ξ(0) = ξ0 (4.8)
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4.2.2 Outer loop: Model Predictive Control

The internal dynamics (4.4) depend on the output y and its
derivatives ẏ, ÿ, · · · y(r−1), as well as on the small parameter ε.

Since ε is small, quasi-steady-state assumption can be made. The
quasi-steady-state (QSS) subsystem is computed when setting ε

to zero in (4.4). Letting ε → 0 in (4.3) yields:

ξ1 = y, ξ2 = · · · = ξr = 0 (4.9)

Using the above result and letting ε → 0 in (4.8), then:

r−1∑
i=0

ki+1

(
ξ̄i+1 − ξi+1

)
= 0

⇒ k1(ξ̄1 − ξ1) = 0

⇒ ξ̄1 = ξ1 (4.10)

Therefore:

ε → 0 : ξ = ξ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

yref

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.11)

The vector ξ̄ is the quasi-steady-state value of ξ.

It is important to note that setting ε to 0 in the internal dy-
namics (4.4) leads to undetermined fractions y(i) = ξi+1

εi = 0
0
, i =

1, · · · r − 1, because y(i) = ξi+1

εi , i = 0, · · · r − 1. However, since y

tends to yref under the quasi-steady-state assumption, then its

derivatives ẏ, · · · , y(r−1) tend to their references ẏref , · · · , y(r−1)
ref .

Since the internal dynamics can be rewritten in the following

form:

η̇ = Q(η, ξ, ε)

= Q(η, y, ẏ, · · · , y(r−1), ε) (4.12)
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then, the quasi-steady-state (QSS) subsystem is computed using

the form (4.12) for the internal dynamics. Letting ε → 0 in
(4.12), the QSS subsystem yields:

η̇ = Q(η, yref , ẏref , · · · y(r−1)
ref , 0), η(0) = η0 (4.13)

Then, trajectories (yref , ẏref , · · · y(r−1)
ref ) will be used to stabilize

the internal dynamics.

In general, input-output feedback linearization decouples the

input-output behavior from the internal dynamics, i.e. η has no
effect on the output y. On the other hand, the quasi-steady-state

assumption decouples the internal dynamics from the input-
output behavior, i.e. y has no effect on the output η, although

the profile of yref (an independent variable) is used to control η.
Thus, the two subsystems can be handled separately.

Defining η̄ =
[

η, yref , · · · , y
(r−2)
ref

]T
and w = y

(r−1)
ref ∈

Rn−1, the QSS dynamics (4.13) can be rewritten as:

˙̄η = Q̄(η̄, w), η̄(0) = η̄0 (4.14)

with

Q̄(η̄, w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(η, yref , · · · , y(r−2)
ref )

yref
...

y
(r−2)
ref

w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.15)

Note that it is important to add additional states yref , · · · , y(r−2)
ref

since they are considered as independent variables, and the last
derivative y

(r−1)
ref = w is considered as the manipulated variable

for stabilization.
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The value of a stabilizing w∗ is computed numerically using

predictive control:

w∗ = arg min
w([t,t+T ])

{
1

2
η̄(t + T )TP η̄(t + T ) (4.16)

+
1

2

∫ t+T

t

(
η̄(τ)TS η̄(τ) + R w2(τ)

)
dτ

}

s.t. ˙̄η = Q̄(η̄, w) η̄(t) = η̄t

w(·) ∈ Y , η̄(·) ∈ N , η̄(t + T ) ∈ Nf

where η̄t is the vector of measured or estimated states at time t;

P , S, and R are positive-definite weighting matrices of appro-
priate dimensions; T is the prediction horizon; N is the set of

admissible states; Y is the set of admissible inputs; Nf ⊂ N is
a closed set such that it contains the origin (η̄ = 0) ∈ Nf .

Under the cascade-control scheme, once System (2.1) is input-
output feedback linearized and the input-output behavior is con-
trolled with a linear feedback, then the resulting system is com-

posed of two subsystems:

• a fast subsystem, which is the boundary-layer subsystem

(4.19), with input v and output y.

• a slow subsystem, which is the QSS subsystem (4.14), with

input w and output η.

The key idea of the cascade control is to stabilize the internal

dynamics using y, the output of the initial system (2.1), via a
predictive control. This yields a reference on the output trajec-

tory yref (t) at each optimization. The reference is reached via
the linear control of the input-output behavior (4.19) of System

(2.1).
Since the internal dynamics are given, thus, the cascade con-

trol is effective using large gains in the inner loop to control



66 Chapter 4. Cascade Structure with IOFL and NMPC

subsystem (4.19), such that a cascade structure is created arti-

ficially.

4.2.3 Advantages of the Cascade-control Scheme

From a feedback linearization point of view, the cascade-

control scheme provides an elegant way of handling unstable
internal dynamics.

From a predictive control point of view, in the cascade-control
scheme, predictive control is applied to the internal dynamics

instead of the overall system dynamics. Three different cases
have to be distinguished:

• Stable systems. There is no advantage in removing the
input-output behavior from the prediction problem instead

of including it in the prediction, since it is stable. For stable
minimum-phase systems the advantage is minor. For sta-

ble nonminimum-phase systems, it is counter productive to
use the cascade-control scheme, because the input-output
feedback linearization of the system can lead to more com-

plicated internal dynamics, which makes the predictive con-
trol a difficult task compared to when it is directly applied

to the overall system.

• Unstable minimum-phase systems In this case, input-

output feedback linearization results in stable internal dy-
namics, and predictive control is used to guarantee perfor-

mance. The advantage of the cascade scheme for this class
of systems is that predictive control is applied to the stable

internal dynamics instead of the unstable system dynam-
ics, thus avoiding limitations on the time required for opti-
mization. In other terms, the time required for optimization
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here can be larger than the sampling period. Examples of

this class of systems include a tracking radar system where
rotatable antennas are used for precise positioning of large

loads [100] and a hydrofoil boat where the angular flaps po-
sition disturbed by sea waves needs to be controlled [100].

• Unstable nonminimum-phase systems In this case,

input-output feedback linearization does not pre-stabilize
but only pre-compensates the system dynamics, and pre-
dictive control is used to stabilize them. Here, the cascade-

control scheme is advantageous when the unstable internal
dynamics are slower compared to the unstable system dy-

namics. Predictive control can then be applied at a lower
rate since it is applied at the rate of that of the unstable

internal dynamics instead of the unstable system dynamics.
For this class of systems, a natural two-time-scale separa-
tion should exist between poles and zeros of the open-loop

linearized version of System (2.1). The zeros have to be
slower than the poles for all possible operating points of

System (2.1). Examples of this class of systems include the
pendubot [101], which is used as illustrative example in

this work, a X29 aircraft which flies at high angles of at-
tack [102] and a flexible space launch vehicle which travels

from liftoff at the Earth’s surface through the atmosphere
to low Earth orbit [103, 104].

The aforementioned time-scale separation between open-loop

zeros and open-loop poles should not be confused with the other
time-scale separation created using the linear controller. The

latter artificial time-scale separation is between the open-loop
zeros of the linearized plant (which correspond to the poles of
the outer loop) and the closed-loop poles of the inner loop. This
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condition is necessary for the stability of the cascade-control

scheme as discussed in the next section. Since the closed-loop
poles of the inner loop are functions of the controller used, they

can be made fast by using large gains for the inner-loop.

4.3 Stability Analysis

The stability of the cascade-control scheme is discussed in this
section. The key idea is to use the time-scale separation intro-
duced to make the cascade control effective, and which results

from the use of sufficiently large gains in the inner loop. There-
fore, results from singular perturbation theory can be applied.

As seen in the previous chapter, if a nonlinear system is the
combination of a fast and a slow subsystems, exponential sta-

bility of both subsystems leads to exponential stability of the
overall system. Exponential stability is considered because of

the following: if a system is exponentially stable, then there ex-
ists a margin in the reduction of the Lyapunov function, V̇ (x) ≤
−c3‖x‖2 ≤ 0 [7]; this margin, in turn, can be used to accommo-

date the neglected dynamics. The following procedure will be
used in this section to prove the stability of the cascade-control

scheme:

• First, exponential stability of the boundary-layer subsystem
with the linear controller (4.19)- (4.20) is established;

• Next, the exponential stability of the QSS subsystem (4.14)

with the predictive controller (4.16) is addressed;

• Then, using singular perturbation theory, a stability proof
for the cascade-control scheme, i.e. System (2.1) with Con-

troller (4.2)-(4.16), is provided.
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4.3.1 Stability of the Boundary-layer Subsystem

Using the new variable ξ̃ = ξ− ξ̄, subsystem (4.7)-(4.8) becomes:

ε
˙̃
ξ = εξ̇ − ε ˙̄ξ

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ2

ξ3
...∑r−1

i=0 ki+1

(
ξ̄i+1 − ξi+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦− ε

⎡
⎢⎢⎢⎢⎢⎢⎣

ẏref

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.17)

Letting τ = t
ε

yields:

dξ̃

dτ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ2

ξ3
...∑r−1

i=0 ki+1

(
ξ̄i+1 − ξi+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦− ε

⎡
⎢⎢⎢⎢⎢⎢⎣

ẏref

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξ̃2

ξ̃3
...∑r−1

i=0 ki+1ξ̃i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
− ε

⎡
⎢⎢⎢⎢⎢⎢⎣

ẏref

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ , ξ̃(0) = ξ̃0 (4.18)

Letting ε → 0, the boundary-layer subsystem [7] appears:

dξ̃

dτ
= Aξ̃, ξ̃(0) = ξ̃0 (4.19)

with matrix A defined by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . 0
0 0 1 . 0
...

...
...

...
...

0 0 0 . 1

−k1 −k2 −k3 · · · −kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)
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Theorem 4.1 Consider the boundary-layer subsystem (4.19) with

the system matrix (4.20). If k1, · · · , kr are chosen as coefficients
of a Hurwitz polynomial [7], then the origin of the boundary-

layer subsystem ξ̃ = 0 is exponentially stable.

Furthermore, the following Lyapunov function can be pro-
posed for the system:

W =
1

2
ξ̃TΦξ̃, Φ =

∫ ∞
0

eAT tMeAtdt (4.21)

where M ⊂ Rr×r is a positive definite matrix.

Proof: Since all the eigenvalues of matrix A are negative,

then Φ is positive definite. Thus, letting λmax and λmin denote
the maximum and minimum eigenvalues of the matrix Φ respec-

tively, the Lyapunov function candidate W given in (4.21) has
the following property:

λmin‖ξ̃‖2 ≤ W ≤ λmax‖ξ̃‖2 (4.22)

The derivative of the function W with respect to τ is given by:

dW

dτ
=

1

2
ξ̃T (ATΦ + ΦA)ξ̃ (4.23)

Since ATΦ + ΦA = −M , then:

dW

dτ
= −1

2
ξ̃TMξ̃ (4.24)

Since M is positive definite, Theorem 2.5 applies, and the origin
of the boundary-layer subsystem is exponentially stable.
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4.3.2 Stability of the Reduced Subsystem

The stability analysis of the predictive control is based on the
work of Jadbabaie [96, 105], where global asymptotic stability

is provided (Theorem 2.9). However, in this work, exponential
stability of the predictive control is required. Therefore, more
restrictive assumptions are made in order to provide the expo-

nential stability of the predictive control of the QSS subsystem
(4.14), leading to the following theorem.

Theorem 4.2 Consider (4.14) controlled using the predictive
controller (4.16). If the following assumptions are satisfied:

1. System (4.14) is stabilizable considering w as input,

2. (η̄ = 0, w = 0) is an equilibrium point,

3. the function Q̄(η̄, w) is such that ‖Q̄(η̄, w)‖ ≤ L‖η̄‖,
4. P , S, and R given in (4.16) are positive definite,

5. ∃ wk = k(η̄) defined in Nf , for which F (η̄) = 1
2
η̄TPη̄ defined

in Nf and q(η̄, wk) = 1
2{η̄TS η̄ + R (wk)2} satisfies

Ḟ (η̄) + q(η̄, wk) = η̄TP Q̄(η̄, wk) + η̄TS η̄ + R (wk)2 ≤ 0

(4.25)

6. the set Nf is positively invariant with respect to w,

7. the prediction horizon T is chosen sufficiently large to en-
sure that η̄∗(t + T ) ∈ Nf , where η̄∗(.) represents the states
obtained under predictive control,

then, controller (4.16) stabilizes System (4.14) exponentially.
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The differences between the above theorem (Theorem 4.2)

and the results of Jadbabaie’s work (Theorem 2.9) are:

• The third assumption, on the Lipschitz nature of Q̄(η̄, w).

• The specific structure of the functions F and q in the fifth

assumption.

The Lipschitz assumption is required to provide the lower and
upper bounds on the Lyapunov function V and the assumption

on the structure of F and q is used to give a bound on V̇ as a
function of the norm of vector of internal variables η̄.

Proof: Consider the QSS subsystem (4.14), controlled using
the predictive controller (4.16), and let the Lyapunov function

candidate V (t, η̄):

V (t, η̄) = min
yref

J(t, η̄, w) (4.26)

where

J(t, η̄, w) = 1
2 η̄(t + T )TP η̄(t + T )

+1
2

∫ t+T
t

(
η̄(τ)TS η̄(τ) + R w2(τ)

)
dτ

with η̄(t) = η̄t, w(·) ∈ Y , η̄(·) ∈ N , η̄(t + T ) ∈ Nf

(4.27)
where η̄t is the vector of measured or estimated states at time t;

P , S, and R are positive-definite weighting matrices of appro-
priate dimensions; T is the prediction horizon; N is the set of

admissible states; Y is the set of admissible inputs; Nf ⊂ N is
a closed set that contains the origin ((η̄ = 0) ∈ Nf).

The QSS subsystem (4.14) is exponentially stable if the Lya-

punov function V (t, η̄) given in Equation (4.26) verifies the con-
ditions of Theorem 2.5. Therefore, the proof proceeds into two
steps:
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• First, it is verified that V (t, η̄) is bounded from above and

below by quadratic functions of η̄. An upper bound and a
lower bound are provided.

• Then, the time derivative of the function V (t, η̄) is shown
to be bounded from above by a negative function that is
quadratic in the variable η̄.

Lower bound for V : Since P is a positive definite matrix, then

η̄(t + T )TP η̄(t + T ) > 0. Also, w2 > 0. Thus, the following
inequality is satisfied:

V (t, η̄) ≥ 1

2

∫ t+T

t
η̄(τ)TSη̄(τ)dτ (4.28)

Also, by assumption in Theorem 4.2, the function Q̄(η̄, w) sat-

isfies the inequality:

‖Q̄(η̄, w)‖ ≤ L‖η̄‖ (4.29)

where L a positive scalar. Then, it follows from Theorem 2.2
that:

‖η̄(τ)‖ ≥ ‖η̄(t)‖ exp [−L(τ − t)], τ ∈ [t,∞) (4.30)

Therefore, the following inequalities result:

V (t, η̄) ≥ 1

2

∫ t+T

t
η̄(τ)TSη̄(τ)dτ

≥ 1

2
‖η̄(t)‖2‖S‖

∫ t+T

t
exp [−2L(τ − t)]dτ

≥ 1 − e−2LT

4L
‖S‖ ‖η̄(t)‖2 (4.31)

thus giving a lower bound on the function V (t, η̄).
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Upper bound for V : Consider the differential equation of Sys-

tem (4.14). Considering η̄(t) = η̄t to be the value of the initial
state vector and the input w = 0 during the interval [t, t + τ ],

let η̃(τ) be the value of the state vector η̄ at time τ > t under
these conditions.

Since V (t, η̄) is the minimum of the cost function J with
respect to w (4.26), then:

V (t, η̄) ≤ J(t, η̃, 0) (4.32)

By assumption in Theorem 4.2, the function Q̄(η̄, w) satisfies
the inequality:

‖Q̄(η̄, w)‖ ≤ L‖η̄‖ (4.33)

with L a positive scalar. Then from Theorem 2.2:

‖η̃(τ)‖ ≤ ‖η̄(t)‖ exp [L(τ − t)], τ ∈ [t,∞) (4.34)

Therefore, the following inequalities result:

V (t, η̄) ≤ 1

2
η̃(t + T )TPη̃(t + T ) +

1

2

∫ t+T

t
η̃(τ)TSη̃(τ)dτ

≤ 1

2
‖P‖ e2LT ‖η̄(t)‖2

+
1

2
‖η̄(t)‖2‖S‖

∫ t+T

t
exp [2L(τ − t)]dτ

≤
⎡
⎣1
2
‖P‖ e2LT +

e2LT − 1

4L
‖S‖

⎤
⎦ ‖η̄(t)‖2 (4.35)

thus giving an upper bound on the function V (t, η̄).

Condition on V̇ : Let w̃(τ), τ ∈ [t,∞), be the input resulting
from the concatenation of two signals:
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• the input signal w∗(τ), τ ∈ [t, t+T ), resulting from the opti-

mization (4.26), with the initial state vector value η̄(t) = η̄t

• the input wk(τ), τ ∈ [t + T,∞), obtained by applying the
local controller wk = k(η̄) (Theorem 4.2), with the initial

state vector value η̄∗(t+T ) obtained from the optimization
(4.26).

Consider a small variation in time t, and the notations F (η̄) and
q(η̄, wk) defined in Theorem 4.2. Therefore, using the concate-

nate input signal w̃, the cost function J given in (4.27) computed
at time t + ∆t is given by:

J(t + ∆t, η̄(t + ∆t), w̃) = F (η̄(t + ∆t + T ))

+
∫ t+∆t+T
t+∆t q(η̄(τ), w̃(τ))dτ

(4.36)

Since V (t + ∆t, η̄) ≤ J(t + ∆t, η̄, w̃) (the function V being the

minimum of the cost function J), then:

V̇ = lim
∆t→0

V (t + ∆t, η̄(t + ∆t)) − V (t, η̄(t))

∆t

≤ lim
∆t→0

J(t + ∆t, η̄(t + ∆t), w̃) − V (t, η̄(t))

∆t
(4.37)

On the other hand:

J(t + ∆t, η̄, w̃) − V (t, η̄) = −
∫ t+∆t

t
q(η̄, w∗)dτ − F (η̄(t + T ))

+
∫ t+∆t+T

t+T
q(η̄, wk)dτ (4.38)

+F (η̄(t + ∆t + T ))

By assumption in Theorem 4.2, Ḟ (η̄) + q(η̄, wk) ≤ 0 for all τ ∈
[T,∞). Then integrating this inequality between times (t + T )
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and (t + ∆t + T ) yields:

F (η̄(t+∆t+T ))−F (η̄(t+T ))+
∫ t+∆t+T

t+T
q(η̄, wk)dτ ≤ 0 (4.39)

Using (4.38) and (4.39), inequality (4.37) becomes:

V̇ ≤ lim
∆t→0

{
− 1

∆t

∫ t+∆t

t
q(η̄(τ)), w∗(τ))dτ

}
(4.40)

Since

lim
∆t→0

{
− 1

∆t

∫ t+∆t

t
q(η̄(τ)), w∗(τ))dτ

}
= q(η̄(t)), w∗(t)) (4.41)

then, inequality (4.40) becomes:

V̇ ≤ −1

2
η̄(t)TSη̄(t) − 1

2
Rw∗(t)2

≤ −1

2
η̄(t)TSη̄(t) (4.42)

Since the three assumptions of Theorem 2.5 are satisfied, then
Controller (4.16) stabilizes exponentially System (4.14).

4.3.3 Stability of the Cascade-control Scheme

Theorem 4.3 Consider System (4.4)-(4.8) with the trajectory

yref(t) obtained by solving Optimization problem (4.16), and the
input u computed using (2.26) and (4.2). Suppose that the fol-

lowing assumptions are satisfied:

• Function Q(η, ξ, ε) is such that

‖Q(η, ξ, ε)− Q(η, ξ̄, 0)‖ ≤ a‖ξ − ξ̄‖
with a being a non-negative constant.
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• The conditions of Theorem 4.2 are satisfied.

Then, there exists ε∗ > 0 such that, for all ε < ε∗, the controller
(4.2)-(4.16) stabilizes exponentially the origin x = 0 of System

(2.1).

Proof: Letting η̄ =
[

η yref · · · y
(r−2)
ref

]T
and using (4.4),

then:
˙̄η = Q̂(η̄, ξ, ε) (4.43)

Under the quasi-steady-state assumption, when ε → 0, the above
equation becomes:

˙̄η = Q̂(η̄, ξ̄, 0)

= Q̄(η̄, w) (4.44)

The stability proof of the cascade scheme proceeds by finding

a Lyapunov function for the closed-loop system:⎧⎪⎨
⎪⎩

˙̄η = Q̂(η̄, ξ̃ + ξ̄, ε), η̄(0) = η̄0

ε
˙̃
ξ = Aξ̃, ξ̃(0) = ξ̃0

(4.45)

where ξ in (4.43) has been replaced by ξ̃ + ξ̄, with ξ̄ defined by

ξ̄ = [yref 0 · · · 0]T . The following Lyapunov function candidate
is proposed:

ν(η̄, ξ̃) = V (η̄) + W (ξ̃) (4.46)

The Lyapunov function W is as in Theorem 4.1. Since the

QSS subsystem (4.14) is exponentially stable, then there exists
V for the reduced internal dynamics (not necessarily the same as
the one used in Theorem 4.2) that satisfies the following prop-

erties:
∂V

∂η̄
Q̄(η̄, w) ≤ −b1‖η̄‖2 (4.47)

‖∂V

∂η̄
‖ ≤ b2‖η̄‖ (4.48)
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where w is computed using (4.16), and b1 and b2 are positive

scalars. The existence of one such function V is guaranteed by
Theorem 2.6.

Moreover, functions V (η̄) and W (ξ̃) satisfy the following in-
equalities:

α1‖ξ̃‖2 ≤ W (ξ̃) ≤ α2‖ξ̃‖2 (4.49)

β1‖η̄‖2 ≤ V (η̄) ≤ β2‖η̄‖2 (4.50)

where α1, α2, β1 and β2 are positive scalars. Therefore:

γ1

∥∥∥∥∥∥
⎡
⎣ η̄

ξ̃

⎤
⎦
∥∥∥∥∥∥
2

≤ ν(η̄, ξ̃) ≤ γ2

∥∥∥∥∥∥
⎡
⎣ η̄

ξ̃

⎤
⎦
∥∥∥∥∥∥
2

(4.51)

where γ1 = max (α1, β1) and γ2 = min (α2, β2).

The derivative of ν(η̄, ξ̃) with respect to time along the tra-
jectories of (4.45) can be calculated as:

ν̇ = V̇ (η̄) + Ẇ (ξ̃) (4.52)

The first term of equation (4.52) is as follows.

Ẇ =
1

ε

∂W

∂ξ̃
Aξ̃ (4.53)

and represents the derivative of W (ξ̃) along the trajectories of
the boundary-layer subsystem (4.19). From Theorem 4.1, this

term is negative.
The second term of equation (4.52) is given as:

V̇ (η̄) =
∂V

∂η̄

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

Q(η, ξ̄, 0)
yref

...
w

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

Q(η, ξ, ε)
yref

...
w

⎤
⎥⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎢⎣

Q(η, ξ̄, 0)
yref

...
w

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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=
∂V

∂η̄
Q̄(η̄, w) +

∂V

∂η̄

⎡
⎢⎢⎢⎢⎢⎢⎣

Q(η, ξ, ε) − Q(η, ξ̄, 0)

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.54)

The term ∂V
∂η̄

Q̄(η̄, w) in (4.54) is the derivative of V (η̄) along the

trajectories of the QSS subsystem (4.14) controlled by the pre-
dictive controller (4.16). From Theorem 4.2, this term is nega-

tive. The last term in (4.54) ∂V
∂η̄

[
Q(η, ξ, ε)− Q(η, ξ̄, 0) 0 · · · 0

]T
expresses the effect of the quasi-steady-state assumption i.e. ap-

proximating ξ by ξ̄ and ε by zero.
From the assumption of Theorem 4.3, the second term of

(4.54) satisfies:

‖Q(η, ξ, ε)− Q(η, ξ̄, 0)‖ ≤ a‖ξ̃‖, a ≥ 0 (4.55)

From the inequalities in (4.48) and (4.55), the time derivative

of V (η̄) (4.54) can be upper bounded as:

V̇ (η̄) ≤ −b1‖η̄‖2 + ab2‖η̄‖‖ξ̃‖ (4.56)

From Theorem 2.6, there exists some positive constant c such

that:

‖∂W

∂ξ̃
Aξ̃‖ ≤ −c‖ξ̃‖2 (4.57)

Using (4.56) and (4.57), the time derivative of the global Lya-
punov function ν in (4.46) satisfies the following inequalities:

ν̇(η̄, ξ̃) ≤ −b1‖η̄‖2 + ab2‖η̄‖‖ξ̃‖ − c

ε
‖ξ̃‖2

≤ − [
η̄ ξ̃

] ⎡⎣ −1
2ab2 b1
c
ε

−1
2ab2

⎤
⎦
⎡
⎣ η̄

ξ̃

⎤
⎦ (4.58)
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The right hand side of the last inequality is a quadratic form in⎡
⎣ η̄

ξ̃

⎤
⎦ and is negative for all ε < ε∗ such that

ε∗ =
4b1c

a2b2
2

Then, from Theorem 2.5, the origin (η̄, ξ̃) = (0, 0) is exponen-

tially stable. Since η̄ =
[

η yref · · · y
(r−2)
ref

]T
, then the origin

η = 0 is exponentially stable. Therefore, the origin of System

(2.1) is exponentially stable.

The above theorem indicates that if ε is chosen smaller than

a certain value, i.e. if the feedback gains of the inner loop are
chosen sufficiently large, then the overall system is stable. This

means that an effective time-scale separation needs to be created
for the stability of the proposed cascade scheme to be guaran-
teed.

4.4 Cascade-control Scheme using Neighbor-

ing Extremal Theory

4.4.1 Robustness Issues

Problems of robustness of the proposed scheme are caused by:

Large gains of the inner loop From an implementation point
of view, the use of large gains for the linear controller in the

inner loop leads to measurement noise amplification and in-
put saturation. However, it is not always necessary to use
very large gains.



4.4 Cascade-control Scheme using Neighboring Extremal Theory 81

Modeling errors in predictive control Due to the low re-

optimization frequency used for the predictive control in the
cascade scheme, and the open-loop behavior of the predic-

tive control between two optimizations, predictive control
can be very sensitive to possible modeling errors.

4.4.2 Extension of the Cascade-control Scheme

In order to reduce the effect of modeling errors or disturbances,
a robust extension of the developed methodology is proposed,

where additional linear feedback is used whenever the numeri-
cal optimizer (nonlinear model predictive control) is unable to
compute the optimal input [106].

For small deviations away from the optimal solution, a linear
approximation of the QSS subsystem (4.14) and a quadratic ap-

proximation of the optimization cost (4.16) are computed. The
theory of neighboring extremals (NE) provides a closed-form

solution to the optimization problem [107]. Thus, the optimal
input can be obtained using state feedback, which approximates

the feedback provided by explicit numerical re-optimization.
Including the dynamic constraints of the optimization prob-

lem (4.16) in the cost function, the augmented cost function J̄

can be written as:

J̄ = Φ(η̄(t + T )) +
∫ t+T

t

(
H − λT ˙̄η

)
dτ (4.59)

where η̄ ∈ Rn−1, Φ(η̄) = 1
2 η̄

TPη̄, H = 1
2(η̄

TS η̄ + Rw2) +
λT Q̄(η̄, w), and λ(t) �= 0 is the (n − 1)-dimensional vector of

adjoint states or Lagrange multipliers for the system equations.
At the optimal solution, the first variation of J̄ is given by

[107]:

∆J̄ =
(
Φη̄ − λT

)
∆η̄

∣∣∣
t+T
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+
∫ t+T

t

[(
Hη̄ + λ̇T

)
∆η̄ + Hw∆w

]
dτ (4.60)

where ∆η̄(t) = x(t) − η̄�(t) and ∆w(t) = w(t) − w�(t), with

η̄∗ and η̄∗ being the optimal state and input, respectively. The
notation ab = ∂a

∂b
is used.

With an appropriate choice of the adjoint states, λ̇T = −Hη̄

with λT (t + T ) = Φη̄(t + T ), the necessary conditions of opti-
mality that are derived from ∆J̄ = 0 become:

Hw = R w + λT Q̄w = 0 (4.61)

The second-order variation of J̄ is given by [107]:

∆2J̄ = 1
2
∆η̄(t + T )TP ∆η̄(t + T )+

1
2

∫ t+T
t

[
∆η̄T ∆w

] ⎡⎣ Hη̄η̄ Hη̄w

Hwη̄ Hww

⎤
⎦
⎡
⎣ ∆η̄

∆w

⎤
⎦ dτ

(4.62)

Choosing ∆w to minimize ∆2J̄ under the linear dynamic con-

straint:
∆ ˙̄η = Q̄η̄∆η̄ + Q̄w∆w (4.63)

represents a time-varying Linear Quadratic Regulator (LQR)
problem, for which a closed-form solution is available:

∆w(t) = −K(t)∆η̄(t) (4.64)

K = H−1
ww

(
Hwη̄ + Q̄T

wΩ
)

(4.65)

Ω̇ = −Hη̄η̄ − ΩQ̄η̄ − Q̄T
η̄ Ω + Hη̄wK + ΩQ̄wK

Ω(t + T ) = P (4.66)

The above controller, called the neighboring-extremal controller,
is used in combination with the nonlinear model predictive con-

trol (4.16). The signal which results from their sum w = ∆w+w∗

is considered as a new reference for the inner loop of the cascade-
control scheme (Figure 4.2). Although w∗ computed from the
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nonlinear predictive control is updated every δ seconds, the ref-

erence resulting from the linearized problem ∆w is updated at
each sampling time h.

+ 
 
+      _

Predictive
 Control

  Linear

Feedback

Input-output
Linearization  System

_ 
 
+      

yref

y

x

η̄

K

s(r−1)

∆yref

u

x

v η

y

y(r) = v

η̇ ≈ Q̄(η, yref , ẏref , · · · , y(r−1)
ref , 0)

η̄ = [η, yref , · · · , y
(r−2)
ref ]T

Figure 4.2: Cascade-control scheme using IOFL, NMPC and NE

The new control scheme also allows reducing the reoptimiza-
tion frequency of the MPC problem. In fact, the additional

feedback performs optimization implicitly, thereby acting as a
standby whenever the numerical optimizer (nonlinear model pre-

dictive control) is unable to compute the optimal input. There-
fore, model predictive control can be allowed to be re-optimized
at a lower frequency.
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4.5 Conclusion

This chapter presented a cascade-control scheme that combines

input-output feedback linearization and predictive control to
control nonlinear systems. From a feedback linearization point
of view, this scheme proposes an elegant way of handling unsta-

ble internal dynamics. From a predictive control point of view,
the proposed scheme has computational advantages for unstable

systems. Since the predictive control is applied to the internal
dynamics, re-optimization frequency can be reduced if the inter-

nal dynamics are slower than the input-output system dynamics.
This makes the implementation of the predictive control easier.

Secondly, an additional feedback is combined with the predic-
tive control problem using the neighboring extremal theory. This
helps avoid problems of robustness, and also allows predictive

control to run at a lower re-optimization frequency.
Clearly, the issue of constraints, which has been one of the

main advantages of predictive control techniques, has not been
addressed in this work. The presence of constraints would pre-

vent the separation between the input-output dynamics and the
internal dynamics, which is crucial to this work. Therefore, the
proposed method cannot be directly extended to the constrained

case. On the other hand, the method could easily be extended
to the multi-input multi-output (MIMO) case.



Chapter 5

Application: Pendubot

5.1 Introduction

This work deals with the control of SISO affine-in-input non
input-state feedback linearizable nonlinear systems. So far, two

methodologies to control such systems using input-output feed-
back linearization techniques have been proposed. The first one

is based on an approximation of the system, neglecting the in-
ternal dynamics, and finding a stabilizing controller; the second

one takes the internal dynamics into account and stabilizes them
simultaneously with the control of the input-output behavior of
the system.

In this chapter, both approximate input-output feedback lin-

earization and cascade-control schemes are applied to the pen-
dubot [101]. The pendubot consists of two rotary joints; the

second joint is unactuated. This system represents an inter-
esting example for control, and has been widely used in the
literature because it is nonlinear, unstable and nonminimum-

85
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phase [108, 109, 110, 111].

This system has suitable properties for the control method-
ologies presented previously. From the approximate input-output

feedback linearization point of view, the pendubot is a nonlin-
ear system, not input-state feedback linearizable. Also, the pen-

dubot is nonminimum phase, which prevents the use of standard
input-output feedback linearization. From the cascade-control
point of view, the pendubot is an unstable nonlinear system

with fast input-output dynamics. Moreover, when input-output
feedback linearization is used, the internal dynamics are rather

slow, so that model predictive control can be used with a low
re-optimization frequency. In addition, no analytical stabilizing

feedback law can be formulated for the internal dynamics, there-
fore justifying the use of predictive control for the stabilization
of internal dynamics.

The chapter is organized as follows. The next section de-
scribes the pendubot model. The approximate input-output feed-

back linearization is shown in Section 5.3 together with the
experimental results. Section 5.4 presents the cascade-control

scheme and shows the corresponding experimental results. Sec-
tion 5.5 concludes the chapter.

5.2 The Model

The pendubot (Figure 5.1) is a two-degree-of-freedom underac-
tuated mechanical system consisting of an actuated rotating arm
controlled via a DC motor, and an unactuated rotating arm.

In order to generate a model of the pendubot, let ψ denote
the actuated coordinate, φ the unactuated one and τ the motor
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Figure 5.1: Pendubot of the Laboratoire d’Automatique

torque (Figure 5.2). Consider the following notations:

x1 = l1 sin (ψ)

y1 = l1 cos (ψ)
(5.1)

x2 = l sin (ψ) + l2 sin (φ)

y2 = l cos (ψ) + l2 cos (φ)
(5.2)

which correspond to the projections of the center of masses of
the two arms on the vertical plan. l1 is the length from the first

joint to the center of mass of the first arm, l2 is the length from
the second joint to the center of mass of the second arm and
l is the length of the first arm (Figure 5.2). The kinetic and
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φ

ψ

motor

l

l1
m1, I1

l2
m2, I2

Figure 5.2: Pendubot structure

potential energies are expressed as:

Ekinetic = 1
2m1ẋ

2
1 + 1

2m1ẏ
2
1 + 1

2m2ẋ
2
2 + 1

2m2ẏ
2
2 + 1

2I2φ̇
2 + 1

2I1ψ̇
2

Epotential = m1gy1 + m2gy2

(5.3)
where m1, m2 are the masses of the two arms, I1, I2 are the

inertias of the two arms computed at their respective centers of
mass, and g is the gravitational acceleration. The Lagrangian is

given by:

L = Ekinetic − Epotential (5.4)

thus yielding:

u =
d

dt

∂L
∂ψ̇

− ∂L
∂ψ

(5.5)

0 =
d

dt

∂L
∂φ̇

− ∂L
∂φ

(5.6)
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where u is the inertial control such that

u = τ − bψ̇ − c1sign(ψ̇) (5.7)

where τ is the torque produced by the DC motor; bψ̇ and c1sign(ψ̇)

are the viscous and static frictions, respectively, caused by the
motor.

The pendubot is then described by the following set of dif-
ferential equations:

J1ψ̈ + J cos(ψ − φ)φ̈ + J sin(ψ − φ)φ̇2 − g1 sin(ψ) = u (5.8)

J2φ̈ + J cos(ψ − φ)ψ̈ − J sin(ψ − φ)ψ̇2 − g2 sin(φ) = 0 (5.9)

where g1 = (m1l1 + m2l2)g, g2 = m2l2g are the gravity com-
ponents, J = m2l1l2, J1 = m1l

2
1 + m2l

2
1 + I1, J2 = m2l

2
2 + I2

the inertia components, c1 the Coulomb friction coefficient, and
b1 the viscous friction coefficient. Table 5.1 shows the physical
values of the parameters obtained from measurements on the

experimental setup [112].

parameter value unit
g1 2.20 N
g2 0.36 N
J 1.85x10−2 kg m2

J1 0.22 kg m2

J2 1.90x10−2 kg m2

c1 1.12 N m
b 6.60x10−2 N s rad−1

Table 5.1: System parameters

5.2.1 State-Space Formulation

The state-space formulation of the pendubot consists of rewrit-
ing the equations (5.8)-(5.9) as a set of differential equations of
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first order. Consider φ as the output and let x =
[

φ, φ̇, ψ, ψ̇
]T

.

The pendubot equations (5.8)-(5.9) can be rewritten as:

ẋ = f(x) + g(x)u

y = h(x)
(5.10)

where y represents the output, u is the input, x is the state-space
vector. Hence, one has:

f(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇

−J1α − J cos(ψ − φ)β

ψ̇

J cos(ψ − φ)α + J2β

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.11)

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−aJ cos(ψ − φ)

0
aJ2

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.12)

h(x) = φ (5.13)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 1
J1J2−J2 cos2(ψ−φ)

α = a(−g2 sin φ − J sin(ψ − φ)ψ̇2)

β = a(g1 sin ψ − J sin(ψ − φ)φ̇2)

(5.14)

5.2.2 Relative Degree of the Pendubot

Differentiating the output φ = h(x) successively with respect to

time t yields:
Lgh(x) = ∂h

∂x
g(x)

= 0
(5.15)
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where Lgh(x) is the Lie derivative of h(x) along g. However, the

second derivative is given by:

LgLfh(x) = ∂Lfh

∂x
g(x)

= aJ cos(ψ − φ)
�= 0

(5.16)

indicating that System (5.10) is of relative degree r = 2, under
the condition |ψ − φ| �= (2k + 1)π

2 , with k an integer different

from 0.

5.2.3 Nonminumun-phase Behavior of the Pendubot

To test the nonminimum-phase property of the pendubot, the
output φ and its derivative are replaced in Equation (5.9) by

their values at equilibrium: φ = 0, φ̇ = 0. This yields:

ψ̈ = ψ̇2 tanψ (5.17)

whose solution is given by:

ψ(t) = arcsin
(
ψ̇(0) cos (ψ(0)) t + sin (ψ(0))

)
(5.18)

where t is time, ψ(0) and ψ̇(0) are the values of ψ and ψ̇, re-
spectively, at time t = 0. Noting that ψ(t) �→ 0 as t → ∞,

then the zero dynamics (5.18) is not asymptotically stable, and
System (5.10) is nonminimum phase (see Chapter 2). Moreover,

the linearization of the zero dynamics around the origin (5.18)
gives ψ̈ = 0, i.e. a double integrator which corresponds to slow
internal dynamics.
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5.3 Approximate I-O Feedback Linearization

of the Pendubot

5.3.1 Description of the Control Scheme

The objective here is to control the unactuated angle φ and
stabilize the pendulum angle ψ to the upright position. This is

achieved according to the following steps:

1. Observability Normal Form of the Pendubot: First,
System (5.10) is transformed into its observability normal

form using the state-space transformation

z = T (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h

Lfh

L2
fh

L3
fh

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.19)

where h(x) = φ and Lfh(x) = φ̇. The lengthly expressions
of L2

fh(x) and L3
fh(x) are included in Appendix A.2.

Then, the observability normal form of System (5.10) has

the following expression:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = z3 +LgLfh u

ż3 = z4 +LgL
2
fh u

ż4 = L4
fh +LgL

3
fh u, z(0) = z0

(5.20)

Again, the expressions of LgLfh(x), LgL
2
fh(x) and LgL

3
fh(x)

are included in Appendix A.2.

2. Approximation of the Transformed System: System
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(5.20) can be rewritten as follows:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2

z3

z4

L4
fh

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
0

LgL
3
fh

⎤
⎥⎥⎥⎥⎥⎥⎦u+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

LgLfh

LgL
2
fh

0

⎤
⎥⎥⎥⎥⎥⎥⎦u, z(0) = z0

(5.21)

The vector

⎡
⎢⎢⎢⎢⎢⎢⎣

0
LgLfh

LgL
2
fh

0

⎤
⎥⎥⎥⎥⎥⎥⎦ in (5.21) is supposed to be small

enough so that its contribution can be neglected. This yields

the following approximated system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = L4
fh + LgL

3
fhu, z(0) = z0

(5.22)

which corresponds to a chain of integrators.

3. Linearizing Feedback Control: Finally, the residual non-
linearity that contains the approximated transformed sys-

tem (5.22) is feedback linearized using the following control
law:

u =
v − L4

fh

LgL
3
fh

(5.23)

where v is a linear feedback control:

v = −Kz (5.24)

Then, System (5.22) can be rewritten as:

z(4) = −Kz, z(0) = z0 (5.25)
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System (5.25) consists of a linear system, and corresponds

to an approximate input-state feedback linearization of Sys-
tem (5.10). The components of the gain vector K = [k1 k2 k3 k4]

are chosen such that the closed-loop system (5.25) is stable.

5.3.2 Stability Analysis

The stability of the control scheme is discussed in this section.
The global stability of the control scheme cannot be proved be-
cause of the presence of singularities in LgL

3
fh. However, the

local stability of the controller (5.23)-(5.24) can be provided.

Applying the controller (5.23)-(5.24) on the transformed but
non approximated system (5.21) leads to:

ż = Aclz + ∆(z), z(0) = z0 (5.26)

where

Acl =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0
0 0 0 1

−k1 −k2 −k3 −k4

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.27)

and

∆(z) = −

⎡
⎢⎢⎢⎢⎢⎢⎣

0

LgLfh

LgL
2
fh

0

⎤
⎥⎥⎥⎥⎥⎥⎦

Kz + L4
fh

LgL
3
fh

(5.28)

Expressions of LgLfh(x), LgL
2
fh(x) and LgL

3
fh(x) are given in

Appendix A.2.

Next, using y = φ as output for the pendubot, it will be shown
that the local versions of the assumptions of Theorem 3.1 are
not verified.
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• As for the observability condition, consider the following

matrix

M(z) =
[

∂h
∂x

∂Lfh

∂x

∂L2
fh

∂x

∂L3
fh

∂x

]

where expressions of Lfh(x) = φ̇, L2
fh(x) and L3

fh(x) are
shown in Appendix A.2.

Setting z = 0, then:

M(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

20.64 0 −8.195 0
0 20.64 0 −8.195

⎤
⎥⎥⎥⎥⎥⎥⎦

whose determinant is non zero and is equal to 67.15. Thus,

the distribution span{M(0)} has dimension 4, and System
(5.10) is locally strongly observable.

• It is impossible to prove analytically that |Ln
fh| is Lips-

chitz in z because of its complicated and heavy expres-

sion. However, this can be done locally and numerically.
In fact, setting a small neighborhood of the origin z = 0:
N0 = {z ∈ Rn : ‖z‖ ≤ ε, ε > 0}, and computing L4

fh,

the constant parameter δ1 can be approximated numeri-
cally such that ∀z ∈ N0 : |L4

fh| ≤ δ1‖z‖. Setting ε = 0.004

yields δ1 = 29.05.

• Because of the presence of singularities in LgL
3
fh, it cannot

be verified everywhere that its value is limited by below.
However, this property can be verified locally. Computing

numerically LgL
3
fh in the set N0, the positive constant δ2

can be approximated such that ∀z ∈ N0 : |LgL
3
fh| ≥ δ2.

Setting ε = 0.004 yields δ2 = 140.05.
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• The gains of the linear control (5.24) have been chosen such

that the closed-loop poles are set at −1, −2, −10 and −10.

• Then, the sufficient condition for exponentially stability is:

‖∆1‖ <
δ2

2λmax(P ) (δ1 + ‖K‖)
<

140.05

2 × 31.08 (29.05 + 427.05)

< 4.94 × 10−3

where λmax(P ) is the maximum eigenvalue of the matrix
P which is the solution to the Lyapunov equation PA +

ATP = −I. I is the identity matrix.

However, the maximum value of ∆1, computed numerically
in the neighborhood of the origin of length ε = 0.004, is

4.82. Therefore, the last assumption of Theorem 3.1 is not
verified and the stability of the control scheme cannot be
implied.

Although the assumptions of Theorem 3.1 are not verified

locally using y = h(x) = φ as output, it can be shown that
they are satisfied if the output is chosen to be y = h̄(x) =
Jψ cos(ψ − φ) + J2φ. The assumptions are verified the same

way, and the following values are found:

• Consider the matrix

M̄(z) =
[

∂h̄
∂x

∂Lf h̄

∂x

∂L2
f h̄

∂x

∂L3
f h̄

∂x

]

Setting z = 0, then:

M̄(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.019 0 0.0185 0

0 0.019 0 0.0185
0.36 0 0 0
0 0.36 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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whose determinant is non zero and is equal to 4.43× 10−5.

Thus, the distribution span{M̄(0)} has dimension 4, and
System (5.10) is locally strongly observable.

• The value of δ1 is computed numerically similarly to the

previous controller. The resulting value is δ1 = 159.63.

• δ2 is determined numerically, and its value is δ2 = 1.73.

• The gains are the same as for the previous controller.

• The condition on the maximum value for ∆1 is then: ‖∆1‖ <

4.75× 10−5. Computing ‖∆1‖ numerically in the neighbor-
hood of the origin, its maximum value is 3.41× 10−5. Thus

the assumption is verified locally, and the closed-loop sys-
tem is locally exponentially stable.

The value of ε = 0.004 is small because of the large val-

ues for the gain vector K. This value can be increased using
smaller gains. For example, if the poles of the closed-loop sys-
tem are fixed at −1, −1.1, −1.2 and −1.3, corresponding to

K = [1.72 6.02 7.91 4.6], then the value of ε can be increased
ten times to ε = 0.03.

5.3.3 Experimental Results

The approximate input-output feedback linearization using the
observability normal form has been applied to the pendubot.

The experimental results are presented in this section. The im-
plementation environment and the map of the real-time control

of the pendubot, including the hardware and software, is de-
scribed in Appendix A.2. The initial conditions are set as follows:
First, the pendubot is set initially at the position φ = ψ = π,
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φ̇ = ψ̇ = 0. Then, a swing up based on energy control (see
Appendix A.2) is applied to the pendubot. Once the pendubot
arms are inside a pre-defined domain, the swing up switches to

the controller. Thus, the pendubot is controlled to the up-right
position. Finally, the initial conditions for the experiments are

set manually, in order to have initial conditions for the deriva-
tives at zero. Here, the initial conditions are φ0 ≈ 0, ψ0 = π

6 ,

φ̇0 = ψ̇0 = 0.

First, the angle φ is considered as output. Although stability

cannot be proved when using y = φ as output, it is seen from
the experimental results that the control scheme is stable. This
is due to the fact that the stability results here are very con-

servative. In fact, as mentioned in Chapter 3, the perturbations
predicted by the theoretical results are much smaller than the

perturbations that could otherwise be accommodated. Secondly,
y = Jψ cos(ψ − φ) + J2φ is considered as output, and the cor-

responding controller is applied to the pendubot. The vector of
gains used for the linear controller for both choices of output is

K = [200 340 162 23].

Experimental Results using Output y = φ The approximate input-

output feedback linearization using the observability normal form
is applied to the pendubot, considering y = φ. The implemen-

tation results are shown in Figures 5.3-5.4. Figure 5.3 shows the
evolution of the pendubot angles φ and ψ, and Figure 5.4 shows

the input u.

Experimental Results using Output y = Jψ cos(ψ − φ) + J2φ The
approximate input-output feedback linearization using the ob-
servability normal form is applied to the pendubot, considering
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Figure 5.3: Performance of the approximate IOFL scheme with the output
y = φ: Angular positions φ (-), ψ (- -)

y = Jψ cos(ψ−φ)+J2φ. The implementation results are shown
in Figures 5.5-5.6. Figure 5.5 shows the evolution of the pen-
dubot angles φ and ψ, and Figure 5.6 shows the input u.

Although the stability cannot be provided for the first con-

troller (choice of output φ), both controllers show similar perfor-
mances. The approximate input-output feedback linearization
using the observability normal form gives good results when ap-

plied to the pendubot. Indeed, the angles evolution is smooth
and the input energy is small.

Although the nonlinear controller stabilizes the system, it
does not show a much better performance when compared to
that of an LQR. This is essentially due to the presence of singu-
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Figure 5.4: Performance of the approximate IOFL scheme with the output
y = φ: Input u

larities in LgL
3
fh, which prevent the use of the controller (5.23)

far away from the equilibrium point.

5.4 Cascade Control of the Pendubot

5.4.1 Description of the Control Scheme

The objective is to control the unactuated angle φ to the upright

position and, at the same time, stabilize the pendulum angle ψ to
the upright position. These two tasks are considered separately

in the following control structure (Figure 5.7):

1. Inner Loop: Input-output Feedback Linearization
and Linear Feedback. First, System (5.10) is input-output
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Figure 5.5: Performance of the approximate IOFL scheme with the output
y = Jψ cos(ψ − φ) + J2φ: Angular positions φ (-), ψ (- -)

feedback linearized into Byrnes-Isidori normal form using

the following steps:

• Apply a state feedback law that compensates the non-
linearities in the input-output behavior:

u =
v − J1α − J cos(ψ − φ)β

aJ cos(ψ − φ)
(5.29)

where a, α and β are given by (5.14).

• Consider the nonlinear transformation:

z = T (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ

φ̇

η1

η2

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.30)
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0 2 4 6 8 10
-3

-1.5

0

1.5

3

4.5

u (volts)

time (s)

Figure 5.6: Performance of the approximate IOFL scheme with the output
y = Jψ cos(ψ − φ) + J2φ: Input u

with

η =

⎡
⎣ η1

η2

⎤
⎦ =

⎡
⎣ J sin(ψ − φ)

Jψ̇ cos(ψ − φ) + J2φ̇

⎤
⎦ (5.31)

Under the above transformation, System (5.10) can be
expressed as:

φ̈ = v, φ(0) = φ0, φ̇(0) = 0 (5.32)

η̇ = Q(η, φ, φ̇), η(0) = η0 (5.33)

with

Q(η, φ, φ̇) =

⎡
⎢⎢⎢⎢⎣
−φ̇

√
J2 − η2

1 + η2 − J2φ̇
η1φ̇√
J2−η2

1

(
η2 − φ̇J2

)
+g2 sin(φ)

⎤
⎥⎥⎥⎥⎦ (5.34)
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˙̄η = Q̄(η̄, w)
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Figure 5.7: Cascade control scheme

where Q is the nonlinear function defining the dynam-

ics of η. The particular choice of η2 makes the dynamics
independent of φ̈. Also, η1 is chosen to be the integral
of η2 when φ̇ = 0.

The system output φ is controlled by a linear feedback con-

trol that computes the new input v introduced in (5.29):

v = − 1

ε2
(φ − φref ) − 2

ε
(φ̇ − φ̇ref) (5.35)

where φref and φ̇ref are references for the output φ and its
derivative φ̇, respectively, and are determined by the outer

loop of the cascade-control. ε → 0 is a small parameter. The
closed-loop poles of the linearized subsystem correspond to
a double pole at −1

ε
. The gains are chosen this way since,

for any choice of ε > 0, the closed-loop subsystem is stable
and ε can be used as a single tuning parameter.

2. Outer Loop: Stabilization of the Internal Dynamics
using Nonlinear Model Predictive Control
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The internal dynamics of the pendubot (5.33) depend on

both φ and its derivative φ̇. However, since the parameter
ε is small, the quasi-steady-state assumption can be made.

This leads to φ → φref and φ̇ → φ̇ref in (5.33)-(5.34).
Then, the trajectories (φref , φ̇ref) will be used to stabilize
the internal dynamics.

The internal dynamics under quasi-steady-state assump-
tion can be written as:

˙̄η = Q̄(η̄, w), η̄(0) = η̄0 (5.36)

where

Q̄(η̄, w) =

⎡
⎢⎢⎢⎢⎢⎣

η̄2 − w
(√

J2 − η̄2
1 + J2

)
g2 sin(η̄3) + η̄1w√

J2−η̄2
1

(η̄2 − wJ2)

w

⎤
⎥⎥⎥⎥⎥⎦ (5.37)

and
w = φ̇ref (5.38)

η̄ =

⎡
⎢⎢⎢⎣

η̄1

η̄2

η̄3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

J sin(ψ − φref )

Jψ̇ cos(ψ − φref) + J2φ̇ref

φref

⎤
⎥⎥⎥⎦ (5.39)

Note that it is important to add an additional state φref

since it is considered an independent variable. Its derivative

w is the manipulated variable for stabilization.

An analytical solution for w that stabilizes the internal
dynamics under quasi-steady-state assumption cannot be

computed. Thus, predictive control is used to compute nu-
merically the value of a stabilizing w∗:

w∗ = arg min
w([t,t+T ])

{
1

2
η̄(t + T )TP η̄(t + T )
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+
1

2

∫ t+T

t

(
η̄(τ)TS η̄(τ) + R w2(τ)

)
dτ

}
(5.40)

such that ˙̄η = Q̄(η̄, w) η̄(t) = η̄t

w(·) ∈ Y , η̄(·) ∈ N , η̄(t + T ) ∈ Nf

where η̄t are the measured or estimated states at time t; T

is the prediction horizon; Y and N are the sets of admissi-

ble outputs and internal states, respectively; Nf ⊂ N is a
closed set that contains the origin. The input w is updated

every δ sec, where time δ is greater than or equal to the
sampling time.

5.4.2 Stability Analysis

This section discusses the stability of the cascade-control scheme.

The key idea is to introduce a time-scale separation in order to
be able to use results from singular-perturbation theory, which

is enforced here by the presence of the small parameter ε.

The assumptions 1 to 7 of Theorem 4.2 can be easily verified
for the pendubot example:

1. System (5.36) is not affine in w. However, it is affine in ẇ.
Therefore, the controllability of (5.36) is shown considering

ẇ as input.

System (5.36) can be rewritten as follows:

⎡
⎣ ˙̄η

ẇ

⎤
⎦ = f̄(η̄, w) + ḡ(η̄, w)ẇ

s.t. η̄(0) = η̄0, w(0) = w0

(5.41)
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where

f̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

η̄2 − w
(√

J2 − η̄2
1 + J2

)
g2 sin(η̄3) + η̄1w√

J2−η̄2
1

(η̄2 − wJ2)

w

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ḡ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

System (5.41) is controllable if the distribution ∆(η̄, w) =
span{g, adfg, adffg, adfffg}, with adfg = Lgf − Lfg, has

dimension 4, for all (η̄, w). It is locally controllable since
∆(0, 0) has dimension 4 [99]. Computing ∆ yields a non-
linear function of η̄ and w, which is not of dimension 4

everywhere. However ∆(0, 0) has dimension 4, and (5.41) is
locally controllable using ẇ as input. Hence, System (5.36)

is locally controllable using w as input.

2. By replacing (η̄, w) with (0, 0) in (5.37), it can be easily
verified that (η̄, w) = (0, 0) is an equilibrium point.

3. Replacing w = 0 in (5.37), and computing the norm of
Q̄(η̄, 0) gives ‖Q̄(η̄, 0)‖ < L‖η̄‖, with L = 1.

4. P , Q and R are chosen positive definite.

5. and 6. (conditions on the final control wk and the final
set Nf respectively) depend on item 7. (condition on the

prediction horizon T ). Here, the prediction horizon T = 0.6
sec, for which the pendubot is stable. Therefore, there exists
Nf and wk which satisfy points 5 and 6.
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It is important to note that only local stability of the cascade

control of the pendubot can be verified. In fact, an important
drawback of the methodology used here is that input-output

feedback linearization of the pendubot causes a singularity when
cos(ψ−φ) = 0. At the singularity, the feedback linearizing input
(5.29) is infinite!

5.4.3 Experimental Results

Experimental Results with the Cascade Scheme Experimental

results of applying the cascade-control scheme to the pendubot
are discussed in this section. The parameter of the inner-loop

controller (5.35) is ε = 0.05. The parameters of the outer-loop
controller (5.40) are

R = 1, Q =

⎡
⎢⎢⎢⎣

1 0 0
0 10 0

0 0 1

⎤
⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎣

4.67 5.91 1.17
5.91 24.32 4.89

1.17 4.89 2.17

⎤
⎥⎥⎥⎦

.

The matrix P is computed by solving the algebraic Ricatti
equation of the linear quadratic regulation (LQR) problem of the
linearized version of Subsystem (5.36)-(5.37) [75]. The choice of

the re-optimization time δ is chosen to be δ = 0.3 sec, corre-
sponding to 60 times the sampling period h = 0.005 sec.

The initial conditions of the pendubot arms are set the same
way that for the approximate input-output feedback control of

the pendubot. Here, the initial conditions are φ0 ≈ 0, ψ0 = π
3 ,

φ̇0 = ψ̇0 = 0.

The experimental results for the cascade-control scheme are
presented in Figures 5.8-5.9, where Figure 5.8 shows the evo-
lution of the pendubot angles φ and ψ, and Figure 5.9 shows
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the input u. Although the pendubot is stable, the angle ψ oscil-

lates considerably. This is due to the fact that model predictive
control is applied open loop between two re-optimizations. In

particular, ψ is fed back only every 0.3 sec. This is the main
disadvantage of using a low re-optimization frequency in the
presence of disturbances. The measurements are filtered using

Butterworth digital filters of the fourth order. Thus, the dis-
turbances here come essentially from the modeling errors, in

particular from the values of the viscous and static frictions pa-
rameters.

0 2 4 6 8 10 12
-0.4

0

0.4

0.8

1.2

φ (rad)

ψ (rad)

time (s)

Figure 5.8: Performance of the cascade-control scheme: Angular positions φ

(-), ψ (- -)

Experimental Results with the Cascade Scheme and Neighboring

Extremals The results of neighboring-extremal theory are ex-
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Figure 5.9: Performance of the cascade-control scheme: Input u

ploited in order to solve the problem of oscillations caused by the
low re-optimization frequency of the predictive control. An addi-

tional linear feedback is used whenever the numerical optimizer
(nonlinear model predictive control) is unable to compute the

optimal input (Figure 5.10). The feedback is computed based on
the analytical law derived from the linearized problem:

• Linear model predictive control is applied on the linearized

internal dynamics under quasi-steady-state assumption (5.36)-
(5.37), which leads to the linear state feedback w̄:

w̄ = − η̄1 − 4.67 η̄2 − 2.12 φref

φ̇ref = w̄, φref(0) = φ0
(5.42)

• This linear state feedback is used in combination with the
nonlinear model predictive control (w∗ is given by (5.40)),
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yielding the new reference w = w̄ +w∗ for the inner loop of

the cascade-control scheme. Although w∗ is updated every
0.3 sec, the reference w̄ is updated at each sampling period.

+ 
 
+      _

Predictive
 Control

  Linear

Feedback

Input-output
Linearization

_ 
 
+      

Pendubot

w∗

x

η̄

K

w̄

u

x

v η

φ, φ̇

˙̄η = Q̄(η̄, w)

φ̈ = v

Figure 5.10: Cascade-control scheme using neighboring extremals

Figures 5.11-5.12 present the experimental results of the ap-

plication of the cascade-control scheme, using the neighboring-
extremal theory, to the pendubot. Figure 5.11 shows the evolu-

tion of the pendubot angles φ and ψ, and Figure 5.12 shows the
input u. With the neighboring-extremal approach, the angles

are much smoother than when using nonlinear model predic-
tive control on its own. Moreover, the angles converge faster to

the origin and the input energy is smaller. The presence of the
feedback of ψ at every sampling time helps reject the effect of
measurement noise.



5.5 Conclusion 111

0 2 4 6 8 10 12
-0.4

0

0.4

0.8

1.2

φ (rad)

ψ (rad)

time (s)

Figure 5.11: Performance of the cascade-control scheme using neighboring
extremals: Angular positions φ (-), ψ (- -)

5.5 Conclusion

In this chapter, the two control methodologies that have been
developed in this work have been applied to the pendubot, with
satisfactory results.

The first methodology approximates the system to a input-
state feedback linearizable one. Therefore, a input-state lineariza-
tion on the approximate system can be made and a linear feed-

back is used for control. Although the experimental results are
satisfactory, only local stability of the control scheme has been

provided.

The second control methodology takes all the dynamics into
account. Input-output feedback linearization is first applied to
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Figure 5.12: Performance of the cascade-control scheme using neighboring
extremals: Input u

separate the fast input-output system dynamics of the pendubot
from the slow internal dynamics. Model predictive control is then

used to stabilize the internal dynamics and is implemented at
a lower frequency. The application of this methodology to the

pendubot has shown excellent experimental results. However,
only the local stability proof has been provided.



Chapter 6

Conclusions

6.1 Summary

The main objective of this work was the control of affine-in-input
SISO nonlinear systems, using input-output feedback lineariza-

tion techniques. This thesis has focused on the case of not input-
state feedback linearizable systems. Standard input-output feed-

back linearization is not effective to control such systems because
uncontrolled residual dynamics, called internal dynamics, arise.

Since these dynamics can be unstable, their issue needs to be
considered.

The main contribution of this thesis for the control of not
input-state feedback linearizable systems using input-output feed-
back linearization techniques has taken two directions:

113
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6.1.1 Neglecting the Internal Dynamics

Approximate input-output feedback linearization using
the observability normal form

The proposed controller is computed in three steps. First, the
system is transformed into its observability normal form. Then

the transformed system is approximated by a chain of integra-
tors, and the neglected part is considered as a perturbation. Fi-

nally, a linearizing feedback controller is applied to the approx-
imate system, yielding a linear system that can be controlled

using linear feedback.

Stability results

The main contribution of the proposed method is the stability
results. In Soroush work, the stability analysis is based on the

small gain theorem, which requires the open-loop system behav-
ior to be stable. In this work, the objective of the approximate

input-output feedback linearization is that no precondition on
the stability of the open-loop system behavior is needed. Thus,

vanishing perturbation theory for the stability analysis is used
instead of the small gain theorem, in order to deal with unstable
systems.

However, the main limitation of the developed approximate

input-output feedback linearization is essentially due to the use
of vanishing perturbation theory for the stability analysis, such

that the stability results presented here can be very conservative.
In reality, a much larger perturbation could have been accom-
modated than that predicted by the theoretical results.
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Application

The approximate input-output feedback linearization using the
observability normal form has been applied to the pendubot with

satisfactory results. Although the stability results are only local,
the pendubot shows an interesting problem for the approximate

input-output feedback linearization, since the neglected dynam-
ics are unstable.

6.1.2 Stabilizing the Internal Dynamics

Cascade-control scheme using IOFL and nonlinear pre-

dictive control

The second methodology developed in this work takes the inter-
nal dynamics into account instead of neglecting them. The pro-
posed methodology is based on input-output feedback lineariza-

tion, model predictive control and singular-perturbation theory.
The system is first input-output feedback linearized, separating

the input-output system behavior from the internal dynamics.
Predictive control is then used to stabilize the internal dynam-

ics, using a reference trajectory of the system output (considered
as the manipulated variable). This results in a cascade-control

scheme, where the outer loop consists of a model predictive con-
trol of the internal dynamics, and the inner loop is the input-
output feedback linearization.

The main contributions of the cascade-control scheme are:

from an input-output feedback linearization point of view, pre-
dictive control is a systematic way to stabilize internal dynam-

ics; from a predictive control point view, the re-optimization
frequency is determined by the internal dynamics rather than
the system dynamics. This can be advantageous if the unstable
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internal dynamics are slower than the unstable system dynam-

ics.

Stability results

Stability analysis of the cascade-control scheme is provided us-
ing results of singular-perturbation theory. The key idea is to

introduce a time-scale separation, enforced by the introduction
of a small parameter in the controller. Therefore, the quasi-

steady-state assumption is made, allowing the input-output be-
havior of the system to be decoupled from its internal dynamics.

Thus, each subsystem is analyzed separately, providing a stabil-
ity proof of the overall system.

The main contribution of the stability analysis is the global
exponential stability of the predictive control scheme. The use

of singular perturbation theory requires exponential stability re-
sults. However, exponential stability results of the model predic-
tive control of unstable systems is a challenging task. Here, a non

restrictive condition (Lipschitz condition) is added to standard
conditions for asymptotic stability of predictive control, pro-

viding the global exponential stability of the predictive control
scheme.

As for the robustness of the predictive control, an extension
of the proposed cascade has been developed, such that an addi-

tional linear state feedback (based on the neighboring extremal
theory) is combined with the predictive control problem, lead-

ing to a new reference for the inner loop of the cascade-control
scheme. This mainly allows reducing the re-optimization fre-

quency of the MPC problem. In fact, the additional feedback
performs optimization implicitly, thereby acting as a standby
whenever the numerical optimizer (nonlinear model predictive
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control) is unable to compute the optimal input. Therefore,

model predictive control can be re-optimized at a lower fre-
quency.

Application

Both the cascade-control scheme and its robust extension have
been applied to the pendubot. The cascade-control scheme pre-

sented good results. However, the angles oscillate a lot due to
the low re-optimization frequency of the predictive control. This
is due to the presence of disturbances that are not handled by

the predictive control, as the latter is applied open loop between
two re-optimizations.

The robust extension shows much better results. Therein, the
predictive control is updated at a low frequency, while the linear
controller is updated at each sampling period.

6.2 Perspectives and Remarks

Several topics related to the proposed control methodologies can

be considered for future study.

6.2.1 Approximate Input-output Feedback Lineariza-
tion Control Scheme

The stability results of the approximate input-output feedback
linearization presented in this work can be very conservative.

This is due to the use of the vanishing perturbation theory for
the stability analysis. It may be possible to widen the domain
of stability by including the perturbation into the control law
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instead of just neglecting it. This could be investigated in future

work.

6.2.2 Cascade-Control Scheme

• Although the cascade-control scheme was developed in this

work for the control of single-input single-output systems,
the obtained results can be easily extended to the MIMO
case.

• Although constraints are one of the selling points of pre-

dictive control techniques, they have not been addressed in
this thesis. The presence of constraints prevents the sep-

aration between the input-output dynamics and the in-
ternal dynamics, which is crucial to this work. Thus, the
proposed method cannot be directly extended to the con-

strained case.

• Although the developed extension of the proposed cascade
using the neighboring extremal theory, serves essentially to

avoid problems of robustness, a full and rigorous robust-
ness analysis has not been done. This issue is interesting to

address.

• When applying the cascade-control scheme to the pendubot,

input-output feedback linearization causes a singularity, thus
decreasing the attraction domain of the controller. This sin-

gularity can be interpreted as a change in the relative de-
gree of the system. Moreover, one wonders whether it is

appropriate to use input-output feedback linearization in
the inner loop or whether another pre-compensator should
be used. An important issue would be the extension of the
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cascade scheme to the case of variable relative degree of the

system.

• When the extension of the cascade scheme using the neigh-

boring extremal theory is applied to the pendubot, the con-
troller is not global because of the singularity in the inner-

loop. One way to widen the attraction domain could be
to remove the input-output linearization. In this case, only
predictive control is applied to the overall system dynam-

ics, in conjunction with a linear controller resulting from
the first-order approximation of the system dynamics.
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Appendix A

The Pendubot

A.1 Hardware and Software

The hardware and software which are used for the control of the
pendubot are illustrated in this section. A hardware map is il-

lustrated in Figure A.1. The control was done using a Macintosh
computer, with operating system OS 9.

The software used was: LabView 6i and CodeWarrior 1.7.4

(for the c code). LabView 6i provided the I/O between the plant
and the controller(C-code), graphical interface and the real-time

kernel, and Codewarrior 1.7.4 was the C-compiler.

The map of the real-time program is illustrated in Figure A.2

States explanation:

• State 0 : Configuration of the input/output (I/O) ports
A, B and C.

121
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Computer

Power-MAC

PCI-1200 card

Electric DC Motor

Sensor A (Arm)

Sensor B (Pendulum)

Communication Hardware 

Amplifier

Pendulum Interface
 Board

DAO(input(u))

PORT A

PORT B

PORT C

The “Pendubot”

 Pendulum

Torque

I_out

psi

phi

Figure A.1: Hardware map

• State 1: Wait one sampling time, which is necessary when

calculating the angular velocity, such that in State 0 the
first measurement is not available due to the fact that the

I/O ports are not defined yet.

• State 2: Move fast clockwise. The speed of the arm is con-
trolled by a PI-controller.

• State 3: Move slowly clockwise. The speed is PI-controlled

as in State 2, but slower. States 2 and 3 are used for cali-
brations of the sensors.

• State 4: Wait 3 seconds. Manually resetting the sensors
here.
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State 0 State 1 State 2

State 3State 4State 5

State 6 State 7
Controller

Swing up

Simple swing up

Config ports
A,B,C

Wait
1 sample

time

Move fast

Move slowlyWait 3 sec

Event 0 Event 1

Event 2 Event 3

Event 4Event 5

Event 5

Event 6

Event 6 Event 7

Event 7

Figure A.2: Real-time chain

• State 5: Swing up control. Since neither approximate input-

output feedback linearization nor cascade controls are global,
because of the singularity at |φ−ψ| = π

2 , a swing up based

on energy control [113] is computed, in order to push the
pendubot dynamics to the respective attraction domains.

A force is applied to the angle ψ angle, which will make
the pendubot oscillate, destabilizing it. Once the φ angle
passes through π

2
the signal input is switched to the actual
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controller. The input for swing up is as follows:

u =
1

a2

(
(J1J2 − J2 cos(ψ − φ))ψref − a1

)
(A.1)

with

a1 = J cos(ψ − φ)(−g2 sin(φ) + J sin(ψ − φ)2

ψ̇2) + J2(g1 sin(ψ) + J sin(ψ − φ)φ̇2

−bψ̇ − c1sign(ψ̇)

a2 = J cos(ψ − φ) + J2

ψref = −k2ψ̇ − k1

(
ψ − k3 arctan(φ̇ − ψ̇)

)
and k1 = 3.2, k2 = 6.4, k3 = 0.5

where parameter values of J , J1, J2, g1, g2, c1 and b are
given in Table 5.1.

• State 6: The arms are inside the attraction domain. Thus,
the swing up switches to the controller. In the cascade-

control scheme, for predictive control of the internal dynam-
ics, the optimization was made using the ”Quasi-newton

method” method [114, 115], which is a gradient method,
where instead of computing the hessian, an algorithm is

there to approximate the inverse of the hessian. The inte-
gration for prediction is computed using runge-kutta fourth
order method [116, 117].

• State 7: The arms are outside the attraction domain. Thus,

the controller switches to the swing up, until the controller
catches it again.

Event explanation:
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• Event 0 : Next sample period.

• Event 1: Next sample period.

• Event 2: Arm pointing almost straight down.

• Event 3: Arm pointing passed: arm pointing down-area,

• Event 4: Arm pointing downwards pendulums angular ve-

locity is zero, φ̇ = 0.

• Event 5: After 3 sec go to swing up.

• Event 6: ψ is in upper half(|ψ| < π
2 ) and |φ| < π

2 .

• Event 7: |φ−ψ| ≥ π
2 . This choice was made, since it repre-

sents the singularity caused by the input-output feedback

linearization of the pendubot.

A.2 Approximate Input-output Feedback Lin-

earization

Denoting ts = sin(ψ − φ) and tc = cos(ψ − φ), the structures of
the functions used in (5.19) are given below:

L2
fh(x) =

1

J1J2 − J2t2c
[J1g2 sin(φ) + J1Jtsψ̇

2

−Jtcg1 sin(ψ) + J2tctsφ̇
2]

L3
fh(x) =

1

J2
1J

2
2 − 2J1J2J2t2c + J4t4c

[−2J4t4cφ̇
3 + 3J4φ̇3t2c

+3J3ψ̇3J1t
3
c + J3ψ̇t3cg1 cos(ψ) + Jψ̇3J2

1 tcJ2

−3φ̇J1J
3t3cψ̇

2 + φ̇J2
1g2 cos(φ)J2 − 4J3ψ̇3tcJ1
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−2J2t2cφ̇
3J1J2 + J3ψ̇tsg1 sin(ψ)t2c − 3φ̇J3

tsg1 sin(ψ)t2c + J2φ̇3J1J2 − φ̇J2
1Jtcψ̇

2J2 − φ̇J1g2 cos(φ)J2

t2c + 3Jψ̇tsg1 sin(ψ)J1J2 + 4φ̇J2tctsJ1g2 sin(φ)

−φ̇Jtsg1 sin(ψ)J1J2 + 4φ̇J3tcJ1ψ̇
2 + 4J2ψ̇t2cφ̇

2

J1J2 − J4ψ̇φ̇2t2c − 3J2ψ̇φ̇2J1J2 − Jψ̇tcg1

cos(ψ)J1J2 − 4J2ψ̇tctsJ1g2 sin(φ)]

L4
fh =

1

J3
1J

3
2 − 3J2

1J
2
2J

2t2c + 3J1J2J4t4c − J6t6c

[−J2g1 sin(ψ)J2
1J2ψ̇

2 + J2tsg
2
1J1J2tc − 2J2J

4φ̇2

g1 sin(ψ)t2c + J2t
3
cg

2
1 cos(ψ) sin(ψ)J3

−J2t
3
cg1 cos(ψ)J4tsφ̇

2 − 4φ̇J5ψ̇t5cg1 sin(ψ)

+J5φ̇2t3cg2 sin(φ) + 4J5ψ̇φ̇tsg1 cos(ψ)t4c + 3J6

ψ̇2φ̇2t3cts − 3J5ψ̇2tsg1 cos(ψ)t4c − t4cg1 cos(ψ)J4g2 sin(φ)

−J4t3ctsg2 sin(φ)g1 sin(ψ) − 6J1J
2
2J2φ̇2g1 sin(ψ)

+J1J
2
2 tcg1 cos(ψ)J2tsφ̇

2 − 21J1J2J
4ψ̇2t3cφ̇

2ts

+J2J
5φ̇4tst

2
c − 4J2tctsJ

2
1g

2
2 cos(φ)2

+4J2tctsJ
2
1g

2
2 + J3

1g2 cos(φ)J2Jtsψ̇
2 − J2

1

g2
2 cos(φ)J2t2c sin(φ) − J2

1g2 cos(φ)J2Jtcg1 sin(ψ)

+34J4ψ̇t3cφ̇
3J1J2ts + 25J5φ̇2t2cJ1tsψ̇

2

−18J5φ̇2t3cg1 sin(ψ) − Jtsg1 sin(ψ)J2
1J2g2 sin(φ) − 7J3t2c

tsJ1g2 sin(φ)g1 sin(ψ) − 12J2t2cφ̇
2J2

1J2g2 sin(φ)

−19J3t2cφ̇
2J2

1J2tsψ̇
2 + 19J3t3cφ̇

2J1J2g1 sin(ψ)

−18J4t3cφ̇
4J1J2ts − 7J2

1J
3t3cψ̇

2

g2 sin(φ) − 3J2
1J

4t3cψ̇
4ts + 6J1J

4t4cψ̇
2g1 sin(ψ)

+3J4tsg
2
1t

3
c − 3J4tsg

2
1t

3
c cos(ψ)2 + 8J3tcJ

2
1 ψ̇

2g2 sin(φ)
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+4J4tcJ
2
1 ψ̇4ts − 7J4t2cJ1ψ̇

2g1 sin(ψ) − 14J2ψ̇φ̇J2
1

J2g2 sin(φ) − 14J3ψ̇3φ̇J2
1J2ts + 38J3ψ̇φ̇J1J2tcg1 sin(ψ)

−38J4ψ̇φ̇3J1J2tcts + 26J2ψ̇t2cφ̇

J2
1J2g2 sin(φ) + 34J3ψ̇3t2cφ̇J2

1J2ts − 38J3ψ̇t3cφ̇J1J2g1 sin(ψ)

−10J6ψ̇φ̇3t3cts − 19J4t4cφ̇
2J1g2 sin(φ) − 12J5t4cφ̇

2J1tsψ̇
2

+12J5t5cφ̇
2g1 sin(ψ) − 6J6t5cφ̇

4ts − J1J2J
3ψ̇2tsg1 cos(ψ)t2c

−34J4ψ̇φ̇t2cJ1g2 sin(φ) − 34J5ψ̇3φ̇t2cJ1ts

+10J5ψ̇φ̇t3cg1 sin(ψ) + 7J2
1g2 cos(φ)J2J

2tctsφ̇
2

−J2
1g2 cos(φ)J3t2ctsψ̇

2 + J1g2 cos(φ)J3t3cg1 sin(ψ)

−7J1g2 cos(φ)J4t3ctsφ̇
2 + 7J2φ̇2J2

1J2g2 sin(φ)

+7J3φ̇2J2
1J2tsψ̇

2 − 14J3φ̇2J1J2tcg1 sin(ψ) + 13J4φ̇4

J1J2tcts − J3
1Jtcψ̇

2J2g2 sin(φ) − J3
1J2tcψ̇

4J2ts

+15J6φ̇4t3cts + 22J1J2J
3ψ̇2t3cg1 sin(ψ) + 29J1J2J

4ψ̇2φ̇2

tcts − 2J1J2φ̇J3ψ̇tsg1 cos(ψ)t2c − 29J1J2J
3tcψ̇

2g1 sin(ψ)

−8J1J2J
3t3cφ̇

2g2 sin(φ) − 4J1J
2
2J3t2cφ̇

4ts − J1J
2
2Jtc

g2
1 cos(ψ) sin(ψ) + 7J1J2J

3φ̇2tcg2 sin(φ) + 7J1J
2
2J2t2cφ̇

2

g1 sin(ψ) − 15J2
1J2J

3ψ̇4tst
2
c − 11J2

1J
2
2J2ψ̇2tcφ̇

2ts

−J3
1J

2
2 φ̇2Jtsψ̇

2 − J3
1J2

2Jψ̇4ts + 2J3
1J

2
2 φ̇Jψ̇3ts

+6J1φ̇J4ψ̇t3ctsg2 cos(φ) − J3
1J2

2 φ̇
2g2 sin(φ)

+22J1φ̇J4ψ̇t4cg2 sin(φ) + 12J1φ̇J5ψ̇3tst
4
c − 6J2

1

J2
2 φ̇Jψ̇tcg1 sin(ψ) − 4J2

1J
2
2J2tcφ̇

4ts + J1J2t
2
cg1

cos(ψ)J2g2 sin(φ) − 21J1J
4ψ̇2t4cg2 sin(φ) + 28J1J

4t2c

ψ̇2g2 sin(φ) + 3J1J
2
2J

3φ̇4ts − 12J1J
5ψ̇4t4cts

+24J1J
5ψ̇4tst

2
c + J2

1J2
2 φ̇

2Jtcg1 sin(ψ) + 4J2
1J

2
2J

ψ̇2tsg1 cos(ψ) − 2J2
1J

2
2 φ̇Jψ̇tsg1 cos(ψ)

−6J2
1J2φ̇J2ψ̇tctsg2 cos(φ) + 14J2

1J
2
2J

2ψ̇tc
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φ̇3ts + 7J2
1J

2
2Jψ̇2tcg1 sin(ψ) + 4J2

1J2J
3ψ̇4ts

−J2tsg
2
1J1J2tc cos(ψ)2 + 3J1J

2
2Jtsg

2
1 − 3J1J

2
2Jtsg

2
1 cos(ψ)2

+4J2
1J2J

2ψ̇2g2 sin(φ) + 4J1J
3t2ctsg

2
2 − 4J1J

3t2ctsg
2
2 cos(φ)2

−11J2
1J2J

2ψ̇2t2cg2 sin(φ) − 7J1J2J
2tctsg2 sin(φ)g1 sin(ψ)

+2J2
1J

2t2cψ̇
2J2g1 sin(ψ) + 25J4φ̇2t2cJ1g2 sin(φ) + J3

1

g2
2 cos(φ)J2 sin(φ) + J2J

4φ̇2g1 sin(ψ)t4c − 3J5ψ̇2

g1 sin(ψ)t3c + 3J5ψ̇2g1 sin(ψ)t5c
+J2tsg

2
1J

3t2c − J2tsg
2
1J

3t2c cos(ψ)2]

The structures of the functions used in (5.20) are given below:

LgLfh = − Jtc

J1J2 − J2t2c

LgL
2
fh =

2Jtc
(−J2t2cφ̇ + J1ψ̇J2

)
J2

1J
2
2 − 2J1J2J2t2c + J4t4c

LgL
3
fh =

J

J3
1J

3
2 − 3J2

1J
2
2J

2t2c + 3J1J2J4t4c − J6t6c
[6J4t5cφ̇

2

−9J4φ̇2t3c − 3Jφ̇2J1J
2
2 + 14tcJ
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3φ̇2t2c

+J2J
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1 tcψ̇
2J2

2 + 3J1J
3t4cψ̇

2
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2 − 12J2J

2tcJ1ψ̇
2 + J2J

2

t3cg1 cos(ψ) − 4J2t2ctsJ1g2 sin(φ) + 6J2t3cφ̇
2J1J2

+J1g2 cos(φ)J2t3c + 3J3tsg1 sin(ψ)t3c + J2
1Jt2cψ̇

2J2

−tcJ
2
1g2 cos(φ)J2 − 3tcJ

2φ̇2J1J2 − 14J2ψ̇

t3cφ̇J1J2 − tcg1 cos(ψ)J1J
2
2 + 3tsg1 sin(ψ)J1J

2
2 −

2φ̇J2
1 tcψ̇J2

2 + 4Jt2cφ̇
2J1J

2
2 + 9J2J1J

2t3c

ψ̇2 + tcJtsg1 sin(ψ)J1J2 − 4J2JtctsJ1g2 sin(φ)]
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• Superviser des projets de semestre et de diplôme,
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1995 Entreprise Nationale des Systèmes Informatiques, Al-
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