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Zusammenfassung

Im Ringzyklotron des Paul Scherrer Instituts (PSI) wird ein hochintensiver Protonen-
strahl von 72MeV auf 590MeV beschleunigt. Dies geschieht in vier Kavitdten sehr
hoher Gute, die im Grundmode schwingen. Infolge seiner Zeitstruktur kann der Strahl
in diesen Kavitaten parasitare Schwingungsmoden héherer Ordnung (HOM) anregen.
Messungen zeigen, dass diese zum Teil durch den Strahlspalt in die Vakuumkammer
abgestrahlt werden.

Da man einerseits bis heute keine Mittel zur Verfiigung hat, den potentiell schadli-
chen Einfluss dieser HOMs auf den Strahlbetrieb des Zyklotrons vorauszusagen und
andererseits davon auszugehen ist, dass sie bei der Beschleunigung von noch héheren
Strahlstromen eine Rolle spielen, beschaftigt sich diese Arbeit mit der Strahl-Kavitats-
Wechselwirkung.

Erste Berechnungen der Wechselwirkung eines Strahlpaketes mit einer Kavitat wur-
den mit den Eigenmode- (E3), Zeitbereich- (T3) und Particle-In-Cell (TS3)-Ldsern von
MAFIA durchgefuhrt. Das strukturierte Gitter und die limitierte Rechenleistung von
MAFIA verunmdglichen aber realistische Simulationen.

Da eine selbstkonsistente Losung im Zeitbereich mit den heutigen Rechenanlagen
nicht maoglich ist, wird in dieser Arbeit ein vereinfachtes Rechenverfahren entwickelt:
Der parallele Eigenldser Omega3P vom Stanford Linear Accelerator Center (SLAC)
ermoglicht erstmals, Eigenmoden des ganzen Ringzyklotrons zu berechnen. Die HF-
Felder lassen sich durch diese Eigenmoden darstellen und deren Anregung durch den
Strahlstrom kann im Frequenzbereich berechnet werden. Damit lassen sich die Tra-
jektorien der Strahlpakete im statischen Feld der Sektormagnete, unter Bericksichti-
gung der Raumladungskréfte und des strahlangeregten elektromagnetischen Feldes,
bestimmen.

Die quantitative Genauigkeit des Modells ist allerdings noch beschrankt. Einer-
seits, weil die Geometrie der simulierten Hochfrequenzstruktur stark vereinfacht wer-
den muss, da sonst die Grenzen der verfigbaren Computer-Ressourcen gesprengt
werden. Andererseits, weil stark absorbierende Oberflachen noch nicht genau genug
simuliert werden konnen.

Simulationsresultate bestatigen, dass bis zu dem heute routinemassig beschleu-
nigten Strahlstrom von ca. 2mA nur kleine Deformationen der Ladungsverteilung durch
die angeregten Felder festzustellen sind. Mit dieser Arbeit wird ein Simulationswerkzeug
zur Verfigung gestellt, welches fir weitergehende Studien zur Leistungserhéhung von
Hochstromzyklotronen verwendet werden kann.



Abstract

The ring cyclotron of the Paul Scherrer Institute (PSI) accelerates an intense proton
beam from 72MeV up to 590MeV. This happens in four cavities of very high quality
factor, oscillating in the fundamental mode. The beam can excite parasitic oscillation
modes (HOMSs), because of its time structure. Measurements showed that their field
can leak out into the vacuum chamber.

Until now, there is no tool available to predict the potentially harmful effect of these
HOMs onto the beam operation of the cyclotron. It is foreseeable that these effects
might play a role if even higher beam currents have to be accelerated. This disser-
tation therefore deals with the numerical analysis and measurement of beam-cavity
interactions.

First calculations for a single cavity, interacting with a proton bunch were performed
with MAFIA’s eigenmode- (E3), time domain- (T3) and particle-in-cell (TS3) solvers.
However, the structured grid and the limited computing performance of MAFIA make
realistic simulations impossible.

A simplified computation method is developed in this dissertation since a self-
consistent simulation is impossible on today’s computers: The parallel eigensolver
Omega3P of the Stanford Linear Accelerator Center (SLAC) allowed us to calculate
eigenmodes of the entire ring cyclotron for the first time ever. The rf fields are expanded
onto a superposition of these modes and the excitation is calculated in frequency do-
main. Trajectories of the particles in the static magnetic field, superposed with the
space charge fields and the beam excited HOMs, are then simulated.

However, the quantitative accuracy of this model is still limited. On the one hand,
because of the simplification in the geometry of the simulated rf structure, which other-
wise would lead to a problem size going beyond the available computing resources. On
the other hand, because it is not yet possible to simulate strongly absorbing boundaries
more accurately.

The simulation results confirm that up to proton beam currents of 2mA, correspond-
ing to the routinely accelerated beam intensities, only a small deformation of the charge
distribution appears. This thesis leads to a new simulation tool for further studies of in-
tensity increases in high power cyclotrons.
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Chapter 1
INTRODUCTION

The Paul Scherrer Institute (PSI) is a Swiss Federal Research Institute and operates
one of the leading high intensity proton accelerators. The acceleration of the protons
is achieved in three stages: The ion source is located in the high-voltage part of the
Cockcroft-Walton 870keV DC preaccelerator. The protons are directed into the injec-
tor 2 cyclotron and are accelerated over about 80 turns up to 72MeV before they get
extracted and transferred to the ring cyclotron. There the final energy of 590MeV is
reached after about 220 revolutions.

When the accelerated protons are made to traverse thin rings of graphite (tar-
get M and E), they produce the world’s most intense particle beams of pions and
muons, which are brought to secondary beam areas in the experimental hall for par-
ticle physics, material science and solid-state physics experiments. About 63% of the
proton beam is left after the two targets and reaches the neutron spallation source
(SINQ). The neutrons are mainly used for solid-state physics and material science.
Other applications of the proton facility are human cancer therapy and the develop-
ment of radioisotopes for medical diagnostics.

Cancer therapy and a large fraction of the experiments require a stable and uninter-
rupted beam. To run the SINQ facility at its design current of 2mA, the primary current
of the cyclotrons has to be increased to about 3mA. Therefore most of the develop-
ment and upgrade activities are devoted to increasing the beam current and to improve
the availability of the cyclotron. Both aspects are very important for the usefulness of
high intensity cyclotrons, such as the PSI "dream-machine" [70] for Accelerator Driven
Systems (ADS), e.g. the transmutation of radioactive waste.

In the last decade, a program of high priority was to study intensity limitations by
analyzing space charge effects by Adam [1] and Adelmann [3]. This work lead to
a better understanding of the beam dynamics of space charge dominated cyclotrons.
Beam-cavity interactions, on the other hand, have never been analyzed in detail. In fact,
the intense proton beam can excite electromagnetic fields in the cavities and the beam
chamber, which eventually deteriorate the quality of the beam and lead to increased
beam losses in the accelerator. The last publication on beam-cavity interactions in
cyclotrons can be found in the proceedings of the "Symposium on Separated Orbit
Cyclotrons and Beam-Cavity Interactions” [63] back in 1966.

However, the observation of beam excited modes in the main cavities lead to the

1



2 CHAPTER 1. INTRODUCTION

guestion of, whether or not beam-cavity interactions in high intensity machines really
can be neglected. By using the computing power of today and applying state of the art
numerical methods, this thesis sets out to answer this question.

1.1 The Sector-Focused Cyclotron

If particles are to remain isochronous with a fixed frequency of the accelerating voltage,
the static magnetic fields must increase with radius to compensate the relativistic mass
increase with the energy of the accelerated particles [13]. But, in a non-relativistic
Lawrence-CycIotro, this is limited by the requirement for the vertical focusing. The
relativistic Thomas-Cyclotron || reaches the additional vertical focusing by adding a
sinusoidal variation of the field with azimuth. The sector-focusing concepf| finally im-
proves the focusing properties of a relativistic cyclotron by a particular azimuthal varia-
tion of the static magnetic field in spiral form.

The most troublesome obstacle for the cyclotron designer is the occurrence of beam
resonances [13, |61, [11], i.e. regions in which the radial or axial focusing oscillation
(see section is synchronous with some component of the electric or magnetic
field, leading to coherent oscillation and, as a consequence, to the loss of the beam. In
marked contrast to the synchrotron, where the operating point can be carefully selected
to be as far as possible from all resonances, the cyclotron is forced to live with an
operating mode which often involves direct passage through several major resonances.
In a synchrotron such resonance transitions would be disastrous, in a cyclotron, due
to the much smaller number of turns, resonance transitions can be accomplished, but
only by a careful design study and careful field control. Therefore, it is of interest to
simulate the effect of beam excited Higher Order Modes (HOMSs) onto the stability of
the beam.

In fact, with respect to beam-cavity interactions, the cyclotron might be situated
between synchrotron and linear accelerators. Similar to synchrotrons, the particles are
circulating around several times. But in contrast to synchrotrons they are extracted
from the cyclotron after a relatively short time. This is similar to the case of linear
accelerators, but in cyclotrons, there are several particle bunches of different energies
interacting with the same rf structure.

1.1.1 The PSI Ring Cyclotron

The PSI ring cyclotron (see fig. and is a isochronous, separated orbit, sector
focusing cyclotron with separated sectors. It has a fixed beam energy of 590 MeV at
extraction, corresponding to 80% of the speed of light. It was built and commissioned in
1974. A continuous upgrade program enabled to increase the average current intensity
from the design value of 100uA to about 2mA at present, corresponding to a beam
power above 1IMW. The 72 MeV beam from the injector cyclotron is injected into an orbit

1E.O. Lawrence in 1929
2|.H. Thomas in 1938
3developed in the 1950’s



1.1. THE SECTOR-FOCUSED CYCLOTRON

Figure 1.1: Top view on PSI ring cyclotron. (Diameter =~ 13m). The
four accelerating cavities, made of pure aluminum, are located
between the green colored sector magnets. Their rectangu-
lar box-shape can be guessed underneath the eight stiffening
yokes, which prevent the structure from collapsing due to the
atmospheric pressure.

Figure 1.2: Schematic view on beam plane of PSI ring cyclotron . Sec-
tor magnets (SM1-SM8) hold the particles on their isochronous
trajectory. The main cavities (KAV1-KAV4) provide the accel-
erating voltage and the flattop cavity (KAV5) is used at the third
harmonic for improvement of the phase acceptance. The beam
is injected from the left across KAV5.
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The plot for

cavity 3 corresponds to the voltage distribution in the new cop-
per cavity. The location of this cavity is shifted outward by
10cm. Upper bounds of cavity voltages are denoted as Vg
(=730kV). The flattop cavity is operated in decelerating mode,
and its gap voltage is therefore negative.

in the center of the Ring, accelerated over about 220 revolutions and extracted at the full
energy. The principle components of the ring cyclotron are eight sector magnets, with a
total weight of 2000 t, four accelerator cavities (50 MHz), and a flattop cavity operating
at the third harmonic (150 MHz). The resulting strong, phase-independent energy gain
per revolution gives good turn separation and hence beam extraction, with low beam
losses of about 0.03%. This is a mandatory condition for high current operation.

Cavity Parameters

Since the purpose of the cavities is to accelerate the particles by an electric rf field, one
of the main parameters of the cavity is the gap voltage V. This parameter is related to
the energy gain AUy, for a particle of charge ¢ and velocity v by

d

=0

Vo= [ E@as

wnz

v dz| = qT(v)

E,(Z)dz

g\&

z

(1.1)

(1.2)



1.1. THE SECTOR-FOCUSED CYCLOTRON 5

with transit time correction 7' for a cavity of width d and a particle path along the z-
direction. In the particular case of a cyclotron, the particles cross the same cavity gap
several times at different radial positions and energies on their trajectory from injection
to extraction.

In the case of the cyclotron, the particles get different energy "kicks" at different
radial positions, as illustrated in the radial gap voltage distribution of the ring cyclotron
cavities in figure [1.3]

If the cavity resonates with angular frequency w, it stores electromagnetic field en-
ergy Uc and dissipates a part of the supplied power in its metallic walls. In function of
this wall loss P,, the parameters shunt-impedance R and unloaded quality factor @
can be defined by
72
P, = ;/_f% Qo = w% (2.3)

for a gap voltage distribution with upper bound V..

The main cavities are operated at the fundamental mode of 50.633MHz, corre-
sponding to the 6th harmonic of the rotation frequency of the proton bunches in the
cyclotron. The cavities are built of pure aluminum in a box shape geometry of height
3300mm (see figure [1.4]for a cross section). Electrodes are added for a coarse adjust-
ment of the initial resonance frequency to correct for fabrication errors. An other posi-
tive effect of the electrodes is that they reduce the transit time effects. Unloaded quality
factors are about 30’000 and the shunt-impedance reaches about 1M(2. The resonance
frequency is tuned by means of a hydraulic system to compensate for changes in air
pressure and thermo-mechanical deformations.

The rf power for the main cavities is generated by a five stage amplifier chain, out-
side the accelerator vault, and transported to the cavity over a distance of roughly 40
m by an air filled 50¢2 coaxial line. The cavity is coupled critically to this line by means
of an inductive loop.

Cryogenic vacuum pumps are flanged directly to the main cavities, and serve to
pump the entire ring cyclotron. The vacuum pressure is about 10~°mbar.

The construction of the flattop cavity is basically the same as for the main cavities.
The operating frequency of this cavity is at 151.89MHz, the third harmonic of the oper-
ating frequency of the main cavities, and its unloaded quality factor of about 28’000 is
comparable to the quality factor of the main cavities.

In the course of an upgrading and maintenance program it is planned to replace the
four accelerating cavities in the PSI 590 MeV Ring Cyclotron with more powerful ones.
This will allow accelerating voltages above 1MV.

1.1.2 Space Charge Limitation

A particular property of the isochronous cyclotron is the lack of focusing forces in longi-
tudinal directiorﬂ [1]. Therefore, the longitudinal space charge forces appear at much

4Beam propagation direction
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Figure 1.4: Top view on main cavity at beam plane (Dimensions in
mm). The cavity is coupled to the coaxial line by means of
an inductive loop, visible on the left.

lower beam currents than the transversal space charge forces. An analytical estima-
tion of the space charge limits is given by Joho [36) 37| for the case of the PSI ring
cyclotron. It is shown there that the transversal space charge limit appears at about
20mA, and that the longitudinal space charge limit is much lower, and depends on the
gap voltage Vg as ... o< V2, and is currently at about 2mA.

The transversal space charge forces decrease the focusing frequency, but do not
change the fact that the beam remains focused in transversal direction. On the other
hand, the longitudinal part of the space charge forces leads to an increased energy
spread which accumulates during the particle propagation in the cyclotron. This smears
out the turn separation and leads to increased extraction losses.

1.2 Phenomenology of Beam-Cavity Interaction

Figure shows a set of particle bunches of charge ¢ traveling through a cavity. It is
supposed that the energies of the particles in one bunch are equal and that the cavity
is tuned to the resonance frequency f, = wo/(27). If there is no electromagnetic field
in the cavity, an excitation seems to be impossible because the beam does not see any
Lorentz forces and therefore can not absorb or induce any energy. However, there are
always small oscillations induced by thermal motion observed as thermal noise. If at
this moment the phase of this “Brownian motion” is equal to ¥, one can represent the
superposition of oscillations as

Vi, = Z U; sin (wot + 0;) = Uy sin (wot + V) (1.4)

The mode amplitudes U; and phases 6; are arbitrary and only give evidence of the fact
that every periodic function can be expressed as a sum of sines. All oscillations of this
mode have the same damping by the finite conductivity of the cavity walls. For one
particular oscillation with phase 6; = «, E is maximal at the passage of ¢. This com-
ponent of oscillation will rise faster than the others and, when it becomes observable
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Figure 1.5: lllustration of the cavity excitation by a particle bunch.
View on a cross section of a box shaped cavity

macroscopically, remains singular. This is called the principle of maximal excitation
by Blaser [12]. The phase of the excited oscillation is opposed to the phase of the
exciting bunches. Otherwise one would have a perpetuum mobile: the particle bunch
induces an electromagnetic field in the cavity, this field accelerates the particle even
more and increases the electromagnetic field. But this is in contradiction to the energy
conservation law.

If V(¢) is the time dependent cavity gap voltage during the excitation process, it has
to fulfill the principle of energy conservation for the stored energy U¢ in the cavity, the
power lost in the cavity walls Py, and by beam loading F,. The beam loading can be
approximated by the energy gain AFEy;, = ¢V from the particles, when they cross the
cavity gap. This is repeated at each period of time At = 27 /wy by the current Iy = ¢/At.
The energy conservation law can then be written as

dUc V2 AFEn Vi weqV
— P Py=—— = 1.5
wt o R T At SR T on (1.5)

R is the shunt impedance. Only the fundamental cavity mode is considered as lumped
RCL equivalence circuit according to figure [1.6]
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o

Figure 1.6: Equivalence circuit of the cavity. V is the amplitude of the
gap voltage.

The total energy in the cavity is proportional to V2 and consists of electric energy-
and magnetic energy. These energies oscillate between electric- and magnetic field
energy and on the average, have therefore to be equal. The total energy stored in the
cavity can then be expressed at the time when all the energy is stored in the capacity
C as

cv?
2

In the case of a cyclotron with n turns located at z;, the total beam-interaction is the

sum over all interactions for the bunches & with velocity v, (see figure |1.7).

Uo = (1.6)

- -
-
q :
. ..... . ' . ..... . |
A ¢ Yn ¢ Yk ¢ Vs Cyclotron
e Bl e
Y center X

Figure 1.7: Beam passage of n-bunches. Top view on beam plane

For simplification of the equations, the cavity shape is supposed to be symmetric
and the gap voltage approximated as Vi (x) with upper bound Vi = V (¢). The energy
transfer per gap crossing can then be written as

n

Z qVa(z;) = aqVg a.7)
k=1

for a constant o < n. Introducing this generalized expression into the differential equa-
tion (1.5) of energy conservation for the fundamental mode:

dVe Vo | woag

W 2R o (18)
With its general time dependent solution
2 ¢
V(t) = —O‘;]fw() (1-e ) (1.9)
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One can see that the gap voltage in the cavity rises negative-exponentially during the
bunch passage. An upper limit of the excitation is given by the static case for a time
going to infinity in equation (1.9), and is simplified even more to

- 2aq Rwy

—— 2RIy < 2nRIy (1.10)
An upper limit on the beam-excited amplitude is now given by setting V., = 2nRI,. The
power dissipation in a cavity excited by a beam of I, = 2mA current and a shunt
impedance of 1IMQ and 200 turns can reach values of P, = V2/(2R) ~ 300kW in
the case of the cavities in the ring cyclotron, for example. This is comparable to the
power losses in the walls of the cavity during beam production. For such an important
excitation of the cavity mode it is required that

1. The sum over all the n beam bunch to cavity mode interactions is non zero
2. The resonance of the mode is a harmonic value of the bunch passing frequency

An other type of modes are the ones which have no beam excited gap voltage V., as
long as the beam is positioned perfectly in the horizontal plane. If the beam is moved
slightly out of the horizontal plane of symmetry, the modes with vertical field distribution
in the beam plane can also be excited. Though the amplitudes of excitations are small
for small deflections of the beam, the effects can grow as the beam passes through the
accelerator. The excitation left behind a cavity by one bunch can cause the next bunch
to receive a greater deflection. This greater deflection means more excitation, and so
on. This effect will be discussed in the following section:

1.2.1 Simple Theory for Vertical Beam-Cavity Interaction

An elegant analytical description of the beam-cavity interaction phenomena was devel-
oped by Lee-Whiting [44]. This simplified theory can also be used to find upper bounds
for the growth of the excitation of Higher Order Modes (HOMs) with vertically deflecting
forces. Focusing forces of the cyclotron are ignored for the following development.

If a cyclotron has N cavities and M orbit turns, the deflection in the beam-position r
before cavity n can then be defined as y, ,,. The cavity-field strength parameter in cavity
n is denoted as F,,. Assuming that the deflection in the next cavity can be expressed
recursively in function of a coefficient C,., it is

Yrn+1l = Yrn + C’an (111)

If the field strength parameter F,, depends linearly on the deflections in all the turns at
cavity n

M
Fo =Y Gn (1.12)
s=1

The coefficient G,, represents an average for turn number s. Combining (1.11) with
(1.12), one gets a linear relationship between the deflections at cavity (n + 1) and
deflections at cavity n.
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The initial deflection y;, has to be regarded as given and y,,411 has to be calculated.
Defining a matrix B, ; by

B, s = C.Gj (1.13)
it can be shown that with trace Tr
B? = Tr(B)B (1.14)
It follows then by recursion that
M M
ad . > G.C
Ynm+1,1 14 r:lj\f[:i_l (1.15)
Y11 1-a3 Y G0,
r=2s=1
C+TmB)IY -1
a = T(B) (1.16)

Equation (1.16) can now be used to obtain an upper bound growth for the case in
which all the products G, C are small. Replacing G, by an upper bound G, and C, by
an upper bound C, the previous equation yields

IMALL 4 NMPGC. (1.17)
Y11
In fact, the growth factor for the passage through one cavity is 1 + GC; there are NM
passages through cavities, and the beam excites each cavity M times.

1.3 Outline of the Analysis

With the commercial code MAFIA, it is possible to simulate a single cavity only. Mea-
surements show that the electromagnetic fields of higher order modes leak out of the
cavity into the vacuum chamber. The use of a different code is therefore inevitable.

A self-consistent calculation of the beam-cavity interaction in the cyclotron is cur-
rently out of scope due to the following problems:

e More than 1000 proton bunches with different energies propagate simultaneously
through the cyclotron and interact mutually and with the excited HOMs. The huge
amount of interacting proton bunches leads to a tremendous number of macro
particles.

e In order to reach steady state, about 45’000 particle crossings have to be cal-
culated, leading to more than 8 million time steps and consequently to noise
problems.

In the Advanced Computations Department (ACD) of the Stanford Linear Accelerator
Center (SLAC) a suite of 3D electromagnetic codes is under development to provide
higher accuracy and to model larger problems through the combined use of unstruc-
tured grids and parallel processing. Especially the eigenmode solver Omega3P is ca-
pable of modeling very large complex structures and finding tightly clustered eigenval-
ues and makes the following calculation method possible:
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1. Solve for a set of eigenmodes in the cyclotron structure (frequency domain). They
are used as basis functions for the representation of the rf fields in the cyclotron
in step 3 and 4.

2. Calculate the design trajectory of one bunch from injection to extraction in the
cyclotron (time-domain). The position and velocity parameters are used in step 3.

3. Evaluate the amplitude of the beam-excited rf-modes (frequency domain).

4. Subsequently track one bunch, composed of a large set of macro particles, through
these rf fields superposed with its space charge fields (time domain).

In addition, this method assumes that particle oscillations can be decoupled into move-
ments in vertical and horizontal direction for the calculation of a fast space charge
correction by a Particle In Cell Needle (PICN) model.

1.4 Organization of the Report

Starting from Maxwell's and Lorentz’ equations, the theory necessary for a numerical
analysis of beam-cavity interactions is outlined in chapter[2] There the mode expansion
of the rf-fields and particle tracking with space charge correction are introduced. Imple-
mentation details and the validation of the simulation tools are presented in chapter 3
Simulation results and measured data are described and compared in chapter [4]






Chapter 2

DESCRIPTION FROM FIRST
PRINCIPLES

A more formal description of the beam-cavity interaction can be found from an ana-
lysis based on Maxwell's equations similar to methods developed for quantum electro
dynamics [60]. The mode expansion technique is used in order to reduce the problem
to an analysis of a set of mode amplitudes. A Fourier transformation of the equations
in frequency domain provides directly the field solution in steady state condition for a
periodic excitation of the electromagnetic fields in the cavity by the current of a bunched
proton beam. Time domain calculations on the other hand require to integrate for a rela-
tively long time, until the modes are fully excited and steady state condition is reached.
However, computing in time domain could provide a more self consistent description if
heavy perturbations of the particle distributions occur by the excited fields.

2.0.1 The Partial Differential Equations

The homogeneous Maxwell equations are given by [35]

— a — —
VxE+aB:O V-B=0 (2.2)
where the Nabla operato represents differential operator for curl and divergence. The
inhomogeneous Maxwell equations read

vXﬁ—%ﬁzf V-D=p (2.3)

Lorentz force density L from the electromagnetic fields acts onto the evolution of charged
particles according to - o

L=pE+JxB (2.4)

<
If

o)
67
fgz]’ Viazdiv@, Vxazcul@. Vo= gred) @2)

0z

13
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Where the meaning of the symbols are E(Z, ) for electric field, B(z, ) for magnetic
induction, D(Z,t) for electric displacement field, H(Z,¢) for magnetic field, p(z,t) for
density of charge and J(&, t) for the density of current

(Z,t) = qn(Z, t)v(Z, 1) p(Z,t) = qn(Z,t) (2.5)
n(Z,t) = %/f(f,ﬁ,t)dvg’ n(Z,t)v(& N/vf (z,7,t)dv? (2.6)

with the distribution function f(Z,v,t), for a large number of particles N, volume of
integration V" and charge ¢ of one particle. .
In the notation of potential vector A(Z,t) in the Coulomb gauge with V- A = 0 for
= - a 0 -
B=VxA E:—aA Vo (2.7)
the equations are rewritten for the case of vacuum where B = MOH and D = ¢,E and
with linear operator £ for the Laplace operatorl and reduced excitation F(:c t)

= - 0
£=c72A F(Z,t) = uo(J — ggowp) (2.9)
and the Poisson equation for the electrostatic potential of the charges [35]
=
X — R /p( 1) (2.10)
€0 drey ) |7 — 2|

This leads to the boundary condition problem with linear partial differential equation of
second order: 2

WA LA + F( t) (2.11)
Satisfying the boundary conditions of E for the perfect electric conducting cavity walls
S with normal unity vector n

Ax E(@eSt)=0 (2.12)

yields the boundary condition on A with no volume charges on the surface and a non-
static electric tangential A field

Ax AT eS t)=0 (2.13)

The vector fields can be expanded onto a complete set of orthogonal basis-functions

Enl@):

A& 1) = an(t)en(E) F(@,t) =Y Fu(t)6(@) (2.14)
F@) =" falal@) G(@) = gubal) (2.15)
A=V ;; + gy ;’; 2.8)
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With initial conditions fand g

%—?(t =0,7) = §(2) (2.16)
The choice of Coulomb gauge gives the advantage of a divergence-free field solution
and an additional set of curl-free functions for the equation lnﬁn =V, is therefore not
needed. On the other hand, as explained in Greiner [31], the Coulomb gauge leads
to an intrinsically non-covariant formulation of the theory. But this is no disadvantage
because the beam-excited cyclotron-fields are located in the fixed laboratory frame.

The basis-functions En(a?) can be chosen to be a set of eigenmodes of the homoge-
neous boundary condition problem

satisfying (2.13) with electric-field distribution €, (). The corresponding magnetic-field
of the mode is related by the curl-equations in (2.1
Wb () = V X &,(Z) (2.18)

with phase-difference of 7/2 to the electric field. These electric and magnetic eigen-
fields are calculated directly by the eigensolver. Total energy U, of mode n can be
normalized to

At =0,%) = f(#)

- 8—0/\€n(f)|2da:3 - @/\En(f)|2dx3 =2 (2.19)
2 2 2
\%4 \%4
and satisfies the orthogonality relation
/ 6 ()8 () dz® = G (2.20)
%4

They are coupled to the electric and magnetic solutions of the problem by the potential
equations 1) and the mode expansion (2.14) with space-charge term V&:

Zan &, (T) — VO(I) B(#,t) = =) waan(t)by(7) (2.21)

Using equation - 2.11)),the precedent equations can be rewritten as
RA= Zan &, (%) = SA+ F(i1) Zan (DLE.(F) + Y _ Fu()en(®)  (222)

= — Z (D)Mo (B) + Y Fo(t)En(Z) (2.23)
Leading to the following equation for the time-dependent variables:
n(t) = —Anan(t) + Fa(t) (2.24)
with the projection of the excitation
Fu(t) = / F(7,0)e,(7)ds (2.25)
Vv

The fields are therefore represented by a superposition of uncoupled oscillators, driven
by the excitation F,.
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2.0.2 Cavity with Wall Losses

If the cavity wall losses are taken into account, the spectrum of the modes changes
from a Dirac function to a resonance curve with a well defined bandwidth. An excitation
of a mode with a current results in a finite mode amplitude limited by the power losses
in the wall. The ohmic wall losses are given [20] by the wall currents Js:

}%J%%Q@Q@W&J%fﬁ@ﬁ@WS (2.26)
S S

With wall surface resistivity [35] R, (; defines the imaginary par:

Rm:qug:9a<1_j): ! (2.28)

om A omAm

and skin depth [35] [30] A,,, of the metal at frequency wy:

A= ]2 (2.29)
Wo O m

and conductivity o,, of the metal. The §ymbols € and 7 stand for the real electric
permittivity and magnetic permeability (B = pH, D = ¢FE). The magnetic field of an
eigenmode with resonance frequency w according to (2.1)and [2.3) is a solution of

VxVxH—KH=0 k:% (2.30)

The corresponding electric field in the volume is given by (2.3)

E=-tlvxi (2.31)
we
On the boundary it is required by Ohm'’s law and l) that i x E = —Z,, H, where the
tangential component of the magnetic field is denoted by H;. Substituting into (2.31),
the boundary condition for the magnetic field can then be stated in the form

AXV x H=—jewZ,H, (2.32)

The source free modes in a lossy cavity exist only for complex values of w and k.
Eigenmodes are no longer orthogonal and electric field vectors are not exactly orthog-
onal to the boundaries. The surface impedance Z,, is a function of w, and should be
evaluated for the complex w. However, for many practical applications the imaginary
part of w is very small relative to the real part, as in the case of metals, so that the
imaginary part of w can be neglected in evaluating ~Z,, for perfectly fields for perfectly
conducting boundary conditions and calculating the wall losses as perturbation.

3
" +1=0, j2=-1, z=a+jbea=Re(z)Ab=0Tm(z), a,bcR,zcC (2.27)



17

According to the conservation law of electromagnetic energy, the relation of stored
energy U to power loss is related by
dUu
St
with wall losses P and external coupling losses Pr. These parameters can be found
using Maxwell’s equations and multiplied with A and E respectively and sub-
tracted. The relation for density of energy «(%,t) and Poynting vector S(Z, t) reads after
manipulation with the vector operator identity V- (Ax B)=5-V-A—A-V x B

Py = Py = Pe+ Py (2.33)

v.§+ 20 B uw=—(ED + HB) (2.34)

ot 2

S=ExH (2.35)

Integrating over the volume leads to the total energy and surface losses after applying
the Gaussian integration theorem

1 ., . Lo -
U= —/ (50|E|2 + uo|H|2) v Py = j'{ (E x H> dA (2.36)
2
\% ov
The power losses depend linearly with total energy and the loaded quality factor of the
cavity can therefore be defined as

Q= wOPEV (2.37)

If no excitation is present, the field energy in the cavity decays according to (2.33 and

2.34) combined with (2.37) as

w dU
Py = U@ = — U=Uy-e /™ (2.38)

The field energy on the other hand depends quadratically on the field amplitudes and
therefore the decay time gets

Ta = 2T, = 29 (2.39)
Wo
Extending the differential equation (2.24)) with a damping term r,,
n(t) = =Apan(t) — rpan(t) + Fu(t) (2.40)

and substituting the trial solution A = Aye*t into the homogeneous differential equation
yields
Th . Tn\ 2 )
w=-—= + 4/ A — (;) = —r,  jwr (2.41)
corresponding to a harmonic with exponential envelope if \,, > (r,,/2)? with field evolu-
tion
A= Age” #tedwrt (2.42)
Here w;, corresponds to the shifted resonance frequency due to the additional damping
term r,,. Finally, the parameter r, can now be identified in (2.38/and [2.39) as
2 Wo
n=—=— 2.43
"TLTQ (243)
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2.1 Solution in Frequency Domain

Consideration of the space-charge variation term 9V ® /0t in would lead to a self
consistent description of the beam-cavity interaction and could be integrated by time
stepping. However, it is desirable to calculate the field excitation in frequency domain
and to neglect the bunch deformation in the excitation term (rigid bunch approximation).
The beam excited cyclotron fields are calculated directly for steady state condition this
way, corresponding to infinite operation time after switching-on the beam. The effect
of the excited fields onto the particle distribution can then be simulated in a subse-
guent step. This approximation is valid as long as the shape of particle bunches is
not significantly changed by the excited fields and no non-linear beam resonances are
excited.

2.1.1 Fourier Decomposition of the Excitation

If the excitation signal (2.9) can be decomposed into a Fourier series the coefficients
can be developed according to

Cn o0 o0 '
F.(t) = - + mZ:1 K, cos(mwot) + mZ:1 L,,, sin(mwot) (2.44)
With the Fourier-Ansatz for the function a,,(¢)
a,(t) = %" + mZ:l Qi cOS(Mmuwgt) + ; by sin(mwyt) (2.45)
an(t) = — Z MWo @y SIN(Mwot) + Z mwobym cos(mwyt) (2.46)
m=1 m=1
an(t) = — Z M>W3 Ay, cOS(Mvgt) — Z M>Wa by, sin(mwgt) (2.47)
m=1 m=1

introduced into (2.24) yields the separated equations for ¢,, a,., and b,,,.

MCn = C), (2.48)
—me(Q)anm + rymwobnm + M Qrm = Kom, (2.49)
—me(Q)bnm — TMWoGnm + Anbpm = Lyom (2.50)
with the solutions
C,
= —= 2.51
o= 251)

=

o wm(An — m2w2) — Lymwory, (2.52)
nme (An — m2w3)? + m2wir? '
wm(An — m2w2) + K, nmwory,

(A — m2w3)? + m2wir?

&~

(2.53)
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for the Fourier coefficients of the potential vector, weighted by the resonance curve
of the mode. Where the C,, K,,, and L,,, depend on the current distribution of the
excitation and still have to be determined. It follows from (2.52] and [2.53) that only
modes with a resonance frequency close to a harmonic can be excited significantly by
this signal. The damping term r,, limits the amplitudes of the modes.

Fourier Decomposition of Flying Particle Bunches

One particle bunch flying with velocity v; can be approximated as a one dimensional
wave with transversal density function of a Dirac function 6r;(Z). If for a simplified
description of the beam profile, the density function is supposed to be a normalized
Gaussian with periodicity A:

1 22

f(z) = e 202 f(z+A) = f(2) (2.54)

oV 2T

The periodicity can also be constructed by convolution of one Gaussian G(z) with a
train of Dirac functions D(z) with periodicity A

o0

f:) =G0 = [ G- QD (2.55)

—0o0

The particle bunch is propagating with velocity v and the argument >z must be replaced
by = — vt and with the bunch crossing frequency wy = 27v/A

oo
Wo wo _ (mwpo)? wo
flt,2) = —+ — e 27 cos m—z — muwyt
2mv WU v
m=1
w Wo = _ (mgo)? w
=—+— > e 22 oS <m—z) cos (mwot) (2.56)
2mv  mv ‘ v
m=

Wo o _(mugo)? ( Wo ) .
- ™) - t
+ E e =7 sin (m-—z)sin (muwyt)
as illustrated in figure (2.1). Comparison with (2.44) yields, after neglecting the bunch

deformation and with projection of the particle distributions onto the modes the coeffi-
cients

2mv;

=Y / 5i(2)8,() AV (2.57)
¢ v

_ (mwg O'i)z

Wo )
K, = g e %
— TTV;
7

1%
_ (mwgoy)? o
an _ Z wo e 202 /sin (mﬂz) 5Tz(j;’)é’n(f)dv (259)
4 1%

cos (m@z> 5ri(T)2,(2)dV (2.58)
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Figure 2.1: Synthesis of the Bunches with 40 Fourier components. I-
lustration of equation (2.56) for different time steps. The parti-
cle bunches are propagating to the right.

The coefficients (), lead to an asymmetry of positive to negative amplitude of the mode
corresponding to the static magnetic field induced by the DC component of the beam
current. The action of the beams to cyclotron fields is then the superposition of all the
excitation terms provided by trains of Gaussians at different velocities and positions.
For the determination of these parameters, a single particle trajectory is calculated
from injection to extraction. This yields, after scaling of the distribution function f(¢, z)
to the DC-value of the beam current and projection of the particle distributions onto the
modes, the coefficients C,,, K, and L,,,,, in (2.57},[2.58 and [2.59). It results in that only
modes with electric field components in beam propagation direction can be excited by
the beam and that the amplitudes are proportional to the beam current. For a short
bunch with approximation o — 0, eq. (2.58| and [2.59) indicate that the mean value C,,
is half of the oscillating mode values K,,,, L,,,. This relationship is called the short
bunch approximation [16].

2.1.2 A Note on Mode Coupling and Orthogonality

Strictly speaking, the eigenmodes of a cavity with wall losses are, in general, no longer
orthogonal. This can be illustrated in a way analogous to Slater [68]. In order to
calculate

/ €apdV (2.60)
14
the following vector identity provides interesting results.

V(e x[Vxe])—V- (€ x[Vxel)=(Vxe) (Vxé)
—éy- (VxVxeé,)—(Vxé): (Vxeé,) (2.61)
+é, - (VX V x é)
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Canceling terms and using (2.17), this equation can be rewritten as
V(& % [V X E]) = V- (6 % [V x &]) = (A0 — Ao)éadl (2.62)

By Gauss’ integration theorem and Maxwell’s equations (2.1)and[2.3), the volume inte-
gral can be transformed to

_j ]{ ) <wa€b X by — Walh X Eb) dA = (e — N) / &,édV (2.63)
ov 14

The expressions in the surface integrals can be rewritten in the form b, - (2 x é,) and
by - (7 x €,). But now, in the case with lossy cavity walls, the electric field vectors have
a contribution parallel to the boundary and in general the left hand side of the integral
no longer vanishes. However for practical applications, the approximation of the fields
by eigenmodes with ideal boundary conditions is usually sufficient.

2.1.3 A Note on Coupling of the Modes to the Beam

If the effect of the excited modes onto the beam parameters has to be taken into ac-
count, additional variables for the Fourier components of the excitation can be intro-
duced.

K=K+ ) Fg L=Lo+Y Gm (2.64)

with injection parameters &, = n, = 0. The variables K,,, and L,,, are abbreviated by
K and L, and a,,,, and b,,,, to a and b in this section. K, and L, represent the unper-
turbed excitation parameters according to (2.58/ and[2.59) and the unknowns ¢&;, n; the
perturbation due to the excited modes. Assuming that beam dynamics imply an effect
of the amplitude components to the beam parameters described by the parameters M,
N;, P; and S; in a recursive form, then the equation for the deviation can be written as

§iv1 =& + Mia+ Nb Nit1 = 1; + Pia + 5;b. (2.65)

Introducing these equations into (2.52| and [2.53), a system of V linear equations can
be found for the &; and n; with i = 1... N. The solution of this system provides then the
mode amplitudes of the coupled system of fields interacting with particles.

2.2 Solution in Time Domain

After correction for wall losses in (2.40), the time evolution of mode amplitudes can be
formulated as the following differential equation problem

with the initial conditions

an<0) = fn dn<0) = Gn (2.67)
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This gives the general solution of the harmonic differential equation ¢, (¢) + r,c,(t) +
A, (t) = 0 for the case of weak damping (r2 < 4\,)

—rn T2 2
2t ), cos Ap — Z”t + S, sin Ay — Z"t (2.68)

Then the particular solution 3, can be found by Green’s method:

ap(t) =e

t

e o [t=s] r2
Bn = / ——————sin | (t —s)\/ An — Z" F,.(s) ¢ ds (2.69)
Ay — 2

0 nTy

This yields the solution of the differential equation as superposition of transient effect
and steady state evolution.

—Tn 2 n . 2 — —
= ZeTt fncos < Ap, — T4 ) + 9—25111 ( An — %t) en(zlf)
n A, — i

+ Z/ "(t_s sin <[t — s\ A\ — %) Fy(s)ds  €n()

where the first transient part vanishes for ¢ — oo and there remains for long evolution
time:

(2.70)

5 (t-s) ;
Z / e ([t— /A, — Z%) Fo(s)ds b &,(7) (2.71)

which can be reduced by the convolution of the Laplace transformation £

A(t,7) = (By#r, F)E(2) (2.72)
o5t r2
B,(t) = ————sin Ap — 2 (2.73)
Ao — Th 4
n 4

and due to the convolution theorem
LB, #1, Fo(1)|(2) = £[Ba(1)](2) - £[Fa(t)](2) (2.74)

This expression can be evaluated, if the excitation terms F,, are known preliminary for
all times. Unfortunately, the excitation term also gets affected by the Lorentz forces
of the excited fields and, strictly speaking, should be evaluated in time and integrated
simultaneously with the field equations. This results in self consistent description of
beam cavity interaction particularly interesting for the study of resonance phenomena
at higher frequencies.
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2.3 Particular Case of the Fundamental Mode

Assuming that the E-field distribution of the fundamental mode can be approximated
by
Ey(x) = é, (2.75)

for the case of a cavity located on the x-axis, gap-voltage distribution G(x) with upper
bound G, gap distance « and shunt impedance R, as defined in section . The
expression for the magnetic field distribution follows immediately from Maxwell’s equa-
tions _

5 G(z)

B(z) =j—
Lorentz forces induced by this rf-magnetic field induce an outward deflection for leading
particles and inward deflection for trailing particles and therefore to compression of the
bunches in the region where the gradient of the gap voltage is positive. Decompression
occurs in the region where the gradient is negative. The normalization factor « for
this mode can then be expressed by the unloaded quality factor ), and resonance
frequency Q.

e, (2.76)

2 E24V
o = /EQdV — chio Qo = Q% (2.77)
0

2R

This defines the normalized mode ¢, = @ and the projection of the reduced excita-
tion (2.9) introduced into (2.58) gives directly

= - 2v; Q ) o
F= CQIUOJ K= Z 202/L0[0 {Q—Z sin (_a) } %e v (2.78)

2v; a

with transit time correction represented in the curly brackets and bunch length correc-
tion in the exponent. The expression above leads directly to the amplitude coefficient
bo1 ~ # in 1i in the case of a cavity tuned to \, = Q2. And therefore, in the limits
of small ‘transit imes and short bunches gives

E = a0(t)é(7) = _ 2oy Z G ()€, (F) cos(Q) (2.79)

roa?

Corresponding to a beam induced gap voltage with upper bound after simplification

with (2.77)

Gp=2LRY G(GA”) (2.80)

2.3.1 Link to Equivalence Circuit

If the parameters in the partial differential equations of a parallel RCL-circuit (see fig.
excited by the current source Iz are compared with (2.40) of the damped mode
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oscillation, the equivalent parameters can be identified immediately as
1 0 1 Iz _QRIp
—_ —— —_—a —— F p—y _—
LC "TQ,  RC TG,
Where the scaling factor § for the condition that the cavity gap voltage equals the
voltage of the lumped circuit is given by the definition

=02

(2.81)

Va(t) = Va(t) = ao(t) / éo(x)drp = %jao(t)@ _ “0%)(;

With the first oscillating Fourier coefficient of the reduced excitation according to (2.44)
and (2.78) leading to the same result as (2.80)

(2.82)

G(ri)
— =3 2ol
F = Kjpcos(Qt) = : 2¢” gl - cos () (2.83)
~ G(?"l)
I =21 - 2.84
B =2l EZ (2.84)

2.3.2 Reduction of the Amplitude by Coupling to the Amplifier

The energy conservation law illustrated already how the damping of a cavity in-
creases by the external coupling by the coupling port. This is particularly interesting in
the case of the fundamental mode, where good coupling to the amplifier is essential for
the feeding of an accelerating cavity. Figure illustrates the particular case of the
fundamental mode with inductive coupling to the amplifier, cavity voltage and phase
correction by the feedback loop and tuning for the resonance frequency adjustment.
The rf-signal is fed from the oscillator and a pre-amplifier chain to the final-stage power
tube amplifier (T'). Afterwards, the amplified rf-signal passes through an output match-
ing network of the amplifier consisting of a shorted \/4 transmission line (7'L, and T'L,).
This is required for the impedance transformation from the high tetrode impedance to
the low characteristic impedance of the transmission line T'L3 to the cavity. The power
is coupled by loop L, to the fundamental mode of the cavity, represented as a lumped
RCL-circuit. Loading of the system by the particle beam is considered by the current
source I according to (2.84).

A useful parameter for the description of external loading of the cavity is the external
quality factor .., defined by the ratio of total stored energy U in the cavity to the power
P,..; transported out of the cavity [8] when the amplifier is switched off. According to
(2.33).

1 1 1 wU

- =—+ ext —
Q QO Qewt Q ! Pe:vt

The power transported out of the cavity into the coaxial line is given by surface integral
of the Poynting vector (2.35) over the port cross section A with n*> = /o, simplified
for the case of a TEM-mode

(2.85)

(2.86)
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Figure 2.2: Equivalence circuit of the fundamental mode with cou-
pling to amplifier, amplitude- and phase-control system
and tuning loop. Control- and tuning systems are indicated
in red. The amplifier is represented in grounded grid configu-

ration.
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With equation (2.85) the external quality factor can finally be rewritten as

§ elEPAV  w § polHPdV
Cavity Cavity
Qext = W = = = 2.87
T Bpaa n [ |H2dA (287
A A

An additional complication occurs by the nonlinearity of the output impedance of the
tube amplifier. Therefore @.,; might depend on the output power of the amplifier.

2.3.3 Effects of Tuning, Amplitude- and Phase Control System

Deformation of the cavity shape shifts the resonance frequency of the cavity [68]. The
mechanical tuning system compensates for deformations due to changes in atmos-
pheric pressure and temperature gradients. This relatively slow system compares the
phase of input wave with cavity phase and corrects the shape of the cavity until the right
resonance frequency is found. As side effect, reactive beam loading is compensated
by this method as well.

The amplitude- and phase feedback loops provide a fast correction for keeping the
cavity voltage and phase constant. Beam quality requirements usually impose tight
limits on these parameters. Amplitude- and phase feedback loops compensate beam
loading effects and have to satisfy the stability criteria for all the required beam currents.
The particular case of Robinson stability will be discussed in more detail in section

4.4.2

2.4 Action of the Fields on the Particles

The action of the electromagnetic fields onto the particles is described by the Lorentz
force equation (2.4) with electric and magnetic fields originating from the superposition
of the following fields

Static magnetic field:  provides the focusing of the particles onto their design orbit.

Cavity fundamental modes: are used for the acceleration of the particle bunches.
Their magnetic rf-field yields a compression and decompression of the bunches.
It is shown in Adam [1] that the accelerated reference trajectory keeps the same
revolution time as the static reference trajectory. Gap crossing resonances might
occur in particular cases [28].

Self field of particles: introduces nonlinear forces and reduce the focusing strength
of the accelerator.

Electromagnetic fields excited by the beam: leads to additional energy spread and
deteriorates the beam quality.

Space charge field of neighbor bunches: induces a coupling of the particle bunches
if neighbors are close or overlap partially in the accelerator.



2.4. ACTION OF THE FIELDS ON THE PARTICLES 27

2.4.1 Decoupling of Horizontal and Vertical Motion

The equations of motion in the static magnetic field can be simplified considerably, if
higher orders in the expansion of the magnetic field are negligible because of its par-
ticular configuration. Following the approach described in Bruck [17] for the case of a
magnetic sector with constant gradient of the magnetic field 5 in cylindrical coordinates
(r,0,2)

Figure 2.3: Orientation of coordinate system, direction of particle
propagation and static magnetic field (  B.).

By =0 —B=0 E=0 (2.88)

it can be shown that the equations of motion can be written for a particle with mass m
and charge eq as

mit — mr? = ger mr26 + ;]—61/} = const. (2.89)
T
mz = —qerB, (2.90)

where the second equation corresponds to the Busch's theorem with enclosed mag-
netic flux ¢ represented by the potential vector A by

Y = QW/BZTCZT’ Ld; = |,4f| (2.91)
27r

Developing the magnetic field around the equilibrium orbit with radius r, leads to the
series representation of the equations of motion with azimuthal velocity vy = r6 and
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deviation z = r — rg

ro dB,
= _g‘; =l (2.92)
mi = m_vg + qevy By (1 a2 +.. ) (2.93)
r To
mruvg + geByro (:j—o +.. ) = const. (2.94)
mzi = evgBonT—ZO (1+...) (2.95)

The higher order terms in z/r, are symbolized by dots. A particular solution of this
system of coupled differential equations is given by

r=r—1r9=0 z=0 muy = const. = —qeBgyry (2.96)

The evolution of z(¢) and z(t) are now searched for trajectories close to the particular
solution. With the approximations

N 2 N 2
v:vg\/l—i— (£> + (i) S mv =p=mpy+ Ap (2.97)
Vo Vo
1 1 A
_:_(1__p) 1ot (2.98)
muv - Do Po
1 1 x
-=— (1 — —) po = —qeBgry (2.99)
r To To

The decoupled equations of motion are finally obtained as

1-— 1A
"+ 2”:}0 S Ap = const. (2.100)
TO To P
S lr=0 (2.101)
U

Here, the derivatives with respect to time are transformed into derivatives with respect
to the length of the arc s = vt

o & i
ds? ~ ds?

The solution of these simplified equations of motion (2.100| and [2.101)) are harmonic
oscillations called betatron oscillations of the form

. s s . s s
r = Az + ay sin ()\—x) + as cos ()\—x) 2z = a3 sin (Z) + a4 cos (A_z) (2.103)

with

(2.102)

T

A
o _p )\z = )\z ==

Ax = ——— 7o
(I—=n) p 1—n vn

(2.104)
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leading to the focusing conditions 0 < n < 1, betatron wavelengths \/(27) and betatron
wave numbers

v, =V1—n v, =+/n (2.105)

In the more general case of a sector focusing cyclotron, the magnetic field can be
approximated as [13]

B(r,0) = Bo(r) [1 4+ f(r)cos (N {0 — £(r)})] (2.106)

The sector focusing concept is used to keep axial focusing in a relativistic cyclotron.
Azimuthal variations of the static magnetic field produce a scalloping of the particle
orbits, the instantaneous radius of the curvature increasing and decreasing as the
particle moves from weak to strong field regions. The functions By(r) and f(r) are
referred to as the average field and flutter, £(r) is the spiral and N the sector number.
The scalloped orbits have a radial component of velocity which oscillates with the same
periodicity as the static magnetic field; the product v, By is therefore constant over the
symmetry plane for example (since By is also oscillatory with the periodicity of the field)
and provides the axial focusing. Since the scalloping of the orbits and the strength of
the B, field component are both directly proportional to f2. If, in addition to the flutter,
a spiral is introduced in the field, a further enhancement of the focusing results, due to
introduction of alternating gradient focusing by the v, B, term in the force.

Smooth approximation of the focusing effects with flutter and spiral leads to the
corrected focusing frequencies v, and v, of the decoupled movements in vertical and
horizontal direction:

sz—k+_7kf2{1+2tan2(oz)} v=1+k (2.107)
T 0B _dg
k(r) = 5o tan(a) = o (2.108)

with the relation to the radial oscillation frequency €2, = Qu, and axial oscillation fre-
qguency 2, = Qu, for angular velocity 2 of the particles [61].

More detailed theoretical investigations [65, |66] and comparison with simulation in-
dicate that the particle motion in the horizontal plane can be split into a center motion
and motion in small circles around it. The decoupling of vertical- and horizontal motion
will be discussed further by numerical experiments in section [3.2.2] Numerical inves-
tigation of the decoupling can also be found in the design study for a cyclotron based
driver for Accelerator Driven Systems (ADS) from NSCL [47].

2.4.2 Motion Equations in the Laboratory Frame

The center of charge (and mass) moves with velocity «. An arbitrary particle of charge
ge and rest mass m, in the bunch has some velocity . The energy equations can be
used to eliminate the time derivatives of the ~ factors from the momentum equations.
dp -
d_]Z = FEX 7 = moyi (2.109)
dUxin

= 105 (2.110)

2 2
Uiot = moyuc” = Ukin + mgc
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For the reference particle:

di ey U@ EEX)
— = FEX 0 2.111
mO'V dt 0 02 ( )
and the general particle:
d—» . . — —»' ﬁEX
Moy = FSC 4 FEX _ u(v- Fy7) (2.112)

dt

Where F&X is an externally applied force due to magnets and cavities and FS€ is the
correction for the space charge force with

#(v - FSC)

£SC _ SC
F>*=F >

(2.113)
The space charge term can be expressed in terms of the Coulomb electric fields, due
to the assembly of particles, as calculated in the frame co-moving with the center of
mass of the group. Let the electric field be E¢. in a frame which is co-moving with

. It is assumed that in this rest frame of the bunch there is an electric field EL. but

no magnetic field BL.. The electric field is resolved into components transverse and
longitudinal to the reference motion.

E'=E'| + E| (2.114)

In the laboratory frame, the space charge force on a test particle is given by the Lorentz
transformation [35]

FSC — ge [Eﬁ B+ %U x (i X E’l)] (2.115)

— —

Substitution of v = @ + ¢, = @ + A¥ leads to the exact expression

Fsc . ~ w Ad
qu = (B + k) < - 6_2”> vy (v Bj + vinEl) (2.116)

To the first order approximation of low energy spread we have (1 — uy|/c?) = 1/72 =
1/~4% and the final term in (2.116) in Av/c* is negligible. Therefore

E,
B+

Yu

pse = 1° (2.117)

u

If the charge to mass ratio qe/m, is now set to unity, the simplified acceleration can be

written as
E/ SC
iy 5

u

d ~ 1
— U = FE 4+ —

2.118
7 o (2.118)

The forces acting on a particle can therefore be calculated in a simplified way by the
superposition of external forces and Lorentz transformed space charge forces in a co-
moving frame located at the center of charge.
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2.5 Summary

The theoretical basis for the numerical study of beam-cavity interaction was developed
in this chapter. For the first time, a general eigenmode expansion method with Fourier
decomposition of the beam propagating is applied to the case of a cyclotron. Using
the frequency domain approach, steady state conditions can be computed efficiently. If
the beam-cavity interaction effects are small, the simplified frequency domain descrip-
tion provides the same results as the more self consistent time domain calculation,
but avoids the very long time integration of the equations until steady state condition
is reached. Application of the formulas, derived in the frequency domain, to the fun-
damental cavity modes, provides an expression for the beam loading effects with long
bunch and transit time correction.

Our analysis of the beam dynamics equations imply that decoupling of vertical and
horizontal movement in the cyclotron leads to an accurate description of the particle
motions if higher order terms are negligible. This will be required later for the space
charge correction by the PICN method.






Chapter 3
NUMERICAL METHODS

This chapter presents a short overview of the numerical methods and is composed of
two parts: eigenmode calculation and particle-tracking with space-charge correction.

Electromagnetic fields, used in the beam-cavity interaction simulation by mode-
expansion technique, are no longer localized in discrete cavities, but spread around
the entire cyclotron instead. Therefore field calculation methods are required being
capable to compute efficiently eigenmodes of very large and complicated rf-structures.
An additional complication is the tight clustering of eigenmodes at higher frequencies.
This requires robust solvers with safe convergence to the desired eigenmodes.

The beam-excited mode-amplitudes and -phases depend on the positions and ve-
locities of the particle bunches in the cyclotron. Trajectories of charged particles in the
cyclotron are therefore calculated to determine these parameters. For the simulation
of the effect of these beam-excited fields back onto the particle-distributions, a large
number of macro-particles has to be propagated from cyclotron injection to extraction.
Because of the space-charge dominated beam dynamics in the ring-cyclotron, a PICN
(Particle In Cell Needle) solver is used for the calculation of these additional fields. For
faster computation times, some critical routines are parallelized with OpenMP[g].

3.1 Short Description of the Eigenmode-Solvers

The solution of Maxwell's equations (2.1) and (2.3) in a cavity amounts, after separation
of time/space variables and ellmlnatlon of the magnetlc field, to solving the eigenvalue
problem

VXVxAD A, Fen
- e(@) =0, e, (3.1
nxe—O, x € 01,

where \ = w?/c* and ¢ is the normalized electric field intensity. Using the weak formu-
lation proposed by Kikuchi [26], it is equivalent to

Find (A, €. p) € R x Hy(curl; ©2) x Hy(§2) such that & # 0 and
@) (Vx&Vx W)+ (Vp,¥)=AeT) YU e Hy(curl; Q) (3.2)
(b) (&Vaq) = 0, Vg € H}(Q)

33
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where p is a Lagrange multiplier.

The field ¢’ in Eq. can be discretized by tetrahedral edge elements proposed
by Nédélec [26] and the Lagrange multiplier p by node elements. This yields a large
sparse constrained matrix eigenvalue problem of the form

Ax = AMx C’x=0. (3.3)

where A is symmetric positive semi-definite and M is symmetric positive definite. A is
sometimes referred as stiffness matrix and M as mass matrix. The matrix C results
from the discretization of the divergence equation and has full rank. The number of
columns of C, i.e. the number of constraints, is about one eighth of the order of A and
M . However, with this particular mixed finite element discretization the eigenvalues of
Eq. are equal [26] to the positive eigenvalues of

Ax = A\Mx. (3.4

Nédélec edge elements allow the normal components of the underlying numerical solu-
tion to be discontinuous across inter-element boundaries, and hence model the bound-
ary conditions and material interfaces naturally. Additionally, electric fields ¢ modeled
by the Nédélec edge elements automatically satisfy the divergence-free equation in
the weak sense [76]. The linear Nédélec element has 6 degrees of freedom (DOF), the
guadratic Nédélec element has 20 DOF. The number of degrees of freedom is reduced
if the element is located on the boundary. Finite element basis functions are local func-
tions associated only with the finite element to which they are assigned. Thus, the
resulting matrices are very sparse: there are only about 20 nonzero entries per row
for linear elements and about 60 for quadratic elements. For the same finite element
mesh, the solution for quadratic elements (with curved surfaces) converges closer to
the analytical solution than linear elements. However, matrices from linear elements
are smaller, sparser and more diagonally dominant and therefore have better compu-
tational properties.

The equation can be solved by different algorithms [7]. Depending on the size
of the problem and the location of the eigenvalues direct solvers or iterative solvers
are preferably used. Preconditioners speed up the convergence of a solver. These
methods are implemented in the programs Omega3P and PyFemax.

3.1.1 Omega3P

Omega3P has been developed in the Advanced Computations Department (ACD) of
the Stanford Linear Accelerator Center (SLAC). It can use parallelized Inexact Shift-
and-Invert Lanczos algorithm (ISIL) or Exact Shift-and-Invert Lanczos algorithm (ESIL)
with the choices of iterative linear solvers or sparse direct solvers [43, 45]. Outer eigen-
values of large systems are preferably calculated with ISIL and iterative solvers, like
preconditioned Conjugate Gradient (CG), because of memory-limitations. Tightly clus-
tered inner eigenvalues, on the other hand, lead to convergence problems in iterative
solvers and direct solvers are therefore used with the ESIL algorithm. Direct solvers
require large computer memories and a Massively Parallel IBM-SP4 of the Swiss Na-
tional Supercomputing Centre (CSCS) therefore was used for this type of computation.
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The geometry of the rf-structure is generated and meshed in the CUBIT [21] pro-
gram. This mesh and the input-file with all the solver parameters is then read by
Omega3P. The output files containing the computed eigenmodes can finally be com-
bined to one file for field-visualization in the MeshTV [49] program.

The collaboration with ACD resulted in adapting Omega3P for simulations of beam-
cavity interaction in cyclotrons and to couple with beam dynamics routines [74]. Its
wall-loss computation has recently been improved to allow different wall material in
the same geometry. This is important for the simulation of separate-sector cyclotrons
because the wall material of accelerating cavities are usually different from the wall
material of the vacuum chamber.

For incorporating the rf-fields into beam-dynamics routines, it is necessary to export
the electric- and magnetic field distribution in the region of the horizontal beam-plane,
as well as the field energy and power loss. A small program has been developed to
perform the linear interpolation of the rf-fields from the nodes of the elements to a
structured cylindrical grid in the beam-plane and to write the data to a file in vtk-format
(see section [3.2.1)). The vtk format has the advantage that it can directly be visualized
in MayaVi [58] for verification.

3.1.2 PyFemax

The Python Finite Element Maxwell solver was developed by R. Geus [26] at the In-
stitute of Computational Science (ICoS) at ETH Zurich. It is currently extended to the
parallel FemaxXX-code in the frame of the SEP-CSE project Large Scale Eigenvalue
Problems in Opto-Electronic Semiconductor Laser and Accelerator Cavities in a col-
laboration between ICoS and the Institute of Integrated Systems of ETH-Zurich, PSI
and the Institute of Informatics of University Basel.

The eigenvalue problem is solved numerically using an implementation of the
Jacobi-Davidson (JD) algorithm, optimized for the symmetric eigenvalue problem [26].
To improve the speed of the eigensolver, a set of preconditioners was implemented: the
Jacobi and SSOR preconditioners, the ILUS incomplete factorization preconditioner, a
two-level hierarchical basis preconditioner based on an algebraic multigrid method.

The two-level hierarchical basis preconditioner exploits the hierarchical organiza-
tion of the finite-element basis functions and is a 2x2-block Gauss-Seidel method for
which the second order diagonal block is only solved approximately. For the first-order
diagonal block an iterative method is used, accelerated by an algebraic multigrid pre-
conditioner. For small problems, a direct method like SuperLU can be used instead.
The advantage of the two-level hierarchical basis preconditioner is that the number of
iterations is almost independent of the problem size and makes this method attractive
for very large problems.

ANSYS, CUBIT or NetGen [52] can be used for the construction of the geometry
and mesh. The calculated eigenmode-fields are exported in the vtk-format for visual-
ization in MayaVi [58]. PyFemax does not yet include curved finite elements. This is a
disadvantage for the simulation of curved rf-structures. Although the program was al-
ready successfully used for the simulation of tens of eigenmodes of large structures, it
Is also not yet possible to compute tightly coupled Higher Order Modes with PyFemax,
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because of the poor convergence in this case. The program is currently extended for
field-export to the MAD9P beam-dynamics program [4].

3.1.3 Example: Eigenmodes of the COMET-Cyclotron

Omega3P and PyFemax have been used [75] 27] for a cross-check of the eigenmode
calculation of the COMET cyclotron rf-structure to be delivered by ACCEL GmbH for
the PSI PROSCAN project for proton-therapy (see Fig. [3.1)). This structure consists of
two galvanically and two capacitively coupled double gap cavities (see Fig.[3.2). The
coupling leads to push-pull and push-push modes with a resonant frequency separation
of less than 1 MHz [l The insertion of the tube for the ion-source and the insertion of
the "puller" on the Dee at injection affect the coupling of the cavities.

The unstructured mesh enables a good approximation of the complex geometry.
An accurate simulation of the electromagnetic fields and the coupling of the Dees is a
challenging aspect of this structure. About 1.2 million tetrahedrons are used leading
to a problem size of about 10 million degrees of freedom. The simulation required
12 GBytes of memory and the sequential PyFemax-code used 31 hours of CPU-time
on the HP Superdome at ETHZ for the calculation of the first five eigenmodes.

Meshing and Symmetrization of the Modes

The resonance-frequency of the COMET-cyclotron is tuned by adjusting the stem length
of the Dees. However, a field-asymmetry occurs between voltages in different Dees if
all the stems are adjusted to the same length. For the cyclotron operation, it is required
that the protons get about the same "kick" in each gap. The length of the stems has
therefore to be adjusted for each Dee to yield identical gap-voltage. This also had to
be done in the simulation to provide realistic results.

It is difficult to generate a suitable mesh, because of the exorbitant amount of fine
details in the geometry from the CAD-file received from ACCEL. One run of mesh-
generation with CUBIT typically took about one night, although only the upper part of
the structure is simulated taking a magnetic surface as symmetry condition. In order to
reduce the computational effort, the mesh was generated just once and the stem length
adjusted subsequently by small linear deformation in vertical direction of those nodes
which are located in the stem. The stem length is then adjusted until the required field
balance of the magnetic field in the stems is reached.

Eigenmode Calculation

The cyclotron will be operated at the eigenmode with the lowest resonance frequency
in push-pull mode. In order to get an idea about the mode separation and power

LPrevious simulations by Stephani [71}, [72] of ACCEL and Stingelin [22], using a simplified model,
showed a larger mode separation of 2 MHz. However, the more detailed simulation, as presented in
the following sections, yields a separation of about 500kHz between the push-pull and push-push mode.
This result is also confirmed by measurement (see table .
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Figure 3.1: Picture of the COMET-cyclotron (left) and electric-field dis-
tribution (right).  The diameter of the rf-structure is about

1.8m.

Figure 3.2: Mesh and electric field of the fundamental mode in the
beam plane in the central region of the COMET structure.
The "chimney" of the ion source (circle in the center) as well as
the capacitive coupling and the galvanic coupling of the Dees

are shown.
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Figure 3.3: Mesh (top-left) and magnetic field distribution for the 5
lowest modes. The modes are ordered from left to right and
top to bottom with increasing resonance frequency.
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Figure 3.4: Top view on vector plot of magnetic field distribution for
the 4 lowest modes. Push-pull and push-push modes can
be identified on the top left and bottom left respectively. The
modes are ordered from left to right and top to bottom with
increasing resonance frequency.
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Figure 3.5: View on the beam plane of the COMET rf-structure. The
contour- and arrow-plot of the electric field is shown for the
operating mode.

requirement, resonance frequencies and unloaded quality factors of the first five modes
are calculated. They are indicated in table 3.1 and illustrated in figure [3.3/and [3.4]

Figure shows the absolute value of the electric field in the cyclotron for the
operating mode. The phase of the electric field shifts by an angle = during the time
required for one proton-bunch to propagate from one gap to the next one. Maximum
field values are found in the central region and at the outermost radii of the Dee. On
the other hand, the gap-voltage is minimal close to the stem. Figure illustrates the
electric field distribution in the central region. The mesh represents the central region
in a realistic manner.

The cyclotron operation requires an injection voltage of about 80kV from ion-source
to the puller in the first Dee crossing. This yields the scaling-factor for the calculation
of the power requirement.

3.1.4 Comparison with Measurement

The resonance frequencies and quality factors are measured with a network-analyzer
by ACCEL. Transmission curves from coupling loop to the inductive pick-ups, located
in each stem, are analyzed and the resonance peaks identified.

For comparison with measurement, the lowest mode is tuned to the simulated res-
onance frequency and the stem lengths are adjusted until a symmetrized field balance
is reached. The good match of measured and calculated resonance frequencies of
the higher modes shows that the coupling in the central region is modeled quite ac-
curately by this simulation method. The difference between simulated and measured
guality factors can be explained by the additional power loss occurring in rf-fingers and
brazed/welded interfaces.
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Mode Mode Calculated Measured
Number Type Frequency [MHz] | Qo | Frequency [MHz] | Qo
1 1] 73.178 7500 73.183 5953
2 UL 73.439 7600 73.413 NA
3 17T 73.691 7600 73.640 5932
4 —T-=1 92.456 7100 92.710 NA
5 | (7—-1-) 131.663 9800 132.837 NA

Table 3.1: Measured and calculated resonance-frequencies with
Omega3P and PyFemax. The mode-type 1 stands for push,
| for pull phase of the oscillation in the corresponding Dee, the
- indicates that the field-values in the corresponding Dee are
small. The last mode has a different oscillation mode in the
Dee.

3.1.5 External Quality Factor from Eigenmode Calculation

In addition to wall-losses, eigenmodes can also be damped by coupling to rf-input or
output ports, like transmission-lines or waveguides. This can be described by the ex-
ternal quality-factor Q.,, as illustrated in section[2.3.2] The equations developed
there are derived from a traveling wave model. If the location of the port cross section A
Is chosen appropriately, these equations remain valid also for the standing wave model
[8]. The standing wave field can be considered as a superposition of two traveling wave
fields, where one has an inversed time. Therefore, one can apply formulas with
the resulting fields of eigenmode calculations with different boundary conditions at the
port A.

The Q..; can be calculated [9] as sum of Qg and @Q,, from eigenmode calculations
with perfectly magnetic-, respectively electric conducting boundary condition at the port
location.

w jg 60|EE|2dV

Cavity |1+ €j<‘0|2
= - = o 3.5
ARy —Qu (35)
A
w ¢ eo|Hy|2dV ,
Qu = et _ L=ty 3.6)
Y | HufdA e |
A

Leading to the final equation with vanishing phase ¢

Qeazt = QE + Q]V[ (37)

This method has the advantage, that the external quality factor can be calculated in two
consecutive eigenmode runs with the same mesh, but different boundary conditions at
the port.
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The loaded quality factor can be determined experimentally by bandwidth measure-
ments or damping-time measurement of the mode. It can also be extracted from the
closed loop measurements of the transfer function. The loaded quality factor can then
be determined from the parameters of the low-pass function of the closed loop transfer
function. This is an elegant way to measure loaded external quality factors even in
operation at high-power levels, if the external loading depends on the output-power of
an amplifier, for example.

3.2 Particle-Tracking

The algorithms used for the tracking of protons in the ring-cyclotron are based on rou-
tines of the TFIX and PICN Fortran77 programs, developed by the PSI beam-dynamics
group [41]. They were adapted for the purpose of this work and rewritten in C, C++ [50].
In particular, the space charge correction method in PICN with smoothly approximated
particle focusing is extended for particles moving in the measured magnetic fields. The
method for the calculation of single-particle orbits corresponds basically to the method
used in TFIX. It is extended for trim coil correction of the magnetic fields and additional
rf-fields originating from beam-excited modes. rf specific features are implemented, like
amplitude- and phase modulation of the gap-voltages and phase monitors. Time critical
routines are parallelized with OpenMP [6] for shared memory computers. The rf-fields
of precedent eigenmodes can be read from a file and used in the orbit-calculation. Am-
plitudes and phases of the beam-excited modes are then calculated directly from the
simulated beam trajectories.

3.2.1 The Particle-Pusher

The particle-pusher is based on a Runge-Kutta integrator of the relativistic equation of
motion in the Lorentz-force field. Different methods are used for the interpolation of the
fields onto the particles:

¢ Interpolation of the Static Magnetic Field: For the accurate calculation of the
proton trajectories, a higher order representation of the measured field is re-
quired. The vertical field component B, in the beam-plane and its derivatives
0B./00, 0*B./00* and 3> B, /063, in the cylindrical coordinate system (r, 0, z), are
read from file and the other derivatives are constructed by a 5-point Lagrange
differentiation in » and 6 direction. If the components of the static static magnetic
field are symmetric around the (r,0)-plane, the vertical field components can be
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developed [11] by

—B, = zaBZ — 23F; (3.8)
or
B
—rBy = zaaez — 3Gy (3.9
1 /0°B, 0*°B, 0B, B, 20°B,
Fy=- - - 1
P76 ( or3 * ror?  r20r + r20r06? 7"3892) (3.10)
1 /0B, 09°B, 0°B,
= _ A1
G =5 (8r289 *oroe t 7«203) (3-11)

The values for B., B, and By are then interpolated from the 4 closest grid-points
by a third-order Taylor expansion and transformed to the Cartesian coordinate
system. For the case of the ring cyclotron, the magnetic fields have a periodicity
of /4 in azimuthal direction. The corresponding grid-size for one sector is then
141 x 136 in radial, and azimuthal direction respectively in the sO3av.nar file.

¢ Interpolation of the RF-Fields:  The electric- and magnetic field of each higher-
order mode has to be interpolated to the particle position. Typically about 30
critical eigenmodes are considered for the mode-expansion technique. In order
to reduce the computational effort, only a first-order Taylor-expansion is used for
the interpolation of the rf-fields. This is not critical, as a relatively fine grid is
chosen.

A structured cylindrical grid, typically of size 250 x 720 x 3 in radial, azimuthal and
vertical direction respectively, is used for the representation of the rf-fields in the
region of the beam plane. Previous to the particle simulation, the fields of a set
of eigenmodes from the Omega3P calculation are linearly interpolated onto this
grid and written to a vtk-file. This file contains all necessary mode parameters
like power loss, resonance frequency and quality-factor, the grid information and
the electric and magnetic field vectors in Cartesian coordinates.

e Runge-Kutta Integration: The particles are pushed in the 6-dimensional position-
momentum space by a 4th order Runge Kutta algorithm for large arrays, using a
minimum of workspace [33]. This algorithm has been modified by S.Adam as
illustrated in table [3.2] for faster execution times.
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Original Modified

z0 = x(n) z0 = x(n)

p0 = DT * fct(z0) p0 = DT/2 * fct(z0) + 0.0*p0

z1 =20 + p0/2 z1=20+p0

gl =p0 omit! exchange the roles of p and q

pl =DT * fct(zl) gl = DT/2 * fct(z1) + 0.0*q0

z2 =71+ pl/2-ql/2 z2=21+ql-p0

g2 =ql/6 p2 = p0/3

p2 = DT * fct(z2) - p1/2 g2 = DT * fct(z2) - 1.0*ql

23 =22 +p2 z3=22+Q2

g3 =092 -p2 p3=p2-92

p3 = DT * fct(z3) + 2*p2 g3 = DT/2 * fct(z3) + 1.0*g2

x(n=1) =z4 =23 +q3 + p3/6 | x(n=1) =z4 =z3 + p3 +q3/3

Table 3.2: Runge-Kutta algorithm for large arrays. DT corresponds to

the time-step and fct(z) to the function to be integrated to yield
x(n).

As the maximum time step is also limited by the maximum frequency of the rf-
fields, the time step is kept constant. A typical time step is about 0.1ns, whereas
the simulated HOM with the highest resonance frequency has a period time of
about 1.4ns. For a test of the integrator, a particle-trajectory was simulated from
injection to extraction. The subsequent back-integration of this particle from ex-
traction to injection with time-inversion showed errors smaller than 70um and
200eV for small time-steps.

3.2.2 A Note on the Decoupling of Vertical- and Horizontal Motion

A numerical experiment was performed to check the validity of the hypothesis that the
horizontal and vertical particle-motions are decoupled (see [2.4.1I). A macro-particle
a was started at injection with an offset of 2.5mm from the macro-particle b in the
beam-plane. On its trajectory from injection to extraction, a propagates with a standard
deviation of 1.6mm in vertical and 0.1mm in horizontal direction around b. The ratio
of horizontal to vertical standard-deviation decreases for smaller vertical offset values.
This shows that the coupling of vertical to horizontal movement is relatively small, at
least for this order of magnitude of vertical oscillation.

3.2.3 Space Charge Effects in the PICN-Model

For the space charge correction, it is assumed that the vertical and horizontal motions
are decoupled, so that the internal space charge forces can be calculated by a particle
in cell method applied to the median plane charge distribution. This is called the Particle
In Cell Needle model (PICN).
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The beam is represented by an ensemble of uniformly charged vertical rods [41]
of the same height and the artificial force laws can then be derived from the potential
functions of one rod:

P(r,z) 1 2

Figure 3.6: Parameters of the vertical rods used for the PICN model.
Cylindrical coordinates are used for the integration of the po-
tential function

The potential at a radial distance r and axial position z of rod 1 of length 2C', uni-
formly charged with density ¢, /2C' can be calculated by the integral

O( (3.12)

c
0 dz'
T, Z) = 3
e / Vi 4 (z = 2)?

leading to an expression with rotational elliptical equipotential surfaces with focus at

+C [30]
_ 24+ (z—-C)2?—(2—-0C)
P(r,z) = 87r5001 ( o e (z+0)> (3.13)

The reduced two dimensional potential ®, acting onto the rod centers in the beam
plane can be calculated by exchanging the order of integration and derivation in the
definition of the electrostatic force:

C C
0P N 0
F,. = q21—g? E.dz = —;—é E(r =a,z2)dz = —QQC]QE(I)Q(T) (3.14)
—C -C
with
1 C
W) = | ®(r=a,2Nd 3.15
2(7) Trea(20)° / (r=a,z)dz ( )
~c

The solution of this integral is straight forward with splitting of the logarithm substitution
of the (z — C), (z + C) and the remaining argument function of the logarithm. Finally

Dy(a) = L {a — a2+ (20)2+2Cn ( vai+ (25)2 ki 20) } (3.16)

N 27T€0<2C>2
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and the corresponding normalized electric field Eo(r) for a unit charge can be calcu-
lated by derivation of this reduced potential

; ) 72+ (2002 —r

Eo(r) = _Eq)z(r) = mer(20)? Er (3.17)

The convolution with the charge distribution leads then to the total electric field distri-

bution.

E(To) = =Y q(#5)Eo(|Ts — Tal) = — (¢ * Ey) (3.18)
s

The convolution theorem enables to rewrite the force calculation in a form better suited

for numerical calculation [57].

F5O(&,) = —q(#)57" (S(005(E0)) (3.19)

The charges of the rods are therefore interpolated linearly onto a structured, two di-
mensional grid, centered at the center of mass of the bunch and transported parallel to
its trajectory. A two-dimensional, parallel FFT-algorithm [24] is then used for the calcu-
lation of this convolution. Typical sizes of the equidistant grid are about 128 x 128 and
one space charge force computation is performed per ten tracking steps.

3.2.4 A Note on Mode Expansion and Lorentz Transformation

Equation indicates that the electric field vector has to be corrected for the space
charge field by V®. On the other hand, there is no additional term in the corresponding
equation for the magnetic field vector.

As known from the relativistic transformation of the electric fields from charges in a
moving frame, there usually appears a retarded potential [35] and an additional mag-
netic field term in the Lorentz transformation. This term reduces the space charge
forces in the reference frame.

The missing correction term in the expression for the magnetic field in can
be explained by the magnetic field of the beam-excited modes. If the basis for the
mode expansion is complete, this magnetic field should be represented identically [42].
However, in the case of the ring cyclotron, the mode expansion was limited to modes
with a resonance frequency of less than 700M H z. Therefore, space charge fields are
still transformed in a relativistic way to compensate the missing high frequency terms.
With this approach it is also easier to compare the particle evolution with consideration
of space charge forces, with and without beam excited HOMs.

3.2.5 Relativistic Coordinate System Mappings

Since the Poisson-equation is solved in a co-moving frame, the space-charge fields
are transformed to the fixed cyclotron frame onto the particles. The coordinate system
located at the center of mass of the proton bunch is propagated along the trajectory
of the bunch. The transformation operation, from one bunch position to the next one,
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consists of translations in straight sections, rotations in the sector magnets and accel-
eration in the cavities (see figure [3.7). Therefore, a general Frenet-Serret coordinate
system [38] or transport of a Fermi-Walker tetrad [51] would be required for an exact
description of the relativistic mapping.

However, only a simplified mapping is chosen in the program. It is supposed that
the trajectory consists of small translations from the previous particle position to the
position after one time step. The electromagnetic field tensor is transformed relativis-
tically by Lorentz transformation [35] for a moving coordinate system with velocity v

according to (2.115).

[ .

Figure 3.7: Evolution of the reference coordinate system. The transi-
tion from point 1 to point 2 is obtained by a translation with
acceleration and rotation operation. Moving frames 2’y and
x"y"" are transformed relativistically to the lab frame xy.

3.2.6 Comparison with Analytical Space Charge Formula

An analytical estimation of the evolution of the transverse beam parameters under
space charge influence can be found using the Kapchinskij Vladimirskij (KV) distri-
bution [19]. The net forces F°¢ on a particle of charge ¢ at position (x, y) in a bunch
of transverse radii « and b in the longitudinal particle density X is equal to the electric
force divided by ~?:

J (3.20)
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This yields the envelope equations for horizontal and vertical emittances ¢, and ¢,

a"+ K a—é: S (3.21)
v at a+b
N 3.22

where a prime means taking the derivative with respect to the path-length s, K, ,(s)
specifies the external focusing and

_AgPerA
=

£ (3.23)

is a dimensionless space charge parameter in function of proton mass m, charge ge
and a maximum of uniform longitudinal particle density \.
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Figure 3.8: Comparison of PICN-model with the analytical KV model.
Evolution of the transversal radius of a space charge domi-
nated beam over 1.3m.

Figure shows the evolution of the transversal radius of two beams with the
same standard-deviations as initial conditions. There is a small difference in calcu-
lated transversal radii observed. From of the PICN-model, it is obvious that the
space charge field depends on the height C' of the rods and that realistic values of C'
must be chosen therefore.

3.2.7 Particle Initialization and Stabilization

The initial conditions for the particles are chosen according to the stabilized starting-
ensembles [41] from the radial focusing parameters for the first turn 4, = 1,.(1) because
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of a lack of information on realistic space charge distributions at injection of the ring
cyclotron.

The overall density of points is composed of a set of elementary disks. Each disk
consists of concentric rings of short vertical rods. The disk centres are distributed
homogeneously over a rectangular grid. Each macro-particle may carry a different
charge.

Itis shown in [41] that the equation of motion in an azimuthally varying field cyclotron
can be written in the smooth-focusing approximation as

P —p(0)? +vipd = FPSC, —20'0" — pb" + v1p = —FJ° (3.24)

in the local polar coordinate system (p, 6) attached to the center of mass. The superfix
prime denotes the derivative with respect to turns and F°¢ the space charge forces.
The equilibrium circular solution is found by setting ¢’, p = constants. This leads directly
to the equation for the angular velocity by

20'(p) = v1 + 1/2—4F’§C (3.25)
% = .

The stabilized elementary disk is then found as follows

1. Generate a uniformly populated disk
2. Numerically solve for the space charge forces F7¢ and F;¢
3. Ring-by-ring evaluate ¢'(p)

4. Generate the correlated velocities accordingto ' = 6’'sand s’ = —6'r for s = pcos 6
and r = psiné.

These elementary disks are then copied to yield the overall charge distribution at injec-
tion location.

3.2.8 Parallel Performance

Some critical parts of the particle integrator, for the propagation of one bunch with
space charge correction and in the beam excited rf-field, are parallelized using OpenMP
pragmas [6] (compiler directives) for shared memory computers. These compiler direc-
tives are typically added before time critical loops so that the compiler can parallelize
the loop accordingly. Fortunately there was already a parallelized Fourier-Transform
available in the F'FTW -package [24] and basically only the particle integrator routines
had to be improved for parallel performance.

The best performance was reached by directly subdividing of the Runge-Kutta loop
into several loops, so that each part runs on a separate processor, and to distribute
the particles homogeneously this way. This minimizes the overhead required for the
generation of the parallel-processes (threads).
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#Threads | #Threads
n || Tracking FFT T.[s] | ThInT,

1 1 1 1203 1

16 16 8 81 0.93
32 32 4 84 0.45
32 32 8 52 0.73

Table 3.3: Parallel Performance of OpenMP version of PICN for the
first turn. The execution time T,, for each run with n threads
is shown and the parallel efficiency T1/nT,.

An example for the parallel-efficiency is shown in table[3.3|for the Stardust computer
of ETHZ. The number of threads can be chosen separately for the tracking and FFT
routines. As shown in the table, the shortest execution-time of 52s is reached with an
efficiency of 73% when 32 threads are selected for the tracking routines and 8 threads
for the FFT routines.

Faster execution times are currently achieved on the Pegasus computer of ETHZ.
However, because of heavy loading it is difficult to get proper benchmarking results.

3.3 Summary

The numerical methods and the required approximations for the simulation of beam-
cavity interactions are presented. An illustration of the eigensolver on the example of
the COMET-cyclotron shows the first-ever eigenmode simulation of an entire cyclotron
rf-structure. Good agreement between the PICN and analytical KV-model is shown for
the horizontal beam plane, but requires the knowledge of the horizontal beam width and
assumes a decoupling between horizontal and vertical motion. A numerical experiment
is performed to test the validity of this hypothesis.
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Detailed measurements were carried out in beam development periods dedicated to
beam-cavity interaction studies. The beam current was adjusted to a desired value
and the corresponding mode amplitudes were measured by means of a cavity pickup.

During the shut down period of 2003, one of the main cavities had to be removed
from the ring cyclotron. Therefore, it was possible to perform higher order mode mea-
surements with open and closed beam slots. Large damping of the higher order modes
due to radiation out of the beam slots and out of the pumping port suggested that the
entire cyclotron structure has to be simulated for an accurate description of the electro-
magnetic fields in the cyclotron.

The commercial MAFIA-soIve [46] gave insight into the different methods for beam-
cavity interaction simulations. It was found that simplified wake-field calculations (sec-
tion and investigations of the effects of beam excited fields onto the particles
(section are possible. On the other hand MAFIA’s structured grid is a drawback
for the accurate simulation of Higher Order Modes (HOMSs). Particle in Cell (PIC) re-
sults for the cavity-crossing of a slow bunch (lower stiffness) with superposed HOMs
indicate relatively small deformations of the bunch. Investigation of time-domain meth-
ods showed that their long solution times and noise problems are prohibitive for the
direct solution of beam-cavity interactions in the entire cyclotron. This motivated the
frequency domain approach with the mode-expansion technique.

Within the framework of the collaboration with the Advanced Computations Depart-
ment (ACD) of the Stanford Linear Accelerator Center (SLAC), it was possible to take
advantage of their eigenmode-solver Omega3P [43]. This code uses an unstructured
tetrahedral grid for the representation of the rf-structure and achieves very short solu-
tion times by efficient parallel computing. The good convergence of Omega3P’s ESIL
solver enables one to find even the tightly clustered modes of the whole cyclotron.
An exact mapping of the calculated HOMs onto measured spectra is difficult, because
they partially overlap and because their resonance frequency depends on the operat-
ing condition.

Given the positions and the velocities of a bunch on a centered orbit, the amplitudes

IMAFIA is an acronym for "solution of MAxwells equations using a Finite Integration Algorithm"
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of the excited HOMs can be calculated. The interaction strength with an individual
HOM can be described by a generalized "gap"-voltage. By tracking a bunch trough the
cyclotron, the influence of the beam generated HOMs can now be determined.

4.1 Measurement of the Beam-Excited Modes

4.1.1 Excitation of the 11th Harmonic by the Beam

A spectrum analyzer was connected to the inductive pick up loops 1 and d of the main
cavities of the ring cyclotron. It was then possible to record the dependence of the
mode amplitudes in function of the chosen DC-value of the beam current as summa-
rized in tab. [4.1] The most pronounced peak of the pick up signal is found in cavity
2 at a frequency of about 557MHz, corresponding to eleven times the particle cross-
ing frequency of 50.6MHz and denoted as 11th harmonic frequency in the following
sections.

PUa—f

RC

Figure 4.3: lllustration of measurement setup.  The power-amplifier (PA)
with anode-tank pick up (AT) is connected to the cavity. In
the transmission line there is a directional coupler (RK) for the
measurement of forward, and reflected power. The two induc-
tive pick up loops (PU1) and (PUd) are mounted on the small
side of the cavity. RC symbolizes the center axis of the ring
cyclotron and SA the spectrum analyzer.

Figure [4.1] shows the dependence of the mode amplitude of this HOM with increas-
ing beam current. The linear dependence suggests that no beam resonance, or beam
instability is excited, at least at this current levels.

However, the measured pick up signal could also be related to a higher order mode
oscillation at the same frequency in the anode-tank of the final-stage amplifier. There-
fore, the spectrum-analyzer was connected to the pick up of the anode-tank for verifica-
tion. A very small amplitude of an oscillation-signal with the same frequency is found,
also increasing with beam-current as illustrated in figure [4.2]



4.1. MEASUREMENT OF THE BEAM-EXCITED MODES

I I I T T T T T
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Figure 4.1: Pick-up signal in function of the cyclotron proton beam.
The cavity pick-up signal increases almost linearly with beam
current. Pick-ups on other cavities show the same depen-
dence, but with different slope.
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Figure 4.2: Anode tank signal of the 800kW tube amplifier, feeding
cavity 2. The signal also increases almost linearly with beam
current, but with an offset of 1.2mV at OmA beam current.
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Measurements with Spectrum Analyzer

Cavity Beam Frequency Signal
Current [mA] [MHZz] PU 1 [dBm] | PUd [dBm] | RK 2 HL [dBm]

1 30.8 29 23.2
2 0 50 6328 31.0 28.7 21.3
3 31.2 28.7 21.3
4 31.7 28.8 22.3
1 -63.8 -87.2

2 0 556.961 61 852

3 -71 -85.8

4 -71 -77.5

1 -45.2 -58.2

2 0.5 556.961 9.6 -23.0

3 -34.8 -62.5

4 -48.0 -52.2

1 -19.9 -33.0

2 1.0 556.961 il -18.0

3 -30.0 -57.8

4 -42.6 -47.5

1 -17.6 -30.3

2 1.5 556.961 18 "15.2

3 -27.7 -54.5

4 -39.6 -45.0

1 -16.0 -29.2 -47
2 1.05 556.961 0.0 -13.3 -26.9
3 -26.3 -53.3 -31.8
4 -38.6 -43.8 -40.6

Table 4.1: Effect of beam current on cavity mode excitation for all

main cavities.

PU=Cavity Pick up, RK=Directional coupler on

the transmission line, HL=Forward direction. PU 1 and PU d are
inductive cavity pick ups, each located on one of opposite small
sides of the cavity. Signals on directional coupler are measured
only at maximum and zero beam current.
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The cavity voltage is kept constant by the amplitude control system and the input
power for the fundamental mode therefore depends linearly on the beam current. Com-
pared with the cavity pick up signal at the same frequency, the amplifier signal has an
offset at zero beam current. Even without beam current, there is a harmonic mode
in the anode tank. It is created by the C-class operation mode of the amplifier and is
supposed to increase nonlinearly with the power drive. In the cavity, on the other hand,
the pick up signal is very small at zero beam current. The measured, almost linear de-
pendence suggests, that the additional signal originated from the higher order mode in
the cavity, is excited by the beam. This HOM couples to the coaxial line and therefore
also to the anode tank of the amplifier.

4.1.2 Mode-Spectrum around the 11th Harmonic

1S11] [dB]

— — Cavity |l valve open
— Valve closed
I I

552 553 554 555 556 557 558 559 560 561 562
Frequency [MHz]

[S11] [dB]

— — Cavity lll valve open
— Valve closed : :
-850 1 1 1 1

552 553 554 555 556 557 558 559 560 561 562
Frequency [MHz]

Figure 4.4: Mode spectrum of cavity 2 and 3 in the ring cyclotron. The
spectrum of higher order modes changes when the valve to the
cryogenic vacuum pump is closed.

Figure shows the measured mode spectra of two ring cyclotron main cavities,
measured with a network analyzer across the cone adapter, connected to the coupling
loop. The fundamental modes of the cavities were tuned by the hydraulic system to
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be close to the operating frequency of 50.6328MHz and the ring cyclotron vacuum
pressure was about 10~ °mbar.

It was observed that spectra of the higher order modes change significantly when
the valve to the cryogenic vacuum pump is closed. The spectra are also different for
each cavity. Estimate of the unloaded quality factors @ with the QZERO-Program [39]
indicated that the 557.036MHz mode in cavity 2 with closed valve had an unloaded
quality factor of about (),=6600 compared to the 557.392MHz mode of cavity 3 with
(0=10’800.

The important rf radiation to the vacuum pump and through the beam slots into the
cyclotron complicates the field simulation.

Measurement on one Main Cavity, removed from the Cyclotron

Cavity 3 was then taken out of the cyclotron and analyzed in the test bunker. Its beam
slots were closed by triangular copper strips and the vacuum port was closed by an
aluminum disk. A 20W amplifier was added between the output of the network analyzer
and pick up 11 for improvement of the gain to get well measurable signals on pick up
d. The vented cavity with closed beam slots and vacuum pump port shows twenty
resonances in the range from 553MHz to 562MHz, as illustrated in table [4.2]

553.2 | 553.8 | 553.9 | 555.1 | 555.5 | 555.8 | 555.9 | 556.3 | 556.5 | 556.8
557.0 | 557.9 | 558.1 | 558.5 | 558.7 | 559.1 | 560.3 | 560.9 | 560.9 | 561.8

Table 4.2: Measured modes in the range from 553 to 562 MHz. Fre-
guencies are indicated in MHz.

The coupling to the coaxial line of the modes with a resonance frequency close to
556.952MHz (11th harmonic) was investigated by quality factor measurements for the
cases of open-, short- and 502 terminations at the adaptation cone, connected to the

coupling loop (Tab. 4.3).

Resonance Quality factor[-]

frequency | coupling loop termination:
[M H 2] Short | 500 | Open
556.43 23'991 | 15'318 | 26’003
556.93 18'077 | 13'483 | 22029
557.85 51'781 | 6'838 | 60’301

Table 4.3: Coupling of higher order modes to the coaxial line

The output port of the network analyzer was connected to pick-up 1 of the cavity
and the transmission was then measured to pick-up a. Quality factors are calculated
from bandwidth measurements and decrease significantly with a resistive load on the
coupling loop, indicating a strong coupling to the coaxial line according to equation
(2.85).
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4.2 Preliminary Simulations with MAFIA

4.2.1 Bunch Deformation by a HOM

A refinement of the analytical model (see appendix [A) can be achieved by simula-
tions with the program MAFIA. For a simulation of the effect of a similar mode to the
measured one, onto the beam quality, a first analysis was performed in a combined
eigenmode- Particle In Cell (PIC) simulation.

Eigenmodes in a closed cavity can be calculated with the MAFIA E3 eigenmode
solver [46, [73]. The beam slots and the opening for the vacuum pump were neglected
and represented as perfectly conducting boundaries. No coupling loop was modeled in
this simulation. The E3 Select-Solver finds a mode at 554MHz with magnetic bound-
ary as symmetry condition in the beam plane. This mode amplitude of the electric field
was then rescaled to 10% of the fundamental mode and imported into the MAFIA TS3
Particle In Cell (PIC) solver. A slow bunch (with low stiffness) of 20pC, with velocity of
a tenth of speed of light and negligible energy spread was then propagated selfconsis-
tently across the cavity. The effect of the higher order mode onto the phase space of
the particle bunch is summarized in figure [4.6] A visible oscillation can be observed in
the momentum coordinates of the bunch.

Unfortunately, this model does not provide much information about what might hap-
pen in the cyclotron because of the missing focusing forces from the static magnetic
field.

4.2.2 \Wake Field Simulation

This time domain analysis was performed with MAFIA’s three-dimensional Cartesian
time domain solvers. The import of the particle positions and velocities from the beam
dynamics calculationsE], interpolated onto the grid of MAFIA’s solver, gives a realistic
excitation model. Each of the 221 bunches acts in the T3 module as a one-dimensional,
rigid current distribution which excites an electromagnetic field in the cavity. It is re-
quired that the z-axis of the simulation grid is oriented in direction of the particle velocity
vector. The simulation in the T3 module has the advantage of being much faster than
a fully self-consistent PIC calculation and uses much less memory.

A first idea about the effect of wake fields was gained by calculations of the field
excited by the i = 1...221 driving bunches with charge ¢; = ¢ = 60pC crossing the
cavity at the calculated positions, and integrating the Lorentz forces seen by a test
particle with small charge e; at distance s; from the driving bunch ¢;. The wake potential
for one bunch ¢; is then found by:

- 1 . S
W,@):-/E(t:Z+S)+17,-><B(tzz+s)dz (4.1)
U; Vi

The longitudinal component of the wake potential describes the total voltage at the test
particle divided by the charge of the wake field generating charge ¢. The transversal

2See section 3.2]for a description of the method.
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Figure 4.5: Phase space before cavity crossing.
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60 CHAPTER 4. RESULTS

X 10

y[m]

x [m]

3.716 3.718 3.72
X [m]

0'.
3.716 3.718 3.72
X [m]

3.716 3.718 3.72
x [m] yIm 400 z[m]

Figure 4.7: Phase space before cavity crossing.  For the momentum in
longitudinal direction is only the relative value indicated.



4.2. PRELIMINARY SIMULATIONS WITH MAFIA 61

y[m]

3.718
x [m]

x 107

3.716  3.718 3.72
x [m]

3.716 3.718 3.72

-3

3.716 3.718 3.72
x [m] yim  ,40° z[m]

Figure 4.8: Phase space after cavity crossing  For the momentum in lon-
gitudinal direction is only the relative value indicated.



62 CHAPTER 4. RESULTS

components of the wake potential give the change in the transversal test particle volt-
age divided by ¢q. The Fourier transform of the wake potential of a 590 MeV beam
is shown in Fig. 4.9 Its value depends only on the transversal coordinates and the
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Figure 4.9: Fourier transform of a wake integral with an integration
length of 2000 m.

frequency, and is a measure for the interaction between the particle beam and the
accelerator structure. The spectral resolution in the rigid bunch model of MAFIA’s T3
solver is achieved by choosing a very long wake integration length of 1000 m. This
allows modes at frequencies higher than 100 MHz to be distinguished, but results in
computation times of about one month on a DEC-alpha Tru64 machine.

4.2.3 Bunch Deformation in the Wake Field

The short-range effects of bunches with its own wake field and the wake field of its
neighbors in radial direction are then analyzed in a combined rigid bunch T3 and PIC
simulation. Increased beam currents of 3mA are chosen in order to investigate eventu-
ally limiting effects.

In order to get an estimate of the short range effect on the phase space as well,
the fields found in the T3 calculation are imported as initial field values into the self-
consistent PIC solver (MAFIA’'s TS3 module). Bunches with a charge of 60pC and
low velocity of 0.1c are propagated through the cavity. The particle monitors are set
to register the phase space before and after cavity crossing for comparison. Space
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Figure 4.10: Top-view on ring cyclotron (left) and RF-model (right).
The ports for the vacuum pump (VPP), extraction (Extr.), an-
gle between main cavities (C1-C4) and flattop-cavity (C5)
break the symmetry. The vacuum-chamber (VC) intercon-
nects the cavities.

charge effects and field deformation due to the close vacuum chamber wall can be
observed (see fig. and [4.8). The effects of the short range wake fields on the
neighboring bunches are relatively low. More accurate simulations in MAFIA’s time
domain modules are impossible because of the poor approximation of the geometry by
MAFIA’s structured grid, the long computation times and memory limitations.

4.3 Eigenmode Calculation for the Ring Cyclotron

An even more detailed description of the field distribution inside the cyclotron can be
found with a mode expansion technique, as described in section[2.1] For the calculation
of the basis-function ¢, in (2.17) it is required to calculate a set of eigenmodes. Equa-
tions (2.52] and [2.53) indicate that only eigenmodes with their resonance frequency
close to a harmonic frequency can contribute significantly to the beam-excited field.
On the other hand, the cyclotron structure has no exact symmetry in azimuthal- or ver-
tical direction. The lower cut-off frequency of 56.4MHz for the beam slot opening in the
main cavities leads to the consequence that eigenmodes can spread around the entire
cyclotron structure and that the eigenmodes have therefore to be solved for the entire
cyclotron structure.

It is intricate to find the eigenmodes in such a complex structure, where the modes
are tightly clustered. The parallel Exact Shift Invert Lanczos (ESIL)-solver in Omega3P
was chosen for this purpose because it guarantees safe numerical convergence
to the desired eigenmodes. Omega3P uses unstructured tetrahedral elements for the
discretization of the simulation volume. This mesh can be generated with the CUBIT
[21] program. The cyclotron geometry (see figure has to be simplified in order
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Figure 4.11: Mesh of ring cyclotron. CUBIT was used to generate a
mesh with about 1.2 million elements, leading to a problem
size of 6.9 million degrees of freedom if second-order ele-
ments are used.

to get a reasonable problem size. The dimensions are entered into CUBIT according
to the construction drawings of the cyclotron. However, it is known from measure-
ments that the shape of the biggest surfaces get slightly deformed when the cyclotron
is evacuated. Another simplification is the truncation at the vacuum ports without mod-
eling the absorbing vacuum pump structure. Insertion devices like radial beam position
measurement probes, electrostatic deflection septa and extraction magnets are omit-
ted as well. Wall losses are calculated with a perturbation technique. The surfaces with
ferromagnetic material are approximated by the same formulation as perfectly conduct-
ing boundaries for the field calculation and loss calculation by perturbation technique.
The inductive coupling loops for the excitation of the fundamental cavity modes and
connection to the final amplifier are neglected too.

4.3.1 The Mesh

CUBIT’s filter function is used to classify the surface areas of the model according to
their size. The surface classes are then triangulated with increasing edge lengths. This
way, it is possible to generate a mesh with 1.2 million elements and 246 thousand
nodes only. Using curved second order elements, the average edge length of 6.4cm
leads to an upper frequency limit of 700MHz at least, if about six nodes are required
for the accurate representation of one wave-length.



4.3. EIGENMODE CALCULATION FOR THE RING CYCLOTRON 65

4.3.2 Omega3P Calculations

SLAC’s Omega3P [43] was run on a IBM-SP4 to find 280 eigenmodes with a resonance
frequency close to a harmonic as illustrated in tab. [4.4]

50-136.5MHz 70 Modes 404.0-406.2MHz 20 Modes
143.6-157.5MHz 20 Modes 454 5-456.9MHz 20 Modes
195.4-207.8MHz 20 Modes 505.4-507.2MHz 20 Modes
245.7-260.4MHz 20 Modes 555.4-558.5MHz 30 Modes
299.3-308.2MHz 20 Modes 606.5-608.6MHz 20 Modes

353.8-355.6MHz 20 Modes

Table 4.4: List of the frequency intervals for the calculated modes.

The typical solution time for 20 modes was about 45 minutes using 32 CPUs and
required a total memory of about 120GB. Omega3P calculated the wall losses in a
post processing-step. Because only one boundary wall material could be selected in
this version of Omega3, all the walls are supposed to be aluminum. This leads to an
additional error in the loss calculation as some parts of the vacuum chamber are made
of stainless steel.

4.3.3 Classification of the Calculated Modes

The modes in a cyclotron structure can be classified into three major groups. Cavity
modes have their field energy localized in one of the cavities C1-C5. These modes
could also be calculated in a rf model of the corresponding cavity only. Vacuum cham-
ber modes have most of the field energy in the vacuum chamber and almost no field
energy in the cavities. All other modes are mixed modes where energy is located in
the vacuum chamber and in the cavities. A list with the parameters of the calculated
modes can be found in appendix B}

Cavity Modes

A total of 44 modes are found for this class, among these obviously also the fundamen-
tal modes at 51.04MHz for the four main cavities and at 150.52MHz for the flattopping
cavity. However, the operating frequency of these modes are at 50.633 and 151.8MHz
respectively. This error between simulated and measured frequency comes from the
difference between simulated and real geometry. For the main cavity, this is mainly
due to geometry deformation by the air pressure and by the tuning system. In the case
of the flattop cavity the electrodes had to be reprocessed and deviate from the length
indicated on the drawings, leading to an additional error. The relatively low cavity beam
slot cut-off frequency of 56.4MHz for waves with electric field in vertical direction leads

3The wall loss calculation has now been improved for in the new version of Omega3P.
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Figure 4.12: Example of a fundamental cavity mode in cavity 2.
Contour-plot of the electric field. The direction of the field
vector is in particle-propagation direction.

Figure 4.13: Example of a vacuum chamber mode.  Contour-plot of the
vertical component of the electric field for the 54.685MHz
mode.
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Figure 4.14: Example of a mixed mode. Contour-plot of the absolute
value of the magnetic field for the 505.391MHz mode.

to very slight coupling of the modes at 100MHz and higher. At higher frequencies,
these modes are no longer localized in one cavity and become mixed modes.

Vacuum Chamber Modes

The vacuum chamber modes have a vertical electric field distribution, a relatively low
guality factor and appear at relatively low frequencies only. A total of 18 modes is calcu-
lated for this class. Their vertical electric field distribution suggests that their interaction
with the beam must be relatively small.

Measurements of the lowest two vacuum chamber modes confirmed the simulation
results. The coupling of these modes to the fundamental mode could also be interesting
for the understanding of the rf leakage of the fundamental modes into the cyclotron
structure. Measurements showed that the coupling could be reduced by a proper top-
to-bottom symmetrization of the cavities. It is currently not clear up to which level
these vacuum chamber modes contribute to multipactoring in the vacuum chamber
and discharges in the electrostatic elements. During machine operation, it was also
observed, that the sparking rate of the electrostatic elements depends on the position
of some beam probes. This indicates that some part of the fundamental mode couples
to the vacuum chamber.
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Mixed Modes

The mixed modes are the most numerous ones with a total of 218 modes. They appear
at higher frequencies and are tightly clustered. Because of the smaller wave length,
their field pattern gets very dense. Therefore the beam interaction averages out and
becomes less important. These modes probably couple to the vacuum port and there-
fore get slightly detuned when the vacuum shutter is opened.

4.3.4 Comparison with Measurement

The Omega3P simulations of the entire cyclotron structure found parasitic vacuum
chamber modes, for example at 54.7MHz and at 57.5MHz. Measurements with a
network analyzer confirm the simulation results. Because of the low transmission
from the coupling loop to the capacitive pickup in the intermediate sector, an additional
amplifier was added to the output of the network analyzer. The measured resonance
frequencies at 54.7M Hz and 57.5M Hz correspond to the vacuum chamber modes.
Cavity modes, on the other-hand, appear as sharp peaks at 51M Hz and 72.2M H z.

At higher frequencies, the modes get tightly clustered and the measured spectra
therefore show overlapping of resonance curves. The curves also depend on the
choice of pick-up positions for the transmission measurement, on the tuning and the
temperature of the cyclotron (see also fig/4.17).

4.3.5 Dependence of the Eigenmodes on Air-Pressure and Tem-
perature

The field distribution inside the cavity can be calculated more accurately in the Omega3P
eigensolve [43] than in MAFIA. This parallel eigenmode solver has the advantage of

using an unstructured grid for a better representation of the rf geometry. CUBIT [21]

was used for the generation of the cavity geometry and meshing of the structure. The

cavity shape and part of the vacuum chamber was then represented by about 257’000

tetrahedral elements of second order. This yields a problem size of about 1.56M de-

grees of freedom. The nodes were then deformed linearly according to the deforma-

tion data, simulated with ANSYS [15]. Omega3P’s ESIL solver found a set of about

30 eigenmodes in 18 minutes, using 16 CPUs of an IBM SP4 of the Swiss National

Supercomputing Centre.

The resonance frequency of the fundamental mode shifted from 51.1 to 50.6MHz
when the cavity shape is changed from non-evacuated state to evacuated and tuned
operation. Figure [4.16) shows the change in resonance frequency of some modes with
resonance frequencies close to the 11th harmonic frequency. The field distribution and
coupling to the vacuum chamber changes slightly when the cavity gets deformed, and
explains the non-linear dependence of the resonance frequencies of the HOMs.

4see section
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Figure 4.15: Measured spectra of the ring cyclotron. Transmission sig-

nal from coupling loop of cavity 2 to a capacitive pickup probe
in the intermediate sector next to cavity 2.
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Figure 4.17: Resonance spectra of cavity 2 at different temperatures.
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4.3.6 Measurement of the HOMs at Different Temperatures

An effort was made to get some measurement data about the shift in resonance fre-
quency with temperature. Directly after full-power operation of the cavity, the network
analyzer was connected from pick-ups 11 to 10 for transmission measurements. It was
possible to record some transmission curves during the cool down period of the cavity
of a few minutes.

Figure indicates the shift in resonance frequency of some modes in function
of the cavity temperature. The fundamental mode was tuned to stay at the operation
frequency. It was not possible to keep the cavity tuned in the temperature interval from
40C to 54C and to measure additional curves in this interval. The change in transmis-
sion curves can be explained by the distortion of the cavity when it is cooled down.
This effect shifts the resonance frequencies of HOMs with respect to the fundamental
mode.

4.4 Beam Dynamics Simulations

4.4.1 Finding a Centered Orbit in the Cyclotron

In order to determine the particle trajectories in the cyclotron, a time domain particle
path integration algorithm is used (section [3.2.1I). The measured data of one sec-
tor magnet with 940A coil current and after shimming correction is provided by the
sO3av.nar-file. Assuming that all the sector magnets are identical, an azimuthal period-
icity is used for the interpolation of these fields. The static magnetic field is rescaled by
a factor of 0.999661 in order to get isochronous conditions at the propagating frequency
of 50.63281MHz in the main cavities, and third harmonic in the flattop cavity. A linear
correction function f =1 — 1.5- 10~%(r — 1.5m), corresponding to the effect of the trim
coils, is used for the reduction of the remaining phase error.

For better reproducibility, the effect of the fundamental modes on the cavities are
reduced to momentum kicks on the particles when they cross the vertical mid-plane of
a cavity. These kicks depend on the radial position and are corrected for transit-times
and rf-phases, including the rf-magnetic field.

During normal high intensity production, the cyclotron parameters are adjusted for
minimal extraction losses. This requires a large turn separation at extraction. If the
injection parameters are chosen appropriately, a betatron precession of the beam can
be excited, leading to well separated turns at extraction. However, the resulting pre-
cession in the cyclotron yields overlapping of the trajectories on other locations of the
machine. For beam dynamics studies, it is desirable to adjust the beam parameters to
get a well centered trajectory with separated turns everywhere in the cyclotron. This
allows to count the number of turns, for example. For comparison with simulation, an
algorithm was developed for the centering of the calculated trajectories: Five parti-
cle trajectories were determined and the noise on the phase error function calculated.
This noise is a measure for the precession of the trajectory. A centered beam leads to a
smooth phase error function with minimal noise, as illustrated in figure [4.19] The initial
conditions of the particle two and three is chosen to deviate slightly in radial position
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Figure 4.18: Orbit calculation in the ring cyclotron. The fine line, spiral-
ing out from injection to extraction counter-clockwise, shows
the particle path, with coloring according to the particle mo-
mentum. The vertical component of the static magnetic field
from the eight sector magnets is indicated by contour lines.
Cones represent the gap voltage at the cavity-crossings of
the particles.

and particles four and five in radial momentum with respect to particle number one.
Comparing the noise level in the phase error function, the gradient for the improved
initial conditions can be determined leading to a lower noise of the error function, and
improved centering in the subsequent run.

4.4.2 Transfer Function for Robinson Instability Analysis

The particle tracking algorithm can also be used for a Robinson-Instability analysis.
This beam loading model for storage rings was originally developed by K.W. Robin-
son [62]. For the case presented there, all the particle bunches cross the cavity at the
same location and the same energy, whereas in the case of the cyclotron they traverse
the cavity at different radial positions and different energies. The knowledge of the
cyclotron cavity-beam transfer function is the key to Robinson stability analysis.
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Figure 4.19: Phase error of the centered trajectory.

The action of the particles on the cavity modes can be calculated by Maxwell's equa-
tions using a mode expansion method for the electric field and Fourier decomposition
of the flying particle bunches. The resulting differential equation of e.g. the fundamen-
tal mode is the same as for a lumped resonance circuit excited by the current source
I, as shown in Fig.[4.20] The contribution to the amplitude of the fundamental mode
at the steady-state condition can be approximated, according to the theory developed
in section 2.3}, by the sum over all turns at cyclotron radii r, with velocity v, and bunch
length o
Ot

AVe=Zolp =—Z¢ ) (4.2)

21

- T(vy)L
% ;V(Tt) (ve) (Ut
for a cavity with gap voltage distribution V' (r;) and upper bound V, shunt impedance
Zo, transit time correction T'(v;) and long bunch correction L(o;/v;) for an excitation

with mean proton current 1.

Cavity-Beam Transfer Function The cavity-beam transfer function B(s) describes
the effect of a small phase or amplitude modulation of the cavity voltage V- on the
beam-excited cavity voltage AV,. The particle-tracking algorithm was used to calcu-
late the variation in particle position and phase at the cavity when the cavity voltage
was modulated.

The particle trajectory was integrated by a fourth order Runge-Kutta algorithm based on
a third order Taylor expansion of the static magnetic fields, as described in section 3.2
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Figure 4.20: RCL equivalence circuit of cavity fundamental mode with
beam-excitation Iz and generator [;. The cavity-beam
transfer function is highlighted in red.
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Figure 4.21: Transfer function for phase modulation. The upper plot

indicates the amplitude- and the lower plot the phase of the
cavity-beam transfer function. The transfer function is scaled
by cho/n.
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The initial cavity voltages were adjusted to be in phase with —I, and to provide a par-
ticle end energy of 590MeV after 220 turns.

Single particle trajectories were calculated for different initial phases of the modula-
tion signal, cavity crossings detected and the variation in each interaction contribution
(VTL,; in equation stored. The complex Fourier coefficients were then evaluated
for each interaction and superimposed after being phase shifted by the delay of the
corresponding turn number. Fig. shows the resulting transfer function of cavity
voltage to beam excited voltage V- in cavity 3. The first bump corresponds to the tran-
sit time of the beam in the cyclotron. The upward trend above 1MHz is related to the
revolution frequency at the sixth harmonic (8.4MHz).

The system would be unstable at beam currents higher than about 156 A. But
the additional feedback loop for amplitude and phase increases the maximum current
considerably in the case of the fundamental mode. This method could also be extended
to the interaction of the beam with higher order modes and the stability analysis of this
system.

Although closed-loop measurements of the system confirmed that no instability ap-
pears up to proton beam currents of 1.9mA average intensity, the cavity-beam transfer
function could be the key for future theoretical stability analysis of amplitude and phase
control systems [54]. The method also allows calculation of the rf power requirements
for the cyclotron.

4.4.3 Simulations with Space-Charge Correction

The tracking of one proton bunch with space-charge correction was performed from
cyclotron injection to extraction. Because of the much stronger focusing of the cyclotron
in vertical direction, the emphasis was made for the analysis of the beam evolution
in horizontal phase space. About 130°000 macro particles were initialized close to
the injection location as stabilized distribution, according to section [3.2.7] The PICN-
modeE] provided the fast space-charge correction in horizontal direction.

Calculation of the particle evolution in the PSI Injector 2 cyclotron (without HOMS),
for verification purposes, confirmed the "galaxy-like" shape deformation of the proton
bunches, as predicted by Adam [1] and Adelmann [3]. Simulations of the bunch prop-
agation in the ring cyclotron showed similar behavior for very short bunches.

Typical beam parameters used in the simulation of one bunch with space charge
correction in the ring cyclotron are indicated in table [4.5]

5see section m
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Transversal Radius
Beam Height
Beam Length
Beam Current
Energy

29mm  (standard deviation)
4.8mm (height of needles)
52mm (standard deviation)
1.8mA (DC-value)
73.7 MeV (second turn)

Table 4.5: Typical Beam Parameters for the Initial Beam Conditions.

A typical time step for the 4th order Runge-Kutta algorithm is 0.1ns with 1 space
charge force calculation on 128 x 128 grid lines per 10 Runge-Kutta steps. This leads to
calculation times of about 1 minute per turn, using 8 CPUs on the Pegasus computer
at ETHZ.

The difference in rf-phase leads to a smaller energy gain for particles in the head
and tail of the bunch than particles in the center of the bunch. This effect yields a
banana-shaped deformation of the bunch with tips pointing to the center of the cy-
clotron. The flattop voltage can be adjusted to compensate this bending.

Space charge forces push particles away from the bunch center. Particles in the
head get additional kinetic energy and particles in the tail get a reduction. This yields a
S-shape deformation of the bunch, because the radii of equilibrium orbits increase with
energy. The phase of the flattopping voltage can be adjusted to compensate the linear
part of space charge effects. On the other hand, the rf magnetic field induces additional
compression and decompression at the inner and outer radii of the flattopping cavity.

4.4.4 Gap Voltages of the HOMs

In order to get an estimate of the beam-cavity interaction in the ring cyclotron, the
longitudinal and transverse "gap"-voltages are calculated. The relevant gap for the
particles in this case means the trajectory from injection to extraction. Using the method
developed in section 2, the beam-excited electromagnetic fields inside the cyclotron
can be calculated for steady-state condition, corresponding to infinite operation time
after switching on the beam with all the 1320 particle bunches in the cyclotron. The gap
voltage of the electric- and magnetic fields £ and B of a mode, can then be calculated
easily from its definition:

1] (T
Vi= - / ent B(, 1) - diF .3)
4 |Jt=0
ove _ . 1 Te o o
or = AW, A /t ¢ AT {dE(ar,Ar,t) + 7 % dB(x,Ar,t)} dx (4.4)
oV, ) 1 Tk ” . L ) L
0z = AIT;IEO qAz2 /t:O e’ AT {dE(fF,AZ,t) + U X dB(a:,Az,t)} dx (4.5)

dE(Z,7,t) = E(Z + n,t) — E(Z, t) dB(Z,7,t) = B(Z + 7, t) — B(Z,1) (4.6)
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with the longitudinal, differential radial and axial gap voltages V;, dV,./or and 9V, /0z
respectively. The transverse differential gap voltages are an indication for transverse
emittance growths. The trajectory 7, its vertical perpendicular perturbation vector dr
and velocity v are functions of the time ¢ between injection- and extraction time Tg. The
charge of one bunch is chosen as normalization charge ¢. The angular frequency w,
corresponds to the closest harmonic frequency.
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Figure 4.22: Interaction in longitudinal direction. The energy spread
line corresponds to the value at 2mA operation. Fundamen-
tal modes of the main- and flattop cavities are highlighted by
o. The cavity modes are indicated, all the other modes are
mixed modes.

Only modes with a difference in resonance frequency to harmonic of less than
1.5MHz are considered, because other modes are negligible according to (2.52| and
[2.53). Fig. shows the spectrum of the beam excited modes. The blue diamond
symbols indicate the results found for the modes with resonance frequencies calculated
with Omega3P. As explained in the previous section, there is an important uncertainty
in the simulated to the real resonance frequency. Therefore the upper bound of the
mode excitation is indicated with a green cross symbol, obtained by shifting the reso-
nance frequencies exactly to the corresponding harmonic.

The beam loading of the fundamental cavity modes is known from rf power mea-
surements on the directional couplers of the cavities with and without beam. A small
difference between measured and simulated gap-voltage in the fundamental modes
can be explained by the uncertainty of the coupling factor to the final-stage ampilifier.

Comparing the mode amplitudes with the measured energy spread of the particles
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Figure 4.23: Interaction in radial direction
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Figure 4.24: Interaction in vertical direction
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in the cyclotron, it can be seen that no mode can be excited strongly enough to lead to
a relatively large additional energy spread. On the other hand, Fig. indicates that
the total energy gain per turn gets reduced by the beam excited modes.

For completeness figures |4.23/and |4.24] show the results for the radial- and axial
direction respectively. The simulations confirm that the beam-cavity interactions have
no big influence on the operation of the machine. This result is expected from the
machine performance and from the HOM measurements where a linear dependence
of HOM signal with beam current is observed. On the other hand, this results also
validate the perturbation approach chosen for the calculation of the excitation and the
effect on the particle distribution.

Improvements of the model can be made by adding more details to the geometry,
taking the effect of the air pressure on the surface curvature into account and simulating
the wall materials more accurately.

4.4.5 Effect of HOMs onto the Beam Quality

Using the previously calculated eigenmodes of the entire cyclotron for the representa-
tion of the beam excited fields, it is possible to add the corresponding Lorentz forces to
the tracking code with space charge correction. As already illustrated in section [4.4.4]
there is a part of the particle energy transferred to the HOMs. Ohmic losses limit the
amplitudes of the beam-excited modes, and the amplitudes of the fundamental modes
are to be increased accordingly to compensate the energy loss in the beam.

20cm

Figure 4.25: Horizontal Charge distribution at extraction location (214
turns) without (left) and with beam-excited HOMs (right).
Propagation direction is upward, the center of the cyclotron is
to the left. The beam current is 1.8mA.
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The amplitudes and phases of the beam excited modes are calculated in the fre-
quency domain, as described in chapter [2| It follows from this theory that the am-
plitudes depend on the difference from the resonance frequency of the mode to the
nearest beam harmonic frequency. Evidently, the amplitude and phase also depend
on the field distribution of the mode in the beam plane, according to (2.58 and [2.59).
In the simplified description used here for the simulation, it is supposed that the bunch
deformation is small and that the mode-amplitudes depend linearly on the beam cur-
rent.

Figure illustrates the effect of HOMs onto the charge distribution. The coloring
corresponds to the charge density (linear scaling). There are 30 particularly critical
beam-excited modes selected and the resonance frequencies are shifted to exactly the
nearest beam harmonic. This bunch deformation therefore presents a "worst-case"
situation. The mode damping will be more important in the real cyclotron, and the
resonance frequencies do not necessarily fall exactly on a beam harmonic. There
is no significant deformation visible if the modes are not shifted exactly to the beam
harmonic.

4.5 Summary

For the first time ever, it was possible to calculate eigenmodes of the entire ring cy-
clotron. Omega3P’s ESIL-solver finds the HOMs required for the representation of the
beam-excited cyclotron fields. The investigation of the bunch deformation by these
fields was performed by calculating the propagation of macro-particles from injection
to extraction. For the first time ever, a numerical particle-in-cell simulation was done
for the ring cyclotron. This permitted the simulation of beam-cavity interactions in the
entire ring cyclotron.

However, quantitative predictions of limitations for the cyclotron operation by beam
excited HOMs are very difficult. This is mainly due to the high sensitivity of the result
on the calculated resonance frequency and wall losses. Both parameters are affected
by the simplifications of the cyclotron geometry.



Chapter 5
CONCLUSIONS

In this thesis, simulation tools were developed which analyze the influence of beam
generated rf-fields on the beam dynamics of sector focused cyclotrons. Effects of
HOMSs, phase-slip and space-charge onto the beam stability and quality can be simu-
lated.

Additionally, the simulation of not only one cavity, but the entire cyclotron structure en-
ables us to find eigenmodes of parasitic cyclotron modes.

The application of these tools to the PSI ring cyclotron shows that only a small degrada-
tion of the beam quality occurs by beam-excited HOMSs at proton beam intensity levels
of about 2mA.

The linear dependence of the measured beam-excited HOM confirms that no instability
or resonance occurs at these power levels.

However, the comparison of calculated quality factors with measurement shows that
the accuracy for quantitative predictions is still limited. The measured HOMs are much
stronger damped than in the simulation. Simplifications made in the geometry of the
simulated rf-structure also lead to a deviation of the simulated resonance frequency.
These effects finally lead to a non-quantifiable error in the simulated amplitudes of
beam-excited modes.

The computer account used for the calculation of the corresponding rf-structure at the
Swiss National Supercomputing Centre is currently restricted to a memory usage of

about 120 GB; just about the size to allow a simulation. Refined simulations would
therefore require larger computing resources.

5.1 Suggestions for Future Efforts

As soon as the phase space at injection and extraction, as well as the effects of neigh-
boring turns are known from 6d beam-dynamics simulations, it can be decided if the
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PICN model has to be improved or not. One small modification would be, for example,
the introduction of a varying rod length according to the vertical beam size. Other fast
space-charge correction methods [56, 48] might also be interesting to investigate fur-
ther for the case of the ring cyclotron.

Refined simulations with this method are interesting for intensity upgrade studies of
the ring cyclotron and the design of future high power cyclotrons for Accelerator Driven
Systems [70]. Strong deformation of the bunches appearing at higher intensities might
require to go beyond the limits of the rigid bunch model. The easiest approach is to
just rerun the calculation of the mode amplitudes and phases with the previously calcu-
lated beam parameters of the bunch in the beam excited HOMs. This can be repeated
until the required convergence is reached. The perturbation approach, described in
section on the other hand, would lead to much faster execution times. A self
consistent calculation could be performed by a time-domain integration of the bunches
with a mode-expanded representation of the electromagnetic fields by evaluation of
equation at each time step.

The accuracy of the eigenmode calculation could be improved in several ways. As
soon as increased computing resources or improved numerical methods become avail-
able, more details should be added to the rf-structure of the ring cyclotron and effects
of absorbing boundaries (like vacuum pump port, magnets and windows) should be
included. Unfortunately, simulations with absorbing boundaries lead to eigenmodes
which are no longer orthogonal, and couple mutually.



Appendix A

The Analytical Model

An analytical model is used for a first estimate of the effects and comparison with
measurements. It consists of a rectangular box cavity and simplified static magnetic
cyclotron field. About 2302 modes with resonance frequencies in the range of 50MHz
to 1GHz are found. A correction for the electrodes and deformation due to the air
pressure is introduced to the resonance frequency calculation by the Slater method.

A.1 Field Distribution in a Box Shaped Cavity

The cavity geometry in figure[A.1]is an approximation of the aluminum main cavity of the
PSI ring cyclotron. The proton beam is accelerated in z-direction by the fundamental
cavity mode and is located in the mid-plane at y = a/2.

v

}

\

a=3.3m

i

p=5-2"™

Q
/|
S

Figure A.1: Geometry of the rectangular box shaped cavity. Electrodes
are neglected.

With the objective to find an analytical field solution for an ideal, perfectly conducting
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cavity, the boundary condition problem (2.17) can be written as

{z,y, z|(x €]0,0]) A (y €]0,a]) A (2 €]0,d])} (A.1)
{z,y,2lt =0V =bVy=0Vy=aVz=0Vz=d}

The eigenmodes in a box-cavity can be calculated according to Poeschl [55]. Its field-
solution is then a superposition of H-type and E-type fields

0%u . ou*™ . ou d2uX
. 8228:5 — JWHo oy . JWeogp, 6y + 828:5
— 0%u : ou* N u*
b= 6281/2_'_ J@Ho loz% o= ](';)50 ox _'_ 828y (AZ)
x
94 + ku Tu + kPuX

The scalar potential for the H-type field is denoted as »* and the one for the E-type
field as w.

u* = A” cos(kyx) cos(kyy) sin(k,z) u = Asin(k,x) sin(kyy) cos(k,z) (A.3)

with wave-vector

7l ™m ™
k, = — k, = — k, = — A.4
b Y a d (A-4)

for the boundary condition and frequency

2

B=" 242 +E  Lmnel (A.5)

H, is proportional to «*. In the oscillation state H,,,,, the indices [, m,n describe the
number of node-surfaces perpendicular to x-, y- and z-axis. For b > a is wg; the lowest
eigenfrequency of H-type and for H,,,, are only the components E,, H,, H, non-zero.
If £, = 0 or both k, = 0 and k, = 0, it follows that /7, = 0 and modes of type H;,,, or
Hyo,, therefore do not exist.

For E-waves the oscillation types Eo., o, @and Eqg, vanish. The resonance fre-
guencies wy,,, are the same as for the H-type and the eigenvalues k;,,, = cw;,, are
degenerated, except kq,., and kj,. It is straight-forward to show that the field solu-
tions satisfy and the orthogonality condition (2.20). It follows from the property
of degenerated modes [20], that the linear combination of degenerated H;,,, and Ej,,,
modes is a new eigensolution with the same resonance frequency, and that the quality
factors are therefore not uniquely defined. The field distribution of the set of eigen-
modes also depends on the orientation of the coordinate system. It is straight-forward
to show that the corresponding fields can be reconstructed by linear combination of the
degenerated H,,,, - and Ej,,, modes.

The total energy of the electromagnetic field can be expressed from the energy
stored in the electric field (2.34).

Ifl=0and m,n > 0:
gom*m?2bd

U>< — A>< 2
<07m7 n) (MOW ) Ra

(A.6)



A.1. FIELD DISTRIBUTION IN A BOX SHAPED CAVITY

L%

N
3]

N

—
w

s

=2
wn

Quality Factor of Mode [-]

100 200 300 400 500 600 700 800 900

(]
[=]

™~
o

N
o

Mode Type

-y
(=]

Frequency of Mode [MHZz]

Figure A.2: Mode parameters of a box shape cavity: 2302 modes are
found in the interval from 50MHz to 1GHz! Mode-type in-
dicates the numbers for the corresponding H;,,, and Ej,,
modes.
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lfm=0andl,n > 0:

2[ad
U(1,0,1m) = (prowA* ) 2o (A7)
fn=0andl,m > 0:
l4 4 2[2 2b2 2 b4 4
U(L,m,0) = A2rtegd— ggaf rom (A.8)
IfI,m,n > 0:
" m2b* + 1*a®
U*(l,m,n) = (powA*)*r2eod T6ab (A.9)
9 2I22m2a2 + d2b mt - n212b2at + R1ha + n2m2bta?
Ul m,n) = A%, Fb*m*a® + d°b*m* +n a* + d*l*a* + n*m*b*a (A.10)

16d a3b3

The losses in the cavity walls with skin-depth 6 = \/2/(uow), according to , and
wall conductivity o are given by the cavity currents, being proportional to the tangential
magnetic field value, as described in section [2.0.2] For the cavity walls built from
aluminum it results that ;. = po and o = 3.3 - 107 /m /.

b a
1
pczﬁl//mt |H, dedw//\ﬂt ? +1H, [ dyd:
0 0 =0 =

+/ H, P+ |H, 2 dxdz]
y=0

(A.11)

y=a
0 0

The unloaded quality-factor ), can now be determined by its definition (2.37) neglect-

ing external-loading (2.85).
Ifl=0and m,n > 0:

CTT oo 0 b(m2d? + n%a?)3/?
A.12
Qo (0,m,n) = 2 2n2a3b + d3am? + da3n? + 2m2d3b ( )
lfm=0andl,n > 0:
N CTT oo 0 a(lPd? + n?p?)3/2
[ = A.13
Qo (,0,n) 2 2020%a + BPbi% + db*n? + 212dPa (A.13)
lfn=0andl,m > 0:
T o6 d(I2a® + m2b?)3/?
l = A.14
Qoll,m, 0) 2 m2bPa + 2m2db + a312b + 212da? (A.14)
Ifl,m,n > 0:
Qg (l,m,n) W(Fd%ﬂ +m*b*d® + n2b2a2)3/2 (m*v* + l2a2)/{a3n265m2
+ a®n??1 + Ba®l* + da®n®>m2b* + Cam®bt + 2d3a>m212b? (A.15)
2P m2i2a? + dbPI2n2at + dbPm? + d3bz4a4}
Qollm.n) = e pgad (m2b? + 12a?) VI2a2d? + m2b2d? + n2b2a? (A.16)

4 b3m2a + b3m2d + 12a3b + 12da3
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Figure A.3: Frequency change due to cavity shape deformation

A.2 Resonance Frequency Correction by Slater’s For-
mula

The perturbation calculation according to Slater [68] gives the relation of boundary
deformation to the resonance frequency change of a cavity.

W= w2 1+/ (\Hnyz' - |5n|2) dz® (A.17)
AV

with the volume difference AV of undeformed to deformed volume. Fig.[A.3]shows the
correction factor of the resonance frequency for a small modification in cavity shape.
The cavity electrodes are approximated by small brick shaped objects. Effects of the air
pressure to the large surface of the cavity are represented as sinusoidal deformation
of this boundary with Az(z,y) = 1.4325¢m - sin(wx/b) sin(my/a). The surface integral
of the field energy on the boundary times Az(x,y) is evaluated by Maple [18] for the
calculation of the displaced volume integral (A.17).
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Figure A.4: Gap voltages of beam excited modes.  The beam current is
1mA.

A.2.1 The Cavity Mode Model

The parameters C, K and L in equations (2.57) to (2.59) can now be calculated by
inserting the electric field distribution (A.2) of E-type modes for the case of an excitation
by a Gaussian beam distribution. With particle motion along the cavity z-axis

Clmn) _ doy m.n o ; sin ( i ) sin ( 5 ) ifn=20 (A18)
0 ifn>0

for a normalization factor o = c?ugA(k? — k?)+/=0/(2U) and DC beam current I,

. m/wod " 2
) _ rry () e
K, )G Z v; sin ( ) o) = (ﬂnvl-)z e (A.19)
IN(—1)"cos (m%od) _ (mwgoy)?
l mn) = g Z v; sin (Wlxl) L e (A.20)
b (m/wod)? — (mnw;)”
B = 2lyaymnm "wod? sin (?) (A.21)
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where the superscripts (I, m,n) indicate the corresponding mode and m’ the Fourier
component.

The simplified model of a cyclotron with relativistic particle motion and linearly in-
creasing vertical static magnetic field 9, in function of the radius r; gives a recursive
expression for the positions x;, velocities v; and relativistic correction ~; of the particle
bunches with charge ¢ and mass m,. The Lorentz equation leads to the expression for
the trajectories in the static magnetic field. Parameters are determined by the injection
and extraction energies, minimum and maximum radii and total number of turns.

YiMoU;
Ty =
¢*B;

i = + e AU; = NoqVesin(k. ) (A.22)

with energy gain AU; on turn ¢ in a cyclotron with N box shaped cavities, each having
a gap voltage V. The new total energy W, ; and the velocity can now be calculated

by

2
Wiy: = Wi + AU, Ut 1 (m002) (A.23)
c w

Introducing into equation gives the new positions r;;;. The positions of the
particles and the velocities can now be used to calculate the interaction sums in (A.21)
and (A.20). The remaining modes, which could be excited significantly by the beam are
summarized in figure[A.4] Only modes with a difference in (Slater-corrected) resonance
frequencies to the next beam harmonic of less than 5MHz are considered. In order to
get an estimate of the upper bound the values are indicated also for the case with
resonance shifted exactly to the beam harmonic.

This cavity mode model applies only to frequencies below cutoff of the beam slots.
For a top-bottom symmetric cavity, one has the condition that the electric field in the
beam plane must either be perpendicular or parallel to the beam plane. Only the sec-
ond type of modes can be excited by the beam current. In the case of beam slots, the
propagation of modes out of the cavity depends on the coupling of the cavity fields to
the beam slot. But this coupling depends on the polarization of the fields. The cut-
off frequency where all polarizations can propagate into the beam slot is estimated by
fo = ¢/(2Lw¢) with beam slot height of Lyy¢ = hywe =~ 4cm leading to foy ~ 3.7GHz
and with beam slot width of Ly ¢ = wy¢ ~ 2.66m leading to foy ~ 56.4M H z.






Appendix B

List of Calculated Modes

B.1 Cavity Modes

| fo [MHz] | Qo [-] | in Cavity || Voltage [kV/pC] |
51.0404 | 50.63281 | 29’130 C1 8.97| 4’100
51.0405| 50.63281 | 29’130 Cc2 8.97| 4’100
51.0405| 50.63281 | 29’130 C3 8.97| 4’100
51.0406 | 50.63281 | 29’130 C4 8.91| 4100
72.2332 33’310 C1 8.01E-4
72.2332 33’335 C2 8.13E-4
72.2332 33’328 C3 7.85E-4
72.2332 33’160 C4 8.27E-4
97.7344 37415 C1 0.132
97.7344 37’544 C2 0.193
97.7344 34’367 C3 0.134
97.7344 37081 C4 0.338
122.938 41'817 C1 3.34E-3
122.938 41’893 C2 5.74E-3
122.938 42032 C3 8.24E-3
122.940 17°028 C4 7.32E-3
132.306 44790 C1 0.178
132.306 44780 Cc2 0.143
132.306 44780 C3 0.137
132.306 44797 C4 0.143
143.694 47'236 C1 6.25E-3
143.694 47245 C2 6.94E-3
143.694 45’847 C3 5.87E-3
143.694 47276 C4 6.19E-3
149.549 44759 C1 5.68E-5
149.547 45313 Cc2 1.02E-3
149.550 40931 C3 5.27E-3
149.547 45’657 C4 5.24E-2
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150.773| 151.8 29'716 C5 6.40| 3'200
206.091 54’859 7.52E-2
206.098 54’910 2.40E-3
206.099 54’752 6.87E-4
206.099 53211 1.22E-2
247.903 58032 3.38E-7
247.913 49672 1.58E-5
247.917 50122 1.83E-4
247.960 53’641 8.16E-6
250.086 60’867 1.68E-2
250.086 60’736 1.07E-3
250.087 60634 9.48E-2
250.087 60’507 2.28E-2
260.372 4’116 4.48E-2
307.923 10117 C5 5.05E-2
558.147 6'911 C5 5.97E-2

Table B.1: Cavity modes: Mode at C4 122.9MHz cou-
ples to C1 & C3 therefore lowering of @)o. The eigen-
modes at 149.5MHz have field-energy in C1 to CA4.
Resonance frequency C1-C5 are also tuned to oper-
ation frequency.



B.3. MIXED MODES

B.2 Vacuum Chamber Modes

| fo IMHz] | Qo [] || Voltage [kV/pCT |

54.6845 | 1’368 1.90E-6
54.7435 | 5’093 1.14E-4
55.2631 | 122.9 5.17E-5
55.4508 | 1’796 6.02E-6
57.4763 | 1'269 7.15E-5
58.6990 | 4'918 2.51E-6
58.7656 | 5’191 1.46E-4
59.0168 | 5’510 2.46E-5
73.6273 | 103.9 6.60E-5
76.4437 | 4486 5.01E-5
76.5666 | 750.1 6.65E-5
77.8727 | 2425 7.17E-5
78.5503 | 140.7 9.29E-5
81.9829 | 2’379 2.51E-5
82.7765 | 3'959 7.78E-5
83.9048 | 4’727 1.54E-5
91.7687 | 171.5 1.88E-4
96.8376 | 156.4 3.63E-4

Table B.2: Vacuum chamber modes:

B.3 Mixed Modes

| fo[MHz] | Qo [-] | Voltage [kV/pCT] |

101.056 | 14’015 1.11E-5
101.787 | 4’377 1.47E-5
102.491 | 15’948 4.36E-5
102.924 | 2'362 2.95E-4
103.932 | 9333 1.55E-5
103.994 | 7’797 2.72E-4
104.276 | 5949 2.87E-5
104.674 | 8769 7.26E-5
106.981 | 6’543 1.64E-6
107.280 | 6453 8.08E-7
108.327 | 9'881 1.96E-6
110.814 | 2’495 5.37E-5
111.118 | 3'384 1.30E-5
111.607 | 552.9 2.63E-4
111.919 | 3’989 5.67E-5
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114.024 | 5549 6.94E-6
114.998 | 1'977 2.91E-5
115.305 | 6’308 3.29E-5
116.003 | 5’703 1.78E-5
122.720 | 328.9 1.51E-4
124.459 | 4’106 6.13E-5
124.588 | 3’786 7.82E-5
125.404 | 15'035 6.02E-7
125.848 | 302.1 2.61E-5
127.070 | 3'329 6.74E-6
127.204 | 9'397 4.66E-6
127.902 | 1'220 5.35E-5
128.422 | 10’806 2.98E-6
130.699 | 7’681 8.06E-5
130.917 | 8’675 2.84E-4
131.596 | 9'332 5.27E-6
136.412 | 2’487 2.18E-5
147.904 | 22'177 1.78E-4
148.055 | 19’735 7.58E-6
148.426 | 22'993 1.38E-5
148.640 | 4’571 1.76E-5
152.380 | 11’695 1.43E-5
152.413 | 12’209 2.65E-4
154.385 | 11’300 5.59E-5
154.751 | 7’583 1.54E-4
155.170 | 1'040 6.37E-5
157.474 | 11°055 5.72E-6
157.481 | 11°060 7.21E-6
195.499 | 34’918 1.49E-05
195.565 | 30’423 1.55E-04
195.763 | 41’908 2.33E-04
195.929 | 33471 3.03E-05
196.830 | 4434 7.33E-06
197.085 | 14’334 1.21E-05
203.093 | 17’121 6.80E-05
203.093 | 16’939 1.36E-04
203.602 | 41’735 2.31E-05
203.665 | 39'359 8.16E-06
203.767 | 35’609 6.05E-06
203.815 | 33’697 2.81E-05
205.222 | 15’604 9.14E-05
205.942 | 3’883 7.59E-05
207.763 | 16’378 4.99E-05
207.766 | 16’348 5.72E-06
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245.756 | 19’876 5.75E-07
246.657 | 15’675 1.17E-06
253.090 | 44’965 3.92E-03
253.171 | 36’626 2.58E-02
253.234 | 38’961 1.72E-01
253.312 | 31’609 2.98E-02
255.974 | 30°008 2.33E-06
258.843 | 16’027 5.72E-06
258.853 | 16'356 6.38E-06
259.027 | 12’908 6.58E-06
259.111 | 27°459 1.09E-05
299.351 | 53’189 1.24E-02
299.804 | 20’156 3.62E-04
299.810 | 20'082 5.37E-05
300.345 | 16’768 1.41E-04
302.111 | 38’194 4.51E-04
302.300 | 51’376 4.20E-04
302.318 | 42’991 1.54E-03
302.372 | 48’735 3.32E-03
302.624 | 22’484 8.75E-04
303.486 | 17’549 1.70E-04
303.707 | 17’106 4.48E-04
303.718 | 18’028 1.06E-05
306.635 | 7’416 7.43E-06
306.661 | 14’847 5.21E-05
307.210 | 864 1.37E-05
308.139 | 59’786 1.83E-01
308.144 | 61’455 2.31E-01
308.144 | 61’556 1.40E-01
308.146 | 58’508 8.84E-02
353.870 | 23’473 6.78E-04
354.403 | 43’787 1.16E-01
354.425 | 44’921 3.88E-02
354.455 | 39’523 4.07E-01
354.499 | 37’027 3.92E-01
354.577 | 26’652 2.62E-02
354.592 | 36’477 2.46E-02
354.607 | 42’937 6.04E-02
354.621 | 48’533 1.13E-01
354.811 | 24’338 6.47E-04
354.813 | 30’127 4.08E-03
354.868 | 42’394 1.02E-02
354.885 | 40’431 2.99E-02
354.956 | 16’375 5.65E-02

95



96

APPENDIX B. LIST OF CALCULATED MODES

354.983 | 15’718 8.20E-04
355.422 | 17’616 1.55E-03
355.568 | 18’674 5.42E-02
355.575 | 29563 1.18E-01
355.576 | 39668 8.60E-02
355.585 | 31'206 3.81E-03
404.021 | 31005 6.78E-03
404.052 | 42’239 1.68E-03
404.057 | 39'092 8.05E-03
404.071 | 54’834 3.22E-03
404.181 | 20°593 2.06E-03
404.278 | 7505 4.96E-03
404.491 | 48’874 1.85E-02
404.491 | 67°741 3.10E-02
404.492 | 64’038 2.16E-03
404.507 | 39’345 1.24E-03
404.953 | 4’545 8.28E-02
404.998 | 63’177 3.13E-01
405.024 | 33’348 4.57E-02
405.043 | 38’035 4.12E-02
405.123 | 22’852 2.07E-02
405.683 | 3'583 2.09E-03
406.036 | 4’127 1.97E-05
406.090 | 8’302 2.77E-05
406.202 | 55’755 8.78E-03
406.236 | 41'588 2.83E-03
454.545 | 28’824 7.62E-04
454.577 | 22’778 3.27E-05
454.643 | 42’950 1.82E-03
454.744 | 8929 3.04E-04
454.909 | 22°249 7.11E-04
455.101 | 23’032 4.19E-04
455.477 | 5’184 2.87E-03
455.585 | 16’156 1.13E-03
455.848 | 51’587 2.88E-03
455.889 | 58’139 3.10E-03
455.905 | 48'246 6.87E-05
455.932 | 50’658 8.49E-03
456.288 | 24’355 1.54E-03
456.475 | 11’823 4.04E-04
456.686 | 10’163 2.46E-04
456.774 | 3'558 5.09E-04
456.856 | 17’874 2.73E-04
456.926 | 48’336 5.09E-03
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456.936 | 55’679 5.29E-03
456.940 | 48’479 4.96E-05
505.391 | 17’134 2.21E-04
505.499 | 28’780 1.15E-04
505.508 | 37’572 2.20E-05
505.603 | 59°206 1.68E-04
505.687 | 37’555 3.98E-05
505.765 | 19945 1.04E-03
505.938 | 23’251 8.77E-05
506.045 | 22’977 5.67E-04
506.175 | 17°553 4.49E-03
506.466 | 27°769 5.31E-03
506.780 | 32’508 4.11E-04
506.826 | 32’038 2.99E-03
506.865 | 55’774 2.22E-03
506.881 | 64’121 4.93E-03
506.928 | 30’833 4.01E-03
507.001 | 52’430 5.20E-04
507.051 | 54’721 1.21E-03
507.063 | 61’397 7.00E-04
507.096 | 33’247 3.62E-04
507.192 | 36’450 5.96E-04
555.441 | 37’246 1.71E-04
555.552 | 19’880 6.46E-04
555.663 | 20’659 3.12E-04
555.815 | 17’100 9.54E-05
555.912 | 45’270 6.67E-04
555.950 | 34’036 8.31E-04
556.015 | 32°249 4.70E-04
556.182 | 42’989 1.89E-03
556.536 | 10°089 2.67E-03
556.606 | 984 1.44E-05
556.679 | 34’070 5.60E-03
556.949 | 31’293 8.83E-03
557.106 | 30’379 3.21E-02
557.142 | 56’256 5.53E-02
557.158 | 46’589 5.91E-03
557.169 | 36’434 1.32E-02
557.502 | 14’846 9.37E-04
557.674 | 62’014 5.23E-03
557.693 | 70’016 1.25E-03
557.700 | 20’506 3.00E-04
557.749 | 4’439 4.91E-03
557.948 | 31’610 3.55E-04
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557.995 | 672 1.77E-04
558.039 | 19039 1.16E-04
558.259 | 20’658 4.46E-04
558.396 | 1'946 4.52E-04

558.508 | 58’318 6.95E-05
558.525 | 48’094 1.36E-04

558.542 | 23’327 4.64E-06
606.526 | 942 2.37E-03
606.538 | 1’986 9.91E-05
606.697 | 13'692 4.23E-03
606.704 | 41'432 2.43E-04
606.716 | 9901 1.91E-03
606.758 | 45’246 6.16E-03
607.203 | 27'973 7.98E-04
607.339 | 7'485 1.31E-03

607.540 | 19'992 1.51E-03
607.621 | 34’440 5.21E-02
607.707 | 25’169 7.76E-04

607.779 | 3’466 2.01E-03
607.917 | 9'707 1.79E-03
607.990 | 31'649 3.02E-04
608.014 | 37'071 1.17E-04

608.038 | 48’412 2.34E-02
608.079 | 18’517 4.01E-03
608.255 | 44’853 3.27E-03
608.480 | 7'408 1.48E-03
608.581 | 13’204 1.45E-04

Table B.3: Mixed modes: The four modes at
308.1MHz and 355.6MHz are main cavity modes which
couple strongly to the vacuum chamber.



Appendix C

Reduced Variables for Numerical
Computation

Position of the particles in the fixed laboratory frame:
XXPt;_q 5. 4[mm] = 1000 - z;_1 2 3[m] (C.1)

Momentum of the particles in Cyclotron Units in the fixed laboratory frame depend on
speed of light ¢, momentum p and rest energy of the particle F, in Sl-units:

C

Xx~ptz‘:1,3,5[CU] = By “Pi=1,2,3[~] (C.2)
;—i = By (C.3)
=1+ ) xxpt,” (C.4)

=135

Magnetic field in kilo Gauss:

bfld[kG] = 10 - B[T] (C.5)
Particle charge in pico Coulomb:
QBUNCHI[pC] = 102 - ¢[C] (C.6)
Time steps in nano seconds: .
dt[ns] = 107 - dt[s] (C.7)
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