000033571 001__ 33571
000033571 005__ 20190509132028.0
000033571 0247_ $$2doi$$a10.5075/epfl-thesis-3102
000033571 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis3102-7
000033571 02471 $$2nebis$$a4781956
000033571 037__ $$aTHESIS
000033571 041__ $$afre
000033571 088__ $$a3102
000033571 245__ $$aModèles tordus d'espaces de lacets libres et fonctionnels
000033571 269__ $$a2004
000033571 260__ $$bEPFL$$c2004$$aLausanne
000033571 300__ $$a69
000033571 336__ $$aTheses
000033571 502__ $$aLaurent Bartholdi, Jürg Peter Buser, Yves Felix, Ran Levi
000033571 520__ $$aIn this PhD thesis, we construct an explicit algebraic model over Z of the cochains of the free loop space of a 1-connected space X. We start from an enriched Adams-Hilton model of X, which can be obtained relatively easily when X is the realisation of a simplicial set. Note it is not supposed that the Steenrod algebra acts trivially on X. The second part is dedicated to the construction of a model of the cochains of mapping spaces XY. where X is r-connected and Y is a CW-complex that has dimension less or equal to r. The space X must possess commutative models for the cochains of each Ωk X for k ≤ r. We first construct an algebraic model for the cochains of XSn ∀n ≤ r, then we then glue all of them to obtain a model of the cochains of XY. We give examples for each of these situations. The techniques used here rely heavily on the concept of a twisted bimodule. A description of this can be found in [DH99b].
000033571 700__ $$0(EPFLAUTH)111400$$g111400$$aBlanc, Sylvestre
000033571 720_2 $$aHess-Bellwald, Kathryn$$edir.$$g105396$$0240499
000033571 8564_ $$uhttps://infoscience.epfl.ch/record/33571/files/EPFL_TH3102.pdf$$zn/a$$s606099$$yn/a
000033571 909C0 $$xU10968$$0252139$$pUPHESS
000033571 909CO $$pthesis$$pthesis-bn2018$$pDOI$$ooai:infoscience.tind.io:33571$$qDOI2$$qGLOBAL_SET$$pSV
000033571 917Z8 $$x108898
000033571 918__ $$bSB-SMA$$cIGAT$$aSB
000033571 919__ $$aGR-HE
000033571 920__ $$b2004$$a2004-10-28
000033571 970__ $$a3102/THESES
000033571 973__ $$sPUBLISHED$$aEPFL
000033571 980__ $$aTHESIS