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Jérome pour les parties d’échecs. A Ludo pour les envies. A Armelle qui m’a relancé au
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Version abrégée

Cette thèse est une contribution à la statistique des valeurs extrêmes. La queue d’une

fonction de répartition multivariée est charactérisée par sa distribution spectrale. Nous

proposons un nouveau modèle semi-paramétrique constitué d’un mélange de distributions

de Dirichlet. Pour l’estimation de ses composants, un algorithme à sauts réversibles

par châınes de Markov et un algorithme EM sont développés. Leurs performances sont

illustrées sur des données réelles et simulées. Ces simulations sont obtenues grâce à une

nouvelle représentation des modèles logistiques et de Dirichlet. En parallèle à l’estimation

de la loi spectrale, la statistique des valeurs extrêmes requière la selection d’un seuil

permettant de classer les données comme extrêmes ou non. Cette sélection est obtenue

grâce à une nouvelle méthode, basée sur des arguments heuristiques, qui permet une

sélection indépendante de la dimension des données. Ses performances sont illustrées sur

des données réelles et simulées.

L’intérêt premier d’une analyse des extrêmes réside dans l’estimation de quantiles

d’événements rares et dans l’exploration de la structure de dépendance, pour lesquelles

l’estimation de la mesure spectrale est un moyen plutôt qu’un but. Ces deux questions sont

abordées. Pour la première, une méthode de Monte Carlo par simulation d’extrêmes est

développée. Elle est comparée avec des méthodes classiques et nouvelles de la littérature.

Pour la seconde, une analyse de dépendance conditionnelle originale est proposée. Elle

consiste en une série de graphiques représentant des coupes de la fonction de densité

spectrale. Elle éclaire différents aspects de la structure de dépendance des données. Des

exemples sur des données réelles illustrent l’analyse.

Dans la dernière partie, le modèle semi-paramétrique et les méthodes présentées sont

étendues au cas spatial. Cela est rendu possible en considérant la distribution spec-

trale comme la loi d’une probabilité aléatoire, un point de vue adopté tout au long de

cette thèse. Le cas des extrêmes multivariés s’étend alors au cas d’extrêmes de mesures

aléatoires. L’application est illustrée sur un jeu de données de précipitations en Chine.
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Abstract

This thesis is a contribution to multivariate extreme value statistics. The tail of a mul-

tivariate distribution function is characterized by its spectral distribution, for which we

propose a new semi-parametric model based on mixtures of Dirichlet distributions. To

estimate the components of this model, reversible jump Monte Carlo Markov chain and

EM algorithms are developed. Their performances are illustrated on real and simulated

data, obtained using new representations of the extremal logistic and Dirichlet models.

In parallel with the estimation of the spectral distribution, extreme value statistic ma-

chinery requires the selection of a threshold in order to classify data as extreme or not.

This selection is achieved by a new method based on heuristic arguments. It allows a

selection independent of the dimension of the data. Its performance is illustrated on real

and simulated data.

Primal scientific interests behind a multivariate extreme value analysis reside in the

estimation of quantiles of rare events and in the exploration of the dependence structure,

for which the estimation of the spectral measure is a means rather than an end. These two

issues are addressed. For the first, a Monte Carlo method is developed based on simulation

of extremes. It is compared with classical and new methods of the literature. For the

second one, an original conditional dependence analysis is proposed, which enlightens

various aspects of the dependence structure of the data. Examples using real data sets

are given.

In the last part, the semi-parametric model and the presented methods are extended

to spatial extremes. It is made possible by considering the spectral distribution as the

distribution of a random probability, an original viewpoint adopted throughout this the-

sis. Classical multivariate extremes are extended to extremes of random measures. The

application is illustrated on rainfall data in China.

11



Abstract

12



Introduction

When considering the influence through time of a phenomenon on a system, this influence

is often cumulative. Effects of similar amplitude concentrate and entail an ageing of the

system, like a pot filled little by little with drops. From a mathematical viewpoint, the

state of the system is determined by the sum of little quantities Xi, i = 1, 2, . . .. It is

therefore proper to study
∑

i Xi. This is the ergodic theory, whose most famous result is

the central limit theorem. Unlike this approach, statistics of extremes studies accidents

rather than ageing. In many cases, the state of systems is due to one particular event

rather than to the accumulation of many: when the pot is broken, the number of drops

falling into it is no longer relevant. From a mathematical viewpoint, the sum
∑

i Xi is

almost equal to the maximum maxi Xi. It is therefore proper to study the most extreme

values of the phenomenon. This is the basis of extreme value theory.

The main principle of this theory is to rarefy the Xi by rescaling. If this is done

properly, universal behavior of the most extreme values appears. This approach is similar

in principle to the central limit theorem although the limit distribution thus obtained is

less tightly determined. Extreme value statistics fit this limit distribution to the most

extreme among the available data. By nature, these extremes are sparse, so that infor-

mation brought by the dataset may be small. Models link the most extreme behavior

(maybe never observed) with that in the dataset (that is moderately extreme). This is a

particularity in statistics since behavior is extrapolated from few data whereas typically

it is interpolated from many.

In practice, univariate and multivariate statistics of extremes bring complementary

information. Univariate statistics quantify the size of the extreme while multivariate

statistics detail their dependence structure. The two following examples are enlightening:

◦ let us consider two nearby villages in mountains with rainfall measuring systems. One

being next to the other, their rainfall is likely to be dependent. However, local storms

may occur during the year only at one village at a time. Therefore, rainfall during

13



Introduction

these storm periods are likely to be independent between the two villages. However the

general levels of extreme rainfall at the two villages are likely to be comparable;

◦ let us consider two firms belonging to two different but linked economic sectors. Man-

agement being independent a priori, their returns are likely to be independent also.

However, if the stock exchanges in these two sectors are perturbed by similar crashes,

we would observe a strong dependence in the extreme returns of these two firms. How-

ever these returns are not comparable a priori.

Although maybe unrealistic, these two examples illustrate the following important ideas:

◦ two dependent phenomena may be independent in the extremes and vice versa;

◦ being extreme is not in relation with the size of the observation but with its scarcity,

in particular for multivariate data.

In general, a multivariate analysis of extremes is preceded by a standardization of the

margins of the data on a common scale. We afterward fit a probability measure, called the

spectral measure or spectral distribution, which characterizes the dependence structure

of the data. This measure is a central element of the multivariate extreme statistics. This

thesis addresses the fitting of this distribution, its use and its generalization to spatial

extreme statistics. Chapter 1 is a review of the univariate and multivariate extremes.

Chapter 2 presents a new semi-parametric model for the spectral distribution and develops

two algorithms in order to fit it. Chapter 3 applies the model with the two algorithms to

simulated and real data and studies their performance. Chapter 4 deals with the use of the

spectral distribution function. Two issues are addressed: the estimation of the probability

of rare events using Monte Carlo methods and the analysis of the dependence structure of

the extremes. Chapter 5 presents a generalization of the multivariate extremes to spatial

extremes.

14



Chapter 1

Univariate and Multivariate

extremes

1.1 History

An historical survey on univariate extreme value distributions can be found in Kotz &

Nadarajah (2000). The history goes back to 1709 and Nicolas Bernoulli discussing the

mean of the largest distance among points lying at random on a line. The notion of

the distribution of the largest value is more modern and was first introduced by von

Bortkiewicz (1922). Fréchet (1927) identified one possible limit distribution for largest

order statistics and, in the next year, Fisher & Tippett (1928) showed that these dis-

tributions can only be of three types. von Mises (1936) presented sufficient conditions

for the convergence toward each of these types and Gnedenko (1943) gave a rigorous

foundation of extreme value theory with necessary and sufficient conditions for weak con-

vergence. The late 1930s and 1940s were marked by a number of papers dealing with

practical applications of extreme value theory, among which are Weibull (1939) studying

strength of materials and Gumbel with a large number of papers culminating with his

book, Gumbel (1958). As pointed out by Kotz & Nadarajah (2000), the literature in

extreme value analysis is now enormous and growing very quickly. To the authors, “while

this extensive literature serves as a testimony to the great vitality and applicability of

the extreme value distributions and processes, it also unfortunately reflects on the lack of

coordination between researchers and the inevitable duplication [...] of results appearing

in a wide range of diverse publications”. This lack of unification was already mentioned

by Pickands (1971) where the author links extreme value theory with the convergence

15



Chapter 1. Univariate and Multivariate extremes

of point processes. Statistical inference is developed in Pickands (1975) which justifies

the use of the generalized Pareto distribution in threshold methods, commonly used by

hydrologists. In parallel, methods based on several largest order statistics were proposed

by Weissman (1978). These methods were developed afterward by several contributors;

see Davison & Smith (1990). Galambos’s (1978) monograph is one of the first reference

books specifically dedicated to statistical models and treating also multivariate extremes.

It is followed by Leadbetter, Lindgren & Rootzén (1983), a key reference, in which is

formally presented extreme value theory for stationary sequences.

The multivariate theory is naturally more recent. Surveys of the literature can be

found in Galambos (1978) and Coles (2001). It goes back to, once more, a Russian

contribution by Finkelstein (1953). Later, independently of one another, three works,

Geoffroy (1958/1959), Tiago de Oliveira (1958) and Sibuya (1960), appeared on bivariate

extremes and gave a representation of the max-stable limit distribution of standardized

componentwise maxima. The first point process argument goes back to de Haan & Resnick

(1977) and Pickands (1981) who gave an equivalent representation. Resnick (1987) is a

key book for the point process theory applied to extreme value analysis. The develop-

ment of parametric families for the componentwise maximum approach is due to Tawn

(1988) and the use of the point process approach is due to Coles & Tawn (1991) and

Joe, Smith & Weissman (1992). Development of non-parametric estimation goes back to

Deheuvels & Tiago de Oliveira (1989). Works on stationary multivariate extremes have

been mainly due to Hsing (1989), generalizing Leadbetter et al.’s (1983) conditions under

which stationary series behave like independent ones.

Below are presented some main concepts in extreme value theory and its applica-

tions. These concepts can be found in the numerous reference books available, among

which are Leadbetter et al. (1983), Tiago de Oliveira (1984), Resnick (1987), Embrechts,

Klüppelberg & Mikosch (1997), Kotz & Nadarajah (2000), Coles (2001), Reiss & Thomas

(2001) and Finkenstädt & Rootzén (2004). The next section presents a limited back-

ground on point processes useful for univariate and multivariate cases. Section 1.3 details

univariate and Section 1.4 multivariate extremes.

1.2 Point processes for extremes

Below is given very brief background and results of the point process theory useful for

extremes. Chapter 4 contains a more general and detailed overview than the one below.

16



Chapter 1. Univariate and Multivariate extremes

It is extracted from Jagers (1974), Kallenberg (1983) and Resnick (1987) and serves the

application for spatial extremes.

The basic working space is R
d equipped with S, the σ-algebra generated by bounded

rectangles. Let T be the collection of finite unions of these bounded rectangles. The

simplest probability measure in R
d is the Dirac mass at a point x,

δx(A) = 1lA(x), A ∈ S,

where 1lA is the indicator function of the set A. Consequently, the simplest random

probability measure is the Dirac mass at a random point X ∈ R
d. This is a basic unit for

construction of point processes. Let X1, . . . ,Xn be an independent sample from F , then

its sample point process is
∑n

i=1 δXi . It is an example of a finite random measure, provided

that n is finite. In general a point process N is a random measure such that N(A) is

Z+-valued (possibly ∞) for any A ∈ S. A classical issue in point process theory is the

convergence of sample point processes as n → ∞. A possible limit is the Poisson process

N , defined as a point process such that for any finite disjoint collection A1, . . . , Ap ∈ T ,

the vector {N(A1), . . . , N(Ap)} has independent components distributed according to

Poisson distributions with parameters λ(A1), . . . , λ(Ap), respectively, where λ is a Radon

measure, that is a measure finite on every bounded set in R
d. In general, for a point

process N , the family of distributions of {N(A1), . . . , N(Ap)} for every finite collection

A1, . . . , Ap ∈ T is called the finite dimensional distribution of N . It uniquely defines the

point process distribution. In the same vein, a sequence of point process {Nn} is said to

converge in distribution to N , if, for any finite collection A1, . . . , Ap ∈ T ,

{Nn(A1), . . . , Nn(Ap)} d−→ {N(A1), . . . , N(Ap)},

where d is the classical convergence in distribution of random vectors.

The following result is a direct consequence of Jagers (1974, p.233) or can be found in

Resnick (1987, p.154) in a slightly different formulation. Below, ∂A denotes the boundary

of A.

Theorem 1.1

For each n, let {Xn,i}n
i=1 be an independent and stationary sample in R

d. Then the sample

point process

Nn =
n∑

i=1

δXn,i

17



Chapter 1. Univariate and Multivariate extremes

converges in distribution to the Poisson process N with intensity λ if and only if, for every

A ∈ A,

nP (Xn,1 ∈ A) n→∞−→ λ(A),

where A ⊂ S is an algebra containing some basis and such that λ(∂A) = 0.

In R
d, A can be the collection of finite unions and intersections of rectangles (x1,∞) ×

· · · × (xd,∞). This key result is usually used as a corollary presented below. Therein, for

any a ∈ R
d
+ and b ∈ R

d, the set aA + b equals {x ∈ A : a−1(x− b) ∈ A}, where additions,

multiplications, inverses and comparisons are done componentwise.

Theorem 1.2

Let X,X1,X2, . . . , be an independent and stationary sample in R
d. Then the following

statements are equivalent:

(i) there exist sequences {an} ⊂ R
d
+ and {bn} ⊂ R

d such that for any A ∈ A,

nP (X ∈ anA + bn) n→∞−→ λ(A), (1.1)

where A is as in Theorem 1.1;

(ii) the sample point process

Nn =
n∑

i=1

δa−1
n (Xi−bn)

converges in distribution to a Poisson process N with intensity λ.

The next section presents consequences of this result for univariate extremes when d = 1.

A central issue is the study of sequences {an} and {bn} that provide limit distributions

useful for statistical inference.

1.3 Univariate extremes

In the univariate case, A can be reduced to the collection of intervals of the form (x,∞),

x ∈ R, so that condition (1.1) reduces to

n {1 − F (anx + bn)} n→∞−→ τ(x),

where F is the distribution function of X and τ is some positive function. Possible forms

of τ are given by the following argument:

n{1 − F (anx + bn)} = n{1 − F (an + bn)}n{1 − F (anx + bn)}
n{1 − F (an + bn)}

n→∞−→ τ(1) lim
n→∞

1 − F (anx + bn)
1 − F (an + bn)

,

18



Chapter 1. Univariate and Multivariate extremes

that is

τ(x) = τ(1) lim
n→∞

1 − F (anx + bn)
1 − F (an + bn)

, ∀x.

A simple example is when F is the unit Fréchet distribution, F (x) = e−1/x, x > 0, for

which one can take an = n and bn = 0. Then

τ(x) = lim
n→∞

1 − F (nx)
1 − F (n)

= x−1,

and hence

τ(x) = τ(1)/x.

In general, the existence of {an > 0} and {bn} such that a non-degenerate limit exists is

not guaranteed. For discrete F , the Poisson or the geometric distributions are classical

examples. For continuous F , an example is F (x) = 1− 1/ log x, x ≥ e, but most classical

distribution functions admit such sequences. Three forms are possible and the necessary

and sufficient conditions under which each of them holds can be found in Leadbetter et al.

(1983, pp. 17–19), from which the following lines are extracted but with the change of

notation an = a−1
n . In each case, τ is given by the right part of the limit equation. The

end-point of the distribution function F is denoted xF = sup{x : F (x) < 1}.

Theorem 1.3 (Extremal Types Theorem)

(i) (Type I or Gumbel) There exists some strictly positive function g(t) such that

lim
t↑xF

1 − F{t + xg(t)}
1 − F (t)

= e−x, for all x ∈ R.

In this case,
∫∞
0 {1 − F (u)}du < ∞ and a possible choice for g is g(t) =

∫ xF

t {1 −

F (u)}du/{1 − F (t)}.

(ii) (Type II or Fréchet) xF = ∞ and there exists α > 0 such that

lim
t↑∞

1 − F (tx)
1 − F (t)

= x−α, for all x > 0.

(iii) (Type III or Weibull) xF < ∞ and there exists α > 0 such that

lim
h↓0

1 − F (xF − hx)
1 − F (xF − h)

= xα, for all x > 0.

In each case, let γn = F−1(1 − 1/n) = inf{x : F (x) ≥ 1 − 1/n}. Then the sequences

{an > 0} and {bn} can be chosen to be

(i) (Type I) an = g(γn) and bn = γn;

(ii) (Type II) an = γn and bn = 0;

(iii) (Type III) an = xF − γn and bn = xF .
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Distribution of the maximum

The distribution of the standardized maximum of a stationary and independent sample,

{Xi}n
i=1, is characterized by the Poisson limit result. Let Nn be the sample process of

{Xi}n
i=1, let N be a Poisson process with intensity τ and let Mn = max {X1, . . . ,Xn}.

Applying Theorem 1.2 in the univariate case, if there exist sequences {an} ⊂ R+ and

{bn} ⊂ R such that

n{1 − F (anx + bn)} n→∞−→ τ(x),

then

P{a−1
n (Mn − bn) ≤ x} = P{Nn(x) = 0} n→∞−→ P{N(x) = 0} = exp{−τ(x)}.

This result can also be seen in the following way,

log P{a−1
n (Mn − bn) ≤ x} = n log F (anx + bn) ≈ −n{1 − F (anx + bn)} n→∞−→ −τ(x).

Therefore, the possible limit distribution function for the standardized maxima is exp{−τ(x)}.

Replacing τ(x) by its possible shapes gives the three types of extreme value distribution

function. In practice, one never knows F , {an}, or {bn}. Assuming that the asymptotic

regime has been reached, one observes the maximum Mn and fits the distribution function

P (Mn ≤ x) = exp {−τ(anx + bn)} .

The three forms of τ can be embedded into the Generalized Extreme Value distribution.

Definition 1.4 (Generalized Extreme Value Distribution)

The generalized extreme value distribution is

G(x; µ, σ, κ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
[
−
{
1 +

κ

σ
(x − µ)

}−1/κ
]

, 1 +
κ

σ
(x − µ) > 0, κ 
= 0,

exp
[
− exp

{
−(x − µ)

σ

}]
, x ∈ R, κ = 0.

The location, scale and shape parameters are respectively µ, σ and κ.

Thus τ(x) admits a generalized form. In practice, the estimation of µ, σ and κ requires

one to decompose the sample into blocks and take the blockwise maxima. A drawback

with this approach is the loss of data. An improvement is to consider the asymptotic

simultaneous distribution of the highest order statistics.
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Distribution of the highest order statistics

Let X1, . . . ,Xn be an independent and stationary sample, X̃1, . . . , X̃n the standardized

sample, where X̃i = a−1
n (Xi − bn), and suppose that the Poisson limit applies. Further-

more, let X̃(n) ≤ · · · ≤ X̃(1) be the order statistics of the standardized sample. Then, for

any fixed r,

P{X̃(n−r) < u} = exp{−τ(u)}
r−1∑
k=0

τ(u)k

k!
.

This gives the distribution function of the r-th largest order statistic. Furthermore, for

xn > · · · > xn−r+1 > u, there is an h > 0 sufficiently small that intervals (−∞, u], (xn−r+1−

h, xn−r+1], . . . , (xn − h, xn] are disjoint. In this case, the Poisson limit implies that

P
{
X̃(n) ∈ (xn − h, xn], . . . , X̃(n−r+1) ∈ (xn−r+1 − h, xn−r+1], X̃(n−r) < u

}
= {τ(xn) − τ(xn − h)} · · · {τ(xn−r+1) − τ(xn−r+1 − h)} exp{−τ(u)},

so

P
{

xn − h < X̃(n) ≤ xn, . . . , xn−r+1 − h < X̃(n−r+1) ≤ xn−r+1 | X̃(n−r) < u
}

∝ {τ(xn) − τ(xn − h)} · · · {τ(xn−r+1) − τ(xn−r+1 − h)} exp{−τ(u)}.

Dividing by hr and letting h → 0 we obtain the simultaneous density of the r-th largest

order statistics given that there is no other value above u, that is,

τ ′(xn) · · · τ ′(xn−r+1) exp{−τ(u)}.

Setting u = xn−r+1 and using the generalized form of τ , the following log-likelihood can

be built: if κ 
= 0, then

	(µ, σ, κ) = −n log σ−
(

1 + κ
xn−r+1 − µ

σ

)− 1
κ

−
r∑

j=1

(1+1/κ) log
(

1 + κ
xn−j+1 − µ

σ

)
,

or, in the case κ = 0,

	(µ, σ) = −n log σ − exp
(
−xn−r+1 − µ

σ

)
−

r∑
j=1

xn−j+1 − µ

σ
.

The domain of the parameters is σ > 0, 1 + κ(xn−j+1 − µ)/σ > 0 for j = 1, . . . , r.

In order to obtain good inferences, r must be selected appropriately. If r is too large the

inference is only based on few observations, but if r is too small, the Poisson process may

be a poor approximation of reality. Another equivalent possibility is to choose a threshold

u and work with the excesses over u. This is the Peaks Over Threshold method.
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Peaks Over Threshold

If X is distributed according to F and {an > 0} and {bn} are its standardizing sequences,

then for any y > 0 and any u,

P

(
X − bn

an
> y + u

∣∣∣∣X − bn

an
> u

)
=

1 − F{an(y + u) + bn}
1 − F (anu + bn)

n→∞−→ τ(y + u)
τ(u)

.

In order to estimate an and bn, one uses the generalized form of τ and obtains

τ(y + u)
τ(u)

=
(

1 + κσ−1(y + u − µ)
1 + κσ−1(u − µ)

)−1/κ

=
(
1 +

κ

σ̃
y
)−1/κ

,

where σ̃ = σ + κ(u − µ).

Definition 1.5 (Generalized Pareto Distribution)

The Generalized Pareto distribution is

H(y; σ, κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
(
1 +

κ

σ
y
)−1/κ

, 1 +
κ

σ
y > 0, κ 
= 0, y ≥ 0

1 − exp
(
− y

σ

)
, κ = 0, y ≥ 0.

(1.2)

The parameters σ and κ are respectively scale and shape parameters.

In practice, to fit this, a high threshold u is selected and a generalized Pareto distribution

is fitted to excesses of data above u. If u is sufficiently high that the Poisson limit is valid,

then Nu, the number of excesses over u among {X1, . . . ,Xn}, is approximately Poisson

with parameter λ. The observed nu estimates λ and n−1nu estimates P (X > u). The

corresponding log-likelihood separates into two parts,

	(λ, σ, κ) = 	(λ) + 	(σ, κ),

which allows separate inferences on the parameters λ and (σ, κ). In detail, each part of

the log-likelihood is

	(λ) = −λ + nu log λ − log nu!,

and

	(σ, κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−nu log σ − (1 + 1/κ)
nu∑
i=1

log(1 + κσ−1yi), if κ 
= 0,

−nu log σ −
nu∑
i=1

σ−1yi, if κ = 0.

The Peaks Over Threshold method can be represented as a semi-parametric model. The

excesses above a high threshold u are distributed according to a generalized Pareto dis-

tribution while the empirical distribution function F̂ , or any other appropriate model, is
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used under u. This is the semi-parametric extremal model, see for example Coles & Tawn

(1991).

Definition 1.6 (Semi-parametric extremal model)

Let X,X1, . . . ,Xn be independent and identically distributed according to F . Let F̂ be

the empirical distribution function of X1, . . . ,Xn and u a high threshold such that the

Peaks Over Threshold model applies. Then the semi-parametric extremal model is the

distribution function

F̃ (x) =

⎧⎨
⎩ F̂ (x), for x ≤ u,

(1 − pu) + pu

[
1 −

{
1 +

κ

σ
(x − u)−1/κ

}]
, for x > u,

where pu = P (X > u).

The choice of the threshold u involves a bias-variance trade-off. If the threshold is too

high, estimation is based on very few data and is unlikely to be reliable, whereas if it is

too low, the Pareto model is unlikely to be true and, although numerous, the excesses

are not representative of the asymptotic behavior of X. For this reason, selection of the

threshold is often based on choosing the lowest u such that the Pareto hypothesis seems

reliable. If excesses of X above u0 are Pareto with parameters σ and κ, then, for u > u0,

P (X − u > y | X > u) =
P (X > y + u | X > u0)

P (X > u | X > u0)

=
{1 + σ−1κ(y − u0 + u)}−1/κ

{1 + σ−1κ(u − u0)}−1/κ

= [1 + {σ + κ(u − u0)}−1κy]−1/κ.

Therefore, excesses of X above u > u0 are generalized Pareto with parameters σ+κ(u−u0)

and κ. The mean of (1.2) is (1 + κ)−1σ, if κ < 1, and infinite otherwise. Hence, for any

u > u0,

E(X − u | X > u) =
σ + κ(u − u0)

1 + κ
,

and E(X − u | X > u) is a linear function of u. This result is the basis for a graphical

diagnostic known as the Mean Residual Life Plot.

Definition 1.7 (Mean Residual Life Plot)

The Mean Residual Life Plot is the graph of an empirical estimator of E(X − u | X > u)

versus u, (
u , n−1

u

∑
i:xi>u

xi − u

)
.
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Above a good threshold u0, the graph should be linear with slope (1 + κ)−1κ. As the

threshold increases, the empirical estimate of E(X − u | X > u) becomes more and more

variable so that the graph jitters and inference becomes difficult. Furthermore, such a

diagnostic should not be used when κ ≥ 1.

Extreme quantiles and return levels

In practice, scientific interest is typically focused not directly on the parameters (µ, σ, κ)

or (λ, σ, κ) but rather on the question ‘what level will be exceeded with a given low

probability?’ or equivalently ‘what is xβ, the solution of β = P (X > xβ), for a very small

probability β?’

If β is a low probability, then the solution to G(xβ) = 1 − β for the Generalized

Extreme Value distribution is

xβ =

⎧⎨
⎩ µ − κ−1σ[1 − {log(1 − β)}−κ], if κ 
= 0,

µ − σ log{− log(1 − β)}, if κ = 0.

For the Peaks Over Threshold method, let pu be the probability of being above a high

threshold u. Then xβ satisfies

β = P (X > xβ) = P (X > xβ | X ≤ u)(1 − pu) + P (X > xβ | X > u)pu.

If β is smaller than pu, then xβ > u and P (X > xβ | X ≤ u) = 0. Consequently,

p−1
u β = P (X − u > xβ − u | X > u).

Hence, solving 1 − G(yβ) = p−1
u β for the generalized Pareto distribution, one obtains

yβ =

⎧⎨
⎩
{(

p−1
u β

)−κ − 1
}

κ−1σ, if κ 
= 0,

−σ log(p−1
u β), if κ = 0,

and the return level is xβ = yβ + u. Estimates of yβ can be obtained by substituting

estimates of σ and κ, the estimate of pu being n−1nu, the number of excesses over the

number of data.

Statistical inference

Methodologies for statistical inference have been addressed in numerous places; see for

example Davison & Smith (1990) and Coles (2001).
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Once the threshold is selected, estimation can be based on the likelihood. The shape

parameter κ is the same whether the Peaks Over Threshold or the order statistic method

is used, whereas the scale parameters are linked by

σPOT = σGEV + κ(u − µ).

Here σPOT is the scale parameter of the generalized Pareto distribution fitted in a Peaks

over Threshold method with a threshold u and σGEV is the scale parameter of the gen-

eralized extreme value distribution fitted to the maxima of the data. In both cases, the

maximum likelihood estimator is consistent provided that κ > −1 and is asymptotically

normal and efficient only for κ > −1/2 (Smith 1985). This failure of likelihood based

methods can be illustrated by the following fact (Embrechts et al. 1997, p.357). Let σ̂

and κ̂ be the maximum likelihood estimators of σ and κ respectively from an independent

and identically distributed sample of size n, then one can show that

n1/2

(
κ̂ − κ,

σ̂

σ
− 1
)

d−→ N (0,M−1), n → ∞,

where

M−1 = (1 + κ)

⎛
⎝ 1 + κ −1

−1 2

⎞
⎠ .

Then as κ tends to −1/2, M−1 becomes singular and the limit normal distribution be-

comes degenerate. In general, having κ ≤ −1/2 requires other methods, like Bayesian

procedures, which have been studied in Coles & Powell (1996). If one does not have

any prior information on the parameters, scientific experts may be able to quantify prior

information on return levels. The idea is to parametrize the likelihood as a function of

return levels and compute the posterior distribution. An advantage of this approach,

beyond the use of prior information, is that posterior inference does not suffer from any

limitation on κ.

Non-parametric methods have also been developed and represent an important part of

the literature. For example, one can find the Hill-plot and probability weighted moment

estimators in Embrechts et al. (1997). We do not detail them since they are not central

to this work.

Dependent stationary sequences and cluster analysis

Stationary sequences have been extensively studied with a particular attention to condi-

tions under which the limit distribution of the maximum remains a generalized extreme
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value distribution and the Poisson process remains valid. Let X1, . . . ,Xn be a stationary

sequence of random variables with common marginal distribution function F . Let FI de-

note the simultaneous distribution function of {Xi}i∈I , where I is a subset of {1, . . . , n},

and let FI(x) = FI(x, . . . , x). Now define the following mixing condition:

Definition 1.8 (Condition D(un))

Condition D(un) holds for the sequence un if for any integers

1 ≤ i1 ≤ · · · ≤ ip ≤ j1 ≤ · · · ≤ jp′ ≤ n

for which j1 − ip ≥ l,∣∣∣Fi1,...,ip,j1,...,jp′ (un) − Fi1,...,ip(un)Fj1,...,jp′ (un)
∣∣∣ ≤ αn,l,

where αn,ln → 0 as n → ∞ for some sequence ln = o(n).

Leadbetter (1974) showed the following result:

Theorem 1.9

Let {Xi}n
i=1 be a stationary sequence, let Mn = max{X1, . . . ,Xn}, and {an > 0} and

{bn} be such that P
{
a−1

n (Mn − bn) ≤ x
}

converges in distribution to a non-degenerate

distribution function G(x). Suppose that D(un) is satisfied for un = anx + bn, for each x

such that G(x) > 0. Then G(x) is a generalized extreme value distribution.

The effect of dependence in the sequence is detailed by Leadbetter (1983). Below, let

{X̂i}n
i=1 be an independent sequence with the same marginal distribution as {Xi}n

i=1 and

denote M̂n = max{X1, . . . ,Xn}.

Theorem 1.10

Suppose that there exist sequences {an > 0} and {bn} such that P
{

a−1
n

(
M̂n − bn

)
≤ x

}
converges in distribution to a non-degenerate distribution function G(x). Suppose that

{Xi}n
i=1 satisfies D(un) for un = anx + bn, for each x such that G(x) > 0. Then there

exists 0 ≤ θ ≤ 1 such that P
{
a−1

n

(
M̂n − bn

)
≤ x

}
converges in distribution to Gθ(x).

The parameter θ is termed the extremal index. It varies from zero to one according to the

strength of the dependence, the case θ = 0 being degenerate. The case θ = 1 corresponds

to very weak dependence and is ensured by the following cluster condition.

Definition 1.11 (Condition D′(un))

Condition D′(un) holds for a stationary sequence {Xj} if

lim sup
n→∞

n

[n/k]∑
j=2

P{X1 > un, Xj > un} −→ 0, as k → ∞.
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The intuitive interpretation of the extremal index is as the cluster rate or the inverse of the

mean cluster size. In the absence of condition D′, the dependence structure is such that

a large value has a greater chance of being followed by another one. If the time between

two consecutive such values is small relative to n, the passage to the limit will merge

those two extremes onto the same time. The limit process is then not a Poisson process

but a compound Poisson process: any occurrence can be multiple rather than single. The

multiplicity is usually random and is called the cluster size distribution. Under certain

conditions (Hsing, Hüsler & Leadbetter 1988) the extremal index is the inverse of the

mean cluster size, that is, the rate of arrival of clusters.

This approach is a basis for an estimation of the cluster size distribution. Hsing et al.

(1988) defined

Definition 1.12 (Cluster Size Distribution)

Let

πn(j) = P

{
rn∑
i=1

1l{Xi>un} = j

∣∣∣∣∣
rn∑
i=1

1l{Xi>un} > 0

}
, for j = 1, 2, . . . ,

for a sequence rn = o(n). Under conditions guaranteeing the compound Poisson model,

there exists a sequence kn → ∞ such that if rn = [n/kn] then

π(j) = lim
n→∞πn(j), for j = 1, 2, . . . ,

is the cluster size distribution.

Under some further conditions on π, the authors show that

θ =
∑
j≥1

jπ(j).

A natural way to estimate π and θ is to choose r, group the data into blocks and count

the number of excesses over un in each group. An estimator of π(j) is simply the number

of blocks that have j excesses over the number of blocks that have one or more excesses.

The mean of the resulting law is an estimator for θ−1. For the estimation of θ alone, a

method directly based on the compound Poisson limit has been developed by Ferro &

Segers (2003) in order to avoid an arbitrary choice of r.

1.4 Multivariate extremes

As in the univariate case, Theorem 1.1 is one basis of statistical techniques but naturally

a supplementary aspect arises in the multivariate case. In general, data are standardized
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to be marginally Fréchet so that an = n and bn = 0. The standardization is done for

example using the semi-parametric extremal model on every margin. Let X1, . . . ,Xn be

an independent and stationary sample in R
d, marginally distributed according to a unit

Fréchet distribution, exp(−1/x), x > 0. Then

Nn =
n∑

i=1

δn−1Xi

d−→ N,

a Poisson process with intensity λ, if and only if

nP (X ∈ nA) n→∞−→ λ(A),

for any A ∈ A. Hence, for any t > 0,

λ(tA) = lim
n→∞nP {X ∈ n(tA)} = lim

nt→∞
nt

t
P {X ∈ (nt)A} = t−1λ(A).

In other words, λ is homogeneous of degree −1. This implies that the image of λ through

the transformation

x �−→

⎧⎨
⎩ (r, w) , x 
= 0,

(0, 0) , x = 0,

where r = ‖x‖ and w = x/‖x‖, is the product

λ(dx) =
1
r2

dr × H̃(dw),

for a positive Radon measure H̃ on the simplex Sd =
{
w ∈ [0, 1]d : ‖w‖ = 1

}
. This

measure H̃ is called the spectral measure. A popular choice of ‖ · ‖ is the pseudo-polar

scale,

r =
d∑

j=1

x(j) and w(j) = x(j)/r, j = 1, . . . , d,

and Sd =
{

w ∈ [0, 1]d :
∑d

j=1 w(j) = 1
}

; see for example Coles & Tawn (1994).

The spectral measure has total mass equal to d and satisfies a mean condition∫
Sd

w(j)H̃(dw) = 1, j = 1, . . . , d. (1.3)

This is due to the Fréchet margin requirement and can be deduced from the multivariate

distribution of the componentwise maximum presented below.

Distribution of the componentwise maximum

Let Mn be the componentwise maximum of n−1X1, . . . , n
−1Xn. Then

P{Mn ≤ x} = P{n−1X1 ≤ x, . . . n−1Xn ≤ x} = P{Nn(A) = 0}.
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By passage to the limit,

P{Nn(A) = 0} n→∞−→ P{N(A) = 0} = exp{−λ(A)},

where

A = {rw ≤ x}c =
{
∃j : rw(j) > x(j)

}
=

{
r > min

j=1,...,d

x(j)

w(j)

}
.

Therefore

exp{−λ(A)} = exp
{
−
∫

A

1
r2

drH̃(dw)
}

= exp

{
−
∫
Sd

∫
r>min{x(j)/w(j)}

1
r2

drH̃(dw)

}

= exp

{
−
∫
Sd

max
j=1,...,d

w(j)

x(j)
H̃(dw)

}
.

This result is known as the multivariate extreme value theorem and this distribution is

termed the multivariate extreme value distribution.

As a by-product, the asymptotic jth marginal distribution of Mn is

lim
n→∞P{M (j)

n ≤ x(j)} = exp

{
− 1

x(j)

∫
Sp

w(j)H̃(dw)

}
.

The data are marginally Fréchet, so M
(j)
n is itself asymptotically distributed according to

a unit Fréchet, that is

exp
{
− 1

x(j)

}
= exp

{
− 1

x(j)

∫
Sd

w(j)H̃(dw)
}

.

This clearly implies conditions (1.3) and summing them all gives that the total mass,

H̃(Sd), equals d. Therefore, the spectral measure can be rescaled into the spectral prob-

ability measure H(dw) = d−1H̃(dw). We summarize these results in a theorem.

Theorem 1.13 (Multivariate Extreme Value Theorem)

Let X1, . . . ,Xp be an independent and stationary sample in R
d with Fréchet margins and

let Mn = max{n−1X1, . . . , n
−1Xn}. If there exists a positive finite measure λ such that,

for any A ∈ A,

nP (X ∈ nA) n→∞−→ λ(A),

then

P (Mn ≤ x) n→∞−→ exp

{
−d

∫
Sd

max

(
w(1)

x(1)
, . . . ,

w(d)

x(d)

)
H(dw)

}
,

where the spectral probability measure H can be any distribution on Sd satisfying∫
Sd

w(i)H(dw) = d−1, j = 1, . . . d.
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The function

V (x) = d

∫
Sd

max

(
w(1)

x(1)
, . . . ,

w(d)

x(d)

)
H(dw)

is called the dependence measure. Some models for H are defined through the corre-

sponding dependence measure, which is homogeneous of order −1, V (tx) = t−1V (x), for

all t > 0, so that the multivariate extreme value distribution G(x) = exp {−V (x)} is a

simple max-stable distribution, that is G(x/n) = Gn(x). In general, the distribution G is

said to be max-stable if, for every n ∈ N, there exist constants an ∈ R
d
+ and bn ∈ R

d such

that

Gn(anx + bn) = G(x).

It can be shown that the class of max-stable distributions with non-degenerate marginals

coincides with the class of multivariate extreme value distributions (Resnick 1987, p.264).

Threshold method

As in the univariate case, inference based on componentwise maxima would represent a

loss of data. The equivalent of the Peaks Over Threshold approach requires the choice of

a sufficiently high threshold r0. Then those values among X1, . . . ,Xn whose norm, R =

‖X‖, exceeds r0, are supposed to form a Poisson process. This provides a semi-parametric

model for the joint distribution function F of X. In the set
{
x ∈ R

d : ‖x‖ ≤ r0

}
, the em-

pirical distribution function is reliable, while in the set
{
x ∈ R

d : ‖x‖ > r0

}
, the Poisson

process is used. In general, norms other than ‖x‖ =
∑p

i=1 x(i) can be used. The thresh-

old as well as spectral probability measure will be adapted according to this norm. For

example, de Haan & de Ronde (1998) use the Euclidean norm ‖x‖2
2 =

∑p
i=1(x

(i))2 or

‖x‖ = max
(
x(1), . . . , x(p)

)
. In fact any ‖x‖a = (

∑p
i=1 |x(i)|a)1/a, for 1 ≤ a ≤ ∞, can be

used; the notation a = ∞ refers to the sup norm. An appropriate choice of the norm

may be useful in practice. By varying the norm, one varies the shape of sets on which

the probability is straightforwardly obtained after the selection of the threshold r0.

As in the univariate case, the selection of the threshold involves a bias-variance trade-

off. Too high a threshold gives unreliable inference and too a low threshold makes the

Poisson process incompatible with the data. Therefore, the threshold r0 should be the

smallest value such that the Poisson process is valid. To our knowledge very few proce-

dures have been proposed to select r0. Coles & Tawn (1994) advise checking the inde-

pendence of W and R by choosing r0 such that the histogram of W stabilizes. However
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this method is limited to d = 2. In Section 4.1 we present new graphical diagnostics to

aid the selection of r0 in any dimension.

Parametric inference on the spectral measure can be based on the likelihood function.

The transformation to the pseudo-polar scale is

ri =
d∑

j=1

x
(j)
i , w

(j)
i = x

(j)
i /ri, j = 1, . . . , d, i = 1, . . . , n.

In the case where H has density h, the Poisson likelihood for observed data in {r > nr0}

is

L(α) ∝
∏
i∈I0

h(wi),

where I0 is the set of those 1 ≤ i ≤ n such that ri > r0. Appropriate maximum-likelihood

estimation as well as Bayesian methods can be used in a standard way.

In the case where marginal parameters and spectral distribution are estimated to-

gether, the likelihood function becomes more complicated; see Coles & Tawn (1991). The

semi-parametric extremal model transforms margins of original data Y1, . . . , Yn to the

Fréchet scale by the transformation

X
(j)
i =

⎧⎪⎨
⎪⎩

−1/ log
[
1 − pj

{
1 + κjσ

−1
j

(
Y

(j)
i − uj

)}−1/κj
]

, Y
(j)
i > uj,

−1/ log
{

rank
(
Y

(j)
i

)
/(n + 1)

}
, Y

(j)
i ≤ uj,

where uj is the threshold of the jth margin, pj is the proportion of Y
(j)
i exceeding uj , σj

and κj are the parameters corresponding to jth margin and rank
(
Y

(j)
i

)
is the rank of Y

(j)
i

among Y
(j)
1 , . . . , Y

(j)
n , for i = 1, . . . , n and j = 1, . . . , d. Incorporating this transformation,

the likelihood function of observations in a set A is

exp
{
−d

∫
A∩A0

r0

r
H(dw)

}∏
i∈I0

h(wi)r
−(d+1)
i

×
∏

j∈I
(i)
0

σ−1
j p

−κj

j

(
X

(j)
i

)2
exp

(
1/X(j)

i

){
1 − exp

(
−1/X(j)

i

)}1+κj

,

where A0 = {r > r0}, I0 is the set of 1 ≤ i ≤ n such that ri ∈ A ∩ A0 and I
(i)
0 is

the set of 1 ≤ j ≤ d such that Y
(j)
i > uj, for i = 1, . . . , n. Coles & Tawn (1991) use

A = R
d
+ \ {(0, ν1) × · · · × (0, νd)}, for νj corresponding to uj on the Fréchet scale. In

Coles & Tawn (1994), A = A0 so that the likelihood function is based on more data.

Furthermore, they choose the marginal threshold to be the backward image of r0 on each

margin so that the exponential term is constant.
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Models for the spectral measure

The spectral probability measure H is the distribution function of pseudo-polar angles

of the most extreme data. When H gives probability one to the point (d−1, . . . , d−1),

the data are said to be asymptotically perfectly dependent. When H gives probability

d−1 to each point of the form (0, . . . , 0, 1, 0, . . . , 0), data are said to be asymptotically

independent. Intermediate situations are called asymptotically dependent. Asymptotic

independence has received particular attention in the literature and is treated later. Below

we present models for asymptotic dependence.

A large list of parametric models can be found in Kotz & Nadarajah (2000). As they

remark, there is some chaos there: some models are given by the density of h, others

by their dependence measure, some are given in any dimension d, others specifically for

d = 2. In this thesis the Poisson process approach is favored, so we concentrate on models

for which h is available. In this category the most used models, without minimizing the

importance of others, are the extremal logistic model and the extremal Dirichlet model.

The extremal logistic model has density function

h(w) =
1
2
(1 − α)w−2

1 w−1
2 u1−α

1 u2 {αu2 + βu1}−1 , w = (w1, w2) ∈ S2, (1.4)

where 0 < α, β < 1 and u = (u1, u2) ∈ S2 is the solution to

(1 − α)w2u
β
2 − (1 − β)w1u

α
1 = 0.

No explicit form exists except if α = β, in which case

h(w) =
1
2
(α−1 − 1)(w1w2)−1−1/α

{
w

−1/α
1 + w

−1/α
2

}α−2
.

This is the symmetric logistic model. As α tends to 0 or 1 the symmetric logistic density

tends to asymptotic perfect dependence or independence, respectively. The dependence

measure of the extremal logistic model is

V (x) =
(
x
−1/α
1 + x

−1/α
2

)α
, x ∈ R

2.

The symmetric logistic model has been generalized by Tawn (1990) to the asymmetric

logistic model,

V (x) =
∑
c∈C

⎧⎨
⎩∑

j∈c

(
θj,c

xj

)rc

⎫⎬
⎭

1/rc

, x ∈ R
d,

where C is the set of all non-empty subsets of {1, . . . , d} and the parameters are con-

strained by rc ≥ 1 for all c ∈ C, θj,c = 0 if j 
∈ c, θj,c ≥ 0, j = 1, . . . , d and
∑

c∈C θj,c = 1.
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This generalization is a mixture of extremal logistic models on each subspace of Sd. In

Chapter 2 a new representation of the extremal logistic model is given. It allows exact

simulation and a different kind of generalization in any dimension d.

The extremal Dirichlet model has density function, for w ∈ Sd,

h(w) =
1
d

Γ
(
1 +

∑d
j=1 αj

)
∏d

j=1 Γ(αj)

⎛
⎝ d∑

j=1

αjwj

⎞
⎠−(d+1)

d∏
j=1

αj

d∏
j=1

(
αjwj∑d

j=1 αjwj

)αj−1

(1.5)

where αj > 0, j = 1, . . . , d and Γ is the gamma function

Γ(t) =
∫ ∞

0
yt−1e−ydy, t > 0.

In dimension two, the dependence measure is

V (x) =
1
x1

Beta (x∗, 1; α1 + 1, α2) +
1
x2

Beta (0, x∗; α1, α2 + 1) , x ∈ R
2,

where x∗ = α1x1/(α1x1 + α2x2) and Beta (x, y; α, β) is the incomplete Beta function,

Beta (x, y; α, β) =
Γ(α + β)
Γ(α)Γ(β)

∫ y

x
sα−1(1 − s)β−1ds.

The case d > 2 is complicated to express but numerically feasible. The extremal Dirichlet

model is a particular case of a theorem due to Coles & Tawn (1991); see also Appendix A.2.

In Chapter 2 we give a new representation of the extremal Dirichlet model allowing exact

simulation.

Asymptotic dependence and independence

The strength of tail dependence between two variables U1, U2 with uniform margins can

be summarized by

χ = lim
u→1

P (U2 > u | U1 > u) ,

if the limit exists. In the case of multivariate extreme value distributions χ = 2
∫
S2

min(w1, w2)H(dw),

so that, if H does not put any mass in the interior of S2, χ = 0. In general χ varies between

zero, when data are asymptotically independent, and one, for asymptotically perfectly de-

pendent data, growing with the strength of dependence (Sibuya 1960). Defining

χ(u) = 2 − log P (U1 < u,U2 < u)
log P (U1 < u)

, 0 ≤ u ≤ 1,

it follows that χ = limu→1 χ(u). The function χ(u) can be empirically estimated for

increasing u which provides an exploratory means to analyze strength of dependence; see

for example Coles, Heffernan & Tawn (1999).
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The discrimination of the strength of dependence within the class of asymptotic inde-

pendence was first addressed by Ledford & Tawn (1996); see also Ledford & Tawn (1997).

Observing that, for two Fréchet variables X1,X2 and large z,

P (X1 > z,X2 > z) ∼

⎧⎨
⎩ z−1, for perfect dependence,

z−2, for exact independence,

they smoothly linked these bounding cases with the model

P (X1 > z,X2 > z) ∼ L(z)z−1/η , z → ∞, (1.6)

where η is the coefficient of tail dependence and L is a slowly varying function, that is

L(tz)/L(z) → 1 as z → ∞, for any t > 0. The case of asymptotically dependent variables

gives η = 1 and L(z) 
→ 0. Asymptotically independent variables are distinguished into

three cases:

1) positive association, 1
2 < η < 1, or η = 1 and L(z) → 0;

2) near independence, η = 1
2 ;

3) negative association, 0 < η < 1
2 .

For two variables U1, U2 with uniform margins, define

χ̄(u) =
2 log P (U1 > u)

log P (U1 > u,U2 > u)
, 0 ≤ u ≤ 1.

The limit χ̄ = limu→1 χ̄(u) equals 2η − 1 if model (1.6) is valid. Empirical estimates of

χ̄(u) provide exploratory means to analyze the strength of dependence within the class

of asymptotically independent variables (Coles et al. 1999).

Parametric estimates of η can be based on the structural variable T = min(X1,X2) by

assuming model (1.6) exact above a selected threshold z0 and approximating the slowly

varying function L(z) by a constant (Ledford & Tawn 1996). See also Peng (1999) for a

non-parametric estimator.

Ledford & Tawn (1997) also explored the relation with the point process viewpoint.

Let Mn be the componentwise maximum of an independent bivariate sample X1, . . . ,Xn

with common distribution function F1,2 and unit Fréchet margins, F1. Consider also F̄1,2,

the survivor function of F1,2, F1,2(z1, z2) = 1 − F̄1(z1) − F̄2(z2) + F̄1,2(z1, z2). Then, for

any z = (z1, z2) ∈ R
2
+,

P (Mn ≤ nz) ∼
{

1 − 1
n

(
1
z1

+
1
z2

)
+ F̄1,2(nz)

}n
n→∞−→ G(z),
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where G is a bivariate extreme value distribution. The asymptotic independent case

occurs when nF̄1,2(nz) n→∞−→ 0, that is the mass of the spectral measure is exclusively on

the border of S2. As knowledge of the limit does not of itself give information on how

quickly the components become independent, the authors justify the approximate model,

for large z1 and z2,

F̄1,2(z1, z2) = L1,2(z)z−c1
1 z−c2

2 ,

where c1 + c2 = 1/η and L1,2 is bivariate slowly varying, that is L1,2(tz1, tz2)/L1,2(t, t) →

g∗{z1/(z1+z2)}, t → ∞. For statistical purposes L is considered as exactly ray dependent

above high thresholds u1 and u2 so that the model becomes

F̄1,2(z1, z2) = Kz−c1
1 z−c2

2 g∗{z1/(z1 + z2)}, z1 > u1, z2 > u2,

where K > 0 is a constant and g∗ a density on S2. On the pseudo-polar scale, r = z1 +z2,

w = z/r, this model becomes

F̄1,2(z1, z2) = r−ηw−c1
1 w−η+c1

2 Kg∗(w).

Models for g∗ have been developed.

Models for asymptotic independence

For its simplicity and the wide range of dependence it can represent, the Gaussian model

was made popular in Bortot, Coles & Tawn (2000). Let Y be a d-variate normal variable

with correlation matrix {ρij}, whose margins are transformed to the unit Fréchet scale.

Then the pairwise coefficient of tail dependence is ηij = (1+ρij)/2, i, j = 1, . . . , d. Hence,

for ρij varying (strictly) between 0 and 1 every value of ηij in range 1/2 and 1 can be

achieved. Data with standard Gaussian margins in a suitable tail region (u1,∞) × · · · ×

(ud,∞) are fitted to a multivariate Gaussian model and inference on the tail dependence

is readily obtained from the correlation matrix.

The inverted multivariate extreme value distribution exhibits positive association; see

for example Heffernan & Tawn (2004). Let Y have unit Fréchet margins and survivor

function

P (Y > y) = exp {−V (z)} ,

where V is a dependence measure and zj = −1/ log F̄j(yj), j = 1, . . . , d. Then Y is dis-

tributed according to an inverted multivariate extreme value distribution and has pairwise

tail dependence coefficients

ηij = 1/V (∞, . . . ,∞, 1,∞, . . . ,∞, 1,∞, . . . ,∞),
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where the ones are at the ith and jth places.
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Chapter 2

Mixtures and Multivariate

extremes

The previous chapter emphasized the central role of the spectral distribution function for

asymptotically dependent extremes. In the first section of this chapter new representations

of the extremal logistic and extremal Dirichlet spectral measure are developed. In the

second section a new model is developed based on a constrained mixture of Dirichlet

distributions. Its theoretical properties are discussed. In Section 2.3, two algorithms for

fitting the models are developed.

2.1 Representations of extremal logistic and extremal Dirich-

let models

These representations were originally done in order to simulate exactly from density func-

tions (1.4) and (1.5). In the extremal logistic case, it turns out that the random variable

u has a very simple distribution function and that, although u is not an explicit function

of w, w is readily obtained from u. A similar approach is used for the extremal Dirichlet

model.

2.1.1 The extremal logistic model

Let W be distributed according to the density function

hW (w) =
1
2
(1 − α)w−2

1 w−1
2 u1−α

1 u2 {αu2 + βu1}−1 , w = (w1, w2) ∈ S2,
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with u = (u1, u2) ∈ S2 the solution to

(1 − α)w2u
β
2 − (1 − β)w1u

α
1 = 0.

Then the density function of U is

hU (u) =
1
2

{
1 − α

uα
1

+
1 − β

uβ
2

}
, u ∈ S2.

In other words hU is a balanced mixture of Dirichlet densities with parameters (1−α, 1)

and (1, 1−β). Extending this model to dimension d, the following definition is proposed:

Definition 2.1 (Extremal logistic model)

The random variable W follows the extremal logistic model if W ∈ Sd is the solution to

Wj

Wd
=

CjU
−αj

j

CdU
−αd
d

, j = 1, . . . , d,

where

Cj = Γ(d − αj)/Γ(1 − αj), j = 1, . . . , d,

and U ∈ Sd is distributed according to the density function

hU (u) = d−1
d∑

j=1

Γ(d − αj)
Γ(1 − αj)

u
−αj

j , 0 < αj < 1, j = 1, . . . , d.

One can show that

hW (w) = d−1

⎛
⎝ d∑

j=1

αjuj

⎞
⎠−1(

d∏
i=1

αiui

)⎛⎝ d∑
j=1

Cju
−αj

j

⎞
⎠ d∏

j=1

w−1
j , (2.1)

which reduces in the symmetric case α1 = · · · = αd = α to

hW (w) =
Γ(d − α)
Γ(1 − α)

αd−1

d

d∏
i=1

w
−1/α−1
i

(
d∑

i=1

w
−1/α
i

)α−d

,

and by construction coincides with the classical bivariate extremal logistic model when

d = 2. Furthermore, the constraints∫
Sd

wjh(w)dw =
1
d
, j = 1, . . . , d, (2.2)

are satisfied. The proof is given in Appendix A.1. A consequence of this representation

is the following simulation algorithm:

1) choose j among 1, . . . , d with probability 1/d;

2) simulate independent Zj ∼ G(1 − αj) and Zl ∼ G(1), l = 1, . . . , d, l 
= j;
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3) set Ul = Zl/
∑d

m=1 Zm, l = 1, . . . , d;

4) set Wl = ClU
−αl
l /

∑d
m=1 CmU−αm

m , l = 1, . . . , d.

Here G is the gamma distribution and Cj = Γ(d − αj)/Γ(1 − αj), j = 1, . . . , d. The

algorithm uses the fact that the vector of ratios Zj/
∑d

m=1 Zm, j = 1, . . . , d, where Zj are

independent and G(αj) distributed, is a Dirichlet (α1, . . . , αd) random variable; see for

example Wilks (1962, p.177–182).

2.1.2 The extremal Dirichlet model

Let U ∈ Sd be distributed according to the mixture of Dirichlet densities

hU (u) = d−1
d∑

j=1

Γ
(
1 +

∑d
i=1 αi

)
∏d

i=1 Γ (αi + δij)

d∏
i=1

u
αi−1+δij

i ,

where δij is the Kronecker symbol equal to one if i = j and zero otherwise. Then W ∈ Sp

with components

Wj =
α−1

j Uj∑d
i=1 α−1

i Ui

, j = 1, . . . , d,

is distributed according to the extremal Dirichlet model with parameters α1, . . . , αp. This

representation provides the following simulation algorithm:

1) choose j among 1, . . . , d with probability 1/d;

2) simulate independent Zl ∼ G(αl + δlj), l = 1, . . . , d;

3) set Ul = Zl/
∑d

m=1 Zm, l = 1, . . . , d;

4) set Wl = α−1
l Ul/

∑d
i=1 α−1

i Ui, l = 1, . . . , d.

This representation applies not only to the extremal Dirichlet model but to a whole class

of distributions described below. The extremal Dirichlet model was first defined by Coles

& Tawn (1991). Its construction is based on the following theorem. Below a · b is the

scalar product between a and b.

Theorem 2.2

If h∗ is any positive function on Sd, with finite first moments, then

h̃(w) = (m · w)−(d+1)
d∏

j=1

mjh
∗
(m1w1

m · w , . . . ,
mdwd

m · w

)
,
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where

mj =
∫

Sp

ujh
∗(u)du, j = 1, . . . , d,

satisfies constraints ∫
Sp

wjh̃(w)dw = 1, j = 1, . . . , d,

and is therefore the density of a valid spectral measure H̃.

By letting h∗ be a Dirichlet distribution with parameters α1, . . . , αd, one obtains

h̃(w) =
Γ(α · 1 + 1)∏d

j=1 Γ(αj)

d∏
j=1

α
αj

j

∏d
j=1 w

αj−1
j

(α · w)α·1+1
.

The corresponding spectral density is divided by a factor d. Now letting

Ui =
miWi∑d

j=1 mjWj

, i = 1, . . . , d,

it can be shown that

hU (u) = p−1
d∑

j=1

h∗(u)uj/mj . (2.3)

By definition of mj, h∗(u)uj/mj is a density function and, therefore, hU (u) is a balanced

mixture of h∗(u)uj/mj , j = 1, . . . , d. Should it be easy to simulate from h∗(u)uj/mj ,

the simulation algorithm is straightforwardly adapted. The proof of the representation is

given in Appendix A.2.

2.2 The extremal mixture model

This section investigates the use of mixture of Dirichlet distributions as a model for the

spectral probability measure H. This family turns out to be very rich and hence appropri-

ate for semi-parametric inference. In general, a random variable W distributed according

to H can be viewed as a random probability vector or, equivalently, a random probability

function on the finite set {1, . . . , d}. Therefore, the spectral probability measure is in fact

the distribution of a random probability measure. A well studied family of distributions

of probability measures is the mixture of Dirichlet processes, presented below.

2.2.1 Random probability measures and mixtures of Dirichlet processes

Let S be a topological space with some good properties that we do not detail now and S

be its Borel algebra. Then, loosely, a random probability measure P on (S,S) is a random
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measure that integrates to one. Therefore the distribution of P can be represented by

its finite dimensional distributions or, in other words, by the family of distributions of

vectors {P (A1), . . . , P (Ad)} for any d ∈ N and measurable partition A1, . . . , Ad of S. A

finite dimensional distribution family must satisfy Kolmogorov’s consistency conditions

(Kallenberg 1983, p.41) in order to represent a random probability measure. In particular,

some natural conditions are satisfied like

1. P (S) = 1, almost surely,

2. for any A ∈ S, P (A) ≥ 0, almost surely,

3. for any finite sequence A1, . . . , Ad, B1, . . . , Bd in S such that Ai∩Bi = ∅, i = 1, . . . , d,

{P (A1 ∪ B1), . . . , P (Ad ∪ Bd)}
d= {P (A1) + P (B1), . . . , P (Ad) + P (Bd)} .

A popular model for random probabilities is the Dirichlet process introduced by Fer-

guson (1973). Let α be a Radon measure on S. For any finite measurable partition

sequence A1, . . . , Ad, the distribution of {P (A1), . . . , P (Ad)} is Dirichlet with parameters

α(A1), . . . , α(Ad). A natural extension is the mixture of Dirichlet processes introduced by

Antoniak (1974); see also Dalal (1978) and Dalal & Hall (1980). The parameter measure

α is itself random, for example if αu is a Radon measure and if U is a random variable

with distribution function π, then the density function of {P (A1), . . . , P (Ad)} is

h(w) =
∫

Γ {αu(S)}∏d
j=1 Γ {αu(Aj)}

d∏
j=1

w
αu(Aj)−1
j π(du), w ∈ Sd.

We talk about finite mixtures of Dirichlet processes when U takes only a finite number

of values, that is

h(w) =
k∑

m=1

πm
Γ {αm(S)}∏d

j=1 Γ {αm(Aj)}

d∏
j=1

w
αm(Aj)−1
j , w ∈ Sd.

Finite mixtures are useful in practice since no parametric hypothesis for the mixing dis-

tribution is needed. The drawback is that this kind of model has a large number of

parameters.

2.2.2 Adequacy

Theoretical properties of mixtures of Dirichlet processes have been intensively studied

as they can approximate any prior distribution function and lead to analytic posteriors.
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In particular, a large literature has been devoted to the study of posterior properties of

a Bayes model with Dirichlet prior. This is outside the scope of this work. Indeed the

richness of the mixtures of Dirichlet processes for approximation of priors is enough to

define a rich class of models of spectral distributions. This property, known as adequacy,

is studied in Dalal (1978) and Dalal & Hall (1980), who show that any random probability

measure can be approximated in the weak sense by a finite mixture of Dirichlet processes.

For details about the weak topology, see Section 5.3.1.

Let M1(S) be the set of probability measures on S and F(S) be the class of all

atomic probability measures with finite support on S, that is

F(S) =

{
n∑

i=1

aiδsi :
n∑

i=1

ai = 1, ai ≥ 0, si ∈ S, i = 1, . . . , n, n ≥ 1

}
,

and let F(S) be the closure of F(S) in the weak topology. Furthermore, let MDP be

the class of mixtures of Dirichlet processes. Dalal & Hall (1980) show the two following

results, among others:

Lemma 2.3

If S is compact Hausdorff or Polish, then F(M1(S)) = M1(M1(S)).

Theorem 2.4

If S is compact Hausdorff or Polish, then MDP = M1(M1(S)).

The last result is the key result since it tells us that the class of mixtures of Dirichlet pro-

cesses is weak dense in the class of random probabilities. However, the mixing distribution

could be anything. For applications, it is essential that the set of finite mixtures of Dirich-

let distributions is weak dense. This fact is true and emphasized in Dalal (1978) where

the same results are presented in another language. The idea is that if the distribution of

any random probability can be approximated by elements of F(M(S)) (Lemma 2.3) then

each of these elements may be approximated by finite mixtures of Dirichlet processes.

2.2.3 Application to multivariate extremes

If S is the finite set {1, . . . , d}, then the finest partition of S is {1}, . . . , {d}. Therefore, a

probability function is simply a probability vector (P{1}, . . . , P{d}) ∈ Sd and a random

probability function is a random vector in Sd. Consequently, a Dirichlet process is a

Dirichlet distribution and a finite mixture of Dirichlet processes is a finite mixture of
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Dirichlet distributions,

h(w) =
k∑

m=1

πm

Γ
(∑d

j=1 α
(j)
m

)
∏d

j=1 Γ
(
α

(j)
m

) d∏
j=1

wα
(j)
m −1

j , w ∈ Sd.

The adequacy of mixtures of Dirichlet processes implies adequacy of mixtures of Dirichlet

distributions which hence generates a very rich family of spectral densities. For the

mixture of Dirichlet distributions to be a valid spectral probability measure, one must

impose the mean constraint for Fréchet margins, that is

k∑
m=1

πm
α

(i)
m∑p

j=1 α
(m)
j

= d−1, for i = 1, . . . , d.

Sometimes it is more convenient to use the mean-scale parametrization of the Dirichlet,

µj =
αj∑d
i=1 αi

and ν =
d∑

i=1

αi,

with
∑d

j=1 µj = 1. In order to avoid confusion with the extremal Dirichlet model the

mixture of Dirichlet models will be termed the extremal mixture model. This gives the

following definition:

Definition 2.5 (Extremal mixture model)

The random variable W follows the extremal mixture model if it is distributed according

to the density function

h(w) =
k∑

m=1

πm
Γ(νm)∏d

j=1 Γ
(
νmµ

(m)
j

) d∏
j=1

w
νmµ

(m)
j −1

j , w ∈ Sd,

where, for j = 1, . . . , d and m = 1, . . . , k,

πm ≥ 0,
k∑

m=1

πm = 1, νm > 0, µ
(m)
j ≥ 0,

k∑
m=1

πmµ
(m)
j = d−1,

d∑
i=1

µ
(m)
i = 1.

2.2.4 Discussion

The consistency of the Dirichlet process as a random probability brings a further un-

derstanding to the implicit nature of the spectral probability distribution. An extreme

event occurs when the sum R of the d components of X exceeds the selected threshold

r0. The distribution of R among components of X, W , is distributed according to H.

The constraints on H mean that W , seen as a random distribution on the set {1, . . . , d},

is expected to be uniform, as each margin is on the unit Fréchet scale. Furthermore,

Kolmogorov’s consistency conditions ensure that the distribution of any subgroup of
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components is coherent with the model. For example, let d = 3. If H is a mixture

of Dirichlet distributions with parameters αm and πm, m = 1, . . . , k, then, writing ‘Dir’

for the Dirichlet distribution,

(
W (1),W (2),W (3)

)
∼

k∑
m=1

πmDir
{
α(1)

m , α(2)
m , α(3)

m

}
,

but also (
W (1) + W (2),W (3)

)
∼

k∑
m=1

πmDir
{

α(1,2)
m , α(3)

m

}
.

where α
(1,2)
m = α

(1)
m + α

(2)
m . Accordingly, the mean constraints

k∑
m=1

πm
α

(j)
m

α
(1)
m + α

(2)
m + α

(3)
m

= 1/3, j = 1, 2, 3,

become
k∑

m=1

πm
α

(1,2)
m

α
(1,2)
m + α

(3)
m

= 2/3 and
k∑

m=1

πm
α

(3)
m

α
(1,2)
m + α

(3)
m

= 1/3.

This consistency, achieved by every distribution of random probabilities, is unfortunately

not clear for the extremal logistic and extremal Dirichlet models. In particular, although

they can be generalized easily to any kind of mean constraints, we have not succeeded

in writing them as a distribution of random probabilities. For multivariate extremes,

this is of secondary importance since, as {{1}, . . . , {d}} is the finest partition of S =

{1, . . . , d}, the distribution of (W (1), . . . ,W (d)) gives implicitly the distribution on every

decomposition of S. But on continuous space S, where no such finest decomposition

exists, they are difficult to extend. In Chapter 5, this consistency is used to extend the

extremal mixture to the spatial context, in other words, to mixtures of Dirichlet processes.

The adequacy of the extremal mixture model is not guaranteed under constraints. In

absence of theoretical results, the richness of this family will be investigated by experi-

ment. The next section is devoted to fitting procedures.

2.3 Fitting the extremal mixture model

This section presents the use of two algorithms for fitting the extremal mixture model:

the EM algorithm and the reversible jump Markov chain Monte Carlo algorithm.

A review of the literature about the use of mixture densities can be found in Red-

ner & Walker (1984), and reference books are Titterington, Smith & Makov (1985) and

McLachlan & Peel (2000). This subject goes back to Pearson (1894) where a mixture of

two Gaussian densities is fitted by the method of moments. In the 1960’s, the increasing
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capacity of computers allowed mixtures to be fitted with maximum likelihood methods.

The complexity of likelihood functions, even for simple mixtures, explains the success of

the EM algorithm that simplifies computations. The choice of the number of components

in the mixtures is a challenging problem. Historically it is addressed separately from the

estimation of the parameters (Lindsay 1995, p.74). In this context, the Bayesian formu-

lation allowed flexible models and estimation procedures to be developed: the unknown

number of components, k, is not selected but the posterior density is a mixture over k

using the reversible jump Markov chain Monte Carlo algorithm to explore every possible

dimension (Richardson & Green 1997).

2.3.1 The EM algorithm applied to the extremal mixture model

The use of the EM algorithm for incomplete data problems was formalized by Dempster,

Laird & Rubin (1977). Since then a very large literature is devoted to its applications

and improvements (Meng & Pedlow 1992). Two common criticisms are the difficulty of

obtaining confidence intervals and its slow convergence. The first issue is discussed, for

example, in Tanner (1996, p.74–80) or Oakes (1999) and the second in, for example, Meng

& van Dyk (1997). A reference book is McLachlan & Krishnan (1997).

The EM algorithm

Apart from minor details, the following lines follow the development in Davison (2003,

p.210). An independent and stationary sample y1, . . . , yn from a finite mixture with k com-

ponents can be viewed as a partial observation of a complete dataset, (y1, u1), . . . , (yn, un),

where uj takes values in {1, . . . k} and indicates which component yj comes from. The

complete data log-likelihood is

log f(y, u; θ) = log f(y; θ) + log f(u | y; θ),

where θ are the parameters and log f(y; θ) = 	(θ) is the log-likelihood. Taking the

expectation with respect to U after conditioning on Y = y, at θ′, yields

E
{
log f(Y, U ; θ) | Y = y; θ′

}
= 	(θ) + E

{
log f(U | Y ; θ) | Y = y; θ′

}
,

which can be written as

Q(θ; θ′) = 	(θ) + C(θ; θ′).

Therefore, for a fixed θ′,

Q(θ; θ′) ≥ Q(θ′; θ′) implies 	(θ) − 	(θ′) ≥ C(θ′; θ′) − C(θ; θ′).
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A further argument using Jensen’s inequality applied to f(y | u; θ) shows that if f(u | y; θ)

is non-degenerate and no two values of θ give the same model, then C(θ′; θ′) ≥ C(θ; θ′),

with equality only when θ = θ′. Therefore, increasing the value of Q(θ; θ′) increases 	(θ).

Furthermore, under appropriate smoothness conditions, C(θ; θ′) is stationary at θ = θ′.

Hence, if Q(θ; θ′) is stationary at θ = θ′, so too is 	(θ). The result is the EM algorithm.

Definition 2.6 (EM Algorithm)

Starting at θ′,

1. compute Q(θ; θ′),

2. for fixed θ′, maximize Q(θ; θ′) over θ, giving θ†,

3. check convergence. If not converged, set θ′ := θ† and go to step 1.

Convergence can be checked by criteria like

|	(θ†) − 	(θ′)|/|	(θ′)| ≤ ε or ‖θ† − θ′‖/‖θ′‖ ≤ ε,

for some small ε.

Confidence intervals can be based on the information matrix via the missing informa-

tion principle. Indeed,

log f(yi; θ) = log f(yi, ui; θ)− log f(ui | yi; θ),

so that, at θ′ = θ,

−∂2 log f(y; θ)
∂θ2

=
−∂2Q(θ, θ′)

∂θ2
− −∂2H(θ, θ′)

∂θ2
, (2.4)

where H(θ, θ′) =
∑n

i=1

∫
log p(ui | yi; θ)p(ui | yi; θ′)dui. The first term of the right side of

(2.4) is termed the complete information and is in general numerically available from the

M-step. The second term is named the missing information and has to be algebraically

calculated or approximated at the maximum likelihood estimator θ = θ′ = θ̂ by

−∂2H(θ, θ′)
∂θ2

=
n∑

i=1

var
(

∂ log f(yi, ui; θ)
∂θ

)
, (2.5)

where the variances are taken with respect to p(ui | yi, θ), i = 1, . . . , n. For sake of clarity,

the proof of the approximation of the variance is given in Appendix A.3. It can also be

found in Tanner (1996, p.74–78) but the notation adopted by him makes the link with

the present work not straightforward. This proof also enlightens a link with Oakes (1999)

that we have not found explicitly in the literature.
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In the case where the complete-data (yi, ui), i = 1, . . . , n, come from a regular expo-

nential family,

log f(yi, ui; θ) = log b(yi, ui) + θT s(yi, ui) − log a(θ),

then

Q(θ, θ′) =
n∑

i=1

log b(yi, ui) + θT
n∑

i=1

∫
s(yi, ui)p(ui | yi; θ′)dui − n log a(θ),

where p(ui | yi; θ) denotes the distribution of Ui given Yi = yi at θ and the subscript

T is the transposition. Therefore, maximizing Q(θ, θ′) with respect to θ is equivalent to

solving

∂ log a(θ)
∂θ

=
1
n

n∑
i=1

∫
s(yi, ui)p(ui | yi; θ′)dui.

The confidence intervals are obtained from

∂ log f(yi, ui; θ)
∂θ

= s(yi, ui) −
∂ log a(θ)

∂θ
,

so that
n∑

i=1

var
(

∂ log f(yi, ui; θ)
∂θ

)
=

n∑
i=1

var {s(yi, ui)} ,

where the variances are taken with respect to p(ui | yi, θ), i = 1, . . . , n.

In the case where all components of a mixture come from the same exponential family

and are equal up to the parameter, that is

log fm(yi; θ) = log b(yi) + θT
ms(yi) − log a(θm), m = 1, . . . , k,

where θ is the concatenation of the vectors θ1, . . . , θk, then the complete-data log-likelihood

takes also the form of an exponential family:

log f(yi, ui; θ) =
k∑

m=1

δmui

{
log b(yi) + θT

ms(yi) − log a(θm) + log πm

}
,

= log b(yi) +
k−1∑
m=1

δmui

{
θT
ms(yi) − log

a(θm)
a(θk)

+ log
πm

πk

}
+δkui

θT
k s(yi) + log πk − log a(θk).
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Therefore, the complete-data likelihood function comes from an exponential family by

setting, with a little abuse of notation,

s(yi, ui) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δui1

...

δui(k−1)

δui1s(yi)
...

δuiks(yi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log π1
πk

− log a(θ1)
a(θk)

...

log πk−1

πk
− log a(θk−1)

a(θk)

θ1

...

θk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

log b(yi, ui) = log b(yi) and log a(φ) = log a(θk) − log πk. In the case of a finite mixture,

p(ui | yi; θ) is a discrete distribution,

p(ui = m | yi; φ) =
fm(yi; θ)πm∑k
l=1 fl(yi; θ)πl

=
exp{s(yi)T θm + δmkφm}∑k
l=1 exp{s(yi)T θm + δmkφm}

, m = 1, . . . , k.

The function Q simplifies accordingly. Unfortunately, although mixtures of Dirichlet

distributions fit into this framework, the constraints imposed by the extremal mixture

model link the parameters in such a way that the complete-data likelihood function cannot

be written as an exponential family anymore. In particular, standard errors obtained from

a blind application of (2.4) and (2.5) would not be correct since the constrained maximum

of the likelihood is not equal to the overall maximum. Therefore, we do not pursue this

direction here.

Application to the extremal mixture model

The complete-data log-likelihood contributions are, for i = 1, . . . , n,

log f(yi, ui; θ) =
k∑

m=1

δuim

⎧⎨
⎩log Γ(νm) −

d∑
j=1

log Γ(νmµ(j)
m ) +

d∑
j=1

(
νmµ(j)

m − 1
)

log w
(j)
i + log πm

⎫⎬
⎭ ,

where θ is the vector containing π1, . . . , πk−1, ν1, . . . , νk and µ
(j)
m , m = 1, . . . , k − 1,

j = 1, . . . , d − 1 and where

πk = 1 −
k−1∑
m=1

πm,

µ
(j)
k =

1
πk

(
1
d
−

k−1∑
m=1

πmµ(j)
m

)
, j = 1, . . . , d − 1,

µ(d)
m = 1 −

d−1∑
j=1

µ(j)
m , m = 1, . . . , k − 1,

µ
(d)
k = 1 − 1

πk

d−1∑
j=1

(
1
d
−

k−1∑
m=1

πmµ(j)
m

)
,
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with the constraints

0 < πm < 1, m = 1, . . . , k − 1,

1 −
k−1∑
m=1

πm > 0,

0 < µ(j)
m < 1, m = 1, . . . , k − 1, j = 1, . . . , d − 1,

1 −
d−1∑
j=1

µ(j)
m > 0,

0 <
1
πk

(
1
d
−

k−1∑
m=1

πmµ(j)
m

)
< 1,

νm > 0, m = 1, . . . , k.

Optimizing this kind of function is very technical but can be performed for example with

matlab’s function fmincon. The constraints are difficult to simplify because any change

in the parametrization may make the calculus of ∂ log f(yi, ui; θ)/∂θ very awkward. This

makes the use of R’s function nlmin inadequate if confidence intervals are of interest.

Now ∂ log f(yi, ui; θ)/∂θ is a vector composed of the following elements:

∂ log f(yi, ui; θ)
∂πm

=
δuim

πm
+ δuik

⎡
⎣νk

⎧⎨
⎩

d∑
j=1

(
µj

k

πk
− µj

m

πm
− log Γ′(νkµ

(j)
k )

)
log w

(j)
i

⎫⎬
⎭− 1

πk

⎤
⎦ ,

∂ log f(yi, ui; θ)
∂νm

= δuim

⎧⎨
⎩

d∑
j=1

µ(j)
m log w

(j)
i + log Γ′(νm) −

d∑
j=1

log Γ′(νmµ(j)
m )

⎫⎬
⎭ ,

∂ log f(yi, ui; θ)
∂νm

= δuimνm

{
log w

(j)
i − log w

(d)
i − log Γ′(νmµ(j)

m ) + log Γ′(νmµ(d)
m )
}

−δuikνk
πm

πk

{
log w

(j)
i − log w

(d)
i − log Γ′(νkµ

(j)
k ) + log Γ′(νkµ

(d)
k )
}

,

where log Γ′(x) is the digamma function. Therefore, for the appropriate matrix A,

∂ log f(yi, ui; θ)
∂θ

= A

⎛
⎜⎜⎜⎝

δui1

...

δuik

⎞
⎟⎟⎟⎠ ,

so that with B = var
{
(δui1, . . . , δuik)

T
}
,

var
(

∂ log f(yi, ui; θ)
∂θ

)
= ABAT .

Furthermore, one can calculate that

Cml = δmkp(ui = m | yi) − p(ui = m | yi)p(ui = l | yi), m, l = 1, . . . , k.

This gives an explicit formula for the second term of the right hand side of (2.4), while

the first term is obtained numerically from the optimizer.
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Selection of the number of components

Akaike’s Information Criterion (AIC) is often used to select models in the regression

context and naturally some authors have extended it to the selection of the number of

components k in finite mixtures (McLachlan & Peel 2000, p.203). The AIC is known to

overfit in the regression context, so that it may overestimate k. Therefore small-sample

corrected versions like the AICc (Hurvich & Tsai 1989) may be preferable in particular

for extremes where datasets are often small, although they have no theoretical basis for

non-Gaussian data. A reference book on model selection is McQuarrie & Tsai (1998) and

a practically-oriented treatment can be found in Burnham & Anderson (2002).

Because of the constraints, the number of parameters is p = 2k − 1 + (k − 1)(d − 1)

for the extremal mixture model with k components. Akaike’s Information Criterion is

therefore

AIC(k) = −2	̂k + 2p,

where 	̂k is the maximized likelihood. The second-order modified version of the AIC, the

AICc, is

AICc(k) = AIC(k) +
2p(p + 1)
n − p − 1

,

where n is the sample size. The selected k minimizes AICc(k).

2.3.2 Reversible jump Markov chain Monte Carlo

Green (1995) is a founding work for the reversible jump Markov chain Monte Carlo

algorithm. This algorithm is particularly suited for mixture models (Richardson & Green

1997) where the chain varies across parameter spaces with varying dimensions. A detailed

treatment of Markov chain Monte Carlo methods can be found for example in Gilks,

Richardson & Spiegelhalter (1996). Below, we briefly present the Metropolis–Hastings

and the reversible jump Markov chain Monte Carlo algorithms.

Generalities

The observed data y1, . . . , yn are treated as an incomplete data set (y1, u1), . . . , (yn, un),

where uj indicates the component from which yj comes. The sample u1, . . . , un is supposed

independent and identically distributed according to the mixing distribution (π1, . . . , πk).

A prior density is given to every parameter, including k, according to the directed acyclic

graph of Figure 2.1. With generic notation, the distribution of all variables is
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η

π

δλ

θ

y

u

k

Figure 2.1: Directed acyclic graph of the hierarchical scheme for Bayesian mixture anal-

ysis.

p(λ, δ, η, k, π, u, θ, y) = p(y | θ, u)p(θ | k, η)p(u | π, k)p(π | k, δ)p(k | λ)p(δ)p(λ).

In order to satisfy the Bayesian paradigm, one must compute the posterior distribution

p(λ, δ, η, k, π, u, θ | y). This awkward task may be achieved by using a Markov chain

Monte Carlo algorithm. The aim is to build a recurrent Markov chain whose stationary

distribution is the target one but avoiding the calculation of its normalizing constant.

After a burn-in period to ensure convergence, the output of the chain is used as a sample

from the target distribution. The Metropolis–Hastings algorithm is a popular version of

such algorithms.

Let π(·) be the target density to simulate from. From the state x, the next state is

x′ simulated from a proposal density q(· | x). The jump from x to x′ is accepted with

probability α(x | x′). Hastings (1970) proposed using

α(x′ | x) = min
{

1 ,
π(x′)q(x | x′)
π(x)q(x′ | x)

}
.

This ensures that the chain of successive x so generated is reversible and converges to

the unique stationary distribution π(·). The proposal density can be arbitrary, as long as

q(x | x′) > 0 whenever q(x′ | x) > 0. In the Bayesian context, the target distribution is the

posterior distribution. The ratios in α(· | ·) avoid calculation of the constant normalizing

π.

Green (1995) adapted the Metropolis–Hastings algorithm to varying dimension prob-

lems, allowing the study of mixture models from a fully Bayesian approach (Richardson
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& Green 1997). In this context the number of components in a parameter vector is con-

ditional on k, which is itself random. In order to jump from one dimension k to another,

a countable family of move types m is defined. From the current state x, a move type m

with destination x′ with joint distribution qm(dx′ | x) is proposed, and is accepted with

probability

α(x′ | x) = min
{

1 ,
π(dx′)qm(dx | x′)
π(dx)qm(dx′ | x)

}
.

Each move has to be reversible, in the sense that qm(dx | x′) and qm(dx′ | x) are posi-

tive together. In application, each move type m consists in a move forward, increasing

the dimension, and a move backward, decreasing the dimension and reversing the move

forward. A move type m that does not change the dimension is a classical Metropolis–

Hastings jump. If the move type m changes the dimension and the destination x′ is in

higher dimension, a new random variable v is proposed and x′ is set to x′(x, v). The

dimension of v is the increase of dimension due to the jump forward. Due to dimension

reduction, the backward jump is deterministic. Thus the acceptance probability turns

out to be

α(x′ | x) = min
{

1 ,
π(x′)rm(x′)

π(x)rm(x)q(v | x, m)

∣∣∣∣ ∂x′

∂(x, v)

∣∣∣∣
}

,

where rm(x) is the probability to select a move type m when in state x and q(v | x, m) is

the density proposing v from state x when the move type is m. The acceptance probability

of the backward move is

α(x | x′) = min
{

1 ,
π(x)rm(x)

π(x′)rm(x′)q(v | x′, m)

∣∣∣∣ ∂x

∂(x′, v)

∣∣∣∣
}

.

A particularly useful case is when v is chosen independently of the current state x. In

this case, the forward move acceptance probability is

α(x′ | x) = min
{

1 ,
π(x′)rm(x′)

π(x)rm(x)q(v)

∣∣∣∣ ∂x′

∂(x, v)

∣∣∣∣
}

.

Output analysis

The interest of Bayesian methods lies in an analysis based on the whole posterior distri-

bution of the parameters and not only in point estimates. In the case of mixture analysis

with an unknown number of components, k, it may be advantageous to analyze a quantity

whose dimension does not depend on k. The density of the data is such a parameter, fur-

thermore, it contains most information of interest. Each iteration of the chain corresponds

to a simulated density

f(· | k, π, θ) =
k∑

m=1

πmf(· | θm).
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The posterior distribution of this density may be studied via standard summaries, such

as the posterior quantiles, median and mean. A conditional or an overall approach can

be followed based on simulated f(· | k, π, θ) for a fixed k or f(· | k, π, θ) for every

k, respectively. Richardson & Green (1997, p.745) advise against plug-in estimates of

the form f(· | k, π̂, θ̂) which potentially ‘give a poor over-smooth approximation of the

predictive density’.

The posterior means E{f(· | k, π, θ) | k, y} and E{f(· | k, π, θ) | y} are not themselves

finite mixtures of distributions in general, but their Monte Carlo estimates,

Ê{f(· | k, π, θ) | k, y} = |Rk|−1
∑
r∈Rk

π(r)
m f(· | θ(r)

m ),

Ê{f(· | k, π, θ) | y} = |R|−1

|R|∑
r=1

kr∑
m=1

π(r)
m f(· | θ(r)

m ),

are. Here, for every k, Rk is the set of indexes for which kr = k and R = ∪kRk. One can

hence simulate data from the posterior mean estimate by uniformly resampling some r’s

in Rk or in R and simulating data from f(· | kr, π(r), θ(r)), if possible. This strategy is

useful to obtain Monte Carlo estimates of some awkward characteristics of the density of

the data. It is used in Chapter 3.

The output analysis should allow a diagnostic of (non-)convergence. General practice

is based on the determination of a burn-in period during which the chain should have

reached the stationary distribution and the burn-out period for the analysis, R according

to our previous notation. The inspection of stationarity is often based on heuristic rules,

mainly graphical. The output is plotted and stationarity is declared when each of them

seems to have stabilized. In the case of varying dimension, those diagnostics should be

done conditionally on k. As a consequence, it may be advantageous to make diagnostics

on k and on parameters independent of k. However, one should be aware that reducing

convergence to one or two graphics may lead one to miss a non-convergent aspect of the

output.

Brooks & Giudici (2000) proposed a three-plot diagnostic based on a scalar summary

quantity that should be independent of k. Several independent chains with dispersed

starting points are launched in parallel. The diagnostic compares estimates of the global

variance, the mean variance within models and the variance between models. If the chain

has reached convergence, then overall and within-chain estimates should have converged

toward the same quantities. Let c be the chain index, for c = 1, . . . , C, m the model

index, for m = 1, . . . ,M , and θ the summary statistic. Then the three diagnostics are
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built according to the following principles:

a) Let V be the variance estimator based on the θ’s in every chain and let V Wc be the

variance estimator based on the θ’s in chain c. Then V and C−1
∑C

c=1 V Wc should

both have converged toward the same quantity, the global variance.

b) Let Wm be the variance estimator based on the θ’s in model m in every chain and

let WmWc be the variance estimator based on the θ’s in model m in chain c. Then

M−1
∑M

m=1 Wm and C−1
∑C

c=1 M−1
∑M

m=1 WmWc should both have converged toward

the same quantity, the mean variance within models.

c) Let Bm be the variance between models based on the θ’s in every chain, that is

Bm =
1

M − 1

M∑
m=1

(θ̄m − θ̄)2,

with an obvious notation. Let BmWc be the variance between model in chain c, then

Bm and C−1
∑C

c=1 BmWc should both have converged toward the same quantity, the

variance between models.

The fact that one must launch several chains in parallel makes these diagnostics heavy

to compute. If the complexity is too high, then only one chain can be used. In this

case, diagnostics consider convergence of the variance estimator without comparing global

and within-chain variance estimators. In such case, the user may not be sure that the

convergence is not around a local mode instead of a global one.

The choice of the scalar θ is critical since it must contain enough information to infer

convergence. These diagnostics cannot be based on k, for example. Nevertheless, simple

summaries on k, such as a histogram, should also be performed.

Application to extremal mixture models

For the extremal mixture model, the hierarchical scheme is given in Figure 2.2, in which

Fµ is some complicated distribution function incorporating the constraints linking π with

µ. Its construction can be found in Appendix A.5. The hm are the Dirichlet components

of the mixture, each with parameters
{
µ

(j)
m

}d

j=1
and νm, for m = 1, . . . , k. Comparing

with Figure 2.1, the index variables u have been integrated out. The conditioning of µ

given π due to the model constraint is a novel aspect compared to Figure 2.1. This adds

technical difficulties, among which are the awkward form of Fµ and the choice of move

types, which must ensure that the acceptance probability is not too low.
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µ

ν

νλ

δ

σ

π

w

k
~ k ∼ Poisson(λ),

log ν | k ∼ Nk

(
log ν̃, σ2Ik

)

π | k ∼ Dirichlet(δ1, . . . , δk),

µ | π, k ∼ Fµ,

w | ν, π, µ, k ∼
k∑

m=1

πmhm,

Figure 2.2: Hierarchical scheme for the extremal mixture model.

The hyperprior parameters must be specified by the user. If no prior information on a

parameter is available, the prior distribution should be as vague as possible. The choice of

λ may be guided by an inspection of the histograms of various components of w. Setting

δm = 1, for m = 1, . . . , k, makes π uniformly distributed on Sk avoiding misleading prior

information. Hyperparameters on log ν are more sensitive since any choice implies prior

information. An approach adapted to the data should be used, with a sensitivity analysis

in case of doubt.

For the proposal, two move types have been defined. Suppose that current state of the

algorithm is k, π1, . . . , πk, µ1, . . . , µk and ν1, . . . , νk. Then either one of the two following

move types is proposed.

i) A ‘SPLIT/COMBINE’ move type: the forward step, ‘SPLIT’, divides one random

component m0 into m1 and m2. The backward step, ‘COMBINE’, merges m1 and

m2 into m0. Updates are done in such a way that constraints are preserved locally,

that is

πm0 = πm1 + πm2 and πm0µm0 = πm1µm1 + πm2µm2 .

For the ‘SPLIT’, a random variable v ∈ (0, 1) is simulated according to a Beta

distribution and then πm1 = vπm0 and πm2 = (1 − v)πm0 . Next µm2 is simulated

according to a Dirichlet distribution on Sd and µm1 is set to π−1
m1

(πm0µm0 −πm2µm2).

The scales log νm1 and log νm2 are independently simulated according to normal

variables with mean log ν0. The component m0 is selected at random, uniformly. The

‘COMBINE’ sets πm0 = πm1 + πm2 and µm0 = π−1
m0

(πm1µm1 + πm2µm2). The scale
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log νm0 is simulated according to a normal with mean log νm1 + log νm2 . The couple

(m1, m2) is selected at random, uniformly. The Jacobian of the transformation

(πm0 , µm0 , v, µm2) �−→ (πm1 , πm2 , µm1 , µm2)

is |π0/v
d|, see Appendix A.5;

ii) A ‘MCMC’ move type: this updates parameters π, µ and ν without changing k.

This operation is done by randomly building a series of couples (mi1, mi2), with

1 ≤ i1 < i2 ≤ k, then apply successively a ‘COMBINE’ move then a ‘SPLIT’. The

update hence obtained preserves the constraints.

The proposal distributions are defined according to a supplementary level of random-

ization. At each iteration, the size of the forthcoming move is simulated among ‘BIG’,

‘MEDIUM’ and ‘SMALL’. If ‘BIG’ is selected and if the forthcoming move is ‘SPLIT’,

then v is proposed according to a uniform on (0, 1) and µm2 is proposed according to a

uniform distribution on the simplex Sd, so that the proposition is far from the current

state. If ‘MEDIUM’ or ‘SMALL’ is selected, then v is proposed according to a Beta

distribution and µm2 according to a Dirichlet distribution. The parameters of those pro-

posals are fixed by the user. Logically, a sharp shape of the proposal density should be

attributed to ‘SMALL’ and a smoother shape for ‘MEDIUM’. The scale parameters for

the normal proposal of log νm0 are defined by the user, the higher the variance, the bigger

the move size. Finally, the selection of the move size is independent of the current state

and its distribution vector is specified by the user.

The selection of the move type is independent of the move size and its distribution

is to be fixed by the user. Once the move type is selected, the selection of the move is

independent of the current state of the chain, except if k = 1, because in this case a

‘COMBINE’ is impossible. In details, the user specifies pc = P (‘COMBINE’) and ps =

P (‘SPLIT’). The move type ‘SPLIT/COMBINE’ is selected with probability psc = ps+pc

and ‘MCMC’ with probability pm = 1 − psc. If ‘SPLIT/COMBINE’ is selected, then a

‘SPLIT’ is done with probability 1 · 1l{k=1} + 1l{k 
=1} · ps/psc and ‘COMBINE’ with the

complementary probability.

2.3.3 Discussion

The two algorithms are compared on simulated and real data in the next chapter. Never-

theless, their respective advantages and drawbacks can already be discussed. The back-
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ground knowledge for applying the EM algorithm is simpler to acquire than that for the

reversible jump, which needs more time and practice. The EM algorithm is in a fre-

quentist framework which seems more realistic for multivariate extremes, where often no

prior information is available. One the other hand, the EM algorithm is a non-stochastic

algorithm and may encounter the curse of dimensionality when used with such a non-

parsimonious model as the extremal mixture model, though a prior on k may be a good

way to impose parsimony. The use of the EM algorithm becomes very complicated when

confidence intervals are of interest, while uncertainty assessment is straightforward for

the reversible jump algorithm. In general, the output of the reversible jump algorithm

provides a complete characterization of the posterior distribution while the EM algorithm

solves only a part of the problem.
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Chapter 3

Algorithms and model

performance

The first section presents an analysis of data simulated to assess practical performance of

the EM and reversible jump algorithms. In Section 3.2 the performance of the extremal

mixture model is assessed from simulated and real data.

3.1 Algorithm performance

The two fitting procedures are applied to a dataset simulated from the extremal mixture

model described in Appendix A.4.

3.1.1 The EM algorithm

Figure 3.1 details the various fitted densities obtained for k = 1, . . . , 6. Each row shows

the components of the fitted density and the left-hand plot shows a histogram of data

and the true and fitted density. The fit looks good for k = 4 and, for k > 4, additional

components are either redundant or negligible. The AICc criterion, shown in Figure 3.2,

selected the correct number of components. The parameter estimates are

π̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.4019(1.1·10−4)

0.2721(5.4·10−5)

0.1877(1.9·10−4)

0.1383

⎞
⎟⎟⎟⎟⎟⎟⎠ , µ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5093(6.9·10−5) 0.4907

0.7971(2.7·10−5) 0.2029

0.2097(1.6·10−4) 0.7903

0.2828 0.7172

⎞
⎟⎟⎟⎟⎟⎟⎠ , ν̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9598(6.1·10−4)

20.186(4.5·10−4)

0.6018(6.1·10−5)

53.048(1.1)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

with standard errors based on the information matrix indicated in brackets. Hence, the
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Figure 3.2: EM algorithm with AICc selection. Left: AICc score as a function of k. Right:

histogram of simulated data, fitted density for k = 4 (full), true density (dashed).

EM algorithm and AICc criterion both seem to provide good fitting procedures. However

this conclusion is brought up again in the discussion.

3.1.2 Reversible jump algorithm

The algorithm was run starting from k = 1, π = 1, ν = 1.18 and µ = [0.5, 0.5]. The value

of ν was determined by the method of moments. After a 30, 000 iteration burn-in period,

the final estimate based on 20, 000 iterations is shown in Figure 3.3. The fit looks good as

the posterior median almost covers the true density. The posterior mean, not shown here,

does the same. The credibility interval covers the true density function except maybe for

the first mode that seems to be more on the right than the final estimate. The posterior

distribution of k strongly favors k = 4.

Convergence diagnostics

Two other chains of 50, 000 iterations were run from starting points k = 4,

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5

0.25

0.125

0.125

⎞
⎟⎟⎟⎟⎟⎟⎠ , µ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5

0.8 0.2

0.1 0.9

0.3 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠ , ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9

20

1

5

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

61



Chapter 3. Algorithms and model performance

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

k

D
en

si
ty

   4    5    6    

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 3.3: Reversible jump algorithm result. Left: histogram of the data, the true

density (full gray), the posterior median (full black), 90% credibility interval (dashed).

Right: posterior distribution of k.

which corresponds to the real density, and k = 6,

π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/6

1/6

1/6

1/6

1/6

1/6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.5

0.85 0.15

0.15 0.85

0.35 0.65

0.65 0.35

0.5 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

100

4

4

10

10

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The scalar used to assess the convergence according to Brooks & Giudici (2000)’s plots,

described in Section 2.3.2, is

θ =
∫ 1

0
min{w, 1 − w}H(dw) =

∫ 1/2

0
wH(dw) +

∫ 1

1/2
(1 − w)H(dw),

=
k∑

m=1

πm

{
µ

(m)
1 Beta

(
0, 1/2; α

(m)
1 + 1, α

(m)
2

)
+ µ

(m)
2 Beta

(
1/2, 1; α

(m)
1 , α

(m)
2 + 1

)}
,

where α
(m)
j = νmµ

(m)
j . The interpretation of θ is the same as that of χ in Section 1.4. In

the case of asymptotic independence, H gives mass 1/2 at points 0 and 1 so that θ is 0,

and in the case of asymptotic perfect dependence, H gives mass 1 at point 1/2 so that θ

is 1/2. For intermediate situations, θ varies between 0 and 1/2 indicating the strength of

dependence.

The quantity θ was computed for the three chains every ten iterations to obtain θ
(1)
r ,

θ
(2)
r and θ

(3)
r for r = 1, . . . , 5000. The diagnostic is shown in Figure 3.4.
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Figure 3.4: Reversible jump algorithm convergence diagnostics. Top line: parameter θ’s

path in chains 1,2 and 3. Bottom line: global variance (full) versus within chain variance

(dashed); the left plot shows the total variance; the middle plot shows the intra-model

variance; the right plot shows inter-model variance.

The intra-model and inter-model variances indicate convergence from the viewpoint

of global estimation or mean chain estimation, though the upper panels do not seem fully

satisfactory. The total variance does not seem to have stabilized. The global and the

mean chain estimation have met, which is a good sign of convergence, but they are still

decreasing. The series of θ(1) shows a clear non-stationarity at the end of the series, which

may be due to the imprecision of the estimation of the variance at the end of the series.

This imprecision may be due to the sparsity of data there. This feature is also present

in the two other plots but is hidden because of the scale. A lack of stationarity in the

explored models for chain 1 is revealed by an inspection of the series of k for the three

chains, shown in Figure 3.5. Chains 2 and 3 look more stable around k = 4.

This study of the non-convergence of the chain reveals the importance of the starting

point of the algorithm. Indeed, the first chain has a starting points with k = 1, the furthest

from the true density from the viewpoint of its shape. Although the first chain gives a

good fit to the true density, its lack of convergence suggests it needs more iterations. The

second chain shows no evidence of non-convergence and it is natural considering that its

63



Chapter 3. Algorithms and model performance

0 10000 20000 30000 40000 50000

1
2

3
4

5
6

iteration

k 
ch

ai
n 

1

0 10000 20000 30000 40000 50000

3
4

5
6

7

iteration

k 
ch

ai
n 

2

0 10000 20000 30000 40000 50000

3
4

5
6

7
8

9
10

iteration

k 
ch

ai
n 

3

Figure 3.5: Reversible jump algorithm convergence diagnostics on k. From the left plot

to the right: the path of k for chains 1, 2 and 3.

starting point is the true density. The last chain also indicates convergence. Its starting

point is a more complex model with k = 6 and potentially closer to the true model than

the starting point of chain 1. From a practical viewpoint the first chain was in fact the

fairest among the three, in the sense that a practitioner would naturally use such a generic

starting point. Nevertheless, the non-convergence would have been surely detected with

diagnostics based on only one chain.

Sensitivity analysis

Two causes to the sensitivity to prior specification can be distinguished: the prior speci-

fication on k and the prior specification on the other parameters conditional on k. This

latter aspect is difficult to quantify since the influence of the prior varies as the chain

moves from one state to another. For example, the influence of the prior on π may inflate

as k grows. Below we study the sensitivity of the Poisson prior distribution on k to the

hyperparameter λ and the sensitivity of the prior normal on log ν to the hyperparameters

log ν̃ and σ. The influence of the hyperparameter on π is not addressed, because with

δ = 1, it is the uniform distribution for any k. The prior is therefore uninformative and

should always be used in practice.

To assess the sensitivity to the prior specification of k, three chains were ran for 20, 000

iterations, after a 30, 000 iteration burn-in period. The results are shown in Figure 3.6.

The hyperpriors on log ν were fixed to log ν̃ = 0 and σ = 10 for the three chains. The

final estimate when λ = 1 is not good and misses one component, though the credibility

intervals cover the true density. When λ = 2 or 8 the fit is good. Furthermore, the

histogram of k shows even when λ = 8 the number of components remains around four

and five. This means that taking a high λ does not involve an artificial explosion of the
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Figure 3.6: Sensitivity to k prior specification. From left to right λ = 1, 2, 8. Top:

posterior histogram of k. Bottom: histogram, true density (full gray), posterior median

(full black), 90% credibility intervals (dashed).

number of components.

For assessment of the sensitivity to the prior specification log ν, three chains were ran

for 20, 000 iterations, after a 30, 000 iteration burn-in period. The results are shown in

Figure 3.7. From the left to the right, the hyperpriors on log ν were fixed to log ν̃ = 0 and

σ = 1, σ = 10 and σ = 100. The hyperprior parameter on k was fixed to λ = 2 for the three

chains. The conclusion is dramatic for small σ. The influence on the algorithm is crucial.

In detail, for this data set, the range of log ν is log 0.9 = −0.105 up to log 50 = 3.91.

With a mean 0 and a standard deviation 1, the prior of log ν misses log 20 = 2.996 and

log 50 = 3.91, corresponding to the two central bumps, with a probability higher than

95%. Furthermore the chain was ran for another 50, 000 iterations without any sign of

improvement. This effect is serious and may compromise an analysis. Naturally, one

should try to be uninformative, which means taking σ as large as possible. In practice

however, the algorithm may then encounter numerical problems.
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Figure 3.7: Sensitivity to log ν prior specification. From left to right σ = 1, 10, 100. Top:

posterior histogram of k. Bottom: histogram, true density (full gray), posterior median

(full black), 90% credibility intervals (dashed).

3.1.3 Discussion

Both methods of estimation have advantages and drawbacks. The EM algorithm is easy

to implement, in principle at least, if a numerical optimizer is available. However con-

fidence intervals are very hard or even impossible to obtain in particular for parameters

that are not in the original parameterization. This is a serious drawback since in gen-

eral the parameters of the extremal mixture models are not of interest compared to the

dependence measure or return levels. Using the EM algorithm in such a context would

involve developing methods for uncertainty assessment other than those presented in this

work. One possibility is a bootstrap procedure but the time required would make such

a method impracticable. As a second drawback, the EM algorithm is implemented for

incomplete data coming from a mixture distribution. In particular, it is impossible to use

it for componentwise maxima, the multivariate extreme value distribution not being itself

a mixture since

P{Mn ≤ x} = exp
{
−d

∫
Sd

max
j=1,...,d

(
wj

xj

)
H(dw)

}
.
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A third drawback is the slowness of the EM algorithm. Procedures for speeding it up have

been proposed in the literature (Meng & van Dyk 1997), but they have not been tried

here. In this context, the constraints on the parameters present a technical challenge.

The reversible jump algorithm is more complex in its theory and implementation but

the application looks more natural than the EM algorithm. As a first drawback, the

reversible jump algorithm needs a working prior specification although in general no prior

information on the parameters of an extremal mixture model is available. Furthermore,

convergence is not guaranteed and must be part of the inference. Nevertheless, the fit

provided by the posterior mean or median turned out to be satisfactory. The algorithm

provides uncertainty assessment on k as well as on any scalar or vector quantity whose

size is independent of k, such as θ. Uncertainty assessment for π, µ and ν is more difficult

because of labeling issues. This problem may be solved by imposing further constraints

on the parameters in order to follow the path of each component. One possibility would

be to sort π but this extra complexity may dramatically slow down the convergence of

the algorithm. In our case, we use the mixture as a semi-parametric model, following the

discussion of Richardson & Green (1997, p.785): ‘in this case, no interpretation should

be given to the components and [...] only summaries which are invariant to the labeling,

like density estimates [...], should be produced.’. As a final comment, the algorithm is

computationally intensive and so may be slow. However, in our experience, it usually turns

out to be faster than EM algorithm. Furthermore, it offers a more complete exploration

of the posterior density than does maximum likelihood estimation.

In view of its greater flexibility, the reversible jump algorithm is favored in the rest of

this thesis.

3.2 Model performance

Below we study the performance of the extremal model itself. This section is divided into

two parts, the first a simulation study, the second an analysis of oceanographic data.

3.2.1 Simulated data analysis

Datasets of length 500 from classical spectral density functions were simulated and the

extremal mixture model was fitted using a reversible jump algorithm. The initial point

is always k = 1 and ν is chosen by the method of moments. The analysis is based on

30, 000 iterations after a 50, 000 iteration burn-in period. The three first datasets were
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simulated from the extremal logistic model in dimension d = 2 with parameters (0.2, 0.2),

(0.8, 0.8) and (0.6, 0.6). These parameters were chosen for the three types of density

shapes they provide. The results are shown in Figure 3.8. For parameters (0.2, 0.2) and

(0.8, 0.8), the fits look good. In the first case, the true density falls into the credibility

intervals and in the second case it is visually indistinguishable from the posterior median.

In the case of parameter (0.6, 0.6), the final estimate is quite far from the true density.

The shape of the credibility interval indicates the path of the algorithm with almost

fixed points around w = 0.15 and w = 0.85. One possible reason is the great sensitivity

of the shape of the symmetric extremal logistic model density around α = 0.5, that

is small changes in α change the density quite dramatically. The histogram itself is not

representative of the density. To explore this phenomenon, an unrealistic experiment with

10, 000 data simulated from a symmetric extremal logistic model with parameter (0.6, 0.6)

was conducted. The results are shown in Figure 3.9. The first line shows various shapes

of the symmetric density for parameters around 0.5. This illustrates the great variability

encountered. The second line shows the results of the reversible jump algorithm and the

visited k. The histogram, and hence the data, is more representative of the density. Here,

the fit looks quite good although the convergence could be improved, in view of the path

of k.

The fourth to fifth datasets are simulated from asymmetric extremal logistic models

with parameters (0.2, 0.8) and (0.6, 0.4). Results are given in Figure 3.10. Here again,

the model seems to capture the main part of the true density. The gray lines representing

the true density are cut at 0.1 and 0.9 because of the implicit form of the density. Solving

the required equation is numerically difficult beyond these limits. The extremal mixture

model does not suffer from this drawback.

The next three datasets were simulated from the extremal Dirichlet model with pa-

rameters (α, β) equal to (1, 0.2), (3, 0.4) and (10, 2), respectively. Results are presented in

Figure 3.11 in a similar way as before. The fit is fairly good and this experiment confirms

that the final fit is really close to the histogram.

In order to illustrate the performance in dimension d = 3, two datasets were simulated

from an extremal Dirichlet model with parameters (0.5, 1, 30) and an extremal logistic

model with parameters (0.2, 0.5, 0.8). The goodness of fit is judged on the bivariate

density function of the two first components of the data. Results are given in Figure 3.12.

The conclusion is the same as in dimension d = 2. The fits looks adequate in view of the
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Figure 3.8: Fitting the symmetric extremal logistic model with the extremal mixture

model. Top: histograms superimposed by the true density (gray), the posterior median

estimates (black) and the 90% credibility interval (dash). Bottom: the path of k.

data, which are more representative of the true density in the extremal Dirichlet model

case than in the extremal logistic model. As in the case d = 2, an unrealistic simulation

with 5, 000 data from the same extremal logistic model was conducted. Results are shown

in Figure 3.13. Here again, the extremal mixture model is close to the data.

3.2.2 Real data analysis

In order to illustrate performance on real data, the model was fitted to the dataset from

Coles & Tawn (1994) described in Appendix A.4.

In their analysis, Coles & Tawn (1994) used the semi-parametric extremal model

for the margins and the extremal Dirichlet model for the dependence structure. The

multivariate threshold r0 was selected to be exp(3.3), giving 222 joint excesses. The

marginal thresholds have been chosen in a compatible manner, that is pk = 222/2895

and uk is the (1 − pk)-empirical quantile of X
(k)
1 , . . . ,X

(k)
n . Although not necessary, this

choice simplifies the application. The authors obtain u1 = 6.59, u2 = 11.6 and u3 =

0.351. The marginal parameters and the parameters of dependence were simultaneously
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Figure 3.9: The sensitivity of the symmetric extremal logistic model for α around 0.5.

Top: true h for α = 0.35 up to 0.65; the more continuous the line, the lower α. Bottom left:

histogram of 10, 000 data with α = 0.6 superimposed by the posterior median estimates

(black) and the 90% credibility interval (dash); bottom right: the path of k.

estimated by maximum likelihood. The fitted value for the dependence parameter is

α̂ = (0.497, 0.985, 0.338). Coles & Tawn (1994) did not indicate the values of the marginal

parameters.

An extremal mixture model is fitted with the reversible jump algorithm modified to

take into account the marginal parameters and the parameters of dependence simultane-

ously. A central interest in Coles & Tawn (1994) is estimation of the return level. This

subject is addressed in the next chapter. Technical aspects of the reversible jump algo-

rithm for the dependence and the margin parameters are explained in Appendix A.5.3.

The results are presented in Figure 3.14, which shows the spectral density contours.

The gray dots are the pseudo-angles obtained by non-parametric transformation. The

estimate with the extremal mixture model seems to offer a better fit to the data than

the extreme Dirichlet model. The fit looks better in the center of the simplex, which
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Figure 3.10: Fitting the asymmetric extremal logistic model with the extremal mixture

model. Top line: histograms of simulated data superimposed with the true density (gray),

the posterior median estimates (black) and the 90% credibility interval (dash). Bottom

line: the values of k visited by the algorithm.

indicates that the model takes the dependence of the pseudo-angles into account. Sec-

ondly, the fit looks better at the edges showing that the model is sensitive to some of the

asymptotic independence structure in the data. Most of the density is concentrated at

the left corners of the simplex and along the diagonal edge. In view of this picture, one

could suspect asymptotic independence of the couple (X2, X3), that is, the surge and the

period. This important characteristic of the dataset is more difficult to detect with the

extreme Dirichlet model. For example, looking at the fitted curves at edges {w1 = 0}

and {w2 = 0}, we see that the extremal Dirichlet model attributes stronger asymptotic

dependence to the first edge than to the second, in contradiction with the data, which

are more closely fitted by the extremal mixture model. Here we see that the smoothness

of the extremal Dirichlet model is perhaps a little excessive and therefore that estimation

at the edges is influenced by the data in the center of the simplex.

71



Chapter 3. Algorithms and model performance

alpha=0.2  beta=0.2

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

alpha=3  beta=0.4

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

alpha=10  beta=2

w

D
en

si
ty

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 5000 10000 15000 20000 25000 30000

2.
0

2.
5

3.
0

3.
5

4.
0

Iteration

k

0 5000 10000 15000 20000 25000 30000

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Iteration

k

0 5000 10000 15000 20000 25000 30000

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Iteration

k

Figure 3.11: Fitting the symmetric extremal Dirichlet model with the extremal mixture

model. Top line: histograms of simulated data superimposed with the true density (gray),

the posterior median estimates (black) and the 90% credibility interval (dash). On the

bottom line: the path of k.

3.2.3 Discussion

In experiments, the extremal mixture model has demonstrated its flexibility, allowing for

a large variety of shapes. In particular, this model fits the data very closely when the

true density and the histograms are not close to one another. This situation was observed

for data simulated from an extremal logistic model with one parameter close to 0.5. The

extremal mixture model thus appears to be a good model for spectral densities, at least as

good as the extremal logistic and the extremal Dirichlet models. In particular, it is easier

to use than the extremal logistic, which has no explicit likelihood, except in its symmetric

form. Furthermore, the reversible jump algorithm turns out to be a good procedure even

if it could not be used in a fully automatic way for these experiments.
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Figure 3.12: Extremal mixture model performance in three dimensions. Top left: extremal

Dirichlet model data fitted by extremal mixture model; top right: true density. Bottom

left: extremal logistic model data fitted by extremal mixture model; bottom right: true

density.
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Figure 3.13: Sensitivity of the extremal logistic model. Left: the extremal mixture model

fit. Right: the true density.
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Dirichlet estimate. Right: the extremal mixture model posterior mean estimate.
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Chapter 4

Return level estimation and

dependence analysis

This chapter deals with practical aspects of extreme value analysis using the extremal

mixture model. It is divided into three sections. The first presents diagnostics for the

selection of the multivariate threshold for the Poisson process approach. It is not di-

rectly linked with the extremal mixture model but is used in the following sections. In

Section 4.2, the estimation of return levels via Monte Carlo estimates is addressed. Sec-

tion 4.3 presents an original dependence analysis of a real dataset using the extremal

mixture model.

4.1 Selection of the multivariate threshold

In this section we propose three diagnostics to choose the threshold in the multivariate

case. The justification is based on the Poisson limit.

4.1.1 Three diagnostic plots

Let X1, . . . ,Xn be an independent and stationary sample in R
d with Fréchet margins, let

Ri =
∑d

j=1 = X
(j)
i and let Wi = Xi/Ri. For a threshold r0, let I0 = {i : Ri > r0}. Then

three features (null hypothesis) are tested:

i) for i ∈ I0, Ri is distributed according to the distribution function F (r) = 1 − r0/r,

r > r0;

ii) for i ∈ I0, Wi has mean vector (d−1, . . . , d−1) ∈ R
d;
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iii) for i ∈ I0, Ri and Wi are linearly independent.

The p-value of each test is plotted versus log r0. The threshold is selected when the p-value

is acceptable. Three classical tests are used:

i) the Kolmogorov–Smirnov test (Davison 2003, p.328). This is based on the statistic

max
i∈I0

{
i/n − U(i), U(i) − (i − 1)/n

}
,

where Ui = 1 − r0/Ri, i ∈ I0, and U(i) is the ith order statistic of {Ul}l∈I0 . The

p-value has to be calculated numerically and is available from standard statistical

software, for example in R by function ks.test.

ii) the multivariate T -test. It is based on Hotelling’s T 2 statistic (Davison 2003, p.260)

T 2 = n0

(
W̄ − µ0

)T
S−1

(
W̄ − µ0

)
∼ (d − 1)(n0 − 1)

n0 − (d − 1)
Fd−1,n0−(d−1),

where W̄ is the sample mean of
(
W

(1)
i , . . . ,W

(d−1)
i

)
i∈I0

, µ0 = (d−1, . . . , d−1) ∈ R
d−1,

n0 is the number of excesses and Fα,β is the F distribution with parameter α and β.

The F distribution is available from most statistical software.

iii) the linear dependence test between log R and W . A normal linear model is fitted,

log(Ri/r0) =
[
1,W (1)

i , . . . ,W
(d−1)
i

]
β + εi, i ∈ I0,

with β = (β0, . . . , βd−1)T and εi
i.i.d.∼ N (0, σ2). The linear dependence test

H0 : β1 = · · · = βd−1 = 0 vs H1 : ∃j ∈ (1, . . . , d − 1) : βj 
= 0,

is based on the statistics

{SS(β̂0) − SS(β̂)}/(d − 1)
SS(β̂)/(n0 − d)

∼ Fd−1,n0−d.

where SS(β̂0) is the residual sum of squares under H0 and SS(β̂) is the residual sum

of squares under the full model (Davison 2003, p.379). The p-value of this test is

available from statistical software.

4.1.2 Performance on simulated and real data

In order to illustrate its performance on real data, the diagnostics were applied to Newlyn

dataset, from Coles & Tawn (1994), described in Appendix A.4. The margins are trans-

formed to the unit Fréchet using the empirical distribution function. The result of the
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Figure 4.1: Selection of the threshold for real data. Top: Newlyn data. Bottom: air

quality data.

diagnostics is shown in the top line of Figure 4.1. It is hard to draw a rigorous conclu-

sion, but the threshold exp(3.3) seems reasonable. Coles & Tawn (1994) chose this value

using a visual selection procedure based on the stabilization of the histograms of Wi as r0

increases. Such a procedure is much more difficult in dimension greater than two, unlike

this diagnostic which does not depend on the dimension. The bottom line of Figure 4.1

shows the result when applied to air quality data, from Heffernan & Tawn (2004), see

Appendix A.4. In this example the selection is less obvious; we take r0 = exp(3.6) below.

For the simulation study, four bivariate datasets were simulated. The size of each

dataset is 5000. The margins are transformed to the Fréchet scale using empirical trans-

formation.

1. A mixture of 4800 standard normal data with correlation ρ = 0.5, margins trans-

formed to unit Fréchet, restricted to the set {r ≤ r0} and 200 bivariate data from the

extremal Poisson model whose spectral density being asymmetric logistic with pa-

rameters (0.2, 0.8) and R restricted to {r > r0}. The threshold r0 equals exp(3.86).

2. The same mixture but the spectral measure of the Poisson model is an extremal
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Dirichlet with α = (0.4, 0.6).

3. The inverted multivariate extreme value distribution with a logistic spectral function

with parameters α = (0.42, 0.42).

4. A normal distribution with correlation ρ = 0.5.

The two first datasets are constructed in order to build an artificial threshold r0. The

two last datasets were chosen because they exhibit asymptotic independence so that the

classical extremal Poisson characterization is inappropriate. The results are shown in

Figure 4.2. For the first two datasets, the artificial threshold appears appropriate on the

diagnostic plots. In fact it seems in both cases that an even lower threshold would be

appropriate. For the two last datasets, the diagnostic plot does not reveal any appropriate

threshold. In particular, the three tests show strong incoherence; a good threshold for the

Kolmogorov’s test on R turns out to be inappropriate for Hotelling’s test on the mean of

W .

4.1.3 Discussion

The three-diagnostic plots have both positive and negative points. Firstly, they are inde-

pendent of the dimension of the data. Three graphs are enough to make a first selection

of the threshold even if a more detailed selection may be needed afterward. Secondly,

they only require standard routines available in most software packages and are very easy

to compute. However, this selection remains mainly heuristic. Firstly, the hypothesis of

normality for two among the three tests is not satisfied. This deficiency is worsened by

the fact that the region of interest in the plots corresponds to p-value of tests done with

very few data. The power of such a procedure is likely to be very low. Secondly, there is

no uncertainty assessment in such an approach. There is no guide to what kind of p-value

is high enough for the threshold to be appropriate. Furthermore, as the threshold is not

a parameter, there is no true threshold for a model and hence no numerical study of the

performance of these diagnostics can be done. We conclude that these diagnostics are a

step toward a more rigorous threshold selection but they remain heuristic and should not

be used in any automatic procedure.

As a final comment, the test on the mean of W could be replaced by an empirical

likelihood test. This would relax the hypothesis of normality but, on the other hand,

would imply an explosion in the computation time. There must be other directions in

which these diagnostics can be improved.
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Figure 4.2: Selection of the threshold for simulated data. From top to bottom: normal

and Poisson with logistic H, normal and Poisson with Dirichlet H, inverted multivariate

extreme value distribution and normal dataset.
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4.2 Simulation of multivariate extremes

Simulation of multivariate extremes refers to simulation either from a multivariate extreme

value distribution or from the extremal point process. This section concentrates on the

second case. The first case is treated for logistic type distributions in Stephenson (2003).

A general method, although difficult to put in practice, can be found for the bivariate case

in Kotz & Nadarajah (2000, p.142–143), where the simulation from the extremal point

process is also presented with a focus on the use of the rejection algorithm for simulating

from the spectral measure. Their idea only requires simulation from a Poisson process,

but the marginalization problem is not addressed, and methods and applications in the

multivariate case are only sketched. We here present more general methods for simulation

of point processes for multivariate extremes; despite their simplicity we have not found

them in explicit form in the literature, though there is related work by Bruun & Tawn

(1998).

4.2.1 Generalities

The simulation is based on the semi-parametric model implied by the Poisson process

limit. In other words, for a given selected threshold r0, a simulated datum is either in the

set {r ≤ r0} with probability 1 − p0, in which case it is not extreme and is distributed

according to the empirical distribution function, or in the set {r > r0}, in which case it

is extreme and distributed according to the Poisson process with intensity measure

d
r0

r2
dr × H(dw), w ∈ Sd, r > r0

where H is the spectral probability measure. In order to simulate a fixed number n0 of

points from a Poisson process in a compact set A, one has to simulate an independent

and identically distributed sample of size n0 according to the intensity measure restricted

to A and properly normalized. Therefore, the simulation scheme of N extreme events in

the set {r1 < r ≤ r2}, r1 ≥ r0, is obtained by repeating the following algorithm N times:

1) Simulate U ∼ U(0, 1) and set R := r1 {1 − (1 − r1/r2)U}−1;

2) Simulate (W (1), . . . ,W (p)) ∼ H(dw);

3) Set X(j) := RW (j), j = 1, . . . , p.

The simulation of R comes from the fact that

P {R ≤ r | r1 < R ≤ r2} =
P {r1 < R ≤ r | R > r0}
P {r1 < R ≤ r2 | R > r0}

=
1 − r1/r

1 − r1/r2
,
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Figure 4.3: Illustration of the mixed empirical distribution function. Left: simulated

extremes are in gray, observations in black. Right: the empirical cumulative distribution

function increases by 1/n at each observation and by p0/N at each simulated extreme.

for r1 < r ≤ r2. Extreme events can hence be simulated at arbitrarily high levels. In

dimension two, this algorithm is described in Kotz & Nadarajah (2000, p. 143) where

they take r1 = r0 and r2 → ∞ and simulate from H using a rejection sampling algorithm.

In practice, it can be useful to transform the simulated data back to the original scale

of the observations. The data simulated in {r > r0} have not the same weight as the

original data in {r ≤ r0}. Let n be the total number of data, n0 the number of data in

{r > r0}, and N the number of data simulated in {r > r0}. Then, ignoring observed

data in {r > r0}, the empirical distribution function of X(j) increases by 1/n at each x
(j)
i

observed in {r ≤ r0} and increases by (n−1n0)N−1 at each datum simulated in {r > r0}.

Formalizing, let I0 be the index set such that i ∈ I0 means xi ∈ {r > r0}. Then the

empirical distribution function of the j-th margin is

Fj(x) =
1
n

∑
i∈Ic

0

1l{x(j)
i ≥x} +

n0

n

1
N

∑
i∈I0

1l{x(j)
i ≥x}.

In other words, the final empirical distribution function mixes the original empirical dis-

tribution function restricted to {r ≤ r0} with the empirical distribution function of data

simulated in {r > r0}. The weights of this mixture are respectively 1 − p0 and p0, where

p0 is the probability of being in {r > r0}. Those x
(j)
i from {r > r0} are not necessarily

themselves greater than r0. Figure 4.3 gives a schematic illustration. This mixed empir-

ical distribution function can then be used to transform the data to the uniform scale,

then back to the original scale, using for example the semi-parametric extremal model.
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An example

This principle is illustrated on real data. The original data are an air quality measurement

series during 1994–1998, extracted from Heffernan & Tawn (2004), see Appendix A.4.

For a purpose of illustration, only summer series of ozone and nitrogen dioxide were

considered and we ignore potential time dependence. The data are shown in Figure 4.4,

on the original scale and on the Fréchet scale. The semi-parametric extremal model

has been used. Threshold selection gives u1 = 57.8 and u2 = 52, while the marginal

parameter maximum likelihood estimates are σ̂1 = 8.05, σ̂2 = 16.0, κ̂1 = 0.230 and

κ̂2 = −0.436. A multivariate threshold is selected at r0 = 20.4 and the spectral density

is estimated using various models: a symmetric extremal logistic model with maximum

likelihood estimate α̂ = 0.688, an extremal Dirichlet model with maximum likelihood

estimate α̂ = (0.469, 0.665) and a posterior mean of an extremal mixture model fitted

with the reversible jump algorithm. From those estimates, N = 1000 extremal events are

simulated then transformed back to the original scale. Figure 4.5 shows the result. In

each panel, the original data below the multivariate threshold are in black, the gray points

are the extremal events. The top left panel refers to an empirical simulation scheme using

the pseudo-angle histogram for the spectral distribution.

Various features of the data appear clearly, such as the finite end-point of ozone series,

because κ̂2 is negative, and the very low probability of sets like [100, 150]× [20, 40]. The

empirical model ignores the possibility of independence at moderate extreme levels as it

simulates no data in [50, 100]× [0, 20] or in [0, 25]× [60, 80]. In the area of highly extreme

events, [100, 150] × [60, 80], the extremal Dirichlet and the extremal logistic seem to be

more or less the same while the extremal mixture model is more spread out and so is closer

to the empirical model. No clear cut distinction appears between the three parametric

models.

Extreme probability estimates and return levels

A direct application is the estimation of the probability of extreme sets and return levels.

The proportion of data from the estimated model that fall into the extreme set gives an

unbiased estimate of the probability of the extreme set under the estimated model. Let

A be the set of interest. Then

P (A) = P (A | R ≤ r0)P (R ≤ r0) + P (A | R > r0)P (R > r0).
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Figure 4.4: Ozone and nitrogen dioxide extremal analysis. Top left: original data set.

Top right: data on the Fréchet scale. Bottom, from left to right: histogram of w with

fitted extremal logistic, extremal Dirichlet and extremal mixtures.

If A is an extreme set, then P (A | R ≤ r0) is zero, otherwise this quantity is estimated

empirically. Since the multivariate threshold selection defines p0 = P (R > r0), it is

sufficient to concentrate on estimation of P (A | R > r0), which we write as P0(A) for

convenience. Then, for any rs > r0,

P0(A) = P0(A, R ≤ rs) + P0(A, R > rs).

In order to achieve a precision ε in the estimation of P0(A), it is not necessary to look at the

domain further than an rs such that P0(R > rs) < ε, since P0(A, R > rs) < P0(R > rs).

It is therefore enough to restrict the simulation to the set {r0 < r ≤ rs} or, in other

words, to rs such that r0/rs = ε, that is rs = r0/ε. Now

P0(A, R ≤ rs) = P (A | r0 < R ≤ rs)P0(R ≤ rs) = P (A | r0 < R ≤ rs)(1 − r0/rs),
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Figure 4.5: Simulation of extreme events. Black points are original non-extreme data.

Gray points are simulated from the limit Poisson process with various spectral probability

measures.

where P (A | r0 < R ≤ rs) is estimated by the proportion of simulated points falling in A.

An extension of this principle is to decompose the set [r0 , rs) into an arbitrary number

of sets, [ri , ri+1), and simulate the same amount of data in each set so that the space is

more uniformly explored. This approach is straightforward in any dimension since it is

only applied to the coordinate r.

The estimation of the return level of a set is of most interest. In the multivariate case,
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a set Av is parameterized by a scalar v and the estimation of vp such that

p = P
(
X ∈ Avp

)
is of interest. When p is small and so Av is away from the central part of the data,

then previous methods can be used in a numerical optimization procedure minimizing an

objective function, for example,

f(v) = ‖P (X ∈ Av) − p‖.

4.2.2 Simulation study

Mimicking the simulation study of Heffernan & Tawn (2004), the return levels of distri-

butions A, B, C and D, described in Appendix A.4, are estimated. Two kinds of events

are considered:

1) simultaneously extremal events. The return level is v such that pv = P (Y > v);

2) unilaterally extremal events. The return level is v such that P (Y1 > r, Y2 < v) = p

where r is such that P (Y1 > r) = p/q.

Here, comparisons are done componentwise. True values of v are given in the Ap-

pendix A.4. In Heffernan & Tawn (2004), a new approach is developed. The idea is

to fit the distributions of the data given that there are extremes in one component, that

is the distributions of X−i | Xi > ui, for i = 1, . . . , d. The asymptotic characterization

is similar to the multivariate extreme distribution. The extremal events considered are

perfectly designed for this kind of method, which reveals very good performance in partic-

ular for models C and D which are asymptotically independent. The estimation of return

levels is also based on Monte Carlo integration by simulating from the fitted model. Their

results are compared with classical methods for simultaneous extremal events but not for

unilaterally extremal events for which classical methods are inappropriate. These results

are reproduced in Tables 4.1 and 4.2. Therein NP1 refers to a non-parametric approach

with the coefficient tail of dependence, η, fixed to 1, NP refers to a non-parametric ap-

proach with estimated η, and HT refers to the method developed in Heffernan & Tawn

(2004).

Method MD refers to the Monte Carlo procedure developed in this thesis. From each

distribution, a sample of 5000 data is simulated, a threshold is selected, and the spectral

probability distribution is estimated using the extremal mixture model with a reversible
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Dist. Method p

10−4 10−6 10−8

A MD 0.04 (−0.37, 0.49) −0.01 (−0.26, 0.28) 0.02 (−0.19, 0.23)

NP1 −0.1 (−1.0, 0.8) −0.1 (−0.7, 0.5) −0.0 (−0.5, 0.4)

NP −0.8 (−15, 0.6) −0.8 (−16, 0.4) −0.6 (−17, 0.3)

HT −1.4 (−4.0, 0.8) −1.6 (−4.1, 0.5) −1.6 (−5.0, 0.4)

B MD 4.53 (4.00, 5.11) 2.09 (2.58, 3.23) 1.98 (1.73, 2.24)

NP1 4.6 (3.7, 5.6) 3.0 (2.4, 3.6) 2.1 (1.7, 2.5)

NP −1.0 (−14, 5.3) −2.9 (−17, 3.4) −3.9 (−19, 2.4)

HT −4.0 (−12, 4.2) −5.7 (−15, 0.5) −6.1 (−17, 0.0)

C MD 29.4 (28.4, 30.2) 34.1 (33.4, 34.7) 53.5 (52.6, 54.3)

NP1 23 (22, 24) 26 (26, 28) 29 (28, 29)

NP −0.6 (−16, 14) −0.1 (−18, 17) 0.2 (−18, 18)

HT −0.6 (−8.6, 5.3) 0.6 (−13, 8.2) 0.8 (−18, 9.8)

D MD 20.3 (19.5, 21.2) 26.3 (25.7, 26.8) 26.9 (26.5, 27.3)

NP1 28 (27, 29) 31 (30, 32) 32 (32, 33)

NP −1.9 (−15, 14) −1.9 (−17, 16) −2.2 (−18, 17)

HT −0.6 (−10, 7.3) −0.1 (−15, 9.2) −0.1 (−25, 12)

Table 4.1: Median (2.5 and 97.5 percentiles)(×100) of the posterior distribution of relative

errors of vp for simultaneously extremal events.

jump algorithm. The posterior distribution of the relative error (v̂−v)/v is obtained from

the chain. To do so, a subset I = {r1, . . . , rl} ⊂ {1, . . . , R}, where R is the number of

iterations of the chain, is drawn at random. Then for each r ∈ I, a sample of extremes

is simulated and the corresponding vr is computed. The resulting chain of relative errors

(vr1 − v)/v, . . . , (vrl
− v)/v is analyzed. This choice of a l ≤ R is made because each step

of this algorithm can be quite long, but, in principle, the whole chain {1, . . . , R} could be

taken.

For simultaneously extremal events, method MD performs similarly to method NP1,

which is also based on the Poisson process approach. In particular, it breaks down for

distributions C and D that exhibit asymptotic independence. For distribution A it is the

best method, from the viewpoint of bias and uncertainty, even though the uncertainty

is underestimated here. Indeed, these values are the credibility intervals for v, which
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Dist. q p Methods

10−4 10−6 10−8

A 0.2 1.86 (−0.33, 3.86) 1.17 (−0.05, 2.25) 0.90 (−0.02, 1.69) MD

0.2 −3.1 (−13, 2.7) −4.7 (−15, 1.6) −5.1 (−16, 1.0) HT

0.5 0.33 (−0.41, 1.08) 0.27 (−0.30, 0.75) 0.21 (−0.15, 0.59) MD

0.5 −2.0 (−9.4, 1.2) −2.5 (−11, 0.8) −2.6 (−12, 0.5) HT

0.8 −0.05 (−0.37, 0.22) −0.00 (−0.22, 0.20) 0.03 (−0.15, 0.17) MD

0.8 −0.8 (−6.7, 3.8) −0.9 (−7.8, 3.5) −1.0 (−9.2, 2.9) HT

B 0.2 3.39 (2.18, 4.60) 1.82 (1.14, 2.40) 1.54 (0.99, 2.02) MD

0.2 −15 (−36, 0.7) −17 (−43,−1.1) −16 (−47,−2.0) HT

0.5 2.99 (2.17, 3.71) 2.03 (1.52, 2.48) 1.40 (1.04, 1.73) MD

0.5 −11 (−25,−0.9) −12 (−29,−1.9) −12 (−32,−2.2) HT

0.8 6.79 (6.18, 7.50) 4.40 (3.87, 4.87) 3.33 (2.94, 3.67) MD

0.8 −8.4 (−19,−0.3) −9.1 (−21,−1.6) −9.2 (−23,−1.6) HT

Table 4.2: Median (2.5 and 97.5 percentiles)(×100) of the posterior distribution of relative

errors of vp for non-simultaneously extremal events.

do not take into account the uncertainty of estimation of the spectral probability. As a

conclusion, the method MD does not have any clear advantage over method NP1 that is

far simpler. In the case of asymptotic independence, method MD and NP1 should not be

used.

For non-simultaneous extremal events, methods NP and NP1 are not applicable so

method HT has no rival other than method MD. For distribution A, both methods are

statistically unbiased but while method HT seems to underestimate v with very large

uncertainty, method MD seems to overestimate v with a smaller uncertainty. However,

the same comments as for simultaneous extremal events about the underestimation of this

uncertainty for MD apply here. For distribution B, method HT has a significant negative

bias with very large uncertainty while method MD is closer to the true return level from a

point estimate viewpoint but reveals significant positive bias. In fact, method MD shows

similar performance for simultaneous and non-simultaneous extremal events. Results for

distributions C and D are not shown in Table 4.2 because they are not relevant. The

Monte Carlo scheme for method MD hardly simulates any points in the set of interest so

that the numerical estimation of v remains at the initial points. Therefore method HT is
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Figure 4.6: Newlyn return level estimates. Unbroken line: extremal mixture model.

Dashed line: the structural variable. Dotted line: the extremal Dirichlet model. Vertical

lines indicate confidence intervals for the structural variable and the Dirichlet model and

credibility intervals for the mixture model.

the only one applicable in this context.

The conclusions of these experiments are that

◦ method MD can be used for general set shape as long as no asymptotic independence

is suspected while method NP1 is to be preferred for simultaneously extremal events

because of its simplicity;

◦ under asymptotic independence, method HT can be used generically while method NP

may be preferable for simultaneous extremal events because of its simplicity. Method

MD should not be used in this context.

4.2.3 Real data analysis

An illustration using real data is done on the Newlyn data; see Appendix A.4. The

failure region, Q(v,X) ≥ 0.002, is defined as a function of the design parameter v, cor-

responding to the sea-wall height. It is to be estimated for − log{− log(pv)} = i, where

pv = P{Q(v,X) ≥ 0.002} and i = 4, 6, 8. The results are shown in Figure 4.6. Credibility
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intervals are almost invisible, indicating that in this case, they do not represent the overall

uncertainty correctly, perhaps because the uncertainty on the marginal parameters is not

taken into account here.

For comparison, the results obtained in Coles & Tawn (1994) from the structural

variable approach and the extremal Dirichlet model have been reproduced. A problem

raised by Coles & Tawn (1994) was the inconsistency between the multivariate and the

structure variable approaches. The return level curve from the extremal mixture model

seems to be a compromise between the two approaches and is more consistent, in some

sense. This shows that a part of the problem was a lack of fit due to the extremal

Dirichlet model. However, the return level curve of the extremal mixture model is not

within the confidence band of the structural variable approach. This can be explained

by the fact that the asymptotic independence of the data cannot be taken into account

by the Poisson process, even if the extremal mixture model fits the pseudo-polar angles

closely. The application of the Gaussian tail model to this dataset brings an even more

consistent result and is discussed in Bortot et al. (2000).

4.3 Dependence analysis

This section develops a dependence analysis based on Dirichlet distribution properties

given in Section 2.2.4. It is illustrated on real data.

4.3.1 Generalities

In the case of dimension d > 2, suppose that the pseudo-angles W follow an extremal

mixture model,

W ∼
k∑

m=1

πmDir
(
α(m)

)
.

In such case, classical properties of the Dirichlet distribution apply; see Wilks (1962), for

example. Let Dir(α) denote a Dirichlet distribution with parameter vector α and dDir(α)

be the corresponding Dirichlet density. Also, if µ = (µ1, . . . , µd) is a vector then µ(1,2)

denotes the vector (µ1, µ2) and µ−(1,2) denotes the vector (µ3, . . . , µd). Generalization to

µJ and µ−J for any subset J ⊂ {1, . . . , d} is obvious. Also
∑

µJ is the sum of every

element of µJ .

Let I be an indicator variable taking value in (1, . . . , k) with probability (π1, . . . , πk)
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such that

W | I = m ∼ Dir
(
α(m)

)
, m = 1, . . . , k.

Then (
W1

W1 + W2
,

W2

W1 + W2

) ∣∣∣∣ (W−(1,2) = w−(1,2), I = m
)
∼ Dir

(
α

(m)
(1,2)

)
so that(

W1

W1 + W2
,

W2

W1 + W2

) ∣∣∣∣ (W−(1,2) = w−(1,2)

)
∼

k∑
m=1

πm(w−(1,2))Dir
(
α

(m)
(1,2)

)
,

where

πm(w−(1,2)) =
πmdDir

(
α

(m)
−(1,2);

∑
α

(l)
(1,2)

){
w−(1,2);

∑
w(1,2)

}
∑k

l=1 πldDir
(
α

(l)
−(1,2);

∑
α

(l)
(1,2)

){
w−(1,2);w(1,2)

} .

Using similar arguments, we have also(
W1

W1 + W2
,

W2

W1 + W2

) ∣∣∣∣ (∑W−(1,2) =
∑

w−(1,2)

)
∼

k∑
m=1

πm

(∑
w−(1,2)

)
Dir
(
α

(m)
(1,2)

)
,

where

πm

(∑
w−(1,2)

)
=

πmdDir
(∑

α
(m)
−(1,2);

∑
α

(m)
(1,2)

){∑
w−(1,2);

∑
w(1,2)

}
∑k

l=1 πldDir
(∑

α
(l)
−(1,2);

∑
α

(l)
(1,2)

){∑
w−(1,2);

∑
w(1,2)

} .

Therefore, conditional distributions of an extreme in any subgroup of {1, . . . , d} can be

easily obtained from the global spectral measure.

Summary statistics can help to get useful information from these conditional distri-

butions without plotting them all. In the following the conditional expectation is used,

E

(
W1

W1 + W2

∣∣∣∣ ∑W−(1,2) =
∑

w−(1,2)

)
=

k∑
m=1

πm

(∑
w−(1,2)

) α
(m)
1

α
(m)
1 + α

(m)
2

, (4.1)

and the dependence measure,

E

{
min

(
W1

W1 + W2
,

W2

W1 + W2

) ∣∣∣∣ ∑W−(1,2) =
∑

w−(1,2)

}

=
k∑

m=1

πm

(∑
w−(1,2)

)
α

(m)
1 + α

(m)
2

{
α

(m)
1 Beta

(
0, 1/2; α

(m)
1 + 1, α

(m)
2

)
+α

(m)
2 Beta

(
1/2, 1; α

(m)
1 , α

(m)
2 + 1

)}
. (4.2)

As references, the dependence measure is 0 for distributions concentrated on 0 and 1, it

is 1/4 for the uniform distribution and it is 1/2 for the distribution concentrated on 1/2.

Finally, the unconditional distribution and associated statistics may also be used.

Let i1, . . . , ip be disjoint subsets of indices of {1, . . . , d} with p ≤ d. Then, by inte-

grating out previous formulas, it is straightforward to see that any normalized subgroup
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0 0 01 1 1

Figure 4.7: Illustration of typical density shapes. From left to right: near-independence,

near-dependence, uniform.

(
Wi1/

∑p
j=1 Wij , . . . ,Wip/

∑p
j=1 Wij

)
is distributed according to the mixture of Dirich-

let distribution with parameters α
(m)
ij

and mixing distribution {πm}k
m=1, j = 1, . . . , p,

m = 1, . . . , k. This is equivalent to restricting the analysis to a subset of indices and then

ignoring a part of the dependence, so we do not use them below.

4.3.2 Application

Without loss of generality, we give the interpretation of these distributions in dimension

three. An observation X = (X1,X2,X3) is extreme if R =
∑3

j=1 Xj > r0. In such case,

the split of R among components 1, 2 and 3 is given by W = (W1,W2,W3). The density

h1,2
3 of

W1

W1 + W2

∣∣∣∣W3 = w3

describes the split of R − Rw3 among components 1 and 2 given that a proportion w3

of R comes from component 3. For example, given that 10% of this extreme is due to

component 3, h1,2
3 shows how the remaining 90% distribute themselves among components

1 and 2. It is clear that the split of those 90% tells us almost everything about the behavior

of the extreme. On the contrary, if only 10% of the extreme event is due to components

1 and 2, the split of those 10% is less important than the remaining 90%.

The evolution of h1,2
3 as w3 varies from 0 to 1 gives information on the dependence

between the three components. In the dependence analysis, we are looking for the kind

of shapes shown in Figure 4.7. The left shape indicates independence: the extreme is

due either to component 1 or 2. The middle shape indicates dependence: the extreme

is due to components 1 and 2 in equal proportion. The right shape indicates a random

situation: the extreme is proportioned uniformly. For example, as w3 goes from 0 to 1, an
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0 01 1

Figure 4.8: Illustration of typical skewed density shapes. Left: skewed to the right. Right:

skewed to the left.

evolution of the graph of h1,2
3 from the left type of shape to the middle one means that the

dependence between 1 and 2 increases as their proportion in the extreme diminishes. This

may be interpreted as an impact on the concentration of component 3 on components 1

and 2, a phenomenon that may be relevant in chemical applications, for example.

When the components are numerous, it may be difficult to represent all the conditional

densities. In such cases, the use of summary quantities such as (4.1) and (4.2) is an

alternative. In the left shape of Figure 4.7, the conditional dependence (4.2) is close to

0, in the middle case, it is close to 1/2 and in the right case, it equals 1/4. Therefore a

single plot can indicate the evolution of the graph of h1,2
3 from the left to the middle type

of shape. In the same vein, the conditional expectation quantifies the skewness of h1,2
3 .

The two shapes shown by Figure 4.8 have the same conditional dependence but the left

one has a higher conditional expectation than the right one. Note that the three shapes

in Figure 4.7 have the same conditional expectation. This shows that the two summary

statistics should be used in order to obtain an accurate picture of the evolution of the

shape of h1,2
3 as w3 goes from 0 to 1.

The conditional dependence analysis is here done on the Newlyn data and on the

air quality data; see Appendix A.4. In three dimensions the spectral measure can be

completely represented, see Figure 3.14, while this is impossible in five dimensions. As

conditional distributions are an alternative representation of the spectral probability mea-

sure, they are much more interesting in five dimensions than in three. However, the main

ideas are well illustrated in three dimensions.
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Newlyn data

The three components are the wave height, the period and the surge, which we will refer

to as (w, p, s). Figure 4.9 shows the conditional distribution of (w, p | s), (w, s | p) and

(p, s | w) for various levels of the conditioning component. For example, the interpretation

of the left plot of the middle line is the spectral density of the distribution of an extreme

event among the wave and the surge, given that 5% of this extreme is due to the period.

Levels above 71% are not represented for sake of legibility and because the conditional

distributions do not vary much beyond. From a practical viewpoint, we conclude the

following:

◦ From the leftmost plots of the two topmost lines, we see that the wave is rarely the

only cause of an extreme event. Indeed, the level of the wave is high only when the

contribution of the conditioned component is high.

◦ From the right plots of the two topmost lines, we see that the contribution of the wave

height combined with another cause can be relatively large. This is in distinction from

the two other causes, period and surge, that have an almost uniform distribution, as

shown by the rightmost plots of the third line.

◦ The leftmost plots of the bottom line show that the period and the surge exhibit near-

independence with slightly heavier weight to the surge when the wave contribution to

the extreme is low. This dependence increases as the wave contribution to the extreme

increases.

In absence of any knowledge about wave phenomena we do not draw any further con-

clusion. For example, conditional densities of (w, p | s) and (w, s | p) exhibit a doubtful

shape at conditional component level 0.05. This could be due to a smooth propagation

of the independence exhibited by (p, s | w) at conditional component level 0.05 and 0.15.

This smooth propagation may appear more clearly in three dimensions, in Figure 3.14.

This shows that conclusions must be drawn with caution.

Figure 4.10 shows the conditional expectation and the conditional dependence mea-

sure. The gray vertical dashed line is at 1/3. This is a reference for the conditioned

component whose expectation equals 1/3 because of the constraints on the spectral dis-

tribution. Therefore, 1/3 can be interpreted as a reference and, informally, levels to the

left of this line are low values of the conditional component while levels to the right of

it are high values. We can see that this limit represents also a change in the behavior of
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Figure 4.10: Conditional summary statistics of Newlyn data. Top: conditional expecta-

tion. Bottom: conditional dependence. The full lines are the posterior median density

estimate and the dashed lines 90% credibility intervals. The vertical dashed gray line

indicates 1/3. The title indicates the unconditioned pair.

the conditional density, which stabilizes, whatever the pair considered. This should be

compared with Figure 4.9, in which this feature is obvious. Each conditional density tends

more or less toward a uniform-like distribution. Other features like the independence of

the surge and the period given a low wave level can be also seen. From the conditional

expectation plots, we see that the wave level follows the conditional component level at

low levels, then it stabilizes around 0.6 which is higher than the expected 0.5.

Air quality data

It is difficult to represent the conditional density for the ten pairs at every level, so we

concentrate on the summary statistics. Conditional expectations are shown in Figure 4.11

and conditional dependence measures in Figure 4.12. We draw the following conclusion:

◦ The pair (NO2, NO) looks close to uniform distribution, whatever the level of the

rest. When paired with another component, NO behaves like NO2; this can be seen by

comparing (NO, O3) and (NO2, O3), for example. This suggests these two components
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Figure 4.11: Conditional expectation for air quality data. Title indicates the uncondi-

tioned pair. Full lines show the posterior median estimates and dashed lines indicate

90% credibility intervals. The ordinate axis title indicates the name of component whose

expectation is plotted.
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Figure 4.12: Conditional dependence measure for air quality data. Title indicates the

unconditioned pair. Full lines show the posterior median estimates and dashed lines

indicate 90% credibility intervals.

play the same role in the extremal behavior of the data set.

◦ Looking at pairs containing O3, the conditional expectation shows that the contribution

of O3 to the extreme event is high when the level of conditioning component is low,

here below 0.6, except for the pair (O3, SO2) that exhibits complicated behavior at

low conditioning levels. According to Heffernan & Tawn (2004) and references therein,

high levels of pollution in winter are mainly due to vehicle emissions trapped by cold
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and stable weather conditions. Therefore pollution is mainly due to nitrogen and sulfur

compounds and particulate matter. This is coherent with the observation of expectation

plots since major episodes of pollution contain low levels of O3. However an episode of

pollution with low levels of three components would be mainly due to ozone and not to

the last cause: for example, if a pollution episode happens and is not due to NO, NO2

and SO2, then it will be mainly due to ozone and not to PM10. Furthermore, the level

of conditional dependence between O3 and another pair is low and stable. This reveals

that ozone plays a particular role in winter, independent of the other pollution causes.

◦ Now, SO2 shows strong independence with any other component at low conditioning

levels and weak dependence at higher conditioning levels. From the expectation plot

containing SO2, we see that if these two components are the one cause of an extreme

then the expected level of SO2 is very high. This tendency is inverted rapidly at lowest

levels of the conditioning components.

These observations allowed us to form three almost independent groups of components,

O3, SO2, and (NO2, NO, PM10). In general pollution is due to high levels of (NO2, NO,

PM10) going with varying levels of SO2 and low levels of O3. If pollution is caused by

only one component then it is likely to be SO2 or O3. It is likely to be SO2 if the level of

(NO2, NO, PM10) is very low and it is likely to be O3 if this level is moderately low.

4.3.3 Discussion

The conditional analysis may reveal some intrinsic properties of the data but turns out to

be subtle, needing practice to interpret. These conditional densities provide useful means

of exploration of the spectral measure even in high dimensions. They can be generalized

to any spectral distribution function since the conditional density is simply a rescaled

slice of the spectral density. The advantage of the extremal mixture model is that this

slice is straightforwardly obtained from the parameters.
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Chapter 5

Spatial extremes

Spatial extremes is a growing field. Although the literature is small compared to that

for univariate and multivariate extremes, the major theoretical results exist in applicable

forms. Until now statistical applications have been restricted to max-stable processes, so

inference is limited to pointwise maxima. In the multivariate context the Poisson process

characterization has advantages over the componentwise maximum viewpoint. Although

the Poisson process characterization is well documented in the spatial context, to our

knowledge, no statistical application has appeared. The aim of this chapter is to use the

viewpoint of W as a random probability measure in order to investigate this.

The first section reviews literature on spatial extremes. The second section gives

motivation and the main heuristic ideas. The theoretical justification of our approach is

original in the literature, and exploits random measure theory. The third section presents

some topological and random measure theory background, detailed treatments of which

can be found in Resnick (1987) and Jagers (1974), although most of what follows is

extracted from Kallenberg (1983). Section 5.4 presents the application to spatial extremes

and Section 5.5 illustrates the method on a real data set.

5.1 State of the art

A class of models for the study of the extremal behavior of stochastic process is the

class of simple max-stable processes. Such a process {Zt}t∈T is defined by the property

that the pointwise maximum of {Z(i)
t }t∈T , n independent copies of {Zt}t∈T , has the

same distribution as {nZt}t∈T , that is max
{

Z
(1)
t , . . . , Z

(n)
t

}
t∈T

d= {nZt}t∈T . In the case

T = [0, 1], de Haan (1984) characterizes every continuous simple max-stable processes by
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a spectral representation. For each continuous simple max-stable process {Zt}t∈T , there

exists a set S and a finite positive measure ρ on S such that

Yt = max
k≥1

ft(Sk)Xk, t ∈ T,

has the same finite dimensional distributions as Zt, where {Xk, Sk} is the enumeration of

a Poisson process on R
+×S with intensity x−2dx×ρ(ds) and {ft}t∈T is a suitably chosen

family of positive L1–functions. Conversely, every such representation is continuous simple

max-stable. The functions ft, t ∈ T , are called the spectral functions.

Marginal distribution functions of simple max-stable processes are Fréchet, that is

exp {−c(t)/x}, x > 0, for c(t) ≥ 0. As a consequence of the spectral representation the

finite dimensional distribution of Z is multivariate extreme: for 0 ≤ t1 < · · · < td ≤ 1 and

z1, . . . zd > 0,

P {Zti ≤ zi, i = 1, . . . , d} = exp
{
−
∫ 1

0
max

i=1,...,d

fti(s)
zi

ds

}
.

Furthermore, the spectral functions can be chosen continuous in L1, that is ‖fti − ft‖1 →

0, ti → t. Like the spectral functions are linked to the spectral measure in the finite

dimensional case, Giné, Hahn & Vatan (1990) make the correspondence with a spectral

measure on the space of density functions. For the following we need to define some

notation:

C the space of continuous functions on [0, 1],

C+ = {f ∈ C : f > 0},

C̄+
1 = {f ∈ C : f ≥ 0 and ‖f‖∞ = 1},

C̄+ = (0,∞] × C̄+
1 .

Then Z is continuous simple max-stable if and only if there exists a finite measure H on

C+
1 with

∫
C+

1
f(t)dH(f) = 1, t ∈ [0, 1], such that

P {Z < f} = exp

{
−
∫

C+
1

‖g/f‖∞dH(g)

}

or equivalently

P

{
sup
t∈Ki

Z(t) ≤ xi, i = 1, . . . , d
}

= exp

{
−
∫

C+
1

max
i=1,...,d

supt∈Ki
g(t)

xi
dH(g)

}
,

for all compact K1, . . . ,Kd ⊂ [0, 1] and all positive x1, . . . , xd.
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The Poisson process characterization is developed by de Haan & Lin (2001). Let

X,X(1),X(2), . . . be independent and identically distributed random elements of C+.

Then the following statements are equivalent (among others):

(i) n−1 max
i=1,...,n

X(i) d−→ Z in C+, with Z a continuous simple max-stable process.

(ii) νn
w−→ ν in the space of measures on C+ (and then ν is homogeneous of degree

−1), with

νn(E) = nP
(
n−1X ∈ E

)
, E ∈ B(C̄+).

(iii) Nn
d−→ N in the space of random measures on C̄+, where

Nn =
n∑

i=1

δ{n−1X(i)}

and N is a Poisson process.

Notions of random measures, Poisson process, and vague convergence are explained in

the next section. Anyway, the interpretation of this result is rather clear when compared

to results in the multivariate case since it is the equivalence between convergence of the

componentwise maximum, convergence of the survival function and convergence to the

Poisson process.

The previous characterization extends to max-stable processes with more general mar-

gins. A process Z is continuous max-stable if there exist sequences of norming functions

an > 0 and bn such that, for n ∈ N,

a−1
n

(
max

i=1,...,n
Z(i) − bn

)
d= Z,

where Z(i), i = 1, . . . , n, are independent replicates of Z. A max-stable process can be

represented as

a(t)
Z

γ(t)
t − 1
γ(t)

− b(t),

for a, b, γ ∈ C, a > 0, and Z continuous simple max-stable. de Haan & Lin (2001) also

characterizes convergence to max-stable processes. Let X,X(1),X(2), . . . be independent

and identically distributed random elements of C. Suppose that Ft(x) = P (Xt ≤ x) is

continuous with respect to t for each x. Define

Ut(s) = F←
t (1 − 1/s), s > 0, 0 ≤ t ≤ 1.

The following statements are equivalent (among others):
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(i) an(t)−1

{
max

i=1,...,n
X(i) − bn(t)

}
w−→ Z, where an > 0 and bn are continuous func-

tions, chosen in such way that, for t ∈ [0, 1],

P {Zt ≤ x} = exp
{
−(1 + γ(t)x)−1/γ(t)

}
, x > 0.

Then γ is continuous.

(ii) an(t)−1

{
max

i=1,...,n
X(i) − Ut(n)

}
w−→ Z.

(iii) n−1 max
i=1,...,n

[
1 − Ft

{
X

(i)
t

}]−1 w−→ {1 + γ(t)Zt}1/γ(t), and the limit is automati-

cally simple max-stable.

This result tells us how marginal standardization can be used to obtain a simple max-

stable limit and then apply the previous convergence characterization. Once more this is

a perfect parallel with the multivariate case, where margins have to be put on the Fréchet

scale before the spectral distribution can be estimated.

Coles (1993) exploited the spectral representation of max-stable processes. T is the

area of study containing observation sites T̃ = {t1, . . . , tq}. The spectral density function h

of a selected number of tuning sites T1 = {t1, . . . , tp} ⊂ T̃ is estimated using a parametric

multivariate extremal model. We call α the parameter of h, A its parameter space and

α̃ the estimate of α. The spectral functions ft, called storm profiles, are used to link the

information brought by h to the whole area T . Proximity coefficients are defined as

aj(t) =
dj(t)−ξ∑p
i=1 d−ξ

i (t)
, j = 1, . . . , p,

where dj(t) is the distance from t to tj ∈ T1 and for some smoothing parameter ξ > 0.

Parametric forms are given to storm profiles, namely

ft(w) =
h{w,φ(t)}
h(w, α̃)

d∑
j=1

aj(t)wj ,

where φ is a function valued in A with φ(t) = α̃ for t ∈ T1. With this form, constraint∫
Sp

ft(w)H(dw) = 1,

is guaranteed as well as the equality ftj(w) = wj for tj ∈ T1, j = 1, . . . , p. A parametric

form is given to φ in order to perform maximum likelihood estimation from T2 = T \ T1.

The smoothing parameter ξ is selected in order to diminish a formal multiplicative error

in the empirical estimation of storm profile at sites T2. Further diagnostics are developed

in order to select an adequate partition T1 and T2 iteratively.
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A similar procedure is used in Coles & Walshaw (1994), where the parametric form of

the spectral functions accounts for the direction of wind data, and in Coles & Tawn (1996)

for rainfall processes. An extreme variogram has also been developed in Ancona-Navarrete

& Tawn (2002) allowing for pairwise dependence diagnostics.

Alternative approaches like that of Casson & Coles (1999) link the observations

through a Bayesian structure. Extreme observations follow an extremal Poisson model

given the parameters. Known link functions of these parameters are distributed according

to a Gaussian random field with a mean given by a regression function, depending on the

spatial location.

Except that of Casson & Coles (1999), the procedures described are based on the

spectral representation of simple max-stable processes. Inference is therefore based on

maxima which implies, as in the multivariate case, a loss of data that are often already

sparse. Another drawback discussed in Coles (1993) is the fact that the inference is based

on a limited number of observation sites, the remaining ones being used to validate the

model. The author detected that the model missed a part of spatial dependence. The

approach presented below is based on the point process convergence result and tries thus

to solve the sparsity of data. Secondly, the coherence of the used model, namely mixtures

of Dirichlet process, extends very naturally to spatial contexts and helps to consider data

at every observation site. Furthermore, the extension from multivariate to spatial data is

conceptually very simple.

5.2 Motivation

In this section, we illustrate the main ideas in order to motivate the next theoretical

section. Let Ω be a geographical area and X1, . . . ,Xn be independent and identically

distributed replicates of a random measure X defined on Ω. An example is rainfall. The

aim is to analyze the stochastic behavior of X. However, we only observe X at a finite

number of sites s1, . . . , sp ∈ Ω, which correspond to meteorological stations for example.

These sites may have their own characteristics, such as their altitude. This situation is

illustrated in Figure 5.1 where each site can be classified according to the subset A1, A2, A3

of Ω to which it belongs.

A natural approach to analyze the stochastic behavior of X is to determine its dis-

tribution. Unfortunately, the distribution of a random measure is an abstract object,

difficult to deal with in practice. Using the finite dimensional distributions of X is one
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Figure 5.1: Illustration of spatial situation. Nine stations of observations s1, . . . , s9 (black

dots) on a area (rectangle), belonging to various subsets A1, A2 and A3 (shaded).

possibility. Each element of this family is the distribution function FB1,...,Bd
of the vec-

tor {X(B1), . . . ,X(Bd)} for any measurable and disjoint decomposition B1, . . . , Bd of Ω.

This family fully characterizes the distribution of X and conversely: a distribution F for

X determines {FB1,...,Bd
} uniquely and a coherent family {FB1,...,Bd

} determines F . The

coherence is ensured by the Kolmogorov’s conditions. An toy example is the following

Gaussian random field for which

{X(B1), . . . ,X(Bd)} ∼ Nd

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

µ(B1)
...

µ(Bd)

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

σ(B1) 0 · · · 0

0
. . .

...
...

... . . .
. . . 0

0 · · · 0 σ(Bd)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where µ and σ are two Radon measures, σ being positive. The observation of the vector

{Xi(B1), . . . ,Xi(Bd)}, i = 1, . . . , n, allows inference on {µ(B1), . . . , µ(Bd)}, for example.

If µ is parametrized, then we can draw conclusions about the entire measure µ.

For the extremes, the general behavior of X is not of interest, but only its extremal

behavior. In finite dimension, the extremal paradigm assumes convergence to a Poisson

process with a homogeneous intensity. This amounts to assuming that R =
∑d

j=1 X(j)

and W = X/R are independent for large R. It turns out that this result remains valid
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for random measures, as will be shown. The total intensity R = X(Ω) and the random

probability measure W = X/R are independent for large R. Therefore, the inference is

to be done on H, the distribution of W . In the following, we use the mixture of Dirichlet

processes as a model, that is we suppose that

{W (B1), . . . ,W (Bd)} ∼
k∑

m=1

πmDir {αm(B1), . . . , αm(Bd)} ,

for any disjoint and measurable decomposition B1, . . . , Bd of Ω,where {πm}k
m=1 is a proba-

bility vector and αm a Radon measure, m = 1, . . . , k. The observation of Wi for extremes

Xi, that is those whose Ri exceeds a high threshold r0, allows inference on k, π and

{αm(B1), . . . , αm(Bd)}, m = 1, . . . , k.

However, we observe X and hence W only at points s1, . . . , sp. From these observa-

tions, an estimate
{
Ŵ (B1), . . . , Ŵ (Bd)

}
of {W (B1), . . . ,W (Bd)} is obtained. There are

many possibilities, like the empirical estimate

Ŵ (B1) =
|B1|
|Ω|

1
#{j : sj ∈ B1}

∑
j:sj∈B1

Wsj .

Another possibility is a smoothing approach: from {Xs1 , . . . ,Xsp} a smooth intensity

function on Ω is extrapolated, say f . From it, we deduce

R =
∫

Ω
f(s)ds, f̃ = f/R,

which leads to the numerical estimate

Ŵ (B1) =
∫

B1

f̃(s)ds.

Naturally, we cannot perform the analysis for all decompositions B1, . . . , Bd and we

have to choose an appropriate one. If it is too coarse, then the resulting information

about the αm’s is poor, and if it is too fine, then the problem may become infeasible if

the number of observational sites p is large. In Figure 5.1, a heuristic strategy would be

to choose d = 3 and Bj = Aj , j = 1, 2, 3. In other words, stations are regrouped by

similarity. In practice, however, this selection is not easy and may be guided by an expert

of the scientific domain from which the data are extracted.

Some further issues must be treated, such as the marginalization of X. In the finite

dimensional case, each margin must be in the domain of attraction of a unit Fréchet

distribution and this implies constraints on H. We will see that this feature can be

extended in a natural way in the infinite dimensional case. Also main ideas of the choice

of the threshold, simulation and conditional dependence analysis will be illustrated in an

example.
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5.3 Theoretical background

5.3.1 Topology and convergence

Let S be a locally compact second countable Hausdorff space (that is every point has

a compact neighborhood, S has a countable base and distinct points may be separated

by disjoint neighborhoods). A subset B is said to be bounded or relatively compact

if its closure, B̄, is compact. Fc denotes the set comprising every continuous function

f : S → R+ with compact support. The Borel algebra of S is denoted S and B is the

class of all bounded B in S. A Radon or locally finite measure µ is a measure on S such

that µB < ∞, ∀B ∈ B. The class of all Radon measures is noted M, and N denotes the

class of all Radon measures valued in Z+ ∪ {∞}. For each Radon measure on S µ, Bµ

denotes the class of all sets B ∈ B such that µ∂B = 0, where ∂B is the boundary of B.

The vague topology on M is generated by the sets {µ : s <
∫

fdµ < t}, s, t ∈ R,

f ∈ Fc. We write µn
v→ µ and say that a sequence {µn} vaguely converges to µ if, by

definition, ∫
fdµn

n→∞−→
∫

fdµ, ∀f ∈ Fc,

or if one of the following equivalent statements is satisfied:

i) µnB → µB, ∀B ∈ Bµ,

ii) lim sup
n→∞

µnF ≤ µF and lim inf
n→∞ µnG ≥ µG, for all closed F ∈ B and all open G ∈ B.

A subset M ⊂ M is relatively compact in the vague topology if and only if

sup
µ∈M

µB < ∞, ∀B ∈ B.

The weak topology on M is generated by the same sets as the vague topology but

replacing Fc by the set of continuous bounded functions f : S → R+, say Fb. A sequence

{µn} weakly converges to µ if, by definition,∫
fdµn

n→∞−→
∫

fdµ, ∀f ∈ Fb.

We then write µn
w→ µ. A subset M ⊂ M is relatively compact in the weak topology if

and only if

sup
µ∈M

µB < ∞, ∀B ∈ B, and inf
B∈B

sup
µ∈M

µBc = 0.

The following statements are equivalent:

i) µn
w−→ µ,
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ii) µn
v−→ µ and µnS −→ µS,

iii) µn
v−→ µ and inf

B∈B
lim sup

n→∞
µnBc = 0.

In particular, convergence in the vague and the weak topologies coincide for probability

measures. An important property is that M and N are Polish in the vague and in the

weak topologies, that is, there exists a complete and separable metric.

5.3.2 Random measures

M and N are equipped with the σ-algebras, M and N , generated by the vague topology.

This coincides with the σ-algebras in M and N, respectively, generated by the mappings

µ �→ µB, from M to R, defined for any B ∈ B. A random measure or a point process on

S is a measurable mapping from some fixed probability space (Ω,A, P ) into (M,M) or

(N,N ) respectively.

The distribution of a random measure ξ is Pξ−1, defined as

Pξ−1(M) = P (ξ−1M) = P{ξ ∈ M}, M ∈ M or N .

Equality in distribution ξ
d= η means Pξ−1 = Pη−1 or one of the following equivalent

statements:

(i)
∫

fdξ =
∫

fdη, f ∈ Fc,

(ii) Lξ(f) = Lη(f), f ∈ Fc,

(iii) (ξI1, . . . , ξIk)
d= (ηI1, . . . , ηIk), k ∈ N, I1, . . . , Ik ∈ B.

The third equivalence could be written for a smaller class than B but these distinctions

are outside of the scope of this work. Lµ denotes the Laplace transform of µ,

Lµ(f) = E(e−
R

fdµ), f ∈ Fc.

It can be defined for any positive measurable function f : S −→ R+. The distributions

of each vector (µI1, . . . , µIk), k ∈ N, I1, . . . , Ik ∈ B, are called the finite dimensional

distributions of µ. For such a family of distributions to define a random measure µ, it

must be coherent in a sense made precise by Kolmogorov’s consistency conditions. For

further details, see Kallenberg (1983, p.41).

The convergence in distribution of the sequence of random measures {µn} to µ means

the vague convergence of their distributions or one of the following equivalent statements:
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(i)
∫

fdξn
d−→
∫

fdξ, f ∈ Fc,

(ii) Lξn(f) d−→ Lξ(f), f ∈ Fc,

(iii) (ξnI1, . . . , ξnIk)
d−→ (ξI1, . . . , ξIk), k ∈ N, I1, . . . , Ik ∈ Bξ,

where Bξ = {B ∈ B : ξ∂B = 0, a.s.}.

Convergence in distribution is derived from the vague topology, but sometimes the

weak topology is used instead, in which case M and N are equipped with the σ-algebras

generated by the weak topology. In order to make the difference between the weak and

the vague convergence in distribution, we write wd→ or vd→ instead of d→, respectively. The

following statements are equivalent:

(i) ξn
wd−→ ξ,

(ii) ξn
vd−→ ξ and ξnS

d−→ ξS,

(iii) ξn
vd−→ ξ and inf

B∈B
lim sup

n→∞
P (ξnBc > ε) = 0, ∀ε > 0.

For random probabilities, that is random measures such that µS = 1, almost surely, the

two notions coincide.

The Dirac measure at s ∈ S, a random point, is the measure δs ∈ N such that

δsB = 1lB(s), B ∈ B.

If s1, . . . , sn ∈ S are independent and identically distributed according to F then the

point process

ξ =
n∑

i=1

δsi

is called a sample process. If we let n = ν be random and Z+-valued, then ξ is a mixed

sample process. If furthermore ν is distributed according to a Poisson distribution with

mean a ≥ 0 then ξ is a Poisson process with intensity λ = aF . The L-transform of a

Poisson process with intensity λ is

Lξ(f) = exp
{
−λ
(
1 − e−f

)}
, f ∈ F .

By extension, any point process with a similar L-transform is called a Poisson process

even if λ ∈ M is unbounded. A Poisson process ξα with intensity αλ, α an R
+-valued

random variable, λ ∈ M, is called a mixed Poisson process. It has L-transform

Lα

{
λ
(
1 − e−f

)}
, f ∈ F ,
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where Lα is the L-transform of α. More generally, if λ = η is a random measure on S,

then ξ is called a doubly stochastic Poisson process or a Cox process directed by η. Its

L-transform is

Lη

(
1 − e−f

)
, f ∈ F ,

where Lη is the L-transform of η. An array of point processes {ξnj}, j = 1, . . . , rn,

1 ≤ rn ≤ ∞, n ∈ N, is called a null-array if for any fixed n, the ξnj are independent and

lim
n→∞ sup

j
P (ξnjB > 0) = 0, B ∈ B.

This notion is central in extreme value theory because of the following key result, originally

due to Jagers (1972).

Theorem 5.1

Let ξ be a Poisson process on S with intensity measure λ ∈ M and let {ξnj} be a null-array

of point processes on S. Then
∑

j ξnj
d−→ ξ if and only if

(i)
∑

j P (ξnjI > 0) n→∞−→ λI, I ∈ Bλ,

(ii)
∑

j P (ξnjB > 1) n→∞−→ 0, B ∈ B.

The original result remains valid if the two conditions are satisfied on smaller sets than

Bλ and B but these distinctions lie outside the scope of this work.

For application to statistical extreme value analysis, consider an array of independent

random elements of S, {snj}n
j=1, distributed according to Fn, n ∈ N, and corresponding

Dirac mass arrays, {ξnj}n
j=1, with ξnj = δsnj , j = 1, . . . , n, n ∈ N. Then {ξnj}n

j=1 is a

null-array if and only if

lim
n→∞P (snj ∈ B) = 0, B ∈ B,

in other words, points vanish away from any bounded set. Incorporating conditions (i)

and (ii) in Theorem 5.1, the first states that

nFn
v−→ λ,

while the second is trivially satisfied.

The multivariate extreme value theorem is the particular case of Theorem 5.1 where S

is R
d, snj = n−1Xnj , where the Xnj are positive independent and identically distributed

according to F with unit Fréchet margins, such that

nF (n·) v−→ λ.
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In that case, λ has to be homogeneous of degree −1,

λ(tB) = t−1 lim
n→∞ntF (ntB) = t−1λB, B ∈ Bλ.

Note that λ cannot place mass at the origin, since vanishing points concentrate at the

origin and the limiting point process could not be Poisson because of an infinite mass at

0. In particular, sets in Bλ are bounded away from 0. Now consider the transformation

T : x �→ (‖x‖ , x/‖x‖) = (r , w), and the image of λ through T is dr/r2 ×H(dw), with H

the spectral measure previously introduced.

The generality of Theorem 5.1 allows us to apply the result to more general spaces

and in particular to the spatial context, presented in the next section.

5.4 Spatial extremes

This section deals with applications of the previous sections to spatial extremes. The

Poisson process of vectors is generalized to a Poisson process of measures, the spectral

distribution is generalized to the spectral process and its application is illustrated on a

real dataset.

5.4.1 The spectral process

As explained in Section 5.2, observations are not constituted of vectors but of random

measures, X1, . . . ,Xn, on some area Ω equipped with the Lebesgue measure. Therefore

the sample space is the set of Radon measures on Ω, S = M(Ω). It is equipped with the

vague topology, making it Polish, so that the previous theory applies. We do not consider

pointwise measures but measures on local areas. Loosely, the typical events that can be

observed are

{s1 < X(A1) < t1, . . . , sd < X(Ad) < td}, si, ti ∈ R, i = 1, . . . , d,

for any collection of measurable sets A1, . . . , Ad. In order to do inference on the distri-

bution of X, we suppose that X is positive and that the array {δn−1Xni
}n

i=1, n ∈ N, is

a null-array, that is, n−1 is the correct normalizing sequence. Under appropriate condi-

tions and applying Theorem 5.1, the sample point process
∑n

i=1 δn−1Xni
converges to a

Poisson process with intensity measure λ, homogeneous of degree −1. By considering the

norm ‖X‖ = X(Ω) we have that λ decomposes on the pseudo-polar scale R = ‖X‖ and
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W = X/‖X‖ into a product

λ(dr, dw) =
1
r2

dr × H̃(dw),

where H̃ is a finite positive measure on the set of probability measures on Ω. Let us

define H to be the normalized version of H̃. Then H is the distribution of the random

probability measure W on Ω, that is, the spectral process. It is characterized by its finite

dimensional distributions and a valid model for H is the mixture of Dirichlet processes.

Inference can be done from a selected decomposition Ω1, . . . ,Ωd by fitting HΩ1,...,Ωd

to observation {Wi(Ω1), . . . ,Wi(Ωd)}, i ∈ I0, where I0 = {1 ≤ i ≤ n : Xi(Ω) > r0},

for a high threshold r0. The physical interpretation of this model is the following: an

extreme observation is defined by the fact that the total intensity on Ω, R = X(Ω),

exceeds a given threshold r0. The random distribution of this extreme on the area Ω is

given by X/X(Ω) = W . For example, if W follows a mixture of Dirichlet processes then

the proportions of R in Ω1, . . . ,Ωd are W (Ω1), . . . ,W (Ωd) and this vector is distributed

according to
k∑

m=1

πmDir{αm(Ω1), . . . , αm(Ωd)},

where αm is a positive Radon measure on Ω, m = 1, . . . , k.

Assuming that n−1 is the right standardization sequence implies there are constraints

on H, as in the multivariate case. By standard arguments, we have that the asymptotic

distribution function of the componentwise maximum

M
(n)
Ω1,...,Ωd

= max
i=1,...,n

{
n−1Xi(Ω1), . . . , n−1Xi(Ωd)

}
is

lim
n→∞P

(
M

(n)
Ω1,...,Ωd

≤ y
)

= exp
{
−
∫

Sd

max
i=1,...,d

(
wi

yi

)
H̃Ω1,...,Ωd

(dw)
}

.

Without loss of generality, consider FΩ1 , the first marginal of the finite dimensional distri-

bution of F corresponding to the decomposition Ω1, . . . ,Ωd. The convergence requirement

states that FΩ1 is in the domain of attraction of a Fréchet distribution. Comparing with

the marginal of the componentwise maximum distribution we have that

lim
n→∞P

(
M

(n)
Ω1

≤ y1

)
= exp (−CΩ1/y1) ,

where

CΩ1 =
∫

Sd

w1HΩ1,...,Ωd
(dw).
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A consequence is that the total mass of H̃ is C(Ω). Therefore H = H̃/C(Ω). For example

in the case CΩi = |Ωi|, the marginalization consists in transforming original data, Xi(Ωj),

to data Yi(Ωj) in the Fréchet domain of attraction with parameters |Ωi|, i = 1, . . . , n,

j = 1, . . . , d.

In the case where H is a mixture of Dirichlet processes, the constraints become
k∑

m=1

πm
αm(Ωj)
αm(Ω)

=
|Ωj |
|Ω| , j = 1, . . . , d.

Assuming this for every decomposition Ω1, . . . ,Ωd,
∑k

m=1 πmαm/αk(Ω) is the uniform

measure on Ω. In other words, the expectation of W is the Lebesgue measure on Ω.

As a final remark, we note that it is possible to reconcile the pointwise approach with

the setwise approach. Considering infinitesimal sets around each of the d observational

sites, we consider the distribution of the vector (W1, . . . ,Wd,Wd+1), where Wj is the pro-

portion due to the infinitesimal set around site j, j = 1, . . . , d, and Wd+1 is the proportion

due to the rest of the area, that is virtually all the area. Then the marginal distribution of

(W1/(1 − Wd+1), . . . ,Wd/(1 − Wd+1)) is a mixture of Dirichlet distributions with param-

eters α
(m)
j , j = 1, . . . , d, m = 1, . . . , k, and mixing distribution {πm}k

m=1. Here α
(m)
j is the

intensity of the measure α(m) on the infinitesimal set around site j. This remark allows

us to estimates the density function of α(m) at every observational site, m = 1, . . . , k, and

then perhaps smooth them to obtain estimates where no point can be observed.

The setwise and the pointwise procedures give us two coherent ways to incorporate

the available information in order to obtain estimates and a detailed description of the

extremes of the phenomenon on the area under study.

5.4.2 Estimation

When the spectral model is a mixture of Dirichlet processes, the estimation of the mixing

distribution {πm}k
m=1 and the parameter measures {αm}k

m=1 are of interest. It can be

also interesting to select k or to mix over various k by a Bayesian approach, as in the

multivariate context. The estimation is based on a likelihood function obtained for a fixed

measurable decomposition Ω1, . . . ,Ωd of Ω.

In practice, a finite number n of data Y
(i)
j are observed at a finite number q of sites in

the area Ω, j = 1, . . . , q, i = 1, . . . , n. We interpolate each Y (i) to obtain the correspond-

ing observed functions. Now we fix the decomposition Ω1, . . . ,Ωd of Ω according to the

question which the inference is to answer. For the example below we fix this decompo-

sition according to the topography of Ω. A new dataset, Y (i)(Ωj) is built by integrating
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numerically the resulting functions, i = 1, . . . , n, j = 1, . . . , d. It is marginalized to X
(i)
j

having Fréchet margin with parameter |Ωj | using the extremal semi-parametric model.

As a by-product, univariate thresholds uj and parameter estimates {σj , κj}, j = 1, . . . , q,

are obtained.

Now the inference is similar to the multivariate case; a threshold r0 is selected for the

Ri and pseudo-polar angles W
(i)
j = X

(i)
j /Ri, j = 1, . . . , d, i = 1, . . . , n, having Ri > r0 are

used to fit the mixture of Dirichlet distributions with mixing distribution π1, . . . , πk and

parameters α1, . . . , αm under constraints
k∑

m=1

πm

α
(m)
j∑d

l=1 α
(m)
l

=
|Ωj |
|Ω| , j = 1, . . . , d.

This approach has naturally the drawback that it estimates the parameter measures

αm, m = 1, . . . , k, only on the coarser decomposition ΩI1, . . . ,ΩId
. For a general measur-

able set A, the estimate of αm(A) is
d∑

j=1

|A ∩ Ωj |
|Ωj|

αm(A), m = 1, . . . , k.

Therefore the decomposition Ω1, . . . ,Ωd must be chosen with care prior to the analysis.

5.4.3 Real data analysis

The data we consider are sequences of monthly total precipitations (mm) at sixty me-

teorological stations in China during the period 1951–1988. They are a part of a much

larger data set available at the web site of the University Corporation for Atmospheric

Research, http://dss.ucar.edu/datasets/ds578.5/. As there are some exceptional

missing data, we complete them by averaging over the immediate neighbors.

In order to remove the strong seasonality of the data, we work on their anomalies.

For example, for February data, the mean of every February observation through the 38

years is subtracted and the result is divided by the standard error. At each site, the

autocorrelation and partial autocorrelation functions of the resulting time series reveal

weak correlation. A few sites exhibit low, almost statistically insignificant, correlation

at lag one. We henceforth ignore this and assume that the data are stationary and

independent in time. The altitude of each station is known. In absence of any other

information on the topography of the area we assume this topography to be smooth. The

resulting height profile of the area and the station positions are shown in Figure 5.2. The

decomposition is obtained by thresholding the heights every 700m from 0m up to 2800m

plus one area > 2800m.
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group (j) Ωj |Ωj| uj σ̂j κ̂j

1 0–700m 0.460 186.1 131.6 (22.9) −0.303 (0.103)

2 700–1400m 0.293 147.3 105.1 (20.7) −0.105 (0.132)

3 1400–2100m 0.121 55.1 38.8 (6.4) −0.372 (0.092)

4 2100–2800m 0.088 52.0 20.6 (4.8) 0.247 (0.184)

5 > 2800m 0.038 28.5 28.9 (5.7) −0.105 (0.132)

Table 5.1: Marginal parameters. First column is the index of the group. Second column

gives the heights of station in group j, j = 1, . . . , 5. Third column gives the size of the

area covered by each group, relative to the total area of Ω. Columns 4, 5 and 6 gives

respectively the threshold, estimates of σ and κ for the generalized Pareto tail of each

group. Standard errors based on limiting covariance matrices are given in brackets.

Following the estimation procedure, we interpolate the anomalies by a function. This

procedure is standard in matlab; function griddata interpolates by triangle-based linear

functions on the desired grid, uniform in our case. The integration over an area Ωj,

j = 1, . . . , d, is the sum of the values of the function at every observation point in Ωj.

The resulting five dimensional vector is standardized to a Fréchet scale with parameter

|Ωj|. Marginal parameters, thresholds and the size of each group are shown in Table 5.1.

The choice of the multivariate threshold is made via the diagnostic set shown in

Figure 5.3. A threshold of exp(3) looks appropriate but as it leaves only 27 excesses, not

enough for the semi-parametric approach. We hence proceed with r0 = exp(2.6) and 48

excesses.

The reversible jump algorithm is launched for 100, 000 iterations, and its convergence

assessed using the three plot diagnostic set based on the parameter

θ =
∫ 1

0
min

{
w(1,5), w(2,3,4)

}
H(dw),

where w(1,5) is the probability corresponding to groups (1, 5) and w(2,3,4) is the probability

corresponding to groups (2, 3, 4). This choice was made for sake of simplicity, firstly

because computation of θ is awkward for d > 2, and secondly because the total area of

groups (1, 5) is the same as the total area of groups (2, 3, 4). The three plot diagnostic

set is shown in Figure 5.4. Each plot has dramatic jitters at its right-hand side, due to

the diminished number of observations which contribute to the variances. A check on k
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Figure 5.2: Topography of China. Level curves indicates altitude. Grey dots are the

observational sites. Black dots are cities ‘B’ for Beijing, ‘S’ for Shanghai, ‘W’ for Wuhan,

‘H’ for Hong Kong.
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Figure 5.3: Three plot diagnostic set applied to China data.

and other parameters shows no evidence of non-convergence. Below we proceed with the

last 20, 000 iterations of the chain, assuming convergence.

Figures 5.5 and 5.6 show the conditional expectation and the conditional dependence

measure between groups. For the pair (1, 2) the construction is the following: consider
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Figure 5.4: Convergence diagnostic plot for the reversible jump algorithm, based on the

dependence measure between groups (1, 5) and (2, 3, 4).
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Figure 5.5: Conditional expectation of groups 1 to 5.

an area of unit size in group 1, A1 ⊂ Ω1, an area of unit size in group 2, A2 ⊂ Ω2, and A0

the remaining part, A0 = Ω \ (A1 ∪A2). Then the vector {W (A1),W (A2),W (A0)} is dis-

tributed according to the mixture of Dirichlet distributions with parameter αm(A1), αm(A2)

and αm(A0) and mixing distribution {πm}, m = 1, . . . , k. Since αm is constant groupwise,

for m = 1, . . . , k,

αm(Ai) =
αm(Ωi)
|Ωi|

, i = 1, 2,

and

αm(A0) =
|Ω1 \ A1|

|Ω1|
αm(A1) +

|Ω2 \ A2|
|Ω2|

αm(A2) +
5∑

i=3

αm(Ωi).

Figures 5.5 and 5.6 show the summary statistics of the conditional distribution function

of {W (A1)/W (A1 ∪ A2) , W (A2)/W (A1 ∪ A2)} given W (A0).

The interpretation requires care. First, recall that we are studying the anomalies of

precipitation data. An extreme event is an extreme anomaly, not an extreme precipitation.

Secondly, it is conditional on the estimation procedure which in our case may be debated,
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Figure 5.6: Conditional dependence measure for groups 1 to 5.

for example the choice of groups based on heights, or for the small number of data on

which it is based. Disregarding these issues and taking the estimation as sure, it seems

that groups 3, 4 and 5 are strongly dependent. It looks in fact as if they were one:

the conditional expectation remains around 0.5 so that their expected contribution to

an extreme event is equal; and the conditional dependence remains high whatever the

conditioning level. This indicates their contribution to an extreme event is equal most of

the time. These three groups are formed by stations above 1400m but they also represent

the south-west region of China and, maybe, represent a typical meteorological region

of China. Strengthening this observation we see that taking group 1 with one of the

three groups 3, 4 or 5 gives the same behavior. The observation can also be done for

group 2. Group 1 and group 2 seem to form two distinct groups. They exhibit moderate

dependence, whatever the conditioning level of the remaining part, although the evolution

of this dependence is quite difficult to interpret.

Therefore, we have isolated groups 1, 2, and (3, 4, 5). Figure 5.7 shows the estimated

density function of the vector {W (Ω1),W (Ω2),W (Ω3 ∪ Ω4 ∪ Ω5)}. We emphasize the

fact that the expectation of this vector is not (3−1, 3−1, 3−1), as in the multivariate case,

but (0.460, 0.293, 0.247). One can see that the three groups are well separated making us

suspect asymptotic independence.

Finally, Figure 5.8 shows a simulation of W from the model on a uniform grid. The

reversible jump algorithm has favored k = 3, each component being centered on a cluster,

see Figure 5.7. The pictures given by Figure 5.8 are quite typical. When k = 3 is selected,

either one of those typical realizations is selected with probability π = (π1, π2, π3). The
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Figure 5.7: Spectral density function of groups 1, 2 and (3, 4, 5).

location of groups, 1, 2, and (3, 4, 5) appears clearly. Within each group, there is complete

chaos, this is normal, since for a more precise image, one should have taken a thinner

decomposition Ω1, . . . ,Ωd. Let us remark that multiplying this surface by a scalar R

simulated from the distribution function F (r) = 1 − r0/r, r > r0, gives us a simulation

scheme for the extremal curve, extremal in the sense that its total intensity exceeds r0.

Monte Carlo procedures can be developed in this direction.

5.5 Discussion and outlook

This presentation of spatial extremes emphasizes the central role of the dependence proba-

bility measure H as the distribution of a random probability. In this context, the mixture

of Dirichlet processes is useful but surely other simple models exist. We tried to gener-

alize classical extremal models, like the logistic and extremal Dirichlet, without success.

It is easy to make them have constrained means but we never succeeded in keeping the

coherence, to guarantee that if (w1, . . . , wd) is distributed according to a member of the
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Figure 5.8: Illustration of spatial simulation. Simulated from one output with k = 3 of

the Markov chain on groups 1, 2 and (3, 4, 5). Either one of the three plots is obtained

with probability π1, π2 and π3 respectively.

family with mean (µ1, . . . , µd), say, then (w1 + w2, w3, . . . , wd) will be in the same family

with mean (µ1 + µ2, µ3, . . . , µd).

A possibility to find other models is to consider a family of parametric densities {fθ :

θ ∈ Θ} on Ω with a prior distribution θ ∼ p(θ). Then fθ plays the role of W while p(θ)

plays the role of the spectral distribution. The constraints are that the expectation of fθ

under p(·) is the uniform density. Simple parametric models for the spectral distribution

function may thus be found.

The choice of the decomposition Ω1, . . . ,Ωd is crucial from the practical viewpoint

and has not been discussed. A possible guideline is to search for groups that exhibit most

independence between one another. In this context, models for asymptotic independence

in the spatial context are to be developed. A simple generalization of the Gaussian tail

model may be a Gaussian random field.
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Conclusions

The research presented in this thesis is oriented toward the study of a new semi-parametric

model for the spectral density in extremal statistics.

In Chapter 2, this model is defined in a general framework that lays the foundations

of the generalization in Chapter 5. It is the occasion for a journey into non-parametric

Bayesian statistics. Theory from this domain shows the richness of mixtures of Dirichlet

distributions, or processes, which constitute the model. However, the spectral distribution

constraints, which the model must satisfy, takes us away from the known framework and

may potentially harm the usefulness of Dirichlet models. This question is hence explored

by practical examples. To this end, two approaches, frequentist and Bayesian, are used:

first the EM algorithm and second the reversible jump algorithm. Their theory and use

is reviewed and they are adapted to our model.

In Chapter 3, the two algorithms are applied to real and simulated data in order to

determine their strength and weaknesses and to study flexibility of the model. The EM

algorithm turns out to be efficient in dimension two but has strong limits: the algorithm

does not converge in high dimension; parameter uncertainty is difficult to assess. Further-

more the selection of the number of components cannot be done by the algorithm itself

but by an information criterion. The reversible jump algorithm is efficient even in high

dimensions but has also its drawbacks: convergence diagnostics have to be constructed

and the convergence is never guaranteed; uncertainty seems to be underestimated at least

in our example and the prior and hyperprior parameters have to be chosen properly in the

absence of real prior information. The model turns out to be rich in the sense that it fits

classical models of the literature, such as the logistic and the Dirichlet extremal model,

rather well. This richness has its price, however, because the model is not parsimonious,

a serious problem for the extremes where data are sparse. This lack of parsimony can

be artificially solved by an appropriate choice of the prior distributions when using the

reversible jump algorithm. However, a real incorporation of prior information in multi-

121



Chapter 5. Spatial extremes

variate extremes remains unsolved. In parallel to this study, two new representations of

the logistic and the Dirichlet model have been developed. Beyond the fact that they allow

exact and rapid simulation of random variables, they also generalize the logistic model to

any dimension.

The use of the spectral distribution is addressed in Chapter 4. Firstly, the estimation

of quantiles for extreme events of general shape is partially solved thanks to Monte Carlo

methods. These methods work well as long as the data are not asymptotically indepen-

dent. In this latter case, the problem is beyond the model since the Poisson process

limit is not valid in this case. It would be interesting to incorporate the semi-parametric

model and the notion of random probability measures into the approaches specific to the

asymptotic independent case. This would allow a generalization of these methods to the

spatial context in the same way as in Chapter 5. Secondly, we studied a conditional

analysis that gives a qualitative rather than a quantitative exploration of the dependence

structure of the data. It brings to the fore hidden aspects of this dependence and shows

strong links between the components of the data, as shown in several examples. These

methods cannot be used in an automatic way, a practiced data analyst must be consulted.

Its generalization to other models is straightforward in principle but technically difficult

because of the computations involved.

The spatial approach proposed in Chapter 5 is very natural and the results are promis-

ing. We show how to use the Poisson process limit in this context, thus diminishing the

loss of data. The basis of our method is the use of mixtures of Dirichlet distributions and

their preponderant role in the theory of random probability measures. It would be inter-

esting to develop simpler models for a rapid exploration of the data. This would render

the choice of the decomposition of the studied area easier. It would also allow us to in-

corporate standard hypotheses in spatial statistics such as isotropy. The research of such

models may be guided to Bayesian statistics where distributions of random probability

measures, called prior distributions, are numerous. Finally, the notion of asymptotic inde-

pendence is still to be addressed. One idea is to generalize the Gaussian tail model, which

seems to be natural. This would almost complete the matching between multivariate and

spatial extremes presented in this thesis.
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Appendix

A.1 The Extremal Logistic Model

Below we prove formula (2.1) and the fact that hW (w) satisfies the constraints (2.2). The

change of variable is

wi =
Ciu

−αi
i∑d

j=1 Cju
−αj

j

=
Ciu

qi
i

K
,

whose differential is

dwi =
Ciu

qi−1
i

K2
(qiKdui − uidK) , i = 1, . . . , d − 1,

where K =
∑d

j=1 Cju
−αj

j and qi = −αi. Therefore

dw1dw2 =
C1C2

K4

(
q1q2u

q1−1
1 uq2−1

2 K2du1du2 − Kq1u
q1−1
1 uq2

2 du1dK − Kq2u
q1
1 uq2−1

2 dKdu2

)
,

= K−3C1q1u
q1−1
1 C2q2u

q2−1
2

(
Kdu1du2 − q−1

2 u2du1dK − q−1
1 u2dKdu2

)
.

By recurrence we obtain

dw1 · · · dwl = K−l−1
l∏

i=1

Ciqiu
qi−1
i

(
Kdu1 · · · dul −

l∑
i=1

q−1
i uidu1 · · · dui−1dKdui+1 · · · dul

)
,

Furthermore,

dK =
d−1∑
i=1

Ciqiu
qi−1
i dui − Cdqdu

qd−1
d

d−1∑
i=1

dui =
d−1∑
i=1

(
Ciqiu

qi−1
i − Cdqdu

qd−1
d

)
dui,

so that

du1 · · · dui−1dKdui+1 · · · dud−1 =
(
Ciqiu

qi−1
i − Cdqdu

qd−1
d

)
dui.
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Finally, writing dw = dw1 · · · dwd−1 and du = du1 · · · dud−1, one gets

dw = K−d
d−1∏
i=1

Ciqiu
qi−1
i

{
K −

d−1∑
i=1

q−1
i ui

(
Ciqiu

qi−1
i − Cdqdu

qd−1
d

)}
du

= K−d
d−1∏
i=1

Ciqiu
qi−1
i

(
K −

d−1∑
i=1

Ciu
qi
i + Cdqdu

qd−1
d

d−1∑
i=1

q−1
i ui

)
du

= K−d
d−1∏
i=1

Ciqiu
qi−1
i

(
Cdu

qd
d + Cdqdu

qd−1
d

d−1∑
i=1

q−1
i ui

)
du

= K−d
d∏

i=1

Ciqiu
qi−1
i

(
q−1
d ud +

d−1∑
i=1

q−1
i ui

)
du

= K−d

(
d∏

i=1

Ciqiu
qi−1
i

)(
d∑

i=1

q−1
i ui

)
du

= K−d

{
d∏

i=1

Ci(−αi)−1u−αi−1
i

}{
d∑

i=1

(−αi)ui

}
du.

Therefore the density of W is

hW (w)dw = hU{u(w)}
∣∣∣∣ du

dw

∣∣∣∣ dw

= d−1

(
d∑

i=1

αiui

)−1( d∏
i=1

αiui

)(
d∑

i=1

Ciu
−αi
i

)
d∏

i=1

w−1
i dw.

Furthermore, taking W1 without loss of generality,

E (W1) = E

⎛
⎝{ d∑

i=1

CiU
−αi
i

}−1

C1U
−α1
1

⎞
⎠

= d−1

∫
Sd

(
d∑

i=1

Ciu
−αi
i

)−1( d∑
i=1

Ciu
−αi
i

)
C1u

−α1
1 du

= d−1,

which proves (2.2).

A.2 The Extremal Dirichlet Model

Below we demonstrate (2.3). Let K =
∑d

i=1 miwi. Then the change of variable is

ui = miwi/K, i = 1, . . . , d − 1,

whose differential is

dui = (Kdui − widK)mi/K
2, i = 1, . . . , d − 1.
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Therefore

du1du2 = K−4
(
K2dw1dw2 − Kw2dw1dK − Kw1dKdw2

)
m1m2

and, by recurrence, for any l ≤ d − 1,

du1 · · · dul = K−2(l+1)

⎛
⎝K ldw1 · · · dwl − K l−1

l∑
j=1

wjdw1 · · · dwj−1dKdwj+1 · · · dwl

⎞
⎠ l∏

j=1

mj .

The differential of K is

dK = d

(
d∑

i=1

miwi

)
=

d−1∑
i=1

(mi − md)dwi,

so that

dw1 · · · dwj−1dKdwj+1 · · · dwd−1 = (mj − md)dw1 · · · dwd−1.

Noting du = du1 · · · dud−1 and dw = dw1 · · · dwd−1, one has

du = K−2(d−1)

⎧⎨
⎩Kd−1 − Kd−2

d−1∑
j=1

(mj − md)wj

⎫⎬
⎭

d−1∏
j=1

mjdw,

= K−d

⎧⎨
⎩K −

d−1∑
j=1

mjwj + md

d−1∑
j=1

wj

⎫⎬
⎭

d−1∏
j=1

mjdw,

= K−d

⎧⎨
⎩

d∑
i=1

miwi −
d−1∑
j=1

mjwj + md

d−1∑
j=1

wj

⎫⎬
⎭

d−1∏
j=1

mjdw,

= K−d
d∏

j=1

mjdw,

that is

du =
d∏

j=1

mj

⎛
⎝ d∑

j=1

uj/mj

⎞
⎠−d

dw

or equivalently

dw =

⎛
⎝ d∏

j=1

mj

⎞
⎠−1⎛⎝ d∑

j=1

uj/mj

⎞
⎠d

du.

Therefore,

hW (w)dw = d−1

⎛
⎝ d∑

j=1

mjwj

⎞
⎠−(d+1)

d∏
j=1

mjh
∗
(m1w1

m · w , . . . ,
mdwd

m · w

)
dw,

= d−1

⎛
⎝ d∑

j=1

uj/mj

⎞
⎠d+1

d∏
j=1

mjh
∗ (u)

⎛
⎝ d∏

j=1

mj

⎞
⎠−1⎛⎝ d∑

j=1

uj/mj

⎞
⎠d

du,

= d−1h∗(u)
d∑

j=1

uj/mj

which is the claimed formula.
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A.3 Confidence intervals for the EM algorithm

Below are given the proofs of (2.4) and (2.5). According to Oakes (1999),

∂2 log f(y, u; θ)
∂θ2

=
∂2Q(θ, θ′)

∂θ2
+

∂2Q(θ, θ′)
∂θ∂θ′

,

at θ = θ′ = θ̂, the maximum likelihood estimator. The first term of the right side of the

equality is often numerically available from the optimizer used during the M step. In

order to avoid awkward analytical calculation, the second term can be approximated by

var
{

∂ log f(y, U ; θ)
∂θ

}
,

where the variance is taken with respect to U given Y = y, at θ = θ̂. The proof uses the

hypothesis that differentiation and integration can be exchanged. Indeed,

∂2Q(θ, θ′)
∂θ∂θ′

=
∂2

∂θ∂θ′

∫
log f(y, u; θ)f(u | y; θ′)du

=
∫

∂ log f(y, u; θ)
∂θ

∂f(u | y; θ′)
∂θ′

du

=
∫

∂ log f(y, u; θ)
∂θ

∂f(u | y; θ′)
∂θ′

f(u | y; θ′)
f(u | y; θ′)

du

=
∫

∂ log f(y, u; θ)
∂θ

∂ log f(u | y; θ′)
∂θ′

f(u | y; θ′)du

=
∫

∂ log f(y, u; θ)
∂θ

{
∂ log f(y, u; θ′)

∂θ′
− ∂ log f(y; θ′)

∂θ′

}
f(u | y; θ′)du

= A − B,

with, at θ = θ′,

A =
∫ {

∂ log f(y, u; θ)
∂θ

)2

f(u | y; θ}du

and

B =
∂ log f(y; θ)

∂θ

∫
∂ log f(y, u; θ)

∂θ
f(u | y; θ)du.

At θ = θ̂, ∂ log f(y; θ)
∂θ = 0 so that B = 0. Furthermore,∫
∂ log f(y, u; θ)

∂θ
f(u | y; θ)du =

∂

∂θ

∫
log f(y, u; θ)f(u | y; θ)du

=
∂

∂θ
Q(θ, θ′)

∣∣∣∣
θ′=θ

,

= 0,

at any M step so that

A = var
(

∂ log f(y, U ; θ)
∂θ

)
,

where the variance is taken with respect to f(u | y; θ).
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Figure A.1: Histogram of 500 data from the extremal mixture model.

A.4 Datasets

A.4.1 Simulated from the extremal mixture model

This dataset of length 500 is simulated from the extremal mixture model. The number

of components is k = 4 and the parameters are

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5

0.25

0.125

0.125

⎞
⎟⎟⎟⎟⎟⎟⎠ , µ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5

0.8 0.2

0.1 0.9

0.3 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠ , ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9

20

1

50

⎞
⎟⎟⎟⎟⎟⎟⎠ .

They have been chosen in order to obtain a multimodal shape. Figure A.1 shows the

density function superimposed on a histogram of simulated data and the four components

of the mixture.

A.4.2 Simulated from distributions A, B, C and D

Below, comparisons are done componentwise. In Heffernan & Tawn (2004), two kinds of

events are considered:

1) simultaneously extremal event. For a fixed pv the return level is v such that pv =

P (Y > v);

2) unilaterally extremal event. For fixed p, q the return level is v such that P (Y1 > r, Y2 <

v) = p where r is such that P (Y1 > r) = p/q;
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Probabilities and return levels associated with these events are considered for four distri-

butions A, B, C and D, given on the Gumbel scale because plots are more readable.

Distribution A: the symmetric logistic distribution with parameter α = 0.5;

P (Y ≤ y) = exp [−V {exp(y)}] ,

where

V (x) =
(
x
−1/α
1 + x

−1/α
2

)α
.

Distribution B: the asymmetric logistic distribution with parameters θ1,{1} = 0.1 =

1 − θ1,{1,2}, θ2,{2} = 0.75 = 1 − θ2,{1,2} and α{1,2} = 0.2;

P (Y ≤ y) = exp [−V {exp(y)}] ,

where

V (x) =
θ1,{1}
x1

+
θ2,{2}
x2

+

[{
θ1,{1,2}

x1

}1/α{1,2}
+
{

θ2,{1,2}
x2

}1/α{1,2}
]α{1,2}

.

Distribution C: the inverted extreme value distribution with symmetric logistic de-

pendence structure, with parameter η = 0.75;

P (Y > y) = exp
[
−V

{
−1/ log

(
1 − e−e−y

)}]
,

where V (x) is as for distribution A with α such that 2−α = η.

Distribution D: the bivariate normal distribution with parameter η = 0.75;

Y = − log[− log{Φ(Z)}],

where Φ is the standard normal distribution function and Z is dis-

tributed according to a bivariate normal distribution with mean zero

and unit variance and correlation ρ = 2η − 1.

On the Fréchet scale, for the bivariate extreme value distributions and large v,

P (Y > v) = 1 − 2 exp(−1/v) + exp {−V (v, v)} ≈ 2/v − V (v, v). (A.1)

This allows us to find explicit true v for distributions A and B in the case of simultane-

ously extremal events. For distribution C it is trivial and for distribution D numerical

procedures have to be used.
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Distribution p

10−4 10−6 10−8

A 8.7 13.3 17.9

B 7.8 12.4 17.0

C 6.5 9.7 13.2

D 6.9 10.2 13.8

Distribution q p

10−4 10−6 10−8

0.2 6.7 11.3 15.9

A 0.5 8.8 13.4 18.0

0.8 10.5 15.1 19.7

0.2 6.2 10.8 15.4

B 0.5 7.8 12.4 17.0

0.8 9.2 13.8 18.4

Table A.1: True return levels. Left table for simultaneously extremal events. Right table

for unilaterally extremal events. Doubtful values indicated in italics.

Formula (A.1) extends to dimension d using

P (Y > v) = 1 −
d∑

i=1

P (Yi ≤ vi) +
d∑

i1 
=i2

P (Yi1 ≤ vi1 , Yi2 ≤ vi2) − · · · + (−1)dP (Y ≤ v),

which gives, for v1 = · · · = vd = v and an exchangeable model V ,

P (Y > v) = 1 −
(

d

1

)
P (Y1 ≤ v) +

(
d

2

)
P (Y1 ≤ v, Y2 ≤ v) − · · · + (−1)dP (Y ≤ v)

=
(

d

1

)
(1 − e−1/v) +

(
d

2

)
(1 − e−V2(v)) − · · · + (−1)d(1 − e−Vd(v))

≈
(

d

1

)
v−1 −

(
d

2

)
V2(v) + · · · − (−1)dVd(v),

where

Vj(v) = V (v, . . . , v︸ ︷︷ ︸
j times

,∞, . . . ,∞), j = 1, . . . , d.

This gives for d = 5 and distribution A, vp = 8.3, 12.9, 17.5 for p = 10−4, 10−6, 10−8,

respectively. The more complex formula for non-exchangeable models like distribution B

can be derived from similar arguments. It is not used in this work.

For non-simultaneous extremal events, p/q = P (Y1 > r) = exp(−1/r) implies that

r = −1/ log(p/q). Then a numerical procedure must be applied in order to find the v’s.

Some of these are indicated in Heffernan & Tawn (2004) and we computed the others.

Although we could check this numerical procedure with indicated values, we also observed

lots of numerical instability so that those values should be used with some caution. It

turned out in a communication with Dr Janet Heffernan that Heffernan & Tawn (2004)

used the Splus function uniroot in order to find these values, while ours were obtained

from the R function optimize. Results are given in Table A.1. In italics, those return
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levels that we found different from Heffernan & Tawn (2004). By default and for the

consistency of this presentation, we indicated our results.

For logistic type distributions A and B, simulation can be done from the R package evd

(Stephenson 2003), while simulation from the multivariate normal is standard. Simulation

from distribution C is obtained from distribution A with the tail inverted, that is taking

1 − u instead of u on the uniform scale.

A.4.3 Newlyn data

The data are a sequence from 1971 to 1977 of hourly surge records for the port of Newlyn,

Cornwall, and 3-hourly wave records from a ship. A primary analysis has been done in

order to obtain approximately independent vectors. The final series is of length 2894.

The data are used assuming temporal independence. The three components are X1, the

inshore significant wave height, X2, the significant wave period, and X3, the surge. A

design failure region is given by

Q(v,X) ≥ 0.002,

with

Q(v,X) = a1X
∗
1X∗

2 exp
{
−a2(v − X3 − l)/(X∗

2

√
X∗

1 )
}

,

where l = 4.3m is the tidal level relative to the seabed, a1 = 0.25 and a2 = 26.0 are

design coefficients, and X∗
1 and X∗

2 are the offshore significant wave height and wave

period, respectively. Relationships for unobserved offshore data from observed inshore

data are given by

X∗
1 = X1 exp

[
1 − exp

{
−(l + X3)2/(2X2

1 )
}]1/2

, X∗
2 = X2.

Their extremal dependence structure has been studied in Coles & Tawn (1994), Bortot

et al. (2000) and Coles & Pauli (2002). The first article assumed extremal dependence

and fitted an extremal Dirichlet spectral measure to the trivariate series. The result was

compared to a structural approach in order to infer on an extremal event concerning

a functional of the data. The structural approach consists in computing the functional

series Q(v,X) and studying its extremal structure with univariate techniques. From the

viewpoint of return levels, the two methods turn out to be inconsistent for these data. In

particular, probabilities of extremal events turn out to be higher under the multivariate

model. The final conclusions of Coles & Tawn (1994) are that the multivariate approach
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should be preferred since it is not conditioned on a particular functional of interest so

that it takes into account the whole dependence structure. Bortot et al. (2000) raised

doubts about these conclusions because the multivariate extremal model did not take

into account potential asymptotic independence of the data. The Newlyn data were re-

examined using a trivariate Gaussian tail model. The resulting return levels were lower

than with an extremal Dirichlet model, thus reconciling the structural and multivariate

approaches. Indeed, the return levels of the structural approach were in the confidence

band around those of the Gaussian tail model except for very low probabilities, in which

case the confidence intervals of the two methods still overlap. Coles & Pauli (2002) develop

a model linking asymptotic dependence and asymptotic independence. The conclusions

for the data are that the triple surge-wave-height exhibits asymptotic dependence while

each pair involving the period exhibits asymptotic independence.

A.4.4 Air quality data

The air quality data set consists of a daily series of monitoring measurements of levels of

ozone (O3), nitrogen dioxide (NO2), nitrogen oxides (NO) and particulate matter (PM10),

in Leeds city center, UK, from 1994 to 1998 inclusive. They are extracted from Heffernan

& Tawn (2004) and can be downloaded from http://www.airquality.co.uk. Gases are

recorded in parts per billion, ppb, and PM10 in µgm−3. We concentrate on winter data,

from November to February, inclusive. Missing values (NA’s) are deleted and stationarity

is assumed since this work does not focus on temporal dependence.

A.5 Reversible jump Markov chain Monte Carlo algorithm

This section details prior and proposal densities and acceptance probability calculations.

A.5.1 Prior distributions

The prior distribution for k is Poisson with parameter hyppark, fixed by the user. The

prior distribution of log ν, given k, is normal with mean and variance specified by the user

into the vector hypparlnu. The prior distribution of π, given k, is a Dirichlet distribution

in Sk with common parameters δ1 = · · · = δk, specified by the user with hypparPi. The

default value hypparPi = 1 leads to a uniform prior.
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The prior distribution of µ, given π and k, is constructed conditionally. We write

µ =

⎡
⎢⎢⎢⎣

µ
(1)
1 · · · µ

(1)
d−1

...
. . .

...

µ
(k−1)
1 · · · µ

(k−1)
d−1

⎤
⎥⎥⎥⎦ ,

then, writing by row, the density

f(µ) = f(µ(1)
1 , . . . , µ

(1)
d−1, µ

(2)
1 , . . . , µ

(2)
d−1, . . . , µ

(k−1)
d−1 )

is the product of successive conditionals, starting from the right,

f
(k−1)
d−1 = f(µ(k−1)

d−1 | µ
(1)
1 , . . . , µ

(1)
d−1, µ

(2)
1 , . . . , µ

(2)
d−1, . . . , µ

(k−1)
d−2 )

f
(k−1)
d−2 = f(µ(k−1)

d−2 | µ
(1)
1 , . . . , µ

(1)
d−1, µ

(2)
1 , . . . , µ

(2)
d−1, . . . , µ

(k−1)
d−3 )

...

f
(1)
2 = f(µ(1)

2 | µ
(1)
1 )

f
(1)
1 = f(µ(1)

1 ).

Those conditionals are assumed to be uniform on the largest interval that allows con-

straints to be satisfied, that is

I
(m)
i =

⎡
⎣0 , min

⎛
⎝1 −

i−1∑
j=1

µ
(m)
j ,

ci −
∑m−1

l=1 πlµ
(l)
i

πm

⎞
⎠
⎤
⎦ , i = 1, . . . , d−1, j = 1, . . . , k−1,

where ci is the constraint constant

k∑
m=1

πmµ
(m)
i = ci, i = 1, . . . , d,

and we recall that in the multivariate case, c1 = · · · = cd = d−1. Now the prior density on

µ is the inverse of the product of the lengths of all I
(m)
i . There are no hyperparameters. A

possible extra complication would be to impose a beta distribution instead of the uniform,

but we have not found this useful.

A.5.2 Proposals and acceptance probability for dependence parameters

‘SPLIT/COMBINE’ move type

The ‘SPLIT’ move for component (π0 , µ0) can be summarized as⎛
⎝ π0

µ0

⎞
⎠ �−→

⎛
⎝ π0 v

µ0 µ2

⎞
⎠ �−→

⎛
⎝ π1 = vπ0 π2 = (1 − v)π0

µ1 =
µ0 − (1 − v)µ2

v
µ2 = µ2

⎞
⎠ ,

132



Appendix

where v is some random variable in (0, 1) and µ2 in Sd. The Jacobian of this transforma-

tion is the determinant

∂ (π1, π2, µ1, µ2)
∂ (π0, v, µ0, µ2)

=

π1 π2 µ1 µ2

π0 v 1 − v 0T 0T

v π0 −π0
µ2−µ0

v 0T

µ0 0 0 1
v Id−1 0T 0

µ2 0 0 −1−v
v Id−1 Id−1

(A.2)

where 0 is the column vector of length d − 1, 0T its transpose and Id−1 is the identity

matrix of side d − 1. Therefore, the Jacobian is π0/v
d−1.

The proposal from v, q(v), depends on the jump size and on tuning parameters set

by the user. The proposal for µ2 depends on the jump size, on tuning parameters and on

the current µ0; we write q(µ2 | µ0). The proposal ratio contribution for the ‘SPLIT’ of

(π0, µ0) is then
1

q(µ2 | µ0)q(v)
vd−1

π0
. (A.3)

For log ν0, there is no change of variable. The two components log ν1 and log ν2 are

proposed according to a normal distribution with mean log ν0 and the merged component

log ν0 is proposed according to a normal distribution with mean (log ν1 + log ν2)/2. In

both case, the tuning variance is determined by the user. The proposal ratio contribution

for a ‘SPLIT’ is then
q(log ν0 | log ν1, log ν2)

q(log ν1 | log ν0)q(log ν2 | log ν0)
. (A.4)

where q is the appropriate normal density.

Finally, the choice of the of component index l among 1, . . . , k to be split is random, as

one of the two component indexes (l1, l2) to be combined. The proposal ratio contribution

of this choice for a ‘SPLIT’ is hence

2k
(k + 1)k

. (A.5)

Overall, the product of (A.3), (A.4) and (A.5) gives the ratio of the proposals for a

‘SPLIT’. For a ‘COMBINE’, it is the inverse. In Section 2.3.2, the ratio of proposals is

multiplied to the ratio of posterior to calculate the acceptance probability.

‘MCMC’ move

The ‘MCMC’ move is done in two steps. The first step updates log ν1, . . . , log νk according

to a normal random walk with tuning variance depending on the size of the jump, fixed
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by the user. The proposal ratio contribution is then 1 because of the symmetry of the

normal density. The second step fixes those parameters and updates π and µ with a

succession of ‘COMBINE’ and ‘SPLIT’ moves⎛
⎝ π1

π2

⎞
⎠ �−→ π0 �−→

⎛
⎝ π′

1

π′
2

⎞
⎠ and

⎛
⎝ µ1

µ2

⎞
⎠ �−→ µ0 �−→

⎛
⎝ µ′

1

µ′
2

⎞
⎠ .

For a generic parameter x, the move goes from x to x0 then to x′ and the backward move

goes from x′ to x0 then to x. The proposal ratio contribution is therefore

q(x0 | x′)q(x | x0)
q(x0 | x)q(x′ | x0)

=
q(x0 | x′)
q(x′ | x0)

q(x | x0)
q(x0 | x)

.

In other words, it is the product of the ratio contribution of the two moves. They are

hence readily obtained from (A.3), (A.4) and (A.5).

A.5.3 Margin parameters

When the reversible jump algorithm is used to estimate dependence and marginal struc-

ture together, then the algorithm randomly alternates two kernels, one, concerning the

margins, and, the other, the dependence structure. The dependence kernel is the reversible

jump part of the algorithm. The margin kernel is a standard Metropolis–Hastings kernel.

For the semi-parametric extremal model of each margin, new parameters are proposed

according to a proposal density, the acceptance probability ratio is computed, and then

the decision to keep or reject the proposed values taken.

In this acceptance probability ratio appear proposal densities, prior densities and

likelihoods. The calculation of proposal and prior densities are straightforward if properly

chosen. The calculation of likelihoods is detailed in Coles & Tawn (1991) on a set A0 =

R
p \ {(0, ν1) × . . . × (0, νd)}, where νi is the threshold for the i-th margin. Borrowing

their notation, the likelihood in A is

exp {V (ν)}
nA∏
i=1

⎛
⎜⎜⎝h(wi)(nri)−(d+1)

∏
j=1,...,d:

Xi,j>nνj

[σ−1
j p

−κj

j X2
i,j exp(1/Xi,j){1 − exp(−1/Xi,j)}1+κj ]

⎞
⎟⎟⎠ ,

where:

• V (ν) is the rate measure of the extremal Poisson model evaluated on the set ν =

(ν1, ∞) × . . . × (νd, ∞);

• pj is the probability that component j is above νj;
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Figure A.2: The effect of the semi-parametric extremal model. On the left, the original

data, on the right, data on the Fréchet scale.

• the Xi are Fréchet data obtained with the semi-parametric-extremal model, Xi,j being

the j-th component of Xi, for j = 1, . . . , p and i = 1, . . . , n0;

• wi are the pseudo-angles of Xi and ri is its norm;

• κj corresponds to −kj in Coles & Tawn (1991).

This likelihood is the Poisson likelihood of data in A: the product with the exponential

and the h(wi) is the likelihood of the observed data on the pseudo-polar scale while the

part corresponding to the right product is the Jacobian of the transformation of the data

to the Fréchet scale with the semi-parametric extremal model.

In our case, the set A0 is not R
p \ {(0, ν1) × . . . × (0, νp)} but {r > r0} for a selected

multivariate threshold, r0. In this case, the likelihood slightly changes because the leftmost

exponential term is constant with respect to h. Furthermore, data in the set {r > r0} \ ν

are not touched by a change of margin parameters since each of their components is under

the corresponding marginal threshold. Figure A.2 illustrates this in dimension d = 2. On

the left panel, the original data Y and on the right panel, data on the Fréchet scale, X.

The marginal thresholds are the backward image of the multivariate threshold r0. The

extremal Poisson model applies in sets A, B, C and D. New margin parameters for the

first components influence Fréchet data in sets C and D, new margin parameters for the

second components influence Fréchet data in sets C and B. Hence the global likelihood

of A, B, C and D incorporates effects of data in C for both margin components and
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for the dependence structure, in D for component 1 and the dependence structure, in B

for component 2 and the dependence structure, and in A for the dependence structure

alone. Using the likelihood on the set R
p \ {(0, ν1) × . . . × (0, νp)} deprives us of data in

A, which brings information on the dependence structure, and forces us to calculate the

measure of B, C and D, which is difficult, while the measure of A, B, C and D together

is straightforward because only likelihood ratios are needed. Naturally, those comments

are valid whatever the dependence structure, whether it is from one model or another.

We now discuss the choice of the prior and the proposal density, that were made for

convenience. The log σ is a priori normal with mean zero and a large variance. The new

log σ is proposed according to a normal distribution with mean the current log σ and

variance defined according to the size of the jump. The generalized Pareto distribution

domain,

1 + σ−1κy > 0,

implies that the proposition of a new κ must be done properly if one does not want to

see every new proposition systematically rejected. For component j, one must have

χj = σ−1
j κj + 1/max{yi,j} > 0,

where the maximum is taken over the excesses above margin threshold uj. Thus, new

log χj are proposed according to a normal random walk and one sets

κj = σj (χj − 1/max{yi,j}) .

We now calculate the proposal density. For notational convenience, we fix j, write m =

−1/max{yi,j},

x = log(σ) = u,

y = κ = eu (ev + m) ,
and

u = log(σ) = x

v = log(χ) = log (ye−x − m) .

The differentials are dx = du and dy = eu (ev + m) du + euevdv so that

dxdy = euevdudv and dudv = e−x(ye−x − m)−1dxdy.

Therefore, the proposal density is

q(u, v | u′, v′)dudv = (2πνuνv)−1e−(u−u′)2/2ν2
ue−(v−v′)2/2ν2

v dudv

= (2πνuνv)−1e−(x−x′)2/2ν2
ue−(log(ye−x−m)−log(y′e−x′−m))2/2ν2

v
dxdy

ex (ye−x − m)
,
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and the proposal density ratio is

q(x, y | x′, y′)
q(x′, y′ | x, y)

=
ex′
(
y′e−x′ − m

)
ex (ye−x − m)

=
σ′χ′

σχ
,

where ′ indicates a new proposed value.
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