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Abstract

The control of the current, position and shape of an elongated cross-section tokamak
plasma is complicated by the instability of the plasma vertical position. In this case the
control becomes a significant problem when saturation of the power supplies is considered.
Current saturation is relatively benign due to the integrating nature of the tokamak,
resulting in a reasonable time horizon for strategically handling this problem. On the other
hand, voltage saturation is produced by the feedback controller itself, with no intrinsic
delay. In practice, during large plasma disturbances, such as sawteeth, ELMs and minor
disruptions, voltage saturation of the power supply can occur and as a consequence the
vertical position control can be lost. If such a loss of control happens the plasma displaces
vertically and hits the wall of the vessel, which can cause damage to the tokamak. The
consideration and study of voltage saturation is especially important for ITER. Due to
the size and therefore the cost of ITER, there will naturally be smaller margins in the
Poloidal Field coil power supplies implying that the feedback will experience actuator
saturation during large transients due to a variety of plasma disturbances.

The next generation of tokamaks under construction will require vertical position and
active shape control and will be fully superconducting. When the magnetic transverse
field in superconducting magnets changes, the magnet generates two types of heat loss,
the so-called coupling loss and the so-called hysteresis loss, grouped together as AC losses.
Superconducting coils possess superconducting properties only below a critical tempera-
ture around a few K. AC losses are detrimental since they heat up the superconducting
material. Thus, if AC losses are too large, the cryogenic plant can no longer hold the
required temperature to maintain the superconductivity properties. Once the supercon-
ductivity is lost, the electric currents in the coils produce an enormous heat loss due to
the ohmic resistivity, which can lead to a possible damage to the coils. In general, the
coils are designed with enough margin to absorb all likely losses. A possible loss reduction
could allow us to downsize the superconducting cross section in the cables, reducing the
overall cost, or simply increase the operational cooling margin for given coils.

In this thesis we have tried to take into consideration these two major problems. The
thesis is therefore focused on the following main objectives: i) the stability analysis of
the tokamak considering voltage saturation of the power supplies and ii) the proposition
of a new controller which enhances the stability properties of the tokamak under volt-
age saturation and iii) the proposition of a controller which takes into consideration the
problem of reducing the AC losses. The subject of the thesis is therefore situated in an
interdisciplinary framework and as a result the thesis is subdivided into two principal
parts. The first part is devoted to tokamak physics and engineering, while the second
part focuses on control theory.

In the tokamak physics and engineering part we present the linear tokamak models and
the nonlinear tokamak code used for the controller design and the validation of the new
proposed controller. The discussion is especially focused on the presence of a single unsta-
ble pole when the vertical plasma position is unstable since this characteristic is essential
for the work presented in the control theory part.

In order to determine the enhancement of the stability properties we have to bring the
new proposed controller to its stability limits by means of large disturbances. Validation
by means of simulations with either linear or nonlinear tokamak models are imperatively
required before considering the implementation of the new controller on a tokamak in
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operation. A linear tokamak model will probably be inadequate since large disturbances
can move its state outside its validity regions. A full nonlinear tokamak evolution code like
DINA is indispensable for this purpose. We give a detailed description of the principal
plasma physics implemented in the DINA code. Additionally, validation of DINA is
provided by comparing TCV experimental VDE responses with DINA code simulations.

To allow a study of the AC losses reduction, the nature of the AC losses has to be
reduced to a simplified form. We analyse to what extent the accumulated AC losses in
ITER could be reduced by taking into account the losses themselves when designing the
feedback control loops. In order to be able to carry out this investigation a simple and
fast AC loss model, referred to as ”AC-CRPP” model, is proposed.

In the control theory part we study the stability region in state space, referred to as
the region of attraction, for linear tokamak-like systems with input saturation (voltage
saturation) and a linear state feedback. Only linear systems with a single unstable pole
(mode) and a single saturated input are considered. We demonstrate that the character-
isation of the region of attraction is possible for a second order linear system with one
unstable and one stable pole. For such systems the region of attraction possesses a topo-
logical bifurcation and we provide an analytical condition under which this bifurcation
occurs. Since the analysis relies on methodologies like Poincaré and Bendixson’s theorems
which are unfortunately only valid for second order systems it is evident that there is no
way to apply the results for second order systems to higher order systems. It turned out
that the search for characterising the region of attraction for higher order systems was
illusory and thus this research direction had to be abandoned.

We therefore focused on controllers for which the region of attraction is the maximal
region of attraction that can be achieved under input saturation. This region is referred
to as the null controllable region and its characterisation is simple for any arbitrary high
order system possessing a single unstable pole. We present a new globally stabilising
controller for which its region of attraction is equal to the null controllable region. This
result is obtained by incorporating a simple continuous nonlinear function into a linear
state feedback controller. There are several advantages linked to this new controller: i)
the stability properties are enhanced, ii) the performance, AC loss reduction and fast
disturbance rejection, can be taken into account, iii) the controller can be applied to
any arbitrary high order system and iv) the controller possesses a simple structure which
simplifies the design procedure.

We close the control theory part by focusing on the application of the proposed new
controller to tokamaks. Since this controller is a state feedback controller one of the major
problems is linked to the state reconstruction. Other pertinent topics are: i) the study of
the effect of the disturbances on the closed-loop system stability, ii) the problem inherent
to the nature of a state feedback controller when we want an output of the system to
track a reference signal and iii) the discussion of the detrimental effects on stability if a
pure time delay or a limited bandwidth are added to the closed-loop system, as is the
case in reality.

The validation of the proposed controller is carried out by means of simulations. We
present results for ITER-FEAT and JET using the linear tokamak model CREATE-L.
Finally, we present a validation for the case of TCV using the nonlinear DINA-CH code.
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Version Abrégée

Dans un tokamak, le contrôle du courant, de la position et de la forme d’un plasma allongé
est compliqué par l’instabilité de la position verticale du plasma. En outre, le problème
de contrôle s’accrôıt considérablement lors de la présence de saturation des alimentations.
La saturation en courant est relativement bénigne due à l’effet intégrateur d’un tokamak
permettant de faire face à ce problème au cours d’un horizon temporel raisonnablement
long. Par contre, la saturation en tension est produite par le régulateur sans aucun délai
intrinsèque. En pratique, durant des perturbations de plasma larges, comme les dents
de scie, les ELMs et la disruption mineure, les tensions des alimentations peuvent être
amenées en saturations impliquant une perte de contrôle de la position verticale. Dans ce
cas, le plasma se déplace verticalement et entre inévitablement en contact avec la paroi de
la coque, ce qui peut sérieusement endommager la machine. La considération et l’étude des
saturations en tension sont particulièrement importantes pour ITER. Dû à la dimension
et de ce fait au coût de ITER, les marges des alimentations des bobines poloidales seront
naturellement plus petites engendrant des saturations en tension fréquentes durant les
périodes transitoires dû à une variété de perturbations.

En vue de réduire la dimension et le coût des bobines et des alimentations, les futures
machines, comme par exemple ITER, seront munies de bobines supraconductrices. Toute-
fois, la variation du champ magnétique transversal au sein des bobines supraconductrices
engendre deux types de pertes calorifiques: i) les pertes dites de couplages et ii) les pertes
dites d’hystérésis, toutes les deux regroupées sous la dénomination de pertes CA (courant
alternatif). Ces pertes calorifiques entrâınent inévitablement l’échauffement des bobines,
ce qui peut engendrer la perte de la propriété supraconductrice des bobines provoquant
la surchauffe, voire la destruction des bobines. En général, les bobines sont conçues avec
assez de marge pour absorber toutes les pertes probables. Cependant, une réduction de
pertes CA pourrait s’avérer utile en vue de permettre une réduction du diamètre des
câbles supraconducteurs, la réduction des coûts en général ou l’augmentation de la marge
opérationnelle du system de refroidissement des bobines.

Dans cette thèse, on a tenté de prendre en compte ces deux problèmes majeurs. Ainsi,
il en découle les objectifs principaux suivants: i) l’analyse de la stabilité du tokamak en
considérant les saturations en tension des alimentations, ii) la proposition d’un nouveau
régulateur permettant d’augmenter les propriétés de stabilité en présence de saturations
en tension et iii) la proposition d’un régulateur qui prend en compte le problème de la
réduction des pertes CA. La thématique de cette thèse se trouve dans un cadre interdis-
ciplinaire impliquant la division de la thèse en deux parties. La première partie traite la
physique et l’ingénierie des tokamaks, quand à la deuxième partie, elle est dévouée à la
théorie dans le domaine de l’automatique.

Dans la partie traitant la physique et l’ingénierie des tokamaks, on présente les modèles
linéaires et le code non-linéaire utilisés pour le développement et la validation du nouveau
régulateur proposé dans le cadre de cette thèse. La présentation est focalisée en particulier
sur le fait que les modèles linéaires possèdent un unique pôle instable dû à l’instabilité de
la position verticale du plasma. Cette caractéristique est primordiale en vue d’analyser
la stabilité d’un système tokamak en boucle fermée en présence de saturations. Afin de
pouvoir déterminer les améliorations en termes de stabilité, le régulateur proposé doit
être conduit à la limite de son effet stabilisant en injectant de larges perturbations. Il
est évident qu’une telle validation doit d’abord impérativement être mise en oeuvre par
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voie de simulation avant de valider un nouveau régulateur sur un tokamak en opération.
Les simulations à base d’un modèle linéaire sont dans ce cas présent inadéquates, car en
présence de perturbations importantes, l’état du modèle linéaire peut quitter sa région
de validité. Ainsi, un code non-linéaire, comme DINA, étant en mesure de reproduire
toutes les non-linéarités principales d’un tokamak est indispensable. On présente une
description détaillée de la physique des plasmas qui est implantée dans le code DINA.
En plus, une validation de DINA est présentée en comparant sur TCV des réponses VDE
expérimentales avec des simulations DINA.

En vue de pouvoir étudier la réduction des pertes CA, on présente la nature de ces
pertes en une forme réduite et on propose un modèle réduit étant en mesure de calculer
rapidement le montant des pertes CA.

Dans la partie dévouée à l’automatique, la région de stabilité dans l’espace des états, dite
la région d’attraction, est étudiée pour des systèmes linéaires possédant un régulateur
d’état linéaire dans la boucle de rétroaction. Des systèmes linéaires possédant unique-
ment une entrée saturée et un pôle instable sont considérés. On démontre qu’il est pos-
sible de caractériser la région d’attraction pour un système de deuxième ordre avec un
pôle instable et un pôle stable. Pour de tels systèmes, la région d’attraction possède
une bifurcation topologique et on fournit une condition analytique sous laquelle cette bi-
furcation apparâıt. Du fait que ce résultat repose sur les théorèmes de Poincaré et de
Bendixson, étant uniquement valides pour des systèmes de second ordre, il est évident
qu’une démarche par analogie pour des systèmes d’ordre plus élevé n’est pas envisage-
able. Il se trouve que la recherche en vue de caractériser la région d’attraction pour des
systèmes d’ordre plus élevé s’est avérée illusoire et cette direction de recherche a ainsi dû
être abandonnée.

De ce fait une nouvelle stratégie a été adoptée visant à modifier un régulateur linéaire
en vue d’obtenir une région d’attraction équivalente à la région d’attraction maximale
atteignable en tenant compte de la saturation de l’entrée. Cet objectif est obtenu en
incorporant une fonction simple, possédant une non-linéarité continue, dans un régulateur
d’état linéaire. Plusieurs avantages sont liés à ce nouveau régulateur: i) les propriétés de
stabilité sont augmentées, ii) la caractérisation de la région d’attraction maximale est
facilitée pour n’importe quel système d’ordre arbitraire, iii) la performance, la réduction
de pertes CA et le rejet de perturbations peuvent être incorporés, iv) le régulateur est
applicable à des systèmes d’ordre arbitraire et v) le régulateur possède une structure
simple, ce qui facilite la procédure de conception.

La partie consacrée à l’automatique s’achève par la discussion concernant l’application
du nouveau régulateur aux tokamaks. Du fait que ce régulateur est un régulateur d’état,
un des problèmes majeurs est lié à la reconstruction d’état. D’autres sujets pertinents
sont i) l’étude des effets des perturbations sur la stabilité du système en boucle fermée,
ii) le problème inhérent à la nature d’un régulateur d’état lors de la poursuite d’un signal
de consigne et iii) les effets néfastes sur la stabilité provoqués par l’adjonction d’un retard
pur ou d’une limitation de bande passante.

La validation du régulateur proposé dans cette thèse est accomplie à l’aide de simula-
tions numériques. On présente des résultats pour ITER-FEAT et JET en utilisant le
modèle linéaire CREATE-L. Finalement, on présente une validation accomplie sur TCV
en utilisant le code non-linéaire DINA-CH.
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Chapter 1

Introduction

1.1 The tokamak: a thermonuclear fusion reactor

1.1.1 Principles of nuclear fusion

The basic principle of nuclear fusion is that the defect of mass resulting from the fusion of
two light nuclei into a heavier and more stable nucleus is transformed into a large amount
of energy. Nuclear fusion is the energy-producing process which takes place continuously
in the sun and stars. In the core of the sun at temperatures of 10-15 million degrees
Celsius, Hydrogen is converted to Helium providing enough energy to sustain life on
earth.

For energy production on earth different fusion reactions are involved. The most
suitable reaction occurs between the nuclei of the two heavy forms (isotopes) of hydrogen:
Deuterium (D) and Tritium (T). This reaction, illustrated in Figure 1.1, is given by

2
1D +2

1 T −→ 4
2He + n + 17.59 [MeV].

Eventually reactions involving just Deuterium or Deuterium and Helium may be used.

D + T He + n + Energy4

D
n

T He4

Figure 1.1: Illustration of the Deuterium (D) and Tritium (T) reaction.

In order to have a sufficiently high reaction rate, temperatures of the order of 100 ·106

[oC] (104[eV]) are required. Furthermore, in a reactor, the fuel density must be maintained

1



2 Chapter 1. Introduction

at about 1020 [m−3] for a sufficiently long lapse of time. For these conditions the fuel
changes its state from gas to PLASMA. In a plasma, electrons are separated from the
atoms, which become charged ions.

1.1.1.1 Advantages of fusion

The fundamental advantages of fusion are as follows:

• A vast, new source of energy.

• Fuels are plentiful.

• Inherently safe since any malfunction results in a rapid shutdown.

• No atmospheric pollution leading to acid rain or ”greenhouse” effect.

• Radioactivity of the reactor structure, caused by the neutrons, decays rapidly and
can be minimised by careful selection of low-activation materials. Provision for
geological time-span disposal is not needed.

1.1.1.2 Fuels

Deuterium is abundant as it can be extracted from all forms of water. If all the world’s
electricity were to be provided by fusion power stations, Deuterium supplies would last
for millions of years.

Tritium does not occur naturally and will be manufactured from Lithium within the
reactor. Lithium, the lightest metal, is plentiful in the earth’s crust. If all the world’s
electricity were to be provided by fusion involving Lithium, known reserves would last
for at least 1000 years. Once the reaction is established, even though it occurs between
Deuterium and Tritium in the plasma, the consumables are Deuterium and Lithium.

Quantities:
For example, 10 grams of Deuterium which can be extracted from 500 litres of water and
15g of Tritium produced from 30g of Lithium would produce enough fuel for the lifetime
electricity needs of an average person in an industrialised country.

1.1.2 The magnetic confinement

Since a plasma consists of two types of charged particles, ions and electrons, magnetic
fields can be used to isolate the plasma from the vessel walls. In a magnetic field the
particles readily spiral along the field lines but diffuse only slowly across them. The most
promising magnetic confinement systems are toroidal (ring-shaped) and, of these, the most
advanced is the tokamak. This is a device introduced in the late 60’s in the ex Soviet
Union by Sakharov and Tamm (tokamak is an acronym for the Russian TOroidalnaya
KAmera i MAgnitnaya Katushka for toroidal chamber and magnetic coils) which has
rapidly spread all over the world thanks to its relative technological simplicity and its
high performance.

Figure 1.2 illustrates the basic components of the tokamak’s magnetic confinement
system. The magnetic field for the confinement is provided by the combination of a large
toroidal field produced by the toroidal field coils (TF coils) and by a smaller poloidal
field created by the plasma current and external coils. The plasma current is induced by
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Transformer winding
(primary circuit) Iron transformer

core

Toroidal
field coils

Poloidal
magnetic

field

Resultant
helical field

(twist exaggerated)

Plasma current
(secondary circuit)

Toroidal
magnetic

field

Figure 1.2: Illustration of the basic components of the tokamak’s magnetic confinement
system: i) the toroidal field which is produced by the toroidal field coils surrounding
the vacuum vessel and ii) the poloidal field produced by a current in the plasma and in
external coils; the plasma current is induced by transformer action

a magnetic field variation generated by a current injected in the central solenoid coil (CS
coils). The central solenoid acts as the primary circuit winding of a transformer which
drives the plasma current (inductive current drive). The combination of both field
components, toroidal and poloidal fields, results in a helical magnetic field that contains
the plasma; the surfaces covered by such fields are known as the magnetic surfaces (Figure
1.3). Since in a magnetic field the particles approximately spiral along the magnetic field
lines the electric current in the plasma approximately flows parallel to the magnetic field
[54]. Thus, the plasma current has a toroidal and a poloidal current component, too.

1.1.3 The heating of the plasma

In general, the following methods are used to heat the plasma:

• Ohmic Heating due to the Driven Current
Due to the current drive discussed above currents up to 7 million amperes (for
JET) flow in the plasma and deposit a few mega-watts of heating power.

• Neutral Beam Heating
Beams of deuterium or tritium ions, accelerated by a potential of up to 1’000’000
volts, are injected into the plasma. In order to penetrate the confining magnetic
field, the accelerated beams are neutralised. In the plasma, the beams become
ionised and the fast ions give up their energy to the plasma. The power available is
typically 20 MW.
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z

R

Helical magnetic 
field lines

Magnetic surfaces

Figure 1.3: Illustration of two magnetic surfaces with the helical magnetic field lines.

• Radio-Frequency Heating
The plasma ions and electrons rotate around in the magnetic field lines of the
tokamak. Energy is given to the plasma where the radio waves resonate with the
ion rotation. Antennae in the vacuum vessel propagate waves in the frequency range
of 25-55 MHz (for JET) into the core of the plasma to increase the energy of the
ions. This method can typically inject up to 20 MW of heating power.

• Current Driven by Microwaves
Microwaves with several MW (≈ 10 MW) of power at frequencies around 1 . . . 5
GHz accelerate the plasma electrons to generate a plasma current. The name of
the method, Lower Hybrid Current Drive (LHCD), refers to the particular waves
excited in the plasma.

Electron Cyclotron Resonance Heating (ECRH) and Electron Cyclotron Current
Drive (ECCD) Gyrotrons are also powerful microwave sources. Typically, their
output power is in order of hundreds of kW and their frequency around one hundred
GHz.

• Self Heating of Plasma
The helium nuclei (alpha-particles) produced when deuterium and tritium fuse re-
main within the plasma’s magnetic trap. Their energy continues to heat the plasma
to keep the fusion reaction going. When the power from the alpha-particles is suf-
ficient to maintain the plasma temperature, the reaction becomes self-heating - a
condition referred to as IGNITION.

1.1.4 Equilibrium in a tokamak with a circular plasma cross
section

The toroidal structure of the magnetic field and the interaction of this field and the plasma
necessitate the study of the equilibrium which permits the stability of the system. There
are two major radial force components which have to be considered to determine the
equilibrium of a circular toroidal shaped plasma:
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1. The force due to kinetic plasma pressure
We assume a constant mean value of the kinetic plasma pressure, referred to as p,
in the whole plasma. Figure 1.4 illustrates the radial forces per unit of the toroidal
angle φ, given by

Fpin
= pSin and Fpout = pSout, (1.1)

acting on the inner and outer plasma surfaces (magnetic surface), respectively. Due
to the toroidal shape of the plasma the inner surface is smaller than the outer surface
(Sin < Sout) and thus the forces satisfy the condition

|Fpin
| < |Fpout|. (1.2)

z

R
Ip

Sout
S in

p

Plasma kinetic 
pressure

Inner plasma 
surface

Outer plasma 
surface

z

R

Ip

S in

Sout

Fpin

p
Fpout

a) b)

Figure 1.4: Radial forces due to the kinetic pressure.

2. The force due to the poloidal magnetic field
Figure 1.5 illustrates schematically the radial forces acting on the plasma due to
the poloidal magnetic field. The force can be interpreted as the result of the linear
combination of the individual fields components created by the opposite currents
Ip (right hand side of the z axis) and −Ip (left hand side of the z axis) (Figure
1.5 a)). This leads to a poloidal magnetic field for which the vertical field at the
inner surface, referred to as Bzin

, is larger than the field at the outer surface, referred
to as Bzout , since Bzin

is the sum and Bzout is the difference of both field components.

The force acting on the plasma is given by the Lorentz force law which can be
expressed as a force per unit length, referred to as F′, by

F′ = I × B

[
N

m

]
, (1.3)
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Figure 1.5: Radial forces due to the poloidal magnetic field: a) the magnetic field lines
in dashed are due to the plasma current Ip only (right hand side of the z axis), while the
magnetic field lines in solid are due to the current −Ip only (left hand side of the z axis);
b) the resulting magnetic field lines due to both current components Ip and −Ip.
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where I is the current and B is the magnetic field. Thus, the radial force acting on
the plasma is given by

F ′
R = IpBz. (1.4)

Since |Bzin
| > |Bzout| the resulting radial force at the inner surface, referred to

as Fmin
, is larger than the field at the outer surface, referred to as Fmout . i.e.

|Fmin
| > |Fmout|.

It turns out that both major radial forces, i.e. pressure and magnetic forces, contribute
to an actual radial force, referred to as FRtot acting on the plasma and which displaces the
plasma radially to the outside (Figure 1.6). The avoid a radial displacement and therefore
to keep the plasma in equilibrium, a reacting force, referred to as FRext is obtained by
adding an external vertical field, referred to as Bv. Due to the Lorentz force law (Equation
(1.3)) this radial force is given by

FRext = −2πRIpBv, (1.5)

where we assume that Ip > 0 and Bv > 0.

External vertical magnetic field

z

R

Ip

Fpin
Fpout

Fmin
Fmout

FRFR totext

Bv

a

r

Plasma cross section S

θ

R0

Figure 1.6: Illustration of the radial forces acting on the plasma.

The external vertical field is given by the Shafranov equation [54], i.e.

Bv =
µ0

4πR
Ip

[
ln

(
8R

a

)
+

li
2

+ βp − 3

2

]
, (1.6)

where a is the inner plasma radius and where we introduce two new plasma parameters
[54]:
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1. The ratio of the kinetic plasma pressure energy density to the poloidal magnetic
field energy density, i.e.

βp = 2µ0
< p >

< Bθ(a)2 >
, (1.7)

where < p > is the mean value of the kinetic pressure and Bθ(a) the poloidal
magnetic field at the plasma edge (position a).

2. The internal plasma inductance li is defined by means of the internal poloidal mag-
netic field energy per unit of the toroidal circumference given by

W ′
internal =

1

2µ0

∫
S

Bθ(r, θ)
2dS =

µ0

2π

li
2
I2
p , (1.8)

where Bθ(r, θ) is the total poloidal magnetic field (sum of the field due to Ip and the
external vertical and poloidal field due to the PF coils) and S is the cross section of
the plasma. Thus, the internal plasma inductance is given by

li =
2π

µ2
0I

2
p

∫
S

Bθ(r, θ)
2dS. (1.9)

The external vertical field is created by additional coils, referred to as the poloidal field
coils (PF coils). These coils located around the outside of the vacuum vessel (Figure 1.7)
are used for the shape and position control of the plasma.

Figure 1.7: Schematic diagram of a tokamak with the poloidal field coils.

Note that the Shafranov equation (Equation (1.6)) depends on the parameters Ip, R,
a, βp and li which are all dependent of time. This implies that Bv varies as a function
of time, too. Since the values of all these parameters are not known precisely a method
is needed to maintain the equilibrium of the radial plasma position by controlling the
vertical magnetic field Bv. Since the 70’s feedback loops (controllers) are used for this
purpose.
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1.1.5 The elongated plasma and its vertical position instability

Tokamak plasmas with non-circular cross sections exhibit significant performance im-
provements. In fact, it can be shown that the vertical elongation, referred to as κ, allows
larger plasma currents (∝ 1+κ2

2
) to be carried for a given safety factor q and for given

values of magnetic fields, major radius and minor radius, as well as producing large values
of β (β < Ip

aBφ
, where Bφ is the toroidal magnetic field). Note that β is the ratio of the

kinetic plasma pressure energy density to the magnetic field energy density which is a
measure of the effectiveness with which the magnetic field confines the plasma. Hence
an increase in elongation leads to an increase in the maximum efficiency achievable. For
what follows we will see that such plasmas are intrinsically vertical unstable and thus
require a feedback control system to maintain the plasma in equilibrium.

In the last section we have seen that the external vertical magnetic field Bv permits
us to maintain the plasma in equilibrium. In this section we show under which conditions
the vertical plasma position, referred to as z, of this equilibrium is whether stable or not.

The shape of the plasma can be either flattened or elongated by adding a radial
component to the vertical field Bv. Let us therefore decompose the external magnetic
field into a radial and a vertical component, i.e.

Bext = BRexteR + Bzextez,

where BRext refers to as the radial magnetic field and Bzext refers to as the vertical field
which is given by

Bzext = −Bv. (1.10)

Figure 1.8 illustrates that the shape modification is due to the Lorentz force (Equation
(1.3)) induced by the external additional radial field in the upper and lower part of the
plasma (BRu and BRl

) and by the plasma current Ip. The additional external radial
field leads to a curvature of the external magnetic field. The degree of the curvature is
expressed by the decay index

n = − R

Bzext

∂Bzext

∂R
. (1.11)

Figure 1.8 shows that for a positive decay index the plasma shape is flattened, while for a
negative decay index the plasma is elongated. When there is no external radial magnetic
field the resulting magnetic field is homogeneous, i.e. Bext does not vary as a function of
z and R, and the decay index is zero.

Due to Ampère’s law given by µ0 j = ∇ × B, where j is the current density and B
the magnetic field, and since the current creating Bext is zero in the vacuum (j = 0) we
obtain the relation

∂Bzext

∂R
− ∂BRext

∂z
= 0. (1.12)

The vertical force Fz acting on the plasma is given by

Fz = −2πR0BRextIp, (1.13)

where R0 is the radial position of the center of gravity of the plasma current density
(Figure 1.8). By considering Equations (1.11)-(1.13) the partial derivative of the vertical
force as a function of the vertical plasma position z becomes

∂Fz

∂z
= 2πR0Ip

nBzext

R
. (1.14)
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Figure 1.8: Illustration of curvature of the external vertical magnetic field: a) positive
curvature leading to a flattened plasma and b) negative curvature leading to an elongated
plasma.

Therefore, since Bzext = −Bv < 0 for the considered external magnetic field Bext in Figure
1.8 the equilibrium possesses:

• a stable vertical plasma position (∂Fz

∂z
< 0) if the decay index is positive (n > 0)

• an unstable vertical plasma position (∂Fz

∂z
> 0) if the decay index is negative (n < 0)

• a marginally stable vertical plasma position (∂Fz

∂z
= 0) if the decay index is positive

(n = 0).

As mentioned before a plasma can only be made more elongated by means of a negative
decay index and thus the vertical plasma position becomes unstable.

1.2 State of the art and current problems in the field

of tokamak control

1.2.1 General vertical position stabilisation and plasma shape
control

Most tokamaks separate vertical position stabilisation and shape control, in view of the
different timescales and because most have a separate fast power supply for vertical con-
trol. The position and shape controllers are almost all of the PID type, with exception
of JET, which uses a noisy bang-bang control of the vertical speed [36]. In general, the
synthesis of these controllers relies on experience and the intuition of the physicist and
operator. In fact, several methods have been proposed in the past for the synthesis of
PID controllers. These studies are useful for the fundamental comprehension of the basic
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tokamak feedback system. Furthermore, these results can be used for the basic controller
design but in general the controller has to be refined by empirical tuning.

Recently, new plasma control approaches have been investigated in the domain of
optimal controllers like H2 (LQG) and H∞ and by increasing the controller robustness
by means of loop shaping. The application of a H2 controller has solely been studied
analytically without any experimental validation (carried out at JET by Garriba), while
the application of a H∞ loop shaping controller has been successfully validated on TCV
[4, 5]. Nevertheless, its design on TCV has revealed itself to be rather complex.

For the ITER-FEAT tokamak a vertical stabilisation and plasma shape controller has
been presented in [6] and a reduced order controller has been provided in [7].

1.2.2 Vertical position stabilisation by considering the satura-
tion of the power supplies

As presented in section 1.1.5, the control of tokamaks is complicated by the instability of
the plasma vertical position which is due to the elongation of the plasma. It turns out
that all linearised tokamak models share the feature of a single unstable pole (Chapter
4).

In this case the control becomes a problem when we take into account the voltage
saturations of the power supplies. In practice, during plasma disturbances, i.e. sawtooth
crashes (changing βp and li), Edge Localised Modes (ELMs, changing βp especially) and
minor disruptions (again changing βp and li), the power supply can saturate and as a
consequence the vertical position control can be lost. If such a loss of control happens the
plasma position diverges vertically and thus hits the wall of the vessel (disruption), which
can cause severe damage to the tokamak. The sole studies of the voltage saturation
and its effect on the stability in the domain of plasma control are given in [49, 48]. The
presented controller was successfully tested on the COMPASS-D tokamak in operation.

Note that current saturation is relatively benign due to the integrating nature of the
tokamak, resulting in a reasonable time horizon for strategically handling this problem.

1.2.3 Reduction of the active control power

The reduction of the active control power demand is interesting with regard to enhance
the efficiency of tokamaks. It could be for example taken into consideration to reduce the
control effort during disturbance rejection for disturbances which have no destabilising
effects on the tokamak.

1.2.4 Reduction of the AC losses in superconducting coils

The next generation of tokamaks under construction will require vertical position and
active shape control and will be fully superconducting. The future large tokamak ITER
is also naturally designed with superconducting coils. The interplay between the super-
conducting magnets and the plasma shape and position control will become important
for these devices and presents one of their new features.

When the magnetic transverse field in superconducting magnets changes, the magnet
generates two types of heat loss, the so-called coupling loss and the so-called hystere-
sis loss, grouped together as AC losses. Superconducting coils possess superconducting
properties only below a critical temperature around a few K. For a temperature above
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this critical temperature the coils show a non-negligible electric resistivity. AC losses are
detrimental since they heat up the superconducting material. Thus, if AC losses are too
large, the cryogenic plant can no longer hold the required temperature to maintain the
superconductivity properties. Once the superconductivity is lost, the electric currents in
the coils produce an enormous heat loss due to the ohmic resistivity, which can lead to
possible damage to the coils. In general, the coils are designed with enough margin to
absorb all likely losses. A possible loss reduction could allow us to downsize the super-
conducting cross section in the cables, reducing the overall cost, or simply increase the
operational cooling margin for given coils.

1.2.5 Strike point position control

The magnetic field confining the plasma occupies the entire volume of the plasma vessel.
Consequently, the plasma also diffuses until it touches the vessel wall. The wall then
absorbs at the areas of contact apart from the radiation the entire energy transported
to the outside from the core of the plasma. As the wall is not normally suitable for this
purpose, measures have to be taken to bound the plasma in a controlled manner.

The first wall is best safeguarded if the field lines do not impinge directly on the
wall, but are directed, at an appropriate distance from the hot plasma core, to specially
equipped plates, referred to as the divertor plates, which collect and neutralise the plasma
particles.

In the ITER Tokamak, one of the most crucial components will be these divertor
plates. To better distribute thermal load, the magnetic field could be varied in order
to move the impact point (strike point) over the whole area of the plates. Figure 1.9
illustrates the plasma shape, the vacuum vessel, the divertor plates and the strike points
for ITER. The divertor strike points are dynamically positioned in the ITER PF control
system as part of the full plasma shape and position feedback controller. For ITER we
consider among other control parameters 6 gaps between the edge of the plasma and the
surrounding plasma facing components, referred to as g1, g2, . . ., g6 (Figure 1.9). By
varying the gaps g1 and g2 by means of a reference signal the strike points on the divertor
plates can be displaced as a function of time which allows us to distribute the thermal
load on the whole divertor plates.

Moving the strike points to reduce the average local power loading has been demon-
strated on JET. In ITER, such sweeping had been considered impractical due to the time
varying magnetic fields on the PF coils, inducing hysteresis and coupling AC losses. Nev-
ertheless, a recent elementary study we performed [38] provided encouraging results by
showing that for ITER sweeping is still possible over an interesting range of frequencies
for which the level of AC losses is not too important. Further, more rigorous studies on
this topic have to be investigated in the future.

1.3 The subject of the thesis

This thesis is mainly focused on the vertical position stabilisation by considering the
voltage saturation of the power supplies. The stability problem due to the voltage
saturation can be characterised as follows.

From the observation that voltage saturation of power supplies leads to a loss of control
one may at first sight guess that this problem might be solved by designing a controller
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Figure 1.9: Illustration of a) the plasma control parameters like the vertical z and radial
R positions and the gaps g1, g2, . . ., g6 and b) the gaps g1 and g2, the divertor plates and
the strike points.

which completely avoids saturation of the power supplies. This suggestion reveals itself
to be wrong if we take a look at the control problem in terms of control power. Consider
that the plasma is affected by a disturbance which leads among other things to a vertical
displacement of the plasma position. The plasma is in disequilibrium and thus a magnetic
force acts on the plasma which accelerates the plasma away from the equilibrium point.
The vacuum vessel provides a large restoring force, but a certain amount of power, we
define it as control power, is necessary to stop and bring back the plasma to the nominal
equilibrium position. Due to the voltage saturation of the power supplies this control
power is limited (note that the control power is not exactly proportional to the control
voltage). For small disturbances the displacement of the vertical plasma position and
the destabilising magnetic force are small. Thus, the needed control power to bring
the plasma back to equilibrium is low and the power supplies do not saturate. For larger
disturbances the control power demand is higher and the power supplies begin to saturate.
If a disturbance is too large then the amount of control power reaches its limit, due to the
voltage saturation, and there is not sufficient power available to stabilise the plasma and
the loss of control is inevitable. From the point of view of stability, we can conclude that
it is not wrong to design a controller which often leads to voltage saturation of the power
supplies. On the contrary, once voltage saturation is reached, we are sure to deliver the
maximum available control power and there is no way to do better.

The work presented by Scibile in [49, 48] illustrates this very well. A sliding mode
bang-bang controller for a simplified linear second order tokamak model with a single
power supply was proposed. One of its properties is to ensure the maximum reachable
stability performance under voltage saturation.

But it also demonstrates one important drawback which is linked to the minimisation
of AC losses in superconducting coils (presented in Chapter 5). The main result of the
AC losses analysis reveals that for reducing the AC losses we need to design a controller
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which generates a non-oscillating, low amplitude and low frequency control voltage signal.
Of course, a sliding mode bang-bang controller does just the contrary: it generates a non-
smooth signal with a maximum amplitude and during sliding mode a highly oscillating
signal with extreme high frequencies. Therefore, such a controller cannot be considered
as suitable for tokamaks with superconducting coils.

Another drawback of the sliding mode controller presented in [49, 48] is the fact
that considerable knowledge is required when designing and implementing this control
algorithm. That is precisely what an operator wants to avoid, since he is interested in
obtaining a functioning plant and not just in control theory. This is also one of the reasons
why most implemented controllers for tokamaks are PID controllers.

Furthermore, the application of the proposed sliding mode bang-bang controller im-
peratively requires a linear second order tokamak model, while in general the linear models
derived from RZIP [40] and CREATE-L [2] are of orders of 50 . . . 100.

1.3.1 State of the art in the field of dynamical systems with
saturated (bounded) inputs

In control theory a dynamical system like the tokamak with voltage saturated power
supplies is referred to as a dynamical system with saturated (or bounded) inputs
since the power supplies are connected to the inputs (coils) of the tokamak.

In this thesis we study the stability of dynamical systems in state space. One of the
most relevant notions that will accompany us throughout the control theory part of the
thesis is the determination of the stability regions in state space. Therefore, two important
concepts pertaining to the stability region have to be distinguished. First we have the null
controllable region, i.e. the region in state space for which there exists an input that can
steer the system to the origin [3, 27, 28, 49, 48]. The second is the region of attraction with
a given controller, i.e. the region in state space from which the considered closed-loop
system asymptotically reaches the origin [3, 27]. The null controllable region can be seen
as the maximum region of attraction that can ever be attained by a controller. In other
terms, there exists no controller for which the resulting region of attraction is larger than
the null controllable region.

Linear systems with bounded inputs have been abundantly studied in the past. Most
of the work focused on linear ANCBC (Asymptotically Null Controllable with Bounded
Controls) systems where the open loop poles are all located in the closed left half plane
(stable and marginally stable systems). It has been shown that such systems are globally
stabilisable with nonlinear feedback laws [51]. Another approach dealing with the control
of linear ANCBC systems is the semi-global asymptotic stabilisation which was introduced
in [37]. The semi-global framework for stabilisation requires feedback laws that yield a
closed-loop system which has an asymptotically stable equilibrium and whose domain of
attraction includes an arbitrarily large bounded subset of the null controllable region. In
[37], it was shown that semi-global asymptotic stabilisation in the null controllable region
can be achieved using linear feedback laws.

By way of contrast, results for linear unstable systems with bounded inputs have been
less frequently treated in the literature. The work in [49, 48] focuses on a simplified linear
second order tokamak model, where essentially bang-bang controllers are analysed. In [3]
second order systems in general with linear or nonlinear feedback are studied. It is shown
that the number of open-loop unstable eigenvalues characterises the set of the equilibrium
points and the shape of the region of attraction. The work in [27] presents an extensive
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study of second order and higher order systems. Despite these publications it turns out
that there remains a lot of work to be done in the field of control theory for such systems,
of which the tokamak is a particular example.

1.3.2 Linear dynamical system with a single saturated input

Most of the results mentioned above [49, 48, 3, 27] are valid for exclusively linear dynam-
ical system with a single input under saturation. In this thesis we also consider only
linear systems (linearised tokamak models) with a single input under saturation, which of
course, simplifies the analysis considerably. The justification of this choice is as follows:

• The linear system
Most classical and powerful control theory results for the analysis of systems and the
design of controllers are only valid for linear systems. Similar results for nonlinear
systems can in general be achieved only partially or approximately. Moreover, the
analysis of nonlinear systems requires more intellectual efforts.

The tokamak is an intrinsically complicated and complex nonlinear dynamical sys-
tem. It turns out that the analysis of such a system and the controller design for such
a system by considering its nonlinearities is not practicable. For these purposes the
use of linearised tokamak models (linear systems), e.g. RZIP [40] and CREATE-L
[2] which already have been used with success in the past, is indispensable.

For the purpose of this thesis we will consider linear systems for the analysis and
linear tokamak models for the controller design. The sole nonlinearity that is con-
sidered is the voltage saturation of the power supplies, referred to as the saturated
inputs of a linear system.

• The single input under saturation
Beside the advantage for the theoretical work, it constitutes no major drawback in
practice, since for many tokamaks, e.g. ITER, JET, MAST and TCV, the part of
the control equipment responsible for plasma stabilisation is provided by only one
power supply. For other tokamaks where no particular power supply but several
power supplies are devoted for the plasma stabilisation, the power supplies have to
be connected together in such a way that the resulting system becomes equivalent
to a system with a single input under saturation. Note that the extension of the
analysis presented in this thesis to systems with several saturated inputs constitutes
a challenging task for future work.

1.3.3 Objectives of the thesis

In this thesis we have tried to take into consideration all of the points mentioned above.
The thesis is therefore focused on the following objectives:

• The study of the stability of linear dynamical systems with a single unstable pole
and a single saturated input.

• The proposition of a stabilising controller which takes into consideration

1. the enhancement of the stability by increasing the region of attraction

2. the problem of reducing the AC losses,



16 Chapter 1. Introduction

3. the application for linear tokamak models of arbitrary order (order ≥ 2) and

4. a simple design and implementation.

• Developing a nonlinear simulation to demonstrate the validity of these ideas.

1.4 Outline and survey of the thesis

Since the subject of the thesis is situated in an interdisciplinary framework the thesis is
subdivided into three principal parts. The first part is devoted to the tokamak physics
and engineering, while the second part focuses on the control theory. The validation
of the results, obtained by means of simulations, is presented in the third part.

1.4.1 Part I: Tokamak physics and engineering

1.4.1.1 Chapters 2 and 3: The DINA code description and validation

The main objective of the thesis is to study the effect of the power supply saturation on the
closed-loop stability and to provide a new controller with enhanced stability properties.
In general, the loss of the vertical position control (loss of stability) is due to large plasma
disturbances. Thus, in order to determine the enhancement of the stability properties
we have to bring the new controller to its stability limits by means of large disturbances.
Such validations cannot be carried out on a tokamak like ITER in operation since the loss
of control leads to a disruption which can cause damage to the machine.

Therefore, simulations with either linear or nonlinear tokamak models are imperatively
required before considering the implementation of the new controller on a tokamak in
operation. A linear tokamak model will probably be inadequate since large disturbances
can move its state outside its validity regions. Thus, an accurate nonlinear code like
DINA is indispensable for this purpose. It is in particular important to focus on the
vertical plasma displacement since a large disturbance leads to a large vertical plasma
displacement. Therefore, a DINA validation by means of controlled Vertical Displacement
Events (VDE) is particularly helpful for the purposes of this thesis. Chapter 2 gives
a detailed description of the principal plasma physics implemented in the DINA code.
In Chapter 3 a validation of DINA is provided by comparing TCV experimental VDE
responses with DINA code simulations.

1.4.1.2 Chapter 4: Linear tokamak models

In this thesis the linear tokamak models RZIP and CREATE-L are used for controller
design and validation of the controller. Thus, in this chapter we give a brief review of
these linear models by describing their essence. The discussion is especially focused on
the nature of the presence of a single unstable pole when the vertical plasma position is
unstable since this characteristic is essential for the stabilising purposes addressed in Part
II (Control theory).

1.4.1.3 Chapter 5: The effect of feedback control on superconducting toka-
mak AC losses

In this chapter the nature of the AC losses is described in an elementary manner. Further-
more, we analyse to what extent the accumulated AC losses in ITER could be reduced
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by taking into account the losses themselves when designing the feedback control loops.
In order to be able to carry out this investigation an AC loss model is required which
permits a fast estimation of the AC losses. Therefore, a simple and fast executable model
of the AC losses, referred to as the ”AC-CRPP” model, is proposed.

1.4.2 Part II: Control theory

1.4.2.1 Chapter 6: Region of attraction of one unstable and one stable pole
planar systems with saturated feedback

The first approach during this work was to find a way to specify the region of attraction
for linearised tokamak models with linear feedback subjected to saturation. The main
idea behind this was to determine online if the state of a tokamak in operation was inside
or outside the region of attraction. In the case where the state approaches the boundaries
or even leaves the region of attraction, the future or inevitable loss of control could be
detected early enough to switch on an emergency procedure which could avoid severe
damage to the machine. The choice of a linear feedback is justified since most controllers
implemented in tokamaks are of linear nature (PID controllers). It has to be pointed out
that our aim was to describe the exact region of attraction in contrast to many previous
studies where the state of the art is to approximately estimate the region of attraction
mainly by making use of Lyapunov functions. The strategy on how to tackle this problem
was to start with the most simple tokamak-like system, which is a second order system
with one stable and one unstable pole, where the goal was to understand the fundamental
nature of the problem linked to the characterisation of the region of attraction. The
expectation was to be able to apply in a similar way this new knowledge for higher order
systems with a single unstable pole. However it turned out that the analysis of the second
order system itself was not as simple as at first sight. Nevertheless, the problem could be
completely solved by applying:

• results about equilibrium points and the region of attraction given in [3],

• the fundamental theorems from Poincaré and Bendixson (Theorems A.1 - A.3),
which give results on the existence of limit cycles for a second order system

• some results from contraction analysis of second order systems (see Section A.2),
where one part is provided by [27] and the other part is a new contribution.

It is evident that there is no way to apply the results for second order systems to higher
order systems, since the analysis rests on methodologies like Poincaré and Bendixson’s
theorems which are uniquely valid for second order systems. Thus, since the work for
second order systems was not trivial at all, the search for characterising the region of
attraction for higher order systems had to be abandoned. Note that other researchers
also tried to work out some results for higher order systems without success [27]. It can
therefore be concluded that the identification of the region of attraction by means of
conservative methods like Lyapunov function analysis remains state of the art for higher
order systems.
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1.4.2.2 Chapter 7: A globally stabilising controller under saturated input for
systems with one unstable pole

From this somewhat disappointing start a new idea arose. Is there a possibility to slightly
modify an existing linear controller to derive a new controller for which its region of
attraction is equivalent to the null controllable region? Designing a controller for which
its region of attraction is equal to the null controllable region is an essential step since it
gives rise to two major advantages:

• Since the null controllable region is the maximum possible region of attraction,
there exists no controller for which the resulting closed-loop system possesses a
larger region of attraction than the null controllable region. Thus, if the region
of attraction is equal to the null controllable region, we can state that, as far as
stability region is concerned, we can do no better. We call such a controller a
globally stabilising controller.

• The exact determination of the null controllable region and consequently of the
region of attraction is very simple. We will show that its boundaries are due only to
the unstable state, while the stable states are unbounded in the state space. Thus,
by only measuring the value of the unstable state we can determine whether the
state of the tokamak in operation is inside or outside the region of attraction. This
allows us to accomplish our first goal which is the detection of the loss of control.

We present a new globally stabilising controller, referred to as the Continuous Nonlinear
Globally Stabilising Controller (CNGSC), resulting from the incorporation of a simple
continuous nonlinear function into a linear controller. Note that the idea of designing a
global stabilising controller for unstable saturated systems is not totally new. There are
several results on this topic and we therefore present a (hopefully) complete survey of
globally stabilising controllers. Moreover, we compare the various standard controllers,
linear controllers included, against each other by considering 5 essential requirements
which have to be taken into account for the design of a tokamak controller:

1. Global stability
This requirement is achieved if the region of attraction is equivalent to the null
controllable region. In terms of the region of attraction, there exists no better
controller.

2. Performance
There are many performances requirements one might impose on a controller. For
our purposes we will consider the fast rejection of disturbances as the most essential
performance indicator (recognised by ITER as a crucial and probably the dominant
indicator). We will see that there is often a tradeoff between global stability and
performance. Thus, for some controllers, we are not always able to satisfy the
required performance over the whole region of attraction. We therefore define the
notion of local performance where we guarantee the performance locally around
the equilibrium point (the origin of the linearised behaviour). This means that
for small enough disturbances the required performance is ensured, while for large
disturbances some controllers may lose the required performance for the sake of
guaranteeing global stability.
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3. Reduction of AC losses
The reduction of AC losses is an additional performance requirement. Since it
is a most important aspect for tokamaks with superconducting coils we consider it
separately. The results concerning the AC losses reduction are presented in Chapter
5 of Part I. The main goal for reducing AC losses is to design controllers which
generate control signals with i) least possible oscillations, ii) amplitudes as small as
possible and iii) signal frequencies as low as possible.

4. Control law applicable to higher order systems
In general linear models like RZIP and CREATE-L generate models with 50 to 100
states. We tried to reduce such models with modal reduction techniques presented
in [10] and with methods like balanced truncation and the optimal Hankel norm
approximation [58]. We observed that for an accurate representation of a tokamak,
a model with at least 10 to 15 states is required. It is definitely an illusion to seek a
sufficiently accurate linear tokamak model of only second order. Thus, the controller
design method should be able to handle higher order systems.

5. Simple design and implementation
Experience shows that new controllers with complicated and complex structures are
often not considered in practice, especially in the field of industrial applications. In
general, there seems to be a fear of controllers for which considerable knowledge is
required for design and implementation. We therefore have to focus on controllers
for which the design and the implementation is simple and fairly intuitive.

We will see that the major design difficulty of global stabilising controllers in general
is linked to the fact that the unstable state imperatively has to be fed back to ensure
global stability. Thus, these controllers are partial or full state feedback controllers,
while in contrast, the state of the art controllers for tokamaks are input-output
controllers, like PID controllers. The main effort which has to be undertaken is i)
to acquire the knowledge on how to migrate from input-ouput controllers to state
feedback controllers and ii) to obtain an accurate unstable state estimation, i.e. a
dynamic or static observer. This might be considered as a major drawback, but
there exists no alternative solution to ensure global stability.

This discussion and comparison of standard state of the art controllers ends by establishing
that these controllers cannot satisfy all 5 requirements simultaneously. We are therefore
proposing a new class of nonlinear controllers (CNGSC) which is able to satisfy these
requirements. In a first approach, controllers for second order systems are analysed.
We give intuitive explanations on how this class of controllers might satisfy the global
stability and the performance requirements, AC loss reduction included. It is followed
by an analytic proof of the global stability for slightly more conservative conditions. In
fact, this means that we are not able to provide an analytic proof for the whole class
of controllers but only for a large subset of the class. Nevertheless, we note that all
results obtained from simulations seem to reveal a global stability for the whole class. We
continue with a discussion on the performance and AC loss reduction, where we compare
the CNGSC controller against the various standard controllers via simulation results.
Finally, we will show that the extension of the new class of controllers to higher order
systems is straightforward. But the quest for an analytic proof of the global stability is
highly complicated in this case. Therefore, the proof of the global stability of the higher
order systems is only based on numerical results by means of simulations. Nevertheless,
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we provide an interesting property encouraging the search for a formal stability proof in
the future.

1.4.2.3 Chapter 8: Tokamak control

The last chapter of the control theory part is devoted to the problem of applying the
CNGSC controller to tokamaks. In general, we assume, for the controller design phase,
a tokamak closed-loop system consisting of a linearised tokamak model with several sat-
urated inputs and two input-output controllers. There is a slow controller which is re-
sponsible for the plasma shape control and a fast controller which ensures the so-called
”vertical plasma position” stability. Although the terminology varies from one tokamak
to another, this property is common to ITER, JET, MAST and TCV. In contrast to this,
we consider in Chapter 7 a normalised closed-loop system which consists of a second or
higher order normalised linear system with a single saturated input and a state feedback
controller. Therefore, we first provide a scheme which describes a way to transform a
tokamak closed-loop system into a normalised closed-loop system. This will allow us to
apply the results of Chapter 7 straightforwardly for the design of the controller.

We then discuss the problem of the state reconstruction. Additionally, we will show
that when considering the CNGSC controller it is sufficient to reconstruct or measure
only the unstable state.

Another pertinent topic is the study of the effect of the disturbances on the closed-loop
system. We will see that the determination of the closed-loop system stability by means of
the region of attraction is only valid during time lapses where the system is not disturbed.
This is due to the fact that the concept linked to the region of attraction is only applicable
to autonomous closed-loop systems (autonomous systems are time-invariant systems [50]).
However, in system theory a disturbance is interpreted as a time-varying external input
to the closed-loop system. Another problem is due to the unknown evolution of the
shape, the amplitude and the time duration of a disturbance. Thus, the evolution of the
states is not predictable during a disturbance and we have to wait until the disturbance
has vanished to determine whether the states are still in the region of attraction or not.
Nevertheless, there are possibilities to improve the stability during disturbances by slightly
modifying the controller.

A further problem lies in the nature of the state feedback controller when we want an
output of the system to track a reference signal. For input-output systems, this is usually
obtained by simply taking the error between the output and the reference. The resulting
error signal is fed to the input-output controller which tries to cancel the error. We will
see that this is not as simple for nonlinear state feedback controllers, since such controllers
work for a well defined equilibrium point. Thus, if we want to track a reference signal
then we have to move the equilibrium point as a function of the reference signal.

We end this chapter by discussing the detrimental effects on stability if a pure time
delay or a limited bandwidth are added to the closed-loop system. This study is essential
since there are inevitably a limited bandwidth and a pure time delay due to the power
supply, which are in general not negligible. Furthermore, there is second pure time delay
due to the computing time for the execution of the control algorithm. Therefore, we will
suggest pragmatic solutions to avoid some detrimental effects on the stability properties
of our CNGSC controller.
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1.4.3 Part III: Validation

1.4.3.1 Chapter 9: Validation via simulations

In this chapter we validate the CNGSC controller provided in Part II (Control theory).
Note that nowadays the control systems of many tokamaks do not allow for implementing
nonlinear control laws. Since the CNGSC controller possesses a nonlinearity no experi-
mental discharges could be carried out so far for the purpose of the validation. Therefore,
the validation is restricted to simulations.

The validation is carried out for the following three tokamaks:

• ITER-FEAT:
The controller design and the validation are carried out with the linear CREATE-L
model.

• JET:
The controller design and the validation are carried out with the linear CREATE-L
model.

• TCV:
The controller is designed with the linear RZIP model, while the validation is carried
out with the nonlinear DINA code.

1.5 New contributions presented in this thesis

The new contributions in the field of tokamak physics and engineering are:

• the development of a simple and fast executable model for the estimation of AC
losses,

• the validation of the DINA code by comparing TCV experimental VDE responses
with DINA code simulations and

• the detailed description of the principal plasma physics implemented in the DINA
code.

The new contributions in the field of tokamak control and control theory in general are:

• the analysis of the region of attraction of linear planar systems with one unstable
and one stable pole and saturated feedback with the focus on:

– the description of the shape of the region of attraction and

– the analytic condition for the topological bifurcation of the region of attraction,

• the analysis to what extent the accumulated AC losses in ITER could be reduced
by taking into account the losses themselves when designing the controller,

• the new continuous nonlinear controller (CNGSC) for an arbitrary high order (order
≥ 2) system with a single unstable pole which ensures:

– the global stability,

– the local performance and
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– the reduction of AC losses and

• the detailed description of the application of the proposed CNGSC controller to
tokamak models with the focus on:

– the transformation of tokamak closed-loop system into a normalised system

– the state reconstruction

– the tracking of a reference signal with a nonlinear state feedback controller

– the closed-loop system stability during disturbances and

– the deleterious effects on the closed-loop system stability due the presence of
bandwidth limitation and time delay in the closed-loop system.
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Chapter 2

The DINA code

2.1 Introduction

A non-linear time-evolution code is an essential tool for modelling existing or future toka-
mak experiments in particular cases in which linearised models are inadequate. Such cases
are dominated by those in which the excursions from the nominal equilibrium are large,
excluding local linearisation of the plasma equilibrium response. Consider for example
the study of the active control of an elongated plasma which is generally unstable to an
axisymmetric vertical plasma displacement. The common way of designing a tokamak
controller is to consider a linearised tokamak model. Of course, this controller will work
perfectly for small vertical plasma displacements. On the other hand, for large vertical
displacements the evolution of the vertical plasma position as a function of time shows
that it no longer follows a linear dynamical behavior. If the controller, especially the
vertical stabilisation part, fails then a disruption can occur which can cause considerable
damage to the machine. Therefore, a nonlinear code is indispensable for the validation of
a tokamak controller.

The DINA code [34] is a suitable code for such purposes. It simulates axisymmetric
tokamaks in two-dimensional geometry, i.e. the variations as a function of the toroidal
angle are not taken into account. It considers the resistivity in a magneto-hydrodynamic
(MHD) plasma. It assumes zero plasma mass, eliminating the dilemma introduced by
falsifying the plasma mass, typified by the TSC code [30]. It correctly treats the poloidal
flux diffusion, avoiding the imposition of either a rigid current displacement, typified by
the linear RZIP model [17], or the frequent assumption of constant normalised poloidal
flux profiles but deformable equilibrium typified by DPM and CREATE-L [25, 2]. DINA
uses an energy transport model and a simple sawtoothing model. The transport equations
are solved by averaging the evolving quantities, i.e. flux, current, pressure and density, on
the constant flux surfaces. Due to this averaging technique DINA is considered as a code
dealing with a 1.5 dimensional geometrical problem, and not with a pure 2 dimensional
problem. The main differences between DINA and other codes is the method that is
employed for the solution of the equilibrium problem. The ”inverse variable” technique
[56] is used in the DINA code to find the coordinates of the equilibrium magnetic surfaces.
This method permits the code to determine the flux very quickly and accurately. For all
these reasons, DINA provides a suitable compromise for plasma equilibrium response
modelling.

The DINA code calculation is divided into two distinct steps. The first one is the
determination of the flux surfaces and profiles by solving the plasma equilibrium problem.

25



26 Chapter 2. The DINA code

This is done by solving the partial differential Grad-Shafranov equation. The second part
is the calculation of the evolution for the next iteration (time step) of the flux surfaces
where the flux, current, pressure and density profiles are calculated by integrating the
differential transport equations which consist of the magnetic field diffusion equation, the
density equation and the power balance equations for the ions and electrons. With these
profiles a new equilibrium is computed by solving the Grad-Shafranov equation. For the
first equilibrium calculation initial profiles are needed.

In what follows we will first discuss the plasma equilibrium problem. Then the trans-
port equations are described and in addition the circuit equations of the active coils,
passive coils and vacuum vessel structure are presented. We end this chapter with the
description of the functional structure of the DINA code.

2.2 Equations of MHD and the tokamak equilibrium

2.2.1 The MHD equations

Magneto-hydrodynamics (MHD) describes the behaviour of a fluid which on a macroscopic
scale is neutral and conducts electrical currents. The set of MHD equations is given by
the flow equation, the continuity equation and, since the considered fluid is a conductor,
by the Maxwell equations and Ohm’s law.

�
du

dt
= �

(
∂

∂t
+ u · ∇

)
u = j × B −∇p Flow equation

∂�

∂t
+ ∇ · (�u) = 0 Continuity equation

E + u × B =
1

σ
j Ohm’s law (2.1)

∇ · B = 0 non-existence of magnetic monopoles

∇ · E =
�c

ε0

Poisson’s law

∇× E = −∂B

∂t
Faraday’s law

1

µ0

∇× B = j + �cu + ε0
∂E

∂t
Ampère’s law corrected by Maxwell

where � is the mass density, �c the charge density, u the plasma velocity, j the current
density, p the plasma pressure, E the electric field and B the magnetic field.

The terms in the boxes, and moreover the whole Poisson’s law, can in general be
neglected in MHD due to the quasi-static approximation. Although a plasma of ions and
electrons is globally neutral, there are some possible gaps in the electrical neutrality for
physics dealing with spatial scales less than the Debye length

λD = (ε0kBT/ne2)1/2,

where kB is the Boltzmann constant, T , n and e are the temperature, the density and
the electron charge, respectively. MHD does not describe phenomena characterised by
spatial scales less than ∼ λD and characteristic times shorter than ∼ λD/vT , where vT is
the thermal velocity of electrons vT =

√
2kBT/m. Therefore, for macroscopic scales the
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assumption of �c ≈ 0 can by considered for Poisson’s law and the term �cu ≈ 0 in the
Ampère-Maxwell equation. Moreover, if the characteristic velocities of the plasma flow
are small compared to the speed of light c = 1/

√
µ0ε0 the displacement current denoted by

ε0∂E/∂t in the Ampère-Maxwell equation can be neglected. Therefore, in what follows,
we will consider the set of MHD equations (2.1) without the terms in the boxes.

In general the plasma is considered as a good electrical current conductor. Therefore,
its resistivity η = 1/σ is very low (about 2·10−8 Ωm at a temperature of 100 eV comparable
to the resistivity of copper η = 10−8 Ωm). Sometimes the plasma is considered as an ideal
conductor η = 1/σ = 0. This case is called the ideal MHD as opposed to resistive MHD.

We have to pay particular attention to the velocity. If we consider the ion velocity ui

and the electron velocity ue separately then these velocities can be subdivided into two
parts.

ui = u + uji
,

ue = u + uje .

The first part u is due to the movement of a infinite small volume of the plasma (or the
flow). For such a movement the ions and electrons move in the same direction with the
same velocities u. The second part is linked to the current density j which is the sum of
the current densities of the ions ji and electrons je

j = ji + je, where

ji = nieuji
and je = −neeuje ,

where e is the elementary electric charge and ni and ne are the densities of the ions
and electrons, respectively. Since the plasma is assumed to be electrically neutral on the
macroscopic scale the ion and electron density are equal n = ni = ne (assuming Z = 1).
This leads to the following relations

ui = u + uji
= u +

1

en
ji, (2.2)

ue = u + uje = u − 1

en
je, (2.3)

j = ji + je = ne(uji
− uje) = ne(ui − ue) (2.4)

For the MHD description of the plasma we do not consider the total ion and electron
velocities, ui and ue, but we consider the plasma velocity (flow) u and the current density
j separately.

2.2.2 The tokamak equilibrium

The search for the plasma equilibrium is used to find a stationary solution in space and
time of the MHD equations. We therefore assume that the plasma velocities at equilibrium
are zero and consider ideal MHD. This leads to the observation that the density and
magnetic field due to the continuity equation, Ohm’s law and Faraday’s law of (2.1) do
not evolve in time

∂�

∂t
= 0,

∂B

∂t
= 0.
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Moreover, the set of MHD equations (2.1) are reduced to the following 3 equations

∇p = j × B

∇ · B = 0 (2.5)

∇× B = µ0j,

where the first equation expresses the fact that in equilibrium the forces due to the pressure
and to the magnetic field balance at all points in space, neglecting the flow u.

The combination of the first and third equation of (2.5), by considering the vector
identity

(∇× B) × B = (B · ∇)B − 1

2
∇(B2)

leads to following general expression

∇
(

p +
B2

2µ0

)
=

1

µ0

(B · ∇)B. (2.6)

The scalar products of the first equation of (2.5) with the magnetic field B or the current
density j imply that

B · ∇p = 0, j · ∇p = 0, (2.7)

Therefore, we can define magnetic surfaces composed of magnetic field lines along which
the pressure p is constant, i.e. the gradient of the pressure (the variation of the pressure
in space) is perpendicular to the magnetic surfaces. Furthermore, it follows that the
direction of the current density lies on the magnetic surfaces, too.

At this point we introduce the poloidal magnetic flux function Ψ which is due to the
poloidal magnetic field. Since the magnetic surfaces are constituted of magnetic field
lines the poloidal magnetic flux function Ψ is constant on each magnetic surface which
consequently leads to

B · ∇Ψ = 0, j · ∇Ψ = 0. (2.8)

The remaining study of the equilibrium relies on the properties of axisymmetric geometry,
since this is a feature of DINA and also of the linear models RZIP and CREATE-L.
Therefore, we introduce the cylindrical coordinates (R, φ, z) for the spatial description of
the tokamak. For the description of the magnetic surfaces, polar coordinates (r, θ) are
introduced in the poloidal cross section of the plasma for which the origin (R0, ·, z0) is
located on the magnetic axis. The unit vectors of the cylindrical coordinates are given by
eR, eφ and ez and for the polar coordinates by er and eθ. Figure 2.1 illustrates the plasma
shape and the definition of the cylindrical and polar coordinates. For the axisymmetric
configuration we define the z axis as the axis of revolution and we consider that any
arbitrary quantity s, i.e. pressure, current density and magnetic field, do not vary as a
function of the toroidal angle

∂s

∂φ
= 0.
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r

z

R

R

Figure 2.1: The axisymmetric configuration with the definition of the cylindrical coordi-
nates (R, φ, z) and the polar coordinates (r, θ) in the poloidal sector. The dashed lines
represent the magnetic surfaces (surfaces with constant pressure and magnetic flux) where
the lines of the current and magnetic fields are located.

By defining the flux function Ψ as the poloidal flux per unit radian in φ we determine
the poloidal magnetic field Bp = BReR + Bzez which is related to (2.8) Bp · ∇Ψ = 0 by

BR = − 1

R

∂Ψ

∂z
, Bz =

1

R

∂Ψ

∂R
. (2.9)

Conforming to Maxwell’s equations the poloidal magnetic field Bp satisfies

∇ · B =
1

R

∂(RBR)

∂R
+

∂Bz

∂z
= 0.

The flux function Ψ is arbitrary with respect to an additive constant which is chosen for
convenience. From the parallel properties of j and B it is clear that a current flux function
also exists. We introduce such a function, denoted by f , which is related to the poloidal
current density jp = jReR + jzez by

jR = − 1

R

∂f

∂z
, jz =

1

R

∂f

∂R
. (2.10)

The comparison of (2.10) with Ampère’s law ∇× B = µ0j leads to

jR = − 1

µ0

∂Bφ

∂z
, jz =

1

µ0R

∂(RBφ)

∂R
,

which gives the relation between f and the toroidal magnetic field as follows

f =
RBφ

µ0

. (2.11)

Furthermore, it can be shown that f is a function of the flux Ψ. By taking the scalar
product of j with the first equation of (2.5) to obtain j · ∇p = 0, and by substituting j
with (2.10) we obtain

∂f

∂R

∂p

∂z
− ∂f

∂z

∂p

∂R
= 0,
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which is equivalent to

∇f ×∇p = 0.

This proves that f is a function of p. Because of (2.7) and (2.8) resulting in B · ∇p =
B · ∇Ψ = 0 the pressure is a function of the flux p = p(Ψ) and therefore it follows that
f = f(Ψ).

We note that it is possible to define the total flux function over the whole torus
circumference, denoted by Θ, by the simple substitution assuming axisymmetry

Θ = 2πΨ. (2.12)

2.2.3 The Grad-Shafranov equation

The equilibrium of the tokamak plasma can be expressed as a partial differential equation,
where the differentiated variable is the poloidal flux function Ψ. This equation, which
contains two arbitrary functions, namely p(Ψ) and f(Ψ), is called the Grad-Shafranov
equation.

The pressure and magnetic force balance equation (first equation of (2.5))

∇p = j × B

can be written as

jp × Bφeφ + jφeφ × Bp = ∇p, (2.13)

where Bφ and jφ are the toroidal components of the magnetic field and the current density,
respectively. Equation (2.13) can be rewritten in terms of the flux function Ψ. We can
express Bp defined by (2.9) and jp defined by (2.10) more compactly

Bp =
1

R
(∇Ψ × eφ) (2.14)

and

jp =
1

R
(∇f × eφ) . (2.15)

Substituting these relations into (2.13) and noting that

eφ · ∇Ψ = eφ · ∇f = 0

gives

−Bφ

R
∇f + −jφ

R
∇Ψ = ∇p (2.16)

We can write

∇f(Ψ) =
df(Ψ)

dΨ
∇Ψ

and similarly for p

∇p(Ψ) =
dp(Ψ)

dΨ
∇Ψ.
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Substituting these relations into (2.16) gives

jφ = R
dp

dΨ
+ Bφ

df

dΨ

and substituting (2.11) for Bφ gives

jφ = Rp′(Ψ) +
µ0

R
f(Ψ)f ′(Ψ), (2.17)

where x′(Ψ) is defined as dx(Ψ)
dΨ

. To write jφ as a function of Ψ we need Ampère’s law
(third equation of (2.5))

µ0j = ∇× B.

Substituting (2.9) into the toroidal component of the above equation results in

−µ0Rjφ = R
∂

∂R

(
1

R

∂Ψ

∂R

)
+

∂2Ψ

∂z2
. (2.18)

By substituting this for jφ into (2.17) we obtain, finally, the Grad-Shafranov equation

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+

∂2Ψ

∂z2
= −µ0R

2p′(Ψ) − µ2
0f(Ψ)f ′(Ψ). (2.19)

In this equation the functions p and f , associated with the pressure and the poloidal
current density can be chosen arbitrarily. The flux surfaces and profiles of jφ, p and Bφ

are typically obtained numerically.
The DINA code uses the ”inverse variable” technique [56] to solve the Grad-Shafranov

equation. For the first equilibrium calculation the functions Ψ, p and f are given by initial
profiles (initial condition of the simulation). The time evolution of these three functions
for the next iteration (time step) is then given by the transport equations which use the
results of the equilibrium calculation. At this point a new equilibrium can be calculated.

2.3 The transport equations

The transport equations are required to compute the evolution in time of the plasma and
the tokamak state in general. We will need the following 4 time differential equations
which are derived from the fundamental physics:

• The magnetic field diffusion equation to compute the evolution of the magnetic
fluxes and thus the magnetic fields.

• The density equation to get the evolution of the ion and electron density in the
plasma.

• The energy balance equation to compute the evolution of the ion and electron pres-
sure of the plasma.

• The electrical circuit equations to calculate the evolution of the currents (and thus
current density) in the active and passive coils and the currents in the modelled
filaments of the vacuum vessel.
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To compute the evolution in time we have to integrate numerically this time differential
equations. The pertinent question that can occur at this point is if we are seeking for
partial time differential or absolute time differential equations. The absolute time deriva-

tion of a scalar or vectorial quantity s(r, t) at position r =
[

r1 r2 r3

]T
and time t is

defined by

ds(r, t)

dt
= lim

∆t→0

s(r + ∆r, t + ∆t) − s(r, t)

∆t
= lim

∆t→0

s(r + u(r)∆t, t + ∆t) − s(r, t)

∆t
, (2.20)

where ∆r = u(r)∆t denotes the infinitesimal position variation and u(r) = dr
dt

denotes
the velocity of the quantity s(r, t) at position r. In contrast, the partial time derivation
is defined by

∂s(r, t)

∂t
= lim

∆t→0

s(r, t + ∆t) − s(r, t)

∆t
. (2.21)

The link between a partial time derivation and an absolute time derivation is given by
the relation

ds(r, t)

dt
= lim

∆t→0

s(r, t + ∆t) − s(r, t)

∆t
+ lim

∆t→0

s(r + ∆r, t) − s(r, t)

∆t

=
∂s(r, t)

∂t
+

3∑
i=1

∂s(r, t)

∂ri

dri

dt
(2.22)

=
∂s(r, t)

∂t
+ (u · ∇)s(r, t).

Consider Euler’s first order integration method where the finite time step is denoted as
∆t and where ∆r = u(r)∆t. Then the integration of the absolute time derivative (2.20)
results in

s(r + ∆r, t + ∆t) = s(r, t) +
ds(r, t)

dt
∆t + O(∆t2), (2.23)

while the integration of the partial time derivative (2.21) results in

s(r, t + ∆t) = s(r, t) +
∂s(r, t)

∂t
∆t + O(∆t2). (2.24)

Usually, the evolution in time at a fixed position r (fixed grid) is sought and thus we
need to use time differential equations with partial time derivatives. Note, that there
exists also integration methods with moving points (moving grid) where the absolute
time derivatives are used. DINA uses a fixed grid numerical method and we therefore
have to seek transport equations formulated with solely partial time derivatives.

2.3.1 Magnetic field diffusion equation

We apply the operator ∇× to Ampère’s law (2.1). By substituting j by Ohm’s law (2.1)
and assuming that the electrical conductivity σ is constant in space we obtain

∇×∇× B = µ0σ [∇× E + ∇× (u × B)] . (2.25)

We replace ∇×E by using Faraday’s law (2.1). Then by using the vector identity relation

∇×∇× B = −∇2B + ∇∇ · B, (2.26)
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considering ∇ · B = 0 from (2.1) and rearranging the terms we obtain the fundamental
equation of the MHD describing the magnetic field in a conducting fluid

∂B

∂t
= ∇× (u × B) + η∇2B, (2.27)

where we define the magnetic diffusion factor

η =
1

µ0σ
. (2.28)

The first term in the right-hand side expression of (2.27) expresses that movements of the
fluid (u �= 0) may amplify or reduce the magnetic field. On the other hand, the second
term expresses that, if the magnetic diffusion factor η �= 0, the spatial and temporal
magnetic field fluctuations are dissipated. The dissipation is due to the Joule effect: the
currents produced by the magnetic field B encounter a resistance which is not zero since
the conductivity σ �= ∞. The phenomenon of magnetic diffusion can also be expressed
in terms of the partial time derivative of the magnetic flux ∂Θ/∂t, which constitutes the
formulation used in the DINA code for calculating the evolution of the magnetic flux in
time.

Consider an arbitrary area S and its contour L which is permeated by the magnetic
field B. Then the total flux Θ flowing through S is given by

Θ =

∫
S

B · dS.

By comparing with the magnetic field diffusion equation (2.27) it follows that the partial
time derivative of the flux Θ depends only on the magnetic diffusion term

∂Θ

∂t
=

∫
S

∂B

∂t
· dS =

∫
S

(∇× (u × B) + η∇2B
) · dS. (2.29)

Therefore, when the plasma is not moving, i.e. u = 0, then for an ideal MHD, where
σ = ∞ and thus η = 0, the flux Θ remains constant and we say that the magnetic field
is ”frozen”.

We can reformulate equation (2.29) by applying the vector identity equation (2.26)
with ∇ · B = 0 and Stokes’s theorem which leads to

∂Θ

∂t
=

∫
S

(∇× (u × B) − η∇×∇× B) · dS =

∮
L

(u × B − η∇× B) · dl (2.30)

=

∮
L

(
u × B − 1

σ
j

)
· dl.

This is a general expression of the partial time derivative of the flux Θ as a function of
the magnetic field due to the magnetic diffusion.

In the case of the axisymmetric tokamak the right-hand side of equation (2.30) can
be reformulated as follows. Consider as illustrated in Figure 2.2 the points A = (0, z0),
B = (R0, z0), C = (R, z) and D = (0, z) in the (R,z) plane. We define the areas SAB, SBC

and SCD as the revolving sections AB, BC and CD around the z axis, respectively. The
magnetic fluxes flowing through these areas are denoted by ΘAB, ΘBC and ΘCD. Note
that the fluxes ΘBC and ΘCD are varying as functions of R and z while the flux ΘAB

remains constant
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z

R

C = (R,z)

B = (R ,z )
0 0

A = (0,z )
0

D = (0,z)

Figure 2.2: Illustration of the points A = (0, z0), B = (R0, z0), C = (R, z) and D = (0, z)
in the (R,z) plane.

Θconst = ΘAB = const.

Moreover, the total poloidal flux Θ defined in (2.12) is

Θ = ΘBC .

Since due to the axisymmetry the section DA is part of a magnetic field line we can write
the flux relation

ΘCD = ΘAB − ΘBC

= Θconst − Θ. (2.31)

Since the area SCD is a disc parallel to the plane (R, φ) with the contour LCD the in-
finitesimal length vector of LCD is given by

dl = eφ Rdφ.

By means of (2.30) and since due to the axisymmetry B is not a function of φ we can
express the partial time derivative of ΘCD as follows

∂ΘCD

∂t
=

∮ 2π

0

(
u × B − 1

σ
j

)
· eφ Rdφ = 2πR

(
u × B − 1

σ
j

)
· eφ. (2.32)

This equation shows that only the toroidal element of u×B and of j is relevant and thus

(u × B) · eφ = uzBR − uRBz and j · eφ = jφ.

By noting that due to (2.31) and (2.12) we have

∂ΘCD

∂t
= −∂Θ

∂t
= −2π

∂Ψ

∂t

we finally obtain

∂Ψ

∂t
= R

(
1

σ
jφ + uRBz − uzBR

)
. (2.33)
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2.3.2 Density equation

The density equation consists of the continuity equation to which we add a source term
to describe an injection or a removal of ions and electrons. Therefore, the variation in
time of the density of the ith ion species is described by

∂ni

∂t
+ ∇ · (niui) = Si, (2.34)

where Si denotes the source term, ni the density and ui the velocity of the flow of the ion
species. The density equation for electrons is similarly given by

∂ne

∂t
+ ∇ · (neue) = Se. (2.35)

The DINA code presently approximates the density equations (2.34) and (2.35) by as-
suming that the velocity of the electrons and ions can be neglected (ui = ue = 0), which
results in a simplified form, i.e.

∂ni

∂t
= Si and

∂ne

∂t
= Se. (2.36)

2.3.3 Energy balance equation

If the viscosity terms are neglected, the energy balance equation or power balance equation
is given by [12]

3

2

∂pa

∂t
+ ∇ ·

(
3

2
paua

)
+ pa∇ · ua + ∇ · qa = Q̃a, (2.37)

where pa is the pressure, ua the velocity, qa the heat flux and Q̃a expresses the heat
generated in the plasma. The index a determines if we consider the energy balance
equation of the ions (a=i) or electrons (a=e). With the relation

∇ · (paua) = ua · ∇pa + pa∇ · ua (2.38)

we can substitute the term pa∇ · ua in Equation (2.37) leading to

3

2

∂pa

∂t
+ ∇ ·

(
5

2
paua

)
− ua · ∇pa + ∇ · qa = Q̃a. (2.39)

From Equations (2.2) and (2.3) we can express the velocity ua as

ua = u + uja = u + ε(a)
1

en
ja, (2.40)

where ε(i) = 1 and ε(e) = −1. By assuming a quasi plasma equilibrium we can
simplify the terms ua · ∇pa and pa∇ · ua by means of Equation (2.7), i.e.

j · ∇p = 0

and by using the fact that ∇·j = 0 because of Ampère’s law and the fact that ∇·∇×A = 0
for any arbitrary chosen vector field A. This leads to following simplifications

ua · ∇pa = (u + ε(a)
1

en
ja) · ∇pa = u · ∇pa,

pa∇ · ua = pa∇ · (u + ε(a)
1

en
ja) = pa∇ · u
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and Equation (2.39) becomes

3

2

∂pa

∂t
+ ∇ ·

(
5

2
pau

)
− u · ∇pa + ∇ · qa = Q̃a. (2.41)

The heat generated in the plasma for the ions and the electrons is given by

Q̃i = ji · E + Qei + Qi

Q̃e = je · E − Qei + Qe,

where ji and je are the current densities due to the ions and the electrons, respectively.
The first terms ja ·E express the heating due the ohmic resistivity of the plasma. Qei is the
electron-ion heat exchange and Qa are the source heating terms including charge-exchange
losses for the ions and radiation losses for the electrons. Since je 
 ji and j = je + ji we
can approximate je ≈ j and ji ≈ 0 which leads to

Q̃i = Qei + Qi (2.42)

Q̃e = j · E − Qei + Qe. (2.43)

From Ohm’s law of (2.1) and from the stationary flow equation (2.5) it can be deduced
that

j · E = u · (j × B) +
j2

σ
= u · ∇pe + Qdg, (2.44)

where Qdg = j2/σ.
From Equations (2.41)-(2.44) we obtain the energy balance equations for the ions and

electrons

3

2

∂pi

∂t
+ ∇ · (qi +

5

2
piu) − u · ∇pi = Qei + Qi, (2.45)

3

2

∂pe

∂t
+ ∇ · (qe +

5

2
peu) − 2u · ∇pe = Qdg − Qei + Qe. (2.46)

The DINA code presently approximates these energy balance equations by assuming that
the velocity of the electrons and ions can be neglected (u = 0). We usually also consider
simplified expressions for both heat fluxes qe and qi by using the so-called ”diagonal”
model [34] where the fluxes are expressed as

qe = −χene∇Te, qi = −χini∇Ti,

where χe and χi are the electron and ion thermal conductivities, respectively. By using
the pressure temperature relation nkBT = p we obtain

qe = −χe
ne

kB

∇pe

ne

, qi = −χi
ni

kB

∇pi

ni

.

This results in the simplified energy balance equations

3

2

∂pi

∂t
−∇ · (χi

ni

kB

∇pi

ni

) = Qei + Qi (2.47)

3

2

∂pe

∂t
−∇ · (χe

ne

kB

∇pe

ne

) = Qdg − Qei + Qe, (2.48)

(2.49)

where the electron-ion heat exchange Qei is given by

Qei = 3
me

mi

ne

τe

(Te − Ti) =
3

kB

me

mi

ne

τe

(
pe

ne

− pi

ni

)
. (2.50)
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2.3.4 Electrical circuit equations for the active and passive coils
and vacuum vessel

The active and passive toroidally axisymmetric coils and the vacuum vessel create a
poloidal magnetic field. In what follows we define this poloidal magnetic field as the
external magnetic field since it is not due to the toroidal plasma current but to the toroidal
currents in the external conducting structure (active and passive coils and vacuum vessel).
From Ohm’s law we can write the toroidal current density creating the external poloidal
field in the simple form

jφext = σEφext ,

where Eφext is the toroidal component of the electric field in the external conducting
structure. The external conducting structure is subdivided in nc ∈ Z

+ small electrical
circuits (filaments). For each ith circuit we define its position (Ri, zi) (center of gravity
point) in the (R, z) plane and its cross section Si = ∆Ri · ∆zi and we assume that the
toroidal current density in each circuit ji is homogeneous in the area Si. With this, we
define the toroidal current density in the external conducting structure as a function of
(R, z)

jφext(R, z) =

⎧⎪⎨
⎪⎩

ji if (R, z) ∈ [Ri − ∆Ri

2
, Ri + ∆Ri

2
] × [zi − ∆zi

2
, zi + ∆zi

2
]

for i = 1, 2, 3 . . . nc

0 elsewhere

(2.51)

By considering Ohm’s law for each circuit we obtain

ji = σiEi. (2.52)

The electric field is given by

Ei =
−Ψ̇i + Vi

2πri

,

where −Ψ̇i is the induced voltage and Vi is the voltage applied to the ith circuit. By
substituting the electric field with (2.52) we obtain

−Ψ̇i + Vi =
2πriji

σi

.

Since jφ is homogeneous in every circuit the current density can be expressed as a function
of the current ji = Ii/Si

−Ψ̇i + Vi = ΩiIi (2.53)

where Ωi = 2πri/σiSi is the resistivity of the element Si.
The poloidal flux Ψi for each element is determined by

Ψi = LiIi +
∑
j �=i

MijIj + Ψip,

where Mij is the mutual inductance between the ith and jth circuit, Li is the self-
inductance of the ith circuit and Ψip is the flux created by the plasma current in the
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ith circuit. Applying equation (2.53) results in the differential equation expressing the
time derivatives of the currents of the nc circuits

Liİi +
∑
j �=i

Mij İj + Ψ̇ip + ΩiIi = Vi, (2.54)

where we assume that the mutual and self-inductances are time-independent since the
circuits describe a solid conductor structure. This nc differential equation can be expressed
in a compact matrix form by defining a current, a voltage and a plasma-circuit flux vector

I =

⎡
⎢⎢⎢⎣

I1

I2
...

Inc

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2
...

Vna

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Ψcp =

⎡
⎢⎢⎢⎣

Ψ1p

Ψ2p
...

Ψncp

⎤
⎥⎥⎥⎦ .

The first na circuits describe the active coil structure with their applied voltages Vi ∀ i ∈
{1, 2, . . . , na}, while the circuits for which i > na describe the passive coil and vacuum
vessel structure where the applied voltages are zero.

Similar to the conducting structure, the plasma area is subdivided in nplc ∈ Z
+ small

electrical circuits (filaments). For each ith circuit we define its position (Rpli , zpli) (center
of gravity point) in the (R, z) plane and its cross section Spli = ∆Rpli · ∆zpli and we
assume that the toroidal current density in each circuit jpli is homogeneous in the area
Spli . With this, we define the plasma current density as a function of (R, z)

jφpl
(R, z) =

⎧⎪⎨
⎪⎩

jpli if (R, z) ∈ [Rpli − ∆Rpli

2
, Rpli +

∆Rpli

2
]

× [zpli − ∆zpli

2
, zpli +

∆zpli

2
] for i = 1, 2, 3 . . . nplc

0 elsewhere

(2.55)

Furthermore, we define the plasma current vector

Ipl =

⎡
⎢⎢⎢⎣

Ipl1

Ipl2
...

Iplnplc

⎤
⎥⎥⎥⎦ ,

where Ipli = jpliSpli for i = 1, 2, 3 . . . nplc represents the plasma current in each plasma
circuit (filament). This allows us to express the plasma-circuit flux as a function of the
plasma current

Ψcp = McpIpl,

where Mcp is the matrix containing the mutual inductances between the external con-
ducting structure circuits and the plasma circuits.

The compact form of differential equations set (2.54) is given by

Mİ +
dΨcp

dt
+ ΩI = Mİ + Mcp

dIpl

dt
+ ΩI = V, (2.56)
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where

M =

⎡
⎢⎢⎢⎣

L1 M12 · · · M1nc

M12 L2 · · · M2nc

...
...

. . .
...

M1nc M2nc · · · Lnc

⎤
⎥⎥⎥⎦ and Ω =

⎡
⎢⎢⎢⎣

Ω1 0 · · · 0
0 Ω2 · · · 0
...

...
. . .

...
0 0 · · · Ωnc

⎤
⎥⎥⎥⎦ .

By inverting the matrix M we obtain the derivative of the currents as a function of the
currents, the voltages and the voltages induced by the plasma current

dI

dt
= −M−1ΩI + M−1V − M−1Mcp

dIpl

dt
. (2.57)

Note that since the coils and the vacuum vessel are not moving the absolute time derivative
is equal to the partial time derivative, i.e.

∂I

∂t
=

dI

dt
.

2.4 Functional structure of DINA

2.4.1 Time step for the numerical integration

To express the evolution of the quantities, i.e. Ψ, n, p and jφ, as a function of time we use
the time variable tn which corresponds to the time for the nth computing iteration. The
time t0 (n = 0) is defined as the inital time. The time interval between two iterations is
given by ∆tn = tn+1 − tn, referred to as the numerical integration time step. The time
step ∆tn varies as a function of numerical integration convergence criteria presented in
Section 2.4.5. There is a maximal and a minimal time step, referred to as ∆tmax and
∆tmin, respectively, which can be specified by the user. For each numerical integration
step ∆tn = tn+1 − tn DINA starts with the maximal time step and reduces the time step
if the convergence criteria are not satisfied until the minimal time step is reached. If for
the minimal time step the convergence criteria are still not satisfied then DINA abandons
the whole integration procedures with an error message. In this case the minimal time
step has to be reduced by the user.

2.4.2 Normalised magnetic flux surface coordinate

For the description of the quantities in space we use the plane coordinates (R, z) and
the normalised magnetic flux surface coordinate ρ. This coordinate takes values in the
interval ρ ∈ [0, 1] where each value corresponds to a constant poloidal magnetic flux
surface (Ψ = const) which is located inside the plasma from the magnetic axis to the
plasma edge (Figure 2.3). The definition of ρ relies on the toroidal flux Φ expressed as a
function of the poloidal flux Ψ

Φ(Ψ) =

∫
Sψ

Bφ · dS, (2.58)

where SΨ is the area enclosed by the magnetic contour Ψ = c = const in the (R, z) plane.
The toroidal magnetic field Bφ = Bφ(R, z)eφ is derived from f(Ψ) since it is given by
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Equation (2.11), i.e.

Bφ(R, z) =
µ0f(Ψ)

R
.

Since we are seeking a ρ which is only defined in the plasma we define the fluxes at the
two magnetic flux boundaries of the plasma:

1. The magnetic axis (R0, z0) where we consider Ψ0 = 0, where the enclosed area is
trivially SΨ0 = 0 and thus the toroidal magnetic flux Φ0(Ψ0) = 0.

2. The plasma edge where we define the poloidal flux Ψe = ce ∈ R
+, the enclosed area

SΨe and the toroidal magnetic flux Φe(Ψe) ∈ R
+.

This leads to the definition of the normalised magnetic flux surface coordinate

ρ(Ψ) =

√
Φ(Ψ)

Φe(Ψe)
∈ [0, 1]. (2.59)

Since Ψ is a function of (R, z) the normalised magnetic flux surface coordinate ρ is also a
function of (R, z), denoted as ρ(R, z).

S 
e

the magnetic axis (R  ,z  ) 

Ψ = cS 

between magnetic axis 
and plasma edge

R

z
the plasma edge

Ψ = ce e ρ  = 1e

S    = 0 Ψ = 0 ρ  = 0
00 0

0 0

Ψ

Ψ

Ψ

ρ ∈ [0,1]

Figure 2.3: Illustration of the normalised magnetic flux surface coordinate ρ.

2.4.3 Computing the poloidal flux Ψ

The poloidal flux Ψ is computed by solving the Grad-Shafranov equation given by
equation (2.18), i.e.

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+

∂2Ψ

∂z2
= −µ0Rjφ (2.60)

by means of the ”inverse variable” technique [56]. For the nth iteration we assume that
the toroidal current density profile is given by

jφ(tn, R, z) = jφext(tn, R, z) + jφpl
(tn, R, z), (2.61)
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where jφext(tn, R, z), denoting the current density in the external conducting structure
(active and passive coils and vacuum vessel), is given by equation (2.51). The quantity
jφpl

(tn, R, z) denotes the toroidal current density in the plasma which is given by equation
(2.17) and expresses the toroidal current density as a function of the derivation of the
pressure p′(Ψ), the poloidal current density function f(Ψ) and its derivative f ′(Ψ)

jφpl
= Rp′(Ψ) +

µ0

R
f(Ψ)f ′(Ψ). (2.62)

For the first iteration n = 0 at t0, initial conditions are needed. For jφext(t0, R, z) we use
the initial currents in the active and passive coils and in the vacuum vessel (section 2.3.4).
For the toroidal plasma current density jφpl

(t0, R, z) we need an initial pressure profile
p(Ψ) to compute p′(Ψ) and an initial poloidal current profile f(Ψ) to compute f(Ψ)f ′(Ψ).

The numerical solution of the Grad-Shafranov equation (2.60) at the nth iteration
gives the poloidal flux Ψ(tn, R, z). The constant flux surfaces are computed by solving
Ψ(tn, R, z) = const. This permits us to express the poloidal flux as a function of the
normalised magnetic flux surface Ψ(tn, ρ) = const.

2.4.4 Computing the evolution of the poloidal flux, the densities
and the pressures

The evolution in time of the poloidal flux, the electron and ion densities and pressures
are solely computed in one dimension, i.e. as a function of the normalised magnetic flux
surface coordinate ρ. Thus, the partial time derivatives which are required to compute
the evolution have to be averaged over the magnetic surfaces for which ρ = const and
Ψ = const. When we define any scalar or vectorial quantity as A then the average of A
over a magnetic surface, referred to as S, is defined as

〈A〉 =
∂

∂V

∫
V

AdV =
1

V ′

∫
S

A
1

|∇ρ|dS, (2.63)

where

V ′ =
∂V

∂ρ
=

∫
S

1

|∇ρ|dS (2.64)

and V is the volume enclosed inside the magnetic surface S. A more detailed discussion
concerning the average over magnetic surfaces is given in [34, 56].

The computation of the evolution in time from tn to tn+1 of the flux Ψ(ρ), the densities
ne,i(ρ) and the electron and ion pressures pe,i(ρ) is done by numerical integration over the
time step ∆tn, referred as to Int(·, ·, ∆tn). For the numerical integration the implicit
first order integration method is used. The following 3 partial differential equations are
applied:

• The magnetic field diffusion equation (2.33)

∂Ψ(ρ)

∂t
=

〈
R

(
1

σ
jφ + uRBz − uzBR

)〉
, (2.65)

where the poloidal flux for the next iteration n + 1 is computed by

Ψ(tn+1, ρ) = Int

(
Ψ(tn, ρ),

∂Ψ(ρ)

∂t
, ∆tn

)
. (2.66)
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• The simplified density equations (2.36)

∂ne,i(ρ)

∂t
= 〈Se,i〉 . (2.67)

where the densities for the next iteration n + 1 is computed by

ne,i(tn+1, ρ) = Int

(
ne,i(tn, ρ),

∂ne,i(ρ)

∂t
, ∆tn

)
. (2.68)

• The simplified energy equations for the electrons (2.48) and ions (2.47)

∂pe(ρ)

∂t
=

2

3

〈
∇ ·

(
χe

ne

kB

∇pe

ne

)
− Qei + Qdg + Qe

〉
(2.69)

∂pi(ρ)

∂t
=

2

3

〈
∇ ·

(
χi

ni

kB

∇pi

ni

)
+ Qei + Qi

〉
, (2.70)

where the pressures for the next iteration n + 1 are computed by

pe,i(tn+1, ρ) = Int

(
pe,i(tn, ρ),

∂pe,i(ρ)

∂t
, ∆tn

)
. (2.71)

Note that for the sake of simplicity the applied averaged technique presented here
is somewhat simplified compared to the actual averaged technique used in DINA. For
example, the average of the partial time derivative of the poloidal flux (Equation (2.65))
is derived in a different manner. It turns out that for DINA the plasma velocities uR and
uz are neglected. The detailed derivation and application of the averaged technique for
DINA is given in [34, 56].

The poloidal flux Ψ(tn, ρ) for every iteration results from the solution of the Grad-
Shafranov equation. For the density and pressures initial profiles (iteration n = 0) are
required, referred to as ne,i(t0, ρ) and pe,i(t0, ρ), respectively.

It remains to compute the evolution of p′ = ∂p
∂Ψ

, f and f ′ = ∂f
∂Ψ

to obtain the evolution
of the toroidal current density of the plasma jφpl

(tn+1, R, z) and the toroidal magnetic
field Bφ(tn+1, R, z).

The evolution of p′ is straightforward since p(tn+1, ρ) is known from Equation (2.71).
Note that the total pressure p is the sum of the electron and ion pressures (p = pe + pi).
Thus, since ρ(Ψ) is a function of Ψ we obtain

p′(tn+1, Ψ) =
∂p(tn+1, Ψ)

∂Ψ
=

∂p(tn+1, ρ)

∂ρ

∂ρ

∂Ψ
. (2.72)

For the evolution of f ′ we have to apply the Grad-Shafranov equation (Equations
(2.18) and (2.19)) and take the average over the magnetic surfaces (Ψ = const), i.e.〈

jφpl

R

〉
= − 1

µ0

〈
1

R

[
∂

∂R

(
1

R

∂Ψ

∂R

)
+

1

R

∂2Ψ

∂z2

]〉
= p′(Ψ)+µ0f(Ψ)f ′(Ψ)

〈
1

R2

〉
. (2.73)

Since p′(tn+1, Ψ) and Ψ(tn+1, ρ) (Equation (2.66)) are known and since ρ is a function of
(R, z) we can solve Equation (2.73) for f(tn+1, Ψ)f ′(tn+1, Ψ), i.e.

f(tn+1, Ψ)f ′(tn+1, Ψ) =
1

µ0

〈
1

R2

〉 (〈
jφpl

(tn+1, Ψ)

R

〉
− p′(tn+1, Ψ)

)
, (2.74)
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where〈
jφpl

(tn+1, Ψ)

R

〉
= − 1

µ0

〈
1

R2

∂2Ψ(tn+1, ρ)

∂ρ2

[(
∂ρ

∂R

)2

+

(
∂ρ

∂z

)2
]〉

(2.75)

− 1

µ0

〈
1

R2

∂Ψ(tn+1, ρ)

∂ρ

[
∂2ρ

∂R2
− 1

R

∂ρ

∂R
+

∂2ρ

∂z2

]〉
.

From Equation (2.17) we obtain the toroidal current density in the plasma for the next
iteration

jφpl
(tn+1, R, z) = Rp′(tn+1, Ψ) +

µ0

R
f(tn+1, Ψ)f ′(tn+1, Ψ). (2.76)

Furthermore, since

2ff ′ =
∂f 2

∂Ψ

f(tn+1, Ψ) is obtained by integrating and by taking the square root, i.e.

f(tn+1, Ψ) =

√∫
∂f 2(tn+1, Ψ)

∂Ψ

∂Ψ

∂ρ
dρ =

√
2

∫
f(tn+1, Ψ)f ′(tn+1, Ψ)

∂Ψ

∂ρ
dρ. (2.77)

Therefore from Equation (2.11) and since ρ and thus Ψ are functions of (R, z) we obtain
the toroidal magnetic field in the plasma for the next iteration

Bφ(tn+1, R, z) =
µ0f(tn+1, Ψ)

R
=

µ0f(tn+1, R, z)

R
. (2.78)

2.4.5 Convergence criteria

After each numerical integration step ∆tn = tn+1 − tn DINA checks by means of conver-
gence criteria if the resulting evolution due to the numerical integration is self-consistent.
There are a criterion on the evolution of the poloidal flux and two criteria on the evo-
lution of the vertical plasma position, referred to as zpl. The vertical plasma position is
computed by deriving the center of gravity of the toroidal plasma current density jφpl

, i.e.

zpl =

∫
SΨe

z jφpl
(R, z)dS∫

SΨe
jφpl

(R, z)dS
,

where SΨe is the area in the (R, z) plane enclosed by the plasma edge. The 3 different
criteria are defined as follows:

• The evolution of Ψ during ∆tn given by

∆Ψn(ρ) = Ψ(tn+1, ρ) − Ψ(tn, ρ)

has to satisfy

|∆Ψn(ρ)| < ε∆Ψ ∀ρ ∈ [0, 1] where ε∆Ψ ∈ R
+.
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• The evolution of zpl during ∆tn given by

∆zpln = zpl(tn+1) − zpl(tn)

has to satisfy

|∆zpln| < ε∆zpl
where ε∆zpl

∈ R
+.

• The average velocity of the vertical plasma position during ∆tn given by

∆żpln =
∆zpln

∆tn

has to satisfy

|∆żpln| < ε∆żpl
where ε∆żpl

∈ R
+.

The criteria constants ε∆Ψ, ε∆zpl
and ε∆żpl

may be changed by the user.

If the criteria are not satisfied then the integration step ∆tn is reduced and the nu-
merical integration procedure described in Section 2.4.4 has to be repeated.

2.4.6 Computing the evolution of the currents in the active and
passive coils and the vacuum vessel

Once the convergence criteria are satisfied it remains for us to compute the evolution of
the currents in the active and passive coils and vacuum vessel circuits by means
of Equation (2.57), i.e.

dI

dt
= −M−1ΩI + M−1V − M−1Mcp

dIpl

dt
. (2.79)

The time derivative of the plasma current filaments is approximated by taking the mean
time derivative during ∆tn, i.e.

dIpl

dt
≈ Ipl(tn+1) − Ipl(tn)

∆tn
,

where Ipl(tn+1) and Ipl(tn) are derived from jφpl
(tn+1, R, z) and jφpl

(tn, R, z), respectively.

The circuit currents for the next iteration n + 1 are computed by

I(tn+1) = Int

(
I(tn),

dI

dt
, ∆tn

)
. (2.80)

From this the external toroidal current density jφext(tn+1, R, z) can be derived as described
in Section 2.3.4.

Finally, we obtain the whole toroidal current density

jφ(tn+1, R, z) = jφext(tn+1, R, z) + jφpl
(tn+1, R, z). (2.81)
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2.4.7 The functional structure summary

Figure 2.4 illustrates schematically the functional structure of DINA. One iteration step
of DINA can be summarised by following sequential main steps:

1. Solving the Grad-Shafranov equation by means of the toroidal current density
jφ(tn, R, z) to get the poloidal flux Ψ(tn, R, z).

2. Computing the normalised magnetic flux surface coordinate to get Ψ(tn, ρ).

3. Integrating the flux diffusion, the density and the energy equations to get Ψ(tn+1, ρ),
ne,i(tn+1, ρ) and pe,i(tn+1, ρ).

4. Computing the poloidal current function f(tn+1, Ψ) and the toroidal plasma current
density jφpl

(tn+1, R, z).

5. Verifying the convergence criteria. If the criteria are not satisfied then the integra-
tion time step ∆tn is reduced and the steps from step 3. have to be reiterated.

6. Integrating the active and passive coils and the vacuum structure equations to get
the external toroidal current density jφext(tn+1, R, z).
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Figure 2.4: Functional structure scheme of the DINA code.



Chapter 3

Comparing TCV experimental VDE
responses with DINA code
simulations

3.1 Introduction

In previous work [33] DINA showed good agreement with the effects of Poloidal Field (PF)
control coil voltage pulses in TCV. A nonlinear response due to one of the perturbations
significantly changing the vertical field decay index and driving the closed loop unstable
gave a first demonstration of nonlinear behaviour correctly modelled by DINA, including
the full TCV feedback and diagnostic systems. DINA had also been used in the past to
study Vertical Displacement Events (VDE) in the DIII-D tokamak [29].

The DINA code simulations presented in this chapter exploit discharges with different
cross-sectional shapes and different vertical instability growth rates which were subjected
to controlled VDEs. We exploit the large height of the TCV vacuum vessel to explore
a second nonlinearity, namely one in which the spatial variation of the vacuum field is
large enough to invalidate local linearisation of the plasma equilibrium response. A set
of experiments carried out earlier to compare experimental and modelled growth rates
[23] provided suitable data. Subsequently, similar experiments at higher growth rate
were performed, but are not analysed here [24]. In the previous work, the initial, small
amplitude growth rate was evaluated. We extend that work by reproducing the behaviour
during the complete large vertical plasma displacement. This case cannot be modeled
with a linear model because of the large amplitude nonlinearities due to the final large
vertical position displacement and non-time-invariant nonlinearities since the growth rate
γ changes as a function of the position and therefore of time. The DINA code has been
cross-checked against all 14 of the VDE experiments with different growth rates ranging
approximately from 100 rad/s to 300 rad/s and different plasma shapes carried out on
limited plasmas in the TCV tokamak.

The main aim of the thesis is to study the effect of the power supply saturation on the
closed-loop stability and to provide a new controller with enhanced stability properties.
In general, the loss of the vertical position control (loss of stability) is due to large plasma
disturbances. Thus, in order to determine the enhancement of the stability properties
we have to bring the new controller to its stability limits by means of large disturbances.
Such validations cannot be carried out on a tokamak like ITER in operation since the
loss of control leads to a disruption which will cause damage to the machine. Thus,

47
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simulations with either linear or nonlinear tokamak models are imperatively required
before considering the implementation of the new controller on a tokamak in operation.
A linear tokamak model will probably be inadequate since large disturbances can move its
state outside its validity regions. Thus, an accurate nonlinear model is indispensable for
this purpose. It is in particular important to focus on the vertical plasma displacement
since a large disturbance leads to a large vertical plasma displacement. Therefore, a
DINA validation by means of triggered VDEs is particularly helpful for the purposes of
this thesis.

The remainder of the chapter is laid out as follows. In Section 3.2 we describe the
procedure that we used to initiate the VDE and discuss the potential disagreements
which can arise when comparing the results between LIUQE (a tokamak equilibrium
reconstruction code [26]) and DINA simulations. In Section 3.3 we present a comparison
of the DINA simulation data with experimental data from the TCV tokamak focusing on
the VDE experiments. We also present a comparison of common equilibrium parameters
like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q,
the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal
magnetic field at the edge of the plasma βp and the internal self inductance li. Section
3.4 deals specifically with the non-time-invariant growth rate γ. We compare the time-
varying growth rate of the TCV experiment and DINA simulation with the evolution of
the closed-loop growth rate calculated with the RZIP model at each equilibrium point.
Section 3.5 closes the chapter with a discussion.

3.2 Experimental conditions

3.2.1 Initiating the VDE

In the TCV experiments the VDE was initiated by interrupting the feedback control
of both the radial and vertical position (to avoid all effect on the vertical position) at
t = 0.45 s. The power supply demand signal becomes the preprogrammed signal and
the power supply remains active. Because of the plasma disturbances and noise, mainly
generated by the power supply and the diagnostics, and due to the fact that the plasma is
unstable in vertical direction, the VDE is immediately initiated. In a DINA simulation,
a break off of the control does not cause a VDE due to the fact that the plasma is in
equilibrium and no noise and disturbances are added to the simulation. Therefore, a
disturbance had to be injected to cause an early loss of equilibrium and a subsequent
VDE. Several trials had to be undertaken to find out which disturbance least pollutes
the results. For the first tests we applied a trapezoidal feedforward voltage disturbance
at t = 0.45 s during tp = 4 ms to the E1 coil (Figure 3.1 shows the TCV vacuum vessel
and PF coils). The sign and amplitude of the disturbance voltage determine the direction
of the vertical displacement: upwards or downwards. It was found that the amplitude
has to be huge (1000 V) to make sure that the displacement goes in the same direction
as the experiment. In addition to this problem, the disturbance generates an overshoot
or undershoot of the plasma current, according to the displacement direction and thus
to the sign of the voltage. This overshoot or undershoot can be explained by the net
flux induced by the perturbation. An Ip overshoot is illustrated in Figure 3.2 (top).
To avoid this problem we used an antisymmetric disturbance on the E1 and E8 coils
(Figure 3.1) with the amplitude as small as possible and a period of only tp = 2 ms. As
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shown on Figure 3.2 (bottom), this solution clearly prevents the overshoot of the plasma
current because of the vertical anti-symmetry of the perturbation. Figure 3.3 shows the
trapezoidal disturbance voltage of +200 V and a period of tp = 2 ms applied to coil E1
to produce an upward plasma displacement. The injected voltage in coil E8 has the same
disturbance shape, but, since the two coils are driven antisymmetrically, it has a negative
amplitude of -200 V. After this testing, this disturbance was subsequently applied for all
discharges, except for discharges #9486 and #9490, in which the right movement direction
could only be obtained with a longer (tp = 4 ms) and bigger disturbance.
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Figure 3.1: The TCV vacuum vessel, PF coils, poloidal field probes (marked ’-’ inside
the tiles) and flux loops (marked ’x’). A modestly elongated plasma has a large volume
available for a VDE before hitting the first wall
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3.2.2 Differences between the plasma equilibrium reconstruct-
ing code LIUQE and the simulation code DINA responses

Before comparing the TCV experiment results (LIUQE) and the DINA simulation pre-
dictions it is instructive to consider possible discrepancies. There are several potential
reasons for disagreement between the responses represented by the experimental results
and the DINA simulations.

1. Only the vertical and horizontal feedback control loops are interrupted during the
VDE. The evolution of the PF currents remains controlled by other loops and deter-
mines the evolution of the vacuum field during the complete VDE. The agreement
between the DINA and experimental evolution confirmed the correct modelling of
these other feedback loops.

2. The electronics, particularly the amplifiers and integrators implemented in the di-
agnostics to evaluate the magnetic fields and the fluxes, may have small offsets.
This adds offsets and constant slope drift errors to the measurements of the fields
and fluxes. The power supply and electronics modelling are not considered to be a
problem due to the precise agreement obtained for the linear response in previous
work on TCV [33], approximating the power supply by a low-pass filter.

3. When starting the simulations with badly chosen initial states, a significant transient
is observed before the simulation settled down to reproduce the TCV time traces
more or less accurately [33]. This transient can be due to the different equilibrium
parametrisation used by the LIUQE inverse equilibrium code and the DINA simu-
lation code. However, it is difficult to find the right initial conditions to completely
avoid this effect and there often remains a short transient before the equilibrium
relaxes to a diffused DINA equilibrium. This can lead to an offset between the re-
sponses of the experiment and the DINA simulation. A comparison between DINA
and LIUQE reconstruction of z, βp and li for discharge #9480 is shown in Figure
3.4. There is a clear transient for all 3 parameters at the beginning of the DINA
simulation. Furthermore, after the transient has decayed, an offset error remains at
a level of about 5% for li and 1% for z. However, there is no offset error for βp.

4. The equilibrium parameters (vertical and horizontal plasma position z and R, plasma
current Ip, elongation κ, triangularity δ, the safety factor q, βp and li) are not mea-
sured in a direct manner. They have to be estimated offline using the accessible
measurements of the diagnostics (magnetic fields, fluxes and coil currents). The
LIUQE code reconstructs the plasma evolution of a discharge by means of a pa-
rameterised function set for current and pressure profiles and a fitting algorithm
calculating the parameter-values of these functions (constraints). This reconstruc-
tion method leads to results that mainly follow the experiment but cannot show all
details of the plasma evolution. On the other hand, the simulation with the DINA
code starts with a set of initial conditions and the profiles then evolve in a totally
free manner. This leads to very detailed results but, of course, only for the features
of the tokamak implemented in the DINA code. Figure 3.5 illustrates, as an example
of the potential drawback of LIUQE using parameterised functions, the evolution of
the plasma current profile across the plasma mid-plane. We clearly see the smooth
gaussian-like shape of the LIUQE result due to the usage of parameterised func-
tions, while the DINA simulation shows a more complex shape evolution. Without
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additional experimental information we cannot determine whether the constrained
or evolving profile is closer to the experimental reality. The finer structure is not
’visible’ to the magnetics diagnostics outside the plasma which can measure the
centroid, the total current and (less precisely) the internal inductance which varies
with the current profile width.
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Figure 3.4: Discharge #9480, showing a short transient of li, βp and the vertical position
z at the beginning of the DINA simulation. The perturbation peaks on the simulation
are due to sawteeth.

These problems have to be considered apart from the validation of the DINA code. Thus,
a careful interpretation and treatment of the data are required to compare the results
rigorously. Despite these numerous potential sources of error, the equilibrium parameters
still show excellent agreement between DINA simulations and experiments, as we will see
later. Additionally, two data treatment methods are adopted in order to avoid the residual
offsets and drift errors. Firstly, when comparing raw diagnostic data such as magnetic
fluxes and fields, the results are filtered by removing the linear part of the data, referred to
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Figure 3.5: Plasma current density Jp profile of discharge #9487, estimated with LIUQE
(dashed) and simulated with DINA (solid).

as ’detrending’. Secondly, for the equilibrium parameters, and especially for the vertical
position, where we have only constant offsets, a more complete data adjustement method
is proposed in Section 3.3.1.

Comparison during the final disruption itself are not as good. The most likely expla-
nation is due to the LIUQE code which cannot deal with the significant profile evolution
during disruptions without additional care. The comparison has therefore been limited to
the time between the onset of the VDE up to the time just before the disruption occurs.
The validation of DINA and LIUQE during the disruptive phase of TCV discharges will
have to be treated in future work.
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3.3 Comparison between TCV and DINA

3.3.1 Elimination of the offsets between experiment and DINA
data

As mentioned in Section 3.2.2, there may be offset errors due to electronic offsets and the
choice of the initial conditions. There is another mismatch shown up by the observation
that the vertical plasma displacement of the DINA simulation usually begins earlier than
the experimental data. In fact, the time of the beginning of the displacement is quite
sensitive to the amplitude of the disturbance voltage applied to the coils E1 and E8
in the simulation (Section 3.2.1). Several DINA simulations with different disturbance
amplitudes have shown that a bigger amplitude leads to an earlier vertical displacement
as expected. As mentioned above (Section 3.2.1), we have to apply a disturbance with
an amplitude that is large enough to ensure the correct direction, upwards or downwards,
of the vertical plasma movement. This disturbance is bigger than the disturbances and
noise of the experiment, leading to the observation that the vertical plasma displacement
of DINA usually starts earlier than the one in the experiment. Before the comparison
between the experimental and the DINA simulation data can be made, this time mismatch
has to be corrected by means of data shifting. We chose to shift the DINA vertical position
data by minimizing the cost function Q:

min
δt , δz

Q =

∫ t2

t1

{
min
tD

[
wt(tD + δt − tT )2 + wz(zD(tD) + δz − zT (tT ))2

]}
dtT (3.1)

Where δt is the shifting of the time axis, δz the shifting of the z axis (vertical position),
tD and zD are the time and vertical position of the DINA simulation and tT and zT are
the time and vertical position of the TCV experiment. The integral interval is defined by
[t1, t2] = [0.35 s, tTend

], where tTend
is the time of the last TCV experiment sample. The

two weights wt and wz were chosen to attach more importance to the fitting accuracy of
either the time axis by increasing wt or the z axis by increasing wz. Values of ωt = 1 s−2

and ωz = 4 · 10−4 m−2 are suitable. The minimizations in the cases studied result values
in the range of {−3.3 ... 22.1} ms for δt and {−1.75 ... 6.64} cm for δz. Only a single case
exceeded δz = 4.5 cm and only the data are modified slightly, not the simulation itself.

3.3.2 Comparison of the vertical plasma position

Figure 3.6 shows the modelled and experimental evolution of the vertical plasma dis-
placement of the whole set of 14 experiments with the simplest data mismatches between
the DINA simulations and the experiments eliminated in the manner described. The
most immediately striking feature is that all experiments with the plasma position going
downwards have an S-like shape consisting of a fast exponential-like movement at the
beginning and a slowing down part at the end just before the disruption occurs. Since the
z position at equilibrium is located at +20 cm, the distance the plasma can move before
the disruption is shorter for the experiments with an upward going vertical displacement.
Therefore only these experiments show the initial exponential-like shape.

In general, especially considering the potential differences between the LIUQE and
DINA codes already described, we consider the overall agreement for the evolution of the
vertical plasma position as excellent. Nevertheless, to attempt a more rigorous assessment,
we try to distinguish between good and less good agreement (Table 3.1). The curvature
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Figure 3.6: Comparison of the vertical displacement movement z[cm]. At z = ±50 cm
a full minor radius circular plasma hits the top or bottom tiles. (solid: DINA, dashed:
LIUQE)

of the exponential part (knee) of the vertical position is not always exactly reproduced
by DINA, shown by a double crossing of the two traces. This curvature error seems to
have a systematic property, because the DINA simulations show for every upward going
displacement a softer knee than the experiments (e.g. #9478), while for the downward
going movement we see a harder knee for DINA (e.g. #9486).

The correct reproduction of the S-like shape by DINA is an important nonlinear code
feature. Such behaviour cannot be modelled by linear time-independent models because
of the predominant exponential shape of the instability. These models only have one
unstable pole corresponding to the vertical instability and although the set of stable poles
could dominate the response during transient behaviour, the unstable pole and its residue
have to dominate the behaviour at longer times.

For what follows, we aim to illustrate this statement by analysing the behaviour of the
linearised tokamak model in closed-loop. Therefore, we consider the n order linear closed-
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Good agreement 9477 9480 9482 9483 9487 9491 9492 9493
Less good agreement 9478 9481 9486 9488 9490 9496

Table 3.1: Good and less good agreement between the experiment and DINA

loop system during the VDE experiment which is constituted by the linearised tokamak
model and the feedback controller without the feedback of the radial and vertical plasma
positions. We define the time relation t−1 < t0, where t−1 and t0 denote the time at which
the VDE initiating disturbance starts and ends, respectively. It is assumed that at time
t−1 the closed-loop tokamak system is in equilibrium and thus the linearised tokamak
model can be derived at this time. We consider the time t0 as the initial time from which
we want to analyse the behaviour of the considered closed-loop system. From this time on
there is no longer an external signal fed to the closed-loop system. Thus, the closed-loop
system represents an autonomous system which can be described as a set of n independent
differential equations

ẋi = λixi, i ∈ 1, 2, 3, . . . , n (3.2)

where xi are the n states and λi are the n eigenvalues of the closed-loop system. We
remark that every linear system can be put in such a form (for more detailed information
see Section 8.3.6 of Part II). Furthermore, note that for the sake of simplicity we only
consider pure real eigenvalues. In fact, for this demonstration it suffices to consider only
the real parts of complex pole pairs, since we only want to analyse if the values of the
states decrease or increase while the oscillatory behaviour of the states is not relevant
here. Since we consider a system with a single unstable pole, we arbitrarily choose the
state x1 as the unstable state for which λ1 > 0, while all other states represent the stable
states for which λ2, λ3, . . . , λn < 0.

The evolution of the vertical plasma position z is given by the linear state combination

δz = Cz1x1 + Cz2x2 + . . . + Cznxn, (3.3)

where Czi ∈ R ∀i ∈ 1, 2, 3, . . . , n. In fact, the linear system given by Equations (3.2)
and (3.3) describes only the linear vertical plasma displacement, denoted by δz, around
the equilibrium plasma position z0 which is equal to the vertical plasma position at the
equilibrium time z0 = z(t−1). Thus, the evolution of z is given by

z(t) = z0 + δz(t), t ≥ t−1. (3.4)

A linear autonomous system possesses only a single equilibrium point which is trivially
located at the origin since

lim
xi→0

ẋi = lim
xi→0

λixi = 0, i ∈ 1, 2, 3, . . . , n. (3.5)

From this it is obvious that at the equilibrium time t−1 the following equilibrium conditions

z(t−1) = z0

δz(t−1) = 0

xi(t−1) = 0

have to be satisfied.
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Just after the VDE initiating disturbance, at time t0, the states and δz are no more in
equilibrium (xi(t0) �= 0 and δz(t0) �= 0) since they have been disturbed. We assume that
the VDE initiating disturbance is small enough to ensure that the initial vertical plasma
displacement δz(t0) is small. We define xi(t0) as the initial conditions for the solution of
System (3.2) which is given by

xi(t) = xi(t0)e
λi(t−t0), t ≥ t0, i ∈ 1, 2, 3, . . . , n. (3.6)

The evolution of the vertical plasma displacement is therefore

δz(t) = Cz1x1(t0)e
λ1(t−t0) + Cz2x2(t0)e

λ2(t−t0) + . . . + Cznxn(t0)e
λn(t−t0), t ≥ t0. (3.7)

Since λ2, λ3, . . . , λn < 0 the second to the nth terms on the right hand side are decreasing
as a function of time and converge to zero if t → ∞. Thus, for t 
 t0 the vertical
plasma displacement δz(t) follows essentially the expression of the first term and we
might approximate z(t) by

z(t) = z0 + δz(t) ≈ z0 + Cz1x1(t0)e
λ1(t−t0) ≈ z0 + δz(t0)e

λ1(t−t0), t ≥ t0. (3.8)

Note that the unstable eigenvalue λ1 of the closed-loop system is equal to the unstable
eigenvalue (also called the growth rate γ) of the open-loop linearised tokamak model if
the considered feedback controller without the feedback of the radial and vertical plasma
positions does not have a stabilising effect on the tokamak. The TCV controller considered
verifies this condition and thus the growth rate γ of the open-loop linearised tokamak
model is equal to γ = λ1.

3.3.3 Comparison of the equilibrium parameters

In this section, we present a comparison of the most common equilibrium parameters.
Figures 3.7 a) - c) show the evolution of the plasma current Ip, the elongation κ95, the
triangularity δ95 and the safety factor q95, the last three parameters estimated at the 95 %
flux surface. For completeness, the plasma vertical position z is added in the top row.
As mentioned, we limit the comparison to the time before the final disruption occurs. To
distinguish the instant of the final disruption we used the Hα signal, shown in the bottom
row. The time when the disruption occurs is approximately determined by the maximum
value of Hα, marked by a vertical line in the other plots. The time axis of the DINA data
is shifted by δt, as described in Section 3.3.1, for all parameters. No shifting has been
applied to the vertical axes.

For some discharges (#9477, #9478, #9480, #9481, #9483, #9488, #9491 and
#9492), we observe a delay between DINA and LIUQE for some equilibrium parameters
(an example is the plasma current) even after aligning the evolution of z as described. This
may be due to the LIUQE code having difficulties reconstructing the plasma evolution
correctly while the plasma current is rapidly decreasing and is not significant. Despite the
fact that for discharge #9491 a short and low amplitude disturbance was applied, there
remains an overshoot. This overshoot seems to also affect κ, δ and q.

Plasma current Ip : The agreement of the plasma current is good up to the time
at which the final disruption occurs. The under- and overshoots of the DINA plasma cur-
rent of discharge #9486 and #9490 are obvious because the initiating VDE disturbance
is longer and larger.
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Figure 3.7: a) Comparison of the equilibrium parameters: vertical position z, plasma
current Ip, elongation κ95, triangularity δ95 and safety factor q95. The peak of Hα indicates
the disruption event, shown as a solid vertical line. (solid: DINA, dashed: LIUQE)

Elongation κ95 : For the TCV experiments, we observe a peak in κ when the plasma
current decreases slowly (discharges #9477, #9480, #9482, #9487 and #9493). DINA
reproduces this peak only for discharges #9477 and #9480. This is the most important
disagreement and has not yet been explained. The most probable cause is differing evo-
lutions of the LIUQE and DINA current profiles. The offset, which can be noticed for
almost all discharges, is typically due to the problem of determining the right initial con-
ditions for the simulations.

Triangularity δ95 : The agreement of the triangularity is excellent for all discharges,
except for discharges #9477 and #9478. Despite the fact that the initial values start at
t = 0.3 s with approximately the same values as the experiments for these discharges, the
system relaxes to a DINA equilibrium, which induces a significant offset of δ95. Like for
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Figure 3.7: b) Comparison of the equilibrium parameters: vertical position z, plasma
current Ip, elongation κ95, triangularity δ95 and safety factor q95. The peak of Hα indicates
the disruption event, shown as a solid vertical line. (solid: DINA, dashed: LIUQE)

κ95, this also belongs to the problem of determining the right initial conditions for the
simulations.

Safety factor q95 : The safety factor inevitably behaves like the elongation, but with a
less accentuated peak amplitude.

βp and li : The two parameters βp and li are shown in Figure 3.8. Besides the off-
set errors, we establish that the decreasing behaviour of li is reproduced by DINA for all
discharges, while for many discharges the direction of the change of βp does not agree.
This disagreement is most likely to be attributable to the LIUQE profiles, because it can-
not accurately separate li and βp for these modest elongations. To illustrate this problem,
we compare the sum βp + li

2
in Figure 3.9, which shows that the direction of the change

is correct for all experiments.
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Figure 3.7: c) Comparison of the equilibrium parameters: vertical position z, plasma
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3.4 Comparison of the growth rate evolution

In this section, we compare the growth rate evolution of the TCV experiments, the DINA
simulations and the simple RZIP linear model. The latter is based on the assumption of
rigid displacement of the current distribution [17].

3.4.1 Computing the growth rate

The growth rates are established in RZIP by calculating the eigenvalues of the RZIP
linear model in closed loop (with all feedback loops closed except for the vertical and
radial positions). For the TCV experiment and the DINA simulations, the growth rates
are calculated using the vertical plasma position data z(t). The estimation is based on
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Figure 3.8: Comparison of li and βp.

the assumption that z(t) can be modeled by the function

z(t) = z0 + δz e
R t

t0
γ(τ)dτ

(3.9)

which is the solution of the first order differential equation

ż =
dz

dt
= γ(t) δz e

R t
t0

γ(τ)dτ
= γ(t)(z − z0) (3.10)

where we assume that z0 and δz are constant in time and the growth rate γ is a function
of time. The time t0 is the time at which the VDE is initiated, in our case t0 = 0.45 s,
with a displacement δz from an equilibrium with zero passive structure currents.

If we assume that γ is time-independent, the exponent in Equation (3.9) is replaced
by γ(t − t0). This gives us the approximated exponentially shaped response of a linear
time-independent model (right hand side expression of Equation (3.8), where γ = λ1).
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2
.

The aim of this section is to show that we can reproduce the nonlinear S-shape of the
vertical displacement by taking this linear model and, additionally, assuming that only
γ is a function of time. This assumption allows us to estimate the growth rate simply
from the evolution of the vertical plasma position. We tested the following two different
methods to compute γ(t):

• Logarithm method
First, the offset z0 has to be subtracted from z(t)

z̃(t) = z(t) − z0 = δz e
R t

t0
γ(τ)dτ

(3.11)

The logarithm of z̃ gives

ln |z̃(t)| = ln |δz| +
∫ t

t0

γ(τ)dτ (3.12)
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We took the norm 1 of z̃ to avoid a logarithm of a negative value due to any noise
and the arbitrary sign of the excursion. Finally, we obtain

d ln |z̃|
dt

= γ(t) (3.13)

• Quotient method
This method simply computes the growth rate by dividing Equation (3.10) by Equa-

tion (3.11) or by calculating directly d ln |z̃|
dt

of Equation (3.13):

ż

z̃
= γ(t) (3.14)

The first derivative is used in both methods and thus noise in the data, especially the
experimental data, is amplified. We therefore filter the vertical position data of both
the DINA simulation and LIUQE reconstruction by means of a second order Butterworth
filter with a cut-off frequency of ωN/5, where ωN is the Nyquist frequency for the sampling
period of the DINA data of 100µs. Since LIUQE does not output data with a constant
sampling rate, its data was interpolated linearly with the same sampling period as DINA
and then filtered similarly.

In practice, the implementation of both methods exposed two problems:

1. The constant values z0 and δz have to be determined. In fact, only one of these
values has to be estimated because Equation (3.11) evaluated at t = t0 simplifies to

z(t0) = z0 + δz (3.15)

where z is the known vertical position of either the DINA simulation or the LIUQE
reconstruction data. The estimation is obtained by assuming that just after t = t0
the growth rate γ(t) remains time-independent over an interval defined by [t0, tlin].
This assumption is justified if the excursion of z over this interval is small and thus
linear conditions can be assumed. This simplifies Equation (3.12) to

ln |z(t) − z0| = ln |δz| + γt (3.16)

In this case ln |z(t)− z0| is linear and we simply tuned δz by hand until ln |z(t)− z0|
showed the expected linear behaviour in its initial phase defined by [t0, tlin].

2. In principle, z̃ = z(t) − z0 should always remain positive or negative since δz is
always positive for upward going VDEs and negative for downward going VDEs. In
practice, there is noise in the z(t) data and therefore, at the beginning where the
vertical position is close to its initial value z(t0), the expression z(t) − z0 oscillates
around zero, which implies a number of zero crossings. To avoid zero crossings
we add or subtract, according to the displacement direction of z, a small positive
value to z(t) − z0. Despite this precaution, the computed γ shows unavoidable
rapid changes when noise is polluting the z data. This is due to the fact that when
z̃ = z(t)− z0 is small and near zero the noise in the z data is amplified by the ln |z̃|
function of the logarithm method (Equation (3.13)) and by the 1/z̃ function of the
quotient method (Equation (3.14)). Fortunately, we are mostly interested in the
results of the nonlinear domain where γ varies in time and the distance |z(t) − z0|
is large, under which condition the noise is no longer predominant.

For what follows, we only used the logarithm method, as it was found to provide less
noise-polluted results than the quotient method.
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3.4.2 Comparison of the growth rate

The comparison of the growth rate is shown in Figures 3.10 a) - c). The first and second
rows illustrate z(t) − z0 and ln |z(t) − z0| of the LIUQE and the DINA data. The results
of the second row can be used to find an appropriate value for δz and z0, as described
in point 1 of Section 3.4.1. The third row shows the evaluated growth rates for LIUQE,
DINA and RZIP. As mentioned in point 2 of Section 3.4.1, we clearly see, especially for
LIUQE, the noisy results in the initial phase where the growth rate is assumed to be
constant. By inspecting the RZIP growth rate, we see that the assumption of a constant
γ in the initial phase appears valid. Note that the curves of the RZIP growth rate stop
at the end of the TCV pulse.

The RZIP model uses the reconstructed equilibrium and the instantaneous values of
the PF coil currents to determine the growth rate. The vacuum poloidal magnetic field in
the RZIP calculation therefore varies somewhat. But, if we analyse the radial magnetic
field BR, the height of the BR = 0 line moves by a few cm, since the vertical position
control is switched off. It is therefore not surprising that the modelled growth rate tracks
the experimentally estimated evolution of the growth rate. On the other hand, the DINA
code simulates the full evolution and the growth rate evaluated from the DINA results
corresponds to the growth rate given the instantaneous PF coil currents in the DINA
simulation and the instantaneous position of the plasma in the simulation. If the plasma
evolution z(t) is different, then the DINA simulation is at a different location at a given
time. Since the growth rate itself is shown to be a function of the equilibrium position,
then once there is any disagreement in z(t), a disagreement in the estimated growth rate
is inevitable for the remainder of the discharge. In spite of this, the ability of DINA
to predict the evolution of all these plasma parameters during the large scale VDE is
convincing.
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Three candidate explanations are proposed for such a strong variation of the growth
rate.

1. The proximity of the vacuum vessel wall
The slowing down of the vertical displacement at the end of the downward going
discharges could be attributable to the stabilising effect of the varying proximity of
the vacuum vessel top and bottom wall.

2. Variations in the plasma current profile
The effect on the growth rate of a varying plasma current profile is shown in Figure
3.11. The evolution of the RZIP growth rate assuming a fixed current profile is
different from the ’normal’ RZIP growth rate taking the deforming reconstructed
current profile. The fixed current profile is taken before the break off of the vertical
and radial position feedback control at t = 0.43 s. We previously established that
the plasma current profile is not changing while the feedback control of the verti-
cal and radial positions is active. After opening the position feedback control the
deforming current profile growth rate peaks, while the fixed current profile growth
rate already starts to decrease. This illustrates that the variation of the plasma
current profile has a detectable impact on the evolution of the growth rate and
therefore on the consequent vertical plasma displacement. Since the plasma current
profiles of LIUQE and DINA are significantly different, Figure 3.5, it is natural that
the agreement between the experiments and the DINA simulations is not perfect.
Moreover, by inspecting the peaks of the RZIP growth rate in Figures 3.10 a) -
c) we detect a systematic behaviour that discharges with large peaks (e.g. #9477,
#9486, #9490 and #9496) show a less good agreement of the vertical movement.
We also notice that the plasma current profile has some impact on the decrease of
the growth rate at the end of the discharge, just before the disruption occurs. The
deformable current profile growth rate shows a more pronounced rate of decrease
(Figure 3.11).

3. The spatial variation of the vertical field decay index n
The local vertical field decay index is

n = − R

Bz

∂Bz

∂R
,

where Bz is the local vertical magnetic field and R is the local major radius. Figure
3.12 shows the spatial variation of the vacuum poloidal flux for discharge #9487
and does not vary significantly during the VDE since the poloidal field coil cur-
rents themselves do not vary significantly. The inhomogenity of the decay index is
exceptional in TCV due to the large number of poloidal field coils allowing highly
structured vacuum fields and to the elongation of the vacuum vessel.

The spatial effect of the varying plasma current profile is the smallest of these effects and
the characteristic behaviour must reside in the first and third effects. To illustrate the
origin of the pronounced S-curve in the downward moving VDEs, Figure 3.13 shows the
vertical stabilising and destabilising forces per unit displacement on the plasma during
the VDE. The variation in the stabilising forces is due to the variation of the coupling
of the plasma current distribution to the passive and active circuits (vessel and PF coils)
as the plasma moves. The destabilising force per unit displacement is simply due to
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the weighted integral of the plasma current distribution multiplied with the decay index
distribution over the plasma cross-section, deducible from Figure 3.12. In the case of
the upward moving VDE, the stabilising force per unit displacement is reinforced almost
immediately as the plasma current approaches the top wall of the vacuum vessel, while
the destabilising force shows only a slight variation. In the case of the downward moving
VDE, the stabilising force is slightly reduced as the plasma moves towards the mid-plane
and only increases at the end of the trajectory when it couples more strongly to the lower
vessel wall. During the downward moving disruption, the plasma feels an almost constant
stabilising force, whereas the destabilising force varies significantly as different decay index
regions are crossed. We can therefore predominantly attribute the pronounced S-curve
in TCV downward moving VDEs to the spatial variation in the decay index rather than
to the variation of the coupling to the vacuum vessel. TCV therefore differs from other
devices in this respect, partly due to the large vertical height which reduces the sensitivity
of the restoring force to plasma displacements compared with other tokamaks which have
a more conformal vacuum vessel and partly due to the flexibility of its poloidal field coil
system. A supporting confirmation comes from the elongation κ of the reconstructed
plasma equilibrium, which drops to nearly 1.0 before disrupting, in the downward moving
VDE. When κ drops to 1 the plasma becomes circular and it is therefore no more subjected
to a vertical destabilising force.
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t = 0.43 s.
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3.5 Conclusion

In this chapter we have only had to make minor adjustments to the initial conditions of
fully nonlinear DINA simulations of VDEs in TCV in order to obtain convincing agree-
ment between the experimental and modelled data. The large number of TCV discharges
modelled cover a range of triangularities and growth rates. The highly elongated TCV
vacuum vessel has allowed us to follow VDEs over a large distance before a disruption
ensues. The vacuum field curvature varies significantly over these large distances, im-
plying a large modification of the vertical instability growth rate during the VDE. This
feature is correctly modelled by DINA and the underlying reasons are brought out by in-
specting the growth rate estimated by the RZIP rigid current displacement model which
is accurate for the equilibria investigated. The presence of both upward and downward
going disruptions shows that the proximity to the top and the bottom of the vessel is
not the determining factor for varying growth rates. The evolution of the elongation and
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triangularity in DINA does not agree perfectly with the LIUQE reconstructions and the
multiple potential reasons are presented. Given these differences, it is impressive that the
comparison shows such similar features and indeed, the inevitable differences illustrate
the potential dangers of assuming absolute precision in nonlinear simulations of such a
complex system. However, since the role of the complete plasma control feedback system
is to hide such differences, the closed loop simulations will always be far more accurate
than the ”free fall” VDE simulations.
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Chapter 4

Linear tokamak models

4.1 Introduction

As interest in modelling the combined plasma, vessel and PF coil system increased, many
approaches were tried. Linearised models of the vertical instability were used during early
JET operation, based on equivalent point currents to represent the stabilising property
of the vacuum vessel [9]. This was extended for application to DIII-D to an eigenmode
approximation to the vessel description, retaining the first up-down asymmetric eigenmode
and exploring the controllability with a Proportional-Derivative feedback controller [35,
39]. These approaches considered the plasma as a filament or a non-deformable plasma,
respectively. Deformation of the plasma was considered in the CREATE-L model , applied
to the ITER design and validated on the TCV tokamak [52, 53]. An enhanced rigid current
displacement model (RZIP) was developed and validated for TCV, considering changes
to the plasma current and to its radial position [17, 40]. A deformable plasma model was
developed for TCV highest growth rates [25].

In this present chapter, we make use of the single eigenmode representation [35] for its
algebraic simplicity, of the linearised RZIP model [40] and of the linearised CREATE-L
model for JET [2] and ITER [31]. A common feature of these linearised models is the
presence of a single positive eigenvalue when the vertical plasma position is unstable. This
point is essential for the stabilising purposes addressed in Part II (Control Theory) of the
thesis.

4.2 Simple linear second order model

The simple second order model is based on a system consisting of a single-filament plasma
within a vacuum vessel. The plasma is described by a total plasma current Ip and its
nominal major radius R0. The surrounding passive conductor has a current Iv flowing in
an asymmetric mode (zero net current). The subscript v refers to the passive stabiliser
due to the vessel, the subscript p refers to the plasma and the subscript z refers to the
vertical plasma position. Later we introduce the subscribt a to refer to the active coil and
the subscript R to refer the radial plasma position.

The stabilisation of the vertical plasma position is due to the Lorentz force which can
be expressed as a force per unit length, referred to as F′, by

F′ = I × B

[
N

m

]
, (4.1)

71
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where I is the current and B is the magnetic field.

4.2.1 Linearisation notation

Let us define s as a variable standing for any varying quantities in a tokamak like the
plasma current Ip, the vessel current Iv, the active coil current Ia, the radial R and
vertical z plasma position, the radial magnetic field BR and the vertical force Fz. For
what follows we use the notation s for all the quantities describing the linearised model.
The notation s0 is used to describe the quantities at the equilibrium for which the linear
model (linearisation equilibrium) is derived. The quantities which coincide with the actual
quantities in a tokamak in operation is referred to as ŝ and is given by

ŝ = s0 + s.

We assume that when the state of the linear model is located at the linearisation equilib-
rium (ŝ = s0) all quantities describing the linear model are zero (s = 0).

To clarify this linearisation notation let us give an example by considering as quantity
the plasma current: Ip describes the plasma current of the linearised model, Ip0 is the

value of the plasma current at the linearisation equilibrium and Îp represents the actual
plasma current in the tokamak.

4.2.2 The basic passive stabilisation due to the vacuum vessel

The vertical plasma position stabilising effect of the vacuum vessel is due to the currents
in the vessel wall. These vessel currents are induced by a displacement of the plasma and
create a magnetic field. But only a radial magnetic field, referred to as BR, can contribute
to the vertical plasma position stabilisation since from the Lorentz force equation a vertical
force is solely due to the toroidal plasma current Ip and the radial magnetic field BR, i.e.

F ′
zez = Ip0eφ × BReR. (4.2)

Figure 4.1 illustrates that the radial magnetic field BR can solely be created by currents
in the upper and lower halves of the vessel, schematically referred to as It and Ib. Further-
more, these currents have to have opposite signs, i.e. ItIb < 0, to obtain a radial magnetic
field BR = Bt + Bb, where Bt and Bb have the same sign. Such a current distribution in
the vessel is referred to as the asymmetric up-down mode current distribution.

For what follows we show that the vacuum vessel naturally possesses symmetric and
asymmetric up-down eigenmodes. For this purpose we model the vacuum vessel by sub-
dividing it into a finite number, referred to as nres, of toroidal filaments. Figure 4.1
illustrates the vessel filament modelling of TCV. The system of the vessel filaments can
be described as follows

Mvesİves + ΩvesIves = 0, (4.3)

where the currents of the nres filaments are described by the current vector Ives ∈ R
nves ,

the ohmic resistances of the filaments by the diagonal matrix Ωves and the self-inductances
of each filaments and the mutual inductances between the filaments by the matrix Mves.
Equation (4.3) can be expressed as

İves = −M−1
vesΩvesIves
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and the vessel current eigenmodes are derived by diagonalising the matrix M−1
vesΩves by

means of the linear transformation

Ives = TvesIv, (4.4)

where Tves is the linear transformation matrix and the vector Iv ∈ R
nves refers to the

currents of the vessel eigenmodes. With this linear transformation we obtain the diagonal
matrix

L−1
v Ωv = T−1

vesM
−1
vesΩvesT

and by choosing arbitrarily a diagonal constant vessel mode resistance matrix Ωv the re-
sulting diagonal matrix Lv describes the self-inductance of the vessel current eigenmodes.
Thus, the system of the vessel filaments (Equation (4.3)) can be described as a function
of the vessel eigenmode currents, i.e.

Lv İv + ΩvIv = 0. (4.5)

By means of Equation (4.4) the current distribution in the vessel wall can be deduced
for every eigenmode current Iv. Figure 4.2 shows the vessel wall current distribution
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of the first 6 eigenmodes of the TCV vessel. The filament numbering corresponds to
the numbering in Figure 4.1. We see that the vessel eigenmodes 2 and 5 are up-down
asymmetric modes while the other eigenmodes are up-down symmetric. Thus, the vertical
plasma position stabilisation is essentially due to the modes 2 and 5.
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Figure 4.2: Current distribution in the vessel wall for the first 6 vessel eigenmodes.

4.2.3 The model of the basic passive stabilisation

The equations to be solved are: i) the vertical force balance equation for the plasma
(Lorentz force)

mp
d2z

dt2
= Fz = −2πR0Ip0BR(z) (4.6)

illustrated in Figure 4.3 a), where BR(z) denotes the radial magnetic field at the vertical
plasma position z and ii) the circuit equation for the vacuum vessel

Lv
dIv

dt
+ ΩvIv +

dMvz

dt
Ip0 + Mvz0

dIp

dt
= 0, (4.7)

where Iv ∈ R, Lv and Ωv represent solely the first up-down asymmetric vessel eigenmode
current (mode 2 in Figure 4.2) and Mvz represents the mutual inductance between the
vessel eigenmode current and the plasma current. In [35] it has been shown that when we
assume a slowly varying plasma current the term with plasma current derivative İp can
be neglected which leads to

Lv
dIv

dt
+ ΩvIv + M ′

vz

dz

dt
Ip0 = 0 (4.8)

where

M ′
vz =

∂Mvz

∂z

refers to the coupling coefficient between the plasma vertical position z and the vessel
eigenmode current Iv (illustration in Figure 4.3 b)).

The radial magnetic field BR(z) in Equation (4.6) has two components:



Chapter 4. Linear tokamak models 75

1. The external field due to the equilibrium field coils that are producing the unstable
curvature (see Section 1.1.5 in Chapter 1), referred to as BRext . When the plasma
is displaced vertically then the radial field component at z is varying as

BRext(z) =
∂BRext

∂z
z (4.9)

as a function of the vertical plasma position displacement z. By assuming stationary
fields, it can be deduced from Ampère’s law that the external magnetic field Bext in
the vacuum vessel satisfies

∇× Bext = 0 implying that
∂Bzext

∂R
− ∂BRext

∂z
= 0.

Thus Equation (4.9) becomes

BRext(z) = −nBzext

R0

z, (4.10)

where

n = − R0

Bzext

∂Bzext

∂R

is the decay index (Equation (1.11)) evaluated at the plasma radial position R0.
Furthermore, the external vertical magnetic field Bzext is given by the Shafranov
Relation (1.6) and by Equation (1.10), i.e.

Bzext = −Bv = − µ0

4πR0

Ip

[
ln

(
8R0

a

)
+

li
2

+ βp − 3

2

]
.

This leads finally to

BRext(z) =
µ0Ip0Γn

4πR2
0

z, (4.11)

where

Γ =

[
ln

(
8R0

a

)
+

li
2

+ βp − 3

2

]
(4.12)

is the Shafranov coefficient.

2. The restoring radial magnetic field due to the currents induced in the vacuum vessel
wall (Iv) by a vertical plasma displacement is referred to as BRves(Iv). By considering
the magnetic flux Ψvz = MvzIv due to the vessel eigenmode current Iv the radial
magnetic field BRves(Iv) is deduced from

∂Ψvz = BRves(Iv)eR · ∂S,

with the surface ∂S = 2πR0∂zeR having a radial normal vector. This leads finally
to

BRves(Iv) = − 1

2πR0

∂Mvz

∂z
Iv, (4.13)
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where the minus sign is due to following fact (we assume that M ′
vz > 0, Lv > 0

and Ip0 > 0). When the plasma is displaced upwards (ż > 0) the current induced
in the vessel becomes negative (Iv < 0) due to Equation (4.8). To stabilise the
vertical plasma position the radial magnetic field has to be positive to induce by the
Lorentz force law a downward pointing vertical force (F ′

z < 0) (Figure 4.1). Thus,
since Iv < 0 the negative sign in Equation (4.13) is required to satisfy BRves(Iv) > 0.

The total radial magnetic field is given by

BR(z) = BRext(z) + BRves(Iv) =
µ0Ip0Γn

4πR2
0

z − 1

2πR0

∂Mvz

∂z
Iv (4.14)

Combining Equations (4.6) and (4.14) and considering Equation (4.8) leads to the linear
third order dynamical system given by the following two differential equations

z̈ +
µ0I

2
p0

Γn

2R0mp

z − M ′
vzIp0

mp

Iv = 0 (4.15)

and

Lv İv + ΩvIv + M ′
vz żIp0 = 0. (4.16)

The study of the eigenvalue characteristics for this system is given in [35]. Furthermore,
it is shown (in [35]) that this model can be simplified without any significant loss of
accuracy by assuming a zero plasma mass (mp = 0) which leads to the approximation
of the instantaneous force balance. In this limit the only solution for the force balance
equation (Equation 4.6) is BR(z) = 0. Thus, we set BR(z) = 0 in Equation (4.14) which
leads to

αzIp0 + M ′
vzIv = 0, (4.17)

where

α = −µ0Γn

2R0

(4.18)

is referred to as the field curvature. This simplification leads to a first order linear system
given by substituting żIp0 in Equation (4.16) by means of Equation (4.17), i.e.

İv +
Ωv

Lv − M ′2
vz

α

Iv = 0, (4.19)

where its eigenvalue given by

λ =
Ωv

Lv − M ′2
vz

α

. (4.20)

We see that System (4.19) is marginally stable if the ohmic resistance in the vessel wall is
zero (Ωv = 0, superconducting vessel wall). Furthermore, we can deduce from the results
presented in the next section that in the case of non-zero ohmic resistance, System (4.19)

is always unstable (λ > 0) for elongated plasmas since Lv − M ′2
vz

α
> 0.
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Figure 4.3: The simple second order model. a) the vertical force balance equation for
the plasma; b) the vessel stabilisation; c) the active coil system stabilistion and d) the
simplified second order model represented schematically.

4.2.4 The model for the plasma-vessel-active coil system

We extend the previous model by adding an active coil system. We therefore add a circuit
equation for the active coil system and approximate similarly as in the previous section
by considering the instantaneous force balance. This leads to the algebraic equation

αzIp0 + M ′
vzIv + M ′

azIa = 0 (4.21)

and to the two differential circuit equations

Laİa + ΩaIa + Mav İv + M ′
az żIp0 = Va (4.22)

Lv İv + ΩvIv + Mav İa + M ′
vz żIp0 = 0, (4.23)

where the radial field derivatives are given by

M ′
vz =

∂Mvp

∂z
and M ′

az =
∂Map

∂z
. (4.24)

Figure 4.3 c) illustrates the stabilising active coil system and Figure 4.3 d) illustrates
schematically the model described by Equations (4.21)-(4.23).

Tables 4.2-4.4 give a short description of all physical variables and constants used
throughout the chapter.
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By taking the derivative of equation (4.21) this set of equations can be written in
matrix form

Mẋp + Ωxp =

⎡
⎣ La Mav M ′

az

Mav Lv M ′
vz

M ′
az M ′

vz α

⎤
⎦ ẋp +

⎡
⎣ Ωa 0 0

0 Ωv 0
0 0 0

⎤
⎦xp = U, (4.25)

where

xp =

⎡
⎣ Ia

Iv

zIp0

⎤
⎦ and U =

⎡
⎣ Va

0
0

⎤
⎦ (4.26)

denote the physical state variables and the input voltage, respectively. This leads to the
ODE system

ẋp = −M−1Ωxp + M−1U = Apxp + bpVa = Apxp + bpu. (4.27)

The tokamak outputs like the plasma parameters and the magnetic diagnostic measure-
ments (about 100 sensors) are linear combinations of the state variables (all of which are
current sources).

y = Cpxp. (4.28)

Remark:
The vector xp represents the state variables. At first sight Equation (4.27) looks like a
third order differential equation system since we have three state variables Ia, Iv and zIp0 .
But remember that the last line of (4.25) expresses only the algebraic Equation (4.21).
Thus, we could reduce the system to a system where the matrices M and R are element
of R

2×2 by substituting żIp0 of the first two lines of System (4.25) with the algebraic
equation which expresses żIp0 in function İa and İv. This would result in a second order
system (also called the minimal realisation of the system) where Ia and Iv are its real state
variables. It is also possible to get a minimal realisation of System (4.25) by substituting
Ia or Iv. For our purposes we will consider the first variant and define Ia and Iv as state
variables and call zIp0 a pseudo state variable.

4.2.5 The modes of the second order system

It is well known that the elongated plasma of a tokamak possesses an unstable mode.
We will show that this is due to the negative decay index n < 0 which is the only way
to get a very elongated plasma [35] (Section 1.1.5). Usually this instability is called the
vertical position instability. This denomination is somewhat confusing because it suggests
that only the vertical position is unstable. But, at least for the linear model, all physical
states xp are unstable since they are all dependent of the unstable mode, as we will show
later. The use of the vertical position instability has, so to speak, its legitimacy if we take
into consideration that the unstable mode appears only if the algebraic Equation (4.21)
defining the vertical position is added to the model.

The modes of System (4.27) are given by the eigenvalues of the matrix Ap. These
eigenvalues are solely pure real values. This is due to the following theorem.
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Theorem 1
Consider the symmetric real matrix S and the diagonal real matrix D with solely positive
and zero elements. Then the eigenvalues of the matrix product SD are solely pure real.

Proof: Consider

Ax = SDx = λx,

where x is any eigenvector of A and λ is its corresponding eigenvalue. By multiplying
with x∗D and by observing that D

1
2
∗

= D
1
2 since the elements of D are positive or zero

valued we obtain

x∗DSDx = λx∗Dx = λx∗D
1
2 D

1
2 x = λx∗D

1
2
∗
D

1
2 x = λ‖D 1

2 x‖2
2.

Since

(x∗DSDx)∗ = x∗D∗S∗D∗x = x∗DSDx

we obtain

(λ‖D 1
2 x‖2

2)
∗ = λ∗‖D 1

2 x‖2
2 = λ‖D 1

2 x‖2
2

and thus λ possesses no imaginary part.

Since M2 and thus −M−1
2 are symmetric and since Ω2 is diagonal with positive and zero

elements the eigenvalues of A2p given by

λ0 = 0 (4.29)

λ1 =
1

2

N −√
N2 − 4ΩaΩvαD

D
(4.30)

λ2 =
1

2

N +
√

N2 − 4ΩaΩvαD

D
(4.31)

where

N = −α(LaΩv + LvΩa) + M ′2
vzΩa + M ′2

azΩv (4.32)

D = 2MavM
′
azM

′
vz − LaM

′2
vz − LvM

′2
az + α(LaLv − M2

av). (4.33)

are solely pure real valued. The first eigenvalue λ0 = 0 is due the fact that the rank of A2p

is equal 2 instead 3 because of the algebraic Equation (4.21). Physically it is not a mode
of the system. Therefore, λ1 and λ2 are the two real modes of the second order system.
Since the eigenvalues are real valued the expression in the square root is positive or zero

N2 − 4ΩaΩvαD ≥ 0 (4.34)

Consider the system without the algebraic Equation (4.21) defining the vertical position
by setting α = 1 and M ′

az = M ′
vz = 0. This system results in a simple electromagnetic two

coil coupled system, where the self-inductances La, Lv > 0, the resistances Ωa, Ωv > 0 and
the mutual inductances Mav ∈ R. The eigenvalues of this system are given by Equations
(4.30) and (4.31) with

N = N0 = −(LaΩv + LvΩa) < 0 (4.35)

D = D0 = LaLv − M2
av. (4.36)
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An electromagnetic coil coupled system is a passive system and is therefore stable. More-
over, such a system is not oscillating. Thus, both eigenvalues have to be pure real and
negative. The pure real eigenvalue property is intrinsically given by the expression in the
square root which is always positive

N2
0 − 4ΩaΩvD0 = (LaΩv − LaΩv)

2 + 4ΩaΩvM
2
av > 0.

The negative eigenvalue property is given by imposing condition

D0 = LaLv − M2
av > 0 (4.37)

which assures that the square root expression verifies

N2
0 > N2

0 − 4ΩaΩvD0.

Condition (4.37) gives the well known coupling factor between two coils defined by

k =
|Mav|√
LaLv

which is always k ∈ [0, 1].
By considering the algebraic Equation (4.21) defining the vertical position which re-

sults in the eigenvalues given by Equations (4.30)-(4.33) we will show that one eigenvalue
can take a positive value depending on the parameters α, M ′

az and M ′
vz. The demonstra-

tion is given by analysing the eigenvalue’s sign as a function of α.
Before that, let us

1. introduce the critical value of α

αc =
LaM

′2
vz + LvM

′2
az − 2MavM

′
azM

′
vz

LaLv − M2
av

> 0, (4.38)

which occurs when D of Equation (4.33) is equal zero. The critical value of α is
always positive since LaLv − M2

av > 0 condition (4.37) and since

LaM
′2
vz + LvM

′2
az − 2MavM

′
azM

′
vz > 0. (4.39)

Condition (4.39) is easily verified when MavM
′
azM

′
vz < 0. In the case where MavM

′
azM

′
vz >

0 we can rewrite the condition by substituting MavM
′
azM

′
vz with |Mav||M ′

azM
′
vz| and

by the substitution

LaM
′2
vz + LvM

′2
az = (

√
La|M ′

vz| −
√

Lv|M ′
az|)2 + 2

√
LaLv|M ′

azM
′
vz|

which results in

(
√

La|M ′
vz| −

√
Lv|M ′

az|)2 + 2
√

LaLv|M ′
azM

′
vz| − 2|Mav||M ′

azM
′
vz| > 0.

Since the first term is quadratic it remains to show that

2
√

LaLv|M ′
azM

′
vz| − 2|Mav||M ′

azM
′
vz| > 0 =⇒ LaLv − M2

av > 0

which is Condition (4.37).
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2. notice that D in Equation (4.33) is linearly dependent on α. Therefore, because of
condition (4.37) we observe that

D > 0, ∀α > αc and D < 0, ∀α < αc.

3. notice that N in Equation (4.32) is also linearly dependent on α. For N = 0 the
resulting expression in the square root has to be positive since the eigenvalues are
pure real valued. Thus, for N = 0

−4ΩaΩvαD > 0 =⇒ αD < 0

which is verified if α ∈ (0, αc). Therefore, since N > 0 for α = 0 it results that

N < 0, ∀α ≥ αc.

These preliminaries now allow the analysis of the eigenvalue’s sign evolution as a function
of α.

• α < 0:
Implies N > 0 and D < 0. Thus, the expression in the square root satisfies

0 < N2 − 4ΩaΩvαD < N2

which results in

λ1 < 0 and λ2 < 0.

• α = 0:
Implies N > 0 and D < 0. The expression in the square root is equal to N2 resulting
in

λ1 = 0 and λ2 =
N

D
< 0.

• 0 < α < αc:
Implies D < 0. Thus, the expression in the square root satisfies

N2 − 4ΩaΩvαD > N2

which results in

λ1 > 0 and λ2 < 0.

• α = αc:
Implies N < 0 and D = 0. Thus, the denominator of both eigenvalues (Equations
(4.30) and (4.31)) are zero. For λ1 the nominator is N and λ1 is therefore not
defined. For λ2 the nominator converges to zero when α → αc. Therefor, it can be
shown with de l’Hopital’s rule that λ2 < 0.
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• α > αc:
Implies N < 0 and D > 0. Thus, the expression in the square root verifies

0 < N2 − 4ΩaΩvαD < N2

which results in

λ1 < 0 and λ2 < 0.

For an elongated plasma the decay index n is negative [35] (Section 1.1.5) which according
to Equation (4.18) results in α > 0. Therefore, the case where α < 0 is not of interest
for elongated plasma studies. When α = 0 the decay index is equal to zero which means
that the external magnetic field is not curved. This occurs when the plasma is circular
(for large aspect ratio) and is therefore not relevant, too. For a strongly elongated plasma
(n < 0, α > 0) the linear model has two different ranges. It turns out that for the first
part, where 0 < α < αc, one eigenvalue, i.e. λ1, is positive resulting in an unstable
system. According to the simple second order model the system becomes stable again for
α > αc. This is due to the fact that the force balance model does not consider the mass
of the plasma. But for α > αc the plasma takes a considerable part in the dynamic of
the plasma. In this case the plasma is still unstable and has a very fast unstable mode.
Thus, the linear model is only valid in the range of 0 < α < αc and its accuracy decreases
when α approaches its critical value αc. It turns out that the second order model is a
good approximation since α is always below its critical value. This is due partly to the
active coil system and mainly to the vessel.

Consider for example that there are no active coil and vessel. Then M ′
az and M ′

vz

are both zero and thus αc is zero as well according to Equation (4.38). This case can
obviously not be represented with the simple linear model. By adding the active coil
system and the vessel the coupling factors M ′

az and M ′
vz mostly reach sufficient important

values to ensure that α < αc. Therefore, the simple linear model is in most cases a good
approximation. For what follows we will consider only cases for which 0 < α < αc is
satisfied.

Table 4.1 shows the summary of the discussed properties of λ1 and λ2 as a function of
α. Furthermore, Figure 4.4 illustrates a numerical example of the evolution of λ1 and λ2

as a function of α with the intention of giving an impression of the shape of the evolution.

α < 0 α = 0 0 < α < αc α = αc α > αc

λ1 < 0 = 0 > 0 − < 0
λ2 < 0 < 0 < 0 < 0 < 0

Table 4.1: Summary of the signs of the eigenvalues as a function of α.

4.3 The RZIP model

The RZIP model has a similar structure to the simple second model. The major difference
lies in the following three improvements:
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Figure 4.4: Numerical example of the evolution of λ1 and λ2 as a function of α.

1. The plasma current evolution is no longer neglected. Therefore the plasma current
denoted by Ip is added to the state variables vector. The plasma current shows simi-
lar properties to a coil and therefore possesses a self-inductance, mutual inductances,
coupling coefficients and an ohmic resistance.

2. The instantaneous radial force-balance equation is added. Similar to the vertical
force-balance it is an algebraic expression. Thus, a pseudo state variable RIp0 de-
noting the radial plasma position is introduced into the model.

3. The number of active coil currents and vessel eigenmodes is unlimited. The variable
Ia ∈ R

na consists of a vector for which every of the na elements expresses the current
of a single coil or a structure of serial connected coils. This implies that the voltage
input variable denoted by Va is also a vector with na different corresponding voltage
inputs. Similar to that, Iv ∈ R

nv is a vector with nv different vessel eigenmodes.

These additions result in the RZIP model formally described in [40].

Mẋp + Ωxp =

⎡
⎢⎢⎢⎢⎣

La Mav Map M ′
aR M ′

az

Mav Lv Mvp M ′
vR M ′

vz

Map Mvp Lp M ′
pR M ′

pz

M ′
aR M ′

vR M ′
pR β M ′

Rz

M ′
az M ′

vz M ′
pz M ′

Rz α

⎤
⎥⎥⎥⎥⎦ ẋp +

⎡
⎢⎢⎢⎢⎣

Ωa 0 0 0 0
0 Ωv 0 0 0
0 0 Ωp 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦x = U,

(4.40)

where

xp =

⎡
⎢⎢⎢⎢⎣

Ia

Iv

Ip

RIp0

zIp0

⎤
⎥⎥⎥⎥⎦ and U =

⎡
⎢⎢⎢⎢⎣

Va

0
0
0
0

⎤
⎥⎥⎥⎥⎦ , (4.41)
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again leading to the ODEs in state space form

ẋp = −M−1Ωxp + M−1U = Apxp + BpVa = Apxp + Bpu. (4.42)

Tables 4.2-4.4 give a short description of all physical variables and constants used.
As for the simple model the outputs, like plasma parameters and magnetic diagnostic

measurements (about 100 sensors), of the tokamak are expressed as linear combinations
of the state variables.

y = Cpx. (4.43)

4.3.1 Unstable characteristic of the RZIP model

The matrix M is symmetric implying that its inverse M−1 is also symmetric and Ω is a
diagonal semi-positive matrix (all its elements are positive or zero). Therefore by applying
Theorem 1 the eigenvalues of Ap = −M−1Ω cannot be imaginary. Similar to the simple
second order model, the existence of the instability of the RZIP model depends on the
value of the field curvature α.

Due to the structure of the model there exists at most only one unstable mode when
the plasma is elongated, i.e. α > 0. This behaviour of the RZIP model can be verified
by taking numerical examples. All linear models derived so far with RZIP have shown
the characteristic of a single unstable pole. So far, we are not able to provide a complete
formal proof of this statement. Nevertheless, for what follows we give the principal ideas
and the required assumptions for demonstrating the existence of a single unstable pole
for elongated plasmas.

The eigenvalues of Ap are the n roots of its characteristic polynomial given by

det(λI − Ap) = det(λI + M−1Ω) = det(M−1) det(λM + Ω) (4.44)

=
1

det(M)
det(λM + Ω),

where

det(Mλ + Ω) =

∣∣∣∣∣∣
⎡
⎣ λMp + Ωp λMT

β λMT
α

λMβ λβ λM ′
Rz

λMα λM ′
Rz λα

⎤
⎦
∣∣∣∣∣∣ (4.45)

with

Mp =

⎡
⎣ La Mav Map

Mav Lv Mvp

Map Mvp Lp

⎤
⎦ , Ωp =

⎡
⎣ Ωa 0 0

0 Ωv 0
0 0 Ωp

⎤
⎦ ,

Mα =
[

M ′
aR M ′

vR M ′
pR

]
and Mβ =

[
M ′

az M ′
vz M ′

pz

]
.

We express the characteristic polynomial of det(Mλ + Ω) as

det(Mλ + Ω) = anλ
n + . . . + a2λ

2 + a1λ + a0. (4.46)

By identifying the coefficients of this polynomial with Equation (4.45) we obtain

a0 = 0, a1 = 0, a2 = Trace(Ωp) α β and an = det(M), (4.47)
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where the two coefficients a0 = 0 and a1 = 0 are due to the simple fact that the dynamical
System (4.42) possesses two algebraic equations linked to the vertical z and radial R
plasma positions.

We reformulate the characteristic polynomial of Ap as

det(Iλ − Ap) =
1

det(M)
det(Mλ + Ω)

= λn +
an−1

det(M)
λn−1 + . . . +

a3

det(M)
λ3 +

Trace(Ωp) α β

det(M)
λ2 (4.48)

= λ2C(λ),

where

C(λ) = λn−2 +
an−1

det(M)
λn−3 + . . . +

a3

det(M)
λ +

Trace(Ωp) α β

det(M)
. (4.49)

Since we already know that there are two eigenvalues at zero we only need to study the
roots of the function C(λ). Three cases depending on the sign of α can be distinguished:

1. α = 0:
C(λ) has a root at zero. In this case we assume that System (4.42) is marginally
stable and thus we consider that all other roots are negative. Furthermore, by
observing that

lim
λ→+∞

C(λ) = +∞ (4.50)

the function C(λ) can be qualitatively illustrated as in Figure 4.5 a). Since there
is no positive root the function C(λ) can never cross zero (C(λ) = 0) for all λ > 0.
Note that Figure 4.5 a) illustrates only the first two roots λ0 = 0 and λ1 < 0.

2. α < 0:
We consider the function C(λ) at λ = 0, i.e.

C(0) =
Trace(Ωp) α β

det(M)
. (4.51)

Since all resistances of Ωp are positive we have Trace(Ωp) > 0. Furthermore, we
assume that β

det(M)
< 0. Thus, for α < 0 condition C(0) > 0 is satisfied. Since the

function C(λ) is also a continuous function of α we consider first C(λ) at α = 0
and vary C(λ) continuously by decreasing α (α < 0). This leads to a function C(λ)
for α < 0 which can be qualitatively illustrated as in Figure 4.5 b). Therefore, the
roots of C(λ) are strictly negative, i.e. λ2 < λ1 < 0.

3. α > 0:
Due to Equation (4.51) and by considering Trace(Ωp) > 0 and β

det(M)
< 0 condition

C(0) < 0 is satisfied for α > 0. Thus, similarly as for the case α < 0, we consider
first C(λ) at α = 0 and vary C(λ) continuously by increasing α (α > 0) which leads
to a function C(λ) for α > 0 which can be qualitatively illustrated as in Figure
4.5 c). In this case we inevitably obtain a single positive root λ1 > 0, while all other
roots remain negative, i.e. λ2 < 0.
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Figure 4.5: Qualitative illustration of the function C(λ): a) for α = 0, b) for α < 0 and
c) for α > 0.

Note that det(M) varies as a function of α. It turns out that for α > 0 there is a value of
α for which det(M) = 0. Compared with the simple second order model, this corresponds
to the case for which α is equal to its critical value (α = αc).

To obtain a more rigorous and complete proof of the existence of a single positive root
for α > 0 further investigations are required. Among other things we will have to prove
that

• there is no positive root for α = 0 and

• β
det(M)

< 0 (Note that the RZIP model provides β < 0 and det(M) > 0)
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4.4 The CREATE-L model

Contrary to the RZIP model the CREATE-L model [2] allows plasma deformation by
conserving an equilibrium of the plasma current distribution. In addition, the effect of
changes to βp and li are evaluated consistently. The constraints equations (algebraic
equations expressing zIp0 and RIp0 in function of the currents for the RZIP model) are
eliminated, but the model is expressed similarly to that of RZIP.

Ia ∈ R
na na active coil currents

Iv ∈ R
nv nv vessel eigenmode currents

Ip ∈ R Plasma current
RIp0 ∈ R Radial plasma position times Ip0

zIp0 ∈ R Vertical plasma position times Ip0

Table 4.2: The physical state variables.

Ωa, Ωv Resistances of active coils and vessel eigenmodes (diagonal matrices)
La, Lv Self and mutual inductances of active coils and vessel eigenmodes
Mav Mutual inductances between active coils and vessel eigenmodes
Ωp Plasma resistance
Lp Plasma self-inductance

Map, Mvp Mutual inductances between plasma and active coils or
vessel eigenmodes

M ′
aR, M ′

vR, M ′
pR Coupling coefficient between radial position and active coils,

vessel eigenmodes or plasma
M ′

az, M ′
vz, M ′

pz Coupling coefficient between vertical position and active coils,
vessel eigenmodes or plasma (M ′

pz = 0 [40])

M ′
Rz Coupling coefficient between radial position and vertical position
β The self-coupling coefficient of radial position (see [17, 40])
α The field curvature: self-coupling coefficient of vertical position

Table 4.3: The parameters of mutual inductance matrix M and resistance matrix Ω.

Ip0 Plasma current at equilibrium
R0 Radial plasma position at equilibrium

n Decay index n = −R0

Bz

∂Bz

∂R
,

where Bz is the vertical Field at R0

Γ Shafranov coefficient

Table 4.4: The plasma and magnetic field parameters at equilibrium.
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Chapter 5

The effect of feedback control on
superconducting tokamak AC losses

5.1 Introduction

Most present tokamaks use copper conductors for the creation of the magnetic fields re-
quired to provide the plasma equilibrium and to control the shape and position of the
plasma cross section. Exceptions are Tore Supra, T-7 and T-15 which have superconduct-
ing toroidal field coils, the small tokamak TRIAM which has superconducting toroidal
and poloidal field coils and the LHD Stellarator. These tokamaks operate with circular
cross section plasmas and do not require active control of the vertical positional instability
which is a property of vertically elongated plasma cross-sections.

The fusion power generated in a tokamak reactor plasma is less than the ohmic power
which would be dissipated in copper poloidal and toroidal field coils, requiring supercon-
ducting magnets in any large device. The next generation of tokamaks under construction,
K-STAR, SST-1 and HT-7U will require vertical position and active shape control and
will be fully superconducting. The future large tokamak ITER is also naturally designed
with superconducting coils. The interplay between the superconducting magnets and the
plasma shape and position control will become important for these devices and presents
one of their new features.

Superconducting coils possess superconducting properties only below a critical tem-
perature around a few K. For a temperature above this critical temperature the coils
show a non-negligible electric resistivity. AC losses are detrimental since they heat up
the superconducting material. Thus, if AC losses are too large, the cryogenic plant can
no longer hold the required temperature to maintain the superconductivity properties.
Once the superconductivity is lost, the electric currents in the coils produce an enormous
heat loss due to the ohmic resistivity, which leads to a possible damage of the coils. In
general, the coils are designed with enough margin to absorb all likely losses. A possible
loss reduction could allow us to downsize the superconducting cross section in the cables,
reducing the overall cost, or simply increase the operational cooling margin for given coils.

When the magnetic transverse field in superconducting magnets changes, the magnet
generates two types of heat loss, the so-called coupling loss and the so-called hysteresis
loss, grouped together as AC losses and described in Section 5.2 of this chapter. The
field variations which lead to losses are produced by the evolution of the equilibrium
through the discharge, referred to as the scenario loss, and the action of the plasma
position and shape controller, referred to as feedback losses. During the design of ITER,
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studies were performed to estimate the effect of the action of the feedback control loops on
the accumulated AC losses to determine the required cryogenic plant load and the local
cooling requirements of the magnets. These estimates were performed with a complex
code [57] which analysed the results of simulations of the plasma shape and position
feedback control loops. The effect of the design of the controller on the AC losses had not
previously been investigated.

The aim of this present chapter is to determine to what extent the accumulated AC
losses in ITER could be reduced by taking into account the losses themselves when de-
signing the feedback control loops. In order to be able to carry out this investigation an
AC loss model is required which permits a fast estimation of the AC losses. Note that for
the existing code [57] an execution time (computing and analysing time together) of about
6 months per AC losses estimation is typical. This is of course not practicable for our
optimisation purposes. Therefore, a simpler and fast executable model of the AC losses,
referred to as the ”AC-CRPP” model, has been developed and is described in Section 5.2.
At present, the AC losses are only calculated for the PF coils. This model was compared
with detailed simulations available, in order to validate it. The action of the feedback con-
trol was simulated using a standard linearised model of the ITER tokamak [31] and using
the standard ITER position and shape feedback controller [6, 7], described in Section 5.3.
In order to evaluate the feedback controller performance, a set of standard disturbances
was used, corresponding to the ITER design methodology [21] and summarised in Section
5.3.

In Section 5.4, the results of these simulations are presented, showing that the AC-
CRPP model agrees well enough with the basic calculations of the detailed code [57]
to have confidence in using the AC-CRPP model to refine the feedback controller. The
distribution of the AC losses among the different coils is also discussed in Section 5.5.

These results allowed us to modify the feedback controller, especially the fast part
which guarantees the vertical stability, showing that the hysteresis loss is only weakly
affected by the controller design but that the coupling loss can be significantly reduced.
A modified controller is proposed, to illustrate potential reductions using different design
criteria.

In Section 5.6, we discuss the significance of these results for ITER, showing that
the total AC losses are weakly dependent on controller design for the short 430 second
flat-top, but that for longer pulse operation the AC losses could be usefully reduced by
the approach presented.

5.2 AC loss model and validation

5.2.1 Superconductors and AC losses

5.2.1.1 Characterisation of superconductors

Below a certain critical temperature Tc, superconductors lose their electrical resistivity.
Superconductors show the Meissner-Ochsenfeld-effect (diamagnetic behaviour) which is
the expulsion of all external magnetic fields from their interior. The interior includes all
the the material except for a very thin layer on the surface of the conductor (the London
penetration depth λ). Inside this very thin surface layer an induced shielding current
circulates, whose magnetic field compensates the external magnetic field.
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Type I superconductors show a complete Meissner effect and expel all of the magnetic
field from their interior up until a critical magnetic field Bc when they abruptly cease
to behave like superconductors.

Type II superconductors only exhibit a partial Meissner effect except for weak mag-
netic fields up to a strength of Bc1, above they show progressively less expulsion
until at a certain level of magnetic field Bc2 they abruptly cease to behave as super-
conductors.

There is also a critical current density Jc above which the material loses superconductiv-
ity. Tc, Bc and Jc are interrelated.

Although there is no resistivity in superconducting cables, there are still AC losses in
the presence of time-varying magnetic fields. The two most important types are hysteresis
loss and coupling loss. They produce heat and are therefore important factors when
designing the cryogenic system. Their relative importance depends on the application.

5.2.1.2 Hysteresis loss

In Figure 5.1 we illustrate a DC magnetisation curve for a type II superconductor, of the
type proposed for ITER. When a magnetic field is initially applied (for this explanation we
assume B > 0), the superconductor shows perfect diamagnetism, the shielding currents
induced at the filament surface preventing the flux from penetrating (−M = H > 0) up
until Bc1. Above Bc1 the flux gradually penetrates into the filament until it reaches its
center at the first penetration field Bp1. For a higher magnetic field B the magnetisation
decreases and eventually becomes 0 at the upper critical field Bc2 (upper branch, not
illustrated in Figure 5.1). When the magnetic field is decreased, the average magnetisation
begins to decrease rapidly, reverses its sign (−M < 0) and reaches the lower branch
(Figure 5.1). The flux trapped at B = 0 is the residual magnetisation.

-M

0 1 2

2Bp

Partial loop,
without full penetration

Trapped flux

Upper branch

Lower branch

Applied magnetic field B (T)

Magnetization Partial loop,
with full penetration

Bc1 Bp1

B (T)

Figure 5.1: Magnetisation vs. applied magnetic field for a type II superconductor.

If the external magnetic field is reversed after the initial magnetisation (on the upper
branche), there has to be a certain field difference until the field reversal reaches the
center of the conductor. Figure 5.2 (a) shows the initial flux profile (dashed line) and
the flux profile after a field reversal of 2Bp (solid line). Bp is the penetration field and is
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the difference between the external field and the field at the electrical center line of the
conductor. To fully reverse the flux profile, a field change of 2Bp is needed. Figure 5.1
includes a loop with full penetration. The shaded area between the demagnetisation
and magnetisation path is the loss caused during the cycle. If the field difference is
smaller, there is not full penetration and the resulting flux profile is like that shown in
Figure 5.2 (b).

Itr

Bp

Bp

2Bp

df

∆B

∆B

(a) (b)

Bp

Bp

(c) (d)

Figure 5.2: Penetration field without and with transport current. The dashed profile
represents the situation on the upper branch of the magnetisation curve. The solid profile
represents the lower branch.

It is assumed that the critical current density Jc is constant over the filament cross-
section, so the flux profiles have a linear behaviour and Bean’s model [8] can be used, in
which for a cylinder of diameter df and with an external magnetic field perpendicular to
the cylinder axis,

Bp⊥ =
µ0jc‖(B)df

π
. (5.1)

where jc‖ is the critical current density of the superconductor, a function of temperature
and external magnetic field, that can be obtained from measurements.

For closed cycles of magnetisation and demagnetisation, the energy loss qh per unit
volume of superconducting material is written as the integral of the magnetisation M
versus the applied magnetic field B with M the average value of magnetisation,

qh =

∮
M(B) dB (J/m3). (5.2)

The hysteresis losses are independent of the magnetic field rate of change Ḃ = dB
dt

.
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There are three simple cases considered for the calculation of the hysteresis loss, shown
in Figure 5.1 and Figure 5.2:

For ∆B < 2Bp⊥ (partial loop without full penetration, Figure 5.2 (b)):

qh,⊥ =
∆B3

3µ0Bp⊥

(
1 − ∆B

4Bp⊥

)
(J/m3) (5.3)

For ∆B > 2Bp⊥ (partial loop with full penetration, Figure 5.2 (c)):

qh,⊥ =
4

3

B2
p⊥

µ0

(
∆B

Bp⊥
− 1

)
(J/m3) (5.4)

For ∆B 
 2Bp⊥ (partial loop with full penetration, approximation for large ∆B)

qh,⊥ ≈ 4

3

Bp⊥∆B

µ0

(J/m3) (5.5)

Hysteresis losses are calculated over a closed cycle of external magnetic field and are
given per unit volume of superconductor (Joule/m3).

The three cases are illustrated in Figure 5.1. From the figure, the third case (light
shaded and approximatively squared area) overestimates the actual hysteresis loss.

If in a superconducting cylinder a longitudinal transport current Itr is superimposed on
the currents creating the transverse field magnetisation, the electric center line is moved
from the geometric center to the periphery of the filament (Figure 5.2 (d)). The flux
profile is asymmetric and the penetration field decreases by a factor (1 − k):

k =
Itr

Ic‖
, Bk

p⊥ = Bp⊥(1 − k) (T) (5.6)

This also modifies the range of validity of Equation (5.3) and Equation (5.4) (Bp⊥ has to
be replaced by Bk

p⊥). In addition, Equation (5.5) is modified to:

qh,⊥ ≈ 4

3

Bp⊥∆B

µ0

(1 + k2) (J/m3). (5.7)

These assumptions are used to estimate the hysteresis loss in the AC-CRPP model.
Further information on hysteresis losses is presented in [55].

5.2.1.3 Coupling current loss

Superconducting cables used in industrial applications are composed of several bundled
strands, each containing thousands of filaments. The reason for this is to avoid flux
jumps that can occur in cables with large filament diameters and to reduce hysteresis
loss. The drawback is the occurrence of a new class of losses, called coupling current
losses, because of the magnetic coupling of strands and filaments in the presence of a time
varying transverse magnetic field.

Two strands or filaments form an induction loop, in which the two superconducting
parts are linked by two non-superconducting volumes. The induced loop current has to
pass through this resistive area and thereby produces an ohmic loss (Figure 5.3). A time
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lP

B

Figure 5.3: View inside a strand with two twisted filaments embedded in a non-
superconducting matrix. The arrows illustrate a current loop caused by the varying
transverse magnetic field. The twist pitch lp is an average value and characterises the
length of a typical loop.

constant can be assigned to such a loop, which allows linking the magnetic field rate
of change Ḃ to the generated loss. This time constant for a twisted, multifilamentary
composite can be expressed as

τ =
µ0l

2
p

8π2ρ
(s), (5.8)

which represents the ratio of the loop inductance to the loop resistance, a function of the
twist pitch lp and the matrix resistivity ρ.

A multistage cable has a multitude of different loops with different time constants τi.
In this case, a dimensionless geometry factor ni is associated to every time constant τi.
An overall time constant has to be used for coupling loss calculations, expressed as

nτ =
∑

i

niτi (s). (5.9)

Due to the uncertitude in the resistance of the different loops, it is not reliable to estimate
the time constant directly from the conductor geometrical data, so it has to be measured.

For a linear ramp of the transverse magnetic field (Ḃ = const), the coupling power
loss per unit volume of strand material is given by

pc =
nτ

µ0

Ḃ2 (W/m3), (5.10)

from which we extract the essential information that the coupling loss increases with the
square of the field rate of change. This equation is called the steady state formula since
it is exact only for ramps with infinite duration. Steady state conditions can be assumed
if the time scale for the field change is much larger than the overall time constant factor
nτ . To illustrate this we consider the coupling loss during a finite time laps of ∆t. During
the time ∆t the change of the magnetic field is given by ∆B = Ḃ∆t since we assume a
linear ramp for which Ḃ = const. The coupling energy density loss during ∆t is given by
multiplying Equation (5.10) with ∆t

qc =
nτ

µ0

Ḃ2∆t =
nτ

µ0

∆BḂ =
1

2

1

µ0

∆BḂ 2nτ (J/m3). (5.11)

In contrast to it, the magnetic energy density accumulated during ∆t is given by

qm =
1

2

1

µ0

∆B2 =
1

2

1

µ0

∆BḂ ∆t (J/m3). (5.12)
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By comparing Equation (5.11) with Equation (5.12) we observe that when the duration
of the ramp is small ∆t < 2nτ the coupling loss energy density qc becomes larger than
the magnetic energy density qm. Of course, from the point of view of physics this is
not possible. The explanation lies in the fact that for short magnetic field ramps (small
∆t) the induced coupling currents cannot penetrate completely into the conductor during
the time ∆t. A certain amount of time is required, denoted by tpen, after which the
conductor can be considered as fully penetrated. The steady state formula is derived by
assuming that the coupling currents fully penetrate the conductor, which only happens
when ∆t 
 tpen is satisfied and thus tpen can by neglected. Therefore, for short ∆t the
actual coupling losses are always smaller that their estimation by means of the steady
state formula.

If the duration of the ramp ∆t is larger than 10nτ the steady state formula is accurate
enough. As an indication for the estimation error consider that the coupling losses are
overestimated by ≈ 10% in the case for which ∆t ≈ 10nτ . For shorter ramps, the steady
state formulas should be replaced by transient formulas [16]. But since these formulas
are complicated and their implementation is far from evident, we will focus in this study
only on the steady state formula.

For further informations on coupling current losses refer to [16]. Scaling laws for the
critical properties of NbTi can be found in [11].

5.2.1.4 ITER magnet cables

The conductors to be used for the ITER PF coils (ITER version 1998) are made out of
864, 1080 or 1440 strands with different winding schemes. The strands are composed
of sub-elements and the actual superconducting filaments are between 5 µm and 7 µm,
embedded in a copper matrix. These strands are surrounded by a steel jacket to absorb
the high mechanical forces, Figure 5.4.

Figure 5.4: Cable-in-conduit (CICC) superconductor developed for the ITER Tokamak.
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The central hole is a metal helix that carries most of the forced flow of supercritical
helium. At the inlet, the coolant is at 4.5 K and reaches a temperature of up to 5.5 K at
the outlet, leaving a margin of 1 − 2 K to the current sharing temperature.

The time between inlet and outlet is long in comparison with the time scale of all loss
mechanisms, so the coolant temperature can be considered as an integrator of the loss
history during the time the coolant is inside the conductor. The conductor is designed with
enough margin to absorb all likely losses. The possible reduction could allow downsizing
the superconducting cross section in the cables, reducing the overall cost.

Currently used filament diameters are around 7µm and could be as low as 5µm for the
ITER coils. To reduce the conductor cost, it would be interesting to increase the filament
diameter to at least 10µm, allowing a potentially simpler and cheaper manufacturing
process.

Other loss sources include conduction, thermal and nuclear radiation. The non su-
perconducting joints also generate losses due to ohmic heating. For ITER, the cryogenic
system will have approximately 150 kW cooling power.

5.2.2 Evaluation method and AC-CRPP model

5.2.2.1 Magnetic field evaluation

The AC losses in the PF coils are a function of the transverse magnetic field and its
time derivative at the center of every turn. Sources of the transverse magnetic field are
the toroidal currents in the PF and CS coils, the plasma and the conducting vacuum
vessel. These sources are modeled as discrete sets of stationary current carrying circular
filaments, illustrated in Figure 5.5 where the crosses represent the filaments that model
the coils, the circles represent the filaments that model the vessel and the dots represent
the filaments that model the plasma. Simulations have shown that the influence of plasma
position variations is small, so the plasma is assumed to be stationary. The TF coils also
contribute to the transverse field because their field is not uniform along the perimeter,
but this influence is small and therefore neglected in the model. The TF coil current itself
is considered constant.

The filaments representing the PF coil currents are distributed uniformly over the
whole area of each PF coil and the PF coil current is the sum of the nominal equilibrium
current plus the transient variations due to the action of the shape and position feedback
controller. The vessel is modeled as a set of 56 filaments that are identical to the states of
the ITER state-space model used for control purposes. The plasma is modeled as a grid
of filaments that carry a current defined by the plasma configuration and scaled according
to the total plasma current variation.

The field over the cross section of a coil has significant spatial variations. While the
field is maximum at the outside, it tends to zero at the center. This requires a certain
minimum number of evaluation points for a good representation of the field distribution.
In the AC-CRPP Model, a data point is sited at the center of every filament. The field at
each point is evaluated as the sum of all contributions from all other filaments of all coils,
plus the contribution from the vessel and the plasma. The influence of the particular
filament itself is neglected, because its influence is small.
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Figure 5.5: Current filament layout representing the magnetic field sources for the ITER
tokamak. Crosses represent the coils, circles the vacuum vessel and dots the plasma.

5.2.2.2 Hysteresis loss evaluation

A tricky question when evaluating hysteresis loss is the definition of the cycles. In most
simulations, the field does not return to its initial value. Figure 5.6 (a) shows the evolution
of the poloidal magnetic field during a minor disruption of the plasma current. Candidate
starting and ending points for cycles are the maxima and the minima of the magnetic
field, as well as the starting and the ending point of the simulation.

If entire cycles have to be defined, a large part of the evolution is not taken into
account. In Figure 5.6 (a) only the small cycle from t0 to t2 at the beginning is complete,
although during the larger, incomplete second cycle from t2 to t3 losses are also produced.
To resolve this, half cycles are defined in the AC-CRPP model, which allows us to cover
the whole range of magnetic field change. The ending and starting points of the half
cycles are all the points for which the derivative of the magnetic field is zero as well as
the starting point and the ending point of the simulation. Figure 5.6 (b) shows two half
cycles, the first from t0 to t1 and the second from t1 to t3. The loss is calculated with the
same formulae as for entire cycles, but only half of the calculated loss is added.

The second issue with the evaluation of hysteresis loss is how to distribute the loss
over the length of the cycle. The formulas only give the loss at the end of a half cycle.
To provide a value for the instantaneous hysteresis loss power, the method illustrated in
Figure 5.6 (c) is proposed. First, the field change with respect to the starting point is
evaluated for every time step of the cycle (top, arrows) and the loss energy corresponding
to that field change is calculated (middle, dashed lines) by means of the half cycle method.
The difference between two consecutive loss energy calculations (middle and bottom, solid
lines) divided by the time interval gives us the average loss power during a time step
(bottom, shaded area).
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Figure 5.6: Magnetisation loop definition and hysteresis loss evaluation method.

5.2.2.3 Coupling current loss evaluation

Equation (5.10) allows a direct calculation of the coupling loss power during a time step via
the magnetic field rate of change, approximated by dividing the magnetic field difference
by the time difference.

When the time scale of the magnetic field change is much longer than any of the con-
ductor time constants, steady state conditions can be assumed for the coupling currents.
In some cases for which the magnetic field changes very fast, the steady state assumption
leads to an overestimation of the loss (see Section 5.2.1).
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5.2.2.4 Estimated quantities

The AC-CRPP model provides several output values for each PF coil, where the index
i ∈ {1, 2, 3, 4, 5, 6} denotes the coil number.

Time evolution of loss power for each coil Pi(t): Contributions of the individual coils
to the loss, suited for controller analysis.

Loss power Pi: Average loss power produced during the simulation.

Loss energy Qi: Loss energy produced during the simulation. If divided by the number
of disturbances it is an indicator of how lossy the controller is.

Maximum peak power P̂i: Maximum over all filaments of a coil of the peak loss power.

Integral of the square field rate
∫

Ḃi
2
dt: Measures the control action. The maxi-

mum value occurring in a coil over the cross-section is indicated.

All the estimated loss quantities are provided for hysteresis, coupling and total loss.

5.2.3 Validation

The AC-CRPP model is implemented in Matlab and consists of two main parts, the
magnetic field calculation and the loss calculation. The validation of the model was
performed in two steps.

5.2.3.1 Simple benchmark

First a simple benchmark was performed to check the formulae used in the loss calculation
part. A sawtooth waveform for the assumed magnetic field variation, with an amplitude
of 0.3 T and a field rate of 0.3 T/s was superimposed on a DC background field of 5 T at
a magnet operating temperature of 5 K.

The results from the model agreed with manual calculations with zero difference for
the coupling loss and < 2% difference for the hysteresis loss.

5.2.3.2 Disturbances during flat-top

To check the entire model, ITER simulation data [19] has been used and the results were
compared with the complete AC loss model [57]. Two parameters determine an effective
internal disturbance to the plasma equilibrium. The internal inductance, referred to as
li, represents the degree of peaking of the plasma current profile. For a low value of li the
plasma current profile is rather flat and it gets gradually a more peaked shape when li is
increased. A drop in li and thus a flattening of the plasma current profile is frequently
observed during plasma disturbances. The ratio of plasma pressure to the poloidal field
magnetic energy, referred to as βp, usually drops during a plasma disturbance when kinetic
plasma energy is lost. The magnitude and time evolution of li and βp changes generate
different classes of disturbances for validating the ability of the feedback controller to
reject them. Here li,0 and βp,0 are the nominal values of li and βp.

The three cases of disturbances used are [21]:
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• A minor plasma current disruption (MD) at the start of burn (SOB) (start of flat-
top) in the ITER scenario is modeled by an instantaneous li drop of 0.2(li,0 − 0.5)
without recovery simultaneous with a βp drop of 20 % of the equilibrium βp, followed
by 3 s exponential recovery. One Minor Disruption is considered during the flat-top
and two Minor Disruptions are considered during the plasma ramp-up and ramp-
down phases. The duration of the simulation is 15 s.

• Compound edge localised modes (CELM) are a feature of tokamak operation in the
H-mode and are specified during the sustained flat-top as an instantaneous li drop
of 0.06(li,0 − 0.5) followed by a 1 s linear recovery simultaneous with a βp drop of
0.03βp,0 followed by a 0.2 s linear recovery. The repetition time is about 10 s and
the simulation lasts 9.99 s.

• Type I edge localised modes (ELM1) also occur during H-mode and are specified
during the flat-top as an instantaneous βp drop of 0.03βp,0 followed by a 0.1 s linear
recovery. They occur with a frequency of 3 Hz and the simulation lasts 9.99 s.

The simulations produce the waveforms of the PF coil current variations, the vessel current
variations and the plasma current variations.

The AC-CRPP code first calculates the magnetic field at the centers of the filaments.
This part is validated by comparing the maximum fields over the cross-section of each
coil (Figure 5.7), showing good agreement.
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Figure 5.7: Maximum magnetic field occurring in the cross-section of the six coils calcu-
lated by [57], denoted as EZ, vs. values obtained with the AC-CRPP Model.

From the evolution of the magnetic field, the average AC losses are calculated and
compared in Figure 5.8. Although there are differences of up to a factor of three, the
results can be considered adequate given the general uncertainties in the AC loss modeling.
The important feature for studying the effect of the feedback controller is that smaller
losses in the AC-CRPP model correspond to smaller losses in the full and accurate model.

In Figure 5.8, the CELM and ELM Type 1 disturbances show a coupling current AC
loss overestimation larger than for the Minor Disruption case. This is because CELM
and ELM Type 1 provoque fast reactions of the control system and high frequencies are
overestimated by the steady state formula. The agreement is again adequate for studying
the feedback controller design.
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Figure 5.8: AC loss energy calculated by [57], denoted as EZ, vs. results from AC-CRPP.
Comparison of the six PF coils for the three disturbance classes and the entire scenario.

5.2.3.3 Simulation of an ITER pulse

The reference ITER pulse has a length of 1800 s with a flattop of 430 s. The AC losses
calculated on the basis of the complete plasma discharge were calculated without dis-
turbances, referred to as the scenario loss, averaged over the pulse length to produce a
scenario loss power, included in Figure 5.8. The scenario losses have the highest hysteresis
loss to coupling loss ratio. This is due to the very large field variations during ramp-up
and ramp-down and the slow evolution of the scenario.

5.3 Structure of the reference feedback controller

For the closed-loop system simulations the setup shown in Figure 5.9 has been used. The
linear ITER tokamak model is from [31], the disturbance model from [21], the CS and
PF coil model from [22] and the controller from [6]. The AC-CRPP model losses were
evaluated after each completed simulation.

This model was compared with detailed simulations available, in order to validate
it. The action of the feedback control was simulated using a standard linearised model
of the ITER tokamak [31] and using the standard ITER position and shape feedback
controller [6, 7]. In order to evaluate the feedback controller performance, a set of standard
disturbances was used, corresponding to the ITER design methodology [21].

The tokamak is a linearised model and all the variables represent variations with
respect to an equilibrium configuration. The power supplies are modeled with first order
dynamics plus saturation and delay.

Since the plasma is vertically unstable, the control system must stabilise it. The
solution used in the current design is to use one fast power supply for vertical stabilisation
(VS circuit) connected in series with the slower main converters (MC circuit) used for
plasma shaping (see Figure 5.10). The fast vertical stabilisation system stops the vertical
motion and the slower main converter system recovers the displacement.

In the reference controller, the vertical stabilisation is achieved by a gain on the vertical
speed to control the fast power supply. The plasma current and shape control uses the
coil currents, the gaps and the plasma current to control the main power supplies.
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Figure 5.9: Setup for the simulations.

Figure 5.10: The vertical stabilisation circuit is connected to the PF coils 2-5.

5.4 Simulation and evaluation

The simulations show that the AC loss characteristics depends on the disturbance type
(Figure 5.11). Whereas for the weak but fast ELM type I the coupling current losses
dominate, the hysteresis loss is more important for the stronger compound ELM and
becomes almost equally important for the minor disruption.

There are two main reasons for a significant difference in the distribution of the AC
losses. First, for small amplitude magnetic field changes, the hysteresis loss is small,
whereas for larger amplitudes it grows linearly. Second, the small disturbances provoke a
stronger reaction by the fast coil system, which produces high coupling losses, due to its
higher bandwidth.

A common feature of all disturbance classes is the immediate occurrence of the peak
loss which is mainly due to coupling losses, Figure 5.12. This peak is caused by the action
of the fast stabilising system to stop the plasma movement. The slower shaping system,
which brings the plasma back to its original position does not create high coupling losses
because of its lower bandwidth.

The distribution of the losses among the different PF coils shows some important
points. PF coils 2 to 5 have high losses due to their use in the fast stabilising system,
whereas the high losses in PF 6 are due to its size and the fact that it is used to fix the
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Figure 5.11: Loss characterisation of the six PF coils for different disturbances. The
horizontal axis shows the coupling current AC loss and the vertical axis the hysteresis
loss. The scenario loss is shown for comparison.
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Figure 5.12: The time evolution of loss power in the case of a CELM disturbance shows
a strong peak at the beginning of a disturbance.

divertor configuration. Its coupling loss is relatively small, whereas the hysteresis loss is 5
to 10 times higher than in the other coils. The PF 2 coil has few turns and to compensate
this, the controller gain on this coil has to be higher, which leads to coupling losses 5 to
10 times higher than in all other coils (when looking at loss power per unit length).

When looking at an entire shot (scenario), the hysteresis losses dominate, Figures 5.8
and 5.11. This is due to the fact that during ramp-up and ramp-down we have large
variations of the magnetic field B but at a low rate of change Ḃ (the ramp-up and ramp-
down are of long durations with a relative flat slopes). Thus, the large magnetic field
variations lead to large hysteresis losses while the flat slopes imply a low Ḃ which leads
to low coupling losses. To compare the AC losses during the entire scenario with losses
from the different disturbances, the following scenario has been assumed:

• A description of the equilibrium currents for t = [0 s : 1800 s] according to scenario
2 from [20]
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• One Minor Disruption during ramp-up

• One Minor Disruption during ramp-down

• A flat-top of 400 s, with

• One Minor Disruption at the start of the flat-top

• Compound ELMs every 10 s during the flat-top

• ELM type I with a frequency of 3 Hz during the flat-top
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Figure 5.13: The importance of the irreducible scenario losses decreases with increasing
flat-top durations. Shown are the distributions for 400 s, 10000 s and 172800 s pulses.

Figure 5.13 compares the scenario losses with the disturbance losses. The scenario
losses dominate for the duration of the ITER pulse (top left) and therefore AC losses of
the disturbances are not an issue. The scenario losses, essentially of hysteresis type, can
only be reduced by changing the conductor, but not with controller adaptations.

If we assume longer pulse durations with flat-tops of 10000 s and 172800 s (48 hours),
the AC losses caused during disturbance rejection become more important and AC loss
reduction by controller adjustment becomes even more interesting (Figure 5.13, top right
and bottom left).

5.5 Design of an improved controller

The hysteresis losses are proportional to the magnetic field variation ∆B and the coupling
losses increase with the magnetic field rate of change Ḃ. An optimised controller should
therefore try to reduce these two values.

When looking at the output voltages (Figure 5.14), we can see that, since the magnetic
field variation is linked to the voltage variation, the vertical stabilising controller (VS)
produces most of the fast magnetic field variations. We therefore focus the analysis of the
controller influences on AC loss on the VS controller.

The simplest way to reduce the magnetic field rate of change and thus the coupling
losses is to reduce the bandwidth of the controller. This would lead to a damping of
the high frequency response and therefore reduce the higher frequencies of the magnetic
field variations. On the other hand, a fast reacting controller reduces the excursions of
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Figure 5.14: Comparison of the voltages from the VS and MC controllers to drive the
PF3 coil in the case of a CELM.

the controlled variables and thus of the magnetic field variations, which should reduce the
hysteresis loss. We therefore have to examine if there exists an optimal controller between
a low bandwidth and a fast controller.

The vertical stabilising controller is given by:

KD(s) =
kDs

τis + 1
=

150 s

0.003 s + 1
. (5.13)

The output voltage of the power supplies is limited due to the saturation, imposing a
minimum gain and bandwidth on the controller. Once the plasma is out of equilibrium
it is accelerated and if the controller does not react immediately, it will become too fast
to be stopped by the saturated voltage.

When varying the gain of the controller kD, some interesting observations can be made
(Figure 5.15). The minimum kD to guarantee stability depends on the disturbance type.
While for the type I ELM this minimum gain is around 80, the minor disruption requires
a minimum of 100. In the case of a type I ELM, the gain reduction leads to an important
reduction of coupling loss, whereas in the case of a minor disruption, the benefit is smaller
(see Figure 5.18).

If the gain is reduced in order to reduce the AC losses, the three disturbance classes
have different requirements. The idea used for the design of an improved controller is
to adapt the gain to the disturbance type. This requires a real-time estimation of the
disturbance amplitude. Disturbances in tokamaks are almost instantaneous and move
the system to a state which is located some distance from the equilibrium. As described

in Chapter 4 (linear model discussion) the state variable vector x =
[

Ia Iv

]T
consists

of a vector describing the active coil currents, denoted as Ia, and a vector describing
the passive vacuum vessel currents, denoted as Iv. If the plasma is in equilibrium the
equilibrium point is characterised by the active currents Ia = Iae only while the passive
currents are equal to zero Iv = 0. For the estimation of the disturbance we essentially
need the vertical plasma position z which depends linearly of the state variables and the
disturbance w (Section 8.3.1)

z = CzaIa + CzvIv + Fzw,



106 Chapter 5. The effect of control on superconducting tokamak AC losses

60 80 100 120 140 160
50

100

150

200

250

300

Gain k
D

T
ot

al
 L

os
s 

P
ow

er
 (

W
)

0.0005
 0.001
 0.002
 0.005
  0.01
  0.02
  0.05

i

Figure 5.15: Total loss power as a function of the gain kd for different time constants τi

in the case of a type 1 ELM.

where w = 0 if the plasma is in equilibrium. An occurring disturbance w �= 0 implies
a disturbance of both Ia = Iae + δIa and Iv = δIv, where the amplitude of δIa and
δIv denote the effect of the disturbances. For the disturbance estimation we only want
the information linked to the disturbance and we do not care about the equilibrium
information given by Iae . Since Ia can be measured and since Cza is known from the
linearised model the estimation of the disturbance can be given by

de = z − CzaIa.

The output of such an estimator de is larger for disturbances requiring a higher gain
(Figure 5.16). The new controller is designed to slide between two different vertical
stabilising controllers, according to the estimator output de (Figure 5.17). To guarantee
a high gain to stop the plasma movement, the maximum value of the estimator output is
held for a certain time, 5 s in the tested configuration.
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Figure 5.16: Output of the disturbance estimator de for the three disturbance classes.
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This improved controller considerably reduces the AC losses, especially in the case of
the two weaker disturbances, the CELM and ELM1. The performances for the defined
disturbances are comparable and the system is stable, but because here even the stronger
controller has a lower gain than the original controller, its stability characteristics to very
strong disturbances is reduced. The actual choice of the stronger and weaker controller is
a trade-off between stability and performance on one side and AC loss reduction on the
other side. As seen in Figure 5.15 many possible combinations of time constant and gain
exist that have comparable AC losses, but not necesarily the same performance. The best
choice depends on the actual tokamak and can only be made once a model based on the
real tokamak has been established.

Although the effect of AC loss reduction may be small compared with other losses, it
minimises heating inside the cable and thus improves conductor stability. Additionally, the
importance of this reduction increases with increasing pulse duration, since the inevitable
scenario AC losses remain constant, whereas the disturbance AC losses accumulate with
the shot duration.

The loss per turn of conductor gives us a better idea of how much loss is generated
before an exchange of the coolant and allows a comparison of the temperature rise from
inlet to outlet (Figure 5.18). The PF2 coil has a much higher per turn AC loss than the
other coils. This is because it has only very few turns and must therefore undergo higher
current variations to produce the same effect on the plasma as the other coils, resulting
in higher AC losses. To compensate this, the gains of the fast controller can be changed
to shift a part of the control action from the PF2 and PF5 coils to the PF3 and PF4
coils. The result is that all the coils have comparable levels of per turn AC losses with the
same amount of total AC losses. This would require a change to the turns and current
specifications of the coils, since they share a common fast voltage.
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show the original values and the end points with the bullets the reduced values.

5.5.1 A general remark on the tradeoff between stability and
AC loss reduction

In Part II of this thesis we will show that the reduced stability margin in a tokamak system
is linked to two properties: i) the unstable pole (mode) of the linearised tokamak model
and ii) the saturation of the power supplies. Remark that for systems which possess only
one of these two properties its closed-loop systems remain stable under any disturbances.
We will see that for systems like tokamaks the best stability properties can be obtained by
means of bang-bang controllers. As an illustration for a bang-bang controller we take the
vertical stabilising controller given by Equation (5.13), where for the sake of simplicity we
neglect the low-pass filter by assuming τi = 0. Taking the invert Laplace transformation
of (5.13) with τi = 0 leads to the control law

u = kd
dze

dt
,

where u is the control signal which is fed to the power supply and where ze = z − zref

is vertical plasma position error. By considering the saturation of the power supply
ũ = sat(u), where ũ is the voltage fed to the vertical stabilising coils, we obtain

ũ = sat

(
kd

dze

dt

)
.

If we increase the controller gain to its positive infinite limit kd → ∞ then we obtain the
bang-bang controller

ũ = sgn

(
dze

dt

)
.

But from the results of this chapter we know that an increasing of the controller gain kd

leads to an increase of AC loss. Therefore, bang-bang controllers cannot be considered
for tokamaks with superconducting coils.

Of course this example is very illustrative since it is an extreme case. In the general
case, we can derive from the results of this chapter the following main statement: AC
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losses can be reduced and kept weak by designing controllers which generate control signals
with i) the least as possible oscillations, ii) amplitudes as small as possible and iii) signal
frequencies as low as possible.

5.6 Discussion and conclusion

Using existing models of the ITER tokamak and its control system, it has been shown
that the AC losses in the superconducting coils can be reduced by adapting the control
strategy.

AC losses are due to the reactions of the control system to disturbances of the plasma
and noise in the plasma and in the measurement system. Disturbances are almost instan-
taneous events that move the state of the tokamak away from the equilibrium position.
Most of the AC losses occur during and immediately after the disturbance, leading to
sharp peaks in the AC loss evolution. Therefore, a significant reduction has to target
these peaks, that are essentially due to the fast stabilising control system.

The need for stability of the plasma position imposes a strong and rapid reaction to
strong disturbances. Current control system designs also apply the same strong reactions
to weaker disturbances and noise. While this does not influence traditional performance
and stability criteria, it causes unnecessary AC losses in the superconducting coils. Weaker
controllers allow reductions of the AC losses during weak disturbances to a fifth of their
original value.

While the losses due to disturbances can be influenced, the losses due to the ramp-up
and ramp-down of the scenario currents cannot be reduced, since they are due to the
overall magnetic field changes, which is are defined by the operating scenario.

While the scenario AC losses remain constant, the losses due to disturbances are
proportional to the duration of the discharge. Considering a discharge of 1800 s, with a
flattop of 430 s the influence of AC loss reduction would be small compared with the total
loss. As the discharge becomes longer, the AC loss reduction becomes more significant.

Additionally, the reduction of the peak loss power also improves the transient thermal
behaviour of the conductor.

The price of the AC loss reduction is a smaller stability margin, but only a slightly
reduced performance. Establishing the optimal tradeoff between reducing the AC losses
and maximising the stability margin will be made when the true disturbance and noise
spectra are measured.

From the point of view of controller design in general, the main result of the AC losses
analysis reveals that for reducing the AC losses we need to design a controller which
generates a small oscillating, low amplitude and low frequency control voltage signal.
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Chapter 6

Region of attraction of one unstable
and one stable pole planar systems
with saturated feedback

Linear systems with bounded inputs have been widely studied [51, 37, 27]. This type
of study is important since, in most practical situations, the range of inputs is in fact
limited.

Two important concepts pertaining to these systems have to be distinguished. First is
the null controllable region, i.e. the region in state space where there exists an open-loop
input that can steer the system to the origin [3, 27, 28, 49]. The second is the region of
attraction with a given controller, i.e. the region in state space from which the closed-loop
system asymptotically reaches the origin [3, 27]. In this chapter, only the issues pertaining
to the latter, i.e. the region of attraction, will be studied. Also, designing controllers for
which the region of attraction is arbitrarily close to the null controllable region [37] will
not be studied here.

Single input linear planar systems (systems with 2 states) with saturated linear feed-
back will be considered. It will be assumed that the linear feedback makes the origin
globally asymptotically stable in the absence of saturation.

The shape of the region of attraction depends on the location of the open-loop poles.
With respect to the region of attraction, the poles on the imaginary axis have the same
characteristics as the stables ones. If both poles are stable, then the system is globally
stabilisable [3, 51]. If both poles are unstable, then the boundary of the region of attraction
is a closed trajectory [3]. A method for finding this closed trajectory (limit cycle) is
provided in [27, 28]. For systems with one stable and one unstable pole, it has been
shown in [3] that topological bifurcation of the region of attraction occurs, i.e. the region
of attraction changes between being a hyperbolic type region and a region bounded by a
limit cycle. The characteristics of the region of attraction are summarised in Table 6.1.

Pole configuration Region of attraction
Both stable R

2

One stable, one unstable bifurcation
Both unstable closed by a limit cycle

Table 6.1: Characteristics of the region of attraction

Only the case with one stable and one unstable pole is of interest here since it corre-

113
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sponds to a linearised second order tokamak model. Concerning its region of attraction,
less work can be found in the literature. Although the bifurcation problem was studied
in [3], the bifurcation result presented therein is only existential. Also, no condition for
bifurcation is provided. The main contribution of this chapter is to derive an analytical
condition under which bifurcation occurs. Furthermore, a qualitative description of the re-
gion of attraction and the way how to compute its exact shape is provided. In fact we show
that the condition for bifurcation and the shape of the region of attraction are strongly
linked to the stable and unstable manifolds of the equilibrium points of the considered
closed-loop system. It turns out that this closed-loop system possesses three equilibrium
points: a stable one at the origin and two saddle points. The stable equilibrium point at
the origin is due to the fact that we assume a linear feedback making the origin globally
asymptotically stable. The two saddle points are due to the saturation and to the system
possessing one stable and one unstable pole. Their stable and unstable manifolds provide
the informations to formulate analytically a condition for bifurcation. Furthermore, their
stable manifolds constitute the boundaries of the region of attraction if the region of at-
traction is a hyperbolic type region. In the case of a region of attraction bounded by a
limit cycle, the limit cycle is located inside the region bounded by the unstable manifolds
of the saddle points and all trajectories starting in this region asymptotically reach the
limit cycle in reversed time. The proofs for this results rest partly on Poincaré’s and
Bendixson’s theorems (they are stated as a reminder in Section A.1 of the Appendix).
We mainly need to show that: i) there exists no limit cycle in the region bounded by
the stable manifolds and that ii) there exists one and only one limit cycle in the region
bounded by the unstable manifolds. Since Bendixson’s theorem gives only a sufficient
condition for the non-existence of a limit cycle we additionally need contraction analysis
to complete the proofs. This analyses rests on the study of the contractive behaviour
of two trajectories with respect to a line in the state space. In other terms, we study if
the distance between two trajectories, with respect to a line, decreases (contraction) or
increases. Since this contraction analysis development is encumbering it is presented in
Section A.2 of the Appendix.

The chapter is organised as follows. In Section 6.1, definitions and terms used in this
chapter are introduced. The important result concerning the equilibrium points of the
considered closed-loop system is provided. Section 6.2 provides the definition of the stable
and unstable manifolds of equilibrium points. A qualitative description of the stable and
unstable manifolds of the saddle points is given. Section 6.3 provides the condition under
which the bifurcation of the region of attraction appears. In Section 6.4, the shape of the
region of attraction as a function of the condition for bifurcation is given. Conclusions
are drawn in Section 6.5.

6.1 Preliminaries

6.1.1 System

Consider a single input second-order linear system with a stable and an unstable pole.
Upon state transformation, the system can be written as:

ẋ = Ax + bu =

[
λ1 0
0 λ2

]
x +

[
λ1

λ2

]
u (6.1)
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where, x ∈ R
2 is the state vector, u the input, A and b appropriate matrices, and λ1, λ2

the eigenvalues of the open-loop system. Assume that λ1 > 0 and λ2 < 0.
The notion of a system evolving in reversed time leading to the notion of a reversed

time system is frequently used. If nothing is specified then the evolution of a dynamic
system is considered in forward time. By considering system (6.1) the evolution in forward
time of the state from an initial condition x0 at time t0 is denoted by x(t0 + t) for all
t ≥ 0. On the other hand, its evolution in reversed time is given by x(t0 − t) for all t ≥ 0.
If we consider the time reversed system of (6.1), defined by

ẋr = −Axr − bur, where ur(t0 + t) = u(t0 − t) for all t ≥ 0, (6.2)

then the state evolution in reversed time can be expressed in forward time

xr(t0 + t) = x(t0 − t) for all t ≥ 0.

Remark that sometimes it is more convenient to consider the evolution in forward time
of the time reversed system instead of the evolution of the system in reversed time.

For the input saturation, the symmetric saturation function with unity saturation level
will be used:

u = sat(ũ) =

⎧⎪⎨
⎪⎩
−1 if ũ < −1

ũ if − 1 ≤ ũ ≤ 1

1 if ũ > 1

(6.3)

6.1.2 The null controllable region and the null reachable region

For a dynamical system with a single input we define

Ua ⊆ R (6.4)

as the set of admissible input u(t) ∈ Ua ∀ t ∈ R.
The null controllable region C of a system is the maximum region in state space for

which there exists an admissible input that can steer the the system to the origin.

Definition 1
Let Φ(t, x0, u(t)) denote the state of a dynamical system at time t > 0, starting with the
initial condition x0 at t = 0 and subjected to the input u(t). A state x is said to be
null controllable if there exists an admissible control u(t) ∈ Ua that steers the trajectory
Φ(·, x, u(t)) to the origin, i.e.

lim
t→∞

Φ(t, x, u(t)) = 0.

All states being null controllable belong to the set of the null controllable region which is
denoted by C.

The null reachable region R of a system is the maximum region in state space to which
the system can be steered from the origin with an admissible input.

Definition 2
Let Φ(t, x, u(t)) denote the state of a dynamical system at time t < 0, starting with the
initial condition at the origin at t = 0 and subjected to the input u(t). A state x is said
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to be null reachable if there exists an admissible control u(t) ∈ Ua in reverse time (t < 0)
that steers the trajectory Φ(·, x, u(t)) to the origin, i.e.

lim
t→−∞

Φ(t, x, u(t)) = 0.

All states being null reachable belong to the set of the null reachable region which is
denoted by R.

From this it is obvious that the null reachable region of a system is the null controllable
region of its time reversed system and vice-versa.

For a system with saturated input as defined by (6.3), the set of admissible control
u(t) is given by

Ua = [−1, 1]. (6.5)

Consider system (6.1) with the saturated input (6.3). Then its null controllable region is
given by ([3, 27, 28, 49])

C =
{
x ∈ R

2 : |x1| < 1
}

(6.6)

and its boundaries are defined by

∂C+ =
{
x ∈ R

2 : x1 = 1
}

, ∂C− =
{
x ∈ R

2 : x1 = −1
}

. (6.7)

The proof is given by considering the unstable part of system (6.1), which is ẋ1 = λ1x1 +
λ1u. For all x ≥ 1 we have

ẋ1 = λ1(x1 + u) ≥ 0 for x1 ≥ 1 and u ∈ Ua = [−1, 1]

which means that the unstable state x1 cannot be steered back to the origin. If we want
to steer the unstable state to the origin from an initial condition x ≥ 1 we need ẋ < 0. A
similar approach can be given for all x ≤ −1 where we have

ẋ1 = λ1(x1 + u) ≤ 0 for x1 ≤ −1 and u ∈ Ua = [−1, 1].

This proves that the set R
2 \ {x ∈ R

2 : |x1| < 1} cannot belong to the null controllable
region C. To prove that every state x ∈ {x ∈ R

2 : |x1| < 1} can be steered back to the
origin we use the control law

u = −sgn(x1) ∈ Ua.

For the unstable part of system (6.1) this leads to following relations

ẋ1 = λ1(x1 − sgn(x1)) < 0 for 0 < x1 < 1

ẋ1 = λ1(x1 − sgn(x1)) > 0 for 0 > x1 > −1

ẋ1 = λ1(x1 − sgn(x1)) = 0 for x1 = 0.

Therefore, the unstable state reaches in finite time the state x1 = 0 and it remains there for
the remaining time. When the unstable state has reached x1 = 0 then u = 0 and the stable
state x2 ∈ R of the stable part of system (6.1), given by ẋ2 = λ2x2 + λ2u, asymptotically
reaches x2 = 0, since λ2 < 0. Thus, there exists at least one control u(t) ∈ Ua, in our case
given by the control law u = −sgn(x1), for which all states x ∈ {x ∈ R

2 : |x1| < 1} are
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steered back to the origin. The set {x ∈ R
2 : |x1| < 1} is therefore the null controllable

region of system (6.1).
From the null controllable region (6.6) it can be deduced that the boundaries of the

null controllable region are only due to fact that system (6.1) possesses the unstable
state x1. The null controllable region is therefore only bounded in one dimension of
R

2. Consider for example a planar stable linear system with saturated input. Then it
is obvious that its null controllable region is equal to the whole state space R

2. We can
choose the control input u = 0 and since the poles of the system have both negative real
parts the system reaches asymptotically the origin. On the other hand, if we consider
a planar anti-stable system (no stable poles) with saturated input, then the boundaries
are due to both unstable states and thus the closure of the null controllable region is a
closed subset in R

2. We can state that the null controllable region is bounded in both
dimension of R

2. The exact shape of the null controllable region of an anti-stable planar
system with saturated input is given in [27].

The null reachable region of system (6.1) is given by

R =
{
x ∈ R

2 : |x2| < 1
}

(6.8)

and its boundaries are defined by

∂R+ =
{
x ∈ R

2 : x2 = 1
}

, ∂R− =
{
x ∈ R

2 : x2 = −1
}

. (6.9)

Since the null reachable region is the null controllable region of the time reversed system
the proof is similar to the proof for the null controllable region. The result of the null
reachable region is derived from the fact that the stable state and unstable state are
interchanged for the time reversed system of (6.1).

6.1.3 Linear state feedback

In what follows we consider the linear state feedback

ũ = fx = f1x1 + f2x2 (6.10)

leading to the autonomous closed-loop system

ẋ = Ax + b sat(fx), (6.11)

where f is the feedback gain vector. The matrix A + bf is assumed to be Hurwitz, i.e.
the system is stable without saturation. Let λ̃1 and λ̃2 be the eigenvalues of A + bf . The
two conditions that correspond to A + bf being Hurwitz are:

1. λ1(1 + f1) + λ2(1 + f2) < 0 (6.12)

2. λ1λ2(1 + f1 + f2) > 0. Since λ1λ2 < 0,

(1 + f1 + f2) < 0. (6.13)

Also, it can be verified that f1 < 0, though f2 can take either sign.
The Hurwitz conditions are derived from the determination of the eigenvalues of A+bf∣∣∣A + bf − λ̃I

∣∣∣ = λ̃2 − λ̃(λ1(1 + f1) + λ2(1 + f2)) + λ1λ2(1 + f1 + f2) = 0.
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By substituting p = λ1(1 + f1) + λ2(1 + f2) and q = λ1λ2(1 + f1 + f2) the eigenvalues are
given by

λ̃1,2 =
p

2
±

√
p2

4
− q.

Since the closed-loop A + bf has to be stable, both eigenvalues λ̃1 and λ̃2 have to be
negative. This is only verified when p < 0 and q > 0 which leads to the results (6.12)
and (6.13). To show that f1 < 0 both inequalities (6.12) and (6.13) have to be combined.
Multiplying (6.13) with λ2 < 0 leads to

f1λ2 > −λ2(1 + f2)

and (6.12) can be expressed as

λ1(1 + f1) < −λ2(1 + f2).

This leads to the inequality

f1λ2 > λ1(1 + f1) =⇒ 0 > λ1 + f1(λ1 − λ2)

which is only satisfied when f1 < 0 since λ1 > 0 and λ1 − λ2 > 0.

6.1.4 The region of attraction

The region of attraction A is the maximum region in state space for which the state of
the closed-loop system, i.e. (6.11), reaches asymptotically the origin.

Definition 3
Let Φ(t, x0) denote the state of a closed-loop system at time t, starting with the initial
condition x0 at t = 0. The region of attraction of the stable equilibrium point is defined
by:

A =
{

x ∈ R
2 : lim

t→∞
Φ(t, x) = 0

}
. (6.14)

The boundary of A is denoted by ∂A.

Definitions 1 and 3 imply that the region of attraction is always smaller or equal to the
null controllable region A ⊆ C.

One of the goals of this section is to characterise the region of attraction of system
(6.11).

6.1.5 Linear and saturated regions in state space

Since, for the closed loop system (6.11), the linear feedback ũ = fx is subjected to
saturation the state space can be subdivided in three different regions.

1. The linear region for which the control input is in the linear region of the saturation
function, i.e. u = fx, is defined by

L =
{
x ∈ R

2 : |fx| ≤ 1
}

, (6.15)
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where its boundaries are

∂L+ =
{
x ∈ R

2 : fx = 1
}

, ∂L− =
{
x ∈ R

2 : fx = −1
}

. (6.16)

Moreover we define the hyperplane of zero control u = fx = 0

∂L0 =
{
x ∈ R

2 : fx = 0
} ⊂ L. (6.17)

2. The positive saturated region for which u = 1 is defined by

L+ =
{
x ∈ R

2 : fx > 1
}

. (6.18)

3. The negative saturated region for which u = −1 is defined by

L− =
{
x ∈ R

2 : fx < −1
}

. (6.19)

If the state of the system is inside the linear region x ∈ L then system (6.11) becomes
the linear autonomous system

ẋ = (A + bf)x. (6.20)

On the contrary, when the state is located in either the positive saturated region x ∈ L+

or the negative saturated region x ∈ L−, then the system becomes

ẋ = Ax + bū, (6.21)

where ū is constant, either 1 or −1, respectively. Upon applying the state translation

x = x̄ − A−1ū (6.22)

it turns out that the system follows the same dynamics as the open-loop system (6.1)

˙̄x = Ax̄. (6.23)

Remark that A−1 exists only if A has full rank, which is verified since λ1 and λ2 are both
nonzero.

6.1.6 Equilibrium points

System (6.11) with one stable and one unstable open-loop pole has three equilibrium
points, as opposed to all other open-loop pole configurations (both poles stable or unsta-
ble) where the origin is the unique equilibrium point (Theorem 2.3 in [3]).

Theorem 2
The closed-loop system (6.11) has three equilibrium points:

• xe0 = 0

• xe+ = A−1b =
[

1 1
]T

• xe− = −A−1b =
[ −1 −1

]T
.
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Of these, xe0 is stable, while the other two are saddle points [3].

Proof:
The proof of this theorem might be taken from the proof of the more general theorem,
which is valid for any linear or nonlinear saturated state feedback, presented in [3]. Its
proof rests on knowledge of index theory and homotopy techniques which might not be
evident to understand. Fortunately, in the case of pure linear saturated state feedback the
proof is much easier to establish. For this we need to study the existence of equilibrium
points in the linear region L and in the saturated region L+∪L−. An equilibrium point is
defined as a point in state space where the time derivative of the state variable ẋ and thus
the vector field Ax+b sat(fx) associated to the system vanish, i.e. ẋ = Ax+b sat(fx) = 0.

• Consider the linear region where the vector field is (A + bf)x. Since A + bf is
required to be Hurwitz both eigenvalues of A + bf have strictly negative real part
and thus A + bf has full rank. Therefore the vector field vanishes (A + bf)x = 0
only at the origin xe0 = 0. Since A+bf is Hurwitz, xe0 is a stable equilibrium point.

• Consider the saturated region where the vector field is either Ax + b in the positive
saturated region or Ax − b in the negative saturated region. Due to the state
translation (6.22) the system dynamics is determined only by A (6.23). Thus the
equilibrium point of ˙̄x = Ax̄ is located at x̄e = 0. Moreover, since A has a negative
and a positive eigenvalue (λ1 > 0 and λ2 < 0) this equilibrium point is a saddle
point. By the state translation (6.23) there exists to different saddle equilibrium
points

xe− = −A−1b =
[ −1 −1

]T
for u = 1

xe+ = A−1b =
[

1 1
]T

for u = −1.

It remains to prove that both equilibrium point candidates are located in the sat-
urated region where |fx| > 1. Since the system is symmetric it suffices to prove it

for one point only, e.g. x =
[

1 1
]T

. For this point fx should verify

fx = f
[

1 1
]T

= f1 + f2 < −1 =⇒ 1 + f1 + f2 < 0

which is the second Hurwitz condition (6.13). Thus, since A + bf is Hurwitz the

equilibrium points ± [
1 1

]T
always exist.

6.2 The stable and unstable manifolds of equilibrium

points

First, the definitions of the stable and unstable manifolds of the three equilibrium points
are given. We then describe qualitatively the shape of the stable and unstable manifolds
of the two saddle equilibrium points which consist the key for understanding the structure
of the region of attraction of (6.11).
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6.2.1 Definition of the stable and unstable manifolds of equilib-
rium points

The stable manifold S(xe) of an equilibrium point xe is the maximum region in state space
for which the autonomous system, i.e. (6.11), asymptotically reaches this equilibrium
point xe.

Definition 4
Let Φ(t, x0) denote the state of an autonomous system at time t, starting with the initial
condition x0 at t = 0. The stable manifold of an equilibrium point xe is defined by:

S(xe) =
{

x ∈ R
2 : lim

t→∞
Φ(t, x) = xe

}
. (6.24)

The unstable manifold U(xe) of an equilibrium point xe is the maximum region in state
space for which the time reversed autonomous system, i.e. (6.11), asymptotically reaches
this equilibrium point xe.

Definition 5
Let Φ(t, x0) denote the state of an autonomous system at time t, starting with the initial
condition x0 at t = 0. The unstable manifold of an equilibrium point xe is defined by:

U(xe) =

{
x ∈ R

2 : lim
t→−∞

Φ(t, x) = xe

}
. (6.25)

Remark:
Consider system (6.11) and its the equilibrium point at the origin xe0 = 0. Since the state
space of (6.11) is of dimension 2 and since x0 is stable (A + bf is Hurwitz) the manifold
of x0 is obviously stable and of dimension 2. Moreover, for this equilibrium point the
definition of its stable manifold coincides with the definition of the region of attraction
(definition 3). Thus, the stable manifold U(x0) is the region of attraction A.

On the other hand, since the equilibrium points xe+ and xe− are saddle points due to
the dynamics given by ˙̄x = Ax̄ (6.22-6.23) there exists one stable manifold S(xe±) and
one unstable manifold U(xe±) for each equilibrium point. It is obvious from linear system
analysis [32, 50] that both manifolds are of dimension 1. Therefore, since a trajectory of
a dynamical system is a manifold of dimension 1 and because of the definitions of the
stable and unstable manifolds (6.24) and (6.25) we can conclude that S(xe±) and U(xe±)
are trajectories of the dynamical system.

6.2.2 Qualitative description of the stable and unstable mani-
folds of the saddle equilibrium points

For the description of the stable and unstable manifolds the following lemmas, theorem
and definition are required:

• Lemma 1 Consider system (6.11), the stable manifolds S(xe±) and the unstable
manifolds U(xe±) of its equilibrium points xe+ and xe−. Then S(xe±) is located in
the closure of the null controllable region

S(xe±) ⊂ C, (6.26)



122 Chapter 6. Region of attraction of planar systems with saturated feedback

and U(xe±) is located in the closure of the null reachable region

U(xe±) ⊂ R. (6.27)

Proof:
Since for states x located outside of C the unstable part of system (6.1) verifies the
conditions

ẋ1 = λ1(x1 + u) > 0 for x1 > 1 and u ∈ Ua = [−1, 1]

ẋ1 = λ1(x1 + u) < 0 for x1 < −1 and u ∈ Ua = [−1, 1]

there exists no admissible control u ∈ Ua that could steer the system to xe+ or xe−.
Thus, the stable manifolds S(xe±) are located in C.

The proof of U(xe±) ⊂ R is similar by considering the time reversed system of (6.1).

• A basic property of linear systems states:

Lemma 2 Consider a planar linear system with its equilibrium point located at the
origin. Every trajectory crossing a ray R(r), defined by

R(r) =
{
x ∈ R

2 : x = µr, µ ≥ 0, r ∈ R
2
}

, (6.28)

can cross the same ray R(r) if and only if it encircles the equilibrium point. Thus,
every trajectory crosses the ray in the same direction.

Proof: We consider an arbitrary second order autonomous linear system defined

by ẋ = Ax and a ray R(r), where r =
[

a b
]T

. The vector r′ =
[ −b a

]T
is

parallel to the normal vector of the ray R(r) since r′T ·r = 0. We verify the direction
of the trajectory crossing the ray R(r) by testing if the scalar product of r′ and the
vector field ẋ at each point of the ray x ∈ R(r) has the same sign

r′T · ẋ = r′T Ax = r′T Arµ.

Since µ ≥ 0 and since r′T Ar is a scalar, the scalar product r′T ·ẋ∀x ∈ R(r) possesses
the same sign or is zero. Remark that if r′T · ẋ = 0 then the trajectory reaches R(r)
or stays into R(r) but does not cross it.

• Since system (6.11) is Lipschitz it has a unique solution for any initial condition
(the existence and unicity theorem of nonlinear systems [32]). Thus, no trajectory
can cross another trajectory.

• We will need the notion of partial trajectories defined by

Definition 6
A part of a trajectory starting at a point a ∈ R

2 and ending at a point b ∈ R
2 is

denoted as

Trj(a, b). (6.29)
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The qualitative description of the stable and unstable manifolds rests on the analysis of
the evolution in time of these manifolds. For the stable manifolds, evolution in reverse
time is considered. Since the system (6.11) is symmetric we restrict the analysis to the
two manifolds S(xe−) and U(xe+).

We first consider the evolution of the manifolds inside the saturated regions since the
equilibrium points of the stable and unstable manifolds (xe±) are located there. In this
case, we know from Section 6.1.5 that by the state translation

x = x̄ − A−1ū, where ū = 1 or ū = −1 (6.30)

the system follows the dynamics

˙̄x = Ax̄. (6.31)

Figure 6.1 illustrates the qualitative behavior of the trajectories of the system 6.31. Since
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Figure 6.1: Qualitative behavior of the trajectories of system (6.31) (dashed line: stable
and unstable manifolds).

A is diagonal the stable and unstable manifolds are given by S̄(0) = {x̄ ∈ R
2 : x̄1 = 0}

and Ū(0) = {x̄ ∈ R
2 : x̄2 = 0}, respectively. But since we consider the whole state space

of the closed-loop system (6.11), the manifolds S̄(0) and Ū(0) are translated by xe+ in the
positive saturated region and by xe− in the negative saturated region. Therefore, from
the saddle points xe±, the branches of the manifolds S(xe−) and U(xe+) extend along ∂R
and ∂C, respectively, until they hit the linear region. The two points where the manifolds
S(xe−) and U(xe+) intersect the boundaries of the linear region are given by:

c+ = ∂C− ∩ ∂L+ =
[
−1 (1+f1)

f2

]T

(6.32)

r− = ∂R+ ∩ ∂L− =
[
− (1+f2)

f1
1
]T

(6.33)

For the following description we need additionally the intersection points

c0 = ∂C− ∩ ∂L0, c− = ∂C− ∩ ∂L−, (6.34)

r0 = ∂R− ∩ ∂L0, r+ = ∂R− ∩ ∂L+. (6.35)
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The Figure 6.2 illustrates these points and the shape of the stable and unstable manifolds
in the saturated regions.
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Figure 6.2: The points c+, c0, c−, r+, r0 and r− and the evolution of the stable and
unstable manifolds of xe+ and xe− in the saturated regions.

Since the remaining evolution of the manifolds evolves in the linear region L we have
to distinguish 3 different cases depending on the sign of f2.

1. f2 = 0
There is no intersection of the stable manifold S(xe−) with the linear region L
since the point c+ is not defined for f2 = 0. Therefore S(xe−) stays in the positive
saturated region L+ and thus, S(xe−) = {x ∈ R

2 : x1 = −1} and S(xe+) = {x ∈
R

2 : x1 = 1} which are the boundaries of the null controllable region C. This implies
that one branch of U(xe+) stays inside the null controllable region C and the other
branch is located in the negative saturated region L−.

2. f2 < 0
Consider Figure 6.2. From Lemma 1 the stable manifold S(xe−) cannot cross the
segment c+ c0 and from Lemma 2 it cannot cross the ray R(c+). Thus, it has to cross
the segment set xe0 c0 \ xe0 of ∂L0, where we denote the intersection by c�. Remark
that we omit the equilibrium point xe0 from the potential crossing segment set since
we consider the stable manifold in reverse time, where in this case xe0 is unstable.
Similarly, from Lemmas 1 and 2, the unstable manifold U(xe+) cannot cross the
segment r− r0 and the ray R(r−), respectively. Thus, it has to cross the segment set
xe0 r0 of ∂L0, where the intersection is denoted by r�. Since the intersection of both
potential crossing segment sets is not empty three cases can occur (Figure 6.3).

(a) ‖c�‖ > ‖r�‖
The stable manifold S(xe−) cannot cross: i) the segment c0 c− (Lemma 1), ii)
the ray R(c�) (Lemma 2) and iii) the trajectory part Trj(r−, r�) (existence and
unicity theorem). Thus, it has to cross the segment set r− c− \ r− of ∂L−,
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Figure 6.3: The points c� and r� and the evolution of the manifolds until L0 is reached
for both cases ‖c�‖ > ‖r�‖ and ‖c�‖ < ‖r�‖.

where we denote the intersection by c�� (Figure 6.4). At c�� the stable man-
ifold evolves hyperbolically inside the negative saturated region according to
the dynamics of the linear system (6.31) with the state translation (6.30) (see
Figure 6.1). Since Lemma 1 states that U(xe+) ⊂ R the unstable manifold
U(xe+) remains in the region bounded by both stable manifolds S(xe±). More-
over, it converges to xe0 (Figure 6.4). In fact, as we will see in Section 6.4.3,
every trajectory in this region converges to the origin xe0.

(b) ‖c�‖ < ‖r�‖
The unstable manifold U(xe+) cannot cross: i) the segment r0 r+ (Lemma 1),
ii) the ray R(r�) (Lemma 2) and iii) the trajectory part Trj(c+, c�) (existence
and unicity theorem). Thus, it has to cross the segment set c+ r+ \ c+ of
∂L+, where we denote the intersection by r�� (Figure 6.4). At r�� the unstable
manifold evolves hyperbolically inside the negative saturated region according
to the dynamics of the linear system (6.31) with the state translation (6.30)
(see Figure 6.1). Since Lemma 1 states that S(xe−) ⊂ C the stable manifold
S(xe−) remains in the region bounded by both unstable manifolds U(xe±).
Moreover, it converges to a limit cycle (Figure 6.4). In fact, as we will see in
Section 6.4.3, in reverse time every trajectory in this region converges to this
limit cycle.

(c) ‖c�‖ = ‖r�‖
In this case the stable manifold S(xe−) converges to xe+ in reverse time and the
unstable manifold U(xe+) converges to xe− in forward time. Such trajectories
which connect two different equilibrium points are called heteroclinic connec-
tions. We will see in Section 6.4.3 that every trajectory evolving in the region
bounded by S(xe−) = U(xe+) and S(xe+) = U(xe−) converges to the origin
xe0.
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3. f2 > 0
By reformulating the second Hurwitz condition (6.13) we obtain

1 + f1

f2

< −1.

Thus, the point c+ lies always outside the null reachable region R in the state space
R− = {x ∈ R

2 : x2 < −1}. In R− the vector field ẋ points always to R since

ẋ2 = λ2(x2 + u) > 0 for x2 < −1 and u ∈ Ua = [−1, 1].

Moreover, Lemma 1 states S(xe−) ⊂ C. Therefore, the stable manifold S(xe−)
inevitably crosses ∂L0 and ∂L−, where the intersection points are denoted by c� ∈
R− and c�� ∈ R−, respectively. At c�� the stable manifold evolves hyperbolically
inside the negative saturated region according to the dynamics of the linear system
(6.31) with the state translation (6.30) (see Figure 6.1). Since Lemma 1 states that
U(xe+) ⊂ R the unstable manifold U(xe+) crosses or reaches ∂L0 inside R, where
the intersection is denoted by r�. Thus, the condition ‖c�‖ > ‖r�‖ is always verified.
Figure 6.5 illustrates the evolution of both manifolds.

We showed that the stable and unstable manifolds, S(xe±) and U(xe±), are not topo-
logically equivalent for any system parameters λ1 and λ2 and controller parameters f1

and f2. In fact it depends on how the manifolds cross L0, where either the conditions
‖c�‖ > ‖r�‖, ‖c�‖ < ‖r�‖ or ‖c�‖ = ‖r�‖ can occur. For the condition ‖c�‖ > ‖r�‖ both
branches of S(xe±) are unbound, where one branch of U(xe±) is bounded. The contrary
happens when condition ‖c�‖ < ‖r�‖ is satisfied. In the case where ‖c�‖ = ‖r�‖ is verified
all manifolds have one bounded branch creating two heteroclinic connections between xe+

and xe−. This is the condition at which a topological bifurcation of the stable and unsta-
ble manifolds occurs. We will show in the following sections that this is the cause for the
bifurcation of the region of attraction A of (6.11).
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Figure 6.5: The points c+, c�, c��, r− and r� and the evolution of the manifolds in the
case where f2 > 0. The condition ‖c�‖ > ‖r�‖ is always verified.

6.3 The condition for bifurcation

For the class of systems considered, the boundary of the region of attraction can be
either i) unbounded hyperbolically shaped or ii) a bounded limit cycle, depending on the
parameters of the system and the controller. The limiting case between the two types
of the region of attraction corresponds to a set bounded by two heteroclinic connections.
In this section, a condition depending on the system and controller parameters will be
defined, with which it will be possible to distinguish between the two categories and
detect the limiting case. However, the link between this condition and the bifurcation of
the region of attraction A is deferred to Section 6.4.

6.3.1 Intersection of system trajectory with ∂L0

The condition for bifurcation is based on how the trajectories from points c and r intersect
∂L0, where the intersection is denoted by c� and r� (these intersection points are defined
and qualitatively described in Section 6.2.2), respectively. The first intersection of the
trajectory from an arbitrary initial condition is considered. Let T+ denote the first positive
time for which the trajectory intersects ∂L0, and T− the first negative time. The analytical
expressions for T+ and T− depend on the nature of the closed-loop poles λ̃1 and λ̃2. Three
cases have to be distinguished: (i) distinct and real poles, (ii) double poles, and (iii)
complex conjugate poles.
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6.3.1.1 Distinct real poles

Proposition 1 Let the eigenvalues of (A+bf) be distinct and real. Given xo =
[

x1 x2

]T

in L \ 0, the intersection times T+ and T− are given by:

T+ =

{
γ if γ > 0 and α > 0

∞ if γ ≤ 0 or α ≤ 0
(6.36)

T− =

{
γ if γ < 0 and α > 0

undefined if γ ≥ 0 or α ≤ 0
(6.37)

where

γ =
ln(α)

λ̃2 − λ̃1

, α =
f1x1(λ̃1 − λ2) + f2x2(λ̃1 − λ1)

f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)
(6.38)

Proof:
The following transformation is used to diagonalise the system (6.11) without saturation:

Ṽ =
1

λ̃2 − λ̃1

[
f1(λ2 − λ̃1) f2(λ1 − λ̃1)

f1(λ̃2 − λ2) f2(λ̃2 − λ1)

]

Then, the evolution of the states is given by

x(t) = e(A+bf)txo = Ṽ −1

[
eλ̃1t 0

0 eλ̃2t

]
Ṽ xo (6.39)

The intersection time T satisfying fe(A+bf)Txo = 0 is sought. Since λ̃1 �= λ̃2, the previous
expression reads:

eλ̃1T (f1x1(λ2 − λ̃1) + f2x2(λ1 − λ̃1))

+eλ̃2T (f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)) = 0 (6.40)

which always admits the solution T = ∞. The other solution is T = γ = ln(α)

λ̃2−λ̃1
, where

α = e(λ̃2−λ̃1)T =
f1x1(λ̃1 − λ2) + f2x2(λ̃1 − λ1)

f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)
(6.41)

α is well defined as long as both the numerator and the denominator do not vanish
simultaneously. This will not happen due to the invertibility of Ṽ . However, α can be
negative, in which case the solution of (6.41) is imaginary, and so T = ∞ is the only
solution. Depending upon the sign of γ, the solution is either in forward time or in
reverse time.

Note that, when the closed-loop poles are real, in addition to reaching the origin asymp-
totically, there is at most one intersection with ∂L0. This intersection can either be in
forward (positive) time or in reverse (negative) time. The positive intersection time is
always defined since, in the worst case, the system reaches the origin asymptotically.
However, there might be no intersection in negative time and T− may be undefined.

Corollary 1 T− is defined from the point c.
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Proof:
Assume, without loss of generality, that (λ̃1 − λ̃2) > 0. Then from (6.37) and (6.38),
T− = γ < 0 exists only if α > 1. Substituting xo = c,

α = 1 +
(λ̃1 − λ̃2)

f1(λ2 − λ1) + (λ̃2 − λ1)
. (6.42)

Since (λ̃1 − λ̃2) > 0, α > 1 when the denominator of (6.42) is positive. Using the fact
that λ̃1 + λ̃2 = (1 + f1)λ1 + (1 + f2)λ2, the denominator becomes:

f1(λ2 − λ1) + (λ̃2 − λ1) = λ2(1 + f1 + f2) − λ̃1 (6.43)

From λ2, λ̃1 < 0 and the second Hurwitz condition (1 + f1 + f2) < 0, the denominator is
positive, so α > 1, γ < 0, and thus T− exists.

6.3.1.2 Double poles

When λ̃1 = λ̃2 = λ̃, α = 1 and γ is indeterminate. However, the limiting value can be
easily found:

T+ =

{
γ if γ > 0

∞ if γ ≤ 0
(6.44)

T− =

{
γ if γ < 0

undefined if γ ≥ 0
(6.45)

where

γ =
f1x1 + f2x2

f1x1(λ2 − λ̃) + f2x2(λ1 − λ̃)
(6.46)

6.3.1.3 Complex conjugate poles

The expression (6.38) can also be used when the poles are complex. Note that the numer-
ator and denominator of α are complex conjugates. So, |α| = 1, the real part of ln(α) is
zero and so is Re(λ̃2−λ̃1). However, the important difference is that ln(α) admits multiple
solutions, and there are infinitely many intersections both in positive and negative times.
Among the solutions of ln(α), the first positive solution and the first negative solution are
used for the computation of T+ and T−. So,

T+ = first positive solution of

(
ln(α)

λ̃2 − λ̃1

)
(6.47)

T− = first negative solution of

(
ln(α)

λ̃2 − λ̃1

)
(6.48)

with α given by (6.38).
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6.3.2 Definition of the Condition on C
Definition 7
Let r∗ = Φ(T+, r) = e(A+bf)T+ r be the first intersection of the trajectory starting from r

and ∂L0 and, similarly, c∗ = Φ(T−, c) = e(A+bf)T− c. Then, C is defined as

C = ‖c∗‖ − ‖r∗‖ = ‖e(A+bf)T− c‖ − ‖e(A+bf)T+ r‖. (6.49)

It will be shown in the next section that the shape of the region of attraction depends on
whether C > 0, C < 0, or C = 0. The condition on C can be interpreted as follows: In
backward time, R forms the region to which a trajectory cannot return, once it has left.
The sign of C indicates whether or not the trajectory from c leaves R in backward time.
If C < 0, the trajectory Φ(t, c) does not leave R while when C > 0, it leaves R. A similar
argument can be made with C and r.

6.3.3 Simple checks for the Condition on C

Though C has to be computed using (6.49), there are easier sufficient conditions to check
whether C > 0 or C < 0. From the interpretation of the condition on C, C > 0 if c �∈ R.
Similarly, C < 0 if r �∈ C. This leads to the following proposition.

Proposition 2 (1 − f1 + f2) < 0 =⇒ C < 0 and (1 + f1 − f2) < 0 =⇒ C > 0.

Proof: If (1 − f1 + f2) < 0, (1 + f2) < f1. Since f1 < 0, 1+f2

f1
> 1. So, the first

component of r is smaller than −1, and r �∈ C leads to (1 − f1 + f2) < 0 ⇒ C < 0. If
(1 + f1 − f2) < 0, then (1 + f1) < f2. Since f2 is not sign definite, two cases need to
be considered. If f2 < 0, 1+f1

f2
> 1. So, the second component of c is larger than 1, and

c �∈ R. If f2 > 0, the Hurwitz condition (1 + f1 + f2) < 0 itself indicates that 1+f1

f2
< −1.

So, in either case, c �∈ R, and (1 + f1 − f2) < 0 ⇒ C > 0.

Although the conditions are easy to verify, there exists a gap between the two conditions.
In this gap, it is necessary to compute C using (6.49).

Proposition 3 (λ1 + λ2) ≤ 0 =⇒ C ≥ 0.

Proof: The proof of this proposition is quite detailed and thus only a sketch of proof
is given here. It uses Bendixson’s theorem and the results that will be presented in the
proof of Theorem 3 of the next section. We will show in the proof of Theorem 3 that in
the closure of the region of attraction, denoted by Ā, there exists no limit cycle if C ≥ 0 is
satisfied and that there exists always one limit cycle if C < 0 is verified. Moreover, it will
be shown that, by applying Bendixson’s theorem, there exists no limit cycle if λ1 +λ2 ≤ 0
which leads to the result of (λ1 + λ2) ≤ 0 ⇒ C ≥ 0.

This proposition implies that, if the unstable open-loop pole is slower than the stable
one, then no bifurcation can occur. Also, this shows why that not all systems with one
stable and one unstable open-loop pole exhibit bifurcation as a function of the controller
parameters.

6.4 The region of attraction and its bifurcation

In this section, we first present a result proving the existence of bifurcation of the region
of attraction for the class of systems considered, i.e. (6.11). Then the link between the
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condition on C and the shape of the region of attraction will be established. It will be
shown that the bifurcation between a hyperbolic type region of attraction and a region of
attraction bounded by a limit cycle occurs at C = 0.

6.4.1 Existence of bifurcation

For a system with one stable and one unstable open-loop pole and saturated linear or
nonlinear state feedback, an existential result on bifurcation of the region of attraction
was given in [3]:

1. If U(xe+) ∩ A �= ∅ and U(xe−) ∩ A �= ∅, then ∂A = S(xe+) ∪ S(xe−).

2. If U(xe+) ∩ A �= ∅ and xe− �∈ ∂A then ∂A = S(xe+)

3. If U(xe−) ∩ A �= ∅ and xe+ �∈ ∂A then ∂A = S(xe−).

4. If U(xe+) ∩ A = ∅ and U(xe−) ∩ A = ∅, then ∂A is either a closed orbit or a graph
of homoclinic/heteroclinic connections.

This result calls for some remarks. Firstly, the result depends on the shape of A and ∂A
that are unknown. In this chapter, an analytical condition for bifurcation is introduced
that does not assume a priori the shape of A. Secondly, since the considered system (6.11)
is symmetric the Statements 2 and 3 cannot occur. Also, in Statement 4, homoclinic
connections, i.e. manifolds starting from and ending at the same saddle point, do not
exist for the system considered. In addition, it is possible to distinguish between the
cases when heteroclinic connections occur (manifolds starting from one saddle point and
ending at another) and when the boundary is a closed orbit.

6.4.2 Preliminaries

In the next section we will state the theorem which characterises the shape of the region
of attraction A of system (6.11) as a function of the condition C. For the proof of
this theorem some preliminary knowledge about the existence and characteristics of limit
cycles for the considered system is required.

Consider the region

D = C ∩ R =
{
x ∈ R

2 : |x1| < 1 and |x2| < 1
}

. (6.50)

The next lemma claims that if there exists limit cycles then they are located only in this
region.

Lemma 3 Consider system (6.1) with the admissible input u ∈ Ua = [−1, 1]. A limit
cycle can only occur in the region D around the equilibrium point xe0 ∈ D.

Proof:
According to Theorem 2 the system (6.1) with the input u ∈ Ua has three equilibrium
points xe0, xe+ and xe−. Since from Section 6.2 the stable and unstable manifolds of
xe± possess always at least one unbounded branch (the branch converge to infinity) no
trajectory can encircle xe±. Thus, from the Poincaré theorem (Theorem A.1) we know
that if a limit cycle exists it has to encircle the stable equilibrium point xe0.
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In the region R
2 \ C = {x ∈ R

2 : |x1| ≥ 1} the unstable part of system (6.1) follows

ẋ1 = λ1(x1 + u) ≤ 0 for x1 ≤ −1 and u ∈ Ua = [−1, 1]

ẋ1 = λ1(x1 + u) ≥ 0 for x1 ≥ 1 and u ∈ Ua = [−1, 1]. (6.51)

Therefore, a trajectory leaving the region C cannot reenter it. Similarly, in the region
R

2 \ R = {x ∈ R
2 : |x2| ≥ 1} the stable part of system (6.1) follows

ẋ2 = λ2(x2 + u) ≥ 0 for x2 ≤ −1 and u ∈ Ua = [−1, 1]

ẋ2 = λ2(x2 + u) ≤ 0 for x2 ≥ 1 and u ∈ Ua = [−1, 1]. (6.52)

It follows that a trajectory entering the region R stays in it. Therefore, there exists no
limit cycle for which a part of its trajectory is located in R

2 \ D.

For what follows we describe qualitatively where the limit cycle is located in D. Since
in the linear region the closed-loop system (6.11) is stable there cannot exist any limit
cycle in it. Thus, a part of the limit cycle has to pass through the positive and negative
saturated regions by crossing ∂L+ and ∂L−. We first study how a potential limit cycles
crosses ∂L+ and ∂L−. Since system (6.11) is symmetric only ∂L+ is considered. To
determine if a trajectory exists or enters the linear region we study the vector field ẋ(x)
of (6.1) for all x ∈ ∂L+ and u = 1. The sign of the scalar product fẋ(x ∈ ∂L+, 1) allows
the following conclusion:

• if fẋ(x ∈ ∂L+) > 0 then the trajectory exits the linear region L
• if fẋ(x ∈ ∂L+) < 0 then the trajectory enters the linear region L
• if fẋ(x ∈ ∂L+) = 0 then the vector field is parallel to ∂L+ and trajectory stays in

∂L+.

The scalar product

fẋ(x ∈ ∂L+) = f1λ1(x1 + 1) + f2λ2(x2 + 1) (6.53)

can be expressed as a function of only one state variable, i.e. x2 if x1 is substituted by
means of equation fx = f1x1 + f2x2 = 1 defining ∂L+:

fẋ(x ∈ ∂L+) = f2(λ2 − λ1)(1 + x2) + λ1(1 + f1 + f2). (6.54)

This equation is obviously linearly dependent on x2 and thus there exists only one point
for which it is zero. We define the point

p0 ∈ L+ for which fẋ(p0) = 0. (6.55)

From point p0 there exists two branches on ∂L+, where for one of them fẋ > 0 and
for the other one fẋ < 0 since equation (6.54) is a linear expression of x2. Denote the
intersection of ∂L+ with ∂C− and ∂R− by

c+ = ∂C−∩∂L+ =
[
−1 (1+f1)

f2

]T

and −r− = ∂R−∩∂L+ =
[

(1+f2)
f1

−1
]T

. (6.56)

This leads to following result
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Lemma 4 Consider the points p0, c+ and −r− and the closed-loop system (6.11). The
point p0 is always located on the segment bounded by c+ and −r−, p0 ∈ c+ − r− ⊂ ∂L+.
Furthermore, for all x ∈ p0 c+ \ p0 the trajectory of (6.11) exits the linear region L since
fẋ(x) > 0 and enters L for all x ∈ p0 − r− \ p0 since fẋ(x) < 0.

Proof:
The points p0, c+ and −r− are elements of ∂L+. By considering the scalar product fẋ
for these points we obtain

fẋ(p0) = 0

fẋ(c+) = λ2(1 + f1 + f2) > 0

fẋ(−r−) = λ1(1 + f1 + f2) < 0

since the second Hurwitz condition satisfies 1 + f1 + f2 < 0. Therefore, the point p0 is
element of c+ − r− ⊂ ∂L+ since for all x ∈ ∂L+ the scalar product fẋ(x) is a linearly
depending function. Moreover, for the same reason fẋ(x) > 0, ∀x ∈ p0 c+ \ p0 and
fẋ(x) < 0, ∀x ∈ p0 − r− \ p0.

The following lemma characterises qualitatively the existence and shape of one ore more
limit cycles as a function of the sign of the controller parameter f2 (Figure 6.6).

x
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x 2

∂LC

-
∂L

+

∂L
0

xe+

x

xe0

1

0

10

0

p0

p

∂L

+

r-

-

c+

Figure 6.6: Qualitative characterisation of a limit cycle and illustration of a half cycle.

Lemma 5 Consider the closed-loop system (6.11) and the controller parameter f2 ∈ R.
Then

• for f2 ≥ 0 there exists no limit cycle

• for f2 < 0 one or more limit cycles can occur. If one or more limit cycles exist then
they are located in D and they encircle the points xe0, p0 and −p0.

Proof:
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• f2 = 0
From equation (6.54) the cross product becomes

fẋ(x ∈ ∂L+) = λ1(1 + f1) < 0

since the second Hurwitz condition satisfies 1 + f1 + f2 = 1 + f1 < 0. Thus, p0 does
not exist and all trajectories entering the linear region L can no more leave it. Since
the linear region is stable there cannot exist any limit cycle.

• f2 > 0
We are seeking for the point p0. From (6.54) and (6.55) we have

fẋ(p0) = f2(λ2 − λ1)(1 + x2) + λ1(1 + f1 + f2) = 0. (6.57)

Since from the second Hurwitz condition λ1(1 + f1 + f2) < 0 the first term has
to verify f2(λ2 − λ1)(1 + x2) > 0. Moreover, since f2(λ2 − λ1) < 0 the expression
(1+x2) has to be negative which means that x2 of p0 has to satisfy x2 < −1. Thus,
p0 is not located in D and we conclude from Lemma 3 that there cannot exist any
limit cycle.

• f2 < 0 (Figure 6.6)
In this case we have f2(λ2 − λ1) > 0 which implies that x2 of p0 is x2 > −1. Thus,
there exists points p0 which are elements of D implying that one or more limit
cycles can appear. Since a limit cycle cannot appear exclusively in the linear region
it has to pass through the positive and negative saturated regions. Therefore, from
Lemma 4 the trajectory of the limit cycle exits the linear region L on the open
segment p0 c+ \ p0 ⊂ ∂L+ and reenters L on the open segment p0 − r− \ p0 ⊂ ∂L+.
Since the considered system is symmetric the same consideration can be drawn for
∂L− and −p0 ∈ ∂L−. Thus, all limit cycle encircle p0 and −p0. The encirclement
of the equilibrium point xe0 is due to the Poincaré theorem.

Definition 8
Assume that there exists a limit cycle denoted by ∂LC and its interior by LC. Then there
exists trajectories encircling p0 ∈ LC, −p0 ∈ LC and xe0 ∈ LC and converging to ∂LC in
forward time if ∂LC is stable or in reversed time if ∂LC is unstable. We define a part of
such a trajectory as a half cycle, denoted by

HC(p, p′, p′′), (6.58)

when, in forward time, it starts at p ∈ p0 c+ \ p0 ⊂ ∂L+ crosses p′ ∈ p0 − r− \ p0 ⊂ ∂L+

and ends at p′′ ∈ −p0 − c+ \ −p0 ⊂ ∂L−.

Figure 6.6 illustrates a limit cycle ∂LC and a half cycle HC(p, p′, p′′). A half cycle
HC(p, p′, p′′) for which p′′ = −p is a half limit cycle and by symmetry ∂LC = HC(p, p′, p′′)∪
−HC(p, p′, p′′).
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6.4.3 Region of attraction as a function of condition C

Theorem 3
1. If C > 0, (region bordered by hyperbolae)

• S(xe+) and S(xe−) are disjoint and unbounded.

• For both U(xe+) and U(xe−), one of the branches converges to the origin.

• The boundary of the region of attraction is ∂A = S(xe+) ∪ S(xe−).

2. If C < 0, (region bounded by a limit cycle)

• U(xe+) and U(xe−) are disjoint and unbounded.

• For both S(xe+) and S(xe−), one of the branches converges to a limit cycle.

• The boundary of the region of attraction is the unique time-reversed stable
limit cycle

∂A = lim
t→∞

Φ(−t, x0) ∀x0 ∈ U

where the boundary of U is ∂U = U(xe+) ∪ U(xe−).

3. If C = 0, (region bounded by two heteroclinic connections)

• One of the branches of U(xe+) is bounded and coincides with that of S(xe−).

• One of the branches of U(xe−) is bounded and coincides with that of S(xe+).

• The boundary of the region of attraction is a double heteroclinic connection,
∂A = (U(xe+) ∩ S(xe−)) ∪ (U(xe−) ∩ S(xe+)).

Proof:

1. C > 0
From Section 6.2.2 we know that the stable manifolds S(xe±) have two unbounded
branches evolving in opposite directions. Since from Lemma 1 S(xe±) ⊂ C we
define the connected set S0 ⊂ C for which its boundaries are ∂S0 = S(xe+)∪S(xe−)
and where ∂S0 �⊂ S0. Since ∂S0 are trajectories then, from the unicity theorem,
a trajectory starting in S0 stays in it. Consider the bounded closed set B = S0 ∩
D, where B = B \ ∂B. Then according to relations (6.52) and since there is no
equilibrium point in S0 \ B all trajectories starting in S0 \ B enter and remain in B.
Thus, B is a closed bounded invariant set which contains the three equilibrium points
xe+, xe− and the origin xe0. According to Poincaré-Bendixson’s theorem (Theorem
A.2) and Lemma 3 all trajectories starting in B will converge either to xe+, xe−, xe0

or to a limit cycle encircling xe0. Since xe± ∈ ∂B ∩ ∂S0 only the trajectory starting
from the part of the stable manifolds ∂B ∩ ∂S0 converge to xe±. Thus, all other
points in B, denoted by B \ ∂S0, will converge to the origin xe0 or to a limit cycle
encircling xe0. From what follows we show that there exists no limit cycle which
implies that S0 is the region of attraction A, where ∂A = ∂S0 = S(xe+) ∪ S(xe−).
Moreover, this implies that one of the branches of U(xe±) converges to xe0.

The proof of the nonexistence of limit cycles is divided into two cases i) λ1 +λ2 ≤ 0
and ii) λ1 + λ2 > 0
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• Case: λ1 + λ2 ≤ 0
From the proof of the Bendixson theorem (Theorem A.3) we claim that if there
exists a limit cycle, where its closed curve is denoted by ∂LC and its interior
by LC, then the integral over the area LC∫ ∫

LC

∇ · ẋ dx1dx2 = 0,

where ∇· ẋ is the divergence of the vector field of the closed-loop system (6.11)

∇ · ẋ =
∂ẋ1

∂x1

+
∂ẋ2

∂x2

=

{
DL := λ1(1 + f1) + λ2(1 + f2) if x ∈ L
DS := λ1 + λ2 if x ∈ R

2 \ L .

Since the system in L is Hurwitz the condition ( 6.12) λ1(1+f1)+λ2(1+f2) < 0
is verified and thus

DL < 0.

Since we only investigate the case where λ1 + λ2 ≤ 0 we obtain

DS ≤ 0.

Since the origin xe0 is in the stable region L the integral is always∫ ∫
S

∇ · ẋ dx1dx2 < 0, (6.59)

over any area S ⊂ R
2 containing the origin. Assume that there exists a limit

cycle. Then, since the limit cycle has to encircle the stable node located at the
origin and since the integral (6.59) is not equal zero there cannot exist a limit
cycle.

• Case: λ1 + λ2 > 0
Assume that there exists at least one limit cycle in B and denote the closed
curve of the biggest limit cycle by ∂LCmax and its interior by LCmax. Then
all trajectories starting in B \ LCmax encircle ∂LCmax and converge to ∂LCmax

at t → ∞. According to Lemma 5 the limit cycle ∂LCmax encircles p0, −p0

and xe0. From definition 8 we define two arbitrary half cycles HC1(p1, p
′
1, p

′′
1)

and HC2(p2, p
′
2, p

′′
2) located in B \ LCmax. If ∂LCmax exists then the distance

between both half cycles has to shorten

‖p1 − p2‖ > ‖p′′1 − p′′2‖. (6.60)

From Lemma A.4 and A.2 it follows that since λ1 + λ2 > 0 is considered,
‖p′1 − p′2‖ < ‖p′′1 − p′′2‖ and ‖p1 − p2‖ < ‖p′1 − p′2‖. Therefore

‖p1 − p2‖ < ‖p1 − p2‖ < ‖p′′1 − p′′2‖

is verified in the whole region B which is a contradiction to (6.60). Therefore,
there cannot exist any limit cycle in B.
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2. C < 0
From Section 6.2.2 we know that the unstable manifolds U(xe±) have two unbounded
branches evolving in opposite directions. Since from Lemma 1 U(xe±) ⊂ R we define
the connected set U0 ⊂ R for which its boundaries are ∂U0 = U(xe+) ∪ U(xe−)
and where ∂U0 �⊂ U0. Since ∂U0 are trajectories then from the unicity theorem
a trajectory starting in U0 stays into it. Consider the bounded and closed set
B = U0 ∩ D, where B = B \ ∂B. Remark that from what follows we consider the
system in reversed time. Similarly to point 1. and by considering the relations of
(6.51), all trajectories starting in U0 \B enter and remain into B and either converge
to xe0 or to a limit cycle encircling xe0. Since we consider the system in reversed
time, the equilibrium point xe0 is unstable and thus at least one limit cycle exists.
It remains to show that there exists only one limit cycle.

We first show that if the condition C < 0 is verified then

λ1 + λ2 > 0

always holds. We have shown in the proof of point 1, where C > 0, with means of
the Bendixson theorem that there cannot exist a limit cycle if λ1 + λ2 ≤ 0. This
proof holds also in the case where C < 0 is verified. Since there always exists a limit
cycle if C < 0 the condition λ1 + λ2 > 0 always holds in the case where C < 0.

Assume two arbitrary limit cycle ∂LC1 and ∂LC1 which according to Lemma 5 are
located in B and encircle p0, −p0 and xe0. By means of definition 8 we define
the half cycles of this two limit cycles, denoted by HC1(p1, p

′
1, p

′′
1) ⊂ ∂LC1 and

HC2(p2, p
′
2, p

′′
2) ⊂ ∂LC2, where p1 = −p′′1 and p2 = −p′′2. This leads to

‖p1 − p2‖ = ‖p′′1 − p′′2‖. (6.61)

From Lemma A.4 and A.2 it follows that since λ1 +λ2 > 0 is considered, ‖p′1−p′2‖ <
‖p′′1 − p′′2‖ and ‖p1 − p2‖ < ‖p′1 − p′2‖. Therefore

‖p1 − p2‖ < ‖p1 − p2‖ < ‖p′′1 − p′′2‖
is verified in the whole region B which is a contradiction to (6.61). Therefore, there
exists only one limit cycle in B. Moreover, all trajectories starting in U0\xe0 converge
to it in reversed time. Thus, since S(xe±) ⊂ U0 one branch of each stable manifold
converge to the limit cycle. In forward time all trajectories starting inside the limit
cycle converge to the origin xe0. The limit cycle is therefore the boundary of the
region of attraction A

3. If C = 0
We define the sets S0 = B bounded by the stable or unstable manifolds ∂S0 = ∂B =
S(xe+) ∪ S(xe−) = U(xe+) ∪ U(xe−). Thus, ∂S0 is bounded by trajectories and
therefore no trajectory starting in R

2 \ S0 can enter S0. Moreover, all trajectories
starting in S0 remain into it. From what follows we show that there exists no
limit cycle in S0 which implies that S0 is the region of attraction A, where ∂A =
S(xe+) ∪ S(xe−) = U(xe+) ∪ U(xe−).
The remainder of the proof is similar to the proof of point 1.

The shapes of the regions in the three scenarios are illustrated in Figures 6.7, 6.8 and 6.9.
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Figure 6.7: Example of the region of attraction for the condition C > 0 (◦ = xs, ♦ = xu)
(solid line - forward time, dotted line - reverse time).
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Figure 6.8: Example of the region of attraction for the condition C < 0 (◦ = xs, ♦ = xsu,
� = xu) (solid line - forward time, dotted line - reverse time).
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Figure 6.9: Example of the region of attraction for the condition C = 0 (◦ = xs, ♦ = xu)
(solid line - forward time, dotted line - reverse time).
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6.5 Conclusion

In this chapter, the bifurcations of the region of attraction are analysed. It is shown that a
planar system with one stable and one unstable pole only exhibits a bifurcation when the
unstable pole is faster than the stable one. An analytical condition is provided for which
the region of attraction changes from an unbounded hyperbolic region to a bounded limit
cycle.
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Chapter 7

A globally stabilising controller
under saturated input for systems
with one unstable pole

In this chapter we present a new globally stabilising controller resulting from the incor-
poration of a simple continuous nonlinear function into a linear controller, referred to as
the Continuous Nonlinear Globally Stabilising Controller (CNGSC). Linear systems with
one unstable pole and a single input with saturated linear and nonlinear feedback will be
considered. We first analyse the new controller by means of a second-order system and
then extend the results to higher order systems (n > 2 order system).

Various standard controllers, linear controllers included, are compared against each
other by considering five essential requirements which have to be taken into account for
the design of a tokamak controller:

1. Global stability:
Two important concepts pertaining to these systems have to be distinguished. First
we have the null controllable region C and the second is the region of attraction A
defined in Chapter 6. A controller is considered as globally stabilising when A = C.

The following results have been proposed in the literature for planar systems (second
order systems). For semi-stable planar systems (both poles have nonpositive real
parts), C = R

2 and A = C = R
2 for any linear state feedback which makes the

origin globally asymptotically stable in the absence of saturation [51]. However, for
systems with one stable and one unstable pole, C ⊂ R

2 and A = C can be achieved
either with an optimal or near optimal variable structure control (VSC) [43, 49] or
using a linear state feedback controller where only the unstable state is fed back
[3, 49]. For anti-stable systems (both poles have positive real parts), C ⊂ R

2 and
the only way to obtain A = C is with optimal or near optimal switching controllers
(bang-bang controllers) [27, 28].

2. Local performance:
The aim is to enforce the desired performance locally around the origin. For systems
with one unstable pole, a simple way of obtaining global stability is to feed back
solely the unstable state. However, such a controller will have poor local performance
due to the absence of feedback on the stable modes. The proposed controller should
guarantee, at least locally, the desired temporal performance.

141
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3. Avoidance of large AC losses:
The results concerning the AC losses reduction are presented in Chapter 5 of Part
I. The main statement for avoiding large AC losses is to design controllers which
generate control signals with i) least possible oscillations, ii) amplitudes as small as
possible and iii) signal frequencies as low as possible. Therefore, we have to avoid
chattering (discontinuous switching at very high frequencies) in the control signal
which is due to the controller itself (e.g. sliding mode bang-bang controller) or which
is induced in the presence of noise. In general, chattering is due to discontinuities
in the control law, e.g. bang-bang controller. A discontinuity may also give rise to
an oscillating transient phase appearing just after its occurrence. These oscillations
increase the AC losses.

4. Application for higher order systems:
The controller should be able to handle higher order systems. We define a higher
order system as a dynamic system higher than second order.

5. Simple design and implementation:
Experience shows that new controllers with complicated and complex structures are
often not considered in practice, especially in the field of industrial applications. In
general, there seems to be a fear of controllers for which considerable knowledge is
required for design and implementation. We therefore have to focus on controllers
for which the design and the implementation are simple and fairly intuitive.

In what follows various standard controllers proposed in the literature are analysed
from the perspective of control of linear planar or higher order systems with one unstable
pole.

i. Standard linear state feedback controllers where both states are fed back [18]:
Requirement 1 is not satisfied.

ii. Linear state feedback controllers where only the unstable state is fed back
[3, 49]: Requirement 2 is not satisfied since the stable states are left to follow their
own dynamics.

iii. Controller switching from controller (ii) to controller (i) [27, 28]: When the state
reaches an invariant non-saturated region, the controller switches from type (ii) to
(i). The problem is that the invariant region could be very small, thus Require-
ment 2 might not be satisfied. Furthermore, the switching from one controller to
another implies a discontinuity which might give raise to an increase of AC losses,
thus Requirement 3 might not be verified. The design and implementation requires
knowledge of Lyapunov stability theory (for the invariant region) and thus Require-
ment 5 is not satisfied.

iv. Time optimal controller [43]: Since chattering of the control signal is induced in
the presence of noise and disturbances Requirement 3 is not satisfied. No solutions
for higher order systems have been found in the literature, thus it is assumed that
Requirement 4 is not satisfied.

v. Near-time optimal VSC controller [49]: Since the controller is chattering during
sliding-mode Requirement 3 is not satisfied. There is no proposition for application
to higher order system in [49]. Nevertheless, an extension to higher order system
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seems possible but will considerably complicate the controller structure and thus
the design and implementation, i.e. Requirement 5 is not satisfied.

Remark:
From the point of view of Requirements 1 and 2, the time optimal or near-time optimal
switching strategies are the methods of choice. The controllers have the maximum region
of attraction and provide excellent time performance, not only locally, but even globally.
However, the main problem is that the control signal is chattering. Absence of chattering
and therefore reduction of AC-losses is an important requirement for the controller we
want.

The properties of these controllers are summarised in Table 7.1. The controllers avail-
able in the literature cannot satisfy one or more of the requirements stated above. Thus,
a controller is proposed that meets all the aforementioned requirements. The idea is to
obtain a controller of type (iii) with a continuous switching from controller type (ii) to
controller type (i). This way, the problems linked to chattering and discontinuities (AC
losses) are avoided and the region of attraction is the null controllable region A = C.

Global Local Avoid large Higher order Simple
stability performance AC losses systems design

Standard linear − √ √ √ √
Feedback unstable state

√ − √ √ √
Switching controller

√ − − √ −
Time optimal controller

√ √ − − √
Near-time optimal VSC

√ √ − √ −

Table 7.1: Properties of state of the art controllers.

This chapter is organised as follows. In Section 7.1, definitions and terms used in
this chapter are introduced. Section 7.2 provides the main idea behind the structure of
the proposed CNGSC controller. Then global stabilisation in the null controllable region
is discussed and the CNGSC controller is compared against the standard controllers in
terms of local performance and chattering by means of simulations. Section 7.3 provides
an extension of the controller for the application to higher order systems. Conclusions
are drawn in Section 7.4.

7.1 Preliminaries

7.1.1 Linear system with input saturation

We consider a single input linear system with a single unstable pole. Upon state trans-
formation, the system can be written as

ẋ = Ax + bu (7.1)
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where, x ∈ R
n is the state vector and u ∈ R the input. Without loss of generality, A can

be written as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · λr µrνr · · · 0
0 0 · · · −µr/νr λr · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · λnc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.2)

where λ1 > 0 is the unstable pole and 0 > λ2 ≥ λ3 ≥ . . . ≥ λnc are the real parts of the
stable poles, where nc ≤ n. Conjugate complex pole pairs (i.e. λr ± jµr) are represented
as square submatrices, where νr ∈ R can by an arbitrary chosen value. Furthermore,
upon state transformation,

b =
[

λ1 λ2 · · · br1 br2 · · · λnc

]T
, (7.3)

where br1 , br2 and also νr are chosen so that A−1b =
[

1 1 . . . 1
]
.

System (7.1) can be subdivided into a system composed of an anti-stable and a stable
subsystem [27][

ẋ1

ẋs

]
=

[
λ1 0
0 As

] [
x1

xs

]
+

[
λ1

bs

]
u, (7.4)

where x1 ∈ R and λ1 describe the anti-stable subsystem and xs = [x2 x3 . . . xn]T ∈ R
n−1,

As and bs describe the stable subsystem.
We consider the symmetric saturation function with unity saturation level defined as

sat(ũ) =

⎧⎪⎨
⎪⎩
−1 if ũ < −1

ũ if − 1 ≤ ũ ≤ 1

1 if ũ > 1

. (7.5)

With saturated state feedback, the closed-loop system becomes

ẋ = Ax + b sat(ũ(x)), (7.6)

where ũ(x) : R
n → R represents the nonlinear control law as a function of the states.

7.1.2 Equilibrium points, null controllable region, region of at-
traction, stable manifolds and non-saturated region

The general definitions of the equilibrium points xe±, the null controllable region C, the
region of attraction A, the stable manifolds S and the non-saturated region L are already
provided in Chapter 6 for planar systems. We need to define these system characteristic
properties for the considered system of order n.

Equilibrium points and null controllable region
Consider the upper (positive) saturation level σu and the lower (negative) saturation level
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σl of a saturation. When the input u is equal to one of the two saturation levels then
there exists, for any system for which A is invertible, an equilibrium (ẋ = 0) for each
saturation level, given by

xe+ = −A−1bσl and xe− = −A−1bσu. (7.7)

When we consider the closed-loop system (7.6) where the feedback ũ(x) is a global sta-
biliser for (7.1) then trivially there exists a stable equilibrium point at the origin, defined
as xe0 = 0.

Let us denote the part of the equilibrium points xe± which corresponds to the subspace
of the unstable state x1 as xe±1 ∈ R. Then we can define the null controllable region of a
single input saturated system as

C = {x ∈ R
n : |x1| < |xe±1 |}, (7.8)

where its boundaries are given by

∂C+ = {x ∈ R
n : x1 = xe+1} and ∂C− = {x ∈ R

n : x1 = xe−1}. (7.9)

Note that in the case of the normalised system considered (System 7.1) the equilibrium
points are

xe± = ±A−1b = ±

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ (7.10)

and the null controllable region is therefore

C = {x ∈ R
n : |x1| < 1}. (7.11)

The proof of the null controllable region for nth order systems is similar to the proof
given for second order systems (Chapter 6) when we consider the separation of the nth
order system into a first order anti-stable system and into a (n− 1)th order stable system
(System 7.4).

By considering the closed-loop system (7.6) with a global stabilising feedback ũ(x)
we can prove the existence of the equilibrium points xe±, i.e. xe+ has to be inside the
negative saturated region u = σl, while xe+ has to be inside the positive saturated region
u = σ+. Since we are only interested in globally stabilising controllers for which the
region of attraction is equivalent to the null controllable region, this proof is derived
straightforwardly from the proof of the null controllable region.

We conclude that the closed-loop system (7.6) with a global stabilising feedback ũ(x)
possesses at least 3 equilibrium points, referred to as xe± and xe0 = 0. However, the
following theorem (provided in [3]) claims that for planar systems there only exist these
3 equilibrium points.

Theorem 4
Let the feedback ũ be a global stabiliser for a planar system (7.1) at the origin. Then,

the closed-loop system (7.6) has three equilibrium points: xe+ = A−1b =
[

1 1
]T

,

xe− = −A−1b =
[ −1 −1

]T
, and xe0 = 0. Of these, xe0 is stable, while the other two

are saddle points.
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Proof: The proof of this theorem is presented in [3]. Its proof relies on knowledge of
index theory and homotopy techniques which is not easily accessible. In the case of pure
linear saturated state feedback the proof is provided in Chapter 6.

Note that such a theorem does not exist for higher order systems (n > 0). Therefore,
there may exist more than only these 3 equilibrium points.

Region of attraction

Definition 9
Let Φ(t, x0) denote the state of (7.6) at time t, starting with the initial condition x0 at
t = 0. The region of attraction of the stable equilibrium point xe0 = 0 is defined as:

A =
{

x ∈ R
n : lim

t→∞
Φ(t, x) = 0

}
. (7.12)

The boundary of A is denoted by ∂A.

Stable manifolds of the equilibrium points xe±
The stable manifolds of the equilibrium points xe± are defined as

S(xe+) =
{

x ∈ R
n : lim

t→∞
Φ(t, x) = xe+

}
(7.13)

S(xe−) =
{

x ∈ R
n : lim

t→∞
Φ(t, x) = xe−

}
. (7.14)

Non-saturating region
The non-saturating region is defined as

L = {x ∈ R
n : |ũ(x)| ≤ 1} . (7.15)

The hypersurfaces

∂L+ = {x ∈ R
n : ũ(x) = 1} and ∂L− = {x ∈ R

n : ũ(x) = −1} (7.16)

are the boundaries of the region L and

∂L0 = {x ∈ R
n : ũ(x) = 0} (7.17)

is the hypersurface of zero control.

7.1.3 Globally stabilising linear state feedback controller

In this section we present a review of an important result pertaining to saturated linear
state feedback. We show that there exists a linear controller for which the region of
attraction is equal to the null controllable region (A = C) [3]. Consider the linear state
feedback control

ũ(x) = f1x1 + f2x2 + f3x3 + . . . + fnxn (7.18)

which is a stabiliser for System (7.1). Then it can be shown that A = C, if and only
if f2 = f3 = . . . = fn = 0. With such a choice of control parameters the anti-stable
subsystem becomes

ẋ1 = λ1(x1 + sat(f1x1)). (7.19)
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Since the Hurwitz condition calls for 1 + f1 < 0, then

ẋ1 < 0 ∀ x1 > 0

ẋ1 > 0 ∀ x1 < 0 and

ẋ1 = 0 for x1 = 0

is satisfied for x ∈ C leading the unstable state x1 to converge to zero independently of
the other states. Since x1 → 0, this implies that ũ → 0 and the stable subsystem becomes
ẋs = Asxs. Therefore, since As is stable, xs → 0.

For all other linear controllers where at least one of the parameters f2, f3 . . . fn is
nonzero, the region of attraction is always smaller than the null controllable region (A ⊂
C). This can be explained as follows. On the boundaries of the null controllable region
∂C± for which x1 = ±1 and on the zero control hypersurface ∂L0 for which ũ(x) = 0 the
linear state feedback (Equation 7.18) becomes

ũ(x) = 0 = ±f1 + f2x2 + f3x3 + . . . + fnxn.

By solving this equation for x there is always at least one solution when at least one of
the parameters f2, f3 . . . fn is nonzero. In this case there exists always an intersection
of the zero control hypersurface ∂L0 with the boundaries of the null controllable region
∂C±. Thus, there exists a zero control ũ(x) = 0 on the boundaries of the null controllable
region. Let us denote the intersection of ∂L0 with ∂C+ as V+ and with ∂C− as V−. Since
the linear state feedback ũ(x) is a continuous function of the state x there exists a small
neighborhood of V±, denoted as W±, for which ũ(x) ≈ 0 and for which W± ⊂ C. Thus,
for the anti-stable subsystem

ẋ1 > 0 ∀x ∈ W+ (where x1 ≈ 1) and

ẋ1 < 0 ∀x ∈ W− (where x1 ≈ −1)

is satisfied. Therefore, the trajectories starting in W± ⊂ C inevitably leave the null
controllable region and thus A ⊂ C.

7.2 CNGSC controller for planar systems

In this section we present the CNGSC controller by only considering planar systems
(System (7.1) with n=2) defined as

ẋ = Ax + bu =

[
λ1 0
0 λ2

]
x +

[
λ1

λ2

]
u (7.20)

where, x ∈ R
2 is the state vector, u the input, A and b appropriate matrices, and λ1, λ2

the eigenvalues of the open-loop system. Assume that λ1 > 0 and λ2 < 0.
Consider the controller

ũ(x) = f1x1 + k(x)f2x2 u = sat(ũ), (7.21)

where f =
[

f1 f2

] ∈ R
2 and k(x) : R

2 → R. Assume that f has been chosen to deliver
the desired performance (Requirement 2) of the closed-loop system near the origin. If we
set k(x) = 1, then (7.21) corresponds to a linear state feedback controller with the desired
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performance. If k(x) = 0, then the stable state is not fed back leading to A = C (Section
7.1.3). Continuous switching is introduced by choosing:

k(x) = 1 − |x1| (7.22)

or

k(x) = 1 − x2
1, (7.23)

where 0 < k(x) ≤ 1 since within the null controllable region |x1| < 1.
The idea behind this nonlinear controller is as follows. If x1 ≈ 0, then k(x) ≈ 1 which

implies that the controller is approximately the linear state feedback ũ ≈ f1x1 + f2x2.
In this case, the controller concentrates on local performance (Requirement 2). On the
contrary, if the unstable state approaches the boundary of the null controllable region
C, x1 ≈ ±1 and k(x) ≈ 0. This implies that the controller is approximately the linear
state feedback ũ ≈ f1x1, where it focuses on the stabilisation of the unstable state and
global stability (Requirement 1). Since the controller (7.21)-(7.22) is a continuous one,
chattering is avoided and Requirement 3 is also fulfilled.

Since f stabilises the system locally, it satisfies the Hurwitz stability conditions:

1. λ1(1 + f1) + λ2(1 + f2) < 0

2. λ1λ2(1 + f1 + f2) > 0, (1 + f1 + f2) < 0

Furthermore, the condition that the system has to be stable at k(x) = 0 implies that
(1 + f1) < 0 has to be satisfied.

To described the regions where the control is saturated and where it is not, consider
the function gũ : (−1, 1) → R that describes x2 as a function of x1 for a given ũ ∈ [−1, 1]:

x2 = gũ(x1) =
ũ − f1x1

f2(1 − |x1|) . (7.24)

With this function, it is possible to express ∂L0, ∂L+ and ∂L− by setting ũ = 0, ũ = 1
and ũ = −1, respectively:

∂L0 = {x ∈ (−1, 1) × R : x2 = gũ(x1) with ũ = 0}
∂L+ = {x ∈ (−1, 1) × R : x2 = gũ(x1) with ũ = 1}
∂L− = {x ∈ (−1, 1) × R : x2 = gũ(x1) with ũ = −1}

Figure 7.1 illustrates ∂L0, ∂L+, ∂L−, the boundary of the null controllable region ∂C+and
∂C−, and the equilibrium saddle nodes xe+ and xe−.

7.2.1 Analysis of the proposed controller

In what follows we analyse the controller with k(x) = 1 − |x1| since there exists a formal
conservative proof for A = C. Although the behaviour of the controller with k(x) = 1−x2

1

is similar to that with k(x) = 1 − |x1| a formal proof has not yet been derived.
Consider the closed-loop system with (7.6), (7.21) and (7.22) :

ẋ = Ax + b sat(f1x1 + f2x2(1 − |x1|)) (7.25)

It was shown in Chapter 6 that the stable manifolds are the boundaries of the region of
attraction A. In what follows, it will be shown that, with controller (7.21) the stable
manifolds are in fact the boundaries of the null controllable region C.
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Figure 7.1: Illustration of ∂L0, ∂L+, ∂L−, the boundary of the null controllable region
∂C+ and ∂C−, the stable manifolds ∂S+ and ∂S−, and the equilibrium saddle nodes xe+

and xe−.

Proposition 4 Consider system (7.25). If (1 + f1) < 0, then

∂S+ = ∂C+ and ∂S− = ∂C−.

Proof: Consider the input (7.21) along the manifold ∂C+ (for which x1 = 1): u =
sat(f1) = −1, since f1 < −1. Then, (7.25) along ∂C+ reads:

ẋ1 = λ1(x1 − 1) = 0 (7.26)

ẋ2 = λ2(x2 − 1) (7.27)

Thus, x1 stays at 1, and since λ2 < 0, x2 converges to 1 as well. Thus, ∂C+ forms the set
of all points that converge to the equilibrium point xe+. So, ∂S+ = ∂C+. A similar proof
can be written for ∂S− = ∂C−.

Lemma 6 Let X = (−1, 1)× [−1, 1] and D = [−1 + ε, 1− ε]× [−1, 1], with ε > 0 chosen
such that |u(x)| = 1 for all x ∈ (X \D). Then, all trajectories starting in C will enter the
compact invariant set D.

Proof: Consider the subset X+ = (−1, 1) × (1,∞]. Within this set,

ẋ2 = λ2(x2 + u) < 0

since λ2 < 0, x2 > 1, and |u| ≤ 1 due to saturation. So, all trajectories starting in X+ will
leave X+. A similar argument can be provided for X+ = (−1, 1)× [−∞,−1). So, since C
is invariant, all trajectories starting in C will reach X = C \ (X+∪X−) = (−1, 1)× [−1, 1].

Consider the subset Y− = (−1,−1+ ε)× [−1, 1], with ε > 0 chosen such that u(x) = 1
for all x ∈ Y−. So, within this set

ẋ1 = λ1(x1 + u) > 0
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since λ1 > 0, x1 > −1, and u = 1. Thus, eliminating Y− and its counterpart Y+ =
(1, 1− ε)× [−1, 1] gives the compact invariant set D = X \ (Y+∪Y−). So, every trajectory
starting in X reaches D.

The proof is complete since every trajectory starting in C reaches X and every trajec-
tory starting in X reaches D. Thus, D is invariant.

Lemma 7 If λ1+λ2 > 0 or (f2−f1) ≤ 0, then the non-saturated region L is an invariant
set for (7.25).

Proof: The lemma is proved by showing that the vector field of (7.25) points into the
non-saturated region L for every point along the manifolds ∂L+ and ∂L−. Since ∂L+ and
∂L− are symmetric it is sufficient to prove it only for one manifold (∂L+, ũ = 1).

The slope of the tangent of ∂L+, s1, is given by:

s1 =
dx2

dx1

=
dgũ(x1)

dx1

=
−f1 + sgn(x1)

f2(1 − |x1|)2
, (7.28)

Note that s1 < 0 for f2 < 0 and s1 > 0 for f2 > 0.
Noting that x2 = gũ(x1) along ∂L+, the slope of the vector field s2 is given by:

s2 =
ẋ2

ẋ1

=
λ2(x2 + 1)

λ1(x1 + 1)
=

λ2

λ1

1 − f1x1 + f2(1 − |x1|)
f2(1 − |x1|)(1 + x1)

(7.29)

The vector field points into the non-saturated region L if s2 > s1 for s1 < 0 (f2 < 0) and
s2 < s1 for s1 > 0 (f2 > 0). Since both s1 and s2 have f2 in the denominator, the two
cases with f2 > 0 and f2 < 0 can be unified to give the following condition:

λ2

λ1

1 − f1x1 + f2(1 − |x1|)
(1 − |x1|)(1 + x1)

<
−f1 + sgn(x1)

(1 − |x1|)2
.

Since (1 + x1) ≥ (1 − |x1|) > 0 and (−f1 + sgn(x1)) > (−f1 − 1), the condition can be
rearranged to give:

λ1(1 + f1) + λ2(1 + f2(1 − |x1|)) − λ2f1x1 < 0 (7.30)

So, the lemma is proved if it can be shown that (7.30) is verified.
Case 1: x1 ≥ 0
From the Hurwitz stability condition, λ1(1 + f1) + λ2(1 + f2(1 − |x1|)) < 0. Since λ2 < 0
and f1 < 0 the last term of (7.30), −λ2f1x1 ≤ 0. So, the inequality (7.30) holds.
Case 2: x1 < 0
Substituting |x1| = −x1 in (7.30) reads:

φ(x1) = λ1(1 + f1) + λ2(1 + f2) + λ2x1(f2 − f1) < 0 (7.31)

Due to linearity, the maximum of φ(x1) ∀−1 ≤ x1 ≤ 0 occurs either at x1 = −1 or x1 = 0
depending on the sign of (f2 − f1). If (f2 − f1) ≤ 0, the maximum is at x1 = 0. Thus, it
is required to prove λ1(1 + f1) + λ2(1 + f2) < 0, which is verified since it is the Hurwitz
stability condition. If (f2−f1) > 0, the maximum is at x1 = −1, and the inequality (7.31)
becomes:

(λ1 + λ2)(1 + f1) < 0.
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Due to the Hurwitz stability condition, (1+f1) < 0, and due to the hypothesis, (λ1+λ2) >
0, this condition is verified.

The next theorem is the main result where the global asymptotic stability in C is
guaranteed under the condition

λ1(2 + f1) + λ2(1 + f2) < 0. (7.32)

Since λ1 > 0, this is a slightly more restrictive condition than the Hurwitz condition
λ1(1 + f1) + λ2(1 + f2) < 0.

Theorem 5
If f satisfies the conditions

(1 + f1 + f2) < 0, λ1(2 + f1) + λ2(1 + f2) < 0, (7.33)

then, the closed loop system

ẋ = h(x) = Ax + b sat(f1x1 + f2x2(1 − |x1|)) (7.34)

is asymptotically stable for all initial conditions in C.

Proof: First it is shown, using an extension of Bendixson’s theorem [13], that no
limit cycle exists. The extension of the Bendixson’s theorem claims that if on a compact
invariant set F , the divergence ∇ · h defined by:

∇ · h(x) =
[

∂
∂x1

∂
∂x1

] · [ h1(x1, x2)
h2(x1, x2)

]
=

∂ẋ1

∂x1

+
∂ẋ2

∂x2

(7.35)

exists and has the same sign almost everywhere in F , then F contains no closed trajec-
tories.

For the non-saturated region without the boundaries (L \ (∂L+ ∪ ∂L−)), using the
condition (7.33), it can be seen that

∇ · h(x) = λ1(1 + f1) + λ2(1 + f2(1 − |x1|))
−λ1f2x2sgn(x1) < 0 (7.36)

For the compact saturated region (D \ L)

∇ · h(x) = λ1 + λ2 (7.37)

Case 1: λ1 + λ2 > 0
In this case, the non-saturated region L is invariant (Lemma 7). Since ∇ · h < 0 in the
invariant region there are no limit cycles.
Case 2: λ1 + λ2 ≤ 0
In this case, ∇·h is non-positive in both the saturated and non-saturated regions, and so
there are no limit cycles either.

The proof of the theorem is now based on the application of the Poincare-Bendixson’s
theorem within the compact invariant set D. So, every trajectory of (7.34) starting at
x0 ∈ C will either i) go to the equilibrium point at the origin, ii) tend to a limit cycle or
iii) be a limit cycle itself. In the first part of the proof, it has been shown that there are
no limit cycles. So, all trajectories in C converge asymptotically to the origin. Thus, the
region of attraction is in fact A = C.
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7.2.2 Comparison of controllers via simulations

System (7.20) is considered with the parameters λ1 = 1 and λ2 = −0.5, i.e.

ẋ1 = x1 + u

ẋ2 = −0.5 (x2 + u)

The following 4 controllers are compared:

• C1: Linear saturated controller:
u = sat(f1x1 + f2x2), f1 = −6 and f2 = −3

• C2: Linear saturated controller with only x1 fed back:
u = sat(f1x1), f1 = −3

• C3: Time optimal controller [43] (it is assumed that the results for the near-time
optimal VSC controller [49] are similar):
Switching between u = −1 and u = 1

• C4: Continuous nonlinear controller (CNGSC):
u = sat(f1x1 + f2x2(1 − |x1|)), f1 = −6
and f2 = −3

The controllers C1 and C4 are tuned such that both closed-loop poles of the linear system
are placed at −2. As far as C2 is concerned, only the pole corresponding to the unstable
mode can be influenced by the controller and this pole is placed at −2. The switching
control law for C3 is given by the following set of equations:

us = sgn
([ −1 1

]
x
)

x̃0 = x + usxe+ =

[
x̃01

x̃02

]

x̃ =

⎡
⎢⎣

(
x̃01

x̃02

) λ1
λ2−λ1

0

0
(

x̃01

x̃02

) λ2
λ2−λ1

⎤
⎥⎦ x̃0

δ = sgn(‖xe+‖ − ‖x̃‖)

u =

{
us if δ = 0

us δ if δ �= 0
(7.38)

Three of the five properties mentioned in the introduction, i.e. 1) global stability, 2)
local performance, and 3) chattering behavior (avoiding large AC losses) are analysed for
these four controllers.

7.2.2.1 Global stability

In Figure 7.2, the evolution of the closed-loop trajectories for the initial condition x0 =[ −0.8 2.8
]T

is illustrated. This initial condition is not in the region of attraction A of
C1 and therefore the corresponding trajectory leaves the null controllable region C and
escapes to infinity. However, all the other controllers are globally stable with A = C and
thus the corresponding trajectories converge to the origin.
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Figure 7.2: Phase diagram. The lines ∂L+ and ∂L− are the borders of the non-saturated
region of controller C4.

7.2.2.2 Local performance

In Figure 7.3, the evolution of the trajectories of all controllers for the initial condition

x0 =
[

0.7 2.8
]T ∈ C is shown. It is seen that the trajectory of controller C2 first goes

towards the x2 axis since only the unstable state x1 is fed back. Then, convergence to the
origin is ensured via the open-loop dynamics of the stable state.

The time evolution of the two states is shown in Figure 7.4. For controller C2, the
unstable state is damped quickly. However, the damping of the stable state takes a long
time. The best time performance for both states is given by the time-optimal controller
C3. The controller C4 needs more time to damp the states but does better than C1.
For initial conditions that are located nearer the origin, the performance of C4 and C1 is
similar.

7.2.2.3 Chattering in the control signal

For this example, pseudo-random white noise disturbance is added to the measurements
of the state variables. Figure 7.5 shows the control signal u for all controllers. It is seen
that the control signals of C1, C2 and C4 show no chattering behavior since they are
generated by continuous controllers. However, the control signal of C3 shows chattering
when the state is near the origin (after t = 3.9[s]). Chattering is also present during the
switching from u = −1 to u = 1 at t = 1.826 . . . 1.833 [s] (Figure 7.6).
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7.3 CNGSC controller for higher order systems

In the extension of the nonlinear controller (7.21) to higher order systems (System 7.1),
the idea is to push all the terms except f1x1 to zero as |x1| → 1. This is done by the
following modification:

ũ(x) = f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn) (7.39)

and

k(x) = 1 − |x1| (7.40)

or

k(x) = 1 − x2
1 (7.41)

The reason for using the same k(x) to push each of the terms f2x2, f3x3, . . . , fnxn to
zero is due to the fact that the system without saturation (u = ũ) and with a constant
k ∈ [0, 1] can be proven to be stable.

Proposition 5 Consider (7.4) along (7.39)

u(x) = f1x1 + k̄(f2x2 + f3x3 + . . . + fnxn) (7.42)

where k̄ ∈ [0, 1] is fixed. If 1 + f1 < 0 and A + bf is Hurwitz then the feedback system is
stable for any 0 ≤ k̄ ≤ 1.

Proof: Consider only the feedback u = f1x1. This leads to the closed loop state matrix

Ā = A + bf1x1 =

[
λ1(1 + f1) 0

bsf1 As

]
. (7.43)

By construction Ā is stable.
Now, consider the input-output system

ẋ = Āx + bū (7.44)

ȳ = −f̄x

where f̄ =
[

0 f2 f3 . . . fn

]
. This system is open loop stable since Ā is stable. Let

the open-loop transfer function of (7.44) be denoted by

Ȳ (s)

Ū(s)
= L(s). (7.45)

Consider the closed-loop system

ẋ = Āx + bf̄ k̄x = Ax + bu(x) (7.46)

which can be considered as the closed loop system with L(s) and k̄ in the loop. Since
L(s) is stable and the closed-loop system is stable with k̄ = 1 (this is due to A+ bf being
Hurwitz) the Nyquist plot of L(s) does not encircle (−1, 0) in the complex plane. Thus,
there exists no ω ∈ R for which the following two conditions are satisfied

|L(jω)| > 1 and ∠L(jω) = ±π. (7.47)
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It can be seen that for 0 ≤ k̄ ≤ 1 we have |k̄L(jω)| ≤ k̄|L(jω)| ≤ |L(jω)| and ∠(k̄L(jω)) =
∠L(jω). Thus, from (7.47) there exists no ω ∈ R for which both conditions

|k̄L(jω)| > 1 and ∠(k̄L(jω)) = ±π (7.48)

are satisfied implying that the Nyquist plot of k̄L(s) does not encircle (−1, 0). Therefore,
since k̄L(s) is stable the closed-loop system (7.46) is stable for every 0 ≤ k̄ ≤ 1.

Of course this proposition does not constitute a proof of the global stability of the closed
loop system with saturation. But it is an interesting property encouraging the search for a
formal stability proof. Another promising fact is that all simulations done until now have
revealed themselves to be stable. Simulation results with linear systems (linear tokamak
models) are given in Chapter 9.

7.4 Conclusion

In this chapter, a simple continuous nonlinear globally stabilising controller, referred to as
CNGSC, for the stabilisation of linear planar systems with one unstable pole and a single
saturated input was proposed. The main idea was to modify an existing linear controller
by incorporating a nonlinear term into the control law. A formal proof that the controller
is globally stabilising, i.e. the region of attraction is equivalent to the null controllable
region, was provided for slightly more conservative conditions. It was shown that the
controller satisfies the desired performance locally around the origin. Furthermore, since
this controller is a continuous function of the state, chattering and oscillations in the
control signal are avoided which diminishes the AC losses.

We showed that the extension of the CNGSC controller to higher order systems is
straightforward. But the quest for a formal proof of the global closed-loop stability is
highly complicated in this case. Therefore, the global stability of higher order closed-loop
systems is illustrated by means of simulations (provided in Chapter 9). Nevertheless, we
have provided an interesting property encouraging the search for a formal stability proof
in the future.
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Chapter 8

Tokamak control

8.1 Introduction

This chapter is devoted to the problem of applying the CNGSC (provided in Chapter 7)
to tokamaks. In general, we assume, for the controller design phase, a tokamak closed-
loop system consisting of a linearised tokamak model with several saturated inputs and
two input-output controllers. There are a slow controller which is responsible for the
plasma shape control (SC controller) and a fast controller which is responsible for the
vertical plasma position stabilisation control (VC controller) and which ensures the so-
called ”vertical plasma position” stability. Although the terminology varies from one
tokamak to another, this property is common to ITER, JET, MAST and TCV.

The goal of this thesis is to improve the stability properties of the tokamak closed-loop
system in the sense of increasing its region of attraction to the null controllable region
(Chapter 7). Since in general only the VC controller is responsible for the stability of the
closed-loop system we focus only on the improvement of this controller. Therefore, we
limit the application of the CNGSC controller to the VC control part.

Section 8.2 provides a survey of the main ideas discussed in this chapter. Section 8.3
deals with the structure of the tokamak closed-loop system and shows on which points
particular attention has to be paid when the input-output controllers are designed. Fur-
thermore, since the CNGSC controller is a state feedback controller we discuss the prob-
lems and the modifications that have to be taken into consideration when migrating from
an input-output controller to a state feedback controller. We provide a scheme which de-
scribes a way to transform any tokamak closed-loop system into a normalised closed-loop
system. This transformation will allow us to apply the results of Chapter 7 straight-
forwardly for the design of the CNGSC controller. Section 8.4 is devoted to the state
reconstruction procedure which represents a crucial step if we are seeking a well condi-
tioned state feedback controller. Furthermore, we show that for the CNGSC controller
it is sufficient to provide an accurate reconstruction of solely the unstable state, while a
reconstruction of all stable states is not required. In Section 8.5 we discuss the problems
and provide solutions linked to the output tracking of reference signals with a nonlinear
state feedback controller. An elementary study of the effect of disturbances on the toka-
mak closed-loop system is provided in Section 8.6. We will show that during a disturbance
it is practically impossible to predict whether the closed-loop system is still stable or if
the control has been lost. Nevertheless, we will suggest possibilities to improve stability
during disturbances by slightly modifying the CNGSC controller. Section 8.7 is devoted
to resulting detrimental effects on stability when a pure delay or a limited bandwith are
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added to the closed-loop system. Pragmatic solutions to avoid these detrimental effects
on the CNGSC controller will therefore be suggested.

8.2 Survey of concepts for the application of a state

feedback controller

The analysis of the tokamak closed-loop system and the application of a nonlinear state
feedback controller can become complex if we want to take into account simultaneously
the analysis of both controllers, the reference signal problem and the link between the
nonlinear tokamak plant and the linearised tokamak model. This complexity can lead to
a loss of the overall view of the general ideas discussed in this chapter. Therefore we start
with a simple survey which summarises the important concepts for this chapter.

For what follows we will deal with i) the nonlinear tokamak plant (tokamak in opera-
tion) or model and with ii) the linear tokamak model which is derived from the nonlinear
tokamak plant or model at an equilibrium point. The equilibrium point at which the
linear tokamak model is derived is referred to as the linearisation equilibrium. Figure
8.1 a) illustrates the considered closed-loop system containing the nonlinear tokamak
plant (tokamak in operation) or model while Figure 8.1 b) shows the considered closed-
loop systemt containing the linear tokamak model.

Nonlinear Tokamak
plant or model

-
+Controller

u y

y ry e

x

a)

state

Linear Tokamak
model

-
+Controller

u y

y ry e

x

b)

state

Figure 8.1: Illustration of the nonlinear tokamak plant or model closed-loop system a)
and the linear tokamak model closed-loop system b) with its signals and states.

We define in a generalised manner the link between the closed-loop system containing
the nonlinear tokamak plant or model and the closed-loop system containing the linear
tokamak model by defining the generalising variable s which stands for any signal (e.g. y,
u, yr or ye) or state (e.g. x). The notation ŝ represents the signals and states corresponding
to the closed-loop system with the nonlinear tokamak plant or model, while the notation
s represents the signals and states corresponding to the closed-loop system with the
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linearised tokamak model. The relation between both closed-loop systems is given by

ŝ = s0 + s + εs(s), (8.1)

where s0 denotes the signals and states at the linearisation equilibrium and εs(s) the error
due to the linearisation, referred to as the linearisation error. If the nonlinear tokamak
plant is at the linearisation equilibrium then we have ŝ = s0, s = 0 and εs(s) = εs(0) = 0.
This means that in the closed-loop system with the linear tokamak model all states and
signal are at zero when the closed-loop system with the nonlinear tokamak plant is at
the linearisation equilibrium s0. Furthermore, the error εs(s) due to the linearisation is
evidently zero at the linearisation equilibrium s0. Since in general a linear model is only
valid at the linearisation equilibrium s0 the correspondence of the linear tokamak model
to the nonlinear tokamak plant is more and more degraded as ŝ moves away from the
linearisation equilibrium s0. This implies that the error εs(s) is increased as a function of
the distance ‖ ŝ−s0 ‖. When nothing is specified we consider that ŝ is in the neighborhood
of s0 such as the error εs(s) is small. In this case we assume that the error is negligible
and consider εs(s) = 0.

The notation ¯̂s is used to denote an equilibrium of the closed-loop system contain-
ing the nonlinear tokamak plant or model, while the notation s̄ is used to denote an
equilibrium of the closed-loop system containing the linear tokamak model.

A survey of the generalised notation is given in Table 8.1

Closed-loop system with Closed-loop system with
nonlinear tokamak model linear tokamak model

Signals and states ŝ s

Equilibrium ¯̂s s̄
Linearisation equilibrium s0 −

Table 8.1: Generalised signal and state notation.

Consider a tokamak closed-loop system with a simplified nonlinear tokamak plant and
a sole simplified linear controller (Figure 8.2 a)). It is assumed that the nonlinear tokamak
plant can be modelled by means of the nonlinear system

˙̂x = a(x̂) + b(û) (8.2)

ŷ = c(x̂),

where x̂ ∈ R
n denotes the states, û ∈ R

k the tokamak inputs and ŷ ∈ R
m the tokamak

outputs and where we consider the nonlinear functions a : R
n → R

n, b : R
k → R

n and
c : R

n → R
m.

Note that nonlinear codes for tokamaks like the DINA code (Chapter 2) cannot be
formulated with the structure specified in System (8.2). There exists a simplified nonlinear
model, referred to as CREATE, which is expressed as System (8.2). But due to the
simplification it does not possess the ability to reproduce accurately every nonlinearity of
a tokamak in operation or of the DINA code. We therefore assume that an ideal (perfect)
model could exist for the purpose of demonstrating rigorously which problems linked to
the control of nonlinear systems can be encountered.
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For this section we consider a simplified stabilising linear input-output controller con-
sisting of a k × m static gain matrix K, i.e.

û = Kŷe = K(ŷ − ŷr), (8.3)

where ŷr ∈ R
m denotes the reference signal and ŷe the error between the outputs and the

references. If we consider the closed-loop system

˙̂x = a(x̂) + b (K(c(x̂) − ŷr)) , (8.4)

then ŷr constitutes the input of the closed-loop system.

Plant

Linear Input-Output 
Controller

-
+

u

y ry e

y
x

a)

Plant

Linear State Feedback
Controller

u
x

x
b)

y

y r

K

f x - K yr

Figure 8.2: Illustration of the difference between a closed-loop system with a linear input-
output controller a) and a closed-loop system with a linear state feedback controller b).

For what follows we assume that due to the controller K the closed-loop system is
stable. Thus, when ŷr is varying then we assume that the output ŷ approximately follows
the reference in the sense that only a small error ŷe remains. Furthermore, we assume
that for any constant reference ŷr = ¯̂yr = const the system converges to an equilibrium.
An equilibrium point, denoted as ¯̂x = const, is reached when ˙̂x of the closed-loop system
(System (8.4)) is zero. The equilibrium point x̂ = ¯̂x is therefore deduced by solving the
equation

˙̂x = 0 = a(¯̂x) + b
(
K(c(¯̂x) − ŷr)

)
(8.5)

for ¯̂x as a function of ŷr = ¯̂yr = const. Straightforwardly, we can deduce from System
(8.2) the output corresponding to this equilibrium, defined as ¯̂y = c(¯̂x). Of course, strictly
speaking these assumptions are not valid for any nonlinear system. But practice has shown
that for tokamak control purposes these assumptions are always satisfied. Note that if
the reference is changed, for example by means of a step variation, then the state does
not transit instantaneously to the new equilibrium, but there is a transitory phase of
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which the duration depends on the closed-loop system dynamics. Theoretically, the state
converges to the equilibrium when the time converges to infinity

lim
t→∞

x̂(t) = ¯̂x.

In practice we consider that the state has reached the new equilibrium when the error ŷe

is small enough for the control purpose or smaller then the noise amplitude.
Once an equilibrium is reached we can derive a linearised tokamak model. We define

such an equilibrium as the linearisation equilibrium for which its corresponding state is
denoted as x0, its input as u0, its output as y0 and its reference as yr0 . The resulting
linear model is described by the system

ẋ = Ax + Bu (8.6)

y = Cx.

There exists several linearised tokamak models, e.g. RZIP and CREATE-L (see Section
4). The RZIP model is derived from experimental data of tokamak discharges, while
CREATE-L is derived from the nonlinear CREATE model described as System (8.2).

Since the considered controller is linear the control law for the closed-loop system with
the linear model is the same

u = Kye = K(y − yr), (8.7)

where the closed-loop system is given by

ẋ = (A + BKC)x − BKyr. (8.8)

In general, controllers are designed by means of the linear model. Thus, the desired
stability and performance of the closed-loop system with the full nonlinear tokamak is
only valid when ŝ is located in the neighborhood of s0. In practice, it turns out that input-
output controllers are robust enough to ensure stability and acceptable performance even
if the tokamak plant follows nonlinear dynamics, i.e the ramp-up and ramp-down phases
of a discharge. Thus, if we design the controllers at a linearisation equilibrium during the
flat-top phase, they usually work well for the whole discharge. This handling is simple and
may work well for input-output controllers, but for state feedback controllers, especially
when nonlinearities are introduced as for the CNGSC controller, we are faced with new
problems. These problems are discussed in the next section.

8.2.1 State feedback controller for the nonlinear tokamak model

8.2.1.1 Linear approximation to the output function

The substitution of the output equation ŷ = c(x̂) of System (8.2) in the input-output
controller law described by Equation (8.3) leads to

û = Kŷe = Kc(x̂) − Kŷr. (8.9)

The nonlinear function Kc(x̂) can be interpreted as the nonlinear state feedback part.
But since there is no nonlinear model available, c(x̂) is not known. We therefore have
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to derive the state feedback controller by using y = Cx of the linear tokamak model
described by System (8.6) which leads to

û = KCx̂ − Kŷr = fx̂ − Kŷr, (8.10)

where f = KC represents the linear state feedback gain matrix. The resulting closed-loop
system (Figure 8.2 b)) is given by

˙̂x = a(x̂) + b (fx̂ − Kŷr) (8.11)

and the equilibrium x̂ = ¯̂x is therefore deduced by solving the equation

˙̂x = 0 = a(¯̂x) + b
(
f ¯̂x − Kŷr

)
(8.12)

for ¯̂x.
The use of the linear Cx̂ instead of the nonlinear c(x̂) might be considered as an

approximation. But since the feedback gain K is designed by means of the linear model
at its linear equilibrium ŝ0, we can say that we do the same for the design of the state
feedback controller. Thus, similarly to the linear input-output controller, the linear state
feedback controller (8.10 ) might work well for the whole discharge.

8.2.1.2 State reconstruction

A more serious problem is due to the fact that in general, as opposed to the output ŷ,
the state x̂ is not directly measurable. Thus, a state reconstruction is required. For this
purpose we might implement classic dynamic observers like the Luenberger observer [58]
and the Kalman filter observer [15, 41]. But, for the tokamak plant a state reconstruction
relying on a static observer seems to be more convenient (see Section 8.4). In the nonlinear
model case this can be achieved by seeking for an approximated inverse function of the
output equation ŷ = c(x̂). This can represent a difficult duty to solve when the model
possesses more than 50 state variables. It is therefore preferable to use the output equation
of the linear model y = Cx and approximate the inverse function by the least square error
method with the pseudo-inverse matrix of C for the tokamak (see Section 8.4). This leads
to the state reconstruction

x̆ = C†y (8.13)

for the linear model and to

˘̂x = C†ŷ (8.14)

for the nonlinear model or plant. In Section 8.4 we will show, by applying the proposed
state reconstruction to experimental data from TCV, that the reconstruction is surpris-
ingly accurate for the whole discharge, even during the ramp-up and the ramp-down.
This might be interpreted as though c(x̂) contains only weak nonlinearities. Thus, for
what follows we assume that the state reconstruction is ideal (perfect) by imposing the
equivalences

x̂ = ˘̂x and x = x̆. (8.15)

Therefore, by assuming an accurate state reconstruction, we might again assume that the
linear state feedback given by Equation (8.10 ) works well for the whole discharge, i.e. for
any equilibrium ¯̂s.
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8.2.1.3 The state error

In general, when a linear state feedback controller is designed we assume that the equi-
librium of the closed-loop system is at the origin, i.e. ¯̂x = 0. For the cases where the
equilibrium is not at the origin ¯̂x �= 0 (which is always the case for tokamaks) we introduce
a state error x̂e between the instantaneous state x̂ and the equilibrium ¯̂x, i.e.

x̂e = x̂ − ¯̂x. (8.16)

Thus, the linear state feedback control law (Equation 8.10)) can be expressed as a linear
function of x̂e which is given by

û = fx̂e + f ¯̂x − Kŷr, (8.17)

where f ¯̂x denotes the offset induced by the equilibrium ¯̂x. Note that formulating the
state feedback control law by means of the state error x̂e represents a mathematical
artifact which permits us to state that when the state x̂ converges to the closed-loop
equilibrium ¯̂x then the state error x̂e converges to zero. In other words, we can state that
the linear state feedback controller works around the equilibrium ¯̂x. This formulation
has not much significance for linear state feedback controllers since it is equivalent to the
initial formulation (Equation (8.10)).

Let us turn our attention to nonlinear feedback controllers and denote any general
pure continuous nonlinear state feedback controller as

uc = ϕ(xc), (8.18)

where xc denotes the fed back state and uc the controller output. The proposed CNGSC
controller presented in Chapter 7 possesses two particularities:

1. When the fed back state is at the origin xc = 0 then the controller is equivalent to
a linear state feedback controller.

2. When the closed-loop system containing ϕ(xc) is at an equilibrium x̂ = ¯̂x then
we have to satisfy xc = 0 and ϕ(0) = 0. This permits us to obtain the same
conceived properties and performances (for example the rejection of disturbances)
of the CNGSC controller at any equilibrium ¯̂x.

We therefore define a class of continuous nonlinear state feedback controllers, denoted
as Kc, for which all controllers pertaining to this class possess these particularities. We
define the class Kc as a set of continuous nonlinear state feedback controllers for which
each element ϕ(xc) corresponds to a linear state feedback fxc at the origin xc = 0, i.e.

lim
xc→0

ϕ(xc) = fxc. (8.19)

Thus, any nonlinear state feedback controller ϕ(xc) belonging to the class Kc behaves
approximately like its corresponding linear controller fxc in the neighborhood of the
origin. Furthermore, to meet the second particularity we state that if limt→0 x̂(t) = ¯̂x
then limt→0 xc(t) = 0 and limt→0 ϕ(xc(t)) = 0.

The substitution of the linear state controller fx̂ by the nonlinear state controller ϕ(x̂)
in the the control law given by Equation (8.10) leads to the nonlinear control law

û = ϕ(x̂) − Kŷr. (8.20)
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By considering the second particularity we deduce that this control law is only appli-
cable to the closed-loop system equilibrium located at the origin ¯̂x = 0. Thus, to permit
the application of the nonlinear state feedback controller for any equilibrium we have to
introduce the state error x̂e = x̂ − ¯̂x and substitute fx̂e by ϕ(x̂e) in the the control law
given by Equation (8.17) which leads to

û = ϕ(x̂e) + f ¯̂x − Kŷr. (8.21)

We see that, in contrast to linear state feedback controllers, for nonlinear state feed-
back controllers of the class Kc the concept of considering the state error x̂e becomes
indispensable.

8.2.1.4 The closed-loop system with nonlinear state feedback

The resulting closed-loop system is given by

˙̂x = a(x̂) + b
(
ϕ(x̂e) + f ¯̂x − Kŷr

)
= a(x̂) + b

(
ϕ(x̂ − ¯̂x) + f ¯̂x − Kŷr

)
. (8.22)

Since limx̂→¯̂x ϕ(x̂ − ¯̂x) = 0, the equilibrium x̂ = ¯̂x is deduced by solving the equation

˙̂x = 0 = a(¯̂x) + b
(
f ¯̂x − Kŷr

)
(8.23)

for ¯̂x.
This equilibrium equation is equivalent to the equilibrium equation for the pure linear

state feedback controller (Equation 8.12). Thus the equilibrium ¯̂x expressed as a function
of ŷr depends on the linear state feedback fx̂ and not on the nonlinear state feedback ϕ(x̂).
Moreover, the reference tracking and the disturbance rejection can be separated in the
sense that reference tracking follows the closed-loop dynamics characterised by the linear
state feedback fx̂ and the rejection of a disturbance follows the dynamics characterised
by the nonlinear state feedback ϕ(x̂). Of course, this is only valid when the reference ŷr

is varied slowly compared to the reaction velocity of the closed-loop system dynamics.
Consider, as an illustration for this purpose, a variation of the reference from a constant

signal ŷr1 = ¯̂yr1 to another constant signal ŷr2 = ¯̂yr2 by means of a slow varying ramp.
Thus, if the closed-loop dynamics is fast compared to the velocity of the varying reference
then we can assume that ‖x̂e‖ is small so that, due to Condition (8.19), the approximation
ϕ(x̂e) ≈ fx̂e is valid. Thus, the reference tracking follows the closed-loop system dynamics
characterised by the linear state feedback, while since ‖x̂e‖ is small (‖x̂e‖ ≈ 0), the
performance of the disturbance rejection specified by the nonlinear state feedback ϕ(x̂e)
remains similar even during reference tracking.

The main problem of the control law (8.21) is linked to the fact that we have to derive
the equilibrium ¯̂x as a function of the reference ŷr. Therefore, the nonlinear Equation
(8.23) has to be solved for ¯̂x which may not be evident to manage. We show in the next
section that this problem does not persist when we constrain the application of the control
law (8.21) to a linear tokamak model.

We may summarise the important results of this section as follows:

• The state reconstruction is given by

˘̂x = C†ŷ.



Chapter 8. Tokamak control 167

• The control law constituted of the nonlinear state feedback controller is given by

û = ϕ(x̂e) + f ¯̂x − Kŷr = ϕ(x̂ − ¯̂x) + f ¯̂x − Kŷr.

• This leads to the closed-loop system

˙̂x = a(x̂) + b
(
ϕ(x̂e) + f ¯̂x − Kŷr

)
= a(x̂) + b

(
ϕ(x̂ − ¯̂x) + f ¯̂x − Kŷr

)
.

• Since limx̂→¯̂x ϕ(x̂ − ¯̂x) = 0, we deduce the equilibrium x̂ = ¯̂x of the closed-loop
system by solving the equation

˙̂x = 0 = a(¯̂x) + b
(
f ¯̂x − Kŷr

)
for ¯̂x.

8.2.2 State feedback controller for the linear tokamak model

All principles developed and discussed in the last section for the nonlinear tokamak model
are similar for the linear model (System 8.6). We therefore only summarise the important
results which are as follows:

• The state reconstruction is given by

x̆ = C†y. (8.24)

• The control law constituted of the nonlinear state feedback controller is given by

u = ϕ(xe) + fx̄ − Kyr = ϕ(x − x̄) + fx̄ − Kyr. (8.25)

• This leads to the closed-loop system

ẋ = Ax + B (ϕ(xe) + fx̄ − Kyr) = Ax + B (ϕ(x − x̄) + fx̄ − Kyr) . (8.26)

• Since limx→x̄ ϕ(x − x̄) = 0, we deduce the equilibrium x = x̄ of the closed-loop
system by solving the equation

˙̂x = 0 = (A + Bf)x̄ − BKyr (8.27)

for x̄.

Since the closed-loop system is stable the eigenvalues of A+Bf are all negative and thus
A+Bf is invertible. Therefore, from Equation (8.27), the equilibrium becomes explicitly

x̄ = (A + Bf)−1BKyr. (8.28)

In practice the reconstruction of the state is exclusively accomplished by means of
the nonlinear tokamak plant outputs ŷ, since there exists no other (e.g. linear model)
output data. Thus, if we assume an ideal (perfect) reconstruction, referred to as x̂ = ˘̂x,
the reconstruction corresponding to the linear model, referred to as x̆ , is calculated by
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means of Relation (8.1). Since the error εx̆(x̆) is not known we set εx̆(x̆) = 0 which leads
to

x̆ = x̂ − x0 = ˘̂x − x0. (8.29)

By means of Relation (8.1) we substitute x̂ with x + x0 + εx(x) leading to

x̆ = x + εx(x). (8.30)

Thus, an ideal (perfect) reconstruction of the linear tokamak model state x̆ = x can only
be achieved when the linearisation error εx(x) is negligible. Furthermore, from Equation
(8.30) the state error becomes

xe = x̆ − x̄ = x − x̄ + εx(x) (8.31)

and again we may consider xe = x− x̄ only when the linearisation error εx(x) is negligible.
From this we conclude that the nonlinear state feedback control law (8.25) usually

only works in the neighborhood of the linearisation equilibrium x0 for which εx(x) is
negligible. In this case the linear model is valid and we can derive from it an explicit
relation (Equation (8.28)) between the state equilibrium x̄ signal and the reference signal
yr. Thus, a tracking of the reference signals ŷr can still be considered, even with a
nonlinear state feedback controller. Of course, by considering the nonlinear plant, since
a variation of the reference signals ŷr = y0 + yr displaces the linearisation equilibrium
x0 to a new equilibrium ¯̂x = x0 + x̄, tracking can only be considered if for the resulting
new equilibrium the linear tokamak model is still accurate enough, i.e. the linearisation
error εx(x) is small. Therefore, tracking works only accurately for small changes of the
reference signals ŷr.

For large reference signal changes which result in large equilibrium displacements, e.g.
during the ramp-up and ramp-down phases, the linearisation error εx(x) might no more
be negligible. Thus, when the state is at the equilibrium, i.e x = x̄, the state error is
no more at the origin but is equal to linearisation error xe = εx(x). In this case, the
nonlinear state feedback control ϕ(xe) possesses, due to the nonlinearities, not the same
stability properties as at the equilibrium for which it was designed and the stabilisation
of the closed-loop system could fail during a disturbance. Therefore, the use of a linear
input-output controller during large equilibrium displacements seems to be indispensable.
Subsequently, the control system can be switched into the nonlinear state feedback control
law (8.25) once the linearisation equilibrium x0 is reached (which is usually during the
flat-top).

We can also take into consideration the design of control systems with several state
feedback controllers, where each controller possesses a different linearisation equilibrium.
This permits us to switch between different controllers as a function of the actual value
of the closed-loop system state (gain scheduling). In this work we do not focus on such
switching control systems. We reduce the analysis to a single state feedback controller
with a single linearisation equilibrium.

When a state feedback controller is implemented the adaptation from the closed-loop
system with the nonlinear plant to the closed-loop system with the linear model and
vice-versa is crucial and is realised by means of Relation (8.1). Figure 8.3 illustrates
the implementation scheme of the nonlinear state feedback controller. In general, the
adaptation is carried out by removing the values of the linearisation equilibrium to get
the controller inputs and by adding the values of the linearisation equilibrium to get the
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controller outputs. The input y = ŷ − y0 is needed for the state reconstruction and the
input yr = ŷr − yr0 is needed for reference tracking. The output is obtained by adding
the controller output value of the linearisation equilibrium û = u0 + u.
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Figure 8.3: Illustration of the closed-loop tokamak system with the implementation
scheme.

8.3 Application of the proposed CNGSC controller

to the tokamak

The control strategy we propose, relies on the fact that the controller is split into two
parts: i) the vertical stabilisation controller (VC), also called the fast controller and ii) the
plasma shape controller (SC), also called the slow controller. Figure 8.4 a) shows how the
controllers and the tokamak plant are connected together. We assume that only one power
supply is devoted to the vertical stabilising control part (VC) since our studies on system
stability with saturated inputs is limited, so far, to single saturated input systems. Note
that many tokamaks, e.g. ITER, JET, MAST and TCV meet these requirements. For
other tokamaks where no particular power supply but several power supplies are devoted
for the vertical plasma position stabilisation, the power supplies have to be connected
together in such a way that the resulting system becomes equivalent to a single saturated
input system.

The following section describes the closed-loop system of a tokamak plant. Note
that this description remains valid for each tokamak meeting the requirements mentioned
above.

8.3.1 The tokamak closed-loop system

We have to differentiate between two closed-loop systems.

• There is one closed-loop system where the tokamak is represented as a nonlinear
dynamic system (Figure 8.4 a)). In general, this nonlinear system can correspond
to for 3 different items implying 3 different purposes:

1. Tokamak in operation (Physical tokamak plant):
The closed-loop system represents the implementation scheme of the tokamak
in operation.
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Figure 8.4: Illustration of the closed-loop tokamak system containing the nonlinear toka-
mak plant (nonlinear tokamak closed-loop system) a) and containing the linearised toka-
mak model (linear tokamak closed-loop system) b).

2. Nonlinear tokamak code, like DINA:
Such a code permits us to carry out nonlinear simulations. When all relevant
properties of a tokamak are well modeled such a nonlinear tokamak simulation
should provide results which are close to reality (tokamak in operation). Since
such a code possesses a quite complicated structure (see Chapter 2 for the
DINA code) it usually is unsuitable for controller design purposes.

3. Nonlinear tokamak model, like CREATE:
Compared to a tokamak code, such a model possesses a more convenient struc-
ture, like the state space model given in System (8.2), and is therefore more
appropriated for the analysis of the dynamical nonlinearities of a tokamak and
for controller design.

The closed-loop system containing a nonlinear tokamak system is referred to as the
nonlinear tokamak closed-loop system.
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• On the other hand, there is a closed-loop system where the tokamak is represented
as a linear dynamical system (Figure 8.4 b)). This linear system represents a lin-
ear tokamak model derived at an equilibrium point from experimental data. For
tokamaks there exist several linear models, i.e. RZIP and CREATE-L, which are
extensively used for the design of controllers.

The closed-loop system containing a linear tokamak system is referred to as the
linear tokamak closed-loop system.

All input and output signals of both closed-loop systems are listed in Table 8.2. We
may consider the signals and states of the nonlinear tokamak closed-loop system, referred
to as ŝ, as the absolute or real signal and state values since for a tokamak in operation
they correspond to the real-time measurements. As already mentioned in Section 8.2
the equilibrium point at which the linear model is derived is defined as the linearisation
equilibrium. The signals and states at the linearisation equilibrium are denoted as s0,
while the signals and states for the linear tokamak closed-loop system are denoted as s.
This definition permits us to make the link between the nonlinear tokamak system and
the linear tokamak system which is given by Relation (8.1), i.e.

ŝ = s0 + s + εs(s).

xp Tokamak state variables
xsc Shape controller state variables
xvc Vertical stabilising controller state variables
usc Tokamak inputs for shape control
uvc Tokamak input for vertical stabilising control
ũsc Shape controller output
ũvc Vertical stabilising controller output

uscff
Feedforward inputs for shape control

uvcff
Feedforward input vertical stabilising control

yp Tokamak outputs
y Tokamak outputs used for shape control
z Tokamak output used vertical stabilising control
yr Reference signal for shape control
zr Reference signal for vertical stabilising control
ye Error signal for shape control
ze Error signal for vertical stabilising control
w Disturbance input

Table 8.2: Tokamak closed-loop signals.

8.3.1.1 Inputs and outputs of the closed-loop system

In Figures 8.4 a) and b) we consider 5 signals which constitute the inputs and 1 signal
constituting the output of the closed-loop system.

There are two feedforward input signals uscff
and uvcff

and two reference signals yr

and zr which are solely required for reference tracking purposes, presented in Section 8.5.
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As we have shown in Section 8.2, a variation of a closed-loop system input, i.e. for example
uscff

= ūscff
= const �= 0, implies a variation of the closed-loop system equilibrium.

On the other hand, there is the plasma disturbance input, denoted as w. We assume
that its mean value or its equilibrium value is fixed to zero ¯̂w = w0 = w̄ = 0. There is
only a variation of this signal during a disturbance, where the variation is equivalent for
the nonlinear and the linear tokamak system ŵ = w. After a disturbance the signal goes
back to zero ŵ = w = 0.

The output of the closed-loop system is referred to as yp and includes both, the mag-
netic diagnostic measurements and the plasma parameters. Note that the tokamak out-
puts y and z are output subsets of yp. Furthermore, z can be, but has not imperatively
to be an output subset of y.

8.3.2 Link between the nonlinear tokamak and the linear toka-
mak closed-loop systems

In this section we provide rules to which we have to pay attention when we make the
link between the nonlinear tokamak closed-loop system and the linear tokamak closed-
loop system. Figure 8.4 a) illustrates schematically how the nonlinear tokamak plant
and both linear input-output controllers are connected together in operation. Since for
the design of both controllers a linear tokamak model is required, we have to choose the
time point during the discharge at which we want to derive the linearised model. The
state of the tokamak plant and the whole closed-loop at this time point is referred to
as the linearisation equilibrium s0 (definition of the linearisation equilibrium in Section
8.2). The resulting linear tokamak model and its resulting closed-loop is illustrated in
Figure 8.4 b).

If at the linearisation equilibrium s0 the sums of the controller outputs and the feed-
forward signals ũsc0 + uscff0

and ũvc0 + uvcff0
are not zero then there is an offset at

the corresponding saturation inputs and thus the saturations are not driven symmetri-
cally. This means that we have to consider asymmetric saturations for the linear tokamak
closed-loop system (Figure 8.4 b)). In this case, the upper saturation level is given by
σau = σa−(ũa0 +uaff0

) and the lower saturation level is given by σal
= −σa−(ũa0 +uaff0

)
for both, the SC saturation (a=sc) and the VC saturation (a=vc), where with σa > 0
we denote the symmetric upper σa and lower −σa saturation levels. Nevertheless, as we
will see in Section 8.3.5, to permit the application of the CNGSC controller (presented in
Chapter 7) we assume that the SC power supplies never reach their saturation levels σsc.
Thus, only have to solve the asymmetric saturation problem of the VC power supply. In
fact, since the theory presented in Chapter 7 relies on a symmetric input saturation we
have to avoid an eventual asymmetric saturation. Usually, we omit any feedforward input
voltage by imposing uvcff0

= 0. Thus, we only have to cancel the VC controller output
voltage ũvc0 . In general, due to the small coil resistance, particularly if superconducting
coils are used, ũvc0 is small (a few percent) compared to the saturation level σvc and the
asymmetric component can therefore be neglected. But we can also completely cancel ũvc0

either i) by using a pure derivative VC controller (D controller) since the mean output
value is zero for such controllers or ii) by adding into the SC controller a supplementary
integral controller (I controller) for the controlled tokamak output z. The last proposition
will be discussed in Section 8.5.

In general, if we design controllers at the linearisation equilibrium then the desired
stability and performance of the closed-loop system is only valid when ŝ are located in
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the neighborhood of s0. In practice, it turns out that input-output controllers are robust
enough to ensure stability and acceptable performance even if the tokamak plant follows
highly nonlinear dynamics, such as during ramp-up and ramp-down phases of a discharge.
Thus, if we for example design the controllers at a linearisation equilibrium during the flat-
top phase, they usually work well for the whole discharge. This handling may work well
for linear input-output controllers but we cannot exclude that it might fail for nonlinear
state feedback controllers. The explanation for this conjecture is discussed in Section 8.2.

We conclude that nonlinear state feedback controllers usually work only in the neigh-
borhood of the linearisation equilibrium s0. In this case the linearised model is valid
and we can derive from the linear model an explicit relation between the state reference
signal and the output reference signal. Thus, a tracking of the reference signals ŷr and
ẑr (Figure 8.4 a)) can still be considered, even with a state feedback controller (detailed
discussion in Section 8.5). Of course, since a change of the reference signals displaces the
linearisation equilibrium to a new equilibrium, tracking can only be considered if for the
resulting new equilibrium the linear tokamak model is still accurate enough. Therefore,
tracking works only for small changes of the reference signals. For large reference signals
changes which result in large equilibrium displacements, i.e. during the ramp-up and
ramp-down phases, tracking with state feedback is probably not possible. Therefore, the
use of an input-output controller during such phases seems to be indispensable. Subse-
quently, the control system can be commuted into the state feedback controller once its
corresponding linearisation equilibrium is reached (usually during the flat-top).

We can also take into consideration the design of control systems with several state
feedback controllers, where each controller possesses a different linearisation equilibrium.
This permits to switch between different controllers as a function of the actual value of the
closed-loop system state. In this work we do not focus on such switching control systems.
We restrict the analysis to a single state feedback controller with a single linearisation
equilibrium.

When a state feedback controller is implemented the adaptation from the closed-loop
system with the nonlinear plant to the closed-loop system with the linear model and
vice-versa is crucial and is realised by means of Relation (8.1). Figure 8.5 illustrates the
implementation scheme of the VC state feedback controller, while the SC controller is
assumed to remain an input-output controller. In general, the adaptation is carried out
by removing the values of the linearisation equilibrium to get the controller inputs and
by adding the values of the linearisation equilibrium to get the controller outputs. In the
case of the VC state feedback controller the inputs yp = ŷp−yp0 and z = ẑ−z0 are needed
for the state reconstruction (Section 8.4) and the inputs yr = ŷr−yr0 and zr = ẑr−zr0 are
needed for reference tracking purposes (Section 8.5). The output is obtained by adding
the controller output and feedforward input values of the linearisation equilibrium ũvc0

and uvcff0
, respectively.

8.3.3 The tokamak closed-loop system for the controller design

For the controller design purpose we consider a tokamak closed-loop system composed of
following 3 parts (Figure 8.4 b)).

1. The linear tokamak model:
The typical tokamak linear model (RZIP or CREATE-L) consists of 50 . . . 100 state
variables xp ∈ R

np , several Poloidal Field coils and their voltage inputs and several
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outputs yp ∈ R
mp . As mentioned before, the inputs are divided into two parts: i)

the vertical stabilisation control input uvc ∈ R and ii) the plasma shape control
input usc ∈ R

kp . The physical outputs of a tokamak are the magnetic diagnostic
measurements (about 100 sensors). Linear combinations of these magnetic diag-
nostic measurement outputs represent physical plasma parameters like: the vertical
position z and the radial position R of the plasma, some plasma shape parameters
like the gaps g between the edge of the plasma and the surrounding plasma facing
components (Figure 8.6) and the plasma current Ip. The input w ∈ R

lp is the distur-
bance input for minor disruption, ELM and sawteeth like disturbance simulations.
The linear tokamak model is discussed in Chapter 4 and is give by

ẋp = Apxp + Bpscusc + Bpvcuvc + Epẇ

yp = Cpxp + Fpw (8.32)

y = Cpyxp + Fpyw

z = Cpzxp + Fpzw.

Note that the output yp includes both, the magnetic diagnostic measurements and
the plasma parameters. The outputs y ∈ R

msc and z ∈ R
mvc are output subsets of

yp. The outputs y (i.e. z, R, g and Ip) are needed for the plasma shape control,
while z is needed for the vertical stabilising control. Usually y and z are referred to
as the plasma control parameters. For the stabilising controller usually the vertical
position of the plasma z is used and that is why we denote this output as z. But
note that we could also use a different output than the vertical plasma position for
the vertical stabilisation control. The important thing is that z has to be a single
output z ∈ R. Note that z can be, but has not imperatively to be an output subset
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2. The plasma shape controller and power supplies (SC):
In general, the plasma shape controller is a low order controller which only controls
the slow movement of the plasma equilibrium. There are several inputs ye ∈ R

ksc

and outputs ũsc ∈ R
msc . Each output drives a single power supply and each power

supply possesses a saturation with a saturation level denoted as σsci
, where each

i ∈ 1 . . . msc corresponds to a power supply. The controller can be any stable and
proper system which is described by

ẋsc = Ascxsc + Bscye (8.33)

ũsc = Cscxsc + Dscye.

Note that if we want to implement a PID controller then we have to add a low-pass
filter into the derivative part D to satisfy the condition of a proper system.

3. The vertical stabilising controller and power supply (VC):
Similar to the plasma shape controller the vertical stabilising controller can be any
stable and proper system with a single input ye ∈ R and a single output ũvc ∈ R

which is described by

ẋvc = Avcxvc + Bvcze (8.34)

ũvc = Cvcxvc + Dvcze.

In practice, the vertical stabilising controllers are often simple PD or pure D con-
trollers. The single power supply possesses a saturation with a saturation level
denoted by σvc.

Additionally, there are two feedforward input signals uscff
and uvcff

and two reference
signals yr and zr in Figure 8.4 a) and b). These signals are solely required for reference
tracking purposes, presented in Section 8.5.
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8.3.4 SC and VC controller design

The common approach for the design of the SC and VC controllers is as follows. Usually
the nonlinearities, i.e. mainly saturation for our purposes, are not considered for the first
design since most controller design techniques rest on linear approaches. Moreover, this
permits us to analyse the stability of the closed-loop system by means of its eigenvalues.
As a first step of the controller design we only consider and elaborate the VC controller.
Since it has the property of stabilising the tokamak the eigenvalues of the closed-loop
system, mainly composed of the tokamak and the VC controller, have to be without
exceptions negative. The next step consists of adding the SC controller with the objective
of enhancing the response of the plasma shape movement to a reference demand signal or
disturbance. It is obvious that the resulting linear tokamak closed-loop system composed
of the tokamak and both controllers (Figure 8.4 b)) has to be stable. But what happens if
the VC controller is omitted, i.e. if the closed-loop system is composed of the tokamak and
the SC controller only? For this closed-loop system we distinguish three cases depending
on the number and the values of occurring unstable eigenvalues (positive eigenvalues). Let
us therefore define the unstable eigenvalue(s) of this closed-loop system as γ1sc , γ2sc , . . .
and the single unstable eigenvalue of the tokamak open-loop system as γol. The three
cases can be described as follows:

1. No unstable eigenvalues or a reduced single unstable value γ1sc < γol:
This means that the SC controller takes fully (no unstable eigenvalue) or partly
(γ1sc < γol) over the stabilising function. Thus, the separation between vertical
stabilising control and the plasma shape control is not complete. The problem
that could occur is that saturation could appear on both the SC controller power
supplies and the VC controller power supply. Thus, since the SC controller takes
fully or partly over the stabilising function we would have to analyse the stability of
a closed-loop system with several saturated inputs. But since in this thesis we only
consider systems with a single saturated input (e.g. VC controller power supply)
we have to avoid that the SC controller stabilises the system. Thus, the SC control
design has to be reviewed and modified.

2. More than a single unstable eigenvalue:
The SC controller adds supplementary unstable modes. This could appear as a
benign fact since the integral closed-loop system is stable. But, by considering
the input saturation, it has been shown in [27, 28] that the the null controllable
region is reduced for each supplementary unstable mode. To be more explicit, it
turns out that with input saturation the null controllable region is equal R

n for
a stable system, where n denotes the number of state variables of the closed-loop
system. This means that each state variable can evolve in R implying that there
is no control loss possible for a stable system. If the system possesses one unstable
eigenvalue then, by adequate state transformation, the null controllable region is
limited in one dimension R

n−1 × (−l1, l1), where the interval limit 0 < l1 depends
on the eigenvalue of the unstable pole and on the saturation level. If the state is
located outside the null controllable region the control is definitely lost and cannot
be restored anymore. For a system with a second unstable eigenvalue the maximal
stability region is limited in a supplementary dimension R

n−2 × (−l1, l1) × (−l2, l2)
and so on. Therefore, since our aim is to improve the vertical stabilising control in
the sense of increasing its region of attraction to the null controllable region, the



Chapter 8. Tokamak control 177

SC controller has to be again reviewed and modified until supplementary unstable
modes are canceled.

3. A single unstable eigenvalue for which γ1sc ≈ γol:
In this case the SC controller is well conditioned. This is the aim that has to
be achieved during the linear controller design phase. Nevertheless, it should be
taken care that this apparently well conditioned controller does not result from a
combination of both cases 1. and 2., i.e. the SC controller eliminates the original
unstable mode of the tokamak but simultaneously introduces a new unstable mode.
Therefore, a certain knowledge of how to decouple the vertical stabilising control
part from the plasma shape control part is indispensable.

For the purposes of what follows we impose that the SC and VC controllers are well
conditioned, i.e. solely the VC controller has an impact on the stabilisation of the closed-
loop system.

8.3.5 Transformation of the tokamak closed-loop system

Before the application of the CNGSC controller can be considered we first have to trans-
form the closed-loop system with both input-output controllers to a closed-loop system
for which its VC controller is a state feedback controller.

Figure 8.7 a) illustrates the initial tokamak closed-loop system composed of the lin-
earised tokamak model, the input-output SC and VC controllers and their corresponding
saturations (identical scheme to Figure 8.4 b)). The linearised tokamak model, the SC
controller and the VC controller are described by Equations (8.32) - (8.34), respectively.

8.3.5.1 First transformation step leading to the PSC system

The first transformation step consists of unifying the linearised tokamak model P and the
SC controller (blocks enclosed by the dashed frame in Figure 8.7 a)) into a linear system
to be controlled by the VC controller, referred to as the PSC system (P model and SC
controller unified). For this purpose we assume that the SC controller never saturates
its power supplies and thus we remove the SC saturation. Note that in practice the SC
power supplies are never or rarely in saturation. Furthermore, even if a SC power supplies
saturation occurs then no detrimental consequences on the closed-loop stability have to
be feared since we assume that the SC controller is not designed for stabilising purposes.

The linearised tokamak model and the SC controller are connected in a feedback loop
structure. Section A.3.1 of the Appendix shows in detail how to calculate the resulting
system. By applying these results the PSC system becomes[

ẋp

ẋsc

]
=

[
Ap + BpscDscCpy BpscCsc

BscCpy Asc

] [
xp

xsc

]
+

[
Bpvc

0

]
uvc

+

[
Ep + BpscDscFpy

BscFpy

]
ẇ +

[
Bpsc −BpscDsc

0 −Bsc

] [
uscff

yr

]
(8.35)

yp =
[

Cp 0
] [ xp

xsc

]
+ Fpw

z =
[

Cpz 0
] [ xp

xsc

]
+ Fpzw,
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Figure 8.7: Transformation of the tokamak closed-loop system: i) unification of the lin-
earised tokamak model and the SC controller into the PSC system and ii) substitution of
the VC saturation by the normalised saturation with a saturation level of 1.

where the resulting tokamak closed-loop system is illustrated in Figure 8.7 b). Further-
more, since the design of the CNGSC controller relies on the normalised saturation func-
tion with unity saturation level (Equation 7.5), the saturation of the VC power supplies,
for which the saturation level is denoted as σvc, has to be substituted by the normalised
saturation function. The equivalence to the SC saturation is simply achieved by dividing
the input and multiplying the output of the normalised saturation with σvc (Figure 8.7 b)).

8.3.5.2 Second transformation step leading to the S system with state feed-
back controller

The second major transformation step consists of substituting the input-output VC con-
troller into a state feedback controller. We therefore calculate the transfer function from
the normalised saturation output u to its input ũ. The connection of two systems in series
is described in detail in Section A.3.2 of the Appendix. The serial connection of the PSC
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system and the VC controller results into the S system given by

⎡
⎣ ẋp

ẋsc

ẋvc

⎤
⎦ =

⎡
⎣ Ap + BpscDscCpy BpscCsc 0

BscCpy Asc 0
BvcCpz 0 Avc

⎤
⎦
⎡
⎣ xp

xsc

xvc

⎤
⎦ +

⎡
⎣ Bpvc

0
0

⎤
⎦σvcu

+

⎡
⎣ Ep + BpscDscFpy

BscFpy

BvcFpz

⎤
⎦ ẇ +

⎡
⎣ Bpsc −BpscDsc 0

0 −Bsc 0
0 0 −Bvc

⎤
⎦
⎡
⎣ uscff

yr

zr

⎤
⎦

yp =
[

Cp 0 0
] ⎡⎣ xp

xsc

xvc

⎤
⎦ + Fpw (8.36)

ũ =
1

σvc

[
DvcCpz 0 Cvc

] ⎡⎣ xp

xsc

xvc

⎤
⎦ +

1

σvc

DvcFpzw +
[

1
σvc

− 1
σvc

Dvc

] [ uvcff

zr

]
.

We substitute

xs =

⎡
⎣ xp

xsc

xvc

⎤
⎦ and q =

⎡
⎢⎢⎣

uscff

uvcff

yr

zr

⎤
⎥⎥⎦ (8.37)

which permits us to reformulate System (8.36) more conveniently as

ẋs = Asxs + bsu + Esẇ + Bsff,r
q

yp = Csxs + Fsw (8.38)

ũ = C̃sxs + F̃sw + D̃sff,r
q,

where xs ∈ R
n.

The resulting tokamak closed-loop system is illustrated in Figure 8.8 a). The state
output matrix C̃s can be interpreted as a state feedback controller. Because of the dis-
turbance w and the matrix Fp we have to add a disturbance feedback part denoted as F̃s.
Note that the disturbance w can be interpreted as a state of the system as we will see in
Section 8.4 in which the state reconstruction is discussed. We therefore define the state
feedback gain as fs =

[
C̃s F̃s

]
and the state feedback results in

ũ =
[

C̃s F̃s

] [ xs

w

]
+ D̃sff,r

q = fs

[
xs

w

]
+ D̃sff,r

q. (8.39)

Note that when the equilibrium of the closed-loop system is located at the origin, all
feedforward inputs and references are cancelled, i.e. uvcff

= 0 and zr = 0 (see Section 8.5
for the detailed reference tracking discussion). In this case we can express the resulting
control law as a pure state feedback controller without the additionally inputs uvcff

and
zr

ũ =
[

C̃s F̃s

] [ xs

w

]
= fs

[
xs

w

]
. (8.40)
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Figure 8.8: Transformation of the tokamak closed-loop system into a closed loop system
with state feedback controller.

8.3.6 Application of the proposed CNGSC controller

For the application of the CNGSC controller presented in Chapter 7 we still have to
transform the S system described by Equation (8.38) into the normalised system given
by Equations (7.1)-(7.3). This is achieved by the linear state transformation

x = T−1xs. (8.41)

The resulting normalised system is defined as

ẋ = Ax + bu + Eẇ + Bff,rq

yp = Cx + Fw (8.42)

ũ = C̃x + F̃w + D̃ff,rq,

where

A = T−1AsT, b = T−1bs, E = T−1Es, Bff,r = T−1Bsff,r

C = CsT, F = Fs, C̃ = C̃sT, F̃ = F̃s and D̃ff,r = D̃sff,r
.

Figure 8.8 b) illustrates the resulting normalised closed-loop system.
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The linear transformation matrix T is derived by means of a modified eigenvalue and
eigenvector decomposition where we impose that the diagonal elements of matrix A are
the real parts of the eigenvalues of As (and thus A) such that

A = T−1AsT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0 0 · · · 0
0 λ2 0 · · · 0 0 · · · 0
0 0 λ3 · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · λr µrνr · · · 0
0 0 0 · · · −µr/νr λr · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 · · · λnc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.43)

where λ1 > 0 is the unstable pole and 0 > λ2 ≥ λ3 ≥ . . . ≥ λnc are the real parts of the
stable poles, where nc ≤ n. Conjugate complex pole pairs (i.e. λr ± jµr) are represented
as square submatrices, where νr ∈ R can be an arbitrary chosen value. Furthermore,

b = T−1bs =
[

λ1 λ2 λ3 · · · br1 br2 · · · λnc

]T
, (8.44)

where br1 , br2 and also νr are given by imposing A−1b =
[

1 1 . . . 1
]
. Note that

this imposition cannot be accomplished when there are elements of bs which are zero.
In this case the corresponding elements of b can be kept to zero. In fact, to allow the
application of the proposed CNGSC controller, the normalisation is only important for
the first element of bs describing the input linked to the unstable state. If we want to
stabilise the S system then this element inevitably has to be nonzero and thus imposing
A−1b =

[
1 e2 e3 . . . en

]
, where e2, e3, . . . , en ∈ R is always realisable and sufficient

for our purpose.
Similarly to the S system (Equation 8.38) the state output matrix C̃ is interpreted as

a state feedback controller. Again we have to add the part due to the disturbance input
w and for which F̃ represents the disturbance feedback and we therefore again interpret
the disturbance w as a state of the system (see Section 8.4). We define the state feedback
gain as

fx =
[

f1 f2 . . . fn

]
= C̃

and the disturbance feedback gain as

fw =
[

fw1 fw2 . . . fwlp

]
= F̃ .

Since the disturbance input has to be added to the feedback we define an extended state
feedback controller given by

ũ =
[

C̃ F̃
] [ x

w

]
+ D̃ff,rq = �

([
x
w

])
+ D̃ff,rq, (8.45)

where

�

([
x
w

])
=

[
fx fw

] [ x
w

]
= f1x1 + f2x2 + f3x3 + . . . + fnxn + fww (8.46)

denotes the linear state feedback control. We might also design the state feedback con-
troller without the disturbance part fww. But this evidently results in a closed-loop
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system which is no longer equivalent to the initial tokamak closed-loop system with the
input-output VC controller (Figure 8.7 a)).

Similarly to what was discussed in Section 8.2 we introduce the state error[
xe

we

]
=

[
x
w

]
−

[
x̄
w̄

]
, (8.47)

where
[

x̄ w̄
]T

denotes the equilibrium of the linear closed-loop system. By substitut-

ing
[

x w
]T

=
[

x̄e w̄e

]T
+

[
x̄ w̄

]T
in Equation (8.45) the linear extended state

feedback control law becomes

ũ = �

([
x
w

])
+ D̃ff,rq (8.48)

= �

([
xe

we

])
+

[
fx fw

] [ x̄
w̄

]
+ D̃ff,rq.

By considering the results provided in Section 8.2 we migrate from the linear control
law given by Equation (8.48) to a control law containing the nonlinear state feedback
ϕ(x) pertaining to the class Kc. We therefore apply the nonlinear control law given by
Equation (8.25 ) straightforwardly which leads to

ũ = ϕ

([
xe

we

])
+

[
fx fw

] [ x̄
w̄

]
+ D̃ff,rq. (8.49)

The nonlinear state feedback ϕ(x) represents the CNGSC controller (Chapter 7) which is
given by

ϕ

([
x
w

])
= f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn + fww), (8.50)

with the nonlinear function

k(x) = 1 − x2
1 or k(x) = 1 − |x1|. (8.51)

Since

lim
x1→0

k(x) = 1 (8.52)

we obtain

lim
x1→0

ϕ

([
x
w

])
=

[
fx fw

] [ x
w

]
, (8.53)

which confirms that ϕ(x) belongs to the class Kc.
It is left for us to derive the equilibrium point[

x̄
w̄

]
,

where we only have to worry about x̄ since we assume that w̄ = 0 (Section 8.3.1.1). Fur-

thermore, the concept of considering the error
[

x̄e w̄e

]T
and the equilbrium

[
x̄ w̄

]T



Chapter 8. Tokamak control 183

has only been introduced to permit variations of the feedforward inputs and the reference
signals, denoted as q, without deteriorating the rejection of disturbances. Thus, the equi-
librium x̄ has to be completely decoupled from w and therefore has to be uniquely derived
as a function of q, and not as a function of the disturbance, i.e. w = 0. Moreover, we
assume that the variation of q does not drive the output of the controller ũ into saturation.
With these assumptions, we consider the closed-loop System (8.42) by substituting u = ũ
and w = 0 which leads to

ẋ = (A + bC̃)x + (Bff,r + bD̃ff,r)q. (8.54)

The equilibrium x̄ is reached when the condition ẋ = 0 is satisfied. Thus, by solving for
x the equilibrium is given by

x̄ = −(A + bC̃)−1(Bff,r + bD̃ff,r)q. (8.55)

Remarks:
The controller results given in Chapter 7 claim that for stability purposes the condition

f1 + 1 < 0 (8.56)

has to be satisfied. If this condition is not verified then we have to increase either the
gain of the control parameter f1 or the gain of the VC input-output controller, implying
an increase of the f1 gain.

If we implement the controller given by Equations (8.49)-(8.51) then the physical
controller output fed to the tokamak input is ũvc and not ũ. Thus, we have to multiply ũ
with the VC saturation level σvc to get the physical control signal ũvc.

Up to now, we assumed that the values of the state variables x and the disturbance
input w are directly accessible, i.e. the state variables and the disturbance input are
measurable. But in practice this is never the case for tokamaks. Therefore, we have
to reconstruct the state x and the disturbance w by means of the measurable outputs
which are the magnetic diagnostic measurements. We discuss the state and disturbance
reconstruction procedure in the next section.

For the implementation of the state feedback controller the reconstructed state x̆ and
disturbance w̆ will be used. Nevertheless, for controller analysis and design purposes we
consider an ideal reconstruction procedure for which we assume that the reconstructed
state x̆ and disturbance w̆ are equivalent to the actual state x and disturbance w, i.e.[

x̆
w̆

]
≡

[
x
w

]
. (8.57)

8.4 State and disturbance reconstruction

There are 3 different state vectors in the tokamak closed-loop system considered (depicted
in Figure 8.4 b)) which are

xs =

⎡
⎣ xp

xsc

xvc

⎤
⎦ ,

where xp denotes the physical state variables of the linearised tokamak model, xsc the state
of the SC controller and xvc the state of the VC controller. Since the SC controller is
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implemented explicitly, its state xsc is directly accessible. From this, we have to implement
the input-output VC controller in such a way as to provide direct access to its internal
state xvc. What remains is to reconstruct the linearised tokamak model state xp. This can
be achieved by means of the standard dynamic observers like Leuenberger and Kalman
filter observers as mentioned. For these reconstruction methods the whole linear tokamak
model with the 50 . . . 100 state variables has to be implemented, increasing considerably
the real-time computing time. To avoid this drawback we propose in this section a static
reconstruction which rests on the least square error method.

Once all states are reconstructed, referred to as

x̆s =

⎡
⎣ x̆p

x̆sc

x̆vc

⎤
⎦ ,

the reconstructed normalised state is obtained by means of the linear state transformation
(Equation (8.41))

x̆ = T−1x̆s.

Additionally, as discussed in Section 8.3, we have to reconstruct the disturbance input w.
By considering the linear tokamak model we can show that the disturbance input w can
be handled as a state. We therefore add a disturbance state xw = w and pure integrator
dynamics into System (8.32) (the feedforward inputs and references are not considered
here) resulting in the equivalent system[

ẋp

ẋw

]
=

[
Ap 0
0 0

] [
xp

xw

]
+

[
Bpsc

0

]
usc +

[
Bpvc

0

]
uvc +

[
Ep

0

]
ẇ

+

[
0
I

]
ẇ (8.58)

yp =
[

Cp Fp

] [ xp

xw

]
,

where ẇ is the time derivative of the disturbance input. With this mathematical artifact
we do not have to make a distinction between a state and a disturbance reconstruction.
On the contrary, it clearly shows that for the reconstruction the state and the disturbance
can be treated equivalently. For what follows we prefer to use the notation[

xp

w

]
instead of

[
xp

xw

]
.

For any state reconstruction, measurable plant outputs have to be available. In the case
of the linear tokamak model the output yp contains two different parts: i) the physical
outputs which are the magnetic diagnostic measurements and ii) physical plasma param-
eters like the vertical position z and the radial position R of the plasma, the gaps g and
the plasma current Ip. The plasma parameters are linear combination of the magnetic di-
agnostic measurements since it is not possible to measure directly the plasma parameters
in real-time. Therefore only the magnetic diagnostic measurements are available for the
state reconstruction. For what follows we define the magnetic diagnostic output as

ymd =

⎡
⎣ Bpol

Ψ
Ipol

⎤
⎦ =

[
Cmd Fmd

] [ xp

w

]
=

⎡
⎣ CBpol

FBpol

CΨ FΨ

CIpol
FIpol

⎤
⎦[

xp

w

]
, (8.59)
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where Bpol denotes the measure of the poloidal magnetic field probes, Ψ denotes the
measure of the poloidal flux loops and Ipol denotes the currents in the PF coils.

8.4.1 Reconstruction with the least square error method

We consider the linear problem (8.59) for which we seek to solve for
[

xp w
]T

. If we
consider the output ymd ∈ R

mmd , the state xp ∈ R
np and the disturbance input w ∈ R

lp

then the least square method can be applied if the condition mmd > np + lp is satisfied, i.e.
the number of outputs has to be superior to the number of state variables and disturbance
inputs together. This condition fits in general since there are about 100 of different
magnetic diagnostic measurements, while the linear tokamak model possesses about 50
state variables and the disturbance input is modeled with 2 different inputs. Thus, by
applying the least square error method described in Section A.4 of the Appendix the state
reconstruction is given by taking the pseudo-inverse of the output matrix of Equation
(8.59)[

x̆p

w̆

]
=

[
Cmd Fmd

]†
ymd. (8.60)

8.4.1.1 Normalised reconstruction

Since the outputs Bpol and Ψ have values which are about 105 times smaller than Ipol the
problem is not well conditioned and the computation of the pseudo-inverse matrix can
lead to severe errors in the state reconstruction estimation. We therefore try to normalise
the matrix

[
Cmd Fmd

]
and the output ymd with a factor gn as follows

ymdn =

⎡
⎣ gnBpol

gnΨ
Ipol

⎤
⎦ =

[
Cmdn Fmdn

] [ xp

w

]
=

⎡
⎣ gnCBpol

gnFBpol

gnCΨ gnFΨ

CIpol
FIpol

⎤
⎦[

xp

w

]
. (8.61)

The objective is to find a gn which minimises the ratio between the minimal and the
maximal value of the elements of Cmdn denoted by Cmdnij

min
gn

⎛
⎝min

i,j
|Cmdnij

|
max

i,j
|Cmdnij

|

⎞
⎠ . (8.62)

It is enough to use just the matrix Cmd for solving the minimisation problem since it is
assumed that the structure of Fmd is similar to that of Cmd.

8.4.2 Robustness of the reconstruction

Since the proposed least square reconstruction method rests on the pseudo-inverse of both
output matrices of the linear tokamak model, we in general assume that the reconstruction
is only accurate in the neighborhood of the linear model’s linearisation equilibrium (see
Section 8.3.2 for the definition of the linearisation equilibrium). In this section we present
an elementary study of the robustness of this reconstruction method by analysing the
accuracy of the reconstruction when the state of the tokamak plant is steered away from
the linearisation equilibrium.
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We cannot provide an extensive analysis but we rather focus on a few important plasma
parameter variations occurring during a discharge. We therefore restrict the study to the
analysis of a varying elongation κ, of a varying vertical plasma position z and during
the ramp-up and ramp-down. We additionally consider two similar discharges, where we
derive the linear tokamak model by means of one discharge and apply the reconstruction
to the other discharge. This allows us to analyse whether the reconstruction method
based on one linear tokamak model is robust for similar discharges.

This study was carried out by analysing experimental TCV discharges. The linearised
tokamak model was obtained with RZIP. The time at which the linear model was derived
from the discharge is defined as the linearisation equilibrium time, denoted as t0. To avoid
the reconstruction of the disturbance input w we assume that no important disturbances
occur during the discharges considered. The state reconstruction was done with the
normalisation reconstruction, where the normalised pseudo-inverse matrix at t0 is denoted
as C†

0. With this, we obtain a simplified state reconstruction given by

x̆p = C†
0 ymdn . (8.63)

In Section 8.4.3 we will show that for the CNGSC controller it is sufficient to provide
an accurate reconstruction of solely the unstable state, while a reconstruction of all stable
states is not required. Therefore, the robustness study is focused on the reconstruction of
the unstable state x1, while the stable states are not taken into consideration.

As mentioned in Section 8.3.4, we assume that in general the SC controller plays only
a minor role concerning the stabilisation of the tokamak. In other words, this means that
the SC controller has only a limited influence on the unstable state. We therefore neglect
the effect of the SC controller on the unstable state, i.e. we assume that the VC controller
is totally decoupled from the unstable state. Thus, the transformation of System (8.36)
into the normalised system by means of the linear transformation given by Equations
(8.41), (8.43) and (8.44) can be solely applied to the linear tokamak model, resulting in

x = T−1xp, A = T−1ApT and b = T−1Bpvcσvc.

With this, the reconstructed value of the unstable state x̆1 can be derived from

x̆ = T−1x̆p = T−1C†
0 ymdn , (8.64)

in which x̆1 is the first state variable of the state vector x̆.
For the robustness study the following 3 TCV discharges were considered:

• �12868
With this discharge we analyse the influence of a variation of the elongation κ
in the presence of a variation of the plasma current Ip on the state reconstruc-
tion. These variations are illustrated in Figure 8.9 where the evolution of following
plasma parameters are depicted: the plasma current Ip, the vertical and radial
plasma positions z and R, the safety factor q, the elongation κ, the triangularity
δ, the ratio between the averaged plasma kinetic pressure and the pressure of the
poloidal magnetic field βp, the ratio between the averaged plasma kinetic pressure
and the pressure of the toroidal magnetic field βt and the internal self inductance
li. All plasma parameters are derived using the LIUQE reconstruction code [26].
Additionally, the plasma current Ip is computed by means of a trapezoidal integra-
tion of the magnetic field measurements Bpol, denoted as ’Trapeze’ in the figure.
This allows us to obtain the plasma current at the beginning and at the end of a
discharge when LIUQE is not able to compute any reconstruction.
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Figure 8.9: The evolution of the plasma parameters of discharge �12868

• �24377
By means of this discharge we analyse the influence of a variation of the plasma
vertical position z on the state reconstruction. Figure 8.10 depicts the evolution of
the same plasma parameters for this discharge.

• �24375
This discharge is similar to the discharge �24377 excepted that the plasma vertical
position z does not vary. Figure 8.11 depicts the evolution of the plasma parameters
for this discharge.

This discharge is used to obtain the linear tokamak model and the resulting state
reconstruction matrix C†

0. The state reconstruction is then applied to the similar
discharge �24377. This permits us to analyse whether the reconstruction method
computed by means of discharge �24375 is accurate enough for the similar discharge
�24377.

Furthermore, this discharge is used to analyse the robustness of the state recon-
struction method during the plasma current ramp-up and the ramp-down.

The analysis of the state reconstruction robustness is done by comparison. Thus, the
evolution of the reconstructed states has to be compared to the evolution of states which
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Figure 8.10: The evolution of the plasma parameters of discharge �24377

can be considered as a reference. We consider two different state references:

• The LIUQE plasma parameter reconstruction reference:
We will use the LIUQE reconstruction of the plasma current Ip and of the plasma
vertical and radial position z and R, respectively. The linear tokamak model pro-
vides the same plasma parameters as outputs, contained in yp. Since the output
of the linear tokamak model is a linear combination of its state xp (or of the nor-
malised state x be linear transformation) the comparison of these parameters gives
a first impression of the state reconstruction accuracy. Moreover, due to the linear
combination, it is possible by applying an appropriate linear state transformation
to express the plasma parameters Ip, z and R as state variables. This allows us
to claim that we can analyse the reconstruction accuracy of 3 state variables. The
major problem of LIUQE is that it does not provide the evolution of the unstable
state. We therefore have to provide the unstable state reference evolution in another
way which is presented next.

• Nonlinear time dependent state reconstruction (NTDSR) reference:
For the construction of this state reference we apply a piecewise linearisation of
the discharge by means of the linear RZIP tokamak model. For this purpose we
subdivide the duration of a discharge into discrete time intervals, using tk with
k ∈ Z, where

tk > tk−1 and ∆t = tk − tk−1 = const.

The time defining the start of the discharge is denoted as tks with ks < 0 and the time
defining the end of the discharge is denoted as tke with ke > 0. We derive at each
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Figure 8.11: The evolution of the plasma parameters of discharge � 24375

time step tk an RZIP model with which we compute the corresponding normalised
pseudo-inverse matrix C†

k. Furthermore, for each time step there corresponds a
normalised output

ypk
= ymdn(tk).

With ypk
we define the variation of ymdn during ∆t by

∆ypk
= ypk

− ypk−1
.

Thus, we can reconstruct the variation of the state, denoted as ∆x̌pk
, as a linear

function of the variation ∆ypk

∆x̌pk
= x̌pk

− x̌pk−1
= C†

k ∆ypk
= C†

k (ypk
− ypk−1

).

We assume that the variation ∆ypk
is small enough so that the linear model derived

at tk is valid for this variation. In this case the corresponding C†
k is accurate for the

variation ∆ypk
implying an accurate state reconstructed variation ∆x̌pk

. From this
the state reconstructed x̌pk

= x̌p(tk) is obtained by the sum

x̌p(tk) = x̌pk
=

k∑
i=ks+1

∆x̌pi
+ x̌pks

=
k∑

i=ks+1

(
C†

i (ypi
− ypi−1

)
)

+ x̌pks
. (8.65)

Since this piecewise linearisation principle follows the time dependent nonlinearities
(C†

k is a function of time) during the discharge, a more accurate state reconstruction
is achieved compared to the state reconstruction given by Equation (8.63), i.e.

x̆p(tk) = C†
0 ymdn(tk). (8.66)
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We therefore use this nonlinear time dependent state reconstruction (NTDSR) as a
state reference.

By means of these two state references we analyse by comparing the state reconstruction
robustness of the following 4 cases:

1. Variation of the elongation κ (discharge �12868)

The C†
0 matrix is taken at t0 = 0.4 s.

The comparison of the plasma parameters ẑ, R̂ and Îp against the LIUQE and the
NTDSR references is depicted in Figure 8.12.
The reconstruction is very accurate near the linearisation equilibrium at t0.
In general the state reconstruction fits well the NTDSR reference during the whole
discharge. The maximum error is about 0.5 cm for both z and R. This appears to
be acceptable.
There is a pronounced discrepancy between the LIUQE and the NTDSR references
for z and R. Nevertheless, the maximum error between the two references is about
2 cm for z and about 1 cm for R which again appears to be acceptable.
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Figure 8.12: Reconstruction of ẑ, R̂ and Îp. red solid: state reconstruction; blue x:
NTDSR reference; cyan solid: LIUQE reference

The comparison of the unstable state reconstruction x̂1 against the LIUQE and the
NTDSR references is depicted in Figure 8.13.
As already seen the state reconstruction perfectly fits the reference in the neighbor-
hood of the linearisation equilibrium at t0. The accuracy gets slightly worse when
the elongation κ and the plasma current Ip differ too much from the corresponding
values at the linearisation equilibrium (times between 0.1− 0.2 s and around 0.7 s).
Nevertheless, the state reconstruction can be assessed as astonishingly accurate for
the whole discharge.
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Figure 8.13: Reconstruction of the unstable state x̂1. green solid: state reconstruction;
blue x: NTDSR reference

2. Variation of the vertical plasma position z (discharge �24377)

The C†
0 matrix is taken at t0 = 0.55 s.

The comparison of the plasma parameters ẑ, R̂ and Îp against the LIUQE and the
NTDSR references is depicted in Figure 8.14.
As in the first case, the reconstruction is very accurate near the linearisation equi-
librium at t0.
In general the state reconstruction fits both references well during the whole dis-
charge, excepted a slight disagreement for all parameters during the lower knee of
the z evolution. Nevertheless, the errors, about 2 cm for z and less than 0.5 cm for
R, are acceptable.

The comparison of the unstable state reconstruction x̂1 against the LIUQE and the
NTDSR references is depicted in Figure 8.15.
Again, the state reconstruction fits the reference perfectly in the neighborhood of the
linearisation equilibrium at t0. The accuracy gets slightly worse during the upper
and the lower knees of the z evolution, where in both cases the state reconstruction
is slightly underestimated compared to the reference.

3. Variation of the vertical plasma position z (�24377) with a state reconstruction
matrix C†

0 derived from a similar discharge (discharge � 24375) without any variation
of the plasma parameters

The C†
0 matrix is taken from discharge �24375 at t = 0.55 s, while the NTDSR

reference is derived from discharge �24377.

The comparison of the plasma parameters ẑ, R̂ and Îp against the LIUQE and the
NTDSR references is depicted in Figure 8.16.
The state reconstruction accuracy is similar to the second case.

The comparison of the unstable state reconstruction x̂1 against the LIUQE and the
NTDSR references is depicted in Figure 8.17.
This time there is a pronounced discrepancy between the slopes of the state re-
construction and the NTDSR reference. This is due to a static gain error of the
C matrices (and thus of the C† matrices) between the linear model derived from
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Figure 8.14: Reconstruction of ẑ, R̂ and Îp. red solid: state reconstruction; blue x:
NTDSR reference; cyan solid: LIUQE reference
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Figure 8.15: Reconstruction of the unstable state x̂1. green solid: state reconstruction;
blue x: NTDSR reference

discharge �24375 and the model derived from discharge �24377. In this particular
case, this leads to an overestimation of the unstable state compared to the refer-
ence. But in general, we have to consider that such a reconstruction can lead to an
underestimation, too.

4. Ramp-up and ramp-down of the plasma current Ip (discharge �24375)

The C†
0 matrix is taken at t0 = 0.55 sec.

The comparison of the plasma parameters ẑ, R̂ and Îp against the LIUQE and the
NTDSR references is depicted in Figure 8.18.
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Figure 8.16: Reconstruction of ẑ, R̂ and Îp. red solid: state reconstruction; blue x:
NTDSR reference; cyan solid: LIUQE reference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x1

 [s]t

Figure 8.17: Reconstruction of the unstable state x̂1. green solid: state reconstruction;
blue x: NTDSR reference

The reconstruction is very accurate for the whole discharge for R and Ip. There is
a discrepancy for z at the end of the discharge. But again, the maximal error is
about 1 cm which seems acceptable.

The comparison of the unstable state reconstruction x̂1 against the LIUQE and the
NTDSR references is depicted in Figure 8.19.
The state reconstruction is astonishingly accurate for the whole discharge.

For the analysis of the ramp-up and the ramp-down of a discharge, LIUQE recon-
structions and RZIP models have to be derived during the ramps. However, LIUQE
is not able to provide a reconstruction at the very start of a discharge (during the
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Figure 8.18: Reconstruction of ẑ, R̂ and Îp. red solid: state reconstruction; blue x:
NTDSR reference; cyan solid: LIUQE reference
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Figure 8.19: Reconstruction of the unstable state x̂1. green solid: state reconstruction;
blue x: NTDSR reference

ramp-up) and at the very end of a discharge (during the ramp-down). Since RZIP
uses LIUQE results to provide a linear model, there is no linear tokamak model
available for a certain time lapse during the initial ramp-up and the final ramp-
down. As mentioned earlier, there is a possibility to estimate the plasma current
Ip during an entire discharge by means of a trapezoidal integration of the magnetic
field measurements Bpol, denoted as ’Trapeze’. Thus, we are forced to restrict the
study of the state reconstruction robustness during the ramp-up and the ramp-down
by solely analysing the evolution of Ip.
Figures 8.20 and 8.21 illustrate the Ip reconstruction for the ramp-up and ramp-
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down, respectively.
Since the fit is almost perfect we had to add a slight offset on the Trapeze reference
permitting to distinguish between the evolution of state reconstruction (solid red)
and of the Trapeze reference (solid cyan).
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Figure 8.20: Reconstruction of the ramp up of Ip. red solid: state reconstruction; blue x:
NTDSR reference; cyan solid: Trapeze reference (with an artificial offset)
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Figure 8.21: Reconstruction of the ramp down of Ip. red solid: state reconstruction; blue
x: NTDSR reference; cyan solid: Trapeze reference(with an artificial offset)

The robustness study of the state reconstruction can by summarised by the following
statements. We have seen that the reconstruction with the proposed static least square
error method works well for TCV. Somewhat surprisingly, it seems that it works accurately
for a whole discharge, i.e. including ramp-up and ramp-down. If we want to apply the
reconstructed states to the CNGSC controller then the sole problem that can arise is
due to an eventual underestimation of the unstable state x1, while the overestimation is
benign. Over- or underestimation can occur when the reconstruction matrix C†

0 is taken
from one discharge and applied to another similar discharge (see case 3.).
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The consequence due to an underestimation of the unstable state is as follows. We
denote the real actual unstable state as x1 and its reconstruction as x̆1 and consider that
they are located in the proximity of the boundaries of the null controllable region, i.e.
x1 ≈ 1 and x̆1 ≈ 1 (Chapter 7). This allows us to to approximate the nonlinear state
feedback controller (Equations (8.50) and (8.51)) by

ϕ(x1) ≈ f1x1. (8.67)

When there is an underestimation x1 > x̆1 then the control action due to the reconstructed
state x̆1 is smaller than the control action which theoretically should be applied for the
actual state x1, i.e. |ϕ(x1)| > |ϕ(x̆1)|. Therefore, when the unstable state is in the
proximity of the boundaries of the null controllable region the applied control ϕ(x̆1) is
no longer able to stabilise the closed-loop system. The underestimation of the unstable
state can be interpreted as a reduction of the region of attraction. On the contrary, when
we consider an overestimation x1 > x̆1 then the applied control |ϕ(x̆1)| is larger than the
needed control |ϕ(x1)| for the real actual unstable state x1. Thus, the overestimation does
not induce a drawback in the sense of the closed-loop stability.

To avoid an eventual underestimation of the unstable state we may correct the recon-
struction by increasing the estimation by

x̆1corr = cx1x̆1, (8.68)

where cx1 ≥ 1 denotes the correction factor and x̆1corr the corrected reconstruction of x1.
Reconstruction errors on the other (stable) states are certainly more benign on the

stability of the closed-loop system. A detailed study of the consequences due to such
errors is not necessary, since, as we will see in the next section, the reconstruction of the
other states is not required when we consider the nonlinear state feedback ϕ(x).

The work during this robustness study revealed that the accuracy of the reconstruction
of some states can be increased when only a subset of the magnetic diagnostic measure-
ments (Bpol, Ψ and Ipol) is used. For example, the reconstruction of Ip is more accurate
if only the Bpol and Ipol measurements are used. Therefore, an improvement could be
achieved by analysing with which subset of magnetic diagnostic measurements the accu-
racy of the unstable state reconstruction can be enhanced.

8.4.3 Reconstruction improvement linked to the structure of the
controller

In this section we show that when we consider the structure of the CNGSC controller ϕ,
it is sufficient to solely reconstruct the unstable state x̆1. Of course, by applying the least
square error reconstruction method the estimation of all states is automatically provided.
But when solely the unstable state is required then we can improve the reconstruction
accuracy of this sole state, while there is no effort needed for the improvement of the
reconstruction accuracy of the other states.

Let us consider the nonlinear state feedback structure given by Equation (8.50), i.e.

ϕ

([
x
w

])
= f1x1 + k(x1)(f2x2 + f3x3 + . . . + fnxn + fww),

with the nonlinear function k(x1) (Equation (8.51)) which depends only on the unstable
state x1. By means of the substitution

xq = f2x2 + f3x3 + . . . + fnxn + fww (8.69)
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we obtain

ϕ

([
x
w

])
= f1x1 + k(x1)xq.

By means of a linear state transformation, System (8.42) can be transformed into a
system containing the unstable state x1, the new state xq and all the remaining states.
Therefore, the improvement of the reconstruction accuracy can be focused on x1 and xq.
This represents the first simple improvement of the reconstruction quality which is due
to the structure of the nonlinear state feedback controller.

A supplementary improvement can be achieved when we consider the input-output
VC controller (8.34), i.e.

ẋvc = Avcxvc + Bvcze (8.70)

ũio =
1

σvc

Cvcxvc +
1

σvc

Dvcze.

with the error ze = z − zr. Note that we have to divide the output of the input-output
VC controller by the VC saturation level σvc since we consider the normalised saturation
function with a saturation level of 1 (Figure 8.7 b)). Furthermore we consider the linear
state feedback controller (8.45), i.e.

ũfb =
[

fx fw

] [ x
w

]
+ D̃ff,rq (8.71)

and the resulting closed-loop system depicted in Figure 8.8 b). By considering Substi-
tution (8.69) and f =

[
f1 f2 . . . fn

]
, the state feedback controller (8.71) can be

reformulated as

ũfb = f1x1 + xq + D̃ff,rq. (8.72)

Since the system with the input-output VC controller depicted in Figure 8.7 b), where
ũio = ũ, is equivalent to the system with the state feedback controller depicted in Fig-
ure 8.8 b), where ũfb = ũ, we can state that the outputs of both controllers are equivalent,
i.e. ũio = ũfb. Solving Equation (8.72) for xq and substituting ũfb = ũio leads to

xq = ũio − D̃ff,rq − f1x1. (8.73)

Thus, since the input-output VC controller (8.70) provides ũio and since the input q
containing the feedorward inputs and the references are known we obtain a reconstruction
of xq just by reconstructing the unstable state x1, i.e.

x̆q = ũio − D̃ff,rq − f1x̆1. (8.74)

We can ever state that the input-output VC controller (8.70) works as an observer for
the estimation of xq under the condition that an accurate unstable state reconstruction
x̆1 can be provided.
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8.5 Reference tracking

As mentioned in Sections 8.2 and 8.3.6 we can separate the reference tracking problem
from the disturbance rejection by neglecting the disturbance input w = 0. Furthermore,
we assume reference and feedforward signals, denoted as

q =

⎡
⎢⎢⎣

uscff

uvcff

yr

zr

⎤
⎥⎥⎦ ,

which are either constant or which vary slowly such that the state xe is kept small, i.e.
‖xe‖ ≈ 0. Therefore due to the characteristics of the nonlinear state feedback control
(Condition (8.19) ), the approximation ϕ(x̂e) ≈ fx̂e is valid which implies that the ref-
erence tracking follows the closed-loop system dynamics characterised by the linear state
feedback. Moreover, we assume that the variation of q does not drive the output of the
controller ũ into saturation.

For this analysis we consider the S system (8.36) where its state vector is given by

xs =

⎡
⎣ xp

xsc

xvc

⎤
⎦ .

Remember that, if required, the results obtained in this section can be applied straightfor-
wardly to the normalised system (8.42) by simply applying the linear state transformation
given by Equation (8.41), i.e

x = T−1xs.

By considering the assumptions mentioned above, the S system in closed-loop (u = ũ)
leads to the linear tokamak closed-loop system (Figure 8.22) expressed as⎡

⎣ ẋp

ẋsc

ẋvc

⎤
⎦ =

⎡
⎣ Ap + BpscDscCpy + BpvcDvcCpz BpscCsc BpvcCvc

BscCpy Asc 0
BvcCpz 0 Avc

⎤
⎦
⎡
⎣ xp

xsc

xvc

⎤
⎦

+

⎡
⎣ Bpsc Bpvc −BpscDsc −BpvcDvc

0 0 −Bsc 0
0 0 0 −Bvc

⎤
⎦
⎡
⎢⎢⎣

uscff

uvcff

yr

zr

⎤
⎥⎥⎦ (8.75)

y =
[

Cpy 0 0
] ⎡⎣ xp

xsc

xvc

⎤
⎦

z =
[

Cpz 0 0
] ⎡⎣ xp

xsc

xvc

⎤
⎦ ,

where the outputs y and z are defined in System (8.32).
The equilibrium of the closed-loop system, denoted as x̄s, is defined as the solution of

System (8.75) by imposing ẋs = 0. If the matrix⎡
⎣ Ap + BpscDscCpy + BpvcDvcCpz BpscCsc BpvcCvc

BscCpy Asc 0
BvcCpz 0 Avc

⎤
⎦
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Figure 8.22: Illustration of the linear closed-loop system considered for reference tracking.

is invertible then there exists a solution and the equilibrium can be expressed as a function
of the closed-loop system input q given by

x̄s = −
⎡
⎣ Ap + BpscDscCpy + BpvcDvcCpz BpscCsc BpvcCvc

BscCpy Asc 0
BvcCpz 0 Avc

⎤
⎦

−1

· (8.76)

·
⎡
⎣ Bpsc Bpvc −BpscDsc −BpvcDvc

0 0 −Bsc 0
0 0 0 −Bvc

⎤
⎦
⎡
⎢⎢⎣

uscff

uvcff

yr

zr

⎤
⎥⎥⎦ .

Note that by applying the linear state transformation T this equilibrium is equivalent to
the equilibrium given by (8.55).

When we consider a constant closed-loop system input q = const then the state xs

converges asymptotically to the equilibrium x̄s, i.e.

lim
t→∞

xs(t) = x̄s. (8.77)

As for the initial assumption made in this section, if we vary q slowly then we can assume
that the error between the actual state xs and the equilibrium x̄s is small and thus we
assume xse = xs − x̄s ≈ 0. Therefore we can state that the actual state xs tracks
approximately the equilibrium x̄s.

If we consider a constant reference yr = const (zr = const) then there remains a static
error ye = y − yr (ze = z − zr) when the transfer function from yr (zr) to the output y
(z) possesses no integration effect (pure integrator). This fact is well known from control
theory [42, 14]. Thus, since the tokamak linear model possesses no pure integrator there
remains always an output error ye (ze) when no integral control is introduced in the SC
and VC controllers. In such a case we have the possibility of removing output errors by
adding a feedforward input uscff

(uvcff
). This feedforward input can be expressed as a

function of the reference signals yr (zr). We therefore substitute yr = y and zr = z in
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System (8.75) which leads to the closed-loop system⎡
⎣ ẋp

ẋsc

ẋvc

⎤
⎦ =

⎡
⎣ Ap BpscCsc BpvcCvc

0 Asc 0
0 0 Avc

⎤
⎦
⎡
⎣ xp

xsc

xvc

⎤
⎦ +

⎡
⎣ Bpsc Bpvc

0 0
0 0

⎤
⎦[

uscff

uvcff

]
(8.78)

y =
[

Cpy 0 0
] ⎡⎣ xp

xsc

xvc

⎤
⎦

z =
[

Cpz 0 0
] ⎡⎣ xp

xsc

xvc

⎤
⎦ .

Thus, for this closed-loop system the equilibrium for the controllers is trivially x̄sc = 0
and x̄vc = 0, while the equilibrium for the linear tokamak model is

x̄p = −A−1
p

[
Bpsc Bpvc

] [ uscff

uvcff

]
. (8.79)

Straightforwardly, since we imposed yr = y and zr = z the outputs y and z at the
equilibrium x̄p are given by[

yr

zr

]
=

[
y
z

]
= Q

[
uscff

uvcff

]
= −

[
Cpy

Cpz

]
A−1

p

[
Bpsc Bpvc

] [ uscff

uvcff

]
. (8.80)

Therefore, if the number of feedforward inputs is equal to the number of outputs, the
feedforward inputs can be calculated by inverting the matrix Q, i.e.[

uscff

uvcff

]
= Q−1

[
yr

zr

]
= −

([
Cpy

Cpz

]
A−1

p

[
Bpsc Bpvc

])−1 [
yr

zr

]
. (8.81)

In the case where there are more feedforward inputs than outputs we may get a square
matrix Q by canceling some outputs, while for fewer feedforward inputs we may get a
least square error approximation by using the pseudo-inverse matrix Q† (see Section A.4
of the Appendix for the least square error method).

In general, it is more convenient to put integral control into the controllers instead
of calculating the feedforward inputs. With integral control the feedforward input given
by Equation (8.81) is intrinsically provided by the controller (see basic control theory
[42, 14]).

For the VC controller there is a problem linked to the reference error ze and the input
of the VC saturation uvcs (Figure 8.23). The theory of the CNGSC controller relies on
the fact that at the equilibrium (when no disturbance occurs) the input of the saturation
is zero, i.e. uvcs = 0. Thus, the saturation is driven symmetrically during a rejection of a
disturbance. For the tokamak closed-loop system considered (Figure 8.23) this condition
is only satisfied when the equilibrium is at zero x̄s = 0, which implies also that yr = y = 0
and zr = z = 0, while a non-zero reference zr �= 0 always implies a non-zero saturation
input uvcs �= 0. If we consider that there is no integral control in the VC controller
implying a non-zero output error ze �= 0, then at the equilibrium the controller output is
non-zero ũvc �= 0, thus uvcs �= 0. On the other hand, when we introduce a feedforward
signal (or equivalently an integral control, but we only consider the feedforward input
here) then the output error vanishes ze = 0 implying ũvc = 0. But since there is a
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feedforward input uvcff
�= 0 the saturation input is still not zero uvcs �= 0. This problem

can be solved by introducing a feedforward input into the SC controller, instead of the VC
controller. This can be done by imposing uvcff

= 0 and solving Equation (8.80) for uscff

as a function of zr. Another solution consists of introducing an integral control into the
SC controller for the output z by imposing that one of the outputs y contains an identical
output z. With this solution the error ze vanishes which implies that ũvc = 0 and since
we imposed uvcff

= 0 there is no residual offset at the saturation input ũvcs = 0 when the
closed-loop system is in equilibrium.
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Figure 8.23: Illustration of the linear closed-loop system with VC saturation.

8.6 Disturbances

In this section we provide an elementary analysis on the effect of the disturbances on the
stability of the closed-loop system. We restrict the analysis to a qualitative description of
the behavior of the closed-loop system during a disturbance and the implied consequences
for the closed-loop system stability. We will see that in general it is not possible to
determine whether or not stability has been lost during a disturbance.

In the analysis of Chapter 7 concerning the CNGSC controller we derived the null
controllable region and the region of attraction. The concept linked to these two regions
makes only sense for autonomous closed-loop systems, i.e time-invariant closed-loop
systems [50]. Recall that when, in absence of time-varying disturbance inputs, the
initial condition is in the region of attraction then the controller brings the state back to
the origin of the closed-loop system, while on the other hand, when the initial condition
is outside the region of attraction the controller can not bring back the state to the origin
and the stability is lost. The initial condition may be interpreted as a displacement of
the state away from the equilibrium due to a disturbance. In general, a disturbance is
introduced into a system by a time-varying external input, denoted as w. When no
disturbance is occurring then the disturbance input is zero w = 0. Thus, the closed-loop
system behaves like an autonomous system. During a disturbance, i.e. w �= 0, the closed-
loop system can no longer be considered to be an autonomous system and the concept
linked to the region of attraction is no more valid. This concept becomes valid again just
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after that the disturbance has disappeared, i.e. w = 0. During the disturbance the state
has been displaced away from the equilibrium and the actual state just at the time at
which the disturbance disappears can be taken as a new initial condition. Then by means
of the region of attraction it is possible to determine whether or not the stability has been
lost due to the disturbance.

The assumptions made in Section 8.5 state that the reference tracking mechanism has
only a minor impact on the state error and we therefore assume that xe = x − x̄ = 0.
Thus, the disturbance rejection due to the nonlinear control (Equation (8.49)) (or linear
control, Equation (8.48))

ϕ

([
xe

we

]) (
or

[
fx fw

] [ xe

we

])

is equivalent for any equilibrium x̄. We therefore set the feedforward and reference signals
at zero q = 0 which implies an equilibrium x̄ = 0 and a state error xe = x. This permits
us to consider solely x instead of xe. With this assumption the normalised system (8.42)
with an arbitrary linear or nonlinear state feedback, defined as

ϑ

([
x
w

])
, (8.82)

becomes

ẋ = Ax + bu + Eẇ (8.83)

ũ = ϑ

([
x
w

])
.

8.6.1 The ELM-like disturbance model

Two plasma parameters determine an effective internal disturbance to the plasma equilib-
rium: i) the internal inductance li and ii) the ratio of the kinetic plasma pressure energy
to the poloidal magnetic field energy, referred to as βp. Thus, the disturbance input w
consists of a variation of both βp and li, i.e.

w =

[
∆βp

∆li

]
. (8.84)

The three most important disturbance types are [21]:

• A minor plasma current disruption (MD):
This is a drop followed by a recovery of both βp and li during a long time lapse.

• Compound edge localised modes (CELM):
This is similar to the MD but with a smaller amplitude and a shorter time lapse.

• Type I edge localised modes (ELM1)
This is a drop followed by a recovery of solely βp. The amplitude is similar to that
of the CELM, while the time lapse is shorter than for the CELM.

For the analysis we model a simplified ELM-like disturbance, where the drop and the
recovery are represented as ramps. Figures 8.24 a) and b) illustrate the shape of an
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ELM-like disturbance w and its time derivative ẇ, respectively. The disturbance starts
at t0, reaches its maximum at t1 and vanishes at t2. In practice, the amplitude, the
duration of a disturbances and the time lapses between two disturbances vary strongly
from discharge to discharge. Furthermore, the representation of the disturbance by ramps
is an approximation compared to real ELM disturbances. But the advantage is that it
considerably simplifies the analysis as we will see later.
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Figure 8.24: Evolution of an ELM like perturbation w a) and its derivative ẇ b).

Since w is modeled by means of two ramps its derivative ẇ comprises a negative
constant value during the drop and a positive constant value during the recovery. Since
for these disturbances ∆βp and ∆li vary simultaneously (same t0, t1 and t2 for both) we
can simplify the disturbance input by

E1ẇ =

{
d1 < 0 if t0 < t ≤ t1

d2 > 0 if t1 < t ≤ t2
. (8.85)

The definition of d1 < 0 and d2 > 0 is arbitrary since it depends on the matrix E1 and
thus the contrary could also be taken into consideration. But since the closed-loop system
is symmetric the sign of the disturbance is irrelevant.

8.6.2 Analysis of the effect on the closed-loop system stability
induced by the disturbance

Since for the CNGSC controller the region of attraction A is equal to the null controllable
region C we only consider the last one defined as

C = {x ∈ R
n : |x1| < 1} (8.86)

As we have seen in Chapter 7, the boundaries of C are solely located in the subspace of the
unstable state x1, while the subspace of the stable states is unbounded, i.e. R

n−1. Thus,
only the impact of the disturbance on the unstable state x1 is relevant for the stability
analysis. We therefore only consider the unstable subsystem of System (8.83) which is
given by

ẋ1 = λ1x1 + λ1u + E1ẇ, (8.87)
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where λ1 > 0. Note that from the proof of the null controllable region (see Chapters
7) it can be deduced that the boundaries of the null controllable region in the unstable
state subspace are deduced from the unstable state equilibrium when the input u is in
saturation (u = +1 or u = −1). Thus, it derives from the equilibrium (ẋ1 = 0) of
System (8.87) that we may define a null controllable region, referred to as the varying
null controllable region, since it varies as a function of the disturbance input E1ẇ. The
boundaries of this varying null controllable region are given by

xe+1 = +1 − 1

λ1

E1ẇ for negative saturation u = −1 (8.88)

xe−1 = −1 − 1

λ1

E1ẇ for positive saturation u = +1.

Let us for the purposes of the analysis consider the controller (bang-bang controller)

u = ũ = ς

([
xd

w

])
= −sgn(x1) = lim

f1→−∞
sat(f1x1). (8.89)

We can deduce from Chapter 7 that this controller is stabilising the closed-loop system
since f1 < −1 is satisfied and since its region of attraction is equal to the null controllable
region C.

Before a disturbance occurs it is assumed that the system is in equilibrium, i.e. x1 = 0.
During the drop phase of the disturbance we consider the disturbance input d1 < 0 and
Equation (8.87) becomes

ẋ1 = λ1x1 + λ1u + d1. (8.90)

When there is no control u = 0 then the system becomes instantly unstable ẋ1 < 0
since d1 < 0 which implies that x1 < 0. We therefore have to react by means of the
control input u to reduce the impact of the destabilising effect of the disturbance. The
most effective solution is to instantaneously counteract with a positive saturation u = +1.
Thus, the most effective controller for counteracting a disturbance is the controller ς given
by Equation (8.89). If we counteract with an input u < +1 then the resulting action is
less effective. In any case the disturbance d1 implies a displacement of the state away
from the equilibrium. If the amplitude of the disturbance is too large or the control signal
is too small then the trajectory can leave the null controllable region x1 ≤ −1 implying
that at the end of the drop phase the state is located outside the null controllable region
x1(t1) ≤ −1. If we impose a positive saturation ũ = u = +1 when x1 ≤ −1 then we can
consider the varying null controllable region. During the recovery t1 < t < t2 for which
d2 > 0 the boundary xe−1 of the varying null controllable region is also located outside
the null controllable region xe−1 = −1 − 1

λ1
d2 < −1. Thus, if xe−1 < x1(t1) < 0 then

ẋ1 = λ1x1 + λ1u + d2 > 0 (8.91)

is satisfied. In this case, the trajectory may reenter the null controllable region if the
recovery time is long enough. Therefore, the state may be located in the null controllable
region after the disturbance even when it has left the null controllable region during
the disturbance. After the disturbance, at time t ≥ t2, the disturbance has vanished
w = 0 and the closed-loop system again behaves like an autonomous system for which
the concept of the region of attraction is valid. Therefore, since the region of attraction is
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equivalent to the null controllable region the trajectory is steered back to the equilibrium.
Figure 8.25 shows an example of a trajectory leaving and reentering the null controllable
region during the disturbance and steering to the equilibrium after the disturbance. Since
only the effect on the unstable state x1 is important it is sufficient to show the evolution of
the trajectory in a subspace composed of the unstable state x1 and any arbitrary chosen
stable state, referred to as xs.

-1 -0.5 0 0.5 1
-10

-8

-6

-4

-2

0

2

4

6

8

10

x s

x
1

Phase diagramm

- +

o

o
t

1

t
2

o
t

0

-2 -1.5

Figure 8.25: Trajectory of the tokamak closed-loop system during a disturbance.

As mentioned above, when the state is located outside the region of attraction we have
to ensure that u = +1 for x1 ≤ −1 (or u = −1 for x1 ≥ 1). But the CNGSC controller
given by Equations (8.50) and (8.51), i.e.

ϕ

([
x
w

])
= f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn + fww),

and

k(x) = 1 − x2
1 or k(x) = 1 − |x1|

is only defined for the interval x1 ∈ [−1, 1]. Therefore, we have to extend the CNGSC
controller by considering an extended nonlinear function defined as

k(x) =

{
1 − x2

1 if |x1| ≤ 1

0 if |x1| > 1
or k(x) =

{
1 − |x1| if |x1| ≤ 1

0 if |x1| > 1
. (8.92)

Thus, since f1 < −1, the controller guarantees to saturate the input u = +1 when x1 ≤ −1
(and u = −1 when x1 ≥ 1).

During a disturbance there is a second effect which has to be considered. It is due to
the disturbance w in the state feedback control

ũ = ϑ

([
x
w

])
.
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In the case studied above, where x1 < 0, the reaction to the disturbance w is accom-
plished with a positive control signal u > 0 and thus ũ > 0. If we compare the control

ϑ
([

x w
]T

)
with a disturbance (w �= 0) to the control without a disturbance (w = 0)

then two different cases can occur:

• A reinforced reaction, due to

ϑ

([
x
w

])
> ϑ

([
x
0

])
.

The feedback of the disturbance w has an advantageous impact on the stability of
the closed-loop system during the disturbance.

• A weakened reaction, due to

ϑ

([
x
w

])
< ϑ

([
x
0

])
.

The feedback of the disturbance w has a disadvantageous impact on the stability
of the closed-loop system during the disturbance. In this case we may improve the
reaction by considering a state feedback without the disturbance w, as for example
the controller given by Equation (8.89).

Note that for the case where x1 > 0 the explanation is similar since the considered system
is symmetric.

8.6.3 Propositions of controller modifications to increase stabil-
ity during a disturbance

From this elementary study we conclude that it is important to obtain a large counter-
acting control output for an effective disturbance rejection. In general, this is achieved by
means of a high controller gain. The optimal controller for the most effective disturbance
rejection is the ς controller (bang-bang controller). The drawback of this controller is
that it does not meet all requirements stated in Chapter 7, i.e. the local performance may
not be met and the AC-losses are increased due to the induced control signal switching
and chattering. For other controllers like the linear state feedback controller given by
Equation(8.46),

�

([
x
w

])
=

[
fx fw

] [ x
w

]
= f1x1 + f2x2 + f3x3 + . . . + fnxn + fww

or the CNGSC controller ϕ the rejection of disturbances is less effective. This is due
to the fact that both controllers are expressed as continuous functions of the states and
thus the induced control outputs are not instantly in saturation at the beginning of a
disturbance. Therefore, the counteraction to the disturbance is smaller and the loss of
control can occur for smaller disturbances than with the ς controller.

If we compare the CNGSC controller ϕ against the linear state feedback controller �
then the condition∣∣∣∣ϕ

([
x
w

])∣∣∣∣ <

∣∣∣∣[ fx fw

] [ x
w

]∣∣∣∣ (8.93)
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might be satisfied. Since during a disturbance x1 leaves the equilibrium and approaches
the boundaries of the null controllable region the gain k(x) is decreased which reduces
the impact of the terms

f2x2 + f3x3 + . . . + fnxn + fww

on the control. Thus, if the sum of these terms is large and has the same sign as f1x1

then Condition (8.93) is inevitably satisfied. In this case the disturbance reaction of the
CNGSC controller is less effective than the counteraction of the linear state feedback.
Even though the CNGSC controller ϕ possesses a larger region of attraction than the
linear state feedback controller �, the stability may be lost with ϕ but not with � during
a disturbance. As mentioned above, this is due to the fact that the concept linked to the
region of attraction and the null controllable region is no longer valid during a disturbance.

We can correct this weakness of the CNGSC controller by amplifying the effect of the
main term f1x1. Consider for this a modified ϕ controller, defined as

ϕm

([
x
w

])
= g(x)f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn + fww), (8.94)

where g(x) is a linear or nonlinear function. We may consider a correction by just in-
creasing the gain of the unstable state feedback by defining

g(x) = c = const. (8.95)

In this case ϕm no longer belongs to the class Kc (Section 8.2) since at the equilibrium
it is no more equivalent to the linear state feedback controller �. Moreover, this type of
correction intrinsically implies a modification of the closed-loop system dynamics. These
two drawbacks can be avoided by introducing a nonlinearity of the type of

g(x) = 1 + x2
1c, (8.96)

where c > 0 is a constant. Since 1 + x2
1c ≥ 1 and thus f1g(x) ≤ f1 (from the Hurwitz

condition f1 < −1) we may state by intuition that this modified controller ϕm would
probably work well and that its region of attraction would be the same as for ϕ. But,
due to the introduction of the nonlinearity g(x) = 1 + x2

1c, a formal proof of the closed-
loop system stability and the region of attraction is considerably harder to provide. It is
therefore a challenging work for future investigations in the field of nonlinear control.

8.6.4 Asymmetric saturation

Figure 8.25 shows that for the considered disturbance the trajectory evolves asymmetri-
cally in the unstable subspace, i.e. the amplitude of the deflection is higher in the x1 < 0
direction. Since all considered plasma disturbances show a similar behavior (drop of βp

and li) its induced evolution of the trajectory is similarly asymmetric, too. Therefore,
the stability properties during the considered disturbances could be improved by moving
the null controllable region in the x1 < 0 direction. This can be achieved by driving
the normalised saturation asymmetrically. As discussed in Section 8.3.2 an asymmetric
saturation is obtained by imposing a constant non-zero feedforward input, referred to as
uvcff

= const �= 0.
Consider for an asymmetric normalised saturation the upper saturation level σu > 0

and the lower level σl < 0 for which we assume that σu − σl = 2. Therefore, from the



208 Chapter 8. Tokamak control

results given in Chapter 7 we derive the implying asymmetric null controllable region,
defined as

Cas = {x ∈ R
n : −σu < x1 < −σl} (8.97)

and its boundaries

Cas+ = {x ∈ R
n : x1 = −σl} and Cas− = {x ∈ R

n : x1 = −σu} . (8.98)

Figure 8.26 illustrates the boundaries of the asymmetric null controllable region. By
considering the upper saturation level σu = 1.5 and the lower level σl = −0.5 the trajectory
remains in the asymmetric null controllable region. Thus, the closed-loop system with an
asymmetrically driven saturation should be able to handle larger disturbances than with
a symmetric saturation. Note that this proposition is a new consideration for tokamaks
and it has therefore to be verified rigorously in a future work.
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Figure 8.26: Trajectory of the tokamak closed-loop system during a disturbance and the
boundaries of the asymmetric null controllable region.

8.7 Bandwidth limitation and time delay

In practice there is a bandwidth limitation of the control signal due to the power supplies.
Furthermore, there is a pure time delay in the control signal due to the time needed by
the implemented controller to compute the control signal and due to any pure delay in
the power supplies. In this section we provide an elementary analysis of the deleterious
effects that a bandwidth limitation and a pure delay can induce on the closed-loop system
stability. Furthermore, we give solutions to reduce or even avoid these deleterious effects.

Since the bandwidth limitation can be modeled by a linear model, which in general
is a first order low-pass filter, it can straightforwardly be incorporated into the linear
normalised system. Thus we can analyse the pure delay problem by means of the linear
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normalised system which either has incorporated the bandwidth limitation or not. This
permits us to consider either both problems separately or to consider the accumulative
deleterious effect of both problems together.

For the same reason mentioned in Section 8.6 we assume that the reference tracking
has no impact on the behaviour of the system with bandwidth limitation and pure delay.
We therefore set the feedforward and reference signals at zero (q = 0) which implies an
equilibrium x̄ = 0 and a state error xe = x. Since it is an elementary analysis we restrict
the study to the deleterious effects on the region of attraction and the null controllable
region. Thus, since the concept linked to both regions is only valid for autonomous
systems (Section 8.6) we consider the disturbance input as w = 0. With this assumption
the normalised system (8.42) becomes

ẋ = Ax + bu (8.99)

ũ = C̃x = fx.

8.7.1 Bandwidth limitation

The bandwidth limitations of the power supplies are represented by means of linear low-
pass filters. Figure 8.27 shows the linear tokamak closed-loop system with filters for the
SC controller and for the VC controller. If we want to apply the results provided in
Sections 8.3.5 and 8.3.6 then we simply add the filters into the tokamak system described
by System (8.32). Since we do not yet consider the SC saturation, we may also incorporate
the SC filters into the SC controller (System (8.32)).
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Figure 8.27: The tokamak closed-loop system with bandwidth limitation of the control
signals modeled with low-pass filters.

Since the incorporation of filters introduces new states we have to reconstruct these
states. This reconstruction is simple if we consider a first order low-pass filter given by

Yf (s) =
1

1 + sτ
Uf (s), (8.100)

where Yf (s) denotes the output, Uf (s) the input and τ the time constant of the filter
defining the bandwidth limitation. Thus, since the state space representation of this
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low-pass filter can be given by

ẋf = −1

τ
xf +

1

τ
uf (8.101)

yf = xf ,

the output of the filter yf is equal to the state of the filter xf . This permits us to
reconstruct the state of the filter by measuring the output of the power supply. If this is
not practicable due to noise or if we have to deal with a higher order filter then we can
try to reconstruct the state or states

• by means of the tokamak outputs with the method proposed in Section 8.4,

• by standard dynamic observers like the Luenberger observer [58] and the Kalman
filter observer [15, 41]

• by simply integrating numerically in real-time the filter output as a function of the
filter input by means of a filter model (System (8.101) for a first order filter) .

The aim of the section is to show that the null controllable region is reduced by the
bandwidth limitation which intrinsically implies a reduction of the region of attraction.
Since the SC controller has no or only a negligible stabilisation effect on the closed-loop
system (Section 8.3.4) we only consider the effect of the VC filter. Furthermore, it is more
convenient to make the demonstration by considering a first order low-pass filter (System
8.101) and a second order normalised system (Equation 8.102) given by[

ẋ1

ẋ2

]
=

[
λ1 0
0 λ2

] [
x1

x2

]
+

[
λ1

λ2

]
u (8.102)

ũ = f1x1 + f2x2.

The case of an n > 2 order normalised system the demonstration is similar and straight-
forward. Figure 8.28 illustrates the normalised closed-loop system with a VC filter.
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Figure 8.28: The tokamak closed-loop system with bandwidth limitation of the control
signal modeled with a low-pass filter.

The serial connection of the filter and the normalised system (u = yf ) leads to the
system⎡

⎣ ẋ1

ẋ2

ẋf

⎤
⎦ = Acx + bcuf =

⎡
⎣ λ1 0 λ1

0 λ2 λ2

0 0 − 1
τ

⎤
⎦
⎡
⎣ x1

x2

xf

⎤
⎦ +

⎡
⎣ 0

0
1
τ

⎤
⎦uf (8.103)

ũ = f1x1 + f2x2.
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Since Ac is no longer diagonal, x1 no longer represents the unstable state. Thus, we have
to normalise this system by means of the linear state transformation

x = T x̀,

where

T = T−1 =

⎡
⎣ 1 0 λ1τ

1+λ1τ

0 1 λ2τ
1+λ2τ

0 0 −1

⎤
⎦ . (8.104)

This leads to the system

˙̀x =

⎡
⎣ ˙̀x1

˙̀x2

˙̀xf

⎤
⎦ = T−1AcT x̀ + T−1bcuf (8.105)

=

⎡
⎣ λ1 0 0

0 λ2 0
0 0 − 1

τ

⎤
⎦
⎡
⎣ x̀1

x̀2

x̀f

⎤
⎦ +

⎡
⎣ λ1

1+λ1τ
λ2

1+λ2τ

− 1
τ

⎤
⎦uf ,

where x̀1 represents the unstable state. We observe that when there is no bandwidth
limitation τ = 0 then this system corresponds exactly to the initially considered system
(System 8.102). Note that for this observation we do not consider the state of the filter
x̀f since for τ = 0 it does not exist. The equilibrium points corresponding to a saturated
input uf = +1 or uf = −1, referred to as x̀e± in Chapter 7, are given by

x̀e± = T−1Acbc = ±
⎡
⎣ 1

1+λ1τ
1

1+λ2τ

1

⎤
⎦ . (8.106)

As discussed in Chapter 7, the boundaries of the null controllable region are equal to
the equilibrium in the unstable state subspace x̀e±1 = 1

1+λ1τ
. Thus, the null controllable

region is given by

C = {x̀ ∈ R
n : x̀1 <

1

1 + λ1τ
}. (8.107)

We conclude that if the bandwidth of the power supply is reduced τ > 0 then the null con-
trollable region becomes smaller. Thus, the region of attraction for the CNGSC controller
is equivalently reduced since it is equivalent to the null controllable region.

Theoretically, as far as pure linear systems are concerned, such a low-pass filter can
be compensated by incorporating a compensator, such as

Yc(s) = Gc(s)Ũ(s) =
1 + sτ

1 + sτc

Ũ(s), (8.108)

into the VC controller (Figure 8.29). An ideal compensation is given for τc = 0. We
introduce a low-pass filter with a smaller time constant τc < τ (larger bandwidth) since
in practice there is always a bandwidth limitation due to other controller equipment
components. The compensator works perfectly under linear conditions for which we can
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connect the filter and the compensator directly in series by imposing Uf (s) = Yc(s), which
leads to

Yf (s) =
1

1 + sτc

Ũ(s). (8.109)

But since there is the saturation between both components (Figure 8.29) the effect of the
compensator is considerably reduced during saturation. If we consider a step signal at
the compensator input ũ, referred to as Ũ(s) = Aũ

s
, then at the beginning of the step

response (t = 0) this signal is amplified by the factor τ
τc

> 1 (since τc < τ). Note that
this factor is due to the elementary Laplace transform rule (initial-value theorem)

lim
t→0

yc(t) = lim
s→∞

s Yc(s) = lim
s→∞

s Gc(s)Ũ(s) = lim
s→∞

s
1 + sτ

1 + sτc

Aũ

s
=

τ

τc

Aũ.

Thus, if this factor is large then the resulting induced large output signal yc is saturating
the power supply which considerably reduces the effect of the compensation. We con-
clude that due to the saturation the bandwidth of the power supply cannot be efficiently
increased by a compensation. Therefore, the only way to augment the bandwidth is to
implement a faster power supply.
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Figure 8.29: The tokamak closed-loop system with bandwidth limitation and compen-
sator.

8.7.2 Pure time delay

There are two major pure time delays in the tokamak closed-loop system. One delay is
due to the power supplies, referred to as tps and the other delay is due to the computing
time of the controllers, referred to as tc. The total delay is given by

td = tps + tc. (8.110)

Note that the delays in the VC control loop and in the SC control loop may differ from
each other. Figure 8.30 illustrates the tokamak closed-loop system with the SC and VC
delays.

Since we are generally assuming that the SC controller has no or only a negligible
stabilisation effect on the closed-loop system (Section 8.3.4) we only consider the effect
of the VC delay. The resulting normalised system is illustrated in Figure 8.31.
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Figure 8.30: The tokamak closed-loop system with time delays due the controller com-
puting time and due to the power supplies.
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Figure 8.31: The normalised closed-loop system with solely the VC time delay.

Since the null controllable region is solely bounded in the subspace of the unstable
state x1 (Chapter 7) again only the effect on the unstable state has to be analysed. Thus,
we consider the part of System (8.99) linked to the unstable state which is

ẋ1 = λ1x1 + λ1u. (8.111)

Furthermore, we consider an arbitrary stabilising linear or nonlinear state feedback, de-
fined as

ũ = ϑ(x). (8.112)

The deleterious effect of the delay on the stability of the closed-loop system is demon-
strated by considering a trajectory in the state space (Figure 8.32). Since only the effect
on the unstable state x1 is important it is sufficient to show the evolution of the trajectory
in a subspace composed of the unstable state x1 and any arbitrary chosen stable state,
referred to as xs. Moreover, we discuss the problem solely for x1 < 0 because since the
system is symmetric the demonstration for x1 > 0 is similar.

In Figure 8.32 the states x(tsi
) represent the states which are acquired from the control

system at the times tsi
, where the sampling time of the acquisition is defined as

h = ti+1 − ti > 0, for i = 1, 2, 3, . . . . (8.113)
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The time toi
= tsi

+ td is the time at which the control ϑ(x(tsi
)) corresponding to the

state x(tsi
) is available at the output of the power supply. Thus, due to the delay td the

control signal at the state x(toi
) is not ϑ(x(toi

)) but ϑ(x(tsi
)). The distances di denote

the distances in the unstable state subspace covered by the trajectory during the delay
td. When the trajectory is approaching the negative boundary xe−1 = −1 of the null
controllable region then the control u has to approach the positive saturation +1 to be
able to stabilise System (8.111). On the other hand, for the states which are more distant
to the boundary of the null controllable, referred to as x(tsi

), the control amplitude is
often smaller, especially for continuous controllers like the linear state feedback controller
�(x) (Equation (8.46)) and the CNGSC controller ϕ(x) (Equations (8.50) and (8.51)). In
this case the relation

ϑ(x(toi
)) > ϑ(x(tsi

)) (8.114)

is satisfied. Since at the states x(toi
) a smaller control amplitude ϑ(x(tsi

)) is available, the
control action might be too weak to stabilise the System (8.111) and the trajectory might
leave the null controllable region (ϑ(x(to3))). Thus, the region of attraction is reduced.
But since the delay represents a nonlinear function it is not trivial to derive the region of
attraction.
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Figure 8.32: The normalised closed-loop system with solely the VC time delay.

Nevertheless, there exists a way to maintain the region of attraction equal to the null
controllable region even with a delay. We have to impose two regions for which the control
is in saturation. In Figure 8.33 these two saturating regions are giving by

• ũ = u = +1 for all x1 = [xe−1 , Σ−] = [−1, Σ−] < 0 and

• ũ = u = −1 for all x1 = [Σ+, xe+1 ] = [Σ+, 1] > 0,

where Σ− = −Σ+ since the system is symmetric. These two regions ensure that the
trajectories of the considered closed-loop system do not leave the null controllable region
since ẋ1 < 0 for 0 < x1 ∈ [Σ+, xe+1) and ẋ1 > 0 for 0 > x1 ∈ (xe−1 , Σ−] is guaranteed. Let
us assume for the remaining demonstration that the following distances in the unstable
state subspace are known:

• d representing the distance covered by the trajectory during the delay td
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• dh representing the distance covered by the trajectory during the sampling time h.

The distance dh ensures that a sampling, referred to the time ts, occurs during the covering
of the region 0 > x1 ∈ (Σ− − dh, Σ−] (Figure 8.33). This ensures that the control
ũ = u = −1 is available at the state x(to). Furthermore, since |xe±1 | − |Σ±|| = d + dh

the state x(to) is guaranteed to be located inside the null controllable region. Thus,
ẋ1 > 0 is guaranteed for x1 < 0 and the trajectory cannot leave the null controllable
region. Figure 8.33 illustrates three trajectories, where the two trajectories ’traj1’ and
’traj3’ represent the limiting cases. Note that for the third trajectory ’traj3’ the state
x(t0) is on the boundary of the null controllable region for which ẋ1 = 0 is satisfied.
Thus, the third trajectory cannot be steered back to the origin. But it represents the
limiting case and therefore all trajectories for which the sampling occurs in the interval
0 > x1 ∈ (Σ− − dh, Σ−] will remain in the null controllable region.
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Figure 8.33: The normalised closed-loop system with solely the VC time delay.

We need to compute the distance d + dh = |xe±1 | − |Σ±|| to be able to determine the
boundary Σ± of the saturating regions. It is evident that the input u of System (8.111)
varies as a function of the control law ũ = ϑ(x) and therefore it is difficult to solve the
differential equation of System (8.111) to get this distance. But by considering the worst
case which is represented by the largest distance d + dh which can be achieved with a
control u(t) ∈ [−1, 1] a solution exists. When we consider the boundary Σ− < 0 and
x1 < 0 then the largest distance is given for the constant input u(t) = −1 since for this
control input the velocity amplitude, referred to as |ẋ1|, of System (8.111) is the highest.
Therefore, System (8.111) with the constant input u = −1 resulting in

ẋ1 = λ1x1 − λ1 (8.115)

can be solved. Its solution is given by

x1(t) = eλ1tC + 1, (8.116)
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where C represents the integration constant. We define the initial condition as x1(0) = Σ−
resulting in

C = x1(0) − 1 = Σ− − 1. (8.117)

Therefore, the final condition has to be

x(t) = x(td + h) = x1(0) − (d + dh) = Σ− − (d + dh) = xe−1 = −1 (8.118)

which from Equation (8.116) leads to

xe−1 = −1 = eλ1t(Σ− − 1) + 1. (8.119)

This leads to the saturating regions boundaries

Σ− =
−2

eλ1(td+h)
+ 1 (8.120)

Σ+ = −Σ− =
2

eλ1(td+h)
− 1.

The proposed solution with the saturating regions works only for relative short delays for
which the condition

eλ1(td+h) ≤ 2 (8.121)

is satisfied. Note that at the limit eλ1(td+h) = 2 the resulting control law corresponds to
controller ς(x) given by Equation (8.89).

When we consider the arbitrary controller ϑ then in the presence of a delay its control
law has to be modified to become

ũ = ϑd(x) =

{
ϑ(x) if |x1| < |Σ±|
−sgn(x1) if |x1| ≥ |Σ±|

. (8.122)

By considering the CNGSC controller ϕ(x) (Equations (8.50) and (8.51)) it is evident
that this modification induces a discontinuity of the control signal ũ at the boundaries
Σ±. To eliminate these discontinuities we can modify the CNGSC controller as follows

ϕd

([
x
w

])
= f1x1 + kd(x)(f2x2 + f3x3 + . . . + fnxn + fww), (8.123)

with

kd(x) =

{
Σ2

± − x2
1 if |x1| < |Σ±|

0 if |x1| ≥ |Σ±|
or (8.124)

kd(x) =

{
|Σ±| − |x1| if |x1| ≤ 1

0 if |x1| ≥ |Σ±|
.

Furthermore, we have to ensure that the controller is saturating the power supply |ũ| ≥ 1

for |x1| ≥ |Σ±|. Thus, since for |x1| ≥ |Σ±| the controller is equivalent to ϕd

([
x w

])T
=

f1x1, the condition

|f1x1| ≥ 1 (8.125)
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has to be satisfied. If this condition is not satisfied then we either have to increase the gain
of the control parameter f1 or the gain of the VC input-output controller, implying an
increase of the f1 gain. The right gain increase is intrinsically provided when we consider
a slightly different controller given by

ϕd

([
x
w

])
= f1

x1

|Σ±| + kd(x)(f2x2 + f3x3 + . . . + fnxn + fww), (8.126)

with

kd(x) =

{
1 − x2

1

Σ2
±

if |x1| < |Σ±|
0 if |x1| ≥ |Σ±|

or (8.127)

kd(x) =

{
1 − |x1|

|Σ±| if |x1| ≤ 1

0 if |x1| ≥ |Σ±|
.
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Chapter 9

Validation via simulation

9.1 Simulation by means of linear models

9.1.1 Validation on ITER-FEAT with the linear CREATE-L
model

In this section the validation is carried out on ITER-FEAT by means of its linear CREATE-
L model [31], including the SC and VC input-output controllers proposed by [6]. The aim
is to compare via simulation the reference VC controller against the proposed CNGSC
controller. The reference VC controller expressed as a state feedback controller is given
by Equation (8.46 ), i.e.

�

([
x
w

])
=

[
fx fw

] [ x
w

]
= f1x1 + f2x2 + f3x3 + . . . + fnxn + fww,

while the CNGSC controller is given by Equation (8.50) with the extended nonlinear
Function (8.92), i.e.

ϕ

([
x
w

])
= f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn + fww),

and

k(x) =

{
1 − x2

1 if |x1| ≤ 1

0 if |x1| > 1
.

Note that the CREATE-L model for ITER-FEAT provides no magnetic diagnostic outputs
so far. Thus, we cannot apply the state reconstruction as proposed in Section 8.4. We
therefore use the state information directly from the linear model.

The comparison is illustrated in phase diagrams. Since we deal with a high order
system (50 .. 100 states) we cannot show the evolution of all states. Thus, the phase
diagrams show the evolution of only two states: i) the unstable state, referred to as
x1 and ii) one of the most disturbed stable states, referred to as xs. For what follows,
the region of attraction of the reference controller is referred to as Ar and the region of
attraction of the CNGSC controller is referred to as Ac. We show via simulation that for
the reference controller the region of attraction is strictly a subset of the null controllable
region Ar ⊂ C. Furthermore, we show that the trajectories of the closed-loop system with
the CNGSC controller converge to the origin if the initial conditions are inside Ac = C.

221
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9.1.1.1 Initial conditions

For the first example we do not disturb the system, thus ẇ = 0. Instead, we set non-zero
initial conditions. The phase diagram (Figure 9.1) shows the evolution of the unstable
state, denoted by x1 and one of the most disturbed stable states, denoted by xs. The
starting point xinit denotes the initial conditions which are located inside the null control-
lable region xinit ∈ C. Since for the CNGSC controller the initial conditions are located
within the region of attraction xinit ∈ Ac = C the trajectory converges to the origin.
For the reference controller the trajectory diverges, thus confirming by simulation that
Ar ⊂ C.
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Figure 9.1: Example with non-zero initial conditions (xinit) and without disturbance,
dashed: reference controller, solid: CNGSC controller. The model is CREATE-L.

9.1.1.2 Large disturbance

To disturb the system away from the equilibrium we apply an ELM disturbance as illus-
trated in Figure 8.24 (Section 8.6.1). The disturbance starts at t0, reaches its maximum at
t1 and vanishes at t2. Since it is difficult to know whether the state remains in the region
of attraction during the disturbance (Section 8.6), we have to wait until the disturbance
vanishes at t = t2 to determine if the controller has been able to stabilise the system.

The evolution of the trajectories for both controllers during and after a large distur-
bance is illustrated in Figure 9.2. At t2 the states of the systems with both controllers
are in C. Since for the CNGSC controller Ac = C, the trajectory converges to the origin.
For the reference controller the trajectory diverges and thus, the state is not in Ar.

9.1.1.3 Huge disturbance

The third example shows the trajectory evolutions for a much larger disturbance am-
plitude (Figure 9.3). Both trajectories leave the null controllable region C and only the
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Figure 9.2: Example with a large disturbance, dashed: reference controller, solid: CNGSC
controller. The model is CREATE-L.

trajectory for the system with the CNGSC controller reenters C. Therefore, this trajec-
tory converges to the origin and the trajectory of the system with the reference controller
diverges.

For all these examples, the unstable state x1 is brought back to the origin faster when
the CNGSC controller is used. This is the benefit of the nonlinear function k(x) which
helps the controller concentrate on the unstable state in the proximity of the boundaries
of C and beyond it.

9.1.2 Validation on JET with the linear CREATE-L model

We implement the same technique on the CREATE-L model for JET [1], including the
reference controller. Since for JET the magnetic diagnostic outputs are available, the
unstable state is reconstructed as proposed in Section 8.4. We increase the amplitude
of the disturbance until the closed-loop system with the reference controller loses control
due to saturation of the FRFA (Fast Radial Field Amplifier) supply. The simulation is
repeated with the CNGSC controller and control is no longer lost.

Figure 9.4 shows an example of the evolution of the vertical plasma position z and the
FRFA control voltage for a very large ELM disturbance in JET. The disturbance starts
at t0, reaches a maximum at t1 and vanishes at t2 (vertical dashed lines). The reference
controller loses stability just after t1.
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Figure 9.3: Example with a huge disturbance, dashed: reference controller, solid: CNGSC
controller. The model is CREATE-L.
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Figure 9.4: The CNGSC controller (solid) on a JET simulation. The reference controller
(dashed) loses control.

9.2 Simulation by means of the DINA-CH code

9.2.1 Validation on TCV with the nonlinear DINA-CH code

Experimental validations on the TCV tokamak in operation cannot be carried out so far
since the TCV control system does not permit the possibility of implementing nonlin-
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ear control laws as required for the CNGSC controller. Therefore, we provide validation
results which are carried out on TCV by means of the DINA-CH code a recent imple-
mentation of the original code. For the purpose of the controller design and the state
reconstruction the linear RZIP model is used.

9.2.1.1 Modification of the standard VC controller due to the TCV specific
characteristics

The TCV control system possesses two different vertical position stabilising controllers
(VC controllers). The first controller supplies a combination of several F-coils, while the
second controller supplies a single coil, referred to as the G-coil, located inside the vacuum
vessel (Figure 3.1). For discharges with low vertical instability growth rates (γ < 1000)
it is sufficient to only use the F-coil combination. But the F-coils are not able to stabilise
discharges with higher growth rates (γ > 1000) and thus the G-coil has to be added for
such discharges. By inspecting the closed-loop system consisting of the TCV, the VC
controllers and the SC controller two major problems arise, which are linked to the fact
that we only consider systems with a single unstable pole and a single saturated input:

1. When we consider discharges with low growth rates then in general only the F-coil
combination is used. The problem is that every F-coil has its own power supply.
Moreover, the controller gains associated to each F-coil differs from coil to coil. This
leads to a VC controller system which has to supply several power supplies and thus
to a stabilising control problem which has to deal with several saturated inputs.

2. When we consider discharges with high growth rates then both the F-coil combina-
tion and the G-coil are used. Since the G-coil is supplied by a single power supply
(single saturated input) the first intention was to only consider the stabilising prob-
lem linked to the G-coil. But it turns out that the closed-loop system consisting of
the linear TCV model, the SC controller and the VC controller with only the F-coil
combination (without the G-coil) possesses not just a single unstable pole but two
unstable poles.

For these reasons we modify the VC controller by removing the VC controller part suppling
the F-coil combination and by only considering the VC controller part linked to the single
power supply of the G-coil. This results in a problem consisting of a system with a single
unstable pole and a single saturated input, while the new modified reference VC control
is a simple PD controller.

9.2.1.2 Simulation setup

For the purposes of the validation we exploit discharge #20333 possessing a vertical
instability growth rate of γ ≈ 230 [rad/s]. The RZIP model and the initial conditions for
the DINA-CH code are derived at the time 0.5 s.

For what follows we will use a succession of test disturbances which are occurring every
0.02 s as a result of pulsed anomalous transport. Figure 9.5 illustrates the derivative of
the considered disturbances, referred to as ẇ. The amplitude of the disturbances is either
increased (Figure 9.5 a)) or constant (Figure 9.5 b)) as a function of time.

The aim of the validation is to compare the stability of the closed-loop system with
different VC controllers when the system is disturbed by the considered succession of test
disturbances mentioned above. We consider following three different VC controllers:
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Figure 9.5: The succession of test disturbances w with a) increasing amplitude and b)
constant amplitude. The y-axis is an arbitrary scale indicating the strength of a brief
increase in conductivity to reduce βp suddenly.

1. The reference controller which is a linear input-output PD controller.

2. The bang-bang controller presented in Section 8.6 given by Equation (8.89), i.e.

ς

([
xd

w

])
= −sgn(x1) = lim

f1→−∞
sat(f1x1).

As mentioned in Section 8.6 this is the best possible controller in terms of stability.

3. The proposed new CNGSC controller given by Equation (8.50) with the extended
nonlinear Function (8.92), i.e.

ϕ

([
x
w

])
= f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn + fww),
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and

k(x) =

{
1 − x2

1 if |x1| ≤ 1

0 if |x1| > 1
.

For the bang-bang and the CNGSC controllers a state reconstruction is required. We apply
the state reconstruction presented in Section 8.4.3 for which only the reconstruction of
the unstable state x1 is required. This is necessary since it turns out that the full state
reconstruction is not accurate enough to permit a pure state feedback. The comparison of
the generated control signal of the input-output reference controller against the generated
control signal of the reference controller used as a state feedback controller given by
Equation (8.46 ), i.e.

�

([
x
w

])
=

[
fx fw

] [ x
w

]
= f1x1 + f2x2 + f3x3 + . . . + fnxn + fww

shows severe differences. Moreover, the simulation with the state feedback reference con-
troller shows that the closed-loop system cannot be stabilised. The state reconstruction
seems to be the major problem when the simulations are carried out with the nonlinear
DINA-CH code. This observation is probably also valid for tokamaks in operation. On
the other hand, simulations carried out with linear models (Section 9.1) do not show this
problem since we used identical models for both the simulation and the state reconstruc-
tion. Thus, the state reconstruction is ideal (perfect).

Note that with the RZIP model, used for the state reconstruction, the matrix fw

cannot be derived. Thus, the reconstruction of the disturbance w cannot be carried out.
This could be another reason for the inaccurate state reconstruction. Later, we will see
that there is yet another major reason for the inaccuracy of the state reconstruction.

9.2.1.3 Intrinsic nonlinearities of the TCV tokamak simulation

We first show that besides the power supply saturation the tokamak simulation itself pos-
sesses intrinsic nonlinearities which can also lead to a loss of control. Since we demonstrate
this fact by means of a DINA-CH simulation we assume that the DINA code accurately
reproduces these intrinsic nonlinearities. The simulation setup for this demonstration is
as follows:

• We do not consider any power supply saturation and thus we allow arbitrarily large
control signal amplitudes.

• The closed-loop system is disturbed by means of the test disturbances scenario with
increasing amplitudes as illustrated in Figure 9.5 a).

• We consider only the linear input-output reference controller.

Figure 9.6 illustrates the evolution of the vertical plasma position z and the G-coil voltage.
The control is lost after the fourth disturbance at 0.58 s. Such a loss of control cannot
be simulated with linear models since without power supply saturation the closed-loop
system is a pure linear system and thus it is obviously stable or unstable for the whole
simulation. This shows that it is important to validate a new controller like the proposed
new CNGSC controller with a nonlinear code like DINA since the stability analysis of the
CNGSC controller derived in the Control Theory part relies on a pure linear system with
the input saturation as the sole nonlinearity.
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Figure 9.6: The loss of control due to intrinsic nonlinearities of the tokamak simulation.

9.2.1.4 Low saturation level and small disturbances

The first validation and comparison simulations are carried out with a low power supply
voltage saturation level (160 V). The closed-loop system is disturbed by means of the test
disturbances scenario with small increasing amplitudes.

1. The reference controller:
Figure 9.7 illustrates the evolution of the vertical plasma position z, the G-coil
voltage and the reconstructed unstable state x̆1. The control is lost after the fifth
disturbance occurring at 0.6 s.

The evolution of the vertical plasma position z and the reconstructed unstable
state x̆1 varies strongly during periods without test disturbances, e.g. between
two disturbances and at the beginning of the simulation (0.5 − 0.52 s) where no
disturbance occurs. This is due to the badly understood ”wandering” of the DINA-
CH code simulation which can be interpreted as additional disturbances. These
additional disturbances also lead to a saturation of the power supply since the
saturation level is small.

2. The bang-bang controller:
Figure 9.8 illustrates the evolution of the vertical plasma position z, the G-coil
voltage and the reconstructed unstable state x̆1. The control is not lost. This
confirms that with the bang-bang controller the closed-loop stability is increased.
Furthermore, the rejection of the additional intrinsic disturbances is enhanced since
the amplitude variations of z and x̆1 are less important during time lapses without
the test disturbances.

3. The CNGSC controller:
The first test with the CNGSC controller revealed that the control is lost similarly
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Figure 9.7: DINA-CH simulation with a low saturation level and the reference con-
troller. Illustration of the evolution of the vertical plasma position z, the G-coil voltage
and the reconstructed unstable state x1. The control is lost after the fifth disturbance
occurring at 0.6 s.
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Figure 9.8: DINA-CH simulation with a low saturation level and the bang-bang con-
troller. Illustration of the evolution of the vertical plasma position z, the G-coil voltage
and the reconstructed unstable state x1. The control is not lost.



230 Chapter 9. Validation via simulation

as for the reference controller. It turns out that this is due to an underestimation
of the reconstructed unstable state x̆1. Several simulations with different distur-
bance amplitudes show that the control is always lost when the amplitude of the
reconstructed unstable state |x̆1| is larger than approximately 0.2− 0.25. In Figure
9.7 the closed-loop system remains stable when x̆1 reaches the value −0.25 (at time
t ≈ 0.53 s), while stability is lost when this value is exceeded (at time t ≈ 0.61 s,
dashed line). Since x1 is the normalised unstable state and since the boundaries of
the null controllable region of the normalised system are at x1 = 1 and x1 = −1
the stability of the closed-loop system with the bang-bang and the CNGSC con-
trollers can theoretically only be lost when |x1| > 1. But since the stability is
already lost for |x̆1| > 0.2 . . . 0.25 the stabilising enhancement effect due to the in-
troduced nonlinearity in the CNGSC controller is strongly weakened and thus the
evolution of the unstable state is similar to the reference controller leading to a loss
of control. The deleterious consequence of such unstable state underestimations is
discussed in Section 8.4.2. As suggested in the same section, the only way to avoid
an underestimation is to increase the estimation by

x̆1corr = cx1x̆1,

where cx1 ≥ 1 denotes the correction factor. For our case we have to choose a
correction factor of cx1 = 5, which remains to be explained.
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Figure 9.9: DINA-CH simulation with a low saturation level and the CNGSC controller.
Illustration of the evolution of the vertical plasma position z, the G-coil voltage and the
reconstructed unstable state x1. The control is not lost.

Note that this underestimate can be explained by the fact that there is a stability
difference between the closed-loop systems with the linear RZIP model and the
closed-loop system with the nonlinear DINA-CH code. It turns out that when the
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parameters of the reference VC controller (PD controller) are tuned so that the
closed-loop system with the RZIP model is at the limit of stability, the closed-loop
system with DINA-CH is not stable. To obtain a stable closed-loop system with
DINA-CH the gain of the reference controller has to be increased by factor 2. This
illustrates very well that there is a discrepancy between the RZIP model and the
DINA-CH code in the sense that the vertical instability growth rate of DINA-CH
is larger than the growth rate of the RZIP model. Thus, the underestimate of the
unstable state no longer seems surprising.

Figure 9.9 illustrates the evolution of the vertical plasma position z, the G-coil
voltage and the reconstructed unstable state x̆1 for the CNGSC controller with a
corrected unstable state reconstruction. The control is no longer lost. This confirms
us that with the CNGSC controller the closed-loop stability is increased.

9.2.1.5 Higher saturation level and larger disturbances

In the previous section we showed that additional disturbances due to intrinsic noise of
the DINA-CH code simulation give rise to saturation of the power supply. We therefore
tried to avoid such saturations by carrying out similar simulations with a higher power
supply voltage saturation level (750 V).

It turns out that in general for higher saturation levels the loss of stability occurs
under similar conditions, i.e. similar amplitude of the test disturbance, for both the
reference controller and the CNGSC controller. Therefore, an enhancement of the closed-
loop system stability due to the CNGSC controller is no longer distinguishable. For
what follows we demonstrate that this is again due to the inaccurate reconstruction of
the unstable state x1. For the demonstration we consider that the closed-loop system is
disturbed by means of the test disturbances scenario with large and constant amplitudes
as illustrated in Figure 9.5 b).

1. The reference controller and the CNGSC controller:
Figures 9.10 and 9.11 illustrate the evolution of the vertical plasma position z, the
G-coil voltage and the reconstructed unstable state x̆1 for the closed-loop system
with the reference controller and for the closed-loop system with the CNGSC con-
troller, respectively. Since the power supply is only saturated during marginal time
lapses the closed-loop system remains stable with both controllers. Furthermore,
the amplitude of the reconstructed unstable state x̆1 is distinctly below the limit of
approximately 0.2 . . . 0.25 for which the control is lost.

2. The bang-bang controller:
We know from Section 8.6 that the considered bang-bang controller is the best con-
troller in terms of stability. Thus, since the closed-loop system with the reference
and the CNGSC controllers are stable we naturally may assume that the closed-loop
system with the bang-bang controller is stable, too. But, as illustrated in Figure
9.12, this is clearly not the case since the control is lost after the fourth disturbance
occurring at 0.58 s. Furthermore, despite the fact that every test disturbance is
equivalent, i.e. constant amplitude, the disturbing effect, i.e. the amplitude of the
variation of z and x̆1, is increased with every following disturbance. This accumu-
lating disturbing effect is surprising since before every occurring disturbance the
state of the tokamak seems to be approximately at the same equilibrium, at least
as far as z and x1 are concerned.
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Figure 9.10: DINA-CH simulation with a higher saturation level and the reference con-
troller. Illustration of the evolution of the vertical plasma position z, the G-coil voltage
and the reconstructed unstable state x1. The control is not lost.
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Figure 9.11: DINA-CH simulation with a higher saturation level and the CNGSC con-
troller. Illustration of the evolution of the vertical plasma position z, the G-coil voltage
and the reconstructed unstable state x1. The control is not lost.

Since for the bang-bang controller only the unstable state x1 is fed back it is evident
that the problem has to be linked to the unstable state reconstruction. In the previous
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Figure 9.12: DINA-CH simulation with a higher saturation level and the bang-bang
controller. Illustration of the evolution of the vertical plasma position z, the G-coil
voltage and the reconstructed unstable state x1. The control is lost after the fourth
disturbance occurring at 0.58 s.

section we already discussed the problem of an underestimation of the unstable state.
Since in this present case we have a bang-bang controller which has an infinite controller
gain (f1 → −∞) we clearly demonstrate that the inaccurate reconstruction of the unstable
state is not solely due to an underestimation but is also due to an error in the estimation of
the state subspace linked to the unstable state. In other words, the reconstructed unstable
state x̆1 contains not only the informations of the unstable state but is probably rather
a combination of the unstable state and other stable states. Of course, a more rigorous
analysis will be necessary to confirm this hypothesis. Moreover, it will be important to
determine if this reconstruction inaccuracy is either solely due to the discrepancy between
the RZIP model and the DINA-CH code or simply due to the intrinsic nonlinearities
contained in the DINA-CH code or in a tokamak in operation.
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Chapter 10

Conclusions

10.1 Summary

The major contributions of this thesis can be traced in the following directions:

• Tokamak physics and engineering

– The DINA code
In order to be able to validate the proposed CNGSC controller under opera-
tional tokamak conditions we have presented a full nonlinear tokamak evolution
code referred to as the DINA code. We give a detailed description of the prin-
cipal plasma physics implemented in this code.

Furthermore, validation of DINA was provided by comparing TCV experimen-
tal VDE responses with DINA code simulations. It turns out that we have only
had to make minor adjustments to the initial conditions of fully nonlinear DINA
simulations of VDEs in TCV in order to obtain convincing agreement between
the experimental and modelled data. The highly elongated TCV vacuum vessel
has allowed us to follow VDEs over a large distance before a disruption ensues.
The vacuum field curvature varies significantly over these large distances, im-
plying a large modification of the vertical instability growth rate during the
VDE. This feature is correctly modelled by DINA and the underlying reasons
are brought out by inspecting the growth rate estimated by the RZIP rigid
current displacement model which is accurate for the equilibria investigated.
The evolution of the elongation and triangularity in DINA does not agree per-
fectly with the LIUQE reconstructions and the multiple potential reasons are
presented. Given these differences, it is impressive that the comparison shows
such similar features and indeed, the inevitable differences illustrate the po-
tential dangers of assuming absolute precision in nonlinear simulations of such
a complex system.

– The AC loss reduction
AC losses are due to the reactions of the control system to disturbances to the
plasma and noise in the plasma and in the measurement system. Disturbances
are almost instantaneous events that move the state of the tokamak away from
the equilibrium position. Most of the AC losses occur during and immediately
after the disturbance, leading to sharp peaks in the AC loss evolution. There-
fore, a significant reduction has to target these peaks, which are essentially due
to the fast stabilising control system.

235



236 Chapter 10. Conclusions

The need for stability of the plasma position imposes a strong and rapid re-
action to strong disturbances. Present control system designs also apply the
same strong reactions to weaker disturbances and noise. While this does not
influence traditional performance and stability criteria, it causes unnecessary
AC losses in the superconducting coils. Weaker controllers allow reductions of
the AC losses during weaker disturbances to a fifth of their original value.

While the losses due to disturbances can be influenced, the losses due to the
ramp-up and ramp-down of the scenario currents cannot be reduced, since
they are due to the overall magnetic field changes, which are defined by the
operating scenario.

The price of the AC loss reduction is a smaller stability margin, but only
a slightly reduced performance. Establishing the optimal tradeoff between
reducing the AC losses and maximising the stability margin will be made when
the true disturbance and noise spectra have been measured.

From the point of view of controller design in general, the main result of the AC
losses analysis reveals that for reducing the AC losses we need to design a con-
troller which generates a weakly oscillating, low amplitude and low frequency
control voltage signal.

Using existing models of the ITER tokamak and its control system, it has
been shown that the AC losses in the superconducting coils can be reduced by
adapting this control strategy.

• Control theory

– The region of attraction of planar systems with a single unstable
pole and saturated feedback
We demonstrate that the characterisation of the region of attraction is possible
for a second order linear system with one unstable and one stable pole. For
such systems the region of attraction possesses a topological bifurcation for
which the region of attraction changes from an unbounded hyperbolic region
to a bounded limit cycle. We provide an analytical condition under which this
bifurcation occurs. Furthermore, it is shown that bifurcation is only exhibited
when the unstable pole is faster than the stable one.

Since the analysis rests on methodologies like Poincaré and Bendixson’s theo-
rems which are unfortunately only valid for second order systems it is evident
that there is no way to apply the results for second order systems to higher
order systems. It turned out that the search for characterising the region of
attraction for higher order systems was illusory and thus this research direction
had to be abandoned.

– A globally stabilising controller under saturated input for systems
with one unstable pole
A simple continuous nonlinear globally stabilising controller, referred to as
CNGSC, is proposed for the stabilisation of linear planar systems with one
unstable pole and a single saturated input. The main idea is to modify an
existing linear controller by incorporating a nonlinear term into the control
law. A formal proof that the controller is globally stabilising, i.e. the region of
attraction is equivalent to the null controllable region, was provided for slightly
more conservative conditions.
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There are several advantages linked to this new controller: i) the stability
properties are enhanced in the sense that the controller is globally stabilising,
ii) the performance, AC loss reduction and fast disturbance rejection, can be
taken into account, iii) the controller can be applied to any arbitrary high order
system and iv) the controller possesses a simple structure which simplifies the
design procedure.

We showed that the extension of the CNGSC controller to higher order systems
is straightforward. But the quest for an analytic proof of the closed-loop system
global stability is highly complicated in this case. Therefore, the global stability
of the higher order closed-loop systems is illustrated by means of simulations.
Nevertheless, we have provided an interesting property encouraging the search
for a formal stability proof in the future.

– Tokamak control
We discuss the structure of the tokamak closed-loop system and show to which
points particular attention has to be paid when the input-output controllers
are designed. Furthermore, since the CNGSC controller is a state feedback
controller we discuss the problems and the modifications that have to be taken
into consideration when migrating from an input-output controller to a state
feedback controller. We provide a scheme which describes a way to transform
any tokamak closed-loop system into a normalised closed-loop system. This
transformation will allow us to apply the CNGSC controller straightforwardly
.

Since the CNGSC controller is a state feedback controller, one of the major
problems is linked to the state reconstruction procedure which represents a
crucial step if we are seeking a well conditioned state feedback controller. We
show that for the CNGSC controller it is sufficient to provide an accurate
reconstruction of solely the unstable state, while a reconstruction of all stable
states is not required.

Another pertinent topic is the study of the effect of the disturbances on the
closed-loop system. We show that the determination of the closed-loop sys-
tem stability by means of the region of attraction is only valid during intervals
during which the system is not disturbed. This is due to the fact that the
concept linked to the region of attraction is only applicable to autonomous
(time-invariant) closed-loop systems. However, in system theory a disturbance
is interpreted as time-varying external input to the closed-loop system. An-
other problem is due to the unknown evolution of the shape, the amplitude and
the time duration of a disturbance. Thus, the evolution of the states is not
predictable during a disturbance and we have to wait until the disturbance has
vanished to determine whether the states are still in the region of attraction
or not. Nevertheless, possibilities to improve the stability during disturbances
by slightly modifying the CNGSC controller are provided.

A further problem lies in the nature of the state feedback controller when we
want an output of the system to track a reference signal. For input-output
systems, this is usually obtained by simply taking the error between the out-
put and the reference. The resulting error signal is fed to the input-output
controller which tries to cancel the error. We show that this is not as simple
for nonlinear state feedback controllers, since such controllers work for a well
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defined equilibrium point. Thus, if we want to track a reference signal then we
have to move the equilibrium point as a function of the reference signal.

The tokamak closed-loop system inevitably has a limited bandwidth and a pure
time delay due to the power supply and the controller computing time, which
are in general not negligible. We demonstrate that both the limited bandwidth
and the pure time delay reduce the region of attraction and thus diminish
the closed-loop system stability. It turns out that due to the saturation it
is not possible to efficiently compensate the effect of the limited bandwidth.
Nevertheless, the detrimental effect of a short time delay can completely be
suppressed by slightly modifying the CNGSC controller.

• Validation
The simulations using linear models confirm that the global stability of the CNGSC
controller is ensured when it is applied to higher order systems with a single unstable
pole. Since for the purpose of the state reconstruction the same linear models
are used as for the simulations, no problems due to an inaccurate unstable state
reconstruction can be observed. The linear model simulations show clearly that
the proposed CNGSC controller is able to maintain stability for larger ELM-like
disturbances compared to a standard linear controller.

The simulations using the nonlinear DINA-CH code demonstrate that the tokamak
possesses intrinsic nonlinearities. For very large disturbances these nonlinearities can
lead to a loss of control even without power supply saturation. We conclude that
nonlinear codes like DINA are indispensable for the validation of new controllers,
e.g. the proposed CNGSC controller.

The enhancement of the closed-loop system stability could only be confirmed for a
low saturation level and small test disturbances. For a higher saturation level and
larger disturbances no stability enhancement could be distinguished. Even worse,
for the best controller in terms of stability (unstable state bang-bang controller)
the control is lost for smaller disturbances than with a standard linear controller
(reference controller). We have demonstrated that this disagreement is linked to an
inaccurate reconstruction of the unstable state. This problem has not been resolved
so far but it could be attributable to following two items:

1. The discrepancy between the linear RZIP model and the DINA-CH
code
We demonstrated that there is a discrepancy between the RZIP model and the
DINA-CH code. As mentioned for the DINA-CH code validation, for such a
complex system like the tokamak there are inevitably differences between the
DINA code and the real tokamak in operation. Thus, since the RZIP model is
derived form experimental data there is inevitably a discrepancy between the
RZIP model and the DINA-CH code. This discrepancy could be avoided by
deriving an RZIP model from DINA simulation data.

2. The intrinsic nonlinearities in the DINA-CH code or in a tokamak
in operation
Since the state reconstruction uses a linear model these intrinsic nonlinearities
can lead to an inaccurate state reconstruction. If this reveals to be true then
a nonlinear state reconstruction and perhaps a new nonlinear controller which
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take into consideration the intrinsic tokamak nonlinearities would be indispens-
able. Note that the main problem of such an investigation would be linked to
the specification of the intrinsic tokamak nonlinearities.

The validations provided by Scibile [49, 48] and the simulations carried out by
Schuster [47] seem to demonstrate that the observation of the unstable state is not
falsified by the intrinsic nonlinearities of the tokamak. Therefore, it is more likely
that the reconstruction problem is due to the discrepancy between the linear RZIP
model and the DINA-CH code.

There is a supplementary problem linked to the use of the DINA-CH code. For
some discharges the DINA-CH simulations show intrinsic disturbances which cannot
be observed on tokamaks in operation. This problem has to be studied in future
investigations.

• Tradeoff between different controllers
One of the most important findings that can be derived from this thesis is the fact
that there is always a tradeoff between the stability properties, the performance
and the reduction of AC losses. Table 10.1 illustrates this tradeoff by comparing
different controllers.

Stability Local AC loss Application to Simple
properties performance reduction higher order design

systems

Standard linear
feedback controller weak

√ √ √ √
A ⊂ C

Unstable state
feedback controller enhanced − √ √ √

A = C
Unstable state
bang-bang controller best − − √ √

A = C
Near time optimal −
VSC controller enhanced

√ − has to be −
(DANTOC, [49, 48]) A = C investigated

CNGSC controller enhanced
√ √ √ √

A = C

Table 10.1: Tradeoff between different controllers.

A standard linear controller can provide local performance and AC loss reduction
but the stability properties are weak since the region of attraction is smaller than
the null controllable region (A ⊂ C). The stability properties can be enhanced by
focusing on the feedback of the unstable state. This idea is best represented by
considering a linear state feedback controller for which only the unstable state is fed
back. For such a controller the enhancement of stability is linked to the fact that the
region of attraction is equal to the null controllable region (A = C). But since only
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a single state is fed back the local performance might be lost. When we consider
ELM-like disturbances then we have shown that the best stability properties can be
achieved by applying a bang-bang controller for which only the unstable state is fed
back. Additionally to the loss of local performance, a reduction of the AC losses can
no longer be achieved since bang-bang controllers generate control signals with high-
frequency oscillations and large amplitudes. The DANTOC controller proposed by
Scibile [49, 48] enhances the stability and simultaneously ensures local performance
in the sense of a time optimal controller. But since this controller is a sliding mode
bang-bang controller it is susceptible to generate large AC losses. The CNGSC
controller proposed in this thesis can handle the three requirements: it enhances
the stability and can simultaneously take into consideration the local performance
and the AC loss reduction. Note that when we consider ELM-like disturbances then
both controllers, the DANTOC and the CNGSC, possess weaker stability properties
than the unstable state bang-bang controller. In this case we have shown that the
stability properties of the CNGSC controller can be improved by increasing the
feedback gain of the unstable state. By doing this the resulting modified CNGSC
controller adopts more and more the characteristics of the unstable state bang-bang
controller which inevitably reduces the local performance and increases AC losses.

Note that all controllers except for the DANTOC controller are applicable to arbi-
trary high order systems and the controller design is kept simple. The application
of the DANTOC controller to systems of higher order than two is not impossible
but would require further investigation.

From this tradeoff discussion we can derive an additional important finding: The
incorporation of the unstable state into the control law is essential for enhancing
the stability of a tokamak closed-loop system. Therefore, an accurate unstable state
reconstruction is indispensable.

10.2 Perspective

Several issues concerning the analysis and the design of controllers and the state recon-
struction can be considered in future studies:

• Unstable state reconstruction
A primordial issue consists of solving the problem of the unstable state reconstruc-
tion. As mentioned before, this problem is most probably due to the discrepancy
between the linear RZIP model and the DINA code induced by the fact that both
models are derived from experimental data. This problem could be resolved by
deriving an RZIP model from DINA simulation data.

In this context the robustness study of the state reconstruction requires further and
more rigorous investigations.

• Analytic proof of the global stability of the CNGSC controller
For arbitrary high order systems the global stability, i.e. the region of attraction is
equivalent to the null controllable region, of the CNGSC controller has so far only
been demonstrated by means of simulations. A formal analytic proof is therefore
required. One possibility is the analysis by means of Lyapunov functions and by
considering slightly more conservative stability conditions, i.e. a formal proof which
is only valid for a subclass of all possible CNGSC controllers.



Chapter 10. Conclusions 241

• Extension for multiple saturated inputs
The extension of the analysis presented in this thesis to systems with several satu-
rated inputs constitutes a challenging task for future work.
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Appendix A

Control theory

A.1 Poincaré’s and Bendixson’s theorems

In this section we present three classic results for predicting limit cycles in second order
systems [50, 32]. We consider autonomous nonlinear second order system of the form

ẋ1 = f1(x1, x2) (A.1)

ẋ2 = f2(x1, x2),

where x1 and x2 are the states of the system and f1 and f2 are nonlinear functions of the
states.

The first theorem presented indicates a relationship between the existence of a limit
cycle and the number of equilibrium points it encircles (encloses). In the statement of
this theorem we will use N to represent the number of equilibrium points, which are not
saddle points, encircled by a limit cycle. On the other hand, S represents the number of
saddle points encircled by a limit cycle.

Theorem A.1
Poincaré’s theorem
If a limit cycle exists in the second order system (A.1), then N = S + 1.

The second theorem indicates the asymptotic properties of a trajectory of a second
order system.

Theorem A.2
Poincaré-Bendixson’s theorem
If a trajectory of the second order system (A.1) remains in a closed bounded region B,
then one of the following statements is true:

1. the trajectory converges to an equilibrium point

2. the trajectory tends to an asymptotically stable limit cycle

3. the trajectory is itself a limit cycle

The third theorem provides a sufficient condition for the non-existence of a limit cycle.
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Theorem A.3
Bendixson’s theorem
For the second order system (A.1), no limit cycle can exist in a region B of the phase
plane in which

∂f1

∂x1

+
∂f2

∂x2

does not vanish and does not change sign.

Proof: Because

ẋ2

ẋ1

=
dx2

dx1

=
f2(x1, x2)

f1(x1, x2)

is always satisfied for system (A.1), we have the relation

f1 dx2 − f2 dx1 = 0. (A.2)

This relation is true for any system trajectory, including a limit cycle.
Assume that a limit cycle exists. The line integral of (A.2) along the closed curve C

of the limit cycle is∫
C

(f1 dx2 − f2 dx1) = 0. (A.3)

Applying Stoke’s theorem in vector analysis results in∫
C

(f1 dx2 − f2 dx1) =

∫ ∫
S

(
∂f1

∂x1

+
∂f2

∂x2

)
dx1dx2, (A.4)

where the integration on the right-hand side is carried out on the area S enclosed by the
limit cycle C.

From equation (A.3), the left-hand side has to vanish. However, the right-hand side
cannot be equal zero since

∂f1

∂x1

+
∂f2

∂x2

does not vanish and does not change sign in the region B. This contradiction indicates
the non-existence of the limit cycle.
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A.2 Contraction analysis of the trajectories of second

order linear systems

In this section we give some results concerning the contraction properties of the trajec-
tories of second order linear systems. To be more concrete, we deal with the analysis of
the contractive behaviour of two trajectories with respect to one or two lines in the state
space. In other terms, we study if the distance between two trajectories with respect to
one or two lines decreases (contraction) or increases. To illustrate this, we take as an
example the case where we consider only one line. We therefore define a line fx = 1

k

(or simply kfx = 1) in state space, where x ∈ R
2 represents the state space variable and

where f =
[

f1 f2

]
, with f1, f2 ∈ R and k ∈ R\0. We consider two trajectories starting

on the line kfx = 1 which evolves in state space until they intersect the same line. The
starting points are denoted as p1 and p2, respectively and the intersection points with the
line are denoted as p′1 and p′2. Figure A.1 illustrates the line kfx = 1 and the considered
two trajectories with their starting and intersection points. The main idea is to analyse
how the distance between the two trajectories evolves in time with respect to the line
kfx = 1. We therefore considering the distances d = ‖p1 − p2‖ and d′ = ‖p′1 − p′2‖ on
the line kfx = 1, and state under which conditions the distance between two trajectories
decreases d′ < d or increases d′ > d.

0
x 1

x 2

p1

p2

p'1

p'2

Figure A.1: Illustration of the line kfx = 1 and two trajectories with their starting points
p1 and p2 and their intersection points p′1 and p′2.

For our purposes we need to study systems with one stable and one unstable poles.
This represents the main contribution of this section and it is provided in Section A.2.1.
Since we also need the results for stable systems we present them as a reminder in Section
A.2.2.

Without loss of generality, the results are developed by assuming that the considered
systems are represented in the observability canonical form, where f =

[
0 1

]
. It will

be shown that the contraction results can be generalised for all systems by means of state
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transformation.

A.2.1 Unstable systems

First, consider the autonomous second order unstable system

ẋ = Ax =

[
0 a1

1 a2

]
x =

[
0 −λ1λ2

1 λ1 + λ2

]
x, a1 > 0 , a2 ∈ R (A.5)

with a positive and negative real eigenvalue λ(A) = {λ1, λ2} where λ1 > 0 and λ2 < 0.
We will examine its trajectories with respect to a horizontal line kfx = 1 where

f =
[

0 1
]

, k < 0.

On this line x2 = 1
k

we denote the points

pm =

[
xm1

1
k

]
=

[ −λ1

k
1
k

]
, p′m =

[
ym1

1
k

]
=

[ −λ2

k
1
k

]

and po = p′o =

[
xo1
1
k

]
=

[ −λ1+λ2

k
1
k

]
.

If x1 > xo1, then ẋ2 > 0, i.e., the vector ẋ points upward. If x1 < xo1, then ẋ2 < 0,
i.e., the vector ẋ points downward. Below the x2 = 0 axis (x2 < 0), ẋ1 < 0, hence the
trajectories all go to the left.

Then we have

Lemma A.1 Let x11 ≥ xo1 and

p =

[
x11

1
k

]

be a point on the line kfx = 1. The trajectory x(t) = eAtp, t ≥ 0, will return to this line
if and only if x11 < xm1. Let T be the first time when it returns and

p′ =

[
y11
1
k

]

the corresponding intersection point, i.e., p′ = eAT p. This defines two functions: x11 → y11

and x11 → T . Then for all x11 ∈ (xo1, xm1),

y11 ∈ (ym1, xo1),
∂T

∂x11

> 0,
∂T

∂y11

< 0,

for λ1 + λ2 > 0 :
∂y11

∂x11

∈ [−∞,−1),
∂2y11

∂x2
11

< 0 and |y11 − xo1| > |x11 − xo1|

for λ1 + λ2 < 0 :
∂y11

∂x11

∈ (−1, 0],
∂2y11

∂x2
11

> 0 and |y11 − xo1| < |x11 − xo1|
(A.6)

for λ1 + λ2 = 0 :
∂y11

∂x11

= −1,
∂2y11

∂x2
11

= 0 and |y11 − xo1| = |x11 − xo1|.
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Proof: Since at the intersection p′, the trajectory goes downward, it follows that
y11 < xo1. Using the fact that

fp = fp′ =
1

k

and

p′ = eAT p,

We have,

[
0 k

]
p′ =

[
0 k

]
eAT

[
x11

1
k

]
= 1 (A.7)

[
0 k

]
p =

[
0 k

]
e−AT

[
y11
1
k

]
= 1 (A.8)

From (A.7) and(A.8), we can also express x11 and y11 as functions of T . In other words,
x11 and y11 are related to each other through the parameter T .

Let

V =

[ −λ2 −λ1

1 1

]

then,

eAT = V

[
eλ1T 0
0 eλ2T

]
V −1.

From (A.7) and(A.8) we have,

x11(T ) =
1

k

λ1 − λ2 + λ2e
λ2T − λ1e

λ1T

eλ1T − eλ2T
(A.9)

y11(T ) =
1

k

λ1 − λ2 + λ2e
−λ2T − λ1e

−λ1T

e−λ1T − e−λ2T
(A.10)

Due to the uniqueness of the trajectory, T is also uniquely determined by x11. Therefore,
x11 ↔ T , x11 ↔ y11 and y11 ↔ T are all one to one maps. From the above two equations,
we now that x11(T ) and y11(T ) are analytic on T ∈ (0,∞). It can be verified from (A.9)
and (A.10) that

lim
T→0

x11 = lim
T→0

y11 = −λ1 + λ2

k
= −a2

k
= xo1, lim

T→∞
x11 =

−λ1

k
= xm1, lim

T→∞
y11 =

−λ2

k
= ym1

So the valid domain of x11 is [xo1, xm1) and of y11 is (ym1, xo1]. Since λ1 > 0, λ2 < 0 and
k < 0 it follows that ym1 < xo1 < xm1.

The derivatives of (A.9) and (A.10) are

∂x11

∂T
= − λ1 − λ2

k (eλ1T − eλ2T )2

[
λ1e

λ1T − λ2e
λ2T − (λ1 − λ2)e

(λ1+λ2)T
]

(A.11)

∂y11

∂T
=

λ1 − λ2

k (e−λ1T − e−λ2T )2

[
λ1e

−λ1T − λ2e
−λ2T − (λ1 − λ2)e

−(λ1+λ2)T
]
. (A.12)
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Since the first parts of (A.11) and (A.12) are

− λ1 − λ2

k (eλ1T − eλ2T )2
> 0 ∀ T > 0

λ1 − λ2

k (e−λ1T − e−λ2T )2
< 0 ∀ T > 0,

and since the second parts of (A.11) and (A.12) are

hxT
(T ) := λ1e

λ1T − λ2e
λ2T − (λ1 − λ2)e

(λ1+λ2)T > 0 ∀ T > 0 (A.13)

hyT
(T ) := λ1e

−λ1T − λ2e
−λ2T − (λ1 − λ2)e

−(λ1+λ2)T > 0 ∀ T > 0, (A.14)

because of

∂hxT

∂T
= λ1

2eλ1T − λ2
2eλ2T − (λ1 + λ2)(λ1 − λ2)e

(λ1+λ2)T =

eλ2T
[
λ1

2eλ1T
(
e−λ2T − 1

)
+ λ2

2
(
eλ1T − 1

)]
> 0 ∀ T > 0 ,

∂hxT

∂T

∣∣∣∣
T=0

= 0 and hxT
(0) = 0

and

∂hyT

∂T
= −λ1

2e−λ1T + λ2
2e−λ2T + (λ1 + λ2)(λ1 − λ2)e

−(λ1+λ2)T =

e−λ2T
[
λ1

2e−λ1T
(
1 − eλ2T

)
+ λ2

2
(
1 − e−λ1T

)]
> 0 ∀ T > 0 ,

∂hyT

∂T

∣∣∣∣
T=0

= 0 and hyT
(0) = 0

we can claim that

∂x11

∂T
> 0 and

∂y11

∂T
< 0 ∀ T ∈ (0,∞)

or

∂T

∂x11

> 0 and
∂T

∂y11

< 0 ∀ T ∈ (0,∞).

Denote the gradient

g(T ) := −
∂y11

∂T
∂x11

∂T

= −∂y11

∂x11

, (A.15)

then,

g(T ) =
λ1 − λ2 − λ1e

λ2T + λ2e
λ1T

λ1 − λ2 − λ1e−λ2T + λ2e−λ1T
. (A.16)

Since ∂x11

∂T
> 0 and ∂y11

∂T
< 0 it follows that

g(T ) > 0 ∀T ∈ (0,∞),
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for λ1 + λ2 > 0 : lim
T→∞

g(T ) = ∞
for λ1 + λ2 < 0 : lim

T→∞
g(T ) = 0

for λ1 + λ2 = 0 : lim
T→∞

g(T ) = 1.

It can be verified that

lim
T→0

g(T ) = 1,

and

∂g

∂T
= − λ1λ2

(
eλ1T − eλ2T

)
(λ1 − λ2 − λ1e−λ2T + λ2e−λ1T )2h(T ),

where

h(T ) = (λ1 − λ2)
(
e−(λ1+λ2)T − 1

)− (λ1 + λ2)
(
e−λ1T − e−λ2T

)
.

It can be verified that

lim
T→0

h(T ) = 0,

and

∂h

∂T
= i(T )j(T ),

where

i(T ) =
(−λ2e

λ1T + λ1e
λ2T − λ1 + λ2

)
j(T ) = (λ1 + λ2)e

−(λ1+λ2)T .

Since

lim
T→0

i(T ) = 0 and
∂i

∂T
= −λ1λ2

(
eλ1T − eλ2T

)
> 0 ∀T > 0

we have i(T ) > 0 ∀T > 0 and therefore it follows that

sgn

(
∂h(T )

∂T

)
= sgn(j(T )) =⇒ sgn(h(T )) = sgn(j(T ))

=⇒ sgn

(
∂g(T )

∂T

)
= sgn(h(T )) = sgn(j(T )) ∀T > 0.

This shows by inspecting j(T ) for all T > 0 that

for λ1 + λ2 > 0 : j(T ) > 0 =⇒ g(T ) > 1 =⇒ ∂y11

∂x11

∈ [−∞,−1)

for λ1 + λ2 < 0 : j(T ) < 0 =⇒ 0 ≤ g(T ) < 1 =⇒ ∂y11

∂x11

∈ (−1, 0] (A.17)

for λ1 + λ2 = 0 : j(T ) = 0 =⇒ g(T ) = 1 =⇒ ∂y11

∂x11

= −1.
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Furthermore, since

∂g

∂T
=

∂g

∂x11

∂x11

∂T
= −∂2y11

∂x2
11

∂x11

∂T
and

∂x11

∂T
> 0,

it follows that

for λ1 + λ2 > 0 : j(T ) > 0 =⇒ ∂g

∂T
> 0 =⇒ ∂2y11

∂x2
11

< 0

for λ1 + λ2 < 0 : j(T ) < 0 =⇒ ∂g

∂T
< 0 =⇒ ∂2y11

∂x2
11

> 0

for λ1 + λ2 = 0 : j(T ) = 0 =⇒ ∂g

∂T
= 0 =⇒ ∂2y11

∂x2
11

= 0.

Since we know that lim
T→0

g(T ) = 1 and therefore

lim
T→0

∂y11

∂x11

= −1,

and because oft A.17 it follows that

for λ1 + λ2 > 0 : |y11 − xo1| > |x11 − xo1|
for λ1 + λ2 < 0 : |y11 − xo1| < |x11 − xo1|
for λ1 + λ2 = 0 : |y11 − xo1| = |x11 − xo1|.

An illustration for Lemma A.1 for the case where λ1 + λ2 > 0 is given in Figure A.2,
where p1, p2 and p3 are three points on kfx = 1, i.e.,

pi =

[
xi

11
1
k

]
, xi

11 ∈ [xo1, xm1), xi+1
11 > xi

11, i = 1, 2, 3,

and p′1, p′2 and p′3 are the first intersections of the trajectories that start from p1, p2 and
p3. Then from Lemma A.1 we can conclude that

for λ1 + λ2 > 0 :
‖p′3 − p′2‖
‖p3 − p2‖ >

‖p′2 − p′1‖
‖p2 − p1‖ > 1

for λ1 + λ2 < 0 :
‖p′3 − p′2‖
‖p3 − p2‖ <

‖p′2 − p′1‖
‖p2 − p1‖ < 1 (A.18)

for λ1 + λ2 = 0 :
‖p′3 − p′2‖
‖p3 − p2‖ =

‖p′2 − p′1‖
‖p2 − p1‖ = 1.

Remark:
The results of Lemma A.1 are given for the line kfx = 1, where k < 0. Since the considered
system (A.5) is symmetric the results of Lemma A.1 are also valid for kfx = −1 with
k < 0 which can be expressed as kfx = 1 with k > 0. Therefore, Lemma A.1 is valid for
the line kfx = 1, where k ∈ R \ 0.

Consider any state transformation x = T x̂ resulting in

˙̂x = Âx̂ with Â = T−1AT

and kf̂ = kfT.
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Figure A.2: Illustration of Lemma A.1 for λ2 < λ1.

Lemma A.2 Consider a one pole unstable system ˙̂x = Âx̂ and the line kf̂ x̂ = 1, where
k ∈ R \ 0 can be arbitrary chosen. Moreover, consider two trajectories Trj(p̂1, p̂

′
1) and

Trj(p̂2, p̂
′
2), where the trajectories start at p̂1 and p̂2 on kf̂ x̂ = 1 and end at p̂′1 and p̂′2 on

kf̂ x̂ = 1. Then the conditions

for λ1 + λ2 > 0 : ‖p̂′2 − p̂′1‖ > ‖p̂2 − p̂1‖
for λ1 + λ2 < 0 : ‖p̂′2 − p̂′1‖ < ‖p̂2 − p̂1‖ (A.19)

for λ1 + λ2 = 0 : ‖p̂′2 − p̂′1‖ = ‖p̂2 − p̂1‖.
are verified.

Proof:
We only give the proof for case λ1 +λ2 > 0 since the proof is similar for both other cases.
The vectors p̂1 − p̂2 and p̂′1 − p̂′2 are parallel since f̂(p̂1 − p̂2) = 0 and f̂(p̂′1 − p̂′2) = 0. This
is due to the fact that p̂1, p̂2, p̂′1 and p̂′2 are elements of the line kf̂ x̂ = 1. Thus, we can
express

p̂′1 − p̂′2 = µ(p̂1 − p̂2) with µ ∈ R. (A.20)

Consider inequality ‖µ(p̂1 − p̂2)‖ > ‖p̂1 − p̂2‖ where by state transformation p̂ = Tp we
obtain

‖µ(Tp1−Tp2)‖ > ‖Tp1−Tp2‖ =⇒ |µ|‖T‖‖p1−p2‖ > ‖T‖‖p1−p2‖ =⇒ |µ|‖p1−p2‖ > ‖p1−p2‖.
(A.21)

Since from the state transformation of (A.20)

Tp′1 − Tp′2 = µ(Tp1 − Tp2) =⇒ p′1 − p′2 = µ(p1 − p2) (A.22)

we obtain from (A.21) the inequality

‖p′1 − p′2‖ > ‖p1 − p2‖ (A.23)

which is a consequence of Lemma A.1 (see equation(A.18)).
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A.2.2 Stable systems

We consider the autonomous second order stable system

ẋ = Ax =

[
0 −a1

1 −a2

]
x, a1, a2 > 0 (A.24)

where a1 = λ1λ2, a2 = −(λ1 + λ2), λ1 < 0 and λ2 < 0. We will study the trajectories of
(A.24) with respect to two horizontal lines kfx = 1 and kfx = −1 where

f =
[

0 1
]

, k > 0.

For some points on the line kfx = 1, the trajectories of (A.24) starting from these points
will enter the region{

x ∈ R
2 : |kfx| < 1

}
and then intersect the line kfx = −1. We will define some functions to relate these points
on kfx = 1 to the first intersection of the trajectories with kfx = −1. The functions will
be defined in terms of the point

p0 =

[
ym2

− 1
k

]
=

[ −a2

k− 1
k

]
=

[
λ1+λ2

k− 1
k

]

on kfx = −1. If a point x is on kfx = −1 and is to the left of p0 (x1 < ym2), then the
vector ẋ points downward ẋ2 < 0; if x is to right of p0 (x1 > ym2), then the vector ẋ
points upward ẋ2 > 0, see Figure A.3.

Definition 10
Let p′0 be the unique point on kfx = 1 and Td > 0 be the unique number satisfying

eATdp′0 = p0, |kfeAtp′0| ≤ 1, ∀ t ∈ [0, Td].

Denote the first coordinate of p′0 as xm2, i.e.,

p′0 =

[
xm2

1
k

]
.

For x11 ∈ (−∞, xm2], let

p′ =

[
x11

1
k

]
,

be a point on kfx = 1, then there is a unique

p =

[
y11

− 1
k

]
,

on kfx = −1, where y11 ∈ (−∞, ym2] and a unique T ∈ (0, Td] such that

p = eATdp′, |kfeAtp′| ≤ 1, ∀ t ∈ [0, T ]. (A.25)

This defines two functions x11 → y11 and x11 → T with x11 ∈ (−∞, xm2], y11 ∈ (−∞, ym2]
and T ∈ (0, Td].
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Figure A.3: Illustration of Lemma A.3.

Lemma A.3 For all x11 ∈ (−∞, xm2), we have x11 < y11 and

∂y11

∂x11

> 1,
∂2y11

∂x2
11

> 0,
∂T

∂x11

> 0.

Proof: Similar to the proof of Lemma A.1, from (A.25), we can express x11 and y11 as
function of T , x11(T ) and y11(T ). Clearly these functions are analytic. Denote

g(T ) :=
∂y11

∂T
∂x11

∂T

=
∂y11

∂x11

.

It suffice to show that

∂x11

∂T
> 0, g(T ) > 1,

∂g

∂T
> 0.

We need to break the proof into three different cases.

Case 1. The matrix

A =

[
0 −λ1λ2

1 λ1 + λ2

]

has two different real eigenvalues λ1, λ2 < 0. Assume that λ1 < λ2.
Let

V =

[ −λ2 −λ1

1 1

]
,

then,

eAT = V

[
eλ1T 0
0 eλ2T

]
V −1.
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From (A.25) and the fact that kfp′ = 1, kfp = −1, we have, for T ∈ (0, Td),

x11(T ) =
1

k

−λ2 + λ1 − λ2e
λ2T + λ1e

λ1T

eλ2T − eλ1T
(A.26)

y11(T ) =
1

k

−λ2 + λ1 − λ2e
−λ2T + λ1e

−λ1T

e−λ1T − e−λ2T
, (A.27)

and,

g(T ) =
−λ2 + λ1 − λ2e

λ1T + λ1e
λ2T

−λ2 + λ1 − λ2e−λ1T + λ1e−λ2T
. (A.28)

By the definition of Td,

y11(Td) =
λ1 + λ2

k
= −a2

k
= ym2.

It can be shown that as T → Td, g(T ) → ∞. Since g(0) = 1 and

∂g

∂T
=

2λ1λ2

(λ1 − λ2 + λ1e−λ2T − λ2e−λ1T )2 {−(λ1 + λ2)[ch(λ1T − λ2T ) − 1]

+(λ1 − λ2)[ch(λ2T ) − ch(λ1T )]} > 0,

where

ch(a) =
ea + e−a

2
≥ 1

is monotonously increasing, we have that

g(T ) > 1, ∀ T ∈ (0, Td).

It can also be verified that

∂x11

∂T
> 0.

The remaining proof is similar to the proof of Lemma A.1.

Case 2. The matrix

A =

[
0 −λ2

1 2λ

]

has two identical real eigenvalues λ < 0.
Let

V =

[ −λ 1
1 0

]
,

then,

eAT = V

[
1 T
0 1

]
V −1eλT .
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In this case , for all T ∈ (0, Td), we have,

x11(T ) = − 1

kT

(
1 + λT + e−λT

)
,

y11(T ) = − 1

kT

(
1 − λT + eλT

)
,

and

g(T ) =
1 − λTeλT + eλT

1 + λTe−λT + e−λT
. (A.29)

Since g(0) = 1 and

∂g

∂T
=

λ2T
(−2λT + e−λT − eλT

)
(1 + λTe−λT + e−λT )2 > 0,

we have g(T ) > 1 for all T ∈ (0, Td). It can be verified that

∂x11

∂T
> 0.

Case 3. The matrix

A =

[
0 −(α2 + β2)
1 2α

]

has two complex eigenvalues α ± jβ, where α < 0 and β > 0.
Let

V =

[
β −α
0 1

]
,

then,

eAT = V

[
cos(βT ) − sin(βT )
sin(βT ) cos(βT )

]
V −1eαT .

In this case Td < π
β
,

x11(T ) = − 1

k sin(βT )

(
β cos(βT ) + α sin(βT ) + βe−αT

)
,

y11(T ) = − 1

k sin(βT )

(
β cos(βT ) − α sin(βT ) + βeαT

)
,

and

g(T ) =
β + (β cos(βT ) − α sin(βT ))eαT

β + (β cos(βT ) + α sin(βT ))e−αT
, T ∈ (0, Td). (A.30)

Since g(0) = 1 and

∂g

∂T
=

(α2 + β2) sin(βT )

(β + (β cos(βT ) + α sin(βT ))e−αT )2
· [−2α sin(βT ) + β(e−αT − eαT )

]
> 0,
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we have g(T ) > 1 for all T ∈ (0, Td). It can be verified that

∂x11

∂T
> 0.

For all the above three cases, since g(T ) > 1, i.e.,

∂y11

∂T
>

∂x11

∂T
, ∀ T ∈ (0, Td)

and

lim
T→0

∂x11

∂y11

= 1

We thus have y11 > x11.

This lemma is illustrated with Figure A.3 where p′1, p′2 and p′3 are three points on
kfx = 1, and p1, p2 and p3 are the three first intersections of kfx = −1 with the three
trajectories starting from p′1, p′2 and p′3, respectively. Then from Lemma A.3 we can
conclude that,

‖p1 − p2‖
‖p′1 − p′2‖

>
‖p2 − p3‖
‖p′2 − p′3‖

> 1. (A.31)

Remark:
The results of Lemma A.3 are given for the line kfx = 1, where k > 0. Since the considered
system (A.24) is symmetric the results of Lemma A.1 are also valid for kfx = −1 with
k > 0 which can be expressed as kfx = 1 with k < 0. Therefore, Lemma A.3 is valid for
the line kfx = 1, where k ∈ R \ 0.

Consider any state transformation x = T x̂ resulting in

˙̂x = Âx̂ with Â = T−1AT

and kf̂ = kfT.

Lemma A.4 Consider a stable system ˙̂x = Âx̂ and the lines kf̂ x̂ = 1 and kf̂ x̂ = −1,
where k ∈ R\0 can be arbitrary chosen. Moreover, consider two trajectories Trj(p̂′1, p̂1) ⊂
L and Trj(p̂′2, p̂2) ⊂ L, where the trajectories start at p̂′1 and p̂′2 on kf̂ x̂ = 1 and end at p̂1

and p̂2 on kf̂ x̂ = −1. Then the condition

‖p̂1 − p̂2‖ > ‖p̂′1 − p̂′2‖
is verified.

Proof:
The vectors p̂1 − p̂2 and p̂′1 − p̂′2 are parallel since f̂(p̂1 − p̂2) = 0 and f̂(p̂′1 − p̂′2) = 0. This
is due to the fact that p̂1 and p̂2 are elements of the line kf̂ x̂ = −1 and p̂′1 and p̂′2 are
elements of the line kf̂ x̂ = 1. Thus, we can express

p̂′1 − p̂′2 = µ(p̂1 − p̂2) with µ ∈ R. (A.32)

Consider inequality ‖p̂1 − p̂2‖ > ‖µ(p̂1 − p̂2)‖ where by state transformation p̂ = Tp we
obtain

‖Tp1 − Tp2‖ > ‖µ(Tp1 − Tp2)‖ =⇒ ‖T‖‖p1 − p2‖ > |µ|‖T‖‖p1 − p2‖ (A.33)

=⇒ ‖p1 − p2‖ > |µ|‖p1 − p2‖.
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Since from the state transformation of (A.32)

Tp′1 − Tp′2 = µ(Tp1 − Tp2) =⇒ p′1 − p′2 = µ(p1 − p2) (A.34)

we obtain from (A.33) the inequality

‖p1 − p2‖ > ‖p′1 − p′2‖ (A.35)

which is a consequence of Lemma A.3 (see equation(A.31)).
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A.3 System connections

A.3.1 Feedback connection

System 1

System 2

u1u

u2u u1f

y 2f u2f

y 1f

y 1y

+
+

y r

+
+

Figure A.4: Illustration of the feedback connection

Consider two linear state-space systems (System 1 and 2) which constitute a closed-
loop system (Figure A.4). We will show how to compute the input-output system of the
closed-loop system in function of the two linear system. We pay particular attention to
the state variables where we impose that the state vector of the closed-loop system has

the structure
[

x1 x2

]T
, where x1 and x2 denote the state vectors of Systems 1 and 2,

respectively. Consider the state-space representation of System 1

ẋ1 = A1x1 + B1fu1f + B1uu1u

y1y = C1yx1 + D1yfu1f + D1yuu1u (A.36)

y1f = C1fx1 + D1ffu1f + D1fuu1u.

The f in the indices denotes the parts of the inputs, outputs and matrices which are used
for the feedback and the r denotes input references signals, where u and y denote the
parts which are connected to the non-fedbacked inputs and outputs, respectively.

Consider the state-space representation of System 2

ẋ2 = A2x2 + B2u2 (A.37)

y2 = C2x2 + D2u2.

To avoid algebraic loops the two conditions

D1ffD2 = 0 and D2D1ff = 0 (A.38)

have to be satisfied.
As a first step we connect the input of System 1 with the output of System 2 and

add the second part (u2u) of the input of System 1 u1f = y2 + u2u. By considering the
condition (A.38) the system of Equations (A.36) becomes

ẋ1 = A1x1 + B1f (u2u + D2u2 + C2x2) + B1uu1u

y1y = C1yx1 + D1yf (u2u + D2u2 + C2x2) + D1yuu1u (A.39)

y1f = C1fx1 + D1ff (u2u + C2x2) + D1fuu1u.
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For the next step we connect the input of System 2 with the output of System 1 u2 =
y1f + yr. By considering the condition (A.38) the system of Equations (A.37) becomes

ẋ2 = A2x2 + B2(C1fx1 + D1ff (u2u + C2x2) + D1fuu1u + yr) (A.40)

y2 = C2x2 + D2(C1fx1 + D1fuu1u + yr).

The last step is to substitute u2 in the system of Equations (A.39) by y1f + yr, where
y1f is given from System (A.39). By still considering the condition (A.38) the system of
Equations (A.39) becomes

ẋ1 = A1x1 + B1f (u2u + D2(D1fuu1u + C1fx1 + yr) + C2x2) + B1uu1u

y1y = C1yx1 + D1yf (u2u + D2(D1fuu1u + C1fx1 + yr) + C2x2) + D1yuu1u (A.41)

y1f = C1fx1 + D1ff (u2u + C2x2) + D1fuu1u.

This leads to the closed-loop system where we can unite both systems of Equations (A.41)
and (A.40)

ẋ =

[
A1 + B1fD2C1f B1fC2

B2C1f A2 + B2D1ffC2

]
x

+

[
B1u + B1fD2D1fu B1f B1fD2

B2D1fu B2D1ff B2

]
u (A.42)

y =

[
C1y + D1yfD2C1f D1yfC2

C1f D1ffC2

]
x

+

[
D1yu + D1yfD2D1fu D1yf D1yfD2

D1fu D1ff 0

]
u,

where x =
[

x1 x2

]T
, u =

[
u1u u2u yr

]T
and y =

[
y1y y1f

]T
.

A.3.2 Serial connection

System 2

u2u

u1f y 1s

System 1
y 1y

u2s+
+

y r

u1

y 2

Figure A.5: Illustration of the serial connection

We consider two linear state-space systems which are connected serially (Figure A.5).
As in the section above we show how to compute the serial connected input-output system
in function of System 1 and System 2. We impose that the state vector of the serial

connected system has the structure
[

x1 x2

]T
, where x1 and x2 denote the state vectors

of system 1 and 2, respectively. We denote System 1 as

ẋ1 = A1x1 + B1u1 (A.43)

y1s = C1x1 + D1u1,
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where only the output y1s connected to the input of System 2 is considered. Similarly, we
denote System 2 only by considering its serial connected input u2s

ẋ2 = A2x2 + B2u2s (A.44)

y2 = C2x2 + D2u2s.

The serially connected system is obtained by substituting u2s by y1s + yr

ẋ =

[
A1 0

B2C1 A2

]
x +

[
B1 0

B2D1 B2

]
u (A.45)

y =
[

D2C1 C2

]
x +

[
D2D1 D2

]
u,

where x =
[

x1 x2

]T
, u =

[
u1 yr

]T
and y = y2.
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A.4 Least square solution [44]

Consider the linear problem

Bz = c, (A.46)

where z ∈ R
n and c ∈ R

m and with the m × n matrix B. We want to solve for z.
If m = n, and if the inverse of B exist then there is a unique solution, i.e.

z = B−1c. (A.47)

If m < n, then there are infinitely many solutions. We can set arbitrary value, i.e. zero,
for n − m elements of z and solve for the others elements with Equation (A.47).

If m > n, then we only can find an approximated solution. We can for example seek
for the least square error of the distance |Bz − c| by finding the minimum of distance
square error

min
z

1

2
(Bz − c)2. (A.48)

We therefore solve for the partial differential of the square error equal to zero,

1

2

∂(Bz − c)2

∂z
= 0.

This leads to

1

2

∂

∂z
(zT BT Bz − cT Bz − zT BT c + cT c) = BT Bz − BT c = 0.

If the inverse of BT B exists then the least square solution is given by

z = (BT B)−1BT c.

Note that (BT B)−1BT is the pseudo inverse matrix of B referred to as B† and therefore

z = (BT B)−1BT c ≡ B†c. (A.49)
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