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Abstract

Over the past fifteen years dye-sensitised nanocrystalline solar cells have been the

subject of intense research and development efforts. These systems provide a

technically and economically credible alternative to classical p-n junction solar cells,

reaching over 10 % certified efficiency under standard solar illumination conditions

(AM 1.5, 1000 W/m2).

Recently, the liquid electrolyte, commonly used in these dye-sensitised solar cells,

could successfully be replaced by a novel solid hole-conducting material (spiro-

OMeTAD). The absence of volatile solvents and corrosive components like iodine

presents a clear advantage of these solid-state devices over their photoelectrochemical

counterparts. Yet, their maximum overall efficiency of about 3 % clearly lacks behind

the performance features of classical dye-sensitized solar cells.

The objective of this work is the replacement of the usually used sensitiser (transition

metal complexes and organic dyes) by quantum-dots. It was motivated by the

possibility to achieve panchromatic light absorption due to the size-dependent

properties of the quantum-dots. Some studies have been published using quantum-

dots of inorganic low-bandgap semiconductors as sensitisers for mesoporous wide

bandgap semiconductor electrodes in conjunction with liquid electrolytes. These

systems often suffer from corrosion and photo-corrosion mainly due to the aggressive

nature of the electrolyte employed. Solid-state organic-inorganic heterojunctions

might provide the desired environment for quantum-dot sensitisation, as the

environment is much less aggressive.

A large variety of inorganic quantum-dot materials like PbS, CdS, PbSe and CdSe

were scrutinized for their use as sensitisers. All particles were synthesised in situ on

the TiO2 surface using two different techniques: dip-coating and chemical bath

deposition. Lead sulphide was the most investigated due to its superior photovoltaic

characteristics. High Resolution Transmission Electron Microscopy (HRTEM) of PbS

sensitised TiO2 electrodes fabricated via dip-coating clearly showed the distinct

particles on the surface of the semiconductor.

The electron transfer dynamics following optical excitation of quantum-dot sensitized

TiO2/spiro-OMeTAD heterojunctions were thoroughly studied. Fluorescence

spectroscopy was used to prove the possible electron injection from the PbS into the
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TiO2. Nanosecond laser spectroscopy was applied to monitor the interfacial

recombination of the injected electron and the oxidised hole-conductor. Femtosecond

laser spectroscopy allowed measuring the ultra-fast kinetics in the system, including

electron trapping, exciton recombination and PbS regeneration. An overall efficiency

of 0.5 % at 0.1 sun (AM 1.5) has been reached with such systems.

Chemical bath deposition (CBD) of PbS leads to the formation of a layer rather than

distinct particles on the TiO2. Solar cells fabricated via CBD exhibited open-circuit

voltages which were generally 100 mV higher then those of comparable devices made

via dip-coating. The PbS layer acts as blocking layer, hindering the contact between

TiO2 and the hole-conductor. This technique allowed achieving devices highly linear

with respect to the illumination power.

Different strategies were pursued to impede interfacial recombination, among which

the introduction of self-assembled monolayers at the interface between the organic

and inorganic phases was proven to be the most efficient. Nanosecond laser

spectroscopy showed a strong decrease of the interfacial recombination kinetic rates

in the presence of hexadecylmalonic acid or decylphosphonic acid monolayers. Short-

circuit currents could be raised by a factor two to four using such type of molecules.

The overall efficiency of the device could be strongly increased, reaching 1 % at 0.1

Sun (AM 1.5).

CBD was also used to deposit PbSe and CdSe layers at the surface of TiO2.

Fluorescence spectroscopy was used to probe electron injection from CdSe quantum

dots to TiO2. Generally it was observed that metal sulfides were more efficient in

sensitizing TiO2/OMeTAD heterojunctions then the respective selenides.
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Résumé

Dans les quinze dernières années, la recherche ainsi que le développement des

cellules nanocristallines à colorant ont été très intenses. Ce type de systèmes est une

alternative crédible aux dispositifs classiques à jonction p-n, tant sur le point de vue

économique que technique. Des rendements de conversion sous des conditions

standard d’illumination (AM 1.5, 1000 W/m2) de plus de 10 % ont été mesurés et

certifiés. Récemment, l’électrolyte liquide utilisé usuellement dans les cellules

nanocristallines à colorant a été remplacé avec succès par un nouveau matériau solide

conducteur de trous (Spiro-OMeTAD). L’absence de solvants volatiles et de

composés corrosifs tels que l’iode est un clair avantage des systèmes solides par

rapport au systèmes conventionnels. Néanmoins, leur rendement maximum de 3 % se

trouve loin des performances des cellules classiques sensibilisées par colorants.

L’objectif de ce travail est le remplacement des colorants couramment utilisés

(complexes de métaux de transitions et colorants organiques) par des nanoparticules.

La principale motivation étant la possibilité d’avoir une absorption panchromatique

grâce aux propriétés des nanoparticules dépendantes de leur taille. Certaines études

ont été publiées, rapportant l’utilisation de nanoparticules (quantum-dots) comme

sensibilisateur. Ces systèmes souffrent souvent de la corrosion et de la photo-

corrosion, dû à la nature agressive de electrolyte. Les systèmes solides basés sur une

junction organique/inorganique présentes un environnement nettement moins agressif,

adéquat à la sensibilisation par nanoparticules.

Différents types de nanoparticules inorganiques ont été testés, comme PbS, PbSe, et

CdSe. Toutes ces particules ont été synthétisé in-situ sur la surface du TiO2, en

utilisant deux techniques ; le trempage successive, et la déposition par bain chimique

(CBD). PbS fût étudié très en détails dû à ces meilleures performances

photovoltaïques. La microscopie électronique à transmission (HRTEM) a permis de

mettre en évidence l’existence des particules distinctes de PbS à la surface du TiO2.

La dynamique du transfert d’électrons succédant à l’excitation lumineuse à la junction

hétérogène TiO2/spiro-OMeTAD sensibilisée par des nanoparticules a été étudiée

avec une grande attention. La spectroscopie de fluorescence prouva que l’injection

d’un électron du PbS dans le TiO2 est possible. La recombinaison interfaciale entre

l’électron injecté et le conducteur de trous oxydé fut quantifiée par des mesures de
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spectroscopie laser nanoseconde. Les réactions ultra-rapides comme le trappage

d’électron, la recombinaison de l’exciton, et la régénération du PbS furent observées

grâce à la spectroscopie laser femtoseconde. Un rendement de 0.5 % sous une

intensité lumineuse 10 % de soleil (AM 1.5) fut atteint avec de tels systèmes.

La déposition par bain chimique (CBD) de PbS permet la formation d’une couche à la

surface du TiO2, plutôt que la formation de particules distinctes. Le potentiel à circuit

ouvert pu être augmenté de 100 mV par rapport aux cellules préparées avec la

technique des trempages successifs. Il apparaît que la couche de PbS agit comme

couche bloquante, évitant le contact entre le TiO2 et le conducteur de trous. Cette

technique permet d’obtenir des échantillons dont le rendement est très linéaire en

fonction de la puissance d’illumination

Différentes stratégies furent employées afin de minimiser la recombinaison

interfaciale. Parmi celles-ci l’introduction d’une mono-couche à l’interface entre les

phases organique et inorganique fût la plus probante. Des mesures de spectroscopie

laser nanoseconde ont montré que la vitesse des cinétiques de recombinaison

interfaciale a pu être fortement réduite grâce à la présence de l’acide

hexadecylmalonique ou de l’acide decylphosphonique. Les courants de court-circuit

furent augmentés d’un facteur deux à quatre grâce à ces molecules. Le rendement de

conversion a ainsi pu être augmenté de manière significative pour atteindre 1 % à 0.1

soleil (AM 1.5).

CBD fut également utilisée pour déposer des couches de CdSe et de PbSe à la surface

du TiO2. La spectroscopie de fluorescence prouva que l’injection d’électron est

possible depuis les particules de CdSe dans le TiO2. Il fut généralement observé que

les sulfides de métaux furent plus efficaces pour la sensibilisation de jonctions

hétérogènes que les selenides équivalents.
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Zusammenfassung

In den fünfzehn letzten Jahren, wurden farbstoffsensibilisierte nanokrystalline

Solarzellen intensiv erforscht und entwickelt. Diese Systeme sind eine technisch und

wirtschaftlich glaubwürdige Alternative zu klassischen, auf p-n Junktion basierten,

photovoltaischen Systemen. Sie erreichen einen zertifierten Wirkungsgrad von über

10 % unter standardisierter Beleuchtung (AM 1.5, 1000 W/m2). Kürzlich wurde der in

der farbstoffsensibilisierten Zelle benutzte flüssige Elektrolyt erfolgreich durch einen

neuen Festkörper-Lochleiter (spiro-OMeTAD) ersetzt. Die Abwesenheit von volatilen

Lösungsmitteln und korrosiven Komponenten wie Jod ist ein klarer Vorteil dieser

soliden Systeme gegenüber den konventionellen Systemen. Die erreichten

Wirkungsgrade von etwa 3 % sind jedoch deutlich niedriger als die Leistung der

klassischen farbstoffsensibilisierten Zelle.

Das Ziel der vorliegenden Arbeit ist die Ersetzung des gewöhnlich verwendeten

Farbstoffs (Uebergansmetallkomplexe und organische Farbstoffe) durch

Nanoteilchen. Es wurde von der Möglichkeit panchromatischer Lichtabsorption durch

die grössenabhängigen Eigenschaften der Nanoteilchen Gebrauch gemacht. In einigen

Veröffentlichungen wurde die Benutzung von Nanoteilchen (quantum-dots) als

Sensibilisator bereits untersucht, jedoch litten diese Systeme meistens unter Korrosion

und Photokorrosion wegen der aggresiven Natur der gebrauchten Lösungsmittel.

Solide Heterojunktion-Systeme könnten, wegen des weniger aggressiven Umfeldes,

ideal für die Sensibilisierung durch Nanoteilchen sein.

Verschiedene Typen von Nanoteilchen, wie zum Beispiel PbS, CdS, PbSe oder CdSe,

wurden getestet. Diese Teilchen wurden in situ auf das TiO2 synthetisiert, wozu zwei

verschiedene Methoden verwendet wurden: „dip-coating“ und „chemical bath

deposition“ (CBD).

PbS-sensibilisierte Systeme wurden wegen ihrer hervorragenden photovoltaischen

Charakteristiken am meisten erforscht. Untersuchungen am hochauflösenden

Transmissions-Elektronenmikroskop (HRTEM) von mittels dip-coating mit PbS

sensibilisierten TiO2 Elektroden zeigten eindeutig einzelne Teilchen auf der

Oberfläche des Halbleiters.

Die Elektronentransfer-Dynamik nach optischer Anregung der mit quantum-dots

sensibilisierten TiO2/spiro-OMeTAD Heterojunktion wurde gründlich untersucht.
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Durch Fluoreszenz-Spektroskopie konnte die Elektroninjektion vom PbS in das TiO2

nachgewiesen werden. Nanosekunden-Laser-Spektroskopie zeigte die Grenzflächen-

Rekombination zwischen dem injizierten Elektron und dem oxydierten Lochleiter.

Femtosekunden-Laser-Spektroskopie erlaubte es, die Systemkinetik ultra-schneller

Vorgänge zu beobachten, wie zum Beispiel die Rekombination des Excitons oder die

Regeneration des PbS. Umwandlungswirkungsgrade von 0.5 % bei einer Intensität

von 0.1 Sonne (AM 1.5) wurden mit solchen Systemen erreicht.

Die Abscheidung von PbS nach der „CBD“-Methode erlaubt die Bildung einer

Schicht anstatt einzelnen Teilchen an der TiO2 Oberfläche. Die Leerlaufspannung des

Systems konnte durch diese Methode um 100 mV erhöht werden im Vergleich mit

dip-coating Elektroden. Die PbS Schicht fungiert als blockierende Lage, da sie den

Kontakt zwischen TiO2 und Lochleiter verhindert. Diese Methode erlaubte es, Zellen

mit sehr linearem Verhalten als Funktion der Beleuchtungsintensität zu erzeugen.

Verschiedene Strategien wurden verfolgt um die Grenzflächenrekombination zu

vermindern. Von diesen war die Einführung einer mono-molekularen Schicht an der

Grenzfläche am wirksamsten. Nanosekunden-Laser-Spektroskopie zeigte eine starke

Reduzierung der Geschwindigkeit der Grenzflächenrekombination in der

Anwesenheit von Hexamalonsäure und Decylphosphonsäure. Kurzschlussströme

konnten um einen Faktor zwei bis vier, je nach Molekül, erhöht werden. Ein

Wirkungsgrad von 1 % unter einer Intensität von 0.1 Sonne (AM 1.5) konnte mit

solchen Systemen erreicht werden.

CBD wurde auch für die Abscheidung von PbSe und CdSe Schichten verwendet.

Fluoreszenz-Spektroskopie zeigte die Elektroneninjektion vom CdSe in das TiO2.

Generell konnte beobachtet werden, dass die Metallsulfide das TiO2/spiro-OMeTAD

System besser sensibilisieren als die Metallselenide.
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Chapter I

Introduction

For many thousand of years till about three hundred years ago, mankind used

exclusively renewable energy sources (with a minor exploitation of coal). Wood was

used for heating, animals were used for transportation, and wind and water supplied

mechanical energy. During the 19th century, the industrial revolution brought new

machines and new energetic needs; coal was found to satisfy the increasing demand

of energy. The early 20th century saw the first exploitation of petroleum, natural gas

and later, nuclear energy as energy sources to cover the continuously growing

demand. Nowadays, fossil energies cover 95 % of the total energy demand

worldwide, which exceeds 105 TWh per year.

Global energy consumption draws from six primary sources: 44 % petroleum, 26 %

natural gas, 25 % coal, 2.5 % hydroelectric power, 2.4 % nuclear power, and 0.2 %

non-hydro renewable energy1. Between 1980 and 2001, worldwide consumption of

petroleum, coal, and natural gas increased by 22, 27, and 71 % respectively.

Following the projected energy needs, this will increase by nearly 50 % in the 25 next

years. About 30 % of the primary energy is converted to electricity either in the

course of initial harvesting (as for hydroelectric, wind, solar and geothermal) or by

combustion (as for fossil, and biomass); about 75 % of the primary energy arrives, in

one form or the other, at the consumer.

As estimates of non-commercial energy use are incomplete and unreliable, the above

estimates do not include nonmarket wood used as fuel and farm residues that are

prevalent in many countries. The international energy agency (IEA) suggests that
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biomass still provides on average one-third of the energy needs in Africa, Asia, and

Latin America, and as much as 80 to 90 % in the poorest countries of these regions.

While the average yearly energy consumption per capita in developing countries is

about 10 MWh (with about 1 MWh in the poorest!), the yearly consumption in

Europe amounts to about 50 MWh and in the USA to 90 MWh per capita. The energy

consumption can be classified by sectors, as shown in Figure 1.1; the most important

ones are residential, transportation, and industry. The importance of these sectors

differs between developing and developed countries. For example, transportation in

the developed countries accounts for 35% of the total energy consumption, whilst in

the developing ones roughly 18%.

5.5

1.2 1

10.6

10.3

1.4

48.1

30.7

56.5

1.2 2.7
18.7

Commercial and Public

Services

Industry

Residential

Transportation

Agriculture

Other
A B

Figure 1.1: Per-capita energy consumption by sectoral end use in (A) the developed

world and (B) the developing world (in gigajoules)1.

Although estimates vary, economically recoverable fossil fuel reserves include almost

one trillion tons of coal, more than one trillion barrels of petroleum, and over 150

trillion cubic meter of natural gas. Roughly 3 million tons of uranium reserves are

known. Annually, the world consumption of coal is about 0.5% of the reserves, of

natural gas around 1.6% of reserves, whereas oil almost 3% of reserves, and nuclear

electricity generation consumed the equivalent of 2% of uranium reserves.

Large fossil fuel reserves are concentrated in a small number of countries, with a large

number of developing countries having no reserves at all. Many energy-lacking

countries have become highly developed through sufficient access to international

energy markets. Conversely, some countries possess substantial reserves but remain

rather poor. This shows that the possession of reserves is not a sufficient condition to
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a country’s development unless there is an adequate economic system able to

transform these energy resources into general social wealth.

Major changes in the global climate must be expected as a consequence of the carbon

dioxide emissions from burning fossil fuels, which at present are of the order of 6.6

billion tons1 carbon equivalent and still rising. These emissions lead to an

enhancement of the atmospheric CO2 concentration, passing from 280 ppm in 1850 to

nearly 370 ppm in 20002 and to an increase in global mean temperature of nearly 1°.

Fossil fuel consumption also results, to a lesser extent, in the emission of other

greenhouse gases (GHG’s), such as carbon monoxide, methane, and volatile organic

compounds, and the rising ocean temperature increases evaporation and hence the

water vapour content in the atmosphere. The Intergovernmental Panel on Climate

Change (IPCC) predicts, based on climate models, that continued emissions of

anthropogenic GHG’s will result in not only increasing mean temperatures but also in

more frequent extreme climate events which will have significant consequences for

ecosystems but also for human activities, including the flooding of low-lying land due

to the thermal expansion of the ocean.

The United Nations, recognizing these threats, have organized the conclusion, at the

Conference in Rio in 1992, of the Framework Convention on Climate Change, which

has been ratified by all participating countries. After 10 years of negotiations, targets

numbers for the reduction of CO2 emissions for countries or groups of countries have

been defined at the 2002 Conference at Kyoto, which however, have not yet been

ratified by the main CO2 emitter, the USA and, several other countries.

Technically, reductions in the emissions of CO2 can be achieved by the enhanced

introduction into our energy system of nuclear energy or of renewable energy sources

as discussed in Section 1.1.

Nuclear energy, i.e. the binding energy of the nucleus, can be set free either by fission

of the very heavy nuclei (Th, U) or by fusion of light nuclei (1H, 2H, 3H) to Helium.

While nuclear fusion is still a subject under development and will, in the opinion of

experts, take the order of 50 years to reach a state of useful energy production, nuclear

fission is being exploited in approx. 430 reactor units worldwide with a total capacity

of about 350 GW (electr.). The construction of new reactors continues to meet at

present strong opposition by part of the population because of the fear of nuclear run-
                                                  
1 1 ton carbon equivalent = 3.66 tons of CO2
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away. However the run-away risk after several thousands years of integrated (over all

existing reactors) run-time is, very small compared to the risks taken by the individual

in every-day life (e.g. in road traffic). The development of inherently safe nuclear

reactors (which by their very construction cannot undergo thermal excursion), stopped

in Germany some 10 years ago, has in recent years been taken up in several countries.

The duration of the resources of uranium could be considerably extended by

reprocessing of the used fuel elements.

The radioactive wastes occurring from this energy production give rise to a storage

problem, as the decomposition of those takes several billion of years. Nevertheless the

amount of wastes are small (15 m3 per year for a 1 GW installation) and the estimate

cost for long-time and safe storage is roughly 10 % of the total supply cost of the

fission material.

I.1 Renewable energies

Planet Earth receives from the sun an almost constant flux of radiation, which with

clear sky and dry air amounts to about 1kW/m2. All sources of renewable energies

depend either directly or indirectly from the sun’s radiation. Although of lesser

importance, geothermal energy sources (which derive their energy from the nuclear

decay in the earth) and tidal energy (due to the gravitational forces between earth and

moon) should also be practically inexhaustable.

Sunlight, or solar energy, can be used directly for heating, lighting, generating

electricity and many other applications. Indirectly, sun’s heat also creates winds,

whose energy is used to generate electricity by wind turbines. Sunlight causes plants

to grow. The organic matter composing those plants is known as biomass. Biomass

can be used to produce electricity, transportation fuels for example. On the other

hand, geothermal energy traps the Earth’s internal heat and can be used for a large

variety of applications such as building heating and electricity production. Ocean

energy can under favourable conditions be used for the production of electricity.

I.1.1 Solar energy

A large variety of techniques are available or under development to benefit from the

solar energy, including photovoltaic systems, concentrating solar power, passive solar

systems, solar hot water, and solar process heat.
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Photovoltaic solar cells are used to directly convert light energy into electricity, and

have been available for many years; major applications like solar panels on satellites

made them famous, and smaller uses like calculator or watch energy supply, known

by everyone. They are based on the photovoltaic effect, which allows the conversion

of light (photons) to electricity (electrons). Active research is going on in this domain

and will be described in more detail in section 1.2.

Concentrating solar power can be achieved by several types of systems, which share a

feature that the incident solar radiation is concentrated onto a small surface. A fluid

(often oil) flows through this small surface to be heated; this heat is then used to

produce steam, which drives turbines, generators then create electricity. The different

types of plants are shown on Figure 1.2. Parabolic trough reflector systems totalling

about 350 MW are already in use in the United States and development of all three

types are under way in Europe.

Figure 1.2: Three main types of solar concentrating collector plants

Solar chimney technology is created when the sun’s radiation is used to heat a large

body of air, which is then forced to move as a hot wind through turbines to generate

electricity. A huge project is in development in northern Australia; a 7 km diameter

transparent roof with at its center a tower (170 m in diameter and 1000 m in height)

should reach a maximal power of 200 MW.

Passive heating of buildings can be achieved by installing large windows on the south

side as they receive most sunlight. More efficiently, a sunspace (similar to a

greenhouse) is built on the south side of a building with ventilation allowing the heat

to circulate into the building.

Hot water can rather easily be produced from solar energy and stored in well-

insulated tanks. Most common is the flat-plate, consisting of a set of tubes under a

transparent cover, easily mounted on roofs.
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I.1.2 Hydroelectric power

Water wheels have been driving mills and heavy tools for many centuries. Currently,

hydroelectric power is the world's largest renewable source of electricity, accounting

for about 15% of the world's electricity. Even if hydroelectric energy does not release

any standard atmospheric pollutants, the impact of this technology on the

environment is not negligible. The most obvious one is the flooding of large areas of

land, much of it previously forested or used for agriculture. Damming a river alters

the amount and quality of water in the river downstream of the dam, as well as

preventing fish from migrating upstream to spawn; on the other hand, it protects land

downstream against flooding.

I.1.3 Wind energy

Again, wind energy has been used for many centuries for the pumping of water and

grinding grain, using windmills. Some 200,000 windmills could be counted in Europe

in the 18th century. Their modern equivalent, called wind turbines, use wind energy to

generate electricity. Different types of turbines exist, the most common ones are the

horizontal axis turbines which are mounted on towers, reaching 80 meters height,

designed to take advantage of faster and more stable winds. The biggest units can

produce up to 5 MW. Vertical axis turbines also exist but are not in wide use. Wind

turbines range from single turbines for homeowners to large wind farms with

hundreds of turbines providing electricity to the power grid. According to the

American Wind Energy Association (AWEA)2 at the end of 2002 the total production

capacity reached over 31000 MW worldwide; on a percentage basis wind is the fastest

growing energy source with an annual increase of over 30% per year in the five last

years. 75 % of the total production takes place in Europe: Germany, Denmark, Spain,

and the U.K. are the principal producers (89 %). In Denmark, wind energy meets

20 % of the country’s electricity needs, in Germany 4.5 % of electricity is generated

using wind.

                                                  
2 www.ewea.org
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I.1.4 Biomass energy

Mankind has been using biomass energy for thousand of years, since people started

burning wood to cook food or to keep warm. Biomass refers to any plant-derived

matter available on a renewable basis, including dedicated energy crops and trees,

agricultural food and feed crops, agricultural crop wastes and residues, wood wastes

and residues, aquatic plants, animal wastes, municipal wastes, and other waste

materials. Bioenergy is used to produce a large array of products like electricity, solid,

liquid and gaseous fuels, heat, and chemicals. Of course by burning organic materials

CO2 is released in the atmosphere, but the same amount of CO2 is actually removed

when new plants are growing. The net emission of CO2 will be zero as long as plants

continue to be replenished for biomass energy purposes. Biomass can be directly

converted into liquid fuels, mainly ethanol and biodiesel to be used for transportation

needs. Biopower is the use of biomass to generate electricity. Most of the biopower

plants use direct burning of the biomass for steam production, to drive a generator to

produce electricity. Biobased products include green chemicals, renewable plastics,

natural fibers and natural structural materials. Many of these products can replace

products and materials traditionally derived from petrochemicals, but new and

improved processing technologies will be required.

Bioenergy accounts for 3 % of the primary energy production in the United-States,

being in second rank after hydropower in renewable primary energy production. In

Europe, wood accounts for more than half of the renewable primary energy

production, excluding hydropower. Great efforts are made to increase the production

of biogas and biofuels, an annual growth of 30 % is expected until 20103.

I.1.5 Geothermal energy

Geothermal energy uses the heat of earth for the production of electricity, for the

direct use of the hot water for heating, and for geothermal heat pumps, which are used

to heat and cool buildings. Geothermal energy is not easily accessible all over the

world; however some countries take great advantage of this energy. In Iceland

geothermal energy provides half of the total energy consumption, the other half being

provided by hydropower; it is principally used for space heating (85 % of the

households).
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I.1.6 Ocean energy

Ocean energy draws on energy of the ocean waves, currents and of tides. One

estimates that the power of the waves breaking on the world’s coastlines is around

2*106 MW, but it is very expensive to collect. A dam is typically used to convert tidal

energy into electricity by forcing the water through turbines, activating a generator.

The largest plant worldwide is located in France on the river La Rance. Its power

production is 240 MW and has been operating since 1966. Recently, tests have begun

to extract some electricity from strong ocean currents by turbine/generator sets

submerged at a certain depth.

A great amount of thermal energy is stored in the world's oceans, which daily receive

heat from the sun equal to the thermal energy contained in 250 billion barrels of oil.

The useful temperature difference is however too small for converting some of this

enormous amount of energy into electricity.

I.2 Photovoltaic systems

The photovoltaic effect is the basic physical process through which a solar cell

converts sunlight into electricity. In 1839, Edmund Becquerel discovered the

photovoltaic effect while experimenting with an electrolytic cell made up of two

metal electrodes. He found that certain materials would produce small amounts of

electric current when exposed to light4.

 Nowadays the solar cell market is fast growing, with a growth of over 30% per year.

In 2002 a world record for solar photovoltaic installations of 440 MW was reached. In

spite of the complicated manufacture and high cost, crystalline silicon still dominates

the market today. The market share of silicon-based solar cells is nearly 99%,

comprising single crystal, polycrystal, and amorphous silicon. Nevertheless active

research is going on to replace silicon, as the production of such devices consumes

enormous amounts of energy mainly for the purification of the raw material. Indeed,

the semiconductors employed must be highly pure and defect-free to avoid premature

recombination of electrons and holes.

A very challenging technology is based on ternary compound semiconductors

CuInSe2, CuGaSe2, CuInS2. The first work5 on CuInSe2 (CIS) was extremely

promising but the complexity of the material looked complicated as a thin-film

technology. Later it became evident that CIS process technology is very flexible with
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respect to process conditions6. Vapour deposition is used for the fabrication of such

devices. Nowadays laboratory cells reach nearly 19 % overall efficiency and bigger

modules achieve up to nearly 17 % efficiency.

Thin-film solar cells based on CdTe are the cells with the longest history, but they

took a long time to achieve a breakthrough in terms of their conversion efficiency. In

1993, researchers from the National Renewable Laboratory (NREL) achieved an

efficiency in the range of 16 %7. The pn-junctions was composed on one side of p-

CdTe and on the other side of n-CdS. This type of cells accounts for a 0.5 % of the

market share of the photovoltaic materials.

Nanocrytalline dye sensitised solar cells are a new type of device where in contrast to

Si and CIS cells the functional element, which is responsible for light absorption, is

separated from the charge carrier transport itself. These devices are discussed in detail

in the next section.

I.3 The dye-sensitised solar cell

The first work on semiconductor sensitisation was reported by Vogel8. From 1873 he

investigated the sensitisation of silver halide emulsions with dyes, finding the

photoresponse significantly extended into the red and even infrared. He applied his

findings to photography. In 1887, Moser9 carried this concept to the photoelectric

effect by using the dye erythrosine on silver halide electrodes. Until the 1960’s, the

theoretical understanding of the process was under dispute. It was not clear whether

the mechanism was an electron transfer or an energy-coupling process. The electron

injection process was proved by Tributsch and Gerischer with their work on ZnO in

196810. In the following years, the chemisorption of the dye on the surface of the

semiconductor was developed to enhance the function of the dye11,12. The concept

emerged to use dispersed particles to provide an enhanced surface interface13, then

photoelectrodes with high surface roughness were employed, and TiO2 became the

semiconductor of choice14,15. The material has many advantages; it is inexpensive,

non-toxic, abundant, and is already widely used in many health care products. Thanks

to system optimisation, a conversion efficiency of 7.1 % was announced in 199116.

This evolution has continued since then and certified efficiencies over 10 % have now

been reached.

Figure 1.2 shows the principle of operation of the dye-sensitised solar cell (DSSC).
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The TiO2 is the center of the device; it is composed of nanoparticles, which have been

sintered together to establish electric contact. An electron is injected into the

conduction band of the semiconductor after photoexcitation of the dye attached to the

nanocrystalline surface. The reduced dye is regenerated by electron donation from the

electrolyte, usually an organic solvent containing the iodide/triiodide couple. The

electrolyte itself is regenerated at the counter electrode by reduction of the triiodide,

the circuit being completed through the external load.

Figure 1.2: Principle of operation and energy level scheme of the dye-sensitised

nanocrystalline solar cell.

In a conventional pn-junction photovoltaic cell based for example on silicon, the

semiconductor assumes simultaneously two functions. First, it has to absorb the

incident sunlight to create an electron-hole pair, and then it has to transport the

produced charge carriers. This is the most fundamental difference between the two

systems, Figure 1.3 shows a simplified energy band scheme for silicon pn-junction

solar cells.
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Figure 1.3: Energy band sheme of a pn-junction solar cell, where EC, EF, EV are the

energy levels of the conduction band, of the Fermi level and of the valence band

respectively. Eg being the semiconductor bandgap.

Good efficiency is reached by producing the charge carriers inside the depletion layer

where under the effect of an electric field the charges are separated. To avoid

recombination between the created electron and hole, no defects in the solid should be

present. As only highly pure materials are defect-poor, this renders solid-state

materials of the conventional types expensive. In other words, the pn-junction is

characterised by the presence of minority and majority charge carriers in the same

volume whereas in the DSSC the electrons are transported by the TiO2, and the holes

in the electrolyte. Only majority charge carriers are present in the same volume, thus

the recombination process is hindered and can only occur at the interface.

Even though, unexpected problems arose from the corrosive and the volatile nature of

the liquid electrolyte. The sealing of such devices turned out to be much more

complicated than for conventional systems due to the characteristics of the solvent. A

lot of work is being invested into finding alternative, less volatile electrolytes.

Different types of compounds have been used such as; molten salts17, p-type

semiconductors such as CuI18,19 ,or CuSCN20,21.

I.4 The solid-state dye-sensitised solar cell (SSD)

The replacement of the liquid electrolyte by an organic charge transport material

forms a solid-state dye-sensitised organic/inorganic heterojunction. These types of

heterojunctions have already been known for several years. First attempts tried to use

hole conducting materials such as TPD, a molecule which is known since the mid-
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80’s22, resulting in photocurrents in the nanoampere range. The charge transport

mechanisms inside the cell are very similar to the DSSC, except for the electrolyte. In

the SSD, contrary to the DSSC, no ions are migrating inside the electrolyte. The

electrons are hopping from one hole-conductor molecule to the other, as shown on

Figure 1.4.

Figure 1.4: Principle of operation and energy level scheme of the solid-state dye

sensitised solar cell

A significant breakthrough was achieved by using a new molecule, 2,2’7,7’-

tretakis(N,N-di-p-methoxyphenyl-amine)-9,9’-spirofluorene (spiro-OMeTAD).

Maximum light conversion efficiency was measured to be 0.74 % at full sun

illumination (AM 1.5, 100 mW/m2)23. It was rapidly established that the interfacial

recombination was the principal loss mechanism. To further improve the performance

of this type of device, this mechanism had to be better understood and recombination

reduced to the minimum. The hole transport in the hole conducting material is much

slower than for liquid electrolytes, due to the low electron mobility in these

compounds. This leads to a hole concentration gradient between the interface and the

bulk of the material. As the charges are removed from the surface, the whole interface

will get charged, increasing the probability of interfacial recombination. Furthermore,

the spiro-OMeTAD cannot achieve a perfect pore filling due to its large size, contrary

to the electrolyte cell where the interpenetration is complete. This phenomenon will

also enhance the interface charging effect. It was shown that the use of additives in
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the hole-conductor matrix could significantly reduce the interfacial recombination.

Although the use of a doping agent and lithium salts was already known, the addition

of 4-tertbutylpyridine (tBP) lead to a strong increase of the photovoltaic performance

of the device. An overall certified conversion efficiency of 2.56 % (AM 1.5,

100 mW/m2) was achieved by using tBP in the hole conductor matrix24. The

introduction of tBP resulted in a strong increase in open circuit potential of the device.

This effect was assigned to the blending of the hole conductor matrix by the tBP and

the lithium salt. Due to the change of the dielectric constant of the solvant, more

lithium salt could be dissolved in the hole conductor solution, increasing furthermore

its effect. Finally, the presence of silver ions in the dye solution was shown to

increase the dye uptake by nearly 40 %, offering an easy method to increase light

harvesting25. The overall efficiency of the SSD was enhanced to 3.2 % at 100 % sun

illumination (100 mW/cm2), resulting from the simultaneous increase in short circuit

current and open circuit potential. On one hand, increased dye uptake allows higher

short circuit current. The silver ions were expected to assist the dye assembling on the

TiO2 surface as bridging elements between two thiocyanate ligands. On the other

hand, the decrease of the interfacial charge recombination, due to the better coverage

of the TiO2 surface by the dye molecules (blocking electron back transfer) allows to

increase both the open circuit voltage and the short circuit current.

I.5 Aims of the present work

The main objective of the present work is to replace the conventional organo-metallic

dye by semiconductor nanoparticles, also called quantum-dots, in the SSD. The

properties of such particles are size-dependant, and ruled by the quantum size effect,

which will be explained in the following chapter. A panchromatic light absorption

may be achieved by using such types of particles, as the absorption properties can be

tuned easily by varying the size of particles. Previous studies of quantum-dot (QD)

sensitisation have been reported but on liquid electrolyte systems26,27.The

nanoparticles will be synthesised in situ on the TiO2 particles, as preliminary studies

have shown that synthesised particles stabilised with an organic molecule, have a poor

uptake on TiO2.

This begins by giving a detailed explanation of the device structure and its preparation

as well as a description of the experimental techniques. The results and discussion are
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divided in three main parts; the metal sulfide sensitisation, the metal selenide

sensitisation, and interface optimisation.
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Chapter II

The Quantum Size Effect

II.1 What is a quantum dot?

Since beginning of the 1980’s, research on nanocrystalline materials has developed

into a large field in material science. The most striking feature of these materials is

that their chemical and physical properties differ from those of the bulk solids. The

reasons for this behaviour can be reduced to two fundamental phenomena. The first is

the high dispersity of nanocrystalline systems; i.e. the number of atoms at the surface

is comparable to the number of those which are located in the crystalline lattice. For

example, a cluster with 55 atoms will have 76 % of the atoms at the surface, if it is

constituted of 561 atoms only 45 % of those will be at the surface. The physical and

the chemical properties, which are usually determined by the molecular structure of

the bulk lattice, become dominated by the defect structure of the surface. In a wide

variety of materials ranging from metals to semiconductors to insulators, a decrease in

melting temperature was observed with decreasing particle size1. The melting point of

CdS was shown to decrease from 1200 K for particles with a 4 nm radius to 600 K for

particles with a 1.5 nm radius.

The second phenomenon arises from quantum mechanics where it is well known that

electronic particles, confined by potential barriers to a space comparable or smaller

than the De Broglie wavelength of the particles, have discrete allowed energy states

rather than a continuum. For semiconductors, the critical dimensions below which

quantization effects appear depend on the effective mass (m*) of the electronic charge
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carriers. It can be shown that electrons and holes inside a semiconductor crystal

respond to an electric field almost as if they were free particles in a vacuum, but with

a different mass. This mass is called the effective mass and is usually stated in units of

the ordinary mass of an electron me.

Since quantisation depends on spatial confinement, three different shapes can be

defined where the confinement exists in one, two or three dimensions as shown in

Figure 2.1. Confinement in one-dimension leads to quantum films, in two dimensions

produces quantum wires and finally in three dimensions produces quantum particles

often called quantum dots.

Figure 2.1: Three quantisation configuration types in semiconductor depending on

whether the confinement exists in one, two or three dimensions (illustration taken

from ref2).

The density of states (DOS) is quite different depending on the number of confined

dimensions. For bulk materials the DOS is a continuous function, but when

confinement appears quantisation arises, and thus for quantum films the DOS is a step

function, for quantum dots the DOS is a series of discrete values, like a molecule or

an atom. Finally, quantum wires have a DOS that is an intermediate between quantum

films and quantum dots. The DOS of the three types of confinement regimes are

shown in Figure 2.2 (Taken from ref2).
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Figure 2.2: Density of states functions for quantum films, quantum wires, and

quantum dots.

The existence of the quantum size effect in such small semiconductor nanoparticles

was first reported in the early 1980’s by Ekimov3, Efros4, and Papavassiliou5.

Different theories were elaborated to calculate the band gap of a semiconductor at a

given particle size.

II.2 The molecular orbital approach

A qualitative explanation to the fact that in small semiconductor particles the bands

are discrete can be given by the linear combination of atomic orbitals-molecular

orbitals approach (LCAO-MO), also called tight binding model6. One has to consider

an N-atom infinite chain (e.g., an idealized polyacetylene) as the one-dimensional

analog of the bulk solid. Recognizing the fact that an infinite chain is isomorphous

with a cyclic group of infinite order6, its energy levels can easily be obtained using

the Hückel level as

Ej =  +  cos(2j /N), j = 0, ±1, ±2,……,±N/2, (2.1)

where Ej is the jth energy level,  the Coulomb integral, and  the resonance integral.

This expression can be modified by introducing a new index k such that

E(k) =  +  cos ka, k = 0 to ± /a. (2.2)

Here a is the unit cell length and k = 2j /Na, called the wave vector. Figure 2.3 shows

the plot of E(k):
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Figure 2.3: Plot of E(k) in function of k.

From this, the band structure of the idealized one-dimensional solid is obtained. The

dispersion of the bands looks continuous, as N is infinite for this infinite chain. The

quantized nature of the band can easily be seen when reducing N, as shown in Figure

2.4 for N=15 (15-annulene) and N=5 (cyclopentadiene):

Ej = α + 2β cos(2jπ/5)

cyclopentadiene

Ej = α + 2β cos(2jπ/15)

15-annulene

Figure 2.4: Plot of Ej as a function of j for small values of N.

The increasing space between the energy levels can easily be seen on this Figure and

the discrete nature of the band becomes more and more prominent as N becomes

smaller. This transition from the idealized polyacetylene through the annulene to

cyclopentadiene provides a one –dimensional analog of the transition from solids to

clusters and finally to molecules.

This model allows an easy understanding of the quantum size effect in

semiconductors, but it lacks a quantitative theoretical treatment. In the following a
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model will be given which calculates theoretical values for the band gap in small

semiconductor particles.

II.3 Effective mass approximation

 The theoretical background on quantized particles was first published by Brus et al7-9.

They laid out the framework for understanding these effects from the point of view of

molecular quantum chemistry. In II-VI and III-V semiconductors, the exciton can be

described by a hydrogen-like model. This model incorporates the effective mass and

the screening, described by the dielectric constant. Brus reasoned that unlike the

situation in bulk materials, the photogenerated electron-hole pairs in small clusters

could become physically confined. Confinement raises the electronic energy exactly

as would be expected from the simple particle in a box model of quantum mechanics.

The Schrödinger equation is often used to solve the one-dimensional problem of a

particle subjected to a stepped potential energy function, where the energy is infinite

everywhere expect for a finite line segment of length L. The equation under these

conditions is:
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The solution of eq. 2.3 using eq. 2.4 is
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which satisfies the boundary condition of continuity at x = L. The boundary condition

allows only quantised energy levels. It can be seen that E is inversely proportional to

the square of L; therefore the energy increases quadratically as the size of the box is

reduced. This treatment can be applied to the problem of excitonic energy levels in

semiconductor clusters.
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The Schrödinger equation can be written for the cluster by using the bulk values of

me* and mh* and by approximating the exciton wave function by a few configurations

of i(re) j(rh) of the particle in a spherical wave functions:
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where 
e
 and 

h
 represent the positions of two charges of magnitude e inside the

sphere. The energy difference between the lower edge of the conduction band of the

cluster and the vacuum level is in fact not infinite10. The vacuum level can be thought

of as the wall of the sphere, with V0 = . Henglein showed that for aqueous systems

V0 = 3.8 eV11. In fact, this reduces slightly the cluster size required to see the same

effects that would be expected if V0 would be taken to be infinite. To solve this

equation a basis set, the s wave functions for the particle in a sphere, is used,
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where r is the radial position, Cn are normalised constants, R is the radius of the

sphere and
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Then one can find the energy of the lowest excited state by using the wave function

 = i(re) j(rh),
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where < > means the average over n. The first term is the quantum energy

localisation, increasing as R-2 for both electron and hole. The second term is the

Coulomb attraction, and the third term is the solvation energy loss, where

n
=

+1( ) n +1( )

2
( n + n +1)

(2.11)

and =
2 1

. The terms 2 and 1 are the dielectric coefficients of the sphere and the

medium (bath), respectively.

Some typical values of these three terms, taken from literature9, are shown in Table

2.1:
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ZnO CdS GaAs InSb

Kinetic 0.27 0.27 0.65 >1

Coulomb -0.24 -0.15 -0.08 -0.06

Solvation 0.06 0.05 0.03 0.02

Total shift 0.09 0.17 0.6 >1

Table 2.1: Energy terms in eV from Eq. 1.8 for R = 3 nm spheres of the indicated

materials

From this derivation it is very easy to find the band gap energy of particles with a

radius R,

E
(R ) = Eg +

h
2

8mR
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R
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(2.12)

where Eg is the band gap of the bulk material.

It was apparent that this model fits well the experimental data for rather large particles

but that the deviation from the measured values increased as the size decreased. For

this reason a modified model was developed.

II.4 The hyperbolic band model and the tight-binding

theory

In the case of PbS, Wang et al.12 showed that the model developed above breaks down

for particles with a diameter smaller than 10 nm. They claimed that this could be

related either to the size-dependent Coulomb interaction or to the breakdown of the

effective mass approximation. The dielectric screening decreasing with exciton

radius13 gave rise to the size-dependent Coulomb interaction hypothesis. The

dielectric constant of the bulk PbS is large ( = 17.2) so that the third term of

equation (2.12) contributes little to the result of the calculation. For sufficiently small

particles, the effective dielectric constant becomes reduced and might influence

equation (2.12). Nevertheless Wang et al. thought that for PbS this effect remains

small as the exciton formation is due to the transfer of an electron from the S to the Pb

atom. As PbS is highly ionic this results in a charge rearrangement, but essentially no

new charge separation.
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The most important effect is certainly the breakdown of the effective mass

approximation. It was reported12 that judging from the known band structures of PbS

the band gap will not move to different points of the Brillouin zone, and that the direct

gap will be located at the L point. This point has the coordinates L = (± /a, ± /a,

± /a), where a is the lattice spacing. For small deviations of k (defined in the

molecular orbital approach) from the L point, as it is the case in rather large particles,

equation (2.7) can still be used. However, the effective mass approximation,

equivalent to energy surfaces of the parabolic form h2
k

2
/(2m), is accurate only for

very small k. From the effective mass approximation, k= /R which can be compared

to the lattice vector G =2 /a. For k  0.1G (2R  10a), the calculation of the energies

are no longer well approximated by the parabolic form in PbS.

Wang and his co-workers developed a modified model that circumvented this

problem. It relies on the approximation that the lowest energy excitation of the PbS

lattice leads to a simple electron transfer from S- to Pb+, at an energy equal to the bulk

band gap. One also assumes that for the calculations of the band gap only two bands

are important, those at the L point which constitute the highest occupied valence band

and the lowest unoccupied conduction band. This model is called the hyperbolic band

model, and gives rise to the following equation:

  
E = Eg

2 + 2h2Eg /R( )
2

/m[ ]
1 2

(2.13)

The band gap values obtained following this model are in good agreement with the

experimental data for PbS particles down to 2.5 nm.

The experimental data of other semiconductors (like CdS, ZnS, CdSe) could well be

fitted by the tight-binding approach, which was also used to model PbS particles with

size under 2.5 nm. This semi-empirical theory, considering implicitly the atomic

structure, has been intensively used in solid-state physics14. It has been adapted for

small semiconductor particles of PbS by Wang et al.12 and for CdS, ZnS15,16and

CdSe17 by Lippens and Lannoo. In this method the energy levels and the wave

functions are, respectively the eigenvalues and the eigenvectors of the Hamiltonian

matrix H. The matrix elements of H are expressed as a basis set of atomic orbitals

(often sp3 orbital) or of linear combinations of them in terms of two-center integrals.

As a semi-empirical approach, these integrals are considered free parameters and are

obtained by adjustment to the experimental values already known. This means that the



 The Quantum Size Effect 25

bulk band structure has to be known experimentally. In the case of PbS, a three-

parameter tight-binding calculation12 explains the data quite well. For CdS and ZnS, a

thirteen-parameter tight-binding model has been used, allowing good agreement with

experimental data down to 2 nm in the case of CdS.

A graphical representation of the above mentioned models is shown on Figure 2.5:
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Figure 2.5: Dependence of the optical bandgap of PbS (taken from Ref. 11) and CdS

(taken from Ref. 14) on the cluster size. The dashed lines are the calculation based on

the effective mass approximation. The squares represent the experimental data. In

PbS, the crosses are the results of the cluster tight-binding calculation and the solid

line the representation of the hyperbolic band model. In CdS, the solid line is the

results of the tight-binding calculation from Lippens et al.16.
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Chapter III

Nanoparticle Sensitised Solid-State

Nanocrystalline Solar Cell

This chapter describes the different components of the quantum-dot sensitised solid-

state device (QDSSD). The role and the properties of the different constituent

components of the device, from the nanocrystalline network, the sensitiser, the hole-

conductor, to the counter-electrode will be analysed.

III.1 The nanocrystalline network

The nanocrystalline network is composed of semiconductor colloids which are

deposited on a glass coated with a doped transparent conducting oxide (TCO),

fluorine doped tin oxide (SnO2:F). Typically, TiO2 was used as the nanocrystalline

semiconductor; this material has the advantages of being non-toxic, and cheap. These

properties make it very attractive for the industrial application as a white pigment in

paints, paper, plastics, etc. In the present application the TiO2 is used as a colloidal

dispersion with very small particle size (15-20 nm). A paste based on this powder and

containing organic polymers is used to form a film, which is then sintered. This

process also creates interconnections between the particles, and thus achieves an

electrical contact between them. The final film is mechanically stable, transparent and

has a thickness of a few microns. The nanocrystalline semiconductor network,

characterized by its high specific surface, has several design functions; it provides the
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surface for the sensitiser adsorption, it accepts the electron from the light-excited dye

and finally it conducts the injected electrons to the working electrode.

TiO2 exists in two forms; anatase and rutile. For the building of solar cells, the anatase

form, which has a pyramid-like crystal, was used mainly due to its higher stability at

room temperature. The rutile form absorbs in the near-UV region leading to the

formation of holes, which are strong oxidants able to react with the cell components.

It is known that the hole-conductor, spiro-OMeTAD described in section 3.3, forms

an ohmic contact with SnO2:F
1. An operating cell composed of spiro-OMeTAD as

hole-conductor, and of SnO2 as working electrode would therefore be very inefficient,

as an important short-circuit will occur at the SnO2/spiro-OMeTAD interface. An

easy way to prevent this problem is to coat the SnO2 with a thin blocking TiO2 layer

deposited by spray-pyrolysis. Furthermore, beside its blocking electrical properties

this layer also beneficially enhances the mechanical adhesion of the TiO2 on the

conducting glass. After deposition of the hole-conductor solution, the solvents are

evaporated to form a solid film. During this process, a stress is exerted on the TiO2

layer due to the shrinking of the hole-conductor layer.

III.2 The Sensitiser

The sensitiser adsorbed on the surface of the nanocrystalline semiconductor is used to

absorb the incoming photon flux. The photochemical, electrochemical, and chemical

properties of the sensitiser play an important role to achieve high conversion

efficiencies.

Since the solar spectrum is centered on the visible light wavelength (400-800 nm), the

sensitiser should be able to absorb optimally the light in this spectral region. In the

present work, nanoparticles were used to sensitise the semiconductor. As we saw in

Chapter 2, due to the quantum size effect the edge of the absorption spectra of a

material can be tuned by varying the size of its particles. For the present application,

the particle size distribution does not play an important role as long as the absorption

occurs panchromatically (throughout the visible region) and that the injection is

possible. The selected synthese for the QD do not achieve a unique particle size but

rather a narrow size distribution2-5.

A long-lived excited state of the sensitiser is necessary to ensure a good injection rate

of the photoexcited electron from the sensitiser into the TiO2. This is normally not a
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limiting factor as the injection occurs on the femto- to picosecond time scale, thus

faster than the other deactivation pathways. To achieve an efficient electron injection

into the TiO2, the energy level of the sensitiser excited state has to be higher than the

energy of the lower edge of the conduction band of the semiconductor. In other

words, the oxidation potential of the sensitiser excited state has to be more negative

than the oxidation potential of the semiconductor, TiO2. On the other hand, the energy

level of the oxidised sensitiser has to be lower than the energy level of the reduced

hole-conductor to ensure an efficient regeneration of the sensitiser. In the case of a

QD size distribution, there will be a size limit above which the particles are no longer

able to inject electrons into the TiO2 
6. Figure 1 shows a simplified injection model by

showing relative positions of the valence band and the conduction band in the

semiconductor and in the adsorbed QD.

Figure 3.1: Electronic levels in semiconductor (SC) and QD particles. VB (full line):

upper edge of the valence band, CB (dashed line): lower limit of the conduction band.

(a) Large PbS particle, (b) Small PbS particle

In case a, a large QD is adsorbed on the semiconductor, its band gap is rather small

due to weak quantum confinement. The energy of the photogenerated electron in this

particle is weaker than the energy of the lower edge of the semiconductor conduction

band, and thus the driving force for the injection into the semiconductor is too weak

to provoke this process. However, when the QD is smaller, case b, the energy of the

photogenerated electron is greater than that of the LUMO of the semiconductor, and

thus the electron rapidly tunnels to the TiO2 particle.

To have a good adsorption of the sensitiser on the semiconductor, chemical bonds

have to exist between both. In the case of organometallic dyes, the carboxyl groups

are anchoring units; forming hydrogen bonds with the oxygen atom present at the

TiO2 surface. In the case of the QD, the situation is not so clear and may depend on

the synthetic route. If the QD is grown directly on the surface of the semiconductor,
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anchoring is certainly due to bonds appearing between the deposited metal ions and

the oxygen atom at the surface. As explained in the following, QD may also be

formed in the bulk of the deposition solution before migrating to the surface of the

semiconductor. In this case the adsorption of the particle may not be due to

metal/oxygen bonds as no metal valences are available for this. In the case of metal

sulfides QD, hydrogen bonds can be formed between the sulfur atom and the oxygen

at the surface.

III.3 The Hole conductor

The hole conducting material is responsible for the regeneration of the oxidised

sensitiser after electron injection into the semiconductor, and for the transport of

positive charges to the counter electrode.

On the one hand, to be able to regenerate the oxidised sensitiser, the hole conductor

has to have a redox potential higher than that of the oxidised species. The difference

between the two potentials should be large enough to ensure a good driving force for

the process. On the other hand, as the photovoltage of the dye-sensitised solar cell

depends on the redox potential of the hole conductor (as shown in Chapter 1), this

potential should be as low as possible to achieve a maximal device voltage under

illumination. Moreover the hole conductor should not be able to quench the excited

state of the sensitiser; this recombination reaction has to be much slower than the

injection of the excited electron into the semiconductor. Finally, the hole conductor

should not absorb light in the visible range as this could compete with the sensitiser.

The hole conductor should be deposited on the substrates without damaging the

sensitised semiconductor. Using high glass melting temperature materials can also

ensure the stability of the deposited films; the hole conductor should be in an

amorphous state rather than crystalline to ensure a better pore filling. Indeed hole-

conductor crystallisation inside the pores reduces dramatically the pore filling. The

hole conductor has to penetrate the pores of the nanocrystalline network. This limits

the size of the molecules of the compound, as the pores have sizes in the nanometer

scale. The contact with the counter-electrode should have an ohmic behaviour to

minimize the internal resistance of the device.
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The hole conductor has to be able to transport current without high resistances or

diffusion losses. For many organic semiconductors the conductivity is low. The

current can be estimated with the following equation:

J
n

= µ k T
dn

dx  (3.1)

where µ is the mobility, n the number of charge carriers, dx the thickness of the hole

conductor, k the Boltzmann constant and, T the temperature. One way to enhance this

current is doping of the hole-conductor by oxidation, increasing the number of charge

carriers.

Spiro-OMeTAD

 The hole-conductor molecule spiro-OMeTAD (2,2’,7,7’-tretakis(N,N-di-p-

methoxyphenyl-amine)-9-9’-spirofifluorene), used as a hole conductor, was derived

from TPD (N,N’-diphenyl-N,N’-bis(3-methylphenyl)-1,1’-biphenyl-4,4’-diamine)7,8.

The main advantages of the spiro-OMeTAD over TPD is its high glass transition

temperature of 121°C compared to 62°C. This property makes the spiro-OMeTAD a

very good candidate for the use in solar cells. Thin spin-coated layers of this molecule

showed no crystallisation even after storing for several years1.

NH3CO N

NNH3CO

H3CO OCH3

OCH3

OCH3

OCH3H3CO

Figure 3.1: Structure of 2,2’,7,7’-tretakis(N,N-di-p-methoxyphenyl-amine)-9-9’-

spirofifluorene (spiro-OMeTAD)
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The absorption spectrum of the spiro-OMeTAD in solution is shown in Figure 3.2.

The absence of an absorption peak at higher wavelength then 420 nm fulfils the

requirement of transparency of the hole-conductor.
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Figure 3.2: Absorption spectra of spiro-OMeTAD and spiro-OMeTAD++ in solution (

80:20 mixture of chlorobenzene and acetonitrile)

The conductivity of pure spiro-OMeTAD is very low, therefore the material cannot be

used as is in the solar cells. The conductivity  is a linear function of the charge

carrier mobility µ and the charge carrier density Nh:

= µ N
h
e (3.2)

where e = 1.602*10-19 C

This means that the doping level of the layer can be enhanced by partial oxidation of

the hole conductor i.e. increasing the number of charge carriers increases the

conductivity. Chemical oxidation is obtained using Tris(p-bromopheny)ammoniumyl

hexachloroantimonate ([N(p-C6H4Br)3][SbCl6])
1,9. The absorption spectrum of spiro-

OMeTAD+ has a peak at 511 nm, a shoulder at 700 nm, and a large peak at 1400 nm.

The spiro-OMeTAD2+ should show the same features, as the electronic interaction

between the two perpendicular -systems is small. Weissörtel10 showed that the

diradical cation of the spiro-OMeTAD has in CHCl3 absorption maxima at 511nm (

= 40100) and 1400nm (  = 32200) while spiro-OMeTAD4+ shows an absorption

maximum at 865 nm (  = 118000). The maximum of the spiro-OMeTAD2+ will be
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very useful for the measurements of recombination reactions using nanosecond laser

spectroscopy.

III.4 The Counter electrode

The counter electrode material should have a high conductivity and should be able to

provide ohmic contact with the hole-conductor; the work function of the material

should match the one of the hole-conductor. As it was shown that gold fulfills these

requirements 1, this noble metal was used in the present work. It was deposited by

evaporation in ultra high vacuum. Furthermore, gold reflects the incoming light from

the photoelectrode allowing a second traversal of the sensitised TiO2 film, thus

enhancing the amount of absorbed light.
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Chapter IV

The Device

IV.1 Materials

Thin compact TiO2 layers were prepared by spray pyrolysis using as precursor di-iso-

propoxytitanbis(acetylacetonate) (TAA®, purchased from Aldrich). The TAA solution

stored under argon was diluted with ethanol to 0.02 M prior to use, as the solution

changed colour from yellow to orange in air.

Screen-printable TiO2 pastes for the preparation of the nanocrystalline layers were

prepared by Pascal Comte and Raphaël Charvet following the procedure described by

Barbé et al1. In the framework of these studies different pastes were used. Their

porosity, particle size, and surface area are summarised in Table 4.1.

Name Porosity

[%]

Particle size

[nm]

Specific surface

[m
2
/g]

JDD1x-S7 69 15 104

PC100x-S2 65 15 105

PC147x 65 15 97

RC14x 65 18.5 84

Table 4.1: Characteristics for different screen-printable pastes, characterised by P.

Comte using BET technique.



36 Chapter IV

Doctor-blading pastes were prepared by diluting screen-printable pastes with ethanol

making them more fluid.

The chemicals used for the preparation of the nanoparticles were purchased from

different suppliers, unless otherwise stated, puriss p.a. grade was used. For the dip-

coating synthesis method, sodium sulphate hydrate was purchased from Fluka,

Pb(NO3)2 and Cd(NO3)2 from Merck. For chemical bath deposition, Na2SO3

anhydrous from Acros, selenium powder from Fluka, Pb(CH3COO)2*3H2O from

Acros, and CdSO4 from Fluka were used.

Spin-coating solutions were prepared using dry solvents, Chlorobenzene (Fluka) and

Acetonitrile (Merck) stored under argon prior to use.

2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9’-spirobifluorene (spiro-

OMeTAD) was supplied by Covion organic Semiconductor GmbH.

The spin-coating stock solution was prepared under inert atmosphere using additives

like Li[(CF3SO2)2N] (purchased from Fluka).

IV.2 Device preparation

To study the current voltage characteristics a device (as shown in Figure 4.1) with

four small diodes each possessing a surface area of 0.16 cm
2
 was employed. Having

four active cells on a single module allows having a measure of its homogeneity.

Figure 4.1: Scheme of the device
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IV.2.1 Conducting glass substrates

From a variety of conducting glasses (TCO), Asahi glass was chosen for its low

resistance (10 / ) and its thinness (1 mm). This glass is based on fluorine doped

SnO2 as a conducting layer, which has a better thermal stability compared to indium

doped tin oxide (ITO). The structuring of the TCO was done using a chemical etching

method. Zinc granulates were spread on the glass (20 mg/cm2) and reacted with 4 N

HCl (1 ml/cm2). Scotch© tape was used to mask the TCO area needed for the back

contact. The fast reaction between HCl and Zn leads to the removal of the SnO2. After

two treatments of 3 min reaction time the SnO2 is completely removed.

The structured glass is then cleaned by ultra-sonification in various solvents for 10

min in each solvent as shown below:

• 1x acetone

• 1x ethanol

• 1x Hellmanex® (2% in H2O)

• rinse with water several times

• 1x H2O

• 1x ethanol

The cleaned substrates were stored in ethanol. Prior to use the substrates were cleaned

by an UV/Ozone treatment (UVO-Cleaner®, Model N°. 256-220, Jelight Company

Inc.) for 15 min.

IV.2.2 Compact TiO2 layer

The compact films of TiO2 were deposited by spray pyrolysis of TAA® precursor.

The procedure was described by Kay2 and Kavan and co-workers3.

The sample was heated on a massive titanium plate(10x280x200 mm). Temperature

was set to 450°C and controlled by a NiCr/Ni thermopile. The precursor solution was

sprayed from a distance of around 20 cm using a chromatographic atomiser. The

sample surface was partially masked with 1 mm thin float glass in order to avoid

complete coverage of the glass by the compact TiO2 layer. Layer thicknesses of about

120 nm were built up with 20 spray processes4. To allow complete evaporation of the

solvent, the spray process was performed with an interval of 10 sec. The overall

consumption of precursor solution was 0.1 ml/cm25. The substrates were deposited on

the massive plate 10 min prior to spraying for thermal equilibration and left on the
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plate for 10 min after deposition of the precursor for complete transformation to TiO2

and for complete burning of residual organics.

IV.2.3 Nanocrystalline TiO2 layer

Two different techniques were used to deposit the nanocrystalline TiO2 layer.

“Screen-printing”

A manual screen-printing set-up was used to deposit a 20 mm broad strip of colloidal

TiO2 on the substrates. A vacuum system was used to stick the substrates on the main

plate of the set-up. By varying the mesh size one controls the thickness of the

deposited layer. The screen was first filled up with paste then put on the substrate to

deposit the paste. This procedure was repeated twice to improve the homogeneity of

the layer. After deposition, the layers were stored in the dust-free container for 15

min.

“Doctor-blading”

The substrates were fixed on a glass support using Scotch® tape which determines

layer thickness at the same time. The paste was deposited onto the substrates and was

then spread out using a glass pipette. The thickness of the deposited layer is

determined by the Scotch® tape. After deposition the layers were allowed to set in a

dust-free container for 30 min.

For both techniques, the substrates were sintered using the following temperature

profile:
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Figure 4.2: Temperature program for the substrate sintering.

The stages at 100°C and 150°C are done under normal atmosphere in order to

evaporate all the solvents. The subsequent steps were carried out under an oxygen

flux. It is very important to burn out all the organic compounds present in the paste

without forming carbon inclusions in the pores. The chosen sintering program allows

first the combustion of the additives and then the sintering. Pure oxygen was used to

ensure sufficient combustion.

An increased surface area and the formation of a very pure TiO2 could be obtained by

a TiCl4 post-treatment on the deposited nanocrystalline TiO2. This treatment was

shown to increase the injection of electrons into the TiO2 and thus the current that is

delivered by the solar cell. The precipitation of Ti complexes at the joining points of

two particles increases the interparticle connection and the electron transit from one

particle to another. Nevertheless, the treatment causes a decrease of the pore size and

thus of the pore filling. 50µl/cm2 of a 0.02 M TiCl4 solution in water were applied on

the nanocrystalline TiO2 layer for 12 hours at room temperature. The contact areas

were protected with a water-resistant adhesive tape. After the treatment the substrates

were washed with highly purified water, and sintered a second time for 15 min at

450°C just before the sensitiser was applied.

IV.2.4 Quantum dot sensitisation

Several types of nanoparticles were used during the present work, which can be

classified into two main groups, the metal sulfides (PbS, CdS, ZnS, Bi2S3) and the

metal selenides (PbSe, CdSe). All the QD were synthesised in-situ on the surface of

the semiconductors (TiO2, ZrO2, Al2O3). The main reason for this is that the in-situ
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synthesis on the TiO2 is expected to yield a better contact between the two materials.

Furthermore, the nanoparticles synthesised in solution have often to be stabilised with

molecules like TOPO (trioctylphosphine oxide), which are then extremely difficult to

remove.

IV.2.4.1 Metal sulphides

Two different methods were used for the synthesis of the metal sulphides. For the

sake of simplification the “dip-coating “ and “chemical bath deposition” terms will be

used in the following descriptions.

“Dip-coating” 6

TiO2 substrates are dipped for 1 min into an aqueous saturated nitrate solution of a

metal ion (Pb2+, Cd2+, Zn2+, BiO+). After rinsing thoroughly with pure water the

substrate is dipped for 10 seconds into an aqueous 0.2 M Na2S solution and rinsed

again. This procedure represents “one cycle”. These cycles are repeated several times,

it was shown that the small particles formed during the first coating act as nucleation

centers for the material which is brought about in the consecutive coating processes7.

“Chemical bath deposition”

The idea of this method is to mix all the reagents together at the beginning of the

synthesis. It was used for preparation of PbS sensitised TiO2. In this procedure a large

part of the lead ions are complexed to a complexing agent (triethanolamine) and only

slowly released as the free lead ions react with the sulphur ions present in the

solution. A more detailed explanation is given in the following when treating the

deposition mechanism of the metal selenides. 50 ml of the starting solution consisted

of:

• 1.25 ml of 1 M lead acetate

• 5 ml of 1 M sodium hydroxide

• 3 ml of 1 M thiourea

• 1 ml of 1 M triethanolamine

• rest was water
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This composition found in the literature8 was varied during the study to analyse the

effect on the deposition of the different components. The substrates are immersed in

this solution for a time varying from 10 min to several hours. As the synthesis is

highly temperature dependent, the reaction temperature was set to 20°C and

controlled by a thermostatic bath. After deposition the substrates were rinsed either

with HCl 1 M or with pure water, and heated up to normally 150°C for 30 min under

an argon atmosphere.

IV.2.4.2 Metal selenides

Chemical bath deposition9-12 was used to synthesise the metal selenides (PbSe and

CdSe). In this method three different complexing agents were used: trisodium citrate

(TSC), potassium nitrilotriacetate (K3NTA), and potassium hydroxide (KOH).

Nitrilotriacetic acid was neutralised using three equivalents of KOH to obtain the non-

commercially available K3NTA.

The preparation of PbSe and CdSe is very similar; lead acetate is used for the PbSe

and cadmium sulfate is used for the CdSe. For the deposition of PbSe using TSC as

complexing agent, the following aqueous stock solutions were prepared: 0.5 M lead

acetate, 1 M TSC and 0.2 M sodium selenosulfate (Na2SeSO3). The last solution was

prepared by stirring 0.2 M Se with 0.5 M Na2SO3 overnight at 85°C. The lead acetate

and the TSC solutions were mixed together and KOH was added to adjust the pH to

10. Then the Na2SeSO3 solution was added. The final concentration was 60 mM Pb2+,

50 mM Na2SeSO3, and 160-320 mM TSC. The higher the concentration of

complexing agent, the slower was the precipitation of PbSe. This effect was studied in

more detail.

For the deposition using NTA as complexing agent the same stock solutions were

used except for the TSC which was replaced by a 0.7 M K3NTA solution. The

deposition solution was prepared in the same way as for TSC and the final

concentration was 60 mM Pb2+, 50 mM Na2SeSO3, and 60 mM 0.7 M K3NTA.

For the deposition using KOH as complexing agent 1 M stock solution was used. The

deposition solution was obtained by adding first the Pb2+ solution to the KOH solution

and then adding the Na2SeSO3. The final concentration was 60 mM Pb2+, 50 mM

Na2SeSO3, and 0.6-1.2 M KOH.
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IV.2.4.2.1 Deposition mechanisms.

The ratio of complex to metal ions plays an important role by determining the

deposition mechanism. There exists a critical ratio (Rc) around which the crystal size

is highly dependent on this ratio, shifting the transition from one mechanism to the

other. Apart from Rc, the crystal size varies only weakly with the changing ratio.

Two main mechanisms have to be considered during the CBD: ion-by-ion deposition

onto the substrate with no precipitation in the solution, and the bulk precipitation with

diffusion of the bulk formed colloids to the substrate. The latter mechanism is due to

the presence of metal hydroxide M(OH)2 in the solution. Nucleation can occur on this

solid hydroxide phase more easily than if there were no nuclei present in the solution.

Considering the formation of CdSe the following equations can be written 10:

• Formation of the selenide; 2SeSO
3

2
+ H

2
O HSe + SeS

2
O
6

2
+OH

This step is rate-determining in the overall reaction, it is activation-controlled

• Cd-complex formation; Cd
2+

NTA
3

Cd(NTA)
NTA

3

Cd(NTA)
2

4

The amount of free Cd2+ can be calculated knowing the initial concentration of

Cd2+ and the stability constants of Cd(NTA)- and Cd(NTA)2
4-.

These two reactions are common to the two types of mechanisms.

Ion-by-ion mechanism:

• Nucleation of CdSe; Cd
2+

+ HSe +OH CdSe(s) + H
2
O

The precipitation occurs if the product of the concentrations of the species

exceeds the solubility product, Ksp (10-35).

• Crystal growth; (CdSe)
m

+ Cd
2+

+ HSe +OH (CdSe)
m+1 + H

2
O

• Aggregation or coalescence; (CdSe)
m

+ (CdSe)
n

(CdSe)
m+n

The coalescence is the combination of two clusters to form one single crystal, and

aggregation means that two or more separate but contacting crystals are formed.

Bulk precipitation:

• Formation of Cd(OH)2; Cd
2+

+ 2 OH Cd(OH)
2
(s)

• Conversion to CdSe; Cd(OH)
2
(s) + HSe CdSe +OH + H

2
O

The hydroxide nucleus is eventually converted to CdSe.

• Nucleation of CdSe;

Cd(OH)
2
(s) + Cd

2+
+ HSe +OH Cd(OH)

2
CdSe + H

2
O
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CdSe can also nucleate at the surface of the hydroxide, although in the long term,

all the Cd(OH)2 will be converted to the more stable CdSe. But as Cd(OH)2 is

transformed to CdSe more hydroxide will precipitate as the equilibrium is

displaced. On the other hand, since the concentration of Cd2+ is decreasing with

time and the concentration of NTA3- is constant, Cd(OH)2 will have a decreasing

tendency to precipitate

IV.2.4.2.2 Reaction parameters
11

Solution composition; As discussed before, the reaction is not very sensitive to the

solution composition. Only when the complexing agent to metal ratio is near the

critical ratio is the sensitivity increased. Below this ratio the solution is designated as

low complex (LC) while, when above, it is called high complex (HC).

Deposition temperature; The crystal size is strongly dependent on the deposition

temperature. A lower temperature results in smaller crystals. This parameter is one of

the most important to control. However, the lower deposition temperature also leads

to a slower deposition rate.

Illumination during deposition 
12

; Illumination during deposition has a marked effect

on the absorption characteristics of the produced particles. This can be explained by

photo-electrochemical reactions occurring on the growing crystallites. Therefore, the

deposition solution should be kept in the dark during deposition.

Nature of the substrate; One should ensure that the synthesised particles are able to

adsorb at the surface of the substrate.

IV.2.5 Surface co-modification

Surface co-modification was achieved by immersing the sensitised TiO2 layers into a

ethanol solution containing the molecules to deposit at a concentration of 0.5 mM.

The layers stayed two hours in the solution before drying in air prior to spin-coating

of the hole-conductor. The concentration of the deposition solution was shown to

have only a minor influence on the resulting device.

IV.2.6 Spiro-OMeTAD deposition

A spin-coating technique is used to apply the hole-conductor. The solution is

deposited on the substrates and spun to form a flat layer at the surface of the substrate.

The spin-coating solution is prepared as follows; spiro-OMeTAD is dissolved in dry
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chlorobenzene to form a 0.25 M solution. Besides this a dry acetonitrile solution

4.3 mM in N(p-C6H4Br)3SbCl6 and 0.15 M in Li(CF3SO2)2 is prepared. The two

solutions are mixed together obtaining a final concentration of 0.23 M in spiro-

OMeTAD, 13.6 mM in Li(CF3SO2)2 and 0.4 mM in N(p-C6H4Br)3SbCl6.

The sample is placed in a chamber under argon flux for 1 min. 150 µl of the spin-

coating solution was applied onto the substrate; the solution is allowed to set 1 min on

top for good penetration into the pores. The substrate is spun up to a speed of

1000 rpm for 30 s with an acceleration of 200 rpm/s. The samples were then dried for

30 min in argon and 30 min under vacuum (0.1 mbar) before deposition of the counter

electrode.

The thickness of the spin-coated hole-conductor layer on top of the sensitised

heterojounction is about 400 nm as shown in Figure 4.3.

Figure 4.3: Scanning electron micrograph showing a cross section of a sample after

spin-coating.

The spiro-OMeTAD film on top of the nanocrystaline semiconductor serves as a

spacer to avoid the direct contact between sensitised heterojounction and the counter

electrode. Previous work showed that diminishing the concentration of the hole-

conductor solution by 50% did not increase the short circuit risk5.

IV.2.7 Counter electrode deposition

A gold film of 30 nm was used as contact material. It was evaporated on the sample

using an Edwards Auto 500 evaporator at a pressure of 7*10-6 mbar. The deposition

rate was around 0.1 nm/s for the first 3 nm and then 0.3 nm/s until 2 nm before the

desired thickness was obtained and then again 0.1 nm/s until the end. The typical

thickness allowed having a strong enough layer which doesn’t tend to peel off as

thicker layers.
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Chapter V

Experimental Methods

In this chapter, the experimental techniques used are exposed. Absorbance and

fluorescence spectroscopy as well as Fourier transform infrared spectroscopy were

used to characterise the system. The performance of the solid-state device was

measured using photovoltaic techniques. The reaction dynamics were studied using

time resolved spectroscopy.

V.1 Absorption and fluorescence spectroscopy

Absorption spectroscopy was used to characterize the optical density of the deposited

nanoparticles. From the absorption spectrum it was possible to estimate the particle

size of the Q.D.. Absorption spectra were measured on a Cary 5 UV/Vis/NIR

spectrophotometer. The solid samples were attached to a metal plate containing holes

with double face adhesive tape. They were illuminated from the glass side.

The fluorescence spectroscopy was used to monitor a possible electron injection from

the nanoparticle into the TiO2, by comparing the obtained spectra with those of other

semiconductors, such as ZrO2 and Al2O3. The measurements were done using a SPEX

Fluorolog 112 fluorimeter, which was equipped with a double monochromator for the

emission spectrum. A Hamamatsu R2658 photomultiplier was used for the detection.

The samples were excited with a Coherent Innova Kr laser at 468 nm or 520 nm.
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V.2 FTIR spectroscopy

Infrared spectroscopy is one of the most powerful tools available to the chemists for

identifying organic and inorganic compounds. Indeed most molecular species absorb

infrared radiation. It is based on the fact that the absorbed radiation stimulates

molecular vibration. These vibrations are characteristic for each organic functionality,

such as methyl or aldehyde groups for example. Each molecular species has a unique

infrared absorption spectrum. Thus, in an ideal case, an exact match between the

spectrum of a compound of known structure and that of an analyte unambiguously

identifies the latter. For quantitative analyses infrared spectroscopy is less efficient

than UV/Vis spectroscopy because the narrow peaks that characterize infrared

spectroscopy usually lead to deviations from Beer’s law. Fourier-transform infrared

spectroscopy (FTIR), offering the advantages of unusually high sensitivity, resolution

and speed of data acquisition, became the standard technique for chemical

characterisation. Fourier-transform instruments are detecting and measuring all the

wavelengths simultaneously. In order to separate wavelengths, it is necessary to

modulate the source signal in such a way that it can be decoded by a Fourier

transformation, a mathematical operation.

There exist two major techniques able to enhance the sensitivity of the FTIR

measurements; attenuated total reflectance (ATR), and photoacoustic spectroscopy

(PAS). The non-destructive ATR technique is based on the reflectivity of a diamond

crystal, which is influenced by the nature of the measured material. On the other hand

PAS is based on the heat transfer. The radiation absorbed by the sample is

transformed into heat, which diffuses to the environment and results in local pressure

variations which are detected by a very sensitive microphone.

The FTIR spectra were measured using a Digilab FTS-7000 step-scan spectrometer,

equipped with a DTGS detector. The total attenuated reflectance accessory is based

on a diamond element (Specac, Orpington). The samples were contacted with the

diamond using a sapphire anvil assembly mounted overhead on a unique swing

bridge. A reproducible load of 3 kbar was applied on the sample. The PAS

measurements were carried out using a MTEC 300 photoacoustic cell (Mtec).
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V.3 Photovoltaic characterisation

The two widely used techniques for photovoltaic characterisations are, current-

voltage measurements under simulated sunlight and monochromatic light generated

current measurements; IPCE.

V.3.1 Current-voltage measurements
1-3

The dye-sensitised solar cell device can be represented by an equivalent electric

scheme shown in Figure 5.1.

Figure 5.1: Equivalent electric scheme of the dye-sensitised cell.

Where Iph is the photo current, ID the diode current, RS the series resistance (describes

the resistances of the materials) and Rsh the shunt resistance.

The TiO2/sensitiser interface is modelled as a Shottky diode. The equation of such a

diode is:

I
D

= I
S
exp

V + I R
S

V
th

 

 
 

 

 
 1

 

 
 (5.1)

where IS is the saturation current,   the ideality factor (typically varies from 1 to 2.4),

and Vth the thermal voltage:

Vth =
kB T

q
(5.2)

The equation for the equivalent electric scheme in Figure 5.1 is:

I = Iph Is exp
V + I RS

Vth
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V + I RS
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(5.3)
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The shunt resistance is normally much larger than the series resistance. For this

reason one can simplify Equation 5.3:

I = Iph IS exp
V + I RS

V th

 

 
 

 

 
 1

 

 
 

 

 
 (5.4)

 During the current-voltage measurements the following parameter will be

determined:

Short-circuit current (Isc)

The current equals the short-circuit current when the applied bias potential is zero:

Isc = Iph IS exp
Isc RS

Vth

 

 
 

 

 
 1

 

 
 

 

 
 (5.5)

Open-circuit potential (VOC)

When no current is flowing through the cell the potential equals the open-circuit

potential, using equation 5.4 one can find:

VOC = Vth ln
Iph

IS
+1

 

 
 

 

 
 (5.6)

Maximal power output (Pmax)

The power delivered from a solar cell at a certain potential equals the product of the

current at this potential times the potential:

P(V ) = I(V ) V (5.7)

To obtain a graphic representation of the power one has to vary the potential between

VOC and 0:
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Figure 5.2: Representation of the I/V and the power curves. PPP is the point of peak

power.

The point where the power is maximum (Pmax) corresponds to the so-called peak

power point (PPP) for the I/V curve. These are the optimal current and potential

conditions (Iopt, Vopt) for the operating cell.

Fill-factor (FF)

The fill-factor quantifies the quality of the solar cell, it is the ratio between the areas

of the two rectangles shown in figure 5.2:

FF =
Vopt Iopt

Voc Isc
(5.8)

For a good cell the fill-factor lies between 0.7 and 0.85. These values are influenced

by the values of the series and the shunt resistances. To obtain high fill-factor values

the shunt resistance has to be as small as possible and the series resistance as high as

possible.

Efficiency ( )

The overall conversion efficiency  is given by the following relation:

=
Vopt Iopt

Pin
=
Voc Isc FF

Pin
 (5.9)

It expresses the ratio of produced power to the incoming power (Pin).

The experimental conditions have been fixed worldwide, in order to compare results

coming from different research centers. An approximated power density value of

1000 W/m2 has been set for the incident solar radiation, the temperature of the cell

should be 25°C and the spectral power distribution of the incoming light should

correspond to AM 1.5. The airmass (AM) is the ratio of the path length of incoming
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sunlight through the atmosphere when the Sun is at an angle  to the zenith, to the

path length when the Sun is at the zenith:

Figure 5.3: Representation of the AirMass concept.

AM1.5 corresponds to the spectral power distribution of light coming in with an angle

 of 48° to the zenith.

V.3.2 IPCE measurements
2,4

The sensitivity of a solar cell varies with the wavelength of the incoming light. The

incident-photon-to-electron conversion efficiency (IPCE) measures under

monochromatic light the ratio of the number of electrons generated by the solar cell to

the number of incident photons on the active surface:

IPCE( ) =
nelectrons( )
nphotons( )

=

I( )
e

Pin ( )
h

=
I( )
Pin ( )

hc
(5.10)

where I( ) is the current given by the cell at wavelength  and Pin( ) the incoming

power at wavelength .

The spectral sensitivity S( ) is the product of the IPCE( ) and the wavelength . If

one knows the spectral irradiation intensity E( ) one can find the short-circuit current

Isc using:

I
sc

= S( ) E( ) d (5.11)



 Experimental Methods 53

This method is useful for an indirect determination of the short-circuit current of the

solar cell.

V.3.3 Experimental Setup 
3

Current-voltage characteristics were measured using a computer controlled

potentiostat (Keithley 2400 Source Meter) and a sulphur lamp (Solar 1000,

Fusionlighting Inc/USA). The light intensity was varied using meshes in front of the

sulphur lamp. The set up allowed measurements at 1%, 10%, 50% and 100% sunlight

intensity and was calibrated using a Silicon photodiode.

The IPCE measurements were done on a set-up illuminated with a 300 W xenon

lamp. The light wavelength was selected by a monochromator (Spex Gemini 180,

Jobin Yvon Instruments SA). The beam was then split and directed on a calibrated Si

cell and on the test cell. The Si cell was used as reference to measure the relative

spectral response of the test cell as a function of the wavelength.

Figure 5.4 shows the spectra of different light sources:
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Figure 5.4: Spectral irradiance distribution of different lightsources; solar light at AM

1.5, sulphur lamp, and xenon lamp.

V.4 Laser spectroscopy

V.4.1 Nanosecond laser spectroscopy

The time resolved nanosecond laser spectroscopy was used to monitor the

recombination reactions at the TiO2/hole-conductor interface. The observed reaction
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is the recombination of the injected electron in the TiO2 with the hole in the oxidised

hole-conductor:

e TiO
2( ) + h+

spiro OMeTAD( ) (5.12)

The samples were usually excited at 450 nm and an observation wavelength of

518 nm was chosen for the following reason; as shown in Figure 3.2 the oxidised state

of the spiro-OMeTAD has a characteristic absorption peak at 518 nm. The optical

density at this wavelength was monitored to observe the recombination reaction.

Transient absorption difference spectra were also recorded by varying the observation

wavelength from 480 nm to 700 nm.

The flash photolysis experiments were carried out using a Nd:YAG laser (Continuum

Powerlite 7030) as excitation source, providing 6 ns pulses at a repetition rate of

30 Hz. The triplet of the laser fundamental (355 nm) was sent into a broadband

optical parametric oscillator (OPO). The energy of the laser beam incident on the

sample was measured using a thermopile. The beam was sent through a converging

lens so that its size was roughly 1 cm2 on the sample. An angle of 30° was kept

between the surface of the sample and the laser beam to avoid the laser beam entering

into the detector and to increase the illuminated area. The probe light from a Xe lamp

(Osram, 450 W) was sent through a cut-off filter and a monochromator before

illuminating the sample. After the sample, the light was sent through a cut-off filter

and a grating monochromator. The light intensity was measured using a fast

photomultiplier, and the data were averaged over 2000 laser shots by a 1 GHz band-

pass digital oscilloscope (Tektronix DSA 602A).
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Figure 5.5: Nanosecond laser spectroscopy set-up

V.4.2 Femtosecond laser spectroscopy

To observe reactions occurring on the femto to picosecond time scale a pump-probe

technique using a femtosecond laser source was used. It was possible to monitor the

trapping of electrons at the surface of the PbS, the injection of these trapped electrons

into the TiO2, and the recombination of the exciton in the PbS. The samples were

excited at 600 nm with the femtosecond laser. At this wavelength the PbS

nanoparticles still absorb a large amount of light. A probe pulse centered on 778 nm

was used to resolve the different reactions occurring inside the PbS. Another probe

wavelength of 1400 nm was chosen, to monitor the electrons in the TiO2 and the

oxidised hole conductor. The absorption spectrum of the spiro-OMeTAD is shown in

Figure 3.2.

A detailed explaination of the  experimental set-up was given by Serge Pelet5. Briefly,

the fundamental of the femtosecond laser source (CPA 2001 from Clark-MXR) was

used to probe the sample at 778 nm, while the pump beam at 600 nm and the probe

beam at 1400 nm were generated by two noncollinear optical parametric amplifiers

(NOPA). After interaction with the pump pulse in a moving sample, the probe beam

intensity was measured by a diode. The diode signal was analysed by a lock-in
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amplifier tuned at the frequency of a chopper placed on the pump pathway. A

schematic representation of the set-up is given in Figure 5.6
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Figure 5.6: Scheme of the femtosecond laser spectroscopy set-up
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Chapter VI

The Metal Sulfide Sensitisation

Metal sulfide nanoparticles have been largely investigated in the past decade. PbS

nanoparticles were intensively studied for their strong quantum confinement effects.

The applications for such particles are for example IR detectors and sensitisers for

solar energy conversion. CdS nanoparticles have been used, for example as biological

markers due to their tuneable photoluminescence.

In the present study different synthetic techniques were used for producing different

types of sensitising nanoparticles. For each technique the experimental parameters

were optimised to obtain the maximal efficiency of a solar cell device. The best cells

were achieved using PbS as sensitiser; efficiencies of nearly 1 % were measured.

VI.1 Dip-coating preparation

The dip coating technique was developed by Weller et al.1, and used for the synthesis

of a wide spectrum of materials. A detailed explanation of this technique is given in

Chapter 4.

The in situ process of particle formation at the surface of the nanocrystalline

semiconductor is governed by the interplay of the lattice energy of the formed particle

and the strong adsorption of the metal ions at the surface. The lattice energy drives the

combination of the metal sulfide molecules to large particles. On the contrary the

strong adsorption of the metal ions at the surface arrests the particle growth already at

small particle size. It was shown2 that during the first coating cycle small particles are
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formed. They will act as nucleation centers during the following cycles for the new

incoming ions.

Good optical absorption of the nanoparticles over the entire visible region is

necessary to achieve good solar cell efficiencies. Figure 6.1 shows the absorption

spectra of CdS and PbS sensitised TiO2 layers. The absorption of the CdS sensitised

TiO2 layers is much weaker than for PbS coated layers. The absorption edge of CdS

lies around 500 nm while PbS easily absorbs light over the entire visible range. This

wide spectral absorption difference makes the lead sulfide a better candidate for TiO2

sensitisation in solar cell applications than cadmium sulfide, PbS sensitised TiO2

hence was investigated in more detail in this work. The wave like features observable

on the absorption spectra are due to interference phenomenon happening in thin

nanocrystalline films. The interferences appear due to the reflection of the incoming

light at the glass TiO2 interface.
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Figure 6.1: Absorption spectra of PbS and CdS sensitised 2µm thick TiO2 layers.

VI.1.1 Lead sulfide

Lead sulfide is a direct band gap semiconductor. The band gap of the bulk material is

0.41 eV3,4, which means an absorption band around 3350 nm5. The high dielectric

constant (  = 17.3) and the small electron effective mass (< 0.1 m*) create an exciton

with a large effective Bohr radius (18 nm). The small band gap combined with the

large exciton Bohr radius make PbS an interesting system for the observation of the
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quantum size effect, as a strong effect would be expected to be observable at sizes

smaller than 18 nm.

VI.1.1.1 Absorption spectroscopy

The absorption spectra of PbS give important information about the size and the size

distribution of the nanoparticles. It was interesting to see the influence of each

consecutive “coating cycle”. Figure 6.2 shows the absorption spectra of TiO2 layers

sensitised with an increasing number of coatings:

Figure 6.2: Absorption spectra of TiO2 layer sensitised with different numbers of

coatings

Two phenomena are observed when increasing the number of coatings; the absorption

increase at a certain wavelength is clearly seen as well as the absorption edge shift to

longer wavelength. The absorption increase is explained by the increasing amount of

deposited PbS, while the increase in size leads to the shift towards longer wavelength,

due to the quantum size effect1,2. The bigger the particle, the lower the quantum size

confinement and thus the smaller the band gap, leading to higher wavelength for the

absorption edge.

The particle size can be determined from the absorption spectra by using a theoretical

equation derived by Wang6:

  

E = Eg

2
+ 2 Eg h

2 ( /R)
2

m
*

 

 
 

 

 
 

1
2

(6.1)
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m
*

m
e

= 0.085 (6.2)

where E is the energy band gap of the size quantized PbS, Eg the band gap of bulk

PbS (0.41 eV), R the particle radius, and m* is given by Equation 6.2, where me is the

free electron mass. Figure 6.3 gives a graphical representation of this relation;
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Figure 6.3: Bandgap of PbS as a function of particle size, theoretical calculation

following the hyperbolic band model6.

By applying the absorption onsets found in Figure 6.2, the diameter of the PbS

particles Eq.(6.1) to a different number of coatings can be estimated. For one, three

and five coatings particle diameters of 3.8 nm, 4.5 nm and 5.1 nm, respectively were

found. The good agreement with experimental data is shown in the following by using

high-resolution transmission electron microscopy.

VI.1.1.2 High-resolution transmission electron microscopy

High-resolution transmission electron microscopy (HRTEM) was used to confirm the

existence of PbS nanoparticles on the TiO2 surface after the coating treatment. This

method also provides a direct measurement of the particle size.

The different materials were distinguished through diffraction pattern analysis. On the

picture the small round particles of PbS can easily be distinguished from the much

bigger more rectangular TiO2 particles. The particle size is about 5-6 nm, and is in

perfect accord with the calculated value based on the absorption behaviour of such a

layer. Surprisingly, the TiO2 surface is not well covered by the PbS. It is possible that

not all the particles are visible as the focusing is very sensitive to the depth. This low

coverage has certainly a negative effect on the charge collection at the interface. One
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of the major loss mechanisms is the interfacial recombination reaction between an

injected electron and a hole present in the hole-conductor. The bare TiO2 can easily be

in close contact with the hole-conductor; this proximity will favour the recombination

as the two reactants are close to each other.

 

Figure 6.4: High-resolution transmission electron microscopy images of a TiO2 layer

modified with 5 coatings of PbS.

VI.1.1.3  Fluorescence spectroscopy

After light absorption, an exciton (electron-hole pair) is created in the nanoparticle.

The recombination of this electron-hole pair induces the fluorescence. The exact

mechanism in nanoparticles is very complex. In the case of PbS hot electrons are

quickly trapped at the surface into shallow traps. Further trapping can occur into deep

traps. The recombination leading to fluorescence occurs between the deep-trapped

electron and the hole present in the valence band of the PbS. The fluorescence of PbS

nanoparticles is generally weak, but can still be detected in the visible region7.

In the present work, fluorescence was used to monitor the injection of an excited

electron of the PbS into the conduction band of another semiconductor. The feasibility

of electron injection into the semiconductor is limited by two parameters. On one

hand, the energy level of the semiconductor conduction band and on the other hand,

the PbS nanoparticle excited state energy.

As shown in Figure 3.1, the nanoparticle excited state energy level is size-dependent.

Meaning that if the synthesised particles are too big, the quantum size effect will not

be strong enough and the conduction band of the nanoparticle will be too low to allow
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electron injection. Two semiconductors were used, TiO2 and ZrO2. TiO2 (bandgap =

3.2 eV) used as substrate in the solar cell should demonstrate the possible use of such

nanoparticles for sensitisation. ZrO2 has a very large bandgap (about 5 eV), its

conduction band is lying much higher than that of TiO2, and thus, in this case, no

injection should be possible. If an electron is injected into the semiconductor, the

fluorescence is quenched since no recombination between the electron-hole pair is

anymore possible. If the electron cannot be injected and stays on the PbS particle,

recombination will occur and fluorescence will be detectable. 2 µm thick

nanocrystalline semiconductor layers were used for the measurements, PbS sensitised

layers were compared to bare layers. Figure 6.5 shows the measured fluorescence:
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Figure 6.5: Fluorescence spectra of 2 µm thick TiO2 and ZrO2 layers, excited at 520

nm with a krypton laser. (1) PbS 8 coatings on ZrO2, (2) PbS 5 coatings on ZrO2, (3)

bare TiO2, (4) bare ZrO2, (5) PbS 5 coatings on TiO2.

First of all, the bare oxide layers showed no luminescence as expected. The PbS

sensitised ZrO2 samples exhibited a fluorescence peak around 780 nm. This

demonstrates the impossibility to inject electron from the PbS nanoparticles into the

ZrO2 conduction band and shows that recombination between the trapped electron and

the hole has occurred. On the contrary, the TiO2 sample sensitised with PbS exhibited

no fluorescence; showing the injection of the trapped electron into the TiO2 which

quenches the direct recombination.

Two ZrO2 samples were sensitised using a different number of coatings (5 and 8). The

two fluorescence peaks are slightly shifted from each other: the peak corresponding to
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the smaller particles (5 coatings) is centered at 780 nm and the other at 794 nm. This

shift is explained by the fact that the smaller particles have a larger bandgap, i.e. the

electron-hole energy difference prior to recombination is larger than in the case of

larger particles. The generated light through electron-hole pair recombination is of

shorter wavelength (higher energy) than for the larger particles.

The minor differences in the signal intensities of the non-fluorescing samples can be

attributed to measurement errors, since they depend strongly on the sample angle

toward the excitation light, which is difficult to maintain constant. Small differences

can also arise from the layer morphology, which differs from one semiconductor layer

to the other.

VI.1.1.4 Kinetics of charge recombination

VI.1.1.4.1 The nanosecond laser spectroscopy

As fluorescence was used to demonstrate electron injection from an excited PbS

nanoparticle into the TiO2, nanosecond laser spectroscopy was used to demonstrate

hole injection from the reduced PbS into the hole-conductor. This will allow the

sensitiser to regenerate, resulting in the oxidation of the spiro-OMeTAD. In fact, this

technique does not monitor the spiro-OMeTAD oxidation as it proceeds too fast, but

it will measure as already shown in Chapter 5 the following electron-hole pair

recombination:

e TiO
2( ) + h+

spiro OMeTAD( ) (6.3)

The recombination will be followed using the oxidised species absorption peak of the

spiro-OMeTAD at 518 nm.

A 3 µm thick TiO2 layer was sensitised with 5 PbS coatings and used for transient

absorption difference spectra measurements, shown in Figure 6.6.
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Figure 6.6: Transient absorption difference spectra, excitation wavelength 450 nm, of

a 3 µm TiO2 layer sensitised by 5 coatings of PbS and spin-coated with hole-

conductor solution (0.25 M spiro-OMeTAD, 13 mM Li(CF3SO2)2N, and 0.4 mM N(p-

C6H4Br)3SbCl6) at different time delays.

The intensity of the characteristic oxidation peak at 518 nm is decreasing with time;

showing the recombination (eq. 6.3). From this data, the recombination half-lifetime

was measured to be 2 µs. This value has to be taken with some care as the

recombination is dependent on the laser intensity and on the matrix composition of

the hole-conductor. It was shown that the amount of additives, especially the

concentration of lithium salt, in the spin-coating solution highly affect the

recombination time constants8.

The presence of oxidised spiro-OMeTAD is a proof for the regeneration of PbS

nanoparticles by the hole conductor and that hole injection from the PbS into the

spiro-OMeTAD is possible. These measurements are done under open circuit

conditions that means the cells are not connected to an external electrical circuit. The

generated electrons and holes will not be removed from the interface and will be

much more likely to recombine as their concentration is much higher then compared

to an operating cell.

VI.1.1.4.2 Femtosecond laser spectroscopy

Femtosecond laser spectroscopy allows the observation of ultra-fast reactions

occurring in the system. It is possible to monitor the electron transfer from the PbS

particle to a TiO2 particle. It is also possible to observe the hole transfer from the PbS
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particle to the hole-conductor. For these measurements, TiO2 and ZrO2 were used to

allow a comparison between a conducting and an insulating material. Both

semiconductors were sensitised with 5 coatings of PbS. To reduce discrepancies due

to the use of two separate samples, measurements were first carried out without hole-

conductor. The sensitised TiO2 was then coated with spiro-OMeTAD (the spin-

coating solution was 0.12 M spiro-OMeTAD, 7 mM Li (CF3SO2)2N, 0.2 mM N(p-

C6H4Br)3SbCl6 in chlorobenzene).

For an identical layer thickness ZrO2 samples absorbed less light than TiO2 ones. This

arises from the fact that the ZrO2 film porosity is lower than that of TiO2 films. This

explains the smaller signals observed with these samples. Two wavelengths were

chosen to probe the system dynamics. A wavelength of 778 nm was chosen to

reproduce the results published by Patel et al.3 concerning the relaxation dynamics of

the excited electron. At this wavelength neither the spiro-OMeTAD nor the electrons

in the TiO2 conduction band absorb, therefore these two species will only have a

marginal contribution to these measurements. The experimental data are shown in

Figure 6.7.
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Figure 6.7: Ultra-fast dynamics measurements of PbS sensitised ZrO2, TiO2, and TiO2

coated with spiro-OMeTAD, probed at 778 nm. The curves represent the

multiexponential fits of the data for PbS on ZrO2 (full line), TiO2 (dashed line) and

TiO2 with spiro-OMeTAD (pointed line).

An other wavelength of 1400 nm was then chosen as probe light. This wavelength

corresponds to an absorption maximum of the oxidised hole-conductor. A 600 nm
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pump light was chosen because at this wavelength the PbS nanoparticles still absorbs

enough light but the hole-conductor only weakly absorbs light. The experimental data

are shown in Figure 6.8.
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Figure 6.8: Ultra-fast dynamics measurements of PbS sensitised ZrO2, TiO2, and TiO2

coated with spiro-OMeTAD, probed at 1400 nm. The curves represent the

multiexponential fits of the data for PbS on ZrO2 (full line), TiO2 (dashed line) and

TiO2 with spiro-OMeTAD (pointed line).

The values obtained for the decay time constant from the multiexponential fitting of

the experimental data are shown in Table 6.1.

778 nm 1400 nm

PbS on ZrO2

0.98 ps ± 0.1 (80%)

31 ps ± 10 (20%)

1.1 ps ± 0.1

PbS on TiO2

0.83 ps ± 0.1 (81%)

19 ps ± 5 (19%)

1.1ps ± 0.1 (90%)

84 ps ± 43 (10%)

PbS on TiO2 coated with

spiro-OMeTAD

0.47 ps ± 0.07 (61%)

4.2 ps ± 1 (23%)

300 ps ± 150 (16%)

0.78 ps ± 0.2 (60%)

3.9 ps ± 3 (15%)

(25%)

Table 6.1: Decay time constants of the experimental values obtained from different

type of samples using multiexponential fitting.

The measurements done on ZrO2 at 778 nm are in good agreement with the values

found in the literature3. Patel et al. results showed a double exponential decay with

time constants of 1.2 ps and 45 ps after light excitation (Equation 6.4). They assigned

the rapid time constant to further trapping from shallow traps into deeper traps
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(Equation 6.6). The hot electrons (having an energy level higher than the conduction

band of the nanoparticle) relaxation and trapping in shallow traps occurs very rapidly,

in less than 150 fs (Equation 6.5). The slower time constant was thought to be the

recombination of the deep-trapped electrons with the holes present in the valence

band of the nanoparticle (Equation 6.7).

PbS + h e
hot

PbS( ) + h+
PbS( ) (6.4)

ehot PbS( ) eShallowTrap PbS( ) (6.5)

eShallowTrap PbS( ) eDeepTrap PbS( ) (6.6)

eDeepTrap PbS( ) + hVB
+
PbS( ) h '+  (6.7)

For the same sample the measurements at 1400 nm showed only the rapid part of the

dynamics. At this wavelength the electrons in the deep traps are only weakly

absorbing and so their presence was not detected.

The differences with the literature values are certainly due to the fact that the

synthesis, and the size of the nanoparticles are different but also due to the absence of

a capping agent in this work.

When the PbS was deposited on TiO2, the measured dynamics were very similar to

those measured with ZrO2. This is contrary to what was found in the literature for

CdS-TiO2, where the fast decay slowed down in the presence of TiO2
9. The present

measurements suggest that electrons are injected from traps in the PbS into the TiO2

(Equation 6.8) rather than hot electrons (Equation 6.9). It was shown previously that

in other systems, the injection into the semiconductor occurs with electrons having

high kinetic energies10,11.

eTrap PbS( ) eCB TiO2( ) + (6.8)

e
hot

PbS( ) e
CB
TiO

2( ) + (6.9)

From these measurements, it is difficult to say if the electron transfer occurs from the

shallow traps or from the deep traps. On one hand, the long lived signal at 1400 nm

that could show the presence of the electron in the TiO2 conduction band would

predict that the electron transfer takes place from the shallow traps. On the other

hand, at 778 nm the contribution of the two decays are identical for the two

semiconductors, indicating that the same number of deep traps are formed in the



68 Chapter VI

presence and the absence of TiO2, showing that the transfer occurs from these lower

lying states. The signal at longer times is too weak for the exclusion of one of the two

possibilities.

Pelet12claimed that the absence of a difference between the two semiconductors

shows that the electron transfer is only limited by factors depending on the PbS

characteristics. For instance, the injection from shallow traps and deep traps would

have the same time constants. This could be understood if both are limited by the

same process, which could be the detrapping of the electron. Once the electron is

again in the conduction band it can react extremely rapidly with an acceptor state,

which can be for example the TiO2 conduction band, or another trap.

The other reaction studied with these experiments is the injection of the hole present

in the PbS valence band into the hole-conductor (Equation 6.10).

h
+
PbS( ) + spiro spiro

+ + (6.10)

This reaction is responsible for the 4 ps decay in both measurements at 778 nm and

1400 nm. In other semiconductors this reaction is much faster. This suggests that the

holes are trapped as the electrons. The generated oxidised hole-conductor can be seen

in the 1400 nm spectra as at this wavelength the spiro-OMeTAD absorbs and lives at

least 200 ps. A similar study was done by Bach et al.13, showing that this reaction

occurs between 3 ps and 1 ns for the dye sensitised system. The time constant

depends on the distance between the dye molecules and the hole-conductor, but also

on the number of spiro-OMeTAD molecules around the dye molecule.

In the case of the measurements at 778 nm, the 4 ps decay cannot be associated with

the formation of the oxidised hole-conductor as it has a minimum in its absorption

spectrum around this wavelength. Pelet12proposes that the disappearance of the hole

from the valence band could affect the absorption feature of the trapped electron. The

removal of the hole lengthens the lifetime of the electron in the conduction band as a

third decay component of 300 ps is necessary to fit correctly the decay of the

electrons. This is about ten times longer than in the absence of the spiro-OMeTAD.

At 1400 nm, a third exponential component is also present but could not be fitted; it

represents about 25 % of the total decay. Taking in account that during these

measurements a high number of electron-hole pairs per particle are created due to the

high power of the laser pulses, it is possible that the recombination (Equation 6.3) is

accelerated comparing to the nanosecond laser measurements.
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e TiO
2( ) + h+

spiro OMeTAD( ) (6.3)

VI.1.1.5 Photovoltaic characterisation

Most of the previously reported work concerning nanoparticle sensitisation of

semiconductors measured the photoelectrochemical behaviour using three electrode

systems. The modified layer immerged in the electrolyte acts as working electrode

whereas the counter electrode is often platinum and the reference electrode Ag/AgCl.

The electrolyte is an aqueous Na2S/Na2SO3
1,14-16or ferro/ferricyanide17 solution for

example. In these systems, corrosion and photocorrosion are often observed mainly

due to the aggressive nature of the electrolyte and the mass transport phenomena,

which leads to photo-induced particle growth. Photocorrosion generally involves

chemical reactions of charge carriers with the electrolyte or the bulk material itself.

These problems should not exist in the present system based on a solid electrolyte, as

there is no charge transfer involved in the regeneration process.

The photovoltaic measurements are operated on complete cells, the preparation of

such devices as seen in Chapter 4 involves several critical steps. Many parameters

play an important role in the photovoltaic behaviour of the final device, as for

example the TiO2 characteristics, the amount of deposited sensitiser or the

composition of the hole-conductor matrix. For these reasons, the comparison from

one cell to another will be done inside a same series but rarely from one series to the

other. All the cells in one series are based on the same TiO2 layer and are assembled

at the same time.

VI.1.1.5.1 Number of coatings optimisation

As shown above, the consecutive coatings enhances the absorption of a

semiconductor layer by increasing the particle size of the deposited nanoparticles.

Vogel et al.1 showed that the number of coatings has an optimum at which the

photocurrent is maximum. On one hand, the more coatings are performed on a layer

the more the layer will absorb photons and thus be able to generate more electrons.

On the other hand, with an increased number of coatings the particles grow and

consequently the lowest quantized level occupied by the photoexcited electron

gradually decreased energetically to the conduction band of the bulk material. As the

latter lies energetically below the conduction band of the TiO2, an electron transfer

from PbS into TiO2 becomes impossible. The use of nanoporous electrodes introduces
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another problem when many coatings are applied to a layer. The deposited material

will fill up the smallest pores, leading to a decrease of the effective surface area of the

nanoporous layer. Consequently, regeneration will not be possible any more as the

hole-conductor cannot enter these pores, and so the charge transport decreases.

The optimum number of coatings in this work was determined by current-voltage and

IPCE measurements. During the whole work the thickness of the TiO2 layers was

maintained around 2 µm, as this was previously found to be the optimal thickness for

the solid-state system. This value can vary slightly from one colloidal paste to the

other depending on its porosity, particle size and specific surface. The use of rather

thin films in solid-state device comparing to the liquid electrolyte device is mainly

due to the high viscosity of the hole-conductor solution prior to spin-coating. Only

thin films allowed efficient pore filling.

A different number of coatings was tested. Some typically obtained values are given

in Figure 6.9. At low light intensity (1% Sun) one can observe that the short-circuit

current is decreasing with an increasing number of coatings. The “driving force”

leading to the electron injection from the PbS into the TiO2 decreases with increasing

size, due to the quantum size effect; the energy difference between the excited

electron and the conduction band of the TiO2 decreases. At 10% Sun, the situation is

different, both cells with three (PbS3x) and five (PbS5x) coatings have roughly the

same Isc. The above-explained phenomenon is still valid in this case, but is competing

with others. The low absorbing layer will reach its absorption saturation at low light

intensity; in this case PbS3x is saturated at lower light intensity than PbS5x. Thus at

10 % Sun, more photons are absorbed by the latter as the former is saturated and

cannot absorb more even if the light intensity is higher. At full Sun illumination this

effect is even more pronounced, the Isc of PbS5x being higher than the one of PbS3x.

For 1 % and 10 % Sun, the ratio of the Isc of PbS5x and PbS7x is constant, showing

that at these light intensities, the difference arises only from the quantum size effect,

i.e. the difference in the “driving force”. At full Sun illumination, this ratio is smaller,

indicating that the saturation effect is arising in the PbS5x layer. From this it can be

extrapolated that at higher illumination intensities the PbS7x is performing even better

than the PbS5x.
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Figure 6.9: Current-voltage characteristics of TiO2 layers modified with three

coatings (dotted line), five coatings (full line), and seven coatings (dashed line) of PbS

in the dark (grey lines on A), at an illumination intensity of 1% of Sun (black lines on

A), of 10% of Sun (grey lines on B), and 100% of Sun (black lines on B)

(corresponding to AM 1.5 1 mW/cm2 10 mW/cm2 and 100 mW/cm2). The spin

coating solution for the deposition of the hole conductor contained 0.25 M in spiro-

OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.

It is also very interesting to see that the VOC is increasing with an increasing number

of coatings. The open-circuit voltage is highly dependant on the interfacial

recombination. The bigger the particles the more TiO2 is covered. This could lead to a

recombination decrease between the TiO2 conduction band electron and the hole

present in the hole-conductor, as the contact surface is shrinking. This point of view

will be discussed in detail in a following section when discussing about PbS deposited

by chemical bath deposition.

From these measurements, TiO2 with five coatings was shown to be the optimum

configuration for the present system. This conclusion from the current voltage

measurements was confirmed by the IPCE measurements shown in Figure 6.10.

The IPCE spectra show the existence of an optimum number of coatings. It is

interesting to compare the photovoltaic behaviour to the absorption spectra. The one

time coated layer (PbS1x) and the ten times coated layer (PbS10x) have similar IPCE

values, even if the absorption is much higher for the latter sample over the measured

range. This arises from the duality explained above between absorption (absorption

saturation) and the injection “driving force” ruled by the quantum size effect. The

pore filling in the sample coated 10 times is certainly affected due to the large amount

of deposited material, decreasing the charge regeneration.
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Figure 6.10: Dependence of the IPCE spectra on the number of coatings on a 2 µm

thick TiO2 layer; one coating (dotted line), five coatings (full line), ten coatings

(dashed line). The inset shows the absorption spectra of these layers.

VI.1.1.5.2 Influence of the tert.-butylpyridine (tBP)

The influence of base on the solid-state device was investigated8. It was shown

through Kelvin probe measurements that the semiconductor work function  could be

varied by surface modification using different bases. In the case of tBP the

modification effect is an increasing short-circuit current and open-circuit potential,

leading to an increase of the overall efficiency. These effects are different in the

classical dye-sensitised solar cell where only the UOC is shifted to higher voltage by

modification with tBP18,19. It was shown20that the replacement of the water

coordinated to Ti(IV) at the surface of the TiO2 by an adsorbate decreases the surface

state depth. If the Lewis basicity of the ligand is strong enough, the surface state

electronic level will be pushed into the conduction band, eliminating the electron

trapping. The UOC increase in the dye-sensitised solar cell can be explained by this

phenomenon. In the solid-state device the effect of the additives was shown to be a

screening effect more than an effect on the bands energetics.

                                                  

 The work function of a semiconductor equals the energy difference between the

vacuum level and the Fermi level. It can be measured using the Kelvin probe

technique, measuring the work function difference between a reference and the

sample.
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The tBP addition to the hole-conductor matrix was supposed to have the same effect

in the quantum dots-sensitised system. Indeed the UOC increase was observed but was

accompanied by a dramatic loss in collected current. The measured values are shown

in Table 6.3:

UOC [mV] ISC [µA/cm
2
] FF [%]  [%]

10 % 100 % 10 % 100 % 10 % 100 % 10 % 100 %

Without

tBP 251±10 305±11 386±36 1925±310 44±2 29±1 0.44±0.04 0.18±0.02

With tBP

0.1 M 378±7 463±7 3±0.4 28±5 70±2 64±1 0.01 0.01

Table 6.2: Influence of the tBP in the device performance at 10% and 100% sun

light illumination (AM1.5)

Several explanations could be found for this phenomenon. One could speculate about

the PbS destruction by the tBP, but as no discoloration of the sample was observed

after spin-coating the hole-conductor solution containing the tBP, this hypothesis was

ignored. Since it was shown that the surface states can be pushed up into the

conduction band of the TiO2 by the use of tBP, the energetics for nanoparticles might

be weaker than for dye sensitised systems. By applying tBP this driving force can be

lowered or even cancelled. This would make the injection unfavourable, and explain

the very low current for the tBP-modified devices.

VI.1.2 Capped PbS

It has been reported that PbS sensitised TiO2 electrodes suffer from photocurrent

instability under illumination15,21. These observations were made in systems using

water-based electrolytes containing Na2SO3 and Na2S. In the presence of light the

sulfide is supposed to dissolve;

PbS( )
n

h   PbS( )
n 1

+ Pb2+ + S2 (6.12)

It was shown through absorption spectroscopy that upon illumination the particle size

is increasing22. The explanation for this is the deposition of the released Pb2+ and S2-

on larger particles.
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Several routes were followed to prevent the photocorrosion of the PbS sensitised TiO2

electrodes: the deposition of a thiol layer at the surface was used22 and the formation

of co-sensitised electrodes with capped-sulfides was tested16. Both techniques lead to

an enhancement of the stability. The thiols will form a protective layer around the PbS

particles so that dissolution and particle growth will be hindered to a large extent, and

the photostability improved.

The choice of CdS to co-sensitise PbS/TiO2 was made for several reasons; a good

crystal lattice matching, an increased injection driving force for excited electrons and

an increased light absorption. To enhance the stability of PbS or the CdS capped PbS,

ZnS was used. ZnS is a wide band gap semiconductor (Eg = 3.6 eV), stable under

irradiation, and has similar chemical properties to the other sulfides allowing them to

co-exist. CdS and ZnS are deposited using the same dip-coating method as for PbS.

These methods improve significantly the efficiencies of two and three electrodes

systems using aqueous electrolytes. The solid-state device suffers less from

instability, as no liquid electrolyte is present hindering the dissolution of the particles

under illumination. The better charge separation by using CdS co-sensitisation should

also be effective in the solid-state system. The use of ZnS should passivate the PbS

surface, rendering the electron trapping less likely to happen.

VI.1.2.1 Absorption spectroscopy

Different combinations of PbS, CdS and ZnS were studied. All the electrodes were

first sensitised with PbS before adding CdS and/or ZnS. The influence of each layer in

the absorption spectra was measured and is shown in Figure 6.11.

It is astonishing to see that ZnS layer addition on top of PbS layers shifts the

absorption edge towards the red. Similar effects have been observed previously23,24;

the exciton is presumed to leak partially into the ZnS matrix. This effect is more

pronounced in smaller dots where the leakage of the exciton into the ZnS shell has a

more dramatic effect on the confinement energies of the charge carriers. The CdS

layer increases also the absorption of the sample over the whole visible range. Five

coatings of CdS were deposited using recommendations found in the literature16.
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Figure 6.11: Absorption spectra of three TiO2 layer modified with; (a) three coatings

of PbS (dotted line), (b) three coatings of PbS and three coatings of ZnS (dashed line),

(c) three coatings of PbS, five coatings of CdS and three coatings of ZnS (full line).

VI.1.2.2 Fluorescence spectroscopy

The fluorescence of core-shell like nanoparticles has been investigated recently, for a

large variety of compounds. For example, CdSe/ZnS23,25,CdSe/CdS26, InP/ZnS27,

CdS/ZnS28, or PbS/CdS24 were studied. The goal of the epitaxial overcoating of a core

nanocrystallite with a large band gap semiconductor is the surface passivation. This

passivation strongly enhances the luminescence of those particles. Good epitaxial

overcoating requires the use of a wide band gap material with compatible lattice

constants and crystal structure. PbS as a rock-salt crystal structure, this is compatible

with the zinc-blende structure of ZnS or CdS. The zinc-blende structure, like the rock-

salt structure is a cubic structure. In the present work the situation is quite different,

the PbS nanoparticles are already deposited on a substrate and are not in solution as in

the previous studies. The semiconductor shell will not cover the contact surface

between substrate and PbS. For this reason the passivation effect will not be as

efficient; surface states will still exist at the interface between the nanoparticle and the

TiO2. The fluorescence spectra of ZnS capped PbS is shown on Figure 6.12. Clearly,

bare PbS fluorescence is stronger than the capped PbS one. This result is astonishing

as it is contrary to the above discussion. As the PbS surface is passivated, electron

trapping is reduced and thus the exciton recombination more likely to happen. As

explained previously, the exciton is able to leak from PbS to ZnS. Once in ZnS, the

exciton, not energetic enough, is not able to recombine following a radiative pathway
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as the band gap is above 3 eV (ZnS luminescence around 400 nm29). The observed

quenching of the fluorescence is due this non-radiative exciton recombination

occuring in ZnS.
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Figure 6.12: Fluorescence spectra of PbS (full lines) and ZnS-capped PbS (dashed

lines) modified ZrO2 layer with five coatings of PbS and three coatings of ZnS.

VI.1.2.3 Nanosecond laser spectroscopy

Nanosecond laser spectroscopy was used to see the influence of the capping of PbS

on the recombination kinetics. Figure 6.13 illustrates the influence on the

recombination kinetic decays.
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Figure 6.13: Transient absorption decay kinetics of the hole-conductor cation; PbS 3

cycles (dark full line), PbS 3 cycles capped with ZnS 3 cycles (grey full line), PbS 3

cycles capped with CdS 5 cycles (dark dotted line), and PbS 3 cycles capped with CdS

5 cycles and ZnS 3 cycles (grey dotted line). The spin coating solution for the

deposition of the hole conductor contained 0.25 M in spiro-OMeTAD, 13 mM in

Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.
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It can be seen that the capping of PbS influences the interfacial recombination. The

decay kinetics clearly show that the more coatings applied to a layer, the slower the

recombination. It was oroginally assumed that the first coating deposits smaller

growing centres on the TiO2 and that the following coating would increase the size of

these centers. The present results tend to indicate that increasing the number of

coatings also increases the covered TiO2 surface. Indeed the TiO2 covering diminishes

the direct contact between hole-conductor and TiO2, reducing the interfacial

recombination.

Good fitting of the decays kinetics could be obtained by using a single exponential

function. The calculated time constants vary by a factor of three from PbS to PbS

capped with CdS and ZnS.

Sample kr [s
-1]

PbS 3x 1.85e+06

PbS 3x + ZnS 3x 1.72e+06

PbS 3x + CdS 5x 1.43e+06

PbS 3x + CdS 5x + ZnS 3x 5.92e+05

Table 6.3: Single exponential time constants for different types of capped PbS

nanoparticles

VI.1.2.4 Photovoltaic measurements

Following on from this previous work, the photovoltaic performance would be

expected to be enhanced16. Adding the CdS layer and the ZnS layer could roughly

double typical IPCE values at 540 nm as shown on Figure 6.14.

This observation is similar to the work of Yang et al.22. They claimed that the

increased IPCE is due to the relative position of the conduction band of TiO2, PbS and

CdS. The conduction band of quantum sized PbS lies above the TiO2 one; moreover

the conduction band of CdS is more energetic than the PbS one. The energetic

differences between the conduction bands of the semiconductors bring about a driving

force, which facilitates the charge carrier transfer from the conduction band of CdS to

PbS and then to TiO2. This energetic cascade provides for a better charge separation

and thus higher IPCE values.
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Figure 6.14: IPCE spectra of solid-state devices. The TiO2 has been sensitised with

three coatings of PbS (dotted line) and three coatings of PbS followed by five coatings

of CdS and three coating of ZnS (full line). The spin coating solution for the

deposition of the hole conductor contained 0.25 M in spiro-OMeTAD, 13 mM in

Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.
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Figure 6.15: Current-voltage characteristic of TiO2 layers modified with three

coatings of PbS (full lines) and three coatings of PbS plus five coatings of CdS and

three coatings of ZnS (dotted lines) in the dark (grey lines on A), at an illumination

intensity of 1% Sun (black lines on A), of 10% Sun (grey lines on B), and 100% Sun

(black lines on B) (corresponding to AM 1.5 1 mW/cm2, 10 mW/cm2, and

100 mW/cm2). The spin coating solution for the deposition of the hole conductor

contained 0.25 M in spiro-OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-

C6H4Br)3SBCl6.

The IPCE spectra are taken at very low light intensity (around 1 mW/cm2). The

current-voltage characteristics shown in Figure 6.15 correspond to this intensity; one
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sees that the ISC of the capped device is doubled in comparison with the non-capped

device. This observation is in very good accordance with values of Yang et al.22. The

situation is different when comparing the VOC values of the two devices. This

difference is even more astonishing when taking into account the recombination

kinetics measurements. The decreased recombination reaction should lead to an

increase in ISC, as observed, but also an increase in VOC. Unfortunately the

sensitisation with capped nanoparticles leads to lower VOC than PbS nanoparticles.

Globally, the efficiency of the device sensitised with capped nanoparticles is higher

than the non-capped one (0.53% and 0.35% respectively). It was observed with other

materials that the coating of TiO2 using a semiconductor inhibits the interfacial

recombination30-32, leading to higher VOC values. Obviously, the PbS capping in the

solid-state device does not follow this observation. One reason for this could be that

the CdS and ZnS only deposit on PbS and not at all on TiO2, but this is unlikely as the

preparation technique is identical to the one of Yang et al.

The measurements done at higher light intensity may help for the understanding. At

10% Sun, the ISC of the capped sensitised device is only slightly higher than the ISC of

the pure PbS device. This inversing tendency is confirmed by the full Sun

measurement where the ISC of PbS sensitised device is higher than that of the capped

device. This tendency has not been observed in the characterisation of the two

electrode system using a liquid electrolyte. The PbS capping certainly causes the

shrinking of the pore sizes by bringing in more material. With this phenomenon some

pores may be filled up, meaning that no hole-conductor will be present to regenerate

the sensitiser. This leads a decrease of active surface area. As known, the ISC of a

solar cell depends strongly on the active surface area of its electrode; the lower the

surface, the lower the current.

The current-voltage curves of the capped devices at 10% and 100% Sun are

characterised by a low shunt resistance. This denotes some short-circuit problems

inside the device, occurring for example at the interface when the injected electron

recombines with the hole present in the non-regenerated sensitiser.

The capping of PbS nanoparticles with CdS and ZnS leads to a change of the

morphology of the TiO2 layer by filling up a certain amount of pores. At low light

intensity this has no influence on the performance of such devices, thus the capping

increases significantly the overall cell efficiency. At high light intensity, the lower

surface area causes lower short-circuit currents, and thus lower efficiencies. To
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measure the promised role of the capping, some stability measurements should be

done on this type of device. In this framework, priority was given to the increase of

the cell efficiency by trying other deposition techniques.

VI.2 Chemical bath deposition

The chemical bath deposition technique has been widely used for many years for the

deposition of thin films of metal chalcogenide. This technique was developed for

large-scale applications for which it is well suited. The goal of this technique in this

work was to study the difference between sensitisation by distinct semiconductor

nanoparticles and by thin layers of semiconductor, composed of nanoparticles. The

interface reactions between TiO2 and hole-conductor should be reduced as the

sensitiser covers the interface. This supposition was made by comparison with recent

work done on semiconductors (SnO2, TiO2) coated by several oxides30-32, especially

Al2O3. In the dye-sensitised cell the sensitiser is adsorbed on the Al2O3 and injects

energetic electrons to the semiconductor, tunnelling across the Al2O3 barrier. Once the

electrons relax to the conduction band of the semiconductor, the Al2O3 barrier

prevents the recombination of the electron with the dye cation on one side, but it also

prevent the recombination with I3
- ions at the electrolytic interface. The deposition

mechanisms of the PbS layer have already been explained in detail (see Chapter 4).

Briefly, TiO2 layers are immersed in a highly basic solution containing Pb2+ ions S2-

ions and the complexing agent, triethanolamine (TEA). The slow release of S2-

displaces the complexing equilibrium of Pb2+ by the reaction of free lead ions with the

sulfide ions. Two main mechanisms can occur depending on the relative

concentration of the species; ion-by-ion growth in situ on the substrates or bulk

precipitation followed by migration to the substrate.

This chapter discusses only work done on lead sulfide, studies on lead selenide and

cadmium selenide are presented in Chapter 7.

VI.2.1 Absorption spectroscopy

Absorption spectroscopy was used to monitor the influence of the different

experimental parameters; deposition duration, sintering temperature, sintering

atmosphere, and acid rinsing.
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It can easily be understood that the deposition duration will influence the amount of

deposited material, and thus the absorption characteristics of the layer. After

deposition, previously reported work15 indicated that a washing process using 1 M

HCl was beneficial, the influence of this was also studied. Finally, the layers are

sintered in a tubular furnace; the effects of the temperature and the atmosphere of this

step were also examined.
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Figure 6.16: Absorption spectra of PbS modified TiO2 using chemical bath

deposition, and sintered at 150°C under an air atmosphere. Influence of the deposition

time and effect of the sintering (A); 50 minutes of deposition (dashed lines), 30

minutes of deposition (full lines), before sintering (black lines) and after sintering

(grey lines). Influence of the HCl 1 M treatment after deposition (B); sample rinsed

with water (full lines), rinsed with HCl (dashed lines), before sintering (black lines)

and after sintering (grey lines).

The deposition duration effect is clearly seen on Figure 6.16; the longer the sample is

immersed, the more PbS is deposited, and the more the formed layer absorbs light.

This parameter will be optimised using photovoltaic measurements as the duality

between a more absorbing layer and pore filling is the same as for the dip-coating

method, i.e. one has to be very careful not to fill up the TiO2 pores. Acid treatment

diminishes the layer absorption due to the removal of PbS present in the sample but

not attached on TiO2. After this treatment the layer coloration tended to be less

homogenous than before. This indicates that the acid was too strong by destroying

partially the PbS layer.

After sintering in air the layers exhibited a lower absorbance; this is explained by a

partial PbS oxidation during the treatment. The oxidation could be minimised by

operating the sintering under argon atmosphere.
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As shown in Figure 6.17 (A), the furnace atmosphere influences largely the layer

absorption. In air, the lower absorption over the entire spectrum is due to the partial

oxidation of PbS. Using argon as atmosphere, the absorption is increased for

wavelength shorter than 465 nm and decreased above this limit. This behaviour shows

that the particles composing the deposited layer become smaller with sintering, an

effect arising from the quantum size effect. The oxidation occurring under air and

leading to a decrease of the absorption is avoided by using an argon atmosphere

during the sintering. This oxidation was shown15 to produce PbSO4 following

Equation 6.13;

PbS( )
s
+ 2O

2
PbSO

4( )
s

(6.13)

where subscript “s” denotes the PbS/TiO2 interface.
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Figure 6.17: Absorbance difference spectra of PbS modified TiO2 using CBD. The

influence of the sintering atmosphere was tested (A) at a temperature of 150°C; in air

(full line), and in argon (dashed line). The influence of sintering temperature in air (B)

was examined; 150°C (dashed line), 200°C (full line).

The dependence on the temperature was shown to be negligible in argon; no

significant absorption difference could be measured between samples heated at 150°C

and 200°C. As shown on Figure 6.17 (B), in air the situation is different; the higher

the temperature, the bigger the absorption loss. Differences denoted between 700 and

850 nm are due to the fact that different layers were used for these measurements.

This optimisation showed that the HCl treatment leads to non-homogeneity and that

the sintering has to be done under inert gas to avoid oxidation. The standard sintering

temperature was set to 150°C.
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VI.2.2 Nanosecond laser spectroscopy

As already shown for the other synthesis techniques, the nanosecond laser

spectroscopy is used to monitor the reduction reaction of the hole-conductor, which

can be assigned to the recombination between the hole present in the oxidised hole-

conductor and an electron from the conduction band of the TiO2.

The comparison between the recombination kinetics in a dip-coated sample and a

sample prepared using CBD (in the following called CBD sample) is shown in Figure

6.18. From a general point of view, one can easily see that the recombination is much

faster for the dip-coated sample than for the sample prepared using chemical bath

deposition. The half-life time can roughly be estimated to be about 4 µs for dip-

coating and 12 µs for chemical bath deposition. The slower recombination kinetics for

the CBD sample are an indication of a better charge separation. As explained

previously, the PbS layer on the surface of TiO2, forms a blocking layer for the

interfacial recombination. The direct contact between the oxidised hole-conductor and

the electron-rich TiO2 is hindered by the PbS layer. On the contrary, the fast

recombination kinetics measured for the dip-coated sample, indicates that the TiO2

can be in direct contact with the hole-conductor as PbS forms distinct particles on the

TiO2 surface.
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Figure 6.18: Transient absorption decay kinetics of the oxidised hole-conductor using

different synthesis methods; chemical bath deposition (black lines) and dip-coating

(grey lines). The spin coating solution for the deposition of the hole conductor

contained 0.13 M in spiro-OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-

C6H4Br)3SBCl6.
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Both decays were fitted by a double exponential, and the time constants are shown in

Table 6.4. For the dip-coated sample the fast decay accounts for more than 80 % of

the total decay. This proportion is less in the case of the CBD sample where it

represents nearly 60 % of the decay. This difference may arise from electron trapping.

Indeed deep-trapped electrons, not energetic enough to be injected into the TiO2, may

directly recombine with the oxidised hole-conductor molecules. This reaction would

give rise to the slow decay portion.

k1 [s-1] k2 [s-1]

Dip-coated cell 3.4*104±914 3.4*105±6.5*103

CBD cell 1.5*104±1.4*103 2*105±1.2*104

Table 6.4: Double exponential time constants for a dip-coated sample and for a

sample prepared using chemical bath deposition.

In the case of the chemical bath deposition technique, it was interesting to monitor the

influence of some preparation parameters on the recombination time constants. As

already shown before, changing the deposition time can vary the thickness of the PbS

layer, and thus the absorption of the sample. The layer thickness could have an

influence on the recombination probability between TiO2 conduction band electrons

and the oxidised hole-conductor, as the distance between both is varied. The

recombination decay of samples with two different deposition times are shown in

Figure 6.19.
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Figure 6.19: Transient absorption decay kinetics of the oxidised hole-conductor with

different PbS deposition times; 15 min (grey lines) and 30 min (black lines). . The

spin coating solution for the deposition of the hole conductor contained 0.13 M in

spiro-OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.
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The two decays are nearly identical, showing no influence of the PbS thickness on the

recombination rate. The intensities of the signals have not been normalised, so it is

astonishing that the two measured signals have the same intensity. The optical

absorption being different for the two samples at the exciting wavelength shows that

the same amount of hole-conductor is oxidised during the measurement. As

previously, the decays could be fitted with a double exponential, showing two

possible recombination routes. The small difference between the two signals is

certainly due to the experimental noise.

The concentration of the complexing agent in the deposition solution influenced the

reaction rate. The higher the concentration, the slower the reaction. By varying the

concentration, the absorption of samples having the same deposition time will vary.

Figure 6.20 shows the influence of this parameter on the recombination kinetics.

No significant differences can be observed when comparing the decay kinetics of the

sample prepared with different complexing agent concentration. This shows that the

nature of the PbS layer does not influence the interfacial recombination. It has been

shown33,34that the complex:Pb ratio can highly influences the particle size but only

weakly the deposited layer thickness. As the distance between TiO2 electrons and the

oxidised hole-conductors stays constant, varying the complexing agent concentration

does not influence the recombination kinetics.
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Figure 6.20: Transient absorption decay kinetics of the oxidised hole-conductor with

different TEA concentration in the deposition solution; 0.02M TEA (black lines) and

0.04M TEA (grey lines). The spin coating solution for the deposition of the hole

conductor contained 0.13 M in spiro-OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM

in N(p-C6H4Br)3SBCl6.
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VI.2.3 Photovoltaic measurements

The system optimisation has to take into account the photovoltaic response when

varying parameters.

VI.2.3.1 Dip-coating versus Chemical Bath Deposition

The differences in current-voltage characteristics between a dip-coated electrode and

a CBD electrode allows for many interesting observations. Table 6.5 reports the

measured values.

UOC [mV] ISC [µA/cm
2
] FF [%]  [%]

10 % 100 % 10 % 100 % 10 % 100 % 10 % 100 %

Dip-coating 388±2 455±2 123±8 1107±74 62±3 50±3 0.31±0.02 0.25±0.05

CBD 498±9 567±4 85±2 989±11 74±1 65±3 0.32±0.01 0.34±0.02

Table 6.5: Current-voltage measurements, of a 5 time dip-coated cell and a cell

obtained using chemical bath deposition. The spin coating solution for the

deposition of the hole conductor contained 0.13 M in spiro-OMeTAD, 13 mM in

Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.

The first observation is about the UOC. CBD cells reach much higher values (increase

of more than 100 mV) than dip-coating cells. This difference confirms the supposition

made at the beginning of this Section concerning the blocking effect of the PbS layer.

The dip-coating technique was shown, in section 6.1, to form separated particles at

the TiO2 surface, contrarily to the CBD technique, which deposits a thin film as has

been observed by Nair et al35-37.This layer can hinder the interfacial recombination

reaction. Figure 6.21 shows the measurements in the dark and at 10% Sun

illumination.
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Figure 6.21: Current-voltage characteristics in the dark (grey lines) and at 10% Sun

(10mW/cm2) illumination (black lines) of dip-coated (dashed lines) and CBD

deposited (full lines) PbS sensitised solid-state devices.

At low light intensity, the cell potential loss for the dip-coated sample is compensated

by a higher ISC than for the CBD sample, resulting in identical overall efficiencies.

The performance of the CBD cells is linear with respect to the light intensity, which is

not the case for the dip-coated cells. In section 6.1, it was shown that the efficiency of

the dip-coated cells was always decreasing with increasing light intensity. This

phenomenon can have several reasons; on one side the charge transport in the hole-

conductor may be insufficient to regenerate the sensitiser, on the other side this

phenomenon can arise due to recombination reactions. As more incident photons

generate more injected electrons, the recombination between a conduction band

electron and a hole-conductor molecule is more likely to happen. The I/V

characteristics of dip-coated cells often denote low shunt resistance, especially at high

illumination; as a consequence the fill factor of these cells is low. The CBD cells have

similar efficiencies when varying the illumination from 10% to 100% Sun. The ISC

values are linearly depended of the light intensity, showing that the charge collection

does not suffer from recombination enhancement. As PbS is covering the TiO2, the

contact between the hole-conductor and the TiO2 is hindered, making the

recombination more unlikely to happen.
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VI.2.3.2 Influence of tert-butylpyridine
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Figure 6.22: Current-voltage measurements of devices prepared using CBD in dark

(grey line on A) at an illumination intensity of 1% of Sun (black lines in A), of 10%

Sun (grey lines on B), and 100% Sun (black lines in B) (corresponding to AM 1.5

1 mW/cm2 10 mW/m2 and 100 mW/cm2), without tBP (full lines) and with tBP 0.1M

(dotted lines) in the hole-conductor matrix. The spin coating solution for the

deposition of the hole conductor contained 0.13 M in spiro-OMeTAD, 13 mM in

Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.

We saw previously that the addition of tBP into the hole-conductor matrix led to a

strong decrease of the short-circuit current for dip-coated devices. As shown in Figure

6.22, this loss in ISC is also measured in devices prepared with CBD, although the

reduction is not as drastic as in devices prepared with dip-coating. The tBP is

supposed to passivate the surface of TiO2, increasing the Fermi level of the

semiconductor. Due to the good PbS coverage of TiO2 using CBD, the effect of tBP

on the surface is hindered. The gain in UOC by using tBP is about 50 mV depending

on the light intensity. This is less than in the case of the dip-coated device. As the cell

potential is determined by the difference between the Fermi level of the

semiconductor and the redox potential of the hole-conductor, this results shows that

the former is less influenced by tBP in the CBD devices.

VI.3 Conclusions

In this chapter three different types of PbS sensitisation were presented; dip-coating,

PbS capping and chemical bath deposition. It was shown that using the dip-coating

method, particles are synthesised in situ on the TiO2. These particles were measured
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to have a diameter of 5 nm using absorption spectroscopy confirmed by HRTEM

pictures. The excited electron injection from PbS into TiO2 was shown to occur using

fluorescence spectroscopy. Once the electron is injected into the conduction band, one

of the possible loss mechanism is the recombination with the oxidised hole-conductor.

This reaction was monitored by nanosecond laser spectroscopy. Femtosecond laser

measurements were used to monitor electron trapping in PbS, and injection of PbS

trapped electrons into the conduction band of TiO2. Photovoltaic characterisation

determined that five dip-coatings were the optimum. Unfortunately the current-

voltage measurement at full sun illumination exhibited large shunt resistances

assigned to massive interfacial recombination.

It was shown that the capping of PbS using CdS and ZnS could significantly decrease

the interfacial recombination, certainly due to a better coverage of the TiO2 surface

which hinders the direct contact between TiO2 and hole-conductor. From the point of

view of light conversion, the effects depended on the light intensity, but the overall

conversion efficiency at full sun power illumination could not be increased with this

method.

Chemical bath deposition was used to synthesise a PbS layer in situ on TiO2. As dip-

coating deposits distinct particles on TiO2 it was thought that a better coverage could

increase the cell efficiency. It turned out that the open circuit voltage was largely

increased; unfortunately this was compensated by a decrease in short circuit current.

The cells gave similar efficiencies to dip-coated ones. The increased UOC was

assigned to a reduced interfacial recombination using nanosecond laser spectroscopy,

and the decrease of ISC to poor pore-filling due to the formation of smaller pores.
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Chapter VII

The Metal Selenide Sensitisation

Metal selenides have already been largely investigated and used in a large variety of

applications. PbSe has found applications in IR detectors, photographic plates,

photovoltaic absorbers1,2 and so forth. CdSe has been used as photoconducting device

owing to its high photosensitivity. These materials can be obtained in thin film form

by evaporation, sputtering, pyrolysis and chemical bath deposition techniques (CBD).

Of all these techniques, CBD is relatively inexpensive, simple, and convenient for

large area deposition of II-VI and IV-VI compounds. Already known in the 1960’s3,

this technique allows film deposition on a variety of substrates (insulators,

semiconductors and metals).

The first systematic study of the influence of deposition parameters was published by

R.C. Kainthla et al.4. But until 1981, no size quantization was reported on CBD films.

Such effects were published for the first time by Papavassilou5 who found blue shifts

in the photoluminescence spectra of CdS films. In the present work, metal selenides

were deposited using a method developed by Gary Hodes and his co-workers6-9. The

selenides are very interesting for sensitisation due to their broad absorption spectrum

covering a large part of the visible range. The work of Hodes et al. showed that the

absorption edge is easily tuned by changing the experimental conditions. Lead

selenide (PbSe) and cadmium selenide (CdSe) were investigated during this work, but

in less detail than metal sulfides, mainly because of a lower overall efficiency of the

obtained devices.
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VII.1 Absorption spectroscopy

As shown previously9, the absorption features of PbSe and CdSe can easily be tuned

by varying the experimental conditions, such as reaction temperature, nature of the

complexing agent, or complexing agent concentration. Figure 7.1 shows the

absorption spectra of CdSe sensitised TiO2 layers under various conditions.
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Figure 7.1: Transmittance spectra of CdSe sensitised TiO2 (3µm) using chemical bath
deposition technique, using nitrilotriacetic acid (NTA) as complexing agent. (A)
shows the influence of the concentration of NTA; ratio [NTA]/[Cd2+]= 1.47 (full line),
and ratio [NTA]/[Cd2+]= 2.1 (dotted line). (B) shows the influence of the reaction
temperature; 20°C (full line), 40°C (dotted line).

The absorption edge of CdSe is very abrupt, showing that the synthesis produces a

narrow size distribution of particles. As already discussed in Chapter 5, there exists a

critical complexing agent to metal ratio (RC), which indicates a change in the

chemical bath deposition mechanism. For a ratio larger than RC the ion-by-ion

mechanism is predominant, but when the ratio is smaller than RC due to the presence

of Cd(OH)2 in the solution, the bulk precipitation is the major mechanism. The ratio

used in this work bracketed each side of RC, using published values8. The red shift for

a higher ratio can clearly be observed, indicating bigger particle size. The shift

measured in this experiment is small (0.02 eV) comparing to known values (0.1-0.2

eV). This could arise from the fact that in this work the substrate is nanocrystalline.

To reach efficient optical absorption, only short deposition times are necessary due to

the high effective surface area. As the particle size is dependent of the deposition

duration, the particle size is reduced. This is confirmed by comparing these absorption
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edges with those found in previous studies, a blue shift of 50-60 nm can be noticed for

the spectra of this work.

The effect of reaction temperature on the absorption spectra is strong. For the same

complexing agent to metal ratio the spectrum is shifted towards the red (about 40 nm)

when passing from a temperature of 20°C to 40°C. A linear dependence of the optical

band-gap, estimated from optical transmission spectra, as a function of deposition

temperature was found10. It was shown that RC varies with the temperature. As the

equilibrium constants of the complex and the solubility product of Cd(OH)2 varies

with the temperature, the critical ratio will also depend on the temperature.

The absorption behaviour for different experimental conditions of PbSe is shown on

Figure 7.2.
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Figure 7.2: Absorption spectra PbSe sensitised TiO2 nanocrystalline layer. (A) shows

the influence of the reaction temperature; 0°C (dotted line) and 20°C (full line). (B)

shows the influence of the deposition time; 15 min (full line) and 45 min (dotted line).

The absorption spectra of PbSe do not exhibit an abrupt band edge as in the case of

CdSe, a larger particle size distribution is causing this effect. It is difficult to compare

the obtained spectra with those found in the literature6,7; the substrates used in the

literature are not porous as in this work. For flat substrates the deposition time was

typically several hours, but could range from tens of minutes to days depending on the

conditions9. The obtained films were 20-100 nm thick. In this work, the substrates

have been treated less than one hour, resulting in much thinner films.

As already shown for CdSe the temperature plays an important role in the deposition

mechanism, and thus in the deposition rate. In Figure 7.2 A, it can be seen that the
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higher the deposition temperature, the higher the absorption of the processed layer.

Figure 7.2 B compares deposition times of 15 min and 45 min. It can be seen than

during the deposition the particles are growing; the absorption edge has moved to

higher wavelength. This observation was made by Gorer et al.7 as for a thicker film

the particle size increased.

VII.2 Fluorescence spectroscopy

Fluorescence has already often been reported for PbSe and CdSe. Due to its very

small band gap (0.28 eV), bulk PbSe has a fluorescence situated in the infrared.

Although strong confinement is easily achieved in relatively large particles due to the

large exciton Bohr radius (46 nm), which displaces the luminescence to the near-

infrared11 or even into the visible region12. CdSe has a bulk band gap of 1.74 eV13.

Consequently, the luminescence of this material is observed around 730 nm14.

In the present experiments the CdSe photoluminescence could be observed by

exciting the samples with 520 nm laser light. The CdSe deposited on different

semiconductors showed luminescence on Al2O3 and on ZrO2, but this phenomenon

was largely quenched when the particles were deposited on TiO2. This quenching

observation suggests the possible electron injection from the excited CdSe into the

TiO2.
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Figure 7.3: (a) Fluorescence spectra of semiconductor layers sensitised with CdSe

nanoparticles: deposition on TiO2 (full line), ZrO2 (dashed line), and Al2O3 (dotted

line). The samples were excited using a Kr laser at 520 nm and 0.1 W. (b) Plots of

( h )2 vs h  for CdSe sensitised semiconductors: TiO2 (full line), ZrO2 (dashed line),

and Al2O3 (dotted line).

Although quenching occurs on TiO2 the emission peak has not completely

disappeared, showing incomplete electron injection into the semiconductor. In Figure

7.3a one can observe that the luminescence peak is slightly shifted towards lower

energies when depositing CdSe on Al2O3. This might arise from the fact that a small

part of the excited electron energy is lost through non-radiative pathways before

fluorescence occurs. One could also argue that the shift occurs from a difference in

particle size. This explanation was refuted by plotting ( h )2 versus h , shown on

Figure 7.3b. This plot allows the determination of the band gap of the CdSe particles,

by extrapolating the linear part of the curve to the x axis. The extrapolation of the

plots for the three oxides gives a band gap for the CdSe nanoparticles of 2.1 eV

Fluorescence of PbSe could unfortunately not be observed on any of the

semiconductors. The reason for this may be that the peak was hidden by the second

order generation of the grating of the fluorometer. The electron injection into TiO2

from PbSe could therefore not be monitored using this technique. Injection will be

shown to occur using nanosecond laser spectroscopy and photovoltaic measurements.
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VII.3 Nanosecond laser spectroscopy

As before, nanosecond laser spectroscopy was used to monitor the recombination of

the reduced hole-conductor and the TiO2 injected electron. The electron injection

from PbSe into TiO2 could not be shown using fluorescence spectroscopy.

Consequently, nanosecond spectroscopy will be used to monitor the regeneration of

the oxidised hole-conductor, proving the possibility to inject excited electrons from

the PbSe into TiO2.

The kinetics measured for PbSe and CdSe sensitised systems are shown in Figure 7.4.

It can be seen that the recombination in such systems is much slower than for PbS.

The thickness of the deposited layer certainly plays an important role in the blocking

behaviour, and might not be constant in the three cases. The decay kinetics are fitted

by a double exponential function, the time constants are shown in Table 7.1. A very

fast decay is followed by a very long lasting decay. The fast time constant is almost

identical for PbSe and CdSe (1.4 µs) and accounts for roughly the half of the decay.

In the case of PbS the fast time constant is about 0.7 µs and represents approximately

80 % of the decay. The slower decay arises from the fact that the excitation energy

was able to excite more than one nanoparticle per TiO2 particle due to the high power

of the laser.

∆
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Figure 7.4: Transient absorption decay kinetics of the oxidised hole-conductor with

PbSe (black line), CdSe (dotted line), and PbS deposited by CBD (grey line).The spin

coating solution for the deposition of the hole conductor contained 0.13 M in spiro-

OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-C6H4Br)3SBCl6.
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kr1 [s
-1] kr2 [s

-1]

CdSe 6.3*104 ± 3.4*103 (50%) 7.1*105 ± 6.3*104
 (50%)

PbSe 6.3*104 ± 3.6*103 (47%) 7.3*105 ± 6.2*104 (53%)

PbS 1.5*105 ± 3.5*103 (17%) 1.4*106 ± 2.9*104 (83%)

Table 7.1: Double exponential time constant for CdSe, PbSe and PbS coated TiO2

electrodes.

VII.4 Photovoltaic measurements

The photovoltaic measurements showed that CdSe or PbSe sensitised solid-state cells

have a photovoltaic activity when exposed to sunlight. The obtained IPCE spectra are

shown in Figure 7.5 and the current-voltage measurements are summarised in Table

7.1.

For both sensitisers, the measured IPCE values are quite low when compared with

values obtained for PbS sensitisation, but still exhibit the characteristic shape of the

absorption spectra. These low values certainly arise from an injection problem, the

energy level of the excited electron lying too near or below the energy level of the

TiO2 conduction band. Similar work using CdSe sensitisation of TiO2 but using liquid

electrolytes achieved a maximum IPCE of 3% at 500nm1.
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Figure 7.5: IPCE spectra of PbSe (full line) and CdSe (dotted line) sensitised solid-
state device. The spin coating solution for the deposition of the hole conductor
contained 0.25 M in spiro-OMeTAD, 13 mM in Li(CF3SO2)2N and 0.4 mM in N(p-
C6H4Br)3SBCl6.

It was explained above that the size of the particles in the layer could easily be tuned

by varying the experimental conditions; larger particles having absorption edges at

longer wavelengths. But the larger the particles are, the weaker is the quantum size
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effect. Therefore, larger particles cannot be used to achieve broader IPCE spectra. The

energetic level of the CdSe CB will lie below the TiO2 CB. On the other hand, using

smaller particles could lead to a better injection, but their absorption will be shifted

towards blue wavelengths, i.e. a poor overlap of the visible spectrum.

UOC [mV] ISC [µA/cm
2
] FF [%]  [%]

10 % 100 % 10 % 100 % 10 % 100 % 10 % 100 %

CdSe 455±22 508±21 5±0.1 37±1 65±1 71±1 0.02 0.01

PbSe 453±6 528±5 48±0.5 488±3 69±1 58±2 0.16 0.15

Table 7.2: Photovoltaic performance of PbSe and CdSe sensitised solid-state solar

cell at 10 % and 100 % Sun illumination (AM 1.5)

From the values shown in Table 7.2, one can see that the open-circuit potential of the

metal selenide sensitised devices are very similar to those found for the sensitisation

using CBD PbS (440 mV @ 10 % Sun, 510 mV @ 100% Sun). The same deposition

method has been used, forming a layer at the surface of the TiO2. As already

discussed in the case of PbS, this layer certainly acts as a blocking layer and inhibits

the interfacial recombination, leading to a high device voltage.

Unfortunately the short-circuit current of these devices is very low, as already seen on

the IPCE spectra, especially for CdSe sensitised devices. This problem arises from the

poor energy level positioning. The excited electrons cannot inject into the TiO2

because its energy is not high enough.

Very few comparable studies have been found in the literature. For as-deposited CdSe

films on conducting glass and immersed in a polysulphide electrolyte, respectable

photovoltaic characteristics have been found ( ISC ~ 1 mA/cm2 and VOC ~ 0.4 V)10.

Rincon et al.1,15used spray-painted TiO2 on which a CdSe layer was deposited by

chemical bath deposition. After sintering at 400°C in air for one hour, the

photovoltaic performance was impressive using the polysulfide electrolyte; ISC ~

5 mA/cm2, VOC ~ 0.48 V,  = 1.2% @ 100 mW/cm2. Such a sintering procedure was

also used in the present work, leading to the discoloration of the samples, i.e.

destruction of the CdSe layer. At a lower sintering temperature no beneficial effect on

the cell performance could be shown. Gorer et al.9 reported photoelectrochemical
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activity of PbSe layers deposited on conducting glass. The measured quantum

efficiencies were one order of magnitude lower than corresponding CdSe ones,

indicating heavy recombination. They also demonstrated the influence of the crystal

size and size distribution on the spectral response of the photocurrent.

VII.5 Conclusions

This study of metal selenide sensitised solid-state system showed that the chemical

bath deposited layer can be used for light energy conversion in such devices.

The somewhat weak photovoltaic performance might be explained by a bad fitting of

the energy levels between the sensitiser and the hole-conductor. It could therefore be

interesting to try an optimisation by using nanocrystalline SnO2 which has a lower

conduction band than TiO2.
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Chapter VIII

Interface Optimisation

The interface where the charge separation occurs in a solar cell is certainly the most

striking part of the whole device. The charge separation is the fundamental

phenomenon for the “production” of electrons, and thus the building-up of an

electrical current. For every type of solar energy converter a lot of work has been

focused on the optimisation of this interface. On one hand the separation mechanism

was investigated to minimise the losses due to direct recombination of the electron-

hole pair after excitation (Kdes on Figure 8.1). In the dye-sensitised cell, this

separation is very efficient due to ultra-fast electron injection from the sensitiser to the

semiconductor (Kinj on Figure 8.1). This separation generates a charge on each side of

the interface. On the other hand, the interfacial charge recombination was intensively

studied, as it appeared that it was leading to high losses. In the dye-sensitised solar

cell, due to the mesoporous network the distance between the electron and the holes is

rather small. Even more in the solid-state device, where no liquid electrolyte is

present, and thus less charge screening occurs in this system. Several recombination

routes can be pointed out.

The recombination of the injected electron with the oxidised sensitiser (Krec2 on

Figure 8.1) before the regeneration of the sensitiser (Kreg on Figure 8.1), has been

studied for the organo-metallic dyes1,2. This process was shown to be very slow (in

the ms time range), demonstrating that the short-circuit potential will not suffer from

this recombination. It is supposed that the process is similar when replacing the dye

by semiconductor nanoparticles. The electrons already collected in the conducting
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SnO2 layer may recombine with the oxidised hole-conductor. To prevent this reaction,

a compact TiO2 layer has been deposited between the conducting glass and the

nanocrystalline TiO2 (see Chapter 3). This blocking layer is very effective rendering

this pathway negligible.

Figure 8.1: Different possible recombination routes in the solid-state nanocrystalline

solar cell

The major recombination process occurs between the injected electron in the TiO2

and the oxidised hole-conductor (Krec1 on Figure 8.1), the exciton recombination

inside the particle being inhibited by the electron injection. This reaction leads to an

enhancement of the dark current, i.e. a diminution of the voltage of the cell. As

already discussed in the Chapter 6, this recombination happens due to the electron

trapping in the surface states. The nanocrystalline TiO2 used in the dye-sensitised

solar cells has a large surface area, thus a large quantity of these states are present at

the junction between TiO2 and electrolyte or hole-conductor. To have a quantitative

measurement of the occupancy of the surfaces states one uses the energy level of the

Fermi level.

Several strategies have been used to inhibit the interfacial recombination. The use in

the solid-state device of an interfacial dipole layer has been studied using a series of

benzoic acids with different dipole moments3. The dipole field is supposed to change

the difference in the work function of the neighbouring materials. As a consequence,
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the barrier for charge transfer can be increased, and thus the dark current can be

suppressed. The nanosecond laser measurements showed a drastic diminution of the

recombination rate, but current-voltage characteristics showed high series resistance,

leading to low device efficiencies.

As shown in Chapter 6, the deposition of a thin semiconductor layer covering the

TiO2 can increase the efficiency by preventing a contact between the oxidised hole-

conductor and the TiO2. For example, ZnO4, Al2O3
5, Y2O3

6and more recently SrTiO3
7

have been used in this sense to increase the photovoltaic device performances.

However, in the SSD no significant improvement could be made by this approach.

It was also shown that an effective charge screening can be obtained by adding to the

hole-conductor solution Li+ ions8. Under illumination, a positive space charge is

formed in the hole-conductor matrix, inducing a local field and hindering the current

flow. The lithium was shown to screen the field, and thus to eliminate the influence of

the space charge on the photocurrent.

As discussed in Chapter 6, the use of tBP increases the performance of the dye-

sensitised device by passivating the surface of TiO2, i.e. filling up the surface states,

shifting to higher energies the Fermi level of the semi-conductor. It was shown and

discussed, in Chapter 6, that this strategy does not work for the nanoparticle sensitised

solid-state system.

As the above mentioned strategies had no beneficial effect on the SSD and more

precisely on nanoparticle sensitised solid-state devices, an alternative way to improve

the performance of this type of cells has to be found. An effect similar to tBP is

required to passivate the surface states in order to hinder the recombination. Screening

different types of bases has already been tried9 without success for the dye-sensitised

system. However, long chain alkyls have been used to passivate the surface of some

semiconductors like SiO2
10,11. More recently, similar compounds have been used to

increase the photoresponse of dye-sensitised solar cells. These compounds were

alkyls with at least one phosphonic or carboxylic group; 1-decylphosphonic acid

(DPA)12, hexadacylmalonic acid (HDMA)13 or 3-phenylpropionic acid14 .The

phosphonic or carboxylic groups are necessary for efficient adsorption at the surface,

and the long alkyl chain increases the distance between the surface and the

electrolyte. The influence of theses molecules on quasi-solid devices15,16 was studied.

All these compounds enhanced the short-circuit current, but the open-circuit voltage

was only increased with HDMA. It is supposed that the alkyl chains form with
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ruthenium dyes, containing two long alkyl chains, a compact layer that decreases the

back electron transfer rate from TiO2 to the triiodide in electrolytes. It was also shown

that photoanodes based on TiO2 sensitised by an amphiphilic dye and these types of

coadsorbers maintain stable performance under thermal stress and long-term light

illumination.

It was thought that these compounds might also help to increase the photoactivity of

the nanoparticle sensitised solid-state device, by blocking the back reaction of the

injected electron. Several molecules, shown in Figure 8.2, have been tested and their

influence on dip-coated and CBD sensitised electrodes has been studied using

nanosecond laser measurement, Fourier transform infrared spectroscopy (FTIR), and

photovoltaic characterisation.

HOOC

HOOC

A

PO

O
H

H

O

B

Figure 8.2: Molecules used for the surface modification; (A) hexadecylmalonic acid

(HDMA), (B) 1-decylphosphonic acid (DPA)

VIII.1 Nanosecond laser spectroscopy

Laser spectroscopy was used to monitor the effect of the co-deposited molecules on

the interfacial recombination kinetics. It was supposed that these molecules are able to

block the back electron transfer by forming a compact layer between TiO2 and the

hole-conductor.

The measurements have been done on dip-coated samples and on CBD deposited

ones. The obtained decays are shown in Figure 8.3.



 Interface Optimisation 107

0

∆
A

bs
 [

-]
x1

0-3
 

403020100
Time [x10

-6
 s]

(B)

0

∆
A

bs
 [

-]
x1

0-3
 

403020100
Time [x10

-6
 s]

(A)

Figure 8.3: Transient absorption decay kinetics of the hole-conductor cation; (A) Dip-

coated samples, (B) CBD deposited samples. The samples were modified with; DPA

(black line) and HDMA (grey line). Samples without co-adsorption (dotted lines)

were taken as reference. The double exponential fitted curve (full lines) are also

shown.

The influence of the co-adsorbed molecule is clearly seen on the decay kinetics. The

interfacial recombination is slowed by the addition of DPA and HDMA on the

surface. The decay could be well fitted by a double exponential, the corresponding

time constants are given in Table 8.1.
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Dip-coating kr1 [s
-1] kr2 [s

-1] CBD kr1 [s
-1] kr2 [s

-1]

No coadsorber 2.76*105 3.19*106 No coadsorber 1.47*105 1.45*106

DPA 1.31*105 1.77*106 DPA 5.61*104 3.41*105

HDMA 1.32*105 1.69*106 HDMA 5.89*104 3.75*105

Table 8.1: Double exponential time constant for dip-coated and CBD samples

modified with HDMA and DPA.

The fast decay always accounts for a large part of the signal. For dip-coated samples,

85 % to 90 % of the signal is due to the rapid decay, whereas this part is about 60 %

in CBD samples. This phenomenon has already been observed in Chapter 6 and

explained by the fact that electrons in CBD samples are more likely to be deeply

trapped and thus are not energetic enough to be injected into TiO2. These deeply

trapped electrons recombine with the oxidised hole-conductor.

By comparing the relative effect of the co-adsorbed molecules on the decay kinetics,

one can easily notice that the influence is stronger in CBD samples than in dip-coated

ones. For example the fast exponential decay is slowed down by a factor of two in

dip-coated samples and of four in CBD samples. This result is contrary to a previous

supposition. If the role of the co-adsorbed molecules is to block the interfacial

recombination by the formation of a dense layer between the surface of the TiO2 and

the hole-conductor, then its effect should be stronger in dip-coated samples as it has

been shown that the recombination is much faster due to the presence of bare TiO2.

Small differences in the kinetics can be noticed when comparing the signals of DPA

and HDMA. The recombination kinetics of DPA co-modified dip-coated samples are

slightly slower than HDMA modified ones. This can be explained by the fact that

phosphonate groups bind stronger to oxide surfaces by the formation of P-O-Metal

bonds than carboxylate entities, explaining a better coverage of the surface with DPA.

In the case of CBD samples, this tendency is inversed. The recombination kinetics of

the HDMA co-modified samples is slower than DPA modified ones. As here PbS

covers TiO2, the molecules will absorb on PbS. This inversed tendency may arise

from the fact than the stronger binding of phosphonate groups is in competition with

another factor which is the length of the alkyl chain. HDMA (C16) has a longer alkyl

chain than DPA (C10), hence the thickness of the formed barrier is larger for HDMA.

Furthermore, as the recombination kinetics depends on the distance between the two
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recombining charges, the co-adsorption of HDMA should have a stronger influence

than DPA. Even though the measured kinetic differences are small, the two effects

might influence the system.

VIII.2 Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) was used to monitor the adsorption of

the co-modifying molecules at the surface. Figure 8.4 shows the spectra obtained

using attenuated total reflectance FTIR (ATR-FTIR) for samples modified with DPA.
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Figure 8.4: ATR-FTIR absorption spectra of crystalline DPA (dotted line) and PbS

sensitised TiO2 layer co-modified with DPA using dip-coating (black line) and CBD

(grey line).

The spectrum of DPA exhibits sharp peaks at 947 and 1200 cm-1, assigned to P-OH

and P=O respectively. The peaks at 1000 and 1066 cm-1 are characteristic for the

vibrational modes of the PO3 group17. When DPA is deposited on the sensitised TiO2,

the sharp peaks characteristic for the solid-state change to much broader signals. The

large peak centred around 1060 cm-1 is attributed to terminal or bridging

phosphonate-metallic interactions18. Methylene deformation bands are observed on

the three spectra at 1465 cm-1. Other characteristic features of the alkyl chains are

observed at 2856, 2920 and 2952 cm-1 and correspond to ( asym CH2), ( sym CH2), and

( asym CH3) respectively. Finally, the broad peak around 3400 cm-1 is due to the

presence of adsorbed water at the surface.

The relative signal intensity for the dip-coated and CBD sample gives an indication of

the relative amount of DPA deposited on the surface. The signal being weaker for the
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CBD sample, one can conclude that less DPA is present. One reason for this is the

smaller effective surface area, arising from the partial pore filling due to the

deposition of PbS.

Figure 8.5 shows the spectra of samples modified with HDMA.
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Figure 8.5: ATR-FTIR absorption spectra of crystalline HDMA (dotted line) and PbS

sensitised TiO2 layer co-modified with HDMA using dip-coating (black line) and

CBD (grey line).

The HDMA spectrum is characterised by a sharp peak at 1700 cm-1 due to the C=O

stretch, and by a large peak around 3000 cm-1 arising from the OH group. The typical

peaks for the alkyl chain between 2800 and 3000 cm-1 are also clearly visible. When

HDMA is placed on the sensitised surface of TiO2, the features due to C=O and OH

disappear, but a strong sharp peak at 1550 cm-1 appears due to the asymmetric stretch

of the COO- entity.

Again the relative intensity of the peak between the CBD sample and the dip-coated

sample indicates a lower amount of HDMA at the surface due to a lower effective

surface area in the case of the CBD sample.

Wang et al.12observed a restricted access of water to the TiO2 surface when DPA is

co-adsorbed on the surface, which was clearly monitored by the suppression of the

broad peak at 3400 cm-1. On the contrary, when HDMA was co-adsorbed no water

removal was observed. The reason for this is the stronger binding energy of the

phosphonate group compared to the carboxylic group on the metal oxide surface. In

the present measurements, shown in Figure 8.6, no significant change in the amount

of water was measured when co-modifying the surface with DPA or with HDMA.
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Figure 8.6: ATR-FTIR absorption spectra of TiO2 modified layers; (A) TiO2

sensitised using CBD, (B) using dip-coating. Sensitised layers were co-modified with

DPA (full line), HDMA (dotted line). A sample without co-modification is also shown

(dashed line).

VIII.3 Photovoltaic characterisation

Photovoltaic measurements were used to monitor the influence of the co-adsorbed

molecules on the performance of the cell. Particular attention was paid to the variation

of VOC and ISC when modifying the interface of the device. The first step was to

screen the molecules shown in Figure 8.2.
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Figure 8.7: Current-voltage characteristics of TiO2 electrodes sensitised with PbS

deposited by CBD and derived with different types of aliphatic molecules; HDMA

(dashed line), DPA (dotted line), and without co-adsorbed molecules (full line).

Measurement (left) in the dark (grey lines) and at 10 % Sun illumination

(10 mW/cm2) (black lines), and measurement (right) at 100 % Sun illumination

(100 mW/cm2). The spin coating solution for the deposition of the hole conductor

contained 0.13 M in spiro-OMeTAD, 7 mM in Li(CF3SO2)2N and 0.2 mM in N(p-

C6H4Br)3SBCl6.

In the case of a CBD device, the influence of the co-adsorbed molecules on the

photovoltaic behaviour is shown in Figure 8.7. The short circuit current is strongly

increased by both co-adsorbed molecules; ISC is nearly tripled with DPA and more

than quadrupled with HDMA. This observation is true for low and high illumination

intensities. But the open circuit potential is decreased in presence of the co-adsorbed

molecules by 40 to 50 mV, depending on the molecules and the illumination intensity.

The co-adsorption decreases the shunt resistance of the device but also the series

resistance.
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Figure 8.8: Current-voltage characteristics of TiO2 electrodes sensitised with PbS

deposited by three processes of dip-coating and derived with different types of

aliphatic molecules; HDMA (dashed line), DPA (dotted line), and without co-

adsorbed molecules (full line). Measurement in dark and at 10 % Sun illumination

(10 mW/cm2) (left), and measurement at 100 % Sun illumination (100 mW/cm2)

(right). The spin coating solution for the deposition of the hole conductor contained

0.13 M in spiro-OMeTAD, 7 mM in Li(CF3SO2)2N and 0.2 mM in N(p-

C6H4Br)3SBCl6.

When dip-coated electrodes are co-modified with HMDA and DPA, the effect on the

photovoltaic behaviour, shown in Figure 8.8, is similar to CBD electrodes. The open-

circuit voltage, as for CBD electrodes, is decreased, but in contrast to these electrodes

the shift depends on the added molecule. While for DPA a decrease of 40 mV is

observed in the case of HDMA, this shift reaches 70 mV.

HDMA modified electrodes yield higher currents than DPA modified ones, which

give better currents than non-modified ones. Nevertheless, the current increase is not

as spectacular as for CBD electrodes. ISC is more than doubled in the presence of

HDMA and increased by 50% in the presence of DPA. This observation is in

agreement with the nanosecond laser spectroscopy measurement, where it was

observed that the recombination kinetics are slowed down more in the presence of

HDMA or DPA on CBD electrodes than on dip-coated ones. As already mentioned,

this result is astonishing, as one would have thought that covering the bare TiO2

surface of dip-coated samples with the coadsorber affects more the operation of the

device than in the case of CBD electrodes. One explanation for this phenomenon is

PbS surface passivation. The two different synthetic routes used for the PbS
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sensitisation of TiO2 import different properties to the synthesised materials, not only

in the surface morphology but also in their chemical characteristics. It was shown in

Chapter 6 that the surface traps play an important role in the injection kinetics.

Supposing that CBD gives rise to PbS containing more surface states than the dip-

coating method, then the influence of a surface passivating agent would be more

effective for CBD electrodes. This shows that the co-modification not only helps to

block the interfacial recombination but also enhances the electron injection. This

second possible mechanism could also explain the differences in the effects of the co-

modification effects between the solid-state device and the ionic liquid-containing

device used by Wang12,14.
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Figure 8.9: Current-voltage characteristics of TiO2 electrodes sensitised with PbS

deposited by CBD (A) or three processes of dip-coating (B). PbS sensitised electrodes

(full lines) were modified by adsorption of HDMA (dashed line) or by adsorption of

HDMA and 0.1 M tBP in the spin coating solution (dotted line). Measurements in

dark and at 10 % Sun illumination (10 mW/cm2) are shown on this Figure. The spin

coating solution for the deposition of the hole conductor contained 0.13 M in spiro-

OMeTAD, 7 mM in Li(CF3SO2)2N and 0.2 mM in N(p-C6H4Br)3SBCl6.

Figure 8.9 shows the influence of tBP in the hole-conductor matrix on the

photovoltaic behaviour of HDMA co-modified electrodes. As already shown in

Chapter 6 the influence on dip-coated electrodes is different to that on CBD

electrodes. While for the tBP modified CBD electrodes, the ISC is of same order of

magnitude as the non-modified electrodes, in the case of dip-coated electrode the

presence of tBP leads to a dramatic decrease of ISC. In Chapter 6 it was shown that the

open-cicuit voltage is increased by addition of tBP. The same observation can be
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made for HDMA modified electrodes, where a shift of 50 mV is measured with CBD

deposition and nearly 100 mV with dip-coating deposition.

By combining the co-modification with HDMA and the addition of tBP in the hole-

conductor matrix, the beneficial effects of each treatment could be added together, to

increase the ISC but also the VOC of the device. Unfortunately, no such effect was

measured, certainly due to some sort of destructive interference between the two

procedures.

VIII.4 Conclusions

The surface co-modification by using alkyl compounds containing either a

phosphonic group or carboxylic group entity was shown to strongly increase the

short-circuit current of the quantum-dot sensitised solid-state device by a factor of

two or four. The long alkyl molecules adsorbed at the TiO2 hole-conductor interface

reduce the back electron transfer by forming a barrier at the interface.

The photovoltaic characterisation suggests also the existence of a second effect,

which consists in the passivation of the PbS surface, thus enhancing the electron

injection. Ultra fast spectroscopy studies are needed for a detailed understanding of

this effect.
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Chapter IX

General Conclusions and Outlooks

The goal of the present work was the replacement of the usually used organo-metallic

dye in the solid-state nanocrystalline solar cell by inorganic semiconductor

nanoparticles. Several types of nanoparticles have been studied to fulfil this function.

IX.1 General Conclusions

PbS nanoparticles have been synthesised in-situ on the TiO2 surface following a

simple synthetic route called dip-coating. The characterisation of the system using

time resolved spectroscopy showed that the electron injection does not occur directly

after photoexcitation but rather from trapped states located at the surface of the

nanoparticles. It was also shown that the interfacial recombination between an

injected electron and the oxidised hole-conductor represents the major loss reaction in

the studied system. Overall conversion efficiency of 0.5 % at 0.1 Sun (AM1.5) was

achieved with those systems.

The reduction of the loss mechanisms was attempted with the capping of the

deposited PbS nanoparticles using other semiconductors such as CdS and ZnS. By

covering PbS with a semiconductor having similar crystalline forms as CdS, an

enhancement of the optical absorption was achieved. The further coating with ZnS

was supposed to passivate the surface by reducing the trap states. Nanosecond laser

spectroscopy allowed to demonstrate a significant reduction of the interfacial

recombination when capping the PbS nanoparticles with CdS and ZnS. Nevertheless
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the overall conversion efficiency could not be increased due to high shunt resistances

appearing when the device was tested under full sunlight illumination.

Another synthetic route was then used to form a thin film of PbS at the surface of

TiO2, called chemical bath deposition (CBD). By forming a covering film on the TiO2

surface the interfacial charge recombination can be partially avoided as an intimate

contact between the TiO2 and the hole-conductor can no more exist. Time resolved

spectroscopy showed this phenomenon to occur; the measured recombination kinetics

were much slower for CBD deposited samples than for dip-coated samples.

Increasing the open-circuit potential of the device was a supplementary proof as this

potential is highly affected by the interfacial recombination. Unfortunately the overall

efficiency of the CBD device was not higher than the dip-coated one. The collected

currents were lower compared to the dip-coated device. This was assigned to a

reduction of the effective surface area of the device, due to partial pore filling by the

PbS film, decreasing charge regeneration in those pores. The overall conversion

efficiencies were identical to those of dip-coated devices but were linear from 0.1 Sun

to 1 Sun.

Further interface optimisation was achieved by surface co-modification using organic

molecules containing long alkyl chains (C10 or C16) and an anchoring group like

carboxylic or phosphonic entities. The two investigated molecules, hexadecylmalonic

acid (HDMA) and decylphosphonic acid (DPA), produced a spectacular increase of

the short-circuit current, by a factor of two to four depending on the conditions. This

allowed reaching nearly 1 % conversion efficiency at 0.1 Sun (AM 1.5).The

effectiveness of these molecules to block the interfacial recombination was also

shown by nanosecond laser measurements.

The kinetics were shown to be slowed by the surface co-modification. The influence

of HDMA and DPA differed between dip-coated samples and CBD samples. It was

first thought that the co-modification influences more the former ones as for these, the

interfacial recombination is faster. The time resolved measurement and the

photovoltaic characteristics, however, showed the contrary; the photovoltaic

performances of the CBD samples were increased more significantly than for dip-

coated samples. These observations could be assigned to a surface state passivation

effect of the molecules.

Apart from metal sulfide sensitisation, metal selenide sensitisation was investigated.

CdSe and PbSe were deposited in-situ on TiO2 by chemical bath deposition.
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Unfortunately the photovoltaic response of such devices was much lower than the

PbS sensitised ones. Fluorescence spectroscopy allowed pointing out incomplete

luminescence quenching of the CdSe sensitised device. It was concluded that an

inefficient electron injection is responsible for the bad performances of the device,

due to a bad matching of energy levels between the sensitiser and the TiO2.

IX.2 Outlooks

First of all, the understanding of the effects of the co-modifying molecules on the

performance of the device should be improved by ultra-fast laser spectroscopy. The

hypothesis of blocking the surface states could be proven with this technique. It

should also be possible to prove that the influence of these traps is stronger for CBD

samples than for dip-coated samples.

The application of tBP has not had a positive effect on the system operation, but

interfacial recombination could also be restricted by the use of a base, and a screening

of various candidate bases could be done to find a less aggressive compound for this

function.

It should also be very interesting to see if the use of other synthetic routes could

enhance the performance of the device. Atomic layer deposition could for example be

used to sensitise the system with a variety of semiconductor nanoparticles. Better light

absorption could be achieved with other types of nanoparticles. Furthermore this

technique allows the preparation of thin trap-poor semiconductor films, which should

help to avoid one of the major loss processes.
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