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Abstract

The aim of this work is to provide mathematically sound and computationally effective tools
for the numerical simulation of the interaction between fluid and structures as occurring, for
instance, in the simulation of the human cardiovascular system. This problem is global, in
the sense that local changes can modify the solution far away. From the point of view of
computing and modelling this calls for the use of multiscale methods, where simplified models
are used to treat the global problem leaving to more accurate models the local description.
Moreover it is characterised by the appearance of pressure waves inside the vessels.

In large arteries the vessel wall dynamics can be described by a thin elastic membrane
model (Navier equation) while the fluid motion can be represented by the Navier-Stokes equa-
tions for incompressible Newtonian fluids.

Unfortunately, given the high levels of details furnished by this model, its computational
complexity is dramatically high. Therefore reduced models have been developed. In par-
ticular, one-dimensional models, originally introduced by Euler, seem to be appropriate for
the study in the time-space domain of pressure wave propagation induced by the interaction
between the fluid and the vessel wall in the arterial tree. These reduced models are obtained
after integrating the Navier-Stokes equations over a vessel section, supposed to be circular,
and assuming an algebraic wall law to describe the relationship between pressure and wall
deformation. They can be used in place of the more complex three dimensional fluid-structure
models or in cooperation with them (multiscale approach).

The first part of this work deals with one dimensional models. A reduced 1D model taken
from literature is presented and analysed. Some extensions of the basic model, in particular
with respect to vessel wall law (generalised string model) and more complex geometries (bi-
furcated and curved arteries), are also considered. Numerical schemes are proposed and some
numerical results are presented.

In the second part of this thesis we focus on a multiscale model. We consider a 55 arte-
rial tree, described by the 1D model, coupled with lumped parameter models for heart and
capillaries. In particular, specific attention has been devoted to the coupling between the
left ventricle and the arterial system, whose physiopathological relevance is well known. This
mathematical model gives good results in numerical tests and is able to describe the relevant
features of the pressure wave propagation and reflections whithin the arterial system.
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Riassunto

L’obiettivo di questo lavoro & lo sviluppo di modelli e codici per la simulazione dell’interazione
tra fluido e struttura, nell’ambito dello studio del sistema cardiovascolare umano. Questo pro-
blema ¢ globale, nel senso che cambiamenti locali possono avere conseguenze in un qualsiasi
punto del sistema cardiovascolare. Da un punto di vista modellistico si dovra pertanto ricor-
rere all’uso di particolari tecniche conosciute con il nome di metodi multiscala: il problema
globale & risolto utilizzando modelli elementari, mentre localmente sono usati modelli piu
accurati. Un’altra peculiarita di questo problema sono le onde di pressione che si propagano
lungo le arterie.

Nelle larghe arterie la dinamica della parete puo essere descritta da una membrana
(equazione di Navier) mentre il fluido puo essere rappresentato con le equazioni di Navier-
Stokes per i fluidi Newtoniani incomprimibili.

Sfortunatamente, a fronte di un’alta capacita descrittiva, la complessita computazionale di
questo modello ¢ drammaticamente elevata. Per questo motivo sono stati sviluppati modelli
ridotti. In particolare, i modelli monodimensionali, originariamente introdotti da Eulero nel
1844, appaiono indicati per la descrizione della propagazione delle onde di pressione indotte
dall’interazione tra il fluido e la parete delle arterie. Questi modelli ridotti sono ottenuti
integrando le equazioni di Navier-Stokes su una sezione supposta circolare e facendo I'ipotesi
di una legge di parete algebrica. Essi possono essere usati sia al posto dei piu complessi
modelli tridimensionali di interazione fluido-struttura sia in cooperazione con loro (metodo
multiscala).

Nella prima parte di questo lavoro vengono trattati i modelli monodimensionali. Un mo-
dello ridotto 1D gia presente in letteratura & illustrato ed analizzato. Alcune estensioni di
questo modello basilare, in particolare rispetto alla legge di parete delle arterie (modello di
stringa generalizzato) e a piu complesse geometrie (biforcazioni e arterie curve), sono oltre-
tutto considerate. Infine vengono presentati gli schemi numerici utilizzati per la risoluzione e
alcuni risultati.

La seconda parte della tesi & incentrata su un modello multiscala. Viene considerato
un sistema di 55 arterie, descritte col modello monodimensionale, accoppiato con modelli
a parametri ristretti per il cuore e i capillari. Vista la sua importanza fisiopatologica,
un’attenzione particolare & stata rivolta all'interazione tra il ventricolo sinistro e il sistema
arterioso. Il modello matematico presentato da buoni risultati nei tests numerici ed & capace
di riprodurre le caratteristiche principali della propagazione delle onde di pressione.
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Introduction

The numerical simulation of blood flow in human arteries attracts nowadays the interest
of many researchers. Even if cardiac arrest remains the top lethal disease in industrialised
nations (see e.g. [5] and [3]), the medical, social and economical impact of the evolution of
treatment methods will continue to be large. In fact, the increase in expectation life combined
with the changes in living and eating habits causes the alteration of blood vessel properties
and, hence, the occurrence of heart and vascular diseases.
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Figure 1: Human circulatory system, taken from [4]. Roughly speaking the human circulatory
system is composed by the heart (Figure 2), the arteries and the veins, the arteries bringing
oxygenated blood from heart left ventricle to the various organs, the veins bringing it back
to the right atrium, and the heart acting as a pump.



2 INTRODUCTION

The objective of this work is to provide mathematically sound and computationally ef-
fective tools for the numerical simulation of the interaction between fluid and structures as
occurring, for instance, in the simulation of the human cardiovascular system (Figure 1).

Figure 2: The human heart, interior of the right side and of the left side of the heart, taken
from [6]. Its functioning is very complex and involves among other things the electro-chemical
activation of the muscle cells (see e.g. [8]).

Today, numerical simulations of the human circulatory system still feature a limited role
in the ongoing field of creating new and perfecting existing methods for treating heart and
related diseases. Even the modelling of the human blood is a difficult task, being composed of
many particles (i.e. red and white blood cells and platelets), the significance of each varying
with the size of the blood vessel of interest (e.g blood can be considered as a continuum in
large arteries, while in capillaries its discontinuous nature cannot be neglected). Moreover it
interacts with the vessel wall (Figure 3) whose structure is also very complex.

At the moment, most results from numerical simulations are used to gain a better un-
derstanding of flow patterns and vessel wall stresses when an anomaly occurs, for example
in an aortic stenosis or in an aortic abdominal aneurism (AAA). A stenosis is a constriction
or narrowing of an artery (for instance cholesterol and other substances over time may clog
the artery), while an aneurysm is usually defined as a focal dilation of the aorta at least 150
% of the normal aortic diameter. AAA can continue to expand and rupture spontaneously,
exsanguinate, and cause death. The rupture is an important cause of unheralded deaths in
people over 55 years of age, claiming more than 15,000 lifes annually in the United States
alone. One possible technique to treat a stenosis is to put a stent: this is a wire metallic mesh
(see Figure 4), which stays permanently in the artery, holding it open and improving blood
flow to the heart muscle. The aneurism is treated in a similar way by replacing the damaged
tissue by a prosthesis or endograft (Figure 5).

In particular numerical simulations become very advantageous, being relatively cheap and
safe, in the preliminary testing of new product designs [54, 40, 55, 2, 1].

In this work we will focus on the human arterial system (Figure 6). This last can be
mathematically described by different models with a different level of detail, from 3D Navier-



INTRODUCTION 3

Timicq mbure
Endcthelinn cells
Connectiva tissue
Elaztic tiszue

Tunica adv entibia

Figure 3: Vessel wall (courtesy of K. Kangasniemi and H. Opas). The structure and the
mechanical properties of artery wall are rather complex (see e.g. [50, 79]). Large and medium
sized arteries consist of 3 distinct layers: tunica intima, tunica media and tunica adventitia.
The tunica intima consists of three layers: endothelian cells, connective tissue and an elastic
tissue. The tunica media is the thickest layer and is composed mainly of connective tissue,
smooth muscle cells and elastic tissue. The structure of the tunica media also depends on
the type of artery. In larger arteries it consists of connective tissues, elastic tissue and elastic
fibers. In smaller arteries, like the arteries in the arm, smooth muscle cells replace the elastic
fiber layer. The tunica media predominantly determines the mechanical properties of the
arterial wall. The tunica adventitia consists of collagen fibers and elastic tissue [19].

Stokes based ones [103] down to lumped parameter systemic representations based on the
analogy between hydraulic and electric networks (see e.g. [105],[61],[106], [34], [83]), passing
throughout 3D axial-symmetric model [22] and 1D reduced models [77, 16].
In particular, one dimensional models, originally introduced by Euler [26], seem to be ap-
propriate for the study in the time-space domain of pressure wave propagation induced by
the interaction between the fluid and the vessel wall in the arterial tree (see [69, 70, 96, 92,
99, 68, 66, 77]). In this specific framework these reduced models can be used in place of the
more complex three dimensional fluid-structure models or in cooperation with them. Their
computational complexity is dramatically lower than that of multidimensional models based
on the coupling of Navier-Stokes equations for the flow field and a mechanical model for the
vessel wall displacement. For example a one dimensional simulation of 3 s, i.e. approximately
4 cardiac cycles, of an arterial tree consisting of the main 55 arteries in the human body
(Figure 7) takes less than 10 minutes on a standard PC, while a fluid-structure interaction
Navier-Stokes simulation of an artery of length 6 cm takes 1 hour just for a period of 0.3 s.
Their principal property is to allow a good description of pressure waves propagation in
arteries [99, 69]. For this reason they can be successfully used to investigate the effects of the
geometrical and mechanical arterial modification, due e.g. to the presence of stenoses, or to
the placement of stents or prostheses [32, 14, 90, 17], as occurs for instance in abdominal aortic
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Figure 4: Balloon expandable stent. (1) Stenosis in a artery; the internal balloon is inflated
and it plastically deforms the stent. (2) The stent constitutes a real scaffolding for the artery
that recovers again the original lumen. (3) The balloon is deflated and then pulled out, while
the stent is left inside the artery.

Figure 5: Non invasive vascular treatment of abdominal aortic aneurysm. An endograft is
placed in the AAA site to substitute the damaged tissue.



INTRODUCTION 5

) i
Suparficial {: b
tepoal artey {1 'y

External caratid artery
Posterior auricular atery

Internal carctid artay

Com man carctid artery s
Subdavian atery
Brachi ooephalic trunk Acrta and arch
Ao lLary arteny ;:F:zarr atery
: rikac artery
Deep .bradu al atary edemerinie ]
:"’;:HF s CEH!C.tI'\.Iﬂk .
Radial atery Superior mesenteric artery
Feral artay
Interossequs artery po il
Uinar artery

Irferior mesanteric artery
Commen iliac artey
External iliac artery
Internd ilac artery

[reep femaral artery
Femoral artery

Deap palmar arch
Supartidal paimar arch

Descending genioul ar artery Fopliteal artery

Anteriortibial arery

Paraneal artery
Posterior tibial arnery

A I-':-
Efjfl\}

Figure 6: Human arterial system, taken from [4]. Arteries can be regarded as hollow tubes;
we can subdivide them in large arteries, medium arteries and capillaries. In this Figure the
large arteries are depicted . Their main role is to bring blood from the heart to the periphery
acting as a “compliant system”; in fact they deform under blood pressure storing, hence,
elastic energy during the systolic phase. This is given back during the dyastolic phase.

aneurism. Their computational cost makes it possible not only to study the local pressure
wave propagation [70, 96, 72, 73, 63, 64] but even the global one [30, 91, 62, 63]. Moreover
the computational performance could be improved using parallel computing [47].
On the other hand, they are also used in the framework of a multiscale approach [33, 71, 48,
30, 78, 82], where they are coupled with lumped parameter models (also called 0D models)
[84, 105, 83] and three dimensional fluid-structure models [60]. As discussed in [28] and in [31]
such reduced models can be used to provide correct boundary conditions to 3D calculations
and, thence, to perform global simulations of human cardiovascular system (Figure 8).

This work is divided in two parts: One dimensional models for blood flow simulations and
A multiscale simulation of the human arterial system.

The first part deals with a one dimensional model for the fluid-structure interaction prob-
lem in arteries, its numerical solution and the extensions of the basic 1D model realised during
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Figure 7: A system of 55 arteries representing the human arterial tree. This simulation was
realised using a network of one dimensional models.

the present work.

In Chapter 1 the state of the art of one dimensional modelling is presented: a derivation
of a 1D model is briefly carried out and some theoretical results taken from the literature
[77, 28, 15] are reported. The resulting model consists of a 2 x 2 hyperbolic system of partial
differential equations whose unknowns are the area A, related to the pressure P by a consti-
tutive vessel law, and the flow rate Q. In this first approach the vessel wall is modelled in
order to produce an elastic and static reaction to a fluid action (algebraic vessel law) [77].

Chapter 2is devoted to the numerical treatment of the 2 x 2 hyperbolic system. Among the
possibilities offered by the literature [52, 76, 80] we have chosen a second order Taylor-Galerkin
numerical scheme in a finite-element formulation, because of its satisfactory dispersion and
dissipation properties. This scheme is stable under a CFL (Courant-Friedrichs-Lewy) condi-
tion that for realistic applications can be too restrictive (CFL number < %) For this reason
we derived a new scheme with a less restrictive CFL condition. Numerical test on the new
scheme proposed are therein reported. Moreover the problem of the numerical treatment of
boundary conditions is addressed.
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As previously mentioned, in the basic model presented in Chapter 1 the vessel wall is
described by a simple algebraic law (the pressure is proportional to the wall displacement).
In Chapter 3 we extend this model to more complex and realistic vessel wall laws (where
the pressure is linked to the wall displacement by a partial differential equation), taking
into account other phenomena, such as wall inertia, viscoelasticity and longitudinal elasticity
[79, 16]. In this case, it is still possible, at the cost of some simplifications in the model, to
recover a system of two partial differential equations for A and Q. In this way it may be easily
recognised that the wall inertia introduces a dispersive term in the equation, while viscoelas-
ticity contributes with a diffusive operator. We present a numerical framework where these
additional terms are handled by an operator splitting technique; in this way the solver based
on a second order Taylor-Galerkin scheme and presented in Chapter 2 is still used [29, 67].
Numerical tests are reported to exemplify the effect of the various terms on both pressure
and flow pattern.

In Chapter 4 we address a more complex geometry, taking into account abrupt varia-
tions of vessel wall properties (as occurs for instance in the case of a stent or an endograft)
[32, 29, 14, 90, 67] as well as bifurcated channels [29, 92, 91, 62, 63, 67]. This last extension
is, in particular, of crucial importance for the simulation of an arterial network. The two
problems are very similar from a mathematical point of view and are handled by a domain
decomposition technique [81] for which proper interface conditions have to be found. We
present interface conditions that guarantee a global energy inequality. Details on the numer-
ical scheme used to solve the interface problem are also furnished.

Finally the case of an endograft posed in the iliac bifurcation is presented. This test case
is presented here with the aim of understanding how it can be treated by one dimensional
models.

In Chapter 5 a preliminary extension to the case of curved geometries is reported. The
one dimensional model presented in Chapter 1 is based on the assumption of a specific profile
for the longitudinal component of the velocity, while the axial components are neglected. In
the reduced models here presented we enrich the velocity field: the two components of the
axial velocity are not neglected anymore and the component of velocity along the longitudi-
nal axis is described, on each vessel section, by a higher order polynomial [38, 39, 85]. This
allows the development of un-symmetric velocity profiles. We report here about some models
developed for a straight geometry and the extension of them for a curved geometry (with
constant curvature). These models are characterized by a weak imposition of the divergence
constraint.

Some preliminary numerical results for curved geometries are also reported.

In the second part we consider an arterial tree featuring 55 arteries [105, 97, 104], de-
scribed by the 1D model, coupled with lumped parameter models for heart and capillaries.
As the one dimensional model has already been presented, here we address the methodology
and the numerical methods behind the coupling (multiscale) problem (Chapter 6) and we
present some numerical results for cases of clinical interest (Chapter 7).

Normally, the action of the heart is represented by a boundary conditon to be prescribed
at the inlet of the first artery (the ascending aorta) of the network [91]. In Chapter 6 we
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Figure 8: Multiscale approach for the human cardiovascular system. The one dimensional
model is coupled with a lumped parameter model and a three dimensional Navier-Stokes
fluid-structure interaction problem. This approach is completely modular in the sense that
we can improve the local description using a more accurate model (figure taken from [33]).

show that the reduction of the heart action to a boundary condition for this system is unsat-
isfactory, in particular when studying the effect on the pressure and flow patterns caused by
changes in the geometrical or mechanical characteristics of the arterial network (e.g. due to
the presence of a prosthesis in the iliac bifurcation). No feedback from the arterial tree to the
heart is indeed being modelled in this way. Therefore, we propose to overcome this drawback
by a coupled description based on the matching of the 1D network model with a lumped
parameter model for the left ventricle [30]. In particular, we use a varying elastance model
presented in the literature [59, 45] together with a technique that accounts for the closure of
the aortic valve.

At the outlet we use a Windkessel model to simulate the presence of small arteries and cap-
illaries.

In Chapter 7 the model presented in Chapter 6 is tested and applied to some cases of
physiological or pathological relevance.
It is well know that arterial stiffness increases with age [59]; this is reflected in suitable
modifications of the parameter values of the numerical model. Hence, we first analyse the
physiological case and the ageing effects, showing that our model is able to recover empirical
results presented in literature [59]. In particular, we investigate the overload on the heart
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induced by the backward waves, whose relevance is increased by the stiffening of the vessel
walls.

Next, a pathological situation (an amputation, occurring for instance as a consequence of
diabetes) is considered where anomalous pressure wave reflections could have some conse-
quences on the heart. This pathological case can be described by a suitable modification of
the computational domain.

Preliminary numerical results referring to such pathological case are presented.
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Chapter 1

Classical 1D models for straight
vessels

Introduction

The aim of the Chapter is to give a presentation of the state of art of one dimensional mod-
elling of blood flow in arteries.

A simple reduced (1D) model will be introduced to describe the flow motion in arteries and
its interaction with the wall displacement. In the absence of branching, a short section of an
artery may be considered as a cylindrical compliant tube. There are (at least) two possibilities
of deriving reduced models: asymptotic analysis and averaging the Navier-Stokes equations
on vessel sections.

In the first case, the Navier-Stokes equations are considered in non-dimensional form, a small
parameter € (e.g. the ratio of the radius of the vessel to the length) is introduced, and all
terms of second order in € are neglected; the reduced model follows by averaging the reduced
equations and recasting them in dimensional form [15, 16].

In the second case, the reduced model is obtained by introducing some physical semplifica-
tions (the axial velocities are neglected and a profile is chosen for the longitudinal velocity)
and averaging the Navier-Stokes equations [77] on each vessel section.

We will describe here in more details this second method, which is the one adopted in this
work.

The resulting model consists of two partial differential equations whose unknowns are the
area A, the pressure P, and the flow rate (). This model is, then, coupled to the structure
throught the pressure: here we assume a static linear dependence of the pressure on the vessel
wall displacement.

Moreover we will report the most relevant theoretical results present in the literature about
one dimensional models. At the end of the Chapter we will address the problem of boundary
conditions.

The model derivation in Section 1.1 is taken from [29], while the theoretical results of Section
1.2 are mainly inspired by [77, 28, 15].

13



14 CHAPTER 1. CLASSICAL 1D MODELS FOR STRAIGHT VESSELS

Figure 1.1: The cylindrical domain €;. The cylinder axis is aligned with the coordinate z.
The axial sections z =const. remain circular at all times.

1.1 One dimensional models

One dimensional models provide a simplified description of the flow motion in arteries and
its interaction with the vessel wall displacement. Although unable to provide details on the
flow field (such as recirculation or oscillating shear stresses), they can effectively describe the
propagative phenomena due to the wall compliance. They are derived from the Navier Stokes
equations

%—': +(u-V)u+ :—)VP —div [¢(Vu+ (Vu)T)] =0

diva=0

in Q¢ >0, (1.1.1)

posed on a cylindrical domain €; which changes in time because of the flow induced wall
movement. Here u = (ug,uy,u,) is the fluid velocity, P denotes the pressure, v is the
kinematic viscosity and p the blood density; (z,y, ) is a system of Cartesian coordinates.
The complete derivation of one dimensional models can be found in [77] and is not repeated
here. We just recall the main assumptions behind this derivation.

The domain, €, is a straight cylinder (with axis oriented along the coordinate z), as depicted
in Fig. 1.1. Tt is comprised between z = 0 and z = L, L being the vessel length, taken to be
constant in time. In the following, we will often employ cylindrical coordinates, denoted by
(r,8,z). We make the assumption of axial symmetry for all quantities involved. Furthermore,
a wall displacement along the radial direction is considered. This implies that each axial
section S remains circular at all times, i.e., for z € [0, L] and ¢ > 0 we have

S =5(z,t) ={(r,0,z): 0 <r <R(z,t),0 <0< 27},

where R = R(z,t) is the vessel radius. The pressure is taken to be constant on each axial
section and we assume that viscous effects are relevant only near the wall boundary. The
component u, is dominant with respect to u, and u, and furthermore we assume that it may
be described in cylindrical coordinates as

r

uy(r, 2, t) = H(z,t)s(R(z7 ) ),

where @ is the average velocity on each axial section and s : [0, R(z,t)] — R is a velocity
profile (also called profile law).
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The vessel wall is supposed to be impermeable, although seepage of fluid through the wall
may be accounted for at the expense of a slight modification of the equations (see section
1.1.2).

By integrating (1.1.1) over a generic axial section S(z,t) and taking advantage of the above
assumptions, one finally obtains the following system

04 0Q _

5t o, =0 (1.1.2)
Q0 ( Q% Aop Q_
o T3, <aA + o T KR =0 (1.1.3)

for all z € (0,L) where the unknowns A, @ and P (in the following we will also use the
notation p = £) denote the section area, the averaged volumic flux and the mean pressure,
respectively. They are defined as

Ao = [ dedy, Q)= [ wsleyzdedy
S(z,t) S(2:t) (1.1.4)
P(z,1) = (A(z, 1)) ™" P(z,y,z,t)dz dy.
S(z,t)

Clearly we have () = Aw. The coefficient « is the momentum correction coefficient (also called
Coriolis coefficient), defined as

oo Jguldzdy _ Jg 8% dudy

Au? A ’

while K is a resistance parameter related to the viscosity of blood.
For a profile law of the form

s(r) =N C+2)A -7, r=+22+y?

with ¢ > 0, we have a = (¢ + 2)(¢ + 1)~!. In particular for a parabolic profile (Poiseuille
flow) a = %. In blood flow problems a flatter profile (¢ = 9) is often preferred [95]. In this
case @ = 1.1. Furthermore, @ = 1 is also often used, since it leads to simplifications in the
mathematical formulation that will be detailed later on. As for the resistance parameter, a
parabolic profile would provide Kr = 87v, which is the value normally used, while for ( =9
one would get K = 227v.

Recently [16] self-consistent effective equations modelling blood flow in arteries have been
derived. These new reduced models are obtained without any hypothesis on the velocity
profile. In particular, in the resulting system, the velocity profile is obtained solving a partial
differential equation.

1.1.1 Vessel wall law

To close our problem, (1.1.2) and (1.1.3), which is undetermined as it features three unknowns
and only two equations, it is necessary to provide an additional relation. This is derived from
the mechanical model for the vessel displacement. The vessel wall is a rather complex physical
system: a biological description can be found in [42], [43], [44]. Therein some mathematical
models are detailed.
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Our starting point is the so-called generalised string model ([79], [77]), that can be easily
obtained starting from the membrane equation (linearly elastic membranes are modeled by
the Navier equations, see [49] or [53]), under the hypothesis that the longitudinal (along z)
displacement of the wall is negligible.

It writes

Py 0 . B
N T T
Here, n = R— Ry is the displacement of the vessel wall with respect to a reference configuration
at the initial time t=0:

puwho = (P — Pewt)- (1.1.5)

Qo ={(r,0,2) : 0<r<Ry(2),0<0<2m,0<2< L}

which corresponds to that taken by the vessel when filled by a still fluid at pressure equal to
the external pressure Py; (here taken constant). Clearly

VA - VA
Jr

puw is the vessel density, kg the wall thickness at the reference configuration, @, b and & three
positive coefficients. In particular,

, with Ay = 7R3. (1.1.6)

EﬁE_hoinho
_nRg_ KAy’

(1.1.7)

where E is the Young modulus of elasticity and x may take the value 1 or 3/4 depending on
whether the assumption of uni-axial plane stresses is made in the derivation of the generalised
string model. More details are found in [79] and [77]. Here we take x = 1.

The partial differential equation (1.1.5) may be used to link the pressure with the vessel
area and its time and spatial derivatives. However, its direct use in the context of our one
dimensional model is problematic. The system formed by (1.1.3) and (1.1.5) (after having
expressed the latter in terms of A by using (1.1.6)) would contain two evolution equations for
the same unknown, the area A. Moreover, it is known that for the problem at hand, the elastic
response is the dominating effect, while the other terms are less important. Consequently, a
first model is obtained by neglecting all derivatives in (1.1.5) (see e.g. [66] or [77]). Pressure
and area will then be related by an algebraic law of the type

- VA - VA

P—Pyr=tn=4 Ao (118)

where
B = Ehov/m (1.1.9)

is in general a function of z because of possible spatial variations of the Young modulus E
and the wall thickness hg.
In general, an algebraic relationship between pressure and area may be written as

P:Pezt‘i’?/)(A;AOmB) (1110)

where we have outlined that the pressure will also depend parametrically on Ay and on a
set of coefficients 8 which account for physical and mechanical characteristics. Ag and 8 are



1.1. ONE DIMENSIONAL MODELS 17

given functions of z. It is required that ¢ be (at least) a C* function of its arguments and be
defined for all A > 0 and Ay > 0. The range of variation of 8 will depend on the particular
mechanical model chosen. Furthermore, for all allowable values of A, Ag and 8 we must have

— >0, and v¥(A4p;Ao,B) =0.

Various algebraic relations of the form (1.1.10) have been used for the development of one
dimensional models of blood flow, the interested reader may refer to the cited reference. In
this work we will restrict our selves to (1.1.8), i.e. ¥ = ﬁ%, and 3 reduces to the single
parameter 3. Furthermore, for the sake of simplicity, and without loss of generality, we will
assume P, = 0.

We will now focus on the differential problem obtained by substituting (1.1.8) into (1.1.3),
and on its numerical solution, leaving to Chapter 4 the discussion on how to implement the
other terms in (1.1.5) into the model.

1.1.2 One dimensional model with algebraic pressure law

By replacing (1.1.8) into (1.1.3), after some manipulation we obtain a system of differential
equations which may be written in conservation form as

oU  OF

v %Y uy=B(U 1.1.11

o+ (U) =B(U) (11.11)
where U = [4, Q]” are the conservative variables, F = [F}, F5]T are the corresponding fluxes
and B = [By, By]” are the source terms. Details may be found in [77]. More precisely, if we
choose (1.1.8) as the pressure area relation, we have

Q 0
F(U) = a?: SpﬁA 43 and B(U) = [ —KR% } . (1.1.12)
0

(1.1.11) can be rewritten as:

U 49U g = _ OF 04y 0OF 0B
S +Hg, =B(U) = B(U) - 57 95 9 (1.1.13)
where
OF, OF . .
_ 9F _| 04 9Q | _ 2
O =507 | on on |7 | e eslat 29 |0 011
94 9Q psio

B(U) = » (1.1.15)
EhoyT A 1 3\ a4
- Bho/n g <§A2 - %A(?) 5

The term %1 in equation (1.1.13) accounts for a variation of the Area at rest, as occuring

for instance in case of tapering or stenosis, while the term % accounts for a variation of the
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mechanical properties of the vessel.
Moreover we can add a seepage effect (mass losing effect) modifing the source term of the
mass conservation equation. Equation (1.1.2) states the mass conservation and is modified
by adding a source term o4 90
o + 9 Y (1.1.16)

with

Y =yo +k(VA - /Ay) (1.1.17)
where yy and k are suitable constants to be empirically fitted. This seepage effect may be
used either to simulate, in a rather crude way, the blood leaving the main vessel wall through
lateral branches, or the arterial flow through the vessel wall in some smaller arteries such as
those in the brain.

1.2 Some theoretical results

1.2.1 Analysis of characteristics

Consider system (1.1.13). By straightforward calculations we have the following expressions
for the eigenvalues of H

2
Aig = a%:{: c%—i—a(a—l)% , c = LA% (1.2.1)

Using the Cauchy-Schwarz inequality

Aa:/sugﬂ /SuZ (1.2.2)

and therefore
Aw? g/qﬂ, (1.2.3)
S

leading to o > 1. Consequently the two eigenvalues A; and X are distinct and real: the
system (1.1.13) is thence fully hyperbolic.

It is useful to rewrite it in a different manner, by diagonalising the matrix H.

We indicate by 1; and ly the two left eigenvectors of H and by r; and rp the rigth ones;
moreover let L and R be the matrices formed by the left and right eigenvectors, respectively,
and A the diagonal matrix formed by the eigenvalues.

If we normalise the eigenvectors (LR = I), we have

H =RAL.

Using these notations, system (1.1.13) is rewritten as

ou ou
— AL— =B 1.2.4
5 TRALZ U) (1.2.4)
Now, multiplying equation (1.2.4) by L
ou ou

L=~ +AL—~ =LB(U) (1.2.5)
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If there exists a quantity W = W(U) such that

oW
— =L 1.2.6
FLii (1.2.6)
equation (1.2.5) can be rewritten as
oW oW
i tAS, =LB(U) (1.2.7)

In this way, the original system has been diagonalized. W = [Wy, W5]T are called character-
istic variables.
In the case where B = 0, this relation says that they are invariant along the two curves (in
the (z,t) plane) described by the non-linear ordinary differential equations (see e.g. [36])
dY1 dY2
— =\ (V1,t d —= = (Yo, ). 1.2.8
o 1(Y,t)  an p 2(Y2,1) (1.2.8)
From equation (1.2.6) it follows (see [77]) that if the characteristic variables exist they must
satisfy

Wy _ o [2 "D - (o 1) A
L (& ata D@ (a-a] D ca
ow, 5 — oW
a—Afg[— g +ala-1)a? - (a-1a] , 74 =(A

where ¢ = ((4, ) is an integrating factor to be determined.

In the general case, the solution of this problem is not a simple task, but considering the
special case @ = 1 leads to some simplifications. In this specific case, by straightforward
calculations ([77]) one finally obtains the expressions for the two characteristic variables

Q B 1
=—+ . 2.
W1,2 A 4 2pA0A4 (1 2 9)

These relations can be inverted to express the primitive variables in terms of the characteristic
ones,

_ (2pA0)\? (W — Wa)* L (W + W)
A= (T) o Q=A——— (1.2.10)

1.2.2 [Energy estimate

Defining a local energy e as
1., 14
e=_Au" + — Y(§, Ao, B)dE
2 P Ja,
a global energy for the 1D model is given by

e(t) = /OL e(t, z)dz, tel

Note that e is the sum of the kinetic energy and the elastic energy stored in the vessel wall. It
has been proven in [28] that under some hypotheses (subcritical flow regimes, that is Ay > 0
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and A2 < 0, and area A always positive) and in the special case of @ = 1, the following
equality holds

t L t
() + Kr / / Wdedr + % QP — Po)bdr = e(to) (12.11)
to Jo to

where €(tg) depends only on the initial data A° and Q°, while P, = P+ %pﬂ? is the fluid total
pressure. In equation (1.2.11) the first term at the left side represents the global energy of the
1D model, the second the energy dissipated and the third the energy ingoing and outgoing.
In order to draw an energy inequality we need to investigate the sign of this last term, which
will depend on the boundary conditions.

Further discussion can be found in [28].

1.2.3 Entropy

Let us consider the hyperbolic system written in quasi-linear form (1.1.13). We may have
situations in which the weak solution is not unique: in this case an additional relation is
required in order to select the physical solution. Typically in gas dynamics the physical
quantity used is the entropy. For system (1.1.13) it is possible to define an entropy function
for which an additional conservation law holds ([52, 36]).

Following [77] a pair of functions e : R> — R and F, : R — R is called an entropy pair for
the system if e is a convex function of U (called entropy) and if the following condition is
satisfied

de .1 OF,
—)'H = 1.2.12
THU) = o (1212)
for all the admissible values of U.
In the special case a = 1
1, ., 14
e =34+ = [ (& Ao, B)de (1.2.13)
P J Ay
is indeed an entropy with associated flux
1
F. = ;Q(Pt_Pezt) (1'2'14)

Further details can be found in [77].

1.2.4 Note on the regularity of the solution

As system (1.1.13) is hyperbolic and non-linear, one should expect to have shock development,
as known from literature (i.e. see [52]).

In [15] a mathematical analysis is presented for the quasi-linear effects arising in a hyperbolic
system of PDE modelling blood flow in arteries. That system differs from system (1.1.13)
because the pressure-area relationship is taken to be linear. In particular it is shown that,
in a healthy individual, shocks never occur for physiological vessel lengths and physiological
pulse (the time and location of the first shock is there estimated at 2.8 m downstream from
the inlet boundary).
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1.3 Boundary conditions

As already seen in Section 1.2.1, the mathematical analysis of system (1.1.13) outlines its
hyperbolic nature. The solution is, then, the non-linear superposition of two simple waves.
The two eigenvalues \; and Ao, representing their velocity, are always of opposite sign for the
flow regimes we are interested in. Hence, the differential problem needs exactly one boundary
condition at z =0 and at z = L ([76]).

An important class of boundary conditions, is the one called non-reflecting, where only the
information associated to the entering wave is prescribed (if Ay > 0 and X2 < 0, at z = 0 the
incoming characteristic variable is Wy, while at z = L is W3).

This means that non-reflecting boundary conditions are of the form

Wi(t) =gi(t), atz=0, t>0 (1.3.1)

Wot) = go(t), atz=L, t>0. (1.3.2)

These conditions are admissible for the problem at hand.

The admissibility of a boundary condition for a non-linear hyperbolic system has been ad-
dressed in [25]; other references may be found in [36].

Equations (1.3.1) and (1.3.2) allow the wave associated to the outgoing characteristic to leave
the domain. In particular, a boundary condition of this type is convenient at the distal sec-
tion, when no specific information is given on pressure or flux variation. In this case go(t)
can be taken to be constant.

At inlet one normally aims at imposing values of pressure or mass flux, because empirical
data are usually given in term of physical variables. In this case, in order to use equation
(1.3.1) a way to construct ¢;(t) from physical data is needed (for a numerical approach see
Section 2.2).
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Chapter 2

Numerical approximations of 1D
models

Introduction

In the previous Chapter, the classical one-dimensional model has been presented and analysed.
The final model reduces to a 2 x 2 hyperbolic system.

In this Chapter the problem of the numerical solution of such a system will be addressed.
Among the possibilities proposed in the literature [52, 76, 80], we have chosen to use a
Lax-Wendroff scheme, because it produces a moderate amount of numerical dispersion and
dissipation. Moreover, we have chosen the finite element version (LW-FEM) of this numerical
scheme instead of the finite difference version (LW-FDM), because of its lower numerical
diffusion and dispersion (for more details see Chapter 8 of [76]).

In the first part of this Chapter a second-order Taylor-Galerkin (or LW-FEM) scheme is
presented ([23, 9, 24, 20]); this scheme is stable under a CFL (Courant-Friedrichs-Lewy)
condition which relates the time step to the space grid size. While the LW-FDM is stable
if the CFL number is lower than 1, the CFL condition for the LW-FEM is more restrictive
(CFL number < %)

Therefore a possibility to improve this scheme, increasing the CFL number, is also discussed.
This modified scheme, presented in Section 2.1.1 and analysed in Section 2.3.1, has been
developed in collaboration with L. Formaggia.

The problem of how to treat boundary conditions numerically will be addressed in the second
part.

23
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2.1 Numerical Discretisation

System (1.1.11) is discretised using a second order Taylor-Galerkin scheme [23]. Its derivation
is more complex here because of the presence of the source term.

- . . OF
To simplify notation, we will denote Fy = —— and By = ——.

ou ou
By recalling (1.1.11) we may write
ou OF
o _ g = 2.1.1
ot 0z ( )
o*u au 9 ou
o = PV o <FUE)
B OF\ O(FyB) 0(FuZ)
= By (B - 3z) e (2.1.2)

We subdivide the time domain in time intervals (¢*,#"*!), n =0,1,..., with t* = Atn, At
being the time step.
By performing a Taylor expansion around the solution U(¢"), we obtain

Ut = U@ + aa—[tj At + 3627? ATF +0(at) (2.1.3)
tn in
— U@+ A (B(t") - aFa(Zt"’) e [BU(t”)B(t") —By(n) )
—% (Fu(t")B(t")) + a% (Fu(t")aFa—(Ztn))] + O(A) (2.1.4)

This suggests the use of the following approximation U™t of U(¢"*!), from the known value
of U™

2 n n
Un+1 — Uantg |:F"+%F"UBH:| 7A7t|: naF 17} (F" OF ):|

0z 2 |TY%9: 02V
n At n n
+At(B" + -BYB" ), (2.1.5)

where U? is provided by the initial conditions and F" stands for F(U") (similar notations
hold for FY; and B™, BY).

The space discretisation is carried out using the finite element method. The interval [0, L] is
divided into N elements [z;, z;41] with ¢ = 0, ..., N and we will indicate by h; the local element
size. We indicate by V}, the space of piecewise linear finite element functions, by V; = [V}]?
and by V9 the set formed by functions of V), which are zero at z = 0 and z = L. Further,
we indicate by

L
(u,v) :/ u-vdz
0

the L? scalar product for vector functions.
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Using the abridged notations Fry = F(Uy) + %FU(U,L)B(U,,) and By = B(Up) +

At
TBU(Uh)B(Uh)7 the finite element fomulation of (2.1.5) is :

for n > 0, find Uﬁ“ € V}, which satisfies

2 7
) = (U + ot (Fun 2) - B (860

0z 2 0z
At? OF" Oy,
—— (Fy——, ) + At(B? 9 2.1.
o (Fo e S ) + e (Bl ). Vi€ Ve (216)
plus the boundary and compatibility conditions which will be discussed in the next section.

This second order Taylor-Galerkin scheme (2.1.6) entails a time step limitation. A linear
stability analysis [74] indicates that the following condition should be satisfied

V3

. hi
At < — _— 2.1.7
- 3 ngugnN [max()\l,i,)\l,i+1)j| ’ ( )

where A1 ; here indicates the value of A\; at mesh node z;. This condition corresponds to a
CFL number of ?, typical of a second order Taylor-Galerkin scheme in one dimension [74].

Moreover it should be noticed that this numerical scheme can be easily implemented in
parallel, as done in [47].
2.1.1 Improving the numerical scheme

A third order (in time) scheme may be derived as well following the indications in [9].
Instead of the second order expansion(2.1.3) we can consider a third order one:

ou ?U| A2 9PU| AP
ntly _ 1y(m 2 = At 2.1.
ot =u@") + |, + oe |, 2 + o |,. 6 + O(AtY) (2.1.8)
We rewrite the third order derivative as:
3 2 2
o°U ~ 6 (0°U 00 (2.19)
o3 |~ AL\ 082 |y O |

where 0 is a parameter. Evidently, only for & = 1 we can have a third order scheme for
U(tn+1)_

. . R NN 0’U Lo .
This family of schemes implies the implicit treatment of the term FR which is approximated

as follows:
0’U
ot?

Q

n+1 n R n+1
- (Bnﬂ oF ) 5 : (F" oF )

0z 0z + 8z Y 0z
ountt OFyB™ 0 oo OUTHE
0z ) "o, $<(FU 0z ) (2.1.10)

n+1

Q

BY (B"+1 - F}

With these approximations we lose the third order.
The main idea, reported in [9], is to use relation (2.1.8) in order to get an unconditionally
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stable scheme for a set of 6 values.
Following the same idea, we modify our scheme (2.1.6) as follows:

A2 [ - L0UT gy dip
n+1 = 2 h h _ n n h -
(U, 4n) + 6 6| (Fu) o e |~ (Uh,vn) + At (FLW(Uh)u b >
At?  OF(UD) At? o OF(UL) dyy,
9 (B(Uh) 9z 7wh) - 9 (FU(Uh) 9z 7$) + (2.1.11)
a2 [~ L 0URt dy

n 2 h h

At (BLth, ¢h) + 76 [Z] (F 762; y 7dz

where Fy is a piecewise constant approximation of Fy(Uy) to be suitably defined. Remark
that for # = 0 we re-obtain the previous second-order scheme.

Instead of using the 6 optimal for accuracy we would like to find out for which values of § we
have a better stability condition. For that purpose, we perform a Von Neumann analysis on
the linear equation:

ou 0
Eﬂza% =0 (2.1.12)
discretised in time as follows:
At? O%untt ou™  At? ,0%u"  At? 0%un
ntl _ B 59 —u" — A2 L BV 2 _ B 2.1.1
“ 6 ¢ 922 “ ta 0z toe 022 6 ¢ 022 ( 3)

The analysis yields that for @ = a and 6 > % we have an unconditionally stable scheme. For

@ # a we still have a CFL condition, better than the old one and always bigger. Moreover for
0= % the scheme is still zero dissipative.

Next, we need to specify the choice of Fy for the equation at hand. We recall that Fy isan
approximation of Fy(U). Considering that

Q@ B 1 Q
—a— + A2 20—
FU(U)2 — 0 A? Q22PAOﬁ , , Q2A 5 ) , (2114)
(2042)(—04@ + 2P—AoA2) (4a® — l)p + 307 2

reasonable approximation reads

(.
~ 2
(Fu)? 2043 (2.1.15)
0 B
2pAG

The computational advantage of this choice is evident: the two equations are still completely
decoupled and Fy does not depend on U anymore.

2.2 Boundary and compatibility conditions

Although the differential problem requires only one boundary condition at each end of the
tube, the solution of the numerical problem requires to prescribe a full set of values for A
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and @ at the first and last node. We need two extra relations, which are provided by the
differential equations ‘projected’ along the direction of the outgoing characteristics, i.e.

1{(%—?+%(U)—B(U)> =0, 2z=0,t>0
17 (%—‘tj + ‘Z—]’;(U) - B(U)) =0, z=L,t>0. (2.2.1)

These compatibility relations could be discretised by adopting the same basic scheme as the
differential problem. However, this would result in relations that couple the values of A;l”'l
and Q;H'l at the vessel ends. Since it is desirable for computational reasons to maintain two
decoupled discrete systems for the evolution of area and mass flow, we have here resorted to
a strategy to handle the compatibility relations called “characteristic extrapolation”. It is
based on the well known fact that the characteristic variables satisfy a system of ordinary
differential equations along the characteristic path (1.2.8).

Indeed, when B(U) = 0 the characteristic variables are constant along the characteristics, so
a first order approximation of the outgoing characteristic variables at time t"*! and z = 0
and z = L, respectively, is provided by

W3 0) = WE (- A3(0)A),  WiTH(L) = Wi (L — M(L)At).

A second order approximation might be obtained by following the technique described in [13].
When B(U) # 0 the values of W2+!(0) and W™ (L) will have to be computed by numer-
ically solving the associated ODE system; for instance we solve it using an explicit Euler
scheme. The values of W1 (0) and W1 (L) together with the boundary conditions effec-
tively complement the discrete system provided by (2.1.6).

Again, if the characteristic variables are not available, the pseudo-characteristics may be used
instead [76]. Considering equation (1.1.13) we evaluate H at the time step ¢"; thence it is
possible to numerically compute the eigenvectors and to construct the matrix L, by which we
can easily obtain the pseudo-characteristic variables (W = L"U").

From now on we assume « = 1, so the characteristic variables are given by (1.2.9).

When solving a real problem typically one has the pressure as input data. This is convenient
for our problem, because this data is an admissible condition. Yet, sometimes it is not
correct to impose the pressure directly, because this is a reflecting boundary condition and
any imprecision in the pressure data will produce spurious wave reflections. In these cases
we can resort to absorbing boundary conditions by prescribing the entering characteristic
variable (see Section 1.3). Consider the case of a tube of length 10 ¢m where we impose
total reflecting boundary condition at the outlet, as it would occurr, for instance, in a totally
occluded artery. Suppose that we have the measured pressure at inlet for the same healthy
artery. If we impose at inlet the measured pressure, we will find as a result a wave moving
forward and, once the end is reached, reflected and going backward. When arriving again
at inlet, the wave will not leave the tube but will be partially reflected. This is due to the
fact that imposing a physical variable results in coupling the two characteristics variables.
One may argue that if we have the exact pressure values at inlet the possible reflections are
physical. Yet, the boundary data available in practice is often imprecise. Thus, the reflections
will mainly be not physical and are better avoided. We will see, later on, situations where
instead it is important to correctly reproduce the reflected wave (Chapter 6).
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Absorbing and reflecting boundary condition
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Figure 2.1: Time history for the physical variables in the middle point of a tube of length
10 ¢m; the solid line represents the solution obtained by using absorbing boundary condition
while the discontinuous one is obtained by the reflecting boundary condition. They are
superimposed and coincide almost everywhere, apart for the appearance of the reflected wave
in the latter case.

An alternative way would be to give at inlet the characteristic variable. The problem is
then how to construct a characteristic variable capable to impose, even if approximately, the
pressure data.

Using the relations seen in Section 1.2.1 we may write Wi as a function of Wy and P(t)

Wi(t) = Wi(Wa(t), P(t)), at z =0,  t>1.

Here P(t) represents the pressure profile prescribed at inlet.

As we want to decouple W, from W5 we make the following approximation Wa(t) = Wa(%),
Vt, where t is a fixed time, i.e. the starting time.

Then at each time step we compute

Wi (t") = Wi(Wa(2), P(t")).

Figure 2.1 represents the time solution in the middle of the tube for the experiment described
above, while in Figure 2.2 the characteristic variables are reported. We consider the result
reported in Figure 2.1 for the reflecting boundary condition; it shows 3 waves: the first one
traveling forward, the second one backward and a third one forward again. This last wave is
due to the reflecting boundary condition imposed at inlet. In fact imposing physical condition
results in a coupling of the two characteristic variables, giving as a result an entering W; when
W3 is outgoing (see Figure 2.2).
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Absorbing and reflecting boundary conditions
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Figure 2.2: Time history for the characteristics variables in the middle point of a tube of
lenght 10 c¢m; the solid line represents the solution obtained by using absorbing boundary
condition while the discontinuous one is obtained by the reflecting boundary condition. They
are superimposed and coincide almost everywhere, apart for the appearance of the reflected
wave in the latter case.

2.3 Code validation

In order to asses the numerical scheme presented in Section 2.1.6, it has been verified in some
selected cases that the numerical solution satisfies the energy equality (1.2.11).

In Figure 2.3 we report the energy (left term of energy equality) for a tube of 60 cm of length.
At inlet, a single pulse (half sine) representing the incoming characteristic variable is imposed,
while at outlet a non-reflecting boundary condition is imposed. In this test the fluid viscosity
is set to zero, so the second term of equation (1.2.11) disappears. In the solution represented
in Figure 2.3 we can distinguish 3 regions: in the first one the energy decreases because of
the boundary term in equation (1.2.11); in the second one the energy is negative and costant,
being the boundary term zero and being the energy dissipation caused by the fluid viscosity
neglected; finally in the third region the energy decreases again because the traveling wave is
outgoing.

In Figure 2.4 we report again the energy for a tube of 60 c¢m, but with different boundary
conditions. At inlet we imposed P + %uQ = 0, while at outlet Q = 0. These conditions
guarantee that the boundary term in the energy inequality (equation 1.2.11) is always null,
thus the system energy is positive and decreasing.

These results show that our numerical solution is in accordance with the predicted theoretical
estimates (see Section 1.2.2).

Moreover our numerical scheme was compared with a discontinuous Galerkin method ([92,
89]). The comparison is described in detail in [67] and shows very good agreement between

the two numerical schemes.
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x10* Energy variation

energy e(t)

Figure 2.3: Computed energy for the 1D model. At inlet, a single pulse (half sine) representing
the incoming characteristic variable is imposed, while at outlet a non-reflecting boundary
condition is imposed.

x10* Energy variation

Figure 2.4: Computed energy for the 1D model. At inlet we imposed P + %uz = 0, while at
outlet @ = 0.
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CFL=~0.2; A x=0.01 cm; A t =5E-06; E=3E+06 dyne/cm?
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Figure 2.5: Difference between classical and modified Lax-Wendroff schemes, for a fixed CFL
condition (CFL number = 0.2). In the upper part the solution at a fixed time is represented.
For this simulation a time step At of 0.000005 s and a space discretization Az of 0.01 c¢m.

2.3.1 Numerical experiments on the modified scheme

Numerical tests have been performed in order to study the stability, the dispersion and the
dissipation properties of the modified scheme (Section 2.1.1).

In particular we have considered 2 arteries of length 10 and 30 ¢m, where an ingoing wave
(a half sine pulsed wave) is imposed on the characteristic variables. Figure 2.5 shows a
comparison between the Lax-Wendroff scheme and the modified one presented here: at the
same CFL value the two solutions are very close. It is interesting to note that we can improve
the CFL number with the modified scheme, thus increasing the time step At (see equation
(2.1.7)). In Figure 2.6 a comparison between two different CFL numbers is reported for the
modified scheme. As we expect there are some dispersion effects when we increase the CFL
number. This is highlighted in Figure 2.7 where the results for 3 different CFL numbers
are reported (selected zones are enlarged in Figures 2.8 and 2.9); yet we increased the CFL
number acting on the time step.

The numerical experiments suggest that with the modified scheme and a physiological value
for the Young’s modulus (E « 3 108 dyne/cm?) we can increase the CFL number to around
1.
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Modified scheme: solution at different CFL (E=3.E+06 dynelcmz)
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Figure 2.6: Modified scheme: degradation of the solution for different CFL values. Same test

case as in Figure 2.5. The case with increased CFL number is obtained taking a At = 0.000025
s.

Solution at different CFL (E=30.E+06 dyndcmz)
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Figure 2.7: Modified scheme: degradation of the solution for different CFL values. The
picture shows three solution at a fixed time for three different CFL numbers. At bigger CFL
numbers dispersion phenomena are present (see also Figure 2.8).
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Solution at different CFL (E=30.E+06 dyndcmz)
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Figure 2.8: Modified scheme: zoom of a significative zone of figure 2.7.
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Figure 2.9: Modified scheme: zoom of a significative zone of figure 2.7.
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Chapter 3

More realistic wall laws

Introduction

In Section 1.1 we have recalled the basic 1D model for a single arterial element, where the
artery is approximated by a straight cylinder filled with blood. The main unknowns of the
resulting system of two partial differential equations are the mean pressure P and the mass
flux @ across the vessel axial sections as well as the area A of the section. An additional
relation between P and A provides the way of closing the problem. The algebraic law (1.1.8)
corresponds to the hypothesis of instantaneous static equilibrium for the vessel wall and leads
to system (1.1.11).

In reality the wall of an artery is a very complex physical system as shown for example in
[42, 43, 79]. Here we consider a more complex vessel dynamics, described by the differential
equation (1.1.5), the so-called generalised string model [79]. This model can be derived start-
ing from the Navier equations for a membrane (see e.g. [53, 49] for the model and [79, 16] for
the derivation).

In this case, it is still possible, at the price of some simplifications in the model, to recover
a system of two partial differential equations for A and Q, as already illustrated in [33]. In
this way it may be easily recognised that the wall inertia introduces a dispersive term in the
equation, while viscoelasticity contributes with a diffusive operator. Here, we present a numer-
ical framework where these additional terms are handled by an operator splitting technique.
Numerical tests will exemplify the effect of the various terms on the pressure and flow pattern.

The results reported in this Chapter have been published in the papers [29] and [67].
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3.1 More complex wall models

The mechanical model used in Chapter 1 to describe the vessel wall dynamics was based on
the assumption of an instantaneously elastic equilibrium, according to which the vessel wall
responds to a change in the fluid pressure by adapting its section area, following a perfectly
elastic law.

In reality, the mechanical behaviour of an arterial wall is much more complex. Although it
is arguable whether there is a need for a sophisticated mechanical modelling when so many
simplifications have already been made both at the geometrical and at fluid-dynamics level,
improving the structural description may serve several purposes:

o to study the overall effects on the flow field of the different physical terms that might
be included, such as wall inertia, viscoelasticity and pre-stress state;

e to verify the relevance of these terms for the problem at hand on the basis of realistic
physiological or pathological values of the various coefficients.

The structural model will be obtained from the general equilibrium laws by imposing geomet-
rical simplifications consistent with those used to derive the flow equations. In particular, we
consider displacements 7 in the radial direction only. This is a reasonable assumption since
some recent results [72] using membrane models for the wall structure which account for the
effects of transversal displacements show that these are negligible.

The differential equation we will consider is in fact the generalised string model (1.1.5), where
we substitute the second viscoelastic term by a simpler one, based on the De Voigt viscoelastic
model (see [35]). It reads

?n 8 7 an -
Pwhow a a2 +"/at +bn = (P — Pegt)- (3.1.1)

To obtain an equation in terms of A we recall that A = Ag + 772 and we linearise the time
derivatives, following [33], as follows

On 1 04
Ot~ 2y Agym Ot

n 0%A
a2 faﬂ (\/_ ‘/7) 2\/77 oz (3.1.3)

Therefore, the adopted model may be written as

(3.1.2)

PA 94 P \/_ \/
Moy Vg aﬁ(ﬂf VAo) + =P, (3.1.4)

where we have taken, as before, P.;; = 0 and

puho g G

m:2\/7? /—A07 7:2\/; /—Aoa a:ﬁv

while § is still given by (1.1.9).
This model should be integrated with the fluid equations (1.1.2) and (1.1.3). The objective is
to retain the basic two-equations structure of the model. Furthermore, we will assume that
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the additional terms are of less importance than the basic elastic response function %
considered in the derivation of the previous model. This assumption permits the use of an
operator splitting procedure for the numerical approximation.

A0
The coupling between (1.1.2, 1.1.3) and (3.1.4) is given through the pressure term _8_(P -
p 0z

P.yt) in the momentum equation. Therefore, the continuity equation (1.1.2) will remain
unaltered and, following [33], we will use it to replace the time derivatives of A with the space
derivative of Q.

We are mainly interested in identifying the effects of the additional extra terms on the vessel
mechanics. In the next sections we will systematically analyse the effect of each of the added
terms.

3.1.1 Wall inertia term

The inertia term accounts for the wall mass and its acceleration: using physical arguments
we can argue that it will be important only in case of large vessel masses and/or high fre-
quency waves (big acceleration). In these cases we expect oscillations to occur at a frequency
dependent on the wave length.

The contribution of this term in the momentum equation can be written, using the continuity
equation, as

A0 9?A _Am »3Q
p Oz ( o2 ) T p 0tdz% (3:.1.5)
System (1.1.11), augmented by the inertia term would then read
0A  0Q -0
ot ' 9z
20 Am PQ (3.1.6)
m
- F A = By(A
ot + 2( Q) p atazg 2( 7Q)7

where F»(4, Q) and By(A, Q) denote the second component of the flux F and of the source
term B, respectively.

The differential system (3.1.6) may be written by splitting the flow rate @ = Q + @, where
Q and Q are implicitly defined through the set of equations

oA 0Q

o te T

%Q + 5-Fo(4,Q) = By(4,Q) (3.17)
aQ Am #Q

B p o0

This allows us to devise the following operator splitting strategy. On each time interval
[t",t"*1], n > 0, system (3.1.7)1o is solved by the Taylor-Galerkin scheme described in
Section 2.1.6 and we correct the mass flux by employing equation (3.1.7)3. More precisely,
the adopted finite element formulation for the latter equation reads: given A"Jr1 and Q"+1
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Initial configuration (t=0. s) Solution without inertia effects (t=0.05 s)
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Figure 3.1: Inertia effects on the solution; on the top-left the initial configuration, a half sine
wave of length 35 c¢m, is reported. The solutions without inertia term (top-right), with inertia
term (bottom-left) and the difference between the two (bottom-right) for a fixed time (0.05
s) are reported too.

find éh € V,? such that

L g m (0Q5 o) _m (9Q4* oy 0
<A2+1Qh 7¢h>+ p ( 9z ' 0z - p 9z ' Oz ) thevh' (318)

This corresponds to having imposed a homogeneous Dirichlet boundary condition for the
correction term Q.

An alternative approach could be to linearize the coefficient in equation (3.1.7)3 and to modify
the mass matrix in the Lax-Wendroff finite element solver adding a stiffness matrix multiplied
by % (see [9]).

In the following numerical experiments we have set p = 1 gr/cm?, v =0.035 m?/s, Ry has
been taken to be constant and equal to 0.5 cm, hg =0.05 cm and E = 3 10% dyne/cm?. The
simulations have been carried out using a time step At = 1075 s.

Figure 3.1 shows the results for a realistic test problem where the vessel wall density is set
to py = lgr/cm® and we take a wave of length 32 ¢m (top-left of Figure 3.1). It should be
noted that the inertia term yields a relative variation in the vessel area of the order of 1073.
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Figure 3.2: Inertia effects on the solution; on the top-left the initial configuration, a half
sine wave of length 4 ¢m, is reported. The solutions without inertia term (dotted line) and
with inertia term, wall density set to 1 gr/cm3, (solid line) for different time steps are also
reported.

We may also note the high frequency oscillations induced by the inertia term. Clearly, in
real conditions these oscillations are damped out by the viscoelastic term. If we use higher
frequency (yet less realistic) waves, the variation in the flow rate is more important. We
also report numerical experiments carried out in the same geometrical configuration using a
pressure wave pulse of length 4 em (top-left of Figures 3.2 and 3.3) and a wall density of
1 and 100 gr/em?, respectively. These tests have been carried out to enhance the inertia
effects. Note, in particular, that the value 100 gr/cm?® is unrealistic under physiological
conditions. These tests show that the inertia term plays a major role when the mass or the
vessel acceleration are important.

A qualitative comparison with the results obtained by a three dimensional axi-symmetric
fluid-structure interaction code (see for instance [22] for a complete description of models
and numerical methods) has been carried out only for the test case of Figure 3.2; a good
agreement has been found. The difference between the average pressures computed by the
two methods is always below 10%.
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Figure 3.3: Inertia effects on the solution; on the top-left the initial configuration is reported:
a half sine wave of length 4 ¢m. The solutions without inertia term (dotted line) and with
inertia term, wall density set to 100 gr/cm?, (solid line) for different time steps are also
reported.
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Figure 3.4: Viscoelasticity effects on the solution at two given time steps: solution of the

problem without viscoelasticity term (top) and difference between the solutions with and
without viscoelastic term (bottom).

3.1.2 Viscoelastic term

In the generalised string model we might account for two possible viscous effects. Here, we

have considered only the term in the form ’y% (resulting from a simple De Voigt viscoelasticity
model, see [35]), since the term ¢ a‘?;;’z will produce a fourth order spatial derivative in the

momentum equation that makes its numerical treatment more difficult.
After introducing the term in the momentum equation and using the continuity equation, the
modified system reads

A 8Q

ot T 0

3Q AR (A,Q) Ayd%Q (3.19)
2(4, Y _

E+7az TQ_BZ(‘&Q)-

This system has been solved by an operator splitting procedure similar to that introduced
before and an implicit Euler discretisation for the correction term Q.

Tests have been carried out to investigate the effects of the viscoelastic term. We set p = 1
gr/cm?, v =0.035 m?/s, Ry = 0.5 cm, hy =0.05 cm and E = 3 106 dyne/cm?. The simulations
have been carried out with a time step At = 10™* s and a space discretization Az = 0.1 cm.
In Figure 3.4 we report the results of a short half sine pressure wave (period 0.015 s, amplitude
20000 dyne/cm?) and a longer one (period 0.3 s, amplitude 20000 dyne/cm?) imposed at inlet.
For the viscoelastic computation we have taken v = 3 gr/cm3s. It should be noted that the

solutions with and without the viscoelastic term have a relative difference in the area of less
than 1 %.

3.1.3 Longitudinal elasticity term

Experimental findings show that vessel walls are longitudinally pre-stressed [35, Chapter 8|.
This originates the second z derivative term in the generalised string model [77]. Accounting
for this term by using the techniques previously illustrated would produce a modified system
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of the type
%t oY
0Q | OF(A,Q) _ Aa 0® n (3:110)
F2 a
('}t 0z p 0z 823 (\/_ ) By(4,Q).

Solving this system by an operator splitting technique like the one presented in Section 3.1.1
would require the solution of a differential equation for the correction term @ which satisfies

8Q Aa 3
%55 (Va-Va,) =o. (3.1.11)
The correction Q"+1 € V,? has been computed by a collocation procedure and using a finite
difference approximation for the third derivative term of AZ'H (which is computed in the first
step of the operator splitting procedure).

The effect of the longitudinal pre-stress is more important when strong area gradients are
present, such as the ones that might be caused by the presence of a stent. To analyse this
situation, we consider a stented artery of total length L = 15 c¢m with a stent of length 5
cm placed in the middle. The vessel has a radius Ry = 0.5 em and hy = 0.05 ¢m. The
Young modulus is E = 3 10% dyne/cm? for the healthy portion of the artery and E; = 30 108
dyne/cm? for the stented part. At z =5 cm and z = 10 cm (the interfaces between the stent
and the healthy artery) the Young modulus has been regularised by a fifth-order function (as
done in [32]); the length of the variation zone is 0.1 em. The coefficient & is set to 104 gr/s2.
Finally, we take p = 1 gr/em?, v = 0.035 ¢m?/s and « = 1.

At inlet we impose a half sine pressure wave of period T' = 0.4 s and amplitude of 20000
dyne/cm?.

Figure 3.5 shows that, without the longitudinal elasticity term (solution represented by a
solid line), there is an abrupt variation in the area. Clearly this solution is not physiological
as we cannot have, in the limit, a discontinuous area. Taking into account the effect of the
longitudinal elasticity term, the variation is smoothed out, although the jump between the
values of the area on the left and the right is still of the same magnitude.
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Figure 3.5: Longitudinal elasticity effects on the solution at two different time steps (the solid
and the dotted lines represent the solution without and with the longitudinal pre-stress term,
respectively). The solid line shows an abrupt variation in the area, which is smoothed out by

the longitudinal pre-stress term.
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Chapter 4

More complex geometries

Introduction

In this Chapter we will present two generalisations of the model described in Chapter 1:
abrupt changes in vessel properties and bifurcating channels.

In some pathological situations, a segment of an artery has either to be replaced by a prosthesis
or reinforced by the application of a stent (a metallic wire mesh). In both cases we face a
situation where the elastic properties of the vessel change abruptly. The ‘stent’ problem has
attracted the interest of many researchers because of its practical interest and the consequent
impact on the marketplace (e.g. [55, 2, 1]). The problem of an abrupt variation on the vessel
properties presents some mathematical challenges for 1D models. Clearly it may be treated
by regularising the transition region between the healthy artery and the prosthesis, as done
in [32].

Here we investigate an alternative approach based on the domain decomposition (DD) method
[81]. The set of interface conditions which might be imposed at the interface is not unique
[29, 14]. We will present several alternatives, justified by physical arguments, and we will
show how, for a particular choice, it is possible to obtain an energy inequality for the coupled
system.

From the other side the human arterial system is formed by a network of vessels: even if we
approximate each arterial segment by using a one-dimensional description, we need to find a
proper way to account for branching. Yet, when accounting for bifurcated channels, we deal
with the problem of discontinuous vessel properties: in fact a bifurcation can be viewed as
three arteries plus interface conditions and at interfaces the area A is discontinuous.

Again, a DD technique has been developed to treat this situation.

The problem of endovascular treatment of abdominal aortic aneurysm will be addressed as
well.

The results reported in this Chapter have been published in the papers [29] and [67].
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Figure 4.1: Endograft

4.1 Domain decomposition approach for prostheses and bifur-
cations

When a stent or a prosthesis such as the one depicted in Figure 4.1 is implanted to alleviate
severe vascular pathologies, it causes an abrupt variation of the elastic properties along the
artery. In principle this could be taken into account by allowing 3 to have a discontinuity at
the interfaces between the “healthy” and the prosthetic artery, while being a smooth function
otherwise. Here we will first consider the case of a single discontinuity at z =T € (0, L). By
following the arguments in [14] we may derive that in this situation A (and consequently p)
is (in general) discontinuous at z = I' and, consequently, the product A% in equation (1.1.3)
is not well defined at this location.

A possibility to overcome this problem is to use a regularisation for 3, as done in [32]. However,
this requires the use of a fine mesh around I' to properly represent the transition, with a
consequent loss of efficiency of the numerical scheme because of the stability condition (2.1.7).
Furthermore, if the solution is very steep, the Taylor-Galerkin scheme should be stabilised to
avoid spurious oscillations, with the inevitable addition of extra numerical dissipation [37].
We will here investigate instead an alternative solution provided by the domain decomposition
approach (see [81]). In Figure 4.2 we show the vessel Q partitioned into two subdomains
Q; = (0,T') and Qy = (I, L). For a standard system in conservation form, the interface
condition would entail the continuity of the fluxes, which corresponds to the Rankine-Hugoniot
condition for a discontinuity that does not propagate (see e.g.[36]). Unfortunately, in view
of the previous considerations, it is arguable whether the interface conditions can be derived
from the equations in form (1.1.11) since they have been obtained under the requirement that
the solution be smooth. Clearly, the problem concerns only the momentum equation as the
continuity equation is originally in conservation form and, by standard arguments, this yields
mass flux continuity across the interface (a fact that agrees with the physical intuition):

[Q = QI+ — Qlr- =0. (4.1.1)
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Figure 4.2: Domain decomposition of an artery featuring a discontinuous Young’s modulus

The jump condition for the momentum equation has to be driven instead by other consid-
erations. A possibility, investigated in [14], is to consider the limit of a regularised problem.
Yet, this procedure is not completely satisfactory, since the limit will in general depend on
the way the regularisation procedure is carried out. Another possibility often encountered in
the literature for similar situations [63] is to impose the continuity of pressure. Yet, this con-
dition would imply a possible increase of the energy of the system through the discontinuity,
a condition hardly justifiable by physical means. Here we have followed the route of searching
for a condition which would guarantee an energy inequality for the coupled problem.

In Lemma 2.1 of [28] it has been shown that our problem, in the case of a = 1, satisfies the
following energy inequality

1 L t
e(t) + Kr /0 /0 W2dzdt + /0 [QpiE dt < £(0) (4.1.2)
where
B L (1 Y 1 [Alzt)
o= [ <§A<z,t>u Goes [ ¢(<>d<) dz,

while p; = p + 2u? is the total pressure and [f]§ = f(L) — f(0).
In the domain decomposition case of Figure 4.2, indicating quantities in Q; with the subscript
i =1,2, we obtain, by summing inequality (4.1.2) applied to the problem in each subdomain,

t T t pL t
€1 (t) + KR/ / ﬂ%dzdt + Ez(t) + KR/ / ’E%dzdt + / (Q2pt,2|L — let,llo)dt+
0J0 0Jr 0
13

A (Qpe, — Qape2)|rdt < €1(0) +e2(0), ¢t > 0.
(4.1.3)

Should we require that
Q1pr1 = Qapr2 (4.1.4)

at the interface point I" we would obtain an energy inequality equivalent to that of the single
domain case. Then, by imposing suitable restrictions on the boundary data following the
same arguments given in [28], we obtain a global energy estimate in the form

e1(t) + e2(t) + Kr {/Ot (/OF ajdz + /FL agdz> dt} < e1(0) + £2(0) + &(t) (4.1.5)
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where ¢ is a quantity which depends only on the boundary data and on ¢. Thanks to (4.1.1)
condition (4.1.4) is in particular satisfied by the choice py; = py2; in view of this results we
have chosen the following interface conditions

@=% .1 iso0 (4.1.6)
Pt1 = DPt,2

Therefore the coupled problem reads, in each domain €2;, 4 = 1,2 and for ¢ > 0,

04;  0Qi _
ot 0z
4.1.7)
Qi 0 (@, o . @ (
ot +82( A, ) tAig, TERy =0

together with the interface condition (4.1.6) and appropriate boundary conditions at z = 0
and z = L.

To solve the problems in 2, and €2 separately, we have devised a decoupling technique which,
at each time step from ¢” to "1, provides the Taylor-Galerkin algorithm with the values
Q?H and A?H of the unknowns at the interface I, for ¢ = 1,2. We need to use (4.1.6)
together with the compatibility conditions, for instance in the form of the extrapolation of
the characteristic variables exiting €; and Qg at I’ (here, for the sake of simplicity, we will
neglect the source term: see Section 2.2 for more details). We indicate with Wl'ffrl and W’Z; !
the values at z = T and ¢ = ¢"*! of the (outgoing) characteristic variables W; and Wy, relative
to domain ; and 9, respectively, obtained by extrapolation from the data at ¢ = t". Using
relation (1.2.9) we finally obtain at z = T a non linear system for the interface variable,
namely

Q;HlngH':O
2
D a6+ 2 (L)~ paps dna ) - 2 (%) =0
01,51 A"“ 2 iAoz, ) — 5 AT

Q! ) g (4.1.8)
Y +4 2pA0 (Arys —wrtt =0

gt ATt R S
A"+1 2PA0 2 22

which is solved by a Newton iteration. Here, ; and Ag; indicate the values of 8 and A in
Q; and, for the sake of generality, we have assumed that the reference section area Ay might
be discontinuous at z =T.

Tt has been verified that the determinant of the Jacobian of system (4.1.8) is different from
zero for all allowable values of the parameters, thus guaranteeing that the Newton iteration
is well-posed. It has also been found that, by using as starting values the unknowns at time
", the method converges in few iterations with a tolerance of 108 on the relative increment.
For values of pressure and velocities typical of blood flow the value of pressure is much greater
than the kinetic energy %ﬁz. This explains why many practitioners in the field use continuity
of pressure (instead of total pressure) at the interface without encountering stability problems.
This is also true for the interface condition proposed in [14], which does not satisfy the energy
inequality (4.1.5) a-priori. Indeed, we have performed some numerical studies and found that,
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for conditions akin to the physiological ones, the results obtained by imposing continuity of
pressure, continuity of total pressure or the condition reported in [14] differ less than one
percent and do not affect stability. In Figure 4.3 we report a numerical comparison between
the three conditions: in this case a relative difference of 107° was found.

A physical argument suggests that the total pressure decreases along the flow direction at T,
as a function of the flow rate. To account for this, one could impose a relation of the type

Pt2 = Pt1 — Slgn(Q)f(Q)7 at z = F: t>0

being f a positive monotone function satisfying f(0) = 0. Clearly this condition, coupled
with the continuity of @, satisfies (4.1.6). However, the difficulties of finding an appropriate
“dissipation function” f for the problem at hand has brought us to consider only the continuity
of total pressure, which corresponds to f = 0.

4.1.1 Branching

The arterial and venous systems are characterised by the presence of branching. Branching
flow is an interesting subject on its own and has recently being studied both theoretically and
numerically. We here mention the work in [93] and in [94].

The flow in a bifurcation is intrinsically three dimensional; yet it may still be represented by
means of a 1D model, following a domain decomposition approach, if one is not interested in
the flow details at the bifurcation. Figure 4.4 shows a model for a bifurcation. In a first stage
we simplify the real geometric structure by imposing that the bifurcation is located exactly on
one point and neglecting the effect of the bifurcation angles. This approach has been followed
also by other authors, like [62]. An alternative technique is reported in [98], where a separate
tract containing the branch is introduced.

In order to solve the three problems in ; (main branch), Q9 and Q3 we need to find appro-
priate interface conditions. The hyperbolic nature of the problem tells us that we need three
conditions. The first one states the conservation of mass across the bifurcation, i.e.

Q1 =Q2+Q3, atz=T,t>0. (4.1.9)

We note that the orientation of the axis in the three branches is such that a positive value of
Q; indicates that blood is flowing from the main branch ©; into the other two. By performing
an energy analysis similar to that of the previous section on the three branches separately we
reach the conclusion that we can obtain a global energy inequality for the coupled problem
whenever py 1 Q1 —p;2Q2 —pi,3Q3 > 0. If we impose the continuity of total pressure across the
bifurcation together with (4.1.9) we have p;1Q1 — pt,2Q2 — p,3Q3 = 0. In this situation it is
also expected that the complex flow in the bifurcation will cause a decrease in total pressure
in the direction of the flow field across the bifurcation, and this loss should be related to the
fluid velocity (or flow rate) and to the bifurcation angles.

A possibility to account for this, derived from the analysis of [41], is to impose, at z = T, that

pt,1 — sign(tn) f1(t1) = pro + sign(tz) f2(t2, a2), (4-1.10)
P — sign(t) f1 (@) = pr3 + sign(as) f3 (43, a3),

where g and a3 are the angles of the branches Q3 and Q3 with respect to the main one (see
Figure 4.5); f1, f2 and f3 are positive functions and equal to zero when the first argument is
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Total pressure continuity solution (t =0.005 s)
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Figure 4.3: Comparison between three different interface conditions for DD. The solution
for the condition based on the continuity of the total pressure and the relative differences of
the condition based on the continuity of pressure and of the condition reported in [14] are
reported for three chosen times.
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A
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Q, Q,
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Figure 4.4: One dimensional model of bifurcation by domain decomposition technique

zero. These can be chosen to be:

filw) =mui,  filui, 0q) = yuiv/2(1 — cos o), i = 2,3, (4.1.11)

where the ; are positive coefficients.

In the numerical scheme, (4.1.9) and (4.1.10) will be complemented by three compatibility
relations, which can be expressed again by the extrapolation of the outgoing characteristic
variables. We have thus a non linear system for the six unknowns A:-H'l, Q;H'l, i=1,2,3, at
the interface location I', which is solved by a Newton iteration.

Some numerical tests have been made to investigate the effect of the bifurcation angles using
relations (4.1.10) and (4.1.11) (y1 = 0, 72 and y3 = 2). The length of the three domains has
been taken equal to 10 cm. The following parameters have been chosen: E =3 108 dyne/cm?,
ho =0.05 cm, Ry = 0.5 em, p =1 gr/em?, a = 1, v =0.035 em?/s, equal in all three vessels. At
the inlet of 2; we have imposed a half sine input pressure wave of period 0.1 s and amplitude
20000 dyne/cm?, while a non-reflecting condition has been imposed at the outlet sections of
Q9 and Q3. In Figures 4.6, 4.7 and 4.8 we show the time variation of the area A and the
two characteristic variables W, and Wy at a location placed at the midpoint of Q;, Q9 and
Q3, respectively, for different values of a; and ap. In particular, @; = as = 0 corresponds to
the case where we impose just the continuity of the total pressure, ignoring the dissipative
effects caused by the kinks. We may note that using the formula (4.1.10) that accounts for
the angles increases the wave reflection upstream of the bifurcation (there is an increase in
the amplitude of W5 in Figure 4.6), with a subsequent increase in the pressure level in ;. On
the other hand, the strength of the wave transmitted into Q9 and 3 is reduced (as expected).
The result of this simple experiment shows that indeed the dissipation caused by the flow
deviation at bifurcations could be relevant.

Also in this case, due to the difficulty of finding suitable values of the “dissipation functions”
fi for the problem at hand, we have preferred to put them to zero and impose the continuity
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Figure 4.5: A sketch of branching.

of the total pressure across the bifurcation, i.e.,
Pt1 =pt2 =pi3, atz=TI. (4.1.12)

Thence, in the remaining part of this work we will neglect this effect.

4.1.2 Bifurcated channel with endograft

Here we show an application of the one dimensional model to a real-life problem. Abdominal
aortic aneurysms (AAA) represent a significant and relatively common vascular problem.
They are characterised by an abnormal dilatation of a portion of the aorta. This swollen
region would enlarge with time and, without a surgical treatment, it will eventually break
with fatal consequences. Even if open surgical repair is still the standard treatment for AAA,
endografts and endovascular stent grafts begin to play a major role as they allow a less invasive
treatment (Figure 4.9).

The presence of an endograft may be treated by our one-dimensional model as a bifurcated
channel with varying mechanical properties, as shown in Figure 4.10. The domain is de-
composed into 6 regions, €;, ¢ = 1,...,6 and the interface conditions of type (4.1.6) or
(4.1.9)-(4.1.12) are used where appropriate.

A preliminary numerical test has been carried out by selecting all ; to be of equal length
L=5 c¢m. We considered everywhere p =1 gr/em?, v = 0.035 em?/s, a = 1, hg =0.05 cm;
while the Young’s moduli have been taken to be equal to Eengograse = 60 10% dyne/cm?
for the endografted part (9, i = 2,3,5) and Eyesser = 10 106 dyne/cm? for the remaining
subdomains. The vessel reference radii have been taken to be Ry1 = Ry2 = 0.6 cm, Ry3 =
R0’4 = 0.4 ¢cm and R0’5 = R(),G = 0.5 cm.

At inlet we have imposed a half sine pressure wave of period 0.1 s and amplitude 20000
dyne/cm?.

The spatial grid was uniform with a total of 546 nodes. The computations were carried out
with a time step At = 0.00001 s.

Figures 4.11, 4.12, 4.13 report the time evolution for the area A and the two characteristic
variables W; and W» at three given points, respectively at the middle of 21, and of Q9 and of
Q¢. By inspecting Figure 4.11 we remark that in W; we find the input wave imposed at inlet,
while in W5 we find the composition of two effects, the wave reflected from the beginning of
the endograft and the wave reflected from the branching point. These modify the sinusoidal
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Bifurcated channels with angles: solution in the middle of Q
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Figure 4.6: Solution dependence on bifurcation angles: area and characteristic variables at
the middle point of domain €2, are reported.
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the middle point of domain Q9 are reported.
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Bifurcated channels with angles: solution in the middle of 93
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Figure 4.8: Solution dependence on bifurcation angles: area and characteristic variables at
the middle point of domain €23 are reported.

Figure 4.9: Endograft placement in the surgical treatment of abdominal aortic aneurysms.
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Endograft "

Figure 4.10: Modelling (left) and domain decomposition (right) of a bifurcation with an
endograft.

shape of the area A. In Figure 4.12 we find in W5 only the wave reflected from the branching
point. Finally, in Figure 4.13 we do not find reflected waves (being the outlet boundary
condition an absorbing one); moreover, in W; we can observe the part of the wave passing
through the branches.
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Time evolution at z=5. cm (artery 1)
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time t (s)

Figure 4.11: Bifurcation with endograft: time evolution for the area and the characteristic
variables in the middle of domain ;.
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Figure 4.12: Bifurcation with endograft: time evolution for the area and the characteristic
variables in the middle of domain Q5.
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Time evolution at z=25. cm (artery 6)
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Figure 4.13: Bifurcation with endograft: time evolution for the area and the characteristic
variables in the middle of domain Qg.
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Chapter 5

Curved vessels

In this Chapter we address the problem of flow simulation on curved pipes: how does curva-
ture modify the wave propagation on a simple tube? How can we derive reduced models for
curved arteries?

Starting from the theory of Cosserat curves [58], Green and Naghdi [38] developed a gen-
eral framework to study the problem of flow simulation on straight and curved cylindrical
pipes. Moreover in [39] they have analyzed the case of a fluid in a curved pipe of con-
stant curvature. The main idea, reported in [39], is, given a generic domain with a (z,y, x)
coordinate system, the development of the fluid velocity on a basis of “shape functions”:
u(z,y,x,t) = Eﬁ:o An(z,y)wn(x,t), where Ap(z,y) are the “shape functions” and wy(x,t)
the coefficients of the velocity profile.

Here we apply this theory to the specific case of haemodynamics modelling.

After choosing a set of shape functions, some models are derived for either straight or curved
(with constant curvature) cylindrical pipes, the unknowns of the problem being the coeffi-
cients of the velocity profile. The models obtained are a generalization of the classical 1D
model and, in the simplest cases, they are hyperbolic.

In principle we can improve the “quality” of these models as much as we want, simply in-
creasing the dimensions of the chosen basis of shape functions; however, as it will be pointed
out at the end of this Chapter, numerical difficulties and computational constraints arise in
practice since the number of unknows increases and the system becomes of a mixed hyperbolic-
parabolic type.

An approach similar to this one has been recently used in [85], in the framework of rigid
and straight cylinder configurations, to obtain an alternative formulation to the classical 1D
models.

In contrast with what done therein and in [38], but in analogy with the classical 1D models
presented in Chapter 1, we don’t impose exactly the divergence constraint.

Some preliminary numerical results for curved geometries and a comparison with the straight
case are also reported.

The models presented in this Chapter have been developed in collaboration with L. Formaggia.

59
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5.1 Some preliminary considerations

In Chapter 1 we have seen that, by considering a straight cylindrical domain €, reduced
models are obtained starting from the Navier-Stokes equations by integration over transver-
sal sections. The reduced model was derived neglecting the components of the velocity field in
the (z,y) plane and after prescribing a given profile for the z component of the velocity (i.e.
u, = s(z,y)u(z,t), s(z,y), being u(z,t) the mean velocity). This leads to the 2 by 2 system
of partial differential equations (1.1.13). In the reduced models here presented we enrich the
velocity field: the components of velocity on the plane (z,y) is no longer neglected and the
component of velocity along the longitudinal axis is described, on each vessel section, by a
higher order polynomial. This allows the development of non-symmetric velocity profiles.
Even if more complex models for the pressure-area relation have been proposed and analyzed
[79, 29], in this context we will still consider a constant pressure over each axial section, re-
lated to the area by an algebraic wall law.

The main application of this study is modelling the flow field in curved pipes; nevertheless as
first step we develop and test the new reduced models on a straight geometry. For instance
this could be very useful in a domain decomposition approach where we approximate a part
of the computational domain by a straight geometry and another by a curved one.

We report here only about some models developed for straight geometry and the extension
of them for curved geometry (with constant curvature). These models are characterized by
a weak imposition of the divergence constraint; in this respect they differ from the original
model by Naghdi and Green [38, 39]. The physical hypothesis behind their derivation being
that the longitudinal component of the velocity is the predominant one.

Other models have been considered as well: in particular the possibility to have a profile
for the pressure not constant over the transversal section and the possibility to satisfy the
divergence equation exactly [27].

In order to make more clear the derivation of the more complex models in next Sections, the
general problem is recalled and the 1D model is again rederived.

5.1.1 Navier-Stokes equations and some definitions

In the following derivations of reduced models it will consider as starting point the Navier-
Stokes equations

Ou . 1
§+dlv (u®u)+;VP7VAu70

diva=0

inQ,t>0 (5.1.1)

set on a domain €, which changes in time because of the flow induced wall movement. Here
u = (uy, uy,u;) is the fluid velocity, P denotes the pressure, v is the kinematic viscosity and
p the blood density; (x,y, z) is a system of coordinates, either Cartesian or curved.
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System (5.1.1) componentwise reads:

10P
Gux +div (uyu) + Lop

—vAu, = 1.2
ot 20X vAuy, =0 (5.1.2)
ou, 10P
p o —vAu, = 1.
B +div (ugu) + )0 vAu, =0 (5.1.3)
Ouy 19P
5t Y+ div (uyu) + = >y —vAu, =0 (5.1.4)

Ouy  Oug | Ouy

Ox  or oy
We will consider cylindrical domains (x,z,y), as the ones depicted in Figures 5.1 and 5.8,
straight and curved, respectively. When dealing with a generic Riemannian geometry we need
to account for the concept of metric tensor. This latter is a tensor of rank 2 (symmetric and
positive definite) that is used to measure distances and angles. Once a local basis is chosen,
the metric tensor appears as a matrix. The notation G = (g;;) is conventionally used for the
metric tensor [7, 18]. In our case we have orthogonal coordinate systems, so G is diagonal
and we use the scale factors h; = \/gsi, ¢ = 1,2, 3.
For an Euclidean geometry (Figure 5.1) we have

=0 (5.1.5)

B2 0 0 100
G={ 0 h 0 =010 (5.1.6)
0 0 &2 001
while for the curved geometry of Figure 5.8 we have
K00 ! (1) 0
G={ 0 h2 0 =0 ot (5.1.7)
0 0 K 00 (%)

where C' is the curvature radius.

In the following we will indicate by gz = hyhghs the metric of the space. The metrlc is the
measure of the space in the chosen system of coordinates. For a Cartesian system g2 =1,

while for a curved geometry with constant curvature (as the one represented in Figure 5.8)
g% = % Obviously the expressions of the operators present in system (5.1.1) in terms of
physical variables will depend on the metric tensor (for general expressions see e.g. [10, 7]).

In particular we remark that the following relation holds

1 X+te 1 1
lim - o Q= hm |:// Ze dxdy] dx = // ge e dzdy.
e—0 € V(e) e—0 € S

where S is the section of the vessel and VE is a volume (Ve = S x [¥ — €, X + €]).
Thus we define the following operators:

Po(s) = //Sg%. dady
Pi(e) = //sgé. zdzdy

Py(e) = //Sﬁ- ydzdy
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Figure 5.1: The cylindrical domain €;. The cylinder axis is aligned with the coordinate z.
The axial sections z =constant remain circular at all times.

The reduced models will be obtained applying these operators to equations (5.1.2-5.1.5).

5.1.2 An alternative derivation of the basic one dimensional model

The domain € is a straight cylinder (with axis oriented along the coordinate z) and we
assume 0 < z < L, L being the vessel length, taken to be constant with time. We make the
assumption of axial symmetry for all the quantities involved. Furthermore a wall displacement
along the radial direction is considered. This implies that each axial section S remains circular
at all times. The pressure is taken to be constant on each axial section (p(z,y, z) = p(z)) and
we assume that viscous effects are relevant only near the wall boundary; moreover we assume
an algebraic law (1.1.8) for the vessel wall. The component u, is assumed to be dominant
with respect to u, and u, and furthermore that it may be described as

)

s, 1) =T sl s

where u(z,t) is the average velocity on each axial section, s is a velocity profile and R(z,t)

is the vessel radius (in the following we will write R instead of R(z,t)). The profile is chosen
to be a parabolic one (Poiseuille solution). Thence:

22+ g2 22 42
uy(z,y,2,t) = (1 - R2y )a(z,t) =2 (1 - Rzy )ﬂ(z, t)

By applying the operator Pg to equations (5.1.2) and (5.1.5), one finally obtains, by straight-
forward calculations, the following system

A  0Q

515 " (5.1.8)
0Q 40 [(Q? B ,10A Q
8t+38z(A +2PA0A2 g, t8m =0 (5.1.9)

for all z € (0, L) where the unknowns A and @ denote the section area and the flow rate,
respectively.

Note that we have obtained the same system that was derived in Chapter 1 under the as-
sumption of a parabolic profile for the longitudinal component of the velocity field.
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5.2 Straight geometry: first simplified model

A better model is obtained by enriching the description of the velocity profile. For the main
component of the velocity field, u,, we consider the following expansion:

22 4 o2
Uy = (1 _Tty ) (a(z,t) + b(z, )z + c(z,t)y) - (5.2.1)

a(z,t),b(z,t), c(z,t) are the coefficients of the velocity profile and they are unknowns.
Note that we could consider this expansion as a perturbation of the Poiseuille parabolic profile.
For the other two components of the velocity field we consider an expansion over the same
basis:

Uy = 051(2,t) + 052 (2, )T + 053(2, 1)y (5.2.2)

Uy = 0y1(2,t) + 0y2(z, )z + oys(z, t)y (5.2.3)

where 0z and oy; (i = 1,2,3) are the coefficients of the velocity profiles to be computed.
A simpler model is obtained by completely neglecting the u; and uy velocity components in
equation (5.1.2): this is reported later in Section 5.2.2.

Because of the cylindrical simmetry of the problem we know that the displacement is radial;
therefore the section remains circular and, for each of its points, (z = Rcosf,y = Rsin#),
with 6 € [0,27], we can impose

Uz |(Rcos0,Rsing) = 0x1 (2,1) + 052(2, t) R cos 0 + 043(2,t) Rsin6 = 1jcos

tUy|(Rcos0,Rsing) = Oy (2, 1) + 0y2(2z, t) R cos 0 + oys(z,t) Rsin = 1jsin.

where 7 = %Tt’ is the velocity of the vessel wall.

Finally, by straightforward calculation

I and Oyg =

011:0y1=013=0y2=07012=R

R
Substituting into equations (5.2.2) and (5.2.3) we obtain the expressions for u; and uy:

Uy = %z u, = %y, (5.2.4)

which state that the z and y components of the velocity field have a linear variation.

The unknowns of the problem considered are the area A and the three coefficients of the
axial velocity expansion a, b, c. Clearly we need 4 equations to close the system; they are
obtained by applying Pg to equation (5.1.5), and Pg,P1,P2 to equation (5.1.2), because of
the constant expansion for the pressure profile and the linear expansion for the wu, velocity
components.

Remark that in this way the Navier-Stokes divergence equation is imposed only weakly, that is,
in an integral form. Thus the velocity field we obtain does not fulfill the divergence equation
pointwise.

In order to ameliorate the readeability of the final system and compare it to the one di-
mensional model of Section 5.1.2 we define the following variables: Q@ = Za(z,t)R?, H =
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Eb(z,t)R*, G = Sc(z, t)R4. Note that Q is, in fact, the flow rate.

We get
%—?+§§QZ+6 ;Z—j+6w%%+3p%%l4%:_gw% -
O 1HOQ ,0HQ_ L, K

The first equation of system (5.2.5), which states the mass conservation, is the same that in
the basic model. The second equation differs for the presence of two terms which depend on
the asimmetries of the u, velocity profile, while the other two equations describe the evolution
of the non-simmetric profiles. It appears also that, if in the initial configuration H and G
are zero and the boundary conditions are compatible with H = G = 0, they will remain zero
everywhere for all time ¢ > 0. The system, in this case, reduces to the one dimensional model
described by egs. (5.1.8) and (5.1.9). This is what we expected because of the axial simmetry
of the problem studied.

System (5.2.5) is rewritten in quasi-linear form as

U _oU
Z“ —_B 2.
S tI5, =BU) (5.2.6)
where U = [4,Q, H,G]” and
0 1 0 0
4Q? H? G2 B 8Q H G
o 1t 127+ VA 127> 127
s_| 3w A Tty A‘/_ 34 A T 507
- ,HQ sH Q@ (427
A2 24 ‘A
GQ 5G Q
2 24 Y 3
0
787ry9
A
B= |- (5.2.8)
7247ruz
G
—247!'1/2

We have already remarked that system (5.2.5) reduces to system (1.1.13) when H = G = 0;
therefore the characteristic analysis we did in Section 1.2.1 is still valid. Also, if we consider
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the linearization of the matrix J around the state H = G = 0 we find the following eigen-
values: Ao = %{%Q + 1./4Q2 +92,;LA0A3}7 A3 =M = 2% As 4Q? + Q%LAOA% is always
positive, A\; and Ay are real, \; # Ay and for physiological flow conditions Ay < 0 < Aj.
Thence system (5.2.5) linearized around this state is still hyperbolic.

Moreover we can verify that the two linearizations of J around the points (Q = 0,H = 0)
and (Q = 0,G = 0) yield a hyperbolic system. We consider just the linearization around
the state (@ = 0, H = 0), the system being symmetric in the variables H and G. In this

case the 4 eigenvalues are \;p = :i:% A (187rH2 + 515 A2) A3 = Ay = 0. Yet, as the

value A (187rH 24 2pAg A2) is positive, the 4 eigenvalues are real and A\; and A9 have always
different signs.

System (5.2.6) is solved by a finite difference upwind scheme

At At .
urtt =uj - AT (UG -Up) - AT (U - UR) HABBY = Lnedes , E= 1"
where AT = RATR ™!, A = diag()\]) = diag(max()\;,0)), A~ = diag();") = diag(min(};,0)),
i being the elngenvalues of the matrix J and R the matrix of right eigenvectors, to be nu-
merically computed after a linearization of the matrix J ([80, 76]).
This method is stable under the CFL condition max; |)‘1At| < 1[76].

Non reflecting boundary conditions are imposed, consistently with the hyperbolic nature of
the system, by a pseudo-characteristics method [80]. Considering eq. (5.2.6) we evaluate
J at the time step t"; then it is possible to numerically compute the eigenvectors and to
construct the matrix L, by which we can easily obtain the pseudo-characteristic variables
(W = L"U"). Thus we can impose at inlet wave traveling on the ingoing characteristic
variables (corresponding to positive eigenvalues) and at outlet a constant on the entering
characteristic variable (corresponding to a negative eigenvalue).

5.2.1 Numerical results

Figure 5.2 presents possible velocity profiles compatible with the chosen u, expression. The
profile can be non-symmetric and also recirculation along z axis is allowed. In Figure 5.3
the solution of a test case (p = 1 gr/em?, Ay =1 em?, B = 10° gr/s?, v = 0.035 cm?/s) is
presented. For the solution a time step At = 0.0001 s and a space discretization Az = 0.2 cm
were used. In the initial configuration (solution at ¢t = 0 s) A = A and G = 0, while ) and H
have an assigned profile (half-sine functions with @z = 100 em3/s and H,eq = 10 em?/s).
As the tube is straight, there is no propagation of the H profile which goes to zero slowly due
to the presence of a source term in eq. (5.2.6). To confirm that we set the fluid viscosity to
zero; hence, the source term is null. The results for the same test case are reported in Figure
5.4. The H profile doesn’t propagate because of the problem symmetry: in fact we expect
to have far from the perturbed region a symmetric velocity profile. From egs. (5.2.5) it can
be see that if Q@ = 0 then H doesn’t propagate. Moreover we remark that the flow rate Q can
be zero even if H or G are different from zero: in fact the “averages” of H and G are null.
In Figure 5.5 we report the velocity profile for the same test case (at t = 0.20 s, z = 40 c¢m)
and two projections of the velocity profile along y axes and along z axes, respectively. This
Figure shows that the average of the velocity profile is zero.



66

CHAPTER 5. CURVED VESSELS

%7
S,

5%
% U
iy

/ 3 X
/ \ i N N
7 SO W

RSO iy N
s SSNN i

T,

7 SRR BN

(o e
ORI
RS

Figure 5.2: Possible velocity profiles for the choosen u, development: at left for A = 0.7854,
Q =30, H =10, G = 10, at right for A = 0.7854, Q = 0, H = 10,G = 10.

Figure 5.3: Solution at selected time steps for a straight artery of lenght 80 cm.
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G profiles don’t propagate; the H profile initialised to a particular value in the starting
configuration disappear because of viscosity effects.
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Solution without viscosity (t=0. s)

Solution without viscosity (t=0.02 s)
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H and

G profiles don’t propagate; the H profile initialised to a particular value in the starting
configuration doesn’t disappear because there is no viscosity.
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Figure 5.5: On the left velocity profile over a circular section for z = 40 ¢m and at the right
two projections of the velocity profile along y axes (dotted line) and along z axes (solid line)
for the solution reported in the bottom-left corner of Figure 5.4.
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5.2.2 Remark

By neglecting completely the velocity components along z and y in equation (5.1.2) we obtain
a system close to the previous one (5.2.6); in quasi-linear form it reads:

ou ou
—_— — =B 2.
N +J ER (U) (5.2.9)
where U = [4,Q, H,G]T and
0 1 0 0
4Q? H G B 8@ H G
—agp 12mm —12mgt QP—AO\/Z 34 Lrgp rg
J= (5.2.10)
,2H7Q 25 29 0
A? A A
GQ G Q
72? 2Z 0 22
0
787ryQ
A
B= I (5.2.11)
v A
G
7247”/2

This system is very close to system (5.2.6): the source term is the same and the only difference
in the matrix J are the entries J(3,2) and J(4,2) where the coefficient 2 substitute the
coefficient %

An analysis, analogous to the one of the previous Section, around the linearized states H =
G =0and Q = G =0, yields that system (5.2.9) is hyperbolic.

5.3 Straight geometry: second simplified model

We consider now a second extension of the model presented in Section 5.1.2: the geometry
description is the same as above (Figure 5.1) as well as the physical hypotheses. In particular
the pressure is still constant over the section S and we suppose an algebraic law for the vessel
wall.

Again the complexity of this new model is increased with respect to the velocity profiles. For
the most important component of the velocity field, u,, we still consider the same expansion
as in the previous Section, equation (5.2.1), while for the other two components of the velocity
field we consider an expansion over a richer basis {1, z,y, 2%, zy,y?}:

Uz = 051 (2,t) + 0g2(2, t)z + 053(2, )y + 05y (2, t)12 + 0g5(z, t)y2 + og6(z,t)zy  (5.3.1)
Uy = 0y1 (2, 1) + 0ya (2, 1) T + 0y3(2, 1)y + 04y (2, £)2% + 0y5(2,8)y® + 06 (2, )2y (5.3.2)
Yet as the problem is axi-symmetric we impose a radial displacement:

uz'(Rcos 0,Rsing) = 7cos 0
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Uy|(Rcos 6, Rsing) = 18I0

and we obtain simplified expressions for u; and u,:

j 0g1(2,t
Uy = 0g1(2,t) + %z - % (=% +y?) (5.3.3)
_ q _OyI(th) 2 2 5.3.4
uy—ow(z,t)-i-Ry L (z* +9*) (5.3.4)

Again, as unknowns, we have the area A, the three expansion coefficients for the longitudinal
velocity field, a, b, ¢, but also two coefficients coming from the expansions of the axial velocity
components, 0z; and oy;.

With respect to the previous model (see Section 5.3) the number of unknowns increases: now
we need six equations in order to solve the problem; they are obtained by applying Pg to
equations (5.1.5), (5.1.3), (5.1.4), and Po,P1,P2 to equation (5.1.2). This choice is consistent
with the chosen developments for the pressure and the velocity field components.

Again it should be remarked that the divergence equation is imposed only weakly.

Deﬁning the following six new variables A = 7R?, Q = Za(z, t)R?, H = 15b(z, t)R%, G =
Tc(z, )R, Qp = Toz1(2,t)R?, @, = Toy1(z,t)R?, we get the following system:

A 8Q
8t+8z
8Q 40 Q? o H? G2 B 9 s Q
o T304 T Ve 2t a0 T ™
O0H 1HOQ 9 HQ _ H  40Q,Q
ot tade: Tl A - ™Aty a
G  1GoQ 9 GQ G 49,Q (5.3.5)
el i 2 2 X% _ ~ =y
ot T240: T2 a T B™aT3 4
00, 4000 10 (HOQ)_ . U
ot 30z A 20z \ A 0z A
oy 40Q0 10 (GoQ)_ o &
o 30z A  20:\A0z) A
System (5.3.5) is rewritten in quasi-linear form
U | 39U _ g (5.3.6)

ot 0z
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where U = [4,Q, H,G, Qy, Q)T and

0 Lo oo
_g% - 12”5_2 -5+ MLAO 4 3% el s 0 o
J= 2212 %g 2% (; 0o o
27 54 0 2% 0 0
5 o e
_ Rl oy g g 19
- ] (5.3.7)
0
*871'1/%
7247711% + %QZQ
B 724711,% n ‘33% (5.3.8)
el L2 ()
,8w% + %% (%%‘3)

Again system (5.3.6) is solved by a finite difference upwind scheme

At At
1
Ut =uUp - — At (U7 "

Az - .7-*1) - EA7 ( 7+1 - U;L) +AtB‘;L J =1, Nnodes , t = "

where AT = RATR ™!, At = diag()\]) = diag(max()\;,0)), A~ = diag();) = diag(min(};,0)),
A; are the eingenvalues of the matrix J and R is the matrix of right eigenvectors.

Again, non reflecting boundary conditions are imposed, consistently with the hyperbolic na-
ture of the system, by a pseudo-characteristics method [80].

5.3.1 Numerical results

In Figures 5.6 and 5.7 the solutions of a test case (p = 1 gr/em3, Ay =1 cm?, = 106 gr/s?%;
v = 0.035 cm?/s and v = 0 cm?/s for the case with and without viscosity, respectively) are
presented. For the solution a time step At = 0.0001 s and a space discretization Az = 0.2
cm were used. In the start configuration (solution at £ =0s) A = Ap and G = Q; =Q, =0,
while Q@ and H have an assigned profile (half sine function with Qe = 100 cm3/s and
Hppae = 10 cm?/s). As the tube is straight there is not propagation of the H profile which
goes to zero slowly due to the presence of a source term depending on the fluid viscosity v.
The results for the same test case, but setting to zero the fluid viscosity, are reported in Figure
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Solution with viscosity (t = 0. s) Solution with viscosity (t = 0.02 s)
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Figure 5.6: Solution at selected time steps for a straight artery of lenght 80 cm. H, G, Qy
and €2, profiles don’t propagate; they are different from zero because of the initialization of
the H profile and they disappear because of fluid viscosity.

5.7. In this case the variables H,G,; and €2, are not equal to zero, when time increases
the velocity field seems to be rich enough to represent a vortex which does not desappear. In
fact because of the absence of fluid viscosity there is no energy dissipation. More precisely
the coupling between the various velocity coefficients implies that they can be different from
zero, when time increases, even if they are null in the initial configuration.

5.4 Curved geometry: first simplified model

The domain €, is a curved cylinder of constant curvature radius C' (with axis oriented along
the curvilinear coordinate x), as depicted in Figure 5.8. For this geometry the metric is
gé = # Yet we assume the pressure constant over a section S, that is p = p(x), and an
algebraic law for the vessel wall.

We consider that the velocity along the x axis has the form

Uy = (1 - ﬁ#) (a(x, 1) + b(x, )z + ¢(x, £)y) (5.4.1)
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Solution without viscosity (t = 0. s) Solution without viscosity (t = 0.02's)
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Figure 5.7: Solution at selected time steps for a straight artery of lenght 80 em. H, G, Q,
and €2, profiles don’t propagate; they are different from zero because of the initialization of
the H profile and they don’t disappear because the fluid has no viscosity. This should be
regarded as a vortex which doesn’t dissipate his energy.
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Figure 5.8: The cylindrical domain €;. The cylinder axis has a constant curvature C. The
axial sections x =const. remain circular at all times. x is belong to the plane z5 — z3

while the other two components of the velocity field are
Uy = Ez Uy = iy
T R bl Yy R
These linear profiles are obtained by straightforward calculations by assuming a linear profile,
as already done in Section 5.2. A simpler hypothesis could be to neglect completely the u,

and uy velocity components in equation (5.1.2): this is reported in Section 5.4.2.

(5.4.2)

The unknowns of the problem are R, a, b, c. The four equations needed to close the system
are obtained by applying Py to equation (5.1.5), and Po,P1,P2 to equation (5.1.2).
Defining the following variables A = 7R2, Q = %aRz7 H = 1"—2bR“7 G = f'—ch“ we get the
system, for z € (0,L),t >0

04 0Q
o ey
9Q 196 40 Q° o H? 9 a2
o TTa T3y A oy A2 ot
B 404 @ G
300 ¥ Aoy —8mv v 0247w (5.4.3)
OH _ 9 HQ 1HAQ H
ot Tl 4 Taday T M™a
G 119 aGQ 1GaQ B s0A G 1
& bl At 1 A2 ogmy S
ot T oona V25 +2A3X+CS7rpA0 ox ™~ gl
In quasi-linear form it is rewritten as
aU  _aU

A~ +J5-=B(U) (5.4.4)
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where U = [4,Q, H,G]' and

1 0 0 0
1
0 105
A= 0 0 1 0 (545)
1 1
—Q —A 0 1
67TCQ 67C
0 1 0 0
—49 oy —19n% 4+ AVA §9 120 120G
J= o ch o (5.4.6)
2 24 2% 0
G E 5G
72147g + S‘IrC@pAoA2 24 0 2%
0
1
787r1/9 - 7247r1/g
A C A
B = H (5.4.7)
—24 -
’/Tl/A
1
7247r1/§ — 53VQ

If now we consider the limit C' — oo (this is the limit curved geometry versus straight geom-
etry), we remark that system (5.4.3) becomes system (5.2.5), as it was expected.

Moreover it should be noticed that the equation for the H profile doesn’t change with respect
to the straight geometry, being the problem symmetric with respect to the z-axis in the cho-
sen (x,z,y) coordinate system.

We hypothize that system (5.4.3) is hyperbolic and we solve it by the following finite difference
upwind scheme

At At - - n
Ui =Uf = C A = LT (U —ULLy) = A i LT (Ufy, — UY) + AtA™! 1= Bj

J =1, Nnodes t=1"

where L* = RATR ™1, A* = diag()\}") = diag(max(};,0)), A~ = diag(); ) = diag(min(};,0)),
A; are the eingenvalues of the matrix J and R is the matrix of right eigenvectors, to be com-
puted numerically.

Numerically it was verified that the eigenvalues of the matrix J are real and, hence, that
system (5.4.8) is hyperbolic.

Non-reflecting boundary conditions are imposed by a pseudo-characteristics method, as done
for system (5.2.6).
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Solution with viscosity (1=0.5) Solution with viscosity (1= 0.0005 5)
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Figure 5.9: Solution at selected time steps for a curved artery (C = 1 ¢m) of length 10 cm.
Because of problem simmetry the H profile, null in the initial configuration, remains null for
all ¢, while the G profile is different from zero and propagates because of curvature.

5.4.1 Numerical results

We have considered curved arteries with different curvature radius (for instance C =1 em
or C = 5 c¢m) and with the following physical properties: p = 1 gr/cm?, v = 0.035 cm?/s,
Ag=1cm?, B =105 gr/s’

In Figure 5.9 the solution at different time steps for an artery of curvature C = 1 cm is
reported. At the starting configuration the variables A and @ are initialised at a value
different from the constant one (they are half-sine functions with amplitude 1.4 em? and 60
cm? /s, respectively). This causes two waves propagating forward and backward, respectively.
In particular we remark the propagation of the G profile, while the H profile is null; actually
this is due to the particular symmetry of the problem at hand.

The problem of a wave propagating into curved arteries was addressed in two other numerical
experiments, whom results are reported in Figures 5.10 and 5.13. In these cases inlet boundary
conditions were imposed on pseudo-characteristic variables. Yet it should be noted that the
H profile doesn’t activate.

In Figures 5.11 and 5.12 we report some velocity profiles for the test case of Figure 5.13, in
order to show which kind of result we get.
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Solution with viscosity (t = 0.0005 5) Solution with viscosity (t = 0.005's)
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Figure 5.10: Solution at selected time steps for a curved artery (C = 5 cm) of length 10
cm. This problem descibes the propagation of a wave imposed at inlet througth pseudo-
characteristic. Because of problem simmetry the H profile, null in the initial configuration,
remains null for all ¢, while the G profile is different from zero and propagates because of
curvature.
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Figure 5.11: Solution at different places, fixed time (¢ = 0.0025 s), with viscosity, for C =1
cm. The first column in combination with the other two shows the relation between the
expansion profile G' and the velocity component along the longitudinal axis x. The asymmetry
of the velocity profile is clearly pointed out.
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Figure 5.12: Solution at different places, fixed time (¢ = 0.005 s), with viscosity, for C =1 e¢m.
The first column in combination with the other two shows the relation between the expansion
profile G and the velocity component along the longitudinal axis . The asymmetry of the
velocity profile is clearly pointed out.
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Figure 5.13: Solution at selected time steps for a curved artery (C = 1 cm) of length 10
cm. This problem descibes the propagation of a wave imposed at inlet througth pseudo-
characteristic. Because of problem simmetry the H profile, null in the initial configuration,
remains null for all ¢, while the G profile is different from zero and propagates because of
curvature.
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5.4.2 Remark

Neglecting completely the velocity along = and y we obtain a system close to the previous
one; in quasi-linear form it reads:

ou [218)
A +35- =B(U) (5.4.8)
where U = [A,Q, H,G]' and
1 0 0 0
0 1 0 é
A= . o 10 (5.4.9)
1 1
— —A 1
67TCQ 67C 0
0 1 0 0
—49 —tonfl 190G+ B VA 39 12nl 120G
J= o " 2 (5.4.10)
—24¢ 2 94
G B 3
_2§ + 87rC',0AoA2 2% 0 2%
0
—871'1/9 - l247rug
A C A
B= I (5.4.11)
—Umr—
TV A

1
7247”/% — E?)IIQ

This system is very close to system (5.4.4); the source term is the same and the only difference
in the matrix J is in J(3,2) and J(4,2) where the coefficient 2 substitute the coefficient 5.

5.4.3 A numerical comparison between the curved model and the straight
tube

As it was remarked so far (see Chapter 1) the one dimensional model was developed to describe
flow rate and pressure in the human circulatory system.

Here we report some numerical comparisons between the straight artery solution and the
curved ones (with different curvatures). We report the comparison for A4, @) and G (H being
null) having in mind that what we are looking for are the first two variables. What we
would like to understand is the influence of the curvature on the solution, with respect to the
averaged quantities.

An artery of length 10 c¢m was then considered with 8 = 10% gr/s? and area at rest of 1 cm?.
Four curvature’s radii (C) were considered: C' = oo (this case corresponds to the straight
geometry), C' =10 ¢m, C =5 cm and C = 1 ¢m. This last should be interpreted as a spiral
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where torsion effects are neglected. For the numerical simulation a time discretization At
of 0.00001 s was used and a space discretization Az of 0.025 ¢m. The total time T of the
simulation was T = 0.02 s. At inlet we impose a flow rate Q(t) = Q sin(wt/0.006) if ¢ < 0.006
s and Q(t) =0 if ¢ > 0.006 s.

In Figures 5.14 and 5.15 are reported the results for a straight artery and the difference
between curved arteries, the flow velocity amplitude (Q/Aq) being 30 em/s in the first and
80 ¢m/s in the second.

In both regimes we remark that instead of an important variation in the velocity profiles the
averaged quantities (area A and flow rate Q) don’t have a relevant variation. Only in the
case of C' =1 ¢m the flow rate shows a variation of order 10%.

Yet this is a non-physiological wave, in particular with respect to the wavelength. A more
physiological test (Q(t) = Qsin(wt/0.3) if t < 0.3 s and Q(t) = 0 if ¢ > 0.3 5, Q = 80 cm3/s)
is reported in Figure 5.16, where no relevant differences can be remarked between the curved
and the straight models.

5.5 Curved geometry: more complex models

We consider now the same profile for the velocity along the x axis, namely

22 + 42
we= (1= 215 (ol ) + bl 02+ e 1) (5:51)
while u; and u, are given by
Uy = 051 (X, 1) + 002 (X, )& + 043 (X, )Y + 00y (X, 1)2” + 045 (X, 1)y® + 0u6(x, )3y (5.5.2)

1y = 0y1 (X, £) + 0ya (X, )z + 0ys (x, )y + 0y (6, 1)2% + 045 (x, )y® + 0y (x, )2y (5.5.3)

Imposing that the displacement is radial:
Uz|(Rcos€,Rsin0) =1cos@

Uy|(Rcos 0, Rsin g) = 71 5in 0

we obtain simplified expressions for u, and u,:

. .

Uy = 051 (X, t) + %z - —0“}(;; ) (2% +y%) (5.5.4)
_ ﬂ ~ Oy1 (1) (2 2

uy = oy1 (X, £) + 7Y Rz (=® +9*) (5.5.5)

The unknowns of our problem are R, a, b, ¢, 051, 0y1. The six equations needed to close the
system are obtained by applying the operator Pg to equations (5.1.5), (5.1.3), (5.1.4), and
the operators Pg,P1,P2 to equation (5.1.2).

In order to recover more familiar expressions we perform the change of variables A = 7R?2,
Q= %aRg7 H= 1”—2bR4, G= 1”—20R47 Q, = %omRZ and Q, = %oyIRZ.
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Time solution at a fixed point for a straight artery and difterences
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Figure 5.14: Time solution in the middle of the artery for area, flow rate and G profile for the
straight geometry and its comparison with the solution for curved geometries, C' being the
curvature radius. For the variable area A and flow rate @ the relative difference is considered
while for the G profile we have considered the absolute difference.
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Figure 5.15: Time solution in the middle of the artery for area, flow rate and G profile for the
straight geometry and its comparison with the solution for curved geometries, C' being the
curvature radius. For the variable area A and flow rate @ the relative difference is considered
while for the G profile we have considered the absolute difference.
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Figure 5.16: Time solution in the middle of the artery for area, flow rate and G profile for the
straight geometry and its comparison with the solution for curved geometries, C' being the
curvature radius. For the variable area A and flow rate @) the relative difference is considered
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while for the G profile we have considered the absolute difference.
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Therefore, we get the following 6 by 6 system:
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As expected, increasing the expansions of the velocity profiles, we finally find a mixed

hyperbolic-parabolic system (5.5.6).

System (5.5.6) has not yet been numerically solved and is here reported to show the limit of
our “Naghdi-Green” approach: despite its absolute generality, the complexity of the resulting
system increases rapidly when increasing the accuracy of the approximation.
Moreover a mixed type system (hyperbolic-parabolic) should be expected.

(5.5.6)

2y
A
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Chapter 6

Models and methods

Introduction

In this Chapter we consider the arterial network model proposed in [91], where the 55 largest
arteries are represented by 1D models well-matched at the bifurcations for forward propa-
gating waves. The parameters specifying the mechanical and physical features of each vessel
are basically deduced from [105] and [97], later adjusted in [104]. Normally, the action of the
heart is represented by a boundary conditon to be prescribed at the inlet of the first artery
(ascending aorta) of the network. However, it is well known that “the left ventricle and ar-
terial circulation represent two mechanical units that are joined together to form a coupled
biological system” [59, Chapter 13]. The relevance of the heart-arterial interaction in math-
ematical modeling has been pointed out in [88, 87|, in the framework of lumped parameter
models. The reduction of the heart action to a boundary condition for the system does not
account at all for this coupling. This approach is unsatisfactory in particular when we want
to study the effect on the pressure and flow patterns caused by changes in the geometrical or
mechanical characteristics of the arterial network (e.g. due to the presence of a prothesis in
the iliac bifurcation). No feedback from the arterial tree to the heart is indeed being modelled
in this way. Here, we propose to overcome this drawback by a coupled description based on
the matching of the 1D network model with a lumped parameter model for the left ventricle.
In particular, we refer to the model illustrated in [59] and in [45], together with a technique
that accounts for the closure of the aortic valve.

In this Chapter we outline the mathematical model and the numerical methods used, leaving
to the next Chapter the application to physiological test cases.

The results reported in this Chapter are taken from [30].

89
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PERIPHERAL
ARTERIAL SYSTEM VESSELS

Figure 6.1: Diagramatic representation of the simulated system. The arterial network is
described in terms of 1D models, while the heart and the peripheral circulation are given by
lumped parameter models.

6.1 The Mathematical Model

We consider the system represented in Figure 6.1, composed by a left ventricle (LV), an
arterial system and peripheral vessels. They are here described, respectively, by a lumped
parameter model, a one dimensional network and a lumped parameter model.

In this Section, we introduce the basic features of the mathematical model we have adopted.
The basic 1D model and the numerical methods adopted for its solution have been presented
in Chapters 1 and 2. Since the human arterial system is formed by a network of vessels we
need to find a proper way to account for branching. We addressed this issue in Chapter 4.
Finally, the model is completed by accounting for the peripheral circulation and the heart. The
former is here modeled by a lumped parameter model which can be regarded as a boundary
condition for the 1D network distal sections (Section 6.1.1); the formulation here reported
generalises the one based on a pure resistive parameter [91]. The heart can be described either
as a boundary condition for the proximal section of the 1D model or through a differential
equation. The two approaches are presented in Section 6.1.1; we will see that the former is
not suitable to investigate the effect at the level of aortic pressure for changes of the network
characteristics. This explains why we introduced the alternative approach, which is of course
more complex, consisting in modeling also the heart action through a differential equation.

6.1.1 Boundary conditions for the network

Boundary conditions for the whole model of the arterial network at hand are either distal or
proximal. The former has to simulate in a simplified way the presence of the capillary bed.
The latter, which is imposed at the proximal node in the ascending aorta, accounts for the
action of the heart or, more precisely, of the left ventricle.

Distal conditions (peripheral circulation)

At the distal ends a common choice is to assume that the peripheral circulation corresponds
to a purely resistive load (see e.g. [92]). This corresponds to assuming that:

Pa = RpQq (6.1.1)

where pg and @ are the pressure and the flow rate at the distal end and R, is the peripheral
resistance.
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When resorting to non reflecting boundary conditions reformulated in terms of Riemann
invariants, we can linearize the characteristic variables given by (1.2.9) in the form:

Wi =a1Q+azp, Wa=a1Q —asp

where a1 and ao are constant.
Condition (6.1.1) can be therefore rewritten as

Wi — W, -R Wi+ Wy
2(12 P 2(11 ’
thence S
Wy = ———2 W) = —R,W; (6.1.2)
ay + R,

having set R, = (a1 - %) / (a1 + %i)

This condition states that the back propagating Riemann invariant is (up to the sign) a
fraction of the incoming one (see e.g. [92]). For this reason we will refer to R; as reflection
coefficient. Observe, in particular, that if R, tends to infinity (that means condition (6.1.1)
corresponds to a completely blocked end (Q, = 0)) R; tends to 1, as expected.

The hypothesis that the peripheral circulation can be represented in terms of a resistive
impedance is correct for very peripheral vessels [59]. Our model will be used for simulating
different scenarios, considering different possible distal boundaries. We therefore generalize
the previous condition when the lumped parameter representation of the peripheral circulation
is given by a complex impedance Z,. In particular, if we consider the three-element Windkessel
model represented in Figure 6.2, the input impedance is:

R’y

Z =R+ I R G

Here Ry and R; are resistive parameters while C' is a capacitance.
In the time domain, by setting Ry + R; = R,, we have the generalization of the resistive
condition (6.1.1):

dp aQ
p+R10£ = ,,Q+R0R10%. (6.1.3)

When resorting to the (linearized) Riemann invariants, after some manipulations, condition
(6.1.3) becomes:

a2 + gy dWy ap— ghdW, @2 R
RO— 022w, —po—— R TL_ ~ Ty, 1
Vet g dt t =t Gt g A et g (6.1.4)

Time integration of (6.1.4) (pursued at the numerical level, as described in Section 6.2)
provides the distal boundary conditions.

Observe that if we suppose that Ry tends to infinity (corresponding to a complete occlusion
of the peripheral boundary), if the initial data are compatible (ie. Qp = 0 at the initial
time), it is possible to verify that we still obtain the expected solution Qp = 0.
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Figure 6.2: Three-elements Windkessel model used for modeling the peripheral circulation.

Proximal Conditions: standard model

At the inlet we need to simulate the presence of the heart and of the aortic valve. Proximal
boundary conditions may be further subdivided into two types: open valve conditions (OV)
and closed valve conditions (CV). The change in condition type must be driven by the solution
itself. For the sake of simplicity, we detail here OV and CV separately. How to switch between
the states in the numerical model is explained in Section 6.2.3.

CV Conditions: When the valve is closed the boundary condition imposed at a given instant
at the proximal aortic node is @ = 0 . In practice we resort to a condition similar to (6.1.2),
where now the roles of W; and W, are exchanged and R; = 1, yielding:

Wicv = —Wa. (6.1.5)

OV Conditions: In this situation a classical methodology is to prescribe either the flux or the

pressure at the proximal node using a well chosen profile (see Section 1.3). We should note
however that prescribing pressure or fluxes is a reflective-type condition. This means that
part of the wave going toward the heart will be reflected backward into the network. If this is
what we expect when the aortic valve is closed, it may otherwise give unwanted spurious waves
in the case of OV conditions, since we are not accounting for the absorbing properties of the
ventricle. Smoother results are obtained using instead a non-reflecting boundary condition,
by imposing the incoming Riemann invariant W, obtained from the profile of the ventricular
pressure P,. As seen in Chapter 1, the incoming Riemann invariant W; is written in terms
of the pressure and W as follows

Wi = W) + 4\/2 (PU + %) . (6.1.6)

In practice P, has been chosen as a half sine wave of amplitude P, ¢ and a half-period ¢, = 0.3
s (see Figure 6.3); the profile will be restarted at every heart beat (we will indicate the heart
beat period by T). If we assume that the ventricle acts as a perfectly absorbing chamber,
the value of W5 must remain unchanged and equal to its initial value Wa, readily computed
from the initial state at the aortic proximal node. In the general case, the actual value of Wy
is computed by extrapolation (see Section 6.2).
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P(t)

time

Figure 6.3: Function P, o(t) for the left-ventricle pressure Py in the case of standard bounday
conditions. T-s = 0.3 s is the end-of-systole time.

Q

Figure 6.4: Lumped parameter representation of the heart during the systolic phase.

With this method we will not impose the pressure P, exactly at the proximal node, since
we are selecting just the part of information corresponding to the wave entering the network.
However, we are now sure that the waves coming from the periphery will be perfectly absorbed.
As previously pointed out, this approach does not account at all of the behavior of the heart
and of the coupling between the left ventricle and the arterial system, since P, is given: there
is no interaction between the left ventricle and the arterial system.

6.1.2 Lumped parameter description of the heart

We describe here an alternative technique, based on a commonly accepted phenomenological
model of the ventricle function. The basic idea of this model, originally proposed in [102, 101]
(see also [59, 45, 46, 87, 88]) is that the pressure in the left ventricle and the ventricular
volume are linked through a time-dependent coefficient called elastance (see Figure 6.5).

In particular, the cardiac stiffness, that is actually measured by the elastance, is low during the
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Figure 6.5: On the left: qualitative character of the time-dependent compliance, C(t), of the
left ventricle during a cardiac cycle [45]. On the right: qualitative character of the elastance
function, E,(t), in a pressure (P) - volume (V) diagram (FE,,,; = ventricular contractility
index, ES = end systole, ED = end diastole) [100].

diastole and increases in systole. In [102, 101] it is experimentally shown that the elastance
funtion is in fact independent of the ventricular load. We will therefore assume that the
ventricle pressure P, and the ventricular volume V,, are linked by the relation:

Pv(t):Ev(t)(Vv(t) 7%)+KEv(t)(Vv*VE))Qv(t) (617)
=Ey(t)(Vo(t) = Vo) (1 + KQu(t)) o
Here E, = E,(1) is a time varying elastance that simulates the action of the heart muscular
fibers, Vp is a reference volume and K is a resistance coefficient (see [59, Chapter 13, eq.
(13.4)]). Ey, K and Vj, are intrinsic properties of the ventricle. K is usually rather small, so
we will set it to zero. We also assume that V{ is constant. Observe that the flow rate ejected
by the ventricle is given by @, = —dV,/dt. During the systole equation (6.1.7) is matched
with the 1D network (OV conditions). During this phase (when the atrio-ventricular valve
is closed), a lumped parameter model for the left ventricle in terms of electric networks is
obtained by a time derivation of (6.1.7), yielding:

1dP, d (1) _av
v

Fa Ta\s)T @

The presence of the venous system, which is responsible of the pressure increment in the
heart during the diastole (C'V conditions), is not explicitely considered, being the pressure
increment still driven by (6.1.7). Moreover the venous system is completely omitted. Thanks
to this pressure increment, at the beginning of the systole the capacitance C = % of Figure
6.4 is polarized. The systolic phase actually coincides with the depolarization of the capacitor,
yielding the blood ejection into the arterial system.



6.2. NUMERICAL METHODS 95

6.2 Numerical methods

6.2.1 Peripheral circulation

At the numerical level, relation (6.1.4) provides an equation for the approximation at time
t"*1 of Wy and Ws at a distal boundaries. More precisely, using the notation

_a_l ao — L
a2+ Rp

RIC .+ ;lalpy Rlc + a1 ) 83 = a2+ a; )

if we discretize (6.1.4) with a backward Euler scheme, we obtain the equation

(59 — Atsz) WPt 4 5 W — s, WP
At + 51

wptl = (6.2.1)
where At is the time step. As before, this relation needs to be completed by the extrapolation
of the outgoing characteristic. This is also needed by the fact that the right hand side of (6.2.1)
depends on W,

We therefore obtain the non linear system

Wi (A, Q) = WY

6.2.2
(52— Atsg) WP 4 5, W§ — s,WP (6.2:2)

n+l ~Hn+ly _
WZ(A 7Q ) - At+ s1

which is solved with a Newton iterative scheme.

6.2.2 Proximal boundary
Standard conditions

In this case, the boundary condition we prescribe is the incoming Riemann variable W;
through equation (6.1.5) when the aortic valve is closed, or (6.1.6) when it is open. The other
condition is obtained by extrapolating Wa.
In the case of CV conditions, we will therefore set:

Wn+1 Wn+1 Wn+1 Wn+1 Wn+1 (6.2.3)

2,ext? 2,ext”

In the case of OV conditions, having prescribed a ventricular pressure function P,(t), we will

force: 5
n+l _ n+1 “ n+1 B
W - W2 ext + 4\/; (Pv(t ) + /Ao) (624)
1 1
Wyt =wids,

Heart model

When accounting for a lumped parameter description of the heart, conditions (6.2.3) are still
valid in the case of CV.

For what concerns OV conditions, given the quantities at time ¢", we approximate (6.1.7) to
obtain the pressure at time t"*! as follows

n+1
Pr+l = B(tv+) (VJ‘ - 2+ 9 nr - Vo) : (6.2.5)
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>0 <0

Figure 6.6: Flow chart representation of the aortic valve modeling. The simulation are started
from close valve. The close valve condition is imposed till the ventricle pressure is bigger than
the aortic pressure; then open valve condition is used until a flow reversal condition, which
closes the valve.

where V! is the ventricular volume at ¢ = ¢". We assume that when the aortic valve is open
the values of P, and @, at the proximal aortic node coincide with P, and Q,, respectively.

Equation (6.2.5) and the extrapolation of W5 are the boundary conditions for the open valve
Qn+1 + Qn
—At.

2
To simulate the cardiac cycle, we re-activate the model at each time ¢* = kT, £k = 0,1,...,
being T the chosen beat period. At these times we assume that the ventricle is completely
filled with V,,(t*) = V* being the chosen stroke volume, while E(t*) corresponds to its lowest
value (end diastole). Until the aortic valve opens (see next subsection for the modelling of the
valve) we have Q" = Q7! =0 and V;* = V* (isochoric contraction) and (6.2.5) is sufficient
to compute P"*1. Until the aortic valve remains closed, the ventricular model is completely
decoupled from the network model and the proximal boundary condition for the latter is
determined by the zero flux condition.

case. We can then update the ventricular volume as V;"+! = V" —

When the aortic valve opens the ventricular and network model are coupled using the tech-
nique previously illustrated, until the valve closes again. From that time on, until the next
period the models are again decoupled and, in fact, the ventricular model is not used at all.
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6.2.3 Aortic valve action

We now describe the technique we have adopted to model the aortic valve action, for both
the computations using the classical proximal condition and the heart modeling.

We have assumed that the valve opens under the action of a differential pressure, while it
closes under the action of a flow reversal.

The diastolic cycle is started with the valve closed and at each time step P?*+! is compared
to that P"*1, the pressure computed by the 1D model at the aortic proximal node. When
Pl — PrL > 0 the aortic valve is opened and from the successive time step onward we
adopt the OV conditions, until the next closure.

Clearly, when the valve opens at the end of the isochoric contraction the ventricular pressure
is still rapidly increasing and induces a positive flux into the aorta. To determine the instant
of valve closure (end systole) we monitor the sign of the flux at the aortic proximal node. At
the first time step when we have Q7! < 0 we “close” the valve by adopting again the CV
boundary condition, until the next heart cycle. A flow chart representation of the aortic valve
action is given in Figure 6.6.

6.3 Numerical tests on proximal boundary condition

In order to understand the role played by the coupling left ventricle - arterial system we did
some numerical experiments. We consider the arterial network depicted in Figure 6.7. In each
of the 55 straight arteries, we assume equations (1.1.2, 1.1.3) to hold, while bifurcations are
described in terms of conservation of mass and total pressure (see Section 4.1.1). The values
of the physical parameters (lengths, rest radii, Young’s moduli, etc.) are taken from [104]
and are reported in Table 6.3. At the outlet of the tree, in correspondence of the peripheral
circulation, suitable values for the impedance are prescribed. This case will be denoted as
the physiological test case.

The heart will be simulated both in the standard way and in the new one. In the former case,
when the valve is open P, is a half-sine curve, as pointed out in Section 6.1.1. In the case
of the coupling with the lumped parameter model, it is worthwhile to assign a curve for @y,
which is still a half-sine curve, as reported in Figure 6.3.

We also simulated two modifications of this model, in order to probe the correctness of the
numerical model.

Age effects. 'We have considered different Young’s moduli for different ages, by suitably
changing the stiffness of the arteries. More precisely, Young’s modulus has been reduced by
100 % in the case of a young patient and increased by 100 % for an elderly patient.
Pathological case. In order to outline the increase of wave reflections, we considered also
a case of a complete obstruction of the right femoral artery. This means that in this case
the 55 arteries network reduces to a set of 53 vessels, as indicated in Figure 6.8, and the
distal conditions on the right femoral artery corresponds to a null distal velocity (complete
blockage, R; = 1). In the sequel, simulations referring to network of Figure 6.8 will be denoted
by pathological case.

In Figure 6.9 we simulate the arterial tree of a middle aged individual and compare results
obtained without left ventricle coupling (left column) and with the coupling (right column).
In particular, we illustrate the pressure and the velocity of blood for different arteries of the
system. The last two pictures in each column refer to the Riemann invariants (W) and Wa
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Reflection

# | Name of Artery Length (cm) | Area (cm?) | Beta (8) | coefficient (R:)

- - (kg/s") -
1 | Ascending Aorta 4.0 5.983 388 -
2 | Aortic Arch I 2.0 5.147 348 -
3 Brachiocephalic 3.4 1.219 932 -
4 | R. Subclavian I 3.4 0.562 1692 -
5 | R. Carotid 17.7 0.432 2064 -
6 | R. Vertebral 14.8 0.123 10360 0.302
7 | R. Subclavian IT 42.2 0.510 1864 -
8 | R. radial 23.5 0.106 11464 0.273
9 | R. UlnarI 6.7 0.145 8984 -
10 | R. Interosseous 7.9 0.031 51576 0.319
11 | R. Ulnar II 17.1 0.133 9784 0.298
12 | R. internal Carotid 17.6 0.121 10576 0.261
13 | R. external Carotid 17.7 0.121 9868 0.26
14 | Aortic Arch IT 3.9 3.142 520 -
15 | L. Carotid 20.8 0.430 2076 -
16 | L. internal Carotid 17.6 0.121 10576 0.261
17 | L. external Carotid 17.7 0.121 9868 0.264
18 | Thoracic Aorta I 5.2 3.142 496 -
19 | L. Subclavian I 3.4 0.562 1664 -
20 | Vertebral 14.8 0.123 10360 0.302
21 | L. Subclavian IT 42.2 0.510 1864 -
22 | L. Radial 23.5 0.106 11464 0.274
23 | L. Ulnar I 6.7 0.145 8984 -
24 | L. Interosseous 7.9 0.031 51576 0.319
25 | L. Ulnar II 17.1 0.133 9784 0.298
26 | Intercostals 8.0 0.196 3540 0.209
27 | Thoracic Aorta IT 10.4 3.017 468 -
28 | Abdominal I 5.3 1.911 668 -
29 | Celiac I 2.0 0.478 1900 -
30 | Celiac IT 1.0 0.126 7220 -
31 | Hepatic 6.6 0.152 4568 0.308
32 | Gastric 7.1 0.102 6268 0.307
33 | Splenic 6.3 0.238 3224 0.31
34 | Superior Mesenteric 5.9 0.430 2276 0.311
35 | Abdominal IT 1.0 1.247 908 -
36 | L. Renal 3.2 0.332 2264 0.287
37 | Abdominal IIT 1.0 1.021 1112 -
38 | R. Renal 3.2 0.159 4724 0.287
39 | Abdominal IV 10.6 0.697 1524 -
40 | Inferior Mesenteric 5.0 0.080 7580 0.306
41 | Abdominal V 1.0 0.578 1596 -
42 | R. common Iliac 5.9 0.328 2596 -
43 | L. common Iliac 5.8 0.328 2596 -
44 | L. external iliac 14.4 0.252 5972 -
45 | L. internal Iliac 5.0 0.181 12536 0.308
46 | L. Femoral 44.3 0.139 10236 -
47 | L. deep Femoral 12.6 0.126 10608 0.295
48 | L. posterior Tibial 32.1 0.110 23232 0.241
49 | L. anterior Tibial 34.3 0.060 36972 0.239
50 | R. external Iliac 14.5 0.252 5972 -
51 | R. internal Iliac 5.1 0.181 12536 0.308
52 | R. Femoral 44.4 0.139 10236 -
53 | R. deep Femoral 12.7 0.126 10608 0.296
54 | L. posterior Tibial 32.3 0.110 23232 0.241
55 | R. anterior Tibial 34.4 0.060 36972 0.239

Table 6.1: Data used in the computational model of the 55 arteries. The data is from the
physiological data published by Westerhof [105] and Stergiopulos [97] with the changes made
by Wang and Parker [104].
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Figure 6.7: Arterial tree composed of a set of 55 straight vessels, described by 1D models.
Physiological case (see Table 6.3).
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Figure 6.8: Arterial tree composed of a set of 55 straight vessels, described by 1D models.
Pathological test case: vessels outlined in the boxes are cut away from the system.
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respectively) computed for the same simulations. Both the case of 55 physiological and 53
pathological networks have been considered.

Figure 6.10 refers to the same simulation carried out in the case of an elderly patient.

The impact of the coupling of the heart in the numerical model is evident from Figure 6.9
and 6.10. In particular, it is worth to be mentioned the underestimation of the reflections in
the pathological case when the heart coupling is not considered in the model. This was to
be expected, since in the non-coupled case the action of the heart is actually independent of
the real overload induced on the heart by increasing the peripheral resistances. This induces
a sort of smoothing effect, that strongly dumps the wave reflections. In particular, looking
at the Riemann invariants, in the non-coupled case the incoming variable W; is obviously
independent of the outgoing waves, which is however unphysical. On the other hand, presence
of wave reflections is felt by the heart in the coupled model.

Another remark refers to Figure 6.10, where an elderly patient is considered. The sensitivity
of the uncoupled model to the Young’s moduli of the arteries is significantly lower than in
the coupled case, as can be noticed by comparing with the case of a middle aged individual.
This was to be expected too, since the damping effect mentioned above reduces the impact
of a change in the moduli over the system.

These results show the relevance of the heart coupling.
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Figure 6.9: Comparison between the case with a simplified representation of the heart, based
on boundary conditions, (left) and a lumped parameter representation of the heart, based on
the varying elastance model of Figure 6.4, (right). Velocity and pressures at different arteries
are presented in the first four pictures. The last pictures illustrate a comparison between the
Riemann invariants Wy (fifth row) and W (sixth row). We are simulating adult circulation
in a physiologic (solid) and pathologic (dotted) test case.



6.3.

NUMERICAL TESTS ON PROXIMAL BOUNDARY CONDITION

Artery 1. pressure (mmHg) and velosity (cm/s)

Toartny
pathologic

Artery 1, prassure (mmHg) and velocity (crmis)

o1 02 ) 0 o5 o6 07
Artery 27, prossure (mmHg) and velocity (cm/s)

o oz o3 o4 o5
Artory 27, pressure (mmHg) and velosity (cm/s)

o1 02 o3 0 o5 o5 07

Artery 37, prassura (mmHg) and velacity (cm/s)

Cxl o2 5 o o5
Artery 37, prossure (mmHg) and velocity (cm/s)

01 0z CE) o 05 06 07

Artery 1, charactoristic variables

o oz o3 o4 o5

Artery 1, characteristc variables

aos0l-

a000(-

as00f

—avs0

Figure 6.10: Same simulation of Figure 6.9 for an elderly patient.

o4
time (&)

103



104 CHAPTER 6. MODELS AND METHODS



Chapter 7

Numerical tests on cases of clinical
interest

Introduction

Physiopathological evidence suggests that major differences in the shape of aortic flow and
pressure waves among patients occur either in the presence or in the absence of cardiovascular
diseases [56, 57]. In fact, the contour of pressure and flow waves in major systemic arteries can
be explained on the basis of wave reflections and their interaction with the heart. The physical
structure of the arterial system leads indeed to the reflection of waves at critical regions such
as bifurcations, abrupt changes of the arterial stiffness or radius. These reflections are by far
relevant in determining the working point of the coupled heart/arterial network system (see
[59])-

The basic arterial network we consider in our simulations has already been illustrated in the
previous Chapter (Figure 6.7 and Table 6.3 for data). Moreover, all the details about models
and methods have been outlined therein.

In this Chapter this numerical model is used for the simulation of physiological situations
for individuals of different age. In fact, arterial stiffness increases with age ([59],[12]) and
this reflects in suitable modifications of the values of parameters of the numerical model. In
particular, we investigate the overload on the heart induced by the backward waves, whose
relevance is increased by the stiffening of the vessel walls.

In a similar way, some pathological situations can be considered where anomalous pressure
wave reflections could have some consequences on the heart. Drastic modification in the
arterial network such as the ones induced by an amputation (for instance as a consequence
of diabetes), are described by a suitable modification of the computational domain. This
case has already been presented in the previous Chapter (pathological test case, Figure 6.8).
Abrupt changes in the stiffness of the wall of a particular district such as the ones induced
by the presence of an endoprosthesis could be described at the mathematical level with a
modification of the physical parameters of the 1D network (as seen in Section 4.1.2).
Preliminary numerical results referring to the pathological test case are presented here.

Part of the results reported in this Chapter are taken from [30].
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Figure 7.1: Relation between distensibility and age for a central elastic artery. Taken form
[11].

7.1 Physiological test case and aging effects

We consider the basic arterial network illustrated in the previous Chapter (Figure 6.7). All
the data for a middle aged patient are reported in Table 6.3. As already pointed out, aging
consists in changing the stiffness of the arteries (see Figure 7.1). More precisely, Young’s
modulus has been reduced by 100 % in the case of a young patient and increased by 100 %
for an elderly patient.

Figures 7.2, 7.4, 7.6, 7.5, 7.8 and 7.9 refer to simulations of the physiological case.

In particular, Figure 7.2 shows the time history of the left ventricle and the aortic pres-
sures during a heart beat. When the valve is open the two curves clearly superimpose and
the aortic pressure is due to the left ventricle - arterial system interaction. Otherwise the
aortic pressure is determined by the wave reflections along the arterial network and at its end.

Figure 7.4 shows the behavior of the arterial pressure and flow waves in arteries at different
locations of the system in the physiological case of a middle aged individual. We report re-
sults from the thoracic aorta up to the tibial artery. This Figure indicates that the numerical
model is able to correctly simulate the behavior of arterial flow and pressure waves as they
travel away from the heart (see for comparison Figure 7.3 taken from [59]). In fact, mean
pressure falls slowly but the pulsatile pressure variation increases until in the tibial artery. It
may double that at the root of the aorta. The flow oscillation, on the contrary, diminishes
markedly from the proximal aorta to the tibial arteries. Such behavior can only be accounted
for by the presence of a strong reflection in the small peripheral vessels, due to high peripheral
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Figure 7.2: Left ventricle pressure and aortic pressure. The image on the left has been taken
from [59]. The image on the right reproduces our results for a middle aged patient. The
pressures in the aorta and in the left ventricle are superimposed when the heart valve is open
(see Section 6.2.2).

resistances (i.e. high R;). In fact, in the absence of reflections (low peripheral resistances),
damping would cause a parallel fall in pressure and flow oscillations. The probable region of
this fall appears to be the smallest arteries and proximal arterioles. This fall also occurs in
the splanchnic branches of the abdominal aorta (renal, superior and inferior mesenteric) but
there is no back flow and flow contour is similar to that of pressure. This can be attributed
to low peripheral resistance and to a low reflection coefficient in vascular beds supplied by
these arteries (see [51], [57]).

In Figure 7.6 we compare the behavior of the arterial pressure and flow waves in arteries of
subjects of different ages, while in Figure 7.5 we report the pressure-volume curves for the
heart at different ages. In Figure 7.6 it is evident that the system is able to simulate the major
changes of the arterial pulse as seen with hypertension or aging. Usually these alterations
are attributable to arterial stiffening and to a more rapid travel of the pulse along the major
arteries and to consequent early return of wave reflection from the periphery of the body.
Comparing flow and pressure waves, one notes that in the young adult the wave speed is low
and reflections arrive late, i.e. they arrive in diastole back in the aorta. In the older human,
wave speed has increased and the reflections return in systole. This is the reason for disap-
pearance of the reflected wave from diastole and its movement into systole, with characteristic
boost to pressure in late systole in elderly patients. Decreased distensibility also increases
pressure wave amplitude. Increased wave velocity causes wave reflection to return earlier and
often leads to fusion of incident and reflected waves with generation of a pressure wave with
a later systolic peak in all major arteries. It is worth to be noticed that the increasing of the
arterial stiffness induces a heart overload. This can be seen in the P — V' diagrams of Figure
7.5. The increment of the area spanned by the P — V curve in the elderly case is evident and
corresponds to the ventricular overload induced by the stiffening.
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Figure 7.3: Diagrammatic comparison of the behavior of the arterial pressure and flow pulses
in arteries as they travel away from heart (taken from [59]). Mean pressure falls slowly, but
the pulsatile pressure variation increases; on the other side the flow oscillation diminishes

markedly.
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Figure 7.4: Diagrammatic comparison of the behavior of the arterial pressure and flow pulses
in arteries as they travel away from heart. The Figure on the right shows flow and pressure
waves (as obtained from our model in the case of an adult patient) at the selected points
represented on the left.
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Figure 7.5: Pressure-volume curves for the left ventricle at different ages.
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Figure 7.6: Pressure and flow waves in the ascending and thoracic aorta for different ages
individuals. Physiological case (55 arteries network).

The Figure 7.8 shows the behavior of the pressure wave forms as a function of location from
the ascending aorta to the iliac bifurcation compared with the flow wave pattern in each
chosen artery.

Figure 7.9 shows the behavior of subclavian artery pressure wave compared to that of aortic
arch for a middle aged individual.

The appearance of reflected waves is outlined also in Figure 7.8 where this occurs progres-
sively earlier in systole as the wave approaches the iliac bifurcation. The amplitude of the
reflection increases peripherally. As previously pointed out, the morphology of the network
induces the presence of reflections. Possible reflecting sites include branching points, a change
of arterial calibre (tapering), or of the elastic properties of the arterial wall [51]. At a given
location in the ascending aorta the forward pulse wave interacts with the backward travelling
(reflected) wave while systole is still in progress. This reflected wave “adds up” to the forward
wave and yields the archetypal ascending aorta pressure wave-form [57]. The interaction with
the reflected wave, as indicated by comparing flow and pressure waves, occurs progressively
earlier in systole as we approach the iliac bifurcation. As the initial portion of the reflected
wave occurs progressively early during the systole with increasing distance from the aortic
valve, the diastolic portion of the reflected wave moves from diastole into systole too. In addi-
tion to the earlier appearance of the reflected wave, the amplitude of the reflection increases
peripherally. These observations further support the evidence that the terminal abdominal
aorta behaves as the major reflection site in man [57]. Perhaps this is evident in Figure 7.8.



7.1. PHYSIOLOGICAL TEST CASE AND AGING EFFECTS 111

150

100

S

50 _50)
100k -100) ’ \ ’ \
-150 -150)
. 1 1 . . . . ~ 1 . . . I . .
02 04 [ 08 1 12 14 02 04 [ 08 1 12 14
time (s) time (s)

Figure 7.8: Pressure waves at the different locations of Figure 7.7 for a middle aged (left) and
an elderly patient (right). On the bottom we report the flow rate in the ascending aorta.
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Figure 7.9: Results of the physiological test case in the aortic arch and in the subclavian
artery.
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Figure 7.10: Ascending (top) and abdominal (bottom) pressure waves for the physiological
and the pathological case.
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Arterial terminations in the upper part of the body are another relevant reflecting site. As
a matter of fact, in man peak and nadir of the brachial artery pressure waves are considered
to represent systolic and diastolic pressure throughout the whole arterial system. Moreover,
the contour of pressure pulse in the upper limb is quite different from that in the femoral
artery and its peripheral branches. For instance, there are usually two systolic peaks in the
brachial artery but only one in the femoral artery. This suggest a sort of amplification in
the upper limb arteries due to the shortest time period between the initial systolic peak and
diastolic wave. In normal circumstances the arterial pressure wave is markedly amplified in
transit from the ascending aorta to the radial artery [21]. Moreover, when arterial pressure
is taken on the upper arm by using a sphygmomanometer, we actually measure the pressure
in the brachial artery, which is different from the pressure in the aorta (or other distributing
arteries) [65]. Our system is able to simulate this amplification phenomenon in the brachial
artery due to the shortest time period between the initial systolic peak and the diastolic
wave (Figure 7.9). In normal situations this difference may be relatively small in absolute
terms and may warrant the assumption that central aortic and brachial systolic pressures are
identical.

7.2 A pathological test case

In order to outline the increase of wave reflections, we considered also a case of a complete
obstruction of the right femoral artery. This means that in this case the 55 arteries network
reduces to a set of 53 vessels, as indicated in Figure 6.8 (pathological case), and the distal
conditions on the right femoral artery corresponds to a null distal velocity (complete blockage,
Ry =1).

Figure 7.10 compares the results of the physiological and the pathological cases. More pre-
cisely, we report the different behavior of the abdominal aorta pressure waves.

It can be noticed that flow and pressure wave contours are markedly altered close to the
arterial obstruction, while only little perceptible changes in flow and pressure wave contours
of the proximal aorta can be remarked. This can be explained by dissipation phenomena from
abdominal to thoracic aorta. When the obstruction is at a distance, the net effect to the flow
is similar to that seen during peripheral vasoconstriction, with a fall in the entire flow with
the onset of a back flow. Arterial obstruction is associated to a decrease in amplification of
the pressure wave as a result of a local higher reflection phenomenon. Local aortic systolic
pressure in presence of iliac-femoral artery obstruction may exceed the normal aortic pressure
by far 30-40 mmHg.
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Conclusions

The aim of this work was to provide a tool for the numerical simulation of the human car-
diovascular system. The studies conducted at EPFL, in the Chaire de Modélisation et Calcul
Scientifique, show that this problem is global, in the sense that local changes can modify the
solution far away. From the point of view of computing and modeling this suggests the use of
multiscale methods. By far this seems the best way to perform a global calculation reaching
a “good” level of local details. Since 1D models play a major role in the description of blood
wave propagation, in the first part of this work we improved them by accounting for a more
complex vessel wall law and more general geometries, such as bifurcated channels, curved
vessels, stented arteries). However, our study of curved geometries is at a preliminary state
and needs to be furtherly developed.

In the second part of the thesis we presented a multiscale model for the simulation of the
whole arterial network at low computational cost. Specific attention has been devoted to the
coupling between the left ventricle and the arterial system, whose physiopathological rele-
vance is well known.

The mathematical model gives satisfactory results in numerical tests and is able to describe
the most relevant features of the pressure wave propagation and reflections within the arterial
system. Moreover, a 3D model could be inserted in our system without major difficulties (for
example it could be used to represent an aneurysm before and after surgical treatment). This
would allow undoubtely to better describe the local stresses and flow patterns.

Future developments could be devoted to an extensive application of the model to simulate
realistic pathological cases. In order to achieve this task the parameters of the lumped models
should be better fit. In particular, the solution strongly depends on the parameter setting
of the elastance model used to describe the left ventricle; moreover, the resistive parameter,
present therein, should not be neglected.

From the modeling viewpoint, the next steps to improve the model here presented could be

the inclusion of the venous system (possibly represented through a lumped parameter model),
and a more precise description of the heart, hence allowing the closure of the system.
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