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Abstract

A novel implicit cell-vertex finite volume method is presented for the solution of both the
Navier-Stokes equations and the governing equations for certain viscoelastic fluids. The key
idea is the elimination of the pressure term from the momentum equation by multiplying the
momentum equation with the unit normal vector to a control volume boundary and integrating
thereafter around this boundary. The resulting equations are expressed solely in terms of
the velocity components and, where appropriate, the components of elastic stress. Thus any
difficulties with pressure or vorticity boundary conditions are circumvented and the number of
primary variables that need to be determined equals the number of space dimension. As test
cases, lid-driven cavity flow in a square enclosure and flow around a confined circular cylinder
in a channel are solved in order to verify the accuracy of the present method and extensive
comparisons are made with the results available in the literature. In addition, we investigate
some interesting flow instabilities such as asymmetric flow around a confined circular cylinder
at high blockage ratios and the stabilization effect of viscoelasticity for this low. The numerical
results are computed on meshes having up to 1.8 million degrees of freedom.
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Version Abrégée

Une méthode originale de volumes finis basé sur approche implicite avec les variables assignées
aux sommets (cell — vertex) est présentée pour la résolution a la fois des équations de Navier-
Stokes et des équations régissant le comportement de certains fluides viscoélastiques. L’idée clée
de cette approche est I’élimination du terme de pression des équations de moment en prenant
le produit vectoriel de ces équations avec le vecteur unité normal & la frontiére du volume de
controle considéré, et en intégrant ensuite le long de cette frontiére. Les équations résultantes
sont alors uniquement exprimées dans les termes des composantes de vitesse et, si besoin, celles
du tenseur d’élasticité. Ainsi toutes les difficultés rencontrée avec la pression ou les conditions
de frontiére a appliquer au champ de vorticité sont contournées et le nombre de variables
primaires a déterminer explicitement est égal au nombre de dimensions spatiales. Comme cas
test, les problémes de 1’écoulement dans la cavité carrée entrainée ainsi que celui autour du
cylindre circulaire confiné dans un canal plan ont été considérés afin de vérifier la précision
de la présente méthode et de la valider avec les résultats disponibles dans la littérature. En
plus, nous avons étudié les instabilités de ces écoulements. Dans le cas de I’écoulement autour
du cylindre confiné dans un canal plan présentant d’importants rapports de bloquage, une
des solutions instables conduit & un écoulement non symétrique. L’effet stabilisateur dia au
comportement viscoélastique du fluide a été mis en évidence pour ce type d’écoulement. Les
résultats numériques se basent sur des maillages utilisant jusqu’a 1.8 millions de degrés de
liberté.
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Introduction

Flow instabilities have a crucial importance for the polymer processing and materials manu-
facturing industries where output quality constraints require that operating conditions should
be maintained in the stable flow regime. Therefore the prediction and understanding of flow
instabilities under different flow conditions are highly desirable. Instabilities can be quite
different in nature such as inertial instabilities, elastic instabilities, etc. Inertial instabilities
manifest themselves at high Reynolds numbers while elastic instabilities may appear at van-
ishingly small Reynolds numbers where they are entirely absent in Newtonian fluids under the
same flow conditions. Instabilities can also be classified as temporal or spatial depending on
their nature.

During the last decade, significant progress has been made in the understanding of flow
instabilities, particularly in the nature of inertial instabilities of a two-dimensional base flow.
Three-dimensional temporal and spatial inertial instabilities in a finite domain are still chal-
lenging in terms of required computer power. Very limited success has been achieved in the
understanding of elastic instabilities, however. This is particularly due to the complex na-
ture of the constitutive equations. Although highly simplified constitutive models such as the
Oldroyd-B, FENE models, etc. can be used the solution of these constitutive equations re-
mains a challenging task in terms of accuracy, stability, convergence and required computer
power. The stability analysis of viscoelastic flow is even more challenging due to the often
prohibitively large generalized eigenvalue problem (GEVP) resulting from the linear stability
analysis.

In the first part of this thesis, we propose a novel implicit cell-vertex finite volume method
for the solution of the Navier-Stokes equations and the linear stability analysis. The key
idea of the cell-vertex finite volume method is the elimination of the pressure term from the
momentum equation by multiplying the momentum equation with the unit normal vector to
a control volume boundary and integrating thereafter around this boundary. The resulting
equations are expressed solely in terms of the velocity components. Thus any difficulties
with pressure or vorticity boundary conditions are circumvented and the number of primary
variables that need to be determined equals the number of space dimensions. The governing
equations are discretized on four-node quadrilateral finite volume elements by using second-
order-accurate central finite differences with the mid-point integration rule in space and first
and second-order-accurate finite differences in time. The first reason to use the four-node
quadrilateral finite volume formulation is to avoid a system of algebraic equations which is not
diagonally dominant. In the past, Gatski et al. [54] tried to solve for the velocity components
by using the definition of the vorticity and the dilatation in the velocity-vorticity formulation.
In fact the main idea in this work was to solve Newtonian rotational flows with irrotational
initial conditions. However in the formulation of Gatski et al. [54] the system of equations was
not diagonally dominant and they reported that the iterative methods used to solve the block
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matrix equations were not very efficient [53]. The second reason to use a four-node quadrilateral
finite volume formulation is that the summation of the continuity equations within each finite
volume element can be exactly reduced to the domain boundary which is important for the
global conservation laws.

In the second part of this thesis, the proposed cell-vertex finite volume method based on
the velocity-only formulation is then extended to a velocity-stress formulation for a viscoelastic
fluid. To represent viscoelastic effects a constant viscosity modified FENE Chilcott-Rallison
(MCR) model [31] is used. Unlike the velocity components, the elastic stress variables are de-
fined at cell-centres and the governing equations are discretized on the same four-node quadri-
lateral finite volume elements in a similar manner to the cell-vertex finite volume method.
However, the elastic stress fluxes at faces of the four-node quadrilateral finite volumes are
evaluated using the QUICK [87] scheme in order to maintain stability. The whole system of
algebraic equations is coupled and solved using a direct solver.

The outline of the thesis as follows:

e In Chapter 1, we outline the governing equations and their discretization using our fi-
nite volume method. Both steady and time-dependent formulations of our method are
described. In the steady form a Newton method is employed.

e In Chapter 2, we begin by recalling the Navier-Stokes equations and proceed to consider
the behavior with time of infinitesimal perturbations. The algebraic system for the nodal
values of the eigenfunctions is derived. We also explain how we will use the method
of Arnoldi [6, 121] for the accurate determination of the most dangerous eigenvalues
that appear when the steady base flow is subjected to two-dimensional infinitesimal
perturbations.

e In Chapter 3, the present method is applied to both the steady and unsteady two-
dimensional lid-driven cavity flow in a square enclosure at Reynolds numbers up to 10000
in order to verify its accuracy. Results are compared with those in the literature. The
results of this chapter have been published in [123, 124].

e In Chapter 4, the present method is applied in the linear stability analysis of a lid-driven
cavity flow in a square enclosure. A combination of Arnoldi method and extrapolation
to zero mesh size allows us to determine the first critical Reynolds number at which a
Hopf bifurcation takes place. The results of this chapter have been published in [125].

e In Chapter 5, the present method is used to solve the flow field around a confined circular
cylinder in a channel in order to investigate lateral wall proximity effects on stability,
Strouhal number, hydrodynamic forces and wake structure behind the cylinder for a wide
range of blockage ratios (0.1 < A < 0.9) and Reynolds numbers (0 < Re < 280).

Altogether, four distinct regions in the parameter space have been identified, each cor-
responding to a different class of flow: (i) steady symmetric flow, (ii) symmetric vortex
shedding, (iii) steady asymmetric flow and (iv) asymmetric vortex shedding, where a
periodic-in-time flow is classed as symmetric or asymmetric depending on whether the
time-average over one cycle of the lift coefficient is zero or not.

Numerical solutions are computed on meshes having up to 1.8 million degrees of freedom.
Extensive comparisons are made with the results available in the literature. The results
of this chapter have been accepted for publication in [126].
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e In Chapter 6, the present method is used to solve the viscoelastic flow field around a
confined circular cylinder in a channel with blockage ratio A = 0.5. Our particular interest
is the effect of polymer additives on the linear stability of two-dimensional viscous flow
past a confined cylinder and our investigation involves both direct numerical simulation
(DNS) and the solution of a generalized eigenvalue problem arising from the linearized
perturbation equations. The present work represents, as far as we are aware, the first
linear stability analysis for inertial flows of a viscoelastic fluid around a bluff body. The
results of this chapter have been submitted for publication in [127].

Finally, we conclude with a summary of our results and address some outstanding issues.
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Chapter 1

Governing Equations and Numerical
Discretization

In this chapter first we present the Navier-Stokes equations and their discretization using
a novel finite volume method for both steady and time-dependent flows. Then we present
the extension of the present method to viscoelastic fluids using the modified FENE Chilcott-
Rallison model. The method described in Section 1.1 will be used in Chapters 3, 4 and 5 while
the method for viscoelastic fluids described in Section 1.2 will be used in Chapter 6.

1.1 The Navier-Stokes Equations

The incompressible unsteady Navier-Stokes equations may be written in dimensionless form
over some domain € C R? as

V-u = 0, (1.1)

ou 1
M i (u-Viu=-Vp+ —
+ (u-V)u p+R6

2 1.2
o V'u, (12)

where, in the usual notation, u = (u,v) denotes the velocity field, p the pressure and Re is a
Reynolds number.

Suppose now that {2 may be partitioned into quadrilateral finite volumes 2; ; with (4, j) in
some finite subset of Z2. Let n denote an outward pointing normal vector to the boundary
09, j of ; ;. Then integrating (1.1) over one such finite volume €2; ; we get, on application of

the divergence theorem, that
% n-uds=0. (1.3)

Let us take the vector product of (1.2) with n and integrate around the boundary 0€; ; of €; ;
to get

1
fimi,jnx [g—ltl+(u-V)u +Vp — §V2u ds = 0. (1.4)
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Figure 1.1: A four-node quadrilateral finite volume element €2;;

Using the following mathematical relations

2

(u-V)u:V(|u2|)+(V><u)><u, (1.5)
Vu=V(V-u)+Vx(Vxu)=Vx(Vxu), (1.6)

and since the closed line integral of the gradient terms is zero:

|u f?
nxV|p+——|ds=0, (1.7)
0%, 2

Eqn. (1.4) may be rewritten as

f nx{a—qu(qu)xujLiVx(qu)] ds = 0. (1.8)
o ot Re

Note that no pressure term appears in (1.3) and (1.8). In fact, (1.8) is equal to the finite volume
integral of the vorticity transport equation. However, here it is expressed solely in terms of the
velocity components and therefore any difficulties associated with vorticity boundary conditions
are obviated.

In this work we will solve (1.3) and (1.8) for the velocity components in coupled form by
using a direct solver. For the sake of simplicity (and only for this reason) our exposé shall be
limited to rectangular control volumes with sides parallel to the Cartesian axes Oz and Oy,
and €, ; shall denote the cell having lower left-hand vertex labelled (i, ), as shown in Fig. 1.1.
The velocity unknowns u?; = (uf;,v;) at the nth time step or Newton iterate are located at
cell vertices and physical points are denoted (z; j,y; ;) in an obvious way.
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1.1.1 Discretization of the time-dependent Navier-Stokes equations

The continuity equation (1.3) is enforced at time level ¢ = (n 4+ 1)At. To evaluate the integral
over the boundary of €; ;, we use the mid-point rule on each of the four faces of €; ;, viz.

ot n+l oL n+1
Viy1,j+1 1 Vi Vit1,j T Y,
j{ n-u"ttds = ] 5 S (®ig1 1 — Tigr1) — 2 5 " (Tiy15 — Tiy)
a0 ;
n+l n+l n+1 n+1
Uiy g1+ U U1+ Ui
+ 5 Wivrger = Yirrg) = =5 Wigr1 = Yiy)-
(1.9)

For the time-dependent problem we discretize the integrand in (1.8) with both the Crank-
Nicolson (x = 0.5) and Euler implicit (x = 1) methods which are second-order and first-order
accurate in time accordingly:

un+1 —u”
% n x [7 +kE" + (1 - k)E"| ds =0, (1.10)
50 At
i,
where E” in (1.10) is defined by

1
E" = (E],E})) =w" xu" +R—V><w (1.11)

e

The line integral in (1.10) is evaluated using the mid-point rule on each of the cell faces, this
yielding

(Uﬁil,jﬂ — V141) (”?J:rll,j — Vit1y) 1 1 — K)E™
(yi—l-l,j-l—l - ?Ji+1,j) N + N + KLy J+1,54+1/2 + ( K“) 2,i+1,5+1/2
(Unﬁl 1 Ui '+1) (UW‘FL - Un'+1) ]
—(Tit1,j41 — Tijt1) [ — 2At I 2At - En2+1/2 it =B B0
(i = vig) | i — o) '
—(Yijj+1 = Yij) [ YV P o S REY Ty (L= R)ES,

n+1 (un-i—l o n )

(uif1,; — wita;) ig
+(Tit1; — Tig) [ ]2At —= + ]2At E{l;:}l/Qj +(1 - "{)Eﬁi-l—l/Q,j = 0.

(1.12)

The flux vector components ' ;11/2; and Ey; j11/2 appearing in (1.12) are computed as follows:

Brivigzg = =7 Wig + Vir1 ) (Wir1 /24172 + Wiv1/2,j-1/2)
1 Wir1a41/2 — Wit1/2,5-1/2 (1.13)
Re yit1/2, 54172 — Yit1/2,5-1/2 ’

1
Esijyi/2 = Z(Ui,j + Ui 1) (Wit1/2,541/2 + Wiz1/2,j41/2)

L Winigageiye — Wicijag4)2 (1.14)
Re Tit1/2,5+1/2 — Ti—1/2,j+1/2
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The non-linearities in Eiﬁl/&j and E;‘;:;H/Q are treated by taking the velocity components
(u,v) from the previous time step. To handle the vorticity terms in (1.13) and (1.14) a vorticity

value at the centre of the (7, j)th cell Q, ; is calculated as

1
Wit1/2,j+1/2 = m ]{99 n x uds, (1.15)
D ]

where the line integral on the right-hand side of (1.15) is evaluated using the mid-point rule
on each of the cell faces, as before.

1.1.2 Discretization of the steady Navier-Stokes equations

The same finite volumes described in Section 1.1.1 are used in the discretization of the steady
problem. Let a superscript n now denote an iteration count. The steady form of (1.3) and
(1.8) is solved using Newton’s method: substituting u = u"*! into (1.3) and (1.8) where

u"t! = u” + ju™t, (1.16)

and neglecting second-order terms we get

% n-ou"t ds = —% n-u" ds, (1.17)
3Qi,j 3Qi,j

and

% n x [6(.0”“ x u” +w"” x su"t! + iV X (5w”+1] ds = —% nxE"ds. (1.18)
9 Re 0Q;
(1.17) and (1.18) are discretized in a similar manner to Eqns. (1.9) and (1.10) and may be
solved in coupled form using a direct solver. The new values of the velocity components at the
(n + 1)th iteration are calculated as follows:

't =uf; +oul /o, (1.19)
where « is an under-relaxation parameter chosen in order to ensure convergence.

For both the steady and unsteady algorithms described in the previous two sections, mass
conservation (Eqns. (1.9) and (1.17)) is applied in each finite volume. The vorticity transport
equation (Eqns. (1.10) and (1.18)) is applied in each finite volume except those next to the
walls; vorticity creation thus being permitted within these latter elements in order to satisfy the
no-slip boundary conditions. The resulting algebraic systems of equations for the cell vertex
values of u"™! or du"*! are block quad-diagonal and may be solved at each step (time step or
Newton iterate) by using a direct solver.

1.2 Viscoelastic Constitutive Equations

The constitutive model to be used in our analysis and simulations is the so-called modified
FENE Chilcott-Rallison (MCR) model, originally used by Coates et al. [31] in 1992 and is a
simplified version of the original constant viscosity FENE model introduced by Chilcott and
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Rallison [30] some four years previously. The Kramers expression for the elastic extra-stress 7
is given by

T=—-nkTI+nHf(Q)(QQ), (1.20)
where, in the usual notation, n denotes a polymer number density, k£ is Boltzmann’s constant,

T is the absolute temperature, H is a spring constant and Q is the dumbbell connector vector.
f(Q) is the spring law coefficient given by

1
- <Q2/Qmam2> ,

and we introduce the dimensionless orientation tensor

Q)=+

- 2(QQ),
0

where for d—dimensional configuration space

(@)
d/z

l():

denotes the average length of one component of the connector vector under equilibrium condi-
tions. Now, for the full FENE CR model [30] A satisfies the evolution equation

A= @ (I-A), (1.21)
where ) is a relaxation time. Therefore, taking the upper convected derivative of the Kramers

expression (1.20) and using Eqn. (1.21) we get

¥ =it TP 1qq) 1 i £10) (QQ),
kT + { T+ nkTI} nHFf(Q) {I B _<QQ>}
— nkTh+ 2 [ T "kTI] n})\”gf(Q)?I G T —— (1.22)
We now choose
T =7 +nkT (1— l%f(@)) |
— nHEF(Q) (%(Q@ - I) =" Q) (A-T), (1.23)

where 7, = nHAI? is the polymeric viscosity. Then it may be seen that 7' satisfies

! A V,_ 3 1.24
T+m7—77p% (1.24)
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where we have assumed (the simplification brought to bear in the MCR model) that Df/Dt
is negligible. By performing a standard non-dimensionalization (starred variables) Eqn. (1.24)
may be written in non-dimensional form as

We Vv
Tt oy Te= (1= ). (1.25)
f/(@Q)
where We is a Weissenberg number and [ is the solvent to total viscosity ratio. Supposing
that the problem is defined in d configuration space dimensions, we may easily show by taking
the trace of the Kramers expression (1.20) that

H{(0O? ! b+ Xtre!
f(Q) — n < maz> +irT = Ip — b , (126)
nH{Q?,,,) — dnHI§ b—d b—trA
where b = (Q2,,,)/12, so that f, in (1.25) is given by
b+ X trr!
fo=— 4B * (1.27)

b—d

We now drop the asterisks on dimensionless variables and write the non-dimensionalized mo-
mentum and continuity equations for the incompressible MCR fluid as

V-u=0, (1.28)
ou . B o 1 '
E+(U'V)u—_vp+§vu+EV'T. (1.29)

As before, let n denote a unit outward pointing normal vector to the boundary 0€; ; of a finite
volume €; ;. Then integration of (1.28) and (1.25) over €2; ; and taking the vector product of
(1.29) with n, followed by integration around 0€2; ; leads to

?{ n-uds=0, (1.30)
89,‘,]'

1
fgﬁunx [aa—ltle(qu)xu+%Vx(qu)—§V-r’] ds =0, (1.31)

We [OoT'
'dQ) + / [ +uVr — vVul+ — T’Vu] ds)
IRk

,] ,j

=(1-7) fgﬂl | [un + (un)T]ds. (1.32)

A fully-implicit finite volume method based on a velocity-stress formulation is used for the
discretization of (1.30), (1.31) and (1.32). Velocity nodes appear at cell vertices and the elastic
stress nodes at cell centres, as shown schematically in Fig. 1.2. Discretization of the integrals
appearing in (1.30) and (1.31) is effected by using the mid-point rule on cell faces in a similar
manner to the discretization of Newtonian flow in Section 1.1. In the interests of brevity they
will not be reproduced here. However, we present the discretization of the constitutive equation
(1.32).
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" .
ij+1 d i+1,j+1 d
® ®
T

\ u \
u \ u

® o —

I i+1,]

Q'y]

Figure 1.2: A four-node quadilateral finite volume €2;; showing positioning of velocity and
elastic stress nodes.

1.2.1 Discretization of time-dependent constitutive equations

For time-dependent calculations let us denote the evaluation of a velocity or stress variable at
time step nAt with a subscript n. The non-linearities in Eqn. (1.32) are treated taking f(Q)
from the previous time step at the cell centre and the velocity gradients in multiplication with
7' are evaluated at the cell centre from the previous time step. In Chapter 6 we will use both
the Euler-implicit (k = 1) and Crank-Nicolson (x = 0.5) for discretization of the partial time
derivative:

/Q KTy + (1 — k)ThdQ + fI(/Z;)n ]{99 (n-uy,) [k + (1 — k)7 ]ds

b [ [P T (G her 0 7] ferl (- (T a0

i,J i,J

— k(11— B) 7{39 (g + s + (1= R)(1 - 6) ]ﬁ yn + (u,n)"]ds.

Qi

(1.33)

For the calculation of the velocity gradients in a cell centre in (1.33), first we compute the
velocity gradients at vertices using second-order accurate finite differences. Then we compute
the average cell-centre values from the surrounding cell-vertex values. One may compute these
velocity gradients in a similar manner to the calculation of vorticity in (1.15). However, this
leads to odd-even oscillations even though it uses a shorter stencil. Integration of (1.33) leads
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to

/ /
WeAreald;;  Tnyiit1/2,541/2 ~ Tnjit1/2,j41/2

AreaQ); [k, + (1 — K)T0]iv1/2,541/2 + 7

(Q)n,i+1/2,j+1/2 At
WeAreal; ;
_f(Q) . ‘ J [(Vun)T[K;T:LH + (1= k)T )+ [Tl + (1 — K)T;](Vun)]
n,i+1/2,54+1/2 i11/2.11/2
4
+ e (n- un)e["’m-:bﬂ + (1 - H)T:L]eASe

F(@)njit1/2,541/2 =
4

Z W, 0+ (u,n) ] AS, + (1 —k)(1— B) Z [u,n + (u,n)"],AS,,

e=1

(1.34)

where summation over e in (1.34) represents the evaluation of the surface integral over the
four-node quadrilateral element boundary 0€2;; and AS, is an edge length. The face values of
dvy, appearing in the line integrals around the boundary d€;; are evaluated using the mid-point
rule. Face values of 7/, are evaluated using QUICK [87] in order to maintain stability. The
whole system of algebraic equations may be solved in coupled form using a direct solver.

1.2.2 Discretization of steady constitutive equations

For the discretization of the MCR constitutive equation (1.32) we begin by writing 7/, ., =
T/ + 7! and v,y = u, +Jdu, for updates é7/, and du, to 7/, and u,, respectively. Denoting
for convenience the ratio We/(1 — /) by € we then get

We(b— d)
"o dQ — w4 ou,) ! w4 0w, or! 1dQ
/Q T, +01, /Qi’jb+9(tr7'§b+tr61';l)[v(u +ou,) T, + V(u, + ou,) o7} ]

i,J

We(b— d)
i ! / Q
/ B BT, T oy oY (et 0un) 07 V{u, du,)fd

We(b - d)
. +ou,) - ! ST )d$)
+ /Qw_ b+ 0(trr! + tror!) (W, +ou,) - (Vr, + Vo)

=(1-7) f;g. | [(un +o0u,)n + ((u, + 5un)n)T] ds.
) (1.35)

Assuming §7!, and du,, to be sufficiently small that quadratic and higher powers of these terms
may be neglected we may write

Web—d) We(b - d)
b+ 0(trrl, +trétl) ¢ (b +trr) (1 | T, )

5 —I—trT’

_ We(b—d) [1_ tror!, ]

~ 1.36
(b+ Otrr!) (% + tr‘r’n) ( )
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Inserting Eqn. (1.36) into (1.35), neglecting higher order terms and using equation (1.25) leads

to

b—d

/ ol dQ) — We(b—d) [Vu,é1,, + Véu, 7, + 67, Vu, + 7,Véu. ] dQ
2, 0,; b+otrr],

+/ We(b—d) [u, - Vér, + ou, - V] dQ
a,; b+ 0trr],

0
— —trér’ nt+V T 711 dQ
/Qi,]- gy T— roT [Vu + Vu, Tn]

—(1-=7) fian- | [6u,n + (du,n)"] ds =r,. (1.37)

where r,, denotes the residual at nth iteration

r, = —/ T dQ + We(b—d) [Vul 7, +7,Vu, —u- V7] d
Q ., b+otr],

2y

+(1-p) ?{39, | [u,n + (u,n)"] ds. (1.38)

Eqn. (1.38) may be similarly integrated over a finite volume €;; and the nonlinearities are
treated as in Section 1.2.1:

We(b - d)Arean

b+ GtTT;l,Z.H/Q,jH/Z

Areal, ;61! — Vu,07" + Vou,r. +é7. Vul + 7 Véul
5] n n n n n n n

i+1/2,j4+1/2

4

We(b—d
6(, ) [(n-u,)dr), + (n-du,)r,].AS.
b4 0trT, i1y jiape
fAreal); ; T
bt ot tT5T;¢,i+1/2,j+1/2 [Vun + Vu, — T;J i+1/2,41/2

nyi+1/2,5+1/2
4

—(1-5) Z [5unn + (5unn)T]eASe = In,it1/2,j+1/2-
e=1
(1.39)
The updated value of 7' is computed from

T =T, + 07/ (1.40)

where « is an under-relaxation parameter. In all our calculations we use the same o parameter
for both u and 7.
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Chapter 2

Linear Stability Analysis

In this chapter we recall the governing equations given in Chapter 1 and introduce infinitesimal
disturbances to the steady base flow. Then we describe the discretization of the linear pertur-
bation equations and how to compute the leading eigenvalues of the GEVP using the Arnoldi
method. The linear stability analysis presented in this chapter will be used in Chapters 4, 5
and 6.

2.1 Linear Perturbation Equations for the Navier-Stokes
Equations

In Chapter 1 we showed that integration of (1.1) over a finite volume €2; ; and multiplication of
Eqn. (1.2) with a vector normal to the boundary 0€2; ; of €, ;, followed by integration around

8Qm~ led to
% n-uds=0, (2.1)
8Qi,]‘

1
j{ nx{a—u+(qu)xu+—Vx(qu) ds = 0. (2.2)
;4 Re

and

ot

respectively. To study the linear stability of the steady base flow velocity u = U, computed
using Newton’s method as described in Chapter 1, we consider the behavior with time of the
infinitesimally perturbed flow

u = U(x) + v(x) exp(ot). (2.3)

Inserting (2.3) into (2.1) and (2.2), assuming U to be an exact solution to the steady Navier-
Stokes equations and neglecting quadratic terms in v we get

jqf n-¥ds—0, (2.4)
8Qi,j

and
1

j[ nx{(VxU)x?ﬂL(VxG)xU—i—
09 Re

VX(VX%’)} ds:—ajiﬂ n xvds. (2.5)

[
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The evaluation of the line integrals appearing in (2.4) and (2.5) follows very closely the ideas
employed for the solution of the steady equations of linear momentum and conservation of
mass described in Section 1.1.2: the line integrals are computed using the mid-point rule and
in (2.5) a perturbation vorticity vector w = V x v is defined at the centre of each finite volume.
Face values of vorticity are then determined from simple averages of the cell-centred values in
the cells either side of the face in question. The end result of following this procedure for the
evaluation of (2.4) and (2.5) is a discrete algebraic system for the nodal values of v of the form

Ax = o Mx, (2.6)

A being almost the same (by construction) as the coefficient matrix arising from the discretiza-
tion of the continuity equation and momentum equation, described in Section 1.1.2, the sole
difference being that nodal values of u™ (the nth Newton iterative value of velocity) are now
replaced with the corresponding nodal values of U. The matrix M in (2.6) is block bi-diagonal.

2.2 Linear Perturbation Equations for the Modified FENE
Chilcott-Rallison Fluid

For the linear stability of two-dimensional flow of the MCR fluid (see equations (1.30), (1.31)
and (1.32)) we consider the perturbed flow

u(x,t) = U(x) + v(x) exp(ot), (2.7)

7'(x,t) = T(x) + 7(x) exp(ot), (2.8)

where U(x) and T(x) are the (numerically-determined) steady base flow velocity and elastic
stress fields at given values of Re and We and v and 7 are infinitesimally small perturbations.
Inserting (2.7) and (2.8) into the non-dimensional constitutive equation for the MCR model

/Q(T+?'exp(at))dg+/Q We(b — d)

b+ 6(trT + trT exp(ot))
We(h— d) ) )
+/Q b+ 0(trT + trT exp(ot)) (U +Vexp(ot)) - V(T + T exp(at))|d2

[oT exp(ot)]d

We(b - d) ~ o
_ /Q DO T 1 i exp(o) [V(U +vexp(ot)) (T+ 7T exp(at))] d©)

We(b — d) _ B
- /Q DT O T + irFexp(of)) (LT T ep(et) V(U + Vexp(ot))]dd

=(1-7) jéﬂ [(U + vexp(ot))n + (U + vexp(at))n)"] ds. (2.9)

We note, following reasoning similar to that which led to (1.36), that
We(b — d) B We(b — d)

b+ 0(trT + trrexp(ot b trT exp(ot)
( p(o1) g (5 + 1) 1+ Feie)

_ We(b—d)

_ trTexp(ot)
~(b+0trT)

Trom | (2.10)
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and inserting this into (2.9), further linearizing and exploiting the fact that T is a solution to
the steady constitutive equation with velocity field U
We( ~ o~
/ FAQ + / il QtrT )07 + U - V7 + 7 VT)IQ

— % [VU'7 + VVI'T + TVV 4+ 7VU] dQ
Q

OWe(b—d), .
- — =t U.-VT-VU' T -TVV|dQ2
/Q(b—l—ﬁtrT)Z 7| )

=(1-5) }éﬂ [Vn + (vn)"] ds. (2.11)

Since T is a solution to the steady constitutive equation we have

We(b—d) v

T+ — 2 7=
+b+9(trT)T (

— B)(VU + vU"), (2.12)
and therefore we may rewrite the last term on the left-hand side of (2.11) to get the equation

We(b ~ o~
/ TdQ + / QtrT UT+U-VT+V-VT]dQ

— % [VU'F + VV''T + TVV + 7VU] dQ
Q
Otrr

=(1-p) fm [vn+ (vn)"] ds. (2.13)

Discretizing the dimensionless perturbation equation (2.13) and those corresponding to the
momentum-continuity pair leads to an algebraic system of equations

Aw = cMw, (2.14)

for the vector w of nodal values of the perturbation velocity v and the perturbation stress 7.
The coefficient matrix A in (2.14) is almost identical (by construction) to that which arises in
the computations of the steady base flow using Newton’s method. The matrices A and M in
(2.14) are block penta-diagonal and block bi-diagonal, respectively.

2.3 The Arnoldi Method

The Arnoldi method is an orthogonal projection method onto a Krylov subspace. It can be
viewed as a Modified Gram-Schmidt method for building an orthogonal basis of the Krylov
subspace. The GEVP (2.6) and (2.14) is solved by applying the Arnoldi method [6, 121] to
the equivalent system

Ox = px, (2.15)

where C = (A — MM) M and g = (0 — A\)~L. A pseudo-code form of the Arnoldi method
for a Krylov space of dimension m is given in Table 2.1 where h; ; is the (7, j)th element of
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Table 2.1: Pseudo-code for the Arnoldi method. h;; is the (i, j)th element of an upper Hes-
senberg matrix H. The vectors x1,Xs,..., X, form an orthonormal system by construction
(modified Gram-Schmidt algorithm).

— X
[ESIP

for j=1,2,...,m do
w = A_IMX]'
for i1 =1,2,...,75do
hZ,]
W =W — hi’in
end for
By = wll
Xjp1 = W/hji
end for

X1

=W X;

an upper Hessenberg matrix H and the vectors x;, X, ..., X,, form an orthonormal system by
construction called Arnoldi vectors. Application of the Arnoldi method to Eq. (2.15) results in
the construction of an mxm upper Hessenberg matrix whose eigenvalues are approximations
to a subset of the eigenvalues p of C (often called Ritz values). From the properties of the
Arnoldi method and in the absence of a shift A, best resolution of the o—spectrum is expected
to be near the origin [105]. In fact although - as will be seen in the numerical results in
Section 5.4.1- the imaginary axis is first crossed by a complex conjugate pair of eigenvalues or
a real eigenvalue, these are supposed to be adequately approximated by the reciprocals fi~! of
the corresponding Ritz values. Incorporating a complex shift [105], although desirable from
the point of view of accuracy, would necessitate working in complex arithmetic and increase
significantly the computational cost. The Ritz values of H are computed by using the Intel
Math Kernel Library which uses a multishift form of the upper Hessenberg Q)R algorithm. A
Ritz eigenvector associated with the eigenvalue ;™ is defined by

um =V ym) (2.16)

where V,, is the matrix with column vectors xi,Xs,...,X,, and y™ is an eigenvector of the
upper Hessenberg matrix H.

Solutions to all the discrete algebraic equations that arise in the steady, unsteady or eigen-
value problems of this thesis have been obtained by implementing the MU ltifrontal M assively
Parallel Solver (MUMPS') of Amestoy et al. |3, 4] on parallel machines or using block Gaus-
sian elimination on sequential machines. The multifrontal method used is a direct method
based on LU decomposition for the solution of sparse systems of linear equations with opti-
mum fill in. The algorithms employed by MUMPS use a dynamic distributed task scheduling
technique that permits numerical pivoting and the transfer of computational tasks to lightly
loaded processors. The use of the MUMPS library allows us to store very large sparse systems
in factorized form which leads to a very efficient eigenvalue solver since at each Arnoldi itera-
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tion we need to solve the same system of equations (Aw = b) with different right-hand sides.
On sequential machines considerable computational time has been saved with extensive use of
the Intel Math Kernel Library for block matrix-matrix and matrix-vector operations.
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Chapter 3

Lid-Driven Cavity Flow at High Reynolds
Numbers

3.1 Introduction

The lid-driven cavity flow of a Newtonian fluid has occupied the attention of the scientific com-
putational community since the pioneering paper of Burggraf [21]| back in 1966. Over the years
the problem has spawned a huge number of papers; mainly concerned with the development of
computational algorithms where, in a continuous drive to demonstrate the superior accuracy
and stability properties of their latest numerical method, authors have applied it to one of the
problem’s two-dimensional rectangular or three-dimensional cubic forms.

Unsurprisingly, the majority of papers dealing with the numerical solution to the lid-driven
cavity problem have been concerned with the two-dimensional problem, and accordingly and for
the sake of brevity we will confine our literature review to computations in rectangles. In earlier
papers the finite difference method was prominent and was adopted, for example, by Gatski
et al. [54] (who used a velocity-vorticity formulation), Ghia et al. [57] in conjunction with a
multigrid approach, Gustafson and Halasi [63, 64] who preferred the MAC method, and by Soh
and Goodrich [136] and Goodrich et al. [58]. However, recent applications of finite difference
schemes to the two-dimensional problem may sometimes be found in the literature: Kupferman
[84], for example, used finite difference methods with a pure stream function formulation
that bypassed the need for vorticity boundary conditions. More conventionally, Guo [62]
used a staggered MAC-like second-order numerical scheme, applicable to either two or three-
dimensional flows, for solving for flow in a two-dimensional square driven cavity at Reynolds
numbers up to 3200. Papers for the two-dimensional problem incorporating finite element
methods (see, for example [1, 80, 91|), finite volume methods in various guises [25, 27, 155,
boundary element methods [8, 61, 60|, a radial basis function network method [92] and the
lattice Boltzmann method [70], have also appeared in the recent literature.

The presence of corner singularities in both the two-dimensional and three-dimensional
geometries is potentially hazardous for high-order methods of the spectral or p-finite element
type, due to the Gibbs phenomenon. Particularly dangerous are the singularities at the points
or lines of intersection between the moving lid and stationary walls since here the velocity field
is discontinuous. Various high-order methods have been employed with success despite the dif-
ficulties associated with accuracy and control of oscillations near the corner/edge singularities,
however. One manner in which these difficulties have been overcome is to change the problem:

21
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the tangential velocity on the moving lid is replaced by a polynomial that vanishes (together
with at least its first derivatives) on the edges or corners where the lid and stationary walls
meet. This is the so-called reqularized driven cavity problem, assumed to have qualitatively the
same dynamical properties as the driven cavity flow, and solved to good effect by, for example,
Shen [132], Leriche and Deville [88] and Botella [16]. A piecewise linear approximation to the
constant tangential lid velocity, made to vanish at the lid-wall singularities was used by Barragy
and Carey [11] in their p-finite element approach to the two-dimensional lid-driven problem.
No modification was made to the original problem by Henderson [69] in his hp-adaptive spec-
tral element method: his calculations sought to resolve the singularity directly through mesh
refinement near the corners. Arguably, the most satisfactory solution to the lid-driven problem
is to subtract off the leading part of the known asymptotic form of the Navier-Stokes singu-
larity, leaving a more regular problem to be tackled, say, by a Chebyshev collocation method.
This is what was done by Botella and Peyret [17, 18]. Of course, corner singularities between
a stationary and a moving wall of the type described by the asymptotic expansions of Moffatt
[101] and Botella and Peyret [18], amongst others, are physically unrealizable. The infinite
acceleration of fluid particles implied by the change of boundary conditions requires an infinite
stress at the corner. This observation was made by G.I. Taylor in 1962 in the context of the
now famous “scraper problem” [141]. What may be envisaged happening in reality for the lid-
driven cavity problem is that fluid leaves or enters the cavity through “leaks” along the lines
of contact between the vertical walls and the moving lid. The unregularized lid-driven cavity
problem is thus a mathematical idealization of the physical problem (and all the more so when
one confines the flow to two dimensions!) However, Hansen and Kelmanson [66] have shown
that as the leak heights tend to zero excellent agreement between the leaky and unregularized
problems may be obtained. In the present work we insert leaks across the heights of the finite
volumes in the corners between the lid and the vertical walls for the two-dimensional problem.
Although this regularizes the problem somewhat, the leak heights are only 5.7656 x 10~ for
the finest mesh used in our computations in the unit square.

There are several difficulties with many of the approaches cited in the previous paragraphs.
The primitive variable form of the Navier-Stokes equations is difficult to solve due to lack of
an independent equation for the pressure term. Velocity-vorticity formulations of the Navier-
Stokes equations have advantages over the velocity-pressure-based equations in that the pres-
sure term is eliminated from the equations, and the well-known difficulty associated with wall
pressure boundary conditions is avoided. However, a potential difficulty with this approach is
that the vorticity value on the wall is not generally known a priori. Moreover, with the ma-
jority of three-dimensional velocity-vorticity methods it is necessary to solve three transport
equations for the vorticity components and three Poisson equations for the velocity components
[36]. For a discussion of the issue of vorticity boundary conditions, as well as a description of a
new velocity-vorticity method requiring no vorticity boundary conditions and the determina-
tion of only N primary variables for N-dimensional problems (N = 2, 3), the reader is referred
to [36]. For earlier general reviews of the mathematical formulation of the incompressible
Navier-Stokes equations we refer to [52, 59| where a large number of references are mentioned.

The finite volume method proposed in this thesis involves multiplication of the primitive
variable-based momentum equation with the unit vector normal to a control volume boundary
as described in Section 1.1. Integration thereafter around the boundary of the same control
volume thus eliminates the pressure term from the governing equations. Therefore any diffi-
culty associated with the pressure term is avoided in a similar manner to that achieved by the
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velocity-vorticity formulation. Our method possesses two significant advantages over the ma-
jority of velocity-vorticity methods, however. First, unlike most velocity-vorticity formulations,
no vorticity boundary conditions are required on the wall, since the resulting equations are ex-
pressed solely in terms of the velocity components. Only no-slip velocity boundary conditions
are required. Secondly, the number of primary variables that need to be determined equals
the number of space dimensions. The new velocity-vorticity formulation of Davies and Car-
penter [36] referred to above also possesses these advantages over traditional velocity-vorticity
methods. However, the method of Davies and Carpenter has been largely presented in the
context of the disturbance equations in boundary layer flow and their method requires that
the primary variables be constrained to satisfy certain limiting conditions. The method used
in the present thesis suffers from neither of these limitations and since the primary variables
are just the components of velocity, no determination of secondary variables in an iterative or
time-marching scheme is required. The implementation in this respect is thus straightforward.

In addition to requiring no vorticity or pressure boundary conditions and using only the
velocity components as primary variables, our finite volume method is fully implicit. Implicit
finite volume methods have enjoyed widespread use in the literature, due in part, no doubt,
to their attractive stability properties and the utility of finite volume methods for problems
defined in complex geometries. Confining our attention to just the past five years, for example,
implicit finite volume methods have been employed to good effect for computing the evolution
of surfactant concentration in investigations of the effects of surfactants on the rheological
properties of emulsions [118] and on the shape of fluid interfaces in Stokes flow [117]. They
have also been used in the simulation of three-dimensional mould filling problems in injection
moulding [28]. Three-dimensional time-dependent viscoelastic flows have been tackled with
implicit finite volume methods [156, 157], and they have seen service in the numerical modelling
of turbulence [97, 130]. Some attention in the literature has been given to the development and
implementation of Krylov subspace methods for the resolution of the algebraic systems arising
from a discretization using implicit finite volume methods of the convection-diffusion-reaction
partial differential equations that describe the partially ionized flow in the boundary layer of a
tokamak fusion reactor [130]. Comparisons have also been made of different Krylov subspace
methods (GMRES, BiCGStab etc.) for the solution of the algebraic systems of equations arising
from an implicit finite volume approximation of the Navier-Stokes equations on unstructured
grids [96]. For an analysis of cell-vertex finite volume methods for the cases of pure convection
and convection-diffusion problems, the reader is referred to the papers of Morton and Stynes
[103] and Morton et al. [104].

This chapter of the thesis is dedicated to a discussion of the numerical results obtained
for the two-dimensional lid-driven cavity problem at Reynolds numbers up to 10000. Com-
putations are performed on three meshes of increasing mesh density; with the finest of which
are associated 132,098 degrees of freedom. The accuracy of the results at various Reynolds
numbers in the literature for the two-dimensional driven cavity problem is usually assessed by
performing a comparison of the streamwise and spanwise velocity profiles along the vertical
and horizontal lines of symmetry with those of other authors, or by a quantitative comparison
of the stream function value at the centre of the primary vortex, for example. Similar compar-
isons may be found in the present chapter for the steady problem. Additionally, we consider
convergence of the RMS value of the update vector for the velocity field in our Newton method,
and demonstrate that this tends to zero in magnitude exponentially fast. Smooth solutions, in
good (sometimes even excellent) agreement with those in the literature, are presented.
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Figure 3.1: Lid-driven cavity boundary conditions with the basic features of cavity flow

3.2 Numerical Results

In order to verify its accuracy at high Reynolds numbers and compute the base flow required for
a linear stability analysis, the present fully-implicit velocity formulation, described in Section
1.1, is applied to lid-driven cavity flow in a square [0, 1] x [0, 1], as shown in Fig. 3.1. The
singularities situated between the lid and the cavity walls (at points A and B of Fig. 3.1), are
handled by introducing “leaks” over the height of the upper corner finite volumes. In fact, this
is the most suitable way of applying the physical boundary conditions. The mass flow between
the lid and the cavity wall weakens the primary vortex strength within the cavity, depending
on the size of the leaks. As the size of these leaks approaches zero, however, the solutions
converge towards the solutions obtained with the physically unrealizable boundary conditions
[66].

In the present work three different grids are employed: coarse (M1: 129 x 129 grid points),
medium (M2: 193 x 193 grid points) and fine (M3: 257 x 257 grid points), in order to investigate
grid dependency of the solution. These are shown in Fig. 3.2. The smallest finite volume cells
are those situated at corners A and B and have heights 1.1665 x 10~*, 7.7170 x 10~® and
5.7656 x 1075 for the coarse, medium and fine grids, respectively. As mentioned above, these
cell sizes correspond to the size of the leaks between the lid and the vertical cavity walls. As
may be seen seen in Fig. 3.2, the highest density of grid points is to be found near the lid and
walls. This is done in order to make the size of the leaks as small as possible and to resolve
adequately the very thin boundary layers on the lid and cavity walls. As will be seen from the
vorticity plots (see Fig. 3.4) strong vorticity gradients occur on the lid and the cavity walls.

3.2.1 The lid-driven cavity problem: steady flow

The first numerical results correspond to the solution of the steady Navier-Stokes equations
on the finest grid (M3) at Reynolds numbers ranging from 0 to 10000, where the Reynolds
number for this flow is based on the lid velocity and cavity height. For the solution of the
steady Navier-Stokes equations, Newton’s method is used, as explained in Section 2.2. The
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Figure 3.2: The three computational meshes (with detail of the top right-hand corner) used for
the calculations presented in this chapter. Top to bottom: Mesh M1 (129 x 129 grid points),
Mesh M2 (193 x 193 grid points), Mesh M3 (257 x 257 grid points)
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Figure 3.3: Streamlines computed with mesh M3. Reynolds numbers from 0 to 10000. The
stream function equals 0 on the cavity boundary and the contour levels shown for each plot
are -0.11, -0.09, -0.07, -0.05, -0.03, -0.01, -0.001, -0.0001, -0.00001, 0.0, 0.00001, 0.0001, 0.001
and 0.01



CHAPTER 3. Lid-Driven Cavity Flow at High Reynolds Numbers 27

Re=0 Re=100

- I/
)
=T
W;V h

ﬁ =T I

Figure 3.4: Contours of vorticity computed with mesh M3. Reynolds numbers from 0 to 10000.
Contour levels shown for each plot are -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0
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Figure 3.5: Profiles of u along the line z = 0.5 computed with mesh M3. Reynolds numbers
from 0 to 10000. Also shown are the results (CJ) of Ghia et al. [57]
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Figure 3.6: Profiles of v along the line y = 0.5 computed with mesh M3. Reynolds numbers
from 0 to 10000. Also shown are the results (CJ) of Ghia et al. [57]
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Table 3.1: Table of vorticity values at the primary vortex centre. Mesh M3.

| Re || vorticity at primary vortex centre |

0 -3.2208
100 -3.1655
400 -2.2950
1000 -2.0664
3200 -1.9593
5000 -1.9392
7500 -1.9275
10000 -1.9231

initial conditions for Newton’s method are calculated from the direct solution of Stokes flow.
Then the flow at Re = 100, 400, 1000, 3200, 5000, 7500 and 10000 is solved using the previous
solution as an initial condition.

The computed streamlines are presented in Fig. 3.3. At Re = 0, the streamlines and
vorticity contours are symmetric about the vertical centreline of the cavity. At the lower
corners upstream and downstream secondary eddies are visible and are equal in size. Although
the analytical solution predicts an infinite number of exponentially decaying eddies at the
corners [101], it is not possible to resolve these eddies with a finite number of grid points.
At a Reynolds number of around 100, the primary vortex moves towards the right-hand wall
and the downstream secondary eddy starts to enlarge in size. At a Reynolds number of 400,
the primary vortex starts to move towards the cavity centre and it continues to move to the
centre even at high Reynolds numbers. Evidence of growth in the upstream secondary eddy
at a Reynolds number of 400 is also now visible. If the Reynolds number is increased further
another secondary eddy emerges on the upper left-hand cavity wall. Further increases in the
Reynolds number makes visible tertiary level vortices. It might be considered surprising that
smooth solutions at these high Reynolds numbers are possible with a central difference scheme.
However, Hafez and Soliman [65], who also used a central difference scheme, presented solutions
of the steady Navier-Stokes equations for the lid-driven cavity problem at Reynolds numbers
up to 30000 obtained using a Newton method combined with a direct solver.

In Fig. 3.4 we note that as the Reynolds number increases the vorticity contours move
away from the cavity centre towards the cavity walls and indicates that very strong vorticity
gradients develop on the lid and the cavity walls (especially the right-hand vertical wall) for
higher Reynolds numbers. In contrast, in the centre of the cavity almost no vorticity gradient
is evident at all. The fluid begins to rotate like a rigid body with a constant angular velocity.
The vorticity values at the centre of the primary vortex - as computed with mesh M3 - are
shown in Table 3.1. As the Reynolds number increases there is a clear trend towards the
theoretical infinite Re value of —1.886 (see Burggraf [21]).

For an assessment of the accuracy of the present results, the velocity components through
the vertical and horizontal centrelines of the cavity are compared with the corresponding
numerical results of Ghia et al. [57] in Figs. 3.5 and 3.6. The comparison shows good
agreement, particularly at Reynolds numbers up to 5000. However, at a Reynolds number
of 10000 the present method (featuring a non-uniform grid) gives slightly higher extremal
values of the velocity components since it is difficult to resolve the very thin boundary layer
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Table 3.2: Table of (a) minimum values of v computed along x = 0.5 and the corresponding
ordinate Y, (b) maximum values of v computed along y = 0.5 and the corresponding abscissa
Tmaz, (€) minimum values of v computed along y = 0.5 and the corresponding abscissa Zin,
(d) minimum values of 1 and the corresponding coordinates Z,,in, Ymin-

| Reference || Umin | Ymin | Umax | Tmax | Umin | Tmin | Ymin | Tmin) Ymin |
Re=0
Present -0.207754 | 0.5376 | 0.186273 | 0.2105 | -0.186273 | 0.7894 | -0.100054 | 0.5000,0.7626
Botella & Peyret [17]. - - - - - - -0.100076 -
Re=100
Present -0.213924 | 0.4598 | 0.180888 | 0.2354 | -0.256603 | 0.8127 | -0.103471 | 0.6189,0.7400
Ghia et al. [57] -0.21090 0.4531 0.17527 0.2344 -0.24533 0.8047 | -0.103423 | 0.5172,0.7344
Botella & Peyret [17]. -0.214042 | 0.4581 | 0.179572 | 0.2370 | -0.253803 | 0.8104 - -
Hou et al. [70 - - - - - - -0.1030 0.6196,0.7373
Bruneau & Jouron [20] -0.2106 0.4531 0.1786 0.2344 -0.2521 0.8125 -0.1026 0.6172,0.7344
Deng et al. [37] -0.21315 - 0.17896 - -0.25339 - - -
Re=400
Present -0.328375 | 0.2815 | 0.304447 | 0.2253 | -0.456316 | 0.8621 | -0.113897 | 0.5536,0.6075
Ghia et al. [57] -0.32726 0.2813 0.30203 0.2266 -0.44993 0.8594 | -0.113909 | 0.5547,0.6055
Hou et al. [70] - - - - - - -0.1121 0.5608,0.6078
Deng et al. [37] -0.32751 - 0.30271 - -0.45274 - - -
Re=1000
Present -0.388103 | 0.1727 | 0.376910 | 0.1573 | -0.528447 | 0.9087 | -0.118800 | 0.5335,0.5639
Ghia et al. [57] -0.38289 0.1719 0.37095 0.1563 -0.51550 0.9063 | -0.117929 | 0.5313,0.5625
Botella & Peyret [17]. -0.388569 | 0.1717 | 0.376944 | 0.1578 | -0.527077 | 0.9092 | -0.118936 | 0.5308,0.5652
Barragy & Carey [11] - - - - - - -0.118930 -
Hou et al. [70] - - - - - - -0.1178 0.5333,0.5647
Bruneau & Jouron [20] -0.3764 0.1602 0.3665 0.1523 -0.5208 0.9102 -0.1163 0.5313,0.5586
Deng et al. [37] -0.38511 - 0.37369 - -0.52280 - - -
Re=3200
Present -0.435402 | 0.0921 | 0.432448 | 0.0972 | -0.569145 | 0.9491 | -0.121628 | 0.5201,0.5376
Ghia et al. [57] -0.41933 0.1016 0.42768 0.0938 -0.54053 0.9453 | -0.120377 | 0.5165,0.5469
Re=5000
Present -0.447309 | 0.0741 | 0.446913 | 0.0799 | -0.576652 | 0.9573 | -0.122050 | 0.5134,0.5376
Ghia et al. [57] -0.43643 0.0703 0.43648 0.0781 -0.55408 0.9531 | -0.118966 | 0.5117,0.5352
Barragy & Carey [11] - - - - - - -0.122219 | 0.5151,0.5359
Hou et al. [70] - - - - - - -0.1214 0.5176,0.5373
Bruneau & Jouron [20] -0.4359 0.0664 0.4259 0.0762 -0.5675 0.9590 -0.1142 0.5156,0.5313
Re=7500
Present -0.456054 | 0.0610 | 0.458048 | 0.0670 | -0.580994 | 0.9649 | -0.122302 | 0.5134,0.5289
Ghia et al. [57] -0.43590 0.0625 0.44030 0.0703 -0.55216 0.9609 | -0.119976 | 0.5117,0.5322
Barragy & Carey [11] - - - - - - -0.122380 | 0.5132,0.5321
Hou et al. [70] - - - - - - -0.1217 0.5176,0.5333
Bruneau & Jouron [20] -0.4379 0.0508 0.4179 0.0625 -0.5640 0.9688 -0.1113 0.5156,0.5234
Re=10000
Present -0.461617 | 0.0549 | 0.465210 | 0.0598 | -0.582351 | 0.9684 | -0.122489 | 0.5134,0.5289
Ghia et al. [57] -0. 42735 | 0.0547 0.43983 0.0625 -0.54302 0.9688 | -0.119731 | 0.5117,0.5333
Barragy & Carey [11] - - - - - - -0.122393 | 0.5113,0.5302
Bruneau & Jouron [20] -0.4373 0.0430 0.4141 0.0547 -0.5610 0.9727 -0.1053 0.5156,0.5234




CHAPTER 3. Lid-Driven Cavity Flow at High Reynolds Numbers

32

Table 3.3: Variation in location of the secondary eddies with Re number. Mesh M3.

Downstream secondary eddy Upstream secondary eddy Upper secondary eddy
Re Lmaz) Ymaz | Ymae Lmaz; Ymaz | Vmaz Tmaz) Ymaz Ymae
0 0.9630,0.0378 | 0.222065E-05 || 0.0369,0.0378 | 0.222065E-05 - -
100 0.9424,0.0610 | 0.126584E-04 || 0.0332,0.0352 | 0.179303E-05 - -
400 0.8835,0.1203 | 0.640440E-03 || 0.0508,0.0461 | 0.142720E-04 - -
1000 || 0.8658,0.1119 | 0.172397E-02 || 0.0826,0.0776 | 0.233014E-03 - -
3200 || 0.8259,0.0847 | 0.282335E-02 || 0.0799,0.1203 | 0.111207E-02 || 0.0530,0.8984 | 0.705801E-03
5000 || 0.8081,0.0741 | 0.306508E-02 || 0.0720,0.1382 | 0.136890E-02 || 0.0621,0.9108 | 0.143828E-02
7500 || 0.7894,0.0642 | 0.322261E-02 || 0.0645,0.1525 | 0.151998E-02 || 0.0670,0.9108 | 0.211980E-02
10000 || 0.7796,0.0610 | 0.319479E-02 || 0.0598,0.1624 | 0.159044E-02 || 0.0694,0.9108 | 0.261144E-02

with a uniform grid, even with one as fine as the 257 x 257 grid of Ghia et al. [57]. As
may be seen from Figs. 3.5 and 3.6, as the Reynolds number increases the extremal values
of the velocity components increase in magnitude and the turning points get progressively
closer to the wall. The values of the extrema in the velocity components and the minimum
values of the stream function are given in Table 3.2 and are compared with other results in
the literature. Although the results at low Reynolds numbers are in good agreement, at high
Reynolds number they deviate from each other, particularly at Re = 10000. The present
results are in very close agreement with those of Barragy and Carey [11] and the maximum
difference in the minimum value of the stream function computed by these authors and by
us is less than 0.138%. The results of Botella and Peyret [17], calculated with a Chebyshev
collocation method and featuring subtraction of the leading part of the corner singularities,
are believed to be very accurate but their results do not extend to high Reynolds numbers.
In addition, in Table 3.3 we present results showing how the location of the secondary eddies
change with the Reynolds number.

In order to demonstrate the convergence characteristics of the present method, we calculate
the RMS value RM S(n) of the update vector du™*! at the (n + 1)th Newton iterate as

Nz ,Ny

n+l _ n)2 (n+1_ n)2_
Z (upy ' —ufy) + (07 —vpy)” =
ij=1

1

ay/NyN,

where « is the under-relaxation parameter introduced in Chapter 1 and NN, and N, denote
the number of grid points in the x and y directions, respectively. Fig. 3.7 shows a plot on a
log-normal scale of RM S(n) versus the iteration number n at Reynolds numbers of 100 and
10000. The figure shows an exponential decay in RM S(n) and in both cases RM S(n) is of the
order of 1 x 10~% after 70 Newton iterations. From our numerical experiments it would seem
that the rate of convergence is independent of the Reynolds number for a sufficiently large
value of .. To gain insight into why this might be so, we follow an approximate error analysis
and consider the non-linear system (2.1) and (2.2) summed up over the appropriate 4, j and
supplemented with velocity boundary conditions. This system might be written in the form

1

5 n+1
Ng;Ny || u ||27

RMS(n) = (3.1)

(3.2)
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Figure 3.7: RMS value RM S(n) (see Eq. (3.1)) against iteration number n. Mesh M3. «a = 5.0.

for some vector-valued functional F, so that from (1.19)

. L1 /oFr\! )
u 1 u = —& <%) F(u ), (33)
and )
1 (OF\
n+2 _ n+l .~ F n+1 ) 3.4
u u (6 <au)uun+l (u ) ( )

We let &, denote the Ly norm of u"™' — u” and from (3.3) — (3.4) see that

(g_ﬁ) ;iun+l F(unH)

(). F)]|
~1

() L [F) = 1/a (35), . (55),L, F)]

En+1
En

2

Q

2, (3.5)

Supposing that the Jacobian matrix is approximately constant, Eqn. (3.5) leads to

En+1 1
~1—— 3.6
En a’ (3.6)
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Figure 3.8: Comparison of the computed streamlines with the particle streak visualizations of
Migeon et al. [99] for an impulsively accelerated lid-driven cavity problem at Re=1000. The
contour levels are -0.11, -0.10, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01, -0.005,
-0.001, -0.0001, -0.00001, 0.0, 0.00001, 0.0001, 0.0005, 0.001.
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Figure 3.9: Comparison of the computed streamlines with the particle streak visualizations of
Migeon et al. [99] for an impulsively accelerated lid-driven cavity problem at Re=1000. The
contour levels are -0.11, -0.10, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01, -0.005,
-0.001, -0.0001, -0.00001, 0.0, 0.00001, 0.0001, 0.0005, 0.001.
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so that .
logen1 — loge, =log <1 - —) , (3.7)

o

and hence ]
loge, — logey = nlog (1 - —) : (3.8)

«

From the above relation we computed the gradient of the function ¢,,/1/N, N, of n and found
this to be -0.0969 for o = 5.0. This is identical to four decimal places with the slopes computed
from the RMS plots for Re = 100 and Re = 10000 shown in Fig. 3.7. However this level of
agreement may not hold at even higher Reynolds numbers since it may not be possible to use
the same « value in order to maintain convergence. The initial value of the RMS depends upon
the difference between the initial condition and the converged solution. This explains why the
initial RMS value and all subsequent RMS values at Re = 100 are larger than those computed
at the same iteration count at Re = 10000.

3.2.2 The lid-driven cavity problem: start-up flow

The second set of numerical results corresponds to the time-dependent direct numerical sim-
ulation of an impulsively accelerated lid-driven cavity flow at Reynolds numbers of 1000 and
10000. The computed results at a Reynolds number of 1000 are compared with the experi-
mental results of Migeon et al. [99]. Although the authors presented their results in [99] for an
impulsively accelerated lid-driven square cavity flow with a spanwise aspect ratio of 2.0, the
authors kindly provided us their original particle-streak images for a square cavity flow with a
spanwise aspect ratio of 5.0 which is highly two-dimensional until a non-dimensional time level
of 12. The comparison of the computed streamlines with the particle-streak visualizations is
given in Figs. 3.8 and 3.9 at non-dimensional time levels of 2, 4, 6, 8, 10, and 12. The com-
parison of the primary vortex core locations and the overall flow structure seem to be in good
agreement. As indicated in [99] the primary vortex core is almost moving along the square
cavity diagonal line. It may not be possible to see the secondary eddies from the particle traces
clearly. However, the authors presented similar secondary eddy formations in their paper from
enlarged images of particle traces. It may be seen that the size of the downstream eddy in the
experiments is equal to our numerical calculations at a non-dimensional time level of 12. The
evolution of the primary vortex in time is presented in Fig. 3.11. In addition to streamlines
and vorticity contours the computed velocity components through the vertical and horizontal
centrelines of the cavity at several non-dimensional time levels are presented in Fig. 3.10.

The streamlines of the time-dependent solutions at a Reynolds number of 10000 are pre-
sented in Fig. 3.12 at non-dimensional time levels of 2, 4, 6, 8, 10 and 12. The formation of the
primary vortex and its transport towards the cavity centre may be seen clearly. On the current
PC (with a 1200MHz Pentium IV processor) we could only afford to continue calculations up
to a non-dimensional time level of 20, although we would like to determine at which Reynolds
number a Hopf bifurcation takes place by computing time-accurate solutions. Unfortunately,
near the critical Reynolds number the most dangerous eigenvalue has a real part which is very
small. As a consequence, determination of whether or not a steady solution exists at a near-
critical Reynolds number may take a very long time and is computationally very expensive.
Therefore, in Chapter 4 we employ a linear stability analysis to determine the critical Reynolds
number at which a Hopf bifurcation takes place.
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Figure 3.10: An impulsively accelerated lid-driven cavity velocity components (u,v) through
the vertical and horizontal centrelines of the cavity at several non-dimensional time levels at
Re=1000.

3.3 Conclusions

The novel finite volume method described in Section 1.1 has been used for the solution of
both the steady and unsteady incompressible Navier-Stokes equations. The method involves
multiplication of the primitive-variable based momentum equation with a unit vector normal
to a finite volume boundary and subsequent integration of this equation along the boundary of
the same control volume. Thus any difficulties associated with the pressure term or vorticity
boundary conditions are obviated. The velocity components are solved in strong coupled form
by using a direct solver. The method is applied to the lid-driven cavity problem for both
steady and unsteady flows at Reynolds numbers up to 10000. Our solutions are smooth and in
excellent agreement with benchmark results in the literature. Use of a direct solution technique
ensures a solenoidal velocity field at each iterative or time step for the steady and unsteady
cases, respectively.

Although we have presented only a two-dimensional application of the present method,
the extension of the method to three-dimensional problems would be interesting since there
are only three unknowns that would need to be determined, which is lower than both the
primitive-variable-based and most velocity-vorticity formulations [36]. This may be done by
imposing the continuity equation within each control volume and by computing the closed-line
integral of the product of a normal vector with the momentum equation around the control
volume faces in a similar manner to (1.15). A weakness of the present method, however, is
that due to the linear dependence of some of the closed-line integrals, it may be difficult to
match the number of equations to the number of unknowns for more complex configurations.
One possible solution, for cuboidal finite volumes, at least, might be to adopt a staggered grid
arrangement with velocity components now defined at the centre of the faces with respect to
which they point in the normal direction.
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Figure 3.11: The computed vorticity contours for an impulsively accelerated lid-driven cavity

problem at Re=1000. The contour levels are -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5.
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Figure 3.12: Contours of computed streamlines with mesh M2 for an impulsively accelerated
lid-driven cavity at Re=10000. Contour levels shown for each plot are -0.10, -0.09, -0.08, -0.07,
-0.06, -0.05, -0.04, -0.03, -0.02, -0.01, -0.005, -0.001, -0.0001, -0.00001, 0.0, 0.00001, 0.0001,

0.001 and 0.005
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Chapter 4

Linear Stability Analysis of a Lid-Driven
Cavity Flow

4.1 Introduction

The problem of lid-driven cavity flow of a Newtonian fluid is a particularly alluring one for
the computational fluid dynamicist in view not only of the simplicity of the flow geometry -
making for easy meshing - but also the richness of the fluid mechanical phenomena realizable
at various Reynolds numbers: corner eddies, flow bifurcations and transition to turbulence,
amongst them. For a detailed but readable treatise of the fluid mechanics in the driven cavity,
the reader is referred to that of Shankar and Deshpande [131].

In the literature, however, in contrast with the proliferation of papers evaluating the per-
formance of computational algorithms for the incompressible Navier-Stokes equations in the
lid-driven cavity problem, only a handful of papers consider the question of the linear stability
of this flow. In conformity with expectation, given the reduced severity of the lid-wall singu-
larities, the regularized lid-driven cavity problem is more stable than in the unregularized case.
Taking a tangential velocity profile u(z) = 162%(1 — x)? along the lid {(x,1) : 0 < z < 1}
in the two-dimensional case, Shen [132] was able to compute steady solutions for Reynolds
numbers up to 10000. However, taking the steady solution at Re = 10000 as initial data, a
periodic solution was found at Re = 10500; his Chebyshev code thus indicating the presence of
a Hopf bifurcation somewhere in the interval [10000, 10500]. Another bifurcation was believed
to occur at a critical Reynolds number in the interval [15000, 15500] with the flow becoming
two-periodic. Both Batoul et al. [12] and Botella [16] confirmed Shen’s observation of a Hopf
bifurcation at a critical Reynolds number in the range [10000, 10500] by computing a solution
to the same regularized problem at a Reynolds number of 10300 starting from a steady solution
at Re = 10000. In both cases a periodic flow was reached, the period based on the kinetic
energy being 3.03 for Batoul et al. and 3.0275 for Botella. A finite element method, in com-
bination with the simultaneous inverse iteration method of Jennings [75], was used by Fortin
et al. [50] in 1997 to compute a subset of the eigenvalues for the linear stability problem. The
first critical eigenvalue was found at a Reynolds number of approximately 10255, consistent
with the results of Shen [132]. However, the calculated fundamental frequency for the periodic
flow was f = 0.331; rather different from that of Shen. Recent computations by Leriche and
Deville [88] for the same regularized problem at a Reynolds number of 10500 yielded a peri-
odic solution with fundamental frequency f =~ 0.330, in good agreement with previous results.
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As a case in between the regularized lid profile of Shen [132] and the unregularized constant
lid-velocity u(z) = 1, Leriche and Deville [88] also considered the high-order polynomial ap-
proximation u(z) = (1 — 2'*)? where the lid was now defined to be {(z,1) : —1 < x < 1}.
A direct numerical simulation by the authors with their Chebyshev-7 method at Re = 8500
gave rise to a periodic solution with fundamental frequency 0.434 and a kinetic energy signal
exhibiting a period of 2.305. Thus the critical Reynolds number had already been exceeded.

The solution to the high-order regularized problem obtained by Leriche and Deville [88]
was in good agreement with the results of computations by other authors on the unregularized
problem: in two recent papers Pan and Glowinski [114] and Kupferman [84] both obtained
limit cycle solutions at Re = 8500 with the kinetic energy period of Kupferman’s calculations
equal to 2.5 approximately. The results of Botella and Peyret [18] indicated a kinetic energy
period of 2.246 at a Reynolds number of 9000.

It would seem that very few authors have wished to commit themselves to stating a value
for the first critical Reynolds number Re.,; for lid-driven cavity flow. The reasons for this
would certainly include the cost of determining the Hopf bifurcation point, as well as the
computational difficulties associated with its accurate evaluation. For a detailed consideration
of these points we refer the reader to the discussion by Poliashenko and Aidun [115] where
three types of strategy (time evolution, test function and direct approaches) for analyzing the
stability of equilibrium states and their bifurcation are presented. Additionally, we should add
that the computation of the critical Reynolds number is a stringent test of the quality of the
numerics, and more so, possibly, than that which is involved in comparisons of various variable
values (stream function, velocity components etc.) This is borne out in the numerical results
to be presented in this chapter, but the magnification brought to bear by critical Reynolds
number calculations on the differences between one scheme and another has been seen already
in the literature, in the comparison performed by Gervais et al. [56|, for example, of differing
finite element discretizations for lid-driven flow. Interestingly in this paper the introduction of
SUPG-type stabilization via an enrichment of the velocity trial space with cubic bubbles led
to an over diffusive scheme and a critical Reynolds number (9200) which was well outside the
range predicted by the second-order finite elements tested. Thus streamline upwinded methods,
although enhancing stability may compromise accuracy to the point that the predicted critical
Reynolds numbers are of questionable value. No upwinding or artificial viscosity model is used
in the finite volume scheme described in this thesis.

Although, at the time of writing, the first critical Reynolds number for the square two-
dimensional lid-driven cavity problem is still not known, a consensus seems to be emerging that
Re..iy =~ 8000. Poliashenko and Aidun [115] used a direct method for the computation of the
critical Reynolds number by augmenting the generalized eigenvalue problem with normalizing
conditions on the real and imaginary parts of the eigenvectors. Re..; was then determined as
part of the solution of the enlarged system and on their finest mesh a value of Re..; ~ 7763
was predicted with a fundamental frequency of about 2.863. Excellent agreement with the
Poliashenko and Aidun value was obtained by Cazemier et al. [26]. The authors employed
a proper orthogonal decomposition (POD) of the flow in a square cavity at Re = 22,000 in
order to construct a low-dimensional model for driven cavity flows. Only the first 80 POD
modes were used but these were shown to capture 95% of the fluctuating kinetic energy. By
linear extrapolation of the real parts of the most dangerous eigenvalues computed using the
80 dimensional model, Cazemier et al. predicted a critical Reynolds number of 7819, just
0.7% greater than that of Poliashenko and Aidun. A second-order finite element method
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and the iteration method of Jennings [75], enabled Fortin et al. [50] to conclude that the
critical Reynolds number was around 8000. Since the most dangerous eigenvalues crossed
the imaginary axis as a complex conjugate pair, and since the amplitude of the fundamental
frequency at the point of bifurcation was very small (9 x 107°) in their computations, sufficient
evidence had been amassed by Fortin et al. to support the conclusion that the bifurcation
is a supercritical Hopf bifurcation. From the scanty evidence available in the literature, two-
dimensional driven cavity flow in non-square (but still rectangular) domains, or subject to
three-dimensional infinitesimal perturbations, is less stable than that in square cavities with
two-dimensional disturbances. See the papers of Poliashenko and Aidun [115], or of Goodrich
et al. [58].

The present chapter is dedicated to a discussion of the numerical results for a lid-driven
cavity problem in a square enclosure. Computations are performed on three meshes M1-M3
as shown in Fig. 3.2 of Chapter 3; with the finest of which are associated 132,098 degrees
of freedom. For the linear stability calculations, different size Krylov spaces in the Arnoldi
method are chosen to confirm the good accuracy of the eigenspectrum near the imaginary axis.
Linear interpolation of the real parts of the most dangerous eigenvalues for the three meshes
and extrapolation to zero mesh size of the curve fitted to the Re..;;-control volume size data,
give us a predicted Re..;; of 8031.93 - a 0.40% difference from that of Fortin et al. [50], 2.72%
difference from that of Cazemier et el. [26] and 3.46% difference from that of Poliashenko and
Aidun [115].

4.2 Numerical Results

The use of the steady Navier-Stokes solver described in Chapter 1 of this thesis and the Arnoldi
method (see Section 2.3) applied to the GEVP in Section 2.1 enable us to compute the first
critical Reynolds number at which a Hopf bifurcation occurs. This is done by inspecting the
real part of the most dangerous reciprocal Ritz value pair ﬁf% For any given mesh this is
done for a variety of Krylov space dimensions m and the process repeated over a range of
Reynolds numbers until the real part of the aforementioned reciprocal Ritz values is positive.
For reasonable accuracy the incremental step size in Reynolds number during the search for
a Hopf bifurcation should be kept as small as possible. The critical Reynolds number on a
given mesh is then determined by a linear interpolation between the last point on the graph
of R(fi7}) vs. Re having R(fi73) < 0 and the first with R(7i;;) > 0. For the finest mesh the
critical Reynolds number is determined to be Re = 8069.76. The computed streamlines and
vorticity contours at this Reynolds number are given in Fig. 4.1. The complete reciprocal Ritz
value spectrum computed at this Reynolds number with a Krylov subspace dimension m = 250
is presented in Fig. 4.2 and the values of the first ten leading eigenvalues is given in Table
4.1 for further comparison. For the eigenspectrum we observe good agreement with the results
of Fortin et al. [50]. The imaginary part of the leading eigenvalue is computed on mesh M3
to be 2.8251 which is also in good agreement with the corresponding value (2.8356) of Fortin
et al. [50] bearing in mind the fact that the two imaginary parts (ours and that of Fortin et
al.) are computed at rather different Reynolds numbers. The critical Reynolds numbers are
also computed with meshes M1 and M2. The precise critical values are tabulated in Table
4.2. The Krylov space dimension m corresponding to mesh M3 and shown in the third column
is the largest that we can afford with the current PC. Columns 4 and 5 detail, respectively,
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Re=8069.76 Re=8069.76

/

Figure 4.1: Streamlines and vorticity contours computed at critical Reynolds number of 8069.76
with mesh M3. The stream function contour levels shown are -0.11, -0.09, -0.07, -0.05, -0.03,
-0.01, -0.001, -0.0001, -0.00001, 0.0, 0.00001, 0.0001, 0.001 and 0.01. Contour levels for the
vorticity plot are -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0

the real and absolute value of the imaginary parts (og and o7) of the most dangerous pair
of reciprocal Ritz values computed at the interpolated critical Reynolds number. We note
from the spread of values in the second column of Table 4.2 that critical Reynolds number
calculations would seem to be a much more discerning measure of solution accuracy than, for
example, the streamline or velocity values that are habitually presented in the literature (see
Table II of [124]). Thankfully, for any given mesh, o was not found to be an overly sensitive
function of m. As an example, in Table 4.3 we show the ten reciprocal Ritz values having
largest real parts, as computed on mesh M1 with Krylov spaces of dimensions m = 250 and
m = 500. Very good agreement in both the real imaginary parts of these leading reciprocal
Ritz values can be seen.

In order to estimate a value for the critical Reynolds number based on a zero mesh size
(Recrit, say), a relationship was sought of the form

Recrit(h) = Recrit + Chp; (41)

between Re..;; and the critical Reynolds number Re..;;(h) computed on a mesh having average
cell length hA. Thus, identifying an average cell length h with mesh M1, we have

Reerit(h) — Reerit(2R/3)  (Reerit(h) — Rerir) — (Reerit(2h/3) — Reerir)
Recrit(h) — Reqir(h/2)  (Reeir(h) — Recrit) — (Reerit(h/2) — Reeir) |
ch? — ¢ (%)p h?P

- ch? — ¢ (%)p hr’

1—(2)"  8244.55 — 8109.38

= 4.2
1— (%)p 8244.55 — 8069.76’ (4.2)

which yields a solution p ~ 2.4906.
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Figure 4.2: Reciprocal Ritz values computed on mesh M3 at Re = 8069.76 with Krylov space
dimension m = 250.
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Figure 4.3: Critical Reynolds number Re..;(h) plotted as a function of the average finite
volume cell size h. The equation for the continuous curve drawn through the three data points
is given by (4.1).



CHAPTER 4. Linear Stability Analysis of a Lid-Driven Cavity Flow 46

Table 4.1: The first 10 reciprocal Ritz values computed on mesh M3 at Re = 8069.76.

| R | o |
—1.9025 x 10~ 7 | £2.8251
—7.3257 x 1072 | 0.0000
—1.4161 x 1072 | +£0.9576
—2.4387 x 102 | 0.0000
—2.5916 x 1072 | +£1.9062
—3.7116 x 1072 | +0.9551
—4.5205 x 1072 | +£2.8520
—4.9557 x 1072 | £3.9063
—5.0851 x 1072 | 0.0000
—5.3889 x 1072 | +£3.3969

OO || U =W N~ B

—
o

Table 4.2: Computed critical Reynolds numbers Re..;;(h) for meshes M1 to M3. The final
value of Re..;;(h) is the extrapolated value Re,;;.

Mesh || Regrir(h) | m oR or
M1 8244.55 | 250 | —5.9487 x 10~% | £2.8315
M2 8109.38 | 250 | —1.7769 x 10~ 7 | £2.8256
M3 8069.76 | 250 | —1.9025 x 10~7 | +2.8251

Extrap || 8031.92 - - -

Table 4.3: 10 leading reciprocal Ritz values computed at Re = 8244.55 on mesh M1 with
Krylov subspace dimensions m = 250 and m = 500.

m = 250 m = 500
OR or OR or

—5.9487 x 1078 | +£2.8315 | —4.7800 x 108 | £2.8315
—7.0198 x 1072 | 0.0000 | —7.0198 x 10=3 | 0.0000
—1.4154 x 1072 | £0.9643 | —1.4154 x 102 | +0.9643
—2.3571 x 1072 | 0.0000 | —2.3571 x 102 | 0.0000
—2.4539 x 1072 | +£1.9159 | —2.4539 x 10~2 | £1.9160
—3.6512 x 1072 | £0.9593 | —3.6512 x 102 | +0.9593
—4.0236 x 1072 | +£2.8600 | —4.0234 x 10~2 | £2.8600
—4.4007 x 1072 | £3.8954 | —4.4746 x 102 | +3.8951
—4.8049 x 1072 | +3.3908 | —4.8055 x 102 | £3.3908
—4.9438 x 1072 | 0.0000 | —4.9438 x 102 | 0.0000
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Now Rewris — Rewut(h) W
Eerit — Ecrit c
= — 9P 4.3
Recrit - Recrit(h/2) C (%)p hp ( )
Therefore, rearranging, we get
1
Remt = ﬁ [2pR€CMt(h/2) — Remt(h)] s (44)

and with p as calculated above we get Re..; ~ 8031.93. In Fig. 4.3 we present a graph
of both the interpolatory function given in Eqn. (4.1) and the data points corresponding to
the critical values of the Reynolds number computed with the three meshes M1-M3. The
extrapolated result agrees well with the prediction of Fortin et al. [50] (Req ~ 8000), and
represents only a 3.46% difference from the value of Re..; calculated by Poliashenko and
Aidun [115] (Reqir = 7763) and a 2.72% difference from the Re.,;; value of Cazemier et el.
[26] (Reerit = 7819). Most probably, the introduction of small leaks in the upper corners of
the cavity in the present numerical method smooths out the solution and leads to the flow
becoming unstable at a slightly larger critical Reynolds number.

4.3 Conclusions

In this chapter we have presented application of a novel implicit finite volume method to the
linear stability analysis of a lid-driven cavity flow. The method is combined with the Arnoldi
method for the determination of the linear stability properties. We have obtained a first critical
Reynolds number in very good agreement with the few others published to date. We observed
that its value is highly sensitive to the accuracy of the method and to the treatment of the
singularities. Although eigenvalue calculations are computationally very expensive, the block
banded matrix structure of the coefficient matrix in the GEVP and the use of the Arnoldi
method allows us to compute the first 250 eigenvalues using the finest mesh.
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Chapter 5

Flow Around a Confined Circular
Cylinder in a Channel

5.1 Introduction

It is no exaggeration to say that an enormous (and still rapidly growing) corpus of literature on
the subject of bluff body wakes has developed since the pioneering work of von Karmén early
last century. This fact is an attestation to both the difficulty in understanding and adequately
describing the flow bifurcations that occur at various values of the Reynolds number in viscous
flows and the interest in doing so. Flows having particularly simple setups such as those past a
sphere or cylinder have succeeded in drawing experimentalists, theoreticians and computational
fluid dynamicists into the fray that has gone on through the decades and only very recently
are consensuses emerging. In the paragraphs that follow we attempt to elucidate some of these
for viscous flow past a cylinder. The reader is referred, additionally, to the review paper of
Williamson [153] where further detail on this topic may be found.

It is now well established that for sufficiently low Reynolds numbers uniform flow past an
infinitely long cylinder whose axis lies in the direction transverse to the flow is two dimensional
and laminar everywhere and that in the wake of the cylinder two symmetric vortices are visible.
For low Reynolds numbers (less than about 35 [55]) the length of the region containing the
vortices increases with Reynolds number. As the flow rate increases further, the vortex pair
loses its symmetry and oscillations begin to be observable in the wake (trail and vortices).
Tiny irregular “gathers” begin to move down the outer boundary of the vortex pair, away from
the cylinder [55, 140]. It is not until a slightly higher Reynolds number (approximately 46, see
discussion below) is reached, however, that the gathers on the twin vortex boundaries begin
to be shed alternately and give rise to the well-known vortex street.

Various different criteria have been used by experimentalists to determine the Reynolds
number at which the wake loses stability. Coutanceau and Bouard [34], for example, considered
the birth of the first instability to occur when a difference in the distance of the cores of these
two recirculatory regions from the cylinder’s rear stagnation point could be detected. For the
unbounded cylinder this happened at a Reynolds number of 34. Fortuitously, Gerrard [55]
established that it was at this same Reynolds number that the bubble boundary containing
the standing eddies began to exhibit gathers. By this stage the length of the bubble was
approximately two cylinder diameters. In the experiments of Taneda [140] the appearance
of gathers on the boundary of the twin vortices did not occur until the Reynolds number
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exceeded 35, although oscillations in the wake trail could be seen as early as Re = 30. The
onset of periodic two-dimensional vortex shedding in the wake of the cylinder is now known
to be a supercritical Hopf bifurcation which may be modelled using the Landau equation
([119, 108, 42]). What is less clear, however, is the value of the critical Reynolds number
Re..;;1 at which this vortex shedding first occurs. Experimentalists have variously estimated
Re i1 to be around 40 [106, 143], 45 [140], 47 [119] or 48 [107]. Undoubtedly, factors influencing
the spread of values reported for Re..;;; and associated Strouhal numbers St include the severe
difficulty entailed in detecting the onset of oscillations in the wake, cylinder roughness, the
need to eliminate background fluid motion and temperature variation, as well as the pernicious
influence of three-dimensional, wall and end effects. Much better agreement exists on St — Re
data for established laminar parallel shedding amongst various experimental research groups,
however (see Fig. 7(b) of [153]). Numerical simulations using finite element methods of the
transition from steady to periodic flow have been performed by Jackson [72] and Ding and
Kawahara [39], for example. Jackson identified the transition as a Hopf bifurcation and solved
an extended system of equations to pinpoint the critical parameters as Re..;; = 46.184 and
St = 0.13804. Use of an Arnoldi method permitted Ding and Kawahara to estimate the critical
values of the primary instability as Re..;;; = 46.389+0.010 and St = 0.12619. Thus, reasonable
agreement was obtained with the results of Jackson. The low-dimensional Galerkin projection
method of Noack and Eckelmann [108] led to a prediction of Re..;;; = 50 and St = 0.132. The
authors attributed the inaccuracy in this case to an insufficient number of expansion modes.

The transition to three-dimensional vortex shedding was first measured by Roshko [120]
and has been described by Williamson [150] as happening in two distinct stages. These mani-
fest themselves in discontinuities (but see comments later in the Introduction) in the St — Re
curve at Reynolds numbers of the order 180 — 190 and 230 — 250, and are associated, respec-
tively, with the appearance of large-scale structures (mode A) and fine-scale structures (mode
B) in the span-wise direction. The first discontinuity has been found experimentally to be hys-
teretic. Numerical simulations may show a rather different picture, however. Karniadakis and
Triantafyllou [78| used both three-dimensional spectral element and spectral element/Fourier
discretizations to investigate three-dimensional dynamics of flow past a cylinder at Reynolds
numbers up to 500. Span-wise lengths equal to 7/2 and 7 cylinder diameters were considered
and 34 spectral elements used. A secondary instability of the two-dimensional vortex street
leading to a soft transition to periodic three-dimensional shedding was seen to appear at a
Reynolds number between 200 and 210 on the domain having the greater span-wise depth.
Unlike the experimental findings of Williamson [150] no hysteresis phenomenon could be ob-
served. It should be added at this point, however, that Karniadakis and Triantafyllon were
principally concerned with the description of the route to chaos in the wake of a circular
cylinder, something that they identified as happening through a sequence of period-doubling
bifurcations. In a later paper Thompson et al. [142] also used a spectral element /Fourier series
discretization but with 60 spectral elements and a span-wise depth between 7 and 27 cylinder
diameters. The paper is important in that modes A and B were captured computationally for
the first time. Mode A shedding was found to be periodic and the onset Reynolds number
was computed to be slightly less than 200. However, neither the hysteretic behavior at the
first of the secondary instabilities, nor the abrupt change in the associated shedding frequency
could be seen. The three-dimensional simulations cited above and others like them have all
indicated a soft transition to three-dimensional periodic flow. The first numerical reproduction
of Williamson’s experimental finding of a hard hysteretical onset of three dimensionality was
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published by Zhang et al. [158] who used a finite difference method and a span-wise domain
equal to 24 cylinder diameters. It was found that the crucial missing ingredient in previous
simulations was a “vortex adhesion mode” of the secondary instability. The mode was induced
by Zhang et al. by injecting a strongly localized span-wise inhomogeneity into the initial condi-
tions. For span-wise lengths sufficiently large (an order of magnitude greater than in previous
simulations) this instability mode was found to be self-sustaining, at least for the range of
Reynolds numbers corresponding to the onset of mode A and mode B instabilities. The hard
hysteretic transition to three dimensionality could be clearly seen in a discontinuity in the
St — Re curve at the onset of mode A instabilities. Previous computations took span-wise
domain lengths too short for the vortex adhesion modes to be sustainable.

The linear stability of the two-dimensional periodic wake to three-dimensional perturba-
tions has been investigated using Floquet stability theory by several authors. Noack and
Eckelmann [108| predicted an absolute three-dimensional secondary instability in the span-
wise direction of the von Karman vortices at a critical Reynolds number of Re..;;» = 170 and
a span-wise wavenumber k, of 1.75 cylinder diameters. The results were in qualitative but
not quantitative agreement with those of Barkley and Henderson [10] who used a highly accu-
rate spectral element method with up to 362 elements and O(10%) spatial degrees of freedom.
The critical parameters for the onset of the mode A instability were given by these authors
as Reqq0 = 188.5 + 1 and k, = 3.96 cylinder diameters, and were in close accord with the
experimental values of Williamson [152|. Correctly capturing mode B, however, involved non-
linear interactions outside the scope of the authors’ linear approximations. Ding and Kawahara
[40] claimed that their finite element/Arnoldi method for determining the dominant Floquet
multipliers was more accurate than the spectral element method of Barkley and Henderson,
and the authors succeeded in verifying the existence of both modes. The computed critical
parameters were very similar to those of Barkley and Henderson. Despite the encouraging
agreement that exists between the predictions by a Floquet analysis of the critical secondary
instability parameters and those found experimentally (see, for example, [152]), it should be
noted, as do Barkley and Henderson [10], that at the secondary instability the leading Floquet
multiplier is real and positive so that no new shedding frequency is anticipated. The change of
shedding frequency at the onset of mode A is a non-linear phenomenon, possibly explainable
in terms of the vortex-adhesion modes mentioned above [158].

In the above paragraphs we have only briefly touched upon some of the span-wise length
effects in three-dimensional computational domains and the topic is treated in greater detail
elsewhere [86, 142, 158|. Discussion on experimentally observed end effects such as oblique
vortex shedding modes and discontinuities in the St — Re relationship may be found in several
papers by Williamson (see, for example, [151, 153]). We shall say no more on this matter since
our interest in this chapter is rather a careful analysis of lateral wall effects on viscous flow
past a confined cylinder. What we have in mind is depicted in Fig. 5.1. In this figure an
infinitely long cylinder of diameter D is placed symmetrically between parallel lateral walls a
distance H apart. The parameter A = D/H is usually termed the blockage ratio. In stark
contrast to the wealth of insight and commentary available on vortex dynamics in the wake
of an unbounded cylinder we find ourselves with only a handful of papers offering a serious
treatment of the blockage ratio effects present in the confined cylinder problem. This paucity of
scientific literature should not be interpreted as implying that the problem is an unimportant
one, however. On the contrary, even for unbounded flow past a cylinder the (infinite) flow
domain has to be replaced with (or mapped onto) a finite one, thus introducing numerical or
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experimental blockage effects that may have considerable influence over the determined values
of the flow parameters [5, 34]. Many of the blockage ratio effects described in the literature
are more or less evident:

1. In the steady flow regime, bringing the walls closer to the cylinder results in the appear-
ance of the twin vortices in the cylinder wake at higher Reynolds numbers.

2. At any given modest (< 50) Reynolds number and for A < 0.2 the length of the closed
vortex bubble decreases with wall proximity, whilst remaining a linear function of Re
[5, 29, 34].

3. For increasing blockage ratios A up to 0.5 the steady two-dimensional base flow is stabi-
lized with respect to infinitesimal perturbations due to constraint by the confining walls
of the separating shear layer that exists between the cylinder wake and the wall boundary
layer vorticity [29, 34].

4. Once the critical Reynolds number for the primary instability has been exceeded the
frequency with which periodic two-dimensional vortex shedding takes place at a given
Reynolds number is an increasing function of A [5, 15, 29, 137|'.

5. At Re = O(100) both the mean drag coefficient C; and the separation angle of the vortex
bubble increase as the walls approach the cylinder [5, 15, 34, 137].

A problem bearing some similarities to that of flow past a confined cylinder is that of flow
around a cylinder placed at various heights above a plane boundary. A recent literature survey
of experimental investigations into this problem may be found in the paper of Lei et al. [85].
These studies have sought to address the issue of how forces on the cylinder and vortex shedding
frequency depend on the ratio G/D of the gap between the cylinder and the wall, G, and the
cylinder diameter, D. They have also been concerned with understanding the effect on these
quantities of the boundary layer thickness and the velocity gradient. Most of the experiments
have been conducted at Reynolds numbers in the sub-critical regime (Re = O(1 x 10%)) in
which the boundary layer is still laminar. Lei et al. [85] found that the drag coefficient Cy
increased with increasing gap ratio because of the reduction in the base pressure. The same
trend in base pressure dependence had been observed by Bearman and Zdravkovich [14]. The
latter authors further found that the Strouhal number for G/D 2 0.3 was more or less constant
in their experiments at a Reynolds number of 4.8 x 10%. Lei et al. [85] also noted only slight
fluctuations in a Strouhal number computed from the free-stream velocity for a similar range
of gap to diameter ratios. However, for gaps less than 0.3 cylinder diameters [14] or 0.2 — 0.3
diameters (depending on the boundary layer thickness, [85]) vortex shedding was suppressed.
Differences in the quantification of the vortex shedding suppression gap ratio were due possibly
to differences in the boundary layer thicknesses generated by the experimentalists and also to
the manner in which the critical gap ratio was identified: Bearman and Zdravkovich [14] using
a spectral analysis of hot-wire signals in the cylinder wake whereas the method of Lei et al.
[85] was based on observation of the spectrum of the lift coefficient. Suppression of vortices for
a sufficiently small gap ratio was also confirmed by Zovatto and Pedrizzetti [160|, who used a
finite element method based on a vorticity-streamfunction formulation to analyze flow around

!The spurious result obtained by Stansby and Slaouti [137] for A = 0.5 is thought to be due to neglect of
the boundary layers in their numerical simulation using random vortex methods.



CHAPTER 5. Flow Around a Confined Circular Cylinder in a Channel 53

a cylinder positioned eccentrically between two lateral walls. For very small gap ratios Zovatto
and Pedrizzetti [160] found a recirculating bubble on the wall downstream of the cylinder. A
separation bubble on the wall had also been seen earlier by Bearman and Zdravkovich [14] for
gap ratios smaller than the critical value for vortex suppression. We will return to some of
these flow phenomena in our discussion of our numerical results for large blockage ratios.

The motivation for the present study is two-fold. First, the rich fluid dynamics in the wake
and near the lateral walls deserves to be investigated with greater numerical accuracy than
has been possible with the computational resources available to other researchers at the time
at which they prepared their manuscripts. Computations on meshes allowing for only tens of
thousands of degrees of freedom have been typical (for example, [29, 72]). In the present study
a novel finite volume method [123, 124, 125] is used in a parallel implementation, permitting
up to 1.8 million degrees of freedom and thus a higher resolution of the wake and boundary
layer structures. Secondly, the only previous numerical linear stability analysis of flow past
a confined cylinder available to us [29] went no further than a blockage ratio of A = 0.7.
From the results of this publication the trend seemed to be one of decreasing linear stability
of the two-dimensional flow for A > 0.5. Stability was always lost over the range of blockage
ratios considered through a symmetry-breaking supercritical Hopf bifurcation. We wish in this
chapter to investigate the effect on the critical Reynolds number of choosing A > 0.7 and to
identify the nature of the flow instabilities by means of an Arnoldi method.

The outline of the present chapter is as follows: In Section 5.2 we describe the problem to
be solved. In Section 5.3 is dedicated to validation of our numerical scheme for the classical
problem of unbounded two-dimensional flow past a circular cylinder. Extensive comparison
with other results in the literature is made. In particular we find excellent agreement with
previously obtained values for the drag coefficients, first critical Reynolds numbers Re..;;; and
the corresponding critical Strouhal numbers. In Section 5.4 we are concerned with a detailed
description of wake dynamics and interactions of the wake and wall boundary layers for blockage
ratios up to 0.9. For blockage ratios below approximately 0.85 the locus of a supercritical
Hopf bifurcation may be traced out in parameter space. At higher Reynolds numbers and
for blockage ratios sufficiently large there is a pitchfork bifurcation of the steady symmetric
state to one of two asymmetric steady states. Either side of the curve of neutral stability for
the pitchfork bifurcation the steady solutions are linearly stable but appear on the basis of
direct numerical simulations to be unstable to finite two-dimensional perturbations. Finally,
for yet larger Reynolds numbers and A g 0.82 a Hopf bifurcation of the asymmetric state
occurs. The oscillations are now quite different from those associated with the first symmetry-
breaking instability, the amplitude of the drag and lift coefficients being much stronger and
the oscillations are now asymmetric in time. Finally, we draw some conclusions.

5.2 Mathematical Problem

An infinitely long cylinder of diameter D is placed midway between two parallel planes which
are a distance H apart, as shown in Fig. 5.1. Let us denote by U,,,, the maximum inlet fluid
speed. In the present chapter the Reynolds number is defined as Re = U,;,,4. D /v where v is the
kinematic viscosity. In the presentation of results in Section 5.3 and Section 5.4 for those flows
exhibiting periodic vortex shedding, a Strouhal number St is defined by St = D/(TUaz),
where T is the period of vortex shedding. We denote by (x,t) = ((z1,x2),t) a generic point in
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Figure 5.1: Schematic of a cylinder placed symmetrically in a plane channel. The cylinder
diameter is D and the channel height H.

space and time.
In Section 5.3 we approximate the unbounded cylinder geometry by choosing A = 0.01 and
the following boundary conditions:

Cylinder surface : u = (0,0), (5.1)

Lateral walls : u = (1,0), (5.2)

Inflow : u=(1,0), (5.3)
8211,1 3u2

Outflow : =0 =0 5.4

e ox? "0y (5.4)

For the confined cylinder problem (see Section 5.4) equations (1.3)-(1.8) are solved subject to
the following boundary conditions on the components of velocity:

Cylinder surface : u = (0,0), (5.5)
Lateral walls : u = (0,0), (5.6)
Inflow : u=(1-230), (5.7)
8211,1 3u2
tflow : =0,-—=0. .
Outflow R 0, e 0 (5.8)

Some care needs to be taken with how the second normal derivative outflow condition is
imposed, due to possible linear dependence in the discrete equation set of this condition with the
discrete form of the continuity equation. More precisely stated, the second normal derivative
outflow condition will be automatically satisfied at x5 = 0 upon imposition of the continuity
equation (1.3) within each finite volume. For all the results presented in Section 5.3 the
dimensionless upstream and downstream channel lengths were set equal to 400D. In Section 5.4
these lengths were chosen to both be equal to 40D. The choice of outflow boundary conditions
(5.4) and (5.8) was motivated by the fact that our numerical method uses a velocity-only
formulation so that the usual traction-free conditions could not easily be implemented. The
free boundary layer type of conditions (5.4) and (5.8) were used successfully by Kourta et al.
[83] in finite volume simulations of a two-dimensional plane mixing layer. Although Jin and
Braza |76] later developed a non-reflecting outlet condition that greatly reduced feedback noise
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M1 M2 M3
A Z.maz | kmaz | kwall | N Z.maz | kmaz | kwall | N Z.maz | kmaz | kwall | N

0.01 181 301 137 89,336 361 601 273 | 355,312 || 721 | 1201 | 545 | 1,417,184
0.1 181 441 7 116,536 || 361 881 153 | 462,512 || 721 | 1761 | 305 | 1,842,784
0.2 181 421 o7 109,336 || 361 841 113 | 433,712 || 721 | 1681 | 225 | 1,727,584
0.3 181 411 47 105,736 || 361 821 93 | 419,312 || 721 | 1641 | 185 | 1,669,984
0.5 181 401 37 102,136 || 361 801 73 404,912 || 721 | 1601 | 145 | 1,612,384
0.7 181 391 27 98,536 361 781 53 390,512 || 721 | 1561 | 105 | 1,554,784
0.9 181 381 17 94,936 361 761 33 376,112 || 721 | 1521 65 1,497,184

Table 5.1: Values of grid parameters i,,4z, kmaz, kwanr and N.

when compared with the outlet condition of Kourta et al. [83], the outlet length used for the
calculations in the present work are considered sufficiently great that the difference between the
influence of the one set of exit conditions and the other on drag, linear stability and Strouhal
number would be negligible. The more complicated exit conditions of Jin and Braza [76| are
therefore not implemented.

In our numerical scheme the continuity equation (1.3) is satisfied within each finite volume
whilst (1.8) is applied to each finite volume except the finite volumes next to the wall. There-
fore, vorticity creation is allowed within these finite volumes in order to satisfy the no-slip
boundary conditions. Equations (1.3) and (1.8) with no-slip boundary conditions are enough
to solve the problem in a simply-connected domain (such as that found in the lid-driven cavity
problem, for example [124]). However, if the domain is not simply-connected there is a need
for additional equations. This is because there is a potential problem in our velocity-only for-
mulation with multi-valuedness of the pressure field, even though the pressure does not appear
explicitly as a dependent variable in our formulation. To rectify this a Kutta-like condition

j{nx[%—?—k(VXu)Xu—i—%Vx(qu) ds = 0, (5.9)

is imposed around the closed path T' formed from the union of the outer edges of the finite
volumes on the cylinder surface. The condition (5.9) guarantees that

j{n x Vpds =k[p] =0, (5.10)

where k is a unit vector normal to the plane of the flow, and [p] denotes the jump in the pressure
on passing once around I'. Since (1.8) is satisfied in every interior finite volume, satisfaction of
(5.9) ensures that p is single-valued at every interior finite volume vertex. The pressure can be
obtained by integrating the two components of the pressure gradient appearing in the equations
of linear momentum in a manner analogous to that used in finding a streamfunction from a
given velocity. The values of p on the domain boundaries, when required, are determined by
first computing dp/on from (1.2).

Three different finite volume grids (M1-M3) have been used for each value of the blockage
ratio considered in this chapter. Each of the meshes has been generated algebraically and then
smoothed by solving elliptic partial differential equations for the spatial variables x; and x5
where derivatives are with respect to mapped variables in a space in which the mesh appears
rectangular [138]. For the present problem the physical grid is “cut” along the line x5 = 0
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Figure 5.2: Computational meshes used for blockage ratio A = 0.5. (a) Mesh M1: Number of
degrees of freedom = 102,136. (b) Mesh M2: Number of degrees of freedom = 404,912. (c)
Mesh M3: Number of degrees of freedom = 1,612, 384.

from the rear stagnation point to the outlet before being mapped. The method of Steger and
Sorenson [138] allows both grid cell sizes and grid cell skewness to be controlled at the inner
and outer boundaries. In order to control these parameters the authors solved the following
governing equations:

Eow + Eyy = P1(E) exp(—a(n —m)), (5.11)
Nzx + Nyy = Ql(g) eXP(—b(U - 771))7 (512)

where (&, 1) represents a point in the computational domain, (x1,z5) is denoted by (z,y) and
P, and ), are forcing terms defined at n = n; where the grid points are to be clustered. These
equations can be transformed to the computational domain as

axee — 2PTey + YTyy = —J?(Py exp(—a(n — m))ze + Q1 exp(—b(n — m))x,), (5.13)

ayee — 2BYen + Vyny = — I (Prexp(—a(n — m))ye + Q1 exp(—b(n — m))yy), (5.14)

where J is the Jacobian J = ¢y, — x,y¢ of the transformation and
2 2
o=z, + Y, (5.15)

B = TeTy + YelYp, (5.16)
v = a7 + ;. (5.17)
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To find the forcing terms P; and @ Eqns. (5.13) and (5.14) are applied at n =,
axee — 2BTen + VTnyln=m = B1 = —J*(Pize + Q11y), (5.18)

ayee — 28Yen + VY ln=n = B2 = _J2(P13/§ + Q1yn), (5.19)

and P, and ()7 can be calculated as
P = J 'y, Ry — 2y Ra)|y=n, (5.20)

Q1= Jﬁl(_ySRl + 2 Ro) | y=n, - (5.21)

To control the normal grid space the authors imposed the following condition

ds = v/ dz? + dy2 =14/ [(-'L'n)Q + (yn)2]d77|£=const.a (522)

In order to ensure the orthogonality on the boundary Steger and Sorenson required that
VE-Vn=0= ez, + yeyy. (5.23)

Therefore, using Eqns. (5.22) and (5.23) we can compute z, and y, as

7y = —ye/ /()2 + (ve)? 377 (5.24)
yn = w¢/\/[(w¢)* + (yg)2];l—;- (5.25)

where ds/dn corresponds to the normal grid space. Smoothed out meshes M1-M3 are presented
in Fig. 6.1 and they are characterized by %,,,,: the number of nodes on the surface of the
cylinder, k,,q,: the number of nodes along the line zo = 0 from the rear stagnation point on
the cylinder to the outflow boundary and k,,;: the number of nodes in the gap between the
cylinder and a lateral wall. The values of 4,40, kmaz, kway and N (the number of degrees of
freedom) for the three meshes are supplied in Table 5.1 for different blockage ratios.

5.3 Flow Past an Unbounded Circular Cylinder

Flow around an unbounded circular cylinder is a classical benchmark problem for which a large
number of numerical and experimental results exists. In this problem, and in approximation
to the case of an unbounded flow domain, a circular cylinder of diameter D = 1.0 is placed
symmetrically in a channel with blockage ratio A = 0.01. For the numerical linear stability
analysis the three meshes M1 to M3 were used, with #,,42, kmaez and ke as given in Table 5.1.
However, for unsteady time-dependent simulations we were only able to afford to use M1 and
M2, the unsteady calculations on M3 proving to be prohibitively expensive. On the boundaries
of the computational domain the conditions (5.1)-(5.4) were imposed.

The linear stability analysis predictions of the critical Reynolds and Strouhal numbers cor-
responding to the onset of the first flow instability are supplied in Table 5.2, as computed
on meshes M1 to M3. Also shown are the values of these quantities when extrapolated to
zero mesh size. The extrapolated critical Reynolds number is found to be Re..;;1 = 46.74
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with a corresponding Strouhal number of St..;;; = 0.1167. These values are compared with
others in the literature in the same table. Although we find good agreement for the critical
Reynolds number with the result of Ding and Kawahara [39] (Reqin = 46.389), and Jackson
[72] (Reeripn = 46.184), the critical Strouhal number manifests wider scatter in the cited refer-
ences. Issues such as the blockage ratios chosen, distances from the cylinder of the upstream
and downstream boundaries, boundary conditions, mesh resolution and number of eigenvalues
determined may be amongst the reasons for discrepancies in the numerical results. In addition
to our mesh convergence study, we present a convergence study of the leading eigenvalues on
mesh M1 with the Krylov subspace dimension m and shift parameter A in Table 5.3 in order
to show that our leading eigenvalue is essentially independent of both m and A for sufficiently
large values of these two parameters. Although the leading eigenvalue converges very rapidly
with a suitably chosen complex shift around the leading eigenvalue, it requires complex arith-
metic. A real shift also dramatically improves the convergence of the leading eigenvalue whilst
avoiding complex arithmetic which significantly increases the memory requirements during LU
factorization. Our calculations show that a Krylov subspace dimension as low as 250 can be
enough to compute the leading eigenvalue with A = 0.50 4+ 0.007 whilst with no shift a Krylov
subspace dimension larger than 1000 may be required.

The computed eigenspectrum on mesh M3 at the critical Reynolds number is given in Fig.
5.3. Although we present the first 250 computed eigenvalues, calculations with higher Krylov
subspace dimensions showed that only the leading eigenvalues and the eigenvalues around the
origin were properly converged. As may be seen, the most dangerous eigenvalue pair is well
separated from the rest of the spectrum, unlike the eigenspectrum for the two-dimensional lid-
driven cavity problem (see, for example, Fig. 4.2 of Chapter 4). This is likely to be the reason
for well-developed periodic flow observed far beyond the critical Reynolds number. Our critical
Strouhal number (0.1167) compares very well with the Strouhal number St = 0.1179 computed
at the same Reynolds number (46.74) from a curve fit of the two-dimensional experimental
data of Williamson [151]. In addition, our critical Strouhal number agrees quite well with
the Strouhal number (St = 0.11834) of the direct numerical simulation of Posdziech and
Grundmann [116], even though their critical Strouhal number and ours were computed at two
slightly different Reynolds numbers (Re = 47.50 and Re = 46.74, respectively).

In Fig. 5.4 we present comparisons of the Strouhal number versus Reynolds number and
in Fig. 5.5 comparisons of the drag coefficient Cy = F,/0.5U2 D versus Reynolds number,
in further verification of our numerical scheme. The computed values are supplied in Table
5.4. Our Strouhal numbers were found to be in very good agreement with those from the
experimental work of Williamson [151] for Reynolds numbers up to 200. Beyond this point the
flow becomes three-dimensional and we do not expect to have agreement with the experimental
results. Good agreement was also observed with the two-dimensional numerical simulations
of Henderson [68] and Posdziech and Grundmann [116]. Although both Henderson [68] and
Posdziech and Grundmann [116] used high-order spectral elements the differences between
these two sets of results are due to the use of different blockage ratios in their calculations.
However, as the Reynolds number increases the difference in their computed results becomes
smaller. An interesting convergence study on the extension of the computational domain
boundary is given by Posdziech and Grundmann [116] at Re = 200.00. The authors concluded
that the lateral boundaries should be set at a distance of at least 70 diameters away in order
to obtain a Strouhal number independent of yet smaller blockage ratios. At lower Reynolds
number the effect of the lateral boundaries becomes more severe (see, for example [49]). In
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Figure 5.3: Reciprocal Ritz values for unbounded flow around a circular cylinder at Re =
46.76 computed on mesh M3 with Krylov space dimension m = 250 and shift parameter
A =0.5040.00i (A =0.01).

M1 M2 M3 Extrapolated | Jackson | Ding & Noack & | Chen et al.
Kawahara | Eckelmann
Recrig1 | 47.08 | 46.82 | 46.76 46.74 46.184 46.389 50 47.9
Steritn | 0.1163 | 0.1166 | 0.1167 0.1167 0.13804 | 0.12619 0.132 0.138

Table 5.2: Unbounded flow past a cylinder. Comparison of critical Reynolds numbers computed
on M1-M3 with others in the literature.

[ ] X = 0.00 £ 0.00i | X = 0.25 £ 0.00i | X = 0.50 £ 0.00i |

250 | —2.499530 x 103 £0.716816 | —2.362255 x 10~ % £ 0.730913 | —2.666849 x 105 + 0.730912
500 | +3.029965 x 103 £ 0.726480 | —2.668530 x 10~ ¢ £+ 0.730912 | —2.668473 x 105 4+ 0.730912
1000 | 4+2.230634 x 10~ £ 0.729683 | —2.668474 x 1075 £+ 0.730912 | —2.668473 x 1075 & 0.730912

Table 5.3: Unbounded flow past a cylinder. Convergence of the leading eigenvalue at Re—47.08
on M1 with the Krylov space dimension m and shift parameter .
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a circular cylinder with other results in the literature: (—), numerical results of [68]; (o),
numerical results of [116]; (O0), present (A = 0.01, mesh M2).
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Literature Cy C St
Re=20.00
Dennis & Chang 2.045 - -
Fornberg 2.0001 - -
Ye et al. 2.03 - -
Henderson 2.0587 - -
Posdziech & Grundmann 2.01677 - -
Present 2.0205 - -
Re—=40.00
Dennis & Chang 1.522 - -
Fornberg 1.4980 - -
Ye et al. 1.52 - -
Henderson 1.5445 - -
Posdziech & Grundmann 1.50814 - -
Present 1.5102 - -
Re=100.00
Henderson 1.35000 - 0.166427
Posdziech & Grundmann | 1.32487 + 0.008970 | +0.32104 | 0.16440
Williamson - - 0.1643
Present 1.3349 + 0.0095 +0.3333 0.1654
Re=200.00
Henderson 1.34116 - 0.197072
Posdziech & Grundmann | 1.32564 £ 0.043558 | £0.67315 | 0.19549
Williamson - - 0.1970
Present 1.3396 + 0.0452 +0.6861 0.1977
Re=500.00
Henderson 1.4448 - -
Present 1.4390 £+ 0.2263 +1.1748 0.2297

Table 5.4: Unbounded flow past a cylinder. Comparison with some results in the literature of
lift coefficient (7, drag coefficient C; and Strouhal number St computed on M2 .

addition, Zisis and Mitsoulis [159] showed that the convergence of the total drag at Re=0.00
may be very poor as A goes to zero.

5.4 Flow Past a Confined Circular Cylinder (0.1 < A < 0.9)

Flow around a confined circular cylinder (as opposed to the unbounded case) is an attractive
benchmark problem in numerical simulation since it does not suffer from any of the difficulties
associated with far-field boundary conditions (particularly at very low Reynolds numbers) and
permits the use of grid points more efficiently in smaller computational domains. Somewhat
surprising, therefore, is that the only numerical linear stability analysis of Newtonian flow past
a confined cylinder available in the literature would seem to be that of Chen et al. [29]. These
authors went no further than identifying the curve of neutral stability for the supercritical Hopf
bifurcation at blockage ratios up to A = 0.7. This is regrettable, because as we shall see in
the paragraphs to follow, the linear stability properties of the flow become rich and therefore
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Figure 5.6: Change of critical Reynolds number corresponding to both Hopf and pitchfork
bifurcations with blockage ratio A, computed on M2. AC": curve of neutral stability for Hopf
bifurcations about symmetric solution; C'D: transition curve from asymmetric vortex shed-
ding (smaller A) to a steady asymmetric solution (larger A); C'E: neutral stability curve for
pitchfork bifurcation of steady symmetric solution (smaller A) to a steady asymmetric state
(larger A); F'G: Hopf bifurcation of an asymmetric solution (smaller A) to asymmetric vortex
shedding (larger A). C'is a co-dimension 2 point where Hopf and pitchfork bifurcations occur
simultaneously.

interesting at higher blockage ratios and Reynolds numbers than those considered by Chen et
al. In the present study we consider two-dimensional flow at Reynolds numbers up to 280 and
for blockage ratios in the range 0.1 to 0.9.

5.4.1 Linear stability analysis

The curves of neutral stability computed from the GEVP with a Krylov subspace dimension
m = 250 on mesh M2 for A € [0.1,0.9] and Re < 280 are presented in Fig. 5.6. Our discussion
of these curves will focus on the five distinct curve sections labelled AB, BC', C'D, C'E and
FG in the same figure. The critical Reynolds numbers and corresponding Strouhal numbers
(where appropriate) for points on each curve section and computed on meshes M1 to M3 are
supplied in Table 5.5.

Curve section AB

Validation of our numerical stability analysis and direct numerical simulations for flow past
an unbounded cylinder A &~ 0 has been described in Section 5.3. For the confined cylinder
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Figure 5.7: Reciprocal Ritz values computed on mesh M3 for different blockage ratios with
Krylov space dimension m = 250 and shift parameter A = 0.
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M1 M2 M3 Chen et al.
Curve section A m Recrit Stcrit Recrit Stcrit Recrit Stcrit Recrit Stcrit
(See Fig. 5.6)
AC 0.10 | 500 || 51.00 | 0.1206 || 50.81 | 0.1210 || 50.75 | 0.1211 || 51.77 | 0.1116
0.20 | 250 || 69.86 | 0.1559 || 69.43 | 0.1566 || 69.34 | 0.1567 || 69.93 | 0.1559
0.30 | 250 || 95.24 | 0.2079 || 94.56 | 0.2090 || 94.40 | 0.2093 || 94.85 | 0.2085
0.50 | 250 || 125.23 | 0.3369 || 124.09 | 0.3393 || 123.75 | 0.3399 || 124.58 | 0.3382
0.70 | 250 || 111.32 | 0.4714 || 110.29 | 0.4752 || 110.04 | 0.4762 || 111.04 | 0.4744
0.80 | 250 || 111.45 | 0.5324 || 110.24 | 0.5363 || 109.98 | 0.5374
0.84 | 250 || 114.44 | 0.5530 || 113.69 | 0.5568
0.84 | 250 || 130.92 | 0.5510 || 126.64 | 0.5557
0.80 | 250 || 148.24 | 0.5324 || 144.19 | 0.5383 || 143.29 | 0.5398
0.76 | 250 || 169.75 | 0.5115 || 165.49 | 0.5186
0.72 | 250 || 198.94 | 0.4872 || 193.25 | 0.4955
0.70 | 250 || 218.03 | 0.4737 || 211.01 | 0.4827 || 209.40 | 0.4851
CE 0.70 | 250 || 221.87 216.75 215.53
0.72 | 250 || 210.17 205.95
0.76 | 250 || 190.65 187.01
0.80 | 250 || 173.97 169.49 168.29
0.84 | 250 || 161.57 158.15
0.88 | 250 || 152.93 149.84
0.90 | 250 || 147.78 145.27 144.70
CD 0.68 | 250 || 237.33 | 0.4596 || 231.06 | 0.4695
0.66 | 250 || 259.55 | 0.4477 || 253.08 | 0.4566
0.64 | 250 || 284.56 | 0.4351 || 278.01 | 0.4441
0.62 | 250 || 312.66 | 0.4235 || 306.27 | 0.4326
FG 0.82 | 250 319.80 | 0.4664
0.82 | 250 227.44 | 0.4719
0.84 | 250 || 331.02 | 0.4954
0.84 | 250 || 214.00 | 0.4794 || 194.30 | 0.4979
0.88 | 250 || 180.43 | 0.5097 || 171.28 | 0.5234
0.90 | 250 || 169.44 | 0.5146 || 162.82 | 0.5202 || 160.50 | 0.5212

Table 5.5: Convergence of critical Reynolds number for different blockage ratios with A =

0.00 £ 0.002
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Figure 5.8: Change of base flow with critical Reynolds number and blockage ratio A, computed
on M2.

problem we have been able to compare our critical Reynolds and Strouhal numbers for the
bifurcation for the symmetric state with the values for these quantities computed by Chen et
al. [29]. The available results (0.1 < A < 0.7) of the critical Reynolds number calculations
of Chen et al. are plotted in Fig. 5.6 and agreement between our results and theirs over this
limited section of the curve AB is excellent. Similarly excellent agreement in the computed
Strouhal numbers was seen over the same range of blockage ratios, both our results and those
of Chen et al. revealing a monotonic increase in the critical Strouhal number with the blockage
ratio (see Table 5.5.)

Up to a blockage ratio A = 0.5 Table 5.5 and the neutral stability curve AB of Fig. 5.6
indicate that the flow becomes more stable to two-dimensional infinitesimal disturbances as
the blockage ratio increases. The eigenspectrum resulting from the GEVP computed with the
Krylov subspace dimension m = 250 and on mesh M3 for the points on AB corresponding
to blockage ratios of 0.2, 0.3, 0.5 and 0.7 are shown in the upper four plots of Fig. 5.7. The
positions of the leading eigenvalues indicate that the flow loses stability to a Hopf bifurcation
and that the Strouhal number over this range of blockage ratios is increasing. Between A = 0.75
and 0.85 it may be seen from Table 5.5 and section AB of Fig. 5.6 that the flow restabilizes
slightly leading up to point B (A = Ap ~ 0.855). In Fig. 5.8 we show the streamlines of the
steady base flow at seven points on the neutral stability curves. Those corresponding to point
1 are typical of those at points on and below curve AB in Fig. 5.6 where the steady solution
is symmetric and the only recirculatory region observed is the vortex pair immediately in the
wake of the cylinder itself. That is, for solutions corresponding to parameter space on and
below AB in Fig. 5.6 no flow separation on the walls is observed.
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Curve sections BC and CFE

In Fig. 5.6 section BC represents the part of the critical A — Re curve on which the time-
dependent state (symmetric periodic oscillations), passed into by crossing AB in the direction
of increasing Reynolds number, restabilizes to a symmetric steady state once more. Further
increases in the Reynolds number for blockage ratios in the range A¢ to A or for choices of
A greater than Ap may result in the steady symmetric solution becoming unstable to two-
dimensional perturbations via a pitchfork bifurcation into one of two asymmetric states. The
curve of neutral stability for this transition is labelled C'E in Fig. 5.6.

The point C'is a co-dimension 2 point where Hopf and pitchfork bifurcations occur simulta-
neously. We are able to estimate the coordinates (Aq, Reg;;) of this point by considering it to
be the point of intersection of two straight lines drawn through the pairs of points on AC', C'D
and EC that correspond to A = 0.68 and 0.7. Since A = 0.68 is outside the range of blockage
ratios corresponding to E'C' the ordinate for this value of A is computed to be that at which the
leading real eigenvalue in the spectrum of linear perturbations about the (linearly unstable)
steady symmetric solution is at the origin. The critical Reynolds numbers at A = 0.68 and
0.7 computed on curves AC, C'D and EC are detailed in Table 5.5 and lead to the estimate
(Ac, Regrir) = (0.687,224.142).

The occurrence of the transition from a symmetric steady state to an asymmetric one
on C'FE is preceded (in Reynolds number) by the appearance in the streamlines of a pair of
downstream separation bubbles on the walls. For example, in the eigenspectrum we observed
that for A = 0.9 and at Reynolds numbers increasing up to approximately 110 the complex
conjugate pair of leading eigenvalues moved in the direction of the positive real part of the
spectrum. At a Reynolds number of around 110 separation bubbles appeared on the walls and
with the appearance of the separation bubbles the leading eigenpair now started to move in
the opposite direction while the eigenvalue on the real axis having largest real part moved right
towards the origin. In Fig. 5.8 we plot the streamlines on BC' at points 2 and 3 to demonstrate
how the size of these recirculatory regions as well as their attachment distance downstream
of the cylinder increase as C' is approached along the curve BC'. In the context of a circular
cylinder near a plane boundary such downstream separation bubbles have been observed both
experimentally [14] and numerically [160| for cylinders sufficiently close to the boundary.

To gain further insight into the flow transition from steady symmetric flow (between BC'
and CE and for A > Ap) via a pitchfork bifurcation to steady asymmetric flow (between
DFE and FG) we plot in Fig. 5.9 the streamlines of two solutions at a Reynolds number of
150 and blockage ratio of 0.9. It may be seen from Fig. 5.6 that this point lies between F
(Re =144.7,A = Ap = 0.9) and G (Re = 160.5, A = A = 0.9). Thus, the symmetric solution
in the upper plot in Fig. 5.9 is linearly unstable and the lower plot represents the streamlines
of one of the stable asymmetric solutions. The disturbance velocity v in equation (2.4) is,
of course, solenoidal. In Fig. 5.10 we plot the streamlines associated with the disturbance
field and corresponding to the dominant eigenvalue at E. The addition of a multiple of the
eigenvector shown in Fig. 5.10 to the symmetric steady base flow leads to one or other of the
two asymmetric steady flows, the choice dependent on the direction of circulation around the
symmetric streamlines in Fig. 5.10. An anti-clockwise direction leads to reinforcement of the
lower recirculation region and reduction in the size of the upper bubble. A clockwise direction
has the opposite effect. The drag coefficient associated with the steady asymmetric solution
shown in Fig. 5.9 is slightly larger than that of the corresponding unstable symmetric one.
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Figure 5.9: Streamlines of unstable symmetric and stable asymmetric solutions at Re—=150.00

for A = 0.9 computed on M3.
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Figure 5.10: Streamlines for the disturbance velocity corresponding to the first leading eigen-

vector at Re—=144.70 for A = 0.9 computed on M3.
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Figure 5.11: Streamlines for the disturbance velocity corresponding to the second leading

eigenvector at Re—=144.70 for A = 0.9 computed on M3.
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The eigenspectrum at E' is shown in the lower left plot of Fig. 5.7.

Curve section CD

The section of the neutral stability curves labelled C'D in Fig. 5.6 represents a transition curve
with increasing A from periodic vortex shedding to the left of this curve (smaller A) to a steady
asymmetric state (larger A). At point C the steady solution is symmetric but moving along
the curve C'D towards D causes the growth of one of the recirculatory wall regions relative to
the other.

Since all curves of neutral stability in Fig. 5.6 have been determined using a linear stability
analysis about a steady flow as described in Sec. 5.2 we have been unable to plot the precise
boundaries of the transition region that must exist from symmetric oscillations to asymmetric-
in-time oscillations as the curve CD is approached in parameter space from the left (smaller

A).

Curve section F'GG

Finally, the steady asymmetric solution of the region between curves DFE and F'G can become
unstable via a Hopf bifurcation to unsymmetric vortex shedding (see discussion in Section
5.4.2). The transition curve is plotted as F'G and the streamlines of two steady base flows at
points 6 and 7 of this curve are shown in Fig. 5.8. In Fig. 5.11 we plot the streamlines of
the disturbance velocity corresponding to the leading complex eigenvalue pair in the spectrum
shown in the lower left-hand plot of Fig. 5.7 (point E). It is the addition of a mode similar
in form to this (but at a higher Reynolds number) that leads to vortex shedding about the
asymmetric state. The eigenspectrum for perturbations about the steady asymmetric base flow
at F is shown in the lower right plot of Fig. 5.7. If the Reynolds number is further increased
on the curve F'G additional separation bubbles appear on the wall further downstream. We
also remark that on the curve F'G the separation bubble just behind the cylinder is generally
shorter and more rounded than that computed on the curves BC' and CD.

A strong parallel is thus seen in the present results with those of numerous other au-
thors (see, for example [13, 41, 48, 67, 100, 110]) for flows through both two-dimensional
and three-dimensional symmetric expansions. All the cited authors report that steady flow
with symmetric recirculatory regions through an expansion geometry encounters a supercriti-
cal pitchfork bifurcation at a certain Reynolds number (dependent, of course, on the channel
geometry) and becomes asymmetric. The difference in the streamwise attachment length of the
two recirculatory regions (still in the steady regime) becomes larger as the Reynolds number is
further increased from the critical value. In the two-dimensional case, increasing the expansion
ratio decreases the critical Reynolds number [13]. In the three-dimensional case, Schrek and
Schifer [129] found that fixing the expansion ratio at 1 : 3 and decreasing the width of the
channel relative to the downstream channel height from oo (two-dimensional flow) through 5
to 2 resulted in a stabilization of the flow.

It will be noted from Table 5.5 that for the choices of A = 0.82 and 0.84 critical Reynolds
numbers of 319.8 and 331.02, respectively, are added to those that are shown in Fig. 5.6. This
is to indicate how the curve F'G would continue if the range of Reynolds numbers were to be
extended in Fig. 5.6, although at these higher Reynolds numbers it is highly unlikely that the
flow would in reality remain two-dimensional.
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5.4.2 Direct numerical simulations

A few verifications were performed on the results of our direct numerical simulations in or-
der to establish their reliability. First, Strouhal numbers near the critical Reynolds numbers
corresponding to the onset of periodic vortex shedding and computed with direct numerical
simulation were found to be in good agreement in a couple of cases with those predicted on the
basis of the eigenvalue analysis of Section 5.4.1. For example, at a blockage ratio of A = 0.3
and at Re = 100 the corresponding Strouhal number was computed from the lift coefficient
data over extended time intervals and found to be equal to 0.2115. This compares well with the
value of 0.2090 supplied in Table 5.5 and computed at Re..; = 94.56. Secondly, we present in
Table 5.6 results of computations using the three meshes M1 to M3 of the drag on the cylinder
for various blockage ratios. These are compared with the recent numerical data of Zisis and
Mitsoulis [159] and Liu et al. [90] and the agreement is convincing. It should be further added
that the drag result of Liu et al. for A = 0.1 is within 0.007% of the theoretically predicted
value of Faxén [47]. The drag coefficient versus Reynolds number is given in Fig. 5.12 for
several blockage ratios. At all the blockage ratios considered here the drag coefficient behaves
like 1/Re at low Reynolds numbers. As the blockage ratio increases the range of values of Re
over which this remains true gets larger. A full presentation of our predictions of C}, C; and
St for blockage ratios from 0.1 to 0.9 and Reynolds numbers from 0.1 to 200 is to be found in
Table 5.7.

In order to elucidate the variation in the critical Reynolds number with blockage ratio
observed from the eigenvalue analysis of Section 5.4.1 we used direct numerical simulation to
investigate the wake structure at five different locations in the A — Re parameter space and
labelled 1-5 in Fig. 5.13. As an aside and before discussing our results in detail we simply note
that at blockage ratios A < 0.5 direct numerical simulations revealed that the vortex shedding
over the cylinder was quite similar to that of the unbounded case, although the vortex street
is shorter due to shear in the free stream.

Time-dependent solutions are presented in Fig. 5.14 for A = 0.5 at a Reynolds number
of 200 (point 1 of Fig. 5.13). At this Reynolds number the flow has lost its stability to two-
dimensional disturbances and has become time-periodic with St = 0.3513, which is higher
than for unbounded flow around a circular cylinder (St = 0.1965). The sequences of three
“snapshots” in Fig. 5.14 are taken at times t = 0, T'/3 and 27'/3, the period T being approxi-
mately equal to 2.85 and determined from the lift coefficient data (part of which is shown in
Fig. 5.15) over long time periods. ¢ = 0 corresponds to a minimum in the lift coefficient once
fully periodic vortex shedding is established. In Fig. 5.16 we show the C; — C; phase-space
plot and the average lift is zero. It may be seen from Fig. 5.14(a)-(c) that vortex shedding
occurs both from the cylinder and the channel walls. As these vortices move downstream the
trajectories of clockwise vortices shed from the upper part of the cylinder cross those having
opposite sign (and shed from the lower part of the cylinder) so that wall proximity effects are
seen to give rise to a reverse von Karmén street. The same phenomenon has been documented
by other authors [160].

At a blockage ratio of 0.7 the flow is periodic at a Reynolds number of 200.00 (point 2
of Fig. 5.13) with St = 0.4881. The streamlines and vorticity contours at times ¢t = 0, 7'/3
and 27/3 are shown in Fig. 5.17(a)-(c), with the period T &~ 2.05s. Unlike in the case of
A = 0.5 described in the paragraph above, vortex shedding from the cylinder seems to be
almost suppressed at this Reynolds number, due to the proximity of point 2 to the curve of
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| A | M1 | M2 M3 | Extrapolated | Zisis & Mitsoulis | Liu et al.
0.1 8.9125 8.9100 8.9089 8.9080 8.912 8.9067
0.2 | 1.6221 x 10" | 1.6215 x 10" | 1.6211 x 10" | 1.6200 x 10" - -
0.3 | 2.7923 x 10! | 2.7910 x 10" | 2.7902 x 10" | 2.7886 x 10" - -
0.5 | 8.8354 x 10! | 8.8294 x 10" | 8.8263 x 10" | 8.8227 x 10" 8.8207 x 10! 8.8227 x 10!
0.7 | 4.0347 x 10% | 4.0318 x 10% | 4.0299 x 10% | 4.0257 x 102 - -
0.9 | 7.7057 x 10® | 7.6988 x 10 | 7.6959 x 10° | 7.6941 x 103 - -

Table 5.6: Comparison with the results of Zisis and Mitsoulis [159] and Liu et al. [90] of

computed total drag at Re=0.0 for different blockage ratios A.
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Figure 5.12: Computed drag coefficient versus Reynolds number at blockage ratios A =
0.1,0.3,0.5,0.7 and 0.9.
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| A | Ca | G [ St ]

Re=0.10
0.10 1.7823 x 102
0.20 3.2423 x 102
0.30 5.5804 x 102
0.50 1.7653 x 103
0.70 8.0598 x 103
0.90 1.5392 x 10°

Re=1.00
0.10 1.8298 x 10!
0.20 3.2574 x 10
0.30 5.5875 x 10!
0.50 1.7656 x 102
0.70 8.0601 x 102
0.90 1.5392 x 10%

Re=10.00
0.10 3.0758
0.20 4.1081
0.30 6.1464
0.50 1.7957 x 10"
0.70 8.0891 x 10"
0.90 1.5400 x 103

Re=20.00
0.10 2.1218
0.20 2.6248
0.30 3.6052
0.50 9.3786
0.70 4.0874 x 10*
0.90 7.7124 x 102

Re=40.00
0.10 1.5412
0.20 1.8264
0.30 2.3664
0.50 5.3470
0.70 2.1298 x 10!
0.90 3.8816 x 102

Re=100.00
0.10 1.2799 + 0.0084 +0.3066 | 0.1607
0.20 1.3222 + 0.0039 +0.2231 | 0.1718
0.30 1.5770 £ 0.0004 +0.0943 | 0.2115
0.50 3.1570
0.70 1.0782 x 10!
0.90 1.6438 x 102

Re=200.00
0.10 1.2768 + 0.0416 +0.6446 | 0.1932
0.20 1.2385 + 0.0328 +0.5718 | 0.1948
0.30 1.3540 + 0.0191 +0.4826 | 0.2216
0.50 2.4250 + 0.0034 +0.2556 | 0.3513
0.70 7.8013 & 0.0003 +0.0993 | 0.4881
0.90 1.0092 x 10% £ 1.1676 | +£6.9909 | 0.5314

Table 5.7: Comparison of computed lift coefficient ), drag coefficient C; and Strouhal number
St on M2.
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Figure 5.13: Change of time-dependent flow with Reynolds number and blockage ratio A,
computed on M2.

neutral stability BC'. However, there are very weak vortices shed from both upper and lower
lateral walls. These are well separated from each other and their interaction is weak. The
graphs of the lift and drag coefficients at this blockage ratio are shown in Fig. 5.18 over several
cycles of the vortex shedding. Although the time-averaged value of the drag coefficient C; has
increased it is notable that the amplitude of the C, oscillations is an order of magnitude less
than that seen at A = 0.5. It may seen more clearly from Fig. 5.19 that the average lift is
slightly larger than zero.

At a blockage ratio of 0.9 and Re > 160.5 the flow is unsteady and very strong vortices are
shed from both the cylinder and the walls. The computed streamlines and vorticity contours
at Re = 200.00 (point 3 of Fig. 5.13) are shown in Fig. 5.20(a)-(c), each separated from
the previous in the series by a third of a period T'/3. At this Reynolds number the flow is
periodic with St = 0.5314 (T & 1.88) and this compares reasonably well (see Table 5.5) with
the Strouhal number of 0.5202 computed from the GEVP on mesh M2 at the critical Reynolds
number Re..;; = 162.82. Vortices having the same sign merge just behind the cylinder and are
then transported downstream. However, the vortex street formed behind the cylinder is quite
different from the well-known von Karmaéan street in that very strong opposite-sign vortices
with smaller structure move downstream and interact with the wall, creating strong vortices
there. Although the streamlines of the eigenvector shown in Fig. 5.11 will be slightly modified
by the time the Reynolds number reaches 200, the size of the cellular structures in the wake
of the eigenvector are close to what is seen in the direct numerical solution for the vorticity
in Fig. 5.20. Oscillations are now about an asymmetric state and lead to drastic increases in
both the lift and drag coefficient values. Their variation with dimensionless time is shown in
Fig. 5.21 and their phase-space plot is shown in Fig. 5.22. In this figure it may be seen that
not only is the time-averaged value of C; greater than for the two previous blockage ratios
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D/H=0.50 Re=200.00

(c)

Figure 5.14: Streamlines (upper plots) and vorticity contours (lower plots) of the periodic flow
at (a) t = 0, (b) T/3 and (c) 27/3 for Re = 200.00 and A = 0.5 (point 1 in Fig. 5.13)
computed on M2. ¢t = 0 corresponds to the solution having minimum lift coefficient and the
period 1" =~ 2.85.
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Figure 5.15: Time variation of lift and drag coefficients with non-dimensional time (tU,,4../D)
at Re=200.00 for A = 0.5 (point 1 in Fig. 5.13) computed on M2.
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Figure 5.16: Phase-space plots of lift and drag coefficients parametrized with non-dimensional

time (tUpaz/D), computed on M2 at Re = 200.00 and A = 0.5 (point 1 in Fig. 5.13).
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D/H=0.70 Re=200.00
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Figure 5.17: Streamlines (upper plots) and vorticity contours (lower plots) of the periodic flow
at (a) t =0, (b) T/3 and (c¢) 27°/3 for Re=200.00 and A = 0.7 (point 2 in Fig. 5.13) computed
on M2. t = 0 corresponds to the solution having minimum lift coefficient and the period
T ~ 2.05.
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Figure 5.18: Time variation of lift and drag coefficients with non-dimensional time (tU,,4../D)
at Re=200.00 for A = 0.7 (point 2 in Fig. 5.13) computed on M2.
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Figure 5.19: Phase-space plots of lift and drag coefficients parametrized with non-dimensional
time (tUpaz/D), computed on M2 at Re = 200.00 and A = 0.7 (point 2 in Fig. 5.13).
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Figure 5.20: Streamlines (upper plots) and vorticity contours (lower plots) of the periodic
solution at (a) ¢t =0, (b) T/3 and (c) 27'/3 for Re=200.00 and A = 0.9 (point 3 in Fig. 5.13)
computed on M2. t = 0 corresponds to the solution having minimum lift coefficient and the
period T =~ 1.88.
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Figure 5.21: Time variation of lift and drag coefficients with non-dimensional time (tU,,4../D)
at Re=200.00 for A = 0.9 (point 3 in Fig. 5.13) computed on M2.
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Figure 5.22: Phase-space plots of lift and drag coefficients parametrized with non-dimensional
time (tUpaz/D), computed on M2 at Re = 200.00 and A = 0.9 (point 3 in Fig. 5.13).
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D/H=0.80 Re=200.00
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Figure 5.23: Streamlines (upper plots) and vorticity contours (lower plots) of the periodic
solution at (a) ¢ = 0, (b) 7/3 and (c) 27'/3 for Re=200.00 and A = 0.8 (point 4 in Fig. 5.13)
computed on M2. ¢t = 0 corresponds to the solution having minimum lift coefficient and the
period T =~ 1.815.
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Figure 5.24: Time variation of lift and drag coefficients with non-dimensional time (tU,,4../ D)
at Re=200.00 for A = 0.8 (point 4 in Fig. 5.13) computed on M2.
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Figure 5.26: Streamlines (upper plots) and vorticity contours (lower plots) of the periodic
solution at (a) ¢ = 0, (b) 7/3 and (c) 27'/3 for Re=160.00 and A = 0.8 (point 5 in Fig. 5.13)
computed on M2. ¢t = 0 corresponds to the solution having minimum lift coefficient and the
period T =~ 1.806.
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Figure 5.27: Time variation of lift and drag coefficients with non-dimensional time (tU,4../D)
at Re=160.00 for A = 0.8 (point 5 in Fig. 5.13) computed on M2.
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Figure 5.28: Phase-space plots of lift and drag coefficients parametrized with non-dimensional
time (tUpnez/ D), computed on M2 at Re = 160.00 and A = 0.8 (point 5 in Fig. 5.13).
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considered, but the amplitudes of oscillation of both coefficients has dramatically increased
after a tendency observed up to A & 0.75 of successively diminishing amplitudes. We also note
for the first time that the lift coefficient is no longer symmetric in the rising and falling parts
of each cycle, due to the fact that the base flow is itself asymmetric.

The flow behavior in the parametric region between curves BD and F'G is particularly
interesting since although the steady base flow solutions are linearly stable they appear to be
finitely unstable. Although our primary concern in this chapter is the study of wall effects
on the linear stability of flow past a confined cylinder, in Fig. 5.13 we plot the instantaneous
streamlines of two pairs of different solutions, both pairs being for a blockage ratio A = 0.8 but
corresponding to two different values of Re: at point 4 Re = 200 whereas at point 5 Re = 160.
Shown in the uppermost plots at points 4 and 5 are the steady and linearly stable solutions,
but these may be sent into permanently unsteady states by running, for example, the time-
dependent code with the geometrically-rescaled steady base flow of point 2 (A = 0.7, Re = 200)
as the initial “guess”. Snapshots of unsteady flow at times ¢t = 0, T'/3 and 27'/3 at point 4
are presented in Fig. 5.23(a)-(c), with the period T & 1.815. Unlike the other unsteady cases
considered so far in this chapter, the recirculation regions on the upper wall are much larger
than those on the lower wall and they can move far downstream. Additionally, the recirculatory
region at the lower part of the cylinder is larger than that at the upper part. This asymmetry
may be seen from the lift coefficients in Fig. 5.24 and Fig. 5.25. The time average of the lift
coefficient is no longer zero and the lift curve is asymmetric in the rising and falling part of
each cycle, similar to that at point 3. However if the Reynolds number is chosen equal to 160
(point 5 in Fig. 5.13) the time average of the flow becomes symmetric since point 5 is below
the curve C'E. The computed streamlines and vorticity contours are given in Fig. 5.26(a)-(c)
with 7" =~ 1.806. At this point the flow structure is quite similar to that of point 2 with vortex
shedding from the upper and lower walls. The lift and drag coefficients which are given in Fig.
5.27 and 5.28 are also similar to those of point 2 with zero time average of the lift coefficient.

Numerical experiments at a blockage ratio of 0.9 and a Reynolds number of 500 indi-
cated that the flow had become chaotic. However, it seems unlikely that the flow is still
two-dimensional at this Reynolds number and presentation of our results will have to await a
fully three-dimensional analysis.

5.5 Conclusions

In this chapter we have computed with greater accuracy and over a larger range of blockage
ratios than has proved possible in the past the effects on the drag and linear stability of lateral
wall proximity for flow past a cylinder at Reynolds numbers up to 280.

Some of the rich and complex dynamics of the system for sufficiently high Reynolds numbers
and blockage ratios have been uncovered and discussed. In particular, we have found that
for Re < 280 and A < 0.9 there are (at least) three separate curves of neutral stability:
(a) Hopf bifurcation of a symmetric state, (b) pitchfork bifurcation of a symmetric state to
one of two asymmetric states, and (¢) Hopf bifurcation of an asymmetric state leading to
asymmetric oscillations thereafter. In addition, we have drawn attention to a transition region
from symmetric vortex shedding to asymmetric vortex shedding with increasing blockage ratio.
Further increases in the blockage ratio (crossing C'D in Fig. 5.13) leads to restabilization to a
steady asymmetric solution.
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A co-dimension 2 point where pitchfork and Hopf bifurcations occur simultaneously has
been identified and a region in parameter space (either side of the locus of the pitchfork
bifurcation) seems to exist where the steady solution is linearly stable but unstable to finite
two-dimensional perturbations.



Chapter 6

Viscoelastic Flow Past a Confined
Circular Cylinder

6.1 Introduction

Literally hundreds of papers, both experimental and numerical, have appeared in the scien-
tific literature on the subject of bluff body wake instabilities since the pioneering work of von
Kéarman in 1912 [147]. In his recent review of the literature Williamson [153] includes a re-
capitulation of the now well-known vortex shedding regimes observed in unbounded flows of
Newtonian fluids past a single cylinder. For Reynolds numbers up to about 260 Williamson
identified two principal regimes. Firstly, at a Reynolds number greater than approximately
49, transition to two-dimensional laminar vortex shedding is via a supercritical Hopf bifurca-
tion and manifests itself through increases in the amplitude of the maximum wake velocity
fluctuations and a decrease in the formation length (distance downstream of the cylinder to
the point where the rms velocity fluctuations are a maximum). Second, in the so-called wake-
transition regime, three-dimensional vortical instabilities are seen from Reynolds numbers of
approximately 190 onwards and this regime is characterized by two distinct discontinuities in
the Strouhal number-Reynolds number curve [150]. The first (hysteretic) discontinuity marks
the appearance of vortex loops, streamwise vortex pairs being shed at wavelengths of approxi-
mately 3-4 cylinder diameters (mode A instability [152]) whilst the second (mode B instability)
appears in the Reynolds number range 230 to 250 and is typified by finer-scale streamwise vor-
tices. More details of these vortex shedding regimes may be found in Section 5.4.2.

We divide our review of research results on viscoelastic bluff body wake instabilities into
subsections dealing with (a) purely elastic (Re = 0) instabilities in the wake of bluff bodies and
(b) the influence of polymer additives on shear instabilities in the wake for sufficiently large
Reynolds numbers.

6.1.1 Purely elastic instabilities

The first experimental study of elastic instabilities in creeping viscoelastic flow past a con-
fined cylinder was made by McKinley and co-workers [94] in 1993. The authors worked with
a Boger-type fluid consisting of a very dilute solution of polyisobutylene (PIB) in a poly-
butene/tetradecane solvent and the geometry consisted of a cylinder mounted centrally in a
rectangular channel with a blockage ratio A (equal to the ratio of the cylinder diameter to
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the channel height) taken for most of the experiments equal to 0.5. At a shear-rate-dependent
Deborah number De of 1.3 and at a Reynolds number not exceeding 0.05 a steady three-
dimensional flow instability confined to the narrow region of strongly extensional flow near
the rear stagnation point of the cylinder was reported. The instability appeared as a three-
dimensional cellular structure that extended along the length of the cylinder with spatially
periodic oscillations in the axial velocity field profiles intensifying as the Deborah number was
increased from 1.3. The wavelength of these flow perturbations scaled with the cylinder radius.
A second flow transition, this time to a time-periodic instability was seen for De > 1.85, the
cellular structure now moving slowly along the length of the cylinder towards the channel walls
and time-dependent velocity oscillations being observed in the wake. Since 1993 other notable
experimental investigations into purely elastic wake instabilities for flow past single confined
cylinders or periodic arrays of cylinders are those of Byars [22|, Liu [89] and Arora et al. [7]
and more details of these are supplied at various points in the succeeding paragraphs.

Of fundamental importance has been the establishment of criteria for the critical conditions
for the onset of the observed elastic instabilities. McKinley et al. [95] and Pakdel and McKinley
[113]| suggested in 1996 that for shear-dominated flows the destabilizing mechanism was a
combination of streamline curvature and elastic normal stresses, giving rise to an extra tension
along the streamlines, the onset Deborah number thus scaling with the streamline curvature.
The analysis of McKinley et al. [95] seemed to do well in predicting the experimentally-
determined critical Deborah numbers of Byars [22] and McKinley et al. [94] and, much more
recently, Arora et al. [7] have confirmed that for their experiments with PIB-based Boger fluids
in a periodically undulating channel and past a periodic array of closely-spaced cylinders, the
onset Weissenberg numbers, when scaled with streamline curvatures for the two periodic flows,
were very close to each other within experimental uncertainty. The authors therefore concluded
that the observed instabilities arose from the coupling between streamline curvature and elastic
normal stresses.

Attempts at numerically determining the linear stability and non-linear dynamics of creep-
ing viscoelastic flow past isolated cylinders have met with only limited success and to date
no purely elastic instability has been predicted numerically. In 1999 Sureshkumar et al. [139]
investigated the linear stability of flow of an Oldroyd B fluid through a linear periodic ar-
ray of cylinders and used a finite element DEVSS-G/SUPG /6 method to solve the linearized
transient perturbation equations. Results were presented for two-dimensional perturbations
to two-dimensional flow with a blockage ratio A equal to 0.5. Denoting a cylinder radius by
R, distances between successive cylinders ranged from 2.5R (closely spaced) to 30R (widely
spaced). For Deborah numbers up to 0.71 the flow was predicted to be linearly stable for
cylinder separations of 30R and 6 R. However, for the most closely spaced cylinders a critical
Deborah number of approximately 0.64 was found, associated with a possible Hopf bifurcation
from the base flow. No secondary flow was observed near the cylinder surface. Instabilities
were also found for separation distances of 3R and 3.5R and the critical Deborah numbers for
the onset of instabilities were shown to scale with the cylinder-to-cylinder separation distance.

A year later the same authors [133]| reported that the calculations in [139] were not con-
verged with mesh refinement and that in fact the numerical evidence now led to the conclusion
that two-dimensional flow of an Oldroyd B fluid was stable to two-dimensional perturbations,
even with a cylinder separation distance of 2.5R. In [133] Smith et al. used SUPG and DG
finite element discretizations and both the # method and a fourth-order Runge-Kutta method
for time integration of the linearized equations corresponding to three-dimensional perturba-
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tions of two-dimensional Oldroyd B flow past a single confined cylinder at a blockage ratio of
0.5. Computations were continued up to a Weissenberg number of 0.75 and the flow was com-
puted to be stable over this range, in contradiction with the experimental results of Byars [22],
who reported a transition from the two-dimensional base flow to a three-dimensional cellular
structure in the wake at a Weissenberg number of 0.5.

In an extension of their earlier paper, Smith et al. [134] used a DEVSS-G/SUPG /6 method
and a Krylov subspace method for computing a subset of the eigenspectrum that results from
assuming the long-time response of the perturbations to have the form exp (o). Their analyses
concerned the linear stability of two-dimensional base flows to three-dimensional perturbations.
Although for a cylinder spacing of 2.5R there was remarkably good agreement with the crit-
ical Weissenberg number predicted by Liu [89] for flow of a PIB Boger fluid, two important
discrepancies existed between the simulations and the experiments. Firstly, the transition
at Weeiy = 1.53 observed by Liu was to a time-periodic state, whereas at the numerically-
determined critical value of Smith et al. (We.; = 1.55) the calculated three-dimensional
structure was steady. Second, whereas the analysis with the Oldroyd B fluid predicted that
Weerir tncreased with cylinder separation, Liu saw exactly the opposite trend.

6.1.2 Modification to the wake by polymer additives

There exist very many experimental studies of viscoelastic flow past a cylinder which present
measurements, for example, of the heat transfer characteristics (e.g. [73, 74|), of the changes
in the drag (e.g. [19, 51, 73, 74, 98, 128]) and of the shift in the streamlines and velocity
profiles (e.g. [82, 93, 144]) brought to bear by viscoelasticity. In this subsection, and with
a concern for a focussed presentation, however, we nimbly skip over these papers (as well as
numerous similarly-minded numerical studies) and concentrate on the question of how the shear
instabilities observed in the wake of Newtonian fluids for sufficiently high Reynolds numbers
are modified by the addition of small amounts of polymer.

Gadd [51] in 1966 measured the Strouhal number at a Reynolds number of 240 for jets of
various fluids flowing past a wire placed transversely to the axis of the jet. A reduction in the
shedding frequency relative to that of water was observed when the jet consisted of solutions
of polyethylene oxide (PEO). The author used concentrations varying from 5 to 40 wppm.
The Strouhal number was also observed to decrease with increasing concentration. No such
changes in the shedding frequency were seen, however, in concentrations of polyacrylamide and
guar gum that produced the same order of turbulent drag as the 15 wppm concentration PEO
solution.

Working with water and a PEO solution at a concentration of 100 wppm past wires of
varying diameters and at Reynolds numbers up to almost 400, Kalashnikov and Kudin [77]
demonstrated that the vortex shedding frequency was much lower for the polymer solution
than for water. The authors were able to attribute the reduction in shedding frequency for any
given wire to viscoelasticity since when the same concentration of an inelastic solution of PEO
was used in the flow around a wire the frequency of the Karman vortex street was higher than
for the Newtonian fluid. The same observation was made for a 500 wppm solution of (inelastic)
guar gum. Thus, some of the results of Gadd [51] were extended and made more precise. It
is also of interest to note from the paper of Kalashnikov and Kudin [77] that the addition of
polymer seemed to destabilize the flow in that the Reynolds number Re,s at which the first
vortices appeared were less than for the water for all cylinder diameters, the reduction being
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greatest for the wires having the smallest diameter. Here, however, it is not possible to claim
viscoelasticity as the sole explanation since the same phenomenon was seen with the solutions
of inelastic polymer.

Sarpkaya et al. [128] worked with solutions of the same PEO as Gadd [51] and Kalashnikov
and Kudin [77], although at different concentrations. Reynolds numbers for the experiments
were selected in the range 5 x 10* to 3 x 10° and the general conclusion was that polymer
additives precipitated the occurrence of flow characteristics normally seen at higher Reynolds
numbers in a Newtonian fluid.

In the experiments of Usui et al. [145], a striking suppression of vortex formation for flow
of solutions of PEO at various concentrations (¢ = 100,200 and 400 wppm) was observed in
the flow regime Re < 300. Consistent with the findings of Kalashnikov and Kudin [77], Usui
et al. [145] demonstrated that an increase of polymer concentration or a decrease of cylinder
diameter further reduced the Strouhal number at a given Reynolds number. The authors were
able to establish a strong correlation between the Strouhal number and a Weissenber number
We and equally with the square root of the reciprocal of the elasticity number E = Re/We.
Although not stated by the authors explicitly it would seem (see their Fig. 3) that Re,s; became
smaller with increasing concentration and/or decreasing cylinder diameter than the Re, for a
Newtonian flow.

In an experimental investigation of the effect of polymer additives on laminar separation
in flow past a cylinder, Kim and Telionis [79] performed experiments at Reynolds numbers
of the order of 10* with solutions of polyacrylamide and PEO. The results presented for the
polyacrylamide solution showed that for the lowest Reynolds numbers (= 10*) the Strouhal
numbers were slightly lower than for water, in qualitative agreement with Usui et al. [145]
(who nevertheless operated at much lower Reynolds numbers). Overall, however, the authors
concluded that polymer additives had no effect on the frequency of vortex shedding.

Thus far in our review the polymer solutions used in the experiments have been homo-
geneous. In two papers [23, 24| dating from 1999 and 2000, however, the authors chose to
inject solutions of PEO through holes pierced on the upstream side of the cylinder into the
mainstream flow of water. In [23] Cadot and Lebey performed experiments of two-dimensional
flow past a cylinder at a Reynolds number of 185 with injection of solutions of polymers hav-
ing two different molecular weights and at varying flow rates. As the injection rate of the
polymer having the greater molecular weight increased the wavelength of the Karman street
also increased and the thickness of the wake decreased. No significant effects were observed
by injecting the lower molecular weight polymer, even at the highest injection rate. Thus,
although there was a significant difference in the viscosities of the two PEO solutions com-
pared to the water, viscosity gradients alone could not be responsible for the observed effects
in the case of the polymer having the greater molecular weight. The authors proposed that the
greater elasticity of this latter solution was therefore the main cause of the inhibition effect,
in agreement with the linear stability analysis of Azaiez and Homsy [9] who showed using an
Oldroyd B model that elasticity tends to stabilize the shear instability in free shear flows. In
the later paper, Reynolds numbers up to 300 were realized. Cadot and Kumar [24] confirmed
the effect of viscoelasticity in delaying the development of the two-dimensional instability in
the sense of shifting it to longer wavelengths. A study of the effect of polymer injection on the
three-dimensional instability leading to the A mode showed that in general the A mode was
damped and was correlated with changes in the aspect ratio (thickness of the wake divided by
wavelength of the Karméan street) of the two-dimensional base flow.
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Experiments performed by Cressman et al. [35] with two-dimensional flow of a soap film
around a rod at Reynolds numbers of about 400 revealed that whereas a polymer additive
of high molecular weight strongly altered vortex shedding, one of lower molecular weight (but
higher concentration) had no observable effect. Since the extensional viscosity depends strongly
on the molecular weight of a polymer the origin of the dramatic increase in the formation length,
reduction in peak shedding frequency and strong suppression of the rms velocity fluctuations
observed behind the rod with the addition of the polymer of higher molecular weight was
suggested as being due to the elastic extensional properties of the polymer additive.

Very recently, Coelho and Pinho [32, 33| have presented and discussed results of measure-
ments of vortex shedding in the wake of cylinders immersed in aqueous solutions of (weakly
elastic) methyl hydroxyethyl cellulose and (more elastic) carboxymethyl cellulose (CMC). The
Reynolds numbers selected covered the laminar vortex shedding regime, the transition regime
and the shear-layer transition regime. Fluid elasticity was found to reduce a number of critical
Reynolds numbers marking the onset or the end of flow regimes. In particular, the critical
Reynolds number Re,; for the onset of laminar vortex shedding was found to be lower than
for a Newtonian fluid when the CMC solutions were used. The end of the transition regime
was seen to be particularly strongly influenced by viscoelasticity. Shear-thinning was found to
increase the Strouhal number in the laminar vortex shedding regime, so that non-Newtonian
effects on shedding frequency were different from those observed, for example, by Gadd [51]
who worked with constant viscosity Boger-type fluids. Pseudoplasticity was thus held partially
responsible for the advancement of the onset of the transition regime.

The only recent numerical study known to us of vortex shedding in the wake of a cylinder
in a viscoelastic fluid is that of Oliveira [109] who used a constant viscosity modified FENE
Chilcott-Rallison (MCR) model to investigate the influence of elasticity, Reynolds number and
dumbbell maximum extensibility on the drag, lift and Strouhal number in the two-dimensional
laminar vortex shedding regime. Increasing elasticity was found to attenuate the shedding
frequence, the rate of decrease of the Strouhal number closely matching that of Usui et al. [145].
The reduction in the time-averaged rms value of the lateral velocity component observed by
Cressman et al. [35] were corroborated by Oliveira. The author also found that the formation
length increased with Deborah number or polymer extensibility, similar to observations made
by Cadot and Lebey [23] and Cadot and Kumar [24]. What seemed rather different from any
experimental observations, however, was the prediction (see his Fig. 9a) of a stabilization effect
of elasticity on the vortex shedding, Re,s being slightly larger than that for a Newtonian fluid.

The present thesis represents, as far as we are aware, the first linear stability analysis for
inertial lows of a viscoelastic fluid around a bluff body. Our particular interest is the effect of
polymer additives on the linear stability of two-dimensional viscous flow past a confined cylinder
and our investigation involves both direct numerical simulation (DNS) and the solution of a
generalized eigenvalue problem arising from the linearized perturbation equations. The MCR
model is used. We are motivated by two observations:

1. As evidenced earlier in the Introduction, attempts at numerically determining the linear
stability and non-linear dynamics of creeping (Re = 0) flow past a cylinder have met with
only limited success. To date no purely elastic instability (2D or 3D) in flow past a single
confined cylinder has been predicted numerically and agreement with experimentally
observed stability thresholds for linear periodic arrays of cylinders has been qualitative
at best. A study of the modification to inertial instabilities in dilute polymer solutions
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does not suffer from the same handicap of needing to chase what are possibly unachievable
Weissenberg number regimes for the single cylinder. Moreover, crude dumbbell models
of the FENE-type have already been shown [109] to capture much of the essential physics
of the viscoelastic wake dynamics for inertial flows.

2. Despite the encouraging agreement in the laminar vortex shedding regime between nu-
merical and experimental results with the MCR model and solutions of PEO, respectively,
for quantities such as shedding frequency, rms lateral velocity magnitude and formation
length [24, 23, 35, 109, 145|, the numerical prediction (see Fig.9a of [109]) of an increase in
Re,, with viscoelasticity is at variance with the experimental evidence, even for constant
viscosity fluids. However, the observation was made via direct numerical simulations for
only one value of the Deborah number (De = 80) and polymer extensibility. A detailed
study, involving a linear stability analysis over a range of Deborah numbers and polymer
extensibilities, has not yet been done.

The outline of the present chapter is as follows: In Section 6.2 we validate our MCR, DNS
code by computing a dimensionless drag on a confined cylinder (blockage ratio A = 0.5) as well
as the axial elastic normal stress profile on the cylinder surface and in its wake. Results are
compared with those of Oliveira [110] in the finitely extensible case and with those of Alves
et al. [2] and Fan et al. [43] in the limit of infinitely extensible dumbbells (Oldroyd B fluid).
In Sections 6.3 and 6.4 we investigate, via a linear stability analysis and DNS, the effect of
Reynolds number, Deborah number and polymer extensibility on the cylinder wake dynamics.
Finally, we draw some conclusions.

6.2 Validation and Comparison with Other Results in the
Literature

In the present chapter for viscoelastic flow past a confined cylinder the Reynolds number is
defined as Re = (u)R/v where v is the total kinematic viscosity, (u) is the average inlet fluid
speed and R is the cylinder radius. Thus our Reynolds number in this chapter should be
multiplied by 3 to make them equivalent to those of Willimson [153]. The Weissenberg number
We is defined to be equal to A(u)/R. In the presentation of results in Section 6.4 for laminar
vortex shedding, a Strouhal number St is defined by St = R/(T(u)), where T is the period
of vortex shedding. The solvent to total viscosity ratio [ is chosen equal to 0.59 throughout
Sections 6.2 to 6.4. We denote by (x,t) = ((x1,22),t) a dimensionless generic point in space
and time.

The velocity-stress formulation described in Section 1.2 is used for the solution of the vis-
coelastic flow field. The continuity equation (1.30) and the vorticity transport equation (1.31)
are applied as in Chapter 5 with the same boundary conditions. In addition, the viscoelas-
tic constitutive equation (1.32) is satisfied within each finite volume in a manner similar to
the continuity equation (1.30). To avoid multi-valuedness of the pressure field, and following
similar reasoning to that given in Section 5.2, we impose the following equation

ou g 1 ' _
]{nx{E+(VXH)XU+§VX(VXU)_§V'T ds =0, (6.1)
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M1 M2 M3
Z.maz | kmaz | kwall| N Z.maz | kmaz | kwall| N Z.maz | kmaz | kwall| N
| 134 | 271 | 25 [ 134,830 ] 200 | 401 | 37 [295440 || 266 | 541 | 49 [ 527,650 |

Table 6.1: Values of grid parameters i,,4z, kmaz, kwar and N.

M1: 134x271

M2:200x401

: 266x541

(c)

Figure 6.1: Computational meshes used for blockage ratio A = 0.5. (a) Mesh M1: Number of
degrees of freedom = 134,830. (b) Mesh M2: Number of degrees of freedom = 295, 440. (c)
Mesh M3: Number of degrees of freedom — 527, 650.

where, as before, I' is formed from the union of the outer edges of the finite volumes on the
cylinder surface.

Three different finite volume grids (M1-M3) have been used in this chapter. In Fig. 6.1(a)-
(c) we show parts of M1 to M3 for blockage ratio A = 0.5. As it may seen the grid points highly
clustered near the solid wall and in the wake cut in order solve very strong stress gradients.
The inlet and outlet of the channel are set to a distance 80R from the cylinder centre. Each
of the meshes has been generated algebraically and then smoothed by solving elliptic partial
differential equations for the spatial variables x; and x5 where derivatives are with respect to
mapped variables in a space in which the mesh appears rectangular [138]. For the present
problem the physical grid “cut” is moved away from the line x5 = 0 in order to avoid high
stress gradients along this cut. The method of Steger and Sorenson [138]| described in Section
5.2 allows both grid cell sizes and grid cell skewness to be controlled at the inner and outer
boundaries. Meshes M1 to M3 in Fig. 6.1(a)-(c) are characterized by iyq,: the number of
nodes on the surface of the cylinder, k,,,,: the number of nodes along the line x5 = 0 from the
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Figure 6.2: Steady state drag at Re = 0, 8 = 0.59 computed on mesh M3 as a function of We
for Oldroyd B (upper plot) and MCR. (lower plot, b = 144) fluids. Comparison is made with
the results of Alves et al. [2] and Oliveira [110].
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Figure 6.3: Profiles of 7., on the cylinder surface and in the cylinder wake for an Oldroyd B
fluid at We = 0.7. Comparison is made with the results of Alves et al. [2] and Fan et al. [43].

rear midpoint on the cylinder to the outflow boundary and k,.;: the number of nodes in the
gap between the cylinder and a lateral wall. The values of 4,44, kmae and kyqy for the three
meshes are supplied in Table 6.1 for different blockage ratios. Also shown in Table 6.1 is N,
the number of degrees of freedom associated with each mesh.

The computation of the flow of a viscoelastic fluid past a cylinder placed symmetrically
between two parallel lateral walls is a popular benchmark problem in the computational rhe-
ology community. The flow is a rich mixture of shear and elongational regions and manifests
interesting fluid mechanical phenomena in different flow regimes in We — Re space (streamline
shifts, drag variations, instabilities etc) some of which will be discussed in Sections 6.3 and
6.4. The necessity of adequately resolving what can be steep elastic stress gradients near solid
surfaces and in the cylinder wake results in a potentially challenging problem, all the more so as
the Reynolds number and Weissenberg number increase. For a recent review of the numerical
literature, the reader is referred to the monograph of Owens and Phillips [112].

Since the majority of numerical results for viscoelastic flow in the cylinder benchmark
geometry with A = 0.5 are for steady, inertialess flows, it is natural to validate our basic code
in this case. To do so we compare our results against those of Alves et al. [2] and Fan et al.
[43, 44] for the Oldroyd B fluid (b = 00) and some newly computed results of Oliveira [110] for
the MCR fluid (b = 144). Both the results of Alves et al. and Oliveira [110] were obtained using
a collocated high-resolution finite volume method and Fan et al. [45, 44| used a Galerkin/least-
squares hp finite element method. In Figure 6.2 we show the results of computing the total
drag on the cylinder in the two cases of infinite and finite dumbbell extensibility. The results
of Alves et al. [2| were obtained using a Richardson extrapolation technique (see Table 3 of
[2]) and those of Oliveira using Mesh M45 of [2], the details of which may be found in Table 1
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of that paper. Agreement for the Oldroyd B drag results over the whole range of Weissenberg
numbers is seen to be very close with our computations. A small discrepancy for We 2 0.8
exists between the MCR, drag values computed by Oliveira [110] and us. This is undoubtedly
due to the coarse mesh employed by the former. A more discerning measure of the solution
accuracy than that supplied by computations of the total drag is consideration of the axial
elastic normal stress profile on the cylinder surface and in the cylinder wake. In Figure 6.3 we
compare our predictions computed on mesh M3 with those of Alves et al. [2| and Fan et al.
[44] for an Oldroyd B fluid at We = 0.7. Although the results of Fan et al. [44] were computed
using the same SUPG MIX0 formulation as in [45], the authors employed a high-order finite
element method featuring uniform interpolation order 10 polynomials in each finite element
to represent the velocity and stress fields. The data of Alves et al. represented by triangles
in Fig. 6.3 was obtained on their finest mesh M120 (corresponding to 69600 control volumes)
and those by diamonds using a special locally wake-refined version of their coarser M60 mesh.
Agreement between all results is excellent on the cylinder and in the wake we see that our
results lie between those of the fine mesh calculations of Alves et al. and those computed on
the highly wake-refined meshes of Fan et al. and Alves et al. Agreement in the wake between
our code and what we consider to be the best steady-state codes currently available is therefore
quite satisfactory and we could expect even better agreement with further local refinement in
the cylinder wake.

6.3 Linear Stability Analysis

6.3.1 Numerical considerations

A representative result of using the Arnoldi method to obtain an approximate eigenvalue set
solving the GEVP (2.14) is shown in Fig. 6.4 for the Oldroyd B fluid at the critical Reynolds
number (Re = Re,; = 60) corresponding to a Weissenberg number of 0.6. The figure shows
the result of using the three meshes M1-M3 to compute the steady symmetric base flow (U, T).
The same Krylov space dimension m = 150 was used for these computations. As expected in
the case of a zero shift A the best resolution of the spectrum appears nearest the origin and,
in particular, excellent convergence of the leading complex conjugate eigenpair (indicating
transition to an unsteady state via a Hopf bifurcation) is apparent. It is clear, however,
from Fig. 6.4 that for the computation of the steady base flow using the finest mesh M3,
eigenvalues appear in the positive real part of the complex plane. There is no convergence
with mesh refinement for these eigenvalues, however, and they are consequently rejected as
spurious.

In Table 6.2 we supply the values of the critical Reynolds numbers computed for the Oldroyd
B fluid on meshes M1 to M3 with Krylov space dimension m = 150. Good convergence of both
critical values is to be seen and in fact St,; does not vary between the M2 and M3 results.

6.3.2 Effect on linear stability of polymer additives

The curves of neutral stability for the MCR, fluid shown in Fig. 6.5 and the results displayed
in Tables 6.2 and 6.3 establish convincingly the case that for this constant viscosity model,
polymer additive has a stabilizing effect upon two-dimensional flow past a confined cylinder.
This statement is consistent with the observation of Oliveira [109] that in numerical simulations
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Figure 6.4: Comparison of reciprocal Ritz values computed on meshes M1-M3 with Krylov
space dimension m = 150 and shift parameter A = 0.5. Oldroyd B fluid. We = 0.6, Re =
Re,; = 60. Note the good convergence of the leading physical complex eigenpair on the
imaginary axis. Spurious eigenvalues in the positive real part of the complex plane are also in
evidence (see commentary in Section 6.3.1).
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Figure 6.5: Curves of neutral stability for a Hopf bifurcation from the steady two-dimensional
symmetric solution for the MCR, fluid computed on M2 for b = 10, b = 100 and b = oo (Oldroyd
B fluid). No increase in the critical Reynolds number from the Newtonian value (41.46) is seen
with b = d = 3.
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M1 M2 M3

We || Reys | Stys || Revs | Stus || Revs | Stus
0.0 42.29 | 0.248 || 41.41 | 0.253 || 41.46 | 0.253
0.1 43.11 | 0.247 || 42.24 | 0.252 || 42.37 | 0.252
0.2 || 45.01 | 0.247 || 44.06 | 0.252 || 44.22 | 0.252
0.3 || 48.00 | 0.248 || 46.89 | 0.252 || 47.15 | 0.252
0.4 || 51.79 | 0.249 || 50.64 | 0.253 || 50.83 | 0.253
0.5 || 56.05 | 0.251 || 55.12 | 0.255 || 55.23 | 0.255
0.6 || 60.70 | 0.253 || 60.27 | 0.257 || 60.15 | 0.257

Table 6.2: Change of critical Reynolds number and Strouhal number with We number.
Oldroyd-B fluid

b =100 b=10

We || Reys | Stys || Reys | Stus
0.0 41.41 | 0.253 || 41.41 | 0.253
0.1 42.25 | 0.252 || 42.02 | 0.252
0.2 43.95 | 0.252 || 42.78 | 0.252
0.4 48.23 | 0.251 || 43.43 | 0.250
0.8 || 55.52 | 0.252 || 43.80 | 0.248
1.4 62.34 | 0.252 || 44.08 | 0.246
2.0 66.08 | 0.251 || 44.23 | 0.245
2.8 68.65 | 0.250 || 44.32 | 0.243

Table 6.3: Change of critical Reynolds number and Strouhal number with We number. MCR
fluid. Mesh M2.

of the unbounded flow of an MCR fluid (b = 100, De = 80) around an isolated cylinder,
vortex shedding was completely suppressed at Re = 50, placing the critical value Re,s for
the viscoelastic fluid above that of a Newtonian fluid. Fig. 6.5 reveals that the greater the
maximum extensibility of the FENE dumbbells, the larger the value of Re,s; for any given
value of We. Thus the stabilization brought to bear by the presence of the FENE MCR
dumbbells would appear to depend strongly upon the extensional properties of the polymer
solution. The recent experimental paper of Cressman et al. [35] confirms the importance of
the extensional properties of high molecular weight polymers (even at low concentrations) in
reducing the kinetic energy contained in the velocity fluctuations behind a cylinder. In the
present case, for which further evidence is presented in Section 6.4, high Trouton ratios lead to
strong stabilization of the wake flow relative to the Newtonian case, possibly following the same
mechanism as that described by Cressman et al. [35]. For all finite extensibilities b a plateau is
reached in the Re,; — We curve, the first critical Reynolds number converging from below with
Weissenberg number to some finite limit. Simultaneously, the maximum extensional stress 7,
computed in the flow field converges to a limiting value. As an example, on the last three
data points in Fig. 6.5 of the Re,s — We curve corresponding to b = 10, 7., changes from
approximately 27.46 at We = 0.8 to 28.45 at We = 1.4 but only increases up to 28.86 at
We = 2.0, thus adding weight to our conjecture that it is the extensional properties of the
fluid that are the dominant effect in a constant viscosity fluid in the stabilization of the wake
flow. From Tables 6.2 and 6.3 no obvious trend is noticeable in the Strouhal number computed
along the Re,, — We curves for b = 10,100 or oo.
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Figure 6.6: Instantaneous streamlines contour plot at eight different points for MCR fluid with
b = 100.
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Figure 6.7: Phase-space plot of C; against Cy at point 1 of Fig. 6.6 using scheme (1.33) and
time steps At = 0.005,0.01 and 0.02.



CHAPTER 6. Viscoelastic Flow Past a Confined Circular Cylinder 98
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Figure 6.8: Instantaneous vorticity contour plots for MCR, fluid at points 1 to 4 in Fig. 6.6.
We=10.0,0.4,1.2 and 2.0, Re = 66.66, b = 100. The plots shown correspond to the minimum
lift coefficient.

Two limiting cases of the value of b deserve mention. In the case b = d = 3 Eqns. (1.25)
and (1.27)-(1.29) make it clear that the fluid is now purely Newtonian with a non-dimensional
viscosity equal to unity. This is because (see Eqn. (1.26)) for b = d the maximum extensibility
(@Q2,.)'"% of a dumbbell equals its equilibrium length v/dly. Thus no stabilization is to be
seen. In the case of an Oldroyd B fluid (b = co) the increasing gradient of the neutral stability
curve as a function of We would seem to indicate the existence of a limiting Weissenberg
number, at least for two-dimensional flows. The existence of such a limiting Weissenberg
number for inertialess flow of an Oldroyd B fluid around confined cylinders and spheres has

been conjectured elsewhere [46].

6.4 Direct Numerical Simulations

To gain further insight into the stabilization mechanism of viscoelasticity in a constant viscosity
fluid several calculations have been performed for an MCR fluid with b = 100. The points in
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Figure 6.9: Instantaneous 7., contour plots for MCR fluid at points 1 to 4 in Fig. 6.6.
We=10.0,0.4,1.2 and 2.0, Re = 66.66, b = 100. The plots shown correspond to the minimum
lift coefficient.

We — Re parameter space where the computations are performed are labelled 1-8 in Fig. 6.6
and correspond to both steady and unsteady regions in We — Re space. Two numerical tests
were performed to give some confidence about the reliability of our unsteady numerical code.
These checks were performed at Re = 66.66 and We = 0 (point 1 of Fig. 6.6). First, in Fig. 6.7
we show the results in a C; — C} phase-space plot of varying the dimensionless time step At in
our Euler implicit scheme (1.33) from 0.02 to 0.005. Good convergence is seen. Computations
with At = 0.01 and 0.005 using a Crank-Nicolson scheme could not be distinguished with
the naked eye from the corresponding plots in Fig. 6.7. As a compromise between accuracy
and cost, At = 0.01 has been used for all results presented in this Section. Secondly, the
Strouhal number prediction from the eigenvalue computations of Section 6.3 was compared
with that computed from the C} data of the unsteady code at point 4 in Fig 6.6. The Strouhal
number computed from the GEVP (St = 0.251) compares very well with the Strouhal number
computed from the C; data at point 4 in Fig 6.6 (St = 0.252) even though they are computed
at two slightly different Reynolds numbers.

In Figs. 6.8 and 6.9 we show the instantaneous contours (corresponding to the minimum
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Figure 6.10: Time-averaged length of recirculation region (scaled with cylinder radius) (a) as a
function of Weissenberg number Re = 66.66, (b) as a function of Reynolds number We = 1.2,
b = 100.

lift coefficient) of the vorticity and axial normal stress 7, at points 1-4 of Fig. 6.6. At a
Weissenberg number of 0.0 and a Reynolds number of 66.66 (point 1 of Fig. 6.6) the flow is
unstable to infinitesimal disturbances and becomes time periodic with St=0.261. As may seen
from Fig. 6.8 a pair of vortices is shed from the upper and lower gaps between the cylinder
and the walls. As these vortices move downstream the vortices having the same sign merge
with each other and form a reverse Karmén street. As the Weissenberg number increases the
strength of the shed vortices is highly reduced and at a Weissenberg number of 2.0 (point 4
of Fig. 6.6) vortex shedding is almost suppressed. In fact, this in agreement with our linear
stability analysis since point 4 is just above the neutral stability curve.

As elastic effects grow in importance it may be seen in Fig. 6.9 that two parallel strands
of highly extended polymer develop, these strands eventually extending from the upstream
side of the cylinder and being swept in a tangential direction downstream from its upper and
lower surfaces. The peak 7., value in the two strands progressively increases with increasing
Weissenberg number but, as mentioned in the previous Section, increasing the Weissenberg
number beyond some critical (b-dependent) value on a curve Re = Re,s does not change the
peak 7,, value noticeably since the polymers are now fully extended. For Re > Re,s the two
strands of highly extended polymer contain between them a region of slowly moving fluid: the
velocity rms values v’ and v' along the axis of symmetry in the cylinder wake being lower
than in the Newtonian case at the same Reynolds numbers. In Fig. 6.10 (a) we show how
the average recirculation length X behind the cylinder at a Reynolds number of 66.66 varies
as a function of the Weissenberg number. We note that the recirculatory region increases in
length continuously with We. In addition, the strength of the wake vortices has been observed
to decrease with increasing elasticity. The instantaneous streamlines shown in Fig. 6.6 show
that separation bubbles form on the downstream walls, although their strength is reduced as
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Figure 6.13: Zoom of the time-averaged streamlines at points 1 to 4 of Fig. 6.6 near the
downstream side of the cylinder. Note the upstream shift in the streamline at the separation
point at We = 0.4.

the Weissenberg number increases. When the oscillations are suppressed (just beyond point
4) these separation bubbles completely disappear.

From Figs. 6.11(a) and (b) it may be seen that in moving from points 1 to 4 in Fig. 6.6
the amplitudes of the periodic lift and drag coefficients decrease and the period of the vortex
shedding increases as the Weissenberg number increases. The phenomena are indicative of the
increasing stabilization of the flow due to viscoelasticity and are manifestations of the fact that
as the Weissenberg number increases there develops a long region of slowly moving fluid in the
wake of the cylinder entrapped by upper and lower strands of increasingly highly stretched
polymer (see the sequences of plots in Figs. 6.8 and 6.9). In Fig. 6.12 we plot the variation of
the Strouhal number as a function of Weissenberg number, and this provides a clearer picture
than that visible in Fig. 6.11 of how the vortex shedding frequency decreases as the flow
restabilizes.

An important point of interest that may be drawn from Fig. 6.11(b) is that there is a
slight increase in the average drag on the cylinder at small values of We (< 1) before the
time-averaged values begin to decrease again. The steady-state drag was also observed to
increase for sufficiently small Weissenberg numbers at Re = 40. The same increase for low De,
followed by a decrease for larger De was documented by Oliveira [109] for unbounded flow past
a single cylinder at Re = 100 (see column 4 of his Table 4) but not commented upon. In their
study of wall effects on the flow of viscoelastic fluids around a circular cylinder Huang and
Feng [71]| concluded, however, that there was no increase in drag with elasticity for inertial flow
(0.1 < Re < 10) past a confined cylinder at a blockage ratio greater than 0.1 when the Oldroyd
B model was used. In our own simulations, no drag increase has been seen for Re < 10 and
the evidence of a monotonic drag decrease in the inertialess case is presented in Fig. 6.2. It
would seem, therefore, that for Re sufficiently large an immediate distortion is imparted to the
stress field around the cylinder by the polymer that is sufficient to cause an initial drag increase
with We. Indeed, we have observed that for very small Weissenberg numbers and sufficiently
large Reynolds numbers there is an initial widening of the time-averaged recirculation zone
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Figure 6.14: 7,, contour plots for MCR fluid at points 5 to 8 and 3 of Fig. 6.6. Re =
0,10, 20, 40,66.66, We = 1.2, b = 100. The last contour plot (point 3 of Fig. 6.6) corresponds
to the minimum lift coefficient.
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compared to the Newtonian case, this being particularly obvious in the movement upstream
of the reattachment points on the cylinder: see Fig. 6.13 for an example at Re = 66.66. At
larger Weissenberg numbers the recirculation zone becomes more slender. For all Weissenberg
numbers Fig. 6.13 provides evidence of the continuous downstream shift in those streamlines
situated sufficiently far from the cylinder.

Finally, although not of immediate relevance to the linear stability results of Section 6.3,
it is nevertheless of interest to consider the flow dynamics as the Reynolds number increases
at a fixed value of We. In Fig. 6.14 we present changes in 7., at a Weissenberg number of 1.2
at Reynolds numbers between 0 and 66.66 (see points 3 and 5 to 8 in Fig. 6.6). At Re =0
there is a well-known stress wake behind the cylinder with a very strong stress gradient in the
transverse direction. However, as the Reynolds number increases a separation bubble starts
to appear just behind the cylinder (see Fig. 6.6) and 7,, becomes almost zero along the axis
of symmetry in the cylinder wake. Very high stress strands form from the upper and lower
part of the cylinder, as seen in Fig. 6.14. The magnitude of the elastic stresses on the cylinder
becomes even higher as the Reynolds number increases further. With increasing Reynolds
number the length X of the recirculation zone also increases. This increase is obvious from
the streamline plots at points 5 to 8 of Fig. 6.6 and we plot X against Re in Fig. 6.10 (b).
As the recirculation length increases the total drag decreases steadily from 117.9 at Re = 0 to
14.2 at Re =10, 9.2 at Re = 20 and 6.6 at Re = 40.

6.5 Conclusions

A linear stability analysis has been performed in order to investigate the effect of elastic forces
on the inertial stability of flow of an MCR fluid around a confined circular cylinder. Both
direct numerical simulations and linear stability analysis indicate stabilization of the flow by
the polymer additives in the sense that the critical Reynolds number for the onset of vortex
shedding in the viscoelastic fluid is higher than in the Newtonian case. The stabilization
brought to bear by the presence of the MCR dumbbells depends strongly upon the extensional
properties of the polymer solution. Direct numerical simulations reveal that in the vortex-
shedding regime two strands of highly extended polymer contain between them a region of
slowly moving fluid, the amplitude and frequency of vortex shedding in the wake being lower
for the viscoelastic fluid than for a Newtonian fluid at the same Reynolds number.
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Conclusions and Future Perspectives

A novel finite volume method based on velocity-only and velocity-stress formulations has been
successfully applied to several flow problems. The accuracy of the proposed method has been
verified and our results have been compared with the many others available in the literature.
The main advantage of the present method lies in the elimination of the pressure term from
the governing equations. Therefore any difficulty associated with the pressure term is avoided
in a similar manner to that achieved by the velocity-vorticity formulation. However, unlike the
velocity-vorticity formulation, our method possesses two significant advantages. First, unlike
most velocity-vorticity formulations, no vorticity boundary conditions are required on the wall,
since the resulting equations are expressed solely in terms of the velocity components. Only
no-slip velocity boundary conditions are required. Secondly, the number of primary variables
that need to be determined equals the number of space dimensions.

In addition to our numerical scheme, we have unearthed some interesting fluid physics from
our observations which involve both direct numerical simulation (DNS) and the solution of a
generalized eigenvalue problem arising from the linearized perturbation equations:

e For purely Newtonian flow past a confined circular cylinder in a channel, four distinct
regions in the parameter space have been identified, each corresponding to a different
class of flow: (i) steady symmetric flow, (ii) symmetric vortex shedding, (iii) steady
asymmetric flow and (iv) asymmetric vortex shedding.

e For viscoelastic flow past a confined circular cylinder, a constant viscosity FENE-type
model polymer additive is shown to have a stabilizing effect. In particular, our results
reveal that the greater the maximum extensibility of the FENE dumbbells, the larger the
value of the critical Reynolds number marking the onset of vortex shedding. The stabi-
lization brought to bear by the dumbbells has been linked to the extensional properties
of the FENE fluid.

Although in our current work we investigate two-dimensional temporal and spatial instabil-
ities, one should also verify whether under these flow conditions the base flow is truly two-
dimensional (particularly at high blockage ratios). Therefore, three-dimensional linear stability
analysis is highly desirable even though it is computationally very expensive. In the case of
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purely viscoelastic instabilities, the computation of three-dimensional instabilities to a three-
dimensional base flow is an urgent need since the earlier experimental work done by McKinley
and co-workers [94] has shown that these instabilities manifest themselves first as a three-
dimensional spatial instability followed by a temporal instability.

One of the main problem for three-dimensional numerical simulations is the required computer
time for the solution of the resulting algebraic system of equations. Even a frontal direct
solver such as the MUMPS library is not enough in term of required computer memory to
handle three-dimensional problems due to their large size. As an example, a linear system
with 2,000,000 equations is solvable on Eridan (SGI Origin 3800 parallel machine with 124
processors) for a two-dimensional problem while for a three-dimensional problem we can not
afford a linear system larger than 200,000. This particularly due to the increase in the band-
width of the system which significantly increases the required computer memory. A sample
solution of three-dimensional Newtonian flow based on the semi-staggered velocity-pressure
formulation of Wright and Smith [135, 154] is presented in Figs. 7.1 and 7.2 at a Reynolds
number of 100 (Re = U, D/v). The solution is obtained by using the MUMPS library on
a rather coarse grid (with 185,382 degree of freedom). One way to overcome this problem
is to use multigrid methods directly [102, 148, 155] or to use one multigrid cycle as a pre-
conditioner for Krylov subspace methods such as GMRES [122], BiCGStab [146], etc. The
main advantages of multigrid methods or multigrid preconditioned Krylov subspace methods
is that the convergence rate is independent of the grid space and therefore they are scalable on
parallel machines. Therefore, we are currently trying to implement these options in a parallel
environment,.
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Figure 7.1: Streamtraces for flow past a confined circular cylinder with blockage ratio
D/H=0.50, aspect ratio W/H=2.50 and Re = 100.
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Figure 7.2: Pressure contours for flow past a confined circular cylinder with blockage ratio
D/H=0.50, aspect ratio W/H=2.50 and Re = 100.
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