
THÈSE NO 2930 (2004)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut d'informatique fondamentale

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Diplom-Informatiker, Universität Karlsruhe, Allemagne
et de nationalité allemande

acceptée sur proposition du jury:

Prof. M. Odersky , directeur de thèse
Prof. R. Guerraoui, rapporteur

Prof. M. Mezini, rapporteur
Prof. O. Nierstrasz, rapporteur

Lausanne, EPFL
2004

PROGRAMMING LANGUAGE ABSTRACTIONS FOR
EXTENSIBLE SOFTWARE COMPONENTS

Matthias ZENGER

Programming Language
Abstractions for

Extensible Software Components

Matthias Zenger

Doctoral Thesis
EPFL, Switzerland

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Laboratoire des Méthodes de Programmation
Institut d'Informatique fondamentale
Faculté Informatique et Communications
École Polytechnique Fédérale de Lausanne

© 2004, Matthias Zenger

Programming Methods Laboratory
Institute of Core Computing Science
School of Computer and Communication Sciences
Swiss Federal Institute of Technology, Lausanne, Switzerland

This document was set in ITC Charter using the LATEX typesetting system on
MacOS X. The graphical content was produced with OmniGraffle Professional.

Acknowledgments

First and foremost I would like to express my sincere gratitude and apprecia-
tion to my supervisor, Prof. Martin Odersky, for his encouragement, guidance,
and support during the last six years. His expertise and understanding and the
countless inspiring discussions have been of great importance and influence to
me, both academically and personally. From 1997 on, I enjoyed working in his
group.

I would like to thank my friend and former colleague Dr. Christoph Zenger
for his interest in my work, his advice and help, as well as the many loud and
passionate discussions about work and life in general. I appreciated the collabo-
ration with him in Karlsruhe, Adelaide, and Lausanne. Many thanks also go to
Prof. Martin Sulzmann for his support and the numerous interesting discussions
in Adelaide and Melbourne.

I would like to thank the members of the thesis jury, Prof. Karl Aberer,
Prof. Rachid Guerraoui, Prof. Mira Mezini, and Prof. Oscar Nierstrasz, for the
efforts and the time they have spent on the examination of this dissertation.

Furthermore, I am thankful to my colleagues at the Programming Methods
Laboratory of EPFL for their support and their collaboration. In particular, I
thank Dr. Erik Stenman for proof-reading parts of this thesis. Thanks also to all
other people I was working with in the last years. I had the pleasure to publish
papers together with Dr. Jim Buckley, Vincent Cremet, Matthias Jacob, Prof. Gün-
ter Kniesel, Dr. Tom Mens, Prof. Michael Philippsen, Dr. Christine Röckl, and
Dr. Awais Rashid.

Last but not least, I would like to thank my parents for the help and support
they provided me throughout my entire life. I am especially grateful to my wife,
Marie-Louise, without whose love, encouragement, and understanding, I would
not have finished this thesis.

Nyon, Switzerland, October 2003

Abstract

With the growing demand for software systems that can cope with an increasing
range of information processing tasks, the reuse of code from existing systems
is essential to reduce the production costs of systems as well as the time to man-
ufacture new software applications. For this reason, component-based software
development techniques gain increasing attention in industry and research. Com-
ponent technology is driven by the promise of building software by composing
off-the-shelf components provided by a software component industry. Therefore,
component technology emphasizes the independent development and deploy-
ment of components. Even though components look like perfect reusable assets,
they embody general software solutions that need to be adapted to deployment-
specific needs and therefore cannot be deployed “as is” in general. Furthermore,
as architectural building blocks, components are subject to continuous change.
For these reasons, it is essential that components can easily be extended by both
the component manufacturer to create new versions of components and by third-
parties that have to adapt components for use in specific software systems. Since
in both cases concrete changes cannot be foreseen in general, mechanisms to in-
tegrate unanticipated extensions into components and component systems are
required.

While today many modern programming techniques, methodologies, and lan-
guages provide means that are well suited for creating static black-box compo-
nents, the design and implementation of extensible components and extensible
software systems often remains a challenge. In practice, extensibility is mostly
achieved through ad-hoc techniques, like the disciplined use of design patterns
and component frameworks, often in conjunction with meta-programming. The
use of design patterns and component frameworks requires a rigorous coding
discipline and often forces programmers to write tedious “boilerplate” code by
hand, which makes this approach fragile and error-prone. Meta-programming
techniques on the other hand are rather code-centric and mostly source code-
based. Therefore, they are often not very suitable for today’s component technol-
ogy practice that stresses the binary reuse of black-box components.

In this thesis I argue that technical difficulties in the development of exten-
sible software components are due to the lack of appropriate programming lan-
guage abstractions. To overcome the problems, concrete programming language
mechanisms are proposed to facilitate the creation of extensible software. The
proposed language features are strongly typed to help the programmer extend
systems safely and consistently.

vi Abstract

The first part of the thesis illustrates the vision of truly extensible software
components by proposing a simple theoretical model of first-class components
built on top of a conventional class-based object-oriented language. This typed
model includes a small set of primitives to dynamically build, compose, and
extend software components safely, while supporting features like explicit con-
text dependencies, late composition, unanticipated component extensibility, and
strong encapsulation.

The second part takes some ideas from the theoretical model and applies
them in the design of the programming language Keris. Keris extends Java with
an expressive module system featuring extensible modules. The main contribu-
tions are:

• A module system that combines the benefits of classical module systems for
imperative languages with the advantages of modern component-oriented
formalisms. In particular, modules are reusable, generic software compo-
nents that can be linked with different cooperating modules without the
need for resolving context dependencies by hand.

• A module composition scheme based on aggregation that makes the static
architecture of a system explicit, and

• A type-safe mechanism for extending atomic modules as well as fully linked
systems statically by replacing selected subsystems with compatible ver-
sions without needing to re-link the full system. The extensibility mech-
anism is non-invasive; i.e. it preserves the original version and does not
require access to source code.

The overall design of the language was guided by the aim to develop a pragmatic,
implementable, and conservative extension of Java which supports software de-
velopment according to the open/closed principle: Systems written in Keris are
closed in the sense that they can be executed, but they are open for unanticipated
extensions that add, refine, or replace modules or whole subsystems.

The last part of the thesis finally presents a case study which compares an ex-
tensible Java compiler implemented using mainstream object-oriented language
features with one that was written in Keris. It shows how in practice, extensible
modules can be used to develop extensible systems safely and efficiently.

Zusammenfassung

Bei Software-Anwendungen, die mit ständig neuen Informationsverarbeitungs-
anforderungen konfrontiert sind, trägt die Wiederverwendung von Code we-
sentlich dazu bei, sowohl die Produktionskosten, als auch die Zeit für die
Entwicklung neuer, verwandter Systeme zu reduzieren. Aus diesem Grund
kommt komponentenbasierten Softwaretechnologien verstärkt Aufmerksamkeit
im Entwicklungs- und Forschungsbereich zu. Komponententechnologie basiert
auf der Vision, Software primär durch eine Kombination von vorgefertigten
Komponenten zu erstellen, welche von einer globalen Softwarekomponentenin-
dustrie angeboten werden. Obwohl Komponenten eigentlich als ideal wieder-
verwendbare Bausteine erscheinen, stellen sie dennoch allgemeine Softwarelö-
sungen dar, die stets an anwendungsspezifische Bedürfnisse angepasst werden
müssen und daher auch selten in ihrer allgemeinen Form eingesetzt werden kön-
nen. Außerdem unterliegen Softwarekomponenten, als grundlegende architek-
turelle Bausteine, natürlicherweise ständigen Veränderungen. Es ist daher un-
verzichtbar, dass Komponenten auf einfache Art und Weise, sowohl vom Her-
steller, als auch von Klienten, erweitert werden können. Da in beiden Fällen
die zukünftigen, konkreten Änderungen selten im Voraus absehbar sind, muss
es möglich sein, auch unvorhergesehene Erweiterungen an Komponenten und
Komponentensystemen vornehmen zu können.

Während viele moderne Programmiertechniken und Programmiersprachen
durchaus gut für die Entwicklung statischer Black-Box-Komponenten geeignet
sind, bleibt die Entwicklung von erweiterbaren Komponenten und komponenten-
basierten Softwaresystemen oft eine Herausforderung. In der Praxis wird Er-
weiterbarkeit hauptsächlich mit Hilfe von Ad-hoc-Techniken erzielt; z.B. durch
eine disziplinierte Verwendung von Entwurfsmustern und Rahmenwerken, oft
in Verbindung mit Meta-Programmiertechniken. Eine konsequente Verwendung
von Entwurfsmustern und Rahmenwerken zwingt den Programmierer oft dazu,
langweiligen und dadurch auch fehleranfälligen Anpassungscode von Hand zu
schreiben. Meta-Programmierung, auf der anderen Seite, basiert meist auf Quell-
code und ist damit nicht sonderlich geeignet für den Einsatz in einer auf binären
Komponenten beruhenden Technologie.

In dieser Dissertation wird argumentiert, dass die technischen Schwie-
rigkeiten bei der Entwicklung von erweiterbaren Softwarekomponenten auf
einen Mangel an geeigneten Abstraktionen auf der Programmiersprachen-
ebene zurückzuführen sind. Zur Lösung des Problems werden konkrete
Programmiersprachen-Mechanismen vorgeschlagen, die die Entwicklung von

viii Zusammenfassung

erweiterbarer, komponentenbasierter Software vereinfachen und damit eine
sichere und konsistente Evolution von Systemen ermöglichen sollen.

Im ersten Teil der Dissertation wird die Vision von flexibel erweiterbaren
Softwarekomponenten an Hand eines einfachen theoretischen Modells veran-
schaulicht, welches Komponenten im Kontext einer konventionellen, klassen-
basierten, objekt-orientierten Sprache einführt. Das typisierte Modell definiert
eine kleine Menge von Primitiven mit deren Hilfe auf typsichere Art und Weise
dynamisch Komponenten erzeugt, kombiniert und erweitert werden können.

Im zweiten Teil werden Ideen des theoretischen Modells aufgegriffen und
bei dem Entwurf der Programmiersprache Keris eingesetzt. Keris erweitert die
Programmiersprache Java um ein ausdrucksstarkes Modulsystem. Diese Arbeit
liefert folgende Beiträge:

• Ein Modulsystem, welches die Vorzüge klassischer, imperativer Modulsys-
teme mit den Vorteilen moderner komponentenorientierter Formalismen
verbindet. Module repräsentieren wiederverwendbare, generische Soft-
warekomponenten, die mit anderen Modulen kombiniert werden können
ohne dass Kontextabhängigkeiten von Hand aufgelöst werden müssen.

• Ein Prinzip zur Modulkomposition, welches auf Aggregation beruht und
welches die statische Architektur eines Systems explizit macht.

• Ein typsicherer Mechanismus, um sowohl atomare Module, als auch voll
verlinkte Systeme statisch zu erweitern, indem ausgewählte Subsysteme
durch kompatible Versionen ersetzt werden, ohne dass es notwendig wird,
das gesamte System erneut zu linken. Der Erweiterungsmechanismus ist
nicht destruktiv; er erzeugt eine neue Version einer Softwarekomponente
ohne die alte Version zu verändern und ohne auf den Quellcode der alten
Version zuzugreifen.

Ein Ziel des Sprachdesigns war es, eine pragmatische und implementierbare
Erweiterung von Java zu konzipieren, welche es erlaubt, komponentenbasierte
Software nach dem Open/Closed Prinzip zu entwickeln: Systeme die in Keris
geschrieben sind, sind geschlossen, in dem Sinne, dass sie ausführbar sind; sie
sind aber auch offen für zukünftige Erweiterungen, die Module oder ganze Sub-
systeme neu hinzufügen oder ersetzen.

Im letzten Teil der Dissertation wird eine Fallstudie präsentiert, welche einen
erweiterbaren Java Übersetzer, der mit gängigen, objekt-orientierten Sprachmit-
teln geschrieben wurde, mit einem in Keris geschriebenen Übersetzer vergleicht.
Mit Hilfe dieser Fallstudie wird demonstriert, welche Möglichkeiten Keris in der
Praxis bietet, erweiterbare Systeme sicher und effizient zu implementieren.

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

1 Extensible Component-Based Software 1
1.1 Introduction . 1

1.1.1 Reusability . 1
1.1.2 Extensibility . 2

1.2 Characteristics of Extensibility Mechanisms 3
1.3 Classification of Extensibility Mechanisms 5

1.3.1 White-Box Extensibility . 5
1.3.2 Gray-Boy Extensibility . 8
1.3.3 Black-Box Extensibility . 8

1.4 Extensibility Requirements . 9
1.5 Programming Language Support . 11
1.6 Component Engineering Approaches 13

1.6.1 Frameworks . 13
1.6.2 Extensibility . 14

1.7 Overview . 15
1.7.1 Scope . 15
1.7.2 Contributions and Outline . 15

2 A Formal Model for Extensible Software Components 19
2.1 Motivation . 20

2.1.1 Language Integration . 20
2.1.2 Coarse-Grained Composition 21
2.1.3 Dynamic Manufacturing and Composition 21
2.1.4 Extensibility . 22

2.2 Prototype-Based Components . 23
2.2.1 Components and Component Instances 23
2.2.2 Service Provision . 23
2.2.3 Component Instantiation . 25
2.2.4 Component Specialization . 26
2.2.5 Service Forwarding . 27

x Contents

2.2.6 Service Abstraction . 28
2.2.7 Composition of Components 31

2.3 Component Calculus . 34
2.3.1 Syntax . 34
2.3.2 Semantics . 35
2.3.3 Type System . 38
2.3.4 Type Soundness . 41
2.3.5 Instantiation Evaluation . 43
2.3.6 Component Subtyping . 44

2.4 Discussion . 46

3 Static Component Evolution with Extensible Modules 49
3.1 The Java Package System . 51

3.1.1 Modularity . 51
3.1.2 Genericity . 52
3.1.3 Extensibility . 52

3.2 The Programming Language Keris . 54
3.2.1 Declaring Modules . 54
3.2.2 Linking Modules . 56
3.2.3 Accessing Modules . 59
3.2.4 Initializing Modules . 61
3.2.5 Refining Modules . 62
3.2.6 Specializing Modules . 65
3.2.7 Class Abstractions . 68
3.2.8 Type System . 77
3.2.9 Runtime Types and Reflection 84

3.3 Applications of Keris . 87
3.3.1 Generic Class Families . 87
3.3.2 Design Patterns as Module Aggregates 90
3.3.3 Modular Extensions of Design Patterns 92

3.4 Implementation of Keris . 98
3.4.1 Basic Modules . 98
3.4.2 Module Refinements and Specializations 103
3.4.3 Module Access . 109
3.4.4 Classes and Types . 112
3.4.5 Type Tests and Casts . 114
3.4.6 Reflection . 117
3.4.7 Module Execution . 123
3.4.8 KeCo: The Keris Compiler . 125

3.5 Benchmarks . 126
3.5.1 Micro Benchmarks . 126
3.5.2 Real-World Application . 133

3.6 Discussion . 137

Contents xi

3.6.1 Module Systems . 137
3.6.2 Module Systems and Object-Oriented Languages 143
3.6.3 Keris . 145

4 Case Study: Extensible Compilers 149
4.1 Introduction . 150

4.1.1 Extensibility Problem . 150
4.1.2 Related Work . 152
4.1.3 Extensible Compiler Phases with Algebraic Datatypes . . . 153

4.2 JaCo: Design Pattern-Based Extensibility 157
4.2.1 Architectural Pattern: Context/Component 157
4.2.2 Application to Extensible Compilers 162
4.2.3 Architecture of JaCo . 166
4.2.4 Extending JaCo . 170
4.2.5 Experience . 173

4.3 JaCo2: Extensibility with Extensible Modules 175
4.3.1 Architecture of JaCo2 . 175
4.3.2 Extending JaCo2 . 178
4.3.3 Experience . 180

4.4 Comparison . 184
4.4.1 Design Patterns vs. Language Support 184
4.4.2 Benchmarks . 186
4.4.3 Conclusion . 189

5 Related Work and Conclusions 191
5.1 Related Work . 191

5.1.1 Component-Oriented Programming Languages 191
5.1.2 Architecture Description Languages 193
5.1.3 Software Composition Languages 193
5.1.4 Module Systems . 194
5.1.5 Object-Oriented Programming 197
5.1.6 Aspect-Oriented Programming 198

5.2 Summary . 200
5.3 Future Work . 202

A Type Soundness for Prototype-Based Components 205
A.1 Subject Reduction . 205
A.2 Progress . 210

B Keris Grammar 213

C Principles of Extensible Algebraic Types 217

Figures 221

xii Contents

Listings 223

Bibliography 225

Index 239

Curriculum Vitae 243

Chapter 1

Extensible Component-Based Software

1.1 Introduction

1.1.1 Reusability

With the growing demand for software systems that can cope with an increasing
range of information processing tasks, the reuse of code from existing systems
becomes more and more important. Software reusability refers to the ability of
software elements to serve for the construction of many different software prod-
ucts [134]. Software reuse is motivated by the observation that software sys-
tems often share common elements. By reusing existing software components
for the construction of new software systems, one can expect lower costs due to
a reduced development time, decreased maintenance requirements, as well as in-
creased reliability and consistency [140, 107, 134, 166]. Furthermore, reusing
software means that less software has to be written and consequently that more
time and effort may be spent on improving other factors, such as correctness and
robustness.

Mainly for these reasons, component-based software development techniques
gain increasing attention in industry and research. Component technology is
driven by the promise of building software by composing off-the-shelf com-
ponents provided by a software component industry [195]. This is also why
component-oriented software engineering emphasizes the independent develop-
ment and deployment of software components.

Even though components look like perfectly reusable assets, it is, unfortu-
nately, often quite difficult to reuse software components off-the-shelf. Even
though software development is a highly repetitive activity which involves fre-
quent use of common patterns, there is a considerable variation in how these
patterns can be used and combined. Without mechanisms supporting the adapta-
tion and extension of software components, programmers are forced into, what
Meyer [134] calls, the reuse-redo dilemma: Either the component is reused ex-
actly as it is, or the job has to be redone completely.

2 Extensible Component-Based Software

1.1.2 Extensibility

Software is extensible if it can be adapted to possibly unanticipated changes in
the specification. Extensibility is an important property for software because of
the following reasons:

• At the basis of all software lies some human phenomenon and hence fickle-
ness, yielding ongoing changes in the specification and the implementation
of systems [134]. This is why Nierstrasz encourages to see software as a liv-
ing and evolving entity which is developed and maintained by people [147].
Software can be changed more easily, if it is designed to be extensible [7].

• Component technology is based on the notion of components being inde-
pendently developed and deployed by unrelated parties [195]. Since it is
quite unlikely that components from external vendors fit into a specific de-
ployment scenario off-the-shelf, it is necessary that software components
are adaptable, not only by the manufacturer, but also by third party users.

• Many software systems share a common architecture or even large parts of
the implementation. Such families of software systems [158, 27] are much
easier to derive from a base system if the base system is extensible. Sim-
ilarly, software product-lines [99, 205] rely heavily on a mechanism for
creating variants of a system which all share a common structure and some
common functionality, but which are equipped with possibly different com-
ponents.

As these points show, extensibility boosts significantly software reuse. Since
reusability is one of the main aims of component technology, we also consider
extensibility to be a major factor in the development of component-based soft-
ware systems.

Given the fundamental importance of extensibility, it is ironic that systems
are often not explicitly engineered with this property in mind. In practice, pro-
grammers avoid extensible designs and implementations often for the following
reasons [7]:

• Extensibility is a technical challenge that increases the complexity of soft-
ware, making it more difficult to develop, test, and deploy.

• Extensible designs and implementations are more time consuming and are
therefore more cost-intensive initially.

• Successful extensible designs and implementations require some knowl-
edge about the way a system is going to be extended at a later time. The
less is known about possible evolution scenarios, the more difficult it is to
keep a system open for future extensions.

• Extensibility often decreases the performance.

1.2 Characteristics of Extensibility Mechanisms 3

While there is indeed a trade-off between extensibility and performance, it
turns out in practice that the parts of the system for which extensibility is most
beneficial, are often not the most performance-critical ones.

Programmers develop extensible software mainly for reducing the cost of im-
plementing new or similar functionality in a system. If it is clear from the begin-
ning that a system will be modified in the future, or will possibly be reused by
third parties, it pays off to spent extra time and money on extensibility consider-
ations. As Allen points out in [7], the extreme programming literature [20, 21]
compares the addition of extensibility to the purchase of a stock option: You pur-
chase the option early so that you can easily extend the system at a later date. If
you eventually exercise this option, you can greatly benefit from it, even compen-
sating for the critical items in the previous list.

1.2 Characteristics of Extensibility Mechanisms

Change is pervasive in software development. It involves changes of the require-
ments, of the design, of the implementation, of data representations, etc. This
thesis focuses mainly on implementation-related issues, in particular on imple-
mentation techniques and formalisms (i.e. programming languages) that sup-
port the development of extensible software. This section will review important
factors that characterize extensibility mechanisms on an abstract level [40, 132].
The terminology will be used in the next section to setup a classification of tech-
niques for extending software.

Object of change. Different extensibility mechanisms differ in what software
artifacts they change and at what time this happens. Mechanisms that introduce
extensions directly into the source code do this typically at or before compile-time,
whereas mechanisms that extend binaries or intermediate code representations
like bytecode files typically operate at link- or load-time. Extensibility mecha-
nisms that are applied before runtime are said to evolve a system statically, while
all other mechanisms provide some form of dynamic software evolution. This
distinction is sometimes unclear if link-time or load-time coincides with runtime
(e.g. like in Java).

Anticipation. We have to distinguish between mechanisms where changes or
variations of a software product have to be anticipated and others which support
unanticipated requirement changes. Parameterization is, for instance, a form
of anticipation. It allows one to vary a certain predefined set of features. In-
heritance and overriding in combination with late binding, on the other hand,
make it possible to extend software without anticipating all possible directions
in which a system may evolve in future.

4 Extensible Component-Based Software

Invasiveness. Extensibility mechanisms that introduce or modify features de-
structively are called invasive. Invasive changes that are applied in place (i.e. that
are not applied to a copy of the original software artifact) have a global impact
and possibly influence all other depending components. A mechanism that sup-
ports non-invasive changes has to provide a way to formulate extensions modu-
larly.

Versioning. To avoid that incompatible changes invalidate other software com-
ponents and therefore endanger the consistency of the whole system, extensibil-
ity mechanisms often support some form of versioning [183, 195]. While in un-
versioned environments changes are typically invasive in the sense that new ver-
sions overwrite old ones, versioned environments provide means to distinguish
old from new versions. In systems that support versioning statically, new and
old versions can physically coexist at compile-time, but they are identified at run-
time and therefore cannot be used simultaneously in the same context [40]. In
contrast to this, fully versioned systems do not only distinguish versions statically,
they also distinguish versions dynamically at runtime, allowing two different ver-
sions of one component being deployed simultaneously side by side. This is par-
ticularly relevant for the dynamic evolution of systems (e.g. systems that allow
components to be hot swapped, i.e. dynamically replaced with compatible ver-
sions). Here, safe updates of existing components often require that new clients
of the component use the services provided by the new version whereas existing
clients of the old component continue to access the services of the old one.

Independent extensibility. Software changes may be carried out sequentially
or in parallel. With sequential software evolution, changes are always applied to
the last, most recent version of a component. For the case of parallel evolution it
may happen that a component gets extended independently by different parties
at the same time.

If software is changed in parallel, we have to distinguish between convergent
changes and divergent changes. With convergent changes, parallel versions can be
merged or integrated together into a new combined version [131]. For divergent
changes, different versions of a component coexist indefinitely without having
the possibility to combine the changes and thus use the two extensions jointly.
If, for instance, inheritance is used to extend a class in different ways, object-
oriented languages with single inheritance do not permit different extensions to
be combined into a single class — changes diverge in this case. Languages with
multiple inheritance, on the other hand, allow one to consolidate independent
class extensions into a single subclass.

Extensibility mechanisms which allow programmers to evolve components
in parallel and which make it possible to integrate several, independently devel-
oped extensions into a combined system support the notion of independent exten-
sibility [194].

1.3 Classification of Extensibility Mechanisms 5

Safety. We distinguish between extensibility mechanisms that provide static
and dynamic safety. A mechanism features static safety regarding certain erro-
neous program behaviors if it ensures at compile-time that the extended system
will never be subject to these erroneous behaviors at runtime. An extensibility
mechanism provides dynamic safety if there are built-in provisions for prevent-
ing or restricting undesired behavior of software extensions at runtime.

There are many different notions of safety. One of them is security, which
aims at protecting the software from unauthorized access to sensitive parts of a
system or to certain resources. Another is behavioral safety, which covers crashes
and unpredictable or meaningless behavior at runtime. Yet another notion is
backward compatibility. Backward compatibility guarantees that former versions
of a software component can safely be replaced by newer versions without the
need for global coherence checks during or after load-time.

Obviously, the kind and degree of safety that is required has a direct influ-
ence on the extensibility mechanisms. For example, a certain degree of static
safety can be achieved by a programming language’s type system at compile-time,
while dynamic type tests have to be used for those cases that are not covered by
the static type system. Similarly, systems that support dynamic loading need co-
herence checks at load-time to ensure that extended components “fit” the rest
of the system. Such checks are even necessary for systems that guarantee safety
statically but support some form of separate compilation. Here, components that
are compiled together might not necessarily also be deployed together.

1.3 Classification of Extensibility Mechanisms

We will now propose a classification of extensibility mechanisms based on what
artifacts are changed and in what way they are changed. In general, we dis-
tinguish between three different forms of extensibility: white-box extensibility,
gray-box extensibility, and black-box extensibility.

1.3.1 White-Box Extensibility

White-box extensibility refers to the ways in which a software system can be ex-
tended by modifying or adding to the source code. This is the least restrictive
and most flexible form of extensibility. Depending on the way changes are ap-
plied, we have to distinguish further between open-box extensibility and glass-box
extensibility [7].

1.3.1.1 Open-Box Extensibility

In open-box extensible systems, changes are performed in an invasive fashion; i.e.
they are directly hacked into the original source code. Here are a few implications
of this approach:

6 Extensible Component-Based Software

Source
Binary

Modification

Compiler
Modified
Source New

Binary

Modification

Compiler

Source
Binary

Compiler

Copy

(a) Invasive change (b) Souce code duplication

Figure 1.1: Extensibility based on source code reuse.

• It requires that the source code is available and the source code license per-
mits modifications.

• Changing source code (especially if it was written by someone else) is an
error-prone and tedious activity, especially if the source code and the way
a system works is not well understood.

• Since arbitrary changes can be performed, it is easy to break clients which
were written for the original system with extensions that do not preserve
backward-compatibility. Thus, open-box extensibility is inherently unsafe
in its general, unrestricted form.

An illustration of open-box extensibility can be found in Figure 1.1a. Open-box
extensibility is most relevant to a development team when fixing bugs, refactor-
ing internal code, or producing the next version of their own software product.

In some cases, open-box extensibility may also be of interest to developers at-
tempting to take advantage of existing open-source software. For deriving a vari-
ation of an already existing software product, the source code has to be copied
and the changes have to be hacked into the copied sources. This principle is illus-
trated in Figure 1.1b.

While this approach makes it extremely easy to develop a new member of
a software system family from scratch, it complicates maintenance significantly.
The problem is that extension code and the original application code are mixed.
When changes, e.g. bug fixes, get introduced into the original system, these also
have to be somehow integrated into the extended system. This can be an ex-
traordinary difficult and time-consuming task. And even if the system is modular
enough that the actual code that was changed does not conflict, it is difficult to en-
sure that no assumed invariants of the new code are broken by the own changes.

1.3 Classification of Extensibility Mechanisms 7

Source
Extension Binary

Extension

Compiler

Source
Binary

Compiler

ref
ers

 to

extends

Entry
point

Entry
point

Figure 1.2: Extensibility based on binary reuse.

Therefore, it is not surprising to see that in practice, changes introduced by an
open-box approach of that kind diverge most often.

1.3.1.2 Glass-Box Extensibility

Glass-box extensibility refers to the ways in which a software system may be ex-
tended when the source code is available, but may not be modified. Programmers
that want to extend the system can view the code, but they have to separate their
extensions from the original system in a way that does not affect the original sys-
tem. Glass-box extensibility has several advantages over open-box extensibility:

• Since extensions and the original system are cleanly separated, it gets eas-
ier to understand and maintain extensions, as well as the original system. It
is, in particular, more easy to combine new versions of the original system
with extensions that were developed for the old one.

• Since glass-box extensibility is not directly based on source code modifica-
tions, it is less likely that the extension process introduces bugs in the origi-
nal system or invalidates invariants established in the original system.

Object-oriented application frameworks provide an example for glass-box ex-
tensibility. These frameworks typically rely on features like inheritance and dy-
namic binding in order to achieve extensibility. Existing functionality is reused
and extended by inheriting from framework base classes and overriding prede-
fined hook methods. Such white-box frameworks are also called architecture-
driven frameworks.

Figure 1.2 illustrates how glass-box extensibility can be used to derive an ex-
tended variant of a system. Both the extension’s source code and the correspond-
ing binary refer to the original binary, but they neither physically modify the orig-
inal source nor the original binary. The binary of the extension provides a second
entry-point into the system — which is, in fact, the entry-point into the extended

8 Extensible Component-Based Software

system. The old entry-point is still available and can be used to deploy the origi-
nal system without the extension.

1.3.2 Gray-Boy Extensibility

Figure 1.2 shows that the glass-box approach does not necessarily rely on the
availability of the original source code. Technically, only the original binary is re-
quired for developing extensions (assuming that the binary contains all relevant
meta-data and the development platform supports late binding). Consequently,
it is possible to extend systems in a glass-box fashion even if source code is not
available. In this case, programmers of extensions could be given an alterna-
tive, more abstract documentation of the system’s specialization interface. This
interface lists all abstractions that are available for refinement and specifies how
extensions interact with the original system. The rules for correctly extending a
system can be described in form of reuse contracts [188].

This form of extensibility is called gray-box extensibility. It represents a com-
promise between a pure white-box and a pure black-box approach in the sense
that it does not rely on the full exposure of the source code, but still provides
internal details about the implementation and extension of a system.

1.3.3 Black-Box Extensibility

Black-box extensibility refers to the ways in which a software system may be ex-
tended when no internal details about a system’s architecture and implementa-
tion are available. Black-box extensible systems are deployed and extended only
by using their interface specification. This approach allows system manufactur-
ers to fully encapsulate their systems and hide all implementation details.

As opposed to white-box extensibility, the extensibility mechanism is explic-
itly built into the system and part of the system’s design. For designing such an
extensibility mechanism, it is often necessary to anticipate all possible extension
scenarios. For this reason, black-box approaches are often much more limited
than white-box approaches. On the other hand, black-box extensible systems are
generally easier to use and to extend since they require less knowledge about in-
ternal details of a system.

Typically, black-box extensions are made through system configuration appli-
cations or through the use of application-specific scripting languages. In the con-
text of object-oriented application frameworks, black-box extensibility is mostly
achieved by defining interfaces for components that can be plugged into the
framework via object composition. Existing functionality is reused by defining
components that conform to a particular interface and by integrating these com-
ponents into the framework using design patterns like the Strategy pattern [74].
Figure 1.3 illustrates such a plug-in mechanism.

Black-box extensibility is most applicable to proprietary components and

1.4 Extensibility Requirements 9

Extension
Source Compiler

Source
Binary

Compiler
Entry
point

Extension

Figure 1.3: Extensibility based on plug-ins.

frameworks in which the business model of the original development team re-
quires that the source code must not be published, but where external develop-
ers should still be given some degree of flexibility in customizing and extending
the functionality of the software. Black-box extensible frameworks are often also
called data-driven frameworks.

1.4 Extensibility Requirements

Software component technology emphasizes the construction of software from
off-the-shelf components that are provided by a global software component in-
dustry consisting of independent component developers [195]. To facilitate the
construction, deployment, and evolution of components in such a context, pro-
gramming techniques and programming platforms have to satisfy the following
requirements:

• Components are generic units of software that are implemented in a mod-
ular way with explicit context dependencies and with support for separate
compilation [195].

• Facilities for composing independently developed components have to be
flexible but also safe and should not require access to implementation de-
tails (black-box component deployment).

• Component composition and component evolution mechanisms have to
scale well, since component-oriented programming is targeted towards pro-
gramming in the large [56].

• The reuse of components in different contexts should imply the least possi-
ble need for explicit adaptation code.

• In support for a smooth software evolution process, components have to be
extensible without the need to anticipate all possible future extensions.

10 Extensible Component-Based Software

• The extensibility and deployment mechanism has to be safe in the sense
that it rules out erroneous ways to reuse a system [132].

• Component systems have to be extensible on the system level as well, allow-
ing programmers to plug in alternative or additional components without
the need for rewiring the whole system.

• Extensibility has to be non-invasive, avoiding that local changes have a
global impact, and making it possible to derive different, independent ex-
tensions from a single component.

• Different extensions of a component have to be able to coexist, requiring an
appropriate versioning mechanism.

• The extension of components must not require the availability of the full
source code since this would violate the principle of binary component reuse
(gray-box component extension).

In general, these requirements pose high demands on the implementation plat-
form. The following list enumerates some features that programming languages
have to support in order to meet these requirements [193].

• High-level abstractions for components and composition mechanisms,

• Modular encapsulation (as a high-level information hiding mechanism),

• Parametric polymorphism (to support genericity on the component level),

• Subtype polymorphism (to enable substitutability and variability of soft-
ware components),

• Late binding and loading (as a basis for the independent deployment of
components by third-parties),

• Static type safety (to make large-scale component engineering practical
and safe), and

• Covariant refinement and specialization of abstractions (including types, to
support extensibility and reuse).

Mainstream class-based object-oriented programming languages, which are to-
day predominantly used for programming software components, do not live up
to many of the requirements. In particular, they do not provide suitable abstrac-
tions for components which would allow programmers to make the architecture
of a system and the relationships of a system’s components explicit. Furthermore,
type abstraction facilities are often quite restricted. Even though inheritance al-
lows one to specialize classes covariantly, there is often no way to specialize com-
posite structures, not even types. Furthermore, object-oriented programs are of-
ten full of hard links (static variables and methods, specific references to classes,
etc.) making it difficult to evolve systems.

1.5 Programming Language Support 11

Only recently, this lack of support for component-oriented programming gave
rise to research about how to best support component technology on the pro-
gramming language level.

1.5 Programming Language Support

The principal means for writing software are programming languages. But not all
programming languages are suitable for all programming tasks. It is important
to choose a language that supports application specific requirements well.

Since component-oriented programming predominantly deals with the man-
ufacturing of components and their deployment, a programming language sup-
ports this paradigm well only if it makes it easy to specify and compose compo-
nents effectively and safely. Apart from such abstraction capabilities, program-
ming languages offer formalisms for composition, reuse, and verification.

Abstraction. Component-oriented programming languages have explicit sup-
port for component abstractions; i.e. they provide linguistic facilities for defin-
ing software components on the programming language level. As a unit of
composition with contractually specified interfaces and explicit context depen-
dencies, components correspond, on the level of programming languages, very
closely to modules, as introduced by imperative languages like Modula-2 [206]
and Ada [196]. Nevertheless, modules in those classical module systems do
not fully qualify as suitable abstractions for generic software components, since
they hard-wire all dependencies by referring to specific cooperating modules. In
more recent language designs — such as MzScheme [69], ComponentJ [182],
ACOEL [187], and ArchJava [5] — language level component abstractions may
abstract over their dependencies, making it possible to develop and deploy com-
ponents independently of each other.

Composition and reuse. The independent reuse of software components in
different contexts with different cooperating components is the most common
form of reuse in the context of component-oriented software development. This
form of reuse is enabled by software composition mechanisms like aggregation
(object composition) or mixin-based inheritance (class composition), which al-
low programmers to compile ever-new composites of components and compo-
nent instances.

This thesis focuses on extensibility, a specific form of reuse. On the language
level, extensibility can be supported with mechanisms that allow one to create
new versions of components or to specialize components for more specific tasks.

Verification. Static analysis tools approximate the runtime behavior of a pro-
gram before it is executed. Compilers for programming languages that are

12 Extensible Component-Based Software

equipped with a static type system [43] perform exactly such an analysis at
compile-time. They automatically prove the absence of certain program behav-
iors by classifying phrases according to the kinds of values they compute. Fur-
thermore, type systems are also used to enforce modularity properties and to
protect the integrity of user-defined abstractions.

As static analysis tools, type systems have to be conservative. Even though
they can be used to categorically prove the absence of bad program behaviors or
illegal interactions, they are unsuitable for proving their presence. Consequently,
type systems sometimes reject programs that actually behave well at runtime.

Nevertheless, type systems are extremely helpful for developing correct and
reliable software [42]. They are significant for the following reasons [164]:

• Error Detection:
Static type checking allows detection of some programming errors already
at compile-time. In addition to the early detection of errors, it is often possi-
ble to pinpoint errors more accurately during type checking than at runtime
when their effects may not become visible until some time after the actual
moment where things begin to go wrong. Type checkers can also be used
as maintenance tools, for example, when abstractions are changed and all
clients have to be updated accordingly.

• Abstraction:
Type systems support the software development process by enforcing dis-
ciplined programming. In the context of large-scale software composition,
type systems form the backbone of module systems which are used to as-
semble the components of large systems. Module systems often enforce a
separation of component interface specifications from concrete implemen-
tations. While types are typically used to specify the signature of module
members in interface descriptions, module interfaces themselves can be
regarded as types of modules. Structuring large systems in terms of mod-
ules with clear interfaces leads to a more abstract style of design where
interfaces are designed and discussed independently from their eventual
implementations. More abstract thinking about interfaces, in turn, gener-
ally leads to a better design.

• Language Safety:
Type systems do not only make it possible to setup abstractions, they can
also enforce their integrity and their correct usage. In particular, they can
guarantee that abstractions and established invariants are not broken by
clients. Without static type systems, the safety of a programming language
has to be provided solely by dynamic checks.

• Documentation:
Type declarations constitute a form of documentation giving useful hints

1.6 Component Engineering Approaches 13

about the functionality of an abstraction and its usage. In contrast to doc-
umentation in a natural or semi-formal language, this form of documen-
tation can not become outdated as the program evolves, since with every
run of the compiler, the type checker will verify its conformance with the
implementation. The role of types as machine-checkable documentation is
particularly important at the level of module interface descriptions, but can
also be useful when reading programs.

• Efficiency:
Better understanding about what kind of values are handled by a program
term helps compilers to produce more specialized code with better runtime
performance. In particular, safe languages allow elimination of many dy-
namic checks, which would otherwise be needed to guarantee safety at
least at runtime.

Since each of these points is extraordinarily important for the development of
software components, static typing is indispensable for component-oriented pro-
gramming. For this reason, the following chapters have a strong focus on stat-
ically typed programming languages in which the manufacturing, the composi-
tion, and the evolution of software components is subject to a static type system.

1.6 Component Engineering Approaches

Today, component-oriented programming is mostly carried out in the context of
mainstream object-oriented programming languages. Component programming
practice relies on component models that are based on component frameworks
and meta-programming technology.

1.6.1 Frameworks

Component frameworks are software entities that establish an environment in
which components that conform to a certain standard can be instantiated and in
which those instances can be plugged into the system. A component framework
defines rules and interfaces that govern the interaction of component instances
that are plugged into the framework. It also enforces architectural principles by
forcing component instances to perform certain tasks via mechanisms that are
under the control of the framework itself. Some component frameworks are
higher-order; they apply this concept hierarchically such that environments es-
tablished by a component framework are themselves component instances that
can be plugged into other component frameworks.

The various industrial component models like the Corba Component
Model [83], COM [172], JavaBeans [190], and Enterprise Java Beans [191],
all have similar design goals and provide, to some degree, similar functionality,

14 Extensible Component-Based Software

but they follow quite different design philosophies. What they have in common is
that the implementation of these models is based on technology that goes beyond
the infrastructure provided by mainstream object-oriented languages. Such mod-
els typically provide a class framework for modeling components and component
interactions together with an informally specified set of implementation rules.
Component instances are often composed dynamically using meta-programming
technology like introspection and reflection. Some component models, like EJB,
even require that contracts are specified completely outside of the programming
language, typically using an XML-based approach.

These implementation issues all defeat an effective usage of a programming
language as a means to guarantee statically the integrity of component systems
and their conformance to the implementation standards required by the frame-
work. In particular, there is often not even a way to statically check if the various
software artifacts specified in different formalisms are consistent and hence “fit”
to each other.

1.6.2 Extensibility

In practice, extensibility is often either achieved by relying on design patterns or
by applying meta-programming.

For design pattern-based approaches it is necessary to plan extensibility
ahead by rigorously deploying suitable patterns that are typically derived from
the AbstractFactory pattern [74]. Frameworks in which extensibility is mainly
achieved by design patterns that are based on object composition and forward-
ing are called data-driven frameworks, frameworks where extensions are derived
by inheritance and overriding are called architecture-driven frameworks.

As opposed to design patterns, meta-programming technology provides ways
to extend systems without necessarily planning extensibility ahead. Meta-
programming has many different variations. As an overview, we will only men-
tion a few approaches here.

Generative programming [55] aims at transformational approaches to the con-
struction of software. Approaches based on generative programming work best
in two areas: They help to produce a larger number of similar components and
they can be used to enhance composed systems. In a world of deployable com-
ponents, both cases must be handled with care to ensure that component bound-
aries are respected and possible interferences with cooperating components are
avoided. No matter if generative programming techniques are applied to source
code or some intermediate bytecodes, they most often do not come with any
safety guarantees.

Aspect-oriented programming techniques [103] make it possible to modular-
ize crosscutting aspects of a system, facilitating the separation of different con-
cerns. A system consisting of various “aspect slices” is assembled by an aspect
weaver which merges the fragments into a whole. In the context of aspect-

1.7 Overview 15

oriented programming, a system is typically extended by adding new aspects.
But with the current aspect-oriented programming technology it is relatively dif-
ficult to set up strong component boundaries which enforce encapsulation and
which specify context dependencies explicitly. As a consequence, aspects often
do not qualify as generic abstractions which can be deployed in arbitrary contexts,
even though they are modular units of software [104].

Systems that have to be available constantly and cannot be terminated for
introducing extensions are typically evolved using dynamic meta-programming
technology like reflection. Often such approaches are based on special middle-
ware which explicitly supports the dynamic evolution of systems.

Extensibility mechanisms based on meta-programming allow systems to be
extended in a flexible and non-invasive manner, but they rarely give safety or con-
sistency guarantees at compile-time. Since many static meta-programming ap-
proaches are mostly source code-based, they are not very suitable for today’s com-
ponent technology practice which stresses the binary deployment of software
components. Nevertheless, with a stronger focus on static safety and a tighter
language integration, meta-programming technologies like aspect-oriented pro-
gramming or multi-stage programming [197] are likely to provide helpful tools
for developing extensible software in the future.

1.7 Overview

1.7.1 Scope

This thesis investigates how the development of extensible, component-based
software can be facilitated with programming languages that support extensible
component abstractions explicitly. The work was driven by the belief that only
on the programing language level it is possible to find mechanisms that meet all
the requirements listed in Section 1.4. The work puts special emphasis on safety
and consistency, promoting solutions in strongly typed programming languages.

1.7.2 Contributions and Outline

Chapter 2. The main part of the dissertation is split up into five chapters. The
role of Chapter 2 is two-fold:

• It explains the notion of software components and component composition
in a formal way in the context of a class-based object-oriented language.
The theoretical model captures typical principles like explicit context de-
pendencies, late composition, and strong encapsulation. It motivates how
types help to manufacture and compose components safely.

16 Extensible Component-Based Software

• It illustrates the vision of truly extensible software components by introduc-
ing a small set of composition primitives for dynamically building, compos-
ing, and extending software components in a concise and safe manner.

Chapter 3. Chapter 3 applies the essential ideas of the theoretical model in the
design of the programming language Keris. Keris extends the programming
language Java with an expressive system of extensible modules. The main contri-
butions of this work are:

• A practical module system that combines the benefits of classical mod-
ule systems for imperative languages with the advantages of modern
component-oriented formalisms. In particular, modules are reusable,
generic software components that can be linked with different cooperat-
ing modules without the need for resolving context dependencies by hand
(wiring inference).

• A module composition scheme based on aggregation that makes the static
architecture of a system explicit, and

• A type-safe mechanism for extending atomic modules as well as fully linked
systems statically by replacing selected subsystems with compatible ver-
sions without the need to re-link the full system. The extensibility mech-
anism is non-invasive; i.e. it preserves the original version and does not
require access to source code.

The overall design of the language was guided by the aim to develop a pragmatic,
implementable, and conservative extension of Java which supports software de-
velopment according to the open/closed principle: Systems written in Keris are
closed in the sense that they can be executed, but they are open for unanticipated
extensions that add, refine or replace modules or whole subsystems without plan-
ning extensibility ahead.

Chapter 3 explains the design of Keris, presents application scenarios, shows
how the language is implemented, and investigates how efficient this implemen-
tation is. Furthermore, it discusses the module system of Keris in relation to
other module systems. This discussion is based on a general module system tax-
onomy.

Chapter 4. Chapter 4 presents a case study for evaluating the module system
of Keris. It focuses on the development of extensible compilers. Regarding ex-
tensibility, compilers are interesting for various reasons:

• Programming languages are often extended by different people for differ-
ent, often domain-specific purposes. Implementing compilers for such ex-
tended languages from scratch is a tedious and quite redundant process. If
compilers would be extensible systems, the implementation of specialized
programming languages would be easier and more effective.

1.7 Overview 17

• Compilers are language processors; extending such systems requires that
language constructs as well as operations upon language constructs are ex-
tensible. It is a well-known technical problem to facilitate extensions in
both dimensions.

• Compilers are relatively complex systems with many recursively dependent
datatypes and components. It is a challenge to extend such tightly intercon-
nected systems consistently.

Chapter 4 compares an extensible Java compiler implemented using mainstream
object-oriented language features with one that was written in Keris. It shows
how extensible modules can be used in practice to develop extensible systems
safely and efficiently.

Chapter 5. The last chapter concludes the thesis with a presentation of related
work, a summary of the problems and solutions discussed in the dissertation, as
well as some notes about possible future work.

Chapter 2

A Formal Model for Extensible
Software Components

This chapter introduces basic concepts of software component technology and
component-oriented programming by discussing details of a simple but expres-
sive theoretical component model. This component model is designed to sup-
port the implementation and evolution of lightweight, extensible components
in object-oriented programming languages. The model is expressed as a small
component-oriented programming language featuring dynamic component man-
ufacturing, composition, and extension in a type-safe way through a minimal set
of component specialization primitives. Furthermore, there is support for prin-
ciples like explicit context dependencies, late composition, unanticipated exten-
sibility, and strong encapsulation of component services. In contrast to other
approaches, the services which components provide and require do not have to
be linked explicitly. Instead, components are composed using high-level compo-
sition operators which implicitly link services by inferring the wiring. Finally, a
formalization of the component model is presented which extends Featherweight
Java [95, 164], a typed core calculus modeling the essential features of Java.

The remainder of this chapter is organized as follows. Section 2.1 discusses
the implications of component-based software development, emphasizing, in par-
ticular, the importance of software adaptability, extensibility, and software evo-
lution in general. Section 2.2 introduces the component model step by step, pre-
senting the various component specialization primitives and motivating their ap-
plication. A formalization of the model is described in Section 2.3 in form of a
core component calculus. We present a type system and prove that this system is
sound with respect to the given operational semantics.

20 A Formal Model for Extensible Software Components

2.1 Motivation

Before presenting details we motivate specific design principles of the component
model. The main features of the model include:

• Components are first-class core language abstractions,

• Composition operators enable coarse-grained component composition,

• Components can be manufactured and composed dynamically,

• Components are extensible, promoting advanced component reuse, adapt-
ability, and evolution.

Furthermore, the model expresses many principles common among component-
oriented formalisms, like explicit context dependencies (external linking), cyclic
component linking, and strong encapsulation of component services. Compo-
nent manufacturing, composition, and specialization are type-safe. The type sys-
tem supports subtype polymorphism for components and component instances.

2.1.1 Language Integration

Currently, component-based programming relies on mainstream object-oriented
programming languages. Object-oriented languages seem to promote
component-based programming well: They support encapsulation of state and
behavior, inheritance and overriding enable extensibility, and subtype polymor-
phism and late binding make it possible to flexibly reuse objects and classes.

Unfortunately, object-oriented techniques alone are not powerful enough to
provide flexible and type-safe solutions for component composition and evolu-
tion. Therefore, industrial component models like CORBA [83], COM [172], and
JavaBeans [190] rely on additional concepts, namely component frameworks
and meta-programming. They provide a class framework for modeling compo-
nents and component interactions together with an informal set of implementa-
tion rules. Components are composed using meta-programming technology, e.g.
reflection. This ad-hoc approach yields a dynamic and flexible composition mech-
anism, but often does not guarantee static type security. Furthermore, the degree
of extensibility depends on the framework or the meta-programming tools. In
general, it has to be planned ahead, for instance by using suitable design patterns
typically derived from the AbstractFactory pattern [74]. This lack of support for
unanticipated extensibility hinders a smooth evolution process substantially.

In [5], Aldrich and Chambers point out another important issue. They ob-
serve that in general, implementation languages are only loosely coupled to ar-
chitectural descriptions. As a consequence, specifications of software architec-
tures [159, 184] formally expressed in architecture description languages [130]
are often quite different from the actual object-oriented implementations. This

makes it difficult to trace architectural properties in the implementation, on

2.1 Motivation 21

which basis it would be possible to verify that an implementation is consistent
with the corresponding architectural description.

Related to this issue is the critique of Achermann et.al. that object-oriented
source code exposes class hierarchies but not object interactions [2]. This lack
of explicit architecture makes it difficult to adapt an application to new require-
ments since the code that plugs objects together is distributed among the objects
themselves and therefore difficult to overlook.

For these reasons, various proposals have recently been put forward to inte-
grate concepts from architecture description languages into object-oriented pro-
gramming languages [182, 187, 5]. These so-called component-oriented pro-
gramming languages offer linguistic facilities for programming software com-
ponents, for defining component interactions, and for composing software from
components. Their promise is to do that in an effective and type-safe way, ruling
out illegal interaction patterns.

2.1.2 Coarse-Grained Composition

Existing proposals for component abstractions on the programming language
level like ComponentJ [182] and ArchJava [5] directly adopt concepts and prin-
ciples of architecture description languages. They provide constructs for manu-
facturing components with required and provided services. A service associates a
port name with a type. Components are composed by linking ports with explicit
plug instructions. The type system ensures that all ports are linked and that links
are established only between compatible ports or service providers.

This approach does not scale, since for linking a component with n services,
n explicit plug instructions have to be issued specifying the wiring of the compo-
nent. For large-scale components with a lot of services involved, linking compo-
nents in such a way is tedious and error-prone. Furthermore, the sequence of
plug instructions rather obscures the architecture of the system instead of mak-
ing it explicit. Therefore, McDirmid, Flatt, and Hsieh argue that component sys-
tems should offer the possibility to connect many services at once [129].

We address this requirement by simplifying the interface of components and
by providing means to infer the wiring of components. Components can be com-
posed with simple operators and without explicitly plugging ports. We also sup-
port incremental linking; i.e. we allow that components get only partially linked.
For instance, components can be sent around in a distributed system and only
the services available at a specific location get linked until we have a fully linked
component that finally can be instantiated.

2.1.3 Dynamic Manufacturing and Composition

Software component technology distinguishes two main tasks: component man-
ufacturing and component composition. These two tasks are often presented as

22 A Formal Model for Extensible Software Components

separate steps being performed one after the other. But in practice, both tasks
coincide when new components are built by composing other components. This
form of component manufacturing is called hierarchical component composition.

Often it is assumed that component manufacturing is done statically before
component composition takes place. Component composition itself cannot al-
ways be performed statically, since there are cases where the concrete compo-
nents are only known at runtime. For this reason, component-based systems are
often required to support some form of dynamic linking.

This observation implies that we also have to be able to manufacture software
components dynamically, since component linking and manufacturing coincide
in hierarchical component compositions. Thus, it makes no sense to assume that
both manufacturing and composition are atomic tasks that are performed consec-
utively. In highly dynamic systems, component manufacturing and composition
is rather an interleaved process in which components are created and linked in-
crementally.

2.1.4 Extensibility

When using components from external vendors, it is quite unlikely that the inter-
faces of these third-party components fit to the required interfaces off-the-shelf.
Therefore, it is often necessary to adapt components before they can be deployed
in a particular system [90, 150]. As Section 2.1.3 pointed out already, there are
applications where components are only supplied at runtime. In this case it is
indispensable that components can even be adapted dynamically on-the-fly.

In a prototype-based system, new entities can only be created by cloning an
existing entity and by modifying the cloned entity afterwards. Our component
model is prototype-based in this sense: new components can only be created by
specializing an already existing component. As a consequence, we can derive
two different components from a single base component. By doing this, we factor
out potentially reusable pieces, avoiding duplicated programming effort. In ad-
dition, this technique supports software evolution. Software evolution includes
the maintenance and extension of component features and interfaces. Support-
ing software evolution is important, since components and component systems
are architectural building blocks and as such subject to continuous changes.

Extensibility is not only required for smoothly evolving single software com-
ponents. It is even more desired for enabling the development of families of soft-
ware applications and product-lines in general. Traditionally, components are
static black-boxes emphasizing encapsulation over extensibility. Features can be
added to components only by creating new components which forward all exist-
ing services to the old versions in addition to the new services they provide. This
is a cumbersome and error-prone procedure that duplicates programming efforts
and complicates maintenance.

2.2 Prototype-Based Components 23

2.2 Prototype-Based Components

We now introduce step by step our component abstractions in the context of a
small, statically typed, object-oriented Java-like base language. Our component
model relies on a nominal type system [164] of the base language. In nominal
type systems, two types with the same structure but a different name are consid-
ered to be different, as opposed to structural type systems that match the struc-
ture and not the name. The model does not require other base language features
like inheritance or even classes, even though we present it here in a class-based
context. Therefore it should be straightforward to add similar component ab-
stractions to other object-oriented languages with nominal object types.

2.2.1 Components and Component Instances

In our model, a component is a unit of computation that can be accessed through
a well-defined interface. A component is a first-class citizen. Its interface speci-
fies the services it provides to allow other components to interact with it. The in-
terface also specifies the services a component requires from other components
to be able to provide the own services.

The component model is prototype-based; i.e. the only way to create a new
component is by specializing an already existing prototypical component. For
bootstrapping purposes, there is a single predefined component that does not
provide or require any services. This empty component is denoted by the key-
word component.

We strictly distinguish between components and component instances. A
component describes a template for possibly multiple component instances. It is
the component instances that provide the actual services. Services are described
by object types, e.g. types defined by classes or interfaces. Objects act as service
providers. They usually get created at component instantiation time. Therefore,
components can be seen as organizational units with well-defined interfaces that
structure object interdependencies. Components have neither a unique identity,
nor an observable state. They come to life through objects at the time they get
instantiated.

In the remainder of this section we introduce prototype-based components
by example. We derive some simple software components that could be used, for
instance, in online retail stores to manage stock and clients.

2.2.2 Service Provision

We start by manufacturing a software component that provides access to a cus-
tomer database. We want every customer to have a unique client number. A
service that maps customer names to client numbers could be described by the
following interface definition:

24 A Formal Model for Extensible Software Components

interface CustomerIDs {
int lookupId(String name);

}

The CustomerIDs interface consists of a single method lookupId. Given a cus-
tomer’s name, this method tries to find the corresponding client number. If
there is no client number yet for this customer, a new number will be issued
and returned by lookupId. Imagine we have the following implementation of
the CustomerIDs interface:

class MyCustomerIDs implements CustomerIDs {
MyCustomerIDs() { ... }
int lookupId(String name) { ... }
...

}

With this implementation we are able to manufacture a software component that
provides a CustomerIDs service. Since we can only create new components by
specializing existing ones, we have to take the empty component as a prototype
and specialize it such that it provides a CustomerIDs service. In our calculus, this
is done with the providesprimitive:

c0 = component
provides CustomerIDs as This with new MyCustomerIDs();

The clause d provides C as x with e returns a new component that specializes
component d by providing some possibly new services C. These services are im-
plemented by an object specified with expression e. Note that we are extending
a component here. Therefore, expression e only gets evaluated at component in-
stantiation time. x is a variable that gets bound to the own component instance.
In object-oriented languages this self reference corresponds to variable this or
self referring to the own object. Only expression e is in the scope of x. Typically,
expression e refers to other services of the own component instance via x.

We use a graphical notation to illustrate the structure of components. Fig-
ure 2.1 gives an overview. Here, a component is represented by a box. The gray
part corresponds to the prototype of the component, the white part defines the
specialization. In our graphical notation, services are symbolized by diamonds.
Objects are black dots. An arrow from a service to an object expresses that this
object implements the service. We also have outlined arrows that depict service
dependencies. These dependencies are found by inspecting the code; they are
not explicit in the calculus. If an object refers to other services, for instance via
the self reference, then every such dependency is specified with an outlined ar-
row. Figure 2.2 illustrates the structure of the previously defined component c0.

2.2 Prototype-Based Components 25

A

B

pt

Prototype

Refinement

Service access

Service

Service
implementation

Object

Figure 2.1: Schematic component notation.

2.2.3 Component Instantiation

We already pointed out that components have to be instantiated before services
can be accessed. In our component calculus, a component gets instantiated with
the newprimitive.

i0 = new c0;

The services of a component instance like i0 get accessed via the service selection
operator ::. The expression e :: C selects a service C from component instance
e. C is a type name that identifies a service and at the same time describes the
interface of the service. Other component models refer to services via named
ports. In these models it is possible to have two distinct ports with the same in-
terface type but different port names. In programming languages with nominal
type systems like Java [82] or C# [86], types do not only define structural object
properties like available methods or fields. They also stand for semantic specifi-
cations [38], and as such, they are well-suited for specifying roles. In those type
systems it is possible to have two distinct types with the same interface descrip-
tion but different type names. Therefore, it is no restriction to describe a service
only by its type without having a port name in addition. This simplifies the defi-
nition of components and the service access in general significantly. It also acts
as a standardization of port names. One only has to know a service’s type in or-
der to access it from a component instance. It is not necessary to lookup the port
name in the component specification. We will see later in Section 2.2.7 that this
standardization of component port names has another advantage: it promotes
automatic composition mechanisms. Of course, in the few cases where two ports

26 A Formal Model for Extensible Software Components

Component c0:

A

A = CustomerIDs
B = CustomerDB

Component c1:

A

B

c0

Component c2:

A

B

c1

Figure 2.2: Component evolution.

could share a type, we have to create new type names and in the worst case use
wrappers to adapt existing objects.

Here is an example demonstrating the usage of the component i0. In this
example we call the lookupId method of the CustomerIDs service provided by
component instance i0. The service selection operator :: and the . operator are
both left-associative and both operators have the same precedence.

i0::CustomerIDs.lookupId("John Smith");

2.2.4 Component Specialization

Now imagine the requirements for our customer administration component c0
are changing and we also need the capability to store customer names and ad-
dresses. We can describe this new database service with the following interface:

interface CustomerDB {
void enter(String name, String address);
String lookupName(int id);
String lookupAddr(int id);

}

Method enter stores a new address in the database. Whenever a new customer
is entered, a new client number will automatically be assigned to this new cus-
tomer. The methods lookupName and lookupAddr find a name or address for a
given client number. The following class implements CustomerDB. It depends
on a component instance that provides a CustomerIDs service. This component
instance is passed as a parameter to the constructor. Following [182], we use
the notation [S1, ..., Sn] to specify the type for component instances supporting at
least the services S1 to Sn.

2.2 Prototype-Based Components 27

class MyCustomerDB implements CustomerDB {
[CustomerIDs] This;
MyCustomerDB([CustomerIDs] This) {
this.This = This;

}
...
This::CustomerIDs.lookupId(name)
...

}

We already mentioned that prototype-based components offer a smooth compo-
nent evolution mechanism. For creating an extended version of a component, we
just have to interpret the old component as a prototype. In our example, the new
specialized component evolves out of the old one simply by an application of the
providesprimitive. The following code specializes component c0 by additionally
providing the service CustomerDB.

c1 = c0 provides CustomerDB as This with new MyCustomerDB(This);

Theprovidesprimitive can also be used to specialize a component by defining
a new service implementation for an already provided service. In this case we
override the old implementation. Here is the definition of component c2 that
specializes c1 by using, for instance, a more efficient client numbering service.

c2 = c1 provides CustomerIDs as This with new EfficientCustomerIDs();

The service implementation for CustomerDB, specified already in the prototype of
c2, now automatically refers to this new numbering service implementation. A
graphical illustration of components c1 and c2 can be found in Figure 2.2.

2.2.5 Service Forwarding

Until now, we are only able to develop new components by adding new services
or by overriding existing service implementations of a prototypical component.
Every service we add gets exported automatically; i.e. it can be accessed from
outside the component. This “white-box approach” is necessary to keep the com-
ponent extensible, because it allows one to override service implementations and
to add new service implementations that refer to already existing services. But
often we do not want to publish internally used services. Being able to hide in-
ternal interfaces is an important feature of component-oriented programming.
Our component calculus supports this form of encapsulation with the component
projection operator forwards. The clause d forwards C as x to e extends com-
ponent prototype d with the services C. The new component forwards accesses
of these services to the component instance e. Expression e can refer to other

28 A Formal Model for Extensible Software Components

Component c3:

A

B B

c2

A = CustomerIDs
B = CustomerDB

Figure 2.3: Service forwarding.

services of the own component instance via the self reference x. This primitive is
primarily used for composing components hierarchically. In the following exam-
ple it is specifically used to hide services and service interconnections. Thus, it
turns a “white-box” into a “black-box” by wrapping the original component.

c3 = component
forwards CustomerDB as This to new c2;

In this example we create a new component c3 which only provides a single ser-
vice CustomerDBby forwarding calls to a component instance of c2. Thus, we hide
the CustomerIDs service of component c2. We say, an instance of c2 is nested in-
side every instance of component c3. We call the hidden CustomerIDs service an
internal service of component c3. An illustration of c3 instances can be found in
Figure 2.3. Here, the instance of component c2 which is contained in c3 is de-
picted by a nested box. Service implementations are now arrows pointing from
external services to internal services of nested component instances.

2.2.6 Service Abstraction

The previous sections showed how to evolve a component by incrementally
adding new services either by a new service implementation or by forwarding
services to a nested component instance. In both cases new services and ser-
vice implementations were introduced at the same time. This approach does not
cover the development of components that depend on services provided by other
components. Furthermore, it does not even allow programmers to define two ser-
vices where service implementations depend mutually on each other, because
services get introduced linearly, one after the other.

We tackle both problems with a service abstraction facility. Before going into
detail, we proceed by manufacturing a new component for handling orders of a
shop. The service for placing orders is described by the following interface:

2.2 Prototype-Based Components 29

interface OrderDB {
void order(int id, String article, int num);

}

With method order, new orders can be placed. Orders consists of a client num-
ber, an article descriptor and the number of items to deliver. If possible, this
method tries to execute the order immediately. Therefore it needs access to a
stock database service specified by the following interface:

interface StockDB {
void enter(String article, int num);
void remove(String article, int num);
int available(String article);

}

Method order checks if the articles are available. If this is the case, it removes
them from the stock database and sends the articles to the customer’s address.
Therefore, service implementations of OrderDB like MyOrderDB also need access
to the CustomerDB service. Thus, the constructor of the following class expects a
component instance providing StockDB and CustomerDB services.

class MyOrderDB implements OrderDB {
[StockDB, CustomerDB] This;
MyOrderDB([StockDB, CustomerDB] This) {
this.This = This;

}
...

}

Since we do not want our order system component to already commit to a
specific service implementation for the StockDB and the CustomerDB service, we
have to factor out these two services. In order to make use of the component later,
we then either have to provide the missing service implementations from outside
at composition time, or we further specialize the component and provide service
implementations from inside the component.

In our component calculus, services are factored out with the service abstrac-
tion primitive requires . The requires primitive allows one to define services
that are required for implementing other services without the need for specify-
ing a concrete service implementation. We make use of this abstraction facility
in the following implementation of component d0 which requires two services
CustomerDB and StockDB and provides a OrderDB service. Figure 2.4 contains an
illustration of component d0.

30 A Formal Model for Extensible Software Components

Component d0:

B

D

C

Component e0:

D

C

B = CustomerDB
C = OrderDB
D = StockDB

Figure 2.4: Service abstraction.

d0 = component
requires CustomerDB
requires StockDB
provides OrderDB as This with new MyOrderDB(This);

The expression d requires C takes a prototypical component d and returns a
specialized version with a serviceC that has to be provided before the component
can be instantiated. Other service implementations can refer to this service, even
though there is no implementation known yet. This is why in the example above,
self reference This has type [CustomerDB, StockDB, OrderDB] and thus is a legal
parameter for the constructor of MyOrderDB. Components have a type of the form
(R1, . . . , Rn ⇒ P1, . . . , Pm)where R1 to Rn are services required by the component,
and P1 to Pm are the provided services. Consequently, the type of component d0 is
(CustomerDB, StockDB⇒ OrderDB). As already mentioned before, component d0
cannot be instantiated, since not all service provisions are resolved yet. We first
have to derive a new component that specifies implementations for all required
services before we can actually create component instances.

We continue in our example by defining a new component e0 that provides
an implementation for a StockDB service.

e0 = component
requires OrderDB
provides StockDB as This with new MyStockDB(This);

The implementation of service StockDB makes use of an externally supplied
OrderDB service. This is, because in cases where new stock arrives and orders
are still pending, it would trigger the process of sending out the articles. The
type of component e0 is (OrderDB⇒ StockDB).

2.2 Prototype-Based Components 31

Component f1:

B

D

C

D

C

d0

e0

Component f2:

B

D

C

d0

e0

B = CustomerDB
C = OrderDB
D = StockDB

Figure 2.5: Component composition.

2.2.7 Composition of Components

In the previous section we defined two components d0 and e0 that mutually refer
to each other; i.e. the service provided by one component is required by the other
one. We would now like to link these two components together yielding a com-
ponent which only requires a CustomerDB service and provides both a OrderDB
and a StockDB service. The simplest way to achieve this is to specialize compo-
nent d0 with an implementation for service StockDB. This service is provided by
a specialized version of e0 that refers back to the OrderDB service provided by the
enclosing d0 prototype.

f0 = d0 provides StockDB as This with
(new (e0 provides OrderDB as Me with This::OrderDB))::StockDB

This technique does not work for components where more than two services
depend mutual recursively on each other. For such cases we have to use the
forwards primitive in order to link the components together. A graphical illus-
tration of the resulting component f1 can be found in Figure 2.5.

f1 = d0 forwards StockDB as This to
new (e0 provides OrderDB as Me with This::OrderDB)

The previously discussed composition schemes use service forwarding where
the nested component instance refers back to services provided by the enclosing
component being defined. Our component calculus offers an alternative to this
rather complicated composition pattern. With the mixin operator it is possible
to create a new component by mixing in the services provided by another com-
ponent. The expression e mixin d specializes the prototypical component e with

32 A Formal Model for Extensible Software Components

component d; i.e. e gets specialized by including all the services provided by com-
ponent d. Services that are already present in e are automatically overridden by
the corresponding services of d. This operation identifies the self references of
both components e and d by binding it to the resulting merged component. The
resulting component requires services that are either required by e or d and that
are not provided by any of the two components. It provides all the services that
are provided by either e or d. Thus, the following expression yields a component
f2 of type (CustomerDB⇒ OrderDB, StockDB).

f2 = d0 mixin e0

When using such a mixin-based composition scheme, one has to be aware
that for the expression above, all services e0 provides get mixed in, no mat-
ter what static type e0 has in this context. Thus, we might accidentally
override services provided by component d0. Sometimes this is desired,
for instance, when we want to express that e0 has got the more recent
or more trustworthy service implementations than d0. For cases where
we want to define explicitly what services to override, we have to use a
forwarding-based composition scheme instead. For instance, we could write
d0 forwards StockDB as This to new (e0 forwards OrderDB as Me to This).

All three components defined in this section are equivalent in the sense that
they provide and require the same services and that services are implemented by
the same objects. Though, Figure 2.5 reveals that the internal structure of compo-
nents manufactured using the forwarding and the mixin technique are quite dif-
ferent. This is an indication that they possibly behave differently when it comes
to specialize both components. In the given example, this is not the case. But one
might imagine a bigger nested component instance where overriding a service of
the enclosing component does not have any effect on the formerly forwarded ser-
vice of the nested component, while it would have an effect on the mixin-based
approach.

We finish this section by manufacturing a component that permits access to
customer related services only; i.e. CustomerDB and OrderDB. We do this by first
linking together the customer management component c2 and the stock manage-
ment component f2. The linked component c2 mixin f2 provides all the vari-
ous services introduced in this section. Since we want to restrict the access to
customer related services, we have to project the resulting component to a new
component g0 offering only the desired services.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin f2)

g0 has type (⇒ CustomerDB, OrderDB); thus, it is possible to instantiate this com-
ponent. The structure of an instance of our final component g0 is presented in

2.2 Prototype-Based Components 33

B

D

C

A

B

C

c2

f2

Figure 2.6: The final component g0.

Figure 2.6. Leaving out some intermediate steps, we could have composed g0 out
of three essential components: c2 which administers clients, d0 which handles
orders, and e0 which manages the stock.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin d0 mixin e0)

This short expression demonstrates how concise component manufacturing
and linking is in the presented model if high-level composition operators like
forwards and mixin are used. Furthermore the expression indicates how com-
ponents are typically deployed. The sub-expression c2 mixin d0 mixin e01 first
links components c2, d0, and e0, yielding a single extensible component. This
component exposes internal interfaces. We might want that for instance to use
this component as a basis for further specializations. But before instantiating (or
even selling) it, the internals should be hidden by wrapping the component in
a black-box only offering specific functionality with restricted support for exten-
sibility. In the example above, this is achieved using the component projection
primitive forwards.

1Please note that the mixinoperator is associative.

34 A Formal Model for Extensible Software Components

2.3 Component Calculus

In this section we present a formalization of our prototype-based component
model for a functional subset of Java. Our calculus is built on top of Feather-
weight Java (FJ) [95]. We omit type casts from the original calculus since type
casts are irrelevant for our application and complicate the formal treatment un-
necessarily.

2.3.1 Syntax

The syntax of the calculus is presented in Figure 2.7. Like in FJ, a program con-
sists of a collection of class declarations plus an expression to be evaluated. The
syntax of classes, constructors, and methods is identical to FJ. We only extend
the set of expressions with the primitives introduced in Section 2.2. In particular,

Program
P = L ; e program

Class
L = class C extends C {T f ; K ; M } class declaration

Constructor
K = C(T f) {super(f); this.f = f ; } constructor declaration

Method
M = T m(T x) {return e; } method declaration

Expressions
e = x variable

| e.f field selection
| e.m(e) method invocation
| new C(e) object creation
| component empty component
| e requires C service abstraction
| e provides C as x with e service implementation
| e forwards C as x to e component projection
| e mixin e component mixin
| new e component instantiation
| e :: C service selection

Types
T = C object type

| C ⇒ C component type
| [C] component instance type

Figure 2.7: Syntax.

2.3 Component Calculus 35

we add an empty component, a service abstraction and implementation primi-
tive, a component projection primitive as well as a component mixin operator. In
addition, we have a construct for instantiating components and a service selec-
tion operator for accessing services from a component instance. In the calculus,
a service is characterized by a class name.

In contrast to the presentation in Section 2.2.2, the calculus only supports a
provides primitive that introduces a single service. This is no restriction since
we can easily model the former semantics by using the more general forwards
construct in combination with a nested component that implements several ser-
vices with a single object. For instance, we could encode the component defined
by the expression component provides C, D as This with new Impl(This) in
the following way:

component
forwards C, D as This to createNested(new Impl(This))

This code relies on a function createNested which could have the following im-
plementation:

[C, D] createNested(Impl impl) {
return new (component

provides C as This with impl
provides D as This with impl);

}

FJ’s types only consist of class names. For simplicity, even Java’s interface
types are left out. For working with components and component instances we
need syntactical forms for expressing component types and component instance
types. Please note that compared to the explanations in Section 2.2.6 on page 28,
we use a slightly simplified syntax for component types without enclosing paren-
thesis. As in FJ, we write T as a shortcut for T1, . . . , Tn. We use similar shorthands
for sequences like C, f , e, etc. as well as for pairs of sequences like T f . Such a
pair of sequences is a shorthand for T1 f1, . . . , Tn fn.

We assume that sequences of field declarations, parameter names, and
method declarations do not contain duplicate names. Furthermore, the service
implementation and the component projection operators always introduce fresh
names for their self reference variable. For the presentation of the operational
semantics in the next section we assume to apply alpha-renaming whenever nec-
essary to avoid name capture.

2.3.2 Semantics

The semantics of our calculus are formalized in Figure 2.8 and Figure 2.9 as a
small-step operational semantics. The reduction relation has the form e -→ e′

36 A Formal Model for Extensible Software Components

(R-Fld)
fields(C) = T f

new C(e).fi -→ ei
(R-Serv)

service(new e, e, C) = e′

new e :: C -→ e′

(R-Inv)
mbody(m,C) = (x, e0)

new C(e).m(d) -→ [d/x,new C(e)/this] e0

(R-Req) e requires C -→ e (R-MixC) e mixin component -→ e

(R-MixP)
e mixin (e0 provides C as x with d)

-→ (e mixin e0) provides C as x with d

(R-MixF)
e mixin (e0 forwards C as x to d)

-→ (e mixin e0) forwards C as x to d

Figure 2.8: Operational semantics.

(RC-Fld)
e -→ e′

e.f -→ e′.f
(RC-InvR)

e -→ e′

e.m(d) -→ e′.m(d)

(RC-InvA)
ei -→ e′i

d.m(. . ., ei, . . .) -→ d.m(. . ., e′i , . . .)

(RC-NewA)
ei -→ e′i

new C(. . ., ei, . . .) -→ new C(. . ., e′i , . . .)

(RC-Inst)
e -→ e′

new e -→ new e′
(RC-Serv)

e -→ e′

e :: C -→ e′ :: C

(RC-Req)
e -→ e′

e requires C -→ e′ requires C

(RC-Prv)
e -→ e′

e provides C as x with d -→ e′ provides C as x with d

(RC-Fwd)
e -→ e′

e forwards C as x to d -→ e′ forwards C as x to d

(RC-MixL)
e -→ e′

e mixin d -→ e′ mixin d
(RC-MixR)

d -→ d′

e mixin d -→ e mixin d′

Figure 2.9: Congruence rules for the operational semantics.

2.3 Component Calculus 37

Field lookup

fields(Object) = ∅

CT(C) = class C extendsD {T f ; K ; M } fields(D) = U g
fields(C) = U g,T f

Method body lookup

CT(C) = class C extendsD {U f ; K ; M } T ′ m(T x) {return e; } ∈ M
mbody(m,C) = (x, e)

CT(C) = class C extendsD {T f ; K ; M } m not defined in M

mbody(m,C) = mbody(m,D)

Service lookup

service(e, e0 provides C as x with d,C) = [e/x]d

service(e, e0 forwards C as x to d,Ci) = [e/x]d :: Ci

D 6= C
service(e, e0 provides C as x with d,D) = service(e, e0,D)

D 6∈ C
service(e, e0 forwards C as x to d,D) = service(e, e0,D)

Figure 2.10: Auxiliary definitions for evaluation.

expressing that expression e evaluates to expression e′ in a single step. Figure 2.8
specifies the basic evaluation rules, Figure 2.9 defines the evaluation contexts.

We adopt all reduction rules from FJ and define various new rules for the
new syntactical constructs. Service abstractions simply reduce to the prototype
component, so they do not have any computational effect. The semantics of mix-
ins are described by three reduction rules, depending on the form of the right
operand. Mixing in the empty component results in the same component. For
service implementations and component projections the prototype of the right
operand is mixed into the left operand and the specialization itself is applied to
that new component. Thus, the two operands are incrementally combined into
a single component where concrete (i.e. non-abstract) service definitions of the
right operand override definitions of the left operand.

The reduction rule for service selection operations relies on an auxiliary
function service(e′, e, C) which searches the component definition e of compo-
nent instance e′ for a service C. Note that the service lookup performed by
service(e′, e, C) is only defined on service implementation and component pro-

38 A Formal Model for Extensible Software Components

Well-formed types

Object wf
CT(C) = class C extendsD {. . .}

C wf

C,C′ wf C ∩ C′ = ∅
C ⇒ C′ wf

C wf

[C] wf

Subtyping

C <: C
C <: D D <: E

C <: E

CT(C) = class C extendsD {. . .}
C <: D

C ⊆ D D′ ⊆ C′

C ⇒ C′ <: D ⇒ D′

D ⊆ C
[C] <: [D]

Figure 2.11: Well-formed types and subtyping.

jection terms. Thus, even for cases where e provides a service C, evaluation of
service(e′, e, C) may not be well-defined if e has not been evaluated far enough.
In such a case, we first have to apply rules (RC-Inst) and (RC-Serv) to further
evaluate the component before making use of the actual service selection rule (R-
Serv). An overview of all auxiliary definitions used by the operational semantics
of Figure 2.8 are given in Figure 2.10.

2.3.3 Type System

There are three different forms of types: object types, component types and com-
ponent instance types. An object type is simply denoted by a class name C. An
object type is well-formed if the class name appears in the domain of the class
table CT . The class table is a mapping from class names to class declarations. As
in the presentation of FJ, we assume that we have a fixed predefined class table
to simplify the notation. Otherwise we would have to parameterize all typing
rules with CT . It is assumed that CT satisfies some sanity conditions: Object
6∈ dom(CT), all types appearing explicitly in CT are well-formed, and there are
no cycles in the subtype relation induced by CT .

Component types have the form C ⇒ C′ where C specifies the services re-
quired by the component and C′ specifies the provided services. Services are
described by object types. A component type is only well-formed if the sets of the
provided and required services are disjoint. [C] types a component instance that
provides the services C. Figure 2.11 summarizes the well-formedness criteria on
types.

Method types cannot be written explicitly. In the type system, we use the
notation T → T ′ for a method with the argument types T and the result type

2.3 Component Calculus 39

Expression typing

(T-Var) Γ ` x : Γ(x) (T-Fld)
Γ ` e : C fields(C) = T f

Γ ` e.fi : Ti

(T-Inv)
Γ ` d : C mtype(m,C) = T → T ′ Γ ` e : U U <: T

Γ ` d.m(e) : T ′

(T-New)
fields(C) = T f Γ ` e : U U <: T

Γ ` new C(e) : C

(T-Inst)
Γ ` e : ∅⇒ C

Γ ` new e : [C]
(T-Serv)

Γ ` e : [C]

Γ ` e :: Ci : Ci

(T-Com) Γ ` component : ∅⇒∅

(T-Mix)
Γ ` e : C ⇒ C′ Γ ` d : D ⇒ D′

Γ ` e mixin d : (C ∪D)\(C′ ∪D′)⇒ C′ ∪D′

(T-Req)
C wf Γ ` e : D ⇒ D′

Γ ` e requires C : D ∪ C ⇒ D′\C

(T-Prv)
C wf Γ ` e : D ⇒ D′ Γ , x : [D ∪D′ ∪ C] ` d : B B <: C

Γ ` e provides C as x with d : D\C ⇒ D′ ∪ C

(T-Fwd)
C wf Γ ` e : D ⇒ D′ Γ , x : [D ∪D′ ∪ C] ` d : [B] C ⊆ B

Γ ` e forwards C as x to d : D\C ⇒ D′ ∪ C

Method and class typing

(T-Meth)

T wf T ′ wf x : T ,this : C ` e : U U <: T ′

CT(C) = class C extendsD {. . .} override(m,D,T → T ′)

T ′m(T x) {return e; } ok in C

(T-Class)

D wf T wf K = C(U g, T f) {super(g); this.f = f ; }
fields(D) = U g M ok in C

class C extendsD {T f ; K; M } ok

Figure 2.12: Type system.

40 A Formal Model for Extensible Software Components

Method type lookup

CT(C) = class C extendsD {U f ; K ; M } T ′m(T x) {return e; } ∈ M
mtype(m,C) = T → T ′

CT(C) = class C extendsD {T f ; K ; M } m not defined in M

mtype(m,C) = mtype(m,D)

Valid method overriding

mtype(m,C) = U → U ′ implies U = T and U ′ = T ′

override(m,C, T → T ′)

Figure 2.13: Auxiliary definitions for typing.

T ′. Note that depending on the context, T denotes either a sequence of types
(T1, . . . , Tn) or a set of types {T1, . . . , Tn}. We use shorthands of the form C ∪ D
for expressing C ∪ {D}.

Figure 2.11 also defines a subtype relation T <: T ′ between two types T and
T ′. Subtyping of object types is identical to subtyping in FJ. A component instance
type is a subtype of another component instance type if the services provided by
the supertype constitute a subset of the subtype’s provided services. A compo-
nent type τ1 = C ⇒ C′ is a subtype of another component type τ2 = D ⇒ D′, if τ1

requires less and provides more services than τ2; i.e. C ⊆ D andD′ ⊆ C′. This cor-
responds to the typical co/contravariant subtyping rule for function types [46]
adopted already by related approaches to component subtyping [71, 182, 79].
Section 2.3.6 discusses an alternative subtyping rule which is more flexible but
also more complex.

The type system is presented in Figure 2.12. There are three different typing
judgment forms. The one for classes has the form “L ok” meaning that class dec-
laration L is type correct. The judgment for method declarations has the form
“M ok in C,” expressing that the method declaration M typechecks as a decla-
ration of class C. Both rules are directly taken from FJ. The judgment for ex-
pressions Γ ` e : T relates a type T to an expression e. Most typing rules for
expressions are straightforward. (T-Prv) and (T-Fwd) are among the interesting
rules. Here, the service provision expression is typed under an extended environ-
ment, including the self reference to the own component instance. We assume
that the type of the self reference variable corresponds to a component instance
type offering both, the services that are required and provided by the component
being specialized. The auxiliary definitions used for typing field and method se-
lections as well as object creations are directly adopted from FJ and summarized
in Figure 2.13.

2.3 Component Calculus 41

2.3.4 Type Soundness

The main purpose of a static type system is to prevent the occurrence of errors
during the execution of a program. In the context of our language, errors would
typically arise when unknown methods get invoked, or undefined names or com-
ponent services are accessed. In this section we show that our type system from
Figure 2.8 prevents such errors. Our reasoning follows the style of Wright and
Felleisen [209]. It is based on a subject reduction theorem stating that for a well-
typed term e which evaluate to a new term e′, this new term e′ has to be well-
typed as well, with a type that is a subtype of the original type.

Unfortunately, this property does not hold for the type system and the seman-
tics presented so far. This is due to the fact that our type system supports two
different ways to abstract over services: explicitly via the requiresprimitive, and
implicitly via subtyping. The following example exhibits the problems. Suppose
we have the following class definition which refers to an arbitrary type A:

class C {
A a;
C(A a) {
this.a = a;

}
(A ⇒ C) foo((A ⇒) x) {
return x provides C as This with new C(This::A);

}
}

Under the assumption that the identifier a refers to an object of typeA, evaluating
the expression new C(a).foo(component) of component type A ⇒ C will yield
the termcomponent provides C as This with new C(This::A). Obviously, this
term is not well-typed anymore, since This has only type [C] and therefore does
not provide the service A which is selected in the service implementation term
new C(This::A).

We could easily fix the problem by making component subtyping invariant
in the required part. This approach would not restrict the expressiveness, but
require that programmers coerce components explicitly to the right type by is-
suing extra requires clauses. Such coercions could also be done automatically
by an appropriate type system formalism which makes implicit introductions of
required services explicit by inserting additional requires clauses during type
assignment.

Since we do not want to make sacrifices regarding the subtype relation, we
pursue a different approach. Instead of making component subtyping invariant
in the required part, we give up the necessity to declare required services explic-
itly before accessing them in another service implementation. In such a setting,
the type checker has to infer the requirements of service implementations. In

42 A Formal Model for Extensible Software Components

the type system, this is achieved by weakening the typing rules for provides and
forwards terms in the following way:

(T-Prv’)
C wf Γ ` e : D ⇒ D′ Γ , x : [D′′] ` d : B B <: C

Γ ` e provides C as x with d : (D ∪D′′)\(D′ ∪ C)⇒ D′ ∪ C

(T-Fwd’)
C wf Γ ` e : D ⇒ D′ Γ , x : [D′′] ` d : [B] C ⊆ B
Γ ` e forwards C as x to d : (D ∪D′′)\(D′ ∪ C)⇒ D′ ∪ C

In this weaker system, which uses the rules (T-Prv’) and (T-Fwd’), we allow
that provides and forwards primitives introduce service abstractions in a non-
deterministic way. We show type soundness for this weaker type system. As a
consequence, the type system with the stronger typing rules, presented in Fig-
ure 2.12, is sound as well in the sense that term evaluation will not get stuck due
to “symbol not found,” “unknown method,” or “unknown service” errors.

Programs written by users are initially typed with the stronger typing rules.
The stronger type system has the advantage that typings are deterministic. Fur-
thermore, its design follows the principle that service abstractions have to be
declared explicitly. Weakening the type system is only necessary for subject re-
duction to hold. We present the type soundness results for our weaker type sys-
tem in the style of Wright and Felleisen [209]. The full proof can be found in
Appendix A.

Theorem 2.3.1 (Subject reduction) If all types in Γ are well-formed, Γ ` e : T
and e -→ e′, then Γ ` e′ : T ′ for some T ′ <: T .

For a well-typed term which can be reduced to a second term, Theorem 2.3.1
states that this second term is also well-typed. Furthermore, the type of the sec-
ond term is a subtype of the type of the first term.

In addition to that we can show that the evaluation of every well-typed term
does not get stuck. To formalize this, Figure 2.14 introduces a term subset denot-
ing values.

A value is either a component, a component instance or an object. For com-
ponent values we have three different constructors. One denotes the empty com-
ponent, one adds a new service to an existing component value, and a third one
adds services by forwarding them to another component instance. Note that dur-
ing evaluation, service abstractions are eliminated in expressions with reduction
rule (R-Req). Therefore, the definition of component values does not include the
requiresprimitive.

Theorem 2.3.2 states that every well-typed term is either a value or it can be
reduced to another term. In other words, evaluation does not get stuck for well-
typed terms.

Theorem 2.3.2 (Progress) If ` e : T then e is either a value or e -→ e′ for
some e′.

2.3 Component Calculus 43

Values
v = c component

| new c component instance
| new C(v) object

Component values
c = component

| c provides C as x with e
| c forwards C as x to e

Figure 2.14: Term values.

2.3.5 Instantiation Evaluation

The operational semantics presented in Figure 2.8 formalizes an evaluation strat-
egy that does not allow for the reduction of service implementation expressions
inside of component instances. At component instantiation time, in fact none of
these terms get evaluated. A term specifying a service implementation, for exam-
ple in providesor forwardsprimitives, only gets evaluated when the service is ac-
cessed via the :: operator. Evaluating a service implementation expression more
than once does not cause any problems in our calculus, since we only have func-
tional objects without any side-effects. In real-world systems, this form of lazy
evaluation can be efficiently implemented using a memoization technique, so
that for multiple accesses to the same service, the service implementation expres-
sion will be evaluated only once. We decided to have this restriction in our cal-
culus for several reasons. First, it keeps the calculus simple. But lazy evaluation
also constitutes a reasonable evaluation strategy for service implementations. A
strict evaluation order would be difficult to define. For instance, we could evalu-
ate the service implementations in the order the component evolution primitives
introduce a service. But this would be a completely arbitrary choice, since ser-
vices can be introduced using the requires primitive in any order, not implying
any dependencies.

With any fixed strict evaluation order one risks to access a not yet initialized
service from the service implementation that is currently being evaluated. With
a lazy service evaluation strategy one still faces this problem, but only for recur-
sive service references. With our operational semantics, such recursive depen-
dencies could possibly lead to infinite computations. We avoided this problem in
the examples of the previous sections by not accessing services of the own com-
ponent instance in service provision expressions directly. Instead, objects that
implement a service of a component access other services of the same compo-
nent instance only at the time a method of the other service actually has to be
called, which happens typically after the component got instantiated.

44 A Formal Model for Extensible Software Components

(S-Emb)
e -→ e′

d ;D ` e ↩ e′

(S-Prv)
[d/x] e -→ e′ C 6∈ D

d ;D ` e0 provides C as x with e ↩ e0 provides C as x with e′

(S-Fwd)
[d/x] e -→ e′ C\D 6= ∅

d ;D ` e0 forwards C as x to e ↩ e0 forwards C as x to e′

(SC-Prv)
d ;D ∪ C ` e0 ↩ e′0

d ;D ` e0 provides C as x with e ↩ e′0 provides C as x with e

(SC-Fwd)
d ;D ∪ C ` e0 ↩ e′0

d ;D ` e0 forwards C as x to e ↩ e′0 forwards C as x to e

Figure 2.15: Operational semantics for component instantiation.

In order to support any reasonable evaluation strategy2 for component instan-
tiations, we could extend our operational semantics. We only have to replace rule
(RC-Inst) of Figure 2.8 with the following rule (R-Inst):

(R-Inst)
new e ;∅ ` e ↩ e′

new e -→ new e′

This rule relies on a context dependent reduction semantics for service implemen-
tations during component instantiation. Intuitively, the clause d ;D ` e ↩ e′

expresses that evaluation of term e within component instance d results in term
e′. Furthermore, services contained inD are overridden and excluded from eval-
uation. This service exclusion ensures that we do not execute service implemen-
tations that are superseded by other more recently defined implementations. A
definition of the service evaluation semantics can be found in Figure 2.15. Rule
(S-Emb) embeds the original reduction relation -→ into ↩ making sure that
the new semantics are a conservative extension of the previous version. Rules
(S-Prv) and (S-Fwd) evaluate a service implementation expression. The rules
(SC-Prv) and (SC-Fwd) propagate evaluation to more deeply nested services.

2.3.6 Component Subtyping

The subtyping rule presented so far only supports width-subtyping for compo-
nent types; i.e. subtypes provide more and require less services. We could relax
this rule to support a form of depth-subtyping which incorporates subtyping of

2An evaluation strategy is considered to be reasonable if it does not evaluate overridden ser-
vice implementation expressions.

2.3 Component Calculus 45

service interface types. Here, τ1 <: τ2 would hold for two component types τ1

and τ2, if the required service types of τ1 are supertypes of the required service
types of τ2. Similarly, the provided service types of τ1 are supposed to be sub-
types of the provided service types of τ2. The following alternative subtyping
rule expresses exactly this relationship:

∀i∃j : Dj <: Ci ∀i∃j : C′j <: D′
i

C ⇒ C′ <: D ⇒ D′

∀i∃j : Cj <: Di
[C] <: [D]

To make use of such a rule in our type system, we would also have to update the
subtyping rule for component instances together with the typing rules (T-Mix),
(T-Req), (T-Prv), and (T-Fwd). Furthermore, the service lookup function would
have to be modified to reflect the fact that we can now override a service by intro-
ducing a new service with a specialized type.

Overall, depth-subtyping was not considered in the formalization of our cal-
culus since it would have complicated the technical treatment significantly. It
would require many subtle technical restrictions dealing with “overlapping ser-
vices” (service types that share a supertype) and service overriding in general,
which would yield both complex and unintuitive semantics and typing rules.

46 A Formal Model for Extensible Software Components

2.4 Discussion

We now summarize the main ingredients of our component model, explain de-
sign decisions, and compare the constructs with related work. The following fea-
tures are reviewed in detail:

1. Components require and provide services,

2. Components are templates for component instances,

3. Components are composed with explicit links (forwarding), or implicitly
by wiring inference (mixins), and

4. Components are extensible through inheritance and overriding.

Prototype-based components. In the presented model, components are first-
class abstractions that have neither state nor identity. Components define the
structure of component instances in the same way as classes define the structure
of objects. In most class-based languages, classes are either second-class entities,
or they are first-class and specified using meta-classes. For simplicity, and in or-
der to avoid such a meta-regress [201], our first-class components are prototype-
based [1]. Thus, instead of instantiating components from meta-component de-
scriptions, new components are derived from prototypical components by a set
of specialization primitives. Since components are stateless, we do not need a
cloning operation known from object-based programming languages [49, 201].
This approach emphasizes the reuse of components in the creation of new, ex-
tended components by specialization. In fact, even component composition,
which is mostly regarded as the only form of component reuse, is explained in
terms of component specialization.

Services. Components specify implementations for a set of provided services.
These implementations may rely on services provided by other components.
Thus, component types are characterized by a set of required and provided ser-
vices. The presented model requires that required and provided services are spec-
ified explicitly. Alternatively, it would be possible to fully infer such information,
as Nierstrasz explains in his work on contractual types [148].

Services are described by nominal object types. In Section 2.2.3 we explained
already why this approach does not constitute a restriction compared to compo-
nent models with named ports [182, 187, 5]. Our service abstraction does not
only allow us to conveniently refer to an aggregate of functionality, as opposed
to individual methods, for instance. It also facilitates to override an aggregate of
functionality consistently and promotes distinct, non-interfering views of compo-
nents. Service specifications that are solely based on nominal object types were
inspired by COM [172, 93].

2.4 Discussion 47

Composition. Services are added to a component using the service abstraction
and service implementation primitives. For composing components, two mech-
anisms are supported: forwarding and mixin-based composition. Forwarding
delegates the implementation of a set of services to another, possibly nested com-
ponent instance. The significance of the forwarding primitive is two-fold: On the
one hand it enables hierarchical component compositions, on the other hand, it
is used to hide internal services of encapsulated components.

Unlike forwarding, the mixin-based approach merges two components by spe-
cializing one component with the services provided by another component and
by rebinding the self reference to the merged component. Compared to the ap-
proach based on forwarding where the services of the nested component can-
not be overridden and are therefore statically linked, component composition
based on mixins yields a fully extensible component where it is possible to re-
define service implementations by overriding. On the other hand, forwarding
allows one to specify exactly what services to include, in contrast to the mixin-
based approach which always mixes in all provided services. As mentioned al-
ready in Section 2.2.7, this may lead to accidental overrides. This weakness of
the type system could be addressed, for example, by making overriding explicit
and by including negative information in component types. Discussions about
forwarding versus delegation (object-based inheritance), which is sometimes
also used as an implementation technique for mixins, can be found, for instance,
in [195, 105, 39]. Support for dynamic object-based inheritance in a class-based
context is provided by Büchi’s and Weck’s generic wrappers [39], Kniesel’s object
model Darwin [105], Ostermann, Mezini, and Wittman’s work on FamilyJ [208],
and by Ostermann’s delegation layers [156].

Mixins were first identified as linguistic abstractions for generalizing inheri-
tance by Bracha and Cook [29]. It was also Bracha who observed that inheri-
tance can be seen as a mechanism for modular program composition [31]. With
his work on the programming language Jigsaw [28], he lifts the notion of class-
based inheritance and overriding to the level of modules.

A formal account of mixins and mixin-based inheritance is given in [26, 72, 9].
In particular, Bono, Patel, and Shmatikov’s calculus of first-class classes and mix-
ins is similar to our work [26]. Bono’s mixins correspond to components in our
model. Classes correspond roughly to components without required services.
Based on the same framework, Bettini, Bono, and Venneri recently showed that
mixins are suitable abstractions for mobile software components [24]. As op-
posed to the work by Bono et al., the programming language Scala [151] does
not distinguish between classes and mixins. It only has the notion of classes
that are interpreted as mixins when used in mixin-based class compositions (in-
heritance). This is identical to the way components are interpreted in the pre-
sented model. Scala’s mixins are formalized in [153]; the design was inspired
by Strongtalk [17, 30], an extension of the programming language Smalltalk.

Chapter 3

Static Component Evolution with
Extensible Modules

This chapter presents Keris, a pragmatic, backward-compatible extension of the
programming language Java [82] with explicit support for modular, component-
oriented programming of extensible software.

The design of the programming language Keris was driven by the observa-
tion that extensibility on the module level can help to develop highly extensible
applications [94]. Keris tries to facilitate the development of extensible soft-
ware in Java by providing an additional layer for structuring software compo-
nents. This layer features extensible modules as the basic building blocks of soft-
ware. Keris provides primitives for creating and linking modules as well as mech-
anisms for extending modules or even fully linked programs statically. Programs
written in Keris are closed in the sense that they can be executed, but they are
open for extensions that statically add, refine or replace modules or even whole
subsystems of interconnected modules. Extensibility does not have to be planned
ahead and does not require modifications of existing source code, promoting a
smooth software evolution process. Keris is a strongly typed language. The type
system ensures that the definition, assembly, and evolution of modules is safe.

The overall design of the language was guided by the aim to develop a prag-
matic, implementable, and conservative extension of Java which fully reuses
Java’s compilation model and target platform. This allows for a seamless integra-
tion of existing Java code with Keris. For this reason, Keris does not even utilize
customized class loaders, which could have complicated the use of existing Java
technology, like the RMI API, which relies already on special class loading tech-
niques itself. Keris adopts Java’s compilation model because it proved to work
well in practice. Furthermore, changes would be confusing for many program-
mers that are used to a development process which exploits separate compila-
tion, as well as dynamic class loading and linking, and which relies on the notion
of binary compatibility for relating different versions of binary components, i.e.
classfiles.

50 Static Component Evolution with Extensible Modules

The remainder of this chapter first discusses shortcomings of the package sys-
tem of Java for implementing reusable software components. This is followed by
a presentation of the design of Keris. In this section, the new language features
are introduced incrementally and explained with the help of many small exam-
ples. After that, various application scenarios are given to explain how extensible
modules support the safe development of extensible software. The following sec-
tion explains how the Keris compiler translates the high-level language to plain
Java code. Finally, benchmarks are used to evaluate this source-level translation
with respect to code size and runtime performance. The chapter concludes with
a discussion about module systems in general and the module system of Keris in
particular.

3.1 The Java Package System 51

3.1 The Java Package System

Like many popular object-oriented languages, Java provides relatively weak ab-
stractions for programming in the large [56]. In this section we argue that Java’s
packages are not expressive enough to be useful as abstractions for reusable and
extensible software components. We do this by looking at three important proper-
ties: modularity, genericity, and extensibility. A more extensive discussion about
module system related issues can be found in Section 3.6.

3.1.1 Modularity

Modularity is about the separation of components from other components both
logically and physically. Therefore, modularity is essential to allow software com-
ponents to be developed and compiled independently. This is typically achieved
by means of encapsulation and by the explicit specification of contracts between
components. These contracts define explicitly what services a component pro-
vides and what other components are needed to render the services.

Java’s package system offers relatively good support for modular program de-
velopment. It allows that context dependencies are specified explicitly and it has
support for separate compilation. On the other hand, Java’s package abstraction
is often too coarse-grained, so that structuring software systems consisting of
many smaller subsystems can become very difficult on the package level. For in-
stance, large libraries often require means for internal structuring. It is possible
to nest packages, but this also limits access to non-public members. Therefore all
classes that need to access library internal data, which does not get exposed to
the outside world, have to reside in the same package.

Java’s package mechanism was designed mainly for structuring the name
space and for grouping classes. A package does not even allow programmers
to fully encapsulate a set of classes since the Java programming language does
not offer a way to close packages.1 Thus, like in most popular object-oriented
languages, classes are predominantly used to structure software systems.

Classes on the other hand do not fully support modular programming ei-
ther [192, 37]. In general, classes cannot be compiled separately; mutually de-
pendent classes have to be compiled simultaneously. Since classes do not define
context dependencies explicitly, it is difficult to find out on what other classes a
class depends. This can only be found out by inspecting code.

Even though classes are the basic building blocks for object-oriented program-
ming, most classes do not mean anything in isolation. They have a role in a spe-

1In Java, class loaders can be used at runtime to ensure that only a fixed set of classes is loaded
from a package. The concept of sealed packages exploits this mechanism to restrict class loading
for classes of such a package only to a particular Jar file. Regarding the open nature of packages,
it is surprising to see that adding classes to a Java package is a fragile and unsafe operation. It
can break programs that import all classes of a package via the star-import command.

52 Static Component Evolution with Extensible Modules

cific program structure, but there is only limited support to formulate this role
or to make this role explicit. A priori, class interactions are implicit, if not us-
ing a special design pattern that emphasizes cooperating classes. Due to the lack
of expressing dependencies between classes explicitly, formulating design pat-
terns, software components, the architecture of a system, and even expressing
the notion of a library on the level of the programming language turns out to be
extremely difficult in general.

A good example for this problem is the way how industrial component mod-
els represent software components in class-based object-oriented languages. In
these models, the implementation of a software component is typically guided
by a relatively weekly specified programming protocol (e.g. JavaBeans [190]).
The composition of software components is even mostly performed outside of
the programming language, using meta-programming technologies. Thus, nei-
ther the process of manufacturing a component nor the component composition
mechanism are type-safe.

3.1.2 Genericity

Modularity is essential for the independent development of software compo-
nents. But modularity alone does not allow programmers to deploy components
independently of each other. Support for independent deployment requires that
modules are generic with respect to their context dependencies; i.e. they have
to abstract over depending modules. Furthermore, a mechanism is needed to
instantiate a component and resolve its context dependencies by linking it with
concrete instances of depending components. Thus, genericity is required when-
ever one wants to reuse a single component in different contexts with different
cooperating components.

Java packages are not generic. Packages hard-wire their context dependen-
cies (imports) by referring to other concrete packages. Thus, there is no ex-
plicit support for the reuse of packages in different contexts or with different
compatible dependent packages. Even though references to other packages are
specific, the Java runtime environment offers possibilities to adjust the “linking
context” so that a different implementation of a cooperating package is chosen
at load-time; for instance by modifying the class path or by using special class
loaders [163]. Such hacks are statically unsafe and therefore do not provide ac-
ceptable alternatives for genericity.

3.1.3 Extensibility

Besides modularity and genericity, extensibility is another important property. As
the previous chapters pointed out already, extensibility is important because in
general, independently developed components do not fit off-the-shelf into arbi-
trary deployment contexts. They first have to be adapted to make them compliant

3.1 The Java Package System 53

with a particular deployment scenario. Apart from this, extensibility is an essen-
tial requirement for facilitating the evolution of software. Software evolution
includes the maintenance and extension of component features and interfaces.
A typical software evolution process yields different versions of a single compo-
nent being deployed in different contexts [132]. Extensibility is also required
when developing families of software applications [158, 27]. For instance, soft-
ware product-lines [99, 205] rely heavily on a mechanism for creating variants of
a system which share a common structure but which are configured with possibly
different components.

Java supports the development of extensible software only on a very low level
by means of class inheritance and subtype polymorphism. Extensibility has to be
planned ahead through the use of design patterns, typically derived from the Ab-
stractFactory pattern [74]. Furthermore, extensibility can often only be achieved
by using type tests and type casts due to the lack of appropriate means to refine
abstractions, in particular types and classes, covariantly. In general, such tech-
niques circumvent the static type system and are therefore dangerous to apply in
practice.

With Java’s late binding mechanism and its support for reflection, develop-
ing open software which can be extended with plug-ins is relatively easy. Again,
this has to be planned ahead and allows only extensions in a restricted frame-
work [132]. For writing applications that are open for extensions that have not
been anticipated, often complicated programming protocols have to be strictly
observed. An example for such a protocol is the Context/Component design pat-
tern described in Section 4.2.1.

54 Static Component Evolution with Extensible Modules

3.2 The Programming Language Keris

Keris2 extends the programming language Java with an expressive module sys-
tem that aims at facilitating the development of extensible software compo-
nents [213, 211]. With the module abstractions of Keris, it is possible to give con-
crete implementations for concepts like design patterns, libraries, applications,
or subsystems. All this is done in a completely extensible fashion, allowing to
refine existing software or to derive new extended software from existing pieces.
To keep software extensible, Keris promotes programming without hard links
which are frequently found in Java programs in form of class instantiations or ac-
cesses to static methods or fields. The module system of Keris is designed to fit
smoothly between Java’s class and package level. With support for true modules,
the package system is now mainly used to structure the module name space. Of
course, it would easily be possible to add module name space management facili-
ties to the module abstractions of Keris if backward compatibility to Java would
be irrelevant.

3.2.1 Declaring Modules

In Keris, modules are the basic top-level building blocks of software supporting
separate compilation as well as function and type abstraction in an extensible
fashion. In general, modules depend on functionality provided by other modules.
In Keris, such context dependencies are specified explicitly. A module can only
be deployed in contexts that meet such dependency requirements.

We now present a small example that defines a module SORTER which pro-
vides functions for reading a list of words, for sorting, and for printing out lists.
Throughout this chapter we write module names in capital letters to distinguish
them clearly from class, method, and variable names. A formal grammar describ-
ing the syntax of Keris can be found in Appendix B.

module SORTER requires INOUT {
String[] read() { ... INOUT.read() ... }
void write(String[] list) { ... INOUT.write(list[i]) ... }
String[] sort(String[] list) { ... }

}

Explicit context dependencies. The header of the module declaration states
explicitly that module SORTERdepends on functionality provided by another mod-
ule INOUT. Within the body of a module it is possible to access the members of
the own module as well as all the members of modules that are declared to be

2A Keris is a double edged dagger originating in the Javanese culture. It was considered a
magical weapon, filled with great spiritual power. Today it is an object of reverence and respect,
symbolizing strength and safety.

3.2 The Programming Language Keris 55

SORTER

String[] read();
void write(String[] list);
String[] sort(String[] list);

INOUT

INOUT

String read();
void write(String str);

CONSOLE

String read();
void write(String str);

implements

(a) Sorter module (b) Console module

Figure 3.1: Schematic illustration of modules SORTER and CONSOLE.

required. Members of modules are generally accessed by qualifying their mem-
ber names with the corresponding module reference. This distinguishes require-
ments from imports of many traditional module systems which make members
of other modules accessible so that they can be used in unqualified form. Some
module systems have both forms; e.g. Modula-2 [206] supports regular imports
as well as qualified imports which correspond to our requirements.

Module members. In Keris, modules encapsulate functions, fields, and class
abstractions, like interfaces and classes. The syntax for module member decla-
rations corresponds to the Java syntax used on the class level. Later we will see
that modules may also contain submodules.

Module interfaces. Regarding the previous listing, it remains to show a specifi-
cation of module INOUT. We do this by defining a module interface that specifies
the signature of this module. Such a module interface does not contain program
code, it only lists all members provided by concrete implementations of this mod-
ule together with their corresponding types.

module interface INOUT {
String read();
void write(String str);

}

We will now define a module CONSOLE that implements this interface and thus is
a possible candidate for being used in conjunction with module SORTER.

module CONSOLE implements INOUT {
String read() {
... System.in.read() ...

}
void write(String str) {
System.out.println(str);

}
}

56 Static Component Evolution with Extensible Modules

This module implements the functions read and write by forwarding the calls to
appropriate methods of the standard Java API for text in- and output on a termi-
nal. An alternative implementation for INOUT based on functionality provided by
a third module LOG is given by the following program:

module LOGIO implements INOUT requires LOG {
String read() { ... System.in.read() ... }
void write(String str) { LOG.log("log: " + str); }

}

The previous example code shows that a module interface can be implemented
by many modules. On the other side, a module implementation can implement
many module interfaces. Note that modules are not explicitly required to imple-
ment a module interface. This is not strictly necessary since every module im-
plementation implicitly defines a module interface of the same name containing
all exported module members. Nevertheless, the separation of module imple-
mentations from interfaces is an important mechanism that is essential to enable
separate compilation of recursively dependent modules. Some module systems,
e.g. Oberon’s module system, provide means to support separate compilation
without separating module interface definitions from module implementations,
but this works only for modules without recursive dependencies.

Access control. Beside separate compilation, explicit module interfaces are
also important as a facility for hiding concrete representations of module mem-
bers. Furthermore, they can be used as a vehicle for presenting different views on
a single module implementation. This gives the programmer more flexible con-
trol over access rights to module members than Java does with its fixed scoping
levels expressed with access modifiers like public, private, and protected.

The only access modifiers Keris supports on the module level are public and
private. Module members which are not explicitly tagged with an access modi-
fier are considered to be public. Only the public members get exported and can
therefore be accessed from clients of the module.

Figure 3.1 illustrates some of the modules defined so far. Module illustrations
consist of two parts: one part shows both the module to define (the topmost box)
and the required modules (the boxes on the left side). The other part lists all the
other module members. We use the convention that boxes refer to modules and
rounded boxes refer to module interfaces.

3.2.2 Linking Modules

Before discussing the module composition mechanism, we have to stress the dis-
tinction between modules and module instances. A module can be seen as a “tem-
plate” for multiple module instances of the same structure and type. We have

3.2 The Programming Language Keris 57

to differentiate between the two, since we want to be able to deploy a module
more than once within a software system. For instance, we could have two differ-
ent instances of the SORTER module that are linked together with different INOUT
module instances.

Hierarchical composition. In Keris, modules are composed by aggregation.
More concretely, a module does not only define functions and variables. It may
also define module instances as its members. These nested module instances, we
also call them submodules,3 can depend on other modules visible in the same con-
text. The following definition for module APP links module SORTER with module
CONSOLE by declaring both to be submodules of the enclosing module APP.

module APP {
module SORTER;
module CONSOLE;
void main(String[] args) {
String[] list = SORTER.read();
list = SORTER.sort(list);
SORTER.write(list);

}
}

Submodule definitions start with the keyword module followed by the name of
the module implementation. The enclosing module aggregates for every submod-
ule definition an instance of the specified module. Thus, in the example above,
module APP aggregates two module instances SORTER and CONSOLE. A submodule
can only be defined if its deployment context, given by the enclosing module, sat-
isfies all the requirements of the submodule. The requirements of a submodule
are satisfied only if all modules required from the submodule are either provided
as other submodules, or if they are explicitly required from the enclosing module.

The program above defines two submodules SORTER and CONSOLE. Module
SORTER requires a module instance INOUT from the deployment context, CONSOLE
does not have any context dependencies. The module definition of APP is well-
formed since it defines a CONSOLE submodule that implements INOUT, and there-
fore provides the module that is required by the SORTER submodule. Note that
module CONSOLE is only present in module APP for that reason. Module APP does
not refer to members of CONSOLEdirectly. Figure 3.2(a) illustrates the structure of
module APP. The submodules of APP are displayed as nested modules. The wiring
of the submodules, which is implicit in Keris programs, is made explicit with an
arrow from the implementing module to the requirement.

3We use a terminology here which is not fully consistent with the one on the class level.
Submodules denote nested modules and have nothing to do with subclassing. The motivation for
naming nested modules submodules comes from nested modules modeling subsystems. Our termi-
nology is consistent with other module systems supporting hierarchical compositions of modules.

58 Static Component Evolution with Extensible Modules

CONSOLE

String read();
void write(String str);

APP

String[] read();
void write(String[] list);
String[] sort(String[] list);

SORTER

INOUT

void main(String[] args);

LOGIO

String read();
void write(String str);

LOGSORTER

String[] read();
void write(String[] list);
String[] sort(String[] list);

SORTER

INOUT

LOG

LOG

(a) Executable module APP (b) Module LOGSORTER

Figure 3.2: Schematic illustration of modules APP and LOGSORTER.

Unresolved context dependencies. Similarly to the previous code, we could
try to link module SORTER with module LOGIO, as shown by the following defini-
tion of BUGGYAPP.

module BUGGYAPP {
module SORTER;
module LOGIO; E

}

A verification of the context dependencies reveals that this module declaration
is not well-formed. LOGIO requires a module instance LOG which does not get
declared within BUGGYAPP. Since we want BUGGYAPP to be parametric in the co-
operating module LOG, we have to abstract over the LOG instance by requiring it
from the context. This has the effect that inside of the module body we are now
able to refer to a module instance LOG without actually giving a concrete defi-
nition. Therefore the following definition of module LOGSORTER is well-formed.
Figure 3.2(b) gives a schematic illustration which shows that for LOGSORTER, all
requirements of submodules are resolved.

module LOGSORTER requires LOG {
module SORTER;
module LOGIO;

}

3.2 The Programming Language Keris 59

Discussion. As the previous examples show, modules get composed by hierar-
chically aggregating submodules. A module that hosts a set of submodules is
only well-formed if it satisfies the context requirements of all of its submodules.
A module satisfies the requirements of a submodule if modules required from
that submodule are either present in form of other submodules, or are explicitly
required by the host module, or are subsumed by the host module itself.

This hierarchical composition mechanism has the advantage that the static ar-
chitecture of a system becomes explicit. Furthermore, module composition does
not require to link modules explicitly by specifying how context dependencies are
satisfied at deployment time. Instead, the module interconnection gets inferred.
With this approach we avoid linking modules by hand which can be a tedious
task that raises scalability issues [212]. On the other hand, our inference tech-
nique only succeeds if we avoid ambiguities; i.e. our type system has to ensure
that references to module instances identify modules uniquely in every context.
One implication of this is that a module can never define or require two nested
module instances (submodules) that implement the same module. If this would
be the case, a simple module name could not identify a module implementation
unambiguously anymore.

A system like this is reminiscent of classical module systems for imperative
programming languages like Modula-2 or Ada. Such module systems allow only
one implementation for each module globally, whereas Keris has this restriction
only locally for every module context. Globally, there are no restrictions, allow-
ing systems to include as many instances of a single module as required.

An intuitive motivation for only allowing a single implementation of a mod-
ule per context is that it would be redundant to have identical module instances
providing exactly the same services. Of course, with regard to genericity and
the possibility to encapsulate state, this argument is weak. But we will see later,
that these limitations can be easily overcome by using module specializations in-
troduced in Section 3.2.6. This mechanism makes it possible to define different,
specialized versions of a module together in the same context. Furthermore, it is,
of course, always possible to introduce nested modules for instantiating multiple
instances of a single module. The type system, discussed in Section 3.2.8, ensures
that such multiple instances are used in a consistent, non-conflicting manner.

3.2.3 Accessing Modules

Accessing submodules. The code of module APP, presented in the previous
section, shows that aggregated submodule instances are accessed just like re-
quired modules simply via the module name. For accessing exported submod-
ules of other modules one has to use the :: operator. For instance, the expression
SYSTEM::APP::SORTER accesses the SORTER module instance, which is a submod-
ule of APP, which is a submodule of SYSTEM. Such expressions are also called
module paths.

60 Static Component Evolution with Extensible Modules

With the :: operator it is possible to access partial units of other mod-
ules. There is a whole body of literature on programming style that tries to
motivate why it is good “only to talk to your immediate friends, and never
to strangers” [117, 116, 114]. This principle is often called the Law of Deme-
ter [115]. It states that every unit should only communicate directly with its
immediate neighbors in a system. The :: operator allows programmers to break
this principle. On the other hand, Keris programs that do not make use of the ::
operator conform to the Law of Demeter on the module level. Here, modules only
access services of other modules that are either explicitly required or aggregated.
This restriction, and the Law of Demeter in general, is comparable to the commu-
nication integrity property stated by Aldrich, Chambers, and Notkin [145, 5, 6].

Importing modules. For accessing members of deeply nested module in-
stances, it is not very practical to require that one always has to fully qualify mod-
ule instances by prefixing them with the right module path. Therefore Keris of-
fers a mechanism to shorten module paths by importing nested module instances.
Here is an example:

module SYSTEM {
module APP;
import APP::SORTER;
void main(String[] args) {
SORTER.write(SORTER.sort(args));

}
}

In this program, module SORTER nested in module APP gets imported in the body
of SYSTEM so that one can refer to this module instance simply via the unqualified
module name. There is no need anymore to prefix this name with module APP.
An import statement is only legal if it does not create ambiguities. It really must
be seen as a means to introduce shorthands for modules, since it will never have
an influence on the inferred wiring of submodules.

Similar to Java’s import mechanism on the package level, Keris offers a sec-
ond import form which imports all members of a specified module instance. This
“star-import” statement is used in the following program, which is otherwise
identical to the listing above.

module SYSTEM {
module APP;
import APP::SORTER.*;
void main(String[] args) {
write(sort(args));

}
}

3.2 The Programming Language Keris 61

Keris’ lookup procedure for module members first searches the current mod-
ule and only if no member is found there, it proceeds by searching all “start-
imported” modules. If a member is found in more than one “star-imported” mod-
ule, this is considered to be an ambiguity. Ambiguities have to be resolved by the
programmer, who has to explicitly qualifying the member name with the corre-
sponding module instance.

3.2.4 Initializing Modules

Executing modules. Modules without context dependencies like module APP
from the previous section can be executed if they define a main method with the
following signature: void main(String[] args). When a module is execute, a
module instance gets created and the main method of this instance is invoked.

Initializing modules. A Keris module implementation can define an arbitrary
number of module initializers which initialize variables and perform other side-
effects. Similar to the class initialization process of Java, Keris modules are ini-
tialized lazily right at the time one of the module members gets accessed for the
first time.4 This approach can provoke cycles in the module initialization process
if module initializers of mutually dependent modules refer to each other recur-
sively. In Keris, this problem is resolved in the same way Java handles static
initializers in classes: The cycle is broken dynamically, making it possible that
a module accesses in its initializer a recursively dependent module which is only
partially initialized. For uninitialized variables this means that they refer to some
default value. Here is an example for a lazy module initialization:

module MAIN {
module OPTIONS;
void main(String[] args) {
if (args.length > 0)
OPTIONS.parse(args);

}
}

module OPTIONS {
HashMap options = new HashMap();
{ // initialization code
options.put("-silent");

}
void parse(String[] args) {
...

}
}

In this program, submodule OPTIONS only gets initialized if the length of array
args in the main method of module MAIN is greater than 0. Otherwise module
OPTIONS does not get accessed and therefore the initializers will not be executed.
The module remains uninitialized in this case.

4In Keris, accessing a submodule of a module does not trigger execution of this module’s
initializers.

62 Static Component Evolution with Extensible Modules

Controlling initialization. Sometimes, the designer of a module wants the
module to be seen from the outside world as an atomic unit even though inter-
nally it is constructed by aggregating several submodules. One can achieve this
by declaring the submodules to be private, and thus hide them from external
clients. This means does not go far enough, if the designer of such a compound
module even wants the module to get fully initialized at the same time. Since sub-
modules are initialized lazily, initializing the compound module does not imply
the initialization of all submodules. To address this issue, Keris allows the pro-
grammer to interlink the initialization of a submodule with its host module such
that whenever the host module is initialized, initialization of the submodule is
triggered automatically. In Keris such a coupling can be expressed by tagging a
submodule definition with the synchronizedmodifier. All synchronized submod-
ules get initialized before the host module in the order they are declared, as long
as module dependencies do not enforce a different order dynamically.

Synchronized submodules are needed when the initializer of a submodule
performs side-effects that are supposed to take place before the host module ini-
tializer is executed. They are also helpful to control the initialization of submod-
ules whose initializers depend recursively on each other. Here, a wrong initial-
ization order might result in a submodule initializer accessing an uninitialized
field of another partially initialized submodule. See Section 3.4.1 on page 98 for
a discussion of related issues.

3.2.5 Refining Modules

We now come to the problem of extending modules. Since we do not want to
break code that uses existing modules, we are neither allowed to touch binaries
nor the source code of existing modules. In short, extensibility has to be additive
instead of being invasive.

Non-invasive extensions. Keris has support for non-invasive extensions
through a module refinement mechanism. This mechanism allows programmers
to refine an existing module by providing new functionality or by overriding ex-
isting functionality. The refined version of a module is backward compatible to
the original module in the sense that it can be substituted for it. Thus, Keris lifts
the notion of compatibility between classes expressed by a subtyping relation to
the more coarse-grained level of modules.

Creating refinements. We now present a refinement of module SORTER that
provides a more efficient implementation for the sort function. In the example
below, we use a merge-sort technique for sorting. Apart from a new implementa-
tion of sort which overrides the existing implementation, we also define various
other helper functions. One of them is declared to be private, which hides it

3.2 The Programming Language Keris 63

from clients of the module. Such functions do not get exported and can only be
used internally.

module FASTSORTER refines SORTER {
private String[] sub(String[] list, int start, int end) { ... }
String[] merge(String[] first, String[] second) { ... }
String[] sort(String[] list) {
return (list.length < 2) ? list :

merge(sort(sub(list, 0, list.length/2)),
sort(sub(list.length/2, list.length)));

}
}

Module FASTSORTER is a refinement of module SORTER. Sometimes we also call
SORTER the parent module of FASTSORTER. A refinement inherits the implemented
interfaces and the member implementations, including all submodules, from its
parent module. Note that it also inherits all the context dependencies. For the
example above, this actually means that module FASTSORTER requires an INOUT
module. Note that the set of required and aggregated modules has to be disjunct.
Otherwise, a reference to a module that is both required and aggregated would
be ambiguous. It is therefore not possible that a refinement aggregates a required
module of the parent module.

Similar to the refinement of module implementations and their implicit inter-
faces, it is also possible to refine plain module interfaces like INOUT.

Overriding members. Keris uses, like most object-oriented languages, over-
riding as the primary means to modify members of modules and classes. The
overriding rules for module members are almost identical to the rules of Java. In
particular, it is not possible to override variables, and method overriding is invari-
ant in the parameter types. As opposed to Java, method overriding is covariant in
the result type; i.e. an overriding method may have a result type that is a subtype
of the result type of the overridden method. This overriding rule is reminiscent
of the rule used in GJ [32].

Covariant return type specializations are often extremely useful when writing
extensible software. In particular, they allow one to refine factory methods of
AbstractFactories so that one can access newly introduced functionality of the cre-
ated objects without using type casts. Return type specializations are also impor-
tant when it comes to implement a clone method for a hierarchy of classes [35].

In Keris, module refinements see the module they refine as gray-boxes, as op-
posed to clients that see a module as a black-box with a well-defined interface.
Thus, module refinements can freely access and override private members of the
parent module. The privatemodifier only indicates that a module member does
not get exported and consequently can only be used internally — this includes
the use in refinements which do not logically constitute a different module, but

64 Static Component Evolution with Extensible Modules

can rather be seen as amendments yielding a new version of an existing mod-
ule. Members which are not supposed to be modified by refinements have to be
declared final.

Overriding submodules. So far, we only saw how to refine the functionality
of atomic modules. Such refinements are non-invasive; i.e. they do not affect
existing code. The question is now, how to integrate refinements, like the more
efficient sorting module, into a system that already makes use of the old SORTER
module? Since systems are represented by modules, it is probably not surprising
that this is done again with a refinement. As explained before, Keris promotes
programming without hard links. Following this idea, we allow overriding sub-
module declarations in module refinements. The following code refines the exe-
cutable module APP by covariantly overriding submodule SORTER.

module XAPP refines APP {
module FASTSORTER;

}

The refined module XAPP replaces the nested module implementation SORTER
with module FASTSORTER. Consequently, the inherited main method now refers
to the FASTSORTER submodule. In fact, we can now access the FASTSORTER sub-
module via both module names, SORTER and FASTSORTER. The only difference is
that when accessed via FASTSORTER, we can refer to the new functions. The abil-
ity to refine a module interface stepwise to allow different access levels is called
incremental revelation [44].

Interface ascription. Submodules may be overridden by refinements, but it is
not possible to replace a submodule with a compatible version which is not a
refinement. For instance, it is not possible to override the submodule CONSOLE in
refinements of APP with alternative implementations of module interface INOUT,
even though SORTER just requires an arbitrary INOUT implementation.

Keris offers a facility to constrain the interface of a submodule M to a single
implemented module interface I. Syntactically this is expressed with the follow-
ing submodule declaration form: moduleM implements I. Only members of the
designated module interface I may be accessed by the host module or other sub-
modules. This artificial restriction of a module implementation to one of its inter-
faces is called interface ascription.5 It allows a submodule to be overridden with a
module that implements this interface but which is not necessarily a refinement.
Here is a reformulation of module APPwhich makes it possible to replace CONSOLE
with an alternative INOUT implementation.

5The term interface ascription was chosen following the module system terminology of ML
which supports a similar concept called signature ascription.

3.2 The Programming Language Keris 65

module APP {
module SORTER;
module CONSOLE implements INOUT;
...

}

module XXAPP refines APP {
module GUI implements INOUT;

}
module GUI implements INOUT {
...

}

Discussion. The previous examples demonstrate that the module assembly
and refinement mechanism is not only restricted to the extension of atomic mod-
ules. It also allows programmers to extend fully linked programs, represented by
modules with aggregated submodules, by simply replacing selected submodules
with compatible versions. There is no need to establish module interconnections
again; the fully linked program structure is reused and only the submodules and
functions to replace or add have to be specified.

This extensibility mechanism features plug-and-play programming. It neither
requires source code, nor touches existing binaries. After having refined appli-
cation APP with module XAPP it is still possible to run the old application APP. It
would even be possible to assemble a system that makes use of both modules
without risking unpredictable interferences.

3.2.6 Specializing Modules

Refinements vs. specializations. Refining a module is the process of extend-
ing a module by adding new functionality or by modifying existing functionality
through overriding. A module refinement yields a new version of an existing
module. This new version subsumes the old one; i.e. it is backward compatible
to the old version. As a consequence, it is always possible to replace a module
with one of its refinements.

In the following code, module BUGGYMOD aggregates a submodule that sub-
sumes another submodule. In other words, BUGGYMOD defines a context in which
two different versions of one module are present. Since references to submodule
SORTER are ambiguous within module BUGGYMOD, the program is ill-formed and
rejected by the Keris compiler.

module BUGGYMOD requires INOUT {
module SORTER;
module FASTSORTER; E

}

As Section 3.3.2 will motivate, we would sometimes like to reuse a general
module implementation when defining a new module with a a more specialized
structure and functionality and use different specializations side by side in the

66 Static Component Evolution with Extensible Modules

same context. This process of creating new distinct modules which reuse the def-
inition of an existing module is called module specialization. It is similar to mod-
ule refinement in that it is based on inheritance; it is different, because special-
izations yield new modules compared to refinements which only create new ver-
sions of existing modules. While refinements are backward compatible to their
original module and therefore can safely replace original module instances, spe-
cializations represent new, independent modules which do not subsume their
original module. This is also why different specializations may be used jointly in
the same context.

Creating specializations. As an example, we define a specialization of the
SORTER module in the following code. Module SETSORTER implements a set se-
mantics for sorting and is due to this change in semantics not implemented as a
refinement of SORTER.

module SETSORTER specializes SORTER {
String[] filterDuplicates(String[] list) { ... }
String[] sort(String[] set) {
return super.sort(filterDuplicates(set));

}
}

Module SETSORTER inherits all members and requirements from SORTER and de-
fines two new functions. Function filterDuplicates can be used to filter out
duplicate entries in lists. Function sort overrides the corresponding function in
SORTER, but its implementation is still able to refer to the former implementation
via the keyword super.

As a specialization of SORTER, module SETSORTER is not required to be back-
ward compatible to module SORTER. One of the consequences is that module
specializations in general are free to break invariants or contracts established
by their parent module without risking erroneous deployments. Such risks get
ruled out technically because module specializations do neither subsume their
parent module, nor do they automatically implement any of the module inter-
faces that are implemented by their parent module. Therefore, it is not possible
to substitute an instance of the parent module with a module instance of one of
its specializations. This restriction turns SORTER and SETSORTER into completely
different modules. Moreover it is perfectly legal to define a module with both a
SETSORTER and a SORTER submodule, like in the following program.

module SORTING requires INOUT {
module SORTER;
module SETSORTER;

}

3.2 The Programming Language Keris 67

While module refinements promote the substitutability of modules, mod-
ule specializations support the notion of conceptual abstraction on the module
level [174]. Conceptual abstraction refers to the ability to factor out code and
structure shared by several modules into a common parent module which gets
specialized independently into different directions. The specializations represent
distinct modules that cannot be substituted for the common parent module [52].

Rewiring modules. Often, mutual referential modules have to be specialized
at the same time consistently. The ability to refer to a specialized version of a
module requires that we are able to specialize context dependencies as well. This
“rewiring” is expressed in the following code using the as operator. The as oper-
ator allows programmers to replace a module with one of its specializations. In
the following code, the MYSORTER module specializes module SORTER and instead
of requiring the original INOUT module, it now refers to a specialized MYINOUT
module instance.

module MYSORTER specializes SORTER requires MYINOUT as INOUT {
...

}

Of course it is also possible to specialize submodule definitions if required. We
could, for instance, specialize module APP of Section 3.2.2 and use MYSORTER in-
stead of SORTER. Note that for doing this correctly, we also have to specialize mod-
ule CONSOLE, otherwise we would break a link established in the parent module.
Here, module SORTER’s required INOUT module is wired to submodule CONSOLE
which implements INOUT.

module MYAPP specializes APP {
module MYSORTER as SORTER;
module MYCONSOLE as CONSOLE;

}
module MYCONSOLE specializes CONSOLE implements MYINOUT {
...

}

This example shows that module specializations cannot break arbitrary contracts
established in parent modules. To ensure type safety, modules linked in parent
modules still have to be linked in module specializations.

A more complete example for module specializations and the rewiring of
modules by specializing context dependencies and submodule definitions can be
found in Section 3.3.2 on page 90.

68 Static Component Evolution with Extensible Modules

3.2.7 Class Abstractions

Until now we only considered modules with function and variable members.
With these modules, Java’s static variables and static methods get superfluous.
Static class members can easily be implemented as module members with the
benefit of extensibility and improved reusability. Even though functions on the
module level can be quite useful to model global behavior, it is more common for
object-oriented languages to have modules that contain class definitions. Classes
defined in a module can freely refer to other members of the module as well as
to modules required from the enclosing module. The following module defines a
class for representing points.

module SPACE {
class Point {
int x, y;
Point(int x, int y) {
this.x = x;
this.y = y;

}
int getX() { return x; }
int getY() { return y; }

}
}

Module systems for Java-like programming languages that allow to abstract
over classes are not only difficult to handle in theory, they are also extremely dif-
ficult to implement in practice if one wants to stick to Java’s compilation model.
In such module systems, classes can, for instance, extend classes of required mod-
ules for which only the interface might be given. Consequently, at compile-time,
a compiler has to translate the class without knowing its concrete superclass. This
raises implementation issues, but also more fundamental questions, e.g. about
the possibility to create cycles in the inheritance graph or about methods that
override superclass methods accidentally. Ancona and Zucca discuss problems re-
lated to this trade-off between class abstraction and implementation inheritance
in greater detail in [11].

Separating interfaces from implementations. Since Keris is designed to be
fully compatible with Java, including full support for Java’s compilation model,
while being implementable on the standard Java platform, Keris does not offer
a facility for abstracting over regular classes. Instead, it introduces the notion of
class fields as an alternative type and class definition and extension facility. The
design philosophy of Keris follows one of the most important features of module
systems, which is the separation of interfaces from implementations, and regards
regular classes as implementations of abstract data types. Interfaces, on the other
hand, are regarded as nominal signatures of abstract data types. Class fields are

3.2 The Programming Language Keris 69

abstractions that connect interfaces with implementations. As opposed to classes
and interfaces which are considered to be static and immutable, Keris allows one
to abstract over class fields. Furthermore, class fields are extensible; they can be
covariantly overridden in module refinements and specializations. The rest of
this section will discuss Keris’ class abstractions in detail.

Class fields. In most object-oriented languages class definitions introduce
many entities at the same time. They define a type, a default implementation of
that type, and a constructor which creates new instances of this implementation.
The notion of inheritance allows types and class implementations to be reused
in the definition of new types and new class implementations, but the original
entities itself are usually immutable at the language level. So changes to these
entities have to be carried out destructively, possibly raising consistency issues.

In support of extensible class abstractions, Keris introduces the notion of
class fields. A class field is a class abstraction which separately defines an inter-
face and an implementation. While the interface specification typically refers to
a set of regular Java interfaces, the class field implementation consists generally
in a reference to a regular class.

The following example code defines an interface, a class, and a class field
within a single module POINTS. The definition of interface IPoint within mod-
ule POINTS shows that interfaces in Keris can also specify the signature of con-
structors, in contrast to regular interfaces in Java where this is not possible. In
addition to interface IPoint, module POINTS declares a class CPoint which im-
plements IPoint and therefore can be used to represent concrete point objects.
Finally, a class field Point is defined by separately specifying its interface and
implementation.

module POINTS requires INOUT {
interface IPoint {
IPoint(int x, int y);
int getX();
int getY();
Point move(int dx, int dy);

}
class CPoint implements IPoint {
int x, y;
CPoint(int x, int y) { this.x = x; this.y = y; }
int getX() { return x; }
int getY() { return y; }
Point move(int dx, int dy) { return new Point(x + dx, y + dy); }

}
class Point implements IPoint = CPoint;
Point root() { return new Point(0, 0); }
void print(Point p) { INOUT.write(p.getX() + "/" + p.getY()); }

}

70 Static Component Evolution with Extensible Modules

In general, the definition class T implements I1, ..., In = C defines a class field
T which implements the interfaces I1 to In with classC. More precisely, each class
field declaration introduces a new nominal type which is a subtype of all the im-
plemented interfaces I1, ..., In. Furthermore, it specifies a default implementation
C which is used to represent instances of the new type at runtime.

The implementations of the functions print and root show that class fields
are used just like regular classes: They denote types, they can be instantiated,
and members of corresponding objects can be accessed. The main difference to
regular classes is that class fields are virtual and therefore can be covariantly over-
ridden in refined modules. Covariant overriding of class fields includes the exten-
sion of the set of implemented interfaces as well as the ability to specify new class
field implementations. On the other hand, class fields do not support implemen-
tation inheritance — a feature which is only supported by regular classes. There-
fore, class fields must be rather seen as abstractions that complement classes than
abstractions that fully replace them.

Overriding. The next example program explains how class fields can be over-
ridden in module refinements. In this program, refinementCOLORPOINTSdeclares
that class field Point now also supports the IColor interface and is implemented
by the CColPoint class. Furthermore, print is overridden to include the color in
the output. At this point, one might wonder what happens to method root of the
original module POINTS which instantiates class field Point. In fact, for the re-
fined module which inherits this method, root now returns a colored point since
class field Point is overridden in the refinement.

module COLORPOINTS refines POINTS requires COLOR {
interface IColor {
void setColor(COLOR.Color col);
COLOR.Color getColor();

}
class CColPoint extends CPoint implements IColor {
COLOR.Color col = COLOR.black;
CColPoint(int x, int y) { super(x, y); }
void setColor(COLOR.Color col) {
this.col = col;

}
COLOR.Color getColor() {
return col;

}
}
class Point implements IPoint, IColor = CColPoint;
void print(Point p) {
super.print(p);
INOUT.write(" col = " + p.getColor());

}
}

3.2 The Programming Language Keris 71

Type refinement. The ability to covariantly refine types (or class fields in our
case) is essential for extending object-oriented software. Most object-oriented
languages support interface and implementation inheritance. But inheritance
alone does not support software refinement or software specialization well. Ex-
isting code refers to the former type and often cannot be overridden covariantly
in a type-safe way to make use of the extended features. For special cases like
binary methods, some languages support the notion of self types [36, 35, 151].
But these are not suitable for mutually referential classes that have to be re-
fined together to ensure consistency [59]. Here, only virtual types are expres-
sive enough [96, 199, 58, 124]. Unfortunately, virtual types rely in general on
dynamic type-checking. Therefore recent work concentrated on restricting the
mechanism to achieve static type safety [200, 34]. A formal account of type-safe
virtual types is given in [152], which introduces a calculus of classes and objects
with abstract type members.

Class fields are statically type-safe in Keris. This is mainly due to the nature of
module refinements: A refined module subsumes the former module and cannot
coexist with the former module in the same context. It rather replaces the former
module consistently in explicitly specified contexts. Module specializations do
not compromise type safety either, since they conceptually yield new modules
with class fields that do not necessarily have a (subtype) relationship with the
original class fields in the parent module.

The explicit separation of interface and implementation definitions does not
only promote modular programming, it also helps enormously to evolve software
more flexibly, because modifications on the level of interfaces do not impose any-
thing on the implementation level, and vice versa. It is possible to safely extend
the interface of a class field without changing its implementation (e.g. to expose
more functionality to clients), but it is also possible to extend or even fully ex-
change the class field implementation without modifying anything on the inter-
face level.

As we will discuss in Section 3.4.6, this strict separation of interfaces from im-
plementations also eases hot swapping of modules which might cause a dynamic
change of class field implementations.

Opaque class fields. It is possible to leave out an implementing class when
defining a class field. Class fields without implementations are called opaque.
They are similar to abstract methods which only define a signature and defer the
concrete implementation. Modules with opaque class fields or abstract functions
have to be declared abstract. Abstract modules cannot be deployed and their
only function is to serve as a parent module for refinements and specializations.
In this sense, module interfaces are abstract by default. Opaque class fields are
mainly used within module interfaces to define new class types. To illustrate this,
we reformulate the POINTS example by cleanly separating the module interface
from its implementation. This example also nicely shows that by separating the

72 Static Component Evolution with Extensible Modules

module interface from the implementation, we can express that the POINTS ab-
straction does not rely on an INOUT module itself. It is, in fact, only the concrete
implementation that has this context dependency.

module interface POINTS {
interface IPoint {
IPoint(int x, int y);
int getX();
int getY();
Point move(int dx, int dy);

}
class Point implements IPoint;
Point root();
void print(Point p);

}
module SIMPLEPOINTS implements POINTS requires INOUT {
class Point implements IPoint = {
Point(int x, int y) { ... }
int getX() { ... }
int getY() { ... }
Point move(int dx, int dy) {
return (dy == 0) && (dy == 0) ?

this : new Point(x+dx, y+dy);
}

}
Point root() {
return new Point(0, 0);

}
void print(Point p) {
INOUT.write(p.getX() +"/"+ p.getY());

}
}

Anonymous class field implementations. In module SIMPLEPOINTSwe use an
anonymous class declaration to provide a concrete implementation for class field
Point. An anonymous class declaration consists of a block defining class mem-
bers. This block can optionally be preceded by a reference to a super class. The
use of anonymous classes is sometimes necessary to give the self reference this
the right type. In anonymous classes, this is given the type of the correspond-
ing class field. In the example above, it is therefore possible for method move of
class field Point to simply return this if both its parameters are zero. This opti-
mization would have not been possible in our former implementation of module
POINTS.

Note that in selections of the form this.methodOrVariable we type the self
reference this with the anonymous implementation type so that one is still able
to access private fields and methods.

3.2 The Programming Language Keris 73

Abstract class fields. Class fields can also be tagged with the abstract mod-
ifier. Like abstract classes, such class fields cannot be instantiated. Their main
aim is to define extensible types. Since abstract class fields cannot be instanti-
ated, there is also no need to specify an implementation. Our terminology follows
the one of Java which is unfortunately inconsistent regarding the use of modifier
abstract: Abstract classes possibly define an implementation, whereas abstract
methods never provide a concrete implementation.

The next paragraph will present an example which motivates the use of ab-
stract class fields in Keris. This example refers to class field Shape defined in the
following declaration of module GEO.

module GEO requires POINTS {
import POINTS.*;
interface IShape {
boolean inShape(Point pt);

}
abstract class Shape implements IShape;
void registerShape(Shape s) {
registeredShapes.add(s);

}
HashMap registeredShapes = new HashMap();

}

Note that this module does not have to be declaredabstract. It has indeed a class
field without an implementation, but since this class field cannot be instantiated,
we can safely omit the abstract modifier in the module definition.

Dependencies. So far we explained how to declare and how to evolve class
fields. The presented mechanism does not allow one to relate different class
fields to each other; every class field represents an own isolated class abstraction.
We need a mechanism similar to subclassing (on the implementation level) and
subtyping (on the interface level) that makes it possible to introduce dependen-
cies between class fields. For this reason, it is possible in Keris to specify subtype
relationships between otherwise unrelated class fields explicitly. The following
code illustrates this feature.

module SHAPES requires GEO, POINTS {
import GEO.*;
import POINTS.*;
interface IBox {
IBox(Point topleft, Point botright);

}
class Box extends Shape implements IShape, IBox = {
Box(Point topleft, Point botright) { GEO.registerShape(this); ...}
boolean inShape(Point pt) { ... }

}
}

74 Static Component Evolution with Extensible Modules

In this program we refer to module GEO defined in the previous paragraph. GEO
defines an abstract class field Shape. As we mentioned already before, abstract
class fields are like abstract classes: They cannot be instantiated but they define
a type which can be extended. Module SHAPES defines a class field Box which
extends Shape. This extends declaration turns Box into a subtype of Shape requir-
ing that Box implements at least all the interfaces implemented by Shape. The
type checker has to make sure that it is not possible to link refinements of GEO
and SHAPES where this invariant is broken. Thus, such subtype dependencies be-
tween class fields promote the consistent refinement or specialization of class
field hierarchies.

Here is an example which successfully links modules GEO and SHAPES in the
context of module GEOSHAPES.

module GEOSHAPES requires POINTS {
module GEO;
module SHAPES;

}

Imagine, we develop a refinement XGEO of GEO that adds a new method scale to
Shape:

module XGEO refines GEO {
interface INewShape { void scale(int factor); }
abstract class Shape implements IShape, INewShape;

}

We now cannot simply refine GEOSHAPES and introduce the refined XGEO module
in place of the previous GEO module. This would break our dependency, since
SHAPES.Boxnow would not cover the newly introducedXGEO.INewShape interface.
Thus, we first have to consistently refine SHAPES as well, such that class field Box
also implements the new interface XGEO.INewShape. This refinement can then
be linked with XGEO, as the following code fragment shows. The concrete imple-
mentation of XSHAPES.Box is irrelevant and therefore left out in the following
program.

module XSHAPES refines SHAPES requires XGEO {
class Box extends GEO.Shape implements GEO.IShape,XGEO.INewShape =...

}
module XGEOSHAPES refines GEO {
module XGEO;
module XSHAPES;

}

Note that extends declarations have no implications on the implementation
side. For our example this means that Box can be implemented by an arbitrary

3.2 The Programming Language Keris 75

class which can be a subclass of the implementation of Shape, but which is not
required to be one.

It is possible for two or more class fields to depend mutually on each other
(yielding a cycle in the extension relationship). In such a case, all recursively
dependent class fields have to implement the same interfaces — this is a conse-
quence of our requirement that a class field that extends another class field has to
implement all the interfaces of this other class field. Since subtyping is antisym-
metric in Keris, mutually dependent class fields denote the same type. However,
they can still have different implementations.

In contrast to this, classes (i.e. class field implementations) many not intro-
duce cycles in their inheritance hierarchy. More precisely, a class may not extend
other classes that extend already the first class, no matter with what module path
the classes are prefixed.

Inheritance and subtyping. Inheritance is a powerful reuse mechanism which
is in most statically typed object-oriented languages coupled with subtyping.
Sometimes this is unfortunate if one wants to reuse a class without establish-
ing a is-a relationship. For instance, many introductory texts to object-oriented
programming motivate inheritance with an example where class Circle inherits
from class Point. While on the level of code reuse, this makes perfectly sense, on
the level of subtyping, this relationship is questionable: Intuitively, circles are not
really specialized points.

In Keris it is possible to express the intention of reusing an implementation
without implying anything on the typing side. The following module introduces
a class field Circle which is a subtype of Shape but which is implemented by a an
anonymous subclass of CPoint. In other words, we implement a new subtype of
class field Shape by reusing class CPoint which is completely unrelated to Shape.

module MYSHAPES requires GEO, POINTS {
import GEO.*;
import POINTS.*;
interface ICircle { ICircle(int x, int y, int r); }
class Circle extends Shape implements IShape, ICircle = CPoint {
int radius;
Circle(int x, int y, int r) { super(x, y); radius = r; }
boolean inShape(Point pt) { ... }

}
}

From the viewpoint of static typing, class CPoint is also unrelated to Circle. The
anonymous subclass of CPoint acts as the implementation of class field Circle
so that at runtime, instances of Circle are actually instances of the anonymous
subclass of CPoint. Thus, dynamically, there is a strong relation between the

76 Static Component Evolution with Extensible Modules

two.6 This relationship is hidden statically to promote extensibility by allowing
programmers to exchange implementations easily with compatible ones.

Opposed to this example where subtyping is decoupled from inheritance,
Keris also supports the more common approach where types and implementa-
tions are refined simultaneously, as the following program will exemplify.

module NUSHAPES requires GEO, POINTS, MYSHAPES {
import GEO.*;
import POINTS.*;
import MYSHAPES.*;
interface IRing {
IRing(int x, int y, int ro, int ri);

}
class Ring extends Circle implements IShape,ICircle,IRing = Circle {
int innerRadius;
Ring(int x, int y, int ro, int ri) {
super(x, y, ro); innerRadius = ri;

}
Ring(int x, int y, int ro) {
super(x, y, ro); innerRadius = 0;

}
boolean inShape(Point pt) {
... super.inShape(pt) ...

}
}

}

In this program, we define a class field Ring which depends on the class field
Circle.7 It is implemented by an anonymous class that inherits from the imple-
mentation of class field Circle. Two things have to be noted:

1. When a superclass of an anonymous class field implementation refers to
another class field, this anonymous class actually inherits from the imple-
mentation of this other class field.

2. It is only possible to inherit from the implementation of another class field
if there is also a dependency on the typing side.

Since types defined by regular classes are never subtypes of class field types, the
second restriction also excludes that regular classes inherit from class field imple-
mentations.

6Dynamically, there is no difference between a class field and the class field implementation.
Therefore it is no coincidence that Keris uses the = letter to specify class field implementations

7This example shows that it is not always a good idea to put constructors into regular inter-
faces. A consequence is that dependent class fields have to implement such constructors as well.
This can make sense, but often it does not. Therefore Keris allows interfaces to be tagged with
the modifier constructor. Such constructor interfaces are collections of constructor signatures.
They do not define a type and therefore do not have to be supported by depending class fields.

3.2 The Programming Language Keris 77

The second restriction is necessary for type safety reasons. Since the self refer-
ence inside of an anonymous class field implementation is typed with the corre-
sponding class field type, it has to be guaranteed that it can only be subclassed by
classes where the self reference is assigned a subtype. Otherwise we could refine
the original class field independently breaking our new class field implementa-
tion (where the self reference is typed with the refined class field type).

In the implementation of class field Circle in module MYSHAPES we do not
get this problem, because class CPoint, from which the anonymous class field im-
plementation inherits, is immutable — it cannot be refined. Nevertheless, it is
important to understand what happens if class CPoint exposes its self reference
in some way as an object of type CPoint. Since this code is inherited to the imple-
mentation class of Circle, there exists the possibility that at runtime, an object
which is statically typed as a Circle, is used as a CPoint. This does not endan-
ger type safety, since Circle objects are anyway instances of a CPoint subclass,
but when used as a CPoint it allows access to fields and methods that might not
explicitly be specified in the implemented class field interfaces.

Here one can see that interfaces given in class field definitions act as views
on the actual class field implementations such that clients of a class field object
can only access the specified class field members. Other parts of the system have
possibly a different view with different access rights.

3.2.8 Type System

In this section we informally review the basic principles of the type system of
Keris. We explain what restrictions have to be made to ensure statically that a
system assembled from modules is sound. Furthermore we explain how the type
system helps to evolve software consistently.

Types. Type systems of Java-like object-oriented languages are usually nomi-
nal; i.e. types are identified by their names, not by their structure. Not consid-
ering the package system and class nesting, reference types in Java have sim-
ply the form C, where C corresponds to a class name. In Keris, on the other
hand, classes are typically not defined on the top-level, but rather within mod-
ules. Since modules can aggregate submodules arbitrarily, a reference type in
Keris corresponds to a class name C which is qualified with a sequence of mod-
ule names M1 :: M2 :: ... :: Mn where Mi+1 is a submodule of Mi for all i and C
is a member of module Mn. This module name sequence, also called module
path, identifies uniquely a nested instance of module Mn. Thus, types in Keris
have the general form M1 :: M2 :: ... :: Mn.C. Two types are equal, if the class
names are equivalent and if the module path qualifications refer to the same
module instance. In a given context, two module paths M1 ::M2 :: ... ::Mm and
N1 ::M2 :: ... ::Nn refer to the same module instance if m = n and Mi is equiva-

78 Static Component Evolution with Extensible Modules

lent to Ni for all i.8 Module equivalence is considered modulo refinements and
module implementations (which can be seen as a special case of module refine-
ment), so that all the following types would be considered equal for the mod-
ules defined in the paragraph about class field dependencies of Section 3.2.7:
XGEOSHAPES::GEO.Shape, GEOSHAPES::GEO.Shape, and XGEOSHAPES::XGEO.Shape.
Since types depend on module instances, our system distinguishes between the
types O::M.C and O::N::M.C in the following listing. Both types refer to the same
physical class C, but qualified with different module instances. This distinction
is necessary since it is possible to refine both instances ofM independently, possi-
bly yielding versions of class fieldM.C with different interfaces and implementa-
tions. Even if M.C does not refer to a class field, we have to consider the module
instance qualifications, since M.C itself might refer to a class field M.D which
possibly evolves differently for different module instances.

module M {
class C = {}

}

module N {
module M;

}

module O {
module M;
module N;

}

Such a dependent type system is characteristic for strongly typed programming lan-
guages supporting family polymorphism [59] (see Section 3.3.1 for a discussion).
For technical details we refer to Odersky, Cremet, Röckl, and Zenger’s formaliza-
tion of dependent types for class-based object-oriented languages [153, 152].

Type coherence. The previous section discussed when types are considered to
be equivalent. This question is in particular relevant for types appearing in the
interface of external modules. Consider the following example in which module
interface A defines a class field C. We have two modules M and N which both re-
quire a module implementing A. Both of these modules are required by a third
module O. The question is now, whether the type A.Cmentioned in M and the type
A.C mentioned in N are equivalent in the context of module O. This would turn
N.bar(M.foo()) into a well-typed expression.

module interface A {
interface I { I(); }
class C implements I;

}
module O requires M, N {
... N.bar(M.foo()) ... ?

}

module M requires A {
A.C foo() { return new A.C(); }

}
module N requires A {
void bar(A.C a) {}

}

8This notion of module path equality is a conservative approximation which guarantees at
compile-time that two module paths refer to the same module instance at runtime. Of course,
there might be module paths of different shape referring to the same module instance dynami-
cally.

3.2 The Programming Language Keris 79

In ML-like module systems it is up to the programmer to declare that both
types are considered to be equivalent by explicitly introducing sharing constraints.
This sharing by specification approach allows the programmer to introduce only a
minimal set of equations identifying types. On the other hand, if a large set of in-
terconnected cooperating modules with many type members is used, it becomes
quickly unhandy to specify all the required sharing constraints by hand.

For a language without generic context dependencies like Java, the coherence
problem is trivial. Two fully qualified type references P.C are always considered
to be equivalent, no matter what context they appear in, since there will be al-
ways exactly one implementation available at runtime. We consider this implicit
“agreement” on types (or, in fact, packages) essential for making the develop-
ment of huge, recursively dependent, object-oriented libraries practical. Thus,
Keris adopts a similar policy and rigorously identifies types with the same name
and equivalent module sequence qualification, even for types appearing in re-
quired, external modules, and without giving up genericity. Since type equiv-
alence in Keris is dependent on a compile-time notion of equivalence of mod-
ule instances, it is essential for the type system of Keris to enforce that modules
which get identified statically in the context of a module like O are actually also
implemented at runtime by a single module implementation for all possible mod-
ule composition scenarios involving this module.

Here is an example for a legal composition of modules M, N, and O. Module
P is well-typed, because both modules M and N are referring to the same imple-
mentation of module A (which gets required by P). This is necessary since the
context of the third submodule O identifies the A instances seen by M and N. The
dependencies in this program are illustrated in Figure 3.3.

module P requires A {
module M;
module N;
module O;

}

Under the assumption that module AI implements module interface A, the follow-
ing definition of module Q is not well-typed. This is because now, module N gets
linked with AI, whereas module M is required from Q and therefore can never refer
to implementation Q.AI for satisfying its own context dependency on A. Details
about the dependencies are shown in Figure 3.3.

module Q requires M {
module AI;
module N;
module O; E

}

module AI implements A {
...

}

80 Static Component Evolution with Extensible Modules

P

N

A

M

O

Q

AI

M O

N

A

(a) Legal composition (b) Illegal composition

Figure 3.3: Illustration of modules P and Q.

Note that the ill-formedness of Q is solely due to the definition of submodule O, be-
cause only O requires that modules M and N both access the same implementation
for A. Omitting O in the example above would turn Q into a well-typed module.

In general, for submodules M of N, the Keris compiler checks the following
to ensure a coherent use of types:

• The resolved context dependencies of M in N, written resolved(M,N), is
the smallest set of modules with M ∈ resolved(M,N) where O ∈
resolved(M,N) implies that all required modules ofO that are submodules
of N are also contained in resolved(M,N).

• The unresolved context dependencies ofM inN, written unresolved(M,N), is
the smallest set of modules which contains all modules required by bothM
and N and where O ∈ unresolved(M,N) implies that all modules required
byO are also contained in unresolved(M,N).

• The set of resolved context dependencies and the set of unresolved
context dependencies have to be disjunct; i.e. resolved(M,N) ∩
unresolved(M,N) = ∅.

Together with the invariants for submodule definitions discussed in the next para-
graph, this rule guarantees that modules identified in a submodule context do
also get identified in the deployment context. For the example above we have
resolved(O,Q) = {N,AI} and unresolved(O,Q) = {M,A}. SinceA is included in
both sets (again modulo refinements and implementations of module interfaces),
we have a violation of the rule above.

Regarding the mechanism for handling type coherence, Keris trades simplic-
ity for expressiveness. The previous example demonstrates that the explicit iden-
tification of modules can indeed restrict the number of possible deployment sce-
narios for a given module artificially if external modules get identified unnec-
essarily. But our experience shows that by specifying minimal views (module
interfaces) for external modules, one can often avoid unintended module iden-

3.2 The Programming Language Keris 81

tifications and improve reusability significantly. Furthermore, a simple mecha-
nism for handling type coherence is essential in practice, since in the presence of
software evolution features, complex coherence management facilities get even
more complex, ultimately yielding unmanageable formalisms.

Module composition. Following traditional module systems of imperative lan-
guages, Keris associates with every module name implicitly a module interface.
This is the basis for inferring the wiring of submodules. Wiring inference on the
other hand requires that references to modules have to be unambiguous; i.e. the
type system has to ensure that a module name identifies an implementing mod-
ule instance uniquely. We impose a set of restrictions on submodule aggregations
to enforce this.

The following explanation of the relevant restrictions is based on the notion
of a module subsuming other modules. A module A subsumes another module B,
ifA either refines B (directly or indirectly), or ifA implements module interface B,
or if there is a module C which gets refined by A and which implements module
interface B.

Based on this definition, we can now formulate the restrictions on submodule
aggregations enforced by the Keris type system. The aggregation of a submodule
M in a host module N is subject to the following terms:

• N may not define another submodule, or require a module which subsumes
modules that are subsumed byM (uniqueness).

• M or any direct or indirect submodule ofM may not subsume modules that
are subsumed by host module N (linearity).

• All of M ’s required modules have to be present either as other submodules
of N, or have to be required by N, or have to be subsumed by N itself (de-
pendency satisfaction).

• N has to identify at least those module instances identified by submodule
M; i.e. Keris’ compile-time notion of module equivalence, discussed in the
last paragraph, has to be used in a coherent way (coherence).

• Class field dependencies specified byM or any direct or indirect submodule
of M involving modules from M ’s deployment context (i.e. required mod-
ules ofM) have to also hold for the resolved concrete context dependencies
in N (consistency).

While the uniqueness and linearity restrictions rule out ambiguities, it is the
dependency satisfaction rule which guarantees that all requirements of submod-
ules are met by the deployment context. The coherence rule addresses type equiv-
alence issues discussed in the previous paragraph. The consistency rule is respon-
sible for validating class field dependencies in a concrete deployment context.
The following program is an example for an illegal aggregation of a submodule M
in N due to a violation of the consistency rule.

82 Static Component Evolution with Extensible Modules

module interface A {
interface I { void foo(); }
class C implements I;

}
module AI implements A {
interface J { void bar(); }
class C implements I, J = {
...

}
}

module M requires A {
class D extends A.C

implements A.I = {
...

}
}
module N {
module AI;
module M; E

}

The module definition of M is well-formed because class field D implements all
interfaces implemented by A.C. As a submodule of N, module M would get linked
with the other submodule AI. But since AI refines C covariantly by implementing
an additional interface J, we cannot successfully link it with M who’s class field C
does not support J.

Note that the linearity restriction from the list above goes beyond the minimal
requirements for avoiding ambiguities. The restriction also rules out cases with
indirect recursion. According to the rules above, it is illegal for a module to ag-
gregate an instance of itself even indirectly, as module M is doing in the following
program.

module M {
module N;
class A extends N.B = {}

}

module N {
module M;
class B extends M.A = {}

}

Since Keris initializes modules lazily at the time a module gets accessed for the
first time, such a program would not necessarily create an infinite number of
nested module instances. But as the program above shows, it can introduce class
field types that are subtypes of infinitely many supertypes. For this reason and
the fact that a program with recursively nested submodules does not correspond
to a finite system with a finite architecture, recursively nested modules are re-
jected by the type system.

Interface ascription. The interface ascription mechanism of Keris allows pro-
grammers to constrain the interface of a submodule implementation M to a sin-
gle implemented module interface I. To guarantee that such submodules are
deployed and overridden consistently, Keris restricts this mechanism with the
following rule:

If N denotes the closure of the requirements of M and J is the set of
all interfaces implemented by M, then M can be constrained to I ∈ J
only ifN ∩

(
J \ {I}

)
= ∅ (modulo module refinement and implemen-

tation).

3.2 The Programming Language Keris 83

This rule verifies that all modules that are directly or indirectly required by M
do not refer back to M or one of the interfaces implemented by M which are not
captured by I. In the definition of M such a scenario would be interpreted as a
recursive dependency, while in the context of a submodule ascription to I, this
invariant could never hold.

Module refinement. Module refinements have to be backward compatible so
that an instance of a refinement can safely replace an instance of the original
module. Consequently, invariants established by the parent module are not al-
lowed to be broken in refinements.

Module refinements inherit all required modules and all submodules from
their parent module. It is possible to add new requirements or to refine require-
ments to express a simultaneous mutual refinement of several modules. Further-
more, one can covariantly override submodules with instances of refined mod-
ules. Like in Java, it is not possible to override variables. Method overriding is
invariant in the arguments and covariant in the return type, similar to GJ [32].

Module specialization. A module specialization yields a new distinct module
which inherits members from an existing “prototype.” Excluded from inheritance
are the implemented module interfaces. Integrating specialized modules into ex-
isting systems requires a mechanism for replacing a module with a specialized
version. This rewiring is possible for the requirements and the submodules of spe-
cialized modules, as explained in Section 3.2.6. The rewiring of requirements is
essential to express that a set of modules is specialized together. The type checker
has to check that depending modules are specialized consistently. Here is an ex-
ample for an inconsistent specialization:

module M {}
module N requires M {}
module O requires M, N {}
module M1 specializes M {}
module N1 specializes N requires M1 as M {}
module O1 specializes O requires N1 as N {} E

We define three modules M, N, and O, where module N depends on M and module O
depends on M and N. Next we specialize O to O1 and N1 to N where the specialized
module N1 now refers to M1 instead of M. The specialization of O rewires the origi-
nal requirement N to N1 and inherits the old requirement M. This is a violation of
an invariant established in the original module O. Here, module O and depending
module N agree on a single implementation of module M, according to the coher-
ence discussion in Section 3.2.8. In the specialization O1 on the other hand, there
is no agreement on M anymore, since the rewired dependency N1 now refers to M1
instead of M. A consistent specialization of O rewires both N to N1 and M to M1. The
scenario is illustrated in Figure 3.4.

84 Static Component Evolution with Extensible Modules

N M O

N1 M1 O1

specializesspecializesspecializes

Figure 3.4: Illustration of module dependencies in the original and specialized system.

For checking the consistent specialization of a module, the type checker first
has to collect all specializations of requirements and submodules. In a second
step, it has to verify that the “agreement” on modules in the old system still per-
sists in the rewired system (possibly involving instances of specialized modules).
This check can be done modularly, but it involves all interfaces of modules con-
tained in the closure of the old and the new module’s requirements.

This example and the examples given in the previous sections demonstrate
how the type system can help to evolve systems consistently by enforcing invari-
ants established by the original system in refined or specialized variants. With-
out explicit support for software evolution on the programming language level,
programmers are often required to check compatibility and consistency between
different versions at runtime or with special tools at link-time.

3.2.9 Runtime Types and Reflection

3.2.9.1 Runtime Types

In Java it is possible to query the exact runtime type for any given object. On the
language level, the type operator instanceof exploits this feature to determine
if the dynamic type of an object is a subtype of a statically specified type. Simi-
larly, type casts have to verify the type and fail if necessary. Types at runtime are
also used in Java to close the hole in the static type system dynamically, which is
caused by covariant array subtyping.

Support for runtime typing in Java. For Keris we cannot directly rely on
Java’s native support for runtime type information due to its more expressive
type system. The following Keris program illustrates what problems dependent
types are posing when implemented on a platform that only supports purely (non-
dependent) nominal types.

3.2 The Programming Language Keris 85

module M {
class C {}

}
module N {
module M;

}
module O {
module M;

}

module P {
module N;
module O;
void main(String[] args) {
Object obj = new N::M.C();
System.out.println(
obj instanceof O::M.C);

}
}

We have two modules N and O which both aggregate an instance of module M. In
the main function of module P we first create an object of type N::M.C and deter-
mine then if the runtime type of this object corresponds to O::M.C. According to
the explanations of Section 3.2.8, the two types are different in the context of
module P, even though we physically refer to the same class C defined in mod-
ule M. Consequently, we should expect that our runtime type check in module P
will fail even if objects of type O::M.C and N::M.C are represented at runtime as
instances of a single Java class M.C.

Dynamic transparency. The implementation of Keris has full support for run-
time type checks according to the static type system of the language. It also han-
dles type casts in a safe way. Note that in general, class fields are not dynam-
ically opaque; i.e. at runtime it is possible to determine what concrete class is
used as the implementation of a class field. Leaving class field implementations
transparent at runtime is required because of the possibility that class field im-
plementation objects might export themselves as objects of the implementation
type as described in Section 3.2.7 on page 68 in the paragraph about inheritance
and subtyping. An advantage of this implementation transparency is also that
when modules are hot swapped (see next section), it is possible to dynamically
distinguish old implementations from new ones.

3.2.9.2 Reflection

Keris has a built-in reification system for modules and module instances that
exposes meta-information and internal configuration data. Furthermore, there
is support for changing the configuration of modules dynamically. In combina-
tion, these two features allow the development of powerful reflective libraries
that are able to introspect, modify, and even assemble module-based systems dy-
namically. To allow the coexistence of different reflective libraries which possi-
bly use different module composition techniques, the implementation of Keris
does not rely on a specific reflection API. It strictly separates the (possibly user
supplied) reflective system from the implementation of the language. The code
supporting reflection which gets generated by the Keris compiler for every mod-
ule definition does not provide any means of security which could ensure that

86 Static Component Evolution with Extensible Modules

systems which are assembled or modified dynamically do not violate static invari-
ants of the module system of Keris. It is the responsibility of the corresponding
reflective library to implemented such checks.

In Section 3.4.6 we describe a Reflection API for Keris. The design of this
library is based on the architectural design pattern Context/Component discussed
in Section 4.2.1. It uses meta-module representations and module contexts (i.e.
sets of interconnected module instances) for creating, linking, and hot swapping
module instances dynamically.

3.3 Applications of Keris 87

3.3 Applications of Keris

This section presents several examples that show how Keris can be used to safely
implement extensible software components. We focus on well-known design
problems and show how some design patterns can be implemented in an extensi-
ble way.

3.3.1 Generic Class Families

Family polymorphism. In the first example we use modules as a means to en-
capsulate sets of related classes. Since modules are extensible, it is possible to
create refinements and specializations of such class families. The term family
polymorphism refers to the ability to statically declare and manage relationships
between several classes polymorphically; i.e. in a way that a given set of classes
may be known to constitute a family, but where it is not known statically exactly
what classes they are [59]. We will proceed by explaining how Keris supports
family polymorphism through extensible modules with class fields.

Generic graph representations. We start with the implementation of a
generic module for representing graphs. Listing 3.1 shows a definition of a
suitable module interface. This module interface defines class fields for graphs,
nodes, and edges together with the corresponding interfaces. Since members of
module interfaces are never concrete, we define class fields only by specifying

module interface GRAPH {
class Graph implements IGraph;
class Node implements INode;
class Edge implements IEdge;
interface IGraph {
IGraph();
Node[] nodes();
Node addNode();

}
interface INode {
Edge[] edges();
Edge connectTo(Node node);

}
interface IEdge {
Node from();
Node to();

}
}

Listing 3.1: A module interface for graphs.

88 Static Component Evolution with Extensible Modules

module DIRECTED_GRAPH implements GRAPH {
class Graph implements IGraph = {
Node[] nodes = new Node[0];
Node[] nodes() { return nodes; }
Node addNode() { ... new Node() ... }

}
interface IDNode {
IDNode();
boolean reachableFrom(Node node);

}
class Node implements INode, IDNode = {
Edge[] edges = new Edge[0];
Edge[] edges() { return edges; }
Edge connectTo(Node node) { ... new Edge(this, node); ... }
boolean reachableFrom(Node node) { ... }

}
interface IDEdge {
IDEdge(Node from, Node to);

}
class Edge implements IEdge, IDEdge = {
Edge(Node from, Node to) { ... }
Node from() { return from; }
Node to() { return to; }

}
}

Listing 3.2: An implementation of module interface Graph.

their implemented interfaces. Such class fields are called opaque, because they
do not reveal their implementation.

In our implementation, a graph is a data structure that consists of a list of
nodes. This data structure is extensible, offering a method for adding new nodes.
A node has a number of adjacent edges. It offers a method for adding new edges
by connecting the node with another node. Edges are simply objects that have a
root and a target node.

A possible implementation of module interface GRAPH is given by module
DIRECTED_GRAPH in Listing 3.2. We use anonymous class declarations to specify
the concrete implementations for all class fields of module DIRECTED_GRAPH. As
Section 3.2.7 pointed out already, the use of anonymous classes is sometimes nec-
essary to give the self reference this the right type. In anonymous classes, this is
typed with the corresponding class field type. In Listing 3.2, the implementation
of class field Node needs this to be of type Node, otherwise we could not pass it to
constructors of Edge.

Note that in DIRECTED_GRAPH, both Node and Edge extend the set of imple-
mented interfaces specified in module interface Graph each with one of the new
interfaces IDEdge and IDNode. For both class fields this is essential to enable the

3.3 Applications of Keris 89

module WEIGHTED_GRAPH specializes DIRECTED_GRAPH {
interface IWNode {
int shortestPathTo(Node node);

}
class Node implements INode, IDNode, IWNode = super {
int shortestPathTo(Node node) { ... edges[i].weight() ... }

}
interface IWEdge {
void setWeight(int w);
int weight();

}
class Edge implements IEdge, IDEdge, IWEdge = super {
int weight;
Edge(Node from, Node to) { super(from, to); }
void setWeight(int w) { weight = w; }
int weight() { return weight; }

}
}

Listing 3.3: A specialization of directed graphs.

construction of concrete objects, since module interface GRAPH does not explicitly
specify the signature of object constructors for them.

In Listing 3.3 we specialize the DIRECTED_GRAPH module. The specialized ver-
sion WEIGHTED_GRAPH adds weights to edges. The new implementation of Edge
subclasses the previous (anonymous) implementation by referring to this imple-
mentation via super. We can now create systems which deal with both weighted
graphs and directed graphs. The type system guarantees for such cases that it is
not possible to mix elements of the two. The following module definition does
not type check because of exactly this reason: In function main we try to link a
node of a directed graph with one of a weighted graph.

module GRAPHAPP {
module DIRECTED_GRAPH;
module WEIGHTED_GRAPH;
void main(String[] args) {
DIRECTED_GRAPH.Graph dg = new DIRECTED_GRAPH.Graph();
WEIGHTED_GRAPH.Graph wg = new WEIGHTED_GRAPH.Graph();
dg.addNode().connectTo(wg.addNode()); E

}
}

Programming languages like gBeta [58] and Scala [151] which support types
as object members allow even stronger couplings between members of a class
family. Here one could nest the types Edge and Node in class Graph to even disable
mixing nodes from different directed graphs.

90 Static Component Evolution with Extensible Modules

The next section discusses Keris’ ability to express families of recursively de-
pendent classes in a modular fashion; i.e. in a way that does not require to define
all related classes as members of a single enclosing class or module. This exam-
ple will show that the expressiveness of Keris goes beyond what is required for
family polymorphism. In Keris, families can be split up modularly into loosely
coupled sub-families [60] without sacrificing type safety.

3.3.2 Design Patterns as Module Aggregates

Design patterns. In the remainder of this section we use modules to develop
generic implementations of design patterns in a modular fashion. Design pat-
terns are general solutions to recurring design problems. They are ways to de-
scribe best practices, good designs, and capture experience in a way that it is
possible for others to reuse this experience. In the literature [74], design pat-
terns are often presented as descriptions of communicating objects and classes
that are customized to solve a general design problem in a particular context.

Subject/Observer pattern. We start with a discussion of the Subject/Observer
pattern [74], which is also known as the Publish/Subscribe pattern. This pattern
lets one define a one-to-many dependency between objects so that when one ob-
ject, called Subject, changes its state, all its dependents, called Observers, are no-
tified and updated automatically.

Listing 3.4 introduces three modules as the building blocks of this pattern.
The observer type is defined in module OBSERVER by the class field Observer.
Module OBSERVER has to require the corresponding SUBJECT module since the
observer type directly refers to the subject. Similarly, module SUBJECT requires
module OBSERVER in its definition of class field Subject. Each instance of class
field Subject contains a list of observers which get notified whenever an event is
sent to the subject. We have no concrete implementation for events, so the EVENT
module is simply described by a module interface.

We can now link the mutually dependent modules together yielding a sin-
gle module SUBJECT_OBSERVER which represents the complete Subject/Observer
pattern. In addition to the aggregated modules we also define a function
attach which attaches an observer object to a subject. The composed module
SUBJECT_OBSERVER is a natural place for defining functions that belong logically
to the whole pattern, and not to a specific participant.

module SUBJECT_OBSERVER requires EVENT {
module SUBJECT;
module OBSERVER;
void attach(SUBJECT.Subject s, OBSERVER.Observer o) {
s.add(o);

}
}

3.3 Applications of Keris 91

module OBSERVER requires SUBJECT, EVENT {
interface IObserver {
IObserver();
void notify(SUBJECT.Subject subj, EVENT.Event evt);

}
class Observer implements IObserver = {
void notify(SUBJECT.Subject subj, EVENT.Event evt) { ... }

}
}
module interface EVENT {
class Event;

}
module SUBJECT requires OBSERVER, EVENT {
interface ISubject {
ISubject();
void add(OBSERVER.Observer obs);
void notify(EVENT.Event evt);

}
class Subject implements ISubject = {
OBSERVER.Observer[] obs;
void add(OBSERVER.Observer obs) { ... }
void notify(EVENT.Event evt) {
for (int i = 0; i < obs.length; i++)
obs[i].notify(this, evt);

}
}

}

Listing 3.4: A modular Subject/Observer implementation.

We could create refined versions of that pattern with alternative properties,
but here, we are mainly interested in specializing it for a specific application. Fol-
lowing the example in [199], we derive a data structure for modeling a window
manager by consistently specializing the mutually referential modules SUBJECT
and OBSERVER. We start with the covariant specialization of the SUBJECT module.

module MANAGER specializes SUBJECT
requires WINDOW as OBSERVER, WINEVENT as EVENT {

interface IManager { ... }
class Subject implements ISubject, IManager = ...

}

Module MANAGER also has to specialize the requirements of the original SUBJECT
module with the as construct. This “rewiring” has the effect that all former refer-
ences to the OBSERVER module now refer to module WINDOW. The same holds for
EVENT. Without this specialization we could not link module MANAGERwith the cor-

92 Static Component Evolution with Extensible Modules

responding module WINDOW since WINDOW is distinct from OBSERVER and therefore
cannot play its role in the general pattern.

module WINDOW specializes OBSERVER
requires MANAGER as SUBJECT, WINEVENT as EVENT {

interface IWindow { ... }
class Observer implements IObserver, IWindow = ...

}
module WINEVENT specializes EVENT {
...

}

Finally, we compose the modules to represent the window manager pattern as a
specialization of the Subject/Observer pattern. Here we have to specialize the
submodules accordingly. We cannot simply override the original SUBJECT and
OBSERVER submodules, since our new modules are module specializations that
do not subsume their parent modules.

module WIN_SYSTEM specializes SUBJECT_OBSERVER
requires WINEVENT as EVENT {

module MANAGER as SUBJECT;
module WINDOW as OBSERVER;

}

In the definition of module WIN_SYSTEM, the type system also enforces the
specialization of the required EVENT module. Otherwise, we could evolve
SUBJECT_OBSERVER inconsistently with respect to SUBJECT and OBSERVER, whose
specializations both require WINEVENT instead of EVENT in module WIN_SYSTEM.

3.3.3 Modular Extensions of Design Patterns

3.3.3.1 Extensible Visitors

Another prominent design pattern is the Visitor pattern [74]. The aim of this pat-
tern is to represent operations on elements of a data structure as regular objects.
The pattern describes a dispatch mechanism for invoking such operations. It lets
you define new operations without changing the classes of the elements on which
they operate. On the other hand, this pattern makes it very hard to define new
element types. Therefore it is complementary to the Interpreter pattern which
facilitates the creation of new element classes, but does not allow the addition of
new operations. The problem of extending a system simultaneously with new el-
ement types and new operations is often called extensibility problem or expression
problem. A detailed discussion of this problem can be found in Section 4.1.1 on
page 150.

3.3 Applications of Keris 93

The implementation of the Visitor pattern that is getting derived on the fol-
lowing pages does not have such restrictions. It allows programmers to safely
add new element classes and new operations and can therefore be seen as a solu-
tion of the extensibility problem.

We start with an abstract description of the pattern’s participants in form of
module interface VISITORS. This module interface contains a class interface Data
for describing general element types. Classes implementing Data have to provide
at least an accept function which takes an operation (a visitor object) and applies
it to the given object. The second module interface member is class field Visitor
which represents a type for operations.

module interface VISITORS {
interface Data {
void accept(Visitor v);

}
abstract class Visitor;

}

In contrast to the Subject/Observer implementation from the last section, we can-
not factor out the full logic of the Visitor pattern into an abstract implementation
and then use specialization to instantiate this abstraction for specific applications.
The programmer has to know the full protocol, including the development of con-
crete visitors and concrete element classes. The purpose of the given infrastruc-
ture is to help the programmer setup his concrete visitor framework so that it can
simply be reused and extended.

The following listing presents a specialization of the VISITORS interface. It
will be used to interface modules that allow to represent and evaluate arithmetic
terms consisting of numbers and binary plus operations.

module interface EXPRESSIONS specializes VISITORS {
interface ExprVisitor {
void caseNum(int x);
void casePlus(Data left, Data right);

}
abstract class Visitor implements ExprVisitor;
interface EvalVisitor {
EvalVisitor();
int result();

}
class Eval extends Visitor implements ExprVisitor, EvalVisitor;

}

The EXPRESSIONS module interface describes visitors handling the two element
types for numbers and plus operations. The module interface does not expose
the concrete representation of such data. Therefore it can only be used to process

94 Static Component Evolution with Extensible Modules

module LANG implements EXPRESSIONS {
class Num implements Data {
int x;
Num(int x) { this.x = x; }
public void accept(Visitor v) { v.caseNum(x); }

}
class Plus implements Data {
Data left, right;
Plus(Data l, Data r) { left = l; right = r; }
public void accept(Visitor v) { v.casePlus(left, right); }

}
class Eval extends Visitor implements ExprVisitor, EvalVisitor = {
int res;
public int result() { return res; }
public void caseNum(int x) { res = x; }
public void casePlus(Data left, Data right) {
Eval eval = new Eval();
left.accept(eval); right.accept(this);
res += eval.result();

}
}

}

Listing 3.5: A concrete Visitor implementation.

data. We could imagine to define a second view which provides functionality for
actually creating data.

In addition to the covariant refinement of the visitor type, module interface
EXPRESSIONSalso defines class fieldEval, a concrete visitor which evaluates terms
to integer values. Module LANGwhich implements module interface EXPRESSIONS
is shown in Listing 3.5. The implementation of this module is straightforward; it
is guided by the corresponding interface description.

As Listing 3.6 shows, it is quite easy to extend module LANG to incorporate
new element types. One simply has to refine class field Visitor in order to add
new visitor methods for the new element types. Since all concrete visitors, like
Eval, depend on this class field, they have to be updated accordingly. Otherwise
the compiler would complain about broken dependencies for all concrete visitor
class fields that implement less interfaces than Visitor does.

In Listing 3.6 class field Eval is refined by extending the set of implemented
interfaces and by simultaneously extending the anonymous implementation.

In mainstream object-oriented languages, visitor extensions in the presented
fashion can only be implemented by circumventing the type system, e.g. by us-
ing type casts or reflection. Examples for such extensible visitor design pattern
variations are Krishnamurthi, Felleisen and Friedman’s Extensible Visitors [106],
Zenger and Odersky’s Extensible Visitors with Defaults [214], and Palsberg and

3.3 Applications of Keris 95

module LANG1 refines LANG {
interface Expr1Visitor extends ExprVisitor {
void caseMult(Data left, Data right);

}
abstract class Visitor implements Expr1Visitor;
class Mult implements Data {
Data left, right;
Mult(Data l, Data r) { left = l; right = r; }
public void accept(Visitor v) { v.caseMult(left, right); }

}
class Eval extends Visitor implements Expr1Visitor,

EvalVisitor = super {
public void caseMult(Data left, Data right) { ... }

}
}

Listing 3.6: Extension of the Visitor implementation.

Jay’s Generic Visitors [157]. In C++ it is possible to use the template mechanism
to implement extensible visitors without type casts, but here, type checking is de-
ferred until link time. In languages with dependent object types, like e.g. Scala,
it is possible to implement extensible visitors safely, in a fashion similar to the
one presented here. But solutions in these languages require more effort and
technical knowledge due to more low-level language constructs (which can, on
the other side, also be used more flexibly).

3.3.3.2 Extensible Interpreters

The previous section explained how to use the Visitor pattern to separate data
from operations in an extensible fashion. We can solve the same problem in a
more object-oriented way, using the Interpreter design pattern. We will explain
how this pattern can be implemented in Keris such that both data and operations
are extensible.

Listing 3.7 defines two modules, INTERPRETER and LANG. INTERPRETER is a
small module which encapsulates a supertype Data for our various data repre-
sentations. Its interface lists all the operations which subtypes of Data have to
support. Module LANG defines concrete Data variants in form of the class fields
Num and Plus. The following module demonstrates how to deploy both compo-
nents.

module APP {
module INTERPRETER;
module LANG;
void exec(INTERPRETER.Data data) { System.out.print(data.eval()); }

}

96 Static Component Evolution with Extensible Modules

module INTERPRETER {
interface IData { int eval(); }
abstract class Data implements IData;

}
module LANG requires INTERPRETER {
import INTERPRETER.*;
interface INum {
INum(int x);

}
class Num extends Data implements IData, INum = {
int x;
Num(int x) { this.x = x; }
int eval() { return x; }

}
interface IPlus {
IPlus(Data l, Data r);

}
class Plus extends Data implements IData, IPlus = {
Data left, right;
Plus(Data l, Data r) { left = l; right = r; }
int eval() { return left.eval() + right.eval(); }

}
}

Listing 3.7: Extensible interpreter framework.

module INTERPRETER1 refines INTERPRETER {
interface IData1 extends IData { String asString(); }
abstract class Data implements IData1;

}
module LANG1 refines LANG requires INTERPRETER1 {
import INTERPRETER1.*;
class Num extends Data implements IData1, INum = super {
Num(int x) { super(x); }
String asString() {
return String.valueOf(x);

}
}
class Plus extends Data implements IData1, IPlus = super {
Plus(Data l, Data r) { super(l, r); }
String asString() {
return left.asString() + "+" + right.asString();

}
}

}

Listing 3.8: Language extension in the interpreter framework.

3.3 Applications of Keris 97

In Listing 3.8 we now extend the base type Data by refining module
INTERPRETER. In the new version INTERPRETER1, data variants are supposed to
implement an asString method in addition to the previously declared methods.
Obviously, the type system of Keris does not allow us to link the old LANG mod-
ule with this new version of module INTERPRETER, since in this module, subtypes
of Data do not implement the new interface IData1. Consequently, we have to
derive a new version of module LANG, called LANG1, in which all Data subtypes
provide a method asString, and implement interface IData1. We can also de-
velop new variants of class field Data modularly in separate modules, like MYLANG
in the following listing.

module MYLANG requires INTERPRETER1 {
import INTERPRETER1.*;
interface IMult { IMult(Data l, Data r); }
class Mult extends Data implements IData1, IMult = {
Data left, right;
Mult(Data l, Data r) { left = l; right = r; }
int eval() { return left.eval() * right.eval(); }
String asString() {
return left.asString() + "*" + right.asString();

}
}

}

A system which makes use of all the modules presented so far, can be derived by
refining APP and by including the newly developed modules. This example shows
that the extensible interpreter pattern supports the notion of independent extensi-
bility [194]; i.e. extensions can be developed independently but used jointly.

module APP1 refines APP {
module INTERPRETER1;
module LANG1;
module MYLANG;
void exec(INTERPRETER1.Data data) {
System.out.print(data.asString() + " = "); super.exec(data);

}
}

The presented technique roughly corresponds to the implementation scheme
presented by Findler and Flatt in [64]. The main difference is that Findler and
Flatt’s approach is untyped and would only work in a typed context, if the type
system is structural. A nominal type system requires at least dependent class
types to support the presented implementation technique.

98 Static Component Evolution with Extensible Modules

3.4 Implementation of Keris

This section discusses the implementation of the Keris programming language.
The Keris compiler translates Keris programs first to plain Java code, which is
then compiled to regular Java classfiles. These classfiles are annotated so that
the original type information does not get lost in the translation to Java. This
enables separate compilation. The translation from Keris to Java was designed
in a way such that

• reflective operations are not required (apart from type tests and type casts),

• structural or additive changes of a module’s source code do not endanger
binary compatibility of the generated code,

• generated code runs on every standard Java implementation without the
need to customize the runtime environment, e.g. by a specialized class load-
ing mechanism, and

• generated code is stand-alone and does not rely on a special runtime library
or other middleware.

These issues contribute to a robust and efficient implementation that facilitates
the development and the deployment of Keris programs. Furthermore, the com-
pilation model of Java gets preserved allowing existing software development
processes and tools for Java to be adopted for Keris.

3.4.1 Basic Modules

Module representation. The Keris compiler translates every module into a
regular Java class. Instances of such a class represent module instances. The
class constructor takes a parameter representing the deployment context in which
the module is going to be instantiated. From such a deployment context object, a
module instance can get access to all its required module instances.

We discuss the details of the Keris to Java translation using the following
example program. We are predominantly interested in the translation of module
M, which requires module N and aggregates an instance of module O.

module M requires N {
module O;
int n = 1;
int foo() {
return N.bar() + O::N.bar() + n;

}
}

module N {
int bar() {
return 0;

}
}
module O {
module N;

}

3.4 Implementation of Keris 99

1) Enclosing deployment
context

3) Local deployment
context

2) Required modules
and submodules

4) Initialization

5) Configuration

6) Initializer

7) Module members

class M {
 Object $context;
 M(Object context) { $context = context; }
 M self$0;
 N req$0;
 O sub$0;
 O M$O() { return $configure().sub$0; }
 O $create$O() { return new O($prop); }
 class $Propagator implements $M, $N, $O {
 M $M() { return self$0; }
 N $N() { return req$0; }
 O $O() { return sub$0; }
 }
 $Propagator $prop = new $Propagator();
 M $access() {
 if ($prop != null)
 synchronized (this) {
 if ($prop != null) {
 $configure(); $prop = null; $init();
 }
 }
 return this;
 }
 M $configure() {
 if (self$0 == null)
 synchronized (this) {
 if (self$0 == null) {
 self$0 = this;
 req$0 = (($N)$context).$N();
 sub$0 = $create$O();
 }
 }
 return this;
 }
 void $init() { n = 1; }
 int n;
 int foo() {
 return req$0.$access().bar() + sub$0.O$N().$access().bar() + n;
 }
}
interface $M {
 M $M();
}

Figure 3.5: Generated Java code for module M.

100 Static Component Evolution with Extensible Modules

The Java program generated by the Keris compiler can be found in Figure 3.5.
Details like access modifiers are left out for simplicity. Figure 3.5 divides the
generated code into seven parts. Part 1 shows the constructor and the instance
variable which refers to the deployment context of this module instance. Part 2
declares for every required module and for every submodule a local reference.
These local references are used whenever the corresponding module instance
is accessed within the module. In addition to these private module reference
variables, the Keris compiler generates two more methods for every submodule:
A factory method for instantiating a submodule and a public access method for
querying a submodule instance from a client. The access method is used to im-
plement the :: operator (see method foo in Part 7 of Figure 3.5 for an exam-
ple). Note that access methods cannot simply return the corresponding module
instance, because this instance might not have been created yet. This is because
references to cooperating module instances are initialized lazily. More precisely,
constructors of module classes simply store the deployment context in a local vari-
able, they never configure module instances immediately. Therefore, all access
methods first have to ensure that submodules are already created before the cor-
responding submodule reference is returned. This check is performed by calling
method $configure. Parts 3–6 of the translated module are dealing with module
configuration and initialization.

Initialization protocol. Keris modules are instantiated and linked into an ex-
isting module context in several stages:

1. Instantiation: For the instantiation of the module, the deployment context
object is passed to the module constructor which stores this object in a local
variable $context. The rest of the newly created module instance remains
temporarily uninitialized.

2. Configuration: When a submodule gets accessed for the first time, the mod-
ule will be configured. This means that all references to external modules
are resolved and submodules get instantiated.

3. Initialization: When a module member, i.e. a function, a variable, or a class
constructor, is accessed for the first time, the module will get initialized
by executing all its initializers. Before running the module initializers, the
system has to make sure that the module is already properly configured.

Module instantiation has to be separated from module configuration, because
modules may depend recursively on each other so that at module instantiation
time other cooperating modules are not necessarily already instantiated them-
selves. For a similar reason, it is not a good idea to combine the configuration
and initialization of modules. This increases the dependencies between modules
artificially, so that the initialization of modules with mutually dependent module
initializers can fail, while a strict separation between the two phases would allow
the initializers to run conflict free. Here is a program which illustrates this:

3.4 Implementation of Keris 101

module A {
module B;
Object x = B::C.foo();
String y = B.z;
Object bar() { return y; }

}

module B requires A {
module C;
String z = A.x.toString();

}
module C requires B {
Object foo() { return "keris"; }

}

First we assume that module configuration is always immediately preceded by
the module initialization. We look at the function call A.bar() where A is not
yet initialized. In this case, the function call will trigger the instantiation of sub-
module B followed by the execution of variable A.x’s initializer. This initializer
will first configure and initialize submodule B; i.e. it will instantiate submodule
C and execute B.z’s initializer A.x.toString(). Since A.x is not yet initialized
and therefore refers to default value null, the program will terminate with a
NullPointerException.

We now look at the way Keris handles the case. Here, the call B::C.foo()
does not immediately trigger the initialization of B. B gets only configured, i.e.
submodule C is instantiated, and the access to function foo induces the initializa-
tion of B’s submodule C. Therefore the initializer of variable A.x terminates and
returns the string "keris". It is now the access to variable B.z in the initializer of
variable A.y that triggers the initialization of module B. But this time, there will
be no abnormal program termination caused by a NullPointerException.

Note that the instantiation and linking protocol could be split up into even
more steps, for instance by initializing variables lazily. As the following exam-
ple will show, such a refinement of the instantiation protocol could even resolve
conflicts that still exist for some Keris programs.

module M {
module N;
Object x = N.y;
int bar() { return x; }

}

module N requires M {
Object y = new Object();
String z = M.x.toString();

}

In Keris, M.bar() forces module M to be configured and initialized. The ini-
tialization process of M will evaluate the initializer of M.x. This triggers the ini-
tialization of module N; i.e. first a new Object instance gets created and assigned
to N.y, and afterwards N.z’s initializer will be executed. This initializer refers
back to variable x of module M, which is not yet initialized. Consequently, a
NullPointerException will be thrown.

With a module initialization scheme where variables of modules are initial-
ized lazily, this NullPointerException could be avoided. Here, it would be the

102 Static Component Evolution with Extensible Modules

body of method M.bar that triggers the evaluation of M.x’s initializer. This in-
volves the initialization of N and subsequently, the evaluation of the value of
N.y. The method call M.bar() would then return the newly created object and
terminate without even executing the initializer of variable N.z (which caused
the NullPointerException originally).

Despite the second approach being more robust with respect to recursive de-
pendencies, it did not get adopted for Keris. Keris’ instantiation and linking pro-
tocol was chosen because it was relatively efficient to implement (in contrast to
lazy variable initialization) and more transparent and predictable for program-
mers. Furthermore, it corresponds to the dynamic loading and initialization
mechanism of classes in the Java virtual machine, which is, in general, well-
understood by Java programmers.

Configuration. During the module configuration phase, context dependencies
get resolved and submodules get instantiated. A module extracts the required
module instances from the deployment context which was stored in variable
$context. The deployment context is basically a mapping from module names
to module instances. Every module defines implicitly such a deployment context.
This context allows access to the required modules and all the submodules. For
every module, the Keris compiler generates a special class $Propagator which
implements a module’s deployment context in form of an AbstractFactory [74].
This class provides for every member module of the deployment context a “fac-
tory method” that returns the instance of the corresponding module in the given
context (it actually does not create it). In Figure 3.5 we can see that every module
instance has exactly one deployment context object stored in variable $prop.

From the code of Figure 3.5 we can also see that deployment contexts passed
into module instances are always of type java.lang.Object. In order to access
the factory methods of such an object, we use a trick which circumvents the use
of the reflection API. For every module M we also generate an interface $M which
has a single member, the factory method M $M(). Deployment contexts which
provide an instance for module M implement this interface. Therefore, for retriev-
ing an instance of module M, we simply have to cast the deployment context object
to interface type $M and call the appropriate factory method afterwards.9

The whole configuration stage is implemented by function $configure (see
Part 5 of Figure 3.5 on page 99). This function is synchronized so that concur-
rent programs do not possibly execute the stage twice.10 $configure makes use

9In a language with compound types [38, 216] it would be possible to describe the type
of the deployment context precisely, as opposed to our approach which always uses the type
java.lang.Object. For a module which requires other modules M1, ..., Mn, the context object
would be typed with the intersection of the types $M1, ..., $Mn. Consequently, it would not be nec-
essary to resort to type casts for retrieving the cooperating module instances from the deployment
context.

10The method is synchronized via the double-checked locking technique [178]. For the current
Java memory model, this technique is known to be unsafe if concurrent programs are compiled

3.4 Implementation of Keris 103

of the technique described in the previous paragraph for resolving context depen-
dencies. Submodules are instantiated simply by calling the appropriate factory
methods. These methods pass the local module context stored in variable $prop
to the various module constructors.

Initialization. A module gets initialized by executing the module initialization
blocks and variable initialization expressions defined by the programmer. This
phase is implemented by method $access (see Part 4 of Figure 3.5 on page 99).
It is again synchronized to guarantee that the module initializers are executed
exactly once, even in a concurrent system. First, method $access configures the
module if necessary. Then it runs method $init which contains the concrete
initialization code written by the programmer. For generating this method, the
Keris compiler has to collect all the initialization code scattered throughout a
module declaration.

3.4.2 Module Refinements and Specializations

Refinements. The previous section revealed how new modules are translated
to Java. We now focus on the extension of existing modules. Again we explain
this by looking at a concrete example program in which module M of Section 3.4.1
gets refined.

In the following program, module refinement MR extends module M by covari-
antly overriding submodule O, by adding a new submodule Q, and by extending
the context dependencies.

module MR refines M requires P {
module OR;
module Q;

}

module OR refines O requires Q, P {}
module P {}
module Q {}

Since our explanations regarding the translation from Keris to Java did not
cover extensibility yet, we will first complete the Java translation of module M pre-
sented in Figure 3.5 with code that handles extensibility, before turning towards
the translation of module refinement MR. This missing functionality is shown in
Figure 3.6. The code introduces a second $configure method which is parame-
terized with a configuration context. Similar to deployment contexts, configura-
tion contexts offer methods for retrieving module instances. This time, simply all
required modules and all submodule instances are extracted from the configura-
tion context; i.e. we assume that the caller of the $configure method created all
submodule instances already externally.

with highly optimizing compilers or code is executed on a shared-memory multi-processor [16].
Our implementation relies on an execution platform that conforms to a proposal [127, 119] that
revises Java’s memory model so that the double-checked locking idiom provides an efficient solu-
tion for implementing lazy initialization.

104 Static Component Evolution with Extensible Modules

class M {
 ...
 abstract class $Configurator {
 abstract M $M();
 abstract N $N();
 abstract O $O();
 }
 void $configure($Configurator $c) {
 self$0 = this;
 req$0 = $c.$N();
 sub$0 = $c.$O();
 }
 ...
}

8) Configurator type

9) Configuration by extension

Figure 3.6: Functionality missing in Figure 3.5.

The second $configure method is called in extensions of M. Figure 3.7
shows such a case. Here we can see that even though refinements inherit sub-
modules and requirements, they have an own set of local module references,
named subn, reqn, and self$0. During the configuration of such a refined
module, these local instances get initialized in method $configure() by extract-
ing the required module instances from the deployment context and by call-
ing the factory methods for creating the submodule instances. Afterwards the
$configure($Configurator c) method of the superclass is called with a configu-
rator object that enables the superclass to initialize its own module references by
referring back to the subclass which has already all local module references ini-
tialized. So, configuration contexts ($Configurator objects) are used to link the
various layers (refinements, specializations) of a module while deployment con-
texts ($Propagator objects) are used to link submodules with their host module.
Figure 3.8 illustrates the different usage of propagator and configurator objects
to link submodules and to configure parent modules. In this diagram, arrows
without labels depict data flow.

Specializations. We will now focus on the implementation of module special-
izations. Here is again an example which extends the code from Section 3.4.1:

module MS specializes M requires NS as N, P {
module OS as O;
module O;

}
module NS specializes N {}
module OS specializes O requires O {}

The example was chosen to exhibit specific difficulties in the translation of mod-
ule specializations with rewiring instructions. Module MS for instance specializes

3.4 Implementation of Keris 105

class MR extends M {
 MR(Object $context) { super($context); }
 MR self$0; P req$0; N req$1;
 OR sub$0; Q sub$1;
 O MR$O() { return $configure().sub$0; }
 OR MR$OR() { return $configure().sub$0; }
 Q MR$Q() { return $configure().sub$1; }
 OR $create$OR() { return new OR($prop); }
 Q $create$Q() { return new Q($prop); }
 class $Propagator implements $MR,$P,$N,$OR,$Q {
 M $M() { return self$0; }
 MR $MR() { return self$0; }
 P $P() { return req$0; }
 N $N() { return req$1; }
 O $O() { return sub$0; }
 OR $OR() { return sub$0; }
 Q $Q() { return sub$1; }
 }
 $Propagator $prop = new $Propagator();
 MR $access() { ... }
 MR $configure() {
 if (self$0 == null) ...
 req$0 = (($P)$context).$P(); req$1 = (($N)$context).$N();
 sub$0 = $create$OR(); sub$1 = $create$Q();
 self$0 = this; super.$configure(new $Configurator());
 ...
 return this;
 }
 class $Configurator extends M.$Configurator
 implements $MR,$P,$N,$OR,$Q {
 M $M() { return self$0; }
 MR $MR() { return self$0; }
 N $N() { return req$1; }
 O $O() { return sub$0; }
 P $P() { return req$0; }
 OR $OR() { return sub$0; }
 Q $Q() { return sub$1; }
 }
 void $configure($Configurator $c) {
 req$0 = $c.$P(); req$1 = $c.$N();
 sub$0 = $c.$OR(); sub$1 = $c.$Q();
 self$0 = this; super.$configure(new $Configurator());
 }
 void $init() { super.$init(); }
}

1) Deployment context

2) Required modules
and submodules

3) Local deployment
context

4) Initialization

5) Configuration as
new module

6) Initializer

8+9) Configuration
by extension

Figure 3.7: Generated Java code for module refinement MR.

106 Static Component Evolution with Extensible Modules

MR

Deploy-
ment

Context

Configuration
Context

$Propagator $Configurator

OR

DC

CC

M

Deploy-
ment

Context

Configuration
Context

$Propagator $Configurator

O

DC

CC

refines

Figure 3.8: Use of propagators and configurators in module refinements and specializa-
tions.

the existing submodule O to OS, and at the same time introduces a new submod-
ule O. This new O is distinct from the former O in parent module M which is now
implemented by the specialization OS. The definition of OS even requires this new
introduction of O in the context of module MS, since it specializes O and simultane-
ously requires an external O module from the deployment context.

Figure 3.9 shows the Java code generated for module MS. It is very similar to
the code for module refinement MR. The main difference is that the $Propagator
and the $Configurator class generally do not match anymore for specializations.
In refinements on the other hand, there is theoretically no need to distinguish
the two. The two arrows in Figure 3.9 indicate where submodules are differently
configured than the parent module. While new submodules referring to mod-
ule O are linked to the newly introduced module O (variable sub$1), the variable
representing O in the parent module gets linked to the specialized submodule in-
stance OS (variable sub$0). Note that the type system ensures that submodules
introduced in the parent module of MS that refer to O have to be specialized as
well so that they now refer to OS. Otherwise we would have the situation that
an old submodule that requires an O instance is actually linked to an instance of
module OS, which is not a legal representative of O.

3.4 Implementation of Keris 107

1) Deployment context

2) Required modules
and submodules

3) Local deployment
context

4) Initialization

5) Configuration as
new module

6) Initializer

8+9) Configuration
by extension

class MS extends M {
 MS(Object $context) { super($context); }
 MS self$0; NS req$0; P req$1;
 OS sub$0; O sub$1;
 OS MS$OS() { return $configure().sub$0; }
 O MS$O() { return $configure().sub$1; }
 OS $create$OS() { return new OS($prop); }
 O $create$O() { return new O($prop); }
 class $Propagator implements $MS,$NS,$P,$OS,$O {
 MS $MS() { return self$0; }
 NS $NS() { return req$0; }
 P $P() { return req$1; }
 OS $OS() { return sub$0; }
 O $O() { return sub$1; }
 }
 $Propagator $prop = new $Propagator();
 MS $access() { ... }
 MS $configure() {
 ... self$0 = this;
 req$0 = (($NS)$encl).$NS();
 req$1 = (($P)$encl).$P();
 sub$0 = $create$OS();
 sub$1 = $create$O();
 super.$configure(new $Configurator()); ...
 }
 class $Configurator extends M.$Configurator
 implements $MS,$NS,$P,$OS,$O {
 MS $MS() { return self$0; }
 M $M() { return self$0; }
 N $N() { return req$0; }
 O $O() { return sub$0; }
 NS $NS() { return req$0; }
 P $P() { return req$1; }
 OS $OS() { return sub$0; }
 }
 void $configure($Configurator $c) {
 self$0 = this;
 req$0 = $c.$NS();
 req$1 = $c.$P();
 sub$0 = $c.$OS();
 sub$1 = $c.$O();
 super.$configure(new $Configurator());
 }
 void $init() { super.$init(); }
}

Figure 3.9: Generated Java code for module specialization MS.

108 Static Component Evolution with Extensible Modules

Discussion. The implementation scheme presented so far relies on the follow-
ing principles:

• Classes implement modules, objects represent module instances.

• Modules come to life in three stages: they first are instantiated, then they
are configured, and finally they are initialized. Module configuration refers
to the stage where context dependencies are resolved. Module initialization
refers to the execution of the user-defined module initializers.

• Module contexts (i.e. sets of module instances) are used to configure mod-
ules. Module contexts are implemented with AbstractFactory-like classes
that provide access methods to all available module instances.

• Module instances configure itself by querying all required module in-
stances from the deployment context (a special module context that con-
tains all modules available in the host module). Every module defines
implicitly a deployment context which is implemented by the inner class
$Propagator.

• Every module layer (the different refinement and specialization deltas)
configures itself by querying all required and contained modules from a
configuration context (a special module context created by the direct sub-
class). In the presented implementation scheme, configuration contexts
are implemented by the inner class $Configurator.

• Module implementations define private variables for referring to required
modules and for storing submodule references. Submodule references can
be accessed from outside using special accessor methods.

The most characterizing feature of this implementation scheme is probably the
extensive use of explicit context objects for linking modules. This approach was
chosen for the following reasons:

• It enables modules and/or module layers to configure itself by extracting
all context information from a single context object. This is necessary to
hide all internal module references.

• By hiding internal module references to external modules, a module does
not have to trust the outside world to configure it correctly. A module en-
capsulates its own trusted logic for linking itself into a given context.

• Since a module encapsulates its own linking procedure, structural changes
to a module, like additional requirements or submodules (which might
change module internal references), do not necessarily require clients of
this module to be recompiled. Therefore, context objects help to decouple
modules from their concrete deployment location and promote improved
reusability of module binaries by making modules more robust with respect
to binary compatibility.

3.4 Implementation of Keris 109

• Furthermore, context objects allow an intuitive implementation of Keris’
module rewiring functionality of module specializations.

Of course, there are many design alternatives. For instance it would be
straightforward to avoid the creation of explicit context classes for all modules.
One could use a generic representation, e.g. in form of a hash table, to repre-
sent module contexts.11 The advantage of this solution is a reduced number of
generated classes. On the other hand, the costs for initializing such hash tables
would be linear to the number of contained modules and module versions. Fur-
thermore, this approach gives up any form of type safety. The main drawback of
explicit context classes like $Propagator and $Configurator is the class loading
overhead imposed by the current implementation of Java. Otherwise, context
objects are created in constant time since they do not encapsulate any state like
references to the contained module instances. Access to the module instances is
gained exclusively via the outer class.

3.4.3 Module Access

Top-level module access. A fully configured module has internal references,
represented by the variables sub$n, and req$n, to all directly accessible cooper-
ating modules (i.e. required external modules and submodules). Whenever a
member of such a module is accessed, we cannot simply take the module object
as the receiver for the member access. Due to lazy module initialization, we first
have to make sure that the module is already initialized before the member is
actually accessed. In the presented framework, this can be achieved by calling
the $access method of the corresponding module instance. Here is an example
which shows a fragment of a Keris program and the corresponding Java code.

Keris Java

module M requires N {
void bar(int y) {
N.foo(N.x + y);

}
}

class M {
N req$0; ...
void bar(int y) {
req$0.$access().foo(
req$0.$access().x + y);

}
...

}

As this example suggests, the Keris compiler prefixes every access to a member
of another module with a call to method $access. Consequently, every function
invocation consists at runtime actually of two virtual method calls. These double

11The implementation of the official Java compiler JavaC from Sun Microsystems uses a
generic context representation for linking the various compiler components. JavaC basically de-
ploys a generic variation of the Context/Component design pattern presented in Section 4.2.1.

110 Static Component Evolution with Extensible Modules

dispatch costs are a price we have to pay for lazy module configuration and ini-
tialization. In one of the next paragraphs we present an optimization technique
which can help to reduce the number of $access calls significantly and therefore
contribute to more compact and efficient code.

Submodule access. Submodules cannot directly be accessed from clients of
the host module. The submodule access methods introduced in Section 3.4.1 on
page 98 have to be used to retrieve submodule instances from a module. Here is
some code which demonstrates this procedure:

Keris Java

module M requires N {
void bar(int y) {
N::O.foo(
N::O::P.x + y);

}
}

class M {
N req$0; ...
public void bar(int y) {
req$0.N$O().$access().baz(
req$0.N$O().O$P().$access().x+y);

} ...
}

It is not necessary to explicitly call the $configure method before applying a sub-
module access method. The access method itself ensures that the host module is
fully configured before access to a submodule instance is granted. Nevertheless,
there has to be an application of method $access before a member of a submod-
ule is accessed.

We did not explain yet why names of submodule access methods are com-
posed out of the host module name and the submodule name. It would be simpler
to drop the host module name and just use the submodule name alone. Unfortu-
nately, module specializations do not allow such a simple naming scheme. Here,
it is possible that a module specialization rewires a submodule and introduces a
new instance of the former submodule, similar to the example in 3.4.2. In this
case, existing code has to refer to the specialized version. Exactly this is not possi-
ble with simple names, because here, the access method of the newly introduced
submodule would override the former access method. Our naming scheme does
not permit overriding and thus emulates non-virtual method calls that natively
do not exist in Java.

Optimizations. For some cases, the language allows a more efficient implemen-
tation scheme than the general one presented before. For imported submodules,
the compiler keeps a direct reference to the imported module in a variable. It is
therefore not necessary anymore to follow the full access path by subsequently
calling all the submodule access methods just for accessing this module instance.
It would also be possible to use this technique for caching other submodule in-
stances that are frequently referred to within a module, but which are not explic-
itly imported.

3.4 Implementation of Keris 111

The Keris compiler also optimizes access to synchronized submodules. Such
modules are initialized automatically by the initializer of the host module. Here,
one can generally drop all calls to $access.

As the benchmarks of Section 3.5 and Chapter 4 will show, dropping unnec-
essary $access calls can sometimes speed up the execution of a Keris programs
significantly. The Keris compiler therefore implements a method local optimiza-
tion which tries to safely eliminate as many calls to $access as possible. This op-
timization is based on a control-flow analysis that statically determines for every
module member access whether the module is already initialized and therefore
a call to $access can be dropped without risking the module to be uninitialized.
Being a conservative optimization that approximates the dynamic behavior stati-
cally, it is, of course, not possible to detect all redundant $access calls.

Experience with the compilation of the extensible Java compiler JaCo2 shows
that program transformations sometimes help to reduce the number of $access
calls further. Therefore, the backend of the Keris compiler implements a few
special cases, where programs are transformed into equivalent programs which
require less $access calls. The following example illustrates the principle.

Keris Java

module M requires N {
void foo(int n) {
while (n > 0) {
N.bar(N.baz() + n);
n--;

}
}

}

class M {
N req$0;
...
public void foo(int n) {
if (n > 0) {
req$0.$access().bar(
req$0.baz() + n);

n--;
while (n > 0) {
req$0.bar(req$0.baz() + n);
n--;

}
}

}
}

A naive translation of method foo yields a loop in which the second access to
module N (the invocation N.baz()) does not require a call to $access. Neverthe-
less, at runtime, the number of $access calls is linear to n. As the right listing
above shows, the Keris compiler performs a loop hoisting optimization. It first
unrolls the loop a single time and is then able to eliminate both $access calls in
the actual loop. Therefore, we have in all cases totally not more than a single call
to $access. The compiler performs such a loop unrolling only, if the code benefits
from it; i.e. if at least one $access call can be eliminated within the loop.

Section 3.5 presents some micro-benchmarks which explain the benefits of
the optimizations outlined in this paragraph. This section also benchmarks the

112 Static Component Evolution with Extensible Modules

implementation of the Keris compiler to investigate the effects of the implemen-
tation scheme and the proposed optimizations in a real-world application.

3.4.4 Classes and Types

Every interface contained in a module is translated just like a static nested inter-
face definition in Java. Similarly, classes defined in modules are translated like
inner classes in Java. The only difference is that for supporting type tests and
type casts, the Keris compiler has to add additional methods to interfaces and
classes. This will be explained in the next section and is ignored for now.

Class field translation. The translation of class fields is more complicated and
explained using the following example.

module M requires N {
interface I {}
class C extends N::O.D implements I, N.J = {
void foo(C c) { N.bar(new C(), c); }

}
}
module N {
module O;
interface J { J(); }
void bar(O.D d, O.D e) {}

}
module O requires N {
class Impl implements N.J {}
class D implements N.J = Impl;

}

For the beginning we restrict our attention only to class field M.C. This class field
extends another class field and implements a new interface M.I. The class field
is implemented with an anonymous class that inherits from java.lang.Object.
Here is the relevant code which is generated for the class field by the Keris com-
piler:

class M {
static interface I {}
interface C extends I, N.J {}
Object new$C() { return new C$Impl(); }
class C$Impl extends Object implements M.C, O.D {
void foo(Object c) {
req$0.$access().bar(M.this.new$C(), c);

}
}
...

}

3.4 Implementation of Keris 113

Every class field M.C generally expands to three different kind of definitions:

• An interface M.C which represents the type defined by this class field and
which extends all the interfaces M.C is implementing,

• Constructors new$C for creating new class field implementations, and

• An implementation of the class field in form of class M.C$Impl. This class
implements M.C and defines all the concrete class members.

For instantiating a class field M.C, the appropriate constructor method M.new$C
gets called. This method returns an instance of the class field implementation
M.C$Impl.

Type translation. In the previous program, it is the interface M.C which rep-
resents the class field with the same name in the original Keris program. The
implementation class M.C$Impl implements this interface as well as all the inter-
faces of dependent class fields. Otherwise the interface type M.C does not appear
in the generated code.

Class field types are translated by erasure; i.e. any occurrence of a class field
type is replaced by the type java.lang.Object. The disadvantage of this ap-
proach is that whenever a member of a class field gets accessed, the object first
needs to be cast to the right interface type for gaining access to its member. A
probably more serious disadvantage is that this approach restricts overloading
and complicates overriding. It is, for instance, not possible anymore to have two
overloaded methods where one has a class field parameter type and the parame-
ter type of the other one is simply java.lang.Object. In the translation to Java,
the method signatures will get identical. Therefore, the type checker of the Keris
compiler has to verify that two overloaded method signatures never overlap in
the erased counterparts and that overloaded methods do not override methods
in the superclass accidentally. Such checks are required by all Java-based pro-
gramming languages that erase types, e.g. like GJ [32].

Instead of erasing types always to java.lang.Object, it would also be possi-
ble to choose a representative interface type instead; in the example above this
could be interface M.C or also M.I. This avoids for some cases type casts when
accessing object members. Furthermore, the restrictions concerning overload-
ing and overriding are slightly less severe. On the other hand, the overloading
restrictions get more complicated and less transparent to users, so that it gets
more hard to understand what the compiler is doing. Another technical disadvan-
tage of this approach is that it requires the introduction of bridge methods [32].
Bridge methods introduce additional indirections in method calls artificially and
therefore have an effect on runtime efficiency. Furthermore, as the experience
with the implementation of Scala and GJ shows, it is quite difficult to generate
bridge methods correctly in languages with multiple (interface) inheritance and
type refinements.

114 Static Component Evolution with Extensible Modules

Class field extension. Whenever a class field is overridden in a module refine-
ment or specialization, a new interface for representing the class field is created.
This interface extends the previous one. Furthermore, all constructor methods
are overridden with new versions that return instances of a possibly new class
field implementation.

3.4.5 Type Tests and Casts

Due to the dependent type system of Keris, we cannot rely on Java’s native sup-
port for runtime type tests and casts. The Keris compiler has to explicitly gen-
erate methods that enable runtime type tests and casts that conform to the type
system of Keris. The Keris compiler is doing this in a way that neither requires
support from a library nor from a specific runtime system. All data and type
checking logic is generated.

Runtime representation of dependent types. We proceed by incrementally
showing all the relevant Java code, generated for the types defined in module M
of the previous section. Note that we have to generate supporting code not only
for class fields. For soundness reasons, all type definitions, including interface
definitions, are subject to the dependent typing rules of Keris. The code support-
ing the runtime type representation for interface M.I can be found in Listing 3.9.

With Keris’ strictly nominal type system it is possible to represent a type at
runtime with a unique object; we call these objects type representatives. Since
we are only interested in the identity of such type representatives, we simply use
instances of class java.lang.Object. For interface M.I, the type representative is
stored in variable type$I.

Every class defined in a module provides a get$Type method which returns
the corresponding type representative. Interfaces have abstract get$Type mem-
bers.

For every type defined in a module we create a set whose elements will be
the type representatives of all known subtypes. In the code above, this set is
called subclasses$I. Furthermore, there is a function setupType$Iwhich enters
a given type representative into the subclass set of M.I and all supertypes of M.I
(if M.Iwould extend other interfaces). The subclass table of type M.I is set up dur-
ing the configuration of the host module. Subclasses in other modules enter their
type representatives at the time they get configured. Therefore, subclass tables
are growing by the time with more and more modules getting instantiated and
configured. For our case this means that whenever a module is configured which
contains a class that implements interface M.I, this class’ type representative will
be entered in set M.subclasses$I.

Type tests and casts. With this infrastructure it is quite easy to define methods
that perform type tests and casts conforming to the static type system of Keris.

3.4 Implementation of Keris 115

class M {
static interface I {
Object get$Type();

}
Object type$I = new Object();
Set subclasses$I = new HashSet();
boolean instanceof$I(Object $c) {
return $c instanceof I &&

$configure().subclasses$I.contains(((I)$c).get$Type());
}
Object cast$I(Object $c) {
if ($c == null || instanceof$I($c))
return $c;

else
throw new ClassCastException();

}
void setupType$I(Object $c) {
$configure().subclasses$I.add($c);

}
M $configure() {
... self$0 = this;

req$0 = (($N)$context).$N();
setupType$I(type$I);
setupType$C(type$C); ...

}
...

}

Listing 3.9: Runtime type support for class fields.

Method M.instanceof$I implements a type test for M.I. It first deploys Java’s
native instanceof operation, then it retrieves the type representative and checks
if it is contained in the subclass set. If this is not the case, the type test fails.
Type casts handle null references specially, otherwise they make use of the type
test method to find out, if a cast is safe. For safe casts they simply return the
object, otherwise a ClassCastException is thrown. So type cast methods like
M.cast$I simply check if a cast is safe, they actually do not perform a real type
cast themselves. Here is a translation scheme for converting source level type
casts and type tests to Java:

Keris Java

... x instanceof M::N.C ...

... (M::N.C)x ...
... sub$0.M$N().instanceof$C(x) ...
... sub$0.M$N().cast$C(x) ...

The compilation scheme of the runtime typing infrastructure for class fields
is identical. Here is the relevant code generated for class field M.C:

116 Static Component Evolution with Extensible Modules

class M {
Object type$C = new Object();
Set subclasses$C = new HashSet();
boolean instanceof$C(Object $c) {
return $c instanceof C &&

$configure().subclasses$C.contains(((C)$c).get$Type());
}
Object cast$C(Object $c) {
if ($c == null || instanceof$C($c)) return $c;
else throw new java.lang.ClassCastException();

}
void setupType$C(Object $c) {
$configure().subclasses$C.add($c);
this.setupType$I($c);
req$0.setupType$J($c);
req$0.N$O().setupType$D($c);

}
class C$Impl extends Object implements M.C, O.D {
Object get$Type() { return type$C; }
...

}
...

}

The biggest difference can be found in method M.setupType$C. Since M.C is a
subtype of M.I, N.J, and N::O.D, this method has to enter the type representative
of M.C into the subclass sets of these three types.

One might wonder why the implementation of Keris relies on subclass sets
instead of superclass sets. Superclass sets are, for instance, used by some im-
plementations of the Java virtual machine. Their advantage is that the sets are
known in advance and are not changing during runtime. In Keris though, super-
class sets would complicate code generation significantly. For an implementation
based on superclass sets, it would not be possible anymore to encapsulate all dy-
namic type test logic in a single method. The logic would have to be partially
inlined whenever a type cast or type test is required.

Imagine compiling an expression of the form obj instanceof M.C. In a solu-
tion based on superclass sets, obj would provide a method isInstanceOf which
takes a type representative and returns true, if this type representative is in the
corresponding superclass set of obj. Since obj could refer to null or to an object
of a plain Java class (which does not have the isInstanceOf method) it would
be necessary to handle such special cases manually before it is actually possible
to call the isInstanceOf method. Due to these complications, subclass sets were
considered to allow for the more elegant solution.

Exception handling. Dynamic type tests that reflect the static type system are
also required for doing exception handling properly. Here, the mechanism pro-
vided by the Java virtual machine cannot be used directly; it can only be used as

3.4 Implementation of Keris 117

an approximation. In the current implementation of Keris, exception handling
does not use the type tests generated by the Keris compiler. Thus, exception han-
dling is currently statically unsafe.

Objective. The aim of the presented compilation scheme for dynamic type tests
and casts is to implement type tests and casts as efficient as possible. Since a type
test basically consists of a native instanceof call followed by a lookup in a hash
set, our approach allows, in the average, type tests in constant time.

Another concern in the design of the compilation scheme was extensibility.
Since class fields can be overridden such that they implement more interfaces,
it is a requirement that subtype tests can be accommodated non-invasively and
modularly. In the presented framework, this can be achieved by overriding the
setupType$Xmethods which basically implement the subtype relationships of an
interface, class, or class field.

Restrictions. Unfortunately, array types cannot be handled properly by the pre-
sented compilation scheme. Here, the compiler does not have the possibility to
attach additional runtime type information to the corresponding array objects.
The only possibility to store runtime type information for arrays is to maintain a
global weak hash table which maps all created arrays to their proper element type.
While this approach would allow to implement reliable type casts and type tests
for arrays in a straightforward way, it’s usage to implement safe array store oper-
ations seems to be unrealistic.12 Here, every single store operation would have
to be preceeded by a slow, table-based type test. Support for handling runtime
types of arrays is currently not implemented in the Keris compiler.

3.4.6 Reflection

The implementation of Keris provides functionality for inspecting the configu-
ration of modules at runtime and for re-linking module instances dynamically.
These reflective features are available to the programmer in form of libraries.
The compiler does not generate supporting code for a specific library, allowing
to write several reflection APIs based on different module interconnection prin-
ciples. We first present the compiler support and then briefly discuss the imple-
mentation of a reflection library for Keris.

3.4.6.1 Compiler Support

We use the following module declaration to illustrate what functionality is gen-
erated by the Keris compiler to support reflection. The code generated for this
module can be found in Listing 3.10.

12Since Java supports covariant array subtyping, which is known to be unsound, it is necessary
to check dynamically that the objects that are stored in an array are compatible to this array.

118 Static Component Evolution with Extensible Modules

class M {
static final String[] $requires = {"N"};
N req$0;
synchronized HashMap $requires() {
HashMap $c = new HashMap();
$c.put("N", req$0);
return $c;

}
synchronized void update$requirements(HashMap $c) {
req$0 = (N)$c.get("N");

}
static final String[] $contains = {"O", "P"};
O sub$0;
P sub$1;
synchronized HashMap $contains() {
HashMap $c = new HashMap();
$c.put("O", sub$0);
$c.put("P", sub$1);
return $c;

}
synchronized void update$submodules(HashMap $c) {
sub$0 = (O)$c.get("O");
sub$1 = (P)$c.get("P");

}
Object asObject() { return this; }
...

}

Listing 3.10: Compiler support for reflection.

module M requires N {
module O;
module P;

}

For supporting the analysis of the static structure of modules, the compiler gen-
erates two static class fields $requires and $contains for every module. These
fields contain the names of all required modules and all submodules.

There are virtual methods of the same name that can be used to retrieve the
dynamic configuration of a given module instance. Such configurations are sim-
ply hash tables that map module names to module instances. To allow dynamic
modifications of module configurations, the compiler generates two methods
$update$requirements and $update$submodules. The first updates all local ref-
erences to external modules, the latter updates references to submodules.

In the reflective system, module instances are treated like regular objects.
Since Keris does not allow programmers to pass module instances around as reg-
ular object values, every module provides a function asObject which returns the

3.4 Implementation of Keris 119

public final class Module {
// Is this a module interface?
boolean isInterface();
// Is this a module refinement?
boolean isRefinement();
// Is this a module specialization?
boolean isSpecialization();
// Returns the fully qualified module name.
String getName();
// Returns the modifier set.
int getModifiers();
// Returns the parent module.
Module getParent();
// Returns an array of all parent modules.
Module[] getPreviousVersions();
// Returns all directly implemented interfaces.
Module[] getInterfaces();
// Returns the package in which this module is defined.
Package getPackage();
// Returns all required modules.
Module[] getRequired();
// Returns all submodules.
Module[] getSubmodules();
// Checks if the given module is required by this module.
boolean isRequired(Module mod);
// Checks if the given module is a submodule of this module.
boolean isSubmodule(Module mod);
// Is this module a refinement of the given module?
boolean refinementOf(Module that);
// Is this module a specialization of the given module?
boolean specializationOf(Module that);
// Does this module "overlap" with the given module?
boolean differentFrom(Module that);
// Return the corresponding java.lang.Class object.
Class asClass();

}

Listing 3.11: Class keris.reflect.Module (Part 1: Reflective module representation).

module instance as an object with erased type. With the help of a reflection API
it is then possible to introspect the module instance or to change its internal state
or its configuration.

3.4.6.2 Library Support

We now present a reflection API that is based on the notion of module contexts.
The library uses functionality of the standard Java reflection library to access the
generated methods illustrated in Listing 3.10.

The library basically consists of two classes: the class Module and the class
Context. Both are written in plain Java so that the library can also be used to
integrate Keris components into Java programs.

120 Static Component Evolution with Extensible Modules

public final class Module {
// Is this a module instance?
static boolean isImpl(Object impl);
// Configures the module instance by resolving context dependencies and by
// creating submodule instances.
static void configure(Object impl);
// Initializes the given module instance by executing its module initializers.
static void init(Object impl);
// Invokes the given module instances main method with the given arguments.
static void invoke(Object impl, String[] args);
// Returns the configuration of a given module instance as a module context.
static Context getContext(Object impl);
// Reconfigures a given module implementation with a given module context.
static void setContext(Object impl, Context context);
// Propagate the context of a module to all submodules.
static void propagate(Object impl);
// Reconfigures the given module instance and propagates the new setting to
// all submodules. This method can be used to hot swap submodules.
static void propagateContext(Object impl, Context context);
// Returns a module representation for a module of the given name.
static Module forName(String moduleName);
// Returns a module representation for a module specified by a Class instance.
static Module forClass(Class clazz);
// Returns a module representation corresponding to the given module instance.
static Module forImpl(Object o);

}

Listing 3.12: Class keris.reflect.Module (Part2: Creating module representations and
handling module instances).

Module class. Instances of class keris.reflect.Module represent modules
and module interfaces in a running Keris application similar to instances of class
java.lang.Class which represent regular Java classes.

Like java.lang.Class, class Module has no public constructors. Unlike the in-
stances of class java.lang.Class, Module instances do not get automatically cre-
ated by the Keris runtime system. Keris strongly separates the reflective model
from the runtime system, so that it is possible to use several reflective models
simultaneously, side by side. Meta-module representations in form of Module
instances get created explicitly, with the help of three static methods: forName,
forClass, and forImpl. See Listing 3.12 for details.

There are several methods for retrieving information about the static struc-
ture of a module. In particular, it is possible to relate different modules; e.g.
there are methods that check if a module is a specialization or a refinement of
another module, or if a module is required or aggregated by another module. An
overview over the functionality is presented in Figure 3.11.

In addition, functionality for querying and modifying dynamic aspects of con-
crete module instances is available (see Listing 3.12). The library enforces the
execution of the various module initialization stages (configuration, initializa-

3.4 Implementation of Keris 121

tion). It allows programmers to retrieve the current runtime configuration of
an already initialized module instance. The runtime configuration of a module
instance is expressed in terms of a Context object which maps Module objects to
concrete module instances. Method getContext can be used to retrieve the mod-
ule context implicitly defined by a Keris module instance. Such implicitly de-
fined contexts contain all the required module instances and all the submodule
instances. After retrieving such a context, it can be modified, e.g. by replacing an
existing module instance with another compatible one, and it can be written back
to the module instance with the help of method setContext. A call to method
propagate will then re-link the whole module instance including all its submod-
ules, so that all module instances now consistently refer to module instances of
the new context.

Hot swapping. The procedure described in the previous paragraph can be used
to hot swap, i.e. dynamically replace, module instances in Keris. One has to keep
in mind though that hot swapping modules in the described fashion only guaran-
tees the structural integrity of the system: If hot swapping succeeds, the system
is still properly linked (all context dependencies are resolved), and all modules
referring to the old module instance now refer to the new instance. If, at the time
of the hot swap, functions of the old module are being executed, this execution of
old code will be continued even after the hot swap was finished. Such old mod-
ules refer to other old modules so that most inconsistencies are avoided which
could arise if new and old code would be mixed arbitrarily.13 Also existing ob-
jects created by old modules still refer to the “old world” for consistency reasons.
When old objects are processed by new functions, such functions may fail with an
exception, if the old object does not support a newly introduced interface. There-
fore, new versions of modules can only be hot swapped safely with old versions
if interfaces of class fields are kept unchanged, or if all new functions handle
old objects specially. Therefore, the presented mechanism only works properly
if hot swapping is anticipated in the development of new versions. Like Keris,
most platforms with explicit support for hot swapping, e.g. the Erlang runtime
environment [14], require the anticipation of hot swaps and a manual synchro-
nization of the actual hot swap action.

The use of module contexts for linking allows one to hot swap several modules
at the same time. This feature is mainly required when recursively dependent
modules have to be upgraded. Such an upgrade can only be effected consistently
if several modules are swapped simultaneously.

13The programmer has to synchronize a hot swap action manually, otherwise he risks that the
system is only partially swapped, allowing any mixing of old and new code. Old and new code
can also be mixed if recursively dependent modules are not hot swapped simultaneously. It this
the responsibility of the reflective library to rule out this case.

122 Static Component Evolution with Extensible Modules

public final class Context {
// Creates a new empty context.
Context();
// Returns an array of all modules provided by this context.
Module[] modules();
// For a given module, return its implementation in this context.
Object implementationOf(Module that);
// Check if the given module is implemented in this context.
boolean isImplemented(Module that);
// Is the given module compatible to the context so that any possible
// reference to this module is unambiguous?
boolean compatibleTo(Module that);
// Check if the given array of modules is compatible to the context so that
// any possible reference to any of these modules is unambiguous.
boolean compatibleTo(Module[] thatmod);
// Check if the given context is compatible to this context so that any
// possible reference to a members of the given context is unambiguous
// in this context.
boolean compatibleTo(Context that);
// Adds an implementation for a given module to this context.
void include(Module mod, Object impl);
// Adds all module implementations of a given context to this context.
void include(Context that);
// Links a new module instance for a given module into this context.
Object link(Module mod);
// Links a set of new module instances (that may recursively depend on
// each other) into this context.
Object[] link(Module[] mods);
// Updates an outdated version of a given module with an instance of the
// new version.
Object update(Module mod);
// Updates the outdated versions of the given modules with instances of
// the new module versions.
Object[] update(Module[] mods);

}

Listing 3.13: Class keris.reflect.Context.

Context class. Instances of the class Context represent linking contexts. Link-
ing contexts are sets of interconnected module instances. A Context object maps
Module objects to corresponding module instances.

It is possible to instantiate empty contexts and link in modules dynamically,
or one can use method getContext of class Module to retrieve the module context
implicitly defined by a Keris module instance.

Once a context object is created, it is possible to manipulate this context. The
library guarantees that this happens safely, allowing only well-formed context
objects to be created. A context object is well-formed, if all dependencies of the
context members are consistently resolved. If, for instance, a new module in-

3.4 Implementation of Keris 123

stance is to be added to a context using method link, then it needs to be checked
if the context can satisfy all the requirements of the new module instance. Oth-
erwise, method link will fail. Since recursively dependent modules have to be
included simultaneously, there is a second version of method link which adds
several new module instances at the same time.

Unlike method link, method include does not create a new module instance.
It rather takes an existing module instance, and integrates it into the context.
This method can yield contexts that are linked in ways that are not captured by
the static type system of Keris. Therefore, this method has to be used with cau-
tion. Finally there is a method update which makes it possible for programmers
to replace an existing module instance with a compatible version dynamically.

Besides the functionality for modifying context objects by introducing new
or updating old module instances, class Context also offers numerous functions
for relating two context objects. A summary of this functionality is given in List-
ing 3.13.

3.4.7 Module Execution

Executable modules. Modules without context dependencies are executable
if they define a main method with the signature void main(String[] args). To
turn such modules into executable Java classes, we have to generate a static main
method which instantiates the module and calls the corresponding main method
of the newly created module instance. The following code illustrates this.

Keris Java

module M {
void main(String[] args) {
System.out.println("Hi!");

}
}

class M {
M(Object context) { ... }
...
void $main(String[] args) {
System.out.println("Hi!");

}
static void main(String[] args) {
new M(null).$access().$main(args);

}
}

The problem with this solution is that we get a name clash between the generated
static main method and the hand-written non-static main method. The Keris
compiler resolves this clash by renaming the hand-written method to $main. In
fact, it consistently renames every function with name main to $main if it is de-
fined directly inside of a module or a module interface. This renaming does not
cause legacy problems, because modules and module interfaces do not exist in
Java; it is therefore not possible to introduce any incompatibilities.

124 Static Component Evolution with Extensible Modules

Monitoring module initialization. Modules are instantiated and initialized
lazily. As explained in Section 3.2.3, this can cause problems with recursively
dependent modules. Our Keris implementation allows one to monitor the mod-
ule initialization process by emitting log messages on demand. When the Java
virtual machine is invoked with the option -Dkeris.verbose, the runtime sys-
tem will generate a log which contains all necessary information for debugging
possible initialization conflicts. We omit a detailed explanation of how the code
gets instrumented to produce such log messages. To illustrate this facility, we just
show a small fragment of the module initialization log obtained from a run of the
Keris compiler (which itself is written in Keris). From the log it can be clearly
seen when a module gets created, configured, and initialized.

> java -Dkeris.verbose org.zenger.keco.MAIN
create MAIN
configure MAIN
create MAIN.K_OPTIONS
create MAIN.K_COMPILER
...
initialize MAIN.K_COMPILER
configure MAIN.COMPILER.REPORT
initialize MAIN.COMPILER.REPORT
configure MAIN.COMPILER.PREDEF
initialize MAIN.COMPILER.PREDEF
configure MAIN.K_COMPILER.K_DEFS
initialize MAIN.K_COMPILER.K_DEFS
configure MAIN.K_COMPILER.K_CLASSREADER
create MAIN.K_COMPILER.K_CLASSREADER.K_ATTRIBREADER
create MAIN.K_COMPILER.CLASSREADER.CLASSIN
create MAIN.K_COMPILER.CLASSREADER.POOL
initialize MAIN.K_COMPILER.K_CLASSREADER
configure MAIN.K_COMPILER.K_CLASSREADER.K_ATTRIBREADER
initialize MAIN.K_COMPILER.K_CLASSREADER.K_ATTRIBREADER
configure MAIN.K_COMPILER.CLASSREADER.CLASSIN
initialize MAIN.K_COMPILER.CLASSREADER.CLASSIN
configure MAIN.K_COMPILER.CLASSREADER.POOL
initialize MAIN.K_COMPILER.CLASSREADER.POOL
configure MAIN.COMPILER.NAMES
initialize MAIN.COMPILER.NAMES
configure MAIN.COMPILER.CONVERSIONS
initialize MAIN.COMPILER.CONVERSIONS
configure MAIN.K_COMPILER.K_TYPES
initialize MAIN.K_COMPILER.K_TYPES
configure MAIN.COMPILER.SCOPES
initialize MAIN.COMPILER.SCOPES
configure MAIN.COMPILER.MANGLER
initialize MAIN.COMPILER.MANGLER
configure MAIN.COMPILER.CONSTS
initialize MAIN.COMPILER.CONSTS
configure MAIN.K_COMPILER.K_AST
initialize MAIN.K_COMPILER.K_AST

3.4 Implementation of Keris 125

configure MAIN.COMPILER.OPERATORS
initialize MAIN.COMPILER.OPERATORS
configure MAIN.COMPILER.UNITS
initialize MAIN.COMPILER.UNITS

3.4.8 KeCo: The Keris Compiler

We implemented a compiler prototype for Keris which compiles Keris programs
following the presented implementation scheme. The compiler reads Keris
source code and produces standard Java classfiles for classes as well as modules.
Since Keris is designed to be a conservative extension of Java which fully interop-
erates with regular Java classes, the Keris compiler can also be used as a drop-in
replacement for javac.

The Keris compiler is written in Keris itself. For bootstrapping the system we
first developed a compiler for a subset of Keris which extends our extensible Java
compiler JaCo [214, 215]. JaCo itself is designed to support unanticipated ex-
tensions without the need for source code modifications. It is written in a slightly
extended Java dialect which supports extensible algebraic datatypes [214]. The
type checker of this initial Keris compiler was incomplete, and the code gener-
ator created only unoptimized code. Nevertheless this temporary compiler was
robust enough to be used in the re-implementation of the compiler in the pro-
gramming language Keris itself. The current version of the compiler, called
KeCo, implements the full language, compiles itself, and generates optimized
code. An overview over the design and implementation of KeCo is presented in
Section 4.3.

126 Static Component Evolution with Extensible Modules

3.5 Benchmarks

Extensibility does not come “for free.” It often pays off already at the design stage
to invest in considerations about later changes (design for change) even though
at this time, it is probably completely unclear what concrete changes that might
be. Keris helps at the implementation level to build systems that can easily be ex-
tended later, especially in cases where the future changes cannot be anticipated.
But the use of Keris also imposes costs both in terms of code size and runtime
efficiency mostly because of additional indirections that are being introduced by
the Keris compiler for extensibility purposes.

This section will neither analyze the costs for designing nor writing extensi-
ble software. It will focus on the runtime costs imposed by the current implemen-
tation of the Keris compiler which deploys the compilation scheme presented
in the previous section. We proceed by first analyzing some micro benchmarks
which are supposed to reveal the runtime overhead associated with specific lan-
guage constructs, like method calls, class instantiations, type tests, and type casts.
Then we will briefly discuss the performance of a real-world program which was
first written in a slightly extended Java dialect and then ported to Keris.

3.5.1 Micro Benchmarks

Framework. All the micro benchmarks are based on the framework shown in
Figure 3.10. The framework consists of a single main function which executes a
specific instruction n times. Since we are not interested in the overhead of the
framework itself as well as the overhead imposed by the Java runtime environ-
ment, we measured the runtime of the framework without placing a statement
in the body of the loop. This overhead is presented in the table of Figure 3.10 for
n = 1000000 and n = 2000000. In all the micro benchmarks of this section we
subtracted this overhead from the overall time so that the numbers only reflect
the costs of the statement in the body of the loop.

All benchmarks were made on an Apple PowerBook G4 (400 MHz, 512MB
RAM) running Apple’s Java 2 Runtime Environment 1.4.1 on MacOS X 10.2.6.
We typically executed the benchmark programs six times and took only the run
which exhibited the best performance. Since the behavior of Java’s just-in-time

module Overhead {
void main(String[] args) {
int i = 0;
while (i++ < n);

}
}

n JIT VM

1000000 114 1752
2000000 213 3515

Figure 3.10: Overhead of the benchmark framework for the just-in-time compiler (JIT)
and the bytecode interpreter (VM) (measured in ms).

3.5 Benchmarks 127

compiler (JIT) is often quite different from the runtime behavior of the bytecode
interpreter (VM), we benchmarked both systems independently.

Function calls. The code for this benchmark is shown together with the bench-
mark results in Figure 3.11. The main function calls a function foo of a submod-
ule A one million times. With all optimizations switched off, the Keris compiler
generates code that will call the module initialization method $access of sub-
module A every time foo is invoked. In the optimized case, the $access method
will only be called once, during the execution of the first loop iteration.

The runtime numbers given in Figure 3.11 were obtained by timing several
runs of the program and by subtracting the overhead displayed in Figure 3.10,
yielding the pure function dispatch costs for one million invocations of function
foo. The numbers show that the calls to $access slow-down the actual function
dispatch time by a factor of more than 4 in the JIT case, and 2 in the VM case.
From the code optimization perspective, this is equivalent to a speedup of the
optimized program of 77% (JIT), respectively 54% (VM) relative to the unopti-
mized program.

Of course, these numbers refer to the pure dispatch costs and will never show
up in such an extreme manner for real programs where function dispatch costs
constitute only a relatively small fraction of the overall runtime.

Class field instantiations. We now target instantiations of classes and class
fields. The corresponding specialization of the framework is shown in Fig-
ure 3.12. It creates one million instances of class field C defined in submodule
A. This program was again timed for the optimizing and the non-optimizing com-
piler. Furthermore, a small variation of the program was created in which in-
stead of class field C an empty top-level Java class is instantiated. Also for this
benchmark, the $access method for submodule A will be called in every itera-
tion of the loop if all optimizations are switched off. The benchmark results in
Figure 3.12 show that due to the higher runtime costs for instantiations, the rel-

module Bench1 {
module A;
void main(String[] args) {
int i = 0;
while (i++ < 10000000)
A.foo();

}
}
module A {
void foo() {}

}

JIT VM

Unoptimized 172 7625
Optimized 39 3513

Gain 133 4112
� 77% � 54%

Figure 3.11: Function call costs in the optimized and unoptimized case (in ms).

128 Static Component Evolution with Extensible Modules

module Bench2 {
module A;
void main(String[] args) {
int i = 0;
while (i++ < 10000000)
new A.C();

}
}
module A {
interface I { I(); }
class C implements I = {}

}

JIT VM

Unoptimized 1388 16910
Optimized 1259 12698
Class 1001 7357

Overhead
Unoptimized 387 9553

� 28% � 56%
Optimized 258 5341

� 20% � 42%

Figure 3.12: Costs of class and class field instantiations (in ms).

ative difference between the runtime of the optimized and the unoptimized case
is significantly smaller than in the previous benchmark.

But here we are more interested in the overhead of class field instantiations
with respect to plain class instantiations. In addition to possible $access calls
we also have to consider that class fields are created indirectly through factory
methods. In the JIT case, the instantiation of class fields is affected with an over-
head of 20% compared to the instantiation time of plain classes, if the code is
generated by the optimizing compiler. In the VM case it is 42%. For the compiler
which leaves in all $access calls, this percentage is even higher: 28% for the JIT,
and 56% for the VM. Again, these numbers refer to the plain instantiation time
which makes up only a very small fraction of every Java or Keris program.

Method calls. Dispatching method invocations on class field objects is more
expensive than dispatching methods of regular classes for two reasons:

1. Class field types get erased in the translation to Java requiring that every
method call is preceded by a type cast to an appropriate interface type.

2. Especially for the JIT, dispatching methods of interfaces can be slower than
dispatching methods of classes.

To analyze the different method dispatch times, we created several variations of
the program shown in Figure 3.13. The first version corresponds to the program
printed in Figure 3.13, the second version was obtained by eliminating the gener-
ated type cast by hand, in the third version the dispatch on a class field method
got replaced by a dispatch on a class method, and the last version finally invokes a
method through an interface type. In the remainder of this paragraph we restrict
our attention to the JIT numbers.

From the runtime numbers of the first two versions we can see that the type
cast introduced by the Keris compiler accounts for almost 60% of the dispatch
time of the unoptimized program. Unfortunately, the bytecode verifier of the

3.5 Benchmarks 129

module Bench3a {
module A;
void main(String[] args) {
A.C c = new A.C();
int i = 0;
while (i++ < 20000000)
c.foo();

}
}
module A {
interface I {
I(); void foo();

}
class C implements I = {
public void foo() {}

}
}

JIT VM

Unoptimized 918 7503
Optimized 392 6030
Class 16 5630
Interface 378 6010

Overhead (unopt.)
∼ Class 902 1873

� 98% � 25%
∼ Interface 540 1493

� 59% � 20%

Figure 3.13: Dispatch costs for methods of classes, interfaces, and class fields (in ms).

Java Virtual Machine allows the elimination only for some cases (like our bench-
mark). In general, such type casts cannot be eliminated. Thus, the numbers of
the optimized program are fictitious and will be disregarded from now on.

The dispatch on class methods must obviously be highly optimized by the JIT.
With a runtime of 16ms for two million calls, it is even quite likely that the JIT
detected the subsequent calls to a single empty method and removed the whole
loop. It is surprising to see that method invocations through interface types ob-
viously do not benefit from a similar optimization — they are almost 24 times
more expensive. Invocations through class field types are 57 times more expen-
sive than through class types, and 2.4 times slower than through interface types.
In addition to these numbers, Figure 3.13 also shows the overhead of method dis-
patches via class field types in relation to dispatches via class or interface types.

To assess the performance of method invocations in (more realistic) situa-
tions where the JIT cannot predict the receiver, we conducted a second, more
complicated experiment. The code for this experiment is presented in Fig-
ure 3.14 together with the corresponding benchmark results. To avoid trivial op-
timizations of the JIT, we create an array which refers to 64 objects instantiated
from four different classes. In every iteration of the while loop a new receiver
is chosen from this array. Additionally, our framework ensures that subsequent
receivers are instantiated from different classes.

Like before, we created variants of the benchmark program to allow a compar-
ison of the method dispatch times for regular class and interface types with the
corresponding performance of class fields. Again, the numbers listed in the statis-
tics of Figure 3.14 only refer to the total runtime of the two million method calls
in the while loop and do not take the overhead created by the other statements
into account.

130 Static Component Evolution with Extensible Modules

module Bench3b {
module A;
void main(String[] args) {
A.C[] cs = new A.C[64];
for (int j = 0; j < 64; j+=4) {
cs[j] = new A.C1();
cs[j+1] = new A.C2();
cs[j+2] = new A.C3();
cs[j+3] = new A.C4();

}
int i = 0;
while (i++ < 20000000) {
A.C c = cs[i & 0x3f];
cs[(i+64) & 0x3f] = c;
c.foo();

}
}

}
module A {
interface I { I(); void foo(); }
abstract class C implements I;
class C1 extends C implements I=
{ public void foo() {}}
class C2 extends C implements I=...
class C3 extends C implements I=...
class C4 extends C implements I=...

}

JIT VM

Unoptimized 1872 7752
Optimized 1403 6199
Class 889 5739
Interface 1367 6155

Overhead (unopt.)
∼ Class 983 2013

� 53% � 26%
∼ Interface 505 1597

� 27% � 21%

Figure 3.14: More complicated experiment to measure method dispatch costs (in ms).

As the benchmark results of this experiment show, the runtime behavior of
our more complicated test case is identical to the original test when executed on
the JVM. The numbers for the execution by the JIT are though quite different, in
particular for the dispatch on class types. According to this experiment, method
dispatch on interfaces is slower by a factor of 1.5 compared to classes. Method
dispatch on class fields is slower by a factor of 2.1 compared to classes, and 1.37
compared to interfaces. Thus, in this experiment, the additional type cast which
is required for dispatching on class field types accounts for only 27% of the over-
all dispatch time of the unoptimized program compared to the 60% in the first
experiment.

We assume that the actual method dispatch slow-down in real-world pro-
grams is better characterized by the second experiment. Unfortunately, every
language that compiles types by erasure on the Java Virtual Machine is affected
with this slow-down. It is not possible to carry out any significant optimizations.
Since in typical object-oriented programs, method calls happen extraordinary
frequently, additional dispatch costs can indeed have an influence on the overall
performance of a real-world program.

3.5 Benchmarks 131

module Bench4 {
module A;
Object o = new A.C();
void main(String[] args) {
boolean c; int i = 0;
while (i++ < 10000000)
c = o instanceof A.C;

}
}
module A {
interface I { I(); }
class C implements I = {}

}

JIT VM

Mod. member 5189 58347
Class 136 1864
Interface 216 1866

Overhead
∼ Class 5053 56483

� 97% � 97%
∼ Interface 4973 56481

� 96% � 97%

Figure 3.15: Costs for type tests against Java classes, Java interfaces, and class abstrac-
tions nested in Keris modules (in ms).

Type tests. Type tests are already inefficient in Java and they are significantly
more inefficient in Keris even though the compilation scheme does not use slow
tree walking procedures for performing a type inclusion test.

To determine the overhead of type tests regarding (dependent) module mem-
ber types, again several versions of the benchmark program shown in Figure 3.15
were created and compared. One version tests for a class, interface, or class field
type defined within a module, another version tests for a top-level class type, and
the third version tests for a top-level interface type. We only discuss the numbers
of the JIT case.

According to the benchmark results in Figure 3.15, testing for interface types
is almost 1.6 times slower than testing for class types. A test for a module member
type is 38 times slower than a test for a class type and 24 times slower than a test
for an interface type. These numbers suggest an overhead of 97% which is spent
in the type test method generated by the Keris compiler.

Similar to our investigations for method dispatches, we conducted a second
experiment which makes optimizations more difficult by varying the object in-
volved in the type test. This change of the experiment did not affect the results
obtained for the JVM. For the JIT it had a small effect on the time measured for
testing class types: it is now equal to the time measured for testing interface types
(which itself did not change significantly compared to the original experiment).

Please note that the results of this benchmark can only be used to draw a
conclusion for flat class hierarchies. Depending on the type test implementation
within the Java Virtual Machine, deep class hierarchies or the use of multiple
interface inheritance could degrade the JVM runtime performance for tests on
class and interface types. Since the type test implementation for module member
types uses the built-in Java type tests, this will also affect module member types,
but the relative overhead will decrease. Thus, the presented benchmark can be
seen as a worst case scenario.

132 Static Component Evolution with Extensible Modules

module Bench5 {
module A;
Object o = new A.C();
void main(String[] args) {
A.C c;
int i = 0;
while (i++ < 10000000)
c=(A.C)o;

}
}
module A {
interface I { I(); }
class C implements I = {}

}

JIT VM

Mod. member 6333 67910
Class 112 1869
Interface 243 1878

Overhead
∼ Class 6221 66041

� 98% � 97%
∼ Interface 6090 66032

� 96% � 97%

Figure 3.16: Costs for type casts to Java classes, Java interfaces, and class abstractions
nested in Keris modules (in ms).

Type casts. Since type casts to module member types are implemented using
the type test procedure benchmarked in the previous paragraph, we can expect
a similar slow down for casts. Therefore it is not surprising that according to the
benchmark results in Figure 3.16, casts to class field types are 57 times slower
than casts to class types and 26 times slower than casts to interface types. Casts
to interface types are almost 2.2 times slower than casts to class types.

Similar to the treatment of method invocations and type tests, we developed
a second benchmark where the object which is cast to a class, interface, or class
field type, changes from iteration to iteration. And again we made the observa-
tion that nothing changes for the JVM, and for the JIT, only the performance
for class types degrades (compared to the simple benchmark illustrated in Fig-
ure 3.16). In the second benchmark, the time measured for casts to class types
corresponds exactly to the time measured for casts to interface types.

Note that again, the results only apply to “flat types.” For deeper class hierar-
chies or multiple interface inheritance, the built-in cast mechanism of Java could
perform worse improving the relative difference to the cast mechanism for mod-
ule member types. But generally, the extensive use of type casts and type tests
will yield a noticeable slow-down of Keris programs.

Discussion. The micro benchmarks are only useful for measuring the overhead
of specific language mechanisms of Keris in relation to Java. They indicate rea-
sons for slow-downs of extensible Keris programs compared to similar, but more
static Java programs. The micro benchmarks cannot be used to make reliable pre-
dictions about the actual performance of bigger real-world applications. We will
compare the performance of a bigger Keris program with its Java counterpart in
the next section.

3.5 Benchmarks 133

3.5.2 Real-World Application

Chapter 4 discusses the topic of extensible compilers and presents two implemen-
tations of the extensible Java compiler JaCo. One implementation is written in
a Java dialect using an object-oriented architectural design pattern supporting
extensibility. The second implementation, we call it JaCo2, is a port of the first
implementation to Keris. It makes intensive use of extensible modules and class
fields to keep the system open for future extensions. The details of the two sys-
tems will be discussed in Chapter 4. Here, we will compare the runtime perfor-
mance of the two systems empirically.

Since it is always difficult to compare two programs written in different lan-
guages using different abstractions, we will first present a comparison of the two
programs based on a selection of code metrics. This comparison will help under-
standing the final benchmark results better.

Code comparison. Since JaCo2 is simply a port of JaCo to Keris, both systems
are very similar. They are both composed out of the same components, the algo-
rithms and data structures are the same, and data and control flow are almost
identical. They differ in the way compiler components were written and inter-
linked to compose the full system. While JaCo uses the architectural design pat-
tern Context/Component to configure the system in an extensible fashion, JaCo2
makes extensive use of the module system of Keris.

Figure 3.17 presents some statistical data about the size of the two programs.
The number of files does not say much about the size of a program. In Java it is
common to define a single class in a single file, while in Keris it is more natural
to have one module per file where a module contains several classes, interfaces,
etc. According to the number of source code lines in Figure 3.17, JaCo is almost
24% bigger than JaCo2. “Lines of code” is an intuitive measurement for the size
of a program, but the number of tokens, i.e. the number of terminal symbols,
is a more reliable figure for measuring objectively the size of source code. This
number is not subject to a particular programming style. With a total number of
152590 tokens, JaCo’s source code is 7% bigger than JaCo2’s code which consists

source files

source lines

tokens

generated classes

generated methods

modules

classes

methods

$access calls

removed
$access

JaCo 96 30269 152590 216 1757 — — — — —
JaCo2 66 24143 142774 398 4588 63 132 1495 2165 746

Figure 3.17: Quantitative comparison of JaCo and JaCo2

134 Static Component Evolution with Extensible Modules

1 file 47 files 326 files

JIT VM JIT VM JIT VM

JaCo 4371 5128 6316 9505 13822 41817
JaCo2 6379 5852 9335 11182 19125 47384
JaCo2 (unopt.) 6640 5981 9734 11476 20064 48347

Figure 3.18: Comparison of JaCo and JaCo2 applied to input of different size (in ms).

of 142774 tokens.
These numbers indicate that the use of the module system of Keris can help

to reduce the size of the code that otherwise has to be manually written to define
and glue software components. In the given case, JaCo’s whole Context/Compo-
nent logic (see Section 4.2.1 and 4.2.3) disappears for JaCo2 which uses native
modules instead of the design pattern-based approach of JaCo. The saving in
code size appears even higher if one also considers that the use of class fields in
Keris encourages coding against interfaces instead of using classes directly. This
can lead to extra code required for the definition of additional interfaces and the
introduction of helper methods like “getter” and “setter” methods.

For binaries, Figure 3.17 shows a different picture. Here, JaCo gets com-
piled to 216 classfiles while the smaller source code of JaCo2 yields almost 400
classes. This is an increase of 84% compared to JaCo. Of course, most of these
400 classes are generated automatically by the Keris compiler and are not hand-
written. JaCo2 consists of 63 hand-written modules that contain 132 class, inter-
face, and class field definitions. Since every module implicitly defines 4 classes,
these 63 modules expand to 252 classfiles. The rest of the 146 classes is either
hand-written or generated automatically from anonymous class field implemen-
tations. The extraordinary high number of 4588 methods (compared to 1495
hand-written methods) can also be attributed to the module translation. As men-
tioned in 3.4.3, the scheme for creating access methods to submodules can yield
quite a lot of automatically generated methods.

The last two columns in the table of Figure 3.17 judge the optimization of
$access calls by the Keris compiler. From totally 2165 $access calls, the Keris
compiler safely removes 746 calls, which corresponds to almost 35% of the total
number of calls.

Benchmark. The runtime of the two compilers was measured by compiling the
Jakarta Bytecode Engineering Library (BCEL) version 5.0 developed by Markus
Dahm. This library is fully written in Java. It consists of 326 files in which 360
classes with 2980 methods are defined. The library comprises 54401 lines of
code with a total number of 151274 lexical tokens.

Both JaCo and JaCo2 were applied to the whole library, to the subpackage
org.apache.bcel.classfile, and to a single file Utility.java of the same sub-

3.5 Benchmarks 135

1 file 47 files 326 files

$access calls 180035 547018 3217335
class field instantiations 4997 13768 66068
casts to class field types 31612 104638 552175
class field type tests 392 25134 149016

Figure 3.19: Statistics about the frequency of specific language construct invocations.

package. The aim of having 3 compiler runs with different input size was to find
out the relationship between the execution time and the performance overhead
of JaCo2.

Figure 3.18 presents the results of the different compiler runs. For complete-
ness, it also includes the results for an unoptimized version of JaCo2. In all three
cases, the $access call optimization improves the total runtime by about 5%. For
the whole library this is almost an improvement of one second which would oth-
erwise have been spent uselessly in almost empty $access methods. These num-
bers allow an estimation of around 10% of the overall time being spent in$access
method calls that have not been removed by the optimizer of the Keris compiler.

We now turn to a comparison of the runtime costs for JaCo and for the op-
timized version of JaCo2. For a single file of 1356 lines of Java code and 5553
tokens, the virtual machine executes JaCo2 faster than the just-in-time compiler
(JIT) does. This is an indication that the JIT is doing a lot of work which does not
pay off in the end; i.e. it compiles many files to native code, but does not execute
the generated code after that. The fact that the JaCo2 run is almost two seconds
slower than the corresponding JaCo run might also indicate that the JIT is doing
less superfluous work for JaCo. The probably most likely reason for the bad per-
formance of JaCo2 is the number of classes that are involved. JaCo2 consists of
almost the double number of classes — it has 182 classes more than JaCo, which
all have to be loaded and processed by the JIT.

With more files to compile, the relative overhead of JaCo2 gets, as expected,
smaller. For the package org.apache.bcel.classfile which consists of 47 files
with 10344 lines of code and 27215 tokens, JaCo2 is slower by a factor of almost
1.5 in the JIT case, and 1.2 in the VM case. For the whole library, the overhead
shrinks to a factor of 1.4 for the JIT, and 1.1 for the VM.

Figure 3.19 gives some more insights about the performance degradation of
JaCo2. It presents some statistics about the frequency of some language con-
struct invocations. According to this figure, there must have been a quite high
runtime overhead caused by type casts and type tests; together there are more
than 700000 type casts and tests for the compiler run with 326 files. In Sec-
tion 3.5.1 we determined that the execution of one million casts takes 6.2 sec-
onds longer for class fields than for Java classes. For type tests this number was
around 5 seconds (JIT case). If one assumes that in this benchmark the numbers

136 Static Component Evolution with Extensible Modules

are similar, we get an overall overhead of 4188ms time being spent in casts and
type tests for the compiler run with 326 files. Now if one considers that according
to Figure 3.18, the JaCo2 compiler run took 5303ms longer than the execution
of JaCo, it gets clear now that this overhead originates predominantly in the low
performance of Keris’ type test facility.

Conclusion. Overall we can draw the following conclusions from this experi-
ment:

1. In our experiment, JaCo2 has an empirical runtime overhead of approxi-
mately 27% compared to JaCo.

2. In the experiment, the biggest costs for JaCo2 can be ascribed to the low
performance of the runtime type test and type cast facility of Keris.

3. For shorter program runtimes (e.g. small programs), relatively high run-
time penalties are caused by the significantly higher number of classfiles to
load and to compile. The decrease of the runtime overhead of JaCo2 with
growing input indicates this in particular.

4. The remaining costs can be attributed to the invocation of$accessmethods
which are used to implement lazy module initialization.

An increase in the efficiency of JaCo2 could be obtained by implementing
type tests and type casts more efficiently. It is unclear if it is possible to devise a
significantly better runtime type support for Keris. Most type casts are necessary
in JaCo2 because of the extensive use of Java’s collection classes. With generic
types most explicit type casts should disappear.

The runtime overhead in general could be reduced by representing module
contexts generically with, for instance, hash tables. This would save 3 classes
per module being loaded dynamically, but it would introduce many more type
casts in the code. The current implementation scheme was implemented with
an efficient inner class handling on the classfile level in mind. At the time the
compilation scheme was designed, such an optimized handling of nested classes
was in discussion by Sun Microsystems, but it seems to have been rejected by
now.

Giving up lazy module initializations would be another measure slightly en-
hancing the runtime performance of Keris programs in general. Unfortunately,
it is difficult to define a satisfying strict module initialization scheme which does
not provoke a disproportionally high access rate to members of uninitialized mod-
ules. A strict module initialization scheme seems to work well only if recursively
dependent module initializers are abandoned. Checking this statically is possible
for “simple” module initializers (which do not call external or overridable inter-
nal functions, instantiate objects, etc.). Mutually dependent modules could be
retained as long as the module initializers are not involved in the recursion.

3.6 Discussion 137

3.6 Discussion

The previous sections of this chapter presented the design of the programming
language Keris, its applications, and its implementation. To conclude the chap-
ter we briefly review the design of the module system of Keris and relate it to
module systems of other programming languages. Before presenting details of
this discussion we give a quick introduction to module systems and clarify mod-
ule system related terminology.

3.6.1 Module Systems

3.6.1.1 Motivation

Many programming languages support programming in the large through a mod-
ule system. While the nature of module systems can differ quite significantly be-
tween different programming languages, all module systems basically provide at
least some of the following functionality [37, 100]:

1. Code organization:
Modules provide a way of breaking up code into manageable pieces that
can be designed, implemented, and understood in isolation.

2. Name space management:
Since modules open new name spaces they help to structure names and
help to avoid name clashes when modules are combined.

3. Abstraction control:
Modules provide important abstraction barriers, grouping together decla-
rations that fit logically, and hiding information about implementation de-
tails from clients. The smaller the dependency of a module on implemen-
tation details of other modules is, the easier it is to replace modules with
different implementations or new versions of former implementations.

4. Separate compilation:
Support for separate compilation aids the programmer in developing sys-
tems incrementally, and makes debugging of large programs practical.
With separate compilation it is possible to create reusable code in libraries
in such a way that the source code need not be available to clients.

5. Code reuse:
The ability to use a module in different applications with possibly different
cooperating modules helps reusing code. Reusing a module multiple times
within the same application requires modules to be generic in the context
dependencies.

138 Static Component Evolution with Extensible Modules

3.6.1.2 Design Issues

Since different module systems often achieve the goals above with quite different
language mechanisms, we now review typical design issues, and discuss trade-
offs in the design of module systems. The following coverage is kept on a rela-
tively abstract level, since in general, it is very difficult to clearly talk about more
than one module system at a time.

Language level. Module systems are small domain specific languages dedi-
cated to modularization. They are usually built on top of a core programming
language. One aim in module system design is to keep the module language level
as independent as possible from the core language level [12, 110]. The purpose
of this aim is to allow the module language to be used with different core lan-
guages — a goal which has not been achieved yet in practice.

Module systems where modules are regular values of the core language are
called first-class. In most module systems, modules are second-class in the sense
that they are only values on the level of the module language.

Information hiding. Modules are program units that encapsulate a set of log-
ically or physically related program entities. Typically, the programmer has to
specify explicitly which of these entities are exported such that they are accessi-
ble to external clients (e.g. other modules). This is either done by tagging the
definitions with access modifiers (e.g. like in Oberon-2 [146]), or the program-
mer has to write a separate module interface which specifies the external view on
the entities to export. Some module systems allow to specify multiple module
interfaces per module. This feature is, for instance, supported by the module sys-
tems of SML [123] and Modula-3 [44]. It is mostly used to grant different access
privileges to different clients.

Similarly, some module systems require that every interface has exactly one
module implementation, while others allow the definition of multiple implemen-
tations for a single module interface.

In some module systems (e.g. Modula-3, Loom [37]), modules have to de-
clare explicitly what interfaces they implement, in other module systems this is
implicit, for example through a naming scheme (e.g. Modula-2 [206]). There
are finally module systems where a module automatically implements all mod-
ule interfaces with structurally matching signatures (e.g. in SML). This purely
structural approach has the advantage that all possible views of the module do
not have to be anticipated, but this approach is also often criticized for falsely
associating a module with an interface that coincidentally defines entities with
matching signatures but different semantics.

Name spaces. In all common module systems, modules open a new name
space such that names defined by the module cannot clash with names of enti-

3.6 Discussion 139

ties defined in other modules. Access to entities exported by a module is typi-
cally possible via the dot notation [45] — that is, m.f referring to the operation
f provided by the module abstraction m. Some module systems allow to either
import the whole exported scope of an external module into the scope of another
module (e.g. Java), or selectively allow to make only some module members of
an external module accessible without explicit qualification with a reference to
the external module abstraction (e.g. Modula-2, Modula-3, Java). Since such
scope embeddings can often lead to name clashes, some module systems also
provide facilities for renaming abstractions, or for introducing local aliases (e.g.
Oberon-2, C# [86]).

Dependencies. Modules typically depend on services provided by other mod-
ules. In most module systems this is expressed as a dependency on other exter-
nal modules. In unit-style module systems [71, 64] modules directly depend on
abstractions provided by other modules; i.e. modules import entities defined in
other modules, they do not directly refer to other modules.

In most module systems, dependencies on external modules or entities of ex-
ternal modules have to be stated explicitly. An exception to this is, for instance,
the package system of Java where dependencies are implicit and automatically
inferred by the compiler.

A module is usually free to depend on any other module. Exceptions are mod-
ule systems, like SML’s, which require systems to be built strictly incrementally,
ruling out recursive dependencies between modules. This can impede modu-
lar programming by forcing mutually dependent components to be consolidated
into a single module, which partially undermines the very idea of modular orga-
nization [54].

Genericity. In classical module systems for imperative languages, modules de-
pend on other modules specifically; i.e. they reference specific, fixed external
modules. While in such first-order module systems, references to other mod-
ules are hard-wired, module systems of functional languages typically allow to
abstract over context dependencies. Here, references to the external world are
generic [163]. Module systems with generic modules are also called higher-order
module systems.

Composition. Before modules with generic context dependencies can be de-
ployed, they have to be linked or composed with other modules until all context
dependencies are resolved. Because of such higher-order modules it is important
to distinguish between generic modules which abstract over their dependencies
and concrete module instances where the generic dependencies are replaced with
concrete ones.

In ML, modules with generic dependencies are expressed as functions map-
ping module instances to module instances. Such functions are called functors,

140 Static Component Evolution with Extensible Modules

the concrete module instances are called structures. Modules are composed by
functor applications.

In unit-style module systems, modules abstract over external entities like val-
ues, functions, and classes. Modules are composed by “wiring” exported en-
tities explicitly with imported ones so that all context dependencies are satis-
fied. As opposed to functors, unit-style modules support recursive dependen-
cies. Component-oriented programming languages typically provide linguistic
abstractions for software components in a unit-style fashion [182, 187, 5].

Aggregation. To cope with the complexity of large software systems, it is not
sufficient to simply divide them into smaller pieces because the pieces themselves
will either be too numerous or too large [25]. A hierarchical modular structure
is the natural solution where modules aggregate submodules and thus smaller
modules are composed to form bigger ones.

Type abstraction. Strongly typed programming languages with module sys-
tems have to provide some sort of modular type abstraction mechanism. De-
pending on this mechanism, module systems can be classified as either opaque
or transparent.

Opaque systems totally hide information about the identity of type compo-
nents, requiring that all operations on the type must be defined within the scope
of the module where the type is defined. Generally, opaque types behave as
unique types which have no relationships to other types. They are useful for
programming abstract datatypes where all specifics of the implementation are
hidden from clients. This makes it simple to guarantee invariants and to replace
the implementation with a compatible one, but the loss of type identities also pre-
cludes some interesting uses of higher-order module features, e.g. building new
ADTs on top of old ones [118].

As opposed to this, transparent systems completely reveal type identities by in-
specting module implementations. This subverts data abstraction and prevents
separate compilation [118]. On the other hand, transparent types have an im-
portant potential: they allow sharing of type information across module bound-
aries [160]. An example for a fully transparent module system can be found in
SML’90, the first release of SML.

Between the two extremes, there are module systems supporting the notion
of partial abstraction. Partial type abstraction is the idea of allowing some in-
formation to escape the abstraction barrier, while keeping the essential imple-
mentation abstract. Types which allow such a partial revelation are also called
translucent types [84, 118]. They combine the benefits of the two extreme ap-
proaches without adopting the disadvantages. OCaml’s manifest types [109] are,
for example, translucent types where the module interface fully specifies what
information about the type is revealed. Modula-3 goes even a step further; it fea-
tures a module system which supports the notion of incremental revelation. Here,

3.6 Discussion 141

information about the identity of the type can be revealed step by step even in
clients of the module that defines the type.

Generativity. Module systems with higher-order modules support multiple in-
stantiations of a module. In the presence of abstract types the question arises if
the types provided by two different instances are the same or distinct.

In SML, functors are generative, meaning that the types in structures gener-
ated by functor applications are generally distinct; i.e. every runtime instance
of a module abstraction gets “new” member types. On the contrary, functors in
OCaml [111] are applicative, meaning that equal arguments in a functor applica-
tion yield module instances with equal types.

Modula-3 offers one of the few module systems for imperative languages
that has support for generativity. But here, generic modules are templates that
get expanded by a macro expansion mechanism at link-time. Similar to the tem-
plate mechanism of C++ [189], Modula-3 does not typecheck such “module
templates.”

Coherence. Type equality is also a relevant issue when different modules inter-
act. When two interacting modules both refer to a third module, it is important
to know whether both refer to the same module instance or at least whether both
share the type components that are relevant for the interaction. Otherwise data
exchange between the two modules involving types of the third module would
not be statically safe. Module systems deal with such coherence issues quite dif-
ferently.

In simple module systems without higher-order modules, every module is con-
ceptually a singleton with a distinct name (e.g. in Modula-2, Component Pas-
cal [207]). In such a setting, modules referring to an external module with the
same name will also refer at runtime to the same module instance — this is the
essence of specific module references. Thus, two types are equal if their fully
qualified names are equal.

Pierce distinguishes two mechanisms dealing with coherence in module sys-
tems featuring generic module references: sharing by parameterization and shar-
ing by specification [163]. Sharing by parameterization comes in two flavors: pa-
rameterization on external modules, and parameterization on external types. In
the first approach, modules and module interfaces are parameterized with all ex-
ternal modules. Effectively, this approach, which is also called fully functorized
style, implies that modules are “maximally parameterized” relating all modules
of the dependency closure. Ultimately, this means that arbitrary patterns of shar-
ing have to be anticipated [163]. Technically, coherence is controlled in this ap-
proach by a compile-time notion of equivalence of module instances. Only types
of module instances that can statically be identified are considered to be equiva-
lent. This form of parameterization is supported by SML’90.

142 Static Component Evolution with Extensible Modules

Module systems that abstract directly over types of external modules ad-
dress sharing implicitly through the choice of the module parameters. While
with deeper dependency hierarchies, interfaces parameterized on modules scale
badly, parameterization on external types does not suffer from this problem, as
Pierce points out in [163]. MzScheme’s units rely on such a parameterization
scheme, as well as component abstractions of many component-oriented pro-
gramming languages.

The idea of the sharing by specification approach is to either augment mod-
ules with submodules which refer to corresponding external modules, or to aug-
ment modules with external types. Together with a facility for specifying sharing
of submodules, or sharing of types of different modules, it is possible to address
the coherence problem in a post-hoc fashion. Following these ideas, the program-
ming language SML’97 explicitly supports sharing constraints to identify types
and thus allows modules to interoperate flexibly with data of a shared type.

Separate compilation. An important feature of many module systems is the
support for separate compilation. This is achieved by ensuring that all interac-
tions among modules are mediated by interfaces which capture all information
required to compile clients without revealing implementation details. If some
essential information is missing in the interface of a module, then clients that
depend on this missing information have to refer directly to the corresponding
module implementation, possibly compromising separate compilation if the de-
pendency between the client and the module implementation is mutual recursive.
Transparent types make separate compilation impossible for the same reason.
They reveal their concrete implementation fully through the module implemen-
tation so that a clear separation between module interface and implementation
gets impossible.

Module systems that do not require the specification of explicit module in-
terfaces and instead read the interfaces off the module implementation support
separate compilation in general only, if they do not allow mutual dependencies.

Separate compilation is essential to enable the binary reuse and the binary
distribution of software components.

Reuse. Modules with generic context dependencies can be instantiated multi-
ple times within one software system. This form of reuse, which is sometimes
also called “as is”-reuse, is probably the most common form of reuse.

Some module systems provide facilities for reusing an existing module in the
definition of a new one. Module inclusion, for instance, is a mechanism which in-
serts all definitions of an existing module or module interface into another mod-
ule or module interface. Support for this can, for example, be found in the mod-
ule system of OCaml. In combination with a structural type system, it allows pro-
grammers to easily create extensions of modules which add new module mem-
bers. Modifications of existing members can be achieved with combinations of

3.6 Discussion 143

mixin modules [31, 28]. Systems of mixin modules support cross-module recur-
sion and overriding. In the context of ML, mixin modules can elegantly model
recursive dependencies [88, 57].

Mixin module combinations can be shallow or deep. While shallow mixin com-
position mechanisms compose module members only on the top-level, deep mod-
ule composition facilities recurse deeply into the definition of module members
possibly fusing module member abstractions like submodules, functions, alge-
braic datatypes [57], and classes [94]. Such module systems support, to some
extent, aspect-oriented programming [103].

3.6.2 Module Systems and Object-Oriented Languages

Classes as alternative modularization constructs. Pure object-oriented lan-
guages like Smalltalk [80] and Eiffel [133] typically identify classes with mod-
ules. This is unfortunate since the primary role of classes is to define types and
to serve as extensible generators of objects. As described in the last section, mod-
ules are typically associated with quite different purposes like name space man-
agement, provision of abstraction barriers, and abstractions targeted towards
separate compilation.

To compensate for this, newer object-oriented languages have class abstrac-
tions that share many features with module systems. One of these features is
class nesting which allows for structuring the name space of classes and for group-
ing closely related classes. Another feature are access modifiers which give con-
trol over the visibility of class members, and thus help to set up abstraction barri-
ers. Often, classes are also associated with compilation units.

Shortcomings of classes as modularization constructs. However, support
for modularity is in general very rudimentary and sometimes pretty awk-
ward [37]. Imagine packaging a collection of mathematical functions in a class.
For using these functions, one must first create an object of that class and then
call the functions by sending messages to the object, even though the methods
are not in any way specialized to the object. Furthermore, this object has to be
threaded through all parts of the system in which mathematical functions are
required (unless one wants to permanently re-create the object — an approach
which would be even more awkward). This task can be quite challenging espe-
cially since this often requires some form of anticipation. Therefore, most object-
oriented languages have ad-hoc mechanisms like static methods or class meth-
ods to address these shortcomings. Every access to a static class member intro-
duces a hard link. Thus, every module system supporting generic dependencies
is already more expressive with respect to reuse and substitutability, allowing to
instantiate a program unit with possibly different implementations of the math-
ematical library. Furthermore, module systems allow a much more natural way
for accessing such intrinsically static features in comparison with artificial class

144 Static Component Evolution with Extensible Modules

construct extensions.
Class abstractions are also very limited when it comes to express relationships

between different classes. In module systems, context dependencies are typically
explicit so that a programmer can easily see on what other components a module
depends. In class-based object-oriented languages on the other hand, such re-
lationships are implicit. The user of a class has no clue what other cooperating
classes are involved (e.g. when packaging a library or a subsystem) unless he
inspects code by hand or uses specific code inspection tools. While class nesting
provides a means to encapsulate tightly coupled classes, it is difficult to split up
such a class set into smaller subsets such that each of these subsets can be com-
piled separately, but access to private class members of classes in other subsets
is still allowed. This is mainly because in most object-oriented languages access
to class members can only be controlled in a very coarse grained way through a
fixed number of predefined access levels like public, protected, and private. To
some extend, ad-hoc features like friends [189] can help to overcome some lim-
itations, but the use of such completely arbitrary constructs can result in what
Szyperski calls “spaghetti scoping” [192].

The most conspicuous difference between class systems of object-oriented lan-
guages and module systems in general is the lack of class or type abstraction
mechanisms in object-oriented languages. This is a show-stopper for develop-
ing extensible object-oriented software in a statically type-safe way, since refer-
ences to classes are always static, making it impossible to use compatible classes
or class extensions instead without hacking source code destructively. Further-
more, types cannot be adapted so that extensions refer to more refined types
through which they can access extended features. While some design patterns
can help to avoid hard links to classes, type refinements can only be enforced via
type casts that in principle bypass the static type system. Only recently, strongly-
typed object-oriented programming languages appeared that alleviate the short-
comings by supporting powerful type abstraction mechanisms. Examples are
gBeta [58], Scala [153, 151], and FamilyJ [156, 208]. Only in such languages,
classes provide a serious alternative to classical modules.

Modules and classes as complementary abstractions. While there is a trend
to incorporate more and more features of modules into classes, the programming
language Moby [66] tries to provide both modules and classes, but without dupli-
cating features. The design philosophy is to keep language features independent,
but complementary [65]. Moby is a statically typed ML-like language that sup-
ports class-based object-oriented programming with simple class abstractions
that only support those mechanisms that are intrinsic to classes, namely object
creation and inheritance. It relies on the module system to support namespace
management and visibility control [68, 67]. The resulting design is indeed quite
expressive, but the combination of some language features, like the coexistance
of structural and nominal subtyping, might be confusing for some programmers.

3.6 Discussion 145

3.6.3 Keris

In the following we review the design of Keris in the framework laid out in the
previous section.

Language level. The module system of Keris is built on top of a core language
which more or less corresponds to Java. Modules are second-class; i.e. they are
not regular values of the core language which can be computed or passed around
with core language constructs. In support for reflection, it is possible to package
up a module as an object and use operations of a reflection API to inspect or mod-
ify the configuration of a module dynamically within the core language.

Information hiding. Modules in Keris encapsulate submodules, class abstrac-
tions (classes, interfaces, class fields), variables, and functions. With the help
of the access modifiers public and private, a programmer can specify explicitly
what module members are exported and which ones are hidden from clients.

Keris also allows programmers to define module interfaces which describe
the signature of exported module members like submodules, functions, and class
fields without giving a concrete implementation. Module interfaces typically also
contain regular Java interface definitions. In Keris, modules have to specify ex-
plicitly what module interfaces they implement. A module may implement sev-
eral module interfaces and a module interface may be implemented by several
modules.

Name spaces. Modules in Keris either open a new name space, or they extend
an existing name space when modules are refined or specialized. Members of
modules are dereferenced via the dot notation. The :: operator is used to access
submodules. It is possible to import the name space of an external module or a
submodule via the star-import statement. One can also selectively import only
specific submodule references.

Dependencies and composition. In Keris, modules are explicitly parameter-
ized with external modules. These context dependencies are generic, allowing
modules to be instantiated multiple times with different cooperating module in-
stances. When such higher-order modules are deployed as submodules, they get
automatically linked with matching modules of their deployment context; i.e.
they are linked to other submodules or modules that are required by their host
module. In other words, the module wiring is inferred rather than manually spec-
ified by a programmer. This “wiring inference” is based on two principles:

1. Module instances are generally identified by the name of their correspond-
ing module definition, and

2. Every module context defines an unambiguous set of module instances (re-
quiring that every generic module is instantiated only once per context).

146 Static Component Evolution with Extensible Modules

This approach combines the simplicity of classical module systems for impera-
tive languages with the advantages of modern, component-oriented formalisms.
In particular, modules reference other modules via their declared name. This is
similar to module systems with specific context dependencies where references
to other modules are interpreted as “the module with this name and interface
(whose precise identity will be known at link-time).” On the other hand, modules
are reusable, generic software components that can be linked with different co-
operating modules without the need for resolving context dependencies by hand.
Like in simple module systems with specific context dependencies, modules can
depend on each other mutual-recursively.

Aggregation. Keris makes it easy to implement hierarchical modular struc-
tures with its built-in support for submodule aggregation. Thus, bigger com-
pound modules are built from smaller compound or atomic modules incremen-
tally. As explained before, the aggregation mechanism is combined with the in-
stantiation and composition mechanism of submodules.

Class abstractions. Keris strictly distinguishes class implementations from in-
terface descriptions. Both are immutable building blocks for class fields which
associate the two in an extensible way. A class field introduces a new nominal
type together with an implementation for that type. Every class field declaration
mentions all interfaces implemented by possible implementations. It also men-
tions other class fields which define supertypes. Types defined by class fields are
translucent in the sense that implemented interfaces and supertypes can be in-
crementally revealed to clients. The class field mechanism of Keris disables a
complete revelation of the concrete type implementation. Such a manifestation
of a type implementation would ultimately rule out further extensions.

Extensibility is a distinguished feature of class fields in Keris. In module re-
finements and specializations it is possible to covariantly override the set of imple-
mented interfaces and the set of supertypes. It is also possible to fully exchange
the implementation of a class field in a non-invasive fashion. Extensible class ab-
stractions like class fields are essential for evolving object-oriented software. Due
to the central role of class fields in Keris, there is also support for representing
class field types at runtime. These runtime type representations are required to
implement type casts and type tests correctly.

Generativity and coherence. Modules in Keris are generative so that concep-
tually every instantiation of a module gets a new set of member types. Type co-
herence is managed by a dependent type system where types depend on concrete
module instances. Two types P.T and Q.T are considered to be equal if the two
module paths P andQ refer to the same module instance. For such a kind of rea-
soning, the type system has to be equipped with a compile-time notion of module
instance equivalence.

3.6 Discussion 147

Separate compilation. In general, modules can be compiled separately if
solely module interfaces mediate between different modules. Otherwise the
compiler will directly read the interface off a module definition. As long as
systems are built incrementally without recursive dependencies between mod-
ule implementations, separate compilation is still possible in the presence of
such inferred module interface descriptions. Only module implementations with
mutual-recursive dependencies have to be compiled jointly.

Extensibility. Modules are extensible in Keris so that functionality can be mod-
ified or added. Keris has support for two different forms of extensibility on the
module level:

1. A new version of an already existing module can be created for updating or
adding module members. New versions of modules subsume old versions
in the sense that one can replace an instance of an old version with an in-
stance of a new version. This form of reuse is called refinement.

2. A physically and logically new module can be derived from an existing par-
ent module by inheritance. The reuse of existing modules as “prototypes”
for new modules, which customize the prototype for a specific application,
is called specialization.

Both forms of reuse are based on inheritance. By allowing submodule definitions
to be overridden, it is not only possible to extend atomic modules but also com-
pound modules representing fully-linked subsystems. When a submodule is over-
ridden, one does not have to re-link the whole system again. The wiring inference
mechanism of Keris integrates new versions of submodules easily in a plug-and-
play fashion.

Since context dependencies of modules can also be refined or specialized, it
is straightforward to consistently extend sets of cooperating modules. This is an
important requirement for evolving large systems consisting of many intercon-
nected components safely and modularly.

Since the extensibility mechanism is based on inheritance, modules are re-
fined and specialized in a non-invasive way, in which old versions persist when
new versions are derived. Furthermore, new and old versions of modules can
coexist in different contexts even within the same system.

Chapter 4

Case Study: Extensible Compilers

In this chapter we study the design and the implementation of extensible compil-
ers to illustrate how non-trivial real-world applications can be made extensible
and to show what problems programmers are typically facing when developing
extensible applications. We first present a general discussion of compilers and
extensibility related issues. Then we focus on a particular design of an extensible
compiler architecture. We describe the implementation of two extensible Java
compilers which are both built according to this design. The first implementa-
tion is based on a general object-oriented architectural design pattern and uses
mainstream object-oriented language features in its implementation. The second
compiler is written in Keris, making intensive use of extensible modules and the
refinement and specialization mechanism of Keris. The chapter concludes with
a qualitative and quantitative comparison of the two systems.

150 Case Study: Extensible Compilers

4.1 Introduction

Traditionally, compilers are developed for a fixed programming language. Con-
sequently, extensibility and reusability of compiler components are often consid-
ered to be unimportant properties. In practice this assumption does not hold.
People constantly experiment with new language features. They extend program-
ming languages and build compilers for them. Writing a compiler for such an
extended language is usually done in an ad-hoc fashion: the new language fea-
tures are hacked into a copy of an existing compiler. By doing this, the imple-
mentation of the new features and the original implementation get mixed. The
extended compiler evolves into an independent system that has to be maintained
separately.

To avoid such a destructive reuse of source code, compilers have to be ex-
tensible so that they can be specialized easily for integrating language exten-
sions [170, 215, 149]. This chapter discusses two implementation techniques for
extensible compilers. In both approaches, extended compilers reuse components
of their predecessors, and define new or extended components without touching
any predecessor code. All extended compilers derived from an existing base com-
piler share the components of this base compiler. This approach provides a basis
for easily maintaining such a family of systems.

Before discussing details of the two different compiler implementations, we
look at the traditional organization of compilers and motivate problematic issues
implementors of extensible compilers are typically facing. We identify basically
two problems:

1. Abstract syntax trees and compiler phases operating on these trees have to
be extensible, and

2. Compilers have to be re-configurable so that compiler components can be
updated and new compiler components can be integrated.

In this section we explain a solution for handling the first problem. We will use
the same approach in both of the two compiler implementations. The second
problem will be solved differently and is therefore discussed separately for the
two compilers in the following two sections 4.2 and 4.3.

4.1.1 Extensibility Problem

Traditionally, the compilation process is decomposed into a number of subse-
quent phases, where each phase is transforming the program from one internal
representation to another one. These internal representations are implemented
as abstract syntax trees. Compiler phases are operations that traverse the trees.
Figure 4.1 gives an overview over the general structure of a compiler including
typical components.

4.1 Introduction 151

Abstract syntax tree

Syntax
analysis

Semantical
analysis

Code
generation

Source
code

Target
code

Name
management

Symbol
table

Error
management

Binaries

Compiler
phases

Services

Program
represen-
tation

...

Figure 4.1: Structure of a multi-pass compiler.

An extension or modification of the compiler’s source language often re-
quires both, extensibility of the datatype modeling the abstract syntax and the
set of phases operating on this type. Furthermore it is often necessary to
adapt existing phases. This well-known problem of extending data and oper-
ations simultaneously is called the expression problem or the extensibility prob-
lem [50, 51, 64, 70, 78, 106, 203].

Unfortunately, neither a functional nor an object-oriented approach solves
this problem in a satisfactory way. With an object-oriented language such a
datatype would be implemented as a set of classes sharing a common interface.
We call these classes variants of the datatype, the methods of these classes imple-
ment the operations. While extending the datatype is simply done by creating
new variant classes supporting the common interface, adding new operations is
tedious. New operations require that either all existing variant classes are sub-
classed, or that they get modified in a destructive fashion.

In a functional language, the variants of a datatype are typically implemented
with an algebraic type. Ordinary algebraic datatypes cannot be extended, so it is
not possible to add new variants. On the other hand, writing new operations is
simple, since operations are simply functions over this type.

Each of the two approaches can encode the other. In one direction, object-
oriented languages can model the functional approach using the Visitor design
pattern [74]. In the other direction, objects can be represented in functional
languages as closures taking an algebraic type of messages as parameter. How-

152 Case Study: Extensible Compilers

ever, each of these encodings exchanges the strengths and weaknesses of one
approach with the strengths and the weaknesses of the other; neither encoding
gains simultaneous extensibility of both data and operations.

4.1.2 Related Work

Several attempts to solve this problem are published. MultiJava’s open classes
tackle the shortcomings of the object-oriented approach in a pragmatic way [50].
Open classes allow the programmer to add new methods to existing classes with-
out modifying existing source code and without breaking encapsulation proper-
ties. This approach provides a clean solution to the extensibility problem, but in
practice, it still suffers from a few drawbacks. Whereas a new operation is typ-
ically defined in a single compilation unit, modifying an existing operation can
only be accomplished by subclassing the affected variants and overriding the cor-
responding methods. This leads to an inconsistent distribution of code, making
it almost impossible to group related operations and to separate unrelated ones.
Furthermore, extending or modifying an operation always entails extensions of
the datatype. This restricts and complicates reuse. For instance, accessing an ex-
tended operation in one context and using the original operation in another one
cannot be implemented in a straightforward way.

For functional programming languages, various proposals were put forward
to support extensibility of algebraic datatypes. Among them, the most promi-
nent ones are Garrigue’s polymorphic variants [77] and the extensible types of
the ML2000 proposal [13]. In [214], both approaches are compared with the
one presented in the next section. Several papers discuss the extensibility of al-
gebraic types in the context of building extensible interpreters in functional lan-
guages. Existing approaches like [112] and [63] allow a restricted form of ex-
tensibility: algebraic types are extensible, but the final datatype has to be closed
before being used. Furthermore, extensions of datatypes always require updates
of all existing functions to support the new variants. On the other hand, these ap-
proaches support the combination of orthogonal extensions. Basically the same
holds for mixin modules proposed by Duggan and Sourelis [57].

The literature also describes several modifications of the Visitor design pat-
tern which focus on extensibility. Krishnamurthi, Felleisen, and Friedman intro-
duce the composite design pattern extensible visitor [106]. Their programming
protocol keeps visitors open for later extensions. One drawback of their solution
is that whenever a new variant is added, all existing visitors have to be subclassed
in order to support this new variant. Otherwise a runtime error will appear as
soon as an old visitor is applied to a new variant. Palsberg and Jay’s generic vis-
itors are more flexible to use and to extend with respect to this problem [157].
Since generic visitors rely on reflective capabilities of the underlying runtime en-
vironment, this approach lacks static type safety and is subject to substantial run-
time penalties. Kühne’s translator pattern relies on generic functions performing

4.1 Introduction 153

a double-dispatch on the given operation and datatype variant [108]. As with the
solution of Krishnamurthi, Felleisen, and Friedman, datatype extensions always
entail adaptations of existing operations accordingly. Therefore Kühne proposes
to not use the translator design pattern in cases where datatypes are extended
frequently.

4.1.3 Extensible Compiler Phases with Algebraic Datatypes

Defaults. The fact that extra code is necessary to adapt an operation to new
variants can be very annoying in practice. We made the observation that an oper-
ation often defines a specific behavior only for some variants, whereas all other
variants are subsumed by a default treatment [214]. Such an operation could be
reused without modifications for an extended type, if all new variants are prop-
erly treated by the existing default behavior. The experience with our extensible
Java compilers shows that for extended compilers, the majority of the existing op-
erations can be reused “as is” for extended types, without the need for adapting
them to new variants [214].

If it would be possible to specify a default case for every function operating on
an extensible type, a function would have to be adapted only in those situations,
where new variants require a specific treatment. This technique would improve
“as is” code reuse significantly.

Extensible algebraic datatypes. This section presents a solution to the exten-
sibility problem based on the notion of extensible algebraic datatypes with defaults.
These datatypes are described in the context of a Java-like, object-oriented lan-
guage. The syntax is similar to Pizza [154], but unlike Pizza’s algebraic types,
it is possible to derive extended types from existing algebraic types by defining
additional variants. This approach allows one to solve the extensibility problem
in a rather functional fashion; i.e. in a way that strictly separates the definition
of datatypes and operations on these types. Extensions on the operation side are
completely orthogonal to extensions of the datatype. It is possible to apply ex-
isting operations to new variants, since operations for extensible algebraic types
define default cases which handle all future extensions. In addition to adding new
variants and operations, it is also possible to extend existing variants of datatypes,
or to modify existing operations by subclassing and overriding. Extensibility is
achieved without the need for modifying or recompiling the original program
code or existing clients.

Example. We explain the implementation of extensible compiler phases with
algebraic datatypes by introducing various fragments of a compiler for a small
source language, only consisting of variables, lambda abstractions, and lambda
applications. We use the syntax introduced by Pizza [154] and implement ab-
stract syntax trees with the following algebraic type definition:

154 Case Study: Extensible Compilers

class Tree {
case Variable(String name);
case Lambda(Variable x, Tree body);
case Apply(Tree fn, Tree arg);

}

We now define a type checking phase for the small source language in a sep-
arate class TypeChecker. Pattern matching is used to distinguish the different
variants of the Tree type in the process method of class TypeChecker. In Pizza,
the switch statement is used to pattern match on objects of an algebraic type.

class TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Variable(String n):
return env.lookup(n).type;

case Lambda(Variable x, Tree body):
...

case Apply(Tree fn, Tree arg):
Type funtype = process(fn, env); ...

default:
throw new Error();

}
}
...

}

Adding operations. By using this approach, it is straightforward to add new
operations (phases) to the compiler simply by defining new methods in possibly
new classes. But it is also easy to modify an existing operation by overriding the
corresponding method in a subclass.

class NewTypeChecker extends TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Lambda(Variable x, Tree body):
...

default:
return super.process(tree, env);

}
}

}

Class NewTypeChecker modifies the treatment of the Lambda variant and reuses
the former definition for the other variants of the Tree type by delegating the call
to the super method.

4.1 Introduction 155

Adding data variants. As we saw, extending the set of operations and modify-
ing existing operations does not pose serious problems. The only missing piece
for solving the extensibility problem now consists in the extension of the Tree
datatype with new variants. Pizza’s algebraic types cannot be extended in that
way. Extensible algebraic datatypes with defaults [214] on the other hand help to
overcome exactly this problem. These datatypes allow to define a new algebraic
datatype by adding new variants to an existing type. Here is the definition of an
extended Tree datatype, which adds two new variants Zero and Succ:

class ExtendedTree extends Tree {
case Zero;
case Succ(Tree expr);

}

This definition introduces a new algebraic datatype ExtendedTerm consisting of
five variants, Variable, Apply, Lambda, Zero, and Succ. One can think of an ex-
tensible algebraic datatype as an algebraic type with an implicit default case. Ex-
tending an extensible algebraic type means refining this default case with new
variants. For the example above, the new type ExtendedTerm inherits all variants
from Term and defines two additional ones. With our refinement notion, these
two new variants are subsumed by the implicit default case of Term. As shown
in Appendix C, this notion turns ExtendedTerm into a subtype of Term. Such a
subtype relationship is crucial for code reuse, since it makes it possible to apply
all functions for the original type to terms containing nodes from the extended
type. Since existing functions perform a pattern matching only over the origi-
nal variants, an extended variant is handled by the default clause of the switch
statement.

Updating operations. For the current typechecking method, the default clause
simply throws an Error exception. To handle the new variants correctly, we have
to adapt the type checking phase accordingly. This is done by subclassing the orig-
inal type checking component and by overriding the existing process method:

class ExtendedTypeChecker extends TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Zero:
return IntType();

case Succ(Tree expr):
checkInt(process(expr, env));
return IntType();

default:
return super.process(tree, env);

}
}

}

156 Case Study: Extensible Compilers

Benefits. The code fragments of this section demonstrate the expressiveness
of extensible algebraic datatypes in the context of an object-oriented language
like Java. As opposed to almost all approaches mentioned in Section 4.1.1 on
page 150, extensible algebraic datatypes with defaults allow datatypes and op-
erations to be extended in a completely independent way. An extension in one
dimension does not enforce any adaptations of the other one. Since in a pattern
matching statement, new variants are simply subsumed by the default clause, ex-
isting operations can be reused “as is” for extended datatypes. The presented
approach supports a modular organization of datatypes and operations with an
orthogonal extensibility mechanism. Extended compiler phases are derived from
existing ones simply by subclassing. Only the differences have to be implemented
in subclasses. All other functionality is reused from the original system, which
itself is not touched at all. Roudier and Ichisugi refer to this form of software
development as programming by difference [173]. Another advantage is that an
operation for an algebraic datatype is defined locally in a single place. The con-
ventional object-oriented approach would distribute a function definition over
several classes, making it difficult to understand the operation as a whole.

4.2 JaCo: Design Pattern-Based Extensibility 157

4.2 JaCo: Design Pattern-Based Extensibility

This section discusses the extensible Java compiler JaCo. JaCo is written in an
enhanced version of Java supporting extensible algebraic types with defaults. It
uses the technique presented in the previous section to implement extensible
types and components offering extensible functions operating on these types.

The approach from the previous section does not include a mechanism for glu-
ing a certain combination of components and datatypes together to build exten-
sible subsystems which are finally combined to a concrete compiler. In JaCo we
achieve this by using the object-oriented architectural design pattern Context/-
Component [210, 215]. This design pattern is specifically targeted towards build-
ing extensible, hierarchically composed systems. The architecture of JaCo com-
bines the use of algebraic types with this object-oriented pattern yielding a com-
piler which can be flexibly extended without modifying source code and without
anticipating all possible extension scenarios.

We first describe the Context/Component pattern, then we apply it to compil-
ers, and finally we describe how the pattern is used in JaCo.

4.2.1 Architectural Pattern: Context/Component

Architectural patterns. Several design patterns for structuring a system are
described in the literature. The pattern Whole-Part [41] builds complex systems
by combining subsystems with simpler functionality. A whole-object aggregates a
number of simpler objects called parts and uses their functionality to provide its
own service. Composite [74] is a variant of Whole-Part with emphasis on uniform
interfaces of simple and compound objects. A Facade [74] helps to provide a uni-
fied interface for a subsystem consisting of several interfaces, so that this subsys-
tem can be used more easily. All these design patterns only target the structural
decomposition of a system. They do not consider the fact that designs often re-
quire that the concrete implementation of some components or subsystems is not
known at compile-time. For this reason, design patterns like AbstractFactory and
Builder [74] have to be used in addition. They allow to configure instantiations
at runtime, but they are also suitable for configuring a system statically so that it
can be extended easily in future.

The Context/Component pattern. The architectural design pattern Context/-
Component is supposed to facilitate the implementation of extensible hierarchi-
cally composed systems [210]. It separates the composition of a system and its
subsystems from the implementation of the components. This principle makes
it possible to freely extend or reuse subsystems. Among all design patterns men-
tioned before, Context/Component is the only pattern that offers a uniform way
to compose, to extend, to modify, and to reuse components and subsystems in a
non-invasive fashion while still being easy to implement manually.

158 Case Study: Extensible Compilers

4.2.1.1 Idea

We suppose to implement a hierarchically structured component system. The fol-
lowing figure shows a system consisting of two components A and B. Component
B represents a more complex subsystem which aggregates two local subcompo-
nents C and D.

System

Component A Component B

Component C Component D

The main idea of the Context/Component pattern is to separate the configura-
tion of a system from the implementation of its components and to make both
artifacts independently extensible. We call the configuration of systems contexts.
Formally, a context aggregates all components of a system or subsystem. Every
component is embedded in exactly one context. It refers to this context in or-
der to access the other components of the system. For this purpose, the context
object offers a factory method [74] for every of its components. These methods
specify the instantiation protocol of the different components. Typically, either a
new instance of a component is created for every factory method call, or the com-
ponent is a singleton [74] with respect to the context. In this case, the component
is instantiated only once during the first call of the factory method.

Components that represent more complex subsystems, like component B from
the example above, have an own local configuration. In other words, they are
embedded in their own context which specifies all their local subcomponents.
Thus, contexts have a nested structure. Every context might have subcontexts
for more complex subsystems. The context in which an embedded subcontext is
nested, is called the enclosing context. Components defined in a nested context
can access the components of their own context and all the components defined
in enclosing contexts. On the other hand, it is not possible for a component to
access components defined in subcontexts directly.

Following [210], we illustrate the structure of a system in terms of the Con-
text/Component pattern with a graphical notation. For the scenario mentioned
at the top of this page, we get the following picture:

Component DComponent C

Component B

Component A

System System Context

Context B

4.2 JaCo: Design Pattern-Based Extensibility 159

Context
Context parent;

Component
Context context;
void init(Context c);

Context1
ComponentA compA;
ComponentA ComponentA();
ComponentB ComponentB();
Context2 Context2();

Context2
ComponentA compA;
ComponentC compC;
ComponentA ComponentA();
ComponentC ComponentC();

ComponentA
void init(Context1 c);
void init(Context2 c);

ComponentB
void init(Context1 c);

ComponentC
void init(Context2 c);

if (compA == null) {
 compA = new ComponentA();
 compA.init(this);
}
return compA;

ComponentB c = new ComponentB();
c.init(Context2());
return c;

return new Context2(this);

Figure 4.2: Structure of the architectural pattern Context/Component.

Contexts are represented by lines. Singleton components embedded in a context
correspond to boxes located directly beneath the line. A context’s non-singleton
components are depicted as lifted boxes with an arrow pointing to them. More
complex components refer to subcomponents defined in local contexts, which
are drawn as lines directly beneath the component’s box.

4.2.1.2 Structure

The structure of the architectural pattern is shown in Figure 4.2. The pattern has
four different participants:

Context Context is the superclass of all contexts. It simply defines a generic ref-
erence to the enclosing context.

Component The abstract superclass of all components defines a method init
which is called immediately after component creation to initialize the com-
ponent. The context in which the component is embedded is passed as an
argument to init. init typically gathers references to other components
that are accessed within the component. Thus, what we called the configu-
ration and initialization stage in Section 3.4.1, is combined in this pattern
in a single, strict initialization step.

Concrete Context A concrete context like Context1 and Context2 in Figure 4.2
defines a particular context of a system. It provides factory methods for all

160 Case Study: Extensible Compilers

embedded components. These methods specify whether a component is
a singleton relative to the context, and whether a component is initialized
in an own nested context, defining local subcomponents. Furthermore, a
ConcreteContext provides factory methods for creating local subcontexts.

Concrete Component A concrete component like ComponentA in Figure 4.2 im-
plements a specific, instantiatable component of a system. It defines a cus-
tomized init method which is called from the corresponding context im-
mediately after object creation. The context is passed as an argument, en-
abling the initmethod to import references to external components which
are accessed within the component. It is only possible to import compo-
nents from the own or an enclosing context.

Overloading the init method enables a flexible embedding of components
in different concrete context classes. The init methods act as adaptors to
the different contexts in which a component can be embedded.

An important design decision in the pattern above is the separation of compo-
nent creation and component initialization. This separation is important to break
cycles in the dependency-graph of the components. Let’s look at the scenario of
Figure 4.2. By using the symbolic notation we get the following diagram:

ComponentA

Context1

ComponentB

ComponentA ComponentC

Context2

Figure 4.2 also shows the factory method implementations of the concrete con-
text class Context1. For singletons like ComponentA it is important that the object
is first created and then initialized in a second step. Otherwise, the instantiation
of mutually dependent components would cause an endless loop in which alter-
nately new components are created infinitely.

4.2.1.3 Consequences

The Context/Component pattern is a composite architectural design pattern.
Contexts are combinations of AbstractFactories [74] and ObjectServers. They sup-
port hierarchical organizations of complex systems while offering a uniform and
extensible configuration mechanism. Since the components of a system are de-
fined explicitly and centrally within a context class, the context hierarchy can
also be seen as a formal specification of a system architecture.

The Context/Component pattern decouples the system composition from the
implementation of the components. This approach enables a flexible reuse of

4.2 JaCo: Design Pattern-Based Extensibility 161

Context
Context parent;

Component
Context context;
void init(Context c);

Context1
ComponentA compA;
ComponentA ComponentA();
ComponentB ComponentB();
Context2 Context2();

Context2
ComponentA compA;
ComponentC compC;
ComponentA ComponentA();
ComponentC ComponentC();

ComponentA
void init(Context1 c);
void init(Context2 c);

ComponentB
void init(Context1 c);

ComponentC
void init(Context2 c);

Context1X
ComponentD compD;
ComponentD ComponentD();
Context2 Context2();

Context2X
ComponentC ComponentC();

ComponentD
void init(Context1X c);

ComponentCX
void init(Context2X c);

Figure 4.3: Extending a system by subclassing.

components in different, unrelated contexts. Only an adaptor in form of a new
initmethod is necessary to embed a component in a new context. This principle
is illustrated in Figure 4.2 where, for instance, component ComponentA can be
deployed in two completely unrelated contexts, Context1 and Context2.

With the Context/Component pattern it is possible to exchange existing com-
ponents and add new components to a system without modifying any source
code of existing component or context classes. Extended systems evolve out of
existing ones simply by subclassing. Figure 4.3 explains the principle by illustrat-
ing how to extend the system of Figure 4.2. More precisely, Figure 4.3 illustrates a
scenario in which a new top-level component ComponentD is added to the original
system. This is done by extending the top-level context Context1. Furthermore,
component ComponentC gets replaced by a new component ComponentCX in the
local context Context2 of component ComponentB. Figure 4.3 highlights new con-
text and component classes in gray. In the symbolic notation, the scenario looks
like this:

ComponentA

Context1

ComponentB

ComponentA ComponentC

Context2

ComponentD Context1X

ComponentCX Context2X

In this notation, new contexts and components are drawn in black, whereas old

162 Case Study: Extensible Compilers

ErrorHandler

Tools

Compiler CompilerContext

SemanticAnalyzer CodeGeneratorSyntacticAnalyzer

Figure 4.4: A simple compiler architecture.

contexts and components “shine through” in gray. Such contexts and compo-
nents are reused “as is;” i.e. in their original version. Extended components are
displayed on top of the original components (which can still be seen as a shadow)
if extended components replace the original ones.

As this example shows, extending or modifying a system does not entail any
source code modifications of existing classes. By extending a system, one does
not destroy the original version. Both the original and the extended systems can
be deployed separately or even together within one application.

4.2.2 Application to Extensible Compilers

We now combine the techniques developed in Section 4.1.3 and 4.2.1 to build
extensible compilers. Our software architecture for extensible compilers is based
on the classical design of a multi-pass compiler [159]. A multi-pass compiler de-
composes the compilation process into a number of subsequent phases. Concep-
tually, each of these phases is transforming the program representation until tar-
get code is emitted. Today, most compilers use a central data structure, the ab-
stract syntax tree, for the internal program representation. This syntax tree is ini-
tially generated by the parser and modified continuously in the following phases.
From the software architecture’s point of view, this design can be classified as a
Repository [184]. See Figure 4.1 on page 151 for an illustration.

We now apply the Context/Component design pattern. Figure 4.4 shows the
structure of a simple compiler. The compiler is modeled as a component of the
top-level Tools context. The compiler is a composite component, consisting of
several subcomponents that are defined in the local CompilerContext. Except
for the ErrorHandler component, these subcomponents model the different com-
pilation phases. By declaring ErrorHandler to be a singleton component with
respect to its context, we ensure that every compiler phase accesses the same
ErrorHandler object.

The implementation of this structure as an instance of the Context/Compo-
nent pattern is straightforward. We only show some interesting code fragments,
starting with the Tools class:

4.2 JaCo: Design Pattern-Based Extensibility 163

class Tools extends Context {
Compiler Compiler() {
Compiler c = new Compiler();
c.init(CompilerContext());
return c;

}
CompilerContext CompilerContext(){ return new CompilerContext(this);}

}

The Tools class defines the factory method for the Compiler component and the
nested CompilerContext. We follow the naming convention of giving factory
methods the name of the method’s return type. The CompilerContext class con-
tains the actual configuration of the compiler. It defines the different compiler
phases and a global ErrorHandler component.

class CompilerContext extends Context {
CompilerContext(Tools encl) { super(encl); }
SyntacticAnalyzer SyntacticAnalyzer() {
SyntacticAnalyzer c = new SyntacticAnalyzer();
c.init(this);
return c;

}
SemanticAnalyzer SemanticAnalyzer() { ... }
CodeGenerator CodeGenerator() { ...}
ErrorHandler err;
ErrorHandler ErrorHandler() {
if (err == null) { err = new ErrorHandler(); err.init(this); }
return err;

}
}

In our compiler, data like abstract syntax trees is represented with extensible
algebraic types. Most compiler phase implementations are similar to the one of
SemanticAnalyzer shown in the following listing. They define a method operat-
ing on the abstract syntax tree for performing the actual operation of the com-
piler phase. Pattern matching is used to distinguish the different Tree nodes.

class SemanticAnalyzer extends Component {
ErrorHandler ehandler;
void init(CompilerContext cc) {
ehandler = cc.ErrorHandler();

}
void analyze(Tree tree) {
switch (tree) {
case Variable(String name): ...
...

}
}

}

164 Case Study: Extensible Compilers

ErrorHandler

Tools

Compiler CompilerContext

SemanticAnalyzer CodeGeneratorSyntacticAnalyzer

Compiler

NewTools

NewCompiler

NewCompilerContext

NewSemantic
Analyzer

SyntacticAnalyzerTranslator SemanticAnalyzer

Figure 4.5: An extended compiler architecture.

Finally, we present the implementation of the main compiler component. In
method init, this component retrieves all the compiler phases from its deploy-
ment context. Method compile is used to execute the phases sequentially.

class Compiler extends Component {
SyntacticAnalyzer syntactic;
SemanticAnalyzer semantic;
CodeGenerator codegen;
void init(CompilerContext cc) {
syntactic = cc.SyntacticAnalyzer();
semantic = cc.SemanticAnalyzer();
codegen = cc.CodeGenerator();

}
void compile(String file) {
Tree tree = syntactic.parse(file);
semantic.analyze(tree);
codegen.generate(tree);

}
}

Figure 4.5 depicts a possible extension of our small exemplary compiler. We
assume that new syntactical constructs, like the Zero and Succ terms on page 155,
were added to the source language. Therefore, both a new syntactical and a
new semantical analysis are needed. Furthermore, a new compilation phase
Translate is introduced, which transforms syntax trees of the extended language
into trees of the original source language. Since it is still possible to use the orig-
inal semantical analysis, we can check a program transformed by the Translate
phase again before applying the code generator adopted from the old compiler.
This second semantical analysis might also be imposed by the translator, which
might not preserve attributes like typings or scopes, determined by the first se-
mantical analysis. The code generator typically relies on a proper attribution of
the structure tree and therefore requires a second semantical analysis after the
syntax tree transformation if the transformation does not preserve the full tree
attribution. Here is an implementation of the corresponding compiler context
hierarchy extension:

4.2 JaCo: Design Pattern-Based Extensibility 165

class NewTools extends Tools {
NewCompiler NewCompiler() {
NewCompiler c = new NewCompiler();
c.init(NewCompilerContext());
return c;

}
NewCompilerContext NewCompilerContext() {
return new NewCompilerContext(this);

}
}

In the NewTools context, the existing Compiler factory method is not overridden,
making it possible to call both, the new and the old compiler from that context.
The NewCompilerContext class provides an extended syntactical analysis and in-
cludes two new compiler phases, NewSemanticAnalyzer and Translator.

class NewCompilerContext extends CompilerContext {
NewCompilerContext(NewTools encl) { super(encl); }
SyntacticAnalyzer SyntacticAnalyzer() {
NewSyntacticAnalyzer c = new NewSyntacticAnalyzer();
c.init(this);
return c;

}
NewSemanticAnalyzer NewSemanticAnalyzer() {
NewSemanticAnalyzer c = new NewSemanticAnalyzer();
c.init(this);
return c;

}
Translator Translator() { ... }

}

The NewSemanticAnalyzer phases extends the already existing semantic ana-
lyzer. The extended compiler uses both, the former semantic analysis which gets
inherited to NewCompilerContext and the new extended phase. A possible imple-
mentation of the new semantic analyzer is shown in the following program. The
new semantic analyzer class refines the analyze function by overriding the exist-
ing analyzemethod with a method which handles the new syntactical constructs
and which delegates all other cases to the former implementation.

class NewSemanticAnalyzer extends SemanticAnalyzer {
void analyze(Tree tree) {
switch (tree) {
case Zero: ...
case Succ(Tree tree): ...
default: super.analyze(tree);

}
}

}

166 Case Study: Extensible Compilers

With this new semantic analysis and a translator component which is not de-
scribed in more detail here, we can finally implement the new main component
of the compiler:

class NewCompiler extends Compiler {
NewSemanticAnalyzer newsemantic;
Translator trans;
void init(NewCompilerContext cc) {
super.init(cc);
newsemantic = cc.NewSemanticAnalyzer();
trans = cc.Translator();

}
void compile(String file) {
Tree tree = syntactic.parse(file);
newsemantic.analyze(tree);
tree = trans.translate(tree);
semantic.analyze(tree);
codegen.generate(tree);

}
}

This example shows that components and configurations (contexts) can be
extended and reused quite flexibly in the given framework. This is due to a
strict separation of datatype definitions, component implementations, and the
configuration of systems. Extensible algebraic datatypes with defaults provide a
mechanism for separating datatype definitions from components encapsulating
operations, whereas the Context/Component pattern promotes a separation of
components from system configurations.

4.2.3 Architecture of JaCo

JaCo is a multi-pass Java compiler. It’s architecture and implementation is de-
scribed in detail in [210]. For this case study, we only present the relevant facts
so that a comparison with its counterpart, implemented in the programming lan-
guage Keris, is possible.

Data representation. A compiler has to deal with a wide range of program-
ming language specific data, which has to be represented in a suitable way. Exam-
ples are the abstract syntax of programs, types, symbols, scopes, or compile-time
constants. Since JaCo is intended to be extensible, all data representations have
to be extensible as well.

In JaCo, data with different variants is expressed with extensible algebraic
datatypes. Functions operating on such data are organized in extensible “mod-
ules,” one for every algebraic type. Concrete instances of all datatypes are cre-
ated solely via factories, never directly by instantiating a class.

4.2 JaCo: Design Pattern-Based Extensibility 167

Separating datatype definitions from function definitions does not only allow
programmers to extend both more flexibly, it also allows them to have different
implementations of the functionality in different contexts of the compiler with-
out changing the identity of the data. Imagine a representation for types and
a subtype operation which checks if a type is a subtype of another given type.
Depending on the compiler pass, this subtype operation might have to behave
differently. In compilers, or generally in systems where it is impractical to up-
date all objects just for updating their functionality, if would here be necessary to
parameterize the subtype operation with the current compiler pass so that this
operation could be equipped with context-sensitive behavior.

Phase decomposition. JaCo’s compiler phases are organized hierarchically in
accordance with the following principle:

1. A compiler run is implemented by a compiler phase.

2. A compiler phase is either atomic or compound.

3. An atomic phase traverses the structure tree, modifies it, or produces other
side-effects.

4. A compound phase consists of a sequence of other compiler phases.

A typical multi-pass compiler simply consists of a sequence of atomic phases.
Compound phases on the other hand introduce abstraction layers that help to un-
derstand a system more easily in a top-down manner. Furthermore, compound
phases easily allow to reuse subsystems consisting of several phases more safely.
For instance, if a semantic analysis phase is needed more than once, it can sim-
ply be instantiated multiple times. Without compound phases, we would have
to instantiate all atomic phases that belong to the semantic analysis and orga-
nize them in the same sequential order to avoid inconsistencies. This is a tedious
and error-prone procedure which also duplicates maintenance. Changes in the
semantic analysis have to be carried out in several places consistently. Similarly,
compound phases make it more easy to modify subsystems of the compiler locally
in a safe way.

Figure 4.6 presents a structural decomposition of JaCo’s compilation process
into a hierarchy of compiler phases. This figure also indicates in what order the
different phases are executed at runtime. As Figure 4.7 shows, it is straightfor-
ward to implement such a hierarchy of compiler phases with the Context/Com-
ponent pattern. Here, every compound phase has a local component context
which defines all sub-phases. For historic reasons, compound phases are not
implemented as singletons. The original intention was to allow a phase to be
used multiple times in the same context based on a runtime decision; but none
of JaCo’s compiler extensions ever made use of this feature.

168 Case Study: Extensible Compilers

Compiler

Syntactic
Analyzer

SemanticAnalyzer Backend

ClassWriter

Enter
Classes

Import
Classes

Attribute
Trans
Inner

Enter
Members

Bytecode
Gen

Semantic
Analyzer

Figure 4.6: JaCo’s hierarchy of compiler phases.

Services. As shown in Figure 4.1 on page 151, compilers also include various
components that do not implement a compiler phase directly, but rather provide
services used across compiler phases. JaCo provides such components for the
following tasks:

1. Data input and output (e.g. class loading, pretty printing, user interactions
like error output, etc.),

2. Administration of global data structures (e.g. name table management,
scope management, classfile management, etc.),

3. Function libraries for a specific datatype (e.g. operations on types, con-
stants, or symbols),

4. Descriptions of source and target language aspects (e.g. specification of pre-
defined operators, modifiers, types, bytecodes, etc.).

This is not a mutually exclusive classification of JaCo’s components. Sometimes
it is not possible to assign a component to exactly one category. For instance, the
function library for symbols is combined with the administration of the global
symbol table. Retrospectively, this was a major design flaw, since it sometimes re-
stricts reuse significantly. It is, for example, not possible to have a compiler with
two different function libraries for symbols (where one extends the other one),
since this would yield two global symbol tables. This problem also prevented a
clean implementation of the Keris compiler as an extension of JaCo. Since this
compiler translates Keris programs (typed with dependent types) to plain Java
(typed with purely nominal types), it is important to have, at least, two different
versions of the type operations: one corresponding to Java’s typing rules, and
an extended one respecting Keris dependent type system. Since type operations
and predefined global types were jointly defined within the same component, it
was not possible to create two instances of the type operations, since those would
inconsistently refer to the two sets of predefined global types.

4.2 JaCo: Design Pattern-Based Extensibility 169

To
ol

C
on

te
xt

Ja
va

C
om

pi
le

r

Er
ro

rH
an

dl
er

M
an

gl
er

P
re

tt
yP

rin
te

r
D

is
as

se
m

bl
er

C
la

ss
fil

es
C

la
ss

R
ea

de
r

Si
gn

at
ur

es
N

am
eR

es
ol

ve
r

M
od

ifi
er

s
O

pe
ra

to
rs

Tr
ee

s
Ty

pe
s

D
ef

in
iti

on
s

C
on

st
an

ts

C
om

pi
le

r

Sy
nt

ac
tic

A
na

ly
ze

r

Sc
an

ne
r

P
ar

se
r

Se
m

an
tic

A
na

ly
ze

r

En
te

rC
la

ss
es

Im
po

rt
C

la
ss

es
En

te
rM

em
be

rs
A

tt
rib

ut
e

Ty
pe

C
he

ck
er

A
cc

ou
nt

an
tS
em

an
ti

c
C

on
te

xt
B

ac
ke

nd

Tr
an

sI
nn

er

B
yt

ec
od

eG
en

Ite
m

s
C

od
er

Se
m

an
tic

A
na

ly
ze

r

B
ac

ke
nd

C
on

te
xt

S
yn

ta
ct

ic
C

on
te

xt

C
la

ss
W

rit
er

C
om

pi
le

rC
on

te
xt

M
ai

nC
on

te
xt

Figure 4.7: Decomposition of JaCo into components and contexts.

170 Case Study: Extensible Compilers

Configuration. A decomposition of JaCo into all the various components can
be found in Figure 4.7. In this figure, the architecture of JaCo is shown as an in-
stantiation of the Context/Component pattern. Compiler phases are emphasized
with boxes in boldface. The most interesting aspect in the configuration of JaCo
is the reuse of the semantic analysis phase. It is used in the CompilerContext as
a top-level phase and within the BackendContext as a local phase for attributing
the syntax tree produced by the TransInner tree translation phase which elimi-
nates inner classes.

Except for the parser, all components are written by hand. The parser is gener-
ated by JCup from an LALR(1) grammar. JCup is a YACC-style parser generator
derived from JavaCup [91]. A brief description of all compiler components can
be found in [210].

4.2.4 Extending JaCo

Overview. In general, JaCo is extended by performing at least some of the fol-
lowing four steps:

1. Extending data structures:
New data variants are included by extending algebraic types, existing
data variants are updated by subclassing. To integrate new or extended
datatypes into the compiler, the corresponding factory classes have to be
extended.

2. Updating existing components:
Existing components are subclassed to modify existing functionality by
overriding, and to provide new functionality in form of new fields and meth-
ods.

3. Creating new components

4. Configuring the extended compiler:
An extended context hierarchy has to be built on top of the existing one
which integrates new and modified components and sub-contexts.

The general idea is to create a new compiler by only implementing the differences
in form of subclasses and by reusing all other compiler components and config-
urations “as is.” Implementing an extension in this fashion (i.e. purely based
on inheritance) guarantees that the old compiler is not affected by the changes
and therefore can be used as before. Furthermore, due to late binding, the new
and the old compiler share most binary components. Physically, the new com-
piler consists only of classfiles that describe the differences compared to the old
version. This form of program development is often called programming by differ-
ence [173, 94].

4.2 JaCo: Design Pattern-Based Extensibility 171

KCompiler

KSyntactic
Analyzer

KSemanticAnalyzer Backend

KClass
Writer

Enter
Classes

Import
Classes

Attribute
Trans
Inner

Semantic
Analyzer

Bytecode
Gen

Enter
Members Trans

Modules
Semantic
Analyzer

Figure 4.8: KerisC’s hierarchy of compiler phases

A Keris compiler based on JaCo. As an example for a typical JaCo extension,
we now look at KerisC, our first compiler prototype for Keris. KerisC works
like most compilers for programming languages that extend Java: It implements
a customized parser (generated from a modified LALR grammar) which gener-
ates extended abstract syntax trees. These trees are analyzed by a customized
semantical analysis phase. This phase is followed by a translation phase which
transforms extended abstract syntax trees to regular Java syntax trees. Some
compilers also transform tree attributes so that after the transformation the tree
is still fully attributed (with type and symbol information). For simplicity, exten-
sions of JaCo typically do not do this. Instead, the syntax tree is type checked
again after the tree transformation phase, restoring all tree attributes. After this
second semantical analysis, the standard Java backend generates bytecode for all
classes. In the Java backend, only the component which writes out classfiles has
to be modified so that the original types and scopes (which are probably lost after
the transformation phase) are saved in a special attribute inside of the classfiles.

An overview over the phases of KerisC is given by Figure 4.8. Another view
on the architecture of the system gives the Context/Component diagram in Fig-
ure 4.9. This diagram shows that for implementing KerisC, almost no new com-
piler components have to be developed from scratch. Mostly old components
have to be adapted and new extended contexts have to be created that instanti-
ate new components instead of old ones.

Most remarkable in Figure 4.9 is the way in which the original semantic anal-
ysis is reused. It appears three times in the compiler; two times, the original
semantic analysis for Java is reused “as is,” one time, an extension of the original
analyzer is deployed which implements the type checking procedure for Keris.
The compiler prototype discussed in this section, performs type checking in the
framework set up by the original Java type checker; i.e. the semantic analysis con-
sists of four consecutive phases: EnterClasses, ImportClasses, EnterMembers,
and Attribute. Without using advanced analysis techniques like lazy type check-
ing, it is not possible to check Keris programs properly in these four phases. This
is why KerisC only compiles a subset of Keris. This subset sufficed to bootstrap
a second compiler which, this time, implements the full language. The second
compiler uses many more type-checking phases (see Section 4.3 for details).

172 Case Study: Extensible Compilers

To
ol

C
on

te
xt

Er
ro

rH
an

dl
er

M
an

gl
er

D
is

as
se

m
bl

er
C

la
ss

fil
es

M
od

ifi
er

s
O

pe
ra

to
rs

C

on
st

an
ts

Sy
nt

ac
tic

A
na

ly
ze

r
S

em
an

ti
c

C
on

te
xt

B
ac

ke
nd

Tr
an

sI
nn

er

Ite
m

s
Co

de
r

Se
m

an
tic

A
na

ly
ze

r

B
ac

ke
nd

C
on

te
xt

S
yn

ta
ct

ic
C

on
te

xt

C
om

pi
le

rC
on

te
xt

M
ai

n
C

on
te

xt

Se
m

an
tic

A
na

ly
ze

r

En
te

rC
la

ss
es

Im
po

rt
C

la
ss

es
En

te
rM

em
be

rs
A

tt
rib

ut
e

A
cc

ou
nt

an
t

S
em

an
ti

c
C

on
te

xt

S
em

an
ti

cC
on

te
xt

K
To

ol
C

on
te

xt

K
er

is
C

om
pi

le
r

K
P

re
tt

yP
rin

te
r

K
C

la
ss

R
ea

de
r

K
Si

gn
at

ur
es

K
N

am
eR

es
ol

ve
r

K
Tr

ee
s

K
Ty

pe
s

K
D

ef
in

iti
on

s

K
C

om
pi

le
r

K
Sc

an
ne

r
K

P
ar

se
r

K
Se

m
an

tic
A

na
ly

ze
r

K
En

te
rC

la
ss

es
K

Im
po

rt
Cl

as
se

s
K
En

te
rM

em
be

rs
K

A
tt

rib
ut

e
K

Ty
pe

C
he

ck
er

K
A

cc
ou

nt
an

t

K
B

yt
ec

od
eG

en

K
S

yn
ta

ct
ic

C
on

te
xt

K
C

la
ss

W
rit

er
K

C
om

pi
le

rC
on

te
xt

M
od

ul
eC

on
te

xt
s

K

M
ai

n

C

on
te

xt

K
S

em
an

ti
c

C
on

te
xt

K
Ty

pe
C

he
ck

er
JS

em
an

ti
cC

on
te

xt

..
.

JS
em

an
ti

cC
on

te
xt

K
B

ac
ke

nd
C

on
te

xt

Tr
an

sM
od

ul
es

A
lg

eb
ra

ic
Su

pp
or

t
La

be
lle

r
Tr

an
sC

on
te

xt

Figure 4.9: Decomposition of KerisC into components and contexts. Contexts and com-
ponents reused from JaCo “shine through” in gray.

4.2 JaCo: Design Pattern-Based Extensibility 173

4.2.5 Experience

Applications. Throughout the last four years, JaCo was successfully used in
various projects. Apart from the initial extension with algebraic types [210,
214, 215], several other language extensions have been implemented and are
still being maintained by different people [48, 62, 177, 216, 98, 161]. Among
the implementations is a compiler for Java with synchronous active objects, pro-
posed by Petitpierre and implemented by Petitpierre and Cavin [161]. Itzstein
uses JaCo to implement a compiler for Java with join synchronization [98]. An-
other extension introduces Büchi and Weck’s compound types together with type
aliases [38]. Operator overloading was added to the Java programming language
by Saidji [177], in the style advocated by Gosling [81]. Furthermore, Eugster,
Guerraoui, and Damm implemented a domain specific language extension sup-
porting publish/subscribe primitives on top of JaCo [62]. A rather exotic exten-
sion of JaCo is an implementation of a small language based on join calculus [73].
It replaces the syntactic analyzer pass with a full compiler for join calculus that
generates a Java syntax tree as output. This tree is then fed into the remaining
Java compiler to generate Java bytecodes. In this extension, JaCo is used as a
backend for a compiler of a language, which has nothing in common with Java.

Benefits. JaCo turned out to be a valuable tool for rapidly implementing pro-
totype compilers for language extensions. For the implementation of the exten-
sions mentioned before, it was not necessary to modify the code of the base com-
piler a single time. JaCo’s architecture and implementation was open enough
to support a broad range of extensions involving new or modified linguistic con-
structs, type system extensions, and backend modifications. Changes of the base
compiler were all related to modifications in the specification of the Java pro-
gramming language or to bugs found in the compiler implementation. These
changes can usually be elaborated in such a way that binary compatibility of Java
classfiles is not broken. As a consequence, all compilers which are derived from
the base compiler benefit immediately from the changes, since they inherit them.
Because of Java’s dynamic loading and late binding mechanisms, it is not even
necessary to recompile derived compilers.

The implementation of KerisC on the other hand revealed that the semantic
analysis of JaCo is difficult to extend and reuse if the type system of the extended
language differs significantly from the relatively simple type system of Java. As
Section 4.3.2 and 4.3.3 will discuss, these restrictions are mainly due to architec-
tural “mistakes” in the type-checking component. This experience also teaches
that developing extensible components requires good knowledge of the domain
and a good understanding of future evolution scenarios. A well designed frame-
work can facilitate the development of extensible components, but alone, it can
never guarantee that concrete component implementations are extensible by de-
fault.

174 Case Study: Extensible Compilers

Shortcomings. As the experience with JaCo shows, the Context/Component
design pattern provides a relatively simple implementation technique that allows
one to built hierarchically structured systems that can be extended flexibly. In
practice though, many programmers found it quite time consuming to set up an
initial context hierarchy layer for extended compilers by hand. Therefore, the
build script of JaCo provides an option for automating the generation of new
empty compiler extensions. This meta-programming tool helped to speed up the
process of getting a first compiler extension up and running significantly.

While the separation of components from configurations offers, in principle,
advanced reuse capabilities and allows one to reason about the composition of
a system independently from the concrete implementation, some programmers
had difficulties to use a compound component together with the corresponding
context consistently in a large system. The two artifacts are only weakly coupled
through the init method, and a consistent use of the two is not enforced by the
programming protocol (this might possibly not be desired for some cases).

Another minor nuisance is the problem of change propagation. If one wants
to replace a component in a “deeply nested” context, all enclosing contexts have
to be extended as well to finally incorporate the new context which defines the
new component. This is a general problem of hierarchical systems which are
expressed as nested layers and which are extended by subclassing.

Both extensible algebraic types and object types defined by regular classes
can be specialized. Nevertheless, it is not possible to specialize components and
types consistently in a type-safe way. Methods that operate on a specific type T
can be specialized by overriding, but it is not possible to narrow parameter type T
in clients to a more specialized type, since Java’s type system requires methods to
override other methods invariantly. Java imposes this restriction since a covari-
ant change of a parameter type would be unsound in general [46]. Therefore,
all extensions of JaCo use type casts to circumvent the restrictions. The down-
side of this approach is that the compiler cannot check anymore if specialized
components are only used in conjunction with objects of specialized types. This
is checked dynamically in all places where components make use of specialized
functionality. Overall, this is a serious shortcoming — but all software developed
in Java-like languages is subject to it.1 Therefore, work on the programming lan-
guage Keris had a strong focus on mechanisms that enforce that component ab-
stractions and types evolve consistently and that abstractions can be modified in
a covariant manner.

1The designer of the programming language Eiffel [133] considered the covariant refine-
ment of method parameters to be of such an importance for the development of extensible soft-
ware, that he integrated this feature into the language, even though this mechanism was known
to be unsound. This pragmatic design decision is unfortunate since it hides potential problems
from programmers. In Java-like languages with invariant method overriding, explicit type casts
make the programmer aware of possible inconsistencies that may arise when a method parameter
has to be narrowed to a specialized type. Languages like Scala [151], gBeta [58], FamilyJ [208],
or Keris show how to solve the problem in a statically type-safe way via dependent object types.

4.3 JaCo2: Extensibility with Extensible Modules 175

4.3 JaCo2: Extensibility with Extensible Modules

JaCo2 is a re-implementation of the extensible Java compiler JaCo in Keris.
Where JaCo’s implementation makes extensive use of design patterns and uses
ad-hoc workarounds to refine components covariantly, JaCo2’s implementation
exploits the linguistic constructs of Keris. We will show how these constructs
help to safely develop a robust, extensible application.

4.3.1 Architecture of JaCo2

System composition. The architecture of JaCo2 closely corresponds to the
one of JaCo. Basically every component of JaCo is mapped to a Keris module.
Compound components are mapped to modules that aggregate submodules. An
overview over the architecture of JaCo2 is given in Figure 4.10. As introduced in
Section 3.2, boxes represent modules and nesting is used to express submodule
aggregation.

Where the experience showed flaws in the design of JaCo, this was corrected
in JaCo2. Therefore, there are some slight variations in the structure of the
system compared to the original JaCo implementation. For example, module
TYPEOP was derived from the JaCo component Types by factoring out compiler-
phase-dependent type operations. This separates the definition of type represen-
tations and type operations and enables the use of different operations in differ-
ent contexts with the same type representation. For instance type operations
differ in different versions of the semantic analyzer. In JaCo this issue was ad-
dressed with a hack. A compiler-global variable in the Types module was used to
switch between different versions of the type operations.

Another variation in the design of JaCo2 is caused by the conversion of for-
mer singleton objects into modules. For instance, all the submodules of the
global MAIN module and the submodules of the CLASSREADER and CLASSWRITER
modules had been singletons originally (and no components in the sense of the
Context/Component design pattern).

Module reuse. Figure 4.10 does not fully reveal how modules are reused al-
ready in the base compiler. Modules that are being reused “as is” in different
contexts appear multiple times with the same name in the figure. Examples are
the modules SEMANTIC_ANALYZER, TYPEOP, and BASICRESOLVER. BASICRESOLVER is
the parent module of RESOLVER. Such refinements and specializations of base
compiler modules are also not visible in Figure 4.10. For instance CLASSPATH is a
specialization of the PATH module, which is used to represent source paths in the
compiler. Furthermore, all modules representing compiler phases are special-
izations of a generic PROCESSOR module which itself refines module DEBUGGABLE.
Module DEBUGGABLE implements support for debugging a compiler component in
a generic way.

176 Case Study: Extensible Compilers

MAIN

OPTIONS

FILECACHE

CLASSPATH

PATH

DEBUG

POSITION

COMPILER

REPORT

UNITS

NAMES

CONVERSIONS

AST

ASTMAKE

PRINTER

CONSTS

TYPES

DEFS

KINDS

FLAGS

SCOPES

PREDEF

OPERATORS

BYTECODESMANGLER

CODE

SIGNATURES

CLASSFILES

SYNTACTIC_ANALYZER

TOKENSSCANNER

PARSER

SEMANTIC_ANALYZER

TYPEOP

RESOLVER

CHECKER

ATTRIBENVS

CLASS_ENTER

MEMBER_ENTER

CLASS_IMPORT

ANALYZER

BACKEND

CLASSREADER

ATTRIBREADER

CLASSIN POOL

CLASSWRITER

ATTRIBWRITER CLASSOUT

TRANSINNER

INNERENVS

GENERATOR

GENENVS

CODER

TYPEOP

ITEMS

BASICRESOLVER

SEMANTIC_ANALYZER

Figure 4.10: Hierarchical composition of JaCo2.

4.3 JaCo2: Extensibility with Extensible Modules 177

Covariant module specialization. As an example for the simultaneous refine-
ment of cooperating modules in combination with the refinement of class fields,
we now focus on the implementation of module TRANSLATOR. This module plays
the role of a generic template for syntax tree translation phases in the compiler.
In it’s original form, it just implements the identity translation. Here is a code
fragment of the module:

abstract module TRANSLATOR specializes PROCESSOR requires ... {
module ENVS;
...
Tree transDecl(Tree tree, Env env) { ... }
Tree transStat(Tree tree, Env env) { ... }
Tree transExpr(Tree tree, Env env) { ... }
Tree transType(Tree tree, Env env) { ... }
...

}

For the various syntactical categories, module TRANSLATOR provides a translation
method which, in its original form, just returns a copy of the syntax tree. Spe-
cializations of this module override these methods and handle some tree nodes
specially. Since the translation of trees is, in general, context dependent, the
tree translation methods also receive an environment which encapsulates infor-
mation about the context of a tree node. These environments are represented
with the help of submodule ENVS which defines the class field Env.

module ENVS requires ... {
class Env implements IEnv = CEnv;
interface IEnv {
IEnv(Tree tree, Env next);
Env next();
Tree tree();
MethodDecl enclMethod();
ClassDecl enclClass();
CompilationUnit topLevel();

}
class CEnv implements IEnv {
...

}
}

In specializations ofTRANSLATOR it is possible to override submoduleENVSwith
a specialized version in order to collect other, translation specific context informa-
tion. The specialized translator module can safely access the new context data
without the use of type casts. In the base compiler, only module TRANSINNER spe-
cializes TRANSLATOR. It provides a refined submodule INNERENVS which is used to
collect free variables. This information is used for “lambda lifting” [162] anony-
mous inner classes — one of the main tasks performed by module TRANSINNER.

178 Case Study: Extensible Compilers

4.3.2 Extending JaCo2

Module refinements and specializations are the primary extensibility mecha-
nisms in Keris. These mechanisms are already exploited in the base version of
the extensible Java compiler JaCo2. Extensions of JaCo2 are most easily derived
in a top-down manner. Whenever a second implementation of an already existing
module is needed, the existing module is specialized, otherwise modules evolve
through refinements.

Figure 4.11 illustrates how the implementation of JaCo2 was used to develop
KeCo, an (extensible) compiler for Keris. New modules are displayed as black
boxes; module refinements that override a previous version overlay the former
module in the diagram. These overridden submodules are still partly visible as
a shadow of the overriding submodules. Modules that are inherited and reused
“as is” from the base compiler are drawn in gray as if they would “shine through”
from the base implementation.

In the top-level module K_MAIN, only submodule K_OPTIONS was overridden.
The full Java compiler is inherited “as is” to the Keris compiler, so that it can
be used if the command-line option “-java” is set. The actual Keris compiler
module K_COMPILER is a specialization of the Java compiler module, and as such,
can coexist with it in the same context. The K_COMPILER module specifies many
customizations:

• Source language description modules like K_AST, K_FLAGS, K_TYPES, and
K_DEFS are updated to cover Keris-specific information.

• Target code relevant description modules like K_SIGNATURES, K_CLASSFILES,
K_CLASSREADER, and K_CLASSWRITER are customized to preserve Keris-
specific meta-data and enable separate compilation.

• New data structures for dealing with type and module collections got intro-
duced by the new modules TYPECOLL and MODCOLL.

• All top-level compiler phases of the base compiler are overridden with ver-
sions that enable the translation and analysis of Keris programs.

The semantical analysis underwent a major restructuring which was mainly
necessary because the type system of Keris has a quite different nature compared
to the relatively simple type system of Java. It now consists of 10 subsequent sub-
phases from which only one could be reused as it was. Besides the 3 subphases
that were inherited and refined, 6 new phases had to be introduced. An overview
over the evaluation order of the various semantical analysis phases is given by
Figure 4.12.

Please note that for the implementation of KeCo it was necessary to
develop two different extensions of JaCo2’s semantical analysis. Besides
K_SEMANTIC_ANALYSIS there is also a module J_SEMANTIC_ANALYSIS which ex-
tends JaCo2’s version minimally by supporting covariant return types when

4.3 JaCo2: Extensibility with Extensible Modules 179

K_MAIN

COMPILER

FILECACHE

CLASSPATH

PATH

DEBUG

POSITION

REPORT

UNITS

NAMES

CONVERSIONS

CONSTS

KINDS

SCOPES

PREDEF

OPERATORS

BYTECODESMANGLER

CODE

K_SEMANTIC_ANALYZER

CLASS_IMPORT

K_BACKEND

K_CLASSREADER

K_BACKEND

CLASSIN POOL

K_CLASSWRITERK_CLASSWRITER

CLASSOUT

TRANSINNER

INNERENVS

K_GENERATOR

GENENVS

CODER

TYPEOP

ITEMS

BASICRESOLVER

K_MAIN

OPTIONSK_OPTIONS K_COMPILER

K_SYNTACTIC_ANALYZER

K_SCANNERK_SCANNER K_TOKENSK_TOKENS

K_PARSERK_PARSER

K_SYNTACTIC_ANALYZER

TRANSFORMER

TRANSMODULESOPTIMIZER

J_SEMANTIC_ANALYZER

J_SEMANTIC_ANALYZERJ_SEMANTIC_ANALYZER

K_GENERATOR

K_CLASSREADER

K_ATTRIBREADERK_ATTRIBREADER

K_ATTRIBWRITERK_ATTRIBWRITER

MODULE_ENTER

MODULE_INHERIT

MODULE_IMPORT

MEMBER_PREPARE

MODULE_DEPEND

TYPECOLL MODCOLLK_DEFS

K_TYPES

K_AST

K_ASTMAKE

K_CLASSFILES

K_FLAGS

K_PRINTER

K_SIGNATURES

K_TYPEOP

K_RESOLVER

K_CHECKER

K_ATTRIBENVS

K_ANALYZER

K_CLASS_ENTER

MODULE_PREPARE

K_MEMBER_ENTER

COMPILER

Figure 4.11: Hierarchical composition of KeCo, an extension of JaCo2.

180 Case Study: Extensible Compilers

Semantic Analyzer

Class
Enter

Class
Import

Module
Enter

Module
Prepare

Module
Inherit

Module
Import

Member
Prepare

Member
Enter

Module
Depend

Analyzer

Figure 4.12: Compiler subphases of KeCo’s semantical analysis.

J_SEMANTIC_ANALYZER

TYPEOP

ATTRIBENVS

CLASS_ENTER

MEMBER_ENTER

CLASS_IMPORT

ANALYZER

J_RESOLVER

J_CHECKER

J_RESOLVER

J_CHECKER

J_SEMANTIC_ANALYZER

LABELS

TRANSMODULES

ALGEBRAICS

K_TYPEOP

PATNODES

MATCHER

Figure 4.13: Configuration of J_SEMANTIC_ANALYZER and TRANSMODULES.

methods are overridden. Figure 4.13 shows that for implementing this exten-
sion, only the submodules RESOLVER and CHECKER have to be overridden in the
original semantical analysis. The modified semantical analysis is used in both
the TRANSFORMERmodule and the K_BACKENDmodule. The transformation module
translates, with the help of submodule TRANSMODULES, Keris code into pure Java
code, still keeping covariant return types. The backend inserts bridge methods
to bridge the gap between Keris’ covariant and Java’s invariant method overrid-
ing [32]. Only for this reason it was necessary to extend the backend in KeCo
as well. The structure of the backend module is displayed in Figure 4.11, the
structure of TRANSMODULES can be found in Figure 4.13.

4.3.3 Experience

It was straightforward to develop an implementation of JaCo in Keris based on
the original compiler design. The re-implementation of the compiler in Keris
even revealed several design-flaws and inconsistencies in the original architec-
ture which were corrected in the new compiler.

Revealed design flaws. Some design flaws were discovered through Keris’
strict mechanism for defining context dependencies explicitly opposed to the
Context/Component approach where components mention the deployment con-
text explicitly, but do not precisely state the accessed components. For instance

4.3 JaCo2: Extensibility with Extensible Modules 181

the problem with the former Types module, described in Section 4.3.1, was dis-
covered this way. Here, some modules would not compile without referencing
the types module, even though they did not access any functionality of this mod-
ule directly. The sole reason for this access was to toggle a flag which controlled
the concrete implementation of the type operations which were executed indi-
rectly through other modules. This approach was necessary to allow different
contexts of the compiler to refer to different type operations but to share the same
type representation.

The problem was solved by breaking up the original Types component into
two modules TYPES and TYPEOP, one defining the data structure for representing
types, the other one defining operations on types. With this approach it was pos-
sible to have a global type representation, and allow at the same time to instan-
tiate different versions of the TYPEOP module in different contexts. This change
triggered further minor corrections in the structure of the compiler which all had
to do with a clean separation between functionality shared by all compiler phases
and context-sensitive functionality.

The change also revealed a quite serious inconsistency in JaCo. JaCo had
global typechecking and name resolution components (where the latter de-
pended on the typechecking component). While the typechecking component
was only used by the semantic analysis, name resolution functionality was also
needed by the backend — this was the initial motivation for integrating both com-
ponents on a global level. Unfortunately, even though the two compiler phases
can share implementations for both components in the base compiler, possible
compiler extensions might require changes for semantic analysis purposes only.
But in the original design, this would inevitably also affect the backend. There-
fore, JaCo2 abolishes global typechecking and name resolution components and
introduces two local and independent modules CHECKER and BASICRESOLVER in-
stead. Since some advanced resolution functionality depends on functionality
provided by CHECKER, a module RESOLVERwas created that refines BASICRESOLVER
just to introduce calls to the typechecking module. With this infrastructure it was
easy to introduce name resolution and typechecking functionality in form of the
two modules RESOLVER and CHECKER in the semantical analysis and to use a local
BASICRESOLVER module (without the CHECKER module) in the backend.

Design improvements. Similar refactorings were carried out in other parts of
JaCo2. All were made possible by the better reuse and integration capabilities
of Keris’ “plug-and-play” modules compared to the object-oriented components
of JaCo that have to be glued together with quite heavy boilerplate code. Since
this boilerplate code has to be written by hand, it is natural that developers try
to minimize it as good as possible by avoiding new components from being inte-
grated. In JaCo and extensions thereof this often lead to an exaggerated reuse
of component instances which all had to be shifted artificially to a more global
level in the component hierarchy just for making them more widely accessible.

182 Case Study: Extensible Compilers

The design philosophy of JaCo2 puts more emphasis on the reuse of modules in-
stead of module instances and pushes modules into more deeply nested positions.
This requires that often several instances of the same module are created in dif-
ferent contexts, but it eases extensibility and makes the system more robust with
respect to extensions.

The implementation of JaCo2 follows the Law of Demeter [115, 117, 114]
which requires that a module is only allowed to access its immediately required
or aggregated modules, and not their submodules. Thus, JaCo2 and KeCo do not
make use of the :: operator; all submodules are private and hidden from clients.
In the context of extensible software, this is an important property, because then,
programmers who extend a module know precisely the scope of the change and
are therefore also aware of the impact. For instance, replacing a submodule with
a different version would only have a direct consequence for the host module
as well as all other submodules (which are all known at compile-time), but not
directly to unknown clients.

Extensions. In general it turned out that JaCo2 can easily be extended through
module refinements and specializations without writing glue or adaptation code.
The module re-wiring mechanism of Keris was very helpful, in particular when
small changes had to be integrated into big subsystems. The implementation of
KeCo revealed basically two problems:

• In compilers, many components are recursively dependent, often not even
directly but indirectly through other dependent modules. This makes it gen-
erally hard to specialize a particular module, because it would require that
all modules that participate in this recursion need to be specialized as well.

• When changes have to be integrated into a deeply nested submodule, this
change will be propagated to all enclosing modules. These modules also
have to be refined or specialized to integrate the submodule that refers to
the change.

The first problem is application specific and there is little that can be done to
ease module specializations in general. A sound type system has to be conserva-
tive in the sense that it always assumes the worst case. For dependent modules
this means that they mutually exchange objects of locally defined classes that re-
fer to all modules in the dependency closure through inheritance. It would be
possible to refine the type system of Keris and annotate dependencies with priv-
ileges. This would avoid for many cases that all recursively-dependent modules
have to be specialized simultaneously. On the other hand, it would complicate
the definition and deployment of modules significantly and would lead to soft-
ware that is much more difficult to extend. This is because one advantage of
conservative type systems and their worst case assumption is that even if such
an assumption does not hold for the original system, there might be a possible

4.3 JaCo2: Extensibility with Extensible Modules 183

extension where exactly this assumption is exploited. It is therefore a tradeoff
between more expressive dependency annotations that ease specializations and
more general dependency specifications that capture a wider range of possible
extensions.

The second problem is related to the way systems are extended in Keris.
Keris allows programmers only to change direct members of modules. This re-
striction enforces module encapsulation and follows the policy that foreigners
are not allowed to change abstractions from the outside. While aspect-oriented
programming gives up this restriction in favor of more flexible and expressive
modularization mechanisms, it is essential for object-oriented programming.
A programming language that allows programmers to change abstractions in
deeply nested submodules would give up some encapsulation capabilities, but it
would not suffer from the change propagation issue. It is therefore worth to con-
sider some syntactic sugar for Keris that would allow programmers to change
modules from the outside in a concise but non-invasive manner.

Despite these two issues, the implementation of KeCo showed that the exten-
sibility mechanism of Keris scales extraordinary well. Both module refinements
and specializations were used extensively and the separation between the two
concepts was quite beneficial for the program understanding, but also for the
sound evolution of the system.

184 Case Study: Extensible Compilers

4.4 Comparison

4.4.1 Design Patterns vs. Language Support

In the following we will analyze and compare the impact of the design pattern-
based approach to extensibility with the second approach that uses the program-
ming language Keris as an implementation language for extensible systems.

Implementation overhead. The rigorous usage of the Context/Component
pattern imposes extra implementation work on the programmer. The biggest
part of this implementation overhead consists in the definition of factory meth-
ods in context classes to keep configurations of systems extensible, and in com-
ponent classes to allow classes to evolve by making constructor calls overridable.
The aim of such artificially introduced indirections is to eliminate hard links and
to keep systems as open as possible. Unfortunately, Java-like languages make it
very easy to introduce hard links in many ways and even when a special design
pattern, like the Context/Component pattern, is used, there is no guarantee that
a programmer does not accidentally forget to introduce or use such indirections.
The extra implementation overhead may also tempt programmers to resort to ad-
hoc mechanisms that circumvent the programming protocol for convenience but
at the expense of extensibility.

Programs written in Keris are not automatically extensible — it is still neces-
sary to explicitly design a system for changes. However, by providing suitable
linguistic constructs, Keris facilitates the implementation of systems that can
be evolved without much effort and without touching existing code or designs.
Keris promotes a modular decomposition of a system into smaller units while
retaining extensibility on all levels of decomposition. Since Keris’ module and
class abstractions are “open” by default (and can only be “closed” by explicitly
stating this), extensibility comes without much implementation overhead and
does not require programmers to observe non-trivial and verbose programming
protocols. For instance, Keris programs do not rely on explicit factory methods.
Therefore, programmers cannot forget using factory methods and they cannot
forget overriding such methods for integrating extensions.

Dependencies. Keris makes it easy to explicitly specify context dependencies
for modules. Modules can be deployed in every context that meet these require-
ments and the type system of Keris guarantees that they are used only in those
suitable contexts. In the architecture of JaCo2 we can see that several compo-
nents exploit this freedom. For instance, modules SEMANTIC_ANALYZER, TYPEOP,
and BASICRESOLVER are used in more than one context. Similarly, modules de-
rived from TRANSLATOR, like TRANSMODULES or TRANSINNER are deployed in quite
different contexts.

4.4 Comparison 185

The Context/Component pattern associates with every component a specific
context. A component can only be deployed in this context or extensions thereof.
For deploying it in other “compatible” contexts, it is necessary to explicitly adapt
the component by providing an alternative init method. In JaCo this problem
shows up for the semantical analysis phase. This phase is deployed in two un-
related contexts: in the top-level compiler context and within the backend. We
cannot write a generic init method that works for both contexts mostly due to
Java’s strict nominal typing discipline (which requires that we give the parame-
ter of method init a single nominal type). Compound types [38] introduce some
restricted form of structural typing. With such types we could easily specify a
generic init method in a fashion similar to the way Keris is handling module
contexts. In Java-like languages without compound types it is extremely difficult
to encode generic context dependencies safely in the style required by the init
methods.

Consistency. For evolving large systems it is often necessary to extend several
components consistently at the same time. Such a mutual extension of several
components can be expressed easily in Keris with a mutual refinement or spe-
cialization of context dependencies. This enforces that all extended modules are
deployed at the same time and a mixture of old and new versions is impossible.

In the framework of the Context/Component pattern, init methods have to
be overridden in subclasses to accommodate changes in the context dependen-
cies. Due to Java’s requirement of overriding methods invariantly, it is not pos-
sible to refine the parameter type to the new context type which describes the
refined collaboration of possibly mutual dependent components. Thus, a con-
sistent refinement of mutual dependent components is possible but inherently
unsafe.

One concern of the design pattern approach was to separate component im-
plementations from their configuration. This improves reusability and with the
context hierarchy the programmer develops a separate formalism specifying the
architecture of a system. In Keris, component implementations and local compo-
nent configurations are defined together in a single module implementation. For
documenting a system configuration (without implementation code), one has to
explicitly use module interfaces. In contrast to the solution based on design pat-
terns, this approach does not provoke inconsistencies between the configuration
of a component and the concrete component implementation. In particular, the
conformance of a module implementation with its specification, given in form of
a module interface, is checked mechanically.

Type safety. In the implementation of JaCo, datatypes and components are de-
fined separately, and only factory methods associate the two. Due to the lack
of covariant abstraction facilities in Java, it is not possible to express that an ex-

186 Case Study: Extensible Compilers

tended component refers to an extended datatype. Consequently, extensions of
components have to frequently down-cast values to the extended type; again this
is unsafe and error-prone.

In Keris, datatypes are defined within modules and whenever a module is
extended, datatypes can be extended covariantly as well. This tight coupling
between modules and datatypes rules out inconsistencies and allows more ad-
vanced static type checks than the design pattern-based approach.

4.4.2 Benchmarks

This section will discuss benchmarks for both JaCo and JaCo2. While Section 3.5
presented benchmarks concerning the runtime performance of the two systems,
we are here mainly focusing on the program code. This will round up the presen-
tation of the two extensible compilers, giving quantitative data about the imple-
mentation effort. Since it is difficult to compare the code of two systems written
in different languages directly, we mainly focus on an independent evaluation of
the two systems by looking at the base versions of the compilers and extensions
thereof.

4.4.2.1 JaCo

Figure 4.14 presents the results of a code analysis of JaCo and its extensions
PiCo, SJavaC, CJavaC, and KerisC. PiCo [214, 210] adds extensible algebraic
datatypes to Java, SJavaC [161] implements linguistic support for synchronous
active objects, CJavaC [216] implements Büchi and Weck’s proposal for com-
pound types and type aliases [38], and KerisC is a preliminary version of
the Keris compiler which was used to bootstrap the full-blown Keris compiler
KeCo [213].

The first part of the statistics in Figure 4.14 shows the number of source files,
the total number of lines of code (including blank lines), the total number of
lexical tokens, the total size of the source code in bytes, as well as the number of
class and method definitions.

With approximately 32000 lines of code, JaCo’s source code size is compa-
rable to the one of non-extensible compilers like the Pizza compiler or JavaC.
Depending on the complexity of the added language feature, the size of the vari-
ous extensions ranges from 28% to 75% of the base compiler’s source code size.2

The size of the generated code (i.e. classfiles) is in a similar range: extensions
increase the code size of the base compiler between 25% and 62%.

These numbers give an idea about the total code size of typical compiler ex-
tensions of JaCo. But they do not exhibit the administrative overhead which is

2The percentage refers to the number of lexical tokens, since the number of source code lines
does not constitute a reliable measurement for the source code size; in particular, if the code is
written by different people having different programming styles. Nevertheless, “lines of code” is
a valuable data which gives an intuitive impression about the absolute size of the source code.

4.4 Comparison 187

JaCo PiCo SJavaC CJavaC KerisC

files 96 46 30 39 64
lines 30269 10459 6983 11167 18115
tokens 152590 61557 43380 49745 115294
bytes 954445 382150 260805 352198 714445
classes 216 66 40 66 97
methods 1757 379 170 402 759

code size [byte] 911975 339581 236683 302058 563758

context classes 6 7 5 5 8
lines 600 378 411 416 428
tokens 1657 1177 895 1136 1481
methods 50 35 26 34 44

factory classes 7 5 3 5 6
lines 1248 166 104 231 371
tokens 6028 837 539 968 2470
methods 154 19 15 18 49

components 44 24 15 19 30
lines 17007 4928 1661 4214 10051
tokens 89163 29366 11979 15750 67474
classes 68 29 17 27 39
methods 802 231 73 171 428

Figure 4.14: Implementation of JaCo and some of its extensions.

imposed by the design patterns and programming policies which keep JaCo and
its derived compilers open for future extensions. For this purpose the statistics
in Figure 4.14 distinguish between the source code of the contexts, the factory
classes, and the component classes.

As the Context/Component scheme from Figure 4.7 on page 169 already re-
vealed, the base compiler defines 6 different context classes defined by a total
number of 600 lines of code. Extensions almost always extend all contexts and
sometimes even define additional ones. The size of the context adaptation code
of the extensions amounts to 54% of the original context code size for smaller
extensions and goes up to 89% for more complex extensions.

For the compiler extensions presented in this section, factory classes which
are used to instantiate data structures like abstract syntax trees, symbols or type
representations, are often reused with only few adaptations. From the 7 factory
classes defined by JaCo, SJavaC, for instance, adapts only 3. The other compilers
mostly adapt 5 classes. But even here, on the average only 18% of the 154 factory
methods defined in JaCo are overridden or newly defined.

The last part of the code statistics of Figure 4.14 is supposed to show how
many components, in the sense of the Context/Component pattern, are typically

188 Case Study: Extensible Compilers

JaCo2 KeCo

files 66 47
lines 24143 18882
tokens 142774 120807
bytes 770705 647287

modules 63 47
submodules 58 51

classes
declared 132 44
module support 185 141
generated 398 237

methods
declared 1495 653
generated 4588 3782

code size [byte]
module support 363003 442246
total 1905683 1606152

Figure 4.15: Implementation of JaCo2 and its extension KeCo.

written for extensions. The number of newly defined or extended components
ranges from 17 for SJavaC up to 30 for KerisC, compared to JaCo which consists
of 44 components.

4.4.2.2 JaCo2

For JaCo2 we have currently only one extension, which is KeCo, the compiler
for Keris that is also used to compile JaCo2. As we saw already in the previous
paragraph, implementing Keris on top of a Java compiler involves substantial
changes and adaptations in both the frontend and the backend. As the statis-
tics of Figure 4.15 show, KeCo’s source code is, with approximately 19000 lines,
almost as big as the one of the base compiler JaCo2, which roughly consists of
24000 lines of code. Based on the number of lexical tokens, the size of the com-
piler extension corresponds to 85% of the base compiler. Implementing other
language features should typically involve much less efforts.

KeCo consists of 47 module declarations which either define new modules or
extend one of the 63 modules of JaCo2. It is surprising to discover in Figure 4.15
that even though JaCo2 consists of 63 modules, its code has only 58 submodule
declarations corresponding to 58 modules being instantiated within JaCo2. This
discrepancy between the number of declared and deployed modules is due to the
fact that some of the 63 modules are actually module interfaces. Furthermore,
some modules are not instantiated at all; their only purpose is to factor out code

4.4 Comparison 189

which is shared by several specializations.
The rest of the statistics summarizes the overhead introduced by the Keris

compiler. It contrasts the number of classes and methods declared in the source
code with the number of classes and methods found in the generated classfiles.
From 63 declared modules, and 132 class, interface, and class field definitions,
almost 400 classfiles get generated for JaCo2. This overhead is mainly intro-
duced by the Keris compiler to translate supporting code for modules and class
fields. In this translation, the number of methods also increases by a factor of
three. Overall, the generated classfiles occupy more than 1.8 mbytes from which
355 kbytes correspond to artificially generated code supporting the module sys-
tem. The overhead generated for KeCo is comparable to the one of JaCo2. The
1.5 mbytes of generated classfiles complement the binaries of the base compiler
yielding binaries with a total size of 3.3 mbytes.

While the size of JaCo2’s binary is disproportionally bigger than the the size
of JaCo, JaCo2’s source code is actually smaller. It is smaller by almost exactly
the code size which is required for implementing the context hierarchies, the
factory methods, and the logic for developing, extending, and deploying com-
ponents in the Context/Component framework of JaCo. Unfortunately, a simi-
lar comparison is not possible for KeCo, since it implements the full language
and is therefore a significantly bigger system compared to its predecessor KerisC
which only supports the language subset that was required for bootstrapping the
system.

4.4.3 Conclusion

The purpose of this case study is two-fold: (1) it shows that even relatively com-
plex applications can be made extensible, (2) it explains the drawbacks of con-
ventional object-oriented techniques and motivates how the features of Keris
can be used to implement extensible applications efficiently and safely without
needing to anticipate concrete future changes.

Keris provides a programming language infrastructure that promotes a soft-
ware development process for building large-scale software systems that are stat-
ically evolvable when faced with unanticipated requirements. Without such sup-
port, unanticipated changes would force programmers to perform extensive in-
vasive modifications of existing designs and implementations.

The case study also shows that independently of the language support, soft-
ware has to be explicitly designed for being extensible. This typically imposes ex-
tra costs (including runtime penalties) and implies extra efforts in the implemen-
tation process. But designing a system for facilitating later changes is essential,
since software is inherently subject to changes. Even for software systems with
a fixed and well-defined task where it seems that extra efforts spent on change-
ability make no sense, it will pay off in the long run when the software evolves
(possibly into a product line). An example for such a system is JaCo, which was

190 Case Study: Extensible Compilers

implemented 6 years ago, and since then served as a simple and reliable plat-
form for rapidly implementing Java language extensions. Other extensible Java
compilers that were developed in the meantime include EPP [173] and Poly-
glot [149].

Chapter 5

Related Work and Conclusions

5.1 Related Work

5.1.1 Component-Oriented Programming Languages

Unlike multi-purpose object-oriented, or functional programming languages in
which software components are implemented using ordinary classes or modules
by observing special programming protocols or by deploying architectural design
patterns, component-oriented programming languages provide explicit linguis-
tic abstractions for software components. Such languages have a built-in notion
of a software component and provide language constructs to manufacture and
compose components. Supporting component programming on the program-
ming language level has the advantage that the compliance with the component
model can easily be enforced statically either by syntactic restrictions or by a
static type system.

Most multi-purpose component-oriented programming languages are built
on top of Java-like object-oriented languages. This section will discuss some of
the most prominent examples like ComponentJ [182, 180], ACOEL [187], Arch-
Java [5], and Cells [171].

ComponentJ. Seco and Caires describe ComponentJ, a simple typed impera-
tive core calculus for first-class components in the context of inheritance-free
object-oriented programming [182]. ComponentJ completely avoids inheri-
tance in favor of object composition. Components are closed black-boxes that
can be statically or dynamically composed. The language is implemented as an
extension of Java and can be compiled to both JVM classfiles [182] and .NET
assemblies [180, 181].

192 Related Work and Conclusions

ACOEL. ACOEL has a component model similar to ComponentJ [187]. Inter-
action points of ACOEL components are in- and out-ports. The language is class-
based and supports a restricted form of inheritance. Like in ComponentJ, ports
are connected explicitly. As opposed to ComponentJ, the type system of ACOEL
does not ensure that all ports are connected. On the other hand, ACOEL sup-
ports a richer form of component subtyping which is based on user-defined con-
straints, specified in Coral, a language for abstracting and specifying ACOEL
components [186].

ArchJava. ArchJava is an extension of Java that tries to unify the software ar-
chitecture of a system with its implementation [5]. It introduces direct support
for components, connections and ports. Components are implemented with ex-
tensible component classes. ArchJava does not distinguish between required
and provided ports. Instead, a port declares required and provided methods.
Ports are again connected with explicit plug instructions. Like the previous two
languages, ArchJava’s composition principle is based on the aggregation of sub-
components. A distinct feature of the ArchJava type system is to guarantee com-
munication integrity [145].

Jiazzi. Jiazzi [128] is a language for creating large-scale binary components
in Java. In contrast to the approaches mentioned before, Jiazzi does not extend
Java directly — it is rather layered on top of Java and can be used independently
as a linking language. The design of Jiazzi is based on MzScheme’s units [69].
Jiazzi’s units are conceptually containers of compiled Java classes. Jiazzi sup-
ports well-defined connections of these units through externally specified sets of
imported and exported classes.

Cells. The Cells project [171] focuses at distributed programming and mobil-
ity. Its aim is to propose a component programming language that supports an
integrated notion of both compile-time and runtime components. For this pur-
pose, the Cells infrastructure introduces assemblies [120] and cells [171]. An
assembly is a declarative, stateless piece of code that facilitates code combina-
tion. It offers typed interfaces which can be used to link smaller assemblies into
bigger compound assemblies. Assemblies may be loaded at runtime, yielding a
cell. A cell is a dynamic, stateful component instance which interacts with other
cells via explicit runtime interfaces. Unlike all previously mentioned projects, the
Cells language has not been implemented yet.

Comel. Ibrahim formalizes COM [172] by introducing a small programming
language Comel [93]. Comel’s components do not have named ports. Services
are specified solely by type names. In the spirit of COM, Comel emphasizes
aggregation and does not support implementation inheritance. Comel compo-
nents have to be self-contained, not having any context dependencies. This is a

5.1 Related Work 193

severe restriction that contradicts the aim to modularize software into small com-
ponents that have to depend on their deployment context in order to be flexibly
reusable.

5.1.2 Architecture Description Languages

Component-oriented programming languages feature concepts originating from
architecture description languages (ADL) [130] like ACME [76], Aesop [75], Dar-
win [126], Rapide [121], Wright [8], SOFA/DCUP [165] etc. In general, ar-
chitecture description languages are used to specify the architecture of software
systems in a formal way. A software architecture describes the organization of a
software system in terms of a collection of distinct components, connections be-
tween the components, and constraints on these interactions [159, 184, 195]. By
using architecture description languages, the details of a design get explicit and
more precise, enabling formal analysis techniques. Furthermore, such languages
can help to understand the structure of a system, its implementation and use, as
well as its reuse capabilities. A comparison of popular architecture description
languages is presented in [130].

Extensibility on the component level is strongly related to architectural evolu-
tion, a research area concerned with the addition, removal, or replacement of
components and connectors both statically and dynamically.

5.1.3 Software Composition Languages

Component-oriented programming languages are typically multi-purpose pro-
gramming languages which provide linguistic facilities for implementing and
composing software components. While these languages make it easy to com-
pose components written in the same language, they have fundamental restric-
tions when components written in other languages have to be integrated. Lan-
guages that focus on software composition solely have typically better support
for integrating components that conform to different component models and ar-
chitectural styles [184] and that are developed using different technologies or lan-
guages. A specially-designed language is also better for explaining, highlighting,
and exploring compositional issues as opposed to general-purpose programming
issues [2].

The software composition language Piccola [2, 3] is based on the princi-
ple: Applications = Components + Scripts. In this formula, components are black-
box abstractions with plugs (i.e. exported and imported services) whereas scripts
specify how components are plugged together. Piccola models components and
compositional abstractions by means of communicating concurrent agents. Inter-
faces of components as well as the contexts in which they get deployed are mod-
eled by forms, a special notion of extensible, immutable records. Apart from com-
ponents and scripts, glue abstractions are needed to bridge architectural styles

194 Related Work and Conclusions

and adapt otherwise incompatible components [179]. Finally, coordination ab-
stractions may be required to handle dependencies between concurrent and dis-
tributed components. The challenge in the design of Piccola was to identify a
minimal set of features necessary and sufficient for specifying software compo-
sitions as scripts while supporting an open-ended set of architectural styles by
allowing to define new, higher-level composition and coordination mechanisms
in terms of lower-level ones. Piccola is based on a formal foundation, the πL-
calculus [122], a variant of the polyadic π-calculus [142] supporting forms.

There are a few industrial composition languages that are based on XML [33].
Among these languages is Sun’s JavaBean Persistence [141] and IBM’s Bean
Markup Language [204]. Unlike Piccola which allows to integrate components
developed using different technology, both systems are tailored specifically for
JavaBeans [190].

Languages that are mostly concerned with managing interactions and depen-
dencies between concurrent and distributed components are called coordination
languages. Classical coordination languages are, for instance, Linda [47] and
Darwin [126].

5.1.4 Module Systems

Imperative module systems. Classical module systems like the one of
Modula-2 [206], Modula-3 [44], Oberon-2 [146], and Ada 95 [196] can be
used to model modular aspects of software components well, but they have se-
vere restrictions concerning extensibility and reuse. These systems allow for type-
safe separate compilation, but they hard-wire module dependencies by referring
to other specific modules by name. This makes it impossible to plug in modules
with different names but compatible specifications without performing a consis-
tent renaming on the source code level.

The module systems of Oberon-2 and C# [86] allow to define local aliases for
imported modules or classes. Here, one can easily replace an imported module
with a compatible version just by modifying an alias definition. Such a modifica-
tion would be destructive and would require a global recompilation, but it would
not require to rename module references in the source code.

Functional module systems. Initially, functional programming languages in-
troduced module systems that obey the principle of external connections [70], i.e.
the separation of component definition and component connection. These mod-
ule systems promote reuse, but they yield modules that are not extensible, since
everything is hard-wired internally. Prominent module systems with external
linking facilities are provided by SML [143], OCaml [111], and MzScheme [69].

In SML it is possible to parameterize modules with other external mod-
ules [123]. Such higher-order modules are called functors. SML functors are
neither first-class nor higher-order. Consequently, they cannot be used to dynam-

5.1 Related Work 195

ically manufacture new modules. Furthermore, they are not extensible, which
makes it difficult to perform adaptations. An extension of SML with first-class
modules was recently proposed by Russo [175, 176]. There are also proposals
for adding inheritance and subtyping to SML-style module systems [144].

In contrast to functors in SML, higher-order modules in OCaml are applicative
and they have good support for separate compilation. OCaml also offers several
advanced module reuse mechanisms like module inclusion and mixin module
composition [88].

OCaml’s mixin modules are based on CMS [10, 12], a simple but expressive
module calculus which can be instantiated over an arbitrary core calculus. The
calculus supports various module composition mechanisms including mixin mod-
ule composition with overriding. The work on mixin-based composition goes
back to Bracha who observed that inheritance can be seen as a general mecha-
nism for modular program composition [31, 29]. With his work on the program-
ming language Jigsaw [28], he lifts the notion of class-based inheritance and
overriding to the level of modules. The first proposal for mixin modules in ML
goes back to Duggan and Sourelis [57].

As opposed to modules in ML, MzScheme’s units [71] offer separate compila-
tion of independent modules even with cyclic dependencies. With the unit sys-
tem, MzScheme provides first-class module abstractions and linking facilities to
compose modules hierarchically. Units are linked by explicitly connecting pro-
vided with required ports. A general problem of unit-style module systems is
scalability of the wiring mechanism due to modules importing fine-grained enti-
ties like classes, functions, etc. and due to the need to wire the ports of modules
explicitly. For this reason, MzScheme offers signed units that support bundles of
variables, called signatures, which get linked all in one step [70].

Object-oriented module systems. Rüping analyzes the modularity of object-
oriented systems during design and specification in [174]. He substantiates the
need for modules in object-oriented languages as a means to encapsulate coop-
erating classes. The module refinement and specialization mechanisms of Keris
implement his abstract notion of compatibility between modules. This notion
enables the type-safe extension of systems where modules get substituted with
compatible implementations.

Only recently, concrete proposals have been put forward to bundle class-
based object-oriented programming languages with expressive module sys-
tems [64, 19, 11, 53].

Corwin, Bacon, Grove, and Murthy’s module system MJ [53] adds advanced
modularity and linking capabilities to Java. MJ replaces Java’s classpath mech-
anism, which is often used as a low-level means for linking classes, with a prag-
matic COM-inspired module system in which modularity constraints can be stat-
ically checked and dynamically enforced.

196 Related Work and Conclusions

Ancona and Zucca propose another module system for Java-like program-
ming languages [11]. While MJ is based on classical module systems with spe-
cific references to external modules, Ancona and Zucca’s system provides more
advanced abstraction and composition mechanisms. The proposal is quite ex-
pressive, even allowing to fully abstract over external classes. On the other hand,
their module system is rather theoretical, leaving unclear if it is feasible to imple-
ment it in practice.

Ichisugi and Tanaka observe that extensibility on the module level greatly en-
hances the ability to extend and reuse object-oriented software [94]. The authors
describe a practical module system for Java based on the notion of difference-
based modules. Difference-based modules are solely linked by a form of multi-
ple inheritance which also merges module members. Since modules cannot ab-
stract over their context dependencies (which are hard-wired), this module sys-
tem must be rather seen as a tool for aspect-oriented programming [103] than for
developing context independent components.

Extensibility and reuse mechanisms. Most module systems provide module
abstractions for creating static black-box software components. Only very few
module systems allow programmers to create new versions or specializations of
existing modules.

A module specialization mechanism similar to the one offered by Keris is
proposed by Radenski for a Pascal dialect [168]. Radenski’s module embedding
proposal [167] enables the building of new modules from existing ones through
inheritance and overriding of procedures and types. Since it is not possible to
specialize imports, it is questionable to what extend this mechanism is useful in
practice, where depending modules often have to be specialized simultaneously.
Since embeddable modules are static abstractions which are not associated with
a module type, it is neither possible to create multiple instances, nor replace a
compatible module with an extended implementation.

Hultgren proposes a module system for Squeak [97] in which modules encap-
sulate changes relative to an existing base module (e.g. for adding new methods
to existing classes) [92]. Therefore, the idea behind Hultgren’s delta modules is
comparable to the one behind Ichisugi and Tanaka’s difference-based modules.
A similar, but more elaborated mechanism for extending modules in Squeak
was recently proposed by Bergel, Ducasse, and Wuyts. Their classbox module
system [22] allows method additions and replacements while supporting the no-
tion of local rebinding which makes changes made by a glassbox only visible to
the glassbox itself and to other classboxes that import it. This feature is similar
to the module refinement mechanism of Keris which affects only other modules
that refer to the refinement and not the former version. Thus, local rebinding
and the refinement notion of Keris prevent local changes from having a global
impact.

5.1 Related Work 197

5.1.5 Object-Oriented Programming

Instead of equipping object-oriented languages with module systems, some re-
cent object-oriented programming languages try to achieve a similar goal by im-
proving the expressiveness of class abstractions. Only such languages really sub-
stantiate Meyer’s bold thesis that classes are the better modules [134]. As an
example, we briefly discuss the class-based object-oriented multi-purpose pro-
gramming language Scala [153, 151].

Scala. One of the original design goals of Scala was to provide powerful class
abstraction and composition facilities that subsume the functionality of module
systems. But instead of introducing many small ad-hoc fixes, Scala’s class de-
sign is based on a smooth and coherent integration of abstract types as class mem-
bers together with a mixin class composition scheme as a generalization of in-
heritance. In addition to these features, Scala also supports many advanced
programming language features like traits, bounded parametric polymorphism,
variance annotations, explicitly typed self references in classes, compound types,
and regular expression pattern matching.

As first experience with Scala shows, the type system of the language is quite
expressive (probably, much more expressive than most module systems), allow-
ing to write reusable and extensible software in a safe, but not necessarily modu-
lar way. A drawback of abstractions that are designed to be as general as possible
and type systems to be as expressive as possible is that they do not enforce a par-
ticular programming style with specific, desirable qualities; e.g. a programming
style that requires to separate interfaces from implementations, that makes con-
text dependencies explicit and generic, that defines extensible types, etc. It is
possible to implement software components with these qualities, but in practice
this is often technically also quite challenging. Here, the existence of an explicit
module system has the advantage to guide the programmer in the implementa-
tion of reusable software components that conform to some standard set by the
underlying module system. The conformance to such a standard makes it, for
instance, easy for third parties to deploy the module in a new context.

GBeta and FamilyJ. Languages with similar properties, in particular, type sys-
tems and composition mechanisms, are gBeta [58] and FamilyJ [208] (a sub-
set of the aspect-oriented language Caesar [137]). While gBeta supports some
form of multiple-inheritance for its patterns [125], FamilyJ’s main composition
mechanism is object-based, and relies on delegation [156, 155]. Unlike Scala,
which only supports extensibility for abstract types, gBeta and FamilyJ support
virtual classes [124]; i.e. both languages allow to furtherbind [61] inner class def-
initions in subclasses. Furtherbindings enhance existing classes by adding new
class members or by replacing existing members. Radenski’s proposal [169] for
a class overriding mechanism in Java is similar to furtherbindings in FamilyJ.

198 Related Work and Conclusions

Abstract types vs. virtual classes vs. class fields. Class fields in Keris offer
a compromise between purely abstract types and fully virtual classes. Abstract
types [153] are open in the sense that their bounds can be covariantly overrid-
den in subclasses, but they first have to be closed explicitly before the class which
defines the abstract type member can be instantiated. Another drawback is that
abstract types do not refer to classes and therefore cannot be used for creating ob-
jects — explicit factory methods have to take over this task. Virtual classes on the
other hand are open for extensions while at the same time being instantiatable.
A serious disadvantage of virtual classes is their complicated scoping and name
resolution rules [61], and ad-hoc means to prevent name clashes and accidental
overrides (when virtual classes are subclassed) [208]. Class fields are extensi-
ble class abstractions which can be overridden, and which can be instantiated.
The difference to virtual classes is that they do not support implementation in-
heritance. On the other hand, their notion of overriding is more powerful: class
implementations can be fully exchanged with different, compatible versions. Vir-
tual classes only allow furtherbindings which enhance an existing implementa-
tion, but which do not allow to fully replace an existing implementation.

5.1.6 Aspect-Oriented Programming

While people that are mostly interested in component technology emphasize ex-
plicit interfaces and context dependencies to make component abstractions black-
box extensible and deployable, the aspect-oriented programming (AOP) [103]
community is mainly interested in modularizing crosscutting concerns and fo-
cuses on source code-centric white-box code reuse and invasive source code-
based software composition [15].

AOP techniques make it possible to modularize crosscutting aspects of a sys-
tem, and therefore facilitate the separation of different concerns [198], promot-
ing modularity, extensibility, and code reuse in general. A system consisting of
various “aspect slices” is assembled by an aspect weaver which merges the frag-
ments into a whole.

The most prominent AOP language is AspectJ [102]. Aspects in AspectJ
were originally combined using a source code-based compile-time weaver. Only
recently, a load-time-based weaving scheme was proposed to allow an on-
demand composition of binary aspects at runtime.

Related to AOP is the notion of collaboration-based designs [89, 202]. This
term describes a methodology for decomposing an object-oriented system into a
set of classes and a set of collaborations. A collaboration represents a particular
aspect of a system and consists of several participating classes. A class can be a
member of several collaborations in which it typically plays different roles. Thus,
a collaboration is said to crosscut the class structure.

Several programming languages support collaboration-based designs with ex-
plicit modularization constructs. The aspect-oriented programming language

5.1 Related Work 199

Caesar [137, 138] offers the latest and most advanced approach. It promotes
the notion of on-demand re-modularization with specific collaboration interfaces
which facilitate the definition of object roles and the creation of wrappers to imple-
ment such roles [136]. Caesar’s collaboration interfaces extend and generalize
earlier work on pluggable composite adaptors [139] and adaptive plug-and-play
components [135]. A long term aim of Caesar is to provide support for fluid
aspect-oriented programming, a term coined by Kiczales [101]. It involves the
ability to temporarily shift an implementation of a system to a different structure
to do some piece of work with it before shifting it back to its original form.

Very similar to collaboration interfaces are object teams [87]. Object teams are
containers for role classes which may be dynamically bound to base objects of
a particular application. This approach is based on delegation, furtherbindings,
and a dependent type system featuring types as object members.

Some approaches that focus on collaborations are based on mixins. A consis-
tent refinement of a family of classes is possible with the notion of mixin layers,
introduced by Smaragdakis and Batory [185]. Related to mixins is the concept
of delegation. Integrated into a statically typed object-oriented language, dele-
gation yields a powerful mechanism for object-based inheritance [105, 39]. Re-
cently, Ostermann unified delegation with the mixin layer concept in his work on
delegation layers [156].

Mixin layers where originally motivated by Batory’s work on GenVoca. Gen-
Voca is a design methodology for creating object-oriented system families and
statically extensible software; i.e. software that is customizable via module ad-
ditions and removals at compile-time [18]. GenVoca allows components to be
refined step-wise where each refinement adds a particular feature to the compo-
nent. Feature refinements are typically implemented using generative program-
ming technology like templates [185], program generators [135], and program
transformers.

Related to aspect-oriented programming is subject-oriented program-
ming [85] and adaptive programming [114]. Subject-oriented programming
(SOP) is a program composition technology that supports building object-
oriented systems as compositions of subjects. A subject is a collection of class
fragments whose class hierarchy models its domain in its own subjective way.
Subject composition combines class hierarchies to produce new subjects that
incorporate functionality from existing subjects. SOP targets various software
development problems, including the creation of extensions and configurations
of software, the customization and integration of systems and reusable com-
ponents, as well as the decentralized development of classes. SOP is seen as a
language-independent technology which is implemented typically at the level of
integrated development environments like IBM’s Visual Age.

Adaptive programming (AP) enables a form of AOP where some of the build-
ing blocks of software are expressible in terms of graphs and where the other
building blocks refer to the graphs using traversal strategies [113]. In the AP

200 Related Work and Conclusions

world, crosscutting concerns are expressed adaptively using strategies to embed
small graphs into large graphs. A key feature of this embedding is that it is speci-
fied by abstracting over the details of the large graphs, making the graph embed-
dings adaptive.

An alternative approach to AOP offers the composition filters model [4, 23].
A composition filter is an entity that transforms messages to/from objects. Each
filter enhances a class in a modular way; i.e. without necessarily modifying the
definition of that class. In the AOP terminology, filters correspond to aspects.

5.2 Summary

Extensibility is a desirable property for software artifacts on all abstraction lev-
els. It promotes reusability and facilitates software evolution. Nevertheless, de-
signing an extensible system requires much more efforts than designing a static
system with fixed functionality. Similarly, it is technically much more challeng-
ing to implement a system which is open for future extensions in comparison to
closed systems which do not explicitly provide an extension or adaptation logic.

While extensibility is quite well investigated and well understood in the small,
i.e. for a single class or the implementation of an algorithm or a small subsystem,
it remains a challenge to implement extensible software in the large; i.e. on the
level of software components. This observation is quite natural given the fact
that software components are often seen as pure black-box abstractions. Since
black-box software artifacts do not reveal implementation details, it is almost im-
possible to adapt or extend them if an appropriate extension logic has not been
anticipated by the original developer of the software and if simple adaptation
techniques for black-box components, like wrapping, fail.

This thesis focuses on extensibility on the level of software components and
component systems. Its main objectives are:

• to point out why extensibility is important even for large software compo-
nents,

• to show what problems programmers are typically facing when developing
extensible software components,

• to propose concrete programming language abstractions that help pro-
grammers to implement extensible software components more efficiently
and safely,

• to demonstrate with a case study that it is feasible to implement even large
and relatively complex systems in an extensible fashion out of components
that are themselves extensible, and

• to explain with the help of a case study how the proposed programming
language abstractions support the process of building and extending an ex-
tensible application.

5.2 Summary 201

The first part of the thesis tries to explain the notion of software components
and concepts related to component technology in a formal framework. It inves-
tigates what we mean by extensible software components and points out mech-
anisms for extending and adapting software components safely. This is done by
discussing a typed component model that is designed to support the implementa-
tion and evolution of lightweight, extensible components in object-oriented pro-
gramming languages. The model supports dynamic component manufacturing
and composition in a type-safe way through a small set of component refinement
primitives. In contrast to other approaches, the component model does not re-
quire that services of components are linked explicitly by plugging ports. Instead,
components are composed using high-level composition operators. The compo-
nent model is formalized as an extension of Featherweight Java to show how it
integrates into the context of a statically typed object-oriented programming lan-
guage.

For simplicity, the model assumes that services and service implementations
are defined outside of a component in form of object types (interfaces) and
classes. A real-world programming language for component programming has
to take encapsulation more seriously and provide means to define interfaces and
classes inside of a component. The consequences of this requirement are elab-
orated in the second part of this thesis, which discusses Keris, an extension of
Java. Keris integrates a module system into Java which is designed to facilitate
the development of extensible software components. The design acknowledges
some fundamental principles outlined in the theoretical model:

• components are abstractions that provide and require services,

• components have to be distinguished from component instances, which em-
body concrete interlinked incarnations of components,

• components are not plugged together manually by linking ports; instead,
the component wiring is inferred from the deployment context,

• components are extensible abstractions,

• component definition and extension is subject to a statical type system, and

• types of components are described with the help of nominal types.

Unlike the theoretical model, components, or modules as they are called in
Keris, are not first-class and can consequently not be manufactured and com-
posed dynamically. There is also no support for mixin compositions of modules.
Modules are solely composed by aggregation and extended by refinements or spe-
cializations. The extension mechanism of Keris allows programmers to extend
atomic modules as well as fully linked systems statically by replacing subsystems
with compatible versions. In such a case, there is no need to re-link the full sys-
tem. Furthermore, the old version is not destructively overridden with the new
configuration; it persists and can still be deployed in different contexts.

202 Related Work and Conclusions

Apart from the module abstraction, composition, and evolution features of
Keris, it is the notion of class fields which enables the development of extensible
object-oriented software. The tradeoffs in comparison with abstract types and
virtual classes were already discussed in Section 5.1.5. What makes class fields
suitable for Keris is that they strictly separate object interfaces from object im-
plementations (classes), a key requirement for expressive module systems. They
also help to separate the stable parts of a system, the interfaces and implementa-
tions, from the flexible parts, the configurations which define how the services
specified in the interfaces are implemented at runtime. What class fields, abstract
types, and virtual classes have in common is the nature of the type system which
is required to deal with such abstractions. Types defined by classes that may be
covariantly overridden in extensions of the enclosing class or module have to be
bound to the enclosing instance; i.e. types are dependent on objects or module
instances.

The third part of this thesis describes our experience with extensible compil-
ers. This section explains that the language features offered by Keris make it
indeed quite simple to safely implement extensible, component-based software,
even for relatively complex domains. On the other hand, the chapter also shows
that design decisions have a significant impact on the reuse and extensibility ca-
pabilities of an application. If software is not designed with extensibility in mind,
it will be hard to evolve in future, no matter what language it is written in. Such
software typically has to be refactored first, before features like module refine-
ment and specialization can be exploited appropriately. The significance of a
language like Keris is to provide an infrastructure in which it is easy to turn a
design for an extensible component-based application into real software without
resorting to complicated design pattern-based approaches which are difficult to
design, tedious to set up and maintain, and whose usage cannot be enforced stat-
ically with a type system.

5.3 Future Work

Keris, as it is presented in this thesis, focuses on the static evolution of systems.
With the reflective infrastructure of Keris, it is possible to link new modules into
an existing context, or to hot swap modules dynamically, but this is inherently
unsafe since this process is neither under the supervision of the static nor the
dynamic type system. All safety guarantees are provided at runtime by the reflec-
tion library.

While reflective mechanisms are predominantly used for evolving systems to-
day, little work has been done on languages and runtime environments in which
a static type system can guarantee that dynamic component updates or com-
ponent extensions are type-safe. Furthermore, safe hot swap mechanisms are
required that have a well-defined semantics, in particular, if concurrency is in-

5.3 Future Work 203

volved; as opposed to the ad-hoc approaches of Keris and even Erlang, which
both require some degree of anticipation and support by the programmer of a
module to avoid race conditions and type incompatibilities at runtime.

Apart from support for the dynamic evolution of component systems, it is
worth considering to integrate more advanced module composition mechanisms
into Keris. Such mechanisms may include mixin module compositions or mech-
anisms that allow programmers to wire modules with explicit connector abstrac-
tions.

Appendix A

Type Soundness for
Prototype-Based Components

In this section we present the full type soundness proof for our type system in
Figure 2.12 with the weaker typing rules explained in Section 2.3.4. The pre-
sentation follows the style of the original type soundness proof of Featherweight
Java [95]. The formalization of the type system is based on a fixed class table
CT . For the subject reduction proof we have to assume that classes in CT are
well-typed.

A.1 Subject Reduction

Lemma A.1.1 (Subtyping) The subtyping relation <: is reflexitive and transi-
tive; i.e. T <: T and for T <: U and U <: V , we also have T <: V .

Proof: For object types, the reflexitivity and transitivity are explicitly defined.
For component and component instance types, these properties get inherited
from the subset relation ⊆. 2

Lemma A.1.2 (Well-formed types) If all types in Γ are well-formed and Γ ` e :
T then T wf.

Proof: By a straightforward induction on a derivation of Γ ` e : T . Only com-
ponent types are non-trivial due to the required disjointness of the provided
and required services. Note that all typing rules that yield component types
include this disjointness requirement explicitly. 2

Lemma A.1.3 (Invariant method overriding) If mtype(m,D) = T → T ′, then
mtype(m,C) = T → T ′ for all C <: D.

Proof: By induction on the derivation of C <: D. We suppose that
mtype(m,D) = T → T ′ and C <: D, and show that mtype(m,C) = T → T ′.

206 Type Soundness for Prototype-Based Components

Case 1: C = D
Trivial.
Case 2: C <: D CT(C) = class C extendsD {. . .}
We have to distinguish two cases, depending on whetherm is overridden in C
or not. If m is not defined in C, then we derive from the definition of mtype
the required result mtype(m,C) = mtype(m,D) = T → T . For the case that
m is defined in class C and thus overrides methodm in classD, we look at the
derivation of the method typing for methodm:

. . .

mtype(m,D) = T → T ′ impl. U = T ,U ′ = T ′

override(m,D,U → U ′)

U ′m(U x) {return e; } ok in C

With the premise of the overrides clause we finally get the result
mtype(m,C) = T → T ′.
Case 3: C <: D C <: E E <: D
By the induction hypothesis, mtype(m,E) = T → T ′. Another application of
the induction hypothesis yields mtype(m,C) = T → T ′. 2

Lemma A.1.4 (Context permutation) If Γ , x : U,y : V, Γ ′ ` e : T then Γ , y :
V, x : U, Γ ′ ` e : T .

Proof: By a straightforward induction on the typing derivation Γ , x : U,y :
V, Γ ′ ` e : T . Note that we assume that binders always introduce fresh names.
In particular, x 6= y, {x, y} ∩ dom(Γ , Γ ′) = ∅ and dom(Γ)∩ dom(Γ ′) = ∅. 2

Lemma A.1.5 If Γ , x : U ` e : T and U ′ <: U , then Γ , x : U ′ ` e : T ′ for some
T ′ <: T .

Proof: By induction on the derivation of Γ , x : U ` e : T .
Case T-Var: e = y T = Γ(y)
We have to consider two subcases, depending on whether y is the same as x.
For y = x we get Γ , x : U ′ ` x : T ′ with T ′ = U ′ <: U = T . If x 6= y, then
Γ , x : U ′ ` y : T ′ with T ′ = T .
Case T-Fld: e = e0.fi

T = Ti
Γ , x : U ` e0 : C
fields(C) = T f

By the induction hypothesis, Γ , x : U ′ ` e0 : D for some D <: C. It can be
shown easily that fields(D) = fields(C), V g. Therefore, we can apply rule (T-
Fld) and get Γ , x : U ′ ` e0.fi : T .
Case T-Inv: e = e0.m(e′)

Γ , x : U ` e0 : C
mtype(m,C) = V → T

Γ , x : U ` e′ : W
W <: V

By the induction hypothesis:
Γ , x : U ′ ` e0 : D withD <: C
Γ , x : U ′ ` e′ : W ′ withW ′ <: W <: V

A.1 Subject Reduction 207

With Lemma A.1.3, mtype(m,D) = V → T ′ with T ′ = T . Now we apply rule
(T-Inv) and get the needed result Γ , x : U ′ ` e0.m(e′) : T .

Case T-New: e = new C(e′)
T = C
fields(C) = T ′ f

Γ , x : U ` e′ : W
W <: T ′

By the induction hypothesis, Γ , x : U ′ ` e′ : V with V <: W <: T ′. With rule
(T-New) we conclude that Γ , x : U ′ ` new C(e′) : C.

Case T-Inst: e = new e0

T = [C]
Γ , x : U ` e0 : ∅⇒ C

By the induction hypothesis and the subtype relation, Γ , x : U ′ ` e0 : ∅ ⇒ D
with C ⊆ D. With (T-Inst) we derive Γ , x : U ′ ` new e0 : [D]. The subtype
relation for component instances completes the case with T ′ = [D] <: T .

Case T-Serv: e = e0 :: Ci
T = Ci

Γ , x : U ` e0 : [C]

The induction hypothesis yields Γ , x : U ′ ` e0 : [D] for some D with [D] <:
[C]. That is, C ⊆ D and therefore Ci ∈ D. Now we apply (T-Serv) to get the
required result Γ , x : U ′ ` e0 :: Ci : T .

Case T-Com: Trivial.

Case T-Mix: e = e0 mixin e1

T = (C ∪D)\(C′ ∪D′)⇒ C′ ∪D′

Γ , x : U ` e0 : C ⇒ C′

Γ , x : U ` e1 : D ⇒ D′

By the induction hypothesis:
Γ , x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <: C ⇒ C′

Γ , x : U ′ ` e1 : F ⇒ F ′ with F ⇒ F ′ <: D ⇒ D′

Rule (T-Mix) yields Γ , x : U ′ ` e0 mixin e1 : T ′ with T ′ = (E ∪ F)\(E′ ∪ F ′) ⇒
E′ ∪ F ′. It remains to show that T ′ <: T . From the clauses derived by the in-
duction hypothesis we conclude using the subtyping rules and Lemma A.1.1:

E ⊆ C C′ ⊆ E′
F ⊆ D D′ ⊆ F ′

Simple set theory yields:
(E ∪ F)\(E′ ∪ F ′) ⊆ (C ∪D)\(C′ ∪D′)
C′ ∪D′ ⊆ E′ ∪ F ′

With the subtyping rule for components we finally get T ′ <: T .

Case T-Req: e = e0 requires C
T = D ∪ C ⇒ D′\C

Γ , x : U ` e0 : D ⇒ D′

By the induction hypothesis, Γ , x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <: D ⇒ D′.
With rule (T-Req) we derive Γ , x : U ′ ` e0 requires C : E ∪ C ⇒ E\C. By the
definition of <: we get E ⊆ D and D′ ⊆ E′. We can now easily show that this
implies T ′ = (E ∪ C ⇒ E\C) <: T .

208 Type Soundness for Prototype-Based Components

Case T-Prv’: e = e0 provides C as x with d
T = (D′′ ∪D)\(D′ ∪ C)⇒ D′ ∪ C
Γ , x : U ` e0 : D ⇒ D′

Γ , x : U,y : [D′′] ` d : B
B <: C

With the induction hypothesis we get Γ , x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <:
D ⇒ D′. By Lemma A.1.4, Γ , y : [D′′], x : U ` d : B′. This time the induction
hypothesis yields Γ , y : [D′′], x : U ′ ` d : B′ with B′ <: B. After another
application of Lemma A.1.4 and by using the transitivity property of <:, we
can now make use of rule (T-Prv’). We get Γ , x : U ′ ` e : T ′ with T ′ = (D′′ ∪
E)\(E′∪C)⇒ E′∪C. It remains to show that T ′ <: T . Since E ⇒ E′ <: D ⇒ D′

we know from the definition of <: that E ⊆ D and D′ ⊆ E′. Therefore, we
also have E ∪ D′′ ⊆ D ∪ D′′. Since we know that D′ ⊆ E′, we finally get
(D′′ ∪ E)\(E′ ∪ C) ⊆ (D′′ ∪D)\(D′ ∪ C). Now, it is easy to see that T ′ <: T .

Case T-Fwd’: Similar to (T-Prv’). 2

Lemma A.1.6 (Substitution preserves typing) If Γ , x : T ` e : U , and Γ ` d :
V where V <: T , then Γ ` [d/x]e : W for someW <: U .

Proof: By induction on the derivation of Γ , x : T ` e : U . The proof is similar
to the one of Lemma A.1.5. Instead of applying the induction hypothesis twice
for cases (T-Prv’) and (T-Fwd’), we now make use of Lemma A.1.5. 2

Lemma A.1.7 (Weakening) If Γ ` e : T , x 6∈ dom(Γ), then Γ , x : U ` e : T .

Proof: By a straightforward induction on the derivation of Γ ` e : T . 2

Lemma A.1.8 If mtype(m,C) = T → T ′, and mbody(m,C) = (x, e), then for
someD with C <: D, there exists some U <: T ′ such that x : T ,this : D ` e : U .

Proof: By induction on the derivation of mbody(m,C). We assume that all
classes are well-typed. So we can make use of (T-Meth) in the base case where
m is defined in C. We immediately get x : T ,this : D ` e : U for some
U <: T ′. The induction step is straightforward. 2

Lemma A.1.9 If service(d, e, C) = d′, with Γ ` d : [E], Γ ` e : F ⇒ F ′, C ∈ F ′,
and F ∪ F ′ ⊆ E, then Γ ` d′ : B for some B <: C.

Proof: By induction on a derivation of service(d, e, C) for a given d and C.

Base case 1: e = e0 provides C as x with d0 d′ = [d/x]d0

The last rule used for typing e is (T-Prv’):

Γ ` e0 : D ⇒ D′ Γ , x : [D′′] ` d0 : B′ B′ <: C

Γ ` e : F ⇒ F ′

with F = (D∪D′′)\(D′∪C) and F ′ = D′∪C. With F∪F ′ ⊆ Ewe getD′′ ⊆ E and
therefore [E] <: [D′′]. Now we can derive Γ , x : [E] ` d0 : B′′ with B′′ <: B′

A.1 Subject Reduction 209

by Lemma A.1.5. Lemma A.1.6 finally yields the required result Γ ` d′ : B
where B <: B′′ <: B′ <: C.

Base case 2: e = e0 forwardsD as x to d0 d′ = [d/x]d0 :: C
C ∈ D

The proof is similar to the one of base case 1.

Induction step 1: e = e0 providesD as x with d0 D 6= C
The last rule used for typing e is (T-Prv’):

Γ ` e0 : G ⇒ G′ Γ , x : [G′′] ` d0 : B′ B′ <: D

Γ ` e : F ⇒ F ′

with F = (G∪G′′)\(G′∪D) and F ′ = G′∪D. Now we getG∪G′ ⊆ G∪G′∪G′′ =
F ∪ F ′ ⊆ E. Since C 6= D and C ∈ G′ ∪ D, we get C ∈ G′. Now we apply the
induction hypothesis and get service(c, e0, C) = d′ with Γ ` d′ : B and B <: C.

Induction step 2: e = e0 forwardsD as x to d0 C 6∈ D
The proof is similar to the one of induction step 1. 2

Theorem 2.3.1 (Subject reduction) If all types in Γ are well-formed, Γ ` e : T
and e -→ e′, then Γ ` e′ : T ′ for some T ′ <: T .

Proof: By induction on a derivation of e -→ e′ with a case analysis on the
reduction rule used. We suppose that Γ ` e : T and show for each case Γ `
e′ : T ′ with T ′ <: T .

Case R-Fld: e = new C(d).fi e′ = di fields(C) = U f
With rule (T-Fld) and (T-New) we derive Γ ` d : V with V <: U and T = Ui.
In particular, we have Γ ` di : Vi with T ′ = Vi <: Ui = T .

Case R-Serv: e = new e0 :: C e′ = service(new e, e, C)
With (T-Serv) and (T-Inst) we derive

Γ ` new e0 : [D]with T = C = Di
Γ ` e0 : ∅⇒ D

Lemma A.1.9 concludes this case with Γ ` e′ : T ′ for some T ′ <: C = T .

Case R-Inv: e = new C(d).m(d′)
e′ = [d′/x,new C(d)/this] e0

mbody(m,C) = (x, e0)

Rule (T-Inv) requires
Γ ` new C(d) : C
mtype(m,C) = V → T
Γ ` d′ : W whereW <: V

With Lemma A.1.8 we get x : V,this : D ` e0 : W ′ for some C <: D and
W ′ <: T . According to Lemma A.1.7 this implies Γ , x : V,this : D ` e0 : W ′.
With Lemma A.1.6 we get Γ ` e′ : T ′ with T ′ <: W ′ <: T .

Case R-Req: e = e′ requires C
From (T-Req) follows T ′ = D ⇒ D′ and T = D ∪ C ⇒ D′\C for someD andD′.
It is now easy to show that T ′ <: T .

210 Type Soundness for Prototype-Based Components

Case R-MixC: e = e′ mixin component
With (T-Mix) and (T-Com) we get immediately the required result T = T ′ =
C ⇒ C′ for some C and C′.

Case R-MixP: e = e0 mixin (e1 provides C as x with d)
e′ = (e0 mixin e1) provides C as x with d

We look at the derivation of Γ ` e : T :

Γ ` e0 : D ⇒ D′

Γ ` e1 : E ⇒ E′ Γ , x : [E′′] ` d : B B <: C

Γ ` e1 provides C as x with d : (E ∪ E′′)\(E′ ∪ C)⇒ E′ ∪ C
Γ ` e : T

where T = (D∪E∪E′′)\(D′∪E′∪C)⇒ D′∪E′∪C. Now we derive a type T ′

for expression e′ and show that T ′ = T :

Γ ` e0 : D ⇒ D′ Γ ` e1 : E ⇒ E′

Γ ` e0 mixin e1 : ((D ∪ E)\(D′ ∪ E′))⇒ D′ ∪ E′

Γ , x : [E′′] ` d : B B <: C

Γ ` e′ : T ′

where T ′ = (((D ∪ E)\(D′ ∪ E′))∪ E′′)\(D′ ∪ E′ ∪ C)⇒ D′ ∪ E′ ∪ C = T .

Case R-MixF: The induction step is almost identical to case (R-MixP).

All the other cases are straightforward. 2

A.2 Progress

Lemma A.2.1 (Object and component access) Suppose Γ ` e : U

1. If e = new C(e′).fi, then fields(C) = T f .

2. If e = new C(e′).m(d), then mbody(m,C) = (x, d′) and #(x) = #(d).

3. If e = new c :: C, then service(new c, c, C) = d.

Proof:

1. This follows directly from (T-Fld).
2. The well-typedness of e yields mtype(m,C) = T → T ′ with Γ ` d : V

and V <: T . Using this, it is easy to show that mbody(m,C) = (x, d′) and
#(x) = #(T) = #(V) = #(d).

3. By induction on the structure of c.

2

Theorem 2.3.2 (Progress) If ` e : T then e is either a value or e -→ e′ for
some e′.

A.2 Progress 211

Proof: By induction on the derivation of ` e : T . We only present the non-
trivial cases where e is not a value and where congruence rules cannot be used.

Case T-Fld: e = new C(v).fi T = Ti
With Lemma A.2.1.1 we get fields(C) = T f . Now rule (R-Fld) yields e′ = vi.
Case T-Inv: e = new C(v′).m(v)

` new C(v′) : C
mtype(m,C) = T ′ → T

` v : U
U <: T ′

With Lemma A.2.1.2 we get mbody(m,C) = (x, d) and #(x) = #(v). With
rule (R-Inv) we can now derive e′ = [v/x,new C(v′)/this] d.

Case T-Serv: e = new c :: T ` new c : [C] Ci = T ∈ C
Lemma A.2.1.3 yields service(new c, c, Ci) = d. By looking at rule (T-Serv) we
can choose e′ = d.

Case T-Mix: e = c0 mixin c1

T = (C ∪D)\(C′ ∪D′)⇒ C′ ∪
D′

` c0 : C ⇒ C′

` c1 : D ⇒ D′

We have to distinguish three different subcases, depending on c1 being either
component, c2 provides C as x with d, or c2 forwards C as x to d. In all
three cases, either rule (R-MixC), (R-MixP), or (R-MixF) immediately yields a
corresponding e′.

Case T-Req: e = e0 requires C
A simple application of rule (R-Req) results in e′ = e0. 2

Appendix B

Keris Grammar

This appendix presents a grammar for Keris. The grammar extends the Java
grammar from the Java Language Specification [82]. Only the new and modified
rules are listed to keep the section short. The grammar has been mechanically
checked to ensure that it is in LALR(1) form.

Top-Level Declaration

In addition to class and interface declarations, Keris allows module and module
interface definitions on the top-level.

TypeDeclaration ::= ClassDeclaration
| InterfaceDeclaration
| ModuleDeclaration
| ModuleIntfDeclaration
| ‘;’

Module Interface Declaration

Module interface declarations either introduce new module interfaces, or they
refine or specialize existing interfaces. Module interfaces may contain constants,
abstract methods, abstract or opaque class fields, class interfaces, and abstract
submodule definitions.

ModuleIntfDeclaration ::= Modifiersopt ‘module’ ‘interface’ Identifier
SimpleRequiresopt ModuleIntfBody

| Modifiersopt ‘module’ ‘interface’ Identifier ‘refines’
SimpleInterfaceTypeList SimpleRequiresopt ModuleIntfBody

| Modifiersopt ‘module’ ‘interface’ Identifier ‘specializes’
SimpleInterfaceTypeList RequiresAsopt ModuleIntfBody

SimpleRequires ::= ‘requires’ SimpleInterfaceTypeList

SimpleInterfaceTypeList ::= SimpleQualifiedName
| SimpleInterfaceTypeList ‘,’ SimpleQualifiedName

214 Keris Grammar

ModuleIntfBody ::= ‘{’ ModuleIntfMemberDeclsopt ‘}’

RequiresAs ::= ‘requires’ ModuleList

ModuleList ::= ModuleListElem
| ModuleList ‘,’ ModuleListElem

ModuleListElem ::= SimpleQualifiedName
| SimpleQualifiedName ‘as’ SimpleQualifiedName

ModuleIntfMemberDecls ::= ModuleIntfMemberDecl
| ModuleIntfMemberDecls ModuleIntfMemberDecl

ModuleIntfMemberDecl ::= ConstantDeclaration
| AbstractMethodDeclaration
| ClassFieldHeader ‘;’
| InterfaceDeclaration
| AbstractSubmoduleDecl
| ModuleImportDeclaration

ClassFieldHeader ::= Modifiersopt ‘class’ Identifier Interfacesopt

| Modifiersopt ‘class’ Identifier Super Interfacesopt

| Modifiersopt ‘class’ Identifier Super ‘,’ InterfaceTypeList
Interfacesopt

AbstractSubmoduleDecl ::= Modifiersopt ‘module’ SimpleQualifiedName ‘;’
| Modifiersopt ‘module’ SimpleQualifiedName ‘as’

SimpleInterfaceTypeList ‘;’

ModuleImportDeclaration ::= ‘import’ Name ‘;’
| ‘import’ Name ‘.’ ‘*’ ‘;’

SimpleQualifiedName ::= Identifier
| SimpleQualifiedName ‘.’ Identifier

Module Declaration

Module declarations either introduce new modules, or they refine or specialize
existing modules. Modules may contain all possible class member declarations
as well as submodule definitions, class fields, algebraic types, and module initial-
ization blocks.

ModuleDeclaration ::= Modifiersopt ‘module’ Identifier SimpleInterfacesopt

SimpleRequiresopt ModuleBody
| Modifiersopt ‘module’ Identifier ‘refines’

SimpleQualifiedName SimpleInterfacesopt

SimpleRequiresopt ModuleBody
| Modifiersopt ‘module’ Identifier ‘specializes’

SimpleQualifiedName SimpleInterfacesopt

RequiresAsopt ModuleBody

SimpleInterfaces ::= ‘implements’ SimpleInterfaceTypeList

ModuleBody ::= ‘{’ ModuleBodyDeclarationsopt ‘}’

215

ModuleBodyDeclarations ::= ModuleBodyDeclaration
| ModuleBodyDeclarations ModuleBodyDeclaration

ModuleBodyDeclaration ::= SubmoduleDeclaration
| ModuleImportDeclaration
| ClassFieldDeclaration
| ClassMemberDeclaration
| AlgebraicDeclaration
| Block

SubmoduleDeclaration ::= AbstractSubmoduleDecl
| Modifiersopt ‘module’ SimpleQualifiedName ‘implements’

ModuleListElem ‘;’

ClassFieldDeclaration ::= ClassFieldHeader ‘;’
| ClassFieldHeader ‘=’ ClassOrInterfaceType ‘;’
| ClassFieldHeader ‘=’ ‘super’ ‘;’
| ClassFieldHeader ‘=’ ClassBody
| ClassFieldHeader ‘=’ ClassOrInterfaceType ClassBody
| ClassFieldHeader ‘=’ ‘super’ ClassBody

Interface Declaration

In addition to constants, abstract methods, classes, and interfaces, interface defi-
nitions may also specify class constructor signatures.

InterfaceMemberDeclaration ::= ConstantDeclaration
| AbstractMethodDeclaration
| ClassDeclaration
| InterfaceDeclaration
| AbstractConstructorDecl

AbstractConstructorDecl ::= Modifiersopt ConstructorDeclarator Throwsopt ‘;’

Algebraic Datatype Declaration

In Keris, algebraic types specify a set of constructors (also called cases). An alge-
braic type either extends a regular class, or another algebraic type.

AlgebraicDeclaration ::= Modifiersopt ‘class’ Identifier Superopt AlgebraicCases ‘;’

AlgebraicCases ::= CaseDeclaration
| AlgebraicCases ‘,’ CaseDeclaration

CaseDeclaration ::= Modifiersopt ‘case’ Identifier
| Modifiersopt ‘case’ Identifier ‘(’ FormalParameterListopt ‘)’

216 Keris Grammar

Types and Names

In Keris, module qualification for submodule instances is expressed with the ::
notation.

ReferenceType ::= ClassOrInterfaceType
| ArrayType
| CompoundType

CompoundType ::= ‘[’ InterfaceTypeList ‘]’

QualifiedName ::= Name ‘.’ Identifier
| Name ‘.’ ‘class’
| Name ‘::’ Identifier

Appendix C

Principles of
Extensible Algebraic Types

This appendix briefly reviews the type theoretic intuitions behind extensible al-
gebraic datatypes with defaults. Traditionally, algebraic types are treated as sum
types of variants. Classical sum types can be extended in a straightforward way
by adding new variants. However, such an extension yields a subtype relation
which is the reverse of the extension relation, i.e. extensions become supertypes
of the original type. In the following we argue that the induced subtyping rela-
tion is not useful for writing extensible software. We show that adding default
cases to algebraic types has the effect of reversing the original subtype relation,
bringing it in sync with the extension relation.

Extensible Sums

Algebraic datatypes can be modeled as sums of variants. Each variant constitutes
a new type, which is given by a tag and a tuple of component types. Consider, for
instance, the following declaration:

class A {
case A1(T1,1 x1,1, . . . ,T1,r1 x1,r1);
case A2(T2,1 x2,1, . . . ,T2,r2 x2,r2);

}

This defines a sum type A consisting of two variant types A1 and A2, which have
components T1,1 x1,1, . . . , T1,r1 x1,r1 and T2,1 x2,1, . . . ,T2,r2 x2,r2, respectively. Let
allcases(A) denote the set of all variants of the algebraic typeA. For our example
we get allcases(A) = {A1, A2}. To describe extensions of algebraic types, we in-
troduce a partial order � between algebraic types. B � A holds if B extends A by
adding new variants. A priori, the algebraic extension relation � is independent
of the subtyping relation. In our setting � is defined explicitly by type declara-
tions. For instance, the following code defines an algebraic datatype B � A that
extends Awith an additional variant B1:

218 Principles of Extensible Algebraic Types

B

A

A1 A2 B1

Figure C.1: Subtyping for extensible sums.

class B extends A {
case B1(. . .);

}

The new type B is described by the set of its own variants owncases(B) = {B1}
and the inherited variants allcases(A). Thus, for the extended algebraic type B,
we get allcases(B) = allcases(A)∪ owncases(B) = {A1, A2, B1}.

The standard typing rules for sum types [46] turn A into a subtype of B if
all variants of A are also variants of B. In our example, we have allcases(A) ⊆
allcases(B), so the original typeA is a subtype of the extended type B. Figure C.1
summarizes the relationships between types. In this figure, algebraic datatypes
are depicted as boxes, variants are displayed as round boxes. Arrows highlight
subtype relationships. More specifically, outlined arrows represent algebraic
type extensions, whereas all other arrows connect variants with the algebraic
types to which they belong.

We call this set-theoretic approach extensible sums. In general, this approach
is characterized by the following equation:

allcases(Y) = inherited(Y) ∪ owncases(Y)

where owncases(Y) =
⋃
i
{Yi}

inherited(Y) =
⋃

Y�X,Y≠X
owncases(X)

Unfortunately, the subtype relation between extensible sum types is often the op-
posite of what one would like to have in practice. Imagine we have the following
Term type:

class Term {
case Number(int val);
case Plus(Term left, Term right);

}

Adding a new variant Ident would yield a new algebraic type ExtendedTerm.

219

class ExtendedTerm extends Term {
case Ident(String name);

}

Since ExtendedTerm is a supertype of Term, we cannot represent the sum of two
identifiers with the Plus variant. This variant expects two Terms as its arguments,
but the variant Ident is not included in the Term type. In other words, extensible
sums do not support open recursion in the definition of a datatype. So the clas-
sical way of describing algebraic types by a fixed set of variants does not provide
extensibility in the way we need it.

Extensible Algebraic Types with Defaults

To turn extended types into subtypes, we have to keep the set of variants open
for every algebraic type. This is achieved by adding a default variant to every
algebraic datatype, which subsumes all variants defined in future extensions of
the type. The set of all variants of an extensible algebraic datatype is now given
by the following equation.

allcases(Y) = inherited(Y) ∪ owncases(Y) ∪ default(Y)

where owncases(Y) =
⋃
i
{Yi}

inherited(Y) =
⋃

Y�X,Y≠X
owncases(X)

default(Y) =
⋃

Z�Y,Z≠Y
owncases(Z)

That is, every extensible algebraic type Y is defined by three disjoint variant sets
owncases(Y), inherited(Y) and default(Y). inherited(Y) includes all inherited
variants from the algebraic type Y is extending, owncases(Y) denotes Y ’s new
cases, and default(Y) subsumes variants of future extensions.

With this understanding, the variant sets for types A and B from Section C
now look like this: allcases(A) = {A1, A2} ∪ default(A), and allcases(B) =
{A1, A2, B1} ∪ default(B). Since default(A) captures B1 as well as default(B),
{B1} ∪ default(B) is a subset of default(A). Therefore allcases(B) ⊆ allcases(A)
and B is a subtype of A.

One might be tempted to believe now that one has even allcases(A) =
allcases(B). This would identify types A and B. But a closer look at the defini-
tion of default reveals that default(B) only subsumes variants of extensions of B.
Variants of any other extension ofA are contained in default(A), but not covered
by default(B). This is illustrated by the following algebraic class declaration:

class C extends A {
case C1(. . .);

}

220 Principles of Extensible Algebraic Types

A

C

C1 A1 A2 B1

B

(a) Alternative extensions

A

D1A1 A2 B1

B

D

(b) Linear extensions

Figure C.2: Subtyping algebraic type extensions.

C is another extension of algebraic type A, which is completely orthogonal to B.
Its case C1 is not included in default(B), but it is an element of default(A). As a
consequence, {B1} ∪ default(B) is a proper subset of default(A), and therefore
the extended type B is a proper subtype of A. C is a proper subtype of A for the
same reasons, but the types B and C are incompatible.

The subtype relationships of our example are illustrated in Figure C.2a. Again,
boxes represent algebraic datatypes, round boxes represent variants. Subtype
relationships are depicted with arrows. Extending an algebraic type means cre-
ating a new type which is a subtype of the old one and which inherits all the
variants of the old type. Furthermore, the new type may also define additional
variants. Dashed arrows connect inherited variants with the algebraic type to
which they get inherited.

With this approach, extended algebraic types get subtypes of the types they
extend. Therefore existing functions can be applied to values of extended types.
New variants are simply subsumed by the default clause of every pattern match-
ing construct. Another interesting observation can be made when looking at
two different extensions of a single algebraic type (like B and C in the example
above). These types are incompatible; neither of them is a supertype of the other
one. This separation of different extensions is a direct consequence of single-
inheritance: An extensible algebraic type can only extend a single other algebraic
datatype.

Extending the same type more than once yields extended algebraic types that
share some variants, but that are incompatible to each other. Of course, it is also
possible to extend an extension of an algebraic type further:

class D extends B {
case D1(. . .);

}

Here, the algebraic type D extends B and defines an additional variant D1. Fig-
ure C.2b shows the resulting subtype relations.

Figures

1.1 Extensibility based on source code reuse. 6
1.2 Extensibility based on binary reuse. 7
1.3 Extensibility based on plug-ins. 9

2.1 Schematic component notation. 25
2.2 Component evolution. 26
2.3 Service forwarding. 28
2.4 Service abstraction. 30
2.5 Component composition. 31
2.6 The final component g0. 33
2.7 Syntax. 34
2.8 Operational semantics. 36
2.9 Congruence rules for the operational semantics. 36
2.10 Auxiliary definitions for evaluation. 37
2.11 Well-formed types and subtyping. 38
2.12 Type system. 39
2.13 Auxiliary definitions for typing. 40
2.14 Term values. 43
2.15 Operational semantics for component instantiation. 44

3.1 Schematic illustration of modules SORTER and CONSOLE. 55
3.2 Schematic illustration of modules APP and LOGSORTER. 58
3.3 Illustration of modules P and Q. 80
3.4 Illustration of module dependencies in the original and specialized system. 84
3.5 Generated Java code for module M. 99
3.6 Functionality missing in Figure 3.5. 104
3.7 Generated Java code for module refinement MR. 105
3.8 Use of propagators and configurators in module refinements and special-

izations. 106
3.9 Generated Java code for module specialization MS. 107
3.10 Overhead of the benchmark framework for the JIT and the VM. 126
3.11 Function call costs in the optimized and unoptimized case. 127
3.12 Costs of class and class field instantiations. 128
3.13 Dispatch costs for methods of classes, interfaces, and class fields. 129
3.14 More complicated experiment to measure method dispatch costs. 130
3.15 Costs for type tests against Java classes, Java interfaces, and class abstrac-

tions nested in Keris modules. 131
3.16 Costs for type casts to Java classes, Java interfaces, and class abstractions

nested in Keris modules. 132

222 Figures

3.17 Quantitative comparison of JaCo and JaCo2 133
3.18 Comparison of JaCo and JaCo2 applied to input of different size. 134
3.19 Statistics about the frequency of specific language construct invocations. . 135

4.1 Structure of a multi-pass compiler. 151
4.2 Structure of the architectural pattern Context/Component. 159
4.3 Extending a system by subclassing. 161
4.4 A simple compiler architecture. 162
4.5 An extended compiler architecture. 164
4.6 JaCo’s hierarchy of compiler phases. 168
4.7 Decomposition of JaCo into components and contexts. 169
4.8 KerisC’s hierarchy of compiler phases . 171
4.9 Decomposition of KerisC into components and contexts. 172
4.10 Hierarchical composition of JaCo2. 176
4.11 Hierarchical composition of KeCo, an extension of JaCo2. 179
4.12 Compiler subphases of KeCo’s semantical analysis. 180
4.13 Configuration of J_SEMANTIC_ANALYZER and TRANSMODULES. 180
4.14 Implementation of JaCo and some of its extensions. 187
4.15 Implementation of JaCo2 and its extension KeCo. 188

C.1 Subtyping for extensible sums. 218
C.2 Subtyping algebraic type extensions. 220

Listings

3.1 A module interface for graphs. 87
3.2 An implementation of module interface Graph. 88
3.3 A specialization of directed graphs. 89
3.4 A modular Subject/Observer implementation. 91
3.5 A concrete Visitor implementation. 94
3.6 Extension of the Visitor implementation. 95
3.7 Extensible interpreter framework. 96
3.8 Language extension in the interpreter framework. 96
3.9 Runtime type support for class fields. 115
3.10 Compiler support for reflection. 118
3.11 Class keris.reflect.Module (Part 1: Reflective module representation). . 119
3.12 Class keris.reflect.Module (Part2: Creating module representations

and handling module instances). 120
3.13 Class keris.reflect.Context. 122

Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer Verlag, 1996.

[2] F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz. Piccola — A small
composition language. In H. Bowman and J. Derrick, editors, Formal Methods for
Distributed Processing — A Survey of Object-Oriented Approaches, pages 403–426.
Cambridge University Press, 2001.

[3] F. Achermann and O. Nierstrasz. Applications = components + scripts — A tour
of piccola. Software Architectures and Component Technology, pages 261–292,
2001.

[4] M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database inte-
gration model: The composition-filters approach. In Proceedings of the European
Conference on Object-Oriented Programming, pages 372–395, 1992.

[5] J. Aldrich, C. Chambers, and D. Notkin. Architectural reasoning in ArchJava.
In Proceedings of the 16th European Conference on Object-Oriented Programming,
Málaga, Spain, June 2002.

[6] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software archi-
tecture to implementation. In International Conference on Software Engineering,
Orlando, Florida, USA, May 2002.

[7] E. Allen. Designing extensible applications. In Diagnosing Java Code. IBM devel-
operWorks, 2001.

[8] R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, May 1997.

[9] D. Ancona and E. Zucca. A theory of mixin modules: Basic and derived operators.
Mathematical Structures in Computer Science, 8(4):401–446, 1998.

[10] D. Ancona and E. Zucca. A primitive calculus for module systems. In Principles
and Practice of Declarative Programming, LNCS 1702. Springer-Verlag, 1999.

[11] D. Ancona and E. Zucca. True modules for Java-like languages. In Proceedings
of European Conference on Object-Oriented Programming, LNCS 2072. Springer-
Verlag, 2001.

[12] D. Ancona and E. Zucca. A calculus of module systems. Journal of Functional
Programming, 12(2):91–132, 2002.

[13] A. Appel, L. Cardelli, K. Crary, K. Fisher, C. Gunter, R. Harper, X. Leroy, M. Lillib-
ridge, D. B. MacQueen, J. Mitchell, G. Morrisett, J. H. Reppy, J. G. Riecke, Z. Shao,
and C. A. Stone. Principles and preliminary design for ML2000, March 1999.

226 Bibliography

[14] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming
in Erlang. Prentice-Hall, second edition, 1996.

[15] U. Asmann. Invasive Software Composition. Springer-Verlag Heidelberg, February
2003.

[16] D. Bacon, J. Bloch, J. Bogda, C. Click, P. Haahr, D. Lea, T. May, J.-W. Maessen,
J. Mitchell, K. Nilsen, B. Pugh, and E. G. Sirer. The “double-checked locking is
broken” declaration, 2000.
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

[17] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold, and U. Hölzle. Mixins in
strongtalk. In ECOOP 2002 Workshop on Inheritance, June 2002.

[18] D. Batory and S. O’Malley. The design and implementation of hierarchical soft-
ware systems with reusable components. ACM TOSEM, October 1992.

[19] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for secure modular program-
ming in Java. Technical Report TR-603-99, Department of Computer Science,
Princeton University, 1999.

[20] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Oc-
tober 1999.

[21] K. Beck and M. Fowler. Planning Extreme Programming. Addison-Wesley, October
2000.

[22] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A minimal module model sup-
porting local rebinding. In Proceedings of JMLC 2003, Klagenfurt, Austria, August
2003.

[23] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition
filters. Communications of the ACM, 44(10):51–57, October 2001.

[24] L. Bettini, V. Bono, and B. Venneri. Coordinating mobile object-oriented code. In
Proceedings of Coordination 2002, York, UK, April 2002.

[25] M. Blume and A. W. Appel. Hierarchical modularity. ACM Transactions on Pro-
gramming Languages and Systems, 21(4), July 1999.

[26] V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In Pro-
ceedings of the 13th European Conference on Object-Oriented Programming, pages
43–66, Lisbon, Portugal, 1999.

[27] J. Bosch and A. Ran. Evolution of software product families. In 3rd International
Workshop on Software Architectures for Product Families, LNCS 1951, pages 168–
183, Las Palmas de Gran Canaria, Spain, 2000.

[28] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah, 1992.

[29] G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Programming: Systems, Languages,
and Applications, pages 303–311, Ottawa, Canada, 1990. ACM Press.

Bibliography 227

[30] G. Bracha and D. Griswold. Extending Smalltalk with mixins. In OOPSLA ’96
Workshop on Extending the Smalltalk Language, April 1996.

[31] G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proceedings of
the IEEE Computer Society International Conference on Computer Languages, pages
282–290, Washington, DC, 1992. IEEE Computer Society.

[32] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding genericity to the Java programming language. In Proceedings of
OOPSLA ’98, October 1998.

[33] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. Extensible markup lan-
guage (XML) 1.0 (second edition), 2000. http://www.w3.org/XML/.

[34] K. B. Bruce. Safe static type checking with systems of mutually recursive classes
and inheritance. Technical report, Williams College, Williamstown, MA, USA,
1997.

[35] K. B. Bruce. Foundations of Object-Oriented Programming Languages: Types and
Semantics. MIT Press, Cambridge, Massachusetts, February 2002. ISBN 0-201-
17888-5.

[36] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is not a good “Match” for object-
oriented languages. In Proceedings of the European Conference on Object-Oriented
Programming, pages 104–127, 1997.

[37] K. B. Bruce, L. Petersen, and J. Vanderwaart. Modules in LOOM: Classes are not
enough. Technical report, Williams College, Williamstown MA, USA, 1998.

[38] M. Büchi and W. Weck. Compound types for Java. In Proceedings of OOPSLA 1998,
pages 362–373, October 1998.

[39] M. Büchi and W. Weck. Generic wrappers. In Proceedings of the 14th European
Conference on Object-Oriented Programming, pages 201–225, June 2000.

[40] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy
of software change. To appear in Journal of Software Maintenance and Evolution:
Research and Practice (Special Issue on USE), 2004.

[41] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern–
Oriented Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[42] L. Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 431–
507, New York, 1991. Springer-Verlag.

[43] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and Engi-
neering Handbook, chapter 103, pages 2208–2236. CRC Press, 1997.

[44] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.
Modula-3 language definition. ACM SIGPLAN Notices, 27(8):15–42, August 1992.

[45] L. Cardelli and X. Leroy. Abstract types and the dot notation. In Proceedings of IFIP
TC2 Working Conference on Programming Concepts and Methods, pages 479–504,
North-Holland, 1990.

228 Bibliography

[46] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471–522, December 1985.

[47] N. Carriero and D. Gelernter. How to write parallel programs: A guide to the
perplexed. ACM Computing Surveys, 21(3):323–357, September 1989.

[48] D. Cavin. Synchronous Java compiler. Projet de semestre. École Polytechnique
Fédérale de Lausanne, Switzerland, February 2000.

[49] C. Chambers and Cecil Team. The Cecil language, specification and rationale,
December 1998.

[50] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
open classes and symmetric multiple dispatch for Java. In Proceedings of the Con-
ference on Object-Oriented Programming: Systems, Languages, and Applications,
pages 130–145. ACM Press, October 2000.

[51] W. R. Cook. Object-oriented programming versus abstract data types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands,
May/June 1990, volume 489, pages 151–178. Springer-Verlag, New York, NY,
1991.

[52] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In Proceed-
ings of the 17th Annual ACM Symposium on Principles of Programming Languages,
pages 125–135, San Francisco, California, USA, January 1990.

[53] J. Corwin, D. F. Bacon, D. Grove, and C. Murthy. MJ: A rational module system
for Java and its applications. In Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Anaheim, CA, USA, October 2003.

[54] K. Crary, R. Harper, and S. Puri. What is a recursive module? In SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 50–63, 1999.

[55] K. Czarnecki. Generative Programming. Addison-Wesley, May 2000. ISBN 0-210-
30977-7.

[56] F. Deremer and H. H. Kron. Programming in the large versus programming in the
small. IEEE Transactions on Software Engineering, June 1976.

[57] D. Duggan and C. Sourelis. Mixin modules. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming, pages 262–273, Philadelphia,
Pennsylvania, June 1996.

[58] E. Ernst. gBeta: A language with virtual attributes, block structure and propagating,
dynamic inheritance. PhD thesis, Department of Computer Science, University of
Aarhus, Denmark, 1999.

[59] E. Ernst. Family polymorphism. In Proceedings of the European Conference on
Object-Oriented Programming, pages 303–326, Budapest, Hungary, 2001.

[60] E. Ernst. Loosely coupled class families. In ECOOP Workshop on Advanced Separa-
tion of Concerns, 2001.

Bibliography 229

[61] E. Ernst. Higher-order hierarchies. In Proceedings of the European Conference on
Object-Oriented Programming, Darmstadt, Germany, July 2003.

[62] P. Eugster, R. Guerraoui, and C. Damm. On objects and events. In Proceedings for
OOPSLA 2001, Tampa Bay, Florida, October 2001.

[63] R. B. Findler. Modular abstract interpreters. Unpublished manuscript, Carnegie
Mellon University, June 1995.

[64] R. B. Findler and M. Flatt. Modular object-oriented programming with units and
mixins. In Proceedings of the ACM International Conference on Functional Program-
ming, volume 34(1), pages 94–104, Baltimore, Maryland, 1999.

[65] K. Fisher and J. Reppy. Foundations for Moby classes. Technical report, Bell Labs,
Lucent Technologies, Murray Hill, NJ, USA, February 1999.

[66] K. Fisher and J. Reppy. Report on the Moby programming language, November
2001.

[67] K. Fisher and J. Reppy. Inheritance-based subtyping. Information and Computa-
tion, 177(1):28–55, August 2002.

[68] K. Fisher and J. H. Reppy. The design of a class mechanism for Moby. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 37–49,
1999.

[69] M. Flatt. PLT MzScheme: Language manual. Technical Report TR 97-280, Rice
University, 1997.

[70] M. Flatt. Programming Languages for Reusable Software Components. PhD thesis,
Rice University, Department of Computer Science, June 1999.

[71] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proceed-
ings of the ACM Conference on Programming Language Design and Implementation,
pages 236–248, 1998.

[72] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings of
the 25th ACM Symposium on Principles of Programming Languages, pages 171–183,
San Diego, California, 1998.

[73] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the
Join-calculus. In Proceedings of the 23rd ACM Symposium on Principles of Program-
ming Languages, pages 372–385, January 1996.

[74] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[75] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of SIGSOFT ’94: Foundations of Software Engineering,
pages 175–188, New Orleans, Louisiana, USA, December 1994.

[76] D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description inter-
change language. In Proceedings of CASCON ’97, November 1997.

[77] J. Garrigue. Programming with polymorphic variants. In ML Workshop, Septem-
ber 1998.

230 Bibliography

[78] J. Garrigue. Code reuse through polymorphic variants. In Workshop on Founda-
tions of Software Engineering, Sasaguri, Japan, November 2000.

[79] N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In
Conference Record of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 250–261, San Antonio, Texas, 1999.

[80] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Ma., 1983.

[81] J. Gosling. The evolution of numerical computing in Java. Sun Microsystems
Laboratories. http://java.sun.com/people/jag/FP.html.

[82] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Java
Series, Sun Microsystems, second edition, 2000. ISBN 0-201-31008-2.

[83] O. M. Group. The Common Object Request Broker: Architecture and specification,
revision 2.0, February 1997.

[84] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In Proceedings of the 21st ACM Symposium on Principles of Program-
ming Languages, January 1994.

[85] W. Harrison and H. Ossher. Subject-oriented programming — A critique of pure
objects. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, September 1993.

[86] A. Hejlsberg and S. Wiltamuth. C# language specification. Microsoft Corporation,
2000.

[87] S. Herrmann. Object Teams: Improving modularity for crosscutting collabora-
tions. In Proceedings of Net.ObjectDays, Erfurt, Germany, 2002.

[88] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In Proceed-
ings of the European Symposium on Programming, Grenoble, France, April 2002.

[89] I. Holland. Specifying reusable components using contracts. In Proceedings of the
European Conference on Object-Oriented Programming, pages 287–308, 1993.

[90] U. Hölzle. Integrating independently-developed components in object-oriented
languages. In Proceedings of the European Conference on Object-Oriented Program-
ming, pages 36–56, 1993.

[91] S. Hudson, F. Flannery, S. Ananian, D. Wang, and A. Appel. JavaCup User’s Man-
ual, March 1998.

[92] G. Hultgren. Delta modules, February 2002.
http://minnow.cc.gatech.edu/squeak/2063.

[93] R. Ibrahim. COMEL: A formal model for COM. Technical report, Queensland
University of Technology, Brisbane, Australia, 1998.

[94] Y. Ichisugi and A. Tanaka. Difference-based modules: A class independent mod-
ule mechanism. In Proceedings of the European Conference on Object-Oriented Pro-
gramming, Málaga, Spain, June 2002.

Bibliography 231

[95] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages & Applications, volume 34(10), pages 132–146, 1999.

[96] A. Igarashi and B. C. Pierce. Foundations for virtual types. In Proceedings of the
European Conference on Object-Oriented Programming, Lisbon, Portugal, 1999.

[97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future: The
story of Squeak, a practical Smalltalk written in itself. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 318–326, Atlanta, GA, USA, October 1997.

[98] G. S. Itzstein and D. Kearney. Applications of JoinJava. In Proceedings of the
7th Asia-Pacific Conference on Computer Systems Architecture, pages 37–46, Mel-
bourne, Australia, 2002. Australian Computer Society, Inc.

[99] M. Jazayeri, A. Ran, and F. van der Linden. Software Architecture for Product Fam-
ilies: Principles and Practices. Addison-Wesley, 2000.

[100] M. P. Jones. Using parameterized signatures to express modular structure. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, St. Petersburg Beach, Florida, USA, January 1996.

[101] G. Kiczales. Aspect-oriented programming — The fun has just begun. In Work-
shop on New Visions for Software Design and Productivity: Research and Applica-
tions, Vanderbilt University, Nashville, Tennessee, December 2001.

[102] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In Proceedings of the European Conference on Object-Oriented
Programming, Budapest, Hungary, June 2001.

[103] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages 220–242, Jyväskylä, Finland,
1997.

[104] J. Kienzle and R. Guerraoui. AOP does it make sense? The case of concurrency
and failures. In Proceedings of the European Conference on Object-Oriented Pro-
gramming, Málaga, Spain, June 2002.

[105] G. Kniesel. Type-safe delegation for run-time component adaptation. In Proceed-
ings of the 13th European Conference on Object-Oriented Programming, pages 351–
366, Lisbon, Portugal, 1999.

[106] S. Krishnamurthi, M. Felleisen, and D. Friedman. Synthesizing object-oriented
and functional design to promote re-use. In European Conference on Object-
Oriented Programming, pages 91–113, 1998.

[107] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, 1992.

[108] T. Kühne. The translator pattern — external functionality with homomorphic
mappings. In R. Ege, M. Singh, and B. Meyer, editors, The 23rd TOOLS conference
USA 1997, pages 48–62. IEEE Computer Society, 1998. 28.7-1.8, 1997, Santa
Barbara, California.

232 Bibliography

[109] X. Leroy. Manifest types, modules and separate compilation. In Proceedings of the
21st ACM Symposium on Principles of Programming Languages, January 1994.

[110] X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[111] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system release 3.00, documentation and user’s manual, April 2000.

[112] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Symposium on Principles of Programming Languages, pages 333–343, January
1992.

[113] K. Lieberherr and D. Lorenz. Coupling aspect-oriented and adaptive program-
ming. Unpublished, 2002.

[114] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Prop-
agation Patterns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

[115] K. J. Lieberherr and I. Holland. Assuring good style for object-oriented programs.
IEEE Software, pages 38–48, September 1989.

[116] K. J. Lieberherr and I. Holland. Tools for preventive software maintenance. In
Conference on Software Maintenance, pages 2–13, Miami, Florida, October 16-19,
1989.

[117] K. J. Lieberherr, I. Holland, and A. J. Riel. Object-oriented programming: An
objective sense of style. In Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, in Special Issue of SIGPLAN Notices,
pages 323–334, San Diego, CA, September 1988.

[118] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, May 1997.

[119] T. Lindholm et.al. JSR-133: Java memory model and thread specification revision,
Java Community Process, Sun Microsystems, September 2003.

[120] Y. D. Liu, R. Rinat, and S. Smith. Component assemblies and component run-
times. Technical report, Johns Hopkins University, Department of Computer Sci-
ence, March 2003.

[121] D. Luckham, L. Augustin, J. Kenney, J. Vera, D. Bryan, and W. Mann. Specification
and analysis of system architecture using Rapide. In IEEE Transactions on Software
Engineering, April 1995.

[122] M. Lumpe, F. Achermann, and O. Nierstrasz. A formal language for composition.
In G. Leavens and M. Sitaraman, editors, Foundations of Component Based Systems,
pages 69–90. Cambridge University Press, 2000.

[123] D. MacQueen. Modules for Standard ML. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, pages 198–207, New York, Au-
gust 1984.

Bibliography 233

[124] O. L. Madsen and B. Møller-Pedersen. Virtual Classes: A powerful mechanism for
object-oriented programming. In Proceedings OOPSLA’89, pages 397–406, Octo-
ber 1989.

[125] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented Programming
in the BETA Programming Language. Addison-Wesley, June 1993. ISBN 0-201-
62430-3.

[126] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of the 5th European Software Engineering Conference,
Barcelona, Spain, September 1995.

[127] J. Manson and W. Pugh. A new approach to the semantics of multithreaded Java.
Technical report, University of Maryland, College Park, U.S.A., January 2003.

[128] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for old-
fashioned Java. In Proceedings of the 2001 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications, October 2001.

[129] S. McDirmid, M. Flatt, and W. C. Hsieh. Mixing COP and OOP. In OOPSLA Work-
shop on Language Mechanisms for Programming Software Components, pages 29–
32. Technical Report NU-CCS-01-06, Northeastern University, Boston, MA, Octo-
ber 2001.

[130] N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. In IEEE Transactions on Software En-
gineering, volume 26, pages 70–93, January 2000.

[131] T. Mens. A state-of-the-art survey on software merging. Transactions on Software
Engineering, 28(5), May 2002.

[132] T. Mens, J. Buckley, M. Zenger, and A. Rashid. Towards a taxonomy of software
evolution. In International Workshop on Unanticipated Software Evolution, War-
saw, Poland, April 2003.

[133] B. Meyer. Eiffel, The Language. Object Oriented Series. Prentice Hall, Engelwood
Cliffs, 1992.

[134] B. Meyer. Object-Oriented Software Construction (2nd Edition). Prentice Hall,
1997.

[135] M. Mezini and K. J. Lieberherr. Adaptive plug-and-play components for evolu-
tionary software development. In Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 97–116, 1998.

[136] M. Mezini and K. Ostermann. Integrating independent components with on-
demand remodularization. In In Proceedings of the 17th ACM Conference on Object-
Oriented Programming, Seattle, Washington, USA, November 2002.

[137] M. Mezini and K. Ostermann. Conquering aspects with caesar. In Proceedings of
the 2nd International Conference on Aspect-Oriented Software Development, pages
90–100, Boston, USA, March 2003.

[138] M. Mezini and K. Ostermann. Modules for crosscutting models. In Interna-
tional Conference on Reliable Software Technologies (Ada-Europe 2003), Toulouse,
France, June 2003.

234 Bibliography

[139] M. Mezini, L. Seiter, and K. Lieberherr. Component integration with pluggable
composite adapters. Software Architectures and Component Technology, 2000.

[140] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research directions.
IEEE Transactions on Software Engineering, 21(6):528–562, 1995.

[141] P. Milne and K. Walrath. Long-term persistance for JavaBeans. Technical report,
Sun Microsystems, November 1999.

[142] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes — Parts I and
II. Information and Computation, 100(1):1–77, 1992.

[143] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, May 1997.

[144] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules
with subtyping and inheritance. In Conference Record of the 18th ACM Symposium
on Principles of Programming Languages, pages 270–278, Orlando, Florida, Jan-
uary 1991.

[145] M. Moriconi, X. Quian, and A. Riemenschneider. Correct architecture refinement.
In IEEE Transactions on Software Engineering, volume 21, April 1995.

[146] H. Mössenböck and N. Wirth. The programming language Oberon-2. Structured
Programming, 12(4), 1991.

[147] O. Nierstrasz. Software evolution as the key to productivity. In Proceedings Rad-
ical Innovations of Software and Systems Engineering in the Future, Venice, Italy,
October 2002.

[148] O. Nierstrasz. Contractual types. Technical Report IAM-03-004, Institut für Infor-
matik, Universität Bern, Switzerland, August 2003.

[149] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible compiler frame-
work for Java. In Proceedings of the 12th International Conference on Compiler
Construction, pages 138–152, Warsaw, Poland, April 2003.

[150] M. Odersky. Objects + views = components? In Proceedings of Abstract State
Machines 2000, March 2000.

[151] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, and M. Zenger. The Scala language specification. EPFL, Switzerland,
January 2004. http://scala.epfl.ch/

[152] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects with
dependent types. Technical report IC/2002/70, EPFL, Switzerland, September
2002.

[153] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects with
dependent types. In Proceedings of the European Conference on Object-Oriented
Programming, Darmstadt, Germany, July 2003.

[154] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages,
pages 146–159, January 1997.

Bibliography 235

[155] K. Ostermann. Implementing reusable collaborations with delegation layers.
In OOPSLA Workshop on Language Mechanisms for Programming Software Com-
ponents, pages 9–14. Technical Report NU-CCS-01-06, Northeastern University,
Boston, MA, October 2001.

[156] K. Ostermann. Dynamically composable collaborations with delegation layers.
In Proceedings of the 16th European Conference on Object-Oriented Programming,
Malaga, Spain, 2002.

[157] J. Palsberg and C. B. Jay. The essence of the visitor pattern. Technical Report 5,
University of Technology, Sydney, 1997.

[158] D. Parnas. On the design and development of program families. IEEE Transactions
on Software Engineering, SE-2(1):1–9, 1976.

[159] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
In ACM SIGSOFT Software Engineering Notes, volume 17, pages 40–52, October
1992.

[160] L. Petersen. A module system for Loom, May 1997.

[161] C. Petitpierre. A case for synchronous objects in compound-bound architectures.
Unpublished. École Polytechnique Fédérale de Lausanne, 2000.

[162] S. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, Englewood Cliffs, 1987.

[163] B. C. Pierce. Advanced module systems (A guide for the perplexed). Invited Talk
at the International Conference on Functional Programming, 2000.

[164] B. C. Pierce. Types and Programming Languages. MIT Press, February 2002. ISBN
0-262-16209-1.

[165] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trad-
ing and dynamic updating. In Proceedings of ICCDS ’98, Annapolis, Maryland,
USA, May 1998.

[166] R. Prieto-Díaz. Status report: Software reusability. IEEE Software, pages 61–66,
May 1993.

[167] A. Radenski. Module embedding. International Journal on Software — Concepts
and Tools, 19(3):122 – 129, 1998.

[168] A. Radenski. Derivation of secure parallel applications by means of module em-
bedding. In J. Gutknecht and W. Wech, editors, Modular Programming Languages,
pages 26–37. Springer, 2000.

[169] A. Radenski. Anomaly-free component adaptation with class overriding. Journal
of Systems and Software, 70(1), 2002.

[170] A. Radenski. The subclassing anomaly in compiler evolution. International Jour-
nal on Information Theories and Applications, Vol. 10, 2003.

[171] R. Rinat and S. Smith. Modular internet programming with Cells. In Proceedings
of the European Conference on Object-Oriented Programming, Málaga, Spain, June
2002.

236 Bibliography

[172] D. Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft Press,
1997.

[173] Y. Roudier and Y. Ichisugi. Mixin composition strategies for the modular imple-
mentation of aspect weaving — the EPP preprocessor and it’s module description
language. In Aspect Oriented Programming Workshop at ICSE’98, April 1998.

[174] A. Rüping. Modules in object-oriented systems. In Technology of Object-Oriented
Languages and Systems, 1993.

[175] C. Russo. Types for Modules. PhD thesis, University of Edinburgh, 1998.

[176] C. Russo. First-class structures for Standard ML. In Proceedings of the 9th European
Symposium on Programming, pages 336–350, Berlin, Germany, 2000.

[177] Y. Saidji. Operator overloading in java. Projet de semestre. École Polytechnique
Fédérale de Lausanne, Switzerland, June 2000.

[178] D. Schmidt and T. Harrison. Double-checked locking: An optimization pattern
for efficiently initializing and accessing thread-safe objects. In Proceedings of the
3rd Annual Pattern Languages of Program Design Conference, 1996.

[179] J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca,
J. Hall, and P. Hall, editors, Software Architectures — Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

[180] J. C. Seco. Adding type safety to component-oriented programming. In Proceed-
ings of the FMOODS 2002 Student Workshop, University of Twente, The Nether-
lands, March 2002.

[181] J. C. Seco. Type safe composition in .NET. In First Microsoft Research Summer
Workshop, Cambridge, UK, 2002.

[182] J. C. Seco and L. Caires. A basic model of typed components. In Proceedings of
the 14th European Conference on Object-Oriented Programming, pages 108–128,
2000.

[183] P. Sewell. Modules, abstract types, and distributed versioning. In Proceedings of
the 28th ACM Symposium on Principles of Programming Languages, London, UK,
January 2001.

[184] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, 1996.

[185] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers.
In Proceedings of the European Conference on Object-Oriented Programming, Brus-
sels, Belgium, July 1998.

[186] V. C. Sreedhar. ACOEL on CORAL: A component requirement and abstraction
language. In OOPSLA Workshop on Specification and Verification of Component-
Based Systems, October 2001.

[187] V. C. Sreedhar. Programming software components using ACOEL. Unpublished
manuscript, IBM T.J. Watson Research Center, 2002.

Bibliography 237

[188] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the
evolution of reusable assets. In Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 268–285. ACM Press, October 1996.

[189] B. Stroustrup. The C++ Programming Language (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1991.

[190] Sun Microsystems. JavaBeanstm. http://java.sun.com/beans, December
1996.

[191] Sun Microsystems. Java 2 Platform Enterprise Edition Specification, 2001.

[192] C. Szyperski. Import is not inheritance — Why we need both: Modules and
classes. In Proceedings of the 4th European Symposium on Programming, Rennes,
France, February 1992.

[193] C. Szyperski. Component-oriented programming: A refined variation of object-
oriented programming. The Oberon Tribune, 1(2), December 1995.

[194] C. Szyperski. Independently extensible systems – software engineering potential
and challenges. In Proceedings of the 19th Australian Computer Science Conference,
Melbourne, Australia, 1996.

[195] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addi-
son Wesley / ACM Press, New York, 1998. ISBN 0-201-17888-5.

[196] S. T. Taft and R. A. Duff. Ada 95 Reference Manual: Language and Standard Li-
braries. Lecture Notes in Computer Science. Springer Verlag, 1997. ISBN 3-540-
63144-5.

[197] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, CSE-
99-TH-002, 1999.

[198] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the International Conference
on Software Engineering, May 1999.

[199] K. K. Thorup. Genericity in Java with virtual types. In Proceedings of the European
Conference on Object-Oriented Programming, LNCS 1241, pages 444–471, June
1997.

[200] M. Torgersen. Virtual types are statically safe. In 5th Workshop on Foundations of
Object-Oriented Languages, San Diego, CA, USA, January 1998.

[201] D. Ungar and R. B. Smith. Self: The power of simplicity. Lisp and Symbolic Com-
putation, March 1991.

[202] M. VanHilst and D. Notkin. Using role components to implement collaboration-
based designs. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 1996.

[203] P. Wadler and et al. The expression problem. Discussion on the Java-Genericity
mailing list, December 1998.

[204] S. Weerawarana, F. Curbera, and M. Duftler. Bean Markup Language: A com-
position language for JavaBeans components. In Proceedings of the 6th USENIX

238 Bibliography

Conference on Object-Oriented Technologies and Systems, San Antonio, Texas, USA,
January 2001.

[205] D. Weiss and C. Lai. Software Product-Line Engineering. Addison-Wesley, 1999.

[206] N. Wirth. Programming in Modula-2. Springer Verlag, Berlin, 1982.

[207] N. Wirth, H. Mössenböck, and B. H. et. al. Component Pascal language report.
Technical report, Oberon Microsystems, Inc. Oberon microsystems, Inc., May
1997.

[208] A. Wittmann. Towards Caesar: Family polymorphism for Java. Master’s thesis,
Technische Universität Darmstadt, Fachbereich Informatik, 2003.

[209] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115, 1994.

[210] M. Zenger. Erweiterbare Übersetzer. Master’s thesis, University of Karlsruhe, Au-
gust 1998.

[211] M. Zenger. Evolving software with extensible modules. In International Workshop
on Unanticipated Software Evolution, Málaga, Spain, 2002.

[212] M. Zenger. Type-safe prototype-based component evolution. In Proceedings of the
European Conference on Object-Oriented Programming, Málaga, Spain, June 2002.

[213] M. Zenger. Keris: Evolving software with extensible modules. To appear in Jour-
nal of Software Maintenance and Evolution: Research and Practice (Special Issue on
USE), 2004.

[214] M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults. In Pro-
ceedings of the International Conference on Functional Programming, Firenze, Italy,
September 2001.

[215] M. Zenger and M. Odersky. Implementing extensible compilers. In ECOOP Work-
shop on Multiparadigm Programming with Object-Oriented Languages, Budapest,
Hungary, June 2001.

[216] S. Zermatten. Compound Types in Java. Projet de semestre. Laboratoire des méth-
odes de programmation, École Polytechnique Fédérale de Lausanne, Switzerland.
http://lamp.epfl.ch/jaco/cjava.html, June 2000.

Index

A
abstract type 140, 198
ADL 20, 193
algebraic type 153
AOP 198
architectural design patterns 157
architectural evolution 193
architecture description language 20,

193
as-is reuse 156
aspect weaver 198
aspect-oriented programming 14, 198

B
black-box extensibility 8, 63

C
change

anticipation 3
invasiveness 4, 62
object of 3
time of 3

changes
convergent 4
divergent 4
parallel 4
sequential 4

class field 69, 198
abstract 73
anonymous implementation 72
dependencies 73
implementation 112
inheritance 75
opaque 71
refinement 70
subtyping 75

class loader 51, 52
code reuse 137
collaboration interface 199
collaboration-based design 198
component

composition 47
instance 23
instantiation 25
mixin 31, 47
prototype 22, 23
prototype-based 46
service 23, 46
specialization 26
technology 1

component adaption 2, 22
component calculus 34

semantics 35
soundness 41, 205
subtyping 44
syntax 34
type system 38

component framework 13
component model 13

prototype-based 22, 23
component-oriented language 20, 191
composition 139

coarse-grained 21
dynamic 21
hierarchical 57, 59, 140
operator 47

composition language 193
composition operators 21
conceptual abstraction 67
configuration context 103
context dependency

explicit 9, 54
unresolved 58, 80

Context/Component pattern 157, 160
coordination abstraction 194
coordination language 194
covariance 10, 69

D
default case 153, 219
delegation 47, 197, 199

240 Index

delegation layer 199
delta modules 196
deployment context 98, 100, 102, 103
design pattern 14, 90

architectural 157
Context/Component 157, 160
extensibility 92, 95
Generic Visitor 152
Interpreter 95
Translator 152
Visitor 92, 152

difference-based modules 196

E
encapsulation 10, 20, 27
expression problem 92, 151
extensibility 2, 14, 22, 52
extensibility problem 92, 150
extensible algebraic types 153, 219
extensible compiler 16, 149, 162
extensible interpreter 152
extensible sums 217
external connections 194
external linking 194

F
family polymorphism 87
forwarding 27
framework 13

architecture-driven 7, 14
data-driven 9, 14

functor 139, 194
applicative 141
generative 141

furtherbinding 198, 199

G
generative programming 14
generativity 141
genericity 52
glass-box extensibility 7
glassbox 196
glue abstraction 193
gray-box extensibility 8, 63

H
hot swapping 86

I
incremental revelation 140
independent extensibility 4
industrial component model 13, 52
information hiding 138
inheritance 75

mixin-based 47
object-based 47

interface ascription 64, 82
invasive modifications 4

J
JaCo 133, 157, 166
JaCo2 133, 175

K
KeCo 125
Keris

abstract class fields 73
abstract modules 71
access control 56
anonymous class 72
benchmarks 126
class abstractions 68
class field dependency 73
class fields 69, 75
classes 68
compiler 125
composition 59
context dependencies 54, 80
dynamic linking 86
grammar 213
hot swap 86
implementation 98, 106

optimizations 110
overview 108
rationale 108

importing modules 60
initialization protocol 100
interface ascription 64, 82
interfaces 68
member lookup 61
module access 59
module access implementation

109
module composition 56, 81

Index 241

module configuration 100–102
module declaration 54
module execution 61, 123
module initialization 61, 62, 100,

103
module instantiation 100
module interfaces 55
module members 55
module translation 98
opaque class fields 71
overriding class fields 70
overriding members 63
overriding submodules 64
refinement 62, 65, 83, 103
reflection 85, 117
reflection API 119
rewiring 67, 104
runtime types 84
specialization 65, 83, 104
submodule access 59
submodules 57
type coherence 78
type refinement 71
type representation 114
type system 77
type translation 113

L
language integration 20, 191
language safety 12
late binding 10

M
manifest type 140
meta-programming 14

dynamic 15
mixin layer 199
mixin module 152
mixin-based composition 195
modularity 51
module

composition 81, 139
context 100
dependency 139
first-class 138
instance 56, 139

interface 138
path 77
paths 59
refinement 62, 65, 83
second-class 138
specialization 65, 83

module embedding 196
module system 137, 194

classical 59, 194
first-order 139
higher-order 139

multi-stage programming 15

N
name space 51, 137, 138

O
object team 199
object-based language 46
opaque type 140
open class 152
open-box extensibility 5
open-source 6

P
package system 51
partial abstraction 140
Pizza 153
plug 193
plug-and-play programming 65
plug-in 8, 53
polymorphic variant 152
polymorphism

family 87
parametric 10
subtype 10

product-line 2, 22, 53
programming by difference 156
programming in the large 9
programming language

abstractions 11
prototype 147

R
re-modularization 199
refinement 62, 65, 83
reflection 15, 85

242 Index

reuse 1, 137, 142
reuse contracts 8
revelation 140
runtime type 84

S
safety 5, 12
Scala 174
script 193
sealed packages 51
self types 71
separate compilation 137, 142
service 23, 46

abstraction 28
forwarding 27
mixin 31

sharing constraints 142
software architecture 20, 193
software composition language 193
software product-line 2, 22
specialization 65, 83

return type 63
structure 140
submodule 57
subtyping 75
system family 2, 22, 53

T
translucent type 140
transparent type 140
type

abstraction 140
coherence 141
opaque 140
refinement 71
translucent 140
transparent 85, 140
virtual 71

type cast implementation 115
type system 5, 12

dynamic 5
nominal 23
static 5
structural 23

type test implementation 114

U
unanticipated evolution 3
units 195

signed 195

V
verification 11
versioning 4
virtual class 198

W
white-box extensibility 5
wrapper 199

Curriculum Vitae

Matthias Zenger

Education and Work

I was born on February 8, 1973, in Miltenberg, Germany. In Miltenberg I at-
tended Johannes-Butzbach-Gymansium, a high-school from which I graduated
in July 1992, receiving the german equivalent to A-levels (Abitur). In fall 1993,
I started studying computer science at the University of Karlsruhe, Germany. In
1997, I visited the University of South Australia to perform my diploma project
under the supervision of Prof. Martin Odersky. In fall 1998, I obtained a de-
gree in computer science (Dipl.inform.) from the University of Karlsruhe. Af-
ter another 6 months time spent at the University of South Australia as a visitor
researcher, I joined the Programming Methods Laboratory of the Swiss Federal
Institute of Technology, Lausanne, working as a research assistant and Ph.D. stu-
dent in the area of programming language design and implementation. In the
last 5 years, I was also involved in the development of commercial software for
Borland Software Corp. and ChoiceMaker Technologies, Inc.

Refereed Publications

1. J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxon-
omy of software change. To appear in Journal of Software Maintenance and
Evolution: Research and Practice (Special Issue on USE), 2004.

2. M. Zenger. Keris: Evolving software with extensible modules. To appear in
Journal of Software Maintenance and Evolution: Research and Practice (Spe-
cial Issue on USE), 2004.

3. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects
with dependent types. In Proceedings of the European Conference on Object-
Oriented Programming, Darmstadt, Germany, July 2003.

4. T. Mens, J. Buckley, M. Zenger, and A. Rashid. Towards a taxonomy of soft-
ware evolution. In International Workshop on Unanticipated Software Evolu-
tion, Warsaw, Poland, April 2003.

5. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects
with dependent types. In Foundations of Object-Oriented Languages (FOOL
10), New Orleans, USA, January 2003.

244 Refereed Publications

6. M. Zenger. Type-safe prototype-based component evolution. In Proceedings
of the European Conference on Object-Oriented Programming, Málaga, Spain,
June 2002.

7. M. Zenger. Evolving software with extensible modules. In International
Workshop on Unanticipated Software Evolution, Málaga, Spain, 2002.

8. M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults.
In Proceedings of the International Conference on Functional Programming,
Firenze, Italy, September 2001.

9. M. Zenger and M. Odersky. Implementing extensible compilers. In ECOOP
Workshop on Multiparadigm Programming with Object-Oriented Languages,
Budapest, Hungary, June 2001.

10. M. Odersky, C. Zenger, and M. Zenger. Colored local type inference. In Pro-
ceedings of the 28th ACM Symposium on Principles of Programming Languages,
pages 41–53, London, UK, January 2001.

11. M. Philippsen, M. Zenger, and M. Jacob. JavaParty — portables, par-
alleles und verteiltes Programmieren in Java. In C. Cap, editor, Java-
Informations-Tage 1998, Serie Informatik-Aktuell, pages 22–38, Frankfurt,
Germany, November 1998.

12. M. Philippsen and M. Zenger. JavaParty — transparent remote objects in
Java. Concurrency: Practice and experience, 9(11):1225–1242, November
1997.

	Title
	Acknowledgments
	Abstract
	English
	German

	Extensible Component-Based Software
	Introduction
	Reusability
	Extensibility

	Characteristics of Extensibility Mechanisms
	Classification of Extensibility Mechanisms
	White-Box Extensibility
	Gray-Boy Extensibility
	Black-Box Extensibility

	Extensibility Requirements
	Programming Language Support
	Component Engineering Approaches
	Frameworks
	Extensibility

	Overview
	Scope
	Contributions and Outline

	A Formal Model for Extensible Software Components
	Motivation
	Language Integration
	Coarse-Grained Composition
	Dynamic Manufacturing and Composition
	Extensibility

	Prototype-Based Components
	Components and Component Instances
	Service Provision
	Component Instantiation
	Component Specialization
	Service Forwarding
	Service Abstraction
	Composition of Components

	Component Calculus
	Syntax
	Semantics
	Type System
	Type Soundness
	Instantiation Evaluation
	Component Subtyping

	Discussion

	Static Component Evolution with Extensible Modules
	The Java Package System
	Modularity
	Genericity
	Extensibility

	The Programming Language Keris
	Declaring Modules
	Linking Modules
	Accessing Modules
	Initializing Modules
	Refining Modules
	Specializing Modules
	Class Abstractions
	Type System
	Runtime Types and Reflection

	Applications of Keris
	Generic Class Families
	Design Patterns as Module Aggregates
	Modular Extensions of Design Patterns

	Implementation of Keris
	Basic Modules
	Module Refinements and Specializations
	Module Access
	Classes and Types
	Type Tests and Casts
	Reflection
	Module Execution
	KeCo: The Keris Compiler

	Benchmarks
	Micro Benchmarks
	Real-World Application

	Discussion
	Module Systems
	Module Systems and Object-Oriented Languages
	Keris

	Case Study: Extensible Compilers
	Introduction
	Extensibility Problem
	Related Work
	Extensible Compiler Phases with Algebraic Datatypes

	JaCo: Design Pattern-Based Extensibility
	Architectural Pattern: Context/Component
	Application to Extensible Compilers
	Architecture of JaCo
	Extending JaCo
	Experience

	JaCo2: Extensibility with Extensible Modules
	Architecture of JaCo2
	Extending JaCo2
	Experience

	Comparison
	Design Patterns vs. Language Support
	Benchmarks
	Conclusion

	Related Work and Conclusions
	Related Work
	Component-Oriented Programming Languages
	Architecture Description Languages
	Software Composition Languages
	Module Systems
	Object-Oriented Programming
	Aspect-Oriented Programming

	Summary
	Future Work

	Type Soundness for Prototype-Based Components
	Subject Reduction
	Progress

	Keris Grammar
	Principles of Extensible Algebraic Types
	Figures
	Listings
	Bibliography
	Index
	Curriculum Vitae

