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ABSTRACT

Boiling water reactor (BWR) stability analysis is usualy carried out using large system
codes. However, because of the large computational efforts required, such codes cannot in
practice be employed for the detailed investigation of the complete manifold of solutions of
the nonlinear differential equations describing the BWR system. In this context, reduced
order models, containing a minimum number of system equations describing the most
important physical phenomena, become necessary to provide deeper insight into the
physical mechanisms underlying the different instability phenomena observed in BWRS,
e.g. in-phase and out-of- phase power oscillations.

A novel analytical, reduced order model has been currently developed to simulate the
different types of instabilities encountered in heated channels and BWRS, viz. density wave
oscillations (DWOs), as well as in-phase and out-of-phase oscillations in the reactor core.
The complete model comprises three main parts: spatial lambda- mode neutron kinetics with
the fundamental and first azimuthal modes, fuel heat conduction dynamics, and core
thermal- hydraulics based on a drift flux model representation of the two-phase flow.

Stability and semi-analytical bifurcation analysis is carried out for a purely thermal-
hydraulic system (heated channel), as well as for a complete BWR (represented via two-
channel nuclear-coupled thermal-hydraulics), using the current reduced order model in
conjunction with the bifurcation code BIFDD. The impact of the drift flux parameters on the
stability boundary (SB) and nature of bifurcation has thereby been investigated. Results
show that both sub- and supercritical Hopf bifurcations are encountered along the stability
boundary. Using a drift flux model instead of a homogeneous equilibrium model for the
two-phase flow is found to have significant effects on the SB, as well as on the nature of
Hopf bifurcation. For independent confirmation of the results of the semi-analytical
bifurcation analyses, as well as to evaluate the system behaviour in regions away from the
stability boundary, numerical integration has been carried out of the set of ordinary
differential equations (ODES) involved in each case.

With each of the two channels of the currently developed BWR reduced order model
representing half of the reactor core, it has been possible to apply it to the investigation of
out-of-phase instability phenomena as well. First, the stability limits for in-phase and out-of-
phase BWR oscillation modes for a generic case are determined in parameter space. An in
depth investigation is then performed of the properties of the elements of the eigenvectors
associated with these two oscillation modes. Results show that analysing the properties of

the eigenvectors can provide full information as regards the corresponding oscillation mode



(in-phase or out-of-phase) without solving the &t of system ODEs. In addition, such
analysis conclusively shows that in-phase and out-of- phase oscillation modes in a BWR are
whole-system mechanisms and not just limited to the excitation of the fundamenta and first
azimuthal modes of the neutron flux.

In paralel to the generic studies with the reduced order model, a detailed local
bifurcation analysis has been performed at two representative operational points for the
Leibstadt and Ringhalss1 BWR nuclear power plants using the complex system code
RAMONA. The god in this analysis is to demonstrate how the system solution (behaviour)
can, in some situations, vary in a significant manner when a certain parameter, e.g. the mass
flow rate, is changed by small amounts. First, a correspondence hypothesis is poposed,
underlining the unique relationship for BWRSs between a stable (unstable) limit cycle
solution and the occurrence of a supercritical (subcritical) Hopf bifurcation. The RAMONA
analysis carried out clearly shows that stability and bifurcation analysis expertise using
reduced order models is indeed very important for the understanding and appropriate
interpretation of certain complicated nonlinear phenomena that are sometimes observed in
simulations using system codes. Thus, the present investigations have reveded, for the first
time, the occurrence of a subcritical Hopf bifurcation during BWR stability analysis using a
system code. Such a study is thereby shown to allow the determination and characterisation
of local stability boundaries within the exclusion area of a BWR's power-flow map.

Finally, in order to assess the applicability (as well as limitations) of the currently
developed reduced order in a more quantitative manner, it has been applied to the analysis
of a specific Leibstadt operational point. Comparison of the results obtained with those of
RAMONA show that, although the current reduced order model could adequately predict
certain characteristics, it was not able to correctly predict some others because of the highly
simplified reactor cre geometry, the uncertainties in evaluating the design and operating
parameters, as aso the limitations of the feedback reactivity model employed. The main
conclusion to be drawn in this context is that, although reduced order models do indeed
alow an indepth understanding of the complex processes determining BWR stability
(through the possibility of conducting fast and detailed semi-analytical bifurcation analysis),
they need to be considered as complementary tools to complex system codes, and not as

alternatives.



VERSION ABREGEE

Les études de stabilité des Réacteurs a Eau Bouillante (REB) s appuient généralement
sur I utilisation de puissants codes de simulation appelés codes systeme. Cependant, une
analyse détaillée de I'ensemble des solutions des équations différentielles non linéaires
décrivant un systéme complexe comme le REB nécessite des temps de calcul prohibitifs.
Pour ce genre danadyse, des modéles dits d'ordre réduit, décrivant les principaux
phénomeénes physiques avec un minimum d’ équations, s averent mieux adaptés notamment
pour mettre en lumiére les mécanismes physiques mis en jeu lors des différentes instabilités
observées dans |e fonctionnement des REB.

Un nouveau modéele analytique d ordre réduit a été développé pour simuler les différents
types d'instabilités rencontrées dans des canaux chauffants et dans les REB, aussi bien les
Oscillations d’ Onde de Densité (OOD) que les oscillations de puissance en phase (globale)
ou en opposition de phase (azimutalement déphasée) dans le coaur du réacteur. Le modéle
complet comporte trois parties : un modele de neutronique spatiale de type lambda incluant
le mode fondamenta et le premier mode azimutal, un modéle dynamique de conduction
thermique au sein du combustible, e¢ un modéele thermohydraulique basé sur une
représentation de type “drift flux” de I’ écoulement diphasique dans le coaur.

Des andyses de stabilité et les analyses semi-analytiques de bifurcation ont été
accomplies pour un systeme purement thermohydraulique puis un systéme REB complet
(représenté par deux canaux thermohydrauliques avec couplage neutronique) en utilisant
conjointement le nouveau modéle dordre réduit et le code de bifurcation BIFDD.
L’influence des paramétres du modéle “drift flux” sur la limite de stabilité (LS) et sur ke
type de bifurcation a é&é éudiée. Les résultats permettent d observer des bifurcations de
Hopf le long de la LS, auss bien de type sous-critique que de type super-critique.
L'utilisation d'un modéle “drift flux”, au lieu dun modéle homogéne, pour simuler
I'écoulement diphasique, indique un effet appréciable aussi bien sur 1a LS que sur le type de
bifurcation de Hopf. De plus, afin de confirmer d'une maniére indépendante les résultats de
I'analyse semi- anaytique des bifurcations et d'évaluer le comportement du systéme dans les
régions éloignées de la LS, une intégration numérique a été faite, pour chaque cas, a partir
de I'ensembl e des équations différentielles ordinaires (EDO).

A |’aide de la représentation du coaur du REB par deux canaux paralléles, il aaussi été
possible de reproduire et d’ étudier des oscillations en opposition de phase. D’abord, les LS
pour les oscillations en phase ou en opposition de phase sont déterminées dans I’ espace des

parametres. Puis les propriétés des é éments des vecteurs propres associés a ces deux modes
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d oscillations sont analysées de maniere détaillée. Les résultats montrent en fait que
I’ analyse des vecteurs propres seule permet de déterminer directement le mode d’ oscillation
associé sans qu'il soit nécessaire de résoudre directement le systéme dEDO. De plus, ces
résultats mettent en lumiere que les oscillations en phase et en opposition de phase dans un
REB sont en fait des mécanismes globaux, et ne sont pas seulement limités a |’ excitation du
mode fondamental et du premier mode azimutal du flux neutronique.

Parallélement a ces éudes génériques avec le modéle d ordre réduit, une étude de
bifurcation pour deux points de fonctionnement représentatifs des REB de Leibstadt et de
Ringhals-1 a été effectuée avec le code systeme RAMONA. Le but de cette étude est de
démontrer comment, sous certaines conditions, le comportement du systéme prédit par le
code peut sensiblement varier en fonction de faibles variations de certains parametres,
comme par exemple le débit massique entrant dans le coaur. D’abord, une hypothése de
correspondance est proposee, dans laguelle une relation univoque est établie pour les REB
entre un cycle limite stable (instable) et une bifurcation de Hopf de type super-critique
(sous-critique). Cette éude montre en tout cas clairement qu’ une expertise de I’ analyse des
bifurcations (utilisant des modeles d' ordre réduit) est en effet trés importante pour
comprendre et interpréter correctement les phénoménes non linéaires observables dans les
résultats des codes tel que RAMONA. Ainsi, cette étude a permis d'identifier, pour la
premiére fois, une bifurcation de Hopf de type sous-critique dans une éude de stabilité de
REB avec un code systéme. Elle a auss permis de déterminer et de caractériser des LS
locales al'intérieur de la zone d’ exclusion dans le diagramme débit- puissance d’ un REB.

Finalement, afin d'étre en mesure d'évaluer d'une maniére plus quantitative I'applicabilité
(aussi bien que les limitations) du nouveau modele d ordre réduit, il a été appliqué aun
point de fonctionnement particulier du REB de Leibstadt. Une comparaison des résultats
avec ceux obtenus avec RAMONA montre que le modéele d'ordre réduit peut prédire de
maniére adéquate certaines caractéristiques mais n’est pas capable d’en reproduire certaines
autres. La raison provient principalement du trop grand degré de simplification de la
modélisation géométrique du coaur, de I'incertitude dans I’ évaluation des paramétres de
fonctionnement du REB mais auss des limites du modéle de contre-réaction de réactivité
employé. Dans ce contexte, la conclusion principale que I’on peut tirer est la suivante : les
modeles d’ ordre réduits ne peuvent étre considérés comme des substitutsaux codes systeme
détaillés, mais plutét comme des outils d’ évaluation complémentaires qui permettent, par
I"utilisation d’ analyse semi-analytique de bifurcation, une compréhension approfondie des

mécanismes complexes déterminant la stabilité des REB.
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1 INTRODUCTION

Nuclear power currently accounts for 17% of the electricity generation worldwide (see
Fig. 1-1). There are currently approximately 437 nuclear power reactors in operation in
over 30 countries around the world, with a total output of some 350,000 MWe. An
additional 36 reactors (27,000 MWe) are currently under construction. Over 80% of the
nuclear generated electricity in the world comes from reactors classified as light water
reactors (LWRs). In these reactors the neutrons are slowed down, or moderated, by
ordinary (or light) water and the heat is removed by the same water.

In some designs of LWRs, the water is allowed to boil in the reactor core and the steam
isdirectly used to drive aturbine generator to create electricity (Fig. 1-2). These are called
boiling water reactors (BWRS). In the other designs, the water in the core is under higher
pressure (150 bar) and does not boil. This water goes to a steam generator where the steam
is produced in another water loop (Fig.1-3). Such a system is called a pressurized water
reactor (PWR).

The fud used in LWRs is ether UO, with uranium enriched to 3-5 wt% (low
enrichment) or mixed oxide (MOX), a mixture of UO, and PuO,".
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Figure 1-1. The percentage of electricity generated by nuclear power in 30 countriesin
2000 [1].

1 PUO, obtained from the reprocessing of spent UO, fuel
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Figure 1-3. Schematic view of a PWR plant

BWRs are found to behave as linear systems under normal operating conditions.
However, several stability tests have shown that, under certain conditions, BWRs are
susceptible to instabilities in which limit cycle power oscillations are observed. This
clearly indicates the transition from a linear regime to a nonlinear operating regime. Thus,
although not a serious safety issue, BWR stability behaviour is a very complex
phenomenon from the physical point of view. Even though extensive research has been
carried out in recent years, the phenomenon is not yet completely understood.

Mainly two kinds of power oscillations have been observed in BWR plants, in which a

strong nonlinear coupling exists via void reactivity between the neutronic and thermal-
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hydraulic processes. These two types of instability are: (a) global, or in-phase power
oscillations, where the power in fuel bundles across the whole core oscillates in phase, and
(b) regional, e.g. out-of-phase first azimuthal mode oscillations, where half the core
behaves out-of-phase with respect to the other half, i.e. when the power risesin one half of
the core, it fallsin the other half so that the average power remains essentially constant.

A BWR stability analysis methodology has been established at the Paul Scherrer
Institute (PSI, Switzerland) [2, 3] based on the Studsvik/Scandpower system code
RAMONA-3, which simulates the coupled thermal-hydraulics and three-dimensional
reactor kinetics behaviour of the reactor core. The nuclear parameters, i.e. the cross-
sections, are calculated by the assembly code CASMO and converted to RAMONA format
using the codes CONVERT and POLGEN, which generate the cross-section polynomial
fits. The main goal in such studies is to analyse the behaviour (type of instability) of the
reactor core when it is operating in the so-caled exclusion area of the power-flow map
shown in Fig. 2-3. From the experimental or predicted time series, the decay ratio (DR),
which is a linear stability dharacteristic, is calculated. By applying an appropriate DR-
based criterion, the domains to be excluded or monitored in the BWR power-flow map can
be identified.

Because of the large computational effort required, system codes cannot in practice be
employed for a detailed investigation of the complete manifold of solutions of the
nonlinear differential equations describing a BWR system, and so-called reduced order
models become necessary. Such models contain a minimum number of system equations
describing the physical phenomena of interest with adequate sophistication, but the
geometrical complexity is reduced by modelling a limited number of channels only
(usually just one or two). The foreseen application for such models is to provide new,
deeper insight into the physical mechanisms underlying the neutronics/thermal- hydraulic
induced power oscillations in BWRs. The main advantage of employing reduced order
models is the possibility of using semi-analytical (see Chapter 3) methods for performing
bifurcation analysis. In such an analysis, the stability properties of a fixed point, or a limit
cycle, are investigated analytically without the need for solving the system of differential
equations explicitly.

The present doctoral research, conducted in the framework of a collaboration between
PSI and EPFL in the field of reactor physics and systems behaviour, contributes to the in-



depth understanding of the physical mechanisms of neutronic/thermal-hydraulic
instabilities, in particular from the nonlinear point of view using modern bifurcation
analysis. Thus the research serves to clarify the conditions under which such instabilities
can occur in BWRs. For this purpose, a complex anaytical model has been developed
employing an appropriate set of nonlinear differential equations, the solution manifold for
which is examined thoroughly. In parall€l, if for a certain parameter set the possibility of a
sub- or supercritical bifurcation is identified using the system code RAMONA, the
stability behaviour in the neighbourhood of this operational point is examined in greater
detail. Thus, one of the main objectives of the present research is to understand system
code solutions of BWR stability problems on the basis of the physical mechanisms

identified in the course of sophisticated reduced-order model analysis.

1.1  PREVIOUS WORK

Benefiting from the development of nonlinear dynamics theory, significant advances
have been made in the nonlinear stability analysis of heated channels and BWRS during
the last two decades. Moreover, additional efforts have been concentrated recently on
bifurcation analyses in which the effects of different reactor design and operating
parameters on bifurcation characteristics are analysed. Such analyses give important
information that should be taken into account in the development of the next generation of
nuclear reactors.

In the following, the most important earlier work relevant to the present research is
reviewed and discussed.

1.1.1 Heated Channed Problems

Since the thermal-hydraulic model determines the main feedback gain and the
associated time delay, appropriate modelling of the fluid dynamics is of paramount
importance in considering modelling of the dynamic behaviour of BWRs. One of the most
common types of instability encountered in two-phase flow is so-called density wave
oscillations (DWOs). These instahilities are excited through the feedback and interaction
among the flow rate, the vapour generation rate and the pressure drop in the heated
channel. Details concerning DWOs are given in the introduction of Chapter 5, in which a

detailed nonlinear analysis of a heated channel is performed.



Using nonlinear analysis, Achard et al. [4,5] carried out an analytical bifurcation study
of DWOs on the basis of a homogeneous equilibrium model (HEM). In this work, under
certain specific assumptions, the conservation equations were integrated to analytically
obtain two functional differential equations (FDES) for the inlet velocity and the two-phase
residence time, respectively. Rizwanuddin and Dorning [6] extended this work using a
drift flux model (DFM) and obtained very complicated nonlinear, functional, delay,
integro-differential equations for the inlet velocity and two-phase residence time. They
carried out stability and bifurcation analyses and showed that the stability boundary (SB)
Is sengitive to the value of Co (void distribution parameter). The effect of Vg (drift
velocity) on the SB appeared to be small. The nature of Hopf bifurcation along the entire
SB was found to be supercritical. However, the impact of Cy and Vy; on the nature of Hopf
bifurcation was not reported.

Later, again starting from a homogeneous equilibrium model, Clausse and Lahey [7]
developed a simple model for DWOs by introducing other simplifying assumptions, such
as simple linear approximations for the space dependence of the enthalpies of the single
phase and two-phase regions.

In the spirit of these developments, Karve et al. [8] developed a model, based on HEM,
and based on the assumptions that the single-phase enthalpy and the two-phase quality
have time-dependent spatialy quadratic profiles. This model is smple in that the
dynamical system that results is comprised of a set of nonlinear ODEs rather than
complicated FDEs.

It should be emphasized that all the previous studies nentioned above applied either
pure analytical, or pure numerical®, bifurcation analysis. Pure analytical bifurcation needs
extensive mathematical manipulation and become almost impossible to carry out for
higher order models. Moreover, this type of bifurcation analysis can be carried out only for
one specific bifurcation parameter at atime, and must be repeated if the impact of different
parameters is to be studied. On the other hand, numerical bifurcation can only be
performed for a limited number of operational points. Hence, due to the limitations of
these two approaches, the scope of these previous analyses was limited to a small region of
the rather large parameter space, in spite of the simplicity of the models used.

2 numerical integration



1.1.2 Nuclear-Coupled Thermal-hydraulic I nstabilities

A wide range of models has been developed to study and analyse nuclear-coupled
thermal- hydraulic instabilities in BWRS, i.e. both in-phase and out-of-phase oscillations.
In a pioneering work, March-Leuba et al. [10], in order to qualitatively and quantitatively
simulate the dynamic behaviour of BWRs, proposed a ssmple phenomenological model
based on a point reactor model for the neutron kinetics and a greatly simplified thermal-
hydraulic model. In order to keep their model very simple, they assumed that the coolant
enters the core at saturation temperature and that the entire recirculation loop can be
treated as a single path of fluid of variable cross-sectional area but with constant mass
flow rate. Under these assumptions, March-Leuba et al. were able to predict limit cycle
oscillations in BWRs, with the amplitude of these oscillations found to be very sensitive to
the reactor’s operating conditions. Their analysis showed that these BWR limit cycles can
become unstable and undergo period-doubling bifurcations leading to an aperiodic
oscillating behaviour. In a later work [11], they proposed a mechanism for the out-of-
phase instabilities observed in BWRs, in which numerical simulations showed that there is
a region in the operating power flow map where out-of-phase instabilities are possible
even if the fundamental mode is stable.

Using the above model, MufiozCobo and Verdl carried out a purely analytical
bifurcation analysis [12]. In effect, this is the first work in which bifurcation analysis is
performed analytically in the framework of BWR model analysis. Later, MufiozCobo et
al. extended the above models in order to study in-phase and out-of-phase instability
phenomena [13,14] employing a | -modes modal modelling of the neutron kinetics and a
homogenous equilibrium model for the therma-hydraulics. They showed that in-phase
oscillations only appear when the first harmonic mode does not have enough thermal-
hydraulic feedback to overcome eigenvalue separation. In addition, they demonstrated,
using numerical integration, the excitation of limit-cycle out-of-phase oscillations when
the reactivity feedback of the first azimuthal mode is increased.

Karve et al. [15,16] developed a more detailed model in which they used w -modes for
the neutron kinetics, and a homogeneous equilibrium model for the thermal- hydraulic
treatment of the two-phase flow. After performing stability analysis for the stability
boundary, they carry out bifurcation analysis entirely numerically.

With the aim of obtaining a better understanding of BWR instabilities, especially out-
of-phase oscillation phenomena, Zhou and Rizwartuddin [17] carried out semi-analytical



stability and bifurcation analyses with the Karve et al. model using the bifurcation code
BIFDD [9]. They analysed the role of the pairs of complex conjugate eigenvalues with the
largest and second largest real parts in determining the in-phase and out-of-phase modes of
oscillations. Numerical simulations were then carried out to further confirm the results of

the stability and bifurcation analyses.

1.1.3 BWR Stability Analysis Using Complex System Codes

Asin the studies with reduced order models, stable nonlinear oscillations (limit cycles)
have aso been observed and reported in analyses performed using large system codes [18-
20] (as dso observed experimentally during certain tests performed at nuclear power
plants like Leibstadt and Ringhals® [21,22]). However, unstable limit cycles have never
previously been reported using large system codes [23]. In the author’s opinion, the reason
is that the unstable limit cycle solution has aways been confused with the unstable fixed
point solution, i.e. when growing amplitude oscillations were observed at a specific
operational point, the conclusion was always that the system is unstable at this operational
point, without any further details being considered concerning the exact type of the
solution. This is mainly because system code users usually have limited (or no) experience
in nonlinear stability and bifurcation analysis using reduced order models. Effectively, in
the context of BWR stability analysis using complex system codes, the question of the
bifurcation type responsible for the generation of stable or unstable limit cycle solutions
have never been raised. Hence, one of the primary focus points in this thesis (see Chapter
7) is to answer this question by proposing the so-caled correspondence hypothesis based
on the accumulated experience using reduced order models. This hypothesis proposes the
correspondence between the stable (unstable) limit cycle solution and the occurrence of

supercritical (subcritical) Hopf bifurcation.

12 PRESENT OBJECTIVES

The principal goals of the present research can be divided in four main categories:
1. Heated channel model (without neutron kinetics):
a Employ a thermal-hydraulic model, developed on the basis of a drift flux
representation for two-phase flow rather than on a HEM, to perform stability

and semi-analytical bifurcation analyses using the bifurcation analysis code
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BIFDD. Such a model is more appropriate for the analysis of a heated channel,
since it takes into account: (a) the difference between the two phases velocities,
which is particularly important in low-flow regimes, and (b) the radially non
uniform void distribution inside the channel. Moreover, the drift flux model is
more general than aHEM or a dlip model, i.e. HEM and slip models are special
cases of the DFM.

Analyse the effects of the drift flux model parameters on the SB and the nature
of Hopf bifurcation.

Study the effects of different design and operating parameters on the SB and the
nature of Hopf bifurcation.

Perform standard numerical integration to validate the stability and the semi-

analytical bifurcation analysis, and provide more globa information.

2. Two-channel nuclear coupled thermal -hydraulic model:

a

Develop atwo-parallel-channel, nuclear-coupled thermal-hydraulic model (with
drift flux representation of the two-phase flow) to simulate BWR instabilities
and carry out stability and semi-analytical bifurcation analysis using the
bifurcation code BIFDD.

Get a deeper insight into in-phase and out-of-phase oscillation mode excitations
and their connection to the excitation of the fundamental and first azimuthal

modes based on a detailed examination of the eigenvector properties.

Analyse the effects of the drift flux model parameters on the SB, the nature of
Hopf bifurcation, and the excitation of the oscillation modes.

Carry out numerical simulation to verify the findings of the semi-analytical
bifurcation analysis and evaluate the system behaviour beyond the region where
the bifurcation analysisis valid.

Assess the range of applicability and limitations of the reduced order model for

guantitative studies.

3. System code analysis:

a

Carry out of detailed local bifurcation analysis using a complex system code
(RAMONA) at representative operational points for two actual nuclear power
plants (Lelbstadt and Ringhals-1).

4. Bridge between reduced order model and system code analysis:



a.  Build a bridge between the reduced order model and the system code through,
for instance, understanding the system code solutions on the basis of the
physical mechanisms identified in the course of applying the sophisticated
reduced order model. A much more challenging ga would be to identify the
stability properties of certain “interesting” operationa points in the power-flow
map using the reduced order model (applying semi-analytical bifurcation
analysis), and then use the system code to perform a detailed analysis in the
neighbourhood of these operational points.

b. Compare the results of the reduced order model and the system code for a

specific operational point for one of the nuclear power plants studied.

1.3  ORIGINAL CONTRIBUTIONS

Following the objectives outlined in the previous section, the following origina
contributions have been made in the course of the present work:

0 Study of the effects of the drift flux model parameters (C, and V;) on the nature

of Hopf bifurcation for aheated channel problem, and their effects on the system
stability boundary and the nature of Hopf bifurcation for a two-parallel-channel
nuclear-coupled thermal-hydraulic model.

o Proposition of a new mathematical interpretation of in-phase and out-of-phase
oscillation modes based on their corresponding eigenvectors properties. This has
allowed the explanation of the excitation of the fundamental (first azimuthal) mode
although the in-phase (out-of- phase) oscillation mode is not excited.

o Proposition and demonstration of the correspondence hypothesis that underlines
the unique correspondence between a stable (unstable) limit cycle solution and the
occurrence of a supercritical (subcritical) Hopf bifurcation

o Performance of a detailed bifurcation analysis using the system code RAMONA.
This has alowed the identification, for the first time, of a subcritica Hopf
bifurcation using a complex system code.

o Building a qualitative bridge between the reduced order model and the system code
RAMONA, with the results obtained by the latter being analysed and explained on
the basis of the results from the reduced order model.



14  THESISOUTLINE

The two principal aspects of the present research are: (i) development of, as well as
stability and bifurcation analysis using, the novel BWR reduced order model (Chapters 4,
5, 6 and 8), and (ii) stability and bifurcation analysis using the system code RAMONA
(Chapter 7).

An introductory description of the basic phenomena and concepts that are encountered
in the field of BWR stability analysis is provided in Chapter 2. These include linear and
nonlinear analyses and the codes used for these purposes, the concept of power-flow map,
exclusion area, monitoring system, and various other tools relevant to the power plant
operator for experimertal analysis. In addition, spatial mode instability phenomena and the
corresponding hydraulic boundary conditions are discussed.

Chapter 3 is devoted to certain basic concepts of nonlinear dynamics and bifurcation
theory, in particular Hopf bifurcation. Inaddition, the semi-analytical bifurcation method
is explained along with the bifurcation analysis code BIFDD.

In Chapter 4, the development of the ODEs of the different components of the newly
developed, BWR reduced order model, i.e. neutron kinetics, fuel heat conduction, and
thermal- hydraulics, are presented.

In Chapter 5, stability and semi-analytical bifurcation analysis is carried out for a
heated channel in order to study two-phase flow DWO phenomena using the bifurcation
code BIFDD. First, the current thermal- hydraulic model is validated against experimental
data and compared to severa other analytical models. Then, a comparison is performed
between the use of DFM and HEM using both semi-analytical bifurcation analysis and
standard numerical integration. Furthermore, a sensitivity study is carried out in order to
assess the effect of different parameters on stability, as well as on bifurcation
characteristics.

An indepth study employing the complete, currently developed BWR reduced order
model is carried out in Chapter 6. On the basis of this study, a rigorous quantitative
explanation of the excitation of in-phase and out-of-phase oscillation modes is proposed,
bringing out the exact connection to the excitation of the fundamental and first harmonic
modes of the neutron flux. In addition to analysing the effects of the DFM parameters on
the stability boundary and the nature of Hopf bifurcation, the effect of these parameters on
the type of oscillation mode is investigated. Furthermore, numerical simulations are

10



carried out at certain operating points to validate the findings of the semi-analytical
bifurcation analyses.

Chapter 7 is devoted to a study in which a detailed local bifurcation analysis is
performed using the system code RAMONA at two representative NPP operational points.
The so-called correspondence hypothesis is proposed to underline the unique
correspondence between a stable (unstable) limit cycle solution and the occurrence of a
supercritical (subcritical) Hopf bifurcation. The detailed investigation has resulted in the
identification, for the first time, of a subcritical Hopf bifurcation using a complex system
code.

In Chapter 8, the reduced order model is implemented for a particular NPP (L eibstadt)
operational point (OP), and a sensitivity analysis is performed to study the effect of
uncertainties of different design and operating parameters on the stability boundary and
the nature of Hopf bifurcation. The results of the reduced model are then compared to
those of the RAMONA modd at the same OP. This allows an overall assessment of the
performance of the new reduced order moddl, i.e. of its applicability and limitations.

Finally, conclusions from the present research and certain recommendations for future

work are presented in the last chapter, Chapter 9.
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2 BWR STABILITY ANALYSIS

This chapter provides an introductory description of the basic phenomena and concepts
encountered in the field of BWR stability analysis. The general concept of stability is
introduced in the first section. A short description of linear stability analysis and the codes
used for this purpose is provided in Section 2.2, while nonlinear analysis is described in
Section 2.3. The concepts of power-flow map, exclusion area, monitoring system, time
series anaysis, and various other tools available to the NPP operator for experimental
analysis are explained in Section 2.4. In Sections 2.5 and 2.6, respectively, spatiad mode
instability phenomena and the corresponding hydraulic boundary conditions are discussed.
The last section is devoted to the codes used in this thesis, viz. the system code RAMONA,
the bifurcation analysis code BIFDD, the main Fortran program bwr.f corresponding to the
currently developed BWR reduced order model, and finaly the Matlab program
integration.m developed to carry out the numerical integration.

21  CONCEPT OF STABILITY

In a general sense, stability is a term that deals with the temporal behaviour of a
dynamical system following an internal (noise) or externa parameter disturbance during
its operation. After such a disturbance, the system may behave in a stable or unstable
manner. In a stable case, the dynamical variables of the system return to their steady-state
values. In geometrical terms, this means that, in phase space, the system state returns to
the stable fixed point or, at least, the system state remains in the neighbourhood of the
stable fixed point. In an unstable case, al or some of the variables diverge in an
exponential or oscillatory manner. Loosely speaking, the boundary that separates the
stable fixed points from the unstable fixed points is called the stability boundary.

2.2  LINEAR STABILITY ANALYSIS

Boiling water reactors (BWRS) are complex systems governed by nonlinear equations.
Therefore, a rigorous stability analysis of a BWR is only possible if some simplifying
assumptions are made. In particular, if the stability boundary is of interest, linearized
models are often used. Such models are based on linear analysis that implies perturbing
the system equations linearized around a given steady-state operating point. The

mathematical background behind the treatment of nonlinear systems by linear analysis is
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due to the Hartman-Grof3man theorem [1], which states that a nonlinear system behaves
like a linear one in a sufficiently close neighbourhood of a hyperbolic fixed point (steady-
state). This is the justification for using linear stability analysis indicators, e.g. the decay
ratio (DR) or Nyquist diagram, in the framework of BWR stability analysis. It should be
emphasized that, while linear stability analysis can provide exact solutions, much lower
computer time requirements, and stability limit predictions at least as accurate as within a
nonlinear anaysis, this approach does not provide information concerning certain
characteristics of nonlinear systems, such as the magnitude and frequency of any limit
cycle oscillations.

The linearized system equations around the steady-state are Laplace transformed and
the transfer function between two variables can be obtained as the ratio of two
polynomialsin s, the Laplace transform variable. The roots of the numerator polynomial
are caled the poles of the transfer function and those of the denominator are the zeros.

Once the transfer function T(s) isknown, the system output Y (<), for any input X(<), is

given in the Laplace domain by the product of the input and the transfer function:
Y(9) =T(s)X(9) (2.1)

By back transformation in the time domain, the output, y(t), can be obtained using the

convolution theorem [2]

y(t) = Akh(t - t)dt 2.2)

where h(t- t) isthe inverse Laplace transform of the transfer function. It can be shown
that h(t) isalso the response of a system to a Dirac delta function input and is, therefore,
usually called the impulse response of the system. Using the residue theorem of the theory

of complex functions, the impulse response can be calculated as a function of the poles of

the transfer function

h(t) = é’lN Re™ (2.3)

i=1
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where R istheresidue of the pole p, and N is the number of existing poles.

Equation (2.3) shows clearly that, if at least one of the poles has a positive real part, the
impulse response will grow exponentially and the system will be unstable. If al the poles
have negative rea parts, the system will be stable. In this case, the asymptotic system
behaviour is driven by the pole with the largest real part*. Thus, the pole with the largest
real part determines the stability of the system.

221 Linear Stability Criteria

In the previous section, it has been seen that the knowledge of the system transfer
function is the basis for discussing linear reactor stability at any operational point.
Different techniques exist for defining the criteria for stability as a function of independent
parameters, e.g. the Nyquist locus method, the root locus method [3], and decay ratio
calculation. The decay ratio (DR) is a fundamental quantity in BWR linear stability
analysis that measures how rapidly or slowly a disturbance is damped. It can be shown
that, if a system has only a single pair of complex conjugate poles, the impulse response is
h(t) = €' cos(w,t +f ), where s istherea part and w, isthe imaginary part of the pole.
By definition, the decay ratio is the ratio of two consecutive peaks in the impulse response
and equal to DR =e® "

For this example, we see that the decay ratio is directly related to the position of the
pole in the imaginary plane and is a good measure of the system stability. In a more
genera case, the impulse response is determined by contributions from all the poles.
However, it can be shown hat the series of values of the decay ratio for every two
consecutive oscillations converges to a value equal to the decay ratio of a system with just
asingle pair of complex poles at the same position as the least stable pair of poles in the
origind system. This vaue is cadled the asymptotic decay ratio. In conclusion, the
asymptotic value of the DR is computed from the least-damped oscillation, i.e. one

searches for the complex pole lying nearest to the unit circle.

4 or the smallest real part in absolute value
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Figure2-1. DR definition based on successive maxima of the ACF or IRF.

In practice, many methods have been proposed for the calculation of the DR [4], the
standard procedure being to use one of the following two methods. The first is based on
calculation of the autocorrelation function (ACF), and the second one is based on the
impulse response function (IRF) calculated using either an autoregressive moving-average
model (ARMA) or an autoregressive model (AR) to fit the behaviour of the system. Once
the ACF or the IRF is calculated, for a second order system, the DR is defined as the ratio

between two consecutive maxima A and A,; of the ACF or IRF, respectively, i.e.

A+l [T
DR=——, 24
A | (2.4)

These methods are illustrated in Fig. 2-1 above.

222 BWR Modelsfor Linear Stability Analysis

Models for BWRs based on linear stability analysis are called frequency-domain

models. Two classes of frequency-domain models exist: ssimplified models with low
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dimensions that capture only the most significant physical processes determining the
dynamics of a BWR, and linear system codes set up with the purpose of a complete
description of BWR plant dynamics. Among the frequency domain system codes, one
finds STAIF [5], ODYSY [6], MATSTAB [7], LAPUR [8], and NUFREQ [9]. These
codes are used for the calculation of stability boundaries because they are fast running and
extensively validated. In particular, MATSTAB includes a 3D reactor core model, and

hence, this code is applicable for the analysis of both core-wide and regioral oscillations.

23  NONLINEARANALYSS

The response of a perturbed nonlinear system can depend strongly on the magnitude of
the initial (external) perturbation. In particular, while for a sufficiently small perturbation
the system may return to its original geady-state operationa point, an increase in the
perturbation’s magnitude may lead to a divergent response. When linear system theory is
applied to nonlinear BWR systems, it can be used to describe the behaviour of these
systems around their steady-state operational points only as long as the perturbation
remains sufficiently small. However, this approach is unable to predict other important
properties, such as the magnitude of perturbations beyond which stability of the system
cannot be maintained, as also the amplitude and the frequency of oscillations if a limit

cycle solution is found.

231 Stability Boundary in Mathematical Sense

Suppose a set of nonlinear differential equations for an autonomous® system

? = £ (%(1)) (25)

The steady-state solutions (fixed points) of this system of ODES are obtained by solving

dx() _
=0 (2.6)

® f does not depend explicitly on timet.
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Consider J =D, f(X(t)), the Jacobian matrix of the linearized system around the

equilibrium point. The system is stable if all the eigenvalues of the Jacobian have strictly
negative real part values (Fig. 2-2(a)), while it is unstable if at least one eigenvalue has a
positive real part (Fig. 22(b)). Hence, the stability boundary, that separates the stable

fixed points from the unstable ones, is obtained when the real part of an eigenvalue, or of a

pair of complex eigenvalues with the largest real part, becomes equal to zero. In effect, if

the set of differential equations for a dynamica system is known, knowledge of the

eigenvalues of the Jacobian matrix allows the determination of the stability boundary.

Mathematically, the SB is determined by solving the following system of equations:

.}.@: 0
: dt
{ Re(det(J - iwl)) =0 2.7)

¥mmm34m»:o

~

where i is the complex number (i® =-1), w isthe frequency of the oscillation, Re and Im

stand for rea and imaginary parts, respectively, and det stands for the determinant.

a) Stable system

v
)

b) Unstable system

Figure2-2. Complex plane of Jacobian matrix eigenvalues. a) stable @se, all the
eigenvalues have negative real part values, b) unstable case, one eigenvalue
has a positive real part and the remaining eigenvalues have strictly negative

real parts.
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232 BWR Modelsfor Nonlinear Stability Analysis

Asisthe case of linear stability analysis, two classes of models exist for the description
of the nonlinear behaviour of BWRS, viz. complex system codes and so-called reduced

order models. These two approaches are discussed in more detaill in the following
paragraphs.

2.3.2.1 Complex system codes

Computer programs developed for the modelling and simulation of a complete nuclear
power plant with a high degree of detail are called system codes. Different choices are
adopted for neutron kinetics and two-phase flow modelling. Thus, for the neutron kinetics,
both 1D and 3D models have been developed and can be used. Clearly, if the analysis of
regional oscillation phenomena is of interest, a 3D neutron kinetics model is necessary.
For the two-phase flow modelling, a homogenous equilibrium model, a drift flux model,
and even a six-equation two-fluid model can be used. Such complex system codes are
generally based on the solution of the partia differential equation (PDF) systems
representing the thermal- hydraulic, the neutronics, and the heat conduction characteristics
of the plant components.

Space and time discretization of the thermal- hydraulic balance equations is performed
by suitable numerical methods. Commonly, nodal methods are used. The type of space
discretization chosen for the thermal-hydraulic balance equations contributes to
determining the effect of truncation errors on the calculated results. In fact, numerical
methods, also depending on whether explicit or implicit time discretization is applied,
bring in a certain amount of numerical diffusion, which may quantitatively and
qualitatively change the behaviour of the predicted phenomena in comparison with the
exact solution. Such numerical diffusion is sometimes responsible for damping the
amplitude of the physical oscillations and may lead to the prediction of a stable state,
whereas unstable ones might be expected. However, it should be noted that some minimal
numerical diffusion is necessary to prevent the growth of numerically induced oscillations.
Among complex LWR system codes, one finds RAMONA [11], TRAC-G [12], TRAC-B
[13], RETRAN [14], and RELAP [15].

In using system codes with a free nodalization structure, e.g. TRAC-B or RELAP,
strong damping effects due to numerical diffusion can be expected and, therefore, such

codes are not suitable for stability analysis unless the solution algorithm is modified, in
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particular the discretization schemes. On the other hand, the integration, for example, of
the momentum equation along a closed recirculation loop, as featured in RAMONA,
reduces numerical diffusion effects significantly. For such reason, RAMONA is one of the
most suitable codes for BWR stability analysis and is, therefore, the code used in this
thesis, in Chapter 7, to carry out numerical bifurcation analysis at two representative
operational points, viz. for the Leibstadt (KKL) and Ringhals-1 nuclear power plants,
respectively.

2.3.2.2 Reduced order models

Because of the large computational effort required, it is not possible in practice to
employ system codes for detailed investigations of the complete solution manifold of the
nonlinear equations describing BWR stability behaviour. In this context, reduced order
analytical models become necessary. Such models contain @ minimum number of system
equations describing the physical phenomena® of interest with adequate sophistication, but
the geometrical complexity is reduced to a few-channel model. The objective of such
models is generaly to provide understanding of the basic physical mechanismsinvolved in
BWR behaviour beyond the stability boundary, making use of nonlinear dynamics and
bifurcation theory. Usually these models are formulated as systems of partial or ordinary
differential equations to be solved by appropriate numerical methods. A wide range of
analytical nonlinear reduced order models has been devel oped.

A relevant example is the pioneering work, mentioned earlier, of March-Leuba et al.
[16] who proposed a simple phenomenological model to qualitatively smulate the
behaviour of BWRs. In order to keep their model very simple, they assumed that the
coolant enters the core at saturation temperature and that the entire recirculation loop can
be treated as a single path of fluid with variable area but with constant mass flow rate. This
model consists of two first order differentia equation for neutron kinetics with a single
delayed neutron group, one first order differential equation for fuel temperature behaviour
and one second-order differentia equation for feedback reactivity. March-Leuba et al.
were able to predict limit cycle oscillations in BWRs, with the amplitude of these
oscillations found to be very sensitive to the reactor’s operating conditions. Their analysis
showed that these BWR limit cycles can become unstable and undergo period-doubling
bifurcations leading to an aperiodic oscillating behaviour. This model has subsequently

® That is why reduced order models are sometimes called simplified phenomenological models [4].
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been adopted by many researchers (e.g. [17], [18]) to demonstrate interesting trends in the
overall behaviour of BWRs during instabilities, including the prediction of limit cycles,
Hopf bifurcation, period-doubling cascades, and even chaotic behaviour.

Benefiting from the development of nonlinear dynamics theory, significant advances
have been made in the nonlinear stability analysis of heated channels as well as BWRs.
Moreover, additional efforts have been concentrated recently on bifurcation analyses in
which the effects of different design, as well as operational, parameters on bifurcation
characteristics are analysed. Such bifurcation analyses give important information that
should be taken into account in the design and operational analysis of the next generation
of nuclear reactors. Hence, more detailed models have been developed during the last
decade in order to smulate more complicated BWR behaviour, such as space-time
dependent instability, i.e. global and regional oscillations as well as sub- and supercritical
Hopf bifurcation phenomena [19-22]. A more detailed description of bifurcation analysis
is provided in the next chapter.

24  EXPERIMENTAL ANALYSIS(TIME SERIES ANAYSIS)

For an operator in a BWR power plant, the stability boundary defines the limits
between normal operational points at which the plant can be operated and the exclusion
area shown in the so-called power-flow map (Fig. 2-3). The power-flow map is clearly an
important BWR operational characteristic. It represents the strong dependence of the
thermal reactor power on the core mass flow rate because of the void reactivity feedback.
Power oscillations can start if the BWR is operated within the exclusion area. In genera,
this regionis defined over the range of 40-70 % of rated power and 30-45 % of the rated
mass flow. It should be noted that the boundary of the exclusion area is conservatively
defined. Therefore, both stable and unstable operational points are found inside the
exclusion area. Quantitatively, the exclusion area is defined on the basis of measured and
calculated values of the decay ratio for the least damped power oscillation. The limiting
value of the DR for defining the exclusion area depends on the uncertainty which is

assumed for the measured or predicted DR’.

"Ingeneral, all operational points outside the exclusion area must have a decay ratio |ess than 0.8.
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Figure 2-3. Leibstadt nuclear power plant (KKL) power-flow map.

It should be emphasized that, although the decay ratio is a quantity that arises from
linear analysis, it is widely used in nonlinear analysis as an indicator of the stability of the
system (see 2.2.1). However, the DR is hot a measure of the stability margin [10], i.e. from
a given DR value, the operator is not able to know as to how far the operational point is
from the stability boundary. The uncertainty on the DR is given by the experimental error
in stability experiments.

24.1 Monitoring System

Modern BWRs are equipped with in-core instrumentation consisting of Local Power
Range Monitor (LPRM) and Average Power Range Monitor (APRM) detectors. The
LPRM detectors are fission-chamber type detectors distributed over the core (Fig. 24),
and some selected LPRM detectors are connected to APRMs to measure the core average
power. For instance, the Leibstadt LPRM system consists of 35 detector strings, each
having 4 detectors at 4 different core axial levels®. If the BWR is operated at an unstable
operational point, the power oscillations are detected by all LPRM and APRM-group
detectors.

8 Note that level 1 corresponds to the lowest axial level, while level 4 corresponds to the highest axial
position (largest void content).
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The power oscillations are excited by the naturally occurring reactor parameter noise
and, for a plant stability test, one has to select time series records of 8 to 10 minutes
length. Since the natural frequency of the power oscillation is determined by the velocity
of the kinematic wave propagation in the hydraulic channels, oscillation frequencies of
about 0.4 to 0.6 Hz can be expected for a BWR-type like KKL. This means that the
sampling frequency of a discrete signal should not be less than 8 to 10 Hz. The task is to
extract an indicator that characterizes the stability behaviour from the measured noise time
series records (Fig. 2-4) or, in other words, the analysis involves calculation of the DR and
the natural frequency (NF) from the LPRM or APRM time series.
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Figure 2-4. Lebstadt LPRM locations at a particular axial level
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242 Time SeriesAnalysis

Time series analysis for the determination of stability indicators is described in many
papers, e.g. [23, 24]. In particular, the methodology employed at PSl is discussed in [25,
26] and is briefly summarized in this subsection.

A dynamical system is described by a system of nonlinear differential equations. After
linearization of this system and time discretization, one can transform the system
equations into a linear difference equation system. If one adds parametric noise and solves
this equation system, a noise time history of the appropriate parameters is obtained. If the
system equations are unknown and one only has the system output as an analysed power
time series (or other quantity), the system parameters can be reconstructed by a system
identification procedure [27].

Assuming that the system is described by a system of linear difference equations and
the dynamics is driven by noise, the system output at discrete times kT, i.e. the measured
time series, may be written as:

yKT) =ay((k- D7) - a,y((k- 2T) - ....- a, y((k- n,)T) +e(kT) +

ce((k- DT) +ce((k- 2T) +....+c e(k- n)T) 28)

where T is the sampling interval. The time series in (2.8) is assumed generated by the

stochastic process called coloured noise,

Ne

C(a)e(kT) = -, c.a "e(kT) (2.9)

where q is the time shift operator, g 'e(kT) =e((k- DT). e(kT) is the white noise
Gaussian process. Eq. (2.8) characterizes an autoregressive moving average (ARMA)
model, and the task at hand is to determine the coefficients a, and c, by a suitable

approximation algorithm [28]. It should be emphasized here that the experimental
uncertainty of a stability indicator (e.g. DR) is given by the uncertainties of the time series
analysis results.
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25  SPATIAL MODE INSTABILITIES

Although BWR core dynamics is a honlinear space-time dependent problem, the
neutron flux or the power can be expressed as a spatia expansion with time dependent
amplitudes®. A detailed mode analysis shows that, for normal operational points, al modes
except the fundamental mode have eigenvalues smaller than one, so that they decay with
time'® and do not significantly affect the reactor dynamics. However, this situation need
not be the case under certain other conditions. For instance, if the reactor, for any reason,
is operated in the exclusion area (Fig. 2-3), the reactor core may experience instabilities.

As mentioned earlier, there are two kinds of instabilities: global or in-phase
oscillations, and regional oscillations. In the in-phase mode, the whole core behaves as one
(Fig. 25). This is due to oscillation of the fundamental mode. However, in the regional
mode, e.g. out-of-phase osctillations, half of the core behaves out-of-phase from the other
half (Fig. 2-6), i.e. when the power or flow rises in one half of the core, it decreases in the
other half. Such out-of-phase oscillations are related to the excitation of the first azimuthal
mode. The out-of-phase oscillation mode does not require changes in the total mass flow
because the two oscillating core regions adjust their flows to maintain the pressure drop
across the core constant in time and in space.

To the author’s best knowledge, it was MarchLeuba et al. who, in their pioneering
work [16], first gave an explanation of the out-of-phase power oscillations observed in
certain stability tests on the basis of the above spatial mode superposition picture. Mird et
al. studied the phenomenon in more detail [29]. They found a mode coupling mechanism
based on dynamic feedback reactivities. However, it needs to be stated that radial and axial
power distributions play a very important role in exciting such instabilities [29]. Thus, a
strongly bottom peaked axial power shape makes the core more unstable, and a bowl
shape for the radial power distribution makes the core more susceptible to out-of-phase
oscillations. Hence, the spatial power distribution is an additional indicator for the
excitation of higher mode oscillations. In this thesis, in Chapter 6, a more rigorous and
quantitative explanation is proposed for in-phase and out-of- phase oscillations based on an
in-depth investigation of the properties of the elements of the eigenvectors associated with

these oscillation modes.

® Note that the superposition principal isvalid for linear systems.
19 Thisisthe reason why they are sometimes called subcritical modes.
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Figure 2-5. A schematic view of in-phase power oscillations.
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26  HYDRAULICBOUNDARY CONDITIONS | SSUE

In general, the effects of the outer loop are considered to be very important in the
stability analysis of BWRs. Thus, in the case of globa oscillations, the outer loop may
amplify or damp the core oscillations. However, loop effects can be neglected in the case
of out-of-phase oscillations, i.e. the reactor core can be considered decoupled from the
outer loop in this case. In effect, the assumption of a constant pressure drop across the
reactor core can replace the outer loop model. For instance, Grandi et al. [30] illustrated
that amost identical results are obtained in out-of-phase oscillation calculations using
either (i) a vessel model, i.e. a core model plus a model for the periphera system (outer
loop), or (ii) a core model in which constant core inlet flow and constant core pressure
drop hydraulic boundary conditions are imposed. They showed that not only the
qualitative behaviour of the two solutions is the same, but the quantitative behaviour as
well.

It was in a reduced order model study of the boundary conditions for a system formed
by two parallel channels coupled to multimodal neutron kinetics that MufiozCobo et al.
[31] suggested that, in the out-of-phase oscillations case, two hydraulic boundary
conditions have to be imposed, viz. (i) constant pressure drop across the core and (i)
constant total inlet mass flow rate. On the other hand, the boundary conditions in the in-
phase oscillations case were pointed out to be (i) constant pressure drop across the two
channels and (ii) no restrictions on the incoming mass flow rate to both channels. In a later
paper, MufiozCobo et al. [32] went through the boundary conditions issue again and
argued that, during out-of-phase oscillations, the total pressure drop cannot be imposed to
be constant because imposing, at the same time, a constant pressure drop boundary
condition and a constant mass flow rate through the entire core leads to a system of
differential equations that is overdetermined and allows only small variations in the inlet
flow rate.

The results of numerical investigations carried out for two different operational points
with the RAMONA system code (see next section) are presented here. In the first case,
one has a small in-phase oscillation amplitude (1%). Fig. 2-7 shows the time evolution of
the pressure drop across the core, which can clearly be considered to be constant. Hence,
we can assume that, for small in-phase oscillation amplitudes, a constant pressure drop
assumption across the core, in a given BWR model, can replace explicit consideration of

the outer loop.
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The second operational point considered with RAMONA is an out-of-phase oscillation
case. It is clear from the time evolution shown in Fig. 28 that, once again, the pressure
drop is constant. In the BWR reduced order model analysis carried out throughout this
research, a constant pressure drop across the core is the unique hydraulic boundary
condition applied. As illustrated with the above two RAMONA cases, such a boundary
condition is clearly valid for both out-of-phase oscillations and small in-phase oscillation

amplitudes.!

2.7 CODESUSED IN THISTHESIS

As mentioned in Subsections 2.2.2 and 2.3.2, many different codes have been used in
the past to carry out BWR stability analysis. In this section, a description is given of the
specific codes used in the various types of analysis conducted within this thesis. First of
all, a short description is provided of RAMONA, the complex system code used to carry
out bifurcation analysis numerically for the Leibstadt and Rnghals-1 NPPs (operational
points in cycle 7 and cycle 14, respectively). Then, BIFDD, a code for performing the so-
called semi-analytical bifurcation analysis (see Section 3.2), is mentioned briefly, further
details being provided after the discussion of Hopf bifurcation in Chapter 3. Next, a short
description is given of the main Fortran program bwr.f that provides the right hand side of
the set of nonlinear ODEs, as well as the Jacobian matrix, of the currently developed
reduced order model (see Chapter 4). It is this code which is used in conjunction with
BIFDD for the stability and bifurcation analyses carried out in Chapter 52, 6 and 8.
Finally, a short description is given of the MATLAB code integration.m, used for
numerical integration of the system of ODES of the reduced order model.

1 As regards the condition of a constant mass flow rate, this cannot be imposed in the currently developed
reduced order model (see Chapter 4) since the mass flow rate is a state variable. It will be shown later
(Chapter 6) that, in the out-of-phase oscillation case, although the total mass flow is not imposed as fixed,
the system adjustsitself in such away asto yield a near-to-constant total mass flow.

12 For the heated channel analyses described in Chapter 5, the sub-program drift.f, corresponding to the
thermal-hydraulic part of the complete reduced order model, is used.
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271 System Code RAMONA

2.7.1.1 PS|I methodology [33]

The PSI stability analysis methodology is based on use of the Scandpower system code
RAMONA-3, which provides a three-dimensional core model. The nuclear parameters,
the cross-sections, are calculated by the lattice code CASMO (version 3 or 4) [36] and
converted to the RAMONA format using the Scandpower codes CONVERT and
POLGEN. Effectively, a POLGEN aoss-section file and a POLGEN kinetic parameter
file are generated, both these serving as input to the RAMONA-3 modd (Fig. 2-9).

The cross sections are functions of the reactor history parameters (such as burnup and
void history) and instantaneous reactor parameters (such as void and fuel temperature).
The so-called PRESTO Core Master distribution file, that contains the nodal distributions

13 Recently, anew version called RAMONA-5 isin use at PSI [34, 35].
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for burnup, void history and (optionally) power and Xenon concentrations, represents the
third set of input data (apart from the two POLGEN files) for RAMONA-3.

With an initial core perturbation, usually corresponding to a specific sinusoidal control
rod perturbation amplitude, the neutronic-thermal-hydraulic coupled system code
calculates the time evolution of the LPRM and APRM power detectors that are modelled
in RAMONA. The predicted (as in the case of measured) time series are analysed in order
to determine stability indicators, such as the DR and the natural frequency, that are
calculated based on an ARMA model [33].

2.7.1.2 RAMONA Mode
RAMONA is a well-known system code with a broad validation basis for stability

analysis [37]. The code simulates the coupled thermal-hydraulics and three-dimensional

reactor kinetics behaviour. In the RAMONA-3 versions, the space-time dependent neutron

diffuson equation is solved in the so-called i energy-group approximation (see
2

Appendix A), while for RAMONA-5 (PRESTO2 option), there is a full PRESTO2-two-
group model [39].

The thermal-hydraulic model in RAMONA-3 is based on a 4-equation, nor
equilibrium two-phase flow model. The 4 equations are the vapour and liquid mass
balances, the mixture energy balance and the mixture momentum balance. The model has
two main assumptions. Firstly, the local variation of system pressure is ignored, i.e.
acoudtic effects are neglected. The second assumption is that the vapour is assumed to be
at saturation but the liquid in the two-phase mixture is allowed to depart from saturation
conditions. Based on the first assumption, the momentum equation is integrated along
closed contours, each one comprising a hydraulic channel as well as the other six
RAMONA plant model components. lower plenum (LP) 1 and 2, upper plenum, riser, and
downcomer (DC) 1 and 2 (Figs. 210 and 2-11). For instance, this results in 648 closed
integration paths for the Lelbstadt nuclear power plant.
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The fuel model calculates the temperature distribution within the fuel pin and the
transport of heat from the fuel into the coolant. The numerical time-integration is
performed using an implicit predictor-corrector scheme for the neutronics and fuel model.
The hydraulics is integrated using explicit methods for all equations except the momentum
equations, which have the option to be integrated implicitly. The steam line model
employs a higher order Runge-Kutta explicit method. More details on the RAMONA
mathematical models are presented in Appendix A. Preparing a RAMONA input deck
signifies mapping the components of a given BWR (Fig. 2-10) onto the RAMONA model
(Fig. 2-11).

2.7.2 Bifurcation code BIFDD

The bifurcation code BIFDD has been used in conjunction with the currently
developed bwr.f code to perform the semi-analytical bifurcation anaysis of the set of
ODEs of the new reduced order model. Details on BIFDD are presented in Chapter 3,
Section 3.3.

2.7.3 Reduced order model Fortran code (bwr.f)

A main Fortran program caled bwr.f has been written corresponding to the currently
developed, BWR reduced order model (see Chapter 4). This program comprises
subroutines that numerically evaluate the right hand side of the set of nonlinear ODES as
well as the Jacobian matrix, which, in turn, have been obtained using the Maple symbolic
toolbox. bwr.f alows any one of the system parameters to be selected as the bifurcation
parameter, along with a second parameter which can be incremented in small steps.
Variation of the second chosen parameter allows, in turn, evaluation of critical values of
the bifurcation parameter and the associated bifurcation characteristics. Thus, the entire

stability boundary (SB) in two-dimensional parameter space can be determined.

274 Matlab program for numerical integration (integration.m)

For independent confirmation of the results of the bifurcation analyses carried out by
BIFDD and bwr.f, and to evaluate the system behaviour in regions away from the stability
boundary, Matlab programs have currently been developed to numerically integrate the
sets of ODEs of the anaysed models. a heated channel mode (two-phase flow
instabilities) with 5 ODEs, a single channel nuclear-coupled thermal- hydraulic model with
11 ODEs, and atwo channel nuclear-coupled thermal-hydraulic model with 22 ODEs.
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Figure 2-12. Diagram showing the different steps to carry out numerical integration
using the Matlab code integration.m.

Mainly, two solvers have been used, viz. a 5" order Runge-Kutta method for integrating
the 5 ODE model**, and the Gear’'s method for numerically integrating the 11 and 22 ODE

models™®.

In a main program called integration.m, the operational point to be analysed is first
chosen. For instance, in the 22 ODE model, values of the parameters N, and DP,, *°are
first selected. The main program then calls a subroutine param_input.m to read the
numerical values of the various design and operating parameters of the system. After that,
the main program calls a subroutine steadyl.m in order to find the steady-state solution of

the system. Then, the steady-state vector solution is perturbed, and the main program calls

Choose the operational point
onthe DP., - Ng, plane

A 4

paraminputm
A
Read the design parameters.
| A
* i seadylm
Find thesteady state i
solution x :
v
Perturb the steady State
solution:
x(t) = x +dx
A
eqtim

A

Solution of the set of
ODEs

4 model that simulates thermal-hydraulic instabilities

15 stands for the single- and two-channel nuclear-coupled thermal-hydraulic models, respectively

18 subcooling number and the total pressure drop across the core, respectively
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a subroutine eqtl.m to integrate the set of ODEs of the analysed system. Finaly, the code
gives the solution vector as atime series. Fig. 2-12 illustrates the different steps performed

during the numerical integration.
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3 BIFURCATION ANALYSIS

This chapter presents the concept of bifurcation analysis, in particular Hopf bifurcation
theory and its relation to the existence of periodic solutions. Bifurcation, a French word
introduced into nonlinear dynamics by Poincaré, is used to indicate a qualitative change in
the features of a system, such as the number and type of solutions, under the variation of
one or more parameters on which the considered system depends [1]. The existence of
stable or unstable periodic solutions to a set of nonlinear ordinary differential equations
was proven by Hopf [2]. Recognizing earlier contributions by Poincaré and Andronov, the
theorem is sometimes called the Poincaré-Andronov-Hopf (PAH) bifurcation theorem.
This theorem guarantees the existence of periodic (stable or unstable) solutions to
nonlinear differential equations if certain conditions are satisfied. Details of this theorem
are presented in the next section. Section 3.2 outlines the semi-analytical bifurcation
methodology used in the current work, while Section 3.3 gives details of the code BIFDD
mentioned earlier. Appendix B defines some of the nonlinear dynamics concepts used in
this chapter.

31 HOPF BIFURCATION THEORY

Hopf bifurcation has been reported by many researchers [3-9] to be the most important
type of bifurcation observed during BWR stability analysis. Moreover, it is the only type
of bifurcation that has been encountered during the loss of system stability®’. In general
terms, Hopf bifurcation theory states that stable or unstable periodic solutions to a set of
nonlinear differential equations exist under certain conditions. Consider the following
system of ODEs

dx®) = F(%,1) (3.2

where X(t) is the state vector, F is an analytical vector function, and | is the so-called
bifurcation parameter. X is the steady state solution, or the fixed point, of Eqg. (3.1), i.e.
F(X,1)=0 foral | .

The Hopf bifurcation theorem states that:

Y In crossing the first stability boundary, only Hopf bifurcation has been encountered. However, deep in the
unstable region, a cascade of period-doubling bifurcations may exist as reported for instancein [6].
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1) a pair of complex conjugate eigenvalues s (I ) xiw(l ) of the Jacobian matrix
crosses the imaginary axis for a critical value of | =1_ in such a way that
w(,.)>0,s(.)=0,ad

Isd =I,)
)l
3) all the other eigenvalues have strictly negative real parts (see Figure 3-1),
then:

2) 10,ad

periodic solutions of Eq. (3.1) bifurcate from a branch of the steady-state solution X, a
| =1

c

Figure3-1. Schematic illustration of the occurrence of Hopf bifurcation in the
complex plane of Jacobian matrix eigenvalues.

In smpler terms, the theorem implies that periodic solutions to the nonlinear
differential equations exist for parameter values | ifat | =1 _apair of complex conjugate
eigenvalues of the Jacobian matrix has zero real part while all others are away from, and to
the left of, the imaginary axis, and the derivative of the real part of the pair of eigenvalues
on the imaginary axis with respect to | is non-zero. These periodic solutions only exist
either on the stable side or on the unstable side. If the periodic solutions exist on the
unstable side of the SB, they are stable, and the PAH bifurcation is called supercritical. On
the other hand, if the periodic solutions exist on the stable side of the SB, they are unstable
and the PAH bifurcation is called subcritical.

The stability of the periodic solution is determined by applying the Floquet theory of
differentia equations with periodic coefficients [1], in which two Floguet exponents
appear to give more nonlinear information regarding the system stability behaviour. The

first exponent is aways zero and the other exponent, b , determines the stability of the
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periodic oscillation. More details can be found in Appendix B. If b <0, the periodic
solution is stable (supercritical bifurcation), while if b >0 the periodic solution is

unstable (subcritical bifurcation). Since Floquet theory is based on linear anayss, the
obtained information on the periodic solutionsis valid only close to the stability boundary.

Transition from a stable (unstable) fixed point solution to an unstable (stable) fixed
point and a stable (unstable) periodic solution (limit cycle) is shown schematically in Fig.
3-2. The case of subcritical PAH bifurcation, shown in Fig. 3-2(a), has an unstable

periodic solution (repeller limit cycle) for | >1_. Hence, for | >1 _, perturbations of

amplitude less than the amplitude of the parabola will decay to zero (stable fixed point
solution). Perturbations of amplitude greater than the limit cycle amplitude will be repelled
and hence will move away from the stable fixed point as well as from the unstable limit
cycle. On the other hand, in the supercritical PAH bifurcation case, shown in Fig. 3-2(b),
there exist stable limit cycles in the unstable region, and hence small perturbations grow
and stabilize at the limit cycle, while perturbations with amplitude larger than the limit
cycle radius (amplitude) can decay onto the limit cycle, depending upon the size of the

perturbation and the basin of attraction of the stable limit cycle.

X A Wy

Unstable limit cycle Stable limit cycle

_____________ I ) \

Unstablelfixed point N Stable fixed point & Unstableffixed point / e Stable fixed point A

-
~
~ o~ - J—

v

a) Subcritical Hopf bifurcation b) Supercritical Hopf bifurcation

Figure3-2. Sub- and supercritical PAH bifurcations, unstable limit cycle for
subcritical PAH bifurcation, and stable limit cycle for supercritica PAH
bifurcation.

In summary, crossing a stability boundary between a region with no eigenvalues with
positive real parts and a region with ane pair of complex conjugate eigenvalues with
positive real parts implies PAH bifurcation. Such a stability boundary can be easily
determined via a linear analysis. However, to determine the nature of bifurcation (sub- vs.

supercritical) and to determine the oscillation amplitude close to the stability boundary,
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additiona (bifurcation) analyses are necessary. Such bifurcation studies are usually
performed in one of two ways, viz. either by numerically integrating the set of governing

equations or analytically.

311 Center Manifold Reduction
In studies of dynamical systems, ssimplification methods are often used to reduce the

order of the system of equations. Center manifold reduction is one of these methods and
has been used as a basis for the current bifurcation analysis with the code BIFDD.
Recalling the concept of the center manifold of a fixed point, we note that there is a center
manifold (see Appendix B) associated with a fixed point undergoing a bifurcation. This

manifold is a curved m-dimensiona surface that is tangential at the bifurcation point to the

subspace spanned by the m eigenvectors p,, P,, ..., P, corresponding to the m

eigenvalues |, | ,, ..., |, with zero real parts. The dimension m is less than the

dimension n of the full system. In a physical sense, this reduction means that the physics
of the system of order n, at the bifurcation point, can be described by just a subsystemwith
dimension m. For a Hopf bifurcation, at the bifurcation point, the number of eigenvalues
with zero rea parts is two. Therefore, the center manifold dimension for this type of

bifurcation istwo, i.e. the dynamical system of order n is reduced to a system of order 2.

3.1.2 Poincaré Normal Form

Commonly, in bifurcation analysis, a center manifold reduction is used to reduce the
order of the dynamical system first, and then the method of normal forms [1] is used to
simplify the general structure of the reduced system to the so-called Poincaré normal form.

The Poincaré normal form for a Hopf bifurcation is a two-dimensional autonomous system

%, =ax - Wx, +[Re( ¢, )X, - Im(c, )x,| X xZ+x2) (32)
X, =W, +ax, +[Re(C, )X, - Im(c,)x,]X(xZ +x2) (33)

where a and w arethereal and imaginary parts of the pair of complex eigenvalues of the

Jacobian matrix of the 2 x 2 system.
The coefficient ¢, is a complicated term that results from the reduction of the genera

structure of the reduced order of the dynamical system equations to a bidimensional

system of equations, using center manifold reduction, and the transformation of the latter



to Poincaré norma form via the so-called near identity transformation. This coefficient
comprises first, second, and even third partial derivatives of the vector function [10]. It is

the key parameter to be determined in order to evaluate the bifurcation parameters m,, t,
and b,, defined in the next section. Once c, is evaluated, only a(l .) and w(l ) are
needed to evaluate m,, t, and b,. It can be demonstrated that these bifurcation

parameters are related to ¢, asfollows:

b, =2>Re(c, (1)) (34)
m =- Re(c,(l ))/a(l ) (3.)
ty =-(m(c (I o) +mw(l ) /w, (3.6)

where c,(l .) isthevaueof c,; at the critical bifurcation point, and a (I ;) and w(( .) are

the first derivatives of, respectively, the real and imaginary parts of the pair of complex
eigenvalues at the critical bifurcation point.

32  SEMI-ANALYTICAL BIFURCATION METHOD

As reported in the previous section, if Hopf bifurcation conditions are fulfilled, a

family of periodic solutions, with small amplitude® e, exists in a neighbourhood of the
stability boundary:

f(t1)=%(1 ) +eRe(e” TN +o(e?) 3.7)

where X(t,I ) isthe vector of the state variables of the system, >:<(I .) IS the steady-state
vector solution at the critical value (on the stability boundary) of the bifurcation parameter
| ,and V, is the eigenvector associated with the pair of complex eigenvalues responsible
for the bifurcation. In order to determine the nature of Hopf bifurcation along the SB,
Lindstedt-Poincaré asymptotic expansion [1,10] is applied to expand, in terms of the small
amplitude e, the state variable vector X(t,l ), the oscillation frequency w , the bifurcation

parameter | , and the Floquet exponent b :

18 Because bifurcation analysis is based on linear Floquet theory, the analysis should be close to the SB,
which is equivalent to a small amplitude.
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X=X +eX +e’%, +.... (38)

}V/V:%Vo+etl+e2t2+.... (3.9)

| =1 _ +em+e’m +... (3.10)

b =eb +e’b, +.... (3.12)

The Lindstedt-Poincaré asymptotic expansion analysis shows that the values of t,, m
and b, are zero [10]. Hence, m,, t, and b, are evaluated to determine the nature of the
bifurcation. It should be emphasized that the analytical evaluation of m,, t, and b, needs

extensive mathematica manipulations and becomes amost impossible with increasing
order of the model equations. Another drawback of analytical bifurcation studies is that
each is specific to a specific bifurcation parameter and must be repeated if the impact of a
different parameter is to be studied.

Due to the limitations of both the numerical integration and anaytical bifurcation
approaches, there has been limited investigation of the large parameter space even in
simple models of BWRs. Therefore, currently an aternative approach to the two
approaches described above has been adopted, in which analytical bifurcation is carried
out numerically. In this approach, the governing set of nonlinear equations is neither
integrated numerically in time nor treated entirely analytically. Rather, the analytical
reduction to the Poincaré normal form via the center manifold theorem is carried out
numerically [11]. This approach, which henceforth is called the analytic-numeric approach
or the semi-analytical method [13], allows accurate and efficient evaluation of the entire

parameter space of interest.

33 CODEBIFDD

The bifurcation code BIFDD (Bifurcation Formulae for Delay-Differential system) was
developed by Hassard [12] to perform semi-analytical bifurcation analysis of sets of ODEs
and ODEs with delays. This code has been used in conjunction with the novel reduced
order model developed currently to analyse BWR stability characteristics in design and
operating parameter space. For a given set of nonlinear ODEs or ODEs with delays and

the corresponding Jacobian matrix, the code determines the critical value of the bifurcation
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parameter | _, the frequency and amplitude of the oscillation and parameters m,, t ,and
b,. A negative (positive) value of b, indicates a supercritical (subcritica) PAH
bifurcation. t, is a correction factor for the oscillation frequency, and m, relates the

oscillation amplitude to the value of the bifurcation parameter through

c (3.12)

By incrementally varying a second parameter and repeating the calculations for the
critical value of the bifurcation parameter, one can easily generate stability boundaries and
determine the nature of the bifurcation along such boundaries in two-dimensiona
parameter spaces.

As mentioned in Subsection 2.7.3, the main Fortran program bwr.f, which calls
BIFDD, has been written to provide the right hand side of the set of nonlinear ODEs, as
well as the Jacobian matrix, of the currently developed BWR reduced order model (see

next chapter). The main program assigns initial estimates (guesses) of | ., w, and
>:<(t,l .), before calling BIFDD to carry out the bifurcation analysis as depicted in Figure
3-3.

3.3.1 Numerical Evaluation of Hopf Bifurcation Parameters

One can summarize the analysis performed by BIFDD to evaluate the Hopf bifurcation
parameters in six different steps:
1. Determination of the critical value of the bifurcation parameter | .
2. Computation of the derivatives of the real and imaginary parts of the pair of
complex eigenvalues responsible for bifurcation, i.e. a (I ) and w(( ).
3. Application of the center manifold reduction from an n x n systemto a2 x 2

system.
4. Reduction of the general 2 x 2 system to Poincaré normal form; as a consequence,

the parameter c,(l .) can be evaluated.
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«Stability boundary.
*Frequency of the oscil. W.
*Nature of Hopf Bif.,b,
*Amplitude of oscillation

Figure 3-3. Diagram summarizing the bifurcation analysisusing BIFDD.

5. Computation of m,, t,, and b, on the basis of the relatiorships between these
parametersand c,(1 .) (Egs. (3.4), (3.5), and (3.6)).

6. Verification of the hypothesisthat, at | =1 _, al the eigenvalues other than +iw,
fulfil the condition Re(l ) <O0.

3.3.2 BIFDD Modification

It must be stated here that, while the BIFDD code was found to work perfectly in the
case of the 5ODE model used to study thermal-hydraulic instabilities (Chapter 5), it
became very difficult and even impossible to run it for evaluation of the steady-state
solution in the case of the 22-ODE BWR model used for investigating two-channel
nuclear-coupled thermal- hydraulic instabilities. This is because the standard version of the
code uses the ssimple Newton method for the purpose. Accordingly, the subroutine
responsible for the steady-state solution calculation has currently been replaced by a more
efficient subroutine called dnsge.f which employs a modified Powell hybrid method.
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4 DEVELOPMENT OF THE NOVEL REDUCED
ORDER MODEL

In this chapter, the development of the ODEs of different components of the new BWR
reduced order model is presented. Following the introduction, Section 4.2 is devoted to the
development of the ODEs of the neutron kinetic model obtained from the neutron
diffusion equation and the equations for the neutron precursor concentrations. In Section
4.3, the fuel heat conduction model developed by Karve [7], and used in the present
reduced order model, is briefly reviewed. Development of the thermal-hydraulic model is
described in Section 4.4, with two of the correlations used being presented in Section 4.5.
This is finally followed by a summary of the reduced order model system of ODEs in an
explicit form.

41  INTRODUCTION

The new reduced order model for nonlinear stability analysis developed currently,
describes al significant physical processes determining the dynamics of a BWR system.
The strategy followed in the model construction is the following: firstly, to develop a
model as smple as possible from the mathematical point of view (smple geometry;
ordinary (O), instead of partial differential equations (PDEs)) while preserving the most
important physical phenomena; secondly, to have a model as close to the system code
RAMONA as possible [1]. For the latter purpose, several of the correlations and
assumptions in RAMONA have been used in the reduced order model. The new model has
the following components:

o The neutron power dynamics of the fundamental and higher neutron flux modes,
determined by the feedback reactivities and the time delays given by the void and
fuel temperature dynamics.

o The fuel heat conduction dynamics, determined by the fuel geometry and the
material properties of the fuel such as thermal conductivity and specific heat
capacity (represented by the heat conduction equation).

o The heat transfer from fuel to coolant (represented by two different heat transfer

correlations which depend on the thermodynamic state).
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o Thetwo-phase flow dynamics represented by the hydraulic equations, i.e. the mass,
momentum and energy balance equations and certain hydraulic correlations, e.g.
single and two-phase friction factors.

o Use of appropriate boundary conditions, as illustrated in Section 2.6, for
replacement of the recirculation loop.

Application of the new reduced order model in the present research has been carried
out in two stages. The first involves stability and bifurcation analysis for a single heated
channel without neutron kinetics, described by 5 of the 22 equations of the full model.
This first stage is described in Chapter 5. The second stage of application is that of the
complete two-channel nuclear-coupled thermal-hydraulic model with all 22 ODEs
(Chapters 6 and 8). The latter essentially represents a reduction of the geometric
complexity of aBWR. In effect, each half of the core is replaced by a single representative
channel. As indicated earlier, the effects of the outer loop are smulated by specifying the

external pressure boundary condition across the core.

4.2  NEUTRON KINETICS

To solve the diffusion equation for the space and time dependent neutron flux, there
are many different approaches. A frequently used method is the so-called modal expansion
method, where the neuron flux is expanded on stationary eigenvectors of a spatial form for
the stationary diffusion equation. The most useful eigenvector types are the so-called w -
and | -modes. Karve et al. [2] used the w-modes in their reduced order model, while the
modal expansion method in terms of | -modes has been used earlier by Hashimoto [3],
MufiozCobo et al. [4], and Mird et al. [5]. It is the latter approach which has currently
been adopted for obtaining the modal kinetic equations for the neutronics model. Thus, the
present neutron kinetic model is based onthe following assumptions:

o Two neutron energy groups (thermal and fast neutrons). From the physical point of
view, it is more redlistic to consider at least two energy groups due to the strong
dependence of the cross-sections on the energy [6, 5].

0 Moda expansion of the neutron flux in terms of | -modes. This choice of modal
expansion is mainly due to the fact that previous experience at PSI was based on
the use | -modes in the framework of a collaboration with the reactor physics
group of the Technical University of Valencia[5].

With the above assumptions, the neutron kinetic equations can be written as

52



u‘l%f (F,t) + L(F,tf (F,t) = (L- b)M (7 t)f (r,t)+§K1I U (M 1) X (4.1)
k=1

)l

ﬁuk(r,t) =b F'f(r,t)- 1 U, ([,1) (4.2)
= g.(rtu, - .
where f (1, 1) :S . t)le the neutron flux vector consisting of the fast (subscript 1) and
<A
. . Ao, . .
thermal (subscript 2) neutron fluxes respectively, X = gO;, u’" is the neutron inverse
a

velocity matrix, and U, is the concentration of delayed neutron precursors in precursor

group K.
L is the net-loss operator accounting for losses by leakage, scattering and absorption

7

L) :g N(D,(F,t)R)+S,,(F,t) + S, (F 1) 0 u
g

~ = R N
- Sp,(F,1) - N(D,(F,t)N)+S,_, (F, 1)
M is the fission production operator
@S, (7,1) NS, ()i

M t)=a 0 0 g and F' =phS,, nS,,|.
é i

where S;; and S are the macroscopic fission and absorption cross-sections for the jth

neutron energy group. n is the number of neutrons per fisson. |, and b, are the decay

constant and the delayed neutron fraction, respectively, for the k™ group of delayed
neutron precursors.

One may now look to the solution of the following steady-state eigenval ue problem
P § e
Lo(r)fn(r)=k—|\/|o(r)fn(r) (4.3)

The eigenvectors satisfy the biorthogonality relation

53



<fn:’MOfn>:<fr:'MOfn>dm,n = Nndm,n (44)
where (a,b) =@’ (Mb(r)dr, f is the adjoint neutron flux, satisfying the adjoint

eguation

Lf :%Mgf; (4.5)

The f (") aretheso-called | -modes.

Expanding the neutron flux and the delayed neutron concentration in terms of the | -

modes, one can derive the kinetic modal expansion equations

f(F=&n(t5(7) @9)
UL(F )X =& Ui (OMf ()L @7

1=0

where f () arethe | -modes. n,(t) and U, (t) are the time dependent expansion

coefficients for the neutron flux and the delayed neutron precursor concentration,
respectively.

The operators L and M can be written as a steady-state plus an oscillating term, i.e.

L(Ft) = Ly(F) +dL(F1) (4.8)

M (F,t) = M o(F) +dM (F 1) (4.9)

It should be noted that XF' =M .
Substituting Egs. (4. 6), (4.7), (4.8), and (4.9) in Egs. (4. 1) and (4.2), multiplying the
resulting equations by f -, and then integrating over the whole reactor core volume, one

gets the ODEs for the modal expansion equations (obtained from the neutron diffusion

equation) and the neutron precursor concentration equations, viz.



g dn, (t) . s b s 5
ALy (s bha,®- 8 oM+ ranM+& 1 Undl, (410
1=0 dt 1=0 1=0 k=1
¥
Wl = 1 pn 428 %0 @0)-1,Unil) (4.11)
dt I-m I-mI:O
1 ,, . . 1 . . .
where LmI=N—<fm,u ]f|>, rm|=1-k— is the datic  reactivity,

(F = Ni<f (@M - dL)t ) arethe dynamical feedback reactivities, and

m

r B = kai<f * dMf |>, rD=p Ni<f * dMf |> are the delayed feedback reactivities.
m m

ml

The matrix L, can be considered diagona due to the dominance of the diagonal
elements as reported in [5]. To illustrate this fact the matrix L, has been computed for

the first three | -modes at two representative operational points. The first operational point
is cycle 7 record 4 Kkic7_recd) of the Lebstadt NPP, and the second one is cycle 14
record 9 of the Ringhalssl NPP (see Table 4-1). Refering to Table 4-1,

L ml = medm,l =L mdm,l '

Table4-1. Matrix L, for the first three | -modes calculated for Leibstadt and

Ringhals-1.
Leibstadt cycle 7 rec 4 Ringhals-1 cyclel4 rec9

L, 1.06110° 1.10010°
L., 576110 -1.444 1074
L. -7.544 107 -3.546 107"
L, 222910 358810
L,, 1.096 10°® 1.104 10°
L, -9.22910™ -8.34510°°
L, -1.707 10 -3.18410°°
L, 9.62110 -8.558 107
L, 1.096 10 1.062 10
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If one restricts the calculation to the first two modes (I = 0, 1), the neutron kinetics

ODEs can be obtained from Egs. (4.10) and (4.11) as

inm(t)_ ! __rrsn' ) m(t)+a. I’mlnl (t) a. rmInI (t)u"‘a l kU mk(t) (4-12)
dt mee 1=0 1=0 k=1
d
EU mk(©) = ebk m(®) +|a = (t)u I U (1) (4.13)
0

For simplicity, an effective single group of delayed neutron precursors is considered
(K=1,ie |, =1,U,=U,and b, =b). It can be shown that contributions of the
delayed neutron precursors to the reactivity feedback can be neglected (r ) = 0)*°. Taking

into account only the fundamental and first azimuthal modes, Egs. (4.12) and (4.13) give
the four modal kinetic equations, viz.

dngt(t) Li[( r oot) - B )ng () +1 oM ®]+1 Ug(t) (414
&l O[ @O +(r L@+ 17 - b O] +1U,0 (4.15)
dUdt(t) o(t) | U, (1) (4.16)
dUdt(t) n()- 1 U, (1) (4.17)

0

where L, =L, =L, % Uy(t)=Ugy(t), U (t)=Uy,). r®=rk is the totd

feedback reactivity for the coupling between the m™-mode and the I""-mode. The governing

neutron Kinetics equations are coupled with the equations of the heat conduction and the

19 because the delayed neutrons represent a very small fraction of the total fission neutrons (<1%)
*We consider that L o, =L ;.
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thermal- hydraulic via the feedback reactivity termsin Egs. (4.14) and (4.15). In this thesis,
the void and Doppler feedback reactivities are considered to be the only relevant ones.

The models for the void and Doppler feedback reactivities are described in detail in
Appendix E. They are based on the assumption of linear reactivity profiles in terms of the
void fraction and fuel temperature, respectively. Eq. (E.31) is rewritten here

2
- (t) = faCtmn Xa C]mn,l (a | (t) -a (o ) + CZmn,I (Tavg,l (t) - Tavg,O,I ) (418)

=1

where the index | stands for the channel number. As mentioned earlier, only two channels,

each representing one half of the reactor core, are considered currently. The quantities a
and T, are the reference steady-state void fraction and the average fuel temperature in
the channel |, respectively®. The quantities T, (1) and T, (t) are equivalent to

T, (and T, ,, (1) in Eq. (E.31), respectively. The terms ¢, , and ¢, , are the void and
Doppler feedback reactivity coefficients, respectively. The calculation method for these
coefficients is also presented in detail in Appendix E. Findly, as discussed in this
appendix, fact,, isa bifurcation (or feedback gain) parameter, introduced as a multiplier
of the corresponding feedback reactivity, in order to increase the feedback gain coupling
between the first and fundamental modes and thus enable the excitation of out-of-phase

oscillation phenomenain specific cases.

43 FUEL ROD HEAT CONDUCTION

In this section, the fuel rod heat conduction model is reviewed. This model was
originaly developed and validated by Karve [7]. Since it has currently been adopted
without any further modifications, the detailed algebra involved in developing the model is
not presented here. It should be stressed, however, that athough the origina fuel heat
conduction model was not modified, new calculations were necessary to obtain the
corresponding ODESs using the symbolic toolbox of Maple.

The fuel rod is modelled separately in the two axia regions corresponding to the single
and two-phase regions of the boiling channel. In each of these regions, it is modelled with

21 These quantities are dimensionless quantities (see following sections, as also Appendix C).
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three distinct radial regions, the fuel pellet (0<r <r ), the gap (r, <r <r,), and the clad
(ry <r <r.) (Fig. 4-1). The ODEs are developed by reducing the one-dimensional (radial)

time dependent PDE of the heat conduction equation for the fuel rod, assuming a two-
piecewise quadratic spatial approximation for the fuel rod temperature. The heat
conduction model is based on the following assumptions,

o Azimuthal symmetry for heat conduction in the radial direction.

o Neglected heat conduction in the zdirection.

o Time-dependent, spatially uniform volumetric heat generation.

A variational principle approach is used to derive the final ODES, which represent the
BWR fuel rod heat conduction dynamics. For each channel, four ODEs are obtained for
the two coefficients of each of the two spatialy-piecewise quadratic function
representations of the fuel pellet temperature (in the single and two-phase regions,
respectively). In this section, we omit the channel index on all quantities. Furthermore, an
asterisk on a variable or parameter indicates the original dimensiona quantity, and any
quantity without an asterisk is dimensionless. The various dimensionless variables and

parameters used are presented in Appendix C.

F o |
channel

Clad 7,

Gap 7, ——

Pellet r, ——

Figure4-1. Fuel-centred boiling flow channel.

The heat conduction equations for the fuel rod, with the above assumptions, are

. . 1.|T'k ) r'k ,t‘k . é‘[zT* . r*’t* 1.|.T‘k . r‘k ’t* l:l . . .
roc,—= (* ) =k e—2" fz )+i* i (* )u+qﬁﬁ(t ), OEr" £r,
it 8 Ir r Ir G

(4.19)
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. *ﬂ(:]f(r*it*) eT° T t) 111Tc,f(r t)u

.C. Py CS = r P g r £r £r; (4.20)
with the boundary conditions
ﬂT;;r(f)’t*) 0 (4.21)
pw s ety T ) (4.22)
Mo
. # ey - T )] (4.23)
: # e T (106 - Ty | (4.2)

where Tp it (r',t)ad T, ot (r',t") are the pellet and clad temperature in the j™ region,
respectively. j =1 corresponds to the single-phase (If ) region, while j =2 corresponds
to the two-phase (2f ) region (see next section). q®(t') is the spatially uniform

volumetric heat generation rate which is proportional to the neutron density
qek (t') = c o (t) +cxny(t') (4.25)

wherer ;, ¢, and k, are the UO, fuel pellet density, specific heat, and thermal

conductivity respectively. r_, c, and k_ are the Zircaloy clad density, specific heat,

and thermal conductivity respectively. h;jf is the convective heat transfer coefficient

estimated by the Dittus-Boelter correlation in the single-phase and the Jens-Lottes
correlation in the two-phase region. These two correlations are given in Section 4.5, along
with all the other correlations used in this work.

Equations (4.19) and (4.20) can be written in the dimensionless form as follows:

1T, (r,t)  T°T,(r.1) ! M, (r.1)

Mt qr? ro T +a®ky, OErEr, (429

1
a
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i‘ﬂTc(r,t):ﬂz‘l'c(r,t)+1‘|]TC(r,t) r,Erfr (4.27)
a, "t qr? rofr ¢ ‘ '
The boundary conditions become
T, 01 =0 (4.28)
r '
1) B
MY B, [T, (rp,t)- T (rg 1] (4.29)
qr M
LA Yy Pt ) (4.30)
qr fy
. (re,t) _ Bi,
T =) Tl @31

where a ,T,,c,,a.,T.,Bi ,Bi; ad Bi_; are dimensionless quantities defined in
Appendix C. It should be noted that, from now on, the subscript jf is omitted with the
understanding that the analysis applies to both the single-phase (j =1) and two-phase
(j =2) regions.

A change of variables is now made by introducing the temperature deviations from
their steady-state values:

q,(r,t)=T,(r,t)- T(r), oEr£r, (4.32)
q.(r ) =T (r,t)- T(r), r,Er£r, (4.33)

the tilde over a quantity indicating the steady-state solution, obtained by solving the heat
conduction equation at steady-state. It can be shown that the solutions are:

60



_Fp(r):'cqﬁ07+b11 Ofrkr, (4:34)
T.()=b,log(r) +b;, 1, ErEr, (4:39)
Then the heat conduction equations can be written as:
rt q.(rt rt
1 Ta,( )zﬂqp(z )+1ﬂqp( )+qm(t), Of£r£r, (4.36)
a, qr r I
2
1 T9.(rt) _ T qc(zr,t)+1ﬂqc(r,t), L ErET (4.37)
a, 1t qIr ro

These equations have to be supplemented with the corresponding boundary conditions.
Two assumptions are now made for the solutionsof g, and q,,.

Assumption 1
The clad heat conduction dynamics can be modelled without solving the transient heat

conduction equation.
The idea behind this is that there is no significant change in the clad temperature

profile from its initial steady-state distribution, due to the large clad thermal diffusivity
a ., which is about ten times larger than that of the pellet a . Based on the logarithmic
spatial distribution of the steady-state clad temperature, the space and time dependence for

q.(r,t) can be written as

q.(r,t) =b,(t)logr + b, (t) (4.38)

The coefficients b, (t) and b,(t) are smply deduced from the two boundary conditions
(4.23) and (4.24).

The task now is to solve the heat conduction equation in the fuel pellet. For this, a
method based on a variational principle approach is used to deduce the ODEs of the fuel
pellet in the single and two-phase regions. The main steps to be applied are:

o Choose afunctiona that accommodates all the trial functions.
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o Each time choose a tria function that satisfies Eq. (4.36) and the boundary
conditions, and see if it minimizes the functional.

o Choose among these minimizing functions the one that corresponds to the global
minimum for the functional. This is the best solution of the heat corduction
equation.

Consider a general functiona F(j (r,t))%* tha accommodates discontinuous trial

functions j (r,t), which do not need to satisfy the boundary conditions,

FG)=G Hi)- 2 F)+ o (”) Blp, 0 & %Y
B 2 4 2 qir '
&28i; 6., € b (439
é i, . T,u
+rdé' o ﬂrIH_

Tp

where the notation (a,b)denotes (a,b )= ca(t)b(t)dr. Theradius r, is the point of
0

discontinuity between r =0 and r =r of the trial function j (r,t). ry (ry =0.83x)
was determined empiricaly in [7]. This value leads to a stability boundary that best
matches the reference stability boundary. The subscripts | and r in Eq. (4.39) stand for the
limits of the functions from the left and the right of the discontinuity, respectively.

The function that minimises the functional F( (r,t)) is j =q,. It satisfies (4.36)

subject to the boundary conditions.

Assumption 2
For the pellet temperature, a two-piecewise quadratic form can be considered for the

solution [7]:

q,(r,t) =T (t) +a (t)r +a,(t)r?, O&d,

(4.40)
=T, (O +b, () +b,(O)r%, r&d,

22 The procedure for constructing this functional can be found in references [8,9].
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ﬂqu(rd't) .
———— ISa

where q,(ry,t) and qir2

ry,t
T, .9 should be continuous a r=r, and
r

discontinuous function at this point.
By following the Rayleigh-Ritz procedure [9,10], q,(r,t) is substituted in the

functional F, and T,(t) and T,(t) are adjusted in order to minimize F. This is achieved

by setting, using the Maple symbolic toolbox:

} E =0

b,

,' (4.41)
1 E =0

|

Findly the ODEs for T,(t) and T,(t), which represent the BWR fuel rod hest

conduction dynamics, are obtained as

e =1 T )+, T, ) + ”3,1[Cq (No(t) - Ny) + qunl(t)] (4.42)

dT,(t) =11,,T, (t) +||2’2T2(t)+||3,2[cq(n0(t) - ﬁ0)+cqxn1(t)] (4.43)

where Il , ll,, and Il,, are somewhat complicated constants which depend on the

design parameters r,,r 1y, 1., Bi , Bi, and Bi, defined in Appendix C.

g

In summary, for each channel, four ODEs are developed from the heat conduction
PDE. These ODEs are for the two coefficients of each of the two spatialy piecewise
guadratic representations of the fuel pellet temperature in the single and two-phase regions
of the channel. In an explicit index form, these ODEs can be written as

dTy e, (V) -
lij—t =g Toge g @O+ 5056 1 To e @)+l 5 [Cq (N (t) - ng) + qunl(t)]

(4.44)
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dT, . () _
% =y 56 ) Tyje g O+ o0 i To e () +55 5 [Cq (N (t) - ng) + qun1(t)]

(4.45)

where jf stands for single (If ) or two-phase (2f ) region and | stands for channel

number (1 or 2).

Important Intermediate Variables

The most importart variable that depends on the heat conduction phase variablesis the
fuel rod average temperature, which is of relevance in determining the feedback between
the neutronics and the thermal- hydraulics. The average temperature of the fuel rod, used in
Eq. (4.18), is defined as the weighted average of the single and two-phase region average

temperatures
Tag (1) = M(O)Tg 5 (1) +[1- MOI T,y () (4.46)

where n(t) isthe boiling boundary (see next section) and T (t) isthe average fuel rod

avg, jf

temperature in the j™ phase region defined as
2" _
Tavg s (1) :r—zﬁrp,jf (r,t)rdr j=12 (4.47)
p 0

Other intermediate variables used can be found in [7]. All the intermediate variables have
been determined currently using the symbolic toolbox of Maple and directly included in
the bwr.f code (see Subsection 2.7.3) used in conjunction with BIFDD for stability and
bifurcation analysis.

44  THERMAL-HYDRAULICS

The heat generated in the fuel rod is conducted and convected to the coolant in the

flow channel. The single-phase coolant enters the bottom of the channel with a velocity

V,«(t) and temperature T, and then starts boiling at a certain level—called the

boiling boundary m (t") —in the flow channel where the coolant reaches the saturation
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temperature T, . Above the boiling boundary, the coolant is a mixture of two phases, i.e.

water and steam. The flow channel is accordingly divided into two regions, the single-
phase and two-phase regions.

The three-dimensional mass, energy, and momentum eguations in the single-phase and
two-phase regions, that describe the fluid mechanics in the channel, are averaged over the
cross-section of the flow channel to arrive at equations that depend only on a single spatial
variable (axial position z) and time. Then, for each representative flow channel®®, ODEs
are developed from the one-dimensional time dependent PDEs by carrying out symbolic
integration using a weighted resdua method in which spatia approximations for the
single-phase enthalpy and two-phase quality are used [11]. This symbolic integration is
performed employing the symbolic toolbox of Maple.

The following are the assumptions on which the thermal- hydraulic model is based:

o The core system pressure is assumed constant.

a In the single-phase region, the fluid density is assumed to be constant and equal to

the density of the liquid phase.

o As aready mentioned, the heated channdl is divided into two axial regions, the

single and two-phase regions.

o Energy terms due to the pressure gradient, friction dissipation, kinetic energy and

potential energy are neglected in the energy equation.

o Thetwo phases are considered to be incompressible.

o The two phases are assumed to be in thermodynamic equilibrium.

o A dift flux modd is used to represent the two-phase flow, rather than a

homogeneous equilibrium model; such a model is more appropriate since it takes

into account (a) the difference between the two phase velocities (the drift velocity
V), particularly important in the case of low flow rates, and (b) the radially non

uniform void distribution (the void distribution parameter Co) inside the channel.

o The time-dependent single-phase enthalpy and two-phase quality have spatialy
quadratic profiles. These two assumptions have been successfully validated and
used earlier [11] with the homogeneous equilibrium model for two-phase flow.

For each channel, five ODEs result from the integration of the one-dimensional time-

dependent continuity, energy and momentum equations in the single and two-phase

regions. As in the previous section, an asterisk on a variable or parameter indicates the

2 |nthisthesis, amodel of up to two channels has been considered.
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original dimensional quantity, while any quantity without an asterisk is dimensionless. The
various dimensionless variables and parameters used, as mentioned earlier, are presented

in Appendix C.

Single-Phase Region

The single-phase region extends from the channel inlet to the boiling boundary nt),

i.e. the location where bulk boiling starts. Since, in the single-phase region, the liquid
density is taken as constant (equal to the density of the liquid). The velocity along the

single-phase region is constant and equal to the channel inlet velocity v,

The energy equation can be written as follow:

SLICE DI )‘Hh(z £)_ ot

g N (4.48)

where r © isthe liquid density; h*(z,t") isthe single-phase enthalpy and g (t*) is the
wall heat flux in the single-phase region related to the single-phase convective hest
transfer coefficient h, by aff (') =hy 4 AToy ()~ Touwy )- N 5 is estimated by the
Dittus-Boelter correlation presented in Section 4.5.

The single-phase momentum equation is

T[P]; * dVTm et (t : ) * f]} 2 * * *
- ——=T T Vit )+ 719 (4.49)
ﬂZ f dt f 2Dh inlet f

Egs. (4.48) and (4.49) can be written in dimensionless form:

h(z,t h(zt

T '(n? ) .met(t)'" (z =N, N, Ny (0 (4.50)
P :

_ ﬂﬂlzf — AViner (1) + nyjj Viznlet(t) +Frt (4.51)

where N, (t) is the time-dependent phase change number in the single-phase region,

which is proportiona to the wall heat flux in the single-phase region;
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N pensr (1) = Neoysr (Tszr (1) - Tpuwas )- The dimensionless numbers Fr, N, N, and

Neovy aredefined in Appendix C.

A time-dependent, spatially quadratic distribution for the enthalpy, as originaly
proposed and validated by Karve et al. [11], is now introduced.

h(z,t) » he +a(t)z+a,(t) 2’ (4.52)

Substituting this expression in the single-phase energy equation (4.50), using a weighted
residual procedure with the weight functions 1 and z [7], and integrating from the inlet of

the channel z =0 to the boiling boundary z =nr(t), we arrive at the ODEs for the phase

variables a, (t) and a,(t) for the single-phase region:

@O _ 6 N .
dt I'T'(t)[Nr Nf NDCh,JJ‘ (t) Vinlet (t)ai(t)] 2V|nlet (t)a2 (t) (453)
da,(t) 6
ét 0 [Ne NeN pengs (8) - Vinie (1) (1] (4.54)

The boiling boundary rr(t) isthe level at which the enthalpy is equal to the saturation
enthalpy hg, . Hence the expression for the boiling boundary can be obtained by applying
the boundary conditions: h(0,t) = h,,,and h(m(t),t) = h,, on Eq. (4.52)

2Nr Nr Nsub

a,(t) +/a° (1) + 4a,(ON, N, N,

Two-Phase Region

The two-phase region extends from the boiling boundary to the channel exit. The drift
flux model is characterized by the vapour drift velocity ng and the void distribution

parameter C,. Thismodel is described by four fundamental equations [12]:

Continuity equations for liquid and vapour,
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ﬂ(l-a*)r?+ﬂ(1-a*)r?u’} .

> > = 4.56

i . G (4.56)
Ta'ry farug,

— 1 z = 4.57

T - G (4.57)

where G;, and G; are the liquid and void generation rates.

Energy equation of the mixture
N X"
G,Dhy, = q¢$ (A—) (4.58)
where Dhy, =h; - h; . Thewall heat flux in the two-phase region g, can be expressed in

terms of the fuel rod surface temperature in the two-phase region Tsfz (") by the Jens-

Lottes correlation (see Section 4.5).

Momentum equation of the mixture [13],

(4.59)

P _ v, v, 0 . . fy . ‘ﬂaea rr —*2
1.[*

_*_rmg_*-i-vm T+grm+_*rmm
Iz ait Z 5 2D ‘ﬂz 1-a" r g

with the different quantities defined as follows:

. <a*Vg’}>
Vg =Vg +(Co-2)i" (' t7), where Vg = < > is the drift velocity, and
a

AT
C, = < 1_2 isthe void distribution parameter.

* * * - * * * * 6 - -
vi(z ,t)=j(zt )+B/gj ( ] (Z't )] 1-—— is the mixture
r (z t)ra

velocity.
Here, it needs to be pointed out that, in the present work, particular attention has been

given to the role of the parameters C, and V;. Thus, the impact of these two parameters
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on stability characteristics has been studied by varying their values in a redlistic interval

based on several different correlations including the RAMONA model, see Chapters 5,
and 6.

By combining equations (4.56), (4.57) and (4.58), we obtain the so-called
Void Propagation Equation [12],

Ta’ (Z,t7) i fa'(Z 1) y
* k * -

0 (4.60)
where,
Co=j +—ﬂ(aﬂ;/* a), (4.6)
* G*
V*::Trg (4.62)
flg
We can rewrite Egs. (4.56)-(4.58), (4.60) and (4.59) in a dimensionless form as
fizt) _
e N pen 2t (4.63)
N . A
B i@y v, BB =N, 0[N, - Ga ) (4.64)
T o Ty ) Pl Ly
z It 1z ‘
-2 .
ea Vs 0 (4.65)

N, —¢c—— T
‘ﬂzgl-a r.(zt) 5

where V; =V, +(Cy- DX (Z,t) , and j(2.t) = Vi (1) + N gy (1)(2- (1))
The mixture density is r (zt) =1-a(zt)/N,.

1 ¢
ro(zt)g

&
The mixture velocity is v, (z,t) = j(z,t)+(\/gj +(Co-1)j(zt ))>gl
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The drift flux relation between the void fraction and the equilibrium quality x(z,t) can

be written as a sum of the void fraction due to the homogenous equilibrium model and a
correction term:

3(2)= 2 B 2)- Vg R (2) (4.66)
where
_ X(zt)N, _ X(Z,t)N,
ahOmO(Z’t)_(x(z,t)+NrNr)mda“’”(z’t) (x(zt)+N N XCOJ(zt)+V )

Taking into account the quadratic dependence of the quality in the axial direction [11],

x(zt) » N, N[s(0(z- mY) +s,(t)(z- m(1))’] (4.67)

we substitute the values of x(z,t) and j(z,t) in EQ. (4.66), substitute the resulting equation

(4.66) in the void propagation equation (4.64) and finally, using the weighted residuals
method with weight functions 1 and z, we obtain the ODESs for the phase variables in the
two-phase region, s,(t) and s,(t), by integrating from the boiling boundary z =mr(t) to

the channdl exit z =1:

ds()__1 € dm(t) N () AN orx () )
dt f (D) 8 aff () ——=+ ff, () m ffg(t)T+ ff4(t)H (4.68)
)Ly IO, Ve g Nz O 8
c ﬂ‘m(t)ef o) FO— g tfleO—gp—+ ffg(t)H (4.69)

where s, (t) and s,(t) are the coefficients of the linear and quadratic terms in the quality
profile expression, and ff_(t),n=1..,9 are complicated intermediate quantities, which

depend on the phase variables, the operating parameters and the design parameters. Since
these expressions are very long, their forms are presented in Appendix D.
Finaly, using the fixed total pressure drop with respect to time as a boundary

condition, the single-phase and two-phase momentum equations are used to derive the
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ODE for the inlet liquid velocity v, (t), which is one of the state variables. Integrating
the momentum equation for the single and two-phase regions, we get the equations for the
single and two-phase pressure drops in terms of v, (t) . Finally, these pressure drops are
summed along with the inlet and exit pressure drops, and the result set equa to the

external pressure drop DP,, :

DP; (t) + DPy (t) + DR, (t) + DR, (t) = DR, (4.70)

where DP,,« , DP,,;; aretheinlet and exit channel pressure drops respectively, defined as
DP e = Kinier Vinyer (1) (4.71)
DP,« = Ko X (Z=1t)w2(z=1t) 4.72)
where k,, and k., aretheinlet and outlet pressure loss coefficients, respectively.

Rearranging Eq. (4.70) leads to the equation for the inlet velocity

dVi nlet (t) — 1
dt ff,4 (1)

dN .
T 1 o) —22 4 150 473

x
ff () ——
OR - :

where ff (t),n=11..14 are again complicated intermediate quantities, which depend on
the phase variables, and the operating and design parameters. The expressions for these
quantities are presented in Appendix D.

It should be noted that, as illustrated in Section 2.6, the assumption of a constant
pressure drop across the core serves as an accurate replacement of the outer loop for the
out-of-phase oscillation case. However, in the case of in-phase (global) oscillations, this
boundary condition is only valid for small oscillation amplitudes. In all the studies carried
out in this thesis, constant pressure drop is the only boundary condition. Therefore, it is
understood that these studies are restricted to out-of-phase oscillations and to small
amplitude in-phase oscillations. For future studies, it is strongly recommended that an
outer loop model be included with the core model in order to avoid the boundary condition

issue.
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45  CORRELATIONSUSED

1) The single-phase heat transfer coefficient h;,ﬂ is estimated using the Dittus-Boelter

correlation

* kf 0.8 0.4
hy 1 :0.023><D—>(Re) '8 x(Pr) © (4.74)
h

for 0.7 < Pr <100, and Re>10000, where Pr and Re are the Prandtl and Reynolds
numbers, respectively. kK, isthe thermal conductivity, D, isthe heated diameter, L isthe

channel length, and D is the channel diameter.

2) The two-phase heat transfer coefficient h;zf IS estimated using the Jens-Lottes

correlation

ExPZ XP ’10'7 0
_ 8 6.24

h¥,2f -

* * + \3
254 :10— 6 (TS,Zf (t ) - Tsat) (475)
where p is the system pressure, T, (t) is the fuel surface temperature in the two-phase

region, which is equivalent to T, (r.,t"), and T, isthe saturation temperature. The wall

heat flux in the two-phase region is

q¥ (t') =hy x (T () - Tey) (4.76)

It should be pointed out that severa other correlations have been used in the current
model, such as: the fuel heat capacity, the fuel thermal conductivity, the gap conductance,
the single and the two-phase friction factors, etc. These correlations are aso used in the
RAMONA moded (see Egs. (A.7), (A.8), (A.9), (A.15), and (A.16), respectively).
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46 SUMMARY OF THE NEW REDUCED ORDER MODEL

In this section, we present the system of ODEs in an explicit form that depends on the

channel index (l). For a two-parallel-channel model, four ODEs result from the neutron

Kinetic model
dnéit) Li[( (1)~ B)e(1)+ 1 (O (1)] +1U(1) (4.77)
dnldit) [r o)+ (r () 475 - b)) +1U,(0) (4.78)
dUdt(t) 'L_On"(t) | U, (1) (4.79)
dUdlt(t) :Llnl(t)' U (D). (4.80)

0

For each channdl, four ODEs are derived from the fuel rod heat conduction PDE.

dTl;;' ®_ lorn T )+ 1,10 T (©) + e, (@) - ) +coxny ()] (4.81)
dTiﬁltl ®) =1y Ty O+l Tony O+l Aey (@) - F) +en )] (482)
dTlothl O o T O+ 1, Tay @+l o (00 ) +epm()] (289
degtl(t) W1p T (1) + 500, T (£) #1155, e, (No(1) - iy ) +cxmy(1)]. (4.84)

For each channel, there are five ODEs that describe the thermal- hydraulic model.

da,(t) _ 6 ) _
dt = m(t)[ N, N, Npch,lf,l(t) Vines (1)ag, (1)] 2V, e (1) (1) (4.85)
da, (t) 6 )
a mz(t)[ N, NN g 1 (1) = Vige ()2 (1)] (4.86)
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dsu ( ) 1 é dm (t) |n|et| ( )
d.t ff5 | (t) e l.| (t) ff2| (t)—t
v 1ty ) Doz O g (487
’ dt B
dSZ,I (t) 1 dm (t) |nletl (t)
d.t 1O| (t) gff6| (t) ff7| ( )—t
ety ) Doz O e (4.88)
’ dt 0
dvinlet,l (t) — 1 dm( ) pch2f 1 9

It should be noted that Egs. (4.81) through (4.89) have been obtained by integrating
and manipulating the corresponding fundamental PDEs using again the Maple symbolic
toolbox. These equations have been then incorporated, along with Egs. (4.77) through
(4.80), in the main Fortran program called bwr.f (see Subsection 2.7.3) used in conjunction
with BIFDD to perform semi-analytical bifurcation analysis.
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5 STABILITY AND BIFURCATION ANALYSISOF A
HEATED CHANNEL

51 INTRODUCTION

Since the thermal-hydraulic model determines the main feedback gain and the
associated time delay (void feedback reactivity), the modelling of the fluid dynamics is of
paramount importance for the reduced order model anaysis of BWRSs. For a certain set of
hydraulic parameter values, the system of nonlinear differential equations describing the
fluid dynamics generates so-called self-sustained density wave oscillations (DWOSs). Such
oscillations represent probably the most common type of instability encountered in two-
phase flow systems and are due to the feedback and interaction among the flow rate, the
vapour generation rate and the pressure drop in a boiling channel. The physical
mechanisms leading to DWOs are now clearly understood and can be described in a
number of equivalent ways [1]. The following description reflects the essence of the
physical phenomenainvolved.

Consider a heated channel with a fixed imposed pressure drop across its length and a
steady-state inlet flow rate. The bulk of the fluid starts boiling at a certain level caled the
boiling boundary. Consider a small perturbation in the inlet velocity. This smal
perturbation creates a propagating enthalpy perturbation in the single-phase region. The
boiling boundary oscillates due b this enthalpy perturbation. The change in the inlet
velocity and in the length of the single-phase region combine to create a change in the
single-phase region pressure drop. At the boiling boundary, the enthalpy perturbation is
converted into a void (quality) perturbation that travels up through the two-phase region.
The combined effects of the changes in the flow rate, void fraction and the two-phase
region length create a two-phase pressure drop perturbation. Since the total pressure drop
across the boiling channd is fixed, the two-phase pressure drop perturbation produces a
feedback perturbation of the opposite sign in the single-phase region. In case the pressure
drop in the two-phase region is delayed 180 degrees with respect to the inlet flow rate,
self-sustained oscillations are excited.

The study of the nonlinear behaviour of density wave instabilities has attracted
considerable interest in the last two decades. Benefiting from the development of

nonlinear dynamics theory, significant advances have been made in the nonlinear stability
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analysis of heated channels as well as BWRs. Moreover, additiona efforts have been
concentrated recently on bifurcation analyses in which the effects of different design, as
well as operating, parameters on bifurcation characteristics are analysed. Such bifurcation
analyses give important information that should be taken into account in the design and
operational analysis of the next generation of BWRs. As stated in Chapter 3, supercritical
Hopf bifurcation implies existence of stable periodic solutions close to the SB in the
unstable region, and subcritical Hopf bifurcation implies unstable periodic solutions close
to the SB in the stable region. Hence, in the case of subcritical Hopf bifurcation, the
oscillation amplitude may grow—even on the stable side of the SB—if the perturbation is
large enough.

Achard et al. [2] carried out ananalytical bifurcation study of DWO phenomena on the
basis of a homogeneous equilibrium model. This led to two functional differential
equations (FDEs). Rizwanuddin and Dorning [3] extended that moddl using a drift flux
model and obtained very complicated nonlinear, functional, delay, integro-differential
equations for the inlet velocity and two-phase residence time. They carried out stability
and bifurcation analyses and showed that the stability boundary is sensitive to the value of
Co (void distribution parameter). The effect of V; (drift velocity) on the SB appeared to be
small. The nature of Hopf bifurcation along the entire SB was found to be supercritical.
However, the impact of Co and Vg; on the nature of Hopf bifurcation was not reported.

Later, starting from the homogeneous equilibrium model, Clausse and Lahey [4]
developed a simple model for DWOs by introducing some simplifying assumptions, such
as simple linear approximations of the space dependence of the enthalpies of the single-
phase and two-phase regions. In the spirit of these developments, Karve et al. [5]
developed a model (using the homogeneous equilibrium model) based on the assumption
that the time-dependent single-phase enthalpy and two-phase quality have spatidly
quadratic profiles. This model is smple in that the dynamical system that results is
comprised of a set of nonlinear ODEs rather than complicated FDEs. After stability
analysis for the stability boundary, they carried out bifurcation anaysis entirely
numerically [6].

In the present chapter, the thermal- hydraulic drift flux model developed in Section 4.4
is applied. As mentioned earlier, such a model is more appropriate since it takes into
account: (a) the difference between the two-phase velocities, which is particularly

important in low-flow regimes, and (b) the radially non-uniform void distribution inside
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the channel. Moreover, the drift flux model is more genera than the HEM and the dip
model, i.e. the latter are special cases of the DFM. Furthermore, stability and semi-
analytical bifurcation analyses (see Chapter 3) have been performed using the bifurcation
analysis code BIFDD [7]. In effect, this is the first analysis that systematically shows the
effects of the drift flux model parameters, Co and Vg, on the nature of Hopf bifurcationin
a heated channel problem

This chapter is organized in the following way. The next section presents a short
description of the heated channel model, which is effectively a 5equation subset of the
complete BWR reduced order model derived in Chapter 4. In Section 3, this moddl is
validated against appropriate experimental data, and compared to several other analytical
models developed to simulate density wave oscillations. Section 4 is devoted to the
comparison between the use of drift flux and homogeneous equilibrium models, using
both semi-analytical bifurcation analysis and standard numerical integration of the set o
ODEs. In Section 5, a senditivity study is carried out in order to assess the effects of
different parameters on the stability and bifurcation characteristics. Finally, a summary

and conclusions section compl etes the chapter.

52 THE HEATED CHANNEL MODEL

Using drift flux model representation of the two-phase flow, the current mathematical
model for the heated channel is based on the assumption that the time-dependent single-
phase enthalpy and two-phase quality have spatially quadratic profiles. As mentioned
previoudly, this assumption was used earlier [5] with the homogeneous equilibrium model
for two-phase flow. The current dynamical system that describes the heated channel
essentially corresponds to that developed and presented in Section 4.4. It consists of five
ODEs, viz. Egs. (4.53), (4.54), (4.68), (4.69) and (4.73), which can be written in compact

form as:

X(t)=F(X;k) (5.1)

where X(t)is the vector of phase variables

X(t) = (@ (1), @ (1), S.(1), Sz (1), Vi ()T (5.2)
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Here a,(t) and a,(t) are the coefficients of the linear and quadratic terms for the liquid
enthalpy profile, s (t) and s,(t) are the coefficients of the linear and quadratic terms for
the quality profile, v, (t) isthe liquid velocity at the channel inlet, and k isthe vector of
parameters that includes both operating and design parameters as defined in Appendix C.

K :(Nr !Nr’Npch,:h‘ !Npch,2f ’ Nsub’KinIet’Kein Nf,lf ’Nf,2f !Fr!DPexthO!ng) (5-3)

53  VALIDATION OF THE THERMAL-HYDRAULIC MODEL

Since the phenomenon of thermally induced two-phase flow instability is of basic
interest for the design and operation of BWRS, the aim in this section is to validate the
current thermal-hydraulic model against appropriate experimental data and to compare its
performance with the results obtained using severa earlier models that were developed to
simulate density wave oscillations.

Sahaet al. [8] carried out an experimental study on the onset of self-sustained thermal-
hydraulic two-phase density wave oscillations. The experimental facility used consists of a
uniformly heated boiling channel with Freon113 as the operating fluid. Freon-113 was
chosen because of the low operating costs. Figure 5-1 shows a simplified schematic sketch
of this facility. The experimental data sets were generated by changing the inlet velocity

Vv, . For each experiment, the system pressure, the inlet and exit restrictions, and the inlet

velocity (v,) were kept constant. The inlet subcooling was established by adjusting the
preheating system, and the power was then increased in small steps until sustained flow
oscillations were observed, thus identifying points on the stability boundary.
Conseguently, such points were plotted on the subcooling-number versus the equilibrium-

phase-change-number plane (N N ). The operating conditions for different set of

sub ~

experiments are given in Table 5-1.
It should be emphasized that, although these experiments were performed for a heated

channel, they are very relevant to BWR stability analysis since the thermal- hydraulic

phenomena investigated are of paramount importance in its context. Figures 5-2 to 5-5
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Figure5-1. Simplified schematic sketch of the Saha et al. test facility

Table5-1. Operating conditions for Sets|, 111, V and VI of the Saha et al. experiments

Set | Set i SetV Set VI
Pressure (bar) | 12.1 103 121 121
Vo (M/9) 0.98 1.02 0.72 1.49
K, o 2.85 2.85 6.55 6.55
K, 2.03 2.03 2.03 2.03

show the comparison of the stability boundaries calculated from the current thermal-
hydraulic model®® with the experimental data (Sets I, III, V, VI) as re-evaluated by
Rizwan-uddin and Dorning? [9]. Also compared in the figures are the stability boundaries
caculated from various models that were developed earlier to study two-phase flow
instabilities. These models are: (i) the two-fluid (6 equations) model developed by
Dykhuizen et al. [10] that, naturally, includes subcooled boiling, (ii) the non-equilibrium
slip model of Saha and Zuber [11] that aso includes subcooled boiling, but with aflat void

profile (C, =1), (iii) the Ishii and Zuber slip model based on a simplified stability

241 this study, all the points on a SB have the same coolant inlet velocity value.
#® Rizwan-uddin and Dorning found some errors in the evaluation of the dimensionless numbers N, and

N

to calculate the dimensionless numbers[9].

pch for the experimental data. These resulted from errors in the thermodynamic properties that were used
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criterion with aflat void profile [12], (iv) the drift flux model developed by Rizwanuddin
and Dorning [13], and (v) the homogeneous equilibrium model of Karve et al. [5].

Figure 5-2 shows the current model benchmarked against the experimental data for Set
| with v, =0.98 /s, as well as against the two-fluid model, the Rizwan and Dorning

DFM model, and the Karve et al. HEM. For large values of the inlet subcooling, all
models are in good agreement with the experimental data. However, for lower vaues of

N. ., the current model produces the second best predictions of the experimental data,

sub?

after the two-fluid modd that includes subcooled boiling effects. This suggests that
incluson of a subcooled boiling model may be important for low vaues of inlet
subcooling.

Stability boundaries calculated by the current model, the Saha and Zuber therma non
equilibrium model, the Rizwan uddin and Dorning DFM, and the Karve et al. HEM are
compared with the Set 111 experimental data in Fig. 53. This experiment corresponds to

v, =1.02 mys. For large value of N, , the SBs calculated by the current model and the

sub?

Rizwanuddin and Dorning model provide the best predictions. This is because these two
models take into account the radially nonruniform void distribution. However, for lower

values of N the current model gives the second best results for predicting the

sub 1
experimental data, after the Saha and Zuber model that includes a subcooled boiling
model. This shows again that including subcooled boiling has a significant effect,

especialy for low valuesof N, .

The Set V experimental data are shown in Fig. 54, comparison being made with
results obtained using the models presented previoudy in Fig. 53, as well as the Ishii and
Zuber model based on a simplified stability criterion. Except for the Saha and Zuber

model that shows a large discrepancy, al the models including the ones based on C, =1
are in good agreement with the experimental data. Thisis due to the low value of the inlet
velocity (v, =0.72 nVs), which corresponds to a void distribution parameter C,very

closeto 1.

The importance of aradially non-uniform void distribution is clearly shown in Fig. 5-5
for the Set VI experimental data with v, =1.49 nmvs. It should be emphasized that this

value of inlet velocity isin the range of values representative of an actual BWR?®, so that

% For KKL, the maximum inlet velocity is 2.67 nvs.
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these data are particularly relevant as validation base. The SBs predicted by the current
model (C, =1.08) and the Rizwan-uddin and Dorning model (C, =1.05) are seen to

agree very well with the experiment results. This is because for large values of v, C, is
larger than 1 and, therefore, the models based on C, =1 (HEM or dlip models) are likely

to be inadequate. For lower values of N_, , the Saha and Zuber model fits the data best,

sub ?

followed by the current model. It should be pointed out that, although the current model
and the Rizwantuddin and Dorning model are based on the same drift flux approach, they
are constructed differently. The Rizwanuddin and Dorning model is an exact modd, i.e.,
involves a direct integration of the first order, nonlinear, functional, ordinary differential

equations. However, the authors ignored the higher terms of (C, - 1) that were assumed to
be small quantities. The present DFM is based on two assumptions implying an
approximate spatial treatment, viz. that the single-phase enthalpy and the two-phase
quality have a quadratic dependence on the spatial z direction (see Section 4.4). Higher
order terms, such asthat of (C, - 1), however, have not been neglected. This could explain
why the current model fits the data better than the Rizwan-uddin and Dorning model for

low valuesof N, .

To summarize, the current thermal-hydraulic model has been found to be in good

agreement with the Saha et al. experimental data for large N, , asis the case for severd,

sub ?

earlier developed models. For lower values of N, , the current model agrees better than

sub ?
most of the others, so that its validation against the experimental data can be considered
quite satisfactory. Moreover, an advantage of the current model is that it is represented by
a system of ODE that allows a very easy coupling to the neutron kinetic and heat
conduction models, as seen in Chapter 4 where the complete, novel reduced order model
for carrying out BWR stability analysis was presented. More important is that this ODE
system can be handled in a straightforward fashion for carrying out semi-analytical
bifurcation analysis using the bifurcation code BIFDD, as presented in the following
section.
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54  DRIFT FLUX VS. HOMOGENEOUS EQUILIBRIUM MODEL

54.1 Semi-Analytical Bifurcation Analysis

The aim in this section is to carry out a comparative analysis between the use of DFM
vs. HEM for the semi-analytical bifurcation analysis with the Code BIFDD. For this, use
has been made of the sub-program drift.f of the bwr.f code (see Subsection 2.7.3),
comprising the set of 5 nonlinear ODESs of the thermal-hydraulic model as well as the
corresponding Jacobian matrix. As mentioned earlier, the program allows any one of the
design or operational parameters to be selected as the bifurcation parameter. Then, by
incrementally varying a second parameter, the critical value of the bifurcation parameter
can be repeatedly calculated, leading to the generation of a SB in two-dimensional
parameter space.

Results of stability boundaries are presented here in the N, - N, operationa
parameter plane, i.e. the same as that used for validation against experimental data
(Section 5.3). It should be noted that, the steady-state inlet flow velocity at each point of
the SB is constant (V,,, =1). Typical numerical values for the design and operating
parameters in dimensionless form are given in Table 5-2.

The validation of the current thermal- hydraulic model against experimental data and
other analytical models, as reported in the previous section, showed that a value of the
void distribution parameter C, between 1 and 1.08, depending on the inlet flow, can fit
the experimental data satisfactorily. Accordingly, in the numerical study reported here, the
valueof C, has been varied within this “redistic” interval. On the other hand, the choice
of the values of the drift velocity used in this comparative study have been estimated from
severa different sources such us the RAMONA model, Inoue et al. [14], and Meer and

Coddington correlations [15], which show that the chosen variation of V; in an interval

between 0 and 0.15 is well justified.
It should be noted that, by setting C, =1 and V; =0, the present model reduces to the

homogeneous equilibrium model, exactly as used in [5].
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Table5-2. Design and operating parameter values used in Sections 5.4 and 5.5.

Ny

N

r

K

inlet

K

exit

Nty

Ne

Fr

1.05397

0.05120

6.0

2.0

2.8

5.6

0.0333

Shown in Fig. 5-6 are the stability and bifurcation results for the HEM (C, =1 ad
V, =0) and for the DFM with C, =1.03 and V; = 0.1. The stability boundaries in the

N N ., plane are shown in Fig. 56(a). This figure clearly shows that the SB is

-
sengitive to the model used. The corresponding bifurcation diagram in the N, - b, plane
(Fig. 5-6(b)) shows that both sub- and supercritical Hopf bifurcations are encountered (as
discussed in Chapter 3, b,is a parameter in the bifurcation analysis [7]. b, <O implies
supercritical Hopf-B, while b, >0 indicates subcritica Hopf-B). In this case, Hopf
bifurcation is subcritical (b, >0) for N, <3.15, and supercritical (b, <0) for higher
valuesof N, (seeFig. 5-6(b)). Referring to Fig. 5-6(b), the operational points A, B and
C shown in Fig. 5-6(a) are located in the region where supercritical bifurcation is predicted
when crossing the SB, while the operational points D, E and F are located in the region
where subcritical bifurcation is expected.

In references [2] and [3], however, it was reported that only supercritical Hopf
bifurcation is encountered in the above parameter range. This disagreement in the
bifurcation results may be ascribed to differences in the assumptions made in the
individual models. It would seem, therefore, that further investigations are needed to
clarify this discrepancy. For instance, a study that evaluates the effects of using other
simplifying assumptions .g. those made in models [4] and [5]) on the nature of Hopf
bifurcation would help considerably to understand this disagreement.

The effects of the drift flux model parameters (C, and V) on the stability, as well as

on the bifurcation characteristics, are investigated next. While the stability boundary is

sensitive to the value of C, (V; =0) asseen in Fig. 5-7(a), the nature of Hopf bifurcation

is less affected. Only asmall shift of the transition point between the sub- and supercritical

regions is observed as C, is changed from 1.0 to 1.03 (Fig. 5-7(b)). For example, the
transition occurs at Ny, = 3.15 for HEM, a Ny, =3.4 for DFM with C, =1.03 and

Vg =0,anda Ng,, =3.65 for C, =1.05 and V;; =0.
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Figure5-6. a) Stability boundaries in  Ng,- N, plane for Homogeneous

Equilibrium Model (HEM) and Drift Flux Model (DFM). b) Nature of Hopf
bifurcationin Ny, - b, plane for HEM and DFM. Bifurcation is supercritical for

b, <0, and subcritical for b, >0.
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As was reported earlier by Rizwan-uddin and Dorning [3], C, is seen to have a
stabilizing effect (Fig. 57(a)). This can be explained qualitatively by the following: for
C, >1, the concentration of bubbles at the periphery of the heated channel is lower than
that for HEM. This causes less friction in the two-phase region, which means a lower two-
phase region pressure drop; thus, the heated channel is more stable.

Results for the effects of the drift velocity V; are presented in Fig. 5-8. The SB isa
little less sengitive to the value of V; (Fig. 5-8(a)) than it is to typical values of C, (Fig.
5-7(a)). Like C,, Vy; aso has a stabilizing effect. The reason is that, for V, >0, the
velocity o the liquid is less than the mixture velocity in the HEM. This results in a
decrease of the two-phase pressure drop that stabilizes the system. Although there is a
partly compensating effect due to the steam velocity being higher than the mixture
velocity in the HEM, the contribution of the liquid phase to the pressure drop is greater

than that of the gas phase. The nature of Hopf bifurcation for lower values of N, is
significantly more sensitiveto V; thanto C,. For example, for V; =0.12 (Cp = 1), the

branch of the SB which was subcritical in the HEM disappears and the entire SB becomes
supercritical (Fig. 5-8(b)). It should be noted that, although the stabilizing effects of C,

ad Vy are well understood, understanding the effects of these two parameters on the

bifurcation characteristics remains a challenge.

542 Numerical Simulation

It needs to be pointed out that bifurcation analyses of the above type are only valid in
the vicinity of the SB. Hence, numerical integration of the set of 5 ODEs has been carried
out—in the MATLAB environment—to confirm the predictions of the semi-analytical
bifurcation analyses close to the SB. This also serves to provide global information beyond
the local bifurcation findings, i.e. to evaluate the system behaviour in regions away from
the SB. For the numerical integration of the ODEs, a 5" order Runge-Kutta method has
been used. Figures 5-9, 5-10 and 5-11 show, respectively, the time evolution of the inlet
velocity with parameter values corresponding to points A, B and G—in the supercritical
region—shown in Fig. 5-6(a) for the HEM and DFM. As expected, the point A is stable
for both models (Fig. 56(a)). Hence, the oscillation amplitude decays to the fixed point
(Fig. 5-9(a-b)).
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Figure5-8. a) Stability boundaries in Ng;,- N, plane. b) Nature of Hopf

bifurcation in Ny, - b, plane. Bifurcation is supercritical for b, <0, and
subcritical for b, > 0.
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Point B shown in Fig. 5-6(a) is in the unstable region for the HEM. It is close to the
stability boundary and the nature of Hopf bifurcation is supercritical. Therefore, as
predicted by the bifurcation analysis, this leads to stable limit cycle oscillations as shown
in Fig. 5-10(a). However, point B is stable for the DFM, and consequently the oscillation
amplitude decays to the fixed point (Fig. 5-10(b)). Finally, point C is in the unstable region
and it is far from the SB for the HEM (Fig. 56(a)). Therefore, the oscillation amplitude
grows away from the fixed point (Fig. 5-11(a)). However, for the DFM case, point C isin
the unstable region but close to the SB. Hence, this leads to a stable limit cycle as shown
in Fig. 5-11(b).

Figures 512, 513 and 514 show, respectively, the system dynamics at points D, E
and F shown in Fig. 5-6(a). Point D is in the stable region for both models. In addition, it
is close to the SB for the HEM and the type of Hopf-B is subcritical. Therefore, besides
the stable fixed point, an unstable limit cycle is predicted. Numerical simulations confirm
these findings, as shown in Figures 5-12(a) and 5-12(b). The small amplitude perturbation
(ds, = 0.1) decays to the fixed point (Fig. 512(a)), and the large amplitude perturbation
(ds, =5.0) leads to growing amplitude oscillations (Fig. 5-12(b)). For the DFM (Fig. 5
12(c)), however, point D is far enough from the SB so that only decaying oscillations are
encountered, i.e. only afixed-point attractor exists.

Numerical integration results with parameter values corresponding to point E are
shown in Fig. 5-13. This operational point is on the unstable side for the HEM, so that the
system evolves with growing amplitude oscillations (Fig. 5-13(a)). However, for the DFM,
since point E is on the stable side and close to the SB, and the nature of Hopf bifurcation is
subcritical, a fixed point attractor for small amplitude perturbations around the fixed point
and an unstable limit cycle for large perturbation amplitude are predicted by the
bifurcation analysis. Again, numerical simulations confirm these predictions (Fig. 5-13(b-
c)). Findly, point F is a trivia unstable fixed point for both models, and Fig. 514(a, b)
shows its dynamics.

It should be noted that, in the case of subcritical Hopf bifurcation, the strip close to the
SB where unstable limit cycles exist is very narrow. However, for the supercritical case,
the strip that comprises stable limit cycles is quite wide. This means that it is much easier

to identify a stable limit cycle than an unstable limit cycle.
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Figure5-9. Time evolution of liquid inlet velocity v, . (t) for parameter values

corresponding to point A: @ for Homogenous Equilibrium Model (HEM), b) for
Drift Flux Model (DFM).

14

a0

"% 0 150 209
time
103 v
{b}
|f DFH
|| W
|| || ||I II ||'n' o T e S S
i
e 5 m 15 2 2 30 3 40
time

Figure5-10. Time evolution of liquid inlet velocity v,,,(t) for parameter values

corresponding to point B: a) for Homogenous Equilibrium Modd (HEM), b) for
Drift Flux Model (DFM).
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55  SENSITIVITY ANALYSIS

551 Semi-Analytical Bifurcation Analysis

Sensitivity of the stability boundary to design and operationa parameters for heated
channels with two-phase flow has been studied extensively [13,16,17]. In practice, it is
found that the oscillation amplitude for some parameter values continues to grow, while
under other conditions the oscillation amplitude saturates. Clearly, the choice of parameter
values can lead to stable amplitude oscillations or to growing amplitude oscillations.
Nonlinear dynamics, and specifically Hopf bifurcation theory explains these experimental

facts. Hence, this section is devoted to a design and operational parameter sensitivity

andysis conducted with the current model with C; =1.0 and V, =0.0. The results
obtained in terms of stability boundaries in the N, - N, plane confirm that the inlet
loss coefficient (K;,), the Froude number?” (Fr) and the single-phase friction factor
(N,,) have stabilizing effects (Fig. 5-15(a), Fig. 5-17(a) and Fig. 5-18(a), respectively),
and that the two-phase friction Bctor (N;,) and the exit loss coefficient (K., ) have
destabilizing effects (Fig. 5-19(a) and Fig. 5-16(a), respectively).

Much more significant than the effects, studied extensively earlier, of these parameters

on the SB are their effects on the nature of Hopf bifurcation. Thus, for example, Fig. 5
15(b) indicates that K, can significantly affect the type of bifurcation that occurs as the

SB is crossed. It is seen that, for lower values of K., (say 4.0), the nature of Hopf

bifurcation along the SB in the N_, - N plane is subcritical for N, <1.9 and

pch

supercritical for higher valuesof N, . For higher values of K, (say 20.0), the nature of

sub *
HB aong the entire SB becomes subcritical, which means that growing oscillations are
expected, for alarge enough perturbation, everywhere in the stable region close to the SB.
In addition, the Fr number also shows considerable impact on the nature of Hopf
bifurcation. Thus, Fig. 5-17(b) shows that at higher values of Fr number?® (say around

0.033), the nature of Hopf bifurcation along the SB in the N ,,— N, planeis subcritical

for Ny, <3.15 and supercritical for higher values of N, . At alower Fr number (say

0.015), the supercritical region shrinks, and the Hopf bifurcation is subcritical along the

27 Froude number isinversely proportional to the channel length.
28 smaller channel length.
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SB for N, <5.0 and supercritical for higher values (Fig. 5-17(b)). This finding may be

of considerable importance in design considerations for natura circulation reactors. In the
ranges analysed, the other design parameters were found to have relatively small effects on
the nature of Hopf bifurcation (Fig. 5-16(b), Fig. 5-18(b) and Fig. 5-19(b)). Overall, the
present study has clearly underlined the parametric dependence of the nature of
bifurcation, thus indicating the need for its being taken into account more explicitly in the
design and operational analyses of future BWR systems.

552 Numerical Simulation

Additional numerical integrations have been carried out to illustrate the findings of the
sensitivity analyses conducted using the bifurcation approach. Examples of three typical
simulations are shown in Figs. 5-20 and 5-21. Numerica integrations with parameter
values corresponding to point A in Fig. 515(a) (K, =4.0,N, =4.04, N, =8.0), as
expected, lead to stable limit cycle oscillations (see Fig. 520). Two different numerical
simulations were carried out with parameter values corresponding to point B in Fig.

5-15(a) (Kjyq =20.0, N, =4.04, N, =14.0). Starting from an initial condition close
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to the fixed point (small perturbation), the oscillations are found to decay to the fixed point
(Fig. 521(a)). However, oscillations grow in amplitude for the same set of parameter

values when the initial conditions are far from the stable fixed point (Fig. 5-21(b)).

56 SUMMARY AND CONCLUSIONS

The new model developed for a heated channel using drift flux representation for the
two-phase flow has been validated against appropriate experimental data and its
performance has been compared with that of several other models that were developed
earlier to simulate density wave oscillations. It has been found that the current thermal-

hydraulic model is in good agreement with the experimental data for large N, , and for

lower valuesof N, , agrees with these better than do most of the other models.

Stability and bifurcation analyses have been performed using the bifurcation analysis
code BIFDD, stability boundaries and bifurcation characteristics being determined in the
Ngip - Npen @nd Ny, - b, plane, respectively. Results of the bifurcation analysis along

these stability boundaries clearly show that both sub- and supercritical Hopf bifurcations
can be expected. The impact of the parameters of the drift flux model (C, and V) has

been investigated in this context. While the SB is found to be sensitive to values of both

C, and V,, the nature of Hopf bifurcation for lower values of N, is found to be

g]’
considerably more sensitive to the value of V. The above results have been confirmed by
numerical integration of the set of ODESs.

The sensitivity analysis study carried out shows that the nature of Hopf bifurcation can
vary significantly with the values of certain design and operating parameters, e.g. K, -
Clearly, design studies for next generation BWRs stand to benefit from tools such as the
bifurcation analysis code BIFDD used in conjunction with appropriate reduced order
models. Knowledge acquired, in this context, of the nature of bifurcation in different
regions of the design parameter space could help assure adequate safety margins.
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6 NONLINEAR BWR STABILITY ANALYSISUSING
THE CURRENT TWO-CHANNEL REDUCED ORDER
MODEL

6.1 INTRODUCTION

Various instability events have been observed in different BWRs during the last two
decades [1-4]. As mentioned earlier, there are mainly two kinds of BWR instabilities:
globa or inphase oscillations, and regional or out-of-phase oscillations. In the in-phase
mode, the whole core behaves as one, i.e. the local power in each fuel bundle oscillates
with the same phase. However, in the case of out-of-phase oscillations, one half of the core
behaves out-of-phase from the other haf, i.e. when the power or flow rises in one half of
the core, it decreases in the other half in such a way that the tota mass flow remains
almost constant. Because of the strong coupling between the neutronics and the thermal-
hydraulics via the void and Doppler feedback reactivities, BWR instabilities are also
called nuclear-coupled-thermal- hydraulic instabilities.

A wide range of analytical reduced order models have been developed for BWR
stability analysis, both in the linear and nonlinear domain as reported in Chapter 2. The
most important developments that have formed the basis for the current reduced order
model (described in Chapter 4) are reviewed once again here.

Thus, in their pioneering work, March-Leuba et al. [5] proposed a simple
phenomenological model to qualitatively and quantitatively simulate the behaviour of
BWRs based on a point reactor model for the neutron kinetics and a greatly simplified
thermal- hydraulic model. In order to keep their model very simple, they assumed that the
coolant enters the core at saturation temperature and that the entire recirculation loop can
be treated as a single path of fluid with variable cross-sectional area but with constant
mass flow rate. This physical model was implemented in a computer code, called LAPUR,
using which the authors were able to predict limit cycle oscillations in BWRs with the
amplitude of the oscillations being found to be very sensitive to the reactor’s operating
conditions. Furthermore, their analysis showed that the limit cycles can become unstable
and undergo period-doubling bifurcations leading to an aperiodic oscillating behaviour. In
a later work [6], they proposed a mechanism for the out-of-phase instabilities observed in
BWRs. This mechanism was modelled by upgrading the LAPUR code, numerical
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simulations then showing the existence of aregion in the operating power-flow map where
out-of-phase instabilities are possible even if the fundamental mode is stable.

Using the above model, MufiozCobo and Verda carried out a purely analytical
bifurcation analysis [7]. In effect, this is the first reported work in which bifurcation
analysis is performed andytically in the framework of BWR model analysis. Later,
MufiozCobo et al. extended the work of March-Leuba et al. in order to study in-phase and
out-of-phase instability phenomena in greater detail [8,9]. This extension basedona | -
modes model for the neutron kinetics and a thermal-hydraulic treatment based on a
homogenous equilibrium model. They showed that in-phase oscillations only appear when
the first harmonic mode does not have enough thermal-hydraulic feedback to overcome
eigenvalues separation. In addition, they demonstrated the excitation of out-of-phase limit
cycle oscillations using numerical integration when the reactivity feedback of the first
azimuthal mode is increased.

Karve et al. [10,11] developed a more detailed model in which they used w -modes for
the neutron kinetics, and a homogeneous equilibrium model for the thermal- hydraulic
treatment of the two-phase flow. Their model is based on the assumption that the single-
phase enthalpy and two-phase quality have time-dependent spatially quadratic profiles.
After performing stability analyses for the stability boundary, they carried out bifurcation
analyses entirely numerically.

With the aim of better understanding the instabilities in BWRS, especially out-of-phase
oscillation phenomena, Zhou and Rizwan-uddin [12] carried out semi-analytical stability
and bifurcation analyses with the Karve et al. model using the bifurcation code BIFDD.
They analysed the role of the pairs of complex conjugate eigenvalues with the largest and
second largest rea parts in determining the inphase and out-of-phase modes of
oscillations. Numerical simulations were carried out to confirm the results of the stability
and bifurcation analyses.

In Chapter 5, the currently developed model, based on a drift flux treatment of the two-
phase flow, was used for studying thermal- hydraulic instabilities in a heated channel. By
adding to this model a simple point reactor treatment of the neutron kinetics and a model
for the fuel heat conduction dynamics, an initial study was conducted in [13] of the single-
channel, nuclear-coupled thermal-hydraulic dynamics in a BWR. This investigation,
however, was preliminary and, in order to achieve a clearer understanding of both in-phase
and out-of-phase mode excitations by investigating their stability limits, it has been
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necessary to develop the complete, current reduced order model (see Chapter 4) in which
two parallel channels are coupled via spatial modal kinetics to the fundamental and the
first azimuthal modes of the neutron flux.

Application of the complete BWR model for achieving the above goal is the subject of
the present chapter. Section 6.2 first briefly summarizes the current model. In Section 6.3,
it is shown how the properties of the eigenvectors corresponding to the pairs of complex
conjugate eigenvalues with the largest and second largest rea parts give important
information that determines the type of oscillation mode without the need to solve the
system of ODEs explicitly. The exact connection to the excitation of the fundamental and
first azimuthal modes is established, so that a rigorous quantitative explanation of in-phase
and out-of-phase mode excitation results. In addition to analysing the effects of the DFM
parameters on the stability boundaries and the nature of Hopf bifurcation, Section 6.4
considers the effects of these parameters on the type of oscillation mode encountered.
Furthermore, numerical ssmulations are carried out at certain operating points to validate
the findings of the bifurcation analyses. Finaly, a summary and conclusions of this study

are presented in the last section.

6.2 SUMMARY OF THE BWR MODEL

The dynamical system that results from the two-channel nuclear-coupled thermal-
hydraulic model consists of twenty-two ODEs (see Chapter 4), four from the neutron
kinetic model (Egs. (4.77) to (4.80)), ten that describe the thermal- hydraulic modd (five
for each channel (Egs. (4.85) to (4.89))), and eight ODEs that describe the fuel rod heat
conduction (two equations for each phase, in each channel (Egs. (4.81) to (4.84)). The set

of 22 ODESs can be written in a compact form as.

X(t) = F(X:k) (6.1)

where X(t) isthe vector of 22 phase variables

X(t) = (ay, (1), 85, (1), 814 (1), Sp1 (1), Vinter (0, Traa (1), T2 (1), T3 (1), T 0 (1), Mo (1),
Uo(D), a5 (1), 85,5 (1), 815 (8): S5 (1) Vimet 2 (1) Taa o (1), Too (1), T o (1), T 50 (1),

ny(t), U, ()", (6.2)
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and Kk isthe vector of parameters that includes both the operating and design parameters
defined in Appendix C.
k = ( Nr 1Nr 1Npch,]f 1Npch,2f 1K

KeitrNia Nya Fr.CoVy ) (6.3)

inlet *' * exit?

The two principal operating parameters chosen for the current stability analysis are

Ny, and DP,,, the channel inlet subcooling number, and the external pressure drop

sub

across the two channels, respectively.

6.3  STABILITY LIMITSFORIN-PHASE AND OUT-OF-PHASE
MODES

Typica numerical values for the design and operating parameters of a General Electric
Company (GE) BWR-6, with an approximate power of 1100 Mwe, have been used in this
context and are given in Appendix F. Stability and bifurcation analyses are reported in this
section using the current 22-equation reduced order model with the drift flux parameters
set to correspond to aHEM, i.e. C, =1 and V; = 0.0.

As mentioned, the stability boundaries are presented here in the Ng,, - DPy

parameter space. Detailed investigations of the effects of the DFM on the SB, the
bifurcation characteristics, and the type of oscillation mode are presented in Section 6.4.
In this study, we consider the gain of the feedback reactivities for different coupling
modes (introduced in Appendix E, Section E.3) as follows:
fact, = fact,, =1 (6.4)
and

fact,, = fact,, = fact (6.5)

with fact >1. This means that the feedback reactivities of the coupling between the
fundamental and the first modes (r ,,,r ,,) are “artificially” amplified by an amount equal

to fact. Thisis due, as shown in Appendix E, to the inability of the linear approximation of
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the feedback reactivity model to accurately simulate the values of the feedback reactivities
for the coupling between the fundamental and first modes. This assumption is physically

consstent since it is well known that r ,(t)=r (). In the author's opinion, the
assumption introduced in [9, 12] that considers r,,(t)* r,(t) is not correct from the

physica viewpoint. However, since the linear approximation model of the feedback

reactivity gives accurate values for the fundamental and first modes themselves, artificial

amplification is not needed in these cases ( fact,, = fact,, =1).

6.3.1 Semi-analytical Bifurcation Analysis
A modified version of the code BIFDD that allows the evauation of al the 22

eigenvalues and their corresponding eigenvectors at each point on the stability boundary
has been used for the present study. It turns out that there are two relevant pairs of
complex eigenvalues which correspond to the inphase and out-of-phase oscillation
modes. In this subsection, the first and the second stability boundaries are presented for
different values of the reactivity feedback for the coupling between the fundamental and
first modes, i.e. while increasing the bifurcation parameter fact, in order to ssimulate the
excitation of the out-of-phase oscillation mode. The first SB corresponds to points in the
parameter space at which the rea part of the first largest pair of complex eigenvalues is
equal to zero, while the second SB corresponds to points in the parameter space at which
the real part of the second largest pair of eigenvalues is equa to zero. In other words, the
first SB corresponds to the occurrence of a Hopf bifurcation while the second SB is
associated with the occurrence of a secondary Hopf bifurcation, or a so-called Neimark
bifurcation (see Appendix B). Actually, the second SB has little relevance for the stability
of the system, since the system is already unstable once the first SB has been crossed.
However, it is crucia for understanding the switch between the in-phase and out- of-phase
oscillation modes.

A detailed investigation has been carried out to see as to which oscillation mode is
excited during the loss of stability related to the crossing of the first and second SBs. The
question to be answered is whether the crossing pair of eigenvalues corresponds to an in-
phase or an out-of-phase mode. Zhou and Rizwanuddin [12] reported that the excitation
of ou-of-phase oscillations can be explained by the second largest pair of complex
eigenvalues whose real part gets closer and closer to zero as the feedback reactivity of the

first mode is increased. They looked at the magnitude of the elements corresponding to the
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fundamental and first modes in the eigenvectors in order to define the associated mode of
oscillation. In the current analysis, it has been found that looking at other elements of the

eigenvectors helps in extracting additional information on the type of oscillation mode.
More specifically, in the in-phase mode, the corresponding eigenvector (\7in) has the

following properties:

in-1. The element corresponding to the fundamental mode, V., is much larger

inny ?
than the element corresponding to the first mode, V. . This was also reported
by Zhou and Rizwan-uddin [12].

in-2. The elements corresponding to the thermal-hydraulic/heat conduction

variables in the first channel have the same sign and the same absolute value as

the corresponding elements of the second channel.

On the other hand, the eigenvector (\70ut) corresponding to the out-of-phase mode is

characterized by:
out-1. The element corresponding to the first mode, V,

outn, + 1S Much larger than the

element corresponding to the fundamental mode, V This was aso

out,ng *
reported by Zhou and Rizwanuddin [12].

out-2. The elements corresponding to the thermalhydraulic/heat conduction
variables in the first channel are of opposite sign and have the same absolute

value as the corresponding elements of the second channel.

It is aso to be noted that the element corresponding to the fundamental (first) mode in the

in-phase mode eigenvector, V, . (V,,, ), is much larger (smaler) than the corresponding

element in the out-of-phase eigenvector, V,, . (Voun,

). However, the elements of the
thermal- hydraulic and heat conduction components in the eigenvector associated with the
inphase mode have the same absolute values as the corresponding elements in the
eigenvector associated with the out-of-phase mode.

Using some algebra based on linear analysis, a detailed study is now made of the
consequences of the eigenvector element properties for both oscillation modes on the
behaviour of the system, i.e. the evolution of the system variables with time, close to the

steady-state solutions. More importantly, a rigorous quantitative explanation will be given
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of in-phase and out-of-phase mode excitations and their exact connection to the excitation
of the fundamental and first modes of the neutron flux.

Suppose the linearized system of the set of nonlinear ODEs (6.1) is

PO~ pn(1), (656)

where A is the Jacobian matrix and X (t) is the vector variable. To solve this system of
equations, suppose the matrix A can be diagonalizied. For this, the eigenvalues

I, =s,; +iw; and their corresponding eigenvectors \7, are evaluated. Then the solution of

the linearized system can be written as:

~ 22
X(t)=X+Qa cve', (6.7)

i=1

where X is the steady-state variable vector and ¢; is a constant that can be evaluated from

initial condition problem.

Generaly speaking, it is well known that the dynamica system is asymptotically stable
only if rea parts of all the eigenvalues of the Jacobian are negative, i.e. the oscillation
amplitudes of al the variables asymptotically decay with time. On the other hand, the
system is asymptotically unstable if the real part of at least one eigenvalue is positive, i.e.
the oscillation amplitudes of at least some of the variables asymptotically®® grow with
time. Suppose that the in-phase oscillation mode is excited, i.e. the real part of the
eigenvalue associated with the in-phase mode is positive and all the other eigenvalues

have negative real parts. The asymptotic solution can then be approximated by:
X(t) @X +c, Ve, (6.8)

where the subscript in stands for in-phase. Theterms |, and V,, are, respectively, the

eigenvalue and the corresponding eigenvector associated with the in-phase oscillation

291t could happen that the oscillation amplitudes of certain variables decay initially, and then grow later.
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mode. The quantity c,, isaconstant that can be evaluated from initial conditions. It should

be noted that the oscillation amplitude of the solution is directly proportiona to the
eigenvector , i.e. the eigenvector is relevant in determining the oscillation amplitude of the
solution.

The fundamental and the first mode solutions can be approximated by:

no(t) @0 +C|n\/in,rbe| ! (69)
n(t) @M, +C, Vo, € (6.10)
where |, =s;, +iw,,, s;; >0 and s; <0 for "i=1n and i * in. Theterms V, and

Vinn, are the eigenvector elements corresponding to phase variables ng(t) and ny(t). As
stated above (in-phase eigenvector property in-1), the element corresponding to the
fundamental mode (Vin’no) is found to be much larger than the element corresponding to
the first mode (V,, ,, ), in the eigenvector corresponding to the in-phase mode. Therefore,

the oscillation amplitude of the fundamental mode is much larger than the oscillation
amplitude of the first mode.

The liquid inlet velocities in channels 1 and 2 can then be written as:

Vinlet,l(t) @Tiinlet,l + CinVin,vm,et‘leI ! (6-11)

Vinlet,z(t) @anet,z + Cinvin,v. el o! (6-12)

inlet,2

where V,,, and V,, . arethe eigenvector elements corresponding to phase variables

Viner1 (1) @d Vo 5 (t) . It should be noted that Vi, = Vi e, because the two channels are

smilar from the thermal-hydraulic point of view. As stated earlier, the elements

corresponding to the inlet velocity variable in channel 1 (Vin,vm.eu) and channel 2 (Vimvin.az ),

in the eigenvector corresponding to in-phase oscillations, ae found to have the same sign
and the same absolute value (in-phase eigenvector property in-2). Therefore, referring to
Egs. (6.11) and (6.12), the inlet velocities in the two channels oscillate in an in-phase

mode.
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It needs to be stressed that, even if the out-of-phase mode is not excited in this case, the
oscillation amplitude of the first mode grows with time asymptotically. It may actually
decay initially®, but then should grow asymptotically. A possible initial decay of the first
mode amplitude oscillation can be explained by the contribution of the term associated
with the second pair of complex eigenvalues that has a negative real part. In this case, Eq.

(6.10) can be written as:

() @M, +Co Vo n € +C Vi 8" (6.13)

inYinn

with Re(l,,)>0 and Re(l ,, ) <O0. In the initiad transient time interval, the term of the

second pair of complex eigenvalues (c,,V, € **) may be dominant because, as reported

out,m

ealier, V

wutn, 1S found to be much larger than V;,~ (about 100 times) and, consequently,

inn
decaying oscillations of the first mode are observed. The time evolution of the thermal-
hydraulic and heat conduction variables, however, is always growing because here the
term of the second pair of complex eigenvalue is amost negligible even in the initia time
interval.

In case the out-of-phase mode eigenvalue is dominant, the asymptotic solution will be:

\Y/

out ~ out

X(t) @X +c, V. e, (6.14)
where the subscript out stands for out-of-phase mode. | ,,, and V,, are, respectively, the
eigenvalue and the corresponding eigenvector associated with the out-of-phase oscillation

mode. Theterm c_, is a constant that can be evaluated using the initial conditions. Asin

out

the in-phase case, the fundamental and the first mode solution can be approximated as:

No(t) @ + Coyoutn, € (6.15)

nl(t) @:il + CoutVout nleI oot ’ (6-16)

301t may happen that the asymptotic time is very large, which could make the “initial” interval very long.
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where | ;=S qut T 1Wgyut» S o, 0 @d s <0 for "i=1Ln and i?! out. The terms V,

out,n,
and V,,, arethe eigenvector elements corresponding to phase variables ng (t) and ny(t),

respectively. As stated earlier (out-of-phase eigenvector property out-1), the element

corresponding to the first mode (v, ) is found to be much larger than the element

corresponding to the fundamental mode (V,,;,, ), in the eigenvector corresponding to the

utn,
out-of-phase mode. Therefore, the oscillation amplitude of the first mode is much larger
than the oscillation amplitude of the fundamental mode.

The inlet velocity in both channels can be written as follows:

Vinlet,l(t) @7inlet,1 + CoutVout,v el ouf (6-17)

inlet,1

Vinlet,z(t) @nlet,Z + Coutvout,v. el out (618)

inlet,2

In the out-of-phase case, the elements V, and V, , of the eigenvector are found to

OUt Vg 1 OUt e

have opposite signs and almost the same absol ute value (out- of- phase eigenvector property
out-2). Therefore, referring to Egs. (6.17) and (6.18), the inlet velocities in both channels
oscillate in an out-of-phase mode.

Again it needs to be emphasized that, even if the in-phase mode is not excited in this
case, the oscillation amplitude of the fundamertal mode grows with time asymptotically,
i.e. it may decay initially but should grow asymptotically. A possible decay of the
fundamental mode amplitude oscillation in the initial time interval can be explained by the
contribution of the term associated with the second pair of complex eigenvalues that has a

negative real part. In this case, Eq. (6.15) can be written as:

no(t ) @0 + Coutvout o el ot +G V el " (619)

inYinng

with Re(l . )>0 and Re(l,,)<0. In the initia transient time interval, the term of the

second pair of complex eigenvalues (¢, V., , € ') may be dominant because, as mentioned

in,n,

above, V,, . isfound to be much larger than V,, . (about 100 times) and, consequently,

ut,ny
decaying oscillations of the fundamental mode are observed. However, this is not the case

for the time evolution of the other thermal-hydraulic and heat conduction variables, i.e.
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there are no decaying oscillations in the first time interval because here the term of the
second pair of complex eigenvalues is aimost negligible even initially.

Shown in Fig. 6-1 are the first and the second SBsin the N, - DP,, plane, parts (a)
and (b) of the figure illustrating their correspondence to the in-phase and out-of-phase
oscillation modes as the bifurcation parameter fact is increased from 1 to 2.5. Fig. 6-1(a)
shows that, for fact =1, the entire first stability boundary is associated with the in-phase
mode, while the entire second stability boundary is associated with the out-of-phase mode.

The two SBs are very close for Ny, >4, and they become far from each other for lower

vauesof Ng, . In Fig. 6-1(b), it is seen that increasing the value of fact to 2.5 makes the

SB corresponding to the out-of-phase mode become closer and closer to the SB
corresponding to the in-phase mode in the lower branch.

Figure 6-2 shows the case of higher feedback reactivity for the coupling between the
fundamental and first modes ( fact =3.5), in which the two SBs intersect at point

T(DP,,Ng,,) = T(7.38,1.44). In this case, the first SB corresponds to the in-phase
oscillation mode for N, >1.40, and to the out-of-phase mode for Ny, <1.40. In other
words, if the system loses its stability in the region where N, <1.40, the first type of

instability that will be excited is the out-of-phase oscillation mode. On the other hand, for
Ngp >1.40, the first type of instability thet will be encountered is the in-phase oscillation

mode.

Figure 6-3 displays the first stability boundary corresponding to different gains of the
feedback reactivity for the coupling between the fundamental and the first modes. The
stability boundaries and the bifurcation curve for fact equalling 1 and 2.5 cannot be
distinguished. As seen earlier, further increasing the feedback for the coupling between
the fundamental and first modes ( fact = 3.5) causes the out-of-phase mode to be excited.
Consequently, the lower branch of the SB that was associated with the in-phase mode
becomes associated with the out- of- phase mode.

Points A and B are two operational points that will be investigated, in Subsection 6.3.2,
using numerical integration of the st of system equations. As shown in Fig. 6-3(a), point
A is stable for fact equal to 1 or 2.5. However, it is out-of-phase unstable®! for fact =3.5.

In addition, point A isin the region where a supercritical Hopf bifurcation is expected (see

31 This means that the out-of-phase mode is excited at the operational point A.
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Figure6-1. First and second stability boundaries, and their correspondence to the in-
phase and out-of-phase modes. In both parts of the figure, the first stability
boundary corresponds to the in-phase mode of oscillation and the second stability
boundary corresponds entirely to the out-of-phase oscillation mode.
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Figure6-2. First and second stability boundaries, and their correspondence to the in
phase and out-of-phase modes. For fact =3.5, the first stability boundary

corresponds to the in-phase mode for Ng,, >1.40 and to the out-of-phase mode
for Ng,, <1.40.

Fig. 6-4). Therefore, an out-of-phase stable limit cycle oscillation is expected here. Point
B, for al fact-value cases, is located in a stable region where subcritical bifurcation is
expected.

The SBs shown in Fig. 6-3(b) are the transformed SBsfrom N, - DP,, to the steady-
state values of neutron number density vs. total inlet velocity (power-flow) plane
Nos = Vinas- It IS clear from Figs. 6-3(a) and 3(b) that underestimating the feedback
reactivity for the coupling between the fundamental and first modes leads to non
conservative results. For instance, point C, which is predicted to be a completely stable
operationa point under fact =1 conditions, becomes an out-of-phase unstable operating
point if the gain of the feedback reactivity coupling between the fundamental and first
modes is increased sufficiently to represent realistic conditions corresponding, for

instance, to a bowl-shaped radial power distribution® [3].

%2 resulting, for example, from a certain control rod configuration
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Figure6-3. a) The first stability boundaries for different feedback reactivities for the
first mode in the Ng, - DR, plane. b) Transformed stability boundaries in the

power-flow map (n,, and v, are the steady-state values of the neutron density

inlet,s

of the fundamental mode and the total inlet velocity, respectively).
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Figure6-4. Nature of Hopf bifurcation in the Ng,- b, plane. Bifurcation is
supercritical for b, <0, and subcritical for b, >0.

It should be pointed out that the typical value of the subcooling number N, for

normal operational conditions for a BWR cannot exceed 2.0, which corresponds to 30

degrees of temperature difference between the inlet liquid temperature and the saturation
temperature. In the current study, higher values of Ng,, were also investigated in order to
try to understand the physical mechanisms behind the transition between the in-phase and

out-of-phase modes as a given parameter is changed, especialy in a region where the two
SBs are very close to each other.

6.3.2 Numerical Simulation

For independent confirmation of the results of the bifurcation analyses, and to evaluate
the system behaviour in regions away from the SB, a MATLAB code has been developed
to numerically integrate the set of the 22 ODESs using the Gear’ s algorithm (see Subsection
2.7.3). Results are presented here for parameter values corresponding to the operational
points A and B shown in Fig. 6-3(a) with fact =3.5. Figure 6-5 shows the time evolution

of normalized components of the fundamental (n,(t)) and the first modes (ny(t)), the inlet

liquid velocity in both channels (Vi and Vi, ), and the total liquid inlet velocity Vi,
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with parameter values corresponding to point A. As expected, at point A, the system is
out-of-phase unstable but in-phase stable, i.e. the out-of-phase mode is dominant.
Moreover, point A is in the supercritica Hopf bifurcation region. Hence, the oscillation
amplitude for each of the variables grows to a stable limit cycle. The oscillation amplitude
of the first mode is larger than that of the fundamental mode (Fig. 6-5(a)).

Fig. 6:5(b) clearly shows the out-of-phase mode oscillation between the inlet liquid

velocities of the two channels. The total mass flow (vi,) is oscillating with very small

amplitude (1%) and can, as such, be considered constant (Fig. 6-5(c)). This agrees with
previous findings that state that in an out-of-phase oscillation mode the total mass flow
remains amost constant, although the individual mass flows are oscillating. This is
because the two oscillating core regions adjust their flows to maintain the pressure drop
across the core constant in time and in space. In fact, the 1% oscillation amplitude of the
total flow rate is related to the fundamental mode that shows a very small stable limit cycle
oscillation amplitude. It should be pointed out that, although the in-phase mode is not
excited® at point A, the oscillation amplitude of the fundamental mode is increasing but
with very small amplitude compared to the first mode.

Fig. 6-6 shows the results of numerical integration for the operational point A" in Fig.
6-1(b). It is clearly seen that, although the out-of-phase mode is not excited®* (only the in
phase is), the first mode amplitude grows asymptoticaly (time > 170 s) but with an
amplitude much smaller than that of the fundamental mode. This can only be explained by
the argumentation presented earlier, viz. that in the initial time interval [0, 170s] the first
mode amplitude is decaying because of the dominance of the term of the second pair of

complex eigenvalues with negative rea part (associated in this case with the out-of-phase

V.

out Yout,n,

mode, ¢ e '), and that later the first mode amplitude grows with time because of

the dominance of the term of the first pair of complex eigenvalues with positive real part

(associated in this case with the in-phase mode, ¢, V., . €' ™). This leads to the following

inYin,m

important statement: if the in-phase (out-of-phase) mode is excited, this does not mean that

33 This means that the real part of the pair of complex eigenvalues associated with the in-phase mode is
negative.
34 This means that the real part of the pair of complex eigenvalues associated with the out-of-phase mode is
negative.
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first mode amplitude is decaying from O to 170s, then starts to grow but with
much smaller amplitude than that of the fundamental mode.

the first mode ny(t) (fundamenta mode ny(t)) is not excited—as many researchers
suppose—but rather, it only means that the oscillation amplitude of the fundamental (first)
mode is larger than that of the first (fundamental) mode.

Asregards point B in Fig. 6-3(a), it is clear that here the first SB corresponds to the in-
phase mode, the second SB being associated with the out-of-phase mode (see Fig. 6-2) and
the two being very close. Point B is in the stable region and close to the SB, and the type
of Hopf bifurcation to be expected is subcritical. Therefore, beside the stable fixed point,
an unstable limit cycle is predicted. Numerical ssimulations confirm these findings, as

shown in Figs. 6-7 and 6-8. The small amplitude perturbation in Fig. 6-7 (aV; ¢, = 0.05)
decays to the fixed point, and the large amplitude perturbation (dvi,, =0.7) in Fig. 6-8
leads to growing amplitude oscillations for ny(t) and v, (t) . However, in both cases,

the first mode decreases rapidly. As discussed above, this is because of the dominance of

V

out ¥ out,n;

the term of the second pair of complex eigenvalues, ¢ e, with |, <0.
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The evolution of flow inlet velocity in channel 1 is seen to experience the beating
phenomenon® in the first 80 seconds (Fig. 6-7(b) and 6-8(b)), because during this time
interval the term of the pair of complex eigenvalues associated with out-of-phase mode

(coutvout,vmme' »!) has a comparable value to that associated to the in-phase mode

(c;,r,Vm’leetléi"t ). This leads to a combined impact of the two different natural frequencies

associated with the two modes.

6.3.3 Conclusons

The eigenvector properties presented in Subsection 6.3.1 (in-1, in-2, out-1, and out-2),
i.e. the properties of the elements of the eigenvectors associated with the in-phase and out-
of-phase oscillation modes, provide clear evidence that these instabilities involve not only
the fundamental and first modes of the neutron flux, but rather all the system components
(viz. variables of the neutron kinetics, the thermal- hydraulics, and the heat conduction).
Therefore, a statement like: * Excitation of the fundamental (first) mode implies that thein-
phase (out-of-phase) oscillation mode is excited” is not completely correct. It is also
necessary that the amplitude of the fundamental (first) mode is much larger than that of
the first (fundamental) mode. Thus, it is seen from the system behaviour observed at
operationa point A (A*), as shown in Fig. 6-5 (Fig. 6-6), that the fundamenta (first) mode
may be unstable even though in-phase (out-of-phase) oscillations are not excited.
Moreover, as mentioned, the therma-hydraulic and heat conduction variables
(components) are also involved in the definition of the state (eigenvector properties).

In the author’s opinion, this can be understood in the frame of the center manifold
theorem (see Chapter 3), in which the full system of 22 ODEs is reduced and lumped at
the bifurcation point into just two ODEs (Poincaré norma form, see Subsection 3.1.2)
which represent a combination of all the original system variables (22 variables).
Consequently, this lumping is trandated into eigenvector properties which reflect al the
system components. This is a very clear argument for the fact that in-phase and out-of-
phase oscillations are whole-system mechanisms and, as such, are not just limited to the
excitation of the fundamental and/or the first mode. Thus, this leads one to reformulate the
definition of the inphase and out-of-phase states based on the properties of the
corresponding eigenvectors as follows: The in-phase (out-of-phase) oscillation mode is an

intrinsic state that the reactor can fall into, in which the amplitude of the fundamental

351t iswell known that the beating phenomenon is observed when two or more frequencies exist.
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(first) mode is larger than that of the first (fundamental) mode, and the thermal-hydraulic
and heat conduction variables in half of the core have the same (opposite) sign and the
same absolute value as the corresponding variablesin the other half of the core.

It should be emphasized that, during rumerical simulation, it was found to be more
difficult to identify an unstable limit cycle than a stable one. As reported in Section 5.4,
this is mainly because the strip adjacent to the SB which comprises unstable limit cyclesis

much narrower than that comprising stable limit cycles.

6.4 THE EFFECTSOF USING A DRIFT FLUX VERSUS
HOMOGENEOUSEQUILIBRIUM MODEL
The am in this section is to perform a comparative study between the use of HEM and
DFM for the modelling of the two-phase flow in the current BWR reduced order model.
For this, an investigation of the effects of the DFM parameters—the void distribution
parameter Co and the drift velocity V,—on the SB, the nature of PAH bifurcation, and on

the type of oscillation mode (in-phase or out-of-phase) is carried out.

6.4.1 Effectsof thedrift flux parameterson the SB and the nature of Hopf
bifurcation

Stability boundaries were first generated in the Ny, - DP,,; operating parameter plane.
They were then transformed to the steady-state neutron density vs. steady-state inlet
velocity (Ny, - Vi) Plane (power-flow map). For this comparative HEM/DFM study, the
numerical values used for the parameters are the same as in the last section, viz. those used
by Karve (Appendix F). In addition, throughout this study, fact is set equa to 1. The
DFM parameters C, and V,; are varied in the ranges [1.0, 1.03] and [0.0, 0.1],

respectively. The justification for this choice is provided by:
o The validation of the thermal-hydraulic model against experimental data and
several other analytical models, as carried out in Section 5.3, shows that a value of
C, between 1 and 1.08, depending on the inlet flow, can adequately fit the
experimenta results. Considering further that a typical BWR fuel assembly has a
rather complex geometry (grid spacers, etc.), one may justifiably lower the

maximum value of C, to be expected [14].
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a BWR moddling with the RAMONA code (Subsection 2.7.1) shows that the slip
value can vary from 1.0 to 1.7. This corresponds to a drift velocity between 0.0 and
0.17.

Figures 6-9(a) and 6-9(b) show the sensitivity of the SB to the value of C,, which is
seen to have a stabilizing effect. Figure 610 shows that, except in a small interval, the
nature of Hopf bifurcation is not affected much as the value of C, isincreased. Thus, it is
seen that there is only a small shift of the transition point between the sub- and
supercritical Hopf bifurcation regions as C, is changed from 1.0 to 1.03. For instance, the
branch of the SB with 1.8<Ng, <2.1 that was associated with supercritical Hopf
bifurcation for C, =1.0 becomes subcritical for C, =1.03. In addition, it is to be noted
from Fig. 610 that the effect of C, on the vaue of b,, the Floquet exponent, in the
subcritical bifurcation region, i.e. Ng, >2.1, is very smal, while in the supercritical
bifurcation region this effect is much more pronounced with a clear shift of the bifurcation
curve. Similar effects of C, on bifurcation characteristics were also observed in the
context of the heated channel study without neutronics (see Fig. 5-7(b)). This may suggest
that increasing C, favours the occurrence of a subcritical Hopf bifurcation, relative to that
of asupercritical one.

Results for the effects of the drift flux velocity V; are presented in Figures 6-11 and

6-12. Figure 6-11(a) shows the sensitivity of the SB to the value of V, with shiftsin the

gj’
SB comparable to those resulting from the C, variations shown in Fig. 6-9(a). This is,
however, in dight contrast to the results of the heated channel study without neutronics

(Section 5.4), where the SB was found to be somewhat less sensitive to the value of V;

than to that of C,. This suggests that effects of the drift flux velocity V,; are more

important in the nuclear-coupled thermal-hydraulic system than in the smple heated
channel case.
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Figure 6-10. Effects of the void distribution parameter C, on the nature of Hopf
bifurcation presented inthe N, - b, plane.

It should be noted that, while Vy has a clearly stabilizing effect in the entire
Ny, - DP. plane (Fig. 6-11(a)), there are two conflicting trends to be observed in the

power-flow map (Fig. 6-11(b)). The first is a destabilizing one for the system, viz. a clear
shift of the stability boundary, while the second is stabilizing, viz. a significant shrinkage
of the unstable region. Some further discussion of this phenomenon is presented in the
following paragraphs.

Like Cy, Vy; affects the nature of Hopf bifurcation only in a small interval, as shown
in Fig. 6-12. For instance, the SB branch with 1.45< N, <2.10 that was associated with
supercritical Hopf bifurcation for V; = 0.0 become subcritical for Vy; =0.1. In addition,
Fig. 6-12 shows that increasing the value of V,; causes the absolute value of b, to

decrease in both sub- and supercritical branches. This is qualitatively similar to the trend

observed in the context of the heated channel study without neutronics (see Fig. 5-8(b)).
Shown in Figures 6-13 and 6-14 are the stability and bifurcation results using the HEM

(G =1.0,V,;; =0.0) and two particular cases of the DFM (C, =1.01, V, =0.05 and

Cp =1.03, V,;; =0.08). The SBsin the Ny, - DP,; plane are shownin Fig. 6-13(a). Here
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it is clearly seen that the SB is senditive to the model used for two-phase flow: the larger

the DFM parameters (Cpyand V), the greater the shift of the SB towards the unstable

region. The corresponding Hopf bifurcation diagram in the Ny, - b, plane (Fig. 6-14)
shows that both sub- and supercritical bifurcation regions are affected. The nature of Hopf

bifurcation for lower vaues of N, is more sensitive to the values of C, and V. For
instance, for C, =1.03 and V; =0.08, the entire SB becomes subcritical.

Fig. 6-13(b) shows the SBs transformed from the Ny, - DP,,; tothe ny - v plane.

inlet,s
Here it is dearly seen that the HEM can be non-conservative in the power-flow plane,

athough it always remains conservative in the operating-parameter N, - DP,, plane.

This is in contradiction to the generally held viewpoint that the HEM is conservative® in
all situations. Although a clear interpretation of this phenomenon is still needed, it is clear
that we are dealing with a totaly different complex system where the tight nuclear

coupling to the thermal- hydraulics can generate completely new behaviour.

% This is true in the context of purely thermal-hydraulic phenomena and cannot be generalized for nuclear-
coupled thermal-hydraulic systems.
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sub

It should be pointed out that changing the values of the DFM parameters causes a
change in the steady-state value of the liquid inlet velocity in both channels. Therefore, the
shifts observed in the SBs (Figs. 6-9(a), 6-11(a), and 6-13(a))—that seem to be large—are
due to effects of the DFM parameters and the liquid inlet velocity that changes each time
the DFM parameters are changed.

6.4.2 Effectsof thedrift flux parameterson the type of oscillation mode

The effects of the drift flux parameters on the mode of oscillation (in-phase or out-of-
phase) are investigated here by tracking the properties of the elements of the eigenvector
corresponding to the pair of complex eigenvalues thet has the largest real part. Results
indicate that the entire SB obtained with the HEM corresponds to the in-phase mode.

Figure 6-9(a) showsthat C, has no effect on the mode of oscillation and the whole SB

remains in-phase. However, V;; shows a significant impact on the SB in the higher N,
region (Fig. 6-11(a)). Thus, the branch for N, >3.81 with V,; =0.05, that was in-phase

in the HEM, becomes out-of-phase. The lower branch (N, <3.81) remains in-phase. It
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should be emphasized that the observed effects of V; occur for parameter values that are

far from the normal operating conditions for a typical BWR®'.

In summary, using the DFM instead of the HEM affects the type of oscillation mode in
the higher branch of the SB. This is mainly because of the effect of the drift velocity. For
ingtance, for a DFM with C, =1.01 and V,; =0.05, the higher branch (N, >4.4) that

was in-phase in the HEM becomes out-of-phase, while the lower branch (Ng, <4.4)

remains unaffected (Fig. 6-13(a)).

6.5 SUMMARY AND CONCLUSIONS

In this chapter, the complete two-channel nuclear-coupled thermal- hydraulic reduced
order model has been applied to smulate global and regiona oscillations in a BWR. As
detailed in Chapter 4, this model comprises three parts. spatial lambda-mode neutron
kinetics with the fundamental and first azimuthal modes, fuel heat conduction dynamics,
and a thermal- hydraulic model based on a DFM representation. Stability and bifurcation
analyses have been performed using the bifurcation analysis code BIFDD, the stability
boundaries and the nature of Hopf bifurcation being determined and visualized in a
suitable two-dimensional parameter-state space.

The stability limits for both in-phase and out-of-phase modes have been displayed in
parameter space. It has been shown that analysing the properties of the elements of the
eigenvectors gives complete information on the type of oscillation mode (in-phase or out-
of-phase) without even solving the set of ODES. A clear statement has been proposed: the
in-phase (out-of-phase) mode is excited only if the oscillation amplitude of the
fundamental (first) mode is larger than that of the first (fundamental) mode, and the
thermal-hydraulic and heat conduction variables in one half of the core oscillate in-phase
(out-of-phase) but with the same amplitude as the corresponding variables in the other
half. Numerical integration of the set of 22 ODEs has been carried out to confirm the
results of the bifurcation analysis. For that, a Matlab code has been developed based on the
Gear’s algorithm to solve stiff problems. The numerical results obtained clearly show, for
example, that the excitation of the out-of-phase mode indeed corresponds to oscillations of

the first mode which are much larger than those of the fundamental.

37 Ny is usually less that 2.0 for normal operational conditions for a BWR. This corresponds to 30 K
temperature difference between the inlet and saturation temperatures.
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A comparative study between the use of the homogeneous equilibrium model (HEM)
and the drift flux model (DFM) has been carried out to investigate the effects of the DFM

parameters, viz. the void distribution parameter C, and the drift velocity V,;, on the SB,

gj’
the nature of Hopf bifurcation, and on the mode of oscillation. Results clearly show that
both sub- and supercritical Hopf bifurcation regions are affected. The SBs have been

found to be sensitive to the actual value of C, aswell asof V;, separately, the nature of
Hopf bifurcation being influenced by both parameters. Using a DFM instead of a HEM

thus has a significant effect on stability characteristics.

Contrary to the generaly held viewpoint, it has been shown that using the HEM is not
always conservative. In addition, it has been seen that using the DFM instead of the HEM
affects the type of oscillation mode mostly for higher values of N, . Although this SB

branch is of little importance from the safety viewpoint for normal BWR operation, further
investigations in this context may help provide deeper understanding of the mechanisms
behind the transition from the in-phase to out-of-phase mode (or vice versa) as a given

parameter is changed.
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7 BIFURCATION ANALYSIS USING RAMONA

71  INTRODUCTION

As stated in Chapter 3, sub- and supercritical Hopf bifurcations are the only types of
bifurcations that have been encountered during the loss of system stability®® in BWR
studies using reduced order models [1-7]. The results reported in Chapter 6 for
investigations conducted using the currently developed, 22-equation model confirm these
findings.

As with reduced order models, stable nonlinear oscillations (limit cycle) have been
observed and reported using large system codes [8-10], and even during some stability
experiments performed in commercial reactors like Leibstadt and Ringhas [11,12].
However, unstable limit cycles have never previously been observed or reported using
such codes [13]. In the author’s opinion, the reason for this is that the unstable limit cycle
solution has always been confused with the unstable fixed point solution, i.e. when
growing amplitude oscillations were observed at a specific operational point, the
conclusion was always that the system is unstable at this operational point, without any
detailed investigation being made concerning the exact type of solution encountered. This
can be explained by the fact that most system code users usualy have limited (or no)
experience in nonlinear stability analysis using reduced order models.

Within the framework of reduced order model analysis, it is quite easy to distinguish
between an unstable fixed point and an unstable limit cycle solution. Thus, for an unstable
fixed point, whatever the initially induced perturbation amplitude, oscillations always
grow in amplitude. On the other hand, for unstable limit cycles the initiad perturbation
amplitude plays an important role in determining the behaviour of the system, viz. for
small perturbation amplitudes the ostillations decay to the fixed point that exists inside the
unstable limit cycle, whereas for a large enough perturbation amplitude the oscillations
grow in amplitude. The situation has been different for BWR stability analyses carried out
using large system codes, the question of the bifurcation type responsible for the
generation of a given observed limit cycle solution never having been raised before. The

primary focus in this chapter is accordingly to address the use of system codes in the

38 As stated earlier, in crossing the first stability boundary, only Hopf bifurcation has been encountered.
However, deep in the unstable region, a cascade of period-doubling bifurcations may exist as reported for
instancein [4].
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above context, using what is introduced as the correspondence hypothesis and is based on
the accumulated experience in BWR stability analysis using reduced order models. This
hypothesis proposes the correspondence between a stable (unstable) limit cycle solution
and the occurrence of a supercritical (subcritical) Hopf bifurcation.

By carrying out detailed bifurcation analysis using the system code RAMONA at
various different operational points for the two nuclear power plants (NPPs) Leibstadt and
Ringhals-1, the correspondence hypothesis is conclusively confirmed by comparing the
results with those found using the current reduced order model. The analysis carried out
close to the Leibstadt cycle7 operational point (OP), called record 4 kkic7 _rec4 OP),
leads to the identification of a subcritical Hopf bifurcation. To the author’s knowledge,
this is the first time that a subcritical Hopf bifurcation is identified using large system
codes. Details of this analysis are presented in Section 7.3. This is followed by the
RAMONA analysis of the Ringhals-1 cycle 14 operational point, called record 9. Results,

in this case, show the occurrence of a supercritical Hopf bifurcation (see Section 7.4).

7.2  THE CORRESPONDENCE HYPOTHESIS: STABLE
(UNSTABLE) LIMIT CYCLE VS. SUPERCRITICAL
(SUBCRITICAL) HOPF BIFURCATION

For a Hopf bifurcation to occur, three conditions (see Section 3.1) have to be fulfilled,

Viz.

1) a pair of complex conjugate eigenvalues s (I ) xiw(l ) of the Jacobian matrix
crosses the imaginary axis for a critical value of | =1_ in such a way that
w( . )>0,s(,.)=0,

s =1,), 0
)l
3) all the other eigenvalues have strictly negative real parts (see Figure 3-1),

2) , and

These conditions can easily be verified when using models represented by a system of
ODEs, as is the case with reduced order models, since analytical bifurcation analysis can
then be carried out using a bifurcation code like BIFDD. However, for models based on

PDEs, as those used by the system code RAMONA, one does not presently have the
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capability to check the fulfilment of the conditions for the occurrence of a Hopf
bifurcation. Therefore, for this reason, a new approach has currently been taken based on

the following two important facts:

1. Asupercritical Hopf bifurcation is characterized by the appearance of stable limit
cycle solutions inside the linear unstable region close to the SB, while a subcritical
Hopf bifurcation is characterized by a stable fixed point and an unstable limit cycle
solution inside the linear stable region close to the SB.

2. Only sub- or supercritical Hopf bifurcations have been observed and reported so
far during the loss of system stability in the context of BWR stability analysis using
reduced order models. Therefore, one can confidently assume that these two types
of bifurcation are the only ones that can be expected to occur when a BWR loses its
stability.

Thisis equivaent to the setting up of the following hypothesis:
The Correspondence Hypothesis

When a BWR system loses its stability, the observation of a stable limit cycle is indication
of the occurrence of a supercritical Hopf bifurcation, while the existence of an unstable

limit cycle indicates the occurrence of a subcritical Hopf bifurcation.

7.3  SUBCRITICAL HOPF BIFURCATION USING RAMONA

In this section, the stability behaviour of the Leibstadt NPP is analysed, using the
system code RAMONA-5/PRESTOL option (see Appendix A), around the reference
operational point (OP), kkic7 _rec4 (referred to here as the nominal OP), located n the
plant’s exclusion area® and for which a stability measurement was carried out during
cycle 7 reactor start-up in September 1990. The Leibstadt core in cycle 7 contained 8x8
fuel assemblies supplied by General Electric, apart from 4 SVEA-64 fuel assenblies
supplied by ABB Atom [11].

39 As mentioned in Chapter 2, this is a conservatively defined region in the power-flow map where the
reactor is not allowed to operate during normal operating conditions.
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Figure7-1. Location of the reference case in the Leibstadt NPP power-flow map.

A detailed local investigation is carried out to study how the solution manifold of the
system varies as a function of the mass flow, which is here considered as the bifurcation
parameter. Then, the results are explained by comparing them with the results found using
the currently developed reduced order model. In effect, the stability behaviour is
investigated at the following five OPs:

60.5% thermal power and 36.7% mass flow rate (nominal OP, kkic7_rec4).
60.5% thermal power and 37.0% mass flow rate (+0.3% F OP*).

60.5% thermal power and 37.7% mass flow rate (+1%F OP).

60.5% thermal power and 36.4% mass flow rate (-0.3% F OP*).

60.5% thermal power and 35.7% mass flow rate (-1%F OP).

O 0O 0O DO DO

At these OPs, the RAMONA analyses are carried out by inducing control rod (CR)
perturbations with different amplitudes, the objective being to anayse the stability
behaviour for each OP and for each CR perturbation amplitude. For instance, a 2-node

amplitude control rod perturbation means that a sinusoidal perturbation movement of a

40 means that the mass flow for this OP is higher than that for the nominal OP by 0.3%
1 means that the mass flow for this OP isless than that for the nominal OP by 0.3%
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specific control rod bank is induced with an amplitude of 2 nodes (1 node = 15.24 cm)
during 1 second. Figures 72 to 7-6 show the RAMONA-calculated LPRM354 time
series signals for the nominal OP, +0.3%F OP, +1%F OP, -0.3%F OP and —1%F OP,
respectively.

7.3.1 Resultsfor the Different Leibstadt NPP Operational Points
The nominal OP: 60.5% power and 36.7% mass flow

As mentioned previoudly, this operating point is located in the exclusion area in the
power-flow map of the Leibstadt NPP (see Fig. 7-1). For a small amplitude perturbation
(0.05-node control rod perturbation®), the power decays to the stable steady-state solution
as shown in Fig. 7-2(a), while a perturbation amplitude of 0.1-node of the control rod leads
to growing oscillation amplitudes (Fig. 7-2(b)). Increasing the initial perturbation further
to 2 nodes a so results in growing amplitude oscillations (Fig. 7-2(c)). Mathematically, this
means that, beside the stable fixed point solution, an unstable limit cycle solution exists at
this operational point. Therefore, referring to the correspondence hypothesis, this indicates
the occurrence of a subcritical Hopf bifurcation.

Next, a detailed local investigation close to this OP is carried out to analyse the
different solution manifold of the system when the mass flow is changed by very small
values. The results are thereafter compared with the ones obtained using the reduced order
moddl.

The +0.3% F OP: 60.5% power and 37.0% mass flow

Figure 7-3 shows clearly that, at this operational point, the system again has two
different behaviours depending on the perturbation amplitude. Thus, for 0.05-node and
0.1-node control rod perturbation amplitudes, the power oscillations are seen to decay to
the stable steady-state solution (stable fixed point) as shown in Fig. 7-3(a-b), while, for a
2-node control rod perturbation amplitude, oscillations with growing amplitudes are

observed. Therefore, an unstable limit cycle solution exists also at this OP.

42 LPRM354 stands for Local Power Range Monitor number 35 at the core axial level number 4. In KKL
there are 35 LPRM strings, each having 4 detectors at 4 different core axial levels. Note that level 1
corresponds to the lowest axial level, while level 4 corresponds to the highest and most highly voided axial
position

3 The Leibstadt core is modelled with 25 axial nodesin RAMONA, where each node equals 15.24 cm.
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However, there is an important observation to be made here, viz. that while at the
nomina OP a 0.1-node perturbation is enough to take the system out of the unstable limit
cycle (growing oscillations (Fig. %2(b))), the same perturbation at +0.3%F OP is not
enough to destabilise the system (decaying oscillations (Fig. 7-3(b))). This can be
explained by the difference in the amplitude of the unstable limit cycles at the two
different OPs (nominal and +0.3%F). Thus, it is seen that, at the nomina OP, the unstable
limit cycle amplitude is smaller than the 0.1-node control rod perturbation amplitude.
Therefore, inducing a perturbation amplitude that is equal to or larger than 0.1-node brings
the system into the unstable region (outside of the limit cycle (Fig. 7-2(b, c))). On the
other hand, at the +0.3%F OP, the unstable limit cycle amplitude is larger than the 0.1
node control rod perturbation amplitude. Consequently, for a perturbation amplitude of 0.1
node or less, the system state remains inside the limit cycle and is attracted by the stable
fixed point (Fig. 7-3(a, b)).

The +1%F OP: 60.5% power and 37.7% mass flow

The behaviour of the reactor at this operational point is shown in Fig. 7-4. From parts
(@) and (b) of this figure, it is clearly seen that the system is stable (stable fixed point
solution) for both 0.05- and 2- node control rod perturbation amplitudes. In order to be able
to draw a definitive conclusion regarding the solution type encountered at this operational
point, the control rod perturbation amplitude was increased to 5 nodes** so as to rule out
the existence of a large-amplitude unstable limit cycle solution™. Figure 7-4(c) clearly
shows that this is not the case and that the analysed OP is indeed a stable fixed point.

The -0.3%F OP: 60.5% power and 36.4% mass flow

Figures 75(a), (b) show that, for the —0.3%F OP, the oscillation amplitude grows
independently of the perturbation amplitude (0.05- or 2-node control rod perturbation), i.e.
the system is unstable (unstable fixed point solution). To conclusively answer the question
as to whether the system solution at this OP is an unstable fixed point or an unstable limit
cycle, a case has been analysed in which there was no induced control rod perturbation at

all, i.e. only the numerical noise, assumed to be very small, acts as a perturbation.

44 A control rod perturbation amplitude of 5 nodesis considered to be a very large perturbation.
> |f alarge amplitude limit cycle exists, larger perturbation amplitudes are needed to take the system outside
the limit cycle.
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Figure 7-5(c) clearly confirms that the system is linearly unstable in this case, i.e. an
unstable fixed point is indeed the solution at this OP.

The -1%F OP: 60.5% power and 35.7% mass flow
The behaviour of the system at the —1%F OP is the same as that for the —0.3%F OP

(seeFig. 7-6(a)-(c)), i.e. once again the solution is seen to be an unstable fixed point.

7.3.2 Interpretation and Discussion

At first glance, it may seem quite peculiar thet the qualitative behaviour (solution type)
of the system changes dramatically within a small variation interval of the mass flow
(from 37.7% to 35.7%), i.e. from a stable fixed point solution at the +1%F OP, to stable
fixed points with unstable limit cycle solutions at the +0.3%F and nomina OPs, and then
to unstable fixed point solutions at the —0.3%F and —1%F OPs. While carrying out
bifurcation analysis using the currently developed reduced order model, such a variation of
system behaviour has, in qualitative terms, only been observed when a subcritical Hopf
bifurcation occurs during the loss of system stability. Figure 7-7 shows the different
solutions that exist close to the SB when such a bifurcation is expected for the reduced
order model, the similarity in the variation of the solution type between the BWR system
analysis with RAMONA and the reduced order model analysis being clearly underlined
thereby.

Thus points A, B, and C in the figure are located in a region where a subcritical Hopf
bifurcation is expected®®. Because the operational point A is in the stable region and close
to the stability boundary, both a stable fixed point and an unstable limit cycle solution are
found. Point B is inside the stable region but far from the SB. Therefore, only a stable
fixed point solution is observed. Finally, point C is in the unstable region and the unstable
fixed point is, therefore, the only solution of the system. Again, it needs to be emphasized
that such a change of solution type happens only because of the occurrence of a subcritical
Hopf bifurcation. Therefore, based on the current reduced order model findings, two

important conclusions can be drawn:

46 from analysis using the bifurcation code BIFDD
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Figure7-7. Different types of solutions during a subcritical Hopf bifurcation
occurrence, as predicted using the current reduced order model.

1. The change of the solution type from +1%F OP to —1%F OP in the RAMONA
calculation can be explained only by the occurrence of a subcritical Hopf
bifurcation during the loss of system stability. This is in accordance with the
proposed correspondence hypothesis.

2. The nominal, +0.3%F, and +1%F OPs are located in the linear stable region,
while the —0.3%F and —1%F OPs are located in the linear unstable region.
Consequently, alocal stability boundary exists between the nominal OP and the
—0.3%F OP. The scheme shown in Fig. 7-8 summarizes the results found in this

study.

It should be pointed out that the intention here has been to perform a qualitative
comparison between the results found using RAMONA and those found using the current
reduced order model. In other words, the objective has been to compare how the solution
manifold can vary as a function of a certain bifurcation parameter, which is here the mass
flow. A detailed quantitative comparison of results for kkic7_rec4 OP from RAMONA
and the reduced order model will be presented in the next chapter.
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Figure 7-8. Scheme showing the different solution types encountered when the mass
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74  SUPERCRTICAL HOPF BIFURCATION USING RAMONA

In this section, RAMONA analyses are carried out to study the stability behaviour of
the Ringhals-1 NPP around a reference operational point called record9 of cycle 14,
referred to here as the nominal OP, and characterized by 72.5% thermal power and 32.0%
mass flow. Historically, this OP, aong with several others, was analysed in the framework
of an international BWR stability benchmark in which calculated stability characteristics
(DR and NF) were compared with experimental results [8].

As in the previous section, a detailed local bifurcation anaysis is performed to study
how the system solution varies as a function of the mass flow. A qualitative comparison
with reduced order modedl findings is then carried out to explain the RAMONA results.

The following are the Ringhals-1 OPs at which the stability behaviour has currently
been investigated:

o 72.5% therma power and 32.0% mass flow rate (nominal OP).
o 72.5% thermal power and 31.0% mass flow rate (-1%F OP).
o 72.5% therma power and 33.0% mass flow rate (+1%F OP).
o 72.5% therma power and 35.0% mass flow rate (+3%F OP).

At each OP, two cases with different control rod perturbation amplitudes have been
studied. Thus, Figs. 7-9(a) to 7-11(a) show the results for cases with 2-node CR
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perturbation amplitude, while Figs. 7-9(b) to 7-11(b) show those for zero CR perturbation
(i.e. with only numerical noise active as perturbation, which is considered to be very
small). The results shown are the RAMONA-calculated LPRM354 time series signals for
the nominal, -1%F, +1%F and +3%F OPs, respectively.

74.1 Reaultsfor the Different Ringhals-1 NPP Operational Points

The nominal OP: 72.6% power and 32.0% mass flow

It seen from Fig. 7-9 that the system behaviour at the nominal OP corresponds, for both
control rod perturbation amplitudes, to a stable limit cycle oscillation with 6% amplitude.
Referring to the correspondence hypothesis, this means that a supercritical Hopf

bifurcation occurs as the system loses its stability.

The -1%F OP: 72.6% power and 31.0% mass flow

Decreasing the mass flow of the nominal OP by 1% of the maximum mass flow*’, the
solution of the system becomes an unstable fixed point as illustrated in Fig. 7-10, i.e. for
both 2-node CR perturbation amplitude and no CR perturbation, the oscillation amplitude
grows with time. Note the very high oscillation amplitude that the power can reach, viz.
after 175 seconds, the power amplitude increases by more than 100% (Fig. 7-10(b)), while
at the nominal OP the maximum power oscillation amplitude is only about 6% (Fig. 7-9(a
b)). This happens even though the two OPs are very close to each other and is clearly

indicative of the high sensitivity of the system behaviour to parameter changes.

The +1%F OP: 72.6% power and 33.0% mass flow
Figure 711 shows the system behaviour at the +1%F OP after the induction of a

2-node amplitude CR perturbation (Fig. 711(a)) and without any perturbation induction
(Fig. 711(b)). In both cases, as for the nominal OP, this leads to a stable limit cycle
solution. However, note that the amplitude of this limit cycle is around 2%, while it is 6%
for the one observed at the nominal OP (Fig. 7-9). The reason for this will be discussed in
Subsection 7.4.2, in which these results are compared qualitatively with those obtained
using the reduced order model.

47 The maximum mass flow for Ringhalsis 11550 kg/s.
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The +3%F OP: 72.6% power and 35.0% mass flow
Figure 7-12 displays the LPRM time series signal at the +3%F OP. It is clear from both
parts of the figure that a stable limit cycle is the system solution here. Once more, there is

a decrease of the limit cycle amplitude, viz. to about 1%.

7.4.2 Interpretation and Discussion

To summarize the above analysis with RAMONA, an unstable fixed point solution is
found at the —1%F OP, while stable limit cycle solutions are observed at the nominal,
+1%F and +3%F OPs with 6%, 2% and 1% amplitude, respectively. Except for the stable
fixed point solution that has not been searched for in the current RAMONA analysis®®, the
solution types are the same as those found using the current reduced order model for a
generic case in which a supercritical Hopf bifurcation occurs, as illustrated in Fig. 7-13.
The operationa points A, B, C and D shown in this figure are located in a region where a
supercritical Hopf bifurcation is predicted by the bifurcation code BIFDD.

It should be stressed again that the intention here is to perform a qualitative
comparison between the results found using RAMONA and those found using the current
reduced order model. By carrying out numerica integration of the ODEs at the four
operational points for the generic case, it was found that, as expected, since point A is
located in the stable region and the type of bifurcation is supercritical, the solution is a
stable fixed point. Point B is inside the linear unstable region but close to the SB, so that a
stable limit cycle solution is found here. The same is the case for point C, which is further
inside the linear unstable region but till close to the SB, so that again a stable limit cycle
solution is observed. However, the amplitude of the stable limit cycle islarger at C than at
B. This means that the further the OP is from the SB, the larger is the amplitude of the
limit cycle, if found. Thisis the reason why the limit cycle amplitude at the nominal OP in
the Ringhals-1 analysis with RAMONA (Fig. 7-9) is larger than those for the +1%F and
the +3%F OPs (Figs. 711 and 7-12). Thus, one may conclude that the +3%F OP is the
closest to the SB, followed by the +1%F OP and then the nomina OP.

“8 |t would have been interesting to investigate more operational points by increasing the mass flow further
(> 3%) in order to find a stable fixed point solution. Unfortunately, this was not possible since, for
operational pointswith large deviations from the nominal OP, it would have been necessary to provide a new
distribution file (containing the nodal distributions on burnup, void history, power and Xenon concentration)
for the RAMONA input, and this would have been very time consuming. Hence, the present investigation
has been limited to operational points very close to the nominal OP.
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Since the point D in Fig. 7-13 is quite far from the SB inside the linear unstable region,
an unstable fixed point is the only possible solution here. This is similar to the Ringhals-1
system behaviour predicted by RAMONA at —1%F OP. Hence, taking into account the
fact that the points A-D analysed with the reduced order model correspond to the
occurrence of a supercritical Hopf bifurcation, the only explanation for the change of
solution type observed with RAMONA in the Ringhals-1 analysis is the same, viz. that a
supercritical Hopf bifurcation occurs. The four OPs lie at increasing distances from the
SB, +3%F being the closest, followed by the +1%F, nominal and —1%F OPs, in that order.

7.5  SUMMARY AND CONCLUSIONS

As afirst step, a correspondence hypothesis has been proposed to underline the unique
relationship between a stable (unstable) limit cycle solution and the occurrence of
supercritical (subcritical) Hopf bifurcation in the modelling of BWR stability behaviour. A
detailed local bifurcation analysis has then been carried out using RAMONA in the narrow
environment of two representative operational points for the Lebstadt and Ringhals-1
NPPs, respectively. Based on the experience acquired during stability and bifurcation
analyses using the current reduced order model, the results found using RAMONA could
be explained.
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The following are the principal conclusions which can be drawn from the loca

bifurcation analysis around the nominal Leibstadt OP:

o A quditative comparison between RAMONA results and those of the reduced
order model confirms the occurrence of a subcritical Hopf bifurcation.

o Thisisthe first time that the occurrence of a subcritical Hopf bifurcation has been
identified using RAMONA, or any other system code.

o A loca SB could thus be determined close to the nominal OP inside the exclusion
area.

o The behaviour of the reactor at an operational point close to the SB is very
sensitive to parameter variations. For instance, a the nominal OP, the system has a
stable fixed point and an unstable limit cycle solution. When increasing the mass
flow by only 1% (of the full flow), one sees that the solution becomes a stable fixed
point, while by decreasing the mass flow by 0.3%, the solution changes to an
unstable fixed point. Consequently, the issue of uncertainties becomes very
important concerning the ability of RAMONA to correctly predict the behaviour at
such an operationa point (close to the SB). The results presented here show that,
with a mass flow uncertainty of 2%, RAMONA might predict a stable reactor core

for a situation where the system should truly be unstable, or vice-versa.

As regards the local bifurcation analysis carried out around the nominal Ringhals-1
OP, the principa findings are:

o A quaitative comparison with the reduced order model results confirms the
occurrence of a supercritical*® Hopf bifurcation.

o All the OPs anaysed using RAMONA are located in the linear unstable region.
Since at the +3%F OP the limit cycle has the smallest amplitude, this OP is the
closest to the SB. The +1%F OP is the second OP closest, followed by the nominal
OP. The 1%F OP is the farthest from the SB, an unstable fixed point being found
here.

o Itisfound that for two OPs (the nominal and +1%F OPs) with a relative difference
of as little as 3% in the mass flow (32% and 33% of full flow, respectively), the

resulting stable limit cycles have a difference in amplitude of nearly a factor of 3

49 stable limit cycles have, of course, been observed earlier in stability analysis with system codes. This,
however, is the first time that, on the basis of the correspondence hypothesis, such an observation is being
attributed to the occurrence of a supercritical Hopf bifurcation.
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(6% and 2% LPRM, respectively). This high sensitivity may, for example, be the
explanation for the significant underestimation of the limit cycle amplitude for
Ringhals-1 cycle 14 record 9 as investigated by Hennig and Nechvatal using
RAMONA3 [15].

As observed in the reduced order model analysis, the present system code
investigations have shown that the strip close to the stability boundary where unstable
limit cycles may exist in the case of a subcritical Hopf bifurcation is very narrow (< 1% of
full mass flow). However, for a supercritical Hopf bifurcation, the strip close to the

stability boundary where stable limit cycles exist, is much larger (> 3% of the mass flow).
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8 REDUCED ORDER MODEL VS. SYSTEM CODE
RAMONA

In Chapter 6, typica standard values were used for BWR operating and design
parameters in conducting stability analysis with the current reduced order model. These
parameter values were used previously by Karve [1] and are given in Appendix F. This

dlowed, for the HEM case (C, =1, V; =0), a systematic comparison and validation of

the new reduced order model results against those of the Karve model. The principal aim
in the present chapter is to made a quantitative comparison between the current reduced
order model and the system Code RAMONA for a specific operational point of the
Leibstadt NPP. This operational point has been analysed in detail usng RAMONA in the
previous chapter (Section 7.3) and corresponds to the so-called cycle7 record 4, with
60.5% power and 36.7% mass flow rate (kkic7_rec4 OP), shown in Fig. 7-1. It is located
in the plant’s exclusion area and is an OP for which a stability measurement was carried
out during cycle 7 reactor start-up, in September 1990. The systematic comparison made
here between RAMONA and the current reduced order model alows important
conclusions to be drawn regarding the latter’ s applicability, as well as the limitations.

First, as a bridge between Chapter 6 and the present chapter, as well as to help in
drawing the conclusions, Section 8.1 is devoted to a sensitivity analysis in which the
effects of certain design and operating parameters on the stability boundary and the nature
of Hopf bifurcation are investigated using the reduced order model. After that, in Section
8.2, using RAMONA, the stability behaviour of the kkic7_rec4 OP analysed in Section 7.3
is recalled by showing the time series of two different LPRMs. Then, in Section 8.3, the
same OP is analysed using the current reduced order model, and the stability boundary and
bifurcation characteristics are determined. In Section 8.4, a comparative analysis of the
results of the reduced order model against those of RAMONA is carried out, and the
limitations of the reduced order model are discussed. Finally, in Section 8.5, a summary

and conclusions of this comparative study are presented.
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81  SENSITIVITY ANALYSIS USING THE REDUCED ORDER
MODEL

Sensitivity of the stability boundary to design and operating parameters for BWRS has
been studied extensively [1-3]. These studies showed that the system stability boundary is
guite sensitive to certain parameters while it is less affected by others. However, the
investigation of parameter effects on BWR bifurcation characteristics has never been
reported before. The goal in this section is accordingly to carry out a sensitivity analysisin
which the effects of certain parameters on both the stability boundary and the nature of
bifurcation are investigated. As a check for the model response to different parameter
variations, certain trends are compared with those reported in previous studies. The design
and operating parameter values used in this analysis are presented in Appendix G and
correspond to the Leibstadt NPP cycle7 record 4 operational point, i.e. kkic7_rec4 OP.

8.1.1 Effectsof Void Feedback Reactivity
The impact of a 10% increase in the void feedback reactivity on the BWR stability is

shown in Fig. 8-1. Increasing the magnitude of the void feedback reactivity coefficient has
a destabilizing effect in the most relevant region ( N, <1.5). Thisis qualitatively in good
agreement with previous findings reported by Yoshimoto et al. [5], Karve [1] and van
Bragt [3]. For instance, Yoshimoto et al. found an increase of the power oscillation
amplitude when the void feedback reactivity coefficient is increased by 20%.

Figure 82 depicts the effect of increasing the void feedback on the nature of Hopf
bifurcation. It is seen in this figure that the nature of Hopf bifurcation is not affected
except in a small interval. Only a small shift of the transition point between the sub- and
supercritical Hopf bifurcation region is observed when the void feedback gain is increased.
Thus, the branch of the SB with 1.9< N, < 2.1, that was associated with supercritical
Hopf bifurcation for the reference case, becomes subcritical when the void feedback gain
is increased by 10%. This means that increasing the void feedback reactivity makes the

Hopf bifurcation more subcritical.
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Figure8-1. Effects of a 10% increase of the void feedback coefficient on the system
stability boundary.
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Figure8-2. Effects of a 10% increase of the void feedback coefficient on the nature of
Hopf bifurcation.
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8.1.2 Effectsof Pellet-Clad Gap Conductance

The effects of a 10% increase in the pellet-clad gap conductance on the stability
boundary and the nature of Hopf bifurcation are depicted in Figs. 83 and 8-4,
respectively. For N, <1.6, the gap conductance has a destabilizing effect, while it is

stabilizing for higher values of N, (1.6< N, <2.0). This may explain the apparently
contradicting results reported in previous studies with some of these predicting a
stabilizing effect, e.g. [1] and [6], and others indicating a destabilizing effect, e.g. [2].

Figure 8-4 shows clearly that the gap conductance has avery small effect on the nature
of Hopf bifurcation. There is only a small branch of the SB (2.0 < Ny, <2.1) which is
affected by the change of the gap conductance value.

8.1.3 Effectsof Fuel Radial Dimensions

In the following are considered the effects of increasing the fuel radial dimensions by
10% from the reference case values presented in Apperdix G. Effectively, the radia
dimensions of the fuel pellet, the gap, and the cladding have al been increased by 10%.
Figure 85 shows that there is a significant effect on the stability boundary. While for low
values® of N, (N, <1.4), the effect is stabilizing, it is destabilizing for higher values.

Increasing the fuel radial dimensions makes the nature of Hopf bifurcation more
supercritical, i.e. the SB branch with 2.1< N, < 2.3, that was associated with subcritical

Hopf bifurcation for the reference case, becomes supercritical.

8.1.4 Effectsof Inlet and Exit Pressure L oss Coefficients

Figures 87, 88, 89 and 810 depict the effects on the stability boundary and the

nature of Hopf bifurcation of increasing the inlet and exit pressure loss coefficients (K

inlet
and K, ) by 10% from their reference case values. The current findings for the stability
boundary are consistent with those reported by Tsuji et al. [2], Yoshimito et d. [5] and
Karve [1]. Thus, it is seen that increasing the inlet loss coefficient has a stabilizing effect
(Fig. 8-7), while increasing the exit pressure loss coefficient has a destabilizing effect (Fig.
8-9). In fact, the same effects were found in the heated channel parametric study carried
out in Chapter 5 (see Section 5.5 and [4]).

0" Asmentioned earlier, these correspond to normal operational points.
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Figure 8-3. Effectsof a 10% increase of the pellet-clad gap conductance on the system
stability boundary.
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Figure 8-4. Effects of a 10% increase of the pellet-clad gap conductance on the nature
of Hopf bifurcation.
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Figure8-5. Effects of a 10% increase of the fuel radial dimension on the system
stability boundary.
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Figure8-6. Effects of a 10% increase of the fuel radial dimension on the nature of
Hopf bifurcation.
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Figure8-7. Effects of a 10% increase of the inlet pressure loss coefficient on the
system stability boundary.
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Figure8-8. Effects of a 10% increase of the inlet pressure loss coefficient on the
nature of Hopf bifurcation.
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Figure8-9. Effects of a 10% increase of the exit pressure loss coefficient on the
system stability boundary.
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Figure 8-10. Effects of a 10% increase of the exit pressure loss coefficient on the nature
of Hopf bifurcation.
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The nature of Hopf bifurcation is found to be sendtive to the inlet loss coefficient
value in the SB branch with 1.75< Ny, < 2.1, asshown in Fig. 8-8. This branch, that was

associated with the supercritical Hopf bifurcation for the reference case, becomes

subcritical when K, .. isincreased by 10%. This means that an uncertainty of 10% in the

inlet loss coefficient may lead to a discrepancy in predicting the nature of Hopf bifurcation
if the operational point has a subcooling number value within the stated interval (1.75 to
2.1).

The effect of K_, on the nature of Hopf bifurcation is quite the opposite to that of

exit

K » 8 depicted in Fig. 8-10. For instance, the branch of the SB with 2.1<N_, <2.3,

inlet ?
that was associated with subcritical bifurcation for the reference case, becomes associated

with supercritical bifurcation by increasing K_. by 10%. In summary, we can conclude

exit

that, while K. makes it

inlet

makes the nature of Hopf bifurcation more subcritical, K

exit

more supercritical.

82  STABILITY BEHAVIOUR OF THE KKLC7_REC4 OP USING
RAMONA

The stability behaviour of he kkic7 _rec4 OP as analysed using the system code
RAMONA (see Section 7.3) is recaled here. Figure 8-11 depicts the time series of
LPRM84° and LPRM354 for two different control rod perturbation amplitudes. This
figure clearly shows the excitation of out-of-phase oscillations, i.e. when the power
increases in LPRM84, it decreases in LPRM354, and vice versa. The nature of Hopf
bifurcation can be deduced by analysing Figs. 8-11(a) and 811(b). While the small
amplitude perturbation (0.05-node) decays to the stable fixed point, the large amplitude
perturbation (2- node) leads to growing amplitude oscillations. This means that, beside the
stable fixed point solution, an unstable limit cycle solution exists at this operational point.
Referring to the correspondence hypothesis, this implies the occurrence of a subcritical
Hopf bifurcation, i.e. corresponds to the existence of an unstable limit cycle solution in the
linearly stable region in the very close neighbourhood of the SB. Thus, using RAMONA,
one can conclude that the kkic7_rec4 OP is located very close to the local SB in the linear
stable region. The oscillation frequency at this OP is found to be 0.58 Hz.

>l L PRM84 stands for LPRM number 8 located at axial level 4. Level 4 corresponds to the highest level (see
Chapter 2).
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Figure 8-11. Time series of the kkic7_rec4 LPRMs (RAMONA analysis) showing the
occurrence of out-of-phase oscillations with a subcritical Hopf bifurcation. (a)
2-node control rod perturbation amplitude. (b) 0.05-node control rod
perturbation amplitude.
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83  STABILITY CHARACTERISTICSOF THE KKLC7_REC4 OP
USING THE REDUCED ORDER MODEL

In this section, the stability characteristics of the kkic7_rec4 OP are studied in greater
detail using the current reduced order model. In order to achieve the desired modelling,
many of the operating and design parameters for this OP have been evaluated in a specific
manner. For instance, the single and two-phase friction factors, the two-phase multiplier,
the fuel heat capacity, the thermal fuel conductivity and the gap conductance have all been
calculated using the correlations used in RAMONA (see Appendix A (A.2.1 and A.3.1)).
The inlet and exit loss coefficients have been adjusted to include the spacer pressure losses
in the channel at inlet and exit. The void and Doppler feedback reactivities have been
calculated based on the methodology proposed in Appendix E. The complete set of design
and operating parameters for kklc7_rec4 OP is given in Appendix G.

Figure 812 gives the stability boundary as predicted by the reduced order model for

kkic7_rec4 OPinthe N, - DP,, plane. The kkic7_rec4 OP is characterized by:
o The subcooling enthalpy is h_, - h;,, =125x30°JxKg"'. This corresponds to a
subcooling temperature T_, - T, . = 23.4 K and a subcooling number N_, =1.55
0 The total pressure drop across the core is DP., =0.4497X0°N/m? This

corresponds to a dimensionless total pressure drop across the core DP,, =8.57.

The estimation of the void distribution parameter and drift velocity values at this OP
are based on the judtifications given in Section 6.4. Thus, the validation of the thermal-
hydraulic model against the Saha et al. experimental data and several earlier developed
analytical models (Section 5.3) showed that for the Set | data, that correspond to an inlet
velocity of 0.98 m/s, a value of the void distribution parameter of 1.03 allows the current
reduced order model to predict a SB which fits the measurements best. Because, for the

kkic7_rec4 OP, the liquid inlet velocity is also 0.98 m/s, C, =1.03 is then clearly a

reasonable assumption for the void distribution parameter. On the other hand, based on the
relationship between the vapour and liquid velocities used for the dip model in RAMONA
(Eg. (A.17) in Appendix A), it was found that the average dip value is 1.35 for the
kkic7_rec4 OP. This corresponds to a drift velocity V,, =0.12.
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Figure8-12. Stability boundary in N, - DP,, plane for operating and design
parameters corresponding to the kkic7_rec4 operationa point.

8.3.1 Semi-analytical Bifurcation Analysis

The bifurcation analysis for kkic7_rec4 OP was then carried out using the bifurcation
code BIFDD. As seen in Fig. 812, the kkic7_rec4 OP is located on the unstable side and
lies very close to the stability boundary. The transformed stability boundary in the power-
flow plane is shown aong with the exclusion area in Fig. 8-13. Again, as in Fig. 812, the
kkic7_rec4 OP is located in the unstable region. In addition, Fig. 814, which shows the

nature of Hopf bifurcation along the SB, indicates that for the SB branch with Ny, > 2.1,
the type of Hopf bifurcation is subcritical whereas, for the branch with Ny, <21,

supercritical Hopf bifurcation is expected.

With kkic7_rec4 located in the unstable region and lying close to the SB branch where
a supercritical Hopf bifurcation is expected, one can conclude that a stable limit cycle
solution should be found. Note that this OP is not too far from the SB branch where
subcritical Hopf bifurcation can occur. Moreover, a close look at the properties of the
elements of the eigenvector corresponding to the eigenvalue responsible for the occurrence
of the Hopf bifurcation reveals that only in-phase oscillations are expected to be observed

when the system loses its stability.
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Figure 8-13. Stability boundary in the power-flow map for operating and design
parameters corresponding to the kkic7_rec4 operational point.
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Figure 8-14. Bifurcation characteristics presented in N, - b, plane for operating and
design parameters corresponding to the kklc7_rec4 operational point.
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Confirmation of these BIFDD predictions of the system behaviour for kkic7_rec4 is
obtained in the following subsection by numerically integrating the set of 22 ODEs at this
OP.

8.3.2 Numerical Simulation

Figure 815 shows the time evolution of the amplitude of the fundamental and first
mode oscillations. The development of a stable limit cycle for n,(t) is clearly seen here.
This is in agreement with the bifurcation anaysis prediction (supercritica Hopf
bifurcation), as well as with the eigenvector analysis that predicts the excitation of in
phase oscillations. The oscillation amplitude of the first mode, in Fig. 815, seems to be
zero. Howewer, a zoom of this figure is displayed in Fig. 816, showing the development
aso of a stable limit cycle for n,(t). Note that, although out-of-phase oscillations are not
excited at this OP, the first mode component is not decaying. This is again an illustration
of the detailed explanation given earlier (Section 6.3) concerning the relationship between

the excitation of in-phase or/and out-of-phase oscillations, and the fundamental and first
modes.

The time evolution of the inlet velocities of the two channels is depicted in Fig. 8-17.
Both channels are seen to behave in the same manner, i.e. the two inlet velocities have the
same amplitude and phase. This is further confirmation that the in-phase oscillation mode
isexcited at this OP. The oscillation frequency from the results obtained using the reduced
order model is 0.63 Hz, which is close to the value calculated using RAMONA.

84  COMPARISON OF RESULTS AND DISCUSSION

In summary, the system behaviour at the kklc7_rec4 OP is characterized by:

1. Using the system code RAMONA:
a. The out-of-phase oscillation mode is excited.
b. The existence of a stable fixed point and an unstable limit cycle solution,
i.e. the occurrence of a subcritical Hopf bifurcation, is predicted.
c. Thekklc7_rec4 OPisvery close to the stability boundary.
d. The frequency of the oscillations is 0.58 Hz.
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Figure 8-15. Time evolution of the deviation of the fundamental mode amplitude from
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point.
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Figure 8-17. Time evolution of the liquid inlet velocity in channel 1 (v,,,, ) and channel
2 (Viyu2)- Thetwo channels are seen to oscillate in-phase.

2. Using the reduced order model:
a. The in-phase oscillation mode is excited.
b. The existence of a stable limit cycle solution, i.e. the occurrence of a
supercritical Hopf bifurcation, is predicted.
c. Thekklc7_recd OPisvery close to the stability boundary.
d. The frequency of the oscillations is 0.63 Hz.

From the above kkic7_rec4 OP predictions obtained using RAMONA and the current
reduced order model, respectively, one can draw several conclusions. Thus, the reduced
order model is seen to yield a good prediction of the location of the OP with respect to the
stability boundary, as well as of the oscillation frequency value. However, the discrepancy
is obvious between the model results and those of RAMONA concerning the excited
oscillation mode (in-phase or out-of-phase) and the nature of Hopf bifurcation. This is not
surprising, keeping in mind that (a) the reduced order model is highly simplified with the
entire BWR core lumped into two representative channels, and (b) the design and

operating parameters used for kkic7_rec4 OP are core-average values.
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The current reduced order model could not predict the out-of-phase oscillations at this
OP mainly because of the limitations of the feedback reactivity model for the mode
coupling (r ,,(t) and r ,,(t)) as discussed in Appendix E, Section E.3. Accordingly, it is
suggested that an improved model for the feedback reactivities in mode coupling be
derived for future work.

The discrepancy in predicting the nature of Hopf bifurcation is due mainly to the
uncertainties in evaluating the design and operating parameters as core-average values. In
Sections 6.4 and 8.1, it was found that changing the value of certain parameters, e.g. the

drift flux parameters (C, and V,;) or the inlet pressure loss coefficient ( K, ), can change

the nature of Hopf bifurcation. In other words, a SB branch that was associated with
subcritical Hopf bifurcation can become supercritical, or vice versa. This means that a
small discrepancy in evauating one or more of such parameters may lead to a wrong
prediction of the nature of Hopf bifurcation. In addition, Zhou and Rizwan-uddin [7]
showed that the nature of Hopf bifurcation can be very senstive to the modelling
assumptions made. Since the reduced order model does not have completely the same set
of modelling assumptions as RAMONA, it is not surprising to observe such a discrepancy
between the two models.

85 SUMMARY AND CONCLUSIONS

In this chapter, the currently developed reduced order model has been applied to the
analysis of a specific Leibstadt operationa point (kkic7_rec4). The results obtained have
been compared to those of the system code RAMONA for the same OP. This comparison
has allowed a direct assessment of the performance of the current reduced order model,
viz. of both its applicability and its limitations.

It is seen that the reduced order model predicts very well the frequency of the
oscillations and localizes the analysed OP in an appropriate region close to the SB.
However, there is a clear discrepancy between the model results and those of RAMONA
as regards the prediction of the oscillation mode (in-phase and out-of-phase) and the
nature of Hopf bifurcation at this operational point. The inability to predict the out-of-
phase oscillation mode at this OP is due to the limitations of the feedback reactivity model
for the mode coupling (Appendix E, Section E.3), while the discrepancy in predicting the
nature of Hopf bifurcation is mainly due to the uncertainties in evaluating the design and

operating parameters adequately, the latter having been shown to have a considerable
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impact on the nature of bifurcation (Section 8.1). These “negative” results concerning the
reduced order model’s quantitative performance are in fact not surprising, since the
reduced order model is highly simplified with the entire BWR core being lumped into just
two representative channels, and the design and operating parameters calculated for a
specific OP being core-average values. Consequently, one can conclude that the reduced
order mode!:
o Is most useful for acquiring physical insight into the complex processes
determining BWR stability.
o Allowsfast and detailed parametric studies.
o Provides a wide range of solutions for the system at various points in a given
parameter plane.
o Allows detailed semi-analytical bifurcation analysis using a bifurcation code such
as BIFDD.
In addition, the model has been seen to provide good quantitative prediction of:
o Thelocation of the analysed operational point in relation to the stability boundary.

o The oscillation frequency.

In the author's opinion, however, a detalled quantitative study for a specific
operational point is still not possible using a reduced order model, and this remains a big
challenge. Thus, reduced order models, with respect to detailed system codes, still need to

be considered as complementary tools, and not as aternatives.
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9 CONCLUSIONSAND RECOMMENDATIONSFOR
FUTURE WORK

A novel analytical, reduced order model has been developed to simulate the different
types of instabilities encountered in heated channels and BWRs, viz. density wave
oscillations (DWOs), as well as in-phase and out-of-phase oscillations in the reactor core.
The complete, 22-ODE model comprises three main parts: spatial lambda- mode neutron
kinetics with the fundamental and first azimuthal modes, fuel heat conduction dynamics,
and core thermal-hydraulics based on a drift flux model representation of the two-phase
flow. The recirculation loop has been replaced throughout this study by a constant total
pressure drop boundary condition across the reactor core. This assumption is found to be
acceptable for out-of-phase instabilities in general, and for small amplitudes in the case of
in-phase oscillations.

First, the thermal- hydraulic part of the model was validated and compared with several
other analytical models developed earlier for smulating DWO phenomena. The present
modelling is based on the assumption that the time-dependent single-phase enthalpy and
two-phase quality have gspatially quadratic profiles. Stability and semi-analytical
bifurcation analyses have been carried out for a heated channel using the bifurcation code
BIFDD. The impact of the drift flux parameters on both the stability boundary (SB) and
the nature of Hopf bifurcation has been investigated. In addition, parametric studies have
also been conducted to investigate the effects of different design and operating parameters
on the SB and the nature of Hopf bifurcation. Finally, for independent confirmation of the
results of the semi-analytical bifurcation analyses, as well as to evaluate the system
behaviour in regions away from the SB, the set of ODES has been integrated numerically
usingaMATLAB code.

The full, currently developed reduced order model enables the study of BWR
instabilities, including out-of-phase oscillations. As such, it is essentially a two-channe,
nuclear-coupled thermal- hydraulic model, with each channel representing half of the
reactor core. First, stability and semi-analytical bifurcation analyses have been carried out
using this model, such as to determine the stability limits for in-phase and out-of-phase
oscillation modes. An in-depth investigation has then been carried out of the properties of
the elements of the eigenvectors associated with these two modes of oscillations. Next, a
comparative study between the use of the homogeneous equilibrium (HEM) and drift flux
(DFM) models for the thermal- hydraulics has been performed to investigate the effects of
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the drift flux parameters on the SB, the nature of Hopf bifurcation and the mode of
oscillation (in-phase or out-of-phase). Moreover, numerical integration of the complete set
of 22 system ODEs has been carried out to confirm the results of the semi-analytical
bifurcation analysis, a special MATLAB code based on the Gear’ s algorithm having been
developed for the purpose.

In addition, a detailed loca bifurcation analysis has been performed at two
representative operational points for the Leibstadt and Ringhals-1 NPPs using the complex
system code RAMONA. The goal in this analysis has been to demonstrate how the system
solution (behaviour) can, in certain Situations, vary in a significant manner when a
parameter, e.g. the mass flow, is changed by small amounts. The results found in this
system code analysis could be explained only with the help of the experience which has
been accumulated using reduced order models.

Finally, in order to assess the performance of the currently developed reduced order
model, it has been applied to the analysis of a specific Lelbstadt operational point. The
results obtained have been compared to those of the system code RAMONA, such a
comparison enabling a direct assessment of both the applicability and limitations of the
reduced order model.

9.1 CONCLUSIONS

From the stability and bifurcation analyses carried out for the thermal- hydraulic model,
i.e. a heated channel problem without neutron kinetics, the following conclusions have

been drawn:

o The validation study against the Saha et al. experimental data shows that the

thermal-hydraulic model predictions are in good agreement with the

experimental results for large values of N_, and, for lower values?, agree

sub

better than most of the earlier anaytical models.

o The semi-analytical bifurcation analysis using the bifurcation code BIFDD
shows that both sub- and supercritical Hopf bifurcations are encountered along
the stability boundary. In addition, the stability boundary is sensitive to the

°2 in the studied parameter range of the experiments
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vauesof C, and V. Moreover, the nature of Hopf bifurcation for lower

vauesof N, ismore sensitiveto thevalueof V; thantothat of C,.

o Inasengtivity study, it has been shown that the nature of Hopf bifurcation can
significantly depend on the values of certain design and operating parameters,

e.g. theinlet loss coefficient K. . and Froude number Fr .

inlet

o Numerica integration of the set of ODEs close to the stability boundary

confirms the findings of the semi-analytical bifurcation analysis.

From the in-depth stability and bifurcation analyses carried out using the mmplete
BWR reduced order model, it has been concluded that:

o Anaysing the properties of the eigenvectors can provide full information as
regards the corresponding oscillation modes (in-phase or out-of-phase) without
solving the set of system ODEs. It has been shown thereby that the excitation of
the in-phase (out-of-phase) oscillation mode does not involve just the fundamental
(first) mode, but, also the thermal- hydraulic and heat conduction components as
well. Therefore, a statement such as: “The excitation of the fundamental (first)
mode causes the in-phase (out-of-phase) oscillation mode to be excited” is not
completely true, since it is also necessary that the amplitude of the fundamental
(first) mode is much larger than that of the first (fundamental) mode. Thus, it can
happen that, athough the fundamenta (first) mode is unstable, in-phase (out-of-
phase) oscillations are not excited. Moreover, as mentioned, the thermal- hydraulic
and heat conduction variables (components) are also involved in the definition of
the state (eigenvector properties).

In the author’ s opinion, this can be understood more clearly in the frame of the
center manifold theorem, in which the full system of 22 ODEs is reduced and
lumped at the bifurcation point into just 2 ODEs (Poincaré normal form) which
represent the combination of all the 22 origina system variables. Consequently,
consideration of the properties of the corresponding “lumped” eigenvectors implies
that all the system components (variables) are involved. This is aclear argument
for the fact that the in-phase and out-of-phase oscillation modes are indeed whole-

system mechanisms and not just limited to the excitation of the fundamental or the
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first mode. Thus, this leads to a reformulated definition of the in-phase or out-of-
phase state based on the properties of the corresponding eigenvector, viz.:

The in-phase (out-of-phase) oscillation mode is an intrinsic state that the reactor
can fall into, in which the amplitude of the fundamental (first) mode is larger than
that of the first (fundamental) mode, and the thermal-hydraulic and heat
conduction variables in one half of the core have the same (opposite) sign and the
same absolute value as the corresponding variables in the other half of the core.
Furthermore, each mode has its own stability limit.

o Using a DFM, instead of HEM, for the two-phase flow has a significant effect on
the stability boundary as well as on the nature of Hopf bifurcation. Moreover, the
type of oscillation mode is affected mainly in the higher branch of the stability
boundary.

o Both sub- and supercritical Hopf bifurcations are encountered during the loss of

system stability.

Because the conditions that a Hopf bifurcation occurs cannot be verified directly when
using complex system codes, the correspondence hypothesis has currently been proposed,
underlining the unique relationship for BWRs between a stable (unstable) limit cycle
solution and the occurrence of a supercritical (subcritical) Hopf bifurcation. This
hypothesis has been confirmed by carrying out detailed local bifurcation analyses, using
the system code RAMONA, in the neighbourhood of the two representative NPP
operational points (for Leibstadt and Ringhals-1, respectively). The following are the main
conclusions which have been drawn:

o Stability and bifurcation analysis expertise using reduced order models is very
important to understand, analyse and explain certain complicated nonlinear
phenomenathat can arise in ssmulations using large system codes.

o The qualitative comparison between RAMONA results and those of the reduced
order model confirms the correspondence hypothesis. As a consequence, a
subcritical Hopf bifurcation has been discovered for the first time, to the author’s
knowledge, while carrying out BWR stability analysis using large system codes.

o ldentifying the nature of Hopf bifurcation allows the determination of the location
of the local stability boundary inside the power-flow map.
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o If the analysed operational point is very close to the local stability boundary, the
behaviour of the reactor is very sensitive to small parameter variations as observed
at the nomina OP investigated for the Leibstadt NPP. Hence, the issue of
uncertainties becomes very important for the ability of a code such as RAMONA
to predict the right behaviour at such OPs. For example, with a 2% mass flow
uncertainty, the RAMONA prediction could change from that of a stable reactor
core to an unstable one, or vice-versa.

0 The uncertainty issueis aso very important in correctly determining the oscillation
amplitude in the case of a supercritical Hopf bifurcation. Thus, for example, an
uncertainty of a 3% (relative) in the mass flow at such an OP was found to change
the RAMONA prediction of the stable limit cycle amplitude by afactor of 3.

Finally, the application of the current reduced order model to the analysis of a specific
Leibstadt operational point, and the quantitative comparison of the results obtained with
those found using RAMONA, have shown that:

o Although the reduced order model could adequately predict the oscillation
frequency and the stability margin for the investigated operational point, it was not
able to identify the nature of Hopf bifurcation correctly and to predict the
excitation of out-of-phase oscillations. This is mainly because of the highly
simplified reactor core geometry, the uncertainties in evaluating the design and
operating parameters, as also the limitations of the feedback reactivity model.

o However, the reduced order model does indeed allow a deep insight into the
complex processes determining BWR stability, and provides a valuable tool for
fast and detailed semi-analytical bifurcation analysis.

o Assuch, for BWR stability analysis, reduced order models should be considered

as complementary tools to complex system codes, and not as alternatives.

92 RECOMMENDATIONS FORFUTURE WORK

Severa improvements could be made to the present BWR reduced order model. These
improvements would primarily involve the inclusion of additiona BWR component
models (recirculation loop, severa paralel channels, etc.), as well as certain physical

phenomena that are known to be important in the stability analysis of BWRs €.g. a
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subcooled boiling model). Accordingly, the following are the main recommendations for

further developments:

o In Chapter 5, it was found that the thermal- hydraulic model is in good agreement

with experimental data for large values of N, , while for lower values of N, , it

sub sub

agrees better than most other models, except for those that include subcooled
boiling. It is accordingly recommended that a subcooled boiling model be included
into the present thermal- hydraulic model in order to further improve its predictions

for lower valuesof N, .

o The current reduced order model uses two channels, which is the minimal number
needed to smulate out-of-phase oscillations. However, in order to smulate the
excitation of higher harmonic modes, i.e. the second, the third, etc., it is
recommended that a model with alarger number of paralel channels be developed.
This would aso allow an investigation of the effects of the channel number on the
predicted stability behaviour.

o In the current reduced order model development, the recirculation loop was
substituted by a constant pressure drop boundary condition across the core. It was
shown that thisis a valid assumption for out-of-phase oscillations in general but, in
the case of in-phase oscillations, valid only for small amplitudes. Therefore, in
order to avoid the issue of boundary conditions, it is recommended that the present

reduced order model be extended to include the recirculation loop.

a Thedrift flux parameters, C, and V,

have been used in the present investigations
in the sense of parameters which need to be varied in aredlistic interval in order to
assess their effects. In addition, these two parameters have been shown to have
significant impact on the stability boundary, nature of Hopf bifurcation and type of
oscillation mode. It is accordingly recommended that, in future studies, a realistic
correlation be used to estimate these parameters more accurately.

o In Chapter 8, it was found that the current reduced order model could not predict,
as done by RAMONA, the out-of-phase oscillations at the nominal OP investigated
for the Leibstadt NPP, largely because of the limitations of the feedback reactivity
model. It has been shown that the feedback reactivity for the coupling between the
fundamental and first modes based on the linear approximation used currently is

quite different from the exact results. Therefore, it is suggested that the reactivity
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feedback model be improved further to enable better simulation of out-of-phase

oscillations.

During the course of this research severa open questions have been encountered.
Thus, for example, in Chapter 6, it was reported that using the DFM instead of HEM
affects the type of oscillation mode along the stability boundary branch with higher values

of N, . Although this branch is of little importance from the viewpoint of norma BWR

sub *
operation, further investigations in this context may help provide deeper understanding of
the mechanisms behind the excitation of in-phase and out-of-phase oscillations, as well as
of the conditions for the transition from one oscillation mode to the other. Moreover, the
physical explanation for the transition from sub- to supercritical Hopf bifurcation (and vice
versa), as a certain physical parameter is changed, remains a challenge. Understanding and

explaining such issues clearly requires considerable further efforts.
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APPENDIX A RAMONA MODEL DESCRIPTIONS

In this Appendix, the RAMONA-3 (called also RAMONA-3B) models for the neutron
kinetics, fuel thermodynamics, and thermal- hydraulics are described. In addition, some of
the correlations used in the fuel thermodynamics and thermal-hydraulic modelling are
presented. Finaly, the new code version, RAMONA-5, is introduced with its specific

features and options.

A.1 NEUTRON KINETICS

The neutron dynamics in RAMONA-3B is based on two-group diffusion theory.

Hence, the time-dependent diffusion equations for the two- group neutron fluxes are

Vllﬂ;tl =R>D,NF, - S.F,- S,F, +(1- b)p,S F,+n,S, F,]
+ éﬁ I nCrn (A1)
m=1
%ﬂ;z =NxD,NF, +S F,- S_F, (A2)
ﬂctm = b, .S, F,+n,S,F,]-1,.Co m=1,.6 (A3)
where
F neutron flux (n/cnf sec),
D diffusion coefficient (cm),
S, removal cross-section (1/cm),
S,  absorption cross-section (1/cm),
S,  fission cross-section,
b,  fraction of fission neutrons appearing in delayed neutron group m,
n number of neutrons per fission,
[, decay constant for delayed neutron precursor group m,
C,  concentration of delayed neutron precursor group m,
Y neutron velocity,
t time.

Subscripts 1 and 2 indicate fast and thermal neutron groups, respectively.
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In RAMONA-3B, the leakage of therma neutrons is neglected. This assumption is
reasonable because the mean free path of thermal neutrons is usualy much smaller than

the size of the nodes in the core. This is the reason why this approximation is sometimes
called the 1% energy- group approximation, i.e. leakage is assumed to be essentially that of

epithermal neutrons.

By spatial discretization, the partial differential equations for neutron diffusion are
transformed into ordinary differential equations. These, together with the equations for the
delayed neutron precursor concentrations, form a set of nonlinear ordinary differentia

equations which is solved by a predictor-corrector integration scheme.

A.2 FUEL THERMODYNAMICS

The fud model calculates the temperature distribution within the fuel pin, and the
transport of heat from the fuel into the coolant. The calculated average fuel temperature
feeds back into the neutronics (Doppler effect), and the calculated heat flux from the
cladding surface enters the hydraulic calculations. The heat conduction in the fuel pin is
calculated under the following assumptions:

o Negligible heat conduction in the axial direction.

o Spatialy homogeneous heat deposition in the fuel.

Then the heat conduction equation in the fuel is

e 19 1T
C ) —=="—(rk, — A4
(rC,) P rﬂr(r e )+ (A4)

where r;, C k; and T, are the density, specific heat, thermal conductivity and

p.f

temperature of the fuel, respectively. q; isthe power density deposited in the fuel.
The heat transport in the gap is given by
1, T

ﬂ—r(kgp F): 0, (A.5)

and the heat transfer in the cladding by
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il _ 1, 1T,
rc,). —=—(k,— A.6
( p)cﬂt ﬂr(c.”r) (A.6)
where kg, is the gap heat transfer coefficient. r., C,., k. and T, are the density,

specific heat, thermal conductivity, and temperature of the cladding, respectively.

A.2.1 Corrédations

The following are the correlations used in the RAMONA-3B fuel model:
1) Fuel heat capacity:

(r Cp )i =& +a,T; + aSTf2 + 3-4Tf3 + aSTf4 (A7)

with a, =0.23709 X0, a, =0.26470 X10*, a, =-0.28373 X0, a, =0.12498 X102, and
a, =-0.12066 X0° with the heat capacity expressed in Jm*C and T, in°C.

2) Fuel thermal conductivity

C
£ = - (A.8)
1+C,T,
with C, =85W/mCand C, =0.002 C™*.
3) Gap conductance
kg /d =C;+C,<T, +C.T? (A.9)

where currently C, = 6000WmM’C, C, =0, C, =0 and d isthe gap width.

Like in the neutron kinetics case, the numerical time-integration for the fuel model is

performed using an implicit predictor-corrector scheme.

A.3 THERMAL-HYDRAULICS

The thermal- hydraulic modelling in the RAMONA-3 code is based on a 4-equation
non-equilibrium two-phase flow model. The 4 equations are for the vapour and liquid
mass balance, and the mixture energy and mixture momentum balance. The model has two

main assumptions. First, loca variations of system pressure are ignored, i.e. acoustic
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effects are neglected. This mathematically means that Np(r,t) = 0 in the energy equation.
The second assumption is that the vapour is assumed to be at saturation, but the liquid in
the two-phase mixture is allowed to depart from saturation conditions. Based on the first
assumption, the momentum equation is decoupled from the energy equation and integrated
aong closed contours, one for each hydraulic channel and including the other 6
RAMONA components (see Fig. 2-11).

The four fundamental thermal- hydraulic equations for the standard model are

The mass conservation equations

Tary) , N@rgvy) _g

(A.10)
It 9z
N@-a)r,) |, W@-a)rv) _
i + = =-G, (A.11)

where a is the void fraction, r is the density, v is the velocity and G, is the loca

evaporation rate. Subscripts g and | refer to steam and water, respectively.

The mixture energy conservation equation

1 1 _ a5
ﬁ(argug +(1_ a)rlul)+E(argthg +(1' a)r|hV| )—7"'(1&1' a)

(A.12)
where A is the cross-sectional area, q, is the heat input per unit length of the heated wall,

gt is the heat per unit volume released directly in the coolant, and u and h are the

specific internal energy and specific enthalpy, respectively.
The mixture momentum equation

E+1(argvg +(1- a)r|V|2):' 1(arg *(@-a)ry )_
ﬂt ﬂz ﬂZ (A 13)
GG |

ar_+(@-a)r,)- fF2——L
g( g ( ) I) 2r|dh

where G isthe mass flux:
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G=argvg+(1-a)ry, (A.14)

g is the gravitational constant, f is the single-phase friction factor, F? is the two-phase

multiplier, and d,, isthe hydraulic diameter.

A.3.1 Corrdations

1) The single-phase friction factor
f :glRe'gz (A15)

where Re is the Reynolds number, g; =0.184 and g, =0.2.
2) The two-phase multiplier:
This can be calculated using one of three different correlations. Becker, Rolstadt, or

Martinelli-Nelson. The latter correlation is commonly used and is defined as follows

o 0

F2=1+12>q(G,P) xé—f 17x 0824 (A.16)
Tl
g 1]

where g(G,P) is afunctional of the mass flow and pressure. X is the quality.
Since RAMONA is capable of treating non-homogeneous two-phase flow, the
estimation of the dip factor S is of paramount importance. The relation between the

vapour velocity and the liquid velocity is

Vg = Sx; +V° (A.17)

where v° = 0.174 is the bubble velocity. The slip factor can be calculated with one of the
following correlations:

o Bankoff-Malnes correlation

o Bankoff-Jones correlation

o Solberg correlation
For more details on the correlations used in RAMONA-3B, see [1].

The hydraulic equations are integrated using explicit methods for all equations except
the momentum equations, which have the option to be integrated either explicitly or
implicitly.
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A.4 RAMONA-5VERSION

A new code version called RAMONA-5 is being used since recently at PSl in the
framework of the European project NACUSP. This new version is an extenson and
improvement of the earlier verson RAMONA-3B. It is around ten times faster.
RAMONA-5 has two options concerning the neutron transport model: the PRESTOL1
option which is equivalent to RAMONA-3B but faster, and the PRESTO2 option which is
an extended 2group moda kinetic model as used in the core smulator PRESTO2. In
addition, RAMONA-5 has two different thermal- hydraulic models:

1. The standard thermal-hydraulic model used in RAMONA-3B (Section A.3).

2. An advanced thermal-hydraulic model called MONA which is a two-fluid, three-

field, non-equilibrium one-dimensional two-phase flow model with constitutive
equations for thermodynamic state variables, therma and hydrodynamic non

equilibrium, as well as heat transfer and vapour generation/condensation.

REFERENCES
[1] “RAMONA-3B, User Manua”, Scandpower, 1993.
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APPENDIX B BASIC CONCEPTSOF NONLINEAR
DYNAMICS

Fixed point, limit cycle, stable manifold, etc. are all terms which are well known in the
area of nonlinear dynamics. To help the nonspecialist reader to understand certain aspects
related to these concepts more clearly, the definitions of some of the terms are presented in
this Appendix.

B.1 FIXED POINTS

Consider the following autonomous system of differential equations

m F(X(t),k) (B.1)

where X(t) isan n-dimensiona state vector and k isan m-dimensional parameter vector.

The fixed points of this system are determined by solving the following equation
F(%(t).k)=0 (B.2)

The fixed points are also called stationary solutions, critical points, constant solutions
and steady-state solutions [1]. Consider for k =k, the fixed point X,. To determine the

stability of thisfixed point, asmall disturbance y(t)is introduced
X(t) = X + ¥(t) (B:3)
By expanding F in a Taylor seriesaround X,, and retaining only linear terms, we obtain

% = DF(%,k o) (0 +O(]") @Altko) Y1) (B.4)

This step is called the linearization of the system of nonlinear differential equations. A is
then x n matrix of first partial derivatives and it is called the Jacobian matrix.

The solution of (B.4) can be written in a compact form as
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y(t) ="y, (B.5)

where y, = y(t =t;) istheinitial condition. If the eigenvalues of A are al distinct, there

exists a matrix L such that L''AL =D, where D is a diagona matrix in which the

eigenvalues | ; arethose of A. Hence, Eq. (B.5) can be rewritten as

y(t) = Le P 1y, (B.6)

(t-t)D

The matrix e is diagonal, and therefore it is clear from (B.6) that the evaluation of

the eigenvalues of the Jacobian matrix determines the local stability of the fixed point X, .
For instance, if all the eigenvalues have negative rea parts, the solution y(t) will decay to
zero. This means that the perturbation will decay to zero and the fixed point is stable. On
the other hand, if at least one eigenvalue has a positive real part, y(t) will diverge in the
direction of the eigenvector that corresponds to that eigenvalue. This means that, the
perturbation is growing with time and the fixed point is unstable.

A fixed point is caled hyperbolic fixed point if al the eigenvalues of the Jacobian
matrix at this point have nonvanishing real parts. If at least one eigenvalue has a zero real
part, then it is a nonhyperbolic fixed point. Three types of hyperbolic fixed points exist. If
all the eigenvalues of the Jacobian matrix A have negative rea parts, the fixed point is
caled a sink. If al the eigenvalues have positive rea parts, the fixed point is called a
source, and if some of the eigenvalues have positive real parts and the other have negative
real parts, the fixed point is called a saddle point.

B.2 LIMIT CYCLE

If X(t) is a periodic solution of the autonomous system (B.1) with period T, then
X(t+T) = X(t) isasolution of (B.1). This periodic solution corresponds to a closed orbit
in R such that X(ty) = X(t, +T) and X(t,)* X(t, +t) for 0<t <T. An isolated periodic

solutior®® is called a limit cycle. This limit cycle corresponds to an isolated closed orhit in

phase space. Hence, any initial condition that starts close to the limit cycle will be

%3 means that there are no other periodic solutions sufficiently close to it
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attracted or repelled by this limit depending on its stability characteristics. The stability of
the periodic solution is governed by Flogquet theory explained bellow in Section B.4.

B.3 STABLE, UNSTABLE AND CENTER MANIFOLDS

Consider the n-dimensional autonomous system described in Eg. (B.1). Suppose that
the Jacobian matrix corresponding to a fixed point has s eigenvalues with negative rea
parts, u eigenvalues with positive real parts, and ¢ eigenvalues with zero real part. Then
the space R' can be divided into three independent subspaces E°, E" and ES, called stable,
unstable and center manifold, respectively. These subspaces are spanned by the
eigenvectors associated with the s, u and ¢ eigenvalues, respectively.

The stable manifold of a fixed point is the set of all initial conditions such that the
flow®* initiated at these points asymptotically approaches the fixed point when t® ¥ ,
while the unstable manifold of a fixed point is the set of initial conditions such that the
flow initiated at these points asymptotically moves away from the fixed point as t ® ¥

[1].

FigureB-1. lllustration of an unstable manifold for a nonlinear system and the
corresponding linearized system manifold.

% Theterm “flow” describes the evolution of the system solution in phase space.
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Denoting the stable, unstable and center manifolds for a nonlinear system by W°, W/,
and W, respectively, it can be demonstrated that these manifolds intersect each other at the
fixed point and that the corresponding linear manifolds E°, E* and E are tangential to them
[2], as depicted in Figure B-1. As a consequence, in the neighbourhood of the fixed point,
the behaviour of a nonlinear system is equivalent to that of the corresponding linearized
system. This is equivaent to the Hartman Grodmann theorem [1], which states that a
nonlinear system, in a sufficiently close neighbourhood of a hyperbolic fixed point,
behaves like alinear one.

B.4 FLOQUET THEORY
Consider the autonomous system of differential equations defined in Eq. (B.1).
Suppose, a k =k, there is a periodic solution X,(t) = X,(t+T) with period T. If a

perturbation y(t) issuperimposed on X, (t), then

X(t) = % (1) + (1) (B.7)

By expanding F in a Taylor seriesaround X, (t) , and retaining only linear terms, we obtain

% = D,F (% (0):k) (1) +O(y[*) @P (ko) ¥(1) (B8)

where P is the matrix of partial derivatives of F (Jacobian matrix). The matrix P is
periodic in time and has the same period T as X, (t) .

The ndimensiona linear system (B.8) has n linearly independent solutions y,, where
i =1,2,...,n. These solution vectors are usualy called a fundamental set of solutions. A
matrix Y (t) can be expressed by this fundamental set of solutions and it is consequently

called the fundamental matrix solution
Y() =[¥, () Vo (t)...¥, ()] (B.9)

If Y(t) is afundamental matrix solution, then Y(t+T) =[y,(t+T) y,(t +T)...y, (t +T)]

is also a fundamental matrix solution.
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Because the fundamental set of solutions comprises linearly independent solutions, it
can be considered as a complete basis. Therefore any vector in this space must be a linear
combination of this fundamental set of solutions, so that Y(t+T) can be written as

Y(t+T) =Y ()M (B.10)

where M is an n x n constant matrix called the monodromy matrix. Equation (B.10) can be
understood as a transformation that maps an initial vector at t =0 to another vector at

t =T . By specifying the initial conditions, the monodromy matrix is ssimply

M =Y(T) (B.11)

The eigenvalues | , of the monodromy matrix M are called the Floquet multipliers.
These multipliers provide the local stability of the periodic orbits along their associated
eigenvectors (V). It can be shown that at least one of the Floquet multipliers associated
with a periodic solution is always unity. The other multipliers determine the stability of the

periodic orbit: stable orbit in the direction v, for |I m|él, and unstable periodic orbit in the

direction v, for || ,|L. Globaly, if all the Floquet multipliers are less than unity, except
one that equals one, the periodic orbit is stable. On the other hand, if at least one of these
multipliers is larger than unity the periodic orbit is unstable. Sometimes, Floquet
exponents b, are used. Simply, they are related to the Floquet multipliersby |, = el
Hence, for a periodic solution, one Floquet exponent is zero, and the others correspond to
stable orbitsfor al b,, & and an unstable periodic orbit for at least one b, fi0.

In particular, for examination of the stability of periodic solutions that appear at Hopf
bifurcation points, the Floquet theory is of paramount importance. In this case, the original
system of ODEs is first reduced to the two-dimensional Poincaré norma form, so that

there are two Floquet exponents to be determined. The first trivial one is zero and the

second one, called b, determines the stability of the periodic solution: for b €0, the

periodic solution is stable and the bifurcation is called a supercritical Hopf bifurcation,

whereas for b 0, the periodic solution is unstable and the bifurcation is called a

subcritical Hopf bifurcation.
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B.5 SECONDARY HOPF BIFURCATION (NEIMARK BIFURCATION)

It is well known that the Hopf bifurcation of a fixed point leads to generation of a
periodic solution. This happens when the pair of complex eigenvalues with the largest real
part crosses the imaginary axis of the complex plane. It may happen that a second pair of
complex eigenvalue crosses the imaginary axis after the first pair. This phenomenon is
called secondary Hopf bifurcation or Neimark bifurcation. Similar to subcritical and
supercritical Hopf bifurcations of a fixed point, there are subcritical and supercritical

Neimark bifurcations of periodic solutions.
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APPENDIX C DIMENSIONLESS PARAMETERS

The dimensionless variables and parameters used in the development of the BWR
reduced order model are presented in this appendix. The asterisk indicates the original

dimensional quantities. The quantities with the subscript jf means that this quantity is

defined for both single-phase (j=1), and two-phase (j=2), regions of the flow channel.

A = p2epr? DP,, = qu:;“z
t Vo
1 %
BI ] :_k*_ Fr = g* L*
p
o C(z.t)
g = kitle G(zt)=—-5—
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APPENDIX D INTERMEDIATE EXPRESSIONS

The following are the expressions for ff;, j=1,14 which appeared in the equations of

the thermal- hydraulic model in Chapter 4 (Egs. (4.68), (4.69), and (4.73)).

where

ff, =m, Ng? +my, X, +my,
ff, =vi, Vg +vy, W

ffy =Ny, Vo +ny, X
ff, = fa ) + T, W0 + 0 +
ff, = - 2xd, W2 +d;, A, +d,)
fg =My, V2 +my, N, +my,
ff, =V, W2+, A
ffy =Ny, W +ny N
ffg = f W + f o W0 + N + fyy
1= 24d, W2 + dyy M, +d,)
ff,, =my,
ff, =Ny,

ffis = fao + o Wy + T WV + £y XCC, + fyy
ff, = Fr >‘(d30 +CCy Xm(t) - 1))

My = (-2113 frac2 110_frac2 + 2112 _frac2 I11 frac2) sl
+(4112_frac22- 4111 frac2 113 frac2) s2
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(D.1)
(D.2)

(D.3)
(D.4)
(D.5)
(D.6)
(D.7)
(D.8)
(D.9)

(D.10)

(D.11)
(D.12)

(D.13)
(D.14)

(D.15)



My, = (-2 114 _frac5 110_frac2 - 2113 frac2 111 _frac5 + 2113 frac5 111 _frac2

+ 2112 fracs 112 _frac2) s1? + ((- 6 112_frac5 113 _frac2 + 10112 frac2 113 _frac5
- 2115 _frac5 110 _frac2 - 2111 _frac2 114 _frac5) s2
+(2112_fracd Npch 112_frac2 - 2113 frac2 111 _frac4 Npch) CO

+ 2113 frac2 110 _frac3 + 2113 frac3 110 frac2- 2112 _frac3 111 frac2
- 2112 frac2 111 _frac3) sl

+ (- 4111 frac2 115 fracs - 4113 fracs5 113 frac2 + 8112 frac2 114 frac5 ) s2% + (
(2112 _frac2 113 frac4d Npch - 2113 frac2 112_frac4 Npch) CO
+ 4111 frac3 113 frac2 - 8112 frac2 112 frac3 + 4111 _frac2 113 frac3) 2

(D.16)

my, = (- 2114 fracs 111 _fracs + 2112_frac5 113_frac5) s13 + (
(-4112_frac5 114 fracs5 - 2115 frac5 111_fracs + 6 113_frac5?) s2
+ (2113 _frac5 112_frac4 Npch - 2114_frac5 I11_frac4 Npch) CO

- 2112 _frach 112 _frac3 - 2111 frac3 113 frac + 2114 frac5 110_frac3
+ 2113 _frac3 111_fracs ) s1?+ ((6 113 _frac5 114 _frac5 - 6112_frac5 115 _fracs) s22

+ ((-2115_frac5 111 _frac4d Npch + 2113 frac5 113_frac4 Npch) CO
+ 2111 frac3 114 _frac5 +6 112 _frac5 113 frac3 - 10112 frac3 113 _frach
+ 2115 fracb 110 _frac3) 2
+ (2113 _frac3 111 _frac4 Npch- 2112 _frac4 Npch 112_frac3) CO
+2112_frac3 111_frac3 - 2113 _frac3 110_frac3) sl
+ (- 4113 frac5 115 frac5 + 4 114 _frac5?) s2° + (
(-2115_fracs 112_frac4 Npch + 2114 _frac5 113 _frac4 Npch) CO

+ 4111 _frac3 115 _frac5 - 8112_frac3 114 frac5 + 4 113 _frac5 113 frac3 ) s22 + (
(2113 _frac3 112_frac4 Npch - 2112_frac3 113_frac4 Npch) CO

- 4111 _frac3 113 _frac3 +4 112_frac32?) s2 (D.17)

vip = (-2112 fracd 112 _frac2 + 2113 frac2 111 _frac4 ) CO sl
+(2113_frac2 112_fracd - 2112 _frac2 113_frac4) COs2 (D.18)

Vi, = (2114 fracs 111 _fracd - 2113 frac5 112 fracd ) COs1?+ (
(-2113 _frac5 113 _fracd + 2115 fracs 111 _frac4) CO s2
+(-2113 frac3 111 fracd + 2112 _fracd 112 frac3) CO) sl

+ (2115 _frac5 112_frac4 - 2114 frac5 113_frac4) CO s2?
+ (2112 _frac3 113 fracd - 2113 frac3 12 fracd ) COs2 (D.19)
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Ny = (2113 frac2 112_frac4 - 2112 _frac2 113 frac4) COsl
+(-2112_frac2 114 frac4 + 2113 frac2 113 frac4) CO s2

(D.20)
N = (2114 fracs 112_frac4 - 2113 _frac5 113 fracd ) CO s1? + (
(2115 _frac5 112 frac4 - 2113 frac5 I14 fracd) CO s2
+(2112_frac3113 _fracd - 2113 frac3 112_fracd ) CO) sl
+ (- 2114 frac5 114 fracd + 2115 _frac5 113_frac4) CO s22
+ (2112 _frac3 114 fracd - 2113 frac3 113 fracd ) COs2 (D.21)

fio :=(-2Npch 112_frac2?2+ 2 Npch 111_frac2 113 frac2 + 2 113_frac2 110_frac2 Vinlet
- 2112 frac2 111 frac2 Vinlet) CO sl

+ (4113 _frac2 111 _frac2 Vinlet - 4112 frac2? Vinlet) COs2 + (2 113_frac2 Npch

- 112_frac2 Npch n? - 112_frac2 Npch + 2112_frac2 Npch m- 2113 _frac2 Npch m)
COCCO+ (-2113_frac2 Npch 110_fracl + 2 112_frac2 Npch 111 _fracl) CO

(D.22)

fi1 = (2114 _frac5 110_frac2 Vinlet - 4 Npch 113 _frac5 112_frac2
- 2112 frach 112 _frac2 Vinlet + 2114 _frac5 111 _frac2 Npch
+ 2 Npch 113 _frac2 112 fracs - 2113 fracs 111 _frac2 Vinlet
+ 2113 frac2 111_frac5 Vinlet) COs1? + ((- 4114_frac5 Npch 112_frac2

+ 2115 frach 110_frac2 Vinlet + 6113 _frac2 112_fracb Vinlet
+ 2114 frac5 111 frac2 Vinlet - 10113 frac5 12 frac2 Vinlet

+ 2 Npch 115_frac5 111 _frac2 + 2 Npch 113 _frac2 113 _frac5) CO s2 + (
-113_frac5 Npch + 2 113_fracs Npch m- 2114 _frac5 Npch m- 113_frac5 Npch nf
+ 2114 _frac5 Npch) CO CCO+ (2113 _frac2 111 _frac4 Npch Vinlet
- 2113 frac4 Npch?112_frac2 - 2112_frac4 Npch Vinlet 112_frac2
+ 2 113_frac2 112_frac4 Npch?) CO? + (- 2111 _frac2 113_frac3 Npch
- 2113 frac2 110_frac3 Vinlet + 2112 _frac2 111_frac3 Vinlet

+ 2113 _frac5 Npch I11_fracl - 2113 _frac3 110_frac2 Vinlet
+ 2112 _frac3 111 _frac2 Vinlet - 2114 frac5 Npch 110_fracl

+ 6 Npch 112_frac2 112_frac3 - 4 Npch 111_frac3 113 _frac2) CO
+ 2113 frac2 110 _frac2 - 2112 _frac2 11 frac2) sl + (
- 8114 _frach 112_frac2 Vinlet + 4115 frac5 111 _frac2 Vinlet

+ 4113 frac2 113 _frac5 Vinlet) C0O s22 + ((-114_frac5 Npch + 2114_frac5 Npch m
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+ 2115 _frac5 Npch - 2115 _fracs5 Npch i - 114_fracs Npch n?) CO CCO + (
2113 frac2 113 _frac4 Npch?+ 2113 frac2 112_frac4 Npch Vinlet

- 2112_frac2 113_frac4 Npch Vinlet - 2112 frac2 114 frac4 Npch?) CO? + (

- 2115 _frac5 Npch 110_fracl - 2112_frac3 113 _frac2 Npch
+ 2114 _frac5 Npch 111 _fracl + 8112 frac2 112_frac3 Vinlet

- 4113 frac2 111_frac3 Vinlet - 4113 frac3 111 _frac2 Vinlet
+2112_frac2 113_frac3 Npch) CO - 4112 frac2?+ 4 111_frac2 113 _frac2 ) s2 + (

112_frac3 Npch - 2112 _frac3 Npch m- 2113 _frac3 Npch + 112_frac3 Npch n?
+ 2113 _frac3 Npch n) CO CCO

+ (- 2112_frac3 Npch I11_fracl + 2 113 _frac3 Npch I10_fracl) CO (D.23)

fi, :=(2114_frac5 112_frac5 Npch +2 114 _frac5 111_frac5 Vinlet - 2 Npch 113_frac5?
- 2112 _frac5 Vinlet 113_frac5) COs13+ ((2 Npch 115_fracs 112_fracs
+ 4114 fracs 112_frac5 Vinlet - 2 114 frac5 113_frac5 Npch - 6113 frac52 Vinlet
+ 2115 frach 111 frach Vinlet) COs2 + (2114 _fracs 111 frac4 Npch Vinlet
- 2113 frac5 112_frac4 Npch Vinlet + 2 114 _frac5 112_frac4 Npch?
- 2113 _frac5 113_frac4 Npch?) CO%+ (2111 frac3 113 _frac5 Vinlet
+ 2112 _frach 112_frac3 Vinlet + 6 Npch [13_frac5 112 _frac3

- 2112 _frach 113 _frac3 Npch- 2113 frac3 11 _fracb Vinlet
- 2114 _frac5 110_frac3 Vinlet - 4114 _fracb 111_frac3 Npch) CO

+ 2114 _frac5 110_frac2 - 2113 _frac5 111 frac2 - 2112 frac5 112_frac2
+ 2113 frac2 111_fracs ) s1?+ ((2 Npch 115_fracs 113 frac5 - 2 Npch 114 _frac5?
+ 6115 fracs 112 frac5 Vinlet - 6113 frac5 114 frac5 Vinlet ) CO s22 + ((
2115 _frac5 112_frac4 Npch?- 2113 frac5 113_frac4 Npch Vinlet
+ 2115 _frac5 I11_frac4 Npch Vinlet - 2113 frac5 114 frac4 Npch?) CO? + (
- 2114 _frac5 I11 _frac3 Vinlet - 4 Npch I15_frac5 111 _frac3

+ 4114 _fracb Npch 112_frac3 - 6113 frac3 I12_frac5 Vinlet
+ 10113 frach 112 _frac3 Vinlet - 2115 frac5 110 _frac3 Vinlet ) CO

+ 6112 frach 113 frac2 +2 111 frac2 114 fracs + 2115 fracs 110 _frac2
- 10112 frac2 113 fracs) s2 + (2112_frac4 Npch Vinlet 112_frac3
- 2113 frac3 112_frac4 Npch? - 2113 frac3 111_frac4 Npch Vinlet
+ 2113 _frac4 Npch? 112_frac3) CO%+ (2 113_frac2 111_frac4 Npch
- 2112_frac3 111_frac3 Vinlet - 4 Npch 112_frac32 + 4 111_frac3 113_frac3 Npch
- 2112 _frac4 Npch 112_frac2 + 2 113_frac3 110_frac3 Vinlet ) CO
+ 2112 _frac3 111 _frac2 + 2112 _frac2 111 _frac3 - 2113 frac2 110_frac3

206



- 2113 frac3 110 _frac2 ) sl
+(4115_frac5 113_frac5 Vinlet - 4114_frac5? Vinlet) COs2® + ((
- 2114 _frac5 113_frac4 Npch Vinlet + 2115 _fracs 113_frac4 Npch?
+ 2115 _frac5 112_frac4 Npch Vinlet - 2114 _frac5 114 _frac4 Npch?) C0? + (
- 4113 frac3 113 frac5 Vinlet - 4115 frac5 I11 frac3 Vinlet
- 2112 _frac3 115 _frac Npch + 2114 _frac5 I113_frac3 Npch
+ 8114 _fracs 112 frac3 Vinlet) CO+ 4111 frac2 115 fracb + 4113 _fracb 113_frac2
- 8112 frac2 114 frac5) s2?+ ((-2113_frac3 113_frac4 Npch?
+2112_frac3 113_frac4 Npch Vinlet + 2 112_frac3 114_frac4 Npch?
- 2113 _frac3 112_frac4 Npch Vinlet) C0?+ (4 113_frac3 I11_frac3 Vinlet

- 4112_frac32 Vinlet - 2112 frac2 113 frac4 Npch + 2113 _frac2 112_frac4 Npch)
CO- 4111 frac2 113 _frac3 - 4111 frac3 113 frac2 + 8112 _frac2 112_frac3) s2

(D.24)

fi3 == (2114 frac5 11 frac5 - 2112 frac5 113 fracs) s13+ (
(4112 frac5 114 frac5 + 2115 frac5 I11_fracs - 6113 _frac5?) s2
+ (2114 _frac5111_frac4 Npch- 2113 _frac5 I12_frac4 Npch) CO

- 2114 _fracb 110_frac3 + 2112 fracb 112_frac3 + 2111 frac3 113_fracb
- 2113 frac3 111 frac5 ) s1?+ ((6112_frac5 115 _frac5 - 6113 fracs 114 fracs) s2?

+ ((-2 13 _frach 113 _frac4 Npch + 2 115 _frac5 111 _frac4 Npch) CO
+ 10112 frac3 113 fracs - 2111 frac3 114 frac5 - 2115 frac5 110_frac3
- 6112 frach 113 frac3) s2
+ (2112 _frac4 Npch 112 _frac3 - 2113 frac3 111 frac4 Npch) CO
+ 2113 frac3 110_frac3 - 2112 _frac3 111 _frac3) sl
+ (- 4114 _frac52 +4 113 _frac5 115 fracs) s2° + (
(2 115_frac5 112_frac4 Npch - 2114 _frac5 113_frac4 Npch) CO

- 4113 frac5 113 frac3 - 4111 frac3 115 frac5 + 8112_frac3 14 frac5) s22 + (
(2112_frac3 113_frac4 Npch - 2113 frac3 112_frac4 Npch) CO

+4111_frac3 113_frac3 - 4 112_frac3?) s2 (D.25)

d, :=(112_frac5 114 _frac5 - 113 _frac5?) s1? + (
(-13_frac5114 _frac5 + 112 _frac5 115 frac5) s2- 111 frac3 14 _fracb
- 112 _fracs 113 frac3 + 2112 frac3 113 frach) sl

+ (- 114_frac52+ 113 _frac5 115 _frac5) s2°
+ (- 111 _frac3 115 _fracs - 113 _fracs I13_frac3 +2112_frac3 [14_frac5) s2

- 112_frac3?+ 111_frac3 113_frac3 (D.26)
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dy; :=(N21 frac2 114 fracb + 112 _fracb 113 frac2 - 2112 frac2 113 frac5) sl
+ (113_fracs5 113_frac2 + 111 frac2 115 frach - 2112 _frac2 114 frac5) s2
+ 2112 _frac2 112_frac3 - 111 _frac2 113 frac3 - 111 _frac3 113_frac2

(D.27)

do :=- 112 frac2 2 +111_frac2 113 frac2 (D.29)

dyy :=CO (121 frac2 114 frac5 + 112 frac5 13 frac2 - 2112 frac2 113 frac5) sl
+ CO (113 _frac5 113 frac2 + 111_frac2 115 fracb - 2112 _frac2 114 frac5) 2
+CO (2112 _frac2 112_frac3 - 111 _frac2 113 frac3 - 111 _frac3 113 frac2)

(D.29)

My = (-2110 frac2 112 frac2 + 2111 frac2 2?) sl (D.30)

my; = (- 2111 fracs 112 frac2 + 4112 _frac5111_frac2 - 2113 _frac5 110 _frac2) s12 + (
(-2114 _frac5 110 _frac2 +4 113 frac5 11 frac2 - 2112 frac5 112 frac2) s2
+(2112_frac4 Npch 111 _frac2 - 2111 frac4 Npch 112_frac2) CO
+ 2110 _frac2 112 _frac3 + 2110 _frac3 112 _frac2 - 4111 _frac3 111 frac2) sl

+ (2111 _frac2 113_fracd Npch- 2112_frac4 Npch 112_frac2) CO s2
(D.31)

My, = (- 2113 fracs 11 fracs + 2112_frac52?) s13 + (
(-2114_frac5111_frac5 +2112_frac5 113 _frac5) s2
+(2112_fracd Npch 112_fracb - 2113 _frac5 111_frac4 Npch) CO
- 4112 fracs 111_frac3 + 2113 frac5 110_frac3 +2111_frac5 112 frac3) s1?+ (
(2113 frac52- 2112_fracs 114 _fracs ) s2% + (
(2 112_frac5 113 _frac4d Npch - 2114 frac5 111_frac4 Npch) CO
+ 2112 _frach 112_frac3 + 2114 frac5 110 _frac3 - 4111 frac3 113 frach ) s2

+(2111_frac4 Npch112_frac3 - 2112_frac4 NpchI11_frac3) CO+ 2111 _frac3?
- 2110 _frac3 112 _frac3) sl

+ (- 2114 _frac5 112_frac4 Npch + 2 113_frac5 113_frac4 Npch) CO s2°
+ (2112_frac4 Npch 112_frac3 - 2111 frac3 113 _frac4 Npch) CO s2 (D.32)
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Vo, = (2111 _fracd 112_frac2 - 2112 _frac4 111 _frac2) CO sl
+(2112_fraca 112 frac2 - 2111 _frac2 113 frac4) CO s2

Vo, = (-2112 fracd 112 _fracs + 2113 fracs 111_fracd ) CO s1? + (
(-2112_frac5113 fracd + 2114 frac5 111 _fracd) CO s2
+(2112_frac4 111_frac3 - 2111_frac4 112_frac3) CO) sl

+ (2114 _frac5112_fracd - 2113 frac5 113 _frac4 ) CO s2?
+ (2111 frac3 113 fracd - 2112 fracd 112 frac3) COs2

Ny :=(2112 frac4 112 _frac2 - 2111 frac2 113 frac4) COsl
+(2112_frac2 113 fracd - 2111 _frac2 |14 _fracd) CO s2

Ny = (2113 fracs 112_frac4 - 2112 _frac5 113 _fracd) CO s1? + (
(2114 _frac5 112 _fracd - 2112 _frac5 114 _fracd4 ) CO s2
(2111 frac3113 fracd - 2112 fracd 112_frac3) CO) sl
+ (- 2113 _frac5 114 frac4 + 2114 fracs 113_frac4 ) CO s22

+(-2112_frac3 113 frac4 +2 111 frac3 114 fracd) COs2

fe :=(-2112_frac52+ 2113 frac5 111 frac5) s13 +(
(2114 _frac5 111 frac5 - 2112 _frac5 13 frac5) s2
+(-2112_fracd Npch 112_fracs + 2113 fracs 111 frac4 Npch) CO

(D.33)

(D.34)

(D.35)

(D.36)

- 2113 frac5 110_frac3- 2111 frac5 112_frac3 +4112_frac5 111 _frac3) s1?+ (

(-2113_frac5? + 2 112_frac5 114 fracs) s2° +(
(-2 12 _frach 113 _frac4 Npch + 2114 _frac5 111 _frac4 Npch) CO

+ 4111 frac3 113 fracs - 2114 frac5 110_frac3 - 2112_frac5 112_frac3 ) s2
+(2112_frac4 Npch 111 frac3 - 2111 _frac4 Npch112_frac3) CO- 2111 frac3?2

+ 2110 _frac3 112_frac3) sl
+ (2114 _fracs 112_fracd Npch - 2113 frac5 113_frac4 Npch) CO s2°

+(-2112_fracd Npch 112 frac3 +2 I11 frac3 I13_frac4 Npch) COs2 (D.37)

fn := (2113 frac5 I11_fracs Vinlet - 2112_frac5? Vinlet) CO s13 + ((
- 4114 frach 112_frac5 Npch + 2114 _frac5 111 _frac5 Vinlet

- 2112 frac5 Vinlet 113_frac5 + 4 Npch 113_frac5?) COs2+ (
- 2113 _fracd Npch?112_frac5 + 2 113_frac5 112_frac4 Npch?
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- 2112_frac4 Npch Vinlet 112_frac5 + 2 113 _frac5 111_frac4 Npch Vinlet ) CO% + (
4112 _frac5 111_frac3 Vinlet - 2113 frac5 10_frac3 Vinlet
- 2111 frac3 Npch 113 _frac5 - 2111 frac5 Vinlet 112_frac3
+ 2112 _fracb 112 _frac3 Npch) CO + 2111 fracb 112 _frac2 - 4112 _frac5 111 _frac2
+ 2113 frac5 110 frac2 ) s1?+ ((2 114_frac5 112_frac5 Vinlet
- 4 Npch 115 _frac5 112_frac5 - 2113 _frac52 Vinlet + 4 114_fracs 113_frac5 Npch)
COs22+ ((2 114 _frac5 111 _frac4 Npch Vinlet + 2114 frac5 112_frac4 Npch?
- 2112_frac5 114 _frac4 Npch? - 2112 frac5 113_frac4 Npch Vinlet ) CO? + (
2114 _frac5 111 _frac3 Npch + 4111 _frac3 I13_fracs Vinlet
- 8Npch 113 _frach 112_frac3 - 2114 frac5 110 _frac3 Vinlet
+ 6112 _fracb 113 _frac3 Npch - 2112 _fracs I12_frac3 Vinlet ) CO
+ 2112 _frach 112_frac2 - 4113 fracs 111 frac2 + 2114 _frac5 110 frac2 ) s2 + (
2 113_frac4 Npch? 111 frac3 - 2112_frac4 Npch? 112 _frac3
+ 2112 _frac4 Npch Vinlet 111_frac3 - 2111 _frac4 Npch Vinlet 112_frac3) CO? + (
2111 frac4 Npch 112 frac2 + 2110 _frac3 Vinlet 112_frac3
- 2112_frac4 Npch 111 _frac2 - 2111 _frac3? Vinlet) CO- 2110 _frac3 112 _frac2
- 2110 frac2 112_frac3 +4 111 frac3 111 _frac2) sl
+ (- 4 Npch 115_frac5 113_frac5 + 4 Npch 114_frac52%) COs2> + ((
- 2113 frac5 114 _frac4 Npch? - 2113 frac5 113 _frac4 Npch Vinlet
+ 2114 _frac5 113_frac4 Npch?+ 2114 frac5 112_frac4 Npch Vinlet) CO? + (
6113 fracb 113 _frac3 Npch + 4 Npch 115 _frac5 I11_frac3
10114 frac5 Npch 112_frac3) C0) s2% +((2 I11_frac3 113_frac4 Npch Vinlet
2112_frac4 Npch Vinlet 112_frac3 + 2 111_frac3 114_frac4 Npch?
2113 _frac4 Npch? 112_frac3) C0?+ (- 2111 _frac2 113_frac4 Npch

6111_frac3 113_frac3 Npch + 2112 _frac4 Npch 112_frac2 +6 Npch 112_frac32)
C0) s2 (D.38)

for = (2113 _fracs I10_frac2 Vinlet - 4112 _frac5 111 _frac2 Vinlet

+ 2111 frac5 Vinlet 112_frac2) COs1? + ((- 4114 frac5 111_frac2 Npch

+ 2114 frac5 110_frac2 Vinlet - 4 Npch 113_frac2 112_frac5

+ 2112 frach 112 frac2 Vinlet + 8 Npch 113 _frach 112_frac2

- 4113 frach 111 _frac2 Vinlet ) CO s2 + (2 112_frac5 Npch m+ 2113 frac5 Npch
- 112_frac5 Npch n? - 112_frac5 Npch - 2113 _fracs Npch ) CO CCO + (
2112_frac2 111_frac4 Npch Vinlet +2112_frac2 112_frac4 Npch?

- 2111 _frac2 112_frac4 Npch Vinlet - 2111 _frac2 113_frac4 Npch?) C0? + (

- 2112 frac2 110_frac3 Vinlet - 2113 _fracS Npch 110_fracl
+ 2112 _fracS Npch 11 _fracl + 2111 frac2 112_frac3 Npch

- 2112 _frac3 110_frac2 Vinlet - 2111 _frac3 112_frac2 Npch

+4111_frac2 111_frac3 Vinlet) CO+ 2110 _frac2 112 _frac2 - 2111_frac2?) sl + (
8114 fracb Npch 112 _frac2 - 4 Npch 113 frac2 I13_frach
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- 4 Npch 115_frac5 111_frac2) CO 2% + ((-113_fracs Npch + 2 113_frac5 Npch rr
- 2114 frac5 Npch m- 113_frac5 Npch nf + 2 114_frac5 Npch) CO CCO + (
2 112_frac4 Npch Vinlet 112 frac2 + 2 113_frac4 Npch? 112_frac2

- 2111 _frac2 113_frac4 Npch Vinlet - 2111 _frac2 114 _fracd Npch?) CO? + (
4 Npch 111_frac3 113_frac2 - 10 Npch I12_frac2 112_frac3

+ 2113 _frac5 Npch I11 fracl - 2114 frac5 Npch 110_fracl
+ 6111 _frac2 113 _frac3 Npch) C0) s2 + (- 2111 _frac3 Npchm- 2 112_frac3 Npch

+111_frac3 Npch + 111_frac3 Npch n? + 2 112_frac3 Npch m) CO CCO
+ (2 Npch 110_fracl 112 _frac3 - 2111 frac3 Npch I11 fracl ) CO

(D.39)

fn := (2110 frac2 Vinlet 112 frac2 - 2111 _frac2? Vinlet) CO sl
+ (-4 Npch I11_frac2 113 frac2 + 4 Npch 112_frac2?) CO s2+ (2112_frac2 Npch

+2111_frac2 Npch m- 2112 _frac2 Npch m- 111_frac2 Npch - 111_frac2 Npch n¥)
CO CCO + (2111 _frac2 Npch 111_fracl - 2 Npch 110_fracl 112 _frac2) CO

(D.40)
ds, = INT _rhomC, + m(t) (D.41)
My, = INT _r homC,N . (t)Fr (D.42)

fy :=-(Nf CO? Npch(t)2 INT_rhom z2
+ (C0? Npch(t)?+ 2 C0? Npch(t) Nf Vinlet(t)) INT_rhom z
+ (CO0? Vinlet(t) Npch(t) + C0? Vinlet(t)2 Nf ) INT_rhom- DPext

+ Kexit rhom 1 vm 12+ n(t) Nf_1phi Vinlet(t)?+ Kinlet Vinlet(t)?2) Fr - n(t)
- INT_rhom (D.43)

fa1 :=-2Nf Npch(t) CCOINT_z rhomFr - 2 Nf Fr Vinlet(t) CCO INT_1rhom
- 2CO INT_rhom_zFr Npch(t) Nf - INT_rhom CO Npch(t) Fr
- 2INT_rhomFr CO Nf Vinlet(t)

(D.44)

f3 := (- INT_1lrhom- INT_rhom) Nf Fr (D.45)
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fz := (- Npch(t)? INT_z2_rhom- 2 Npch(t) INT_z rhomVinlet(t)
- INT_1rhom Vinlet(t)?) Nf Fr , (D.46)

and
fa, =-termFr (D.47)
where the following are the basic expressions

1

fracl= > , (D.48)
(s,(1)Z()" +s,(DZ(t)+D
c2= > 1 = (D.49)
(s,(H)Z(t)" +s,(HZ(t) +D
3= i ! _ , (D.50)
(s,(1)Z(1)" +s,(1)Z(t) +D(C, j(t) +Vy)
frac4 = 5 L - > (D.51)
(s,(1)Z(1)" +s,(1)Z(1) +D(C, j(t) +Vy)
frach = 5 1 Y. : (D.52)
(s,()Z(1)" +s,(DZ()+D(Coj(t) +Vy)
1- mt) j
I, _fracl= ZZ(t) dz (D.53)
o (S:(DZ(t)" +s,(H)Z(1) +1)
Y Z(t)’
Il frac2 = dz, D.54
- T182% 0 (5 0Z07 +5, 020 +1? (0
1- m(t) i
I, _frac3= 20 _ dz. (D.55)
o (S,(1)Z()" +s,()Z(t) +D(Coj(t) +Vy)
1- m(t) j
I, _fracd= _Z0 _ _dz, (D56
o (S,(1)ZM)° +s,OZE) +D(C, (1) +Vy)
1 m(t) j
I, _fracs= — L — iz, (D5
o (5, (DZM)" +s,(M)Z() +D(Cyjt) +Vy)
1-m(t)
INT _rhom= (y .(Z,t)xdZ, (D.58)
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1-m(t)

INT _rhom_z= (¢Zx ,(Z.t)xdZ, (D.59)
0
1 m(t)
INT _rhom_z2= (¢Z*x .(Zt)xdZ, (D.60)
0
1-m(t) 1
INT _1Ir hom= (¢ ———xZ, D.61
_ Prm(z.t) (D.61)
1 m(t) 7
INT_z_rhom= () xdZ , (D.62)
o a(Zt)
1-m(t) ZZ
INT_z2_rhom= @ ——=—>dZ. (D.63)
r..(Z;t)

0

with Z(t) =z- mr(t) and CC, =C, - 1.

The other expressions that are not presented here are very complicated and have
therefore been omitted in this Appendix. However, they have been directly transferred to
the Fortran code bwr.f used in conjunction with BIFDD for bifurcation and stability

analyses.
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APPENDIX E FEEDBACK REACTIVITY CALCULATIONS

In this thesis, the main feedback reactivity contributions considered are those of void
and Doppler due to the void fraction and fuel temperature changes, respectively. As
discussed in this Appendix, each of these two feedbacks has been modelled by assuming a
linear profile for the reactivity variation with respect to the corresponding parameter. In
Section E.3, results obtained using this linear approximation are compared to the exact
values calculated using the LAMBDA-REAC code.

The total feedback reactivity of the coupling between modes m and n, defined in Eq.

(4.12), can be written as

(f mo (@M - dL) )

TN =T (O 47 g (1) (ED)

r mn(t) = r n'jn(t) =

where

r ()= E2

mn() <fr;,Mofn> ( )
is the void feedback reactivity of this coupling, and
5

ro(t) = — £ (E3)

is the corresponding Doppler feedback reactivity.

215



E.1 VOID FEEDBACK REACTIVITY

Based on Eq. (E.2), the void feedback reactivity for the fundamental mode is

LM L&
f, - —daf
<Oe§‘ﬂa Ta o °>

fo Mf o)

roo(t) = (E.4)

In RAMONA [1], the cross-sections have a second order polynomial form in terms of
the void fraction. This is consistent with the assumptions used in [2] and [3] where the

analytical expression for the void feedback reactivity is expressed as
10 =& (C+Ca ) +CaZ )W da, () (E5)
k

: P2
where C;, i=1,2,3 are constants, W,| = w——
IDk

IS a square power weighting factor at the

k
axial node k, and da, is the void fraction deviation from the steady-state value at this

location

E.1.1 Regional Void Feedback Reactivity Contribution

Consider that the reactor core is divided into many regions of the same size and
approximately the same steady-state properties. The goal in this section is to deduce the
contribution of each core region to the void feedback reactivity. Based on the full core
void feedback reactivity formula, i.e. Eq. (E.4), the void feedback reactivity of the r'™ core

region [3] for the fundamental mode is

(r)
,adaM Lo
fr. 2. Yat
<° éfa fag °>

O )

(E.6)

Where< )(r) denotes integration over this coreregion (r) only.
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It is now assumed that the regional void feedback reactivity has the same profile in
terms of the void fraction as that given for the full core by Eq. (E.5), i.e. second-order

polynomial
ry (1) =4 (o +Cal () +ca (W dal (D) E7)
k

where

. Q)
é (Cl + Cza ér) (t) + C3a Igr)z(t))kap >dalgr) (t) = ¢ ﬂ(l') '
k (fo . Mof o)
(E.8)
and
(r)
fo,Mf
\ND(()B) = M (E.9)

WD{) is the weighting factor that can be viewed as a correction factor to be multiplied to

the void feedback reactivity of a core reduced to the r™ region.

E.1.2 Generalisation

In this section, Eq. (E.7) is generalized for any given mode coupling assuming the
same second-order polynomia in terms of the void fraction. Then the void feedback

reactivity of the coupling between modes m and n in the r'" core region is
Vir 4y = (r) (n? Pdq (1
(L O=8[c+cal+Cal’ Ol (WD (E.10)
k

where the modal reactivity weighting factor is defined as
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%
,daM Lo
. Q) , —d f
(r)_<f0’M0f°> <mg'ﬂa fla o >

" (M ) < M fLo, f>“)
é9a Vag

(E.11)

This expression for the weighting factor can be approximated by substituting the
perturbations in the production and loss operators by average values and by assuming that

the steady-state production operator (M) can be substituted by an average value for the

whole reactor core® [3]. Then Eq. (E.11) becomes

+ (r)
WD ® :M (E_]_Z)

mn <fr;,fm>

Typical values of these reactivity-weighting factors that have been computed for
kkic7_rec4 OP assuming just two core regions (r =1,2) are given in Table E1. For this,

the eigenvectors f | and their adjoints for the fundamental and first modes (m=12) were

computed using the code LAMBDA [4], the cross-sections being provided by RAMONA.

TableE-1. Weighting distribution factors WD for two half-core regions for the
Leibstadt kkic7_rec4 OP calculated using LAMBDA.

WDs WD WDy WD
0.5005 0.4995 0.4734 0.4726
WD) WD WD;g WD’
-0.1272 0.1273 -0.1048 0.1048

Approximation

For the sake of simplicity of the current reduced order model, a linear profile for the

void feedback reactivity in terms of the void fraction is assumed as follows.

FY(t)= & Coda () - alh) A D) (E.13)
k

%5 1n[3], this approximation was validated and shown to yield good results.
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In fact, this approximation is quite accurate in the case of the fundamental mode, as shown
in Figs. E-1 and &2 where the linear profile void feedback reactivity r 5, for two different
OPs is compared with the corresponding RAMONA results. It should be noted that the
linear profile approximation for the void feedback reactivity has been adopted in several

previous models, e.g. the Karve model [5].

The next goal is the calculation of the void feedback reactivity coefficient C,. For this,
a new methodology based on the RAMONA code was developed using the option in card
601000 [1], which alows separate perturbations in the void fraction, fuel temperature and
the moderator temperature. As a consequence, inducing a perturbation just in the void
fraction involves the void feedback reactivity only. For simplicity, this methodology is
first applied for the void feedback reactivity for the full-core fundamental mode r .. It
will then be generalized to higher modes with two core regions, which is equivalent to the
two-channel representation in the current reduced order model. Equation (E.13) can be

written for the fundamental mode with a single core region as follows

o) =& CoAay (1)- a) W (E.14)

_{fofo)
it

In the current reduced order model, the flow channel is divided into two axial regions:

Note that, for a single core region, WDy,

the single-phase and two- phase regions. The average void fraction in the core is defined as

a(t)= é‘p (z,t)xdz = é‘y (z,t)xdz (E.15)
0 m(t)

where mr(t) is the boiling boundary and z =1 corresponds to the channdl exit. Using an

averaging approximation based on the following approximation:

a (t)=a()," k (E.16)

a,=a,"k (E.17)
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the void feedback reactivity can be recast as

FY(1)= G (1) - a0 A WS = Cyfa(t)- ao) (E.18)

k=1

where a , is the reference steady-state average void fraction in the core.
The method for the calculation of C, consists of the following steps:
1. At first, a steady-state calculation with RAMONA is performed for a nominal

reference operational point. Then the reactivity eigenvalue k., and the reference

void fraction a , are extracted from the output file.

2. Steady-state calculations are performed for the same nominal operational point,

while introducing different values of void perturbation. The corresponding

reactivity eigenvalues k, are then extracted from the outpuit file.

3. Applying first-order perturbation theory [6],

k. -k
e =———>=C,>da (E.19)
keff xkeffO

Once the void feedback reactivities for different perturbed cases are computed, the

vaueof C; isobtained by alinear fittingof r , intermsof da .

E.1.3 Validation of the Void Feedback Reactivity Coefficient Calculation

In this section, the current void feedback reactivity model is validated against results
from the system code RAMONA. This validation comparison (see Figs. E-1 and E-2)
clearly shows that using a linear profile for the void feedback reactivity variation with void
fraction indeed gives an accurate estimation of void effects for the full core. The two
figures are for two different operational points of the Lelbstadt NPP, the first one with
59% power and 36% mass flow, and the second with 100% power and 100% mass flow.

E.14 Generalization to Two Core Regions
The current BWR reduced order model (Chapter 4) has two channels in order to

simul ate out- of-phase oscillations. To model the void feedback reactivities in this case, the
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Figure E-1. Validation of the void feedback reactivity calculation against RAMONA
results for the Leibstadt NPP operational point with 59% power and 36% flow.
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FigureE-2. Validation of void feedback reactivity calculation against RAMONA
results for the Leibstadt NPP operational point with 100% power and 100%
flow.
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core is divided into two similar regions, i.e. of the same size and the same steady-state
properties. Then the void feedback reactivity in channd | (region (1)) of the coupling of
modes m and n, again with the linear profile assumption, may be written as

r(t)=Coda, (1) - ag )WDY, =cl, 4, (1)- ay,) (E.20)

where c,,,, = C, "D/ .

1mn
Typica values of the void feedback reactivity coefficients are calculated here for the
Leibstadt kkic7_rec4 operational point with 59% power and 36% flow (Table E2).

TableE-2. Void feedback reactivity coefficients calculated for the Lebstadt OP

kkic7_recA.
C1100 C1200 C1111 C:Lzll
-0.080 -0.080 -0.076 -0.076
Cior Ciot Cio Clio
-0.020 0.020 -0.017 0.017

E.2 DOPPLER FEEDBACK REACTIVITY

The model used for the Doppler feedback reactivity is similar to that developed for
void effects. For a given region (r) in the core, the Doppler feedback reactivity can be

written as

. (r)
< gm g Tffn>
rorg =Sl b
(foMof ) E€21)

As in Eg. (E.10), one can introduce the reactivity weighting distribution factors and a
polynomial in terms of the void fraction and the fuel temperature for the r'™ core region [3]

as follows

rof(t)=& (D + DA (t)+Da " (W (T (1) - YT WD (E22)
k
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where D,, i=1,2,3, are constants, T, , is the average fuel temperature at the axial node k,

and T, ,, isthe steady state average fuel temperature for the reference operational point at

the axial node k.
Equation (E.22) shows that the Doppler feedback reactivity is proportional to the
square root of the fuel temperature. This, in fact, is well consistent with the RAMONA

model where the cross sections have a square root dependence on the fuel temperature [1].

Approximation

As in Section E.2.2, for the sake of smplicity, a linear profile is assumed for the

feedback reactivity variation with the parameter of interest, here the fuel temperature, i.e.

r2r(t)=§ D AT (1) - T(D, )W D) (E23)
k

It is shown below, in Figs. E-3 and E-4, that using this approximation gives an accurate
prediction of the Doppler feedback reactivity for the fundamental mode. It should be noted
that alinear profile for the Doppler feedback reactivity in terms of the fuel temperature has
been adopted in several earlier models, e.g. Karve model [5].

The next goal is the calculation of the Doppler feedback reactivity coefficient D,;.
Similar to the void feedback reactivity case, the coefficient D, is first determined for the
Doppler feedback reactivity for the fundamental mode (full core). The method is then
generalized for higher mode Doppler reactivities in a two-region core. Thus, Eq. (E.23) for

the fundamental mode with just one core region can be written as

roo(t) = é. D, ><(Tf «(1)- Tf,O,k)Wkp (E.24)
K

In order to implement the Doppler feedback reactivity for the current reduced order
model in which each channel is divided into two axial regions, two approximations
analogous to (E.16) and (E.17) are made, i.e.

T =T, ().," k (E.25)

Tiok=Tio" K (E.26)
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where T (t) is the instantaneous average fuel temperature and T, , is the steady-state

average fuel temperature for the reference case. Consequently, Eq. (E.24) becomes
D sy —
roo(t)_ Dl>(Tf (t)' Tf,o) (E-27)

The method of calculation of the coefficient D1 is smilar to the method used for the
calculation of the void feedback reactivity coefficient C;. This means.
First, a steady-state calculation with RAMONA is performed for a nominal reference

operational point. Then the reactivity eigenvalue k., and the reference steady-state
average fuel temperature T,, are extracted from the output file. Next, steady-state
caculations for the nomina OP, but with different values of fuel temperature
perturbations, are performed and the corresponding k, Vvalues are extracted from the
output file. Finally, applying first-order perturbation theory,

Ky -

keffo
ro=————=D,dT E.28
” keff ><keffO ' f ( )

where dT, =T, - T,, isthe fuel temperature perturbation.
Once the Doppler feedback reactivities for different perturbations are computed, the

valueof D; isobtained by alinear fitting in terms of dT, .

E.2.1 Validation of the Doppler Feedback Reactivity Coefficient Calculation

In this section, the current Doppler feedback reactivity model is demonstrated to be
quite accurate for the fundamental mode. This has been done by comparing results with
those obtained using RAMONA for the two Leibstadt NPP operational points used earlier.
Figures E-3 and E4 clearly show that good agreement is obtained.

E.2.2 Generalization to Two Core Regions

To modd the Doppler feedback reactivities in the context of the current two-channel

reduced order model, the core, as for the void reactivity case, is divided into two similar
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FigureE-3. Validation of the Doppler feedback reactivity caculation against
RAMONA results for the Leibstadt NPP operational point with 59% power
and 36% flow.
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FigureE-4. Validation of the Doppler feedback reactivity calculation against
RAMONA results for the Leibstadt NPP operational point with 100% power
and 100% flow.
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regions. Then the Doppler feedback reactivity in channel | for the coupling of mode m

with moden is:
r rlr?ﬁl (t) = D1 ><Tf,| (t) - Tf,O,I )mrlnn = CI2mn ><Tf,| (t) - Tf,O,I ) (E-29)

where c!

2mn

=D, WD, .
Typica values of the Doppler feedback reactivity coefficients are calculated here for
the Leibstadt kkic7_rec4 operational point with 59% power and 36% flow (Table E-3).

TableE-3. Doppler feedback reactivity coefficients calculated for the Leibstadt OP

kkic7_recA4.
C;OO C2200 C;ll C2211
- 0.24220" - 0.242:0" - 0.22940™* - 0.22910°*
C;Ol C2201 C;lo C2210
- 0.06210°* 0.06230"* - 0.05140* 0.051x0*

E.3 TOTAL FEEDBACK REACTIVITIES

Based on the approximations assumed for the void and Doppler feedback reactivities,
i.e. linear profiles for their variation with respect to the average void fraction and fuel
temperature, respectively, the total feedback reactivity can be written as

=8 1) = A Che @ (1) a)+ Con 4T (- Troy)  (E30)

=1

To check whether the approximation (E.30) still leads to a good agreement with the
results calculated using the exact Eq. (E.1), a comparison has been made between the
approximated and exact feedback reactivity values for the Leibstadt NPP kkic7_rec4 OP
(out-of-phase oscillation case). To calculate the exact feedback reactivities, use was made
of the code LAMBDA_REAC, developed by Mir6 et al. [7], that allows the calculation of
feedback reactivities for higher modes based on Eqg. (E.1). For the approximated feedback
reactivity calculation, RAMONA was used, in that Eq. (E.30) was applied in conjunction
with the void and Doppler feedback reactivity coefficients of Tables E2 and E3, on the
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one hand, and steady-state and transient values of the average void fraction and fuel
temperature extracted from the plot file of RAMONA, on the other.
Figure E5 shows the time series of the total feedback reactivity of the fundamental

mode calculated by the approximated method (r ) and the exact method (1 o, o )-

00_ appr
This figure clearly shows that using the linear approximated method gives good agreement
with the exact results for the estimation of the fundamental mode feedback reactivity. In
Fig. E6, the first mode feedback reactivity is depicted as obtained using the two different
methods. It is clearly seen that the amplitude of the exact first mode feedback reactivity,

11 e » 1S Significantly greater than the approximated first mode feedback reactivity,

I 11 appr - HOWeEvVer, the oscillation shape of the two is the same, i.e. when the amplitude of

11 eea 1SQrowing (decaying), the amplitudeof r,, . isalso growing (decaying).
Figure E-7 depicts the feedback reactivity for the coupling between the first and
fundamental modes. The approximated method gives a very small value of the coupled
feedback reactivity as compared to the exact one. Moreover, the oscillation shapes of the
and r

two feedback reactivities, i.e. r are very different. Thus, while the

10_ exact 10_ appr ?

0 eaa @Mplitude is seen to grow over the entire interva, the amplitude of r,, .

decays from 1 to 30 seconds, then start to grow with relatively small values.

A comparison of theshapeof 1, ., withthoseof r .., and r, .., suggeststhat
the feedback reactivity for the coupling between the first and the fundamental modes is too
complicated to be modelled simply, i.e. in a manner similar to the feedback reactivity of
the fundamental mode. Thus, the approximated method cannot be expected to yield an
appropriate ssimulation of the feedback reactivity for the mode coupling. Accordingly, a

bifurcation parameter, fact,,, aso called the feedback gain parameter, is introduced to
serve as multiplier for the corresponding feedback reactivity, i.e. to amplify the feedback

gain for the coupling between the first and fundamental modes when out-of-phase

oscillations are excited. The “corrected” total feedback reactivity then becomes

 on(®) = ot X8 Con X3, (©)- B0y) *+ Co 4T1 (0~ Tr 1) (E.31)

=1
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APPENDIX F TYPICAL BWR DESIGN AND OPERATING

PARAMETERS

In this appendix, standard numerical values are presented of typical BWR design and

operating parameters as used in Chapter 6 These parameter values were first used by

Karve[1].

A =1.44240 *n?
D" =1.424 cm

L' =381m

R =232m

Toje =551 K

Ty =T =561K

Croox = - 5.050040°

Cro02 = - 5.0500X10°2

Crons = - 4.5078%0°?

Crorp = 44632107

Criop = - 7.7116X0°

c;m = 7.6353x10°°
Criyy = - 9.809120°

Ciyyp = -9%712010°2

231

Choos = - 2.15X10°°K **
Chonp = - 215%0°°K"*
Cor =~ 9.88%10°°K*
Chor, = 9.88220°°K
Chros = - 3:28X10°K ™!
Coiop =3.2840°°K ™
Cppy =-2.15%0°K !
Cpr1p =-2.15%0°K
c,=330.0Jkg 'K

¢, =5.30720° Jkg 'K
c,=325.0Jkg K™

C, = 4.690140°° W

g =9.81ms™?

h, =56782Wm *K ™



k. =17.0Wm'K*
K. =135

Ky =0574Wm K™
K =19
ky,=27Wm K™
n, = 3.6245x0" cm 3
Ny =186777

N =2.08256

p’ =7.240°Nm?

p. =16.2X10*m

r. =6.135307°m

ry =5.32240°m

r; =52x0°%m

REFERENCES

ry =0.83%,

Vo =2.67 ms't

Dhi, =1494.2X10° Jkg™*
L" =4.040°s
a,=7925x0"°% m?s*
a,=79740" n’s’*
b =0.0056
r.=6.5%0° kgm®

r; =736.49 kgm
ry=37.71kgm®

r, =10.422x10° kgm'*
| =0.08s™"

m, =9.693x0° Nm%s

[1] A. A. Karve, “Nuclear-Coupled Thermal-Hydraulic Stability Analysis of Boiling
Water Reactors’, Ph.D. Dissertation, Virginia University, 1999.
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APPENDIX G DESIGN AND OPERATING PARAMETERS
FOR THE NOMINAL LEIBSTADT NPP
OPERATIONAL POINT

In this appendix, the numerical values are presented of the design and operating
parameters for the Leibstadt OP kkic7_rec4, used as input in the analysis carried out in

Chapter 8.

A =1.442X40 *m?

D" =1.424cm
L"=3.81m
R =232m

T

et =551K
T, =T,, =561 K
Coo1 = - 804077
Croop = - 8.0X0°?

-2.0407?

101.1
Crorz = 2.0407

-1.7407?

110,1
Cripp =1.7X07°
Cppy = - 7.640°?

-7.6X07?

111,2 -

233

Choos = - 242310 °K ™!
Choop =~ 2422207 °K ™!
Coor =~ 0.62510°K ™!
Cpor, = 0.62X10°K ™

Cprop = - 0.51X0°°K™*
Cprop = 0.51407°K ™

Copy =-2.2940°K ™
Corip = - 2.29X0°K ™

c. =3300Jkg *K!

c; =5.30740° Jkg*K™?
c,=4766 Jkg ' K™

Cy = 4.690140° W

g =9.81ms?

h, =4937.5Wm*K ™



k; =16.0Wm*K™* ry =0.83%,

Ko = 2.96 Vo =2.67 ms't

Ky =0574Wm K™ Dhi, =1494.2x10° Jkg™*
K =20.1 L" =3.040°s

k, =3.79Wm*K™ b =0.0056

n, =5.019740" cm’? r. =6.5%0° kgm®
N, =228 r; =736.49 kgm®
N, =266 ry=37.71kgm

P’ =6.97X0°Nm? r, =10.422x0° kgm’*
p, =16.2X10"*m | =0.08s*

r. =6.135307°m m, =9.69340° Nm%s
ry =5.32240°m a, =0.60

r, =5.240°m Tago =780 K
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NOMENCLATURE

A cross-sectiona flow area.

ACF autocorrelation function

AR autoregressive

ARMA autoregressive moving-average

B; Biot number.

C void feedback reactivity coefficients

G, radially non-uniform void distribution parameter
D flow channel diameter

D(r,t) neutron diffusion coefficient

Dy, heated diameter

D, Doppler feedback reactivity coefficients
DR decay ratio

Fr Froude number

Im imaginary part

IRF impulse response function

J Jacobian matrix

flow channel length

Necov conversion number

N friction number

NF natural frequency

N pen phase change number
Neb subcooling number

P pressure

PAH Poincaré-Andronow-Hopf
R reactor core radius

Re real part

SB stability boundary

T temperature

u(r,t) averaged delayed neutron precursor group concentration.
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gj

a,(t)

a,(t)

drift velocity

phase variable: coefficient of the linear term in the single-phase
enthalpy profile expression

phase variable: coefficient of the quadratic term in the single-phase
enthalpy profile expression.

clad specific heat

liquid (coolant) specific heat

fuel pellet specific heat

. «

Cq = g _

Ny
friction factor

gravitational constant

clad surface heat transfer coefficient
pellet-clad gap conductance

coolant inlet enthal py

coolant saturation enthal py

clad thermal conductivity

exit pressure loss coefficient

liquid thermal conductivity

inlet pressure loss coefficient

fuel pellet thermal conductivity

neutron number density
system pressure

BWR lattice cell pitch
wall heat flux

volumetric heat generation rate
fuel rod radius = r
clad outer radius

point of discontinuity 0<ry <r,
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clad inner radius

fuel pellet radius

phase variable: coefficient of the linear term in the quality profile
expression

phase variable: coefficient of the quadratic term in the quality
profile expression

time

neutron velocity

coolant velocity

quality

channel axia spatia coordinate

external pressure drop

vapour-liquid enthalpy difference © hy - hy
liquid-vapour density difference =1 ; - r 4
neutron generation time

macroscopic absorption cross-section

macroscopic fission cross-section

oscillation frequency

void fraction

clad thermal diffusivity

pellet thermal diffusivity

delayed neutron fraction

temperature difference from steady-state value =T - T
precursor decay constant

real part of the eigenvalue with the large real part for the Jacobian
matrix of the set of ODEs.

boiling boundary

liquid viscosity

average number of neutrons produced per fission

volume factor
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Subscripts
1f

2f
avg
exit

ext

inlet

T o 3 —

-

sat

Superscripts

~

*

heated perimeter = 2pr,
reactivity

clad density

ligquid density

vapor density

pellet density

generation rate

single-phase

two-phase

average

channel exit

external

liquid

vapor

fuel-clad gap

channel inlet

left and channel number 1or 2
mixture

reference

pellet

right

surface and steady-state
saturation

vapour and void

steady-tate value

dimensional quantity
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