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Version abrégée

Nous avons étudié l’EuO et l’EuO dopé au Gd par RMN des noyaux 153Eu et 151Eu en utilisant

un spectromètre fait maison nous permettant de mesurer des signaux avec des temps de relaxation

spin-spin très courts. Nous avons déterminé et décrit les mécanismes d’élargissement donnant lieu

à la structure de la raie spectrale de l’EuO pur. La description complète de la raie spectrale de

l’EuO pur nous a permis de mettre en évidence l’influence du dopage au Gd sur la raie spectrale.

En étudiant la dépendance en température des raies spectrales, nous avons démontré la présence

d’une inhomogénéité magnétique statique dépendante de la température dans l’EuO dopé au Gd.

Nos résultats ont suggéré que l’inhomogénéité dans l’EuO dopé avec 0.6% de Gd était lié à la

magnétorésistance colossale. Nous avons aussi déterminé et décrit l’origine de la dépendance en

température des mécanismes de relaxation spin-spin et spin-réseau. La mesure des temps de re-

laxation spin-réseau en fonction de la température ont conduit à la détermination de la valeur de

l’intégrale d’échange en fonction du niveau de dopage au Gd.
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Abstract

We performed an Eu153 and Eu151 NMR study of EuO and Gd doped EuO using a home-made

spectrometer designed to measure signals with fast spin-spin relaxation times. We determined and

described the broadening mechanisms giving rise to the structure in the lineshape of pure EuO.

The complete description of the lineshape of pure EuO allowed us to highlight the influence of

doping EuO with Gd impurities on the lineshape. We demonstrated the presence of a temperature

dependent static magnetic inhomogeneity in Gd doped EuO by studying the temperature dependence

of the lineshapes. Our results suggested that the inhomogeneity in 0.6% Gd doped EuO was linked

to colossal magnetoresistance. We also determined and described the origin and the temperature

dependence of both the spin-spin and the spin-lattice relaxation mechanisms. The measurement of

the spin-lattice relaxation times as a function of temperature led to the determination of the value

of the exchange integral as a function of Gd doping.
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Lance Cooper pour les discussions enrichissantes que j’ai eues avec lui. J’ai eu beaucoup de plaisir à
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Ce travail a été financé par le Département Américain de l’Energie, division des sciences des

matériaux, au travers du Laboratoire Frederick Seitz de recherche en matériaux de l’Université de
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Chapter 1

Introduction

It might appear to the reader who first looks at the title of this work and sees the date of its

publication that there is something anachronistic: europium oxide, nuclear magnetic resonance,

2003! Do we not already know everything about this material? Was this system not already studied

by NMR in the late 60’s and early 70’s? The aim of this introduction is to show that europium

monoxide and gadolinium doped europium monoxide are intimately related to current research

topics. In this work, we will uncover new discoveries related to the physical phenomena involved in

these systems. Our results will show that NMR is an invaluable technique for clarifying some of the

issues related to the magnetic and electric properties of gadolinium doped and pure europium oxide.

The original aim of this study was to contribute to the understanding of the unconventional

magnetic and electric behavior of manganites. In particular, searching for the origin of the so-called

colossal magnetoresistance (CMR) is currently very popular due to the potential applications of

such a dramatic effect in the computer industry. The existence of quasi-particles called ferrons or

magnetic polarons, which can be described as ferromagnetic clusters created by polarized conduction

electron spins, is thought to play an important role in this phenomenon [1]. NMR is a local probe

for magnetic structure and magnetic fluctuations, so it was clearly an appropriate technique for this

study. This was further demonstrated by Kapusta et al. who showed, using NMR, the existence

of a residual electronic magnetization above the transition temperature in various ferromagnetic

manganites [2]. We performed the same kind of NMR measurements on another ferromagnetic

manganite and obtained similar results. However, it appeared that it would be difficult to go further

in the study for several reasons: first, the homogeneity and the type of magnetic phases in these

materials do not seem to be well defined (see for example [3]). Second, the order of the magnetic

phase transition in ferromagnetic manganites seems to be dependent on the doping level, adding

complexity to the problem [4]. Third, the numerous exotic phenomena taking place in these systems,

such as phase separation, charge and orbital ordering, intrinsically inhomogeneous ground states,

fluctuating electric field gradients or Jahn-Teller distortions would certainly not simplify the task of

highlighting the mechanisms of CMR. Let us mention finally that the crystal structure of manganites

is rather complex.

However, CMR has not been observed only in manganites. Europium chalcogenides also exhibit

a magnetoresistive effect, and in fact the amplitude of the effect can be much larger in these systems

than in manganites. The CMR observed in Eu-rich EuO is among the largest ever measured [5–7].

The change in resistivity ρ is of the order of (ρ(H)−ρ(H = 0))/ρ(H = 0) ∼= 107 for a magnetic field of

1



amplitude H = 14 T [5]. One of the numerous advantages of europium chalcogenides over manganites

is that the former have a cubic crystal structure, which simplifies the analysis of NMR measurements.

A very attractive system exhibiting CMR is Gd doped EuO in which gadolinium atoms play the role

of electron donors. The advantage of studying the magnetic and electric properties as a function of

doping level in Gd doped EuO rather than in Eu-rich EuO is that the concentration of the dopant

can be measured and thus checked more easily. We therefore chose to focus on the study of pure

EuO and Gd doped EuO.

Apart from the issues related to the causes of CMR, there are other characteristics of EuO

systems that make them attractive. First of all, EuO is one of the only natural ferromagnetic

semiconductors and there is currently a great deal of attention on ferromagnetic semiconductors. A

new field called spintronics has been developed around the possibilities of using the spin degree of

freedom of the electron in solid-state electronics [8]. Of course, EuO is not going to be implemented

in any of the next generations of cellular phones or laptops with its Curie temperature of about 70 K,

but it is certainly a suitable system to study the physics involved in ferromagnetic semiconductors

like GaMnAs, InMnAs or GaMnN.

EuO is also an ideal system for testing new theories in magnetism, in particular the recent

developments made on the Kondo-lattice model. The localized magnetic moments of the half-

filled 4f -shell of the Eu atoms and the existence of a conduction band makes EuO an appropriate

system to apply the Kondo-lattice model [9, 10]. In addition, the low magnetic anisotropy of the

material along with the localized J = S = 7/2 spins of the Eu2+ ions makes europium monoxide a

nearly ideal Heisenberg ferromagnet. It is therefore a very good candidate for applying spin-wave

theory and related theoretical developments. Europium chalcogenides are also still among the most

suitable materials to study the problem of phase transitions (see for example the neutron scattering

experiment on EuS in [11]). Finally, it is worth noting that several experimental research projects

have been conducted very recently on EuO [12, 13]. This system is thus still of interest for the

scientific community and the aim of the present work is to contribute to the understanding of the

properties of EuO and Gd doped EuO.
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Chapter 2

Studying unconventional electric

and magnetic behavior in

Eu1−xGdxO

Europium monoxide (EuO) was first identified as a ferromagnetic semiconductor by Matthias et al.

[14]. It crystalizes in an NaCl structure with a lattice constant of 5.14 Å[15]. Pure EuO has a Curie

temperature of about 69 K. Certainly one of the most important reasons for the interest towards

EuO and europium chalcogenides in general is the fact that europium forms a strong ionic bond

with oxygen, sulfur, selenium or tellurium. Consequently, these materials are insulators and can be

seen as 3 dimensional arrays of Eu2+ ions, the distance between the ions depending on the atomic

radius of oxygen, sulfur, selenium or tellurium. From Hund’s rules we deduce L = 0 and S = 7
2

for the Eu2+ ion. The electron spin has the maximum possible value for an ion and the orbital

angular momentum of the ion is zero. These properties are ideal for applying standard theories of

ferromagnetism such as the Heisenberg model.

Let us first start by describing the electronic structure of stoichiometric EuO as determined

using augmented-plane-wave (APW) method by S. J. Cho [16]. The valence band is formed with

the p orbitals of O2− and it is full (2p6). The conduction band is built up with the 6s and the 5d

orbitals of Eu2+ and is empty. In between these two bands lies a narrow half-filled 4f -band. The

energy gap between the f band and the conduction band is about 1.1 eV [17]. The consequences of

the replacement of a part of the Eu atoms by Gd atoms on the population of these bands will be

addressed in this chapter. We will discuss the influence of the presence of Gd in the EuO matrix on

the electric and magnetic properties of Eu1−xGdxO. Then, we will present the characteristics of the

samples we studied in this work.

2.1 The influence of doping

Pure stoichiometric EuO is an insulator, but the physical properties of the material can vary dra-

matically when the stoichiometry is not perfect or when it is doped. Shafer et al. grouped the

various samples Eu1+xO as a function of x in 5 groups labelled with the roman numbers I to V [18].

Two of them (I and II) describe O-rich samples, which have a high resistivity and do not presently
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Table 2.1: Classification of samples in groups as a function of the doping level. The doping level
values are from [20].

Group Doping level in Eu1+xO (%) Doping level in Eu1−xGdxO (%)

I,II x < 0 -

III x ∼= 0 x ∼= 0

IV 0 < x ≤ 0.1 0 < x ≤ 1.5

V x > 0.1 x > 1.5

interest us. Group III consists of stoichiometric samples and therefore contain insulating materials

(n-type semiconductors). The last two groups describe Eu-rich and are of particular interest when

studying CMR behavior. Group IV contains the samples with low values of x and group V those

with higher values of x (c.f. Table 2.1). The materials of group IV exhibit metallic conduction at

low temperature and present a metal-insulator transition (MIT) at a temperature of about 50 K.

The resistivity around 50 K may change by a factor as large as 1013 [6, 7]. The value of x for these

samples is small (c.f. Table 2.1). Finally, the conductivity of the samples belonging to group V is

metallic at high temperature as well as at low temperature. Let us note here that the density of

Eu-doped EuO is very similar to pure EuO and consequently the excess Eu atoms do not occupy

interstitial sites but rather take the place of oxygen vacancies. Along with the changes in conductiv-

ity, Shafer et al. observed an x-dependent variation of TC in Eu1+xO, ranging from 69 K to about

79 K [19]. We shall discuss the reason for this x-dependence in the following sections.

The highest concentration of Eu atoms in Eu1+xO that was obtained experimentally is x = 0.5%

[21]. The study of the effect of adding electrons in the EuO matrix is therefore limited to a small

doping range for this system. However, EuO can also be doped by substitution of Eu2+ ions by

other rare earth ions or divalent ions. Of course, since the radius of the dopant is different than

the radius of Eu2+, the overlap between orbitals on neighboring sites is modified and so are the

magnetic exchange interactions. For example, doping EuO with Ca increases TC since the radius of

a Ca2+ ion is smaller than an Eu2+ ion, and thus the exchange interactions are increased. A case

of particular interest is EuO doped with Gd3+ leading to Eu1−xGdxO. Gd has one more electron

than Eu that is in a 5d orbital. We expect that a given Gd atom in the EuO matrix can be in two

different states: either the extra d-electron is delocalized in the conduction band of Eu1−xGdxO and

the atom becomes a Gd3+ ion or the d-electron stays localized and the atom is a Gd2+ ion. For a

given Gd concentration, we will have a number N2+ of Gd2+ ions and a number N3+ of Gd3+ions in

the EuO matrix. The ratio N3+/N2+ is expected to change with the concentration of Gd. Typically,

this ratio should be zero at very low concentrations and large at high concentrations. This will most

likely affect the magnetic interactions between Gd and Eu electron spins since Gd2+ is not in a 8S 7
2

configuration. However, the fact that S = 7/2 for Gd3+ indicates that Gd is a good substitution for

Eu to minimize spin disorder effects. Gd3+ has a smaller radius than Eu2+ and doping EuO with

Gd3+ will therefore lead to an increase of ferromagnetic interactions. But the extra d-electron may

increase the electrical conductivity of the material.

Following the general results of N. F. Mott [22] on the metal-insulator transition, we know that

for low concentrations of dopants, the two excess electrons coming from a Eu2+ ion or the excess

electron from a Gd3+ ion stay localized respectively on the O vacancy or on the Gd site due to
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the fact that the thermal energy of the electrons are lower than the donor binding energy.1 When

the concentration becomes higher than a critical concentration xc, the potential is screened by the

excess electrons and the additional electrons are excited into the conduction band and the material

becomes metallic. The critical electron concentration nc at which the transition occurs is usually

given by the Mott criterion

n1/3
c a∗

H = K, (2.1)

where a∗
H is the experimental value of the effective Bohr radius of the isolated donor center in

the nonmetallic regime far from the transition (low-electron-density regime) and K is a constant

close to 0.25 [23, 24]. In the case of EuO with excess Eu, this expression gives approximately

nc = 8 · 1018 cm−3 [25] (this value corresponds to xc
∼= 0.05%).2 However, (2.1) is no longer

valid in the case of magnetic semiconductors since magnetic interactions modify electron-electron

interactions. Leroux-Hugon [26] has shown that taking into account the exchange interaction leads

to a new value of nc = 4.8 · 1019 cm−3 (xc
∼= 0.3%)2 that is consistent with the experimental results

of Oliver et al. [27]. There is another peculiarity in the carrier density of these materials: the

carrier density n is a function of temperature. If x > 0, n is larger below about 50 K and sharply

decreases at higher temperatures. If x is greater than a value x0, then n is larger than nc at low

temperature and therefore a temperature change drives a MIT. For concentrations above the critical

concentration xc, n is larger than nc for all temperatures and there is no MIT in these samples.

A schematic representation of these different regimes is presented in Fig. 2.1. Note that the curves

shown in this figure do not correspond to real measurements. The values of n are approximate

values taken from the results on Eu1+xO of Oliver et al. [27]. Experimentally, the value of xc is

approximatively 0.1% for Eu1+xO and about 1.5% for Eu1−xGdxO according to Samokhvalov et al.

[20] (c.f. Table 2.1). The value of x0 is not well defined but is clearly very close to zero for both

systems.

We can summarize the electrical properties of Eu1+xO and Eu1−xGdxO by emphasizing that

there are three different regimes: if 0 ≤ x < x0, the material is semiconducting at all temperatures;

if x0 ≤ x < xc, the material has a metallic behavior at low temperature and an insulating behavior

at high temperature; finally, if xc ≤ x, the material is metallic at all temperatures. That means that

a temperature change as well as a change in the doping can drive a MIT. These two types of MIT

were independently observed in Eu1−xGdxO by Godart et al. [28] and by Samokhvalov et al. [20].

However, it is important to note that Schoenes and Wachter did not observe a temperature-induced

MIT in Gd doped EuO and they claimed that if a MIT is observed it is only due to the presence of

oxygen vacancies [29]. It is therefore not entirely clear that the presence of Gd atoms in EuO has

the same effect as Eu excess.

Let us examine the magnetic properties of samples belonging to each of the three groups III,

IV and V. It was observed experimentally that the bulk magnetic properties go through a dramatic

change when the doping level reaches xc. Indeed, the Curie temperature jumps from about 69 K

up to 120 K over a very short range of x. Moreover, for x < xc the temperature dependence of the

bulk magnetization |M(T )| follows quite well a Brillouin law, whereas for x ≥ xc there is a notable

1The donor binding energy is equal to the Couloumb potential of the donor.
2We calculated xc from nc assuming that all the electrons from the excess Eu atoms (2 electrons per atom) become

conduction electrons at the Mott transition. Since EuO is a cubic crystal, N/V = 1/a3, where N is the number of sites,

V is the volume of the sample and a = 5.14 Å is the lattice constant. We then obtained xc = (nc/2)/(N/V ) = 1

2
nca3.
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Figure 2.1: Carrier density vs. temperature for two different doping regimes: x0 < x < xc and
x > xc. The shapes of the curves are deduced from the experimental results on Eu1+xO presented
in [27].

departure from a Brillouin law. Therefore, in terms of macroscopic magnetic properties, only two

regimes were observed: if 0 ≤ x < xc, the Curie temperature is close to 69 K (69-79 K) and the

temperature behavior of the bulk magnetization follows rather well a Brillouin law; if x ≥ xc, the

Curie temperature is approximately in the range 120-140 K and |M(T )| does not behave according

to a Brillouin law. One of the challenges of this NMR study of the materials was to detect the

microscopic magnetic differences between samples with 0 ≤ x < x0 and samples with x0 ≤ x < xc

that could explain the difference in electrical properties.

Now let us examine the correlation between the temperature dependence of the carrier density

n(T ) and |M(T )|, i.e., we would like to determine the contribution of the conduction electrons on

the magnetic properties of the material. This discussion leads to an examination of the exchange

interactions present in these systems.

2.2 Exchange interactions

As we discussed previously, the Eu atoms in EuO can be considered as Eu2+ ions. Since L = 0

for these ions, the ground state of these ions does not couple to any excited state and therefore the

exchange interactions are isotropic. For this reason, the effective Hamiltonian of this system is very

well approximated by the Heisenberg model:3

3Note that we will denote vectors with bold face, e.g., rij . Also, operators will be denoted with a hat, e.g., Ŝz
i ,

and the thermal expectation value of an operator will be enclosed between brackets, e.g., < Ŝz
i >.
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ĤHeisenberg = −1

2

∑

i,j

J(rij)Ŝi · Ŝj . (2.2)

It is usually sufficient to calculate the exchange integral J(rij) between the two electron spins Ŝi

and Ŝj over the nearest neighbors (nn) and the next nearest neighbors (nnn) and we therefore have

for the exchange constants:

J(rij) =





J1 if i and j nn

J2 if i and j nnn

0 otherwise.

(2.3)

The exchange mechanisms that are responsible for J1 and J2 in EuO were described in detail by

Kasuya [30]. His model shows that J1 is generated by an indirect exchange process calculated in a

third-order perturbation analysis and that J2 arises from three different superexchange mechanisms

corresponding to calculations performed in a fourth-order perturbation analysis. Kasuya obtained

J1/kB = 0.406 K and found a positive value of J2 with J2/kB = 0.014 K. Neutron scattering exper-

iments on powdered EuO led to the following experimental values: J1/kB = 0.606 ± 0.008 K and

J2/kB = 0.119±0.015 K [31]. We see that the theoretical value of J1 is very close to the experimental

value, but the value of J2 is underestimated in the calculations of Kasuya. However, the model does

give the correct sign for J2, which suggests that it is adapted for the description of the exchange

interactions taking place in pure EuO.

Let us examine how adding free carriers in a EuO matrix affects the exchange interactions. As we

noted in Sect. 2.1, free carriers can be added either by adding Eu2+ (departure from stoichiometry)

or by doping EuO with rare earth ions, in particular Gd3+. Also, we saw that for a concentration of

donors higher than xc, the Curie temperature increases dramatically and the temperature behavior

of the magnetization changes. Several models were developed to relate the variation of the ordering

temperature with the exchange interactions. The analysis is always split in two parts: on one hand,

the study of the case x < xc and on the other hand the case x > xc. We will start by discussing the

latter case and treat the former case in Sect. 2.3.

The most successful model treating the case x > xc seems to be the one developed by A.

Mauger based on the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory [32, 33].4 In this theory,

three major modifications were made to adapt the RKKY theory for metals to the case of magnetic

semiconductors like EuO. First, to take into account the narrow conduction band, Mauger defined a

dispersion relation that is not parabolic. Second, the model assumes that the conduction band is split

into spin up and spin down subbands. Finally, Mauger noted that the exchange interactions between

the localized electron spin and the conduction electron spin are not negligible and he therefore took

into account the polarization of the electron gas. The effective spin Hamiltonian between the 4f

spins is then written

Ĥeff = −1

2

∑

i,j

Jeff (rij)Ŝ
z
i Ŝz

j , (2.4)

with

Jeff (rij) = Jeff (rij , σ, T,EF ), (2.5)

4Note that Holtzberg et al. had already invoked the RKKY theory to explain the dependence on n of the param-

agnetic Curie temperature in rare earth chalcogenides in 1964 [34].
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where rij is the radius vector between the sites i and j, σ =< Ŝz > /S represents the polarization

of the localized spins and EF is the Fermi energy of the crystal. Mauger et al. used the molecular

field approximation to determine σ:

σ = BS

(
σS2(I(k = 0) + Jeff (k = 0, σ, T,EF )) + gµBHext

kBT

)
, (2.6)

where BS is the Brillouin function, I(k) and Jeff (k, σ, T,EF ) are the Fourier transforms of the

direct exchange constant and of the indirect exchange constant Jeff (Rij , σ, T,EF ) respectively.

Since EuO has a NaCl structure, we take I(k = 0) = 12J1 + 6J2. The dependence on x of

Jeff comes through the dependence on x of the Fermi energy. In the model, the authors took

EF = EF (x)|T=0 and EF (x) is calculated from the density of states derived from the dispersion

law. By solving the system of two equations given by (2.5) and (2.6), we get Jeff (k = 0, T, x) and

σ(T, x). From these two equations, it is easy to deduce the two variables that interest us:

TC(x) =
S(S + 1)

3kB
[I(k = 0) + Jeff (k = 0, T = TC, x)] (2.7)

M(T, x) =
N

V
Sσ(T, x) (2.8)

The function TC(x) obtained is a growing function of x that increases up to about 155 K over

a very small range of x (approximatively 0-0.05) [32]. For larger x, TC decreases to reach 90 K

around x = 20%. The temperature behavior of the magnetization is shown in Fig. 2.2 for x = 2%

along with experimental data obtained by Mauger et al.. The model developed by Mauger et al.

reproduces the striking experimental behavior: the sharp increase of TC with the doping together

with the non-Brillouin behavior of the magnetization. We therefore take this model as the starting

point for our discussions.

Let us mention that Nolting and Oleś developed a different theory to explain the increase in

TC of Gd doped EuO [35]. The dependence of TC on the carrier density n is derived from magnon

scattering processes due the presence of conduction electrons. More recently, Santos and Nolting

have presented a theory based on the Kondo-lattice model [10].

2.3 Magnetic polarons

For x < xc, the model of Mauger et al. is not valid anymore. As mentioned previously, in this range

a variation of the doping level has a tremendous effect on the transport properties of the samples

but the Curie temperature is almost not affected. The dramatic change of resistivity associated with

a sharp decrease in carrier density n is very often explained by the formation of bound magnetic

polarons (BMP) [1, 36]. A magnetic polaron is a quasi particle formed by a conduction electron and

its neighboring localized electron spins. The existence of such a quasi particle can be demonstrated

by minimizing the energy of the system formed of an electron and a certain number of localized

spins, that is

E = Ekin + ECoulomb + Es−f (2.9)

where Ekin is the kinetic energy of the conduction electron, ECoulomb is the Coulomb interaction

between the donor center and the conduction electron, and Es−f is the exchange energy coming from
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Figure 2.2: Reduced magnetization vs. temperature. The squares represent data taken on stoi-
chiometric EuO, the triangles data taken on Eu-rich EuO, and the crosses data taken on 2% Gd
doped EuO. The two dashed lines are Brillouin curves for TC = 69.5 K and TC = 148 K. The solid
line represents the result of Mauger’s model for n = 5 · 1020 cm3 (The figure is from [33]).

the magnetic s− f interaction between the conduction electron spin and the localized spins [1]. The

net moment of a BMP is calculated to be of the order of 25 Bohr magnetons [37]. It is important to

distinguish a bound magnetic polaron from a free magnetic polaron (FMP). The conduction electron

of the latter is unbound whereas the electron of the former is trapped at a donor site by electrostatic

forces. In Gd doped EuO as well as in Eu-rich EuO, we expect to observe mainly BMPs trapped

around the donors.

While the role of magnetic polarons in CMR material is widely recognized, the observation of

magnetic polarons in systems such as EuO and Gd doped EuO has only been suggested by transport

and magnetization measurements. As P.A. Wolff noted in 1988, “None of these experiments, however,

unambiguously determines microscopic parameters-such as binding energy, moment, or size-of the

BMP.” Note that the existence of magnetic polarons in Eu1−xGdxO has recently been inferred from

Raman scattering data [13, 38, 39].

2.4 Our samples and their magnetic characterization

The samples that we measured in this study belong to the family Eu1−xGdxO. They are single

crystals. We studied samples with four different doping levels: pure EuO, x = 0.6%, x = 2%

and x = 4.3%. These crystals were grown in Zürich at ETHZ by Mattenberger. According to the

description given in Sect. 2.1, pure EuO belongs to group III, 0.6% Gd doped EuO to group IV and

the two other doping levels to group V (c.f. Table 2.1).

A way to verify that these single crystals indeed belong to the categories mentioned above, is to
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Table 2.2: Paramagnetic Curie temperature of the four samples we studied (measurements per-
formed by Heesuk Rho).

Doping level x (%) Paramagnetic Curie temperature θC (K)

0 69.55

0.6 73.05

2 123.45

4.3 132.5

measure their Curie temperature TC. Determining the Curie temperature of a bulk ferromagnet by

measuring the temperature dependence of its zero-field magnetization is not an easy task because of

the presence of magnetic domains leading to a small net magnetization. It is however straightforward

to determine the so-called paramagnetic Curie temperature θC . While TC is the temperature below

which there is spontaneous local magnetization in the absence of an applied magnetic field, θC

is deduced by fitting the measured temperature dependence of the magnetic susceptibility χ in

the paramagnetic regime with a Curie-Weiss law of the form χ = C/(T − θC). Using a SQUID

magnetometer, our collaborator Heesuk Rho determined the values presented in Table 2.2.

The saturation magnetic moment of each sample has also been measured using a SQUID magne-

tometer. The curves obtained in a field of 7 T are shown on Fig. 2.3. Gd having the same electron

spin S = 7/2 as Eu, the extra electrons that the Gd3+ ions bring to the EuO matrix should most

likely be the cause of the differences in low temperature magnetic moments between samples. How-

ever, the difference in magnetic moment between pure EuO and 0.6% Gd doped EuO shown on

Fig. 2.3 is clearly too large to be only due to the presence of additional electrons coming from Gd

ions. We think that there was a problem during the measurement of the pure sample although we

are not sure of its origin. Samokhvalov et al. found that the magnetic moment at 4.2 K of pure

EuO is about 198 emu/g, which is substantially larger than the value shown on Fig. 2.3 [40]. Note

also that the magnetic moment of the 2% and 4.3% samples at the lowest temperature are almost

identical. The reason for this last fact is not clear. It might be due to an imperfect alignment of the

field along the easy axis of the sample. In any case, we observe that an increase in Gd concentration

leads to an increase of the magnetic moment. This suggests that the Gd spins are aligned parallel

to the Eu spins. This is in disagreement with Schoenes and Wachter who observed that “The Gd

spin has a tendency to enter the material antiparallel to the Eu spins” [29].

Another crucial point about the magnetic properties of Eu1−xGdxO is that the paramagnetic

Curie temperature is rather different than the Curie temperature for all doping levels x > 0. This

difference has been measured by Samokhvalov et al. [41]. Their results, presented in Fig. 2.4,

show that for doping below about 0.8% the Curie temperature of Eu1−xGdxO is almost exactly the

same as for pure EuO. However, the paramagnetic Curie temperature increases as soon as the Gd

concentration increases and reaches a maximum. Note that the model of Mauger does not explain

the difference between the Curie paramagnetic temperature and the Curie temperature.

It is possible to determine the Curie temperature TC of a sample without directly measuring its

magnetization as a function of temperature. A straightforward method is to place the sample in the

coil of a resonant LC circuit and to measure the shift of the resonance frequency as a function of

temperature. Indeed, the resonance frequency of the circuit is, to a good approximation, given by

ω = 1/
√

LC where L is related to the complex susceptibility χ(ω) = χ′(ω) − iχ′′(ω) through the

expression
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Figure 2.3: Longitudinal magnetic moment vs. temperature of pure and Gd doped EuO samples
in a magnetic field of 7T (Measurement performed by Heesuk Rho).

Figure 2.4: Paramagnetic Curie temperature θC and Curie temperature TC as a function of Gd
doping x (from [42]).
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L = L0[1 + 4πχ(ω)], (2.10)

where L0 is the inductance of the empty coil (c.f. e.g. [43]). Therefore, a dramatic change in the

magnetic susceptibility, such as that expected at the ferromagnetic-paramagnetic phase transition,

will induce a dramatic change ∆ω in the resonance frequency ω.

The measurement performed on 0.6% Gd doped EuO is presented in Fig. 2.5. The temperature

behavior of the inverse shift above the transition temperature follows well a Curie-Weiss law. From

the Curie-Weiss fit, we determined the paramagnetic Curie temperature to be about 69.4 K which is

clearly lower than the value of 73.05 K presented in Table 2.2 but is very close to the paramagnetic

Curie temperature of pure EuO (c.f. Table 2.2). We see that it is therefore important to specify

what measurement technique is used to determine the transition temperature since the value of the

transition temperature may vary from one technique to another.

The values of θC and TC we have measured clearly show that the 0.6% Gd-doped sample be-

longs to group IV whereas the 2% and 4.3% samples belong to group V. Also, the fact that the

paramagnetic Curie temperature of the pure sample is very close to the expected Curie temperature

TC = 69.5 K determined in previous studies (see e.g. [27]) shows that the chemical composition of

this sample is close to the perfect stoichiometry.

2.4.1 NMR frequency vs. T

The NMR frequency of a nucleus in a magnetic field H corresponds to the Larmor frequency
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ν0 =
γn

2π
|H|, (2.11)

where γn is the gyromagnetic ratio of the nucleus. As will be shown in Sect. 3.1, in ferromagnetic

material, when no external field is applied, the field acting on the nuclei is, too a very good approxi-

mation, proportional to the magnetization of the sample. Therefore, the temperature dependence of

the zero-field NMR frequency follows the temperature dependence of the magnetization.5 We mea-

sured the 153Eu resonance frequency in EuO and Gd doped EuO as a function of temperature. In

Fig. 2.6, we plotted the frequency of the center of the NMR line of each type of sample as a function

of temperature. We observed that the temperature dependence of the frequency of pure EuO and

0.6% Gd doped EuO is accurately described by a Brillouin function with TC = 69.55 K. However, in

the case of 2% and 4.3% Gd doped EuO, the frequency is not well described by a Brillouin function:

for temperature above about 30 K, the frequency has a lower value than the frequency predicted by

the theoretical curve. These results confirm the magnetometric measurements performed by Mauger

(c.f. Fig. 2.2).

5By looking at the temperature dependence of the 153Eu NMR frequency in the vicinity of the magnetic transition

of the ferromagnet EuS, Heller and Benedek determined very accurately the critical exponent β through the relation

ν0(T ) ∝ |M(T )| ∝ (TC − T )β [44].
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Chapter 3

NMR in ferromagnets

Nuclear spins are highly sensitive to electronic spins and their fluctuations. On the other hand,

electronic spins are negligibly affected by nuclear spins. Nuclear spins can therefore be thought

of as “invisible” probes of the electronic structure and its dynamics. For this reason, NMR is

an attractive tool to study ferromagnetism and more specifically the dynamics of electronic spins.

There are several reasons why NMR in ferromagnets is slightly more complex than in non-magnetic

materials, especially when the studied nucleus belongs to the ion carrying the magnetic moment.

One of the important characteristics is that the unpaired spins of the inner shell responsible for the

magnetism of the ion, namely the 3d-shell electron spins in the iron group elements and the 4f -shell

electron spins for rare earth elements, are the source of an effective magnetic field that strongly

perturbs the nuclear system. The presence of this effective field leads to shifts and broadening of

the resonance lines. It also affects the dynamics of the nuclear spins.

The purpose of this chapter is to address the experimental issues related to the presence of a

strong electronic magnetization in the Eu1−xGdxO systems. We will start by listing the interactions

taking place between the measured nuclei and their environment. Then, we will discuss these

interactions and examine how to extract information about the nuclear environment from NMR

measurements performed on magnetic ions such as Eu2+.

3.1 NMR Hamiltonian

NMR experiments consist of exciting and detecting transitions between nuclear spin states. In this

study, we will deal with 151Eu and 153Eu nuclei which are both spin I = 5
2 . The degeneracy of

the five nuclear spins states can be lifted by the application of an external magnetic field, H0.

However, since internal magnetic and electric fields participate in the splitting of the levels, even

in the absence of external field the degeneracy may be lifted. The resonance frequencies measured

in NMR experiments correspond to the transition frequencies between eigenstates of the nuclear

Hamiltonian

Ĥnuclear = ĤZeeman + Ĥquadrupole + Ĥelectron−nucleus + Ĥinternuclear (3.1)

These four terms are developed and explained below.
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Zeeman Hamiltonian

The Zeeman part represents the interaction of the nucleus with an applied external field H0. It is

given by

ĤZeeman = −γn~H0 · Î (3.2)

where γn is the nuclear gyromagnetic ratio and Î is the nuclear spin operator. In most of the

experiments done in this study, we did not apply any external field to measure the 151Eu and 153Eu

spin systems. We performed what is commonly called zero-field NMR experiments. This type of

experiment is possible in Eu1−xGdxO systems because of the presence of a strong local magnetic

field created by the unpaired electron spins of Eu and Gd atoms.1

Quadrupole Hamiltonian

Nuclei with spin I larger than 1
2 , such as 151Eu and 153Eu, have a nuclear electric quadrupole moment

that interacts with electric field gradients (EFGs) created by the surrounding crystal structure. The

Hamiltonian representing this interaction has the form

Ĥquadrupole =
e2qQ

4I(2I − 1)
(3Î2

z − I2 + β(Î2
x − Î2

y )), (3.3)

where Q is the electric quadrupole moment of the studied nucleus, q is the electric field gradient

(EFG) and β is a factor describing the asymmetry of the EFG [43]. If the measured nuclei are located

at lattice sites of perfect cubic symmetry, the EFGs acting on those nuclei cancel. Thus, since EuO

has the fcc symmetry, we do not expect a quadrupolar splitting of the spin levels of 151Eu and 153Eu.

However, defaults such as vacancies and deformations of the lattice can lower the symmetry of the

Eu sites, and in that case we would observe five transitions in the frequency spectrum.

Electron-nucleus Hamiltonian

Nuclear spins couple to both the orbital angular momentum L̂ and the spin Ŝ of the surrounding

electrons. It is common to make the distinction between the coupling of a nuclear spin to its own

electron shells and the coupling of the nuclear spin to the outside electron shells. The former is usually

called the (on-site) hyperfine interaction. The latter can be decomposed in two types of interactions:

the so-called transferred hyperfine interaction describing the coupling of the nuclear spin to the total

angular momentum (orbital and spin) of the neighboring magnetic ions through electronic excitations

[45],2 and the dipole-dipole interaction between the nuclear spin and total angular momentum of

the neighboring magnetic ions [46, 47]. In Eu1−xGdxO, the magnetic neighbors of Eu2+ ions are

Eu2+, Gd2+ and Gd3+ ions.3 In addition, the conduction electrons also interact with the nuclei.

1Zero-field experiments are also possible in non-magnetic materials, for nuclear spins I > 1

2
, in the presence of

electric field gradients (EFGs) that lift the degeneracy of the nuclear spins states. This type of experiment is called

nuclear quadrupole resonance (NQR).
2Ueno et al. showed that mechanisms similar to those explaining the exchange interaction (used by Kasuya to

determine J1 and J2 (c.f. Sect. 2.2)) can explained the transferred hyperfine interaction in europium chalcogenides.
3As we have seen in Sect. 2.1, not all the extra electrons brought by Gd2+ will participate in the conduction. We

will make the distinction between Gd2+ and Gd3+ ions, the latter bringing a conduction electron in the conduction

band.
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This last interaction is sometimes called the contact interaction and is described by a Fermi contact

term (see, e.g., [43] for a description of the Fermi contact term).4

The hyperfine interaction is generally composed of an orbital term, a dipolar term and a Fermi

contact term.5,6 Since the resulting orbital angular momentum of the ground state of Eu2+ ions is

equal to zero (configuration 8S 7
2
), the orbital part of the hyperfine interaction is zero. The electron-

nucleus Hamiltonian of a crystal containing N magnetic atoms and n conduction electrons can

therefore be written as

Ĥelectron−nucleus = Î · A · Ŝ +
N−1∑

i=1

Î · Ãi · Ĵ i − γn~

N−1∑

j=1

H
j
dipolar · Î +

n∑

k=1

CÎ · ŝkδ(rk), (3.4)

where the tensor A is the hyperfine tensor describing the hyperfine interaction between the reference

nuclear spin Î and the electron spin Ŝ of its own electron shell, the tensor Ã
i

is the transferred

hyperfine tensor describing the transferred hyperfine interaction between the reference nuclear spin

Î and the total angular momentum Ĵ i of the ith neighboring magnetic ion, H
j
dipolar is the dipolar

field created by the jth neighboring magnetic ion, C is a constant taking into account the mixing of

the s- and d-orbitals forming the conduction band [51], ŝk is the spin operator of the kth conduction

electron, and rk is the radius vector between the reference nuclear spin Î and the kth conduction

electron.

Let us distinguish between the different type of neighbors surrounding the reference nuclear spin.

Since the spin ground state of Gd3+ and Eu2+ is the same, both will couple to the reference spin

through a similar magnetic interaction. This is not the case for Gd2+. Also, as a consequence of

the resulting zero orbital angular momentum of the state 8S 7
2
, the orbital part of the dipolar field

created by Eu2+ and Gd3+ is zero. Following the treatment of Yasuoka et al. [47], we can rewrite the

dipolar coupling between the reference spin and the electron spin of the ith Eu2+ or Gd3+ neighbor

as a tensor. Equation (3.4) then becomes

Ĥelectron−nucleus = Î · A · Ŝ +

n′∑

i=1

Î · Bi · Ŝi +

n′′∑

j=1

Î · Dj · Ĵ j + C

n∑

k=1

Î · ŝkδ(rk), (3.5)

where n′ is the number of Eu2+ and Gd3+ neighboring ions, n′′ is the number of Gd2+ neighboring

ions, the tensor B
i describes the sum of the transferred hyperfine interaction and dipolar interaction

between the reference nuclear spin Î and the electron spin Ŝi of its ith Eu2+ or Gd3+ neighbor,

and the tensor D
j describes the sum of the transferred hyperfine interaction and dipolar interaction

between the reference nuclear spin Î and the total angular momentum Ĵ j of its jth Gd2+ neighbor.

The couplings represented by the tensors B
i and D

j are much smaller than the hyperfine coupling

represented by A. Clearly, we can neglect the effect of the far neighbors on the reference spin. Taking

into account only the nearest neighbors and the next nearest neighbors is usually appropriate in

magnetic systems. If we define the z axis to be the direction of the anisotropy field, 7 and if we

4The conduction electrons in Eu1−xGdxO are not pure s-electrons. The conduction band is formed by 6s and 5d

orbitals. This fact needs to be taken into account in the calculation of the Fermi contact term.
5In the case of Eu2+, Gd2+, and Gd3+ ions, the Fermi contact is due to the core polarization of the s-electrons

located in the inner shells (see [48–50] for more details).
6In the presence of Gd in the system, the 4f -electrons of Gd2+ and Gd3+ ions also participate in the polarization

of the unpaired electrons of Eu2+ and consequently contribute to the hyperfine field.
7If an external magnetic field is applied, we assume that it is applied along the direction of the anisotropy field,

i.e. along [111] in the case of EuO.
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assume that the axis of quantization of Î coincides with the axis of quantization of Ŝ, 8 we obtain,

from (3.5),

Ĥelectron−nucleus = [(Azz +

n′∑

i=1

Bi
zz) < Ŝz >T +

n′′∑

j=1

Dj
zz < Ĵz >T +C

n∑

k=1

< ŝk >T δ(rk)]Îz, (3.6)

where n′ and n′′ now only count the next and next nearest neighbors, < Ŝz >T is the thermal

average at temperature T of the electron spin moment of Eu2+ and Gd3+ ions, < Ĵz >T is the

thermal averaging of the total angular momentum of the neighboring Gd2+ ions, and < ŝk >T is the

thermal average at temperature T of the kth conduction electron spin. Note that we have assumed

that the terms Bi
lm and Dj

lm with l 6= z,m 6= z are negligible. This is motivated by the fact that

the strong exchange interaction between neighboring angular momentum forces them to be aligned.

In the case of pure EuO, the last two terms of (3.6) are zero and the the second term is a sum over

all 12 first and 6 second Eu2+ neighbors (n′ = 18). For low doping levels, typically x < 1.5%, there

is no contribution from the last term of (3.6) (c.f. Sect. 2.1).

From (3.6), we define two quantities that will often be mentioned in this work: the hyperfine

field

Hhf =
Azz

γn~
< Ŝz >T ez, (3.7)

used to describe the hyperfine coupling in Eu atoms, and the local field

H loc =
1

γn~
[(Azz +

n′∑

i=1

Bi
zz) < Ŝz >T +

n′′∑

j=1

Dj
zz < Ĵz >T +C

n∑

k=1

< ŝk >T δ(rk)]ez, (3.8)

used to describe the total effective field felt by the reference Eu nuclear spin in the absence of

an external field. In most cases, the hyperfine field is found to be antiparallel to < Ŝz >T and

consequently Azz < 0. This is the case for Eu2+ ions. However, we do not know a priori the sign

of Bi
zz, Dj

zz and C. Note that usually Bi
zz, Dj

zz, C ≪ Azz and it is often a good approximation to

take H loc
∼= Hhf .

Internuclear Hamiltonian

Nuclear spins can couple to each other either directly through dipole-dipole interactions, or indirectly

via the electron spins. The dipole-dipole interaction has the well-known form

Ĥdipole =
γni

γnj
~

2

r3
ij

[
Îi · Îj − 3

(Îi · rij)(Îj · rij)

r2
ij

]
(3.9)

where rij is the radius vector between spin Ii and spin Ij . Indirect interactions are second-order

effects and the energy levels are calculated using second-order perturbation theory. In metals, the

indirect interaction via the electron spin of the conduction electron is called the RKKY interaction

[52]. In magnetic materials, the nuclei also interact through excitations of virtual magnons. This

indirect interaction is called the Suhl-Nakamura interaction and will be discussed in more detail in

Sect. 3.6.
8Since the hyperfine field created by the electron spin is by far larger than any other local field, we indeed expect

the two axes of quantization to be parallel.
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3.2 The nature of NMR in ferromagnets

In this study, we focused on the ferromagnetic phase of Eu1−xGdxO, i.e., we mostly performed

measurements at temperatures below the Curie temperature. At such temperatures, europium nuclei

are influenced by a large local magnetic field due to the strong electronic magnetization present in the

sample. Even in the case of pure EuO we can expect a rather large magnetic broadening due to spatial

inhomogeneities in the magnetic structure of the material. The presence of Gd in the EuO matrix

will further increase the inhomogeneity of the local field, giving rise to an additional broadening of

the NMR lines. Therefore, we expect to have to deal with rather broad lines. Another consequence of

the presence of a large local field in the Eu1−xGdxO systems is the strong temperature dependence

of the resonance frequency (c.f. Sect. 2.4.1). Indeed, we saw in Sect. 3.1 that the local field is,

to a good approximation, proportional to < Ŝz >T , the thermal average at temperature T of the

electron spin moment of Eu2+ and Gd3+. The resonance frequency is therefore strongly temperature

dependent. As a consequence, NMR measurements in the magnetic phase of ferromagnetic systems

require a very stable temperature control. In this study, we used two different cryogenic methods.

For measurements at temperatures below 20 K as well as for all measurements performed with an

external magnetic field, we used liquid helium and a standard continuous flow cryostat (Oxford

model CF 1200). For zero-field measurements at temperature above 20 K, we used a closed-cycle

helium refrigerator (CTI-Cryogenics model 21SC Cryodyne cryocooler).

A peculiarity of NMR in ferromagnets is the fact that the unpaired electron spins of the magnetic

ions amplify by a rather large factor the RF field acting on the observed nuclei. Also, the measured

NMR signal detected in the coil of the tank circuit is amplified by the same factor. This factor is

called the amplification factor and will be discussed in Sect. 3.4.1. A very important consequence

of the presence of such a factor is that the amplitude of the signals is very large. Also, the power

needed to flip the nuclear spins is rather low. The excitation pulses can therefore be short allowing

the excitation of a large portion of the frequency spectrum. This is very important since, as we

mentioned above, the lines are expected to be broad.

The single crystals we studied were bulk samples. In an external magnetic field weaker than

the coercive field, the microscopic magnetic structure of the crystals is composed of domains and

domain walls. In the case of zero-field NMR measurements, the microscopic magnetic structure

of the samples is clearly multidomain. Due to this structure, we do not expect the same physical

mechanisms to influence the behavior of the electron spins both in domains and in domain walls.

It is therefore important to differentiate between the signal coming from nuclei located in domains

and the signal coming from nuclei located in domain walls. Usually, the amplification factor for the

nuclei in domain walls is larger by at least an order of magnitude. This is therefore a potential way

to distinguish the signals. This issue will be further discussed in Sect. 3.4.1.

Finally, since the lines are broadened by magnetic interactions, we can expect to observe short

spin-spin relaxation times. As will be shown in Chap. 5, we did indeed observe short T2’s in

Eu1−xGdxO. We also observed very short spin-lattice relaxation times under certain conditions

of field and temperature.
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3.3 Modified commercial spectrometer to measure NMR sig-

nals with very short T2

The spectrometer used for this study is based on a TecMag Apollo HF-1 commercial spectrometer.

This instrument is controlled by computer using the NTNMR software delivered with the commercial

spectrometer. Due to the fact that T2 can be unusually short in the studied systems, we had to add

several components to improve the performance of the spectrometer. Most importantly, the recovery

time had to be reduced in order to perform measurements using short delays between the excitation

pulses. The nominal recovery time of the Apollo HF-1 is about 2 µs, while spin-spin relaxation

times as short as 0.5 µs have been observed in Eu1−xGdxO. Also, the receiver sampling rate had

to be greatly increased to detect the fast echoes observed in these materials. The minimum dwell

time of the receiver of the Apollo HF-1 is 0.3 µs. Since in certain cases the echo lasts for only about

0.4 µs, only a single point in the echo could be recorded with the commercial receiver. Finally, we

developed the transmitter in order to be able to reduce the length of the excitation pulses. This has

been done in order to further decrease the delay between the excitation pulses. However, most of

the data we will present in this work were taken without modifying the transmitter.

A block diagram of the modified spectrometer is presented on Fig. 3.1. The RF pulses are

provided at the output F1 of the commercial TecMag spectrometer. A 16-phase CYCLOPS pulse

sequence was programmed to cancel the ringdown coming from the pulses [53]. The RF output is

amplified and split (using a power splitter Mini-Circuits ZFSC 2-1W) into two channels,9 one that

will be used to excite the sample, the other that will be used to demodulate the detected signal. A

sketch of the RF output F1 for a particular phase of a spin-echo experiment is shown in Fig. 3.2.

It has two parts: the excitation part, composed of two short square pulses of time length t1 and t2

separated by a time denoted as delay, and the detection part consisting of a long pulse whose length

is named acquisition time. In the following, we will refer to this last pulse as the demodulation

pulse. The two parts are separated by a time called offset. Each phase of the sequence is followed

by a waiting time denoted repetition time.

Let us start by describing the transmitter part of the modified spectrometer (c.f. Fig. 3.1). The

output of the power splitter is connected to a fast RF gate that truncates the demodulation pulse

of the RF signal. The gate (Watkins-Johnson model S1) has a switching time of 1 ns and an on-off

ratio of about 70 dB for RF frequencies between 100 MHz and 200 MHz. The TTL signal sent to the

driver piloting the gate is coming out of the F1 UNBLANK output of the Apollo HF-1. A sketch

of the TTL signal is shown in the second line of the diagram of Fig. 3.1. Then the RF signal is

amplified by a power amplifier (Kalmus model LP1000) and filtered by crossed diodes before being

sent to the probe.

3.3.1 Short recovery time receiver

The receiver of the spectrometer is protected during the excitation sequence by a λ/4 cable followed

by crossed diodes connected to the ground. In addition, a gate (Watkins-Johnson model S1) has been

incorporated between the two preamplifiers (Doty model LN-2H) used to amplify the NMR signal

coming from the probe. This gate is preceded by a 6 dB attenuator to reduce the noise going back

in the first preamplifier. The TTL signal driving the gate is coming out of the SCOPE TRIGGER

9All the power splitter used in this spectrometer are Mini-Circuits model ZFSC 2-1W.
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Figure 3.1: Block diagram of the spectrometer. A circle containing a cross symbolizes a frequency
mixer.

F1(RF output)

F1UNBLANK

SCOPE TRIGGER

t1 t2delay offset acquisition time repetition time

Figure 3.2: RF output, F1 UNBLANK output and SCOPE TRIGGER output for one of the 16
phases of the CYCLOPS sequence.
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output of the Apollo. A sketch of the TTL signal is shown in Fig. 3.2. At the output of the second

amplifier, the signal is split into two channels, one of them which is phase shifted by 90◦ to perform

what is called commonly quadrature detection. Both channels are demodulated by two frequency

mixers (Mini-Circuits model ZAD-1W) connected to the amplified F1 output. The resulting signals

are sent to a digital oscilloscope (Tektronix model TDS 224) triggered by the TTL signal coming

from the SCOPE TRIGGER output. This oscilloscope also plays the role of averager. It has a

sampling rate of 1 gigasample per second which means a maximum time resolution of 1 nanosecond.

However, its digitizer is only 8-bit resolution. To increase the resolution of the signal, the averaging

process is made in two steps: first, 64 curves (4 times the 16 echoes produced by the 16 phases pulse

sequence) are acquired and averaged in the memory of the oscilloscope. Then, the resulting curve

is transferred through a GPIB connection to the computer where it is stored in an array. Once

the required number of arrays has been acquired, this number being defined by the user, a Visual

Basic script process them to obtain the averaged curve. The resulting curve is then exported to the

graphics environment of the NTNMR software that controls the pulse sequences.

In order to have a short recovery-time receiver, every component must be broadband. The Doty

LN-2H preamplifiers have a recovery time of 0.3 µs. Since the gates have a switching time of 1ns,

they will not alter the recovery time. The maximum bandwidth of the oscilloscope is 100 MHz but

we limited it to 20 MHz in order to remove the high-frequency noise. The bandwidth of the receiver

is determined by the minimum bandwidth of all the components, and therefore it is equal to the

bandwidth of the preamplifiers. The recovery time of the receiver described above is thus 0.3 µs.

It is important to mention that the Apollo HF-1 does not have the capability to produce pulses

with different phases if the delay between the pulses is shorter than 0.3µs. Since a 16-phase pulse

sequence requires pulses with different phases, the minimum delay between the two excitation pulses

was limited to 0.3 µs. Also, the time offset described in Fig. 3.2 will always be set to this minimum

value 0.3 µs because the demodulation pulse also needs to have a different phase than the excitation

pulses. Therefore, even if the recovery time of the receiver were faster than 0.3 µs, the performance

of the Apollo HF-1 would limit the spectrometer to the same value of delay.

3.3.2 The need for low Q tank circuit

The recovery time of the receiver is the technical limitation that needed to be improved, but in order

to be able to use short delays between the excitation pulses, the ringdown of the tank circuit has to

be at least as short as the recovery time of the receiver. That means that the quality factor Q of the

tank circuit has to be small. Let us approximate the maximum Q value corresponding to a recovery

time of 0.3 µs. Typically, the recovery time needs to be equal to about 20 times the time constant of

the tank circuit in order to measure a NMR signal after sending a excitation RF pulse in the tank

circuit [54]. The straightforward relationship between the time constant τ and the quality factor of

a tank circuit resonating at ω0, Q = ω0τ , gives us the value of Q (at 100 MHz):

Q = ω0
Trecovery

20
∼= 10. (3.10)

With this value of Q, the bandwidth of the tank circuit is about 10 MHz, which allows us to cover

a broad frequency range in excitation. A simple way to obtain a tank circuit matched at 50 ohms

with a low value of Q is to use a serial circuit composed by a resistor of about 50 ohms, a low Q coil
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Figure 3.3: Block diagram of the modified transmitter.

and a capacitor. Typically, we used a coil of inductance L = 1µH and a capacitor of capacitance

C = 10 pF.

3.3.3 Modification of the transmitter: how to create very short RF pulses

The TecMag Apollo HF-1 commercial spectrometer is not capable of producing pulses shorter than

0.1 µs. In most cases this is short enough, but if T2 is very short, it is necessary to use spin-echo

sequences with very short delays (typically, we used delays of the order of 0.5 µs). By reducing the

length of the excitation pulses, we reduce the time between the end of the second pulse and the

echo. That means that for a given recovery time, it is possible to detect echoes using shorter delays.

To reduce the pulse length, we replace the gate driver connected to the output F1 UNBLANK

by a pulse generator (Hewlett-Packard Model 8015A) that can produces pulses as short as 10 ns (c.f

Fig. 3.1).10 The RF pulses coming out of the F1 output of the Apollo HF-1 can be truncated by

adjusting the length of the pulses generated by the HP 8015A. This is diagrammatically represented

in Fig. 3.3. A sketch of the outputs of the Apollo HF-1 along with a sketch of the output of the

HP pulse generator is presented in Fig. 3.4. The nomenclature of the time events is the same as in

Fig. 3.2.

Note that the pulse generator model 8015A is only able to produce a sequence consisting of

two pulses of same length. As an example of the kind of measurements that are possible with this

modified spectrometer, we show in Fig. 3.5 a spin-echo measured in Eu0.957Gd0.043O. This zero-field

measurement was performed at 20 K and the frequency of the excitation pulses was 120 MHz. The

pulses have a length of about 20 ns and are separated by a delay of about 500ns. The fact that

we can flip the nuclear spins of this system with such short pulses is due to the existence of an

amplification factor that amplifies the RF field acting on the nuclear spins. This will be treated in

the next Section.

3.4 Amplification factor

In ferromagnetic materials, the unpaired electron spins are also susceptible to the applied RF mag-

netic field H1. However, since the gyromagnetic ratio γe of the electron is about 104 times larger

than γn, RF frequencies are almost static from the point of view of the electron spins and therefore

10In fact, the pulse generator Hewlett-Packard 8015A can produce pulses even shorter than 10 ns, but we never used

pulses shorter than that value.
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the electron magnetization adiabatically follows H1. For the nuclei, the motion of the electron spins

along H1 represents an additional RF field that adds to the direct H1 (the nuclei being sensitive to

the unpaired electron spins through the hyperfine coupling). The resulting RF field acting on the

nuclei can be written H1 + ηH1, where η is a factor depending on the strength of the hyperfine

coupling and is called the amplification factor (or amplification factor). Since usually η ≫ 1, it is

the custom to make the approximation (1 + η)H1
∼= ηH1.

After the RF excitation, the nuclear spins precess in the plane perpendicular to the effective

static field.11 This precession acts on the electron spins. Again, since γe ≫ γn, the electron spins

adiabatically follow the nuclear spins. Therefore, the e.m.f created in the receiver coil is caused by

the motion of the nuclear spins and the motion of the electron spins. It can be easily shown that

the e.m.f. created by the motion of the electron spins is η times larger than the e.m.f. created

by the motion of the nuclear spins [55]. Consequently, the measured current at the output of the

tank circuit is enhanced by the same factor η + 1 ∼= η. This phenomena is often referred to as

“amplification in detection”.

In the presence of magnetic domain walls, this amplification process is not uniform throughout the

sample.12 In particular, the amplification factor for nuclei located in domain walls or in the vicinity

of domain walls is different than for those located in the center of magnetic domains. Domain walls

undergo reversible displacements under the action of H1 as a consequence of the reconfiguration

of the microscopic magnetic structure. The electron spins located in domain walls experience a

large rotation during the domain wall motions. The thinner the walls, the larger the rotation. The

microscopic magnetic structure, and in particular the thickness of the domains walls, is determined

by the exchange interactions and the magnetic anisotropy. The electron spins located in the domains

that are not influenced by domain walls motions are more rigid, the rigidity being determined by

the magnetic anisotropy, and they will experience a smaller rotation under the influence of H1.

Therefore, while a strong magnetic anisotropy results in a large amplitude of rotation of the electron

spins in domain walls, it causes the amplitude of rotation for electron spins in domains to be small.

It is possible to calculate the amplitude of the amplification. The amplification in domains is

simply given by

ηDomain =
|Hhf |

|Han + Hint|
, (3.11)

where Han is the anisotropy field and Hint is the internal field defined as the sum of the external field

H0, the demagnetization field Hdm and the Lorentz field HL [56]. As implied in the discussion

above, the stronger the hyperfine coupling, the stronger the amplification. Also, the larger the

anisotropy (or the external field), the weaker the amplification.

The amplification for nuclei in a domain wall contained in a spherical particle has been first

calculated by Portis and Gossard and is given by

ηDW =
π

N

D

δ

|Hhf |
|M(T )| , (3.12)

where N is the demagnetization factor of a domain, D is the domain size, δ is the width of the

domain wall and M(T ) is the magnetization in domains at temperature T [57].

11The effective static field is equal to the local field when no external field is applied. In the presence of an external

magnetic field, it is the sum of the local field, the external field, the demagnetization field and the Lorentz field.
12Note that even in a single domain particule, the amplification factor is not expected to be completely uniform

due to surface effects or other constraints on the rigidity of certain spins in the domain.
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3.4.1 Amplification in domain walls vs. amplification in domains

The problem associated with NMR in bulk ferromagnetic materials is related to the presence of

domain walls. Since the broadening mechanisms, as well as the relaxation mechanisms, might be

different for nuclei in domain and in domain walls, it is therefore desirable to be able to distinguish

between the signals coming from the two sources. The fact that the amplification factor is different

is a way to distinguish them. Usually the amplification in domain walls is at least an order of

magnitude larger than the amplification in domains, but as we will show below, it is probably not

true in the case of Eu1−xGdxO.

Let us determine the value of the ratio ηDomain/ηDW in the case of zero-field Eu NMR in EuO.

From (3.11) and (3.12), we obtain:

ηDomain

ηDW
=

N

π

δ

D

|M(T )|
|Han|

. (3.13)

From the study of the dynamic susceptibility on an EuO sphere, Flosdorff et al. [58] have determined

that

D

δ
∼= |M(T )|

0.08|M(T = 0)| . (3.14)

Then, by taking N = 4π
3 , assuming a spherical domain, we have

ηDomain

ηDW
=

4 · 0.08|M(T = 0)|
3

1

|Han|
. (3.15)

Using |M(T = 4.2 K)| = 1623 emu/cm3 [40] and |Han(T = 4.2 K)| = 247.5 ± 2.5 Oe [59], we obtain

ηDomain/ηDW
∼= 0.7. Therefore, at 4.2 K the amplification for nuclei in domains is only slightly

weaker than the amplification for nuclei in domain walls. This is due to the fact that the magnetic

anisotropy in EuO is rather weak.13 When the temperature is increased, we see from (3.15) that

ηDomain/ηDW follows the temperature dependence of the inverse of the anisotropy field. Since the

anisotropy field also decreases when the temperature increases, that means that the amplification

for the nuclei in domains starts surpassing the amplification in domain walls.14

From the above calculation, it appears that we cannot a priori decide if the NMR signal will

be dominated by nuclei in domains or nuclei in domain walls. However, there are two arguments

suggesting that we actually measured the nuclei in domains.

The first argument is that not all the electron spins in domain walls or in the vicinity of domain

walls will experience the same rotation as the domain walls move. Consequently, we can expect a

distribution of amplification factors for the nuclei in domain walls. Conversely, the electron spins

in domains will all experience the same rotation. Therefore, if H1 is large, the distribution of flip

angles for the nuclei in domain walls will be broad and the signal will be strongly reduced due to

the fact that only a part of the nuclei will flip by an angle close to π/2. And since the amplitude of

the amplification factor for nuclei in domains is very similar to the one for nuclei in domain walls,

we can expect the signal from nuclei in domains to be dominant. This argument has been already

invoked in several studies (see, e.g., [63]).

13For comparison, the anisotropy field in cobalt is |Han(T = 300 K)| ∼= 5500 Oe [60] and |M(T = 300 K)| =

1430 emu/cm3 [61], and consequently, ηDomain/ηDW
∼= 0.03.

14Kasuya and Tachiki have calculated the temperature dependence of the anisotropy field. They have found

|Han(T )| ∝ (|M(T )|/|M(T = 0)|)5, which is in very good agreement with experimental results [62].
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Figure 3.6: Hyperfine field and applied field at the center of a domain wall.

The second argument is related to the spin-lattice relaxation times we have measured. In most

NMR studies performed on nuclei in domain walls, the spin-lattice relaxation curves have been

reported to be non-exponential (see [55] for a general review). Moreover, it has been observed that

the spin-lattice relaxation times were dependent on the amplitude of the RF field H1 [57, 64]. As

will be shown in Chap. 5, the relaxation curves of Eu nuclei we have measured in Eu1−xGdxO were

all well fitted by single exponentials and the relaxation times were independent of the amplitude of

H1.

In fact, there is a third argument that will be presented below. The effect of an external static

magnetic field H0 weaker than the coercive field on a multidomain sample is to rearrange the

domains by moving the domain walls in order to minimize the total magnetic energy. If the external

field is applied along the easy axis of the crystal, the magnetization in the domains, and therefore

the hyperfine field acting on the nuclei in the domains, will be parallel to the field. Consequently, the

hyperfine field acting on the nuclei located at the center of the domain walls will be perpendicular to

the applied field, as shown in Fig. 3.6. Moreover, since the hyperfine field is considerably larger than

the coercive field, it will be only very weakly affected by the external field. As a consequence, the

resonance frequency of the nuclei located in domain walls is essentially independent of the applied

field. Therefore, by studying the resonance frequency as a function of the amplitude of the external

magnetic applied field, we should be able to distinguish if we are looking at domain walls or domains.

We did not have the opportunity to perform this measurement before writing this report.

3.5 Relaxation in magnetic insulators

The interactions between the nucleus and the electrons described in Sect. 3.1 give rise to relaxation

mechanisms. Typically, the hyperfine interaction is by far the largest of these interactions, and

consequently it is the main cause of relaxation for the nuclei. If the hyperfine interaction is isotropic

and the axes of quantization of the electron and the nuclei are collinear, the first term of (3.4) can

be written as

Ĥhf = AÎ · Ŝ =
1

2
A(Î+Ŝ− + Î−Ŝ+ + 2ÎzŜz), (3.16)

where A is the isotropic hyperfine constant, Î± = Îx ± Îy and Ŝ± = Ŝx ± Ŝy are the raising and

lowering operators for the nuclear spin and the electron spin, respectively. The first and second

terms of (3.16) represent an interaction that can be described as a mutual flip between the nuclear

spin and the electron spin. To calculate the relaxation processes deriving from these terms, it is

useful to use spin-wave theory. Since EuO is a Heisenberg-type ferromagnet, spin-wave theory is

particularly well adapted to the description of the magnetic interaction taking place in this material.

By developing the operator Ŝ+ using the Holstein-Primakoff transformation [65], we can write the

first term of (3.16) in terms of magnon creation and annihilation operators. The development of Ŝ+
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yields terms involving products of odd numbers of operators. Therefore, the relaxation processes can

involve only odd numbers of magnons: one magnon, three magnons, etc. The one-magnon process is

not allowed because of energy conservation; indeed, the energy of a nuclear spin-flip is much smaller

than the energy of a electron spin-flip. The first allowed process is therefore the three-magnon

process. Calculated to the first-order in perturbation theory, the three-magnon processes lead to a

spin-lattice relaxation rate given by

1

T1
=

11.29

16(2π)5
A2

2JS · ~S

(
kBT

2JS

)7/2

, (3.17)

where J = J1 + J2 is the exchange integral and kB is the Boltzmann constant. This expression was

first derived by Oguchi and Keffer [66]. Pincus showed that a second-order process may enhance

the first-order process given in (3.17) [67]. This second-order process arises from the four-magnon

exchange interaction and can be described as the scattering process of a virtual magnon by thermal

magnons via the exchange interaction. Beeman and Pincus calculated this factor to be about 8 in

the case kBT ≫ gµBH [68]. Note that the factor 11.29 in (3.17) is the result of our own calculations.

We have indeed recalculated (3.17) and have found that the factor 7.6 given by Beeman and Pincus

in [68] should be replace by the factor 11.29. We present this calculation in Appendix A along with

a discussion on the accuracy of the enhancement factor of 8. As we will see in Chap. 5, the factor

11.29 is in better agreement with our measurements.

Now, if the hyperfine interaction is anisotropic, there will be terms of the form Axz ÎxŜz and

Ayz ÎyŜz. Also, if there is a non-zero angle between the axes of quantization of the electron and

the nuclei, then there will be terms of the form 1
2AÎ+Ŝzsinθ, where θ is the angle between the two

axis of quantization. In other words, some terms involving the operator Ŝz will participate at the

relaxation of the nuclei. Since the development of Ŝz using the Holstein-Primakoff transformation

gives terms involving even numbers of magnon creation and annihilation operators, this implies that

in these cases, two-magnon relaxation processes are allowed. These processes are often called Raman

relaxation processes and were first calculated by Mitchell in the case of ferromagnets [69].

3.6 Suhl-Nakamura interaction

When the temperature is lowered, the number of magnons decreases. Therefore, the contribution

of direct spin-wave scattering processes to the relaxation becomes very small. Scattering processes

deduced from higher order in perturbation theory have then to be considered. The Suhl-Nakamura

interaction describes an effective nuclear spin-spin interaction via emission and absorption of virtual

spin waves [70, 71]. It is obtained from a second-order perturbation treatment of the hyperfine

interaction. It is actually the equivalent of the RKKY interaction (valid for free electron gases)

for permanent magnetic materials. In the Suhl-Nakamura interaction, the spin-waves play the role

played by the conduction electrons in the RKKY interaction. However, whereas the RKKY indirect

coupling is isotropic,15 the Suhl-Nakamura coupling is not, due to the fact that it depends on the

direction of the electronic magnetization. The Suhl-Nakamura interaction is of the form

ĤS−N =
∑

i6=j

Vij Î
+
i Î−j , (3.18)

15This is in fact only true for s electrons.

28



with

Vij =
A2

2Jz
f(|r|), (3.19)

and f(|r|) a decaying sinusoidal function of the distance r between the two nuclei i and j. Note that,

contrary to the dipolar Hamiltonian, the Hamiltonian describing the Suhl-Nakamura interaction

does not contain terms involving the z component of the nuclear spin operators. An interaction

such as (3.18) is expected to produce a lineshape similar to a Gaussian. Then T2 can be determined

by using the Van Vleck theory of moments: T2 =
√

2/
√

M2 where the second moment M2 is given

by

M2 =
1

3
I(I + 1)

∑

j

V 2
ij . (3.20)

Suhl assumed that the range of the interaction is long enough to replace the sum in (3.20) by an

integral. He obtained the following expression for the second moment:

σ =
√

M2 =

[
I(I + 1)

24πS2

]1/2
ω2

0

γe|Hex|3/4H
1/4

, (3.21)

where ω0 is the Larmor frequency, Hex is an effective exchange field between electronic spins and

H is the sum of the static fields acting on the electron spins, that is H = Han + H0 + Hdm. The

exchange field can be approximated by the expression

gµB |Hex| = 2J1z1S, (3.22)

where g is the g-factor, µB is the Bohr magneton, and z1 is the number of first neighbors.

For a specific transition m ↔ m + 1, the factor 1
3I(I + 1) in (3.20) needs to be replaced by the

factor

F (I,m) =
2(I − m)2(I + m + 1)2 + (I + m)2(I − m + 1)2 + (I − m − 1)2(I + m + 2)2

8(2I + 1)
, (3.23)

as shown in [47]. Also, when there is more than one isotope, (3.20) has to be multiplied by the

abundance c of the measured isotope.

The interaction described by (3.20) only applies to homogeneous lineshapes. In real magnetic

materials, the microscopic inhomogeneities give rise to spatially dependent local fields that broaden

the spectra and change the local Zeeman energy levels. Therefore, the number of allowed mutual

spin-flips between nuclei within the range of the S-N interaction is reduced and as a consequence

the relaxation times are expected to be longer. Hone, Jaccarino, Ngwe and Pincus were the first

to describe this adaptation of the Suhl-Nakamura interaction (it will be referred to as the HJNP

theory in the following) [72]. The line is a Lorentzian g(ω) and T2 is therefore given by:

1

T2
=

1

2
Γ =

1

6
π
√

3

(
M2

2

M4

)1/2

M
1/2
2 , (3.24)

where the second moment is now given by

M2 =
1

3
I(I + 1)g(ω)

∑

j

V 2
ij

|Vij |
~

, (3.25)
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and the fourth moment is a more complex function of I, Vij , and g(ω). Note that g(ω) is a normalized

shape function, i.e.,
∫

g(ω)dω = 0. The result is that T2 is now of the form

1

T2
=

1

6
π
√

3g(ω)

(
A2

2Jz1

)2

R(I, f(|r|)), (3.26)

where R(I, f(|r|)) is a function of I and f(|r|)(c.f. formula (3.12) of [72]). Therefore, T2 is frequency

dependent and can therefore be noticeably different at different part of the line.

Equation (3.26) needs to be further modified for a specific transition m ↔ m + 1. As shown by

Fekete et al. [73], (3.26) is multiplied by a factor
[
1
3F (I,m)

]1/2
, with F (I,m) given in (3.23), and

g(ω) needs to be replaced by a m dependent function gm(ω). Finally, as for the homogeneous case,

we need to take into account the abundance c of the studied nuclei.

3.7 NMR in CMR materials: overview of what has been

observed

Numerous 139La NMR studies in the magnetically ordered state of various La1−yAyMnO3 (A=alkaline-

earth metal such as Ca or Sr) compounds have been published (see e.g. [74–78]). Results in the

paramagnetic phase have also been reported by Sakaie et al. [79]. Also, several groups have mea-

sured the nuclei of the ion that is the source of the magnetism, namely 55Mn. The first 55Mn NMR

measurements on manganites were published in 1970 by Matsumoto [80]. All the measurements

were done in the magnetic phase (due to fast T2). More recently, after the discovery of the uncon-

ventionally large magnetoresistance (CMR) of these materials, Allodi et al. performed 55Mn NMR

on La1−yCayMnO3 systems [81]. They showed that an antiferromagnetic phase and a ferromagnetic

phase coexist (phase separated) in these materials. Following this work, numerous 55Mn NMR stud-

ies on various manganites were performed, and it has been shown that the spectrum is composed of

several lines, the lowest of which is usually assigned to the signal from Mn4+ (see e.g. [82, 83] and

the references therein for the most recent developments).

According to several theories, CMR is associated with the formation of magnetic polarons (c.f.

2.3). If magnetic polarons were present in a material and were static on the NMR timescale, it

would be reasonable to expect a non-zero static hyperfine field around the electron donors, namely

Mn in manganites and Eu or Gd in Eu1−xGdxO. That is the assumption of Kapusta et al. [2, 84].

As already mentioned in the introduction, they have detected an NMR signal above TC in various

manganites. They show that the NMR frequency does not drop to zero at T = TC. We have

performed the same experiment on Y0.09La0.5Ca0.41MnO3 and have observed a similar result as

shown in Fig. 3.7. This is in disagreement with the results of Novák et al. who observed that the

hyperfine field follows the bulk magnetization, as measured with a SQUID magnetometer [4, 85]. The

homogeneity of the magnetization of the samples might be the cause of this disagreement. Indeed,

a given sample might contain more than one phase and therefore the value of TC as measured by

magnetometry might not apply to the entire sample. In any case, as underlined by Novák et al., the

order of the magnetic phase transition in manganites varies from one sample to another. Therefore,

the magnetic properties of these systems in the vicinity of TC are difficult to study.

We also measured the temperature dependence of the hyperfine field on 153Eu nuclei in the

Eu1−xGdxO systems. As will be shown in 2.4.1, the frequency of the resonance follows closely the
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Figure 3.7: Hyperfine field vs. T/TC in Y0.09La0.5Ca0.41MnO3 (TC = 160 K).

temperature dependence of the bulk magnetization, at least for temperatures low enough to detect

an NMR signal. Therefore, the hyperfine field in these systems follows the conventional temperature

behavior of ferromagnetic systems.

3.7.1 Spin dynamics in manganites

Most of the NMR results published on manganites concern the lineshape of the resonance and the

temperature dependence of the resonance frequency. Several groups studied the relaxation times

of nuclei of non-magnetic ions such as 139La, but only few analyses of the mechanisms leading to

the relaxation of 55Mn have been reported. These analyses are potentially of great importance to

the understanding of CMR since they give information on the spin fluctuations of the magnetic

ion. The studies published by Savosta et al. are probably the most complete [75, 83, 86]. In

particular, in metallic manganites they have observed a fast increase of the relaxation rates 1/T1

and 1/T2 with increasing temperature. They suggest that this temperature behavior is the signature

of fluctuations in the hyperfine field caused by the “hopping of the eg electrons of Mn ions” [75]. In

their most recent article, in talking about the relaxation processes in the ferromagnetic insulating

(FMI) clusters contained in various manganites, they state: “The temperature dependence of 139La

and 55Mn relaxation in the FMI clusters is analogous which can be understood as due to the EFG

fluctuation on the La nuclei and combined EFG and hyperfine field fluctuation on the Mn nuclei

connected to the motion of the Jahn-Teller polarons.” [83].

In conclusion, it appears that several of the numerous physical phenomena taking place in man-

ganites might be linked to CMR. It seems to be an intricate task to extract information from NMR

results in manganites. Associated with this problem is the fact that the crystal structure of man-
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ganites is rather complex. These are clearly the reasons for choosing to study a CMR compound of

the europium chalcogenides family, namely europium oxide. As will be shown in this work, even if

the structure of EuO is simple (NaCl structure), the physics taking place in these systems is very

rich.
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Chapter 4

NMR frequency and lineshape

Information on the static properties of the magnetic and electric environment of the nuclei can be

obtained through the analysis of NMR lineshapes. In addition, the measurement of the spin-spin

and spin-lattice relaxation times provides information on the dynamics of the nuclear environment.

In this chapter, we present and discuss our measurements of the lineshape of Eu1−xGdxO. The

relaxation times measurements will be treated in the next chapter, but we will already mention sev-

eral results of these measurements in this chapter since the two properties, lineshape and relaxation

times, are correlated and therefore cannot be treated entirely separately.

The NMR lineshape of 153Eu in single crystals of pure EuO at 4.2 K has already been studied

several times. However, the analysis of the broadening mechanisms varies from one author to another.

In 1966, Boyd found a single sharp resonance [87] using continuous wave (cw) NMR. Later, Raj et al.

observed that the zero-field lineshape is composed a sharp central line and two wings but they did

not discuss the broadening mechanisms [88]. Then, Fekete et al. observed five quadrupolar lines in a

saturation field of 2 T [89]. Finally, Arons et al. observed a zero-field lineshape that they described

as a sharp line on top of a broad line [90–92]. They claimed that the sharp line corresponds to the

signal from nuclei located in domain walls and that the broad line corresponds to the signal from

nuclei in domains. No measurement of the lineshape above 4.2 K has ever been published. In this

work, we reported the first study of the temperature dependence of the 153Eu lineshape. We also

reported the first lineshape of the 151Eu resonance in EuO and the first NMR study of Gd doped

EuO.

4.1 Preliminary remarks on the NMR signal

Before analyzing the lineshapes of the europium resonance, it is necessary to point out some charac-

teristics of the observed NMR signals, in particular the intensity of the signals. The lineshapes were

measured using a spin-echo sequence t1 − delay − t2 composed of two square pulses separated by a

varying delay, as sketched in Fig. 3.2. We used t1 = 0.1 µs, t2 = 0.2 µs and delay values of several

microseconds. A 16-phase CYCLOPS sequence was used in order to reduce the transients due to the

RF pulses [53]. The determination of the amplitude of the RF field H1 needed to flip the nuclear

spins by an angle π/2, the so-called π/2-pulse, has been made by measuring the echo amplitude as

a function of the amplitude |H1|. We always observed a maximum in the spin-echo amplitude, but

|H1,max|, the value of |H1| at which the maximum occurs, was usually not precisely determined and
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Figure 4.1: Zero-field amplitude of the spin-echo of 153Eu vs. amplitude of the RF field |H1| in
2% doped EuO. We used t1 = 0.1 µs, t2 = 0.2 µs and delay = 10.5 µs.

could be taken over a rather broad range of |H1|, as can be seen in Fig. 4.1. This is most likely due

to the fact that the amplification factor is not homogeneous throughout the sample and therefore

the value of |H1| needed to flip the magnetization by an angle π/2 is not identical for all the nuclear

spins. However, we observed that neither the lineshapes nor the relaxation times depended on the

chosen value of |H1|, at least for values close to those maximizing the spin-echo amplitude. We

also observed that the range of |H1,max| values for which the signal is maximal does not drastically

change with the temperature, at least for temperatures sufficiently far below the Curie temperature

of the sample.

Note that the value of |H1,max| is calculated from the measurement of the RF power Pmax

needed to maximize the spin-echo amplitude, the quality factor of the tank circuit Q, the frequency

ν of the RF signal and the internal volume of the coil V . It is given by

|H1,max| =

√
10PmaxQ

νV
, (4.1)

where P is in Watts, ν is in MHz, and V is in cm3 [43]. We obtained |H1,max| ∼= 21 gauss from

measurements performed on a 2% Gd doped sample (c.f. Fig. 4.1). Similar values were obtained

for samples with different Gd concentration. From this value, the amplification factor defined in

Sect. 3.4 can be estimated. The flipping angle θ of the spins are related to |H1,max| through the

relation θ = ηαγn|H1|t1, where the factor η is the amplification factor and the factor α ∼= (I + 1
2 )

comes from the fact that all the transitions of the spin-5
2 multiplet are excited [93, 94]. Assuming

that the maximum spin-echo amplitude corresponds to a flipping angle of π/2, we obtain
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η =
π
2

3γn|H1,max|t1
∼= 85. (4.2)

This value is of the order of magnitude of the typical amplification factors observed for nuclei located

in domains [55].

As we saw in Chap. 2, the conductivity of the samples is strongly dependent on the Gd concen-

tration and on the temperature. Therefore, since not all the samples can be considered insulators,

it is necessary to address the problem of the penetration of the RF field in order to estimate the

proportion of nuclei participating to the NMR signal. The skin depth δ of a sample of resistivity ρ

and permeability µ irradiated by an electromagnetic wave of frequency ω is given by

δ =

√
2ρ

µω
(4.3)

where ρ is in Ω·m, ω in rad/s and µ in H/m [95]. Oliver et al., observed that the resistivity of

Eu1−xGdxO is within the range 10−4Ω·cm< ρ < 106Ω·cm [27]. Taking µ = µ0 = 4π · 10−7 and

ω = 2π · 130 · 106 rad/s, we obtained 5 · 10−2 mm< δ <5 m. The lower value applies to samples with

large Gd concentrations at temperatures below 50 K. The thickness of the single crystals we have

measured is typically a few millimeters. Therefore, while in the case of pure EuO the RF field will

detect all of the nuclei, only a fraction of the nuclei of the Gd doped samples will be detected or

irradiated.

To conclude this preliminary Section, let us list the variables affecting the NMR intensity in

Eu1−xGdxO. First, the amplification factor increases the intensity of the observed signal. The

amplification factor may vary with temperature as well as with Gd concentration due to a variation

of the magnetic anisotropy. Second, the skin depth varies with Gd concentration as well as with

temperature. Third, as will be shown later, the spin-spin relaxation times of certain nuclei are

too short to be detected by our spectrometer. Also, the spin-spin relaxation times are strongly

temperature and frequency dependent in Eu1−xGdxO. Consequently, the intensity of the signal

may be frequency as well as temperature dependent due to short spin-spin relaxation times. These

three reasons imply that we will need to be extremely careful when discussing the intensity of the

signals. In this work, we will generally not compare NMR intensities from different samples. Let us

just underline that at 4.2 K, the signal of 153Eu in Eu1−xGdxO is intense and easily detected as a

consequence of the amplification mechanism. However, while the intensity of the signal in pure EuO

and 0.6% Gd doped EuO is very similar, the intensity in 2% and 4.3% Gd doped EuO is substantially

weaker. This is most likely due to the fact that the conductivity is larger for Gd concentrations

above xc
∼= 1.5% and therefore, for x = 2% and x = 4.3% we only observe a limited number of nuclei

due to small skin depth.

In the following, the intensity of the lines that will be presented has been corrected for the

Boltzmann factor (~ω/kBT ) and the factor proportional to ω coming from the e.m.f induced in the

coil by the magnetization. Note that since Q is very small, and therefore to a good approximation

temperature independent, we did not have to take into account of the extra factor ω linked to Q

variations.
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Figure 4.2: Zero-field lineshape of 153Eu in EuO at 4.2 K; measurement and computed lineshape.

4.2 The lineshape of pure EuO

We present in Fig. 4.2 the zero-field lineshape of 153Eu in pure EuO at 4.2 K. We determined the

lineshape by two different techniques: on one hand, we measured the echo integral at a certain

number of discrete values of frequency (point-by-point measurement). On the other hand, we Fourier

transformed the echo measured at the frequency of the central line. As shown in Fig. 4.2, both

methods give an almost identical lineshape. This shows that the RF pulses of the spin-echo sequence

excited the entire range of frequency and it was appropriate to use the Fourier transform technique.

Note that the estimated range in frequency covered by a pulse of duration t1 = 0.1 µs is of the order

of ∆ν = 1/(2πt1) ∼= 1.6 MHz.

Since contradictory results and analysis of the lineshape of 153Eu in pure EuO at 4.2 K were

published, we present here our own analyze of the lineshape. Since the Eu sites in EuO have

a nominal cubic symmetry, we expected to observe a single narrow line. However, as shown in

Fig. 4.2, we observed an intense central peak and two wings with a structure suggesting that each

wing is composed of two broadened lines. In order to distinguish between the broadening due to

EFGs and the broadening due to the magnetic environment of the nuclei, we took advantage of the

fact that there are two isotopes of europium with similar natural abundance. The gyromagnetic

ratio and the electric quadrupole moment of the two isotopes are shown in Table 4.1. The zero-field

lineshape of 151Eu in pure EuO at 4.2 K is shown in Fig. 4.3. By comparing the 153Eu and the
151Eu line at 4.2 K we observed that the lines cannot be described solely by magnetic broadening

or quadrupole electrical broadening. We therefore came to the conclusion that the broadening was

due to a combination of both effects.
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Table 4.1: Spin, natural abundance, gyromagnetic ratio, and electric quadrupole moment of the
two europium isotopes (from [96]).

Spin I Natural abundance [%] γn/2π [MHz/T] Q [barn]

153Eu 5/2 52.19 4.6745 2.41
151Eu 5/2 47.81 10.5856 0.903
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Figure 4.3: Zero-field lineshape of 151Eu in EuO at 4.2 K; measurement and computed lineshape.
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Table 4.2: Values of the lineshape fitting parameters for 153Eu along with the deduced parameters
for 151Eu.

Γ [MHz] ∆νQ [MHz] δ∆νQ
[MHz]

153Eu 0.072 0.75 0.2
151Eu 0.163 0.281 0.075

In the presence of EFGs, since 153Eu has a spin I = 5/2, we expected to observe five lines all

separated by the same frequency interval ∆νQ and with intensity ratios 5:8:9:8:5 [43]. We tried to

reproduce the observed lineshape theoretically by assuming a distribution in EFGs and a magnetic

broadening. We described the inhomogeneities in the EFGs with a Gaussian distribution leading

to a distribution in frequency G(ν) of second moment δ∆νQ
that broadens the five lines. As will

be discussed in Chap. 5, a Lorentzian distribution describes correctly the magnetic broadening.

The function expressing the overlap of the two broadening mechanisms is a convolution of the two

distribution functions. The convolution of a Gaussian and a Lorentzian gives a Voigt function. A

Voigt function has the form

V (ν) =
1
2Γ

π3/2

∫ ∞

−∞

e−t2

(ν − ν0 −
√

2σt)2 + (1
2Γ)2

dt, (4.4)

where Γ is the full width at half maximum (FWHM) of the Lorentzian and σ is the second moment

of the Gaussian [97]. The resulting lineshape is then given by

f(ν) =

m=2∑

m=−2

(1 − m2

9
)

1
2Γ

π3/2

∫ ∞

−∞

e−t2

(ν − (ν0 − m∆νQ) −
√

2|m|δ∆νQ
t)2 + (1

2Γ)2
dt, (4.5)

where Γ represents the FWHM of the magnetic distribution and the factor (1−m2/9) accounts for

the difference in intensity of the five quadrupolar lines. By fitting the measured 153Eu lineshape

with this function, it was possible to determine the parameters Γ, ∆νQ and δ∆νQ
. However, there

was another characteristic that needed to be taken into account: Raj et al. showed that the 153Eu

spin-spin relaxation time in pure EuO is short and frequency dependent and, as a consequence, some

of the nuclei might not be observed if the delay between the detection pulses is too long [88]. They

observed that the intensity of the central part of the line is strongly reduced. We demonstrated this

phenomena in Fig. 4.4 where we plotted the FFT of the echo measured at two different values of

delay.1 To take into account this effect in the computation of the lineshape, we used the shape of

the frequency distribution of T2 at 4.2 K reported by Raj et al. and adapted it to the values of T2

we measured at several frequencies. The T2 distribution we deduced is shown in Fig. 4.5 along with

our measurements. We will discuss the physical reason for this T2 distribution in Sect. 5.3.2 Finally,

by multiplying (4.5) by the T2 distribution shown in Fig. 4.5, we fitted the measured lineshape of
153Eu. The fit is shown in Fig. 4.2 along with the measured lineshape and the deduced values of the

fitting parameters are shown in Table 4.2.3

To verify if our description of the 153Eu lineshape was correct, we computed the 151Eu lineshape

from the fitting parameters we determined for 153Eu and compared the resulting curve with the

1Note that since the central peak was sharp, the echo was long and it was not possible to use values of delay

shorter than about 10 µs to record the entire echo, even with the short recovery time of 0.3 µs of the receiver.
2Note that the distribution might be slightly different in the samples we studied, but T2 was clearly the shortest

on the central peak and was increasingly longer as the frequency was shifted away from the central peak.
3We used the Mathematica software to compute the lineshape.
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measured 151Eu lineshape. We first calculated the parameters for 151Eu using the relations

Γ151 =
151γn

153γn
Γ153, (4.6)

∆νQ,151 =
151Q
153Q

∆νQ,153, (4.7)

δ∆νQ,151 =
151Q
153Q

δ∆νQ,153, (4.8)

where the indices 151 and 153 refer to 151Eu and 153Eu respectively. We deduced the T2 distribution

of 151Eu from the T2 distribution of 153Eu using the following process: first, since we observed that

T2 at 4.2 K was proportional to γ2
n (c.f. Chap. 5), we divided the amplitude of the distribution

by (151γn/153γn)2. Second, since T2 depended on γn (and was therefore of magnetic origin), we

expected the T2 distribution to scale with the magnetic distribution. We thus calculated the 151Eu

T2 distribution by multiplying the width of the 153Eu T2 distribution by 151γn/153γn. The resulting

distribution is shown in Fig. 4.5 (dashed line) along with our measurements of T2. The deduced

distribution is in good agreement with our data. In order to take into account the fact that the T2

of the central peak was too short to be detected, we subtracted the minimum value of T2 from the

computed distribution curve and obtained the distribution shown as a dotted line in Fig. 4.5. Finally,

the computed 151Eu lineshape was obtained by multiplying (4.5) by the 151Eu T2 distribution shown

as a dotted line in Fig. 4.5. The result was plotted in Fig. 4.3 along with the measured data. The

calculated line was in reasonable agreement with the data and we concluded that our description of

the lineshape was correct.

From the above analysis, we deduced a ratio 151γn/153γn slightly different than the one given in

tables. Indeed, by comparing the frequency of the central transition of both isotopes, we obtained

151γn

153γn
=

ω0,151

ω0,153
=

312.075

138.45
∼= 2.254 (4.9)

where ω0,151 and ω0,153 are the frequencies of the center of the 151Eu line and the 153Eu line respec-

tively. The value given in tables is about 2.2645 (from [96]).

4.2.1 Origin of the quadrupolar splitting

There are several mechanisms that can lower the symmetry of cubic sites in ferromagnets. First,

the presence of defects or vacancies in the crystal will create a distortion in the lattice. This effect

is expected to be small in a sample of good quality. Also associated with lattice distortions is the

possibility of magnetostriction. This is an effect that cannot be overlooked and it can be estimated

using the microscopic theory formulated by E. R. Callen and H. B. Callen [98]. Finally, even if

the lattice has a perfect cubic symmetry, there are some relativistic effects associated with the non-

spherical charge distribution of the f-shells in rare-earth ions [99]. This gives rise to a “single-ion”

quadrupole hyperfine interaction.

Fekete et al. considered two mechanisms to explain the quadrupolar splitting observed in EuO:

a single-ion quadrupole interaction in Eu2+ and magnetostriction, the latter being dependent on the

direction of the applied field whereas the former is not. The single-ion splitting was determined by

Baker and Williams in an ENDOR experiment of Eu2+ diluted in an CaF2 matrix to be ∆νQs.i.
=
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0.305MHz [48].4 The magnetostriction calculated by Fekete et al. leads to ∆νQlatt
= 0.291 ±

0.03 MHz for M parallel to the easy axis [111]. The total shift ∆νQtot
= 0.596 MHz is therefore

comparable to the shift ∆νQ = 0.75 MHz that we measured. The difference is likely due to the fact

that the amplitude of the magnetostriction depends on the quality of the sample. It could also come

from a difference in defects concentration as discussed by Arons et al. [100]. We indeed observed

slight differences between the samples. However, the variation in ∆νQ between the four samples we

have measured was less than 15% and we do not think that the splitting was solely due the presence

of defects in the samples as argued by Arons et al..

It is important to note that the value of the electric quadrupole splitting we observed in zero-field

has a similar value as the splitting observed by Fekete et al. in a field saturating the magnetization

(2 T< |H0| <3 T). In domain walls we expect the magnetostriction to be different than in domains

since the deformations leading to the magnetostrictive effects depend on the direction of the magne-

tization. Therefore, the fact that the quadrupolar splitting we observed is similar to the quadrupolar

splitting in high field observed by Fekete et al. is an additional suggestion that we observed nuclei

located in domains.

4.3 The consequences of doping EuO with Gd on the line-

shape

We now turn to the analysis of the lineshapes of 153Eu in Gd doped EuO. In Fig. 4.6, we plotted

the lineshape of the three Gd doped EuO samples we studied along with the lineshape of the pure

EuO sample previously described. The integral of each curve was normalized to be equal to 1. We

observed that the frequency of the central transition of the 0.6% Gd doped EuO lineshape was only

slightly shifted towards higher frequency compared to pure EuO, from 138.45 MHz to 138.48 MHz.

However, the central line was substantially broader. As discussed in Sect. 4.2, the width of the

central transition is determined by magnetic broadening only. Also, as we will see in Sect. 5.3, the

spin-spin relaxation rates in 0.6% Gd doped EuO being longer than in pure EuO, the broadening is

not due to dynamic effects and it is therefore a static broadening. We think that the observed line is

broader in the 0.6% sample than in the pure sample because of the random distribution of Gd atoms

in the EuO matrix. Since different Eu atoms have different numbers of nearest and next nearest

Gd neighbors, the local field acting on Eu atoms, which is influenced by the presence of Gd (c.f.

Sect. 3.1), is not same at each Eu site. The influence of the presence of Gd atoms on the local field

might come through an increase in the thermal average value of the electronic magnetization (term

< Ŝz >T in (3.6)), or through the coupling described by the tensors B
i and D

j (second and third

term (3.6)). We assume that the last term of (3.6) is negligible in the case of 0.6% Gd doped EuO.

Another noticeable difference between pure EuO and 0.6% Gd doped EuO is that the quadrupolar

structure is not resolvable in 0.6% Gd doped EuO. We think that this is also due to the random

distribution of Gd atoms in EuO which leads to a random distribution of EFGs. Finally, it is worth

noticing the asymmetry in the wings of the line. We do not presently have an explanation for this

asymmetry.

Whereas the addition of 0.6% of Gd in the EuO matrix only slightly shifts the frequency of the

center of the NMR line, the center of the 2% and 4.3% Gd doped EuO lines are considerably shifted

4CaF2 is a non-magnetic insulator.

42



135 138 141 144
0.0

0.5

1.0

1.5

 

N
or

m
al

iz
ed

 e
ch

o 
in

te
gr

al
 (

ar
b.

 u
ni

ts
)

Frequency (MHz)

 Pure EuO
 0.6% Gd doped EuO
 2%   Gd doped EuO
 4.3% Gd doped EuO

Figure 4.6: Zero-field lineshape of 153Eu in Eu1−xGdxO at 4.2 K for x = 0, 0.6%, 2%, and 4.3%.

towards higher frequency. We also observed that the shift is smaller for x = 4.3% than for x = 2%.

So, we did not observe a monotonic increase of the shift with the doping. Since we do not know the

sign of the coefficients Bi
zz, Dj

zz and C, appearing in (3.6), we are not able to tell what causes this

non-monotonicity, but it is expected that the last term of (3.6) plays an important role for the 2%

and 4.3% Gd doped samples since the conductivity in these samples is substantially higher than in

0.6% Gd doped EuO (c.f. Sect. 2.1).

We also observed that increasing the Gd doping strongly influences the shape of the 153Eu line.

In particular, we did not observe the central line in the 2% and 4.3% Gd doped samples and the

lines were considerably broader than in the case of pure EuO and 0.6% Gd doped EuO. In order to

decide whether or not this broadening mechanism was magnetic in origin, we measured the 151Eu

lineshape of the 4.3% sample. We did not have the opportunity to measure the lineshape at 4.2 K,

but we did compare the 153Eu and 151Eu lineshapes at 20 K. As will be shown in Sect. 4.4, the
153Eu lineshape at 20 K is very similar to the 153Eu lineshape at 4.2 K, and we thought that it

was likely that the 151Eu lineshape at 20 K would also be similar to the 151Eu lineshape at 4.2 K.

In Fig. 4.7, we plotted the 153Eu and 151Eu lineshapes observed in 4.3% Gd doped at 20 K. The

frequency of the 151Eu lineshape was multiplied by the ratio given in (4.9). Since the two curves

have a similar shape, we concluded that the broadening mechanism was of magnetic origin. We

do not know exactly what interaction causes this large broadening, but we do know from the T2

measurements (c.f. Sect. 5.3) that the broadening is a static broadening. In conclusion, we observed

a remarkable difference between the lineshape of samples belonging to group III and IV and the
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Figure 4.7: Zero-field lineshape of Eu153 and Eu151 in 4.3% Gd doped EuO at 20 K. The frequency
of the Eu151 lineshape was multiplied by the ratio 153γn/151γn.

lineshape of samples belonging to group V.5

4.4 Temperature dependence of the lineshape

We also analyzed the temperature dependence of the 153Eu lineshape in pure EuO and Gd doped

EuO. This analysis is motivated by the conductivity studies we reviewed in Sect. 2.1. The transport

properties of Eu1−xGdxO change with temperature and several studies show that this change is

related to the temperature variation of the magnetic properties of the samples (c.f. references in

Chap. 2). We thought that the measurement of the NMR lineshape as a function of temperature

could unravel some characteristics of the temperature dependent magnetic properties.

4.4.1 Pure EuO

In Fig. 4.8, we presented the lineshape of pure EuO at 4.2 K and at several temperatures between

4.2 K and 42 K. These lines were obtained by Fourier transforming the spin-echo measured at the

frequency of the center of the lines. Since, as shown in Sect. 2.4.1, the NMR frequency varies

considerably with the temperature, we shifted the center of the lines presented in the figure to

zero frequency in order to compare the lines taken at different temperatures. We also adjusted the

amplitude of the lines to superimpose the wings of all the lines. This adjustment allowed us to

compare the amplitude and the width of the central peak of the lines.

5These groups are defined in Table 2.1.
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Figure 4.8: Zero-field lineshape of 153Eu in EuO vs. temperature. The lineshapes were obtained
by Fourier transform of the spin-echo signal.

We observed that the intensity of the central line was greatly reduced with increasing temper-

ature. As we pointed out in Sect. 4.2, the spin-spin relaxation times are frequency dependent and

they are shorter for frequencies close to the central line. Also, as we will see in Chap. 5, we observed

that T2 is strongly temperature dependent, decreasing with increasing temperature. Therefore, we

concluded that the intensity of the central peak decreased with increasing temperature as a con-

sequence of the decreasing value of T2, our spectrometer not being able to detect all the nuclei of

the central peak. We also observed that the width of the central line increases almost linearly from

about 0.11 MHz at 4.2 K to about 0.23 MHz at 41.4 K. This broadening mechanism did not seem to

be linked to T2 effects since we measured T2
∼= 4 µs at 41.4 K, which corresponds to a Lorentzian

width of about 0.08 MHz.

Finally, we observed that the electrical quadrupole splitting decreases with increasing temper-

ature. We estimated the change to be of the order of 25%, from ∆νQ
∼= 0.75 MHz at 4.2 K to

∆νQ
∼= 0.55 MHz at 41.4 K. We think that this change might be due to a variation of the magne-

tostriction with temperature. This assumption is supported by the results of F. Levy who observed,

by X-ray measurements, that the spontaneous magnetostriction of EuO decreases by about 25%

between 4.2 K and 40 K [101]. Note that if the quadrupolar splitting was due to the presence of

defects in the crystals, as was proposed by Arons et al. [100], we would probably not observe such

a temperature dependence.
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Figure 4.9: Zero-field lineshape of 153Eu in 0.6% Gd doped EuO vs. temperature. The lineshapes
were obtained by Fourier transform of the spin-echo signal. Note that while the intensity of the
central line in pure EuO was decreasing with increasing temperature due to short T2’s, we observed
that the area under the central peak of 0.6% Gd doped EuO was to a good approximation tempera-
ture independent. This is most likely because, as will be shown in Chap. 5, the spin-spin relaxation
times in 0.6% Gd doped EuO are slower by a factor of about 1.5.

4.4.2 0.6% Gd doped EuO

We measured the lineshape of 0.6% Gd doped EuO as a function of temperature from 4.2 K to 49.5 K.

The results are shown in Fig. 4.9. As for pure EuO, the lines were obtained by Fourier transforming

the spin-echoes and we plotted the amplitude of the lineshape as a function of the frequency shift

from the central line. We adjusted the amplitude of the different lines by superimposing the wings

of all the lines.

We observed a temperature dependent broadening of the central line substantially more signifi-

cant than in pure EuO. We plotted in Fig. 4.10 the Full Width at Half Maximum (FWHM) of the

central line as a function of temperature for pure EuO and 0.6% Gd doped EuO.6 It appears that for

temperatures above about 30 K, the FWHM of the 0.6% Gd doped EuO lineshape increases sharply

with increasing temperature. We did not observed this phenomena in pure EuO. The measured 1/T2

is much less than the observed linewidth. Moreover, we observed that T2 has the same temperature

dependence in 0.6% Gd doped EuO as in pure EuO (c.f. Sect. 5.3). We therefore came to the

conclusion that the broadening could not be explained by a variation in T2 and that the broadening

was therefore, a static broadening. This is a key result in this study. It means that the addition

6Note that we defined the half maximum of the central line of 0.6% Gd doped EuO from the top of the wings and

not from zero intensity. Therefore, we probably underestimated the FWHM of the lineshape of 0.6% Gd doped EuO.
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Figure 4.10: FWHM of the zero-field lineshape of Eu153 in pure EuO and 0.6% Gd doped EuO vs.
temperature. Note that in case of 0.6% Gd doped EuO, the half-maximum is determined from the
top of the broad line not from zero intensity.

of 0.6% Gd in the EuO matrix give rise to a temperature dependent phenomena associated with

a static magnetic inhomogeneity. The temperature dependent broadening mechanism initiates at

about 30 K, the temperature at which the conductivity starts decreasing dramatically according to

the results of Godart et al. [28] and by Samokhvalov et al. [20]. This suggests that the phenomena

we observed is likely to be related to the transport properties of the material and in particular to

CMR.

The broadening being due to inhomogeneities in the electronic magnetization, a possible expla-

nation for the temperature dependence of the broadening mechanism would be the following: at low

temperature, the inhomogeneities are mobile and therefore the line appears narrower due to motional

narrowing. At higher temperature, the mobility of the inhomogeneities decreases and when their

motion becomes static on the NMR time scale, the line broadens. We found that this explanation

is not compatible with our T2 data. We will give the arguments in Sect. 5.3.2.

We also measured the effect of an external magnetic field of 4T on the temperature dependence

of the FWHM of the line. The resulting lineshapes were plotted in Fig. 4.11. A field of 4T was

strong enough to saturate the magnetization, and as a consequence a non-negligible demagnetizing

field was present in the sample. The demagnetizing field depends on the shape of the sample and

it is only homogeneous in ellipsoidal samples (see e.g. [61]).7 We had to machine the sample to

increase the homogeneity of the demagnetizing field. As shown in Fig. 4.11, at 10 K we measured a

7The external field needs to be aligned along a principal axis of the ellipsoidal sample.
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Figure 4.11: Lineshape of 153Eu in 0.6% Gd doped EuO vs. temperature in a field of 4T. The
lineshapes were obtained by point-by-point measurement.

FWHM of about 0.5 MHz, which was about 2.5 times broader than the zero-field FWHM at the same

temperature. We believe that the fact that the FWHM of the central line at 4T was not as narrow as

the zero-field FWHM was due to the inhomogeneity in the demagnetizing field (the sample was not a

perfect ellipsoid). However, the FWHM did not increase with increasing temperature, and it was still

about 0.5 MHz at 50 K. We concluded that the temperature dependent static inhomogeneities that

we measured at zero-field were not present when there was a strong external magnetic field. This

observation is an additional suggestion that the broadening might be linked to transport properties

of the material. Indeed, since the conductivity of CMR materials is increased by the application

of an external magnetic field, applying a field is equivalent to lowering the temperature in terms

of transport properties (see, e.g., [5]). Therefore, at a given temperature we can expect the line

to be narrower in the presence of an external field than in zero-field. We plan to investigate this

phenomena by further studying the broadening as a function of the amplitude of the external field.

4.4.3 2% and 4.3% Gd doped EuO

We also measured the temperature dependence of the 153Eu lineshape in 2% and 4.3% Gd doped

EuO. We plotted the measurements for 2% Gd doped EuO in Fig. 4.12. A similar temperature

behavior was observed in 4.3% Gd doped EuO. We performed point-by-point measurements to

determine the lineshapes. Note that at temperatures higher than about 80 K we could not detect

the resonance. This failure was probably due to the fact that the line was too broad and therefore

the signal was too weak.

As shown in Fig. 4.12, the lineshape becomes broader with increasing temperature. Also, the
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Figure 4.12: Zero-field lineshape of Eu153 in 2% Gd doped EuO vs. temperature. The amplitude
of the lineshape was multiplied by the coefficient shown on the left side of each curve.
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Figure 4.13: FWHM of the zero-field lineshape of Eu153 in pure EuO and 0.6%, 2% and 4.3% Gd
doped EuO vs. temperature.

structure of the lineshape becomes more and more complex with increasing temperature. In Fig. 4.13

we plotted the FWHM of the lineshape as a function of temperature for 2% and 4.3% Gd doped

EuO along with the temperature dependence of the FWHM of the lineshape of pure EuO and 0.6%

Gd doped EuO. Note that at temperatures above about 50 K the FWHM of 2% and 4.3% Gd doped

EuO is ill-defined since the line has a complex shape. As we showed in Sect. 4.3, the broadening of

the 2% and 4.3% Gd doped EuO line at 4.2 K is magnetic in origin. To verify if the temperature

dependent broadening was also magnetic, we used the same strategy as used in Sect. 4.3, that is

measuring the 151Eu lineshape at a given temperature and comparing it with the 153Eu lineshape at

the same temperature. The lineshape of both isotopes measured in 4.3% Gd doped EuO at 40 K are

plotted in Fig. 4.14. The frequency of the 151Eu lineshape was multiplied by the ratio given in (4.9).

We observed that the two curves have a similar shape, with the same structure, and we therefore

concluded that the broadening mechanism was of magnetic origin. Also, as we will see in Sect. 5.3,

1/T2 is by far smaller than the linewidth of the lines we measured. Therefore, we concluded that

the temperature dependent broadening is a static broadening.

As in 0.6% Gd doped EuO, we also observed that for temperatures above about 30K, the FWHM

of the 2% and 4.3% Gd doped EuO lineshape increases more rapidly with increasing temperature

(c.f. Fig. 4.13). However, the amplitude of the broadening is by far larger in 2% and 4.3% Gd

doped EuO than in 0.6% Gd doped EuO. As we saw in Sect. 2.1, previous studies showed that the

change in transport properties in this type of samples is not as dramatic as in 0.6% Gd doped.

Nevertheless, the conductivity still decreases with increasing temperature by a factor of about 10

[28]. This decrease might be linked to the temperature dependent broadening. However, since the
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Figure 4.14: Zero-field lineshape of Eu153 and Eu151 in 4.3% Gd doped EuO at 40 K. The frequency
of the Eu151 lineshape was multiplied by the ratio 153γn/151γn.

amplitude of the magnetic inhomogeneity is so large in 2% and 4.3% Gd doped EuO, we suspected

that another broadening mechanism could take place in these samples. A possible explanation for

the temperature dependent broadening is that the value of the exchange integral is distributed

throughout the samples, i.e., different part of the samples have different values of J . The presence

of such a distribution could also explain the fact that the magnetization curves do not follow a

Brillouin curve (c.f. Sect. 2.2). We show in Fig. 4.15 the temperature dependence of the frequency

of the center of the line (dots) along with the temperature dependence of the width of the line

(vertical bars). If we assume a distribution of J values corresponding to a distribution of TC ’s

between 69.55 K (Curie temperature of pure EuO) and 155 K (highest Curie temperature given by

the model of Mauger [32]), we can approximatively account for the temperature dependence of the

width of the line, as shown in Fig. 4.15. As we will see in Sect. 5.2, the value of J is related to the

value of the observed spin-lattice relaxation time T1 trough the expression given in (3.17). That

means that a slight variation in J strongly influences the value of T1 because T1 ∝ J9/2. We did not

observe any strong frequency dependence of T1, i.e. the measured T1 was, too a good approximation,

independent of the position on the line. Therefore, we do not think that a distribution in J causes

the temperature dependent broadening.

Finally, let us mention that we tried to measure the influence of an external field of 4T on the

lineshape of a 2% Gd doped EuO sample. We observed a signal at 4.2 K but it was weak. We

aborted the study since we were not able to detect the signal at temperature higher than about

20 K.
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Chapter 5

Relaxation times

The measurement of NMR relaxation times in europium chalcogenides gives some valuable informa-

tion about the dynamics of their electron spins through the hyperfine coupling. Boyd was the first to

report NMR data on EuS [102], and together with Charap, used spin-wave theory to deduce values

of J1 and J2 from the temperature behavior of the NMR frequency of both 151Eu and 153Eu [103].

The first values of NMR relaxation times in EuO were published in 1965 by Uriano and Streever

[104]. They performed zero-field measurements on powdered EuO at two temperatures; at 4.2 K

and 20.3 K. They found T1 = 9 ms and T2 = 40 µs, at 4.2 K and T1 = 0.8 ms and T2 = 20 µs at

20.3 K. Following this work, several groups studied NMR relaxation times and compared their data

to spin-wave theory as well as to the Suhl-Nakamura theory in order to explain their results and to

obtain information on the magnetic properties of the system.

In this chapter, we present our measurements of the relaxation times. We extended the study of

relaxation times in EuO to much higher temperature than in previous studies and we measured the

relaxation times in Gd doped EuO. We will compare the relaxation times in EuO to the relaxation

times in Gd doped EuO and determine the influence of doping on the dynamic properties of the

electronic magnetization.

5.1 Measuring T1

As mentioned in Sect. 4.1, the definition of a π/2- or a π-pulse in a ferromagnetic system is somewhat

arbitrary. Therefore, it makes sense to use a saturation recovery (SR) sequence instead of an

inversion recovery (IR) sequence to perform T1 measurements in a ferromagnetic system. In an IR

sequence, a π-pulse is applied to invert the longitudinal component of the nuclear magnetization

before measuring the recovery time constant T1. It is thus necessary to have a well-defined π-pulse.

For the SR sequence, an exact π-pulse is not required since the sequence consists in destroying the

nuclear magnetization by applying a series of pulses before measuring the signal.

Various pulse sequences can be used to destroy the magnetization in a SR scheme. In Fig. 5.1

we present the sequence we used to measure T1 in the Eu1−xGdxO systems. Sometimes called a RF

comb, it consists of a series of 8 pulses all separated by a time τ . The idea is to apply a π/2-pulse

along a given direction in the plane perpendicular to the effective static field and to wait a time τ of

the order of T2 so the nuclear spins that were flipped lose their coherence. Then another π/2-pulse

along the same direction is applied to erase the magnetization left in the perpendicular plane. The
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Figure 5.1: Saturation recovery (SR) pulse sequence. The sequence is composed of a RF comb
that erases the nuclear magnetization and a spin-echo detection sequence.

process is applied in each of the 4 directions of the perpendicular plane, x, y , -x and -y. We applied

the series twice in a row to increase the efficacy of the erasing procedure.

After waiting for a time denoted Recovery time, a standard spin-echo sequence t1 −delay− t2 is

applied to detect the amplitude of the magnetization that has recovered equilibrium (c.f. Sect. 4.1

for more details on the spin-echo sequence). For all the measurements performed, we used tx = ty =

t−x = t−y = 0.2µs and τ ∼= T2. We therefore always started by determining T2. This sequence is

well adapted to measurements at low temperatures since the pulses of the RF comb are short and

therefore the amount of heat transferred from the coil to the measured sample is small.

We saw in the previous chapter that although the crystal structure of Eu1−xGdxO is nominally

cubic, there are EFGs acting on the Eu nuclei. That means that even at zero-field the spin degeneracy

is lifted and, since 153Eu and 151Eu nuclei are spin I = 5/2, there are five possible transitions between

the spin levels. Therefore, assuming relaxation of magnetic origin, we expected the relaxation

processes to be described by 5 relaxation rates Wm↔m+1 associated with the 5 allowed transitions

m ↔ m + 1, m = − 5
2 , − 3

2 , − 1
2 , 1

2 , 3
2 , 5

2 .1 The relaxation rates can be calculated using Fermi’s

Golden Rule

Wm↔m+1 =
2π

~
| < m|Ĥint|m + 1 > |2δ(Em − Em+1). (5.1)

where Em and Em+1 are the energy of the levels m and m+1 respectively, and Ĥint is the Hamiltonian

describing the interactions causing the relaxation processes. In an SR scheme, the evolution of the

longitudinal nuclear magnetization just after the RF comb (t=0) can be written as

mz(t) = mz(t = ∞) (1 − εw(t)), (5.2)

where ε is the fraction of spins that have been flipped by the RF comb and w(t) is given by

w(t) =
∑

m states

cme−αmWm↔m+1t, (5.3)

where the cm coefficients are determined by the initial conditions and the αm coefficients are de-

termined by the so-called normal modes problem [105]. When all the transitions m ↔ m + 1 are

excited and detected, the solution of the normal modes problem gives a single-exponential function

for w(t).

A typical magnetization recovery curve, obtained by applying the sequence described above to a

Eu1−xGdxO sample for a series of values of Recovery time, is plotted in Fig. 5.2. The fitting curve

was a single exponential. Consequently, all the transitions were excited and detected. This confirms

the assumption that we made in the previous chapter. This could also be verified by comparing the

1Note that quadrupolar relaxation also gives m ↔ m ± 2 transitions
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Figure 5.2: Spin-echo integral as a function of Recovery time values in pure EuO at 20 K. The
fitting curve is defined in (5.2) and (5.3) with all the coefficients cm but one taken to be zero.

Fourier transform of echoes recorded at different values of Recovery time. The FFT of two echoes

is shown in Fig. 5.3, where the amplitude of the curve corresponding to the short value of Recovery

time was multiplied by a factor of 3. The similar shape of the two curves suggested that all the

spins that were detected by the spin-echo sequence were excited by the RF comb. It also meant that

the relaxation processes were the same for all the nuclear spins (i.e. at all parts of the NMR line)

This is because by destroying all the magnetization, the system recovers in a single normal mode

(the uniform mode) where all population differences are the same.

It was important to note that the values of T1 we measured were independent of the amplitude

of the RF field H1. This fact further suggests that we observed the nuclei located in domains and

not those located in domain walls, as noted in Sect. 3.4.1.

5.2 Spin-lattice relaxation times vs. temperature

Barak, Gabai and Kaplan determined that the spin-lattice relaxation in powdered EuO at tempera-

tures below 14 K are dominated by two-magnon processes [106]. Also, between 14 K and 20 K, they

observed that three-magnon process surpasses the two-magnon process. However, to explain the

short values of T1 they observed, they had to take into account the second-order three-magnon pro-

cess that enhances the first-order process (c.f. Sect. 3.5). The enhancement factor when an external

field is applied has been calculated to be 4 [106].

The results we obtained confirmed that, for temperatures above about 14 K, the three-magnon

process is the dominant spin-lattice relaxation process in EuO. Indeed, as shown in Fig 5.4, the
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Table 5.1: Values of J as a function of Gd doping.

Doping level x (%) Exchange integral J/kB (K)

0 0.754 ± 0.01

0.6 0.750 ± 0.01

2 1.203 ± 0.01

4.3 1.211 ± 0.01

temperature dependence of T1 for EuO was proportional to T 7/2. To fit the data, we used (3.17)

multiplied by the exchange scattering enhancement factor that we determined to be ξ ∼= 8, in

agreement with the calculation of Beeman and Pincus [68] (c.f. Appendix A). Taking S = 7/2

and determining the hyperfine constant from the zero-field resonance frequency extrapolated to

T = 0 K, A = −~ω/S ∼= −2.6 · 10−26 J, we deduce from the fit a value of the exchange integral of

J/kB = 0.754 ± 0.01 K. As noted in Sect. 3.5, J = J1 + J2.

Let us discuss the accuracy of the determination of J : first, even if the enhancement factor is

not precisely known, the fact that 1/T1, and therefore ξ/T1, is proportional to J−9/2 (c.f. (3.17))

means that a large change in ξ corresponds to a small change in J . For example, if we take ξ = 7.9

instead of ξ = 8, which corresponds to a ratio of k1/k2 = 3/4 between the amplitude of the magnon

wave vectors k1 and k2 of the two scattered magnons (c.f. Appendix A), we obtain J/kB = 0.752 K

instead of J/kB = 0.754 K. The other causes of uncertainty are the uncertainty of the T1 value and

the uncertainty of the temperature. An evaluation of the total error gives ∆J/kB = 0.01 K.

As mentioned in Sect. 2.2, previous measurements on powdered EuO by neutron scattering exper-

iments [31] and specific heat measurements [107] led respectively to (J1 + J2)/kB = 0.725± 0.006 K

and (J1 + J2)/kB = 0.714 ± 0.007 K. More recently, Mook measured single crystals of EuO by neu-

tron scattering methods and he obtained the following values [108]: J1/kB = 0.625 ± 0.007 K and

J2/kB = 0.125 ± 0.01 K. These values lead to a value of the exchange integral J = 0.750 ± 0.017 K

which in very good agreement with our measurement. It is however important to remember that if

the samples are not stoichiometric, their magnetic properties can vary substantially.

In 1966 E. L. Boyd deduced J1 and J2 by measuring the temperature dependence of the NMR

frequency of 153Eu [87]. He found a value of J1/kB = 0.750±0.0025 K that is very close to the value

of J that we determined. However, he found a negative value of J2.

After we showed that the data led to a value of J for pure EuO that was in very good agreement

with the values determined by other measurement techniques, we examined the case of Gd doped

EuO. As shown in Fig 5.4, the temperature dependence of the spin-lattice relaxation times for the

three doped samples we studied were proportional to T 7/2. As for pure EuO, the three-magnon

process was the dominant relaxation process. Using expression (3.17) and the enhancement factor

ξ = 8, we deduce the values of J shown in Table 5.1 for the doped samples. As evident in Fig. 5.4,

the samples can be separated in two categories according to their value of J . To show that this

separation is indeed due to a variation in the amplitude of the exchange integral, let us evaluate

the difference between the T1 of the two categories: from the mean-field theory for Heisenberg

ferromagnets, keeping the nearest neighbor coupling only, we have the relation between TC and J1

TC = z1J1
2S(S + 1)

3kB

∼= z1J1
2S2

3kB
∝ J1S

2, (5.4)

where z1 is the number of nearest neighbours of a Eu atom (c.f. e.g. [109]). With this approximation
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Figure 5.4: Zero-field spin-lattice relaxation rates of 153Eu in Eu1−xGdxO as a function of tem-
perature. The expression used to fit the curves is defined in (3.17).

and assuming J ∼= J1, we can rewrite (3.17) as

1

T1
∝ A2

~TC

(
SkBT

TC

)7/2

. (5.5)

Then, S can be related to the NMR resonance frequency by noting that

ω0 = γ|Heff | ∝ γ|M | ∝ S. (5.6)

This leads to

1

T1
∝ A2

~TC

(
ω0kBT

TC

)7/2

∝ (ω0T )7/2

T
9/2
C

. (5.7)

From (5.7) we can approximate the ratio between the spin-lattice relaxation time of pure EuO,

T1,pure, and the spin-lattice relaxation of Eu0.98Gd0.02O, T1,2%.2 Taking an approximate value of

120 K for the Curie temperature of the doped sample and TC = 69.55 K for pure EuO (c.f. Sect. 2.4),

we obtain

T1,2%

T1,pure
=

(
ω0,pure

ω0,4.3%

)7/2 (
TC,4.3%

TC,pure

)9/2

∼= 11. (5.8)

2The result is approximatively the same if the 2% sample is replace by the 4.3% since their Curie temperature is

approximatively the same.
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Figure 5.5: Spin-lattice relaxation rates of 153Eu in 0.6% Gd doped EuO as a function of temper-
ature for zero external field and |H0| = 3.9 T. The expression used to fit the curves is defined in
(3.17).

This ratio is close to the value of about 8.7 that we determined experimentally as revealed in Fig. 5.4.

We can therefore have confidence in the J values we determined in the above analysis.

In order to observe the influence of a field on the relaxation rates, we also measured the tem-

perature dependence of T1 of 153Eu in 0.6% Gd doped EuO in a strong external field. The results

obtained in a field of 4 T are shown in Fig. 5.5. We also observed a temperature behavior propor-

tional to T 7/2 as expected from the results of Barak et al. [106]. Also, we observed that T1 was

larger than at zero-field due to the fact that there were fewer magnons when a strong external field

was applied.

The fact that the temperature dependence of the spin-lattice relaxation time is the same for a

strong external field as for zero-field validates the assumption that the nuclei we measured at zero-

field are the nuclei located in domains and not in domain walls where other relaxation mechanisms

such as thermal fluctuations of the domain walls are expected to take place [110]. Note that Guenther

et al. observed that the temperature dependence of T1 is field dependent (the measurements were

done between 1.2 K and 4.2 K), which might be explained by the fact that they were measuring

nuclei in domain walls for low values of field [111].

5.3 Spin-spin relaxation times vs. temperature

Except for the value of T2 at 20.3 K determined by Uriano and Streever [104] and the decay curve

at 13.8 K published by Barak et al. [112], there are no spin-spin relaxation time data for EuO above
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4.2 K in the literature. However, there were several studies of T2 at 4.2 K and lower temperatures,

following the work of Barak et al. [112, 113]: Raj et al. [88], Fekete et al. [73] and numerous

articles by a German group [91, 92, 100, 114–116]. The main reason for this interest is that the

decay curve is not a single exponential. As Lütgemeier et al.[91] first noted, this is because there

are two relaxation mechanisms: a fast one due to the Suhl-Nakamura indirect interaction, and a

slow one due to direct dipolar coupling. However, the original Suhl-Nakamura theory fails to explain

the amplitude of the observed spin-spin relaxation time and its frequency dependence that was first

reported by Raj et al. [88]. Barak et al. used the HJNP theory (c.f. Sect. 3.6) to explain why

the value of T2 they observed in a powdered EuO sample at 4.2 K is longer than the one predicted

by the Suhl-Nakamura theory [112]. The HPNJ theory assumes the existence of an inhomogeneous

line broadening and predicts a frequency dependent T2. Also, whereas the Suhl-Nakamura theory

predicts a Gaussian line shape and therefore a Gaussian echo decay, the HPNJ theory predicts a

Lorentzian line shape and therefore an exponential decay.

In 1976, Fekete et al. successfully described the decay curves of the five transitions they had

observed by assuming an inhomogeneous Suhl-Nakamura relaxation process (deduced from HPJN

model) and a dipolar coupling [73]. They were the only ones to take into account all the elements

necessary to describe the lineshape and its variation with delay as shown in Fig. 4.4. However, they

did not discuss the implication of their results on the lineshape. Arons et al. published in 1975 the

zero-field lineshape vs. delay and observed, as we did, the reduction of the amplitude of the central

peak with increasing delay [92]. However, Arons et al. claimed that the T2 of the central line was

shorter because the signal was coming from nuclei located in domain walls, which is, in the light of

our results, an incorrect interpretation.

We have performed spin-spin relaxation measurements in pure EuO and in Gd doped EuO

using a standard spin-echo sequence t1 − delay − t2 composed of two pulses separated by a varying

delay.3 Typical values were t1 = 0.1 µs and t2 = 0.2 µs. As shown in Chap. 4, the width of the

lineshape increases with increasing Gd doping and consequently the duration of the echo decreases

with increasing x. The values of delay were adapted to the duration of the echo: for long echo, it

was necessary to use long delays and conversely, for short echoes it was possible to use very short

delays.

Since T2 was strongly frequency dependent, it was necessary to specify at what frequency it was

measured. In the following, T2 always corresponds to the spin-spin relaxation time measured at

the frequency corresponding to the center of the central line or the center of gravity of the line in

cases the central line is not well defined. Also, as for T1 measurements, we always excited all the

transitions.

Let us start by looking at the decay curve of the spin-echo of 153Eu in EuO at 4.2 K (c.f. Fig. 5.6).

In agreement with previous measurements, the decay consists of a sum of two decays, one fast, caused

by Suhl-Nakamura interactions, and one slow, due to dipolar coupling. The time variation of the

echo amplitude A(t) can be fit with the function

A(t) = AS−N exp(−t/TS−N
2 ) + Adip exp(−t/T dip

2 ) (5.9)

where TS−N
2 is the spin-spin relaxation time associated with the Suhl-Nakamura process, T dip

2 is

the spin-spin relaxation time associated with the dipolar process, AS−N and Adip are coefficients

3As for lineshape and T1 measurements, we used a 16-phase CYCLOPS sequence to reduce the transients due to

the RF pulses.
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Figure 5.6: Zero-field echo decay curve of the central transition of 153Eu in EuO at 4.2 K.

independent of time. The ratio Adip/AS−N is equal to the ratio number of spin relaxing through

the dipolar relaxation divided by number of spin relaxing through the Suhl-Nakamura relaxation.

We observed that TS−N
2 = 12.3± 0.5 µs, T dip

2 = 194.4± 2.4 µs and Adip/AS−N
∼= 0.01 (c.f. Fig. 5.6).

Let us state the main difference between the Suhl-Nakamura coupling and the dipolar coupling. The

Suhl-Nakamura (or the HJNP) Hamiltonian describes an interaction involving terms of the form

Î+
i Î−j (c.f. (3.18)). This means that a nuclear spin in state m can relax in state m + 1 only if at

least one of its neighbors is in the state m′ = m + 1 (mutual spin-flip). In addition to terms of the

form Î+
i Î−j , the dipolar hamiltonian has terms of the form Îz

i Îz
j and therefore a spin in state m can

also relax if at least one of its neighbors is in the same state m. However, as long as one of the

neighbors is in a state allowing mutual spin-flip, we expect the Suhl-Nakamura to participate in the

relaxation of a larger number of spins since in EuO the amplitude of the Suhl-Nakamura coupling

is much larger than the dipolar coupling (Barak et al. calculated that the second moment of the

Suhl-Nakamura is about 103 times larger than the dipolar second moment [112]).

The probability that a given nucleus relaxes by the dipolar mechanism is therefore given by the

probability that it cannot relax by mutual spin flips using the Suhl-Nakamura coupling. Thus, the

dipolar relaxation arises from those nuclei whose neighbors cannot undergo mutual spin-flips. The

probability that each neighbor is in the wrong m state is 5/6. If there were only one Eu isotope,

the probability that no first neighbor can have a spin-flip is thus (5/6)12 ∼= 0.11. However, the first

neighbors might change states by coupling to the second neighbors, so 0.11 is an overestimate. In

this way, we can see why dipolar relaxation only is an unlikely process, in agreement with Fig. 5.6.

Let us mention that the fast decay shown in Fig. 5.6 is well fitted by an exponential, in agreement
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with previous measurements and consistently with the HJNP theory (c.f. e.g. [73]). Note that this

was the reason for using a Lorentzian as magnetic distribution function to fit the lineshapes in

Chap. 4.

Let us calculate the spin-spin relaxation time of the central line given by the original (homoge-

neous) Suhl-Nakamura theory. Using |H| = |Han(T = 4.2 K)| = 247.5 ± 2.5 Oe [59], calculating

|Hex| from J1/kB = 0.625 ± 0.007 K [108], and ν0 = 138.5 MHz the frequency of the central line

we have measured at 4.2 K, we obtain T2 =
√

2/σ ∼= 2.9 µs from (3.21) (Note that we replaced the

factor 1
3I(I + 1) of (3.21) by F ( 5

2 ,− 1
2 ) given in (3.23)). This value is about 4 times shorter than

the fast T2 observed on the central transition (c.f. 5.6). Therefore, as shown in previous studies, the

line is indeed inhomogeneously broadened and it is necessary to use the HPJN theory to calculate

TS−N
2 .

All the relaxation times that will be presented in the following correspond to measurements done

with short delays. Therefore, the discussion and the analysis will focus on the fast decay times unless

specified otherwise.

The temperature dependence of the spin-spin relaxation times is presented in Fig. 5.7. For pure

EuO as well as for all the Gd doped samples, T2 seems to be temperature independent at temper-

atures below about 15 K. For higher temperatures, we observed a rapid increase of the relaxation

rates with increasing temperature. We analyze these two regimes below.
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5.3.1 Electron spin fluctuations

We saw in Sect. 5.3 that the spin-lattice relaxation processes are dominated by the scattering of

magnons by nuclear spins, in particular by processes involving three magnons. Another way to

describe these processes is to consider the fluctuations of the hyperfine field. From (3.16), we can

write the perturbation Hamiltonian as

Ĥ′
hf (t) = −γn~[Hx(t)Îx + Hy(t)Îy + Hz(t)Îz], (5.10)

where Hx(t), Hy(t) and Hz(t) are the fluctuating fields at the nuclear site due to fluctuations of Ŝ

in the x, y and z directions respectively.4 The relaxation rates deriving from these interactions can

be calculated using the Redfield theory (c.f. e.g. [43]). The calculation for the particular case of a

spin I = 5
2 is presented in Appendix B. The result for the spin-spin relaxation time is expressed as

1

T2
= γ2

nH2
z τ0 + α

1

T1
, (5.11)

where H2
z is amplitude of the correlation function between Hz(t) and Hz(t+∆t), τ0 is the correlation

time (or lifetime) of the scattering process between the magnons and the nuclear spins, and

α = I(I + 1) − m(m + 1) =





5 for the −5/2 ↔ −3/2 and 3/2 ↔ 5/2 transitions

8 for the −3/2 ↔ −1/2 and 1/2 ↔ 3/2 transitions

9 for the −1/2 ↔ 1/2 transition.

(5.12)

We have assumed that the fluctuations of the three components of field x, y, and z are independent

and that the correlation functions are simple exponential (c.f. Appendix B). Since we excited all the

transitions, we expect to have a mixture of these rates. As shown in Fig. 5.7, the factor α obtained

from fitting the curves with the function 1/T2 = α/T1 + β is between 6.3 and 9.9. This is in good

agreement with the theoretical values calculated above. Therefore, according to the Redfield theory,

the temperature dependence of the spin-spin relaxation in Eu1−xGdxO is entirely determined by

transverse fluctuating fields. Our results showed that these fluctuations were due to fluctuations of

the electronic spins well described by spin-wave theory.

5.3.2 More on the line broadening mechanism

Magnetic entities such as magnetic polarons are thought to play a crucial role in these materials. In

particular, they are thought to be the main cause of CMR. We discuss their existence as a possible

explanation of the linewidth and T2 data for the 0.6% sample. We present below a quantitative

model based on the hypothetical presence of magnetic entities and we test this model by trying

to explain the temperature dependent magnetic inhomogeneity we observed in Gd doped EuO (c.f.

Sect. 4.4).

Let us assume that magnetic entities are present in the material. We assume that they give

rise to the static NMR line broadening which we observe at higher temperatures. To explain the

narrow lines at low temperatures, we assume they diffuse rapidly at low temperatures, giving rise

4Note that we do not need to make any assumption on the anisotropy of the hyperfine coupling. This expression

is valid even if the hyperfine coupling needs to be describe by a tensor A as in (3.4).
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to motional narrowing. Thus they create a fluctuating field at the nuclear site with correlation time

τ . The relaxation time deriving from the presence of this fluctuating field can be written

1

T2
=

δω2τ

1 + (δωτ)2
(5.13)

where δω is the distribution in NMR frequency caused by the fluctuating magnetic field [43]. Since

we observed that the line is broadened at high temperature, we assume that at high temperature

the correlation time is long, i.e. T2
∼= τ . This is consistent with the model of magnetic polarons,

since magnetic polarons are thought to be trapped at high temperature (leading to a decrease in

conductivity). At low temperature we assume that the entities are moving, which means that τ is

short. In this case, 1/T2
∼= δω2τ and the line is motionaly narrowed. In between the high temperature

regime and the low temperature regime, we expect that δωτ = 1 at a given temperature. At that

temperature, 1/T2 is maximum and T2 = 2τ = 2/δω. Assuming that δω is temperature independent,

that means that the relaxation rate is about equal to the static linewidth at high temperatures. But

in fact, at all temperatures 1/T2 is much less than the observed line width. Thus we cannot explain

the data consistently with this model. Rather we believe that at low temperatures, the material is

spatially uniform, but as the temperature rises, spatial non uniformity sets in.

5.3.3 Temperature independent relaxation mechanisms

Let us now analyze the temperature independent part of the spin-spin relaxation times. For temper-

atures far below the magnetic transition temperature, the Suhl-Nakamura interaction is expected

to be temperature independent, since its temperature dependence comes mostly from the hyperfine

constant (c.f. (3.18) and (3.19)). The nuclear dipole-dipole interaction is also independent of tem-

perature. Therefore, two processes compete and may be the source of the observed temperature

independent T2’s.

In the case of pure EuO, as we mentioned earlier, the relaxation time due to the dipole-dipole

interaction is considerably slower and we saw in Fig. 5.6 that the Suhl-Nukamura processes dominate

the dipole-dipole processes for short delays. However, as shown in Fig. 5.7, the relaxation time of Gd

doped EuO is substantially slower than for pure EuO. The slowest T2 we have measured corresponds

to T2 = 183 µs, for Eu0.98Gd0.02O at 3.8 K (c.f. Fig. 5.7). This value is only slightly larger than the

dipolar T2 = 194±2.4 µs we measured in pure EuO (c.f. Fig. 5.6). Therefore, in that case, it is likely

that a substantial part of the relaxation is due to dipole-dipole interactions even for short delays.

Note that the dipole-dipole relaxation time in Gd doped EuO is expected to be slightly longer than

in pure EuO due to the fact that interactions between Eu nuclear spins and Gd nuclear spins (unlike

spins) lead to less effective relaxation processes (c.f. e.g. [43]).

Let us examine why the spin-spin relaxation rates in Gd doped EuO are smaller than in pure

EuO. As we have seen in Chap. 4, adding Gd in the EuO matrix leads to magnetic broadening

which increases with doping. Therefore the distribution function g(ω) introduced in the HJPN

theory (c.f. Sect. 3.6) becomes broader with increasing doping and the Suhl-Nakamura relaxation

rate (3.26), which is proportional to the distribution function g(ω), decreases with doping since

g(ω) is a normalized function.5 In other words, the replacement of Eu atoms by Gd atoms in the

5Note that we should write gm= 1
2

(ω) instead of g(ω) since, as we have noted in Sect. 3.6 the distribution function

depends on the observed transition.
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Figure 5.8: Spin-spin relaxation rate vs. temperature of 0.6% Gd doped EuO for zero external
field and |H0| = 3.9 T. The parameter α and the fitting curve are defined in (5.11)

EuO matrix further reduces the allowed mutual spin-flips between Eu nuclei and consequently the

relaxation rates are smaller.

However, as shown in Fig. 5.7, the temperature independent relaxation rate is larger for x = 2%

than for x = 4.3%. As we discussed in Chap. 2, the conduction band starts being populated when

x becomes larger than xc
∼= 1.5%. Therefore, above this critical concentration we expect the nuclei

to interact through a RKKY indirect interaction. The RKKY interaction depends on the density

of states at the Fermi energy (the RKKY Hamiltonian is proportional to the second power of the

density of states at the Fermi energy [43]). Since the Fermi energy and therefore the density of states

at the Fermi energy increases with doping, we expect the RKKY interaction to be larger in 4.3%

Gd doped EuO than in 2% Gd doped EuO, and therefore the relaxation processes deriving from

this interaction are expected to be more effective in 4.3% Gd doped EuO. This might explain why

the temperature independent relaxation rate of the x = 2% sample is larger than the temperature

independent relaxation rate of the x = 4.3%.

Finally, we show in Fig. 5.8 the spin-spin relaxation time of 0.6% Gd doped EuO as a function

of temperature when a external field |H0| = 4 T is applied. As expected from the T1 values shown

in Fig. 5.5, the spin-spin relaxation rates in the region above 15 K are smaller in a strong external

magnetic field. When the curve is fitted with the function the function 1/T2 = α/T1 + β, we obtain

a value α = 9.1, which is in good agreement with the values calculated in (5.12). This clearly shows

that the relaxation processes are similar at zero-field and in high field.
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Chapter 6

Discussion and conclusion

The study of Eu1−xGdxO was motivated by the unconventional electrical and magnetic properties

observed in this system. Our NMR measurements led to results giving new information on the

microscopic magnetic properties of Eu1−xGdxO. We observed a dramatic difference between pure

(x=0) or nearly pure (x=0.6%) samples, and samples with higher Gd concentration in both static

and the dynamic magnetic properties and correlate these with other properties of these materials.

Let us examine and discuss the main outcomes of our study.

Exchange integral J vs. doping

Spin-wave theory is applicable to the low temperature regime in ferromagnets and it is expected

to describe the electron magnetization correctly only for temperature T ≪ TC. Nevertheless, we

observed that the relaxation times in Eu1−xGdxO were in good agreement with a law derived from

spin-wave theory for temperatures as high as T = 0.6TC. From this law, we inferred the value

of the exchange integral J as a function of Gd doping. We observed that J = 0.754 ± 0.01 and

J = 0.750 ± 0.01 for pure EuO and 0.6% Gd doped EuO respectively, and J = 1.203 ± 0.01 and

J = 1.211 ± 0.01 for 2% Gd doped EuO and 4.3% Gd doped EuO respectively. Therefore, we

observed a non-linear increase of the amplitude of the exchange interaction with doping. These

results are consistent with the dependence on Gd concentration of the Curie temperature and they

were explained by Mauger using a model based on the RKKY interaction [32, 33]. However, while

several neutron scattering studies of EuO led to the determination of J in pure EuO, no direct

measurement of the exchange integral in Gd doped EuO was ever published. Our results provided

therefore the first measurement of J in Eu1−xGdxO for x > 0.

Variation of static magnetic broadening with temperature

We discovered that the lineshape of the Eu resonance in Gd doped EuO was broader than in pure

EuO and we showed by comparing the two isotopes of Eu that the broadening was due to static

inhomogeneities in the local magnetic field acting on the Eu nuclei. Our measurements showed that

the inhomogeneity increased non-linearly with Gd concentration. We confirmed that this increase

was not due to temperature dependent fluctuations of the electron spins since 1/T2, which was

shown to be completely determined by these fluctuations, was considerably smaller than the width

of the broadening showing that the magnetic inhomogeneities were static, at least at the time scale

of NMR, which is of the order of several microseconds.
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In 0.6% Gd doped EuO, we observed that above about 30 K the magnetic inhomogeneity in-

creased rapidly with increasing temperature. According to previous transport measurements, the

conductivity of samples containing a similar Gd concentration increases dramatically above about

30 K (CMR) [20, 28]. This suggests that the broadening mechanism is linked to the change in trans-

port properties of the sample. Numerous theories explain this change in transport properties by the

formation of bound magnetic polarons.

As a possible explanation, we considered localized magnetic entities, which were static at high

temperatures, giving static line broadening, but highly mobile at low temperatures, giving motionally

narrowed lines and high conductivity. We showed that the existence of moving magnetic entities

required that 1/T2 would be equal to the static linebreadth at some temperature. However, since

the relaxation rates we observed were considerably smaller than the linewidth, we could rule out

this model.

We think that at low temperatures the sample is homogeneous, but static inhomogeneities in the

lattice are formed when the temperature is increased. We propose a quantitative model to link the

presence of these inhomogeneities to the transport properties of Gd doped EuO. We use the idea

that at temperatures below the Curie temperature, the conduction band is split into two spin-up and

spin-down subbands (see, e.g., the theory developed by Mauger [33]). At temperature below about

30 K, the localized spins are aligned with respect to each other and the s-f interaction forces all the

conduction electron spins to be in a spin-up state. Therefore, since all the conduction electrons are in

the same state, they form a band (the spin-up band) and they can tunnel from one location to another

since they do not experience spin-dependent scattering processes. The magnetic inhomogeneity due

to the conduction electron spins is low. When the temperature is increased, the magnetization of

the localized spins decreases and therefore not all localized spins are in the same state. Therefore,

due to the s-f interaction, the conduction electrons are not all in the same state anymore. They

cannot tunnel between different location and they cannot form a band. Consequently the conduction

is now through hopping and the conductivity decreases. The electrons are more localized and in

different states and from the point of view of the nuclear spins, the hyperfine field is now more

inhomogeneous. This model fits with the temperature dependence of the transport properties and

it can explain the temperature dependent inhomogeneity that we observed in our NMR data. This

picture is different from the model of Mauger in which it is assumed that the electron magnetization

is uniform over the sample.

In samples with higher Gd concentration (x = 2% and x = 4.3%), the observed static broadening

was much larger than in 0.6% Gd doped EuO. We also observed that the inhomogeneity increased

with increasing temperature and that the structure of the lineshape varied considerably with tem-

perature, becoming more and more complex. We showed that the broadening was probably not due

to a distribution in the value of the exchange integral J throughout the material.

S.L. Cooper et al., who measured Gd doped EuO by Raman spectroscopy, also observed magnetic

inhomogeneities in Gd doped EuO [13, 38, 39]. Since the time scale in Raman spectroscopy is of

the order of a femtosecond, they could not distinguish between static and dynamic inhomogeneity.

Therefore it was not possible to verify if the inhomogeneity we observed had the same origin as the

inhomogeneity they measured.
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Related experiments

We tried to performed NMR measurements on EuO at temperature above TC, in the paramagnetic

state, but we did not observe any signal. We concluded that it was because the T2 was too short to

be measured with our spectrometer. We also tried to observe the NMR signal of the oxygen nuclei.

We did not detect the resonance, either in the ferromagnetic phase or in the paramagnetic phase.

It was probably due to the low natural abundance of the isotope 17O (about 0.04%) that can be

detected by NMR (the nuclear spin of 16O is zero).

Previous studies showed that EuB6 is also a compound exhibiting CMR [117, 118]. We performed

Eu NMR measurements on this system and observed that T2 was strongly temperature dependent,

becoming increasingly short with increasing temperature. However, we did not further study this

material since we focused on Eu1−xGdxO. Finally, we looked for the Eu resonance in EuO thin

films that were grown by M. Albrecht (Swiss Federal Institute of Lausanne in collaboration with the

University of Wisconsin), was motivated by the possibility of driving a current through the films to

observe the effect of the current on the NMR resonance. Unfortunately, we did not detect the Eu

resonance in these samples.

Suggestions for future experiments

To analyze the dynamics of the electronic spins in Eu1−xGdxO further, it would probably be helpful

to grow crystals with a large abundance of the 17O isotope. The relaxation times of the oxygen spins

might be substantially shorter than those of Eu spins since O2− is not a magnetic ion. Therefore, it

might be possible to perform NMR measurements at temperatures closer to the magnetic transition

temperature, and thus closer to the region in which more dramatic transport effects take place.

For the same reason, EuO doped with La as well as EuB6 doped with La would certainly be good

candidates to study CMR related properties. We would also encourage an NMR study of Eu-rich

EuO since previous studies showed that the CMR is larger in this system than in Eu1−xGdxO and

that the CMR peak appears at lower temperature. Finally, we think that it would be valuable to

seek further to detect the Eu or oxygen NMR resonance in EuO thin films. Steeneken et al. showed

that the conduction electrons in Eu-rich EuO thin films are close to being 100% spin polarized [12].

Performing NMR measurements while driving a current through the films could give information,

through the hyperfine interaction, on the interaction between a spin-polarized current and localized

ferromagnetic spins.
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Appendix A

Three-magnon relaxation process

The purpose of this Appendix was to recalculate formula (2.22) from the article published by Beeman

and Pincus, i.e. the formula giving the relaxation rate due to three-magnon process [68]. Following

the derivation of Beeman and Pincus, we started from the hyperfine Hamiltonian (3.16) and kept

only the first term. This term can be developed in boson creation and annihilation operators using

the Holstein-Primakoff transformations [65]. Assuming that the spin Ŝ is located at the origin, we

obtained

1

2
AÎ+Ŝ− =

1

2
AÎ+

√
2S

N





∑

k1

b†
k1

− 1

4SN

∑

k1,k2,k3

b†
k1

b†
k2

bk3
+ ...



 , (A.1)

where N is the number of spins in the sample, and b†
ki

and bki
are the creation and annihilation

operators of a spin wave of wave vector ki. The first term in the right hand side of (A.1) corresponds

to the one-magnon interaction and it is usually not allowed since the minimum energy of a spin wave,

gµB |H|, is substantially greater than the energy of a nuclear spin flip AS.1 The hyperfine interaction

therefore reduced to

Ĥ′
hf = − A

8SN

√
2S

N
Î+

∑

k1,k2,k3

b†
k1

b†
k2

bk3
. (A.2)

This interaction is diagrammatically represented in Fig. A.1.

Then, using the Fermi’s Golden rule (given in (5.1)), we determined the transition rate Wm↔m+1

induced by this interaction and computed the spin-lattice relaxation using

T1 =
(I − m)(I + m + 1)

2Wm↔m+1
, (A.3)

1Note that the field H is defined as in Sect. 3.6, that is H = Han + H0 + Hdm, where Han is the anisotropy

field, H0 is the applied external field, and Hdm is the demagnetization field.

k1

k2

k3

Figure A.1: Diagrammatic representation of the three-magnon interaction leading to nuclear spin-
lattice relaxation in a ferromagnet. The cross represents the nuclear spin-flip.
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taken from [119]. The calculation led to

1

T1
=

πA2

8~SN3

∑

k1,k2,k3

(1 + nk1
)(1 + nk2

)nk3
δ(Ek3

− Ek1
− Ek2

− AS), (A.4)

where

nki
=< b†

ki

bki
>=

1

exp(Eki
/kBT ) − 1

(A.5)

is the mean number of magnons in the state ki. Beeman and Pincus neglected AS, the energy of

the nuclear flip, because it is small in comparison with the spin-wave energy Ek. Therefore, the

relaxation rate could be written

1

T1
=

πA2

8~SN3

∑

k1,k2,k3

exp(Ek1
/kBT )

exp(Ek1
/kBT ) − 1

×
exp(Ek2

/kBT )

exp(Ek2
/kBT ) − 1

1

exp(Ek3
/kBT ) − 1

δ(Ek3
− Ek1

− Ek2
). (A.6)

The sums can be replaced by integrals using the transformation

lim
V →∞

1

V

∑

k

F (Ek) =

∫
F (Ek)g(Ek)dEk, (A.7)

where V is the volume of the sample, F (Ek) is a smooth function of Ek, and g(Ek) is the density

of states of the spin waves [120]. In the case of a cubic crystal, e.g., in the case of Eu1−xGdxO,

V = Na3, where a is the lattice constant of the crystal. Taking into account the conservation of

energy, Ek3
= Ek1

+ Ek2
, we obtained

1

T1
=

πA2a9

8~S

Emax∫

Emin

Emax∫

Emin

exp(Ek1
/kBT )

exp(Ek1
/kBT ) − 1

×
exp(Ek2

/kBT )

exp(Ek2
/kBT ) − 1

g(Ek1
)g(Ek1

)g(Ek2
+ Ek2

)

exp((Ek1
+ Ek2

)/kBT ) − 1
dEk1

dEk2
. (A.8)

Pincus and Beeman made the assumption that the ki are small, so the dispersion relation of magnons

has the form

Ek = 2JS|k|2a2 + gµB |H| ≡ ǫk + gµB|H|, (A.9)

where J = J1 + J2 is the exchange integral, and we defined ǫk as the magnon energy for |H| = 0.

They also made the assumption that kBT ≪ 2JS, which means that nk are small for large k

and therefore the upper limit of the integrals could be replaced by infinity. Equation (A.8) could

therefore be rewritten

1

T1
=

πA2a9

8~S

∞∫

0

∞∫

0

exp((ǫk1
+ gµB|H|)/kBT )

exp((ǫk1
+ gµB|H|)/kBT ) − 1

×
exp((ǫk2

+ gµB |H|)/kBT )

exp((ǫk2
/kBT + gµB |H|)) − 1

g(ǫk1
)g(ǫk1

)g(ǫk2
+ ǫk2

)

exp((ǫk1
+ ǫk2

+ 2gµB |H|)/kBT ) − 1
dǫk1

dǫk2
.(A.10)
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Finally, we calculated the density of state of the magnons from

g(ǫk) =

∫

S(ǫk )

1

8π3

dS

|∇ǫk|
, (A.11)

where S(ǫk ) is a sphere of constant energy [120]. We obtained

g(ǫk) =
1

8π3

π∫

0

2π∫

0

|k|2 sin θ

4JSa2|k|dθdϕ =
1

(2π)2

√
ǫk

(2JSa2)3
. (A.12)

Replacing (A.12) in (A.10), we obtained

1

T1
=

1

16(2π)5
A2

2JS · ~S

1

(2JS)7/2

∞∫

0

∞∫

0

exp((ǫk1
+ gµB|H|)/kBT )

exp((ǫk1
+ gµB |H|)/kBT ) − 1

×
exp((ǫk2

+ gµB |H|)/kBT )

exp((ǫk2
/kBT + gµB |H|)) − 1

√
ǫ2
k1

ǫk2
+ ǫ2

k2

ǫk1

exp((ǫk1
+ ǫk2

+ 2gµB |H|)/kBT ) − 1
dǫk1

dǫk2
.(A.13)

Pincus and Beeman used the fact that kBT ≫ gµB|H| to compute the double integral. They found

the integral to be equal to 7.6 (kBT )7/2. This corresponds to the result (2.22) in [68].2 It was not

clear to us what value of gµB |H|/kBT they used to obtain this result and we therefore decided to

recompute the integral in order to obtain a value adapted to our experimental conditions.

In the case of our zero-field measurements of the Eu resonance in EuO we had |H| = |Han| and

at 4.2 K the ratio gµB |Han|/kBT was equal to approximately 8 · 10−3. Since we observed that the

three-magnon process was the main relaxation process for temperatures between about 15 K and

40 K, we had to take a substantially smaller value of gµB |H|/kBT . With T = 30 K and (c.f. [59])

|Han(T = 30 K)|/|Han(T = 4.2 K)| ∼= 2.5 , we had gµB |H|/kBT ∼= 4 · 10−4. With this value, we

evaluated the double integral using Mathematica and we obtained approximatively 10.5 (kBT )7/2.

This value was very close to the value obtained with |H| = 0, and since there was no apparent

reason to compute the integral with T = 30 K instead of with another temperature, we decided to

use the result for |H| = 0 that is

∞∫

0

∞∫

0

exp(x/kBT ) exp(y/kBT )
√

x2y + y2x

(exp(x/kBT ) − 1)(exp(y/kBT ) − 1)(exp((x + y)/kBT ) − 1)
dxdy ∼= 11.29(kBT )7/2, (A.14)

where we have replaced ǫk1
and ǫk2

by x and y to simplify the notation. Equation (A.13) with the

value of the integral given in (A.14) corresponds to (3.17) in our text.

Since we were interested in evaluating J using (A.13), we had to determine the influence of a

variation in the value of the integral on J . We calculated that if the factor 11.29 were replaced by

the factor 10.5, obtained for T = 30 K, the value of J changed by about 1%. Therefore we decided

that (A.14) could be used to determine a fairly accurate value of J from our data.

Let us turn now to the evaluation of the exchange-scattering enhancement factor

{M}2 =

{
1 − 2[k1 · k2 + k3 · (k1 + k2 − k3)]

(k1 + k2 − k3) · (k1 + k2 − k3)

}2

, (A.15)

2Note that there is a mistake in equation (2.22) of [68] and h7/2 should be replaced by ~
7/2.
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Figure A.2: Diagrammatic representation of the second order three-magnon interaction leading to
nuclear spin-lattice relaxation in a ferromagnet.

defined in equation (3.4) of the article of Beeman and Pincus [68]. A diagrammatic representation of

the exchange-scattering-enhanced three magnon process is shown in Fig. A.2. A virtual magnon of

wave vector k4 is created by a nuclear spin-flip. This virtual magnon scatters a thermal magnon of

wave vector k3 and two magnons of wave vector k1 and k2 result from this interaction. We defined

the angles

α = ∡(k1,k2), (A.16)

θ = ∡(k2,k3), (A.17)

ϕ = ∡(k1,k3), (A.18)

where ∡(ki,kj) represents the angle between the directions of ki and kj , and we obtained, using

|k1|2 + |k2|2 = |k3|2 (energy conservation),

{M}2 =
1

4

{ |k3|2 − 3|k1||k3| cos ϕ − 3|k2||k3| cos θ

|k3|2 + |k1||k2| cos α − |k1||k3| cos ϕ − |k2||k3| cos θ

}2

. (A.19)

Pincus and Beeman evaluated the angular average of this expression to be about 8. We computed

the angular average using the assumption that α is in the range [0, π], and θ and ϕ are in the range

[π/2, π]. The integral that needed to be evaluate was therefore

ξ =

π∫

0

π∫

π/2

π∫

π/2

1

4

{ |k3|2 − 3|k1||k3| cos ϕ − 3|k2||k3| cos θ

|k3|2 + |k1||k2| cos α − |k1||k3| cos ϕ − |k2||k3| cos θ

}2

dαdθdϕ, (A.20)

with the constraint |k1|2 + |k2|2 = |k3|2.
From (A.9), the energy of a magnon of wave vector |k| is approximately

~ω = 2JS|k|2a2. (A.21)

From (A.5), we obtained that the highest energy level occupied at temperature T is approximatively

given by ~ωmax
∼= kBT . Thus,

|k|max =

√
kBT

2JS

1

a
, (A.22)

is approximately the maximum amplitude of the wave vector for a magnon at temperature T . In

the case of EuO, S = 7/2, J/kB
∼= 0.725 K (c.f. [31]), and a = 5.14 Å[15], and we obtained the plot

|k|max vs. temperature shown in Fig. A.3.

We then plotted the value of the enhancement factor ξ given in (A.20) as a function of |k1| and

|k2| in the range determined in Fig. A.3. We obtained the surface shown in Fig. A.4. We observed
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Figure A.3: Maximum magnon wave vector amplitude in EuO as a function of temperature.

that if |k2| = |k1|, the enhancement factor is about 8.03. If |k2| 6= |k1|, ξ is smaller. However, the

value of ξ stays close to 8, and even if |k2| = 2|k1|, which is not very likely, ξ = 7.5. The influence

of a variation in ξ on the determination of J is therefore limited, and we evaluated the error to be

less than 1%.

75



2

4

6

8

10

k1H109m-1L2

4

6

8

10

k2H109m-1L

6.5

7

7.5

8

Ξ

2

4

6

8

10

k1H109m-1L

Figure A.4: Enhancement factor ξ as a function of the amplitude of the created magnon wave
vectors k1 = |k1| and k2 = |k2|.

76



Appendix B

Applying Redfield Theory to

calculate the relaxation times due

to fluctuating fields

The derivation we presented in this Appendix was based on the calculation of C.P. Slichter of the

relaxation times using the Redfield Theory (c.f. Chapter 5 in [43]). We extended the calculation of

Slichter to the case of a spin I > 1
2 . We started from the Redfield equation that corresponds to

equation (5.304) of [43], i.e.

d

dt
< m|ρ̂∗|m′ >=

∑

l,l′

Rmm′,ll′ < l|ρ̂∗|l′ >, (B.1)

where ρ̂∗ is the operator density matrix of the studied system expressed in the interaction representa-

tion, and the Rmm′,ll′ are coefficients that are constant in time. The expression for these coefficients

is given in (5.330) of [43], that is

Rmm′,ll′ =
1

2~2
[Jmlm′l′(m

′ − l′) + Jmlm′l′(m − l)

−δm′l′

∑

k

Jklkm(k − l) − δml

∑

k

Jkm′kl′(k − l′)], (B.2)

where the spectral densities Jmlm′l′(ω) are defined as

Jmlm′l′(ω) =

∞∫

−∞

< m|Ĥ1(t)|l >< l′|Ĥ1(t + τ)|m′ > exp(−iωτ)dτ, (B.3)

where Ĥ1(t) is the time-dependent Hamiltonian representing the interaction causing the spin system

to relax. The sum in (B.1) is restricted to the terms for which m − m′ = l − l′. We took for Ĥ1(t)

the hyperfine Hamiltonian defined in (5.10), i.e.

Ĥ1(t) = Ĥ′
hf (t) = −γn~

∑

q=x,y,z

Hq(t)Îq, (B.4)

where Hx(t), Hy(t) and Hz(t) were the fluctuating fields at the nuclear site due to fluctuations of Ŝ

in the x, y and z directions respectively. Equation (B.3) can then be written
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1

2~2
Jmlm′l′(ω) =

γ2
n

2

∑

q,q′

< m|Îq|l >< l′|Îq′ |m′ >

∞∫

−∞

Hq(t)Hq′(t + τ) exp(−iωτ)dτ. (B.5)

In order to simplify the notation, the quantities

kqq′(ω) =
1

2

∞∫

−∞

Hq(t)Hq′(t + τ) exp(−iωτ)dτ, (B.6)

are defined. We made the same assumption about the fluctuations as Slichter, that is the three

components Hq(t) of the fluctuating field are independent, i.e.

Hq(t)Hq′(t + τ) = 0 if q 6= q′. (B.7)

Equation (B.5) can then be rewritten as

1

2~2
Jmlm′l′(ω) = γ2

n

∑

q

< m|Îq|l >< l′|Îq|m′ > kqq(ω) (B.8)

Slichter [43] showed that for a given transition m ↔ m + 1,

Wm↔m+1 = Rmm,m+1m+1, (B.9)
(

1

T2

)

m↔m+1

= Rmm+1,mm+1, (B.10)

where Wm↔m+1 was defined in Sect. 5.1 of this text. From (B.2) and (B.8), taking into account

that Îz is diagonal in the base |m > and that Îx = 1
2 [Î+ + Î−] and Îy = 1

2i [Î
+ − Î−] couple only to

states such as ∆m = ±1, we obtained for the above relaxation rates,

1

T1
= γ2

n[kxx(ω0) + kyy(ω0)], (B.11)

(
1

T2

)

m↔m+1

= γ2
nkzz(0) + γ2

n(I(I + 1) − m(m + 1))[kxx(ω0) + kyy(ω0)] (B.12)

where we used (A.3) and we assumed that all the transitions where excited (spin-lattice relaxation

is described by a single rate). The spin-spin relaxation rate can therefore be rewritten as

(
1

T2

)

m↔m+1

= γ2
nkzz(0) +

I(I + 1) − m(m + 1)

T1
. (B.13)

We calculated kzz(0) using the hypothesis of Slichter that the correlation function is a simple expo-

nential with the same correlation time τ0 for the three components q = x, y, z, so that

Hq(t)Hq(t + τ) = H2
q exp(−|τ |/τ0). (B.14)

We obtained from (B.6), that

kzz(0) =
1

2

∞∫

−∞

H2
z exp(−|τ |/τ0)dτ = H2

z τ0. (B.15)
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We finally obtained the result given in (5.11), that is

(
1

T2

)

m↔m+1

= γ2
nH2

z τ0 +
I(I + 1) − m(m + 1)

T1
. (B.16)

.
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