
THÈSE NO 2862 (2003)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT

Institut des sciences et technologies de l'environnement

SECTION DES SCIENCES ET INGÉNIERIE DE L'ENVIRONNEMENT

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

biologiste diplômée de l'Université de Neuchâtel
de nationalité suisse et originaire de Gruyères (FR)

acceptée sur proposition du jury:

Prof. H. Harms, directeur de thèse
Dr A. Chatzinotas, rapporteur
Prof. A. Hartmann, rapporteur
Prof. Ch. Holliger, rapporteur

Dr F. Widmer, rapporteur

Lausanne, EPFL
2003

ANALYSIS OF MICROBIAL COMMUNITY STRUCTURES
AND FUNCTIONS IN HEAVY METAL-CONTAMINATED SOILS

USING MOLECULAR METHODS

Fabienne GREMION





SUMMARY

The contamination of agricultural land and groundwater by heavy metals is essentially linked

to human activities. A major problem with heavy metals is that they cannot be biodegraded and

therefore reside in the environment for long periods of time if they are not removed. Thus,

depending of the kind and depth of contamination, different remediation techniques were

developed. One of these methods, called «phytoextraction», uses the ability of so-called

hyperaccumulating plants to extract high amounts of heavy metals.

Accumulation of heavy metals in the environment is a serious concern for animal and human

health. At the microscopic scale, heavy metals may have also deleterious effects on bacteria

which are the key-players of the different nutrient turnovers in soils. Consequently, ecosystem

functioning can be seriously perturbed and the long-term soil fertility may be threatened. The

recent development of molecular biology greatly contributed to the discovery of the microbial

diversity and its function in the soil. However, to date only a small number of studies used

molecular methods to investigate the impacts of heavy metals on the bacterial community.

In this thesis, a pot experiment was conducted under controlled conditions with one

hyperaccumulating plant (Thlaspi caerulescens) grown in two different soils, a long-term and

an artificially heavy metal-contaminated soil. The impact of heavy metals on the microbial

community was then investigated with several molecular methods. Moreover, the decrease of

the bioavailable heavy metals concentrations in soil due to plant uptake allowed to study the

consequences on bacterial community structure and function.

Based on the 16S ribosomal RNA and the corresponding gene (16S rDNA), four clone

libraries were constructed to retrieve information on the structure of the microbial community

and the potentially active part of the microbial community in the rhizosphere of Thlaspi

caerulescens grown during three months in a long-term contaminated soil. The data obtained

with the two clone libraries (rRNA and rDNA) from the rhizosphere of Thlaspi caerulescens

were compared with the bulk soil data to identify any effect of the plant on the soil microbial

community structure. Partial sequence analysis of 282 clones revealed that most of the

environmental sequences in both soils affiliated with five major phylogenetic groups, the

Actinobacteria, α-Proteobacteria, β-Proteobacteria, Acidobacteria and the Planctomycetales.

The taxa dominating the bacterial community structure in the bulk soil also dominated the

rhizosphere community, indicating that the plant did not exert a major influence on the overall
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bacterial diversity. However, all dominant taxa, with the exception of the Actinobacteria, were

relatively less represented in the rRNA libraries as compared to the rDNA libraries. On the

contrary, sequences belonging to the Actinobacteria dominated both bulk and rhizosphere soil

libraries derived from rRNA. Seventy per cent of these clone sequences were related to two

subgroups of the Rubrobacteria, which was an indication that this group of bacteria was

probably metabolically active in heavy metal-contaminated soils.

Fluorescence in situ hybridization (FISH) was used for the in situ detection and

quantification of selected bacterial groups previously detected in the clone libraries from the

rhizosphere of Thlaspi caerulescens. By applying the most general probe EUB338, only 20%

of the total rhizosphere microbial community could be detected. Based on this result, it was

difficult to conclude with certitude which were the most dominant bacteria in the rhizosphere.

However, despite this low detection rate, it was possible to detect the major groups present in

the rhizosphere clone libraries using group-specific oligonucleotide probes. As part of our

sequences were affiliated to two emerging bacterial groups, the Acidobacteria and the

Rubrobacteria, two new probes were designed, Acido228 (specific for the subgroup 1 of the

Acidobacterium division) and Rubro198 (specific for the all Rubrobacteria subclass), for the

detection of these microorganisms. These two probes were first checked for their specificity

with pure cultures and finally applied in the rhizosphere soil allowing for the first time the

detection of these organisms in situ.

Finally, the impact of heavy metals and a subsequent one-year phytoextraction with Thlaspi

caerulescens on the soil microbial community was investigated in an artificially heavy metal-

contaminated soil. All the different molecular and culture-dependent techniques used,

denaturing gradient gel electrophoresis (DGGE), community level physiological profile

(CLPP) and potential ammonium-oxidation measurement showed that the heavy metal addition

induced drastic changes in the bacterial community. Moreover, the analysis of the different

bacterial DGGE patterns (Bacteria, β-Proteobacteria and ammonia-oxidising bacteria)

obtained during this experiment showed that one-year phytoremediation was not sufficient to

recover the initial community present in the non-contaminated soil. However, with the CLPP

analysis, it was possible to detect a stimulating effect of the plant on a part of the microbial

community in both contaminated and non-contaminated soils. The most obvious result was

obtained in the contaminated soil where the number of substrates metabolised increased

significantly in the presence of the plant as compared to the unplanted contaminated samples.
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Summary
The measurement of the potential ammonium-oxidation was used as a criterion for soil quality.

Although this test showed that the ammonia-oxidising bacteria were significantly stimulated in

the planted non-contaminated soil samples, the positive effect of the plant on these bacteria was

not sufficient to overcome the inhibition induced by the presence of the heavy metals in the

contaminated soil, even after one year phytoremediation. 

To conclude, molecular methods in combination with culture-dependent techniques have

proven in this study to be very useful for the detection of the changes induced by the heavy

metals in the structure and the function of the microbial community. Moreover, the molecular

techniques contributed to the identification of bacteria which could be potentially used for the

bioremediation of contaminated soils thus offering new perspectives of investigation and

technology development.
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VERSION ABRÉGÉE

La présence de métaux lourds dans les terres agricoles et les nappes phréatiques est

essentiellement liée à l’activité humaine. Les métaux lourds n’étant pas biodégradables, il a

fallu développer différentes techniques pour décontaminer les sites pollués. L’une d’elles, la

phytoextraction, exploite les propriétés hyperaccumulatrices de certaines plantes qui peuvent

extraire de grandes quantités de métaux lourds.

L’accumulation des métaux lourds dans l’environnement peut se répercuter sur la santé des

êtres humains et des animaux. A l’échelle microscopique, les métaux lourds ont aussi des effets

néfastes sur les populations bactériennes ce qui n’est pas sans conséquences sur le

fonctionnement de l’écosystème. En effet, les micro-organismes occupent des positions clés

dans les cycles des bioéléments. Leur disparition ne permet donc plus de garantir à long terme

la fertilité du sol. Ces dernières années, le développement de la biologie moléculaire a largement

contribué à la découverte de la diversité microbienne et de son rôle dans le sol. Cependant, à ce

jour, peu d’études ont utilisé des méthodes moléculaires pour mesurer l’impact des métaux

lourds sur les populations bactériennes. 

Dans le cadre de cette thèse, une expérience en pots a été menée en laboratoire avec une

plante hyperaccumulatrice (Thlaspi caerulescens) plantée dans deux sols contaminés

différemment, soit par l’ajout d’une poudre de métaux lourds ou par l’application de boues

d’épuration durant plusieurs années. L’impact des métaux lourds sur les populations

bactériennes a ensuite été évalué par le biais de différentes méthodes moléculaires. Dans un

deuxième temps, l’utilisation de Thlaspi caerulescens a permis de diminuer les concentrations

biodisponibles de métaux lourds dans le sol et d’en étudier les conséquences sur la structure et

les fonctions de la communauté bactérienne.

La création de banques de clones, basées sur l’ADN et l’ARN ribosomal bactérien (16S), a

tout d’abord permis de déterminer la structure de la communauté microbienne et d’identifier les

populations actives dans la rhizosphere de Thlaspi caerulescens qui avait été planté durant trois

mois dans le sol contaminé naturellement. Par la suite, la comparaison des banques de clones

obtenues à partir de l’ADN et de l’ARN du sol rhizosphérique avec celles du sol distant a permis

de vérifier si la plante influençait la composition de la communauté microbienne. Le

séquençage partiel de 282 clones a révélé que la plupart des séquences obtenues à partir du sol

rhizosphérique et distant étaient affiliées à 5 grands groupes phylogénétiques, les
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Actinobacteria, α-Proteobacteria, β-Proteobacteria, Acidobacteria et les Planctomycetales. La

prédominance de ces taxa, aussi bien dans la communauté microbienne du sol rhizosphérique

que dans celle du sol distant, a montré que la plante avait une influence minime sur la structure

générale de la communauté bactérienne. Cependant, à l’exception des Actinobacteria, les quatre

autres taxa étaient généralement moins représentés dans les banques de clones basées sur l’ARN

ribosomal que dans celles basées sur l’ADN. Au contraire, les séquences affiliées aux

Actinobacteria prédominaient largement dans les banques de clones du sol distant et

rhizosphérique construites à partir de l’ARN ribosomal. Plus précisément, 70% de ces

séquences ont été apparentées à deux sous-groupes des Rubrobacteria, indiquant que ce groupe

de bactéries était probablement actif dans les sols contaminés aux métaux lourds.

L’hybridation in situ par fluorescence (FISH) a été utilisée pour détecter et quantifier in situ

les différents groupes bactériens présents dans la rhizosphère de Thlaspi caerulescens et

précédemment identifiés avec les banques de clones. Seulement 20% de la communauté

rhizosphérique a pu être détectée avec la sonde la plus générale (EUB338) empêchant par

conséquent de conclure avec certitude quelles étaient les populations microbiennes les plus

dominantes dans la rhizosphère. Malgré cette limite de détection très basse, il a quand même été

possible de détecter les groupes qui dominaient auparavant dans les banques de clones grâce à

l’usage de sondes spécifiques. Pour les Acidobacteria et les Rubrobacteria, deux groupes

relativement récents, il a fallu développer deux nouvelles sondes, Acido228 (spécifique au sous-

groupe 1 de la division) et Rubro198 (spécifique à toute la sous-classe), pour pouvoir détecter

les micro-organismes dont les séquences avaient été retrouvées dans les banques de clones.

Après avoir évalué leur spécificité avec des souches pures, leur utilisation dans le sol

rhizosphérique a permis, pour la première fois, de détecter in situ ces nouveaux groupes

bactériens.

Finalement, l’impact des métaux lourds sur la communauté bactérienne suivi d’une année de

phytoextraction avec Thlaspi caerulescens a été examiné dans un sol artificiellement

contaminé. Toutes les méthodes utilisées, électrophorèse sur gradient de dénaturant (DGGE),

utilisation de 95 substrats pour la détermination du profil physiologique d’une communauté

(CLPP) et mesure du potentiel d’oxydation de l’ammonium ont montré un effet drastique des

métaux lourds sur la communauté microbienne. De plus, l’analyse des différents profils

bactériens (Bacteria, β-Proteobacteria et bactéries responsables de l’oxydation de

l’ammoniaque) obtenus par DGGE a permis de constater qu’une année de phytoremediation
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Version abrégée
n’était pas suffisante pour permettre le rétablissement des populations initialement présentes

dans le sol non contaminé. L’utilisation des 95 substrats a cependant permis d’observer un effet

stimulant de la plante sur une partie de la communauté bactérienne qui s’est traduit par une

augmentation du nombre de substrats métabolisés aussi bien dans le sol non contaminé que dans

le sol contaminé. La qualité du sol a pu être évaluée en  mesurant le potentiel d’oxydation de

l’ammonium. Ce test a montré que les bactéries responsables de l’oxydation de l’ammoniaque

n’étaient toujours pas fonctionnelles après une année de phytoremediation et que l’effet

stimulant de la plante sur ces bactéries, clairement visible dans le sol non contaminé, n’était pas

suffisant pour lever l’inhibition engendrée par les métaux lourds dans le sol contaminé.

En conclusion, ce travail a démontré que l’utilisation de méthodes moléculaires combinée avec

des techniques plus traditionnelles était très utile pour observer les changements induits par les

métaux lourds au niveau de la structure et des fonctions de la communauté bactérienne. De plus,

les techniques moléculaires ont permis d’identifier certaines populations qui pourraient s’avérer

utiles pour la décontamination des sols pollués, offrant ainsi plusieurs perspectives de recherche

pouvant déboucher sur le développement de nouvelles technologies.  
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CHAPTER 1

Introduction

1.1  Heavy metals

1.1.1 Biochemical roles 

The term «heavy metals» refers to metals and metalloids having densities greater than 5 g cm-3

and is usually associated with pollution and toxicity although some of these elements (essential

metals) are required by organisms at low concentrations (Adriano, 2001). For example, zinc

(Zn) is the component of a variety of enzymes (dehydrogenases, proteinases, peptidases) but is

also involved in the metabolism of carbohydrates, proteins, phosphate, auxins, in RNA and

ribosome formation in plants (Kabata-Pendias & Pendias, 2001), (Mengel & Kirkby, 1982).

Copper (Cu) contributes to several physiological processes in plants (photosynthesis,

respiration, carbohydrate distribution, nitrogen and cell wall metabolism, seed production)

including also disease resistance (Kabata-Pendias & Pendias, 2001). The good functioning of

the metabolisms of humans and bacteria is also dependent on these two metals (Adriano, 2001;

Blencowe & Morby, 2003; Cavet et al., 2003). However, at high concentrations, these metals

exhibit toxic effects on cells (Baker & Walker, 1989).

On the contrary, cadmium (Cd) is not involved in any known biological processes (non-

essential metal) and may be quite toxic as it is accumulated by organisms. It is known to disturb

enzyme activities, to inhibit the DNA-mediated transformation in microorganisms, to interfere

in the symbiosis between microbes and plants, as well as to increase plant predisposition to

fungal invasion (Kabata-Pendias & Pendias, 2001). In humans, it may promote several
1



Chapter 1
disorders in the metabolism of Ca and vitamin D leading to bone degeneration and kidney

damage (itai-itai disease) (Adriano, 2001).

The excessive uptake of heavy metals by animals and humans is the result of the successive

accumulation of these elements in the food chain, the starting point being the contamination of

the soil. 

1.1.2 Origin of the contamination in soils

The main problem with heavy metals such as Cu, Zn and Cd in soils is that, unlike organic

pollutants, they cannot be biodegraded and therefore reside in the environment for long periods

of time. Their presence in soils may be from natural or anthropogenic origins. Natural sources

include atmospheric emissions from volcanoes, the transport of continental dusts and the

weathering of metal-enriched rocks (Ernst, 1998). However, the major source of contamination

is from anthropogenic origin: the exploitation of mines and smelters, the application of metal-

based pesticides and metal-enriched sewage sludges in agriculture, combustion of fossil fuel,

metallurgical industries and electronics (manufacture, use and disposal), military training, etc.

contribute to an increased input of heavy metals in soils (Alloway, 1995). 

Whereas the industrial atmospheric emissions may be controlled by the installation of

adequate air filters, the main source of contamination for humans remains the ingestion of plants

that grew on contaminated soils. The use of intensive farming practices including addition of

phosphatic fertilizers, sewage sludge input and pesticide treatment are responsible for the

pollution of agricultural soils. Although these practices increase significantly the yield by

protecting plants and providing them with all the nutrients necessary for a rapid and better

growth, they may also introduce large amounts of heavy metals (Cu, Zn, Pb, Cd) and organic

pollutants in soil which may then be accumulated by the plant. For instance, Hamon et al. (1998)

have shown that the addition of phosphatic fertilizers increased Cd uptake of wheat. However,

the risk arising from heavy metals largely depends on their bioavailability which in turn depends

on their chemical speciation (Adriano, 2001).

1.1.3 Situation in Switzerland

Switzerland has implemented with the revision of the Ordinance relating to Impacts on the Soil

(OIS, 1998) a three level evaluation scheme of soil-related hazards to man, animals and plants.

It consists of guide, trigger and clean-up values of metal concentrations in soils (Table 1.1). Two
2



Introduction
values are measured, the pseudo-total metal content (t) extracted with 2 M HNO3 and the

soluble fraction (s) with 0.1 M NaNO3. Both values (t and s) differ with the land use (Table 1.1).  

Guide values account for the impacts on the soil ecosystem. If either t or s exceeds the guide

value, the soil is considered as contaminated because the long-term soil fertility or

multifunctionality is not guaranteed any more (Vollmer et al., 1997).

Soil trigger values assume harmful effects on exposed risk receptors, such as humans, higher

plants and animals. Where trigger values are exceeded, further site specific investigations have

to be performed to determine whether or not a hazard exists. Clean-up values indicate severe

contamination and the definite need for measures (Vollmer et al., 1997).  

In 1997, a study of the Swiss Agency for the Environment Forests and Landscape (SAEFL)

estimated that around 50’000 sites are contaminated with heavy metals (Elsenbeer et al., 1997).

According to this report, industrial sites account for 50%, landfills for 45% and accident sites

for 5%. Five to eight percent of these sites need to be remediated. 

In 2002, a second study was performed by the same institute based on the data of the NABO

network (NAtionales BOdenbeobachtungsnetz) which is a national project for the monitoring

of the soil pollution in 105 representative sites with respect to land use, climate, geology, soil

type and geographic distribution (Desaules & Dahinden, 2000). They showed that 42% of the

105 sites of the NABO were above the guide values for Cu, Pb and Cd (SAEFL, 2002). This

represents roughly 10% of the surface in Switzerland.

Table 1.1: Guide, trigger and clean-up values in the ordinance relating to impacts on soils (OIS, 1998).

Use of land Cd Cu Pb Zn

t s t s t s t s

Guide value 0.8 0.02 40 0.7 50 - 150 0.5

Trigger value Food plant cultivation 2 0.02 - - 200 - - -

Fodder plant cultivation 2 0.02 150 0.7 200 - - -

Direct cultivation 10 - - - 200 - - -

Clean-up value Agriculture and horticulture 30 0.1 1000 4 2000 - 2000 5

Domestic gardens and allotments 20 0.1 1000 4 1000 - 2000 5

Children playground 20 - - - 1000 - - -

t = pseudo-total; s = soluble; all values are in mg metal kg-1 of soil
3
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1.2 Remediation technologies

1.2.1 In situ and ex situ approaches

Depending on the extension, depth and kind of the contamination, different remediation

approaches have been proposed (Mulligan et al., 2001). In general, three strategies are possible:

the containment of the contaminants, their removal from the environment or their in situ

stabilisation. Physical containment is the least expensive approach but this leaves the

contaminant in place without treatment. As ex situ techniques are expensive, environmentally

invasive and labor intensive, in situ approaches are generally preferred. One of these in situ

techniques, phytoremediation, uses plants to remove pollutants from the environment or to

render them harmless (Salt et al., 1995; Flathman & Lanza, 1998). This in situ technology can

be applied to both organic and inorganic pollutants present in soil or water and is quite

competitive as it costs only 10$-40$ per ton soil (Mulligan et al., 2001). Only the

phytoremediation processes applicable for heavy metal-polluted soils are described below and

illustrated in Figure 1.1:

•  Phytostimulation: Plants secrete roots exudates that may be utilised by bacteria and

promote their growth and activity. This microbial stimulation in the

plant rhizosphere modifies the bioaccumulation, biological

oxidation/reduction and biomethylation of heavy metals.

• Phytostabilisation: The use of plants to reduce the bioavailability of pollutants in the

environment either with or without non toxic-metal-immobilizing or

fertilizing soil amendments. Revegetation stabilize pollutants in

soils, thus rendering them harmless and reducing the risk of further

environmental pollution by leaching of pollutants into the

groundwater or by airborne spread.

• Phytoextraction: The use of plants to remove metals or organics from soil by

concentrating them in the harvestable parts. The metals are recovered

by incinerating or composting the plant biomass. If plants are

incinerated, the metals are recovered through suitable air filters. 
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• Phytovolatilization: The use of plants to volatilize pollutants. Plants extract volatile

pollutants (e.g.,arsenic, selenium, mercury) from soil and volatilize

them from the foliage. If the process takes place in the rhizosphere, it

is microbially assisted.

1.2.2 Phytoextraction: limits and solutions  

The success of the phytoextraction process depends on three factors: the degree of metal

contamination, the metal bioavailability and the capacity of the higher plants to accumulate the

metal in the shoots. Soils with a high degree of metal pollution can be revegetated by metal

resistant plants, but their decontamination capacity is restricted by their low biomass production

so that decontamination of the soil cannot be achieved in a reasonable time. However, the

revegetation of these soils avoids further dispersal of metals by water or wind erosion

(phytostabilisation).

In the case of low metal availability, the use of synthetic chelators (chelate-assisted

phytoextraction) has been shown to increase significantly the accumulation of Pb but also of

other metals in the plant (Blaylock et al., 1997; Salt et al., 1998). These compounds (e.g.

ethylenediaminetetraacetic acid (EDTA)) prevent Pb precipitation and keep the metal as soluble

chelate-Pb complexes available for plant uptake. Because accumulation of elevated Pb levels is

Figure 1.1: Schematic diagram showing the mechanisms of the phytoremediation process for
metal uptake.
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highly toxic for the plant, it is recommended to apply chelators only after a maximum amount

of plant biomass has been produced. The plant material is subsequently harvested within a few

days. Chelators ability to facilitate phytoextraction was also shown to be directly related to its

affinity for metals (Blaylock et al., 1997). The major disadvantage of this technique is that many

synthetic chelators, e.g. EDTA, show a low degree of biodegradability (Kari & Giger, 1996).

Consequently, the in situ application of such chelators could pose an environmental risk of

water pollution by uncontrolled metal solubilization and leaching. However, a suitable

alternative is the use of easily biodegradable chelating agents such as nitrilotriacetate (NTA) or

elemental sulfur (Kayser et al., 2000). 

Two categories of plants are suitable for phytoextraction. The first one, the

hyperaccumulating plants (e.g. Thlaspi caerulescens), usually small, with high foliar metal

concentration but with slow growth rates that do not provide a high annual biomass. The second

category includes high biomass crops (e.g. Brassica juncea) that have a large biomass

production but take up lower metal concentrations. 

To overcome the limitations due to plant characteristics, different strategies have been

suggested to improve the phytoextraction process. Brown et al. (1995) proposed to transfer the

metal-removal properties of hyperaccumulator plants to high-biomass producing species.

However, this approach is limited by the lack of information on the genetics of metal

hyperaccumulation in plants. Particularly, the heredity of relevant plant mechanisms, such as

metal transport and storage (Lasat et al., 2000) and metal tolerance (Ortiz et al., 1995) must be

better understood. 

Alternatively, Brewer et al. (1999) tried to increase the size of hyperaccumulating plants by

generating somatic hybrids between Thlaspi caerulescens and Brassica napus followed by

hybride selection for Zn tolerance. They could recover high biomass hybrids with superior Zn

tolerance which survived up to 4 months and even flowered sometimes. Another promising

strategy is the use of genetically modified plants (Kramer & Chardonnens, 2001). Arabidopsis

and tobacco plants expressing the bacterial genes merA and merB have been successfully used

for the remediation of mercury-contaminated soils (Heaton et al., 1998). However, the use and

release of genetically engineered organisms into the environment is still restricted in many

countries and often criticized by scientists and the public.
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1.2.3 Phytoextraction in Switzerland

Several sites in Switzerland have been investigated in order to assess their potential to be

reclaimed through phytoremediation. In a first attempt, Geiger et al. (1993) studied the

influence of different remediation methods on the heavy metal uptake by Lactuca sativa at

Dornach (NW, Switzerland), where the soil is calcareous and  heavy metal-polluted. As the

different techniques used were not satisfactory regarding the normal development of the plant

and its heavy metal content, he suggested to use heavy metal-tolerant plants or physiologically

adapted plants to high tissue concentrations to stabilise or remove the heavy metals,

respectively. In 1997, Felix (1997) followed this idea and used in this site, but also in another

location, two hyperaccumulating species Alyssum murale and Thlaspi caerulescens in

combination with different cultivars of tobacco, maize, rapeseed, elephant grass, Indian mustard

and willows. He concluded that due to the high soil pH, the bioavailability of Cd, Zn and Cu

was too low to be phytoremediated in a reasonable time span. An enhancement of the

availability of the metal would be necessary to render phytoextraction suitable (Felix, 1997). 

More recently, Hammer et al. performed a field experiment in two different heavy metal-

contaminated sites, Caslano (Caslano, TI, Switzerland) and Dornach (Hammer et al., 2003;

Hammer & Keller, 2003). Their aim was to compare the Cd and Zn uptake of a

hyperaccumulating plant (Thlaspi caerulescens) and a high biomass crop (Salix vimitalis)

grown either in an acidic or a calcareous heavy metal-polluted soil . They concluded that

Thlaspi was the most efficient plant for the decontamination of superficially contaminated soils

and especially for soils moderately contaminated with Cd. However, for more deeply

contaminated soils, Salix would perform better and moreover its fast growth would make it a

good candidate for the stabilization of contaminated soils. They also showed that soil properties

can affect significantly the rate of phytoextraction. 
7



Chapter 1
1.3 Bacteria and heavy metals

1.3.1 Influence of bacteria on heavy metal bioavailability 

Overall toxic effects of heavy metals to soil microorganisms depend on their bioavailability.

Although heavy metal bioavailability is mainly dependent on the soil properties (pH and

organic matter), bacteria can also directly influence the solubility of heavy metals by altering

their chemical properties. Microorganisms have developed several mechanisms which can

immobilize, mobilize or transform heavy metals. These processes include 1) extracellular

precipitation, 2) intracellular accumulation, 3) oxidation and reduction reactions, 4) methylation

and demethylation, and 5) extracellular binding and complexation (Brierley, 1990). The

exploitation of these bacterial properties for the remediation of heavy metal-contaminated sites

has been shown to be a promising bioremediation alternative (Brierley, 1990; Lovley & Coates,

1997; Lloyd & Lovley, 2001). However, at high concentrations, bioavailable heavy metals are

toxic for a great number of soil microorganisms and soil microbial processes which in turn will

result in severe ecosystem disturbance.

1.3.2 Heavy metal impacts on bacterial community structure and microbial processes 

The deleterious effects of heavy metals on microbe-mediated processes have been discussed in

detail in several publications (Duxbury, 1985; Babich & Stotzky, 1985; Baath, 1989; Giller et

al., 1998). Generally, a decrease in carbon mineralization and fixation, in nitrogen

transformation, soil enzyme activities and litter decomposition can be observed. Other typical

effects of heavy metal contamination are a decrease in the microbial numbers (CFU), biomass,

or an increase of the frequency of heavy metal resistant bacteria (Doelman et al., 1994;

Pennanen et al., 1996; Müller et al., 2001). 

However, measuring these parameters is not suitable for the determination of changes in the

entire structure of soil communities exposed to pollutants. Since many of the microbiological

and biochemical techniques used to study the effects of heavy metals on soil bacteria are

cultivation dependent, they do not provide detailed information on the non-cultivable bacteria,

neglecting thus the major part of the soil microbial community. Consequently, soil microbial

communities are treated as a black box. These limitations have been overcome by the recent

advances in molecular fingerprinting methods. Based on the analyses of signature biomarkers

such as phospholipid fatty acids or nucleic acids, the fingerprinting techniques have been used
8
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in numerous studies and showed significant changes in the microbial community in response to

a heavy metal stress (Kozdrój & van Elsas, 2001). Moreover, these methods allowed to monitor

the bacterial community during the remediation process (Kelly & Tate, 1998; Macnaughton et

al., 1999). These studies have mainly increased our knowledge on sensitive bacterial

populations which are negatively affected by heavy metals, yet it should also be considered that

heavy metals favour the development of tolerant species which can survive and adapt due to

their genetic characteristics. 

1.3.3 Heavy metal resistance systems in bacteria

Bacteria have developed several efficient systems to detoxify the metals. These mechanisms

can be grouped into five categories: 1) intracellular sequestration, 2) export, 3) reduced

permeability  4) extracellular sequestration and 5) extracellular detoxification (Rough et al.,

1995). Almost all known bacterial resistance mechanisms are encoded on plasmids and

transposons (Silver & Walderhaug, 1992) and it is probably by gene transfer or spontaneous

mutation that bacteria acquire their resistance to heavy metals (Osborn et al., 1997).

In gram-negative bacteria (e.g. Ralstonia eutropha), the czc system is responsible for the

resistance to Cd, Zn and Co. The czc-genes encode for a cation-proton antiporter (CzcABC)

which exports Cd, Zn and Co (Nies, 1995). A similar mechanism, called ncc system, has been

found in Alcaligenes xylosoxidans which is resistant to Ni, Cd and Co. On the contrary, the Cd

resistance mechanism in gram-positive bacteria (e.g. Staphylococcus, Bacillus or Listeria) is a

Cd-efflux ATPase. The two most well-studied Cu resistance systems are cop from

Pseudomonas syringae pv. tomato and pco from Escherichia coli. The cop genes encode for

different Cu-binding proteins which allow the sequestration of Cu in the periplasm or in the

outer membrane. In contrast, the pco system is expected to be an ion-dependent Cu antiporter

(Kunito et al., 1998).

The bacterial resistance properties can be used for different purposes: in the case of mercury

pollution, the insertion of the microbial mercury reductase in a transgenic plant improved

significantly the phytoextraction process (Heaton et al., 1998). Another example was the

inoculation of heavy metal resistant bacteria in a contaminated soil which seemed to protect the

indigenous sensitive ammonia-oxidising bacteria from metal toxicity (Stephen et al., 1999). 
9
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1.4  Plants and heavy metals

1.4.1 The soil-root interface

The rhizosphere is defined as the soil part directly in contact with plant roots. This region is

physically and chemically modified due to the root processes induced by the plant for its

nutrition. As metals remain sorbed to soil particles, plants have evolved several strategies for

increasing their bioavailability. A list of the different plant-mediated processes that affect metal

contaminant chemistry is given by Mclaughlin et al. (1998): 

1. Reduction of ion activity in soil solution, desorption of contaminants from surfaces,

convective flow of solution to the root.

2. Changes in solution chemistry (pH, ionic strength, macronutrients cation concentrations

(e.g., Ca)) affecting sorption.

3. Excretion of organic ligands (root exudates) increasing or decreasing the total

concentration of contaminant ions in solution.

4. Living or dead plant material acting as new sorbing surfaces for contaminants.

5. Stimulation of the microbial activity in the rhizosphere.

However, the mechanisms involved in the changes of metal mobility at the root interface and in

the acquisition of these elements can vary widely among plant species.

1.4.2 The different strategies adopted by  plants

The sensitivity or tolerance of plants towards metals is influenced by plant species and

genotypes. According to Baker (1981), plants can be grouped into three categories: excluders,

indicators and accumulators (Figure 1.1). Excluders survive through restriction mechanisms

and are sensitive to metals over a wide range of soil concentrations. Members of the grass family

(e.g., sudangrass, bromegrass, fescue, etc.) belong to this group of plants. Indicators show poor

control over metal uptake and transport processes and correspondingly respond to metal

concentrations in soils (Figure 1.1). This group includes the grain and cereal crops (e.g. corn,

soybean, wheat, oats, etc.). As accumulators do not prevent metals from entering the roots, they

have evolved specific mechanisms for detoxifying high metal levels accumulated in the cells.
10
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Tobacco, the mustard and Compositae families (e.g. lettuce, spinach, etc.) belong to this

category. Extreme accumulators, called hyperaccumulators, form a fourth category as they have

exceptional metal-accumulating capacity which allows them to survive and even thrive in

heavily contaminated soils (or near ore deposits) through a tolerance mechanism. The

characteristics of this group are further developed in the following section.

1.4.3 Hyperaccumulating plants

Brooks et al. (1977) introduced the term hyperaccumulators to describe plants which in their

natural habitats were capable of accumulating more than 1000 mg Ni kg-1 in their shoots dry

weight. This criterion is also applied to other metals including Co, Cu and Pb, whereas for Cd

and Zn the respective threshold is 100 and 10’000 mg kg-1 shoots dry weight (Brooks, 1998;

Baker et al., 2000). Compared to non-hyperaccumulator plants, metal concentrations in

hyperaccumulator plants are 1-3 orders of magnitudes higher. Apart from these arbitrary

criteria, hyperaccumulators usually have a shoot to root metal concentration ratio of >1,

whereas non-hyperaccumulator plants generally have higher metal concentrations in roots than

in shoots (Baker et al., 1994b; Shen et al., 1997).

Figure 1.1: The different strategies of metal uptake by plant in relation to metal concentration in
soil (adapted from Adriano, 2001).
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Metal hyperaccumulation is an extreme evolutionary response to the presence of high metal

concentrations in soils and is not a common characteristic among terrestrial higher plants. To

date, about 400 plant species have been identified as metal hyperaccumulators, representing

<0.2% of all angiosperms (Brooks, 1998; Baker et al., 2000). The number of known

hyperaccumulators of several elements and the families to which most of them belong are given

in Table 1.2. 

Hyperaccumulators are mainly found in soils rich in metals, either for geochemical reasons or

due to pollution. They usually have a low biomass as they need to invest more energy in the

mechanisms necessary to adapt to high metal concentrations in their tissues. Since metal

accumulation is an energy consuming process, one would wonder what evolutionary advantage

does metal hyperaccumulation gives to these species. Recent studies have shown that metal

accumulation in the foliage may allow hyperaccumulator species to evade predators including

caterpillars, fungi and bacteria (Pollard & Baker, 1997; Boyd, 2000).

Table 1.2: Numbers (n) of known hyperaccumulating plants for eight heavy metals and the families in which
they are most often found (from Brooks, 1998).

Element n Families

Cadmium 1 Brassicaceae
Cobalt 26 Lamiaceae, Scrophulariaceae
Copper 24 Cyperaceae, Lamiaceae, Poaceae, Scrophulariaceae
Manganese 11 Apocynaceae, Cunoniaceae, Proteaceae
Nickel 290 Brassicaceae, Cunoniaceae, Euphorbiaceae, Flacourtinaceae, Violaceae
Selenium 19 Fabaceae
Thallium 1 Brassicaceae
Zinc 16 Brassicaceae, Violaceae
12
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1.5 Bacteria and plants

1.5.1 Plant-microbial interactions in the rhizosphere

Plant-microbe interactions may be beneficial or harmful to the plant depending on the specific

microorganisms and plant involved. Plant beneficial interactions can be divided into three

categories (Brimecombe et al., 2001). The first interaction includes microorganisms which, in

association with the plant, increase the supply of mineral nutrients to the plant. This is the case

of the symbiotic dinitrogen-fixing bacteria of leguminous plants (i.e. Rhizobium,

Bradyrhizobium species) or of monocots (i.e. Azospirillum brasiliense) and the free nitrogen-

fixing bacteria such as Klebsiella pneumoniae (Lugtenberg et al., 1991). Secondly, there are

microorganisms (i.e. fluorescent pseudomonads) that stimulate plant growth indirectly by the

production of antibiotics, siderophores, volatile compounds or hydrolytic enzymes which

prevent the growth or activity of plant pathogens. Nowadays, these bacteria are used as

biocontrol agents. Thirdly, there are the plant growth-promoting rhizobacteria (i.e.

Azospirillum, Azotobacter, Pseudomonas and Bacillus) that stimulate directly plant growth by

the production of phytohormones (Okon, 1985). Detrimental interactions within the rhizosphere

involve deleterious rhizobacteria which inhibit shoot or root growth whithout causing any other

visual symptoms by the production of phytotoxins such as cyanide (Alström & Burns, 1989) or

phytohormones (Schippers et al., 1987).

1.5.2 Effects of root exudates on rhizosphere microbial populations

Plant roots can stimulate or inhibit microbial populations and their activities through the

exudation of different compounds. Root exudates are water-soluble organic compounds, mainly

carbohydrates, organic acids and amino acids, released from the root cells along concentration

gradients in the rhizosphere soil (Lynch & Whipps, 1990). For microorganisms, these exudates

represent a convenient source of carbon (and possibly nitrogen) since they are readily

assimilated without the need to synthesize exoenzymes. Due to this large availability of

substrates in the rhizosphere, microbial biomass and activity are generally much higher in the

rhizosphere than in the bulk soil (Brimecombe et al., 2001).

Moreover, the quantity and the chemical composition of root exudates, which vary during

plant developmental stage and between plant species (Brimecombe et al., 2001), may also affect

the microbial community structure in the rhizosphere. This was confirmed by the results of
13
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several studies using cultivation (Miller et al., 1989; Lemanceau et al., 1995; Germida et al.,

1998) or molecular fingerprinting techniques (Grayston et al., 1998; Smalla et al., 2001;

Baudoin et al., 2002; Kuske et al., 2002). 

According to the key role that root exudates seem to play in determining the composition of

their associated rhizobacterial populations, they could potentially be used in the future for the

remediation of contaminated sites by the selective enhancement of certain bacterial populations

which might improve the heavy metal uptake by the plant (Kozdrój & van Elsas, 2000).

Consequently, stimulated bacteria could change the bioavailability of heavy metals through

different chemical processes (see point 1.3.1), which in turn would increase plant heavy metal

uptake (see point 1.4.1). Phytovolatilization is also a concrete example of a plant-bacteria-

mediated bioremediation process (see point 1.2.1). 

1.6 Stress, biodiversity and ecosystem functioning 

1.6.1 Microbial biodiversity - ecosystem functioning relationships

Despite the obvious ecological importance of soil microorganisms, they had a negligible

influence on the development of contemporary ecological theory (Wardle & Giller, 1996). A

number of hypotheses suggest how species diversity may be related to ecosystem functioning.

Some authors suggested that a high diversity is beneficial to ecosystem function (Naeem et al.,

1994; Tilman et al., 1996). In contrast, others proposed that the properties of an ecosystem

depend more upon the functional abilities of particular species than on the total number of

species (Hooper & Vitousek, 1997; Wardle et al., 1997 ). 

One important aspect in ecosystem functioning is stability, defined as the system’s ability to

avoid displacement following a pertubation (resistance) and to return to its previous state after

a disturbance (resilience) (Begon et al., 1996). Mooney et al. (1995) stated that the capacity of

ecosystems to resist changing conditions was correlated positively to species numbers and that

diversity provides insurance against large changes in ecosystem processes. Later on, Griffiths

et al. (2000a) showed that this held true for soil microbial systems. The undelying theory is the

redundancy in function among species, i.e. different species are able to fulfil the same function,

which prevents changes in the ecosystem functioning (Gitay et al., 1996). Consequently, in a

diverse system any applied stress may remove some redundant species without loss of function,

whereas in less diverse systems a reduction in the species richness could more easily lead to a
14
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loss of function (Griffiths et al., 2000a).

1.6.2 Effect of a stress on the ecosystem

The effect of a disturbance on microbial community function depends on its duration and

specificity. By definition, a disturbance is either transient or permanent. Theoretically, after a

transient disturbance (i.e. heat stress), system function may eventually return to its former state,

whereas permanent disturbance (i.e. heavy metals addition) will result in a new altered state

(Rykiel, 1985). Experimentally, Griffiths et al. (2000a) observed no resilience in soils submitted

to a permanent stress (copper addition), as the reduction in microbial function was largely

unchanged over two months following perturbation. On the contrary, soils exposed to a

transient heat stress showed a clear trend of resilience with the most diverse soils regaining pre-

stress levels of function faster than the least diverse soil. 

Based on observations and as illustrated in Figure 1.2, two hypothetical models have been

proposed to explain the relationships between biodiversity and disturbance (Giller et al., 1998): 

In model 1, an increasingly severe stress results in a linear decline in microbial diversity (Figure

1.2). Experimentally, it has been shown that chloroform fumigation reduces gradually bacterial

diversity (Griffiths et al., 2000a). On the contrary, in model 2, when the stress is mild, it is

hypothesized that competitive species can predominate resulting in a lack of diversity. As soon

as the stress increases, these microorganisms lose their competitive advantage and more types

Figure 1.2: Hypothetical models of the effects of a stress
on diversity (and consequently function) of a community of
microorganisms (from Giller et al., 1998).
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can proliferate (Connell, 1978). However, at high levels of stress, the progressive extinction of

organisms leads to a loss of diversity in both models. Hump-backed relationships between

species diversity and disturbance (see model 2) seem to be common for animal, plant and even

microbial communities (Connell, 1978; Giller et al., 1998). Nevertheless, the exceptionnally

high levels of biodiversity in soil might prevent the development of the expected stress-diversity

relationship and completely falsify the models.

1.7 Objective of this thesis

Nowadays, it is well established that microorganisms, involved in the nutrients turnovers, are

essential for the good functioning of soil ecosystems. However, heavy metals can alter the

microbial community in such a way that it will not be able to fulfil its tasks any more. Among

the different remediation techniques available for the decontamination of heavy metal-polluted

soils, one in particular, including the use of hyperaccumulating plants, seems quite promising.

Although microorganisms might improve the efficiency of this approach, their potential for

remediation has largely been ignored. This disinterest was certainly due to the lack of suitable

methods for their detection but the recent development of molecular methods overcame these

limitations and allowed to get a new insight into the bacterial diversity and in particular the

interactions between the plant and its rhizosphere bacterial communities. 

During this work a set of molecular methods was used to investigate the structure and the

function of the bacterial community exposed to a heavy metal stress. Further, information on

the consequences of the partial relief of this stress by phytoextraction for the microbial

community was obtained. In this purpose, a simplified model ecosystem was established

including one hyperaccumulating plant, Thlaspi caerulescens, and a long-term as well as an

artificially heavy metal-contaminated soils. The main objectives of this study were the

following:

• To characterise the bacterial diversity in a long-term heavy metal-polluted soil and in the

rhizosphere of Thlaspi caerulescens by constructing clone libraries based on the 16S

ribosomal RNA and its corresponding gene (16S rDNA). Firstly, this approach allowed

to retrieve information on the structure of the microbial community, including in

particular the potentially active part of the microbial community. Secondly, the data
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obtained with the two clone libraries (rRNA and rDNA) from the rhizosphere of Thlaspi

caerulescens were compared with the bulk soil data to identify any effect of the plant on

the soil microbial community structure (Chapter 2).

• To use fluorescence in situ hybridisation (FISH) for the in situ detection and

quantification of selected bacterial groups previously detected in the 16S rRNA clone

library from the rhizosphere of Thlaspi caerulescens. New probes were designed and

successfully applied for the detection of the emerging phylogenetic groups retrieved from

the rhizosphere clone library (Chapter 3).

• To study the impact of heavy metals followed by one year phytoextraction with Thlaspi

caerulescens on the structure and the function of the microbial community in an

artificially heavy metal-contaminated soil. This microcosm experiment allowed (i) to

investigate the effects of heavy metals and of the plant on the microbial community

separately (ii) to check if one year remediation was sufficient to recover the initial

population present in the pristine soil and (iii) to observe a possible protective and even

stimulating effect of the plant on the microorganisms. For this purpose, culture-

dependent and independent techniques (denaturing gradient gel electrophoresis,

community-level physiological profiles, measurement of the potential ammonium-

oxidation) were used to analyse the microbial community (Chapter 4).
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CHAPTER 2

Comparative 16S rDNA- and 16S rRNA sequence analysis
indicates that Actinobacteria might be a dominating part of the
metabolically active bacteria in heavy metal-contaminated bulk
and rhizosphere soil

FABIENNE GREMION, ANTONIS CHATZINOTAS AND HAUKE HARMS 

 Environmental Microbiology 5 (10), 896-907

2.1 Abstract

Bacterial diversity in 16S ribosomal DNA and reverse-transcribed 16S rRNA clone libraries

originating from the heavy metal-contaminated rhizosphere of the metal-hyperaccumulating

plant Thlaspi caerulescens was analyzed and compared to that of contaminated bulk soil. Partial

sequence analysis of 282 clones revealed that most of the environmental sequences in both soils

affiliated with five major phylogenetic groups, the Actinobacteria, α-Proteobacteria, β-

Proteobacteria, Acidobacteria and the Planctomycetales. Only 14.7% of all phylotypes

(sequences with similarities >97%), but 45% of all clones, were common in the rhizosphere and

the bulk soil clone libraries. The combined use of rDNA and rRNA libraries indicated which

taxa might be metabolically active in this soil. All dominant taxa, with the exception of the

Actinobacteria were relatively less represented in the rRNA libraries as compared to the rDNA

libraries. Clones belonging to the Verrucomicrobiales, Firmicutes, Cytophaga-

Flavobacterium-Bacteroides and OP10 were found only in rDNA clone libraries indicating that

they might not represent active constituents in our samples. The most remarkable result was that
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sequences belonging to the Actinobacteria dominated both the bulk and rhizosphere soil

libraries derived from rRNA (50% and 60% of all phylotypes, respectively). Seventy percent of

these clone sequences were related to the Rubrobacteria-subgroups 2 and 3, thus providing for

the first time evidence that this group of bacteria is likely metabolically active in heavy metal-

contaminated soil. 

2.2 Introduction

Toxic metal contamination of soils, sediments and groundwater causes major environmental

problems which, in many cases, call for immediate action. The current cleanup technology

involves excavation and removal of the contaminated soil and subsequent deposition in

landfills. Besides its detrimental impact on the soil ecosystem, this technology is cost-intensive.

An alternative approach is phytoextraction, an in situ technique relying on plants that

translocate heavy metals from the soil and accumulate them in their roots and above-ground

tissues (Salt et al., 1995). 

To date, more than 400 hyperaccumulating plant species, among them Thlaspi caerulescens,

Silena vulgaris, and Brassica juncea, have been shown to remove Cd, Cu, Ni, Pb and Zn from

metal-contaminated soils (Salt et al., 1998). Successful phytoextraction may not only depend

on the plant itself but also on the interaction of the plant roots with the rhizosphere bacterial

community (Whiting et al., 2001a). It has been suggested that soil microorganisms and in

particular the active rhizosphere bacteria might improve heavy metal mobilization and uptake

by plants. Although the mechanisms have yet to be understood in detail, rhizosphere bacteria

were shown to promote the accumulation of selenium and mercury in wetland plants (De Souza

et al., 1999) and to increase the dissolution of Zn from the nonlabile phase in soil (Whiting et

al., 2001a). The description of the rhizosphere bacterial community and the careful

characterization of the plant-bacterial interactions in heavy metal-polluted soils may therefore

provide valuable information needed to increase the efficiency of phytoextraction. 

Whereas microbial communities in heavy metal-polluted bulk soils have been studied in a

few cases (Brim et al., 1999; Sandaa et al., 1999b), information on the microbial community

composition in the rhizosphere of heavy metal-accumulating plants is scarce. In particular, it is

unclear if heavy metal-accumulating plants selectively stimulate e.g. by providing root exudates

the bacterial community composition in heavy metal-contaminated soils and thus establish
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different communities in the root-zone (Kozdrój & van Elsas, 2000), which may not be

dominant or active in an unplanted bulk soil. Likewise, it is important to study the effects of

metal-accumulating plants on the soil organisms indigenous to the polluted sites (Pawlowska et

al., 2000). These organisms may be important for revegetation after a significant reduction of

the soil metal concentration has been achieved. Besides, studies on heavy metal-polluted soils

may provide new insight into bacterial diversity under unfavorable conditions, new isolates and

likely new genetic information on heavy metal resistance, which could be exploited. 

We report here on a culture-independent, 16S rRNA-based phylogenetic survey of the

bacterial community inhabiting heavy metal-contaminated rhizosphere and bulk soil. Samples

were taken from the rhizosphere of the heavy metal-accumulating plant Thlaspi caerulescens.

Unplanted bulk soil was also sampled in order to investigate if there is an effect of the plant

rhizosphere on the bacterial composition in a heavy metal-contaminated soil. We were in

particular interested in the potentially active bacterial populations in a heavy-metal

contaminated soil. Metabolically active bacterial cells are usually characterized by a higher

amount of ribosomes than resting or dormant cells (Nomura et al., 1984). Therefore we studied

reverse-transcribed rRNA as well as rDNA clone libraries, since sequences obtained from

reverse-transcribed rRNA are better indicators of the active bacterial populations at the time of

sampling than sequences from rDNA templates.

2.3 Material and Methods

2.3.1 Soil characteristics and sample preparation

Soil samples were obtained from a site in Ticino/Switzerland, which had been contaminated

with wastes from septic tanks from 1960 to 1980. The soil is a sandy loam with 12.3% clay,

19.8% silt and 67.9% sand. It contained 5.9% organic matter and had a pHH2O of 5.15. Total

metal concentrations per kg soil were 2.5 mg Cd, 227 mg Cu and 1144 mg Zn. Bioavailable

metal concentrations per kg dry soil were as follows: 21.2 mg Zn in the bulk soil and 13.9 mg

Zn in the planted soil; 26.5 mg Cd in the bulk soil and 2.4 mg Cd in the planted soil. Before use,

topsoil samples were homogenized, sieved (< 1 cm) and stored at 10°C in the dark. Pot

experiments were carried out in flower pots containing 2 kg of the contaminated soil.
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2.3.2 Plant growth conditions

Dr. C. Keller (EPFL) provided Thlaspi caerulescens seeds. They had been obtained from a

population grown near an ancient Pb/Zn mine in Saint-Laurent-le Minier, Southern France.

They were stored at 4°C before use. The seeds were germinated on uncontaminated gardening

soil during 25 days. Three seedlings of T. caerulescens were subsequently transplanted each

into a different pots. The plants were grown for three months in a climate chamber at 20°C

during daytime and 16°C during night-time with 16 h of light alternating with 8 h of darkness.

Three additional pots containing only contaminated soil were also incubated in the climate

chamber. The pots were watered with 100 ml deionized water every 4 days.

2.3.3 Sampling

After 3 months, plants and soil were removed from the pots and each plant was shaken carefully

to remove the bulk soil. The soil still adhering to the roots was defined as rhizosphere soil. It

was separated from the roots by moderate agitation in 50 ml of sterile 0.9% NaCl solution

during 5 min and then centrifuged at 8’000 g for 10 min (Marilley et al., 1998). Subsamples (0.6

g wet weight) from each of the three rhizospheres were filled in 2-ml cryotubes and stored at 

-20°C until further use. Bulk soil samples from unplanted pots were sampled and directly frozen

without any additional resuspension in NaCl until further use.

2.3.4 DNA extraction

Nucleic acids were extracted from 0.6 g (wet weight) samples of each of the three rhizosphere

soil fractions and the three unplanted pots using a modification of the bead beating protocol of

Kuske et al. (1998). Briefly, 1 ml of TENS buffer (50 mM Tris HCl [pH 8], 20 mM EDTA, 100

mM NaCl, 1% [wt/vol] sodium dodecyl sulfate [SDS]), and 0.75 g 0.1-mm glass beads were

added to each sample. Samples were vortexed briefly and incubated at 70°C for 20 min. During

this time, the samples were resuspended and mixed by vortexing for 5 s every 10 min.

Subsequently, 20 µl of skim milk powder solution (0.1 g of milk powder in 500 µl H2O) was

added. The mixture was three times shaken for 45 s in a FastPrep bead beater (Bio 101) at 4 m/

s. Samples were stored on ice during 1 min between each run. The lysed sample mixture was

then centrifuged at 13'000 x g for 4 min and the supernatant transferred into a fresh sterile 2-ml

reaction tube. The supernatant was subjected to phenol-chloroform extraction. The aqueous

phase (700 µl) was then incubated with 750 µl precipitation solution (20% polyethylenglycol
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6000 and 2.5 M NaCl) at 37°C. DNA was pelleted by centrifugation at 16'000 x g for 20 min at

4°C, washed once with 70% ethanol and resuspended in 200 µl TE (10 mM Tris-HCl, 1mM

EDTA, pH 8). One µl of a 1:10 dilution of the purified DNA-solution was used as template for

PCR amplification.

2.3.5 RNA extraction and RT-PCR

Precautions were taken to prevent degradation of RNA by RNases. All glassware was treated

by baking overnight at 200°C. All solutions were prepared with diethylene pyrocarbonate

(DEPC) treated water (2 hours with 0.1% DEPC at 37°C, followed by autoclaving) and

autoclaved at 121°C during 20 min. Since the procedure used for DNA extraction did not result

in sufficient amounts of RNA, a different protocol was chosen for RNA-extraction. Total RNA

was extracted from 0.6 g (wet weight) of each of the three unplanted bulk and rhizosphere soil

samples following the protocol of Griffiths et al. (2000b) and the bead-beating protocol

described above. To obtain pure RNA, the RNA-solution was digested with 3 U of RQ1 Rnase-

free DNAse (Promega) according to the manufacturer’s instructions. One µl of a dilution of 1:5

of the total RNA extracted from rhizosphere and bulk soil samples was mixed with 1 µM of

primer 1492r, 4.95 µg/µl BSA and filled with 8.3 µl Rnase-free water. To denature the

secondary structure of 16S rRNA, the template-primer mixture was incubated at 65°C for 5 min

and then immediately stored on ice. Subsequently, the following agents were added: 1x reaction

buffer, 0.5 mM (each) dNTP and 1 µl of Sensiscript reverse transcriptase (all from Qiagen). The

reaction was performed in a total volume of 20 µl at 42°C for 1 h. One µl of a dilution of 1:200

of the cDNA was used as template for PCR amplification. 

2.3.6 PCR-amplification, clone library construction and sequencing

PCR amplifications targeting bacterial 16S rDNA were performed with all DNA and cDNA

solutions using the primers 27F and 1492R (Lane, 1991; Dojka et al., 1998). PCR-

amplifications were performed in a PTC 200 (MJ Research). The 50 µl PCR mixture contained

0.2 µM of each primer, 200 µM of each deoxynucleoside triphosphate, 1x PCR buffer (Qiagen),

2.5 mM MgCl2, 4.95 µg/µl BSA, and 1 U of Taq Polymerase (Qiagen). PCR amplification

began with a hot start of 5 min at 95°C after which the Taq Polymerase was added, followed by

30 cycles at 94°C for 1 min, 50°C annealing for 45 s, and primer extension at 72°C for 2 min.

PCR was finished with a final extension at 72°C for 5 min. Replicate PCR products originating
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from  each nucleic acid sample (3 x bulk soil DNA and cDNA; 3 x rhizosphere soil DNA and

cDNA) were pooled and purified on QIAquick PCR purification columns (Qiagen), ligated into

the pGEM-T easy cloning vector and used to transform E. coli JM109 competent cells

(Promega). White colonies were randomly picked for plasmid isolation using a Nucleospin

plasmid kit (Macherey-Nagel), followed by PCR using the same primers and the same cycle

profile as described above to select clones with the correct size insert. Plasmid templates were

used for partial sequencing of the 5’ end of the rRNA gene (up to 750 bp) by Microsynth GmbH

(Balgach, Switzerland).

2.3.7 Phylogenetic analyses and chimera detection

Unaligned sequences were submitted to the Sequence Match program of the Ribosomal

Database Program (RDP) (Maidak et al., 1997) and to the Advanced BLAST search program

of the National Center for Biotechnology Information (NCBI) to find closely related sequences.

We tried to identify potential chimeric sequences by use of the CHECK_CHIMERA program

(Maidak et al., 1997). In some cases secondary structure analysis and separate phylogenetic

analysis of the 3’ and 5’-end of the sequences was performed. Sequences were aligned using the

“Clustal W” option (Thompson et al., 1997) in the BioEdit 5.0.9 sequence analysis software

Hall, 1999). Sequence identities between clones and next related sequences were calculated

using the “sequence identity matrix” option in BioEdit. The TREECON 1.3b software package

was used to calculate distance matrices by the Kimura algorithm (Kimura, 1980) and to generate

phylogenetic trees by the neighbor-joining method (Van de Peer & De Wachter, 1994).

Maximum likelihood based trees were calculated using the program package PHYLIP (version

3.5; J. Felsenstein, Dept. of Genetics, Univ. of Washington, Seattle). One hundred bootstrapped

replicate resampling data were generated with SEQBOOT (PHYLIP). Clone sequences with

>97% sequence identity were considered to represent a provisional phylotype. It is understood

that these sequences may not represent true phylotypes in the strict sense since we sequenced

only up to 750bp. We used the term phylotype to simplify the comparison of the sequences and

to define groups for rarefaction and diversity calculations.

2.3.8 Rarefaction analyses and diversity indexes

Rarefaction gives an estimation of the decrease in apparent species or phylotype richness of a

community with decreasing subsample size. Rarefaction calculations were done using the
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software Analytic Rarefaction (version 1.3; Stratigraphy Laboratory, University of Georgia

[http://www.uga.edu/~strata/software/]). Phylotypes were also used to calculate the Shannon

diversity index H = -Σ[ni*ln(ni)], where ni is the relative contribution of phylotype i to the whole

library. The Shannon evenness index J was calculated using the formula J=H/lnS, where S is

the total number of phylotypes. Coverage (C) values were calculated by the equation C = [1 -

(n/N)] × 100, where n is the number of unique clones and N is the total number of clones

examined.

2.3.9 Nucleotide sequence accession numbers

The partial clone sequences determined in this study have been deposited in the NCBI database

under accession numbers AF445085 to AF445157 and AY242608 to AY242816. 

2.4 Results

2.4.1 Comparison of the overall diversity in the clone libraries from unplanted bulk and
rhizosphere soil 

Extracted total DNA and RNA from the rhizosphere and the unplanted bulk soil were used to

create a total of four clone libraries. The number of clone sequences and phylotypes for each

bacterial taxon is presented in (Table 2.1). Clone sequences with >97% sequence identity were

considered to represent a provisional phylotype. Selected clone sequences representing distinct

dominant phylotypes are listed in (Table 2.2) with affiliation to higher taxa, number of clones

per phylotype and percentage identity to the closest related sequence. 

Eleven major bacterial taxa in total were identified from the 5'-partial sequence analysis of

73 clones from the rhizosphere soil rDNA clone library, 69 clones from the rhizosphere soil

rRNA clone library, 75 clones from the bulk soil rDNA clone library and 65 clones from the

bulk soil rRNA clone library. Only 22 phylotypes (14.6% of the total number of phylotypes

analyzed) were found in both rhizosphere and bulk soil clone libraries (Table 2.1). However,

these phylotypes accounted for 45.4% of the total sequences (128 clones of a total of 282),

indicating that they include the predominant phylotypes in the clone libraries. As shown in

(Table 2.1), the phylotypes found in both soil fractions were the most abundant ones within the

respective phylogenetic groups and represented in the case of the α-Proteobacteria,

Acidobacteria and Actinobacteria 45-56% of all sequences in each taxon. The highest relative

amount of phylotypes and clones found in both soil fractions was observed for the
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Verrucomicrobiales (66% of the phylotypes and 92% of the clones within this taxon). In

contrast to that, the Planctomycetales represented the taxon with the lowest relative amount of

phylotypes (14%) and clones (22%) common to both the rhizosphere and the bulk soil.

Although sequences belonging to the γ- and δ-Proteobacteria were retrieved from both the bulk

and the rhizosphere soil, not a single common phylotype was observed in both soil fractions.

Altogether, the phylotypes belonging to the Actinobacteria were the predominant ones (29.2%

of the total bulk soil phylotypes; 36.1% of the total rhizosphere phylotypes), followed by the α-

Proteobacteria (21.3% and 15.7%), Acidobacteria (12.4% and 14.5%), β-Proteobacteria

(11.2% and 9.6%) and Planctomycetales (5.6% and 13.2%) (Table 2.1). 

In general, more phylotypes affiliated to the Proteobacteria were retrieved from the total

bulk soil clone libraries whereas more phylotypes clustering within the Planctomycetales, the

Verrucomicrobiales and the Actinobacteria were found in the rhizosphere soil clone libraries

(Table 2.1). Firmicutes-phylotypes were only observed in the bulk soil clone library originating

Table 2.1: Number of phylotypes and clones from heavy-metal contaminated rhizosphere and bulk soil for
each of the bacterial taxa observed in the four clone libraries.

Bacterial division All libraries Rhizosphere Bulk soil Found in both bulk 
soil and rhizosphere

Total  150a/282b 83/142 89/140 22/128

α-Proteobacteria 27/54 13/28 19/26 5/30

β-Proteobacteria 15/30 8/17 10/13 3/11

γ-Proteobacteria 10/11 3/3 7/8 0/0

δ- Proteobacteria 4/4 1/1 3/3 0/0

Acidobacteria 21/40   12/20 11/20 2/18

Verrucomicrobiales   3/12    3/10 2/2 2/11

Planctomycetales 14/18   11/13 5/5 2/4

Actinobacteria   48/102  30/47 26/55 8/54

Firmicutes 5/6 0/0 5/6 0/0

CFB 1/1 1/1 0/0 0/0

OP10 1/2 1/2 0/0 0/0

not affiliated 1/2 0/0 1/2 0/0

a Phylotypes: clones with sequences identities > 97%
b Clones
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from rDNA, while phylotypes affiliated to the Cytophaga-Flavobacterium-Bacteroides (CFB)

and OP10 where only observed in the rhizosphere.

2.4.2 Comparison of the composition of the 16S rDNA and 16S rRNA clone libraries

Only a minority of the phylotypes present in the 16S rDNA clone libraries was identical to those

present in the libraries obtained from 16S rRNA: 2 α-Proteobacteria, 2 β-Proteobacteria, 1

Acidobacteria and 4 Actinobacteria. However, these phylotypes represented 29.6%, 26.6%,

27.5% and 42.2% of the clones within the respective group and included also the predominant

phylotype for each of these four taxa (Table 2.2). Most of the bacterial taxa which were highly

abundant in the rDNA clone libraries, such as the α-Proteobacteria and the Acidobacteria, were

significantly less numerous in the rRNA clone libraries (Figure 2.1).

For example, α-Proteobacteria and Acidobacteria each represented more than 20% of the

phylotypes in the rhizosphere rDNA clone library. However, both taxa dropped below 10% in

the rhizosphere rRNA clone library. On the other hand, the number of Actinobacteria-

phylotypes significantly increased in the 16S rRNA clone libraries as compared to the 16S

rDNA clone libraries. Actinobacteria dominated both the 16S rRNA clone libraries from

Figure 2.1: Percentage of phylotypes belonging to different bacterial taxa in the bulk soil DNA, bulk soil
RNA, rhizosphere DNA and rhizosphere RNA clone libraries. Alpha = α-Proteobacteria; Beta = β-
Proteobacteria; Gamma = γ-Proteobacteria; Delta = δ-Proteobacteria; Acido = Acidobacteria; Plancto =
Planctomycetales; Verruco = Verrucomicrobiales; Actino = Actinobacteria; Firmicut = Firmicutes; Rest
= CFB, OP10 and not affiliated phylotypes.
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rhizosphere (60% of the phylotypes) and bulk soil (50% of the phylotypes) (Figure 2.1). In

contrast to that, 19% of the bulk DNA phylotypes were affiliated to the Actinobacteria and only

one single Actinobacteria sequence was observed in the rhizosphere rDNA clone library. All

other taxa each made up less than 11% of the phylotypes in both rRNA clone libraries (with the

exception of the α-Proteobacteria in the bulk soil rRNA library). Four taxa

(Verrucomicrobiales, Firmicutes, CFB and OP10) were only present in 16S rDNA clone

libraries.

2.4.3 Rarefaction analysis and diversity indices

Rarefaction analysis was performed with two data sets comprising the two rhizosphere and the

two bulk soil clone libraries, respectively, to estimate to what extent the diversity of the samples

can be described with the number of clones analyzed. Complete coverage of a data set would be

expected to result in a plateau-shaped curve. Rarefaction plots were rather similar (with

overlapping 95% confidence limits; not shown) for both soil fractions and suggested that the

number of clones was insufficient to reach saturation and to completely describe the diversity

of bacterial phylotypes in the rhizosphere and bulk soil with the clone libraries obtained (Figure

2.2). Separate rarefaction analysis for the four libraries showed that the expected number of

phylotypes was highest in the bulk DNA clone library, followed by the rhizosphere rRNA clone

library. Lowest expected numbers of phylotypes were observed for the rhizosphere rDNA and

the bulk soil rRNA clone libraries. 

Rarefaction plots are consistent with the Shannon diversity indices calculated for the four

data sets (3.908 for the bulk soil DNA library, 3.504 for the rhizosphere RNA library, 3.463 for

the rhizosphere DNA library and 2.991 for the bulk soil RNA library). The maximum possible

values for the Shannon diversity index (in the case that each clone represents a unique

phylotype) were similar for all four clone libraries and ranged between 4.317 (bulk soil DNA

library) and 4.174 (bulk soil RNA library). The Shannon evenness index was 0.905 for the bulk

soil DNA clones, 0.828 and 0.807 for the rhizosphere RNA and DNA clones, respectively, and

0.716 for the bulk soil RNA clones. Another approach to assess the completeness of a clone

library is to calculate the percentage coverage. Coverage was the highest for the rhizosphere

DNA library (65.7%), followed by the bulk soil RNA library (58.5%), the rhizosphere RNA

library (42%) and the bulk soil DNA library (33.3%).  
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Figure 2.2: (A) Rarefaction analysis of two data sets including combined bulk soil and rhizosphere soil
clone libraries (rDNA plus rRNA libraries), respectively. (B) Separate rarefaction analysis of all four clone
libraries.
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2.4.4 Phylogenetic assignment of 16S rDNA and 16S rRNA sequences

Only a minority of the clone sequences, belonging to the Actinobacteria (10 clones), the

Firmicutes (6 clones), the α- and β-Proteobacteria (17 and 4 clones, respectively) were closely

related (> 97% sequence identity) to 16S rDNA sequences from species commonly isolated

from soil, such as Mycobacterium, Actinomyces, Bacillus, Bradyrhizobium, Mesorhizobium,

Sphingomonas and Variovorax. Interestingly, nine sequences highly similar to Bradyrhizobium

sp. MSDJ 5725 were found in the two rDNA clone libraries (rhizosphere and bulk soil),

however, not a single one was obtained from reverse transcribed 16S rRNA (Table 2.2). On the

other hand, four clones with very high sequence-similarity with the β-proteobacterium

Variovorax paradoxus str. MBIC3839 (98-99.7% similarity), were obtained only from

rhizosphere clone libraries (rDNA and rRNA) (Table 2.2).

The majority of the clones from this heavy-metal contaminated bulk and rhizosphere soil

displayed relationships to a wide range of environmental sequences from various yet uncultured

bacteria. For instance, the α2-subgroup of the α-Proteobacteria, represented e.g. by the

Rhizobiaceae, the Methylobacterium- and the Methylosinus-group, included the majority of our

α-Proteobacteria clones (82.1% of the rhizosphere sequences and 73.1% of the unplanted soil

sequences). The most abundant phylotype within the α2-Proteobacteria closely affiliated with

the environmental clone sequence C062 (>97% similarity; Table 2.2) recently isolated from

earthworm cast (Furlong et al., 2002). This phylotype was observed in both rDNA clone

libraries as well as in the rRNA clone library from rhizosphere soil. Most of the sequences

assigned to the β- and γ-Proteobacteria were related either to environmental sequences from

potato rhizosphere (e.g. SC-I-66, unpublished) or from forest soils (e.g. NMW3.108WL;

Axelrood et al., 2002).

The Verrucomicrobiales-like sequences were found only in rDNA-libraries and were closely

related (96-99% similarity) to environmental sequences often observed in terrestrial systems,

such as MC17 (Liesack & Stackebrandt, 1992) and EA25 (Lee et al., 1996) (Table 2.2). All

rDNA-derived Planctomycetales-like clones (from rhizosphere and bulk soil) grouped together

with environmental sequences obtained either from a metal-contaminated superfund site (e.g.

K20-31, unpublished) or from a forest soil clone library (e.g. clone 26, unpublished) (Table 2.2).

These sequences cluster within or close to the genera Pirellula and Gemmata (Figure 2.3). In

contrast to that, sequences obtained from reverse transcribed rRNA (from rhizosphere and bulk

soil) were either related to some Nostocoida limicola III strains or to the environmental clone

WD287 from a PCB-polluted moorland soil (Nogales et al., 2001) (Figure 2.3). The
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Acidobacteria-sequences were distributed within six of the eight subgroups described recently

(Hugenholtz et al., 1998a) and displayed similarities to environmental soil sequences from 93%

to 99% (Table 2.2; Figure 2.4). This group of sequences was dominated by two phylotypes. The

first phylotype (8 rhizosphere and bulk soil rDNA sequences) was closely related to the upland

grass pasture sequence sl1_220 (McCaig et al., 1999) from Acidobacteria-subgroup 1. The

second phylotype (11 sequences from all four clone libraries) was highly similar to the

earthworm cast sequence C034 (Furlong et al., 2002) from Acidobacteria-subgroup 4 (Table

2.2; Figure 2.4). The most interesting and remarkable result is, that the predominant group

within the bulk and rhizosphere rRNA clone libraries (Table 2.1), the Actinobacteria, was

dominated by a deeply branching actinomycetes lineage, the Rubrobacteria, suggesting that

members of this group might indeed be metabolically active in heavy metal-polluted soils.

Table 2.2: Clones present in the 16S rDNA and/or the 16S rRNA clone libraries representing phylotypes with
more than one clone within higher bacterial taxa. Abbreviations in parentheses indicate in which type of clone
library the phylotype was found (r: rhizosphere rDNA, b: bulk soil rDNA; R: rhizosphere rRNA; B: bulk soil
rRNA).

Taxon Clones representing 
distinct phylotypes Length No. of clones/ 

phylotypes Closest phylogenetic relatives % 
identity

α- Proteobacteria Tc11 (r)
Tc129-17 (r,R,b)
Tc60 (r,b)
Tc81 (r,b)
Tc96 (r,b)
Tc133-97 (B)
Tc135-223 (b,R)

725
629
700
567
622
609
610

2
13
9
2
3
2
3

Uncultured rape rhizosphere bacterium wr0007 (AJ295468)
Uncultured earthworm cast bacterium C062 (AY037712)
Bradyrhizobium sp. MSDJ 5725 (AF363148)
Uncultured soil bacterium KF-JG30-B3 (AJ295650)
Agrobacterium sanguineum strain ATCC 25660 (AB062105)
Uncultured grassland soil bacterium DA122 (Y12598)
Uncultured peat soil bacterium L013.3 (AF358017)

97.7
99.5
99.2
92.0
98.7
95.4
98.5

β-Proteobacteria Tc30 (r,b)
Tc64 (r)
Tc45 (r,b,R,B)
Tc70 (r,R)
Tc134-102 (B)
Tc119-F01 (R,B)

672
737
608
744
634
630

4
3
4
4
2
3

Uncultured agricultural soil bacterium SC-I-66 (AJ252648)
Uncultured agricultural soil bacterium SC-I-24 (AJ252625)
Uncultured agricultural soil bacterium SC-I-39 (AJ252633)
Variovorax paradoxus strain MBIC3839 (AB008000)
Uncultured wetland bacterium FW 145 (AF523975)
Uncultured soil bacterium 1326-2 (AF423222)

97.1
99.3
94.7
99.7
96.3
98.0

Acidobacteria Tc86 (r,b)
TcA3 (b)
Tc88 (r)
Tc129-9 (r,b,R,B)

561
606
657
667

8
3
2
11

Uncultured grassland soil bacterium sl1_220 (AF078357)
Metal-contaminated soil clone K20-26 (AF145826)
Uncultured soil bacterium clone C101 (AF013528)
Uncultured earthworm cast bacterium C034 (AY037688)

99.3
98.7
96.2
97.5

Verrucomicrobiales Tc4 (r;b)
TcA24 (r,b)

709
648

6
5

Uncultured soil bacterium EA25 (U51864)
Uncultured soil bacterium MC17 (X64381)

99.8
96.4

Planctomycetales Tc89 (r)
Tc130-30 (r,b)
Tc74 (r)
Tc75 (r,b)

561
606
657
667

2
2
2
2

Uncultured forest soil bacterium clone26 (AF271321)
Uncultured forest soil bacterium clone23 (AF271319)
Metal-contaminated soil clone K20-31 (AF145829)
Metal-contaminated soil clone K20-09 (AF145812)

90.3
98.1
92.2
96.4

Actinobacteria Tc120-D04 (R,B)
Tc120-E04 (b,R)
Tc134-14 (R,B)
Tc134-105 (B)
Tc122-B08 (R)
Tc122-D08 (R)
Tc121-H06 (R,B)
Tc133-99 (B)
Tc119-E02 (R,B)
Tc128-91 (B)
Tc57 (r,b)
Tc 130-25 (b,B)
Tc132-52 (b,B)
Tc123-E10 (b,R,B)

636
650
616
619
620
630
639
646
620
620
654
585
587
600

4
2
2
2
2
2
2
3
2
2
3
2
2
37

Uncultured forest soil bacterium SMS9.137WL (AY043898)
Uncultured soil bacterium MC58 (X68456)
Uncultured rice paddy soil bacterium ARFS-13 (AJ277692)
Mycobacterium fortuitum (AF480581)
Uncultured earthworm cast bacterium C136 (AY37739)
Uncultured earthworm cast bacterium C136 (AY37739)
Bacterium Elllin404 (AF432234)
Earthworm burrow bacterium B33D1 (AY039806)
Uncultured thermal soil bacterium YNPFFP1 (AF391984)
Uncultured grassland soil bacterium sl1_017 (AF078323)
Uncultured grassland soil bacterium sl2_504 (AF078365)
Uncultured forest soil bacterium SMS9.14WL (AF432686)
Uncultured forest soil bacterium SMS9.14WL (AF432686)
Uncultured earthworm cast bacterium c238 (AY154594)

93.0
92.4
91.5
99.7
96.0
93.4
94.6
94.4
92.9
94.7
99.2
96.1
96.8
99.6

Firmicutes TcA4 (B) 577 2 Turicibacter sanguinis (AF349724) 100
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Seventy percent of these Actinobacteria clone sequences were related to the Rubrobacteria-

subgroups 2 and 3 (Holmes et al., 2000) (Figure 2.5). Most of the Rubrobacteria-subgroup 3

clones (37 out of 43) represented one single phylotype with a sequence similarity of almost

100% to the uncultured earthworm cast bacterium clone c238 (Furlong et al., 2002) (Table 2.2).

Among the remaining sequences clustering within the Actinobacteria, fifteen sequences (2 from

soil rDNA; 13 from rhizosphere and soil rRNA) appeared to be related to the Acidimicrobium

ferrooxidans cluster, another deeply branching actinomycetes lineage, with a moderate

relationship to the environmental clones MC58 (Stackebrandt et al., 1993), SMS9.137WL

(Axelrood et al., 2002) and ARF-13 (Ludemann & Conrad, 2000) (Table 2.2). 
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Figure 2.3: Neighbourg-joining tree showing the affiliation of 16S rRNA and 16S rDNA sequences from
heavy metal-polluted bulk and rhizosphere soil to the Planctomycetales. Abbreviations in parentheses
indicate which type of clone library the sequence was found (r, rhizosphere rDNA; b, bulk soil rDNA; R,
rhizosphere rRNA; B, bulk soil rRNA). Bootstrap values are only shown for nodes that had >50% support
in bootstrap analysis of 100 replicates in trees generated by both the neighbour-joining (before slash) and
the maximum likelihood method (after slash). The scale bar indicates 10% estimated sequence divergence.
Chlamydophila psittaci served as the outgroup organism.

10%

Chlamydophila psittaci

Isosphaera pallida
Tc127-86 (B)

HM-soil clone K20-31 (AF145829)    

Tc123-D10 (R)

Tc128-89 (B)

Planctomyces limnophilus

Pirellula staleyi 

Tc123-C09 (R)

HM-soil clone K20-09 (AF145812)

Nostocoida limicola III strain Ben224
Tc123-189 (R)

Nostocoida limicola III strain Ben223
Nostocoida limicola III strain Ben222 

Tc135-216 (R)
Tc132-60 (B)

moorland soil clone WD287 (AJ292682)
Tc123-G10 (R)

Tc23 (r)      
Tc89 (r)      

forest soil clone28 (AF271323)   
forest soil clone26 (AF271321)   

TcA2 (b)
Tc75 (r)      

Gemmata obscuriglobus
Gemmata-like strain JW11-2f5
forest soil clone13 (AF271311)   
Tc69 (r)      

Planctomyces maris
Planctomyces brasiliensis

Planctomyces strain611 
Pirellula marina

forest soil clone1 (AF271311)    
Tc77 (r)      

Tc94 (r)      
Tc74 (r)      

forest soil clone23 (AF271319)
Tc130-30 (b)
HM-soil clone K20-02 (AF145806)    
Tc32 (r)      

89/58

98/53

98/80 100/100

98/78
73/63

100/99
100/98

99/100
100/98

100/99

96/68

100/100

100/100
100/100

100/100

100/78

95/76

95/91

80/54
33



Chapter 2
Figure 2.4: Neighbour-joining tree showing the affiliation of 16S rRNA and 16S rDNA sequences from
heavy metal-polluted bulk and rhizosphere soil to the Acidobacteria-subgroups. Clones Tc129-9, Tc86 and
TcA3 are representatives of the respective phytotype. Abbreviations in parentheses indicate in which type
of clone library the sequence was found (r, rhizosphere rDNA; b, bulk soil rDNA; R, rhizosphere rRNA; B,
bulk soil rRNA). Bootstrap values are only shown for nodes that had >50% support in bootstrap analysis of
100 replicates in trees generated by both the neighbour-joining (before slash) and the maximum likelihood
method (after slash). The scale bar indicates 10% estimated sequence divergence. Escherichia coli served
as the outgroup organism.
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Figure 2.5: Neighbour-joining tree showing the affiliation of 16S rRNA and 16S rDNA sequences from
heavy metal-polluted bulk and rhizosphere soil to the Rubrobacteria-subgroups. Clone Tc123-E10 is a
representative of one phylotype with 37 sequences. Abbreviations in parentheses indicate in which type of
clone library the sequence was found (r, rhizosphere rDNA; b, bulk soil rDNA; R, rhizosphere rRNA; B,
bulk soil rRNA). Bootstrap values are only shown for nodes that had >50% support in bootstrap analysis of
100 replicates in trees generated by both the neighbour-joining (before slash) and the maximum likelihood
method (after slash). The scale bar indicates 10% estimated sequence divergence. Atopobium minutum
served as the outgroup organism.
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2.5 Discussion

We have analyzed the rhizosphere and unplanted bulk soil bacterial community structures in a

heavy metal-contaminated acidic soil by a culture-independent molecular survey using 16S

rDNA and 16S rRNA clone libraries. Diversity studies based on clone libraries both from 16S

rDNA and 16S rRNA templates are considered to better represent the bacterial community,

since 16S rRNA-libraries in principal include also metabolically active members. Yet only a

small number of studies have analyzed soil bacterial communities using 16S rRNA clone

libraries or a combination of libraries derived from rDNA and reverse transcribed rRNA (Felske

et al., 1997; Nogales et al., 2001). Calculation of coverage indicates that 33-65% of the total

diversity was detected in the respective clone libraries. However, since coverage does not take

evenness into account and is therefore calculated only relative to total richness, it represents

only a rough estimate of the diversity. Using phylotypes based on partial sequences is a rather

conservative approach to estimate coverage and values would probably drop if calculation was

done based on truly different full-length sequences. Moreover, as shown by the rarefaction

plots, our clone libraries did not cover the full phylotype diversity in this soil. The high coverage

calculated for the rRNA libraries would be significantly lower and the rarefaction curves for the

rRNA libraries would be even steeper if the dominant Rubrobacter-phylotype (21 clones in the

bulk rRNA and 15 clones in the rhizosphere RNA library) was excluded from the analysis. The

shallower rarefaction curve of the rhizosphere rDNA clone library might also be explained by

the higher abundance of redundant phylotypes in this library.

It might be expected that root exudates result in a nutrient-enriched root zone, which could

increase the bacterial diversity as compared to the otherwise oligotrophic bulk soil (Gilbert et

al., 1996). An effect on the bacterial diversity might be also expected due to the reduction of the

heavy metal content in soil by the metal-accumulating plant. On the other hand, a solubilisation

of heavy metals by the plant roots might also act as a selective pressure upon rhizosphere

bacteria. However, the rather similar combined rarefaction plots for the bulk soil and the

rhizosphere soil clone libraries, respectively, indicate that Thlaspi caerulescens did not exert a

major influence on the overall bacterial diversity. The taxa dominating the bacterial community

structure in this heavy metal-polluted unplanted soil also dominated the rhizosphere

community. Yet, the fact that approximately 15% of the phylotypes, which were found in the

clone libraries from both soil fractions, contained 45% of all clones indicates that the differences
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between the rhizosphere and the bulk soil are based on rare clones, even though these clones

may be quite similar. Variability in the clone libraries caused by methodological parameters,

such as the efficiency of DNA and RNA-extraction, RT-PCR or preferential PCR-amplification

cannot be excluded (von Wintzingerode et al., 1997; Nogales et al., 2001). For example, biases

in the composition of rRNA-clone libraries might be due to the use of the primer 1492r for

reverse transcription. As shown by Weller et al. (Weller & Ward, 1989; Weller et al., 1991),

using primers targeting the universally conserved 1400 region of the 16S rRNA can result in

premature termination of reverse transcription. Another aspect is that clone libraries can only

reflect quantitative abundances if the amplification efficiencies are the same for all templates,

which is obviously an unlikely assumption for environmental samples. Taking also into account

that rRNA templates are present in different concentrations at a given sampling time, our data

and the calculation of diversity indices have to be treated only as semi-quantitative.

 Finally, a clear correlation between relative abundance of rRNA-sequences in clone libraries

and high metabolic activity of the organisms representing these sequences is probably not

always given. In general, metabolically active and growing bacteria contain more ribosomes

than resting or starved bacterial cells (Nomura et al., 1984). However, there has been an

increasing number of publications indicating that bacteria with very low reproduction rates and

metabolic activities, as often found in soils, possess high amounts of rRNA per cell (Wagner et

al., 1995; Oda et al., 2000). Despite this, our study demonstrates that bacterial taxa, which are

predominant in the rDNA-clone libraries are (with the exception of the Actinobacteria) less

dominant in the libraries derived from rRNA, indicating that only a part of the bacterial

community is presumably metabolically active in this heavy metal-contaminated soil. 

For instance, the high abundance of α-Proteobacteria in the rDNA clone libraries is in

accordance with other studies investigating rhizosphere-associated bacteria (McCaig et al.,

1999; Kaiser et al., 2001) and heavy metal-contaminated bulk soils (Sandaa et al., 1999b).

However, the high abundance of α-Proteobacteria phylotypes e.g. in the rhizosphere rDNA

clone library was not reflected in the rhizosphere rRNA clone library, where the number of α-

Proteobacteria phylotypes was drastically reduced. Many plant-symbiotic and plant-associated

bacteria are affiliated to the Proteobacteria. The beneficial effects of these bacteria include

growth promotion of the plant by e.g. synthesizing phytohormones and fixation of atmospheric

nitrogen. Several studies have provided evidence that heavy metal-resistant Proteobacteria may

protect plants or bacteria from the toxic effects of heavy metals or even enhance the metal
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uptake by hyperaccumulator plants (Burd et al., 1998; Stephen et al., 1999; Belimov et al.,

2001; Whiting et al., 2001a). However, it has been shown, that heavy metals may indirectly

affect N2-fixation rates, in particular in acidic soils, by reducing the number or the diversity of

free-living cultivable rhizobia (Hirsch et al., 1993; Chaudri et al., 2000). Interestingly, a highly

abundant rDNA-phylotype (9 clones) closely related to Bradyrhizobium sp. MSDJ 5725 was

not obtained from reverse transcribed rRNA, suggesting that this Bradyrhizobium might not be

metabolically active in this soil.

A similar discrepancy between the relative amount of rDNA- and rRNA-phylotypes in the

clone libraries was observed for almost all the detected taxa, in particular for the Acidobacteria.

It was also remarkable that all Planctomycetales-sequences from the rhizosphere rDNA-clone

library were related to the genera Gemmata and Pirellula, which accords with the results of

another study, where Pirellula-like sequences were considered to be typical root-associated

bacteria, both in oxic and anoxic environments (Derakshani et al., 2001). Some members of the

Planctomycetales are characterized either by the excretion of holdfast substances or the

formation of stalks and prosthecae, which may allow an improved attachment to the root surface

(Staley et al., 1991). However, only populations affiliated to the Nostocoida limicola III cluster

seem to be metabolically active, since only sequences of this group were represented in the

rRNA-clone library. 

As in many other investigations on bacterial diversity in terrestrial systems, we revealed a

considerable bacterial diversity in this soil, despite the long-term heavy metal contamination.

Not unexpectedly we recovered sequences of bacterial taxa, which are still mainly characterized

by environmental sequences rather than isolated strains, e.g. the Planctomycetales,

Verrucomicrobiales and Acidobacteria (Liesack & Stackebrandt, 1992; Lee et al., 1996;

Ludwig et al., 1997; Barns et al., 1999; O'Farell & Janssen, 1999). However, it is unusual that

Actinobacteria-sequences make up the majority in environmental clone libraries, and in

particular in rRNA-derived clone libraries. This is in contrast to most so far conducted

molecular surveys on rhizosphere and bulk soil bacterial populations (Borneman & Triplett,

1997; Macrae et al., 2000; Kaiser et al., 2001; Nogales et al., 2001). A few other reports are in

agreement with our observation that gram-positive bacteria might play a more important role in

rhizosphere and bulk soil than previously assumed (McCaig et al., 1999; Smalla et al., 2001).

Similar to the study of Nogales et al. (Nogales et al., 2001), the presence and diversity of

Actinobacteria would be underestimated if only 16S rDNA sequences were retrieved. 
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The most surprising result of our study is, that members of the Rubrobacteria dominate the

clone libraries derived from reverse transcribed 16S rRNA indicating that they might in fact

make up a major portion of the metabolically active bacteria in heavy metal-contaminated

rhizosphere and bulk soil. The Rubrobacteria represent a poorly described Actinobacteria-

subdivision. This subdivision branches deeply from the high G+C gram positive division line

of descent and presently consists of two species R. radiotolerans (Yoshinak et al., 1973) and R.

xylanophylus (Carreto et al., 1996). Both species cluster within the Rubrobacteria-subgroup 1,

are moderate thermophylic and have been isolated from a thermally polluted effluent (Carreto

et al., 1996) and hot springs in Japan (Yoshinak et al., 1973) and Portugal (Ferreira et al., 1999).

However, it has been shown that Rubrobacteria represent a significant part of rDNA clone

libraries in Australian arid soils (Holmes et al., 2000), Scottish grassland soils (McCaig et al.,

1999), and a acidic peatbog soil (Rheims et al., 1996). It has also been reported that 16S rDNA

clones affiliating to the Rubrobacteria dominate the clone library obtained from a Zn-polluted

soil (Moffett et al., 2003) and were also the most represented group among earthworm cast

clones (Furlong et al., 2002). Recently, new isolates have been obtained from an Australian

pasture soil (Janssen et al., 2002; Sait et al., 2002) and earthworm burrow (Furlong et al., 2002),

which all group within Rubrobacteria-subgroup 2 and are closely related to Rubrobacteria-like

organisms so far detected only as 16S rDNA sequences.

However, based on the available publications and databases, it is still questionable if

Rubrobacteria are commonly abundant and ubiquitous in terrestrial systems. Holmes et al.

(2000) assumed that the Rubrobacteria-subgroups 1 to 3 might indeed be specialized to thrive

in different soil niches. The dominance of Rubrobacteria-phylotypes in the rRNA-libraries does

not necessarily allow an estimation of their quantitative abundance in this soil, since structure

analysis solely based on clone libraries does not reflect the real situation in a sample. An

improved understanding of the ecology of the different Rubrobacteria-subgroups requires the

development of tools, such as real-time PCR, dot-blot or whole cell hybridization to detect and

quantify these organisms in their environment.

Identification and tracking of these potentially active, but yet largely uncultured bacteria

might help to understand how phytoremediation techniques influence dominant bacterial

populations and their functions, but also if soil bacteria play indeed an important role in the

heavy metal-uptake by plants. Presence of rRNA sequences in the rhizosphere of heavy metal-

accumulating plants alone indicates only that these organisms probably show a high resilience
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against heavy metals, however this does not tell us anything about the potential role of these

organisms in phytoextraction. This study gave us a picture of the bacterial communities in heavy

metal-polluted soils, yet, cultivation of members of these groups remains an important goal in

this respect. Isolates of these bulk and rhizosphere soil bacteria will allow to study their metal-

resistance, possible metal-transforming capacities and their potential use as inocula in

(phyto)remediation processes. 
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Probe design for emerging phylogenetic groups and in situ
characterisation of the rhizosphere microbial community of
Thlaspi caerulescens in a heavy metal-contaminated soil by
fluorescence in situ hybridization (FISH) 

3.1 Introduction

In the second chapter, we studied the bacterial diversity in the rhizosphere of the

hyperaccumulating plant Thlaspi caerulescens grown in a heavy metal-polluted soil with clone

libraries based on the 16S ribosomal RNA and the corresponding gene (16S rDNA). Five major

phylogenetic groups, i.e. the Actinobacteria, the α- and β-Proteobacteria, the Acidobacteria

and the Planctomycetales dominated the clone libraries from this soil. Surprisingly, the

Actinobacteria dominated both the bulk and rhizosphere soil clone libraries derived from

rRNA. A deep branching lineage of the Actinobacteria, the Rubrobacteria, made up

approximately 70% of these rRNA sequences, indicating that this group of organisms might be

particularly active in this heavy metal-polluted soil. 

One of the most important questions to ask if one wants to study and understand microbial

community structure is “how many individuals correspond to an identified group of organisms

in a given sample at a given time?”. The frequency of different sequences or phylotypes in a 16S

rDNA or rRNA clone library does most likely not exactly reflect the in situ abundance of these

sequences in complex microbial communities. The different methodological steps involved in

the retrieval and analysis of rDNA or rRNA sequences (nucleic acids extraction, reverse
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transcription, PCR amplification and cloning steps) inevitably introduce biases which affect the

abundance and distribution of the sequences in the clone libraries (von Wintzingerode et al.,

1997; Weller & Ward, 1989; Weller et al., 1991). Therefore it is important to confirm the

presence and the relative abundance of the retrieved sequences with other methods.

One alternative is the use of fluorescence in situ hybridization (FISH) which allows the in

situ identification and enumeration of microbial cells in their natural microhabitat (Amann et

al., 1995). This technique is based on fluorescently labeled oligonucleotide probes hybridizing

to the 16S rRNA of bacterial cells which are subsequently viewed by fluorescence microscopy

(DeLong et al., 1989). The signal intensity of the probe depends on the cellular rRNA content

which in some cases may be linked to the physiological status of the cell (DeLong et al., 1989).

However, several factors (low rRNA content, cell permeabilisation, accessibility of the rRNA

target-site) may limit the use of FISH for environmental samples (see Amann et al., 1995 and

references therein). 

Based on sequences present in the RDP (Ribosomal Database Project) and Genbank

databases, a wide range of oligonucleotide probes are available specific for different taxonomic

levels, such as the kingdoms, the major phylogenetic groups and several genera and species

(Manz et al., 1992; Neef et al., 1998; Wagner et al., 1995; Bourne et al., 2000; Felske et al.,

1998). 

New phylogenetic groups are emerging with the increasing number of studies applying

culture-independent comparative analysis of rRNA-sequences from diverse habitats (Barns et

al., 1999; Holmes et al., 2000; Jurgens et al., 1997; Hugenholtz et al., 1998b; Hugenholtz et al.,

2001). These studies resulted in an increasing number of new bacterial phyla, however, the

majority of these bacterial phyla are poorly represented by cultured organisms (Hugenholtz et

al., 1998a). The challenge is to design new probes in order to detect these groups but also to re-

evaluated the specificity of the existing probes with the new sequences (Amann et al., 2001).

The first part of this study addresses the design of new 16S rRNA targeting oligonucleotide

probes specific for the Acidobacterium subdivision 1 and the subclass Rubrobacteria. Both

groups were observed in our clone libraries from rhizosphere rDNA and rhizosphere rRNA,

respectively (see chapter 2). In the second part of this work we applied these new probes

together with some published group-specific probes to analyse the rhizosphere microbial

community of Thlaspi caerulescens in a heavy metal-polluted soil.
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3.2  Materials and Methods

3.2.1 Microbial strains and soil samples preparation

Four strains were used to check the specificity of the designed probes: Acidobacterium

capsulatum (DSMZ 11244), Rubrobacter radiotolerans (DSMZ 5868), Conexibacter woesi

(DSMZ 14684) and Bacillus subtilis (DSMZ 704). These strains were obtained from the

German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany)

and cultivated following the recommendations provided by the DSMZ. The bacteria were

subsequently fixed in paraformaldehyde or ethanol as described previously (Zarda et al., 1997).

Ten µl of both ethanol- and paraformaldehyde-fixed samples were spotted onto the gelatine-

coated slides (0.1% gelatine, 0.01% KCr(SO4)2) and quickly dried on a hot plate at 70°C in

order to obtain a homogeneous distribution. The slides were dehydrated in 50, 80, and 96%

ethanol for 3 min each. Slides with immobilized R. radiotolerans and C. woesi were

subsequently pretreated with 10 µl of a 10 mg ml-1 lysozyme solution during 1 h at 37°C

followed by a second dehydration step for 3 min. 

The hyperaccumulating plant Thlaspi caerulescens grew during three months in a heavy

metal-contaminated soil from Ticino, Switzerland (see chapter 2). 0.4 g of rhizosphere soil

samples, defined as soil still adhering to the roots after gentle shaking (see chapter 2), were

fixed with paraformaldehyde or ethanol (Zarda et al., 1997). Sixty µl of the fixed rhizosphere

soil samples were dispersed in 940 µl of 0.1% sodium pyrophosphate in distilled water and

sonicated 70 s at cycle 9, power 20% in a Sonopuls HD 2070 (Bandelin Electronic GmbH &

Co, Switzerland) (Zarda et al., 1997). During the sonication, the sample was kept on ice. Twenty

µl of the sonicated soil samples were spotted onto the gelatine-coated slides and subsequently

dehydrated as described above. 

3.2.2 Whole-cell hybridization

Hybridizations with 1 µl Cy3-labeled oligonucleotide probes (50 ng ml-1) (Microsynth,

Switzerland) and 9 µl of hybridization buffer [0.9 M NaCl, 20 mM Tris-HCl, and 0.01% SDS

(pH 7.2)] were performed in the presence of 20% (ALF968 (Neef, 1997), Rubro198 (this

study)), 30% (PLA46, PLA886 (Neef et al., 1998); Acido228 (this study)) or 35% formamide

(EUB338–II (Daims et al., 1999); EUB338 (Amann et al., 1990b), BETA42a, GAM42a (Manz

et al., 1992); IRog 1, IRog 2 (Ludwig et al., 1997)) at 42°C for 2 h (Zarda et al., 1997). The two
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new probes, S-Sc-Acido-0228-a-A-19 (Acido228: 5’-TAATCDGCCGCGACCYCCT-3’),

specific for the phylogenetic subdivision 1 of the Acidobacterium division (Barns et al., 1999)

and S-Sc-Rubro-0198-a-A-17 (Rubro 198: 5’-GGCCGAAGCTWCCTTTY-3’), specific for the

whole Rubrobacteria subclass (Holmes et al., 2000), were designed on the basis of complete

and partial 16S rRNA sequences present in the RDP- and the Genebank-databases. These two

probes were checked for their specificity in these two databases and first tested with pure

cultures. After hybridization, slides were washed for 15 min at 48°C in a buffer containing 20

mM Tris-HCl (pH 7.2), 10 mM EDTA, 0.01% SDS, and either 225, 102, or 80 mM NaCl

depending on the formamide concentration during hybridization (20, 30 and 35%, respectively),

subsequently rinsed with distilled water and dried in the dark. Hybridization with probe

EUB338 was used as a positive control.

 For total cell counts, bacteria were stained 15 min in the dark at room temperature with 10

µl of SYBR-Green II (5x10-3 dilution of the stock, Molecular Probes, Inc.), rinsed with distilled

water and dried in the dark (Weinbauer et al., 1998). Slides were finally mounted with Citifluor

solution AF1 (Citifluor Ltd., London, UK) and the preparations were examined with an

Olympus BX-60 equipped for epifluorescence with a high pressure mercury bulb (100W) and

filter sets HQ-Cy3 or HQ-EGFP (AHF Analysentechnik AG, Germany). Forty (whole-cell

hybridization) or forty-eight (total cell counts) fields distributed over two circular areas of 53

mm2 were examined for the fixed rhizosphere soil samples.

3.3 Results

3.3.1 Probe design for the Acidobacterium subdivision 1

We designed a novel probe specific for the Acidobacterium subgroup 1. This subgroup included

half of the Acidobacteria-sequences found in the rhizosphere of Thlaspi caerulescens. The new

probe perfectly matched Acidobacterium capsulatum and more than 70 environmental

sequences, i.e. more than 86% of the sequences affiliated to subdivision 1 that are currently

available in the RDP- and the Genbank-databases (Hugenholtz et al., 1998b). The target regions

of all other prokaryotic 16S rRNA sequences exhibited at least 2 mismatches (Table 3.1).

Signal intensity of hybridized Acidobacterium capsulatum cells remained equally high with

20 to 45% formamide concentration in the hybridization buffer. Considering position and

strength of the mismatches in non-targeted environmental sequences, a formamide
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concentration of 30% in the hybridization buffer was considered as sufficiently stringent for

Acido228 (Figure 3.1). It is possible and in this case even desirable that a few environmental

sequences from subdivision 1 with only one mismatch in the target region might also be

detected at the applied stringency (Table 3.1). No further optimisation experiments were

necessary (e.g. pretreatment of the fixed cells, ethanol fixation instead of paraformaldehyde

fixation) as a good hybridization signal was obtained with paraformaldehyde-fixed cells.

Table 3.1: Alignment of 16S rRNA regions homologous to the target site of probe Acido228 designed
for the phylogenetic subdivision 1 of the Acidobacterium division. Examples of minimum numbers of
mismatches are shown for the different phylogenetic Acidobacterium subgroups as defined by
Hugenholtz et al. (1998b). D= A, G, T; H = A, C, T; R = G, A; Y = C, T; * = no base.

Probe sequence 5’-TAATCDGCCGCGACCYCCT-3’

Target sequence 5’-AGGRGGTCGCGGCHGATTA-3’

A. capsulatum + 73 clones from subdivision 1 -------------------
9 subdivision 1 clones with 1 mismatch -----T-------------
Subdivision 2 -----CC----CA------
Subdivision 3 -----YC------------
Subdivision 4 -----CC------------
Subdivision 4 --A--C-------------
Subdivision 5 -----TCY-----------
Subdivision 6 -----CC----Y-------
Subdivision 7 -----CC----C-------
Subdivision 7 -T---TC----T-------
Subdivision 8 ----TCCT---T-T-----
Subdivision 8 T----CAT-T-***-T---
Chloroplast Olisthodiscus luteus -----C-------------
Uncultured haloarcheon MSP41 -T----C------------
Veillonella criceti -------T---T-------

Figure 3.1: Epifluorescence micrographs of Acidobacterium capsulatum detected after hybridization
with the probe Acido228 at 20% formamide (left) and after SYBR Green II staining (right).
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3.3.2 Probe design for the Rubrobacteria subclass

As we have shown in chapter 2, sequences clustering with the Rubrobacteria were highly

abundant in the rRNA-derived clone libraries. The new probe specifically designed for the

Rubrobacteria perfectly matched all cultured Rubrobacteria isolates and more than 133

environmental sequences, i.e. more than 80% of the sequences affiliated to this subclass that are

currently available in the RDP- and the Genbank-databases (Table 3.2).

Probe Rubro198 was tested with Rubrobacter radiotolerans (Rubrobacteria subgoup 1) and

Conexibacter woesi (Rubrobacteria subgoup 2). Isolates of subgroup 3 were not available at the

time of this study. The influence of different fixatives on the hybridization signal was evaluated

using the probe EUB338. Hybridization of paraformaldehyde-fixed C. woesi with EUB338

resulted in medium fluorescence intensities, whereas paraformaldehyde-fixed R. radiotolerans

cells showed only a very weak hybridization signal, indicating limited permeabilization (Figure

3.2). However, lysozyme treatment of ethanol-fixed cells improved permeabilization of R.

radiotolerans and resulted in higher signal intensity after hybridization with EUB338 and

Rubro198, respectively (Figure 3.2). Increasing the formamide concentration from 25% to 40%

in the hybridization buffer for probe Rubro198 resulted in a significant decrease of the signal

intensity. For this reason, a concentration of 20% formamide was chosen (Figure 3.3)which

would probably also permit to detect the clone sequences harbouring one weak mismatch at the

Table 3.2: Alignment of 16S rRNA regions homologous to the target site of probe Rubro198 designed for the
subclass Rubrobacteria (including subgroups 1, 2, 3 of the Rubrobacteria as defined by Holmes et al. (2000).
R= G, A; Y= C, T; W= A, T.

Probe sequence 5’-GGCCGAAGCTWCCTTTY-3’

Target sequence 5’-RAAAGGWAGCTTCGGCC-3’

Rubrobacter radiotolerans + all clones from subgroup 1 -----------------
Conexibacter woesi + 23 clone sequences from subgroup 2 -----------------
97 clone sequences from subgroup 3 -----------------
27 clones with 1 mismatch (subgroups 2,3) T----------------
5 clones with 1 mismatch (subgroup 2) ----------------T
2 clones with 2 mismatches (subgroup 2) T---------------T

Bacillus subtilis -------G--------T
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5’ end of the target sequence (Table 3.2). Non specific binding to lysozyme-treated Bacillus

subtilis, which has two mismatches in the target region of Rubro198 was not observed.  

Figure 3.2:Epifluorescence micrographs of Rubrobacter radiotolerans (panels A, B, C) and
Conexibacter woesi (panels D and E) cells detected with the probe EUB338.The cells are fixed with
paraformaldehyde (panels A and D) or ethanol (panels B and E). In the panel C, the cells of
Rubrobacter radiotolerans were pretreated with lysozyme.
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3.3.3 Environmental application

Fluorescence in situ hybridization was performed in a first step with paraformaldehyde-fixed

rhizosphere soil samples to quantify some major phylogenetic groups within the kingdom

Bacteria. Fixed rhizosphere samples were first analysed by SYBR-Green II staining and in situ

hybridization with the Cy3-labeled bacterial probes EUB338 and EUB338-II (Amann et al.,

1990a, Daims et al., 1999). We included EUB338-II, since it has been shown that different

bacterial groups including many environmental 16S rRNA sequences contain at least one

mismatch in the target site and are not detected by EUB338 (Daims et al., 1999). Sequences

with three mismatches in the target region of EUB338 as found in the Planctomycetales-genera

Planctomyces, Pirellula and Gemmata, can be detected with EUB338-II. Application of

EUB338-II under low stringency conditions (35% formamide in the hybridization buffer

instead of 70%) allows to detect also 16S rRNA-sequences of organisms containing a single

Figure 3.3: Epifluorescence micrographs of Rubrobacter radiotolerans (A) and Conexibacter woesi (B)
after hybridization with the probe Rubro198 specific to the whole Rubrobacteridae subclass (left) and
after SYBR Green II staining (right).
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mismatch at position 353 in the target sequence of EUB338-II, as found in most

Verrucomicrobia (Daims et al., 1999). Only about 20% of the total SYBR Green II-stained cells

(137 x 108 g dw-1) could be detected using the bacterial probes EUB338 and EUB338-II (Table

3.3). 

 Selected major phylogenetic groups were quantified with different group-specific 16S and

23S rRNA-targeting oligonucleotide probes. Based on the actual databases, it was possible to

calculate the relative number of cells as a percentage of EUB338-detected cells as most of the

cells detected with the specific probes have also a target region for the EUB338 probe. Only

approximately 31% of the cells detected with the bacterial probes could be assigned to some

major phylogenetic groups, i.e. the α, β and γ subdivisions of the division Proteobacteria  and

the Acidobacterium division (Table 3.3). Members of the order Planctomycetales accounted for

1% of the total SYBR Green-detected cells after hybridization with Pla46/Pla886 (Neef et al.,

1998), which is in the same range as the numbers obtained after hybridization with EUB338-II

(detecting most of the planctomycetes and the verrucomicrobia).

The oligonucleotide probes Irog1 and Irog2 used in this study are specific for environmental

sequences affiliated to cluster a of the Acidobacterium division as defined by Ludwig et al.

(1997). Bacteria hybridizing with Acido228 corresponded to 4% of the EUB338/EUB338-II

detectable cells, thus resulted in a duplication of Acidobacterium-cells in the rhizosphere soil

Table 3.3: Relative cell numbers detected by FISH with Cy3-labeled probes as 1

percentage of total cell numbers, or as 2 percentage of EUB338/EUB338-II detectable
cells.

Probe   Target group Percentage

EUB338 Bacteria

EUB338-II Planctomycetes + Verrucomicrobia

PLA886, PLA46 Planctomycetes

ALF968 α-Proteobacteria

BET42a β-Proteobacteria

GAM42a γ-Proteobacteria

IRog1, IRog2 Acidobacteria subdivision 6

Acido228 Acidobacteria subdivision 1

19 8±

1 1±

1 1±

13 7±

5 4±

5 4±

4 4±

4 5±

1

2
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samples. In the ethanol-fixed and lysozyme-treated samples, 108 bacteria per g soil (dry weight)

hybridized with Rubro198 (Figure 3.4) which corresponded to 3% of the total Sybr-Green-II-

stained cells (36 x 108 g dw-1) and to 15% of the EUB338/EUB338-II detectable cells (69 x 107

g dw-1).

3.4 Discussion

We used fluorescence in situ hybridization (FISH) to enumerate different major bacterial groups

in the rhizosphere of Thlaspi caerulescens grown in a heavy metal-contaminated soil.

Furthermore, we were interested to compare the relative abundance of sequence types within

the rhizosphere clone libraries (as determined in chapter 2) to the abundance of the

corresponding bacterial groups as detected in situ with FISH. The initial in situ probing with the

bacterial probes EUB338 and EUB338-II was performed to evaluate the general detectability of

the microbial community in this heavy metal-contaminated rhizosphere. Only 20% of the

SYBR Green II-stained cells were detected in paraformaldehyde-fixed samples with the

bacterial probes. This number is lower than the values obtained in earlier studies in pristine

(Zarda et al., 1997; Chatzinotas et al., 1998) but also contaminated soils (Sandaa et al., 1999b;

Nogales et al., 2001). The failure to detect a higher amount of cells with the probes EUB338

and EUB338-II might be due to low probe-conferred signals and restricted permeability of cells

(Hahn & Zeyer, 1994; Fischer et al., 1995). Low signal intensity could be explained by low

Figure 3.4: Epifluorescent micrographs of ethanol-fixed rhizosphere heavy-
metal contaminated soil samples hybridized with the probe Rubro198 (left) and
corresponding SYBR-Green-II-stained cells (right).
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levels of target rRNA in the cells, which may reflect reduced general metabolic activity in this

perturbed systems. However, it has been shown that a clear correlation between low metabolic

activities and low signal intensity per cell is not always given (Wagner et al., 1995; Oda et al.,

2000). Although we could assume that a huge proportion of the FISH-undetectable, SYBR

Green II-stained cells are dormant cells (Roszak & Colwell, 1987), any interpretation about the

metabolic status of the bacterial cells in this heavy metal-polluted soil based only on probe-

conferred signals is speculation. 

Only a minor part of the cells detected by EUB338/EUB338-II could be affiliated to large

phylogenetic groups. Apparently, the group-specific probes usually applied in FISH studies did

not cover a major part of the microbial diversity in this soil. This is in contrast to e.g. activated

sludge (Snaidr et al., 1997) or bioreactors (Stoffels et al., 1998), where these probes detect much

higher fractions of the total community. Although we did not test all available probes covering

large phylogenetic groups, such as the δ-Proteobacteria, the Cytophaga-Bacteroides-

Flexibacter group or the gram positive bacteria with low and high G+C DNA content, we

believe that there is an obvious need of designing new specific probes, in particular for

terrestrial environments. If we take into account the vast number of publications on comparative

analysis of rRNA sequences from soil systems, it appears more than surprising that only a few

research groups develop and apply new oligonucleotide probes for soil microbial diversity

studies (Stoffels et al., 2001; Dedysh et al., 2001).

In order to specifically detect and quantify organisms from which part of our sequences

derived, we designed two novel probes detecting most members of subdivision 1 of the

Acidobacterium division and most of the subclass Rubrobacteria. The reasoning for the

selection of these two target groups is as follows: 16S rDNA sequences affiliating to the

Acidobacterium division are commonly found in clone libraries of environmental DNA from

terrestrial systems. Up to know only one division-specific probe (Juretschko et al., 2002) and

the two probes specific for subdivision 6 (Ludwig et al., 1997) used in this study have been

published. Taking into account the considerable phylogenetic depth of this division, we

intended to specifically quantify subdivision 1 that was well represented in our clone library.

The second target group, the Rubrobacteria, dominated the rRNA-based clone libraries (see

chapter 2) in terms of sequence numbers. This group has only recently been observed in culture-

independent diversity studies (Rheims et al., 1996; McCaig et al., 1999; Holmes et al., 2000;
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Moffett et al., 2003). Since abundance of sequence types in clone libraries is expected to be

biased, only FISH can offer some quantitative information regarding this particular group. 

Fuchs et al. (1998) recently published the distribution of relative fluorescence intensities of

oligonucleotide probes on a 16S rRNA secondary structure model. Although this systematic

study facilitates the successful design of oligonucleotide probes targeting accessible sites on the

16S rRNA, every novel probe should also be tested with a reference organism. This inevitably

poses a problem for many environmental systems, since many of the bacterial groups found are

not represented by any cultured organism. Probe Acido228 covered (at the time of its design)

the only cultured organism within the Acidobacterium subdivision 1, and thus allowed to

evaluate the specificity of this probe and the accessibility of the respective 16S rRNA target site.

Hybridization of PFA-fixed rhizosphere samples with Acido228 confirmed the presence of

sequences clustering within the subdivision 1 of the Acidobacterium division, yet numbers

detected were only a little bit higher than the detection limit (0.5-1% of all SYBR Green II-

stained cells in soil).

The specificity of probe Rubro198 could be checked only for subgroups 1 and 2 as no

member of subgroup 3 has been isolated yet. However, hybridization with probe Rubro198 still

requires some improvement, as the signal intensity obtained with cultures of Rubrobacter

radiotolerans and Conexibacter woesi was relatively weak. Some possible reasons are

mentioned here: The three-dimensional structure of the ribosome may hinder the access of

oligonucleotide probes to their target site, resulting in low fluorescence intensities (Fuchs et al.,

1998). Unlabeled oligonucleotides (helpers) may improve the application of FISH with this

probe, since they may increase the accessibility of the target region by opening the structure of

the rRNA (Fuchs et al., 2000). Moreover, the cell walls of Gram-positive bacteria hinder in

many cases the probe to enter the cell, in particular if paraformaldehyde fixation is performed.

Lysozyme treatment of ethanol-fixed cells clearly improved permeabilisation of Rubrobacteria,

however it also significantly decreased total cell numbers. We assume that a prolonged storage

time in combination with lysozyme treatment were responsible for the decreased total cell

counts since ethanol-fixed samples were analysed only after several months of storage at -20°C.

Obviously, more work is needed to find an appropriate protocol for applying probe Rubro198

to environmental samples. A promising alternative to increase the sensitivity of FISH is the use

of enzyme-labelled probes which have been shown to improve in particular the detection of

Actinobacteria (Sekar et al., 2003; Chatzinotas et al., 1998). Despite the low signal intensity
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observed with pure cultures, 3% of all SYBR Green II-stained cells were detected with the

probe Rubro198 in ethanol-fixed samples, indicating that this group of organisms is indeed

abundant in this heavy metal-polluted soil. 

To conclude, the two, novel oligonucleotide probes Acido228 and Rubro198 allowed the

detection and enumeration of selected bacterial groups represented in our clone libraries.

However, the sensitivity of FISH for this heavy metal-polluted soil has to be substantially

improved. Although FISH is supposed to be used as a quantitative approach, the obtained

numbers have to be interpreted with care. As long as general detectability remains as low as in

our study, a reasonable quantification of bacterial groups and eventually a comparison with

abundance estimated from clone library studies is not possible. One should also not overlook an

often-encountered difficulty during the design of specific oligonucleotide probes: Only few

complete sequences are available for these emerging groups, consequently, the search of

signature sequences is limited to only two or three variable regions in the 16S rRNA molecule.

Regarding our probes (and all published probes), this means that there is a constant need for

probe re-evaluation, as a probe designed now might not be specific any more in the future or

might not cover all organisms intended to be targeted (Amann et al., 2001). The functions of the

yet unculturable bacteria in the rhizosphere of heavy metal-hyperaccumulating plants still

remain unclear. Their investigation requires combinations of molecular techniques with other

approaches, such as novel isolation (Zengler et al., 2002) or isotope techniques (Radajewski et

al., 2000). We believe that the development of appropriate cultivation methods will benefit from

whole-cell hybridization techniques using novel probes, which will allow to track the

microorganisms in the environment and during enrichment procedures. 
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CHAPTER 4

Impacts of heavy metal contamination and phytoremediation on
the microbial community during a twelve months microcosm
experiment

FABIENNE GREMION, ANTONIS CHATZINOTAS, KARIN KAUFMANN, WILLIAM VON SI-
GLER AND HAUKE HARMS

Extended version of a paper submitted to FEMS Microbiology Ecology

4.1 Abstract

The effects of heavy metals and phytoextraction practices on soil microbial community

structure and function were studied during twelve months using a hyperaccumulating plant

(Thlaspi caerulescens) grown in an artificially contaminated soil. The 16S ribosomal RNA gene

of the Bacteria, the β-Proteobacteria and the ammonia-oxidising bacteria (AOB), a functional

group of the β-Proteobacteria, was amplified by polymerase chain reaction (PCR) and analysed

by denaturing gradient gel electrophoresis (DGGE). Principal component analysis (PCA) of the

DGGE data revealed that: (i) the heavy metals addition had the most drastic effects on the three

bacterial groups targeted (ii) the presence of the plant induced minor changes which could

clearly be observed in the AOB and to a lesser extent in the Bacteria pattern (iii) the changes

observed during the twelve months experiment in the different DGGE-patterns of the planted

contaminated soil did not lead to a recovery of the initial bacterial community present in the

non-contaminated soil. The potential function of the microbial community was assessed

recording community level physiological profiles (CLPP) and analysing them by PCA. Its
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lower capability to degrade the different substrates provided in the BIOLOG microtiter plates,

in particular the amino acids, amides and amines, as well as a delay in the average well color

development (AWCD) differentiated the cultivable bacterial community from contaminated

samples from that of the non-contaminated ones. However, the plant had a positive effect on

substrate utilisation as shown by the greater number of substrates used in planted samples (both

in contaminated and non-contaminated soil) as compared to unplanted ones. Finally, the

measurement of the potential ammonia oxidation indicated that the AOB were completely

inhibited in the contaminated soil. The stimulation of the ammonia oxidation by the plant which

could clearly be observed in the non-contaminated samples was surpassed by the inhibitory

effect of the heavy metals in the contaminated soil. This study emphasises the combined use of

culture-independent techniques with conventional methods to investigate the ecology of

bacteria in their natural habitats.

4.2 Introduction

Heavy metals contamination of soils originating from agricultural (e.g. fertilizers, sewage

sludge) or industrial activities (e.g. metal mining, smelting) is one of the major environmental

problems in large parts of the world. The resulting damage is difficult to cure as metals cannot

be chemically degraded (Salt et al., 1995). Heavy metals affect all groups of organisms and

ecosystem processes, including microbial activities (Babich & Stotzky, 1985; Baath, 1989;

Giller et al., 1998). Remediation approaches such as excavation and landfilling, thermal

treatment, electroreclamation, and soil capping have been proposed depending on the extension,

depth and kind of contamination, but they are all expensive and environmentally destructive

(Vangronsveld & Cunningham, 1998). Phytoextraction, the use of plants to extract metals from

soil, has been reported to be very efficient for cleaning up superficially-contaminated soils

(Robinson et al., 1998; Baker et al., 1994a; Salt et al., 1995; Garbisu & Alkorta, 2001). This

alternative remediation technique is promising as it is cheaper and less invasive than traditional

methods (Glass, 2000; Mulligan et al., 2001). In particular, the hyperaccumulator plant Thlaspi

caerulescens is a good candidate for the phytoextraction of Zn and Cd from contaminated soils

as it can accumulate more than 1% Zn and 0.1% Cd in its shoots on a dry-weight basis (Baker

et al., 1994b; Brown et al., 1994; Reeves & Baker, 2000). The potential of microorganisms to

enhance phytoremediation processes and the exact mechanism by which bacteria could enhance
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heavy metal accumulation in plants has recently received some attention (De Souza et al., 1999;

Whiting et al., 2001a). Despite the great interest to improve the efficiency of metal

hyperaccumulating plants, their influence on microorganisms has been rarely investigated

(Pawlowska et al., 2000; Delorme et al., 2001; Gremion et al., 2003). Molecular fingerprinting

techniques such as PCR in combination with denaturing gradient gel electrophoresis (DGGE)

offer new perspectives to study microorganisms in their habitat as they account for as yet

uncultured organisms (Muyzer & Smalla, 1998). They are an important complement to

conventional methods that require cultivation, or measure bacterial activities.

The aim of this study was to determine the impact of heavy metals and phytoextraction

practices on microbial community structure at different levels of resolution and, more

specifically, on an exemplary key function of soil (ammonia oxidation). We were particularly

interested in ammonia-oxidising bacteria (AOB) as these important catalysts of an essential step

in the N cycle are known to be very sensitive to heavy metal pollution. For this purpose, we

combined the two complementary fingerprinting techniques denaturing gradient gel

electrophoresis and community level physiological profiles with the measurement of the

potential ammonia oxidation rates. The resolution of the DGGE-approach was varied by

targeting either the total bacterial community or more specific groups.

4.3 Materials and methods

4.3.1 Soil characteristics and sample preparation

The soil was kindly provided by the Swiss Federal Institute for Forest, Snow and Landscape

Research (Birmensdorf, Switzerland). It was loamy with 15.1% clay, 49.4% silt and 35.5%

sand. pH values and amounts of total and soluble heavy metals are presented in Table 4.1.

Heavy metal dust (Zn [755 mg kg-1], Cu [85 mg kg-1], Cd [3 mg kg-1]) was obtained from the

air filters of a brass-smelter in Dornach (Switzerland) and mixed (3.7 g dust/kg soil)  into one

part of the sieved soil (<2 mm). The rest remained non-contaminated. Both soils were wetted to

80% of their water-holding capacity, stored at 10°C in the dark and mixed each once a week

during three months. Pot experiments were carried out in flower pots containing 2 kg of soil.

4.3.2 Plant growth conditions 

Thlaspi caerulescens seeds have been obtained from a population grown near an ancient Pb/Zn

mine in Saint-Laurent-le Minier, Southern France. They were stored at 4°C before use. The
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seeds were germinated on non-contaminated gardening soil during 25 days. One seedling of T.

caerulescens was subsequently transplanted into each of three pots containing contaminated

and each of three pots containing non-contaminated soil. The plants were grown for three

months in a climate chamber at 20°C during daytime and 16°C during night time with 16 h of

light alternating with 8 h of darkness. Three unplanted pots were filled with contaminated soil

and three others with non-contaminated soil and also incubated in the climate chamber. The pots

were watered with 100 ml deionized water every 4 days. 

4.3.3 Heavy metal analysis

Total heavy metal content (extracted with 2M HNO3) and the soluble heavy metal fraction

(extracted with 0.1 M NaNO3) of the contaminated soil were measured according to the Swiss

law recommendations (OIS, 1998). Plant shoots were collected, oven-dried at 70°C, weighed

and ground in a tungsten Retsch mill (Haan, Germany). They were subsequently digested

according to Hammer & Keller (2002) in order to analyze their heavy metal contents. All soil

and plant heavy metal concentrations were determined with Inductively Coupled Plasma

Atomic Emission Spectrometry (ICP-AES, Perkin Elmer Plasma 2000) and all samples were

run together with certified reference materials.

4.3.4 Sampling

The sampling was carried out over twelve months. Every 3 months, plants and soil were

removed from the pots and each plant was shaken carefully to remove the bulk soil. The soil

still adhering to the roots was defined as rhizosphere soil. It was separated from the roots by

moderate agitation in 50 ml of sterile 0.9% NaCl solution during 5 min and then centrifuged at

8’000 g for 10 min (Marilley et al., 1998). Samples from the unplanted pots were taken as

controls. Subsamples (0.6 g wet weight) were filled in 2-ml cryotubes and stored at –20°C until

further use. After the sampling, the pots were refilled with the soil and fresh seedlings were

subsequently transplanted into it.

4.3.5 DNA extraction 

Total soil DNA was extracted from 0.6 g (wet weight) samples of each of the three rhizosphere

and unplanted soil samples from contaminated or non-contaminated pots using the protocol of

Griffiths et al. (Griffiths et al., 2000b) with some modifications. Briefly, 0.5 ml of CTAB
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buffer, 0.5 ml of phenol-chloroform-isoamylalcohol (25:24:1) and 0.75 g 0.1-mm glass beads

were added to each sample. The mixture was two times shaken for 45 s in a Fastprep bead-beater

(Bio 101) at 4 m/s. Samples were stored on ice during 1 min between each run. The lysed sample

was then centrifuged (16’000 x g) for 5 min at 4°C. An equal volume of chloroform-

isoamylalcohol (24:1) was added to the aqueous phase for removing the remaining phenol. The

supernatant was subsequently incubated 2 h at room temperature with 2 volumes of the

precipitation solution (30% polyethylene glycol 6000 in 1.6 M NaCl). DNA was pelleted by

centrifugation at 18’000 x g for 10 min at 4°C, washed once with ice cold 70% ethanol, and

resuspended in 50 µl TE (pH 7.4). One µl of the DNA solution was used as template for PCR

amplification. 

4.3.6 PCR amplification

PCR amplification of 16S ribosomal DNA (rDNA) was performed with a PTC-200

thermalcycler (MJ Research). The 50 µl PCR mixture contained 0.2 µM of each primer, 200 µM

of each deoxynucleoside triphosphate, 1x PCR buffer (Qiagen), 2.5 mM MgCl2, 4.95 µg/µl

BSA, and 1 U of Taq Polymerase (Qiagen). To minimize non-specific annealing of the primers

to nontargeted DNA, the Taq Polymerase was always added after an initial denaturing step at

94°C for 5 min. Bacterial 16S rDNA was amplified with the primer combination 341f-GC and

907r according to Muyzer et al. (1996) and the following program: 30 cycles at 94°C for 1 min,

58°C for 1 min, 72°C for 2 min and a final extension at 72°C for 10 min. A semi-nested PCR

was used for the amplification of the 16S rDNA of β-Proteobacteria. 16S rDNA PCR products

from ammonia-oxidising bacteria (AOB) were obtained after nested-PCR. In both cases, only

20 cycles were performed in the first amplification and 1 µl of the first PCR amplification served

as template for the second amplification (30 cycles). The β-Proteobacteria were initially

specifically amplified with the primers 948f and 1492r (Lane, 1991) following the protocol of

Gomes et al. (2001). Reamplification was performed with the primer pair 984f-GC and 1492r

according to Heuer et al. (1997). For the AOB, the first amplification was performed with the

universal primers 27f and 1492r followed by a second specific amplification using the CTO

primers and the PCR conditions according to Kowalchuk et al. (1998). Subsequently, the PCR

products were quantified in a fluorometer (Turner Designs, TD-700, Witec) using the

PicoGreen nucleic acid dye (Molecular Probes, Inc.) (Stark et al., 2000).
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4.3.7 Denaturing Gradient Gel Electrophoresis (DGGE)

DGGE analysis was performed with the D-Code system (Bio-Rad Laboratories) using the 16

cm x 16 cm x 1 mm plates for Bacteria and β-Proteobacteria and the 20 cm x 20 cm x 1 mm

plates for AOB. Four hundred ng of each PCR product was loaded onto 6% (wt/vol)

polyacrylamide gels (acrylamide/bisacrylamide ratio [37.5:1]) (Bacteria and β-Proteobacteria)

or onto 8% (wt/vol) polyacrylamide gels (AOB). The gels were poured at a flow rate of 14 ml/

min using a two chamber gradient mixer linked to a peristaltic pump (Ismatec). The gradient of

denaturant ranged from 35 to 58% (Bacteria), 43 to 58% (β-Proteobacteria) or 38 to 50 %

(AOB) (Kowalchuk et al., 1997) where a 100% denaturing solution is defined as 7 M urea and

40% formamide. A 5 ml stacking gel (0% denaturant) was added to the top of the denaturing

gel. The gels were run in 1x TAE buffer (pH 7.4) at 60°C, for the first 15 min at 30 V, and

subsequently for 14 h at 70 V (Bacteria, β-Proteobacteria) or at 85 V (AOB). The

reproducibility of the results and the analysis method was checked by loading on the gels the

PCR amplifications of three different extractions per treatment but also triplicates within one

extraction. To compare the patterns of all different treatments on a single denaturing gel, only

one PCR product amplified from the DNA from one pot was finally loaded on the gel.

Afterwards, the gels were stained for 30 min with SYBR Green I nucleic acid gel stain

(Molecular Probes) as specified by the manufacturer. The stained gels were immediately

photographed on a UV transillumination table with a CCD camera (Syngene, Multigenius

Bioimaging System, UK) using a short wavelength filter provided by the manufacturer. Digital

images of the gels were further analysed by Quantity One image analysis software version 4.0

(Bio-Rad). A band of DNA was detected if it accounted for greater than 1% of the total lane

intensity. The lanes were normalized to contain the same amount of total signal after

background subtraction (rolling disc) and further used for statistical comparison by principal

component analysis (PCA). We also analyzed the data taking into account only the presence or

absence of bands according to McCaig et al. (2001).

4.3.8 Community level physiological profile (CLPP)

CLPP was performed in BIOLOG-GN2 plates (Oxoid). Five g of soil (wet weight) of each

treatment was mixed with 12.5 ml autoclaved water and 3 g of 3 mm-glass beads. The mixture

was shaken at 180 rpm for 30 min at room temperature and subsequently centrifuged at 500 x g

for 1 min to remove larger suspended soil particles. 
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In order to adjust the inoculum cell density in each well, total cell counts were determined.

Briefly, 100 µl of the soil suspension was filtered on a polycarbonate filter and subsequently

dewatered by sucking increasing ethanol concentrations through the system and finally stained

15 min in the dark with 15 µl of SYBR Green II (5 x 10-3 dilution of the stock) (Weinbauer et

al., 1998). The filters were mounted with Citifluor solution AF1 (Citifluor Ltd., London, UK)

and the preparations were examined with an Olympus BX-60 microscope equipped for

epifluorescence with a high pressure mercury bulb (100 W) and filter set HQ-EGFP (AHF

Analysentechnik AG, Germany).

Each of the 96 wells of the BIOLOG-GN2 plates was inoculated with 125 µl of a 1:100

dilution of the initial soil suspension (5 x 106 cells ml-1). BIOLOG-analysis was performed with

three replicate plates inoculated with a dilution originating from the same initial soil suspension.

Plates were incubated at 20°C in the dark and absorbance was measured at 590 nm every 12 h

with a plate reader (Dynex Technologies Inc. MRX II, Chantilly, USA) for 111 h. 

For further analysis, the optical density (OD) of the control well was subtracted from the OD

of each of the substrate-containing wells in order to obtain blanked absorbance values. The rate

of substrate utilization over time was determined by the average well colour development

(AWCD) which was calculated as the mean of the blanked absorbance values for all 95 response

wells per reading time (Garland, 1996). The area under the resulting curve of each substrate,

using the readings between 0 and 111 h for each plate, was calculated with the trapezium rule

as described in Hackett & Griffiths (1997) and subsequently used for statistical analysis (PCA).

Substrate richness, defined as the number of substrate utilized, was determined as the number

of background-corrected absorbance values higher than 0.25 after 111 h incubation (Garland,

1996).

4.3.9 Determination of the potential ammonia-oxidation activity (PAO)

Five g of planted and unplanted soil (each contaminated or non-contaminated) were incubated

at 25°C in a test medium for 6 h according to the international standard draft ISO/DIS 15685

(ISO, 1999). Every hour, samples of the soil slurries were taken and one volume of 4 M KCl

was added to stop the ammonia oxidation. Nitrite accumulated was subsequently determined by

colorimetry. The ammonia oxidation rates were calculated by linear regression of accumulated

nitrite over time.
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4.3.10 Statistical analysis

All our experiments were carried out in triplicates. Student t-tests were carried out to determine

significant differences (p<0.01) between planted and unplanted pots at different sampling times.

The data obtained by DGGE and CLPP were interpreted by principal component analysis

(PCA) using SPSS 10.0.5 for windows applying a covariance matrix and no rotation. With this

method, the number of variables (16S rDNA bands and 95 substrates) is reduced to a few

numbers of axes (PCs) which explain more variance than randomly regressed variables. The

two first PCs were subsequently plotted to visualize the results. 

4.4 Results 

4.4.1 Effects of Thlaspi caerulescens on heavy metal content and soil properties

At any sampling time, the concentrations of NaNO3-extractable Cd and Zn were significantly

lower (p<0.05) in planted pots than in unplanted pots (Table 4.1). On the contrary,

concentrations of soluble Cu were significantly increased in planted pots until 6 months

(p<0.05). After 9 and 12 months soluble Cu was also increased in unplanted pots. Analysis of

the plants revealed that Cu did not accumulate in the shoots. Regarding the total heavy metal

concentration in soil, only Cd was significantly reduced after 12 months (p<0.05). The plant

was able to take up between 1554-10296 µg Zn and 170-936 µg Cd per kg of soil (Table 4.1).

Accordingly, the plant removed  up to 7 times more Zn and up to 67 times more Cd than the

difference observed between the soluble concentrations of planted and unplanted pots. An

increase in available heavy metals and at the same time a decrease in the soil pH was observed

in all pots of month 6 and 12 as compared to month 3 and 9. During the whole period of the

experiment, the pH in the planted contaminated soil was between 0.24 and 0.30 units higher

than the values measured for the unplanted contaminated soil (p<0.01). A similar trend was

observed in the non-contaminated soil (pH 6.7-6.9 in planted soil; pH 6.5-6.8 in unplanted soil).

Total C and N contents were 1.5% and 0.14%, and did not change during the 12 months.
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4.4.2 Effects of heavy metals and Thlaspi caerulescens on the microbial communities

a) Potential ammonia-oxidation activity (PAO)

The rates of nitrite production were 335±51 ng g–1 dry soil h-1 and 190±9 ng g–1 dry soil h-1 in

planted and unplanted non-contaminated soil, respectively. No nitrite was produced in planted

or unplanted contaminated soil. 

b) Microbial genetic diversity (DGGE)

We performed PCR-amplification using the different primer pairs on DNA-extracts from the

four pot experiments (contaminated - non-contaminated, rhizospheric-unplanted soil) sampled

at different times (3, 6, 9, 12 months). Amplification products were run on DGGE gels (see

Appendix p.73) to analyze the bacterial communities. DGGE-patterns resulting from replicate

DNA-extractions obtained from one pot at a given sampling time were highly reproducible, as

were those from DNA-extractions from the rhizospheres of different plants. For all sampling

times and both treatments (contaminated - non-contaminated), 43 different bands positions were

observed for the Bacteria pattern (24-31 bands per PCR-product), 32 different bands for the β-

Proteobacteria (13-22 bands per PCR-product) and 14 different bands for the ammonia-

oxidising bacteria (10-13 bands per PCR-product). With each of the primer pairs used, the

DGGE-patterns of the contaminated soil clearly differed from the corresponding non-

contaminated ones. Within one treatment, the rhizospheric and the unplanted soil patterns from

the different sampling times were very similar but could still be differentiated by the presence

of weak bands and changes in band intensities. Subsequently, DGGE gels were interpreted

using principal component analysis (PCA). For this purpose, the data were transformed in two

ways taking into account either the relative intensity or the presence of bands. Using the

intensity data, the first two principal components (PC1 and PC2) were sufficient to explain

65.7% of the variance for the Bacteria, 71.7% for the β-Proteobacteria and 80.3% for the AOB

(Figure 4.1). Regardless of the target groups, the first axis (PC1) separated the contaminated

from the non-contaminated samples. DGGE-profiles of PCR-products of β-Proteobacteria

were most stable over the experimental period as shown by tight clustering in PCA plots. In

contrast to that, DGGE profiles of the Bacteria and the AOB formed more open clusters that, in

case of both planted and unplanted contaminated soil samples seemed to drift apart with

incubation time. PCA considering only the presence or the absence of bands resulted in similar

plots.  
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Figure 4.1: Principal component analysis (PCA) on the DGGE data of A) the Bacteria B) the β-
Proteobacteria C) the ammonia-oxidising bacteria 16S rDNA PCR-products. The increase in size of
the symbols represents the different sampling points (3, 6, 9 and 12 months).  unplanted
contaminated,  rhizospheric contaminated,  unplanted non-contaminated,  rhizospheric non-
contaminated.
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c) Potential microbial functional diversity (CLPP) 

The potential capacity for substrate utilization of the soil microbial communities was

investigated using BIOLOG-GN2 plates providing 95 different substrates. This method clearly

differentiated contaminated soil samples from non-contaminated ones (Figure 4.2). 

Average well colours of plates inoculated with non-contaminated samples increased rapidly

after 39 h and reached significantly higher values within 111 h than plates with inocula from

contaminated soil samples. The AWCD for both pristine soils was sigmoid, the absorbance

measured for the rhizosphere soil being generally higher than that of the unplanted soil.

Utilization of substrates in plates with inocula from contaminated soil started only after

Figure 4.2: Average well colour development (AWCD) of the non-contaminated (grey)
and contaminated (black) soil samples during the twelve months experiment. planted,

unplanted,  3 months,  6 months,  9 months,  12 months.
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approximately 70 h. In particular the utilization rates for the unplanted contaminated samples

remained very low. Soil samples were also compared at a fixed incubation time (111 h) with

respect to the substrate richness, i.e. the number of substrates metabolized (Table 4.2). BIOLOG

plates with the highest AWCD values, i.e. plates inoculated with the two pristine soils, also

showed a significantly higher utilization of substrates than plates inoculated with contaminated

soil (Table 4.2). Independently of the soil treatment, the number of substrates degraded

increased significantly during this one-year experiment in the planted samples (p<0.01). As

seen in Table 4.2, the effect of Thlaspi caerulescens was significantly more pronounced for

plates with contaminated soil samples  (p<0.001). 

The areas under the curves, summarizing statistically the substrate utilization during 111 h

incubation, were used for principal component analysis (PCA). Using areas instead of endpoint

optical density (OD) values allows to take into account different parameters such as the lag

phase, the rate of increase and the maximum absorbance obtained during the incubation time

(Guckert et al., 1996). PCA discriminated all four soil types. 92% of the variance in the Biolog

data was explained by the first two axes (PC1 and PC2) (Figure 4.3). The first principal

component had the greatest power of separation as it accounted for 89.3% of the variance. This

can be explained by the high number of substrates used by the non-contaminated samples

mainly carbohydrates, carboxylic acids, amino acids, amides, and amines. Seventy-two per cent

of these substrates were highly correlated to the first axis (Pearson coefficient >0.9; p<0.05).

The planted samples were separated from the unplanted ones along the second axis.

Table 4.2: Number of substrates metabolised by the microbial communities after 111 hours
incubation. Only the mean values (background-corrected, OD>0.25) of each substrate of the
three replicate plates for each soil treatment were taken into account.

Sampling time Non-contaminated soil Contaminated soil

Planted Unplanted Planted Unplanted

3 months

6 months

9 months

12 months

67 4± 65 5± 39 4± 8 3±

72 3± 66 3± 40 6± 6 2±

77 3± 65 5± 35 2± 9 2±

83 4± 67 1± 57 4± 19 4±
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4.5  Discussion

In this study, we used an approach combining various complementary methods to determine the

effect of heavy metal contamination followed by phytoextraction on indigenous soil microbial

populations. During one year pot experiments, four consecutive harvests of Thlaspi

caerulescens resulted in a decrease of the soluble, bioavailable Zn- and Cd-concentration by

30% and 60%, respectively. The amounts of Zn and Cd in the shoots were higher than the

depletion of the soluble heavy metal pool. It appeared that uptake of Cd and Zn from the soluble

pool was partly compensated by replenishment with heavy metals from initially less available

pools. It is unclear if this is due to passive re-equilibration of the heavy metal pools in soil, or

actively driven by the plant, which may have e.g. access to non NaNO3-extractable Zn and Cd

fractions (Hammer & Keller, 2002; Knight et al., 1997a; McGrath et al., 1997; Whiting et al.,

2001b). Observed variations in the available pool of heavy metals in both planted and unplanted

samples during the experiment were concomitant with pH changes of the soil solution. An

increase of pH-values is usually considered to be the major factor for a decrease in the

concentration of available heavy metals (Hornburg & Brümmer, 1993). However, our data

indicate that the driving force for the observed decrease of extractable Zn and Cd is mainly the

Figure 4.3: Principal component analysis (PCA) on the Biolog data after 111 hours
incubation. The increase in size of the symbols represents the different sampling points
(3, 6, 9 and 12 months).  unplanted contaminated,  planted contaminated, 
unplanted non-contaminated,  planted non-contaminated.
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heavy metal uptake by the plant.  

The impact of the heavy metals could be seen in the results obtained with all the three

approaches, i.e. denaturing gradient gel electrophoresis (DGGE), community level

physiological profiles (CLPP) and potential ammonia-oxidation activity measurement. These

approaches account for different parts of the community. DGGE analysis was done at three

levels of resolution using different 16S rDNA-targeting primer pairs. This approach potentially

reduces the complexity of DGGE-banding patterns usually observed after PCR-amplification

with primers targeting the total bacterial community. In addition, primers specific for selected

populations allow the analysis of less abundant groups that may be outcompeted in the PCR

reaction using the Bacterial primer pair. Nested PCR has been shown to be necessary for the

detection of minor but ecological significant populations which make up less than 0.01% of the

total bacterial soil community (Phillips et al., 2000). In a few cases, such as for the ammonia-

oxidising bacteria (AOB), group-specific primers allow to draw conclusions about processes

potentially carried out by the organisms targeted. The monophyletic nature of ammonia

oxidisers affiliated to the β-Proteobacteria has facilitated the development of specific PCR-

primers. AOB are important key-players in the nitrogen cycle since they are responsible for the

rate-limiting step in the nitrification process (Kowalchuk & Stephen, 2001). Therefore one can

assume that any 16S rDNA sequence amplified with AOB-specific primers from this soil

represents most probably not only one organism belonging to a specific phylogenetic group but

also one organism with the potential to aerobically oxidise ammonia. Normalised DGGE-

profiles were used to perform statistical analysis by PCA based on number of bands or on

number and intensity of bands, respectively. It is widely accepted that the number and intensity

of bands in a DGGE-profile should be regarded as semi-quantitative information due to

different PCR-biases (von Wintzingerode et al., 1997) and to the possibility of similar melting

behaviour of 16S rDNA fragments from non-related organisms (Muyzer & Smalla, 1998).

Independently of the phylogenetic group studied, multivariate analysis of the DGGE data

clearly revealed consistent differences between contaminated and non-contaminated samples.

This is in accordance with other studies which detected shifts in the bacterial community caused

by heavy metal contamination using DGGE and other molecular techniques (Müller et al.,

2001; Sandaa et al., 1999a ; Griffiths et al., 1997). Therefore, we conclude that the application

of group-specific primers does not offer any additional resolution power if the goal was to only

distinguish a heavy metal-polluted soil from a pristine soil.
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DGGE-analysis also revealed gradual changes of the microbial community structure in the

contaminated, unplanted soil during 12 months in contrast to the community structure in the

non-contaminated, unplanted soil, which remained quite stable. A possible explanation for the

ongoing changes on all three levels of resolution in the contaminated, unplanted soil is that the

microbial community was initially disturbed by the addition of the heavy metal dust and that

community shifts towards a new steady state were not finished within the adaptation period of

three months and the experimental period. 

DGGE-profiles of AOB varied not only in the contaminated soils (planted and unplanted)

during the 12 months but showed some dynamics also in the non-contaminated, planted soil.

Since this tendency was not observed to that extent with DGGE-profiles of the β-Proteobacteria

and the total bacterial community, one could assume that AOB might be a more sensitive

indicator for the impact of the rhizosphere in pristine environments. Kowalchuk et al. (2000)

have shown that shifts in dominant ammonia-oxidising populations in chalk grassland soils

occurred in a background of general stability in the dominant bacterial populations as

determined by DGGE using a Bacterial primer pair. Our observation corroborates also with the

ammonia-oxidation activity measurements. In the non-contaminated soil, the potential activity

of the AOB was significantly higher in planted pots than in the unplanted samples. It has been

shown that plant roots may stimulate growth of AOB (Klemedtsson et al., 1987;  Briones et al.,

2003). Assuming that T. caerulescens took up preferentially nitrate instead of ammonium, as

indicated by an increase in pH (Luo et al., 2000), the AOB would be less in competition with

the plant for this substrate. 

Although growth of T. caerulescens in contaminated soil resulted in changes of the DGGE-

profiles of the AOB (and the total bacterial community), the plant did not exert any positive

influence on the potential ammonia oxidation activity in the contaminated soil as generally no

ammonia oxidation activity was detected in contaminated soil samples, indicating complete

inhibition of the AOB. Ammonia oxidation is a microbial process very sensitive to soil pollution

(Lee et al., 1997; Pell et al., 1998; Sauve et al., 1999). Although the plant removed a significant

part of the soluble Zn and Cd, no recovery of the nitrification activity in the contaminated

planted samples was observed. If this is due to the remaining Zn and Cd in the soil solution or

the unchanged soluble Cu fraction is not clear. This result, together with the DGGE-profiling,

indicates that the AOB populations present in the non-contaminated samples may have been
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replaced in the contaminated soil by a heavy metal-resistant but probably ineffective population

(Gong et al., 2002). 

Community level physiological profiles (CLPP) reflect the potential activity of that fraction

of the bacterial community that is able to grow on the substrates provided on Biolog microtiter

plates. CLPP is not necessarily related to the functional potential of the most abundant bacteria

in soil (Smalla et al., 1998), and is prone to the biases inherent to methods measuring diversity

under culture conditions (Preston-Mafham et al., 2002). Yet, it has been shown useful as a rapid

technique in providing habitat-specific patterns. One can expect that substrates in the plant

rhizosphere were present in lower concentrations than the substrates in the wells. Although the

bacteria grown in the Biolog plates were not further analyzed with molecular methods, it is most

likely that fast growing r-selected populations which were not necessarily dominant in the

inoculum accounted for the colour development in the wells. As already shown in other studies,

the potential degradation capabilities of the microbial community were drastically reduced in

the heavy metal-contaminated soil (Knight et al., 1997b; Kelly & Tate, 1998; Dobler et al.,

2000; Ellis et al., 2001). The rate of colour development was lower and delayed in the

contaminated samples as compared to the non-contaminated ones. As the inoculum size was

previously adjusted in the wells, the differences in the average well colour development must

be due to the heavy metal contamination (Kelly & Tate, 1998). In contrast to the contaminated

samples, we observed a positive association of the non-contaminated samples with PC1. The C-

sources which were also positively correlated to this axis should consequently be metabolized

at a higher rate by the non-contaminated samples (Garland & Mills, 1991). Interestingly, the

majority of the amino acids, amines and amides were correlated positively as well to PC1. The

lower utilization of these compounds in the contaminated samples indicates that bacterial

adaptation to heavy metals is probably maintained at the expense of specific or rare degradative

abilities (Reber, 1992; Doelman et al., 1994; Wenderoth & Reber, 1999; Wenderoth et al.,

2001). For instance, heavy metal contamination has been shown to delay the degradation of

several compounds such as starch, cellulose, glutamic acid and casamino acids (Babich &

Stotzky, 1985; Obbard & Jones, 1993).  

The higher number of substrates used in the planted samples as compared to the unplanted

samples suggests a stimulating effect of the plant, probably due to the root exudates (Heinonsalo

et al., 2000). Most interesting, however, is the observation that the phytoextraction practice

involving T. caerulescens had a positive impact on some potential functional abilities of
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rhizosphere microbial communities in the heavy metal-contaminated soil. Kozdrój & van Elsas

(2000) showed that artificial root exudates supported the development of bacterial populations

in heavy metal-contaminated soils. Campbell et al. (1997) suggested to use carbon sources

reported as constituents of root exudates as BIOLOG substrates. The authors argued that the

carbon sources present in exudates represent a more diverse set of substrates than the carbon

sources used in the Biolog GN plates and consequently also select for the slower growing soil

organisms. Although the commercially available microtiter plates sufficiently separated the

planted from the unplanted samples, we cannot exclude that the use of plates with root exudates

might provide some additional information. If we take also into account the observed changes

in the DGGE-profiles of the total rhizosphere bacterial community in the contaminated soil, we

could speculate that in contrast to the ammonia-oxidation other microbial-mediated processes

may be stimulated as well. Since these microorganisms may be important for the recovery of

the vegetation in a soil following the reduction of the pollutant, we believe that more studies

have to focus on the effect of metal remediation on functional diversity in soils undergoing

phytoremediation.

Although the duration of our experiment does not allow to predict the microbial genetic

diversity and the potential functional abilities after a longer period of phytoextraction, we can

draw the following conclusions: Firstly, exposing soil to heavy metals changed the microbial

community structure as measured by DGGE analysis of 16S rDNA fragments representing

dominant but also minor populations. Secondly, bacterial functional abilities were heavily

affected by the heavy metal contamination. Thirdly, growth of the hyperaccumulator T.

caerulescens in the contaminated soil did not allow the potential ammonia-oxidising activity in

the rhizosphere to recover. Fourthly, phytoextraction with T. caerulescens did not only result in

some changes in the rhizosphere microbial community structure (i.e. the AOB and the total

bacterial community), but fifthly clearly improved the potential functional abilities as compared

to the contaminated unplanted soil. Further studies are needed in order to be able to predict if in
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particular the functional abilities of soil microbial communities will be fully re-established after

the endpoint of phytoremediation has been reached.
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4.7 Appendix   

Figure 4.4: DGGE gel of the ammonia-oxidising bacteria 16S rDNA PCR
products (gradient 38%-50%). The numbers represent the different sampling
points (3, 6, 9, and 12 months). UC: unplanted contaminated, UNC: unplanted
non-contaminated, RC: rhizospheric contaminated, RNC: rhizospheric non-
contaminated.

3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12
UC UNC RC RNC
73



Chapter 4
Figure 4.5: DGGE gel of the β-Proteobacteria 16S rDNA PCR products (gradient 47%-
58%). The numbers represent the different sampling points (3, 6, 9 and 12 months). RNC:
rhizospheric non-contaminated, RC: rhizospheric contaminated, UNC: unplanted non-
contaminated, UC: unplanted contaminated.

Figure 4.6: DGGE gel of the Bacteria 16S rDNA PCR products (gradient 35%-
58%). The numbers represent the different sampling points (3, 6, 9 and 12
months). UC: unplanted contaminated, UNC: unplanted non-contaminated, RC:
rhizospheric contaminated, RNC: rhizospheric non-contaminated.

RNC RC UNC UC
12 9 6 3 12 9 6 3 12 9 6 3 12 9 6 3

UC UNC RC RNC
12 9 6 3 12 9 6 3 12 9 6 3 12 9 6 3
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General conclusions  

The main objective of this study was to characterise the microbial diversity and its function in

heavy metal-polluted soils using molecular methods. In order to reduce the number of variables,

that normally interact in a real ecosystem, we used a simplified model based on pot experiments

including only one plant species and two soils. Although there is much literature on the

behaviour of heavy metals in soils and on the phytoremediation process, their impact on

bacterial communities has largely been ignored. As bacteria are the key-players of nutrient

turnovers, they certainly play an important role in restoring the biological quality of perturbed

ecosystems undergoing long-term remediation. This study tried to elucidate the consequences

of (i) a stress on the microorganisms due to the presence of heavy metals and (ii) the partial relief

of this stress by phytoremediation. 

First, we investigated the bacterial diversity in the rhizosphere of the hyperaccumulating

plant, Thlaspi caerulescens, which grew during three months in a long-term heavy metal-

contaminated soil (chapter 2). Four clone libraries were constructed based on the 16S rDNA and

rRNA from rhizosphere and bulk soil samples. Although this combined culture-independent

approach has the advantage to give information on both the structure and the active part of the

microbial community, it has rarely been used (Felske et al., 1997; Miskin et al., 1999; Nogales

et al., 2001; Duineveld et al., 2001; Griffiths et al., 2003). We showed that the dominant

bacterial groups in the 16S rDNA clone libraries were not the dominant ones in the 16S rRNA

clone libraries. Not surprisingly, the major phyla present in the 16S rDNA have often been

described in both polluted and non-polluted environments, however, the predominance of
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Rubrobacteria in the rRNA clone libraries was unexpected and quite intriguing. As already

shown by Moffett et al. (2003), it seems that this group is widely represented in heavy metal-

contaminated soils. Their predominance in the rRNA clone libraries indirectly suggests that

they have a certain level of resistance to heavy metals. According to this observation, we can

speculate that they might be of some interest for a potential application in environmental

microbiology. For instance, the isolation of the genes responsible for their metal resistance and

their transfer into the plant might increase the plant’s heavy metal uptake, as it has already been

shown with tobacco and Arabidopsis thaliana for mercury decontamination (Heaton et al.,

1998). Alternatively, these bacteria could be inoculated in the rhizosphere and possibly increase

metal availability thus enhancing phytoextraction efficiency or protect plants from metal

toxicity through metal immobilisation as it has been observed with other bacteria (Salt et al.,

1995; Valls et al., 2000). Nevertheless, as our clone libraries are based on one soil only, the

ubiquity and the function of this group have to be investigated in other (polluted) ecosystems.

Future work including their tracking and isolation in different environments will certainly

contribute to a better understanding of their ecology. 

The use of clone libraries to describe the bacterial community structure does not completely

account for the real microbial diversity. In fact, nucleic acids extraction, amplification and

cloning steps introduce biases (von Wintzingerode et al., 1997). Consequently, one should also

try to include quantitative data in order to confirm the results obtained by comparative sequence

analysis of clone libraries. To date, only two techniques, fluorescence in situ hybridization

(FISH) and real-time polymerase chain reaction (RT-PCR) are able to give this kind of

information. 

We used FISH for the in situ quantification of the different groups present in the rhizosphere

clone libraries (chapter 3). Although this technique has shown to be very effective in the

detection of microorganisms in aquatic systems, it has rarely been used in soil due to its complex

texture. By applying the most general probe EUB338 to fixed rhizosphere samples, we were

able to detect only 20% of the total rhizosphere microbial community. With this low percentage,

it is difficult to conclude with certitude, which are the most dominant bacteria if the remaining

80% are not detected. Despite the low detection rate, we were able to detect the major groups

present in the rhizosphere rRNA clone libraries using group-specific oligonucleotide probes.

For the same above mentioned reason, however, we cannot draw any conclusion regarding their

true abundance in this soil. 
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According to these results, it seems that the sensitivity of FISH is still the major problem

hampering the cell detection in soil. Even though the main limiting factors are known (see

Amann et al., 1995 and references therein), most improvements of this technique were applied

and evaluated on aquatic environments. The recent development of new methods including the

combined use of probes with enzymes or antibodies offers promising perspectives for the cell

detection in complex environments (Assmus et al., 1997; Pernthaler et al., 2002). However, it

is quite urgent now to make up for the lost time regarding the improvement of this technique for

application in soil. As environmental microbiologists, we should not restrict the application of

FISH to aquatic systems just because they are easier to work with. Probe design should not be

neglected, too. In fact, with the increasing number of sequences in the world databases, our

knowledge of the bacterial diversity is changing. Consequently, the specificity of old probes

should be re-evaluated and new ones should be designed. The two newly designed probes, i.e.

Acido228 targeting subgroup 1 of the Acidobacterium division and Rubro198 for most of the

Rubrobacteria, were insofar important as they allowed for the first time the in situ detection and

identification of soil microorganisms affiliated to these two groups. These probes contribute not

only to the tracking of these new groups but they can also be used for the rapid screening of

isolates using dot-blot hybridization.

Beside FISH, a new technique, real-time PCR, has been recently developed for fast and

highly sensitive quantification of target DNA (Bustin, 2000, 2002; Mackay et al., 2002). The

principle of the method is to measure the increase of fluorescent signal due to PCR product

accumulation throughout the amplification reaction. The fluorescent signal is obtained using

either from the degradation of a dual-labeled fluorogenic probe (Taqman technology or others

(Bustin, 2000; Mackay et al., 2002)) or the SYBR Green dye which binds to double stranded

DNA (Heid et al., 1996; Stubner, 2002). It has already been applied successfully for

quantification of bacteria in various environments (Becker et al., 2000; Grüntzig et al., 2001;

Hermansson & Lindgren, 2001; Stults et al., 2001). However, different factors such as a limited

probe or primer specificity, differing standart line performance, or the presence of nonspecific

DNA in the PCR reaction may lead to a wrong estimation of the target DNA (Becker et al.,

2000;Bellete et al., 2003).

Secondly, we were interested in studying the impact of heavy metal contamination and a

subsequent one-year phytoextraction with Thlaspi caerulescens on the soil microbial

community (chapter 4). We hypothesized that the plant, by hyperaccumulating bioavailable
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zinc and cadmium, could indirectly protect bacteria from the toxicity of heavy metals and so

favor their growth. Another interesting question was if it was possible to reestablish the initial

bacterial community present in the pristine soil or at least to “shift” the bacterial community

structure towards its original state. For this purpose, we performed a microcosm experiment

with the four combinations of polluted and non-polluted soil and with and without plants using

an artificially heavy metal-contaminated soil. 

First of all, independently of the technique used, denaturing gradient gel electrophoresis

(DGGE), community level physiological profile (CLPP) and potential ammonium-oxidation

measurement, they all showed that the heavy metal addition induced drastic changes in the

bacterial community structure. By analysing the DGGE patterns obtained during this one-year

experiment, we could not observe any recovery of the initial community in the planted pots. One

explanation may be the remaining high concentrations of Zn and Cu in the soil. In fact, the total

concentration of Zn was too high to be significantly decreased by the plant in this period and Cu

was not hyperaccumulated by Thlaspi. The addition of only Zn or Cd, respectively, or an equal

mix of both metals in our microcosm experiment may have led to different results and should

be considered for future experiments. This points out a major obstacle for phytoextraction: the

presence of multiple heavy metals. Too high concentrations of Zn render the decontamination

of a soil impossible even by hyperaccumulators and Cu hyperaccumulation is to date unknown

for plants found in the temperate zone. However, one has to keep in mind that pollution with

one single heavy metal rarely occurs. Consequently, the use of simplified microcosm

experiment can only provide the first information needed for refined setups designed to obtain

ecologically more relevant information.

Secondly, gradual changes in the bacterial unplanted contaminated DGGE profiles during

these twelve months experiment were in contrast to the stable community profiles of the

unplanted non-contaminated samples. We believe that this is due to another limitation of

microcosm experiments, the artificial addition of heavy metals. The bacterial changes clearly

indicated that the system has not yet reached an equilibrium, although it was allowed to adapt

to the contaminants for 3 months before the start of the experiment. However, the advantage of

artificial contamination is that it allows to use non-contaminated control samples, which is in

most cases impossible when real long-term contaminated soil is used. Consequently, we can

expect that the general trends seen in these microcosms studies were due to an isolated short-

term stress obtained by excluding many of the interactions occuring in a real ecosystem.
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As recommended by several authors, we also used group-specific primers for increasing the

resolution power of DGGE. However, the relatively few numbers of group-specific primers

available limit this approach. As already stated above for the FISH-probes, there is also an

urgent need to design group-specific PCR-primers. Our approach focused on two aspects: We

increased twice the phylogenetic resolution by targeting smaller phylogenetic entities within an

already detected larger phylogenetic group, i.e. the β-Proteobacteria within the Bacteria and

subsequently the ammonia-oxidising bacteria within the β-Proteobacteria. At the same time,

the ammonia-oxidising bacteria represented not only a monophyletic group within the β-

Proteobacteria , but also a well-defined, ecologically important metabolic group of bacteria

within the metabolically diverse β-Proteobacteria. We saw that targeting the β-Proteobacteria

and the ammonia-oxidising bacteria for separating bacterial populations in pristine and polluted

soils was as good as targeting the bacterial community completely. On the one hand, one

possible conclusion might be that the additional use of group specific DGGE-screening is not

necessary to distinguish bacterial populations from pristine and heavy metal-polluted soils. On

the other hand, we believe that it might be necessary to monitor specific groups which represent

only a minor part of the whole bacterial community. These groups should perferably be

responsible for biochemical cycles in soil since a well-defined metabolic group may better serve

as an indicator for soil health than a metabolically diverse phylogenetic group. In this regard, it

seems useful to include functional genes as genetic markers for monitoring environmental

impacts on soil bacteria. 

Our data also suggest that methods like the potential ammonium-oxidation assay or the

CLPP are probably more powerful than DGGE to reveal a stimulating effect of the plant on the

microbial community in particular in the polluted soil. In fact, the measurement of the potential

ammonium-oxidation showed clearly that the activity of the AOB was higher in the planted

non-contaminated samples than in the unplanted samples. However, this positive effect of the

plant was not sufficient to compensate for the deleterious effects of the heavy metals in the

contaminated soil. Although AOB are still present in the polluted soils (as shown by the DGGE

data), the absence of ammonia-oxidising activity is an indication that this function was at least

temporary lost. This observation has an important ecological implication: the persistent stress

induced by the heavy metal addition affected the resilience of the ecosystem as this loss of

function was not recovered at the end of the time experiment (Griffiths et al., 2000a). The

vulnerability of a process depends on the number of microorganisms able to catalyze it when
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the system is perturbed (Holling et al., 1995). If this function can be ensured by several species,

i.e. there is a redundancy in function within the soil microbial populations, the loss of one of

these species will not have much effect on the functioning of the whole community as this

function can be fulfiled by another organism (Gitay et al., 1996). Logically, the redundancy in

function is directly depending on species richness (Naeem & Li, 1997) and the diversity may be

seen as a reservoir of compensating species which will determine the stability and the plasticity

of a perturbed system (Folke et al., 1996). As the first step of the nitrification is quite specific

to the AOB, the inhibition of these microorganisms led to a loss of function in the ecosystem.

Consequently, the AOB may be seen as keystone organisms (Folke et al., 1996) as they play an

exceptionnally important role for the ecosystem functioning.  

The use of the community level physiological profile (CLPP) is an easy-to-use method,

which provides quickly information on the potential degradation capabilities of the bacterial

fraction able to grow on the Biolog microtiter plates. A delay in the average well color

development (AWCD) and a reduced number of metabolised substrates characterised the

contaminated samples. However, the presence of the plant significantly increased the number

of metabolised substrates in the contaminated samples, indicating a positive impact of the

phytoextraction practice on the microbial communities. These results confirmed our hypothesis

indicating that the plant contribute in the development of bacteria by providing them a favorable

niche either by excreting root exudates or by decreasing an environmental stress, i.e. the

bioavailable heavy metal content. From an ecological point of view, we can see a recovery of

the system, as the bacterial community got back some of its degradative capabilities during the

phytoremediation process.

This study was a first step to link the effects of heavy metal contamination and a subsequent

phytoremediation on the structure and the functions of the microbial communities. It raised

several questions, which offer new perspectives of investigation: 

Which role do the Rubrobacteria play in heavy metal-contaminated soils? 

What will be the composition of the microbial community in two, three years if the

phytoremediation process is maintained?

Will the initial bacterial community recover?

Is it at all necessary to recover the initial bacterial community in order to maintain the function

of a remediated soil? 
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Are there indicator species that can be used to predict the endpoint of the phytoremediation

process? 

Is it possible to increase the phytoextraction efficiency by inoculating indigenous heavy metal-

resistant bacteria? 

Today, the interest for the microorganisms is increasing as we have understood that they make

important contributions to ecosystem functioning. It has even been suggested to take into

consideration the effects of heavy metals on soil microorganisms in legislation for soil

protection (McGrath et al., 1995). However, until now it remains an open and topical debate in

Europe, with very different stances taken between member states of the European Union (Giller

et al., 1999).  Since it appears that we are presently unable to completely prevent heavy metal

contamination, it is necessary to pursue our efforts to diminish its deleterious effects, e.g. by

employing bacterial activities. A better understanding of the microorganisms, their behaviour

in contaminated environments and their interaction with higher organisms, such as plants, will

probably help future generations to deal with the heavy metal problem. 
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