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Abstract

Nowadays, networked computers are present in most aspects of everyday life.
Moreover, essential parts of society come to depend on distributed systems formed
of networked computers, thus making such systems secure and fault tolerant is a
top priority. If the particular fault tolerance requirement is high availability, repli-
cation of components is a natural choice. Replication is a difficult problem as the
state of the replicas must be kept consistent even if some replicas fail, and because
in distributed systems, relying on centralized control or a certain timing behavior
is often not feasible.

Replication in distributed systems is often implemented using group commu-
nication. Group communication is concerned with providing high-level multipoint
communication primitives and the associated tools. Most often, an emphasis is
put on tolerating crash failures of processes. At the heart of most communica-
tion primitives lies an agreement problem: the members of a group must agree on
things like the set of messages to be delivered to the application, the delivery order
of messages, or the set of processes that crashed.

A lot of algorithms to solve agreement problems have been proposed and their
correctness proven. However, performance aspects of agreement algorithms have
been somewhat neglected, for a variety of reasons: the lack of theoretical and prac-
tical tools to help performance evaluation, and the lack of well-defined benchmarks
for agreement algorithms. Also, most performance studies focus on analyzing fail-
ure free runs only. In our view, the limited understanding of performance aspects,
in both failure free scenarios and scenarios with failure handling, is an obstacle for
adopting agreement protocols in practice, and is part of the explanation why such
protocols are not in widespread use in the industry today. The main goal of this
thesis is to advance the state of the art in this field.

The thesis has major contributions in three domains: new tools, methodology
and performance studies. As for new tools, a simulation and prototyping frame-
work offers a practical tool, and some new complexity metrics a theoretical tool
for the performance evaluation of agreement algorithms. As for methodology, the
thesis proposes a set of well-defined benchmarks for atomic broadcast algorithms
(such algorithms are important as they provide the basis for a number of repli-
cation techniques). Finally, three studies are presented that investigate important
performance issues with agreement algorithms.

The prototyping and simulation framework simplifies the tedious task of devel-
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oping algorithms based on message passing, the communication model that most
agreement algorithms are written for. In this framework, the same implementation
can be reused for simulations and performance measurements on a real network.
This characteristic greatly eases the task of validating simulation results with mea-
surements (or vice versa).

As for theoretical tools, we introduce two complexity metrics that predict per-
formance with more accuracy than the traditional time and message complexity
metrics. The key point is that our metrics take account for resource contention,
both on the network and the hosts; resource contention is widely recognized as
having a major impact on the performance of distributed algorithms. Extensive
validation studies have been conducted.

Currently, no widely accepted benchmarks exist for agreement algorithms or
group communication toolkits, which makes comparing performance results from
different sources difficult. In an attempt to consolidate the situation, we define a
number of benchmarks for atomic broadcast. Our benchmarks include well-defined
metrics, workloads and failure scenarios (faultloads). The use of the benchmarks
is illustrated in two detailed case studies.

Two widespread mechanisms for handling failures are unreliable failure de-
tectors which provideinconsistentinformation about failures, and a group mem-
bership service which providesconsistentinformation about failures, respectively.
We analyze the performance tradeoffs of these two techniques, by comparing the
performance of two atomic broadcast algorithms designed for an asynchronous
system. Based on our results, we advocate a combined use of the two approaches
to failure handling.

In another case study, we compare two consensus algorithms designed for an
asynchronous system. The two algorithms differ in how they coordinate the deci-
sion process: the one uses a centralized and the other a decentralized communica-
tion schema. Our results show that the performance tradeoffs are highly affected
by a number of characteristics of the environment, like the availability of multicast
and the amount of contention on the hosts versus the amount of contention on the
network.

Famous theoretical results state that a lot of important agreement problems are
not solvable in the asynchronous system model. In our third case study, we inves-
tigate how these results are relevant for implementations of a replicated service,
by conducting an experiment in a local area network. We exposed a replicated
server to extremely high loads and required that the underlying failure detection
service detects crashes very fast; the latter is important as the theoretical results are
based on the impossibility of reliable failure detection. We found that our repli-
cated server continued working even with the most extreme settings. We discuss
the reasons for the robustness of our replicated server.



Résumé

De nos jours, les réseaux informatiques sont omniprésents dans notre vie quo-
tidienne, et notre société est devenue de plus en plus dépendante de systèmes in-
formatiques répartis. Par conséquent, garantir la sûreté de fonctionnement (p.ex.,
sécurité, tolérance aux pannes) de tels systèmes est devenu un objectif de pre-
mière importance. Afin de garantir une certaine tolérance aux pannes et assurer un
haut degré de disponibilité d’un système, il est naturel de chercher à en répliquer
les composants. Néanmoins, la réplication est difficile à mettre en œuvre dans les
systèmes répartis. La principale difficulté consiste à maintenir la cohérence des
réplicas, tout en s’affranchissant d’un contrôle centralisé.

La réplication dans les systèmes répartis est souvent mise en œuvre au moyen
de mécanismes de communication de groupe. La communication de groupe est
constituée de diverses primitives de communication de haut niveau avec destina-
tions multiples, ainsi que d’outils associés. Dans la plupart des cas, l’accent est mis
sur la tolérance aux pannes de processus de typefail-stop. Au cœur de ces primi-
tives de communication, se trouve généralement un problème d’accord réparti ; par
exemple, les membres d’un groupe doivent décider, d’un commun accord, l’en-
semble des messages qu’ils vont remettre à l’application, l’ordre de livraison de
ces messages, ou bien la liste des processus supposés être tombés en panne.

Beaucoup d’algorithmes permettant de résoudre des problèmes d’accord ont
été proposés et prouvés correct. Par contre, l’aspect performance de ces algo-
rithmes a rarement été traité en profondeur. Cela est lié à plusieurs raisons dont
les principales sont le manque d’outils, théoriques autant que pratiques, permettant
de faciliter l’analyse de performance, ainsi que la quasi absence de bancs d’essais
standards. D’autre part, le fait que la plupart des analyses sont restreintes à des
exécutions sans défaillances est une raison supplémentaire. Selon nous, le manque
de compréhension des aspects performance, tant pour les cas avec défaillances que
sans, se pose comme un important facteur limitatif pour l’adoption en pratique
de protocoles d’accord tolérants aux pannes. Cela peut notamment expliquer leur
faible utilisation dans l’industrie. L’objectif principal de cette thèse est de faire
progresser l’état de l’art dans ce domaine.

Cette thèse présente des contributions majeures dans trois domaines : des ou-
tils nouveaux, une méthodologie et des études de performance. Sur le plan utili-
taire, nous présentons un outil pratique ainsi qu’un outil théorique. L’outil pratique
proposé est un environnement de simulation et de prototypage pour évaluer les
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performances d’algorithmes répartis. L’outil théorique est un jeu de mesures de
complexité pour algorithmes répartis. Sur le plan méthodologique, cette thèse pro-
pose un ensemble de bancs d’essai pour algorithmes de diffusion atomique (ces
algorithmes sont à la base de nombreuses techniques de réplication). Pour finir,
trois études sont présentées, qui examinent divers aspects importants liés à la per-
formance des algorithmes d’accord.

L’environnement de simulation et de prototypage simplifie la tâche ardue du
développement d’algorithmes basés sur les échange de messages, qui est le mo-
dèle le plus utilisé pour décrire les algorithmes d’accord. Dans cet environnement,
une même implémentation peut être utilisée aussi bien pour des simulations que
pour des mesures de performance dans un réseau réel. Cette caractéristique est
importante car elle facilite la validation des simulations au moyen de mesures, et
vice-versa.

Au niveau des outils théoriques, deux métriques de complexité sont introduites.
Elles permettent d’estimer la performance réelle d’algorithmes répartis de ma-
nière plus précise que les métriques traditionnelles de complexité en temps et en
messages. L’intérêt principal de nos métriques est qu’elles prennent en compte la
contention des ressources partagés, aussi au niveau du réseau que des processeurs
des machines. La contention est considérée comme ayant une influence significa-
tive sur les performances des algorithmes répartis. Nos métriques ont été validés
de manière extensive.

Actuellement, il n’existe malheureusement pas encore de bancs d’essai stan-
dards pour évaluer des algorithmes d’accord ou des systèmes de communication de
groupe. Ceci rend périlleuse la comparaison de résultats de performance provenant
de sources différentes. Pour remédier à cette situation, nous définissons plusieurs
bancs d’essai pour algorithmes de diffusion atomique. Ceux-ci incluent des mé-
triques, des charges de travail et des scénarios avec défaillances clairement définis.
L’utilisation des bancs d’essai proposés est illustrée au moyen de deux études de
performance détaillées.

Deux mécanismes répandus pour le traitement des défaillances sont les dé-
tecteurs de faute, qui fournissent une informationincohérentesur l’occurrence de
pannes de processus, et le service de composition de groupe, qui fournit une infor-
mationcohérente. Nous analysons le rapport entre les performances de ces deux
techniques, en menant une comparaison de deux algorithmes de diffusion atomique
dans un système asynchrone. Les résultats indiquent qu’une utilisation combinée
de ces deux approches offre les meilleures performances.

Dans l’étude suivante, deux algorithmes de consensus sont comparés dans un
système asynchrone. La différence principale entre ces algorithmes réside dans
l’utilisation d’un schéma de communication centralisé pour l’un et décentralisé
pour l’autre. Les résultats obtenus démontrent que leurs performances respectives
dépendent de nombreuses caractéristiques liées à l’environnement, tel que la dispo-
nibilité d’un mécanisme de diffusion au niveau du réseau ou le degré de contention
sur les machines par rapport à celui du réseau.

Des résultats théoriques indiquent que beaucoup d’importants problèmes d’ac-
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cord ne peuvent pas être résolus dans un modèle asynchrone. Dans la dernière étude
de performance de cette thèse, nous cherchons à comprendre l’importance pratique
de ces résultats par le biais d’expériences dans un réseau local. Nous avons soumis
un serveur répliqué à des charges très élevées, tout en maintenant un service de dé-
tection de pannes efficace ; ce dernier point est essentiel car les résultats théoriques
se basent sur l’impossibilité de détecter des pannes avec certitude. Le serveur ré-
pliqué fonctionnait, y compris avec les valeurs de paramètres les plus extrêmes.
L’étude se termine donc sur une discussion des raisons possibles d’un tel compor-
tement.
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Chapter 1

Introduction

1.1 Research context and motivation

Developments in computing. Nowadays, computers are present in most aspects
of everyday life. It is hard to imagine a company without servers and desktop
computers, and most people own desktop computers, personal digital assistants,
intelligent mobile phones or embedded computers, say in the stereo or the family
car. Also, the processing abilities of individual computers have grown tremen-
dously. Another tendency is that these devices are networked more and more: the
last two decades have seen the emergence of local and wide area networks, the
global Internet, and increasingly ubiquitous wireless networking.

To summarize these developments in one phrase: computers have become
much more useful than in the past. This leads to two trends. Firstly, computers are
used for more complex tasks than ever. More complex tasks demand more com-
plex systems, be it on the hardware, software or networking (middleware) level.
The second trend is that essential parts of society come to depend on computers:
banking, telecommunication, and the power grid, just to name a few examples.

The problem of dependability. The two trends clash when it comes to depend-
ability, with all its different aspects like fault tolerance or security. On the one
hand, complex systems tend to be more fragile, with frequent failures, as the num-
ber of components and their interconnections grow. On the other hand, the more
we rely on these systems, the more serious are the consequences of failures. Hard-
ware crashes, software bugs and other problems often have a high cost in terms of
money or human lives [Neu03]. For this reason, research on fault tolerance and
security is becoming more important.

Fault tolerance can be achieved in a number of ways. The list includes reliable
and self-checking hardware components, programming languages, as well as new
software engineering and project management methods. If the particular fault tol-
erance requirement is high availability, replication of components is often a natural
choice.

1
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Replication in distributed systems. The basic idea behind replication is simple:
several replicas provide the same service, to make sure that if one replica fails, the
remaining ones can take over. In tightly coupled systems, replicating components
is relatively easy, as means are available to coordinate the operation of the repli-
cas globally; in fact, hardware replication (master-slave configurations,n-modular
redundancy) has been a commercially successful field. However, distributed sys-
tems are loosely coupled, consisting of relatively complex and autonomous com-
ponents. In distributed systems, propagating information, or simply synchronizing
some components, takes time and may be interleaved with other events in the sys-
tem. Moreover, the timing behavior is often unpredictable. In a system with such
characteristics, special care must be taken to ensure that the state of the replicas
remains consistent. Another source of difficulties is that the use of the replicated
service is often required to be transparent for the user. Due to these difficulties,
replication in distributed systems has been most successful in applications with
relaxed requirements: loose consistency (Domain Name Service), stateless opera-
tion (serving static web pages) or no full transparency (web transactions in progress
may be dropped).

Group communication for replicating services. The field of group communi-
cation is concerned with providing high-level multipoint communication primitives
and the associated tools. Most often, an emphasis is put on tolerating crash failures
of processes, and thus these primitives are especially useful for building replicated
services. At the heart of most communication primitives lies anagreement prob-
lem: the members of a group must agree on things like the set of messages to be
delivered to the application, the delivery order of messages, or the set of processes
that crashed.

Group communication has been an active research field with both theoreti-
cal studies and prototypes. Theoretical results include precisely defined semantics
for communication primitives and minimal conditions needed to solve agreement
problems (e.g., [FLP85, HT93]). New algorithms from the theoretical community
often come with formal proofs of correctness (e.g., [CT96]).

The first prototypes appeared in distributed operating systems [CZ85, KT91a].
The Isis system [BvR94] was the first proof of concept for the toolkit approach, fol-
lowed by many other toolkits [SDP91, MFSW95, VRBM96, DM96, MMSA+96,
MDB01]. Recent research also includes integrating group communication with the
middleware infrastructure (e.g., [FGS97]) and studying modular ways of construct-
ing group communication systems [MPR01, VBH+98, SH99, WMS02]. This line
of research is mostly concerned with convenient programming abstractions, proof-
of-concept systems, and efficient implementation techniques.

Performance of agreement algorithms. Performance evaluation is a central part
of every scientific and engineering activity, including the construction of distributed
applications. Nevertheless, performance aspects of agreement algorithms have
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been somewhat neglected, for a variety of reasons. One reason is the lack of the-
oretical and practical tools that leads to a gap between the techniques used by
engineers and algorithm designers. Engineers of distributed systems rely heavily
on various performance evaluation techniques. However, their results are specific
to a given system and its environment. In contrast, algorithm designers invest con-
siderable effort into describing algorithms and correctness proofs, but they often
oversee the importance of predicting the performance of their algorithms, or just
use simple complexity metrics which give highly inaccurate results.

Another reason why performance aspects are often neglected is that there are
no widely accepted benchmarks for agreement algorithms, and thus results from
different researchers are not comparable. Yet another problem, specific to fault tol-
erant agreement algorithms, is that most performance studies focus on analyzing
failure free runs, thus neglecting the performance aspects of failure handling. This
often leads to a skewed view of performance issues, and systems in which the per-
formance of failure handling is sacrificed for marginal gains in failure free system
performance.

In our view, the limited understanding of performance aspects, in both fail-
ure free scenarios and scenarios with failure handling, is an obstacle for adopting
agreement protocols in practice, and is part of the explanation why such protocols
are not in widespread use in the industry today. The main goal of this thesis is to
advance the state of the art in this field.

1.2 Research contributions

The Neko prototyping and simulation framework. Neko is a distributed pro-
gramming framework that simplifies the tedious task of writing algorithms based
on message passing (most agreement algorithms are described in this communica-
tion model). The most important characteristic is that the same implementation can
be reused for (1) simulations and (2) performance measurements on a real network.
This characteristic makes conducting performance studies easier; in particular, val-
idating simulation results with measurements or vice versa does not require the
reimplementation of the algorithm and the experiments. Neko also offers support
for centralized configuration, the control of experiments and gathering statistics. A
variety of agreement algorithms have been implemented.

Contention-aware performance metrics. To narrow the gap between the tech-
niques used by algorithm designers and engineers, complexity metrics are needed
that predict performance with more accuracy than the traditional time and message
complexity metrics. We introduce two metrics that, unlike time and message com-
plexity, take account for resource contention, both on the network and the hosts.
Resource contention is widely recognized as having a major impact on the perfor-
mance of distributed algorithms. Beside the metrics themselves, a tool that helps
evaluating them is presented, and extensive validation studies are conducted. The
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use of the metrics is illustrated in two detailed case studies.

Benchmarks for atomic broadcast algorithms. Currently, no widely accepted
benchmarks exist for agreement problems or group communication toolkits, which
makes comparing performance results from different sources difficult. The as-
sumptions, metrics, workloads and other issues in most performance studies are
wildly different, and are often not described clearly. In an attempt to consolidate
the situation, we define a number of benchmarks for atomic broadcast, an impor-
tant agreement problem requiring that all destinations of messages deliver the same
set of messages in the same order.

Our benchmarks include well-defined metrics, workloads and failure scenarios
(faultloads). The emphasis is on (1) unambiguous definitions, (2) stating metrics
and workloads in terms of send and delivery events, without referring to implemen-
tation details of particular atomic broadcast algorithms or fault tolerance mecha-
nisms, (3) simplicity, and (4) extensive treatment of failure scenarios, including not
only failures but possibly wrong failure suspicions. The use of the benchmarks is
illustrated in two detailed case studies.

Comparing unreliable failure detectors and group membership. The first of
our detailed case studies compares the performance of two atomic broadcast al-
gorithms designed for an asynchronous system, i.e., a system with no bounds on
processing speeds and message delays. The two algorithms have similar runs if
neither failures nor failure suspicions occur. This allows us to concentrate on their
differences in how they handle failures. The two algorithms use two widespread
mechanisms for handling failures: unreliable failure detectors which providein-
consistentinformation about failures, and a group membership service which pro-
vides consistentinformation about failures, respectively. To our knowledge, no
quantitative comparison of these two mechanisms has been published so far.

Our results show that constructing consistent failure information for a group
membership service has a high cost. On the other hand, it offers long term re-
siliency and performance benefits, and has a number of uses beside failure han-
dling. Based on these results, we advocate a combined use of the two approaches
to failure handling.

Comparing centralized and decentralized coordination. The second of our
detailed case studies compares two consensus algorithms designed for an asyn-
chronous system. In the consensus problem, a number of processes propose val-
ues, and all participating processes eventually decide the same value which is one
of the proposals. The two algorithms make very similar assumptions and exhibit
the same basic structure, which makes them ideal candidates for our comparison.
They differ in how they coordinate the decision process: the one uses a centralized
and the other a decentralized communication schema. The system under test is a
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system in which processes send atomic broadcasts; the atomic broadcast algorithm
calls the consensus algorithms to decide the delivery order of messages.

Our results show that the performance tradeoffs are highly affected by a num-
ber of characteristics of the environment, like the availability of multicast and the
amount of contention on the hosts versus the amount of contention on the network.
They give hints which algorithm is a more appropriate choice for deployment in a
given environment.

On the robustness of replicated servers. A famous theoretical result [FLP85]
states that consensus is not solvable in the asynchronous system model. Similar
impossibility results have been established for atomic broadcast and group mem-
bership, and are thus relevant for implementations of a replicated service. However,
the practical impact of these impossibility results is unclear. A question that arises
if they set limits to the robustness of a replicated server exposed to extremely high
loads.

We investigated the problem by implementing a replicated service and exposed
it to high loads in a local area network. As the impossibility results are based on
the difficulty of distinguishing slow and crashed processes, we put a focus on the
failure detectors underlying the replicated service. In particular, we could control
the detection time offered by the failure detectors by tuning a timeout parameter.
We found that our replicated server continued working even when the network was
overloaded with messages and the detection time for failures was very low (1 ms).
Our conclusion is that a replicated service implemented using agreement protocols
based on a certain class of failure detectors (3S [CT96]) is extremely robust under
high loads, and that this robustness is maintained even if the service is required to
offer a fast reaction to failures. In addition, we discuss a number of implementation
decisions that are essential for achieving robustness.

1.3 Roadmap for the thesis

Preliminaries. Chapter2 introduces models for distributed systems and their
failures, and presents formal definitions for the agreement problems that this thesis
is concerned with. Chapter3 gives a short overview of performance evaluation
techniques and the statistical tools they rely on.

Tools. Chapter4 presents the Neko prototyping and simulation framework. All
performance studies in this thesis were conducted in this framework. Chapter5
introduces complexity metrics that take into account resource contention. The met-
rics are validated with analytical studies and measurements. They are used in all
the simulations in this thesis.

Benchmarks. Chapter6 defines benchmarks for atomic broadcast algorithms
that include performance metrics, workloads, as well as faultloads to character-



6 CHAPTER 1. INTRODUCTION

ize the occurrence of failure related events. The benchmarks are used in the case
studies of the two following chapters.

Performance studies. Chapter7 compares two atomic broadcast algorithms with
different failure handling mechanisms: unreliable failure detectors and group mem-
bership. Chapter8 compares two consensus algorithms, one with a centralized
pattern of communication and one with a decentralized pattern of communication.
Both studies are simulation studies. In contrast, Chapter9 presents a study with
measurements on a real system. A replicated server, using an atomic broadcast
algorithm at its core, is put under extremely high load. The mistakes made by the
failure detection mechanism are studied in detail; the main issue under study is if
frequent wrong suspicions prevent the server from operating, as is predicted by an
important theoretical result [FLP85].

Conclusion. Finally, Chapter10 recalls the main contributions of this work, and
discusses some future research directions.



Chapter 2

System models and definitions

2.1 System models

Distributed systems are modeled as a set of processesΠ = {p1, p2, . . . , pn} that
interact by exchanging messages over communication channels. In a computer
network, processes usually correspond to the hosts and channels form the inter-
connecting network.

There exist a number of models that restrict the behavior of these components,
to a greater or smaller extent, and might include other useful components, e.g.,
clocks. Models have two uses:

Abstract models Distributed algorithms aredesigned fora model of the environ-
ment. In other words, they are only guaranteed to work in a certain environ-
ment if the assumptions of the model hold in that environment. It is desirable
that such models be (1) general, to allow algorithms designed for the model
to work in a variety of environments, and (2) simple, to allow a simple ex-
pression for algorithms, and easy correctness proofs.

Descriptive models Models can provide a description of existing environments.
Their main use is analyzing the performance of distributed algorithms or
larger systems. Compared to abstract models, this kind of model is usually
detailed and complex, to allow accurate performance estimates, though the
level of detail and complexity depends on the goals of the performance study.

In this section, we introduce a number of abstract models. A descriptive model
is given later, in Chapter5.

2.1.1 Synchrony

The synchrony of a model consists of timing assumptions on the behavior of pro-
cesses and channels. More specifically, one usually considers two main parameters:
(1) the relative speed of processes, i.e., the speed ratio of the fastest and the slowest
process in the system, and (2) the message transmission delay, i.e., the time that

7
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elapses between the emission and the reception of messages. The synchrony is de-
fined in terms of bounds on these two parameters. The two extremes of synchrony
are the following:

Asynchronous model There are no bounds on either the relative speed of pro-
cesses or the message transmission delay. In fact, there are no assumptions.

Synchronous modelThere are known upper bounds on both the relative speed of
processes and the message transmission delay.

A number of models exist between these two extremes: e.g.,partially syn-
chronous models[DDS87, DLS88] and thetimed asynchronous model[CF99].
They relax the assumptions of the synchronous models by considering (1) unknown
bounds, (2) bounds that eventually hold, (3) probabilistic bounds, or combinations
of these. Other system models hide such assumptions inside a separate module,
called anoracle. Oracles are discussed in Section2.1.3.

The asynchronous model is the most general model: algorithms designed for
this model work in any environment. However, a lot of interesting problems cannot
be solved in this model, hence the interest for less general but more powerful mod-
els.1 Extended asynchronous modelsoffer a good compromise between generality
and power. Examples include the timed asynchronous model [CF99] or models
with failure detector oracles [CT96]. In these models, just as in the asynchronous
model, a process can never be sure how long transmitting a given message is going
to take, as there are either no known bounds on the communication delay or they
are probabilistic. This has two advantages:

• Regardless of the environment, algorithms designed for an extended asyn-
chronous model aresafe: they never take actions forbidden by the specifica-
tion.

• Extended asynchronous models describe the most widespread types of com-
puter networks (both local and wide area networks) rather well. In these
networks, both the relative speed of processes and the communication delay
vary a lot and can reach extreme values.2 Consider an alternative model, one
that sets fixed bounds on these parameters. Such a model is a poor descrip-
tion for common networks, as there is no single good setting for the bounds.
On the one hand, if the bounds are set low, the assumptions of the model
are often violated. On the other hand, if the bounds are set very high, they
are overly pessimistic, and thus algorithms designed for the model may yield
poor performance.

All the algorithms in this thesis are designed for asynchronous models: ones
with failure detector oracles (see Section2.1.3).

1Beside this reason, a model can be attractive if it offers convenient programming abstractions,
e.g., synchronous rounds in the synchronous model.

2Real-time systems are a noteworthy exception.
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2.1.2 Failure modes

The components of a distributed system, both processes and channels, may fail. It
is important to specify the assumptions of the system model on failures, including
the expected semantics of failures. This is the subject of this section.

2.1.2.A Process failures

All the algorithms in this thesis assume that processes only fail bycrashing. A
crashed process ceases functioning forever. This means that it stops performing any
activity including sending, transmitting and receiving messages. Models including
process crashes are also referred to ascrash-stopor fail-stopmodels.

We call processes that never crashcorrect, and processes that crashincorrect.
Note that correct/incorrect are predicates over a whole execution: a process that
crashes is incorrect even before the crash occurs. Of course, a process cannot deter-
mine if it is incorrect (i.e., if it will crash) but these terms are useful, nevertheless,
when writing specifications.

In real systems, processes may fail in an arbitrary manner: among other things,
they might generate new, unanticipated messages, or change messages (such arbi-
trary process failures are called Byzantine failures). Nevertheless, we argue that
the fail-stop model is realistic, if one assumes that the system is not exposed to
malicious attacks: most components of a system use mechanisms that transform
Byzantine failures into more benign crash failures. Examples include error detect-
ing codes in memory and processor chips, hardware self-tests, hardware watch-
dogs, memory protection in operating systems, exception mechanisms in the pro-
cessor (e.g., division by zero) and in programming languages (e.g., C++ or Java),
and certain programming styles (using assertions extensively).

In real systems, processes often recover from crashes, and so called crash-
recovery models exist [ACT98] that take recoveries into account. They often re-
quire additional components, e.g., stable storage, memory that survives process
crashes. Investigating issues related to recovery is out of the scope of this the-
sis, mainly because modeling the performance in the presence of recoveries would
introduce a lot of new parameters. Therefore we stick to the simpler crash-no-
recovery model.

Every algorithm needs to assume a bound on the number of process crashes;
obviously, if all processes crash, the algorithm cannot proceed. This assumption is
part of the system model. We will return to this issue in Section2.2.5.

2.1.2.B Channel failures

All the algorithms in this thesis assume that channels arequasi-reliable[ACT99].
Quasi-reliable channels are defined as follows:

No Creation If a processq receives a messagem from another processp, thenp
sentm to q.
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No Duplication A processq receives a given messagem at most once.

No Loss If a processp sendsm to another processq andp andq are correct then
q eventually receivesm.3

Quasi-reliable channels are easily implemented over unreliable channels, us-
ing error detecting or correcting codes, sequence numbers and retransmission in
case of message loss. The TCP protocol is a good approximation of quasi-reliable
channels. A protocol that implements the specification more closely is described
in [EUS03].

In the literature, one can find the following alternatives to quasi-reliable chan-
nels: (1) lossy channels, (2) systems in which processes are not fully connected and
(3) systems where partitions can form. (1) and (2) offer a low-level view of the sys-
tem to the application: message losses are usually masked by the transport layer of
the OSI reference model and full connectivity is assured by the network layer. For
our purposes, we prefer the more abstract view offered by quasi-reliable channels,
for two reasons: it is simpler and there are practical systems (small LANs) where
neither message losses nor routing/bridging affect the performance of protocols
significantly. As for partitions (3), it is problematic to define them in an (extended)
asynchronous model where messages can be subject to very long delays. It is even
more problematic to define meaningful metrics for our performance studies in sce-
narios with partitions: our algorithms either finish quickly in the largest connected
set of processes or block for a long time.

2.1.3 Oracles for the asynchronous model

A lot of interesting distributed problems cannot be solved in the asynchronous
model. Yet, these problems become solvable if the model is extended with an
oracle. An oracle is a component of the distributed system that processes can query
in order to get some information that an algorithm can use for guiding its choices.
In this section, we introduce failure detectors and other types of oracles.

2.1.3.A Unreliable failure detectors

The notion of unreliable failure detectors was formalized by Chandra and Toueg
[CT96] in the context of crash failures. A failure detector can be seen as a set
of modules, with one moduleFD i attached to every processpi. A processpi

can query its failure detector moduleFD i about the state of other processes; the
state can be crashed or not crashed. The information returned by a failure detector
can be incorrect: a process not crashed may be suspected to have crashed, and a
crashed process may not be suspected. Also, failure detectors may give inconsistent

3An alternative specification isreliable channels[BCBT96] which require that even messages
sent by incorrect processes are eventually received. This requirement is not realistic: real systems
typically use buffers and pipeline processing, and thus crashes may affect messages already sent.
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information: at a given timet, it is possible thatFD i suspects a processp andFDj

does not suspectp.
Failure detectors are described in terms of a completeness and an accuracy

property. The completeness property describes the ability of the failure detector to
detect crashes, and the accuracy property restricts the way a failure detector can
incorrectly suspect processes which are not crashed. We introduce the following
properties:

Strong CompletenessEvery incorrect process is eventually suspected by every
correct process.

Eventual Strong Accuracy There is a time after which no correct process is ever
suspected by any correct process.

Eventual Weak Accuracy There is a time after which some correct process is
never suspected by any correct process.

We now define two failure detectors: the3P failure detector satisfies Strong
Completeness and Eventual Strong Accuracy, and the3S failure detector satisfies
Strong Completeness and Eventual Weak Accuracy. The asynchronous model with
one of these failure detectors is strong enough to solve all the distributed problems
we consider in this thesis.

Implementability of failure detectors. We also argue that the asynchronous
models with3S and3P failure detectors are rather general: there are implemen-
tations of failure detectors that satisfy the corresponding properties in real systems.

In order to fulfill Strong Completeness, one has to make sure that monitored
processes send messages continually; then one can detect, using a simple timeout
mechanism, when this stream of messages stops. Figure2.1 illustrates a possible
implementation that uses this technique.

p

q

heartbeat 
messages

t

t

Th Th Th
crash

Treset
timer

reset
timer

reset
timer

reset
timer

q suspects p

timeout

Figure 2.1: Possible implementation of a failure detector.

Ensuring the accuracy properties seems more difficult, because they state that
some or all failure detector modules shouldnevermake mistakes after some point
in time. However, note that we only actually need this for a limited duration:
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until the algorithm that uses the failure detector finishes or makes some progress.
Hence it is enough to make sure that failure detectors do not make mistakes too
frequently. This can be achieved by setting the timeout sufficiently high, or setting
the timeout adaptively (e.g., increasing the timeout whenever the failure detector
makes a mistake).

2.1.3.B Other types of oracles

For completeness, we list other types of oracles for asynchronous systems.

Physical clocks. These oracles return an estimate of the current physical time.
One usually assumes that values returned by the same clock increase monotonously,
and that clocks on different processes have a bounded difference and a bounded
drift. Note that physical clocks by themselves, without additional assumptions, do
not help to solve consensus and atomic broadcast.

Coin tosses. Consensus and atomic broadcast can be solved (with probability 1)
if algorithms have access to a random number generator (see e.g., [CD89]).

Leader oracles. Such oracles (denotedΩ in [CHT96]) return one trusted process,
and it is guaranteed that eventually all oracles on correct processes return the same
correct process.3S andΩ are equally powerful oracles [CT96, CHT96].

Weak ordering oracles. Consensus and atomic broadcast can be solved with this
type of oracle [PSUC02a]. This oracle is used to broadcast batches of messages;
one batch typically has messages sent by several processes. The oracle offers guar-
antees ofspontaneous ordering: sometimes, all processes that receive a batch will
receive thesamemessagem as the first message of the batch.

2.2 Agreement problems

Agreement problems are a fundamental class of problems in distributed systems.
They all follow a common pattern: all participating processes must agree on some
common decision, the nature of which depends on the specific problem; e.g., the
decision might be the delivery order of messages or the outcome (commit or abort)
of a distributed transaction.

Agreement problems are numerous in the context ofgroup communication; in
fact, this thesis focuses on agreement problems from this field. Group communi-
cation is a means for providing point-to-multipoint and multipoint-to-multipoint
communication, by organizing processes in groups and defining communication
primitives that work with groups. These primitives have richer semantics than
the usual point-to-point primitives, in terms of flexibility, ordering guarantees and
guarantees of fault tolerance. Ultimately, they ease the construction of certain types
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Group communication
module

Communication module

Application

Figure 2.2: Role of a group communication module.

of distributed applications, e.g., fault-tolerant distributed applications. Figure2.2
sketches the role of a group communication module in a system.

In this section, we give informal and formal definitions for four agreement
problems: consensus, reliable broadcast, atomic broadcast, as well as group mem-
bership and view synchronous communication. In order to simplify the presen-
tation, we assume that there is only one group that includes all processes in the
system (except when defining group membership where the group changes over
time).

2.2.1 Consensus

Consensus is a core problem among agreement problems: a lot of agreement prob-
lems can be reduced to consensus [GS01], i.e., algorithms that solve these problems
can be built using a consensus algorithm. Informally speaking, each participant of
a consensus proposes a value, and each of them receives the same decision value,
which is one (any one) of the proposed values. More formally, consensus is de-
fined by two primitives propose(v) and decide(v) wherev is some value. Uniform
consensus is specified as follows (see e.g., [CT96]):

Uniform Validity If a process decidesv, thenv was proposed by some process.

Uniform Agreement No two processes decide differently.

Uniform Integrity Every process decides at most once.

Termination Every correct process eventually decides.

Non-uniform consensus ensures fewer guarantees than uniform consensus re-
garding incorrect processes. Uniform Agreement is replaced by the following
property:

Agreement No twocorrectprocesses decide differently.
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Beside consensus, a lot of group communication problems have a uniform and
a non-uniform variant (e.g., reliable broadcast and atomic broadcast, defined be-
low). The non-uniform variant allows incorrect processes to take actions (just be-
fore they crash) which might never be taken by correct processes. The application
developer must consider the consequences of such actions when deciding which
variant to use. He/she should keep in mind that ensuring uniformity often has a
cost in terms of performance.

2.2.2 Reliable broadcast

Reliable broadcast ensures that all processes deliver a message broadcast pre-
viously, even if process crashes occur.4 Note that this is only difficult to en-
sure when the sender of the message crasheswhile sendingthe message: in this
case, it is possible that only a subset of all processes receives the message. More
formally, reliable broadcast is defined by two primitives R-broadcast(m) and R-
deliver(m) wherem is some message. Uniform reliable broadcast is specified as
follows: [HT93]

Uniform Validity If a correct process R-broadcastsm then it eventually R-delivers
m.

Uniform Integrity For any messagem, every process R-deliversm at most once,
and only ifm was R-broadcast by some process.

Uniform Agreement If a process R-deliversm then all correct processes eventu-
ally R-deliverm.

Non-uniform reliable broadcast ensures fewer guarantees regarding incorrect
processes. Uniform Agreement is replaced by the following property:

Agreement If a correctprocess R-deliversm then all correct processes eventually
R-deliverm.

Note that Uniform Validity and Uniform Integrity are rather natural assump-
tions that should hold for any broadcast service. It is the (Uniform) Agreement
property that makes reliable broadcast.

2.2.3 Atomic broadcast

Atomic broadcast is an extension to reliable broadcast: beside ensuring that all
processes receive the messages, it also ensures that processes see the messages
in the same order. More formally, atomic broadcast is defined by two primitives
A-broadcast(m) and A-deliver(m) wherem is some message. Uniform atomic
broadcast is specified with the properties of uniform reliable broadcast (formulated
with A-broadcast and A-deliver) plus the following property [HT93]:

4Beware: in other fields (e.g., Internet protocols) the term reliable multicast is often used for
protocols that tolerate message losses rather than process crashes.
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Uniform Total Order For any two processesp andq, if p A-delivers a message
m′ after messagem thenq A-deliversm′ only after A-deliveringm.5

Non-uniform atomic broadcast is specified with the properties of non-uniform
reliable broadcast plus the following property: [HT93]

Total Order For any twocorrectprocessesp andq, if p A-delivers a messagem′

after messagem thenq A-deliversm′ only after A-deliveringm.

2.2.4 Group membership and view synchronous communication

The task of a group membership service is to maintain a list of currently active
processes. This list can change with new members joining and old members leav-
ing or crashing. Each process has aview of this list, and when this list changes,
the membership service reports the change to the process by installing a new view.
The membership service strives to install the same view at all correct processes.

Our formal specification is mostly based on [CKV01]. The most important dif-
ference is that we only define primary component membership here: partitionable
membership is out of scope, for reasons listed in Section2.1.2.B. [CKV01] also
lists a lot of group communication systems.

A view V consists of a unique identifierV.id and a list of processesV.members.
For simplicity, we take view identifiers from the set of natural numbers. Processes
are notified of view changes by the primitiveview_change(V ): we say that a pro-
cessp installsview V . All actions atp after installingV , up to and including the
installation of another viewV ′, are said to occur inV . The group membership
service satisfies the following properties:

Self Inclusion If a processp installs viewV , thenp is a member ofV .

Local Monotonicity If a processp installs viewV after installing viewV ′, then
V.id is greater thanV ′.id.

Primary Component Membership For every viewV (except the first) there ex-
ists a previous viewV ′ such thatV .id = V ′.id + 1 and a processp that installs
V in V ′.

Non-triviality Crashed or leaving processes are eventually removed from some
view V and all subsequent views. Correct processes that want to join are
eventually included in some viewV .

Precise Membership If no joins and leaves occur after a certain point in time,
then there is a viewV such that every correct process installsV as its last
view. V includes all correct processes and only those.

5A more usual formulation is: If processesp andq both A-deliverm andm′ thenp A-delivers
m beforem′ if and only if q A-deliversm beforem′. However, this specification allows incorrect
processes to A-deliver a subset of the sequence of messages and take actions based on the resulting
inconsistent state [HT93].
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A group membership service is even more useful if one defines how the sending
and delivery of messages interact with the service. A variety of multicast services
can be defined, with different ordering guarantees, just like in systems with static
membership. Here, we only define view synchronous broadcast. Roughly speak-
ing, it ensures that (1) the messages sent in a viewV are delivered in the same
view V , and that (2) all correct processes inV deliver the same set of messages
in V . More formally, view synchronous broadcast is defined by two primitives
VS-broadcast(m) and VS-deliver(m) wherem is some message, and the following
properties (note the similarities to the properties that define non-uniform reliable
broadcast in Section2.2.2):

Initial View Event Every VS-broadcast and VS-deliver occurs within some view.

Uniform Integrity For any messagem, every process VS-deliversm at most
once, and only ifm was VS-broadcast by some process.

Uniform Validity If a correct process VS-broadcastsm then it eventually VS-
deliversm.

Sending View Delivery If a processp VS-delivers messagem in view V , then the
sender ofm VS-broadcastsm in view V .

View Synchrony If processesp andq install the same viewV in the same previous
view V ′, then any message VS-delivered by p inV ′ is also VS-delivered by
q in V ′.

Agreement Let V be the last view mentioned in Precise Membership. If a process
VS-deliversm in V then all processes inV eventually VS-deliverm.

In order to satisfy Sending View Delivery without discarding messages from
correct processes, processes must stop sending messages for some time before a
new view is installed (the group membership service tells the application when it
should stop sending messages). One can avoid this blocking period by replacing
Sending View Delivery with a weaker property:

Same View Delivery If processesp andq both VS-deliver the messagem, they
VS-deliverm in the same viewV .

2.2.5 Solving agreement problems in asynchronous systems

We now list some theoretical results which are relevant to the agreement problems
introduced in this section.

Reliable broadcast. Reliable broadcast can be solved even in the asynchronous
model.
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Consensus. There is no solution to the consensus problem in the asynchronous
model if one (or more) processes can crash [FLP85]. Nevertheless, consensus can
be solved in the asynchronous model with3S failure detectors [CT96]. Also,
this model is minimal in a certain sense: [CHT96] proves that it is not possible to
weaken the properties of the3S failure detector and still solve consensus (in fact,
the proof is for an equivalent failure detector). Solving consensus in this model
(and also in the model with3P) requires that a majority of processes are correct:
f < n/2 wheref is the number of crashes andn is the number of processes.

Atomic broadcast. Atomic broadcast and consensus are equivalent problems
[DDS87, CT96], i.e., if there exists an algorithm that solves the one problem, then
it can be transformed to solve the other. Hence all results about consensus apply
for atomic broadcast.

Group membership. Group membership cannot be solved in the asynchronous
model [CHTCB96]. It can be solved with3P failure detectors [CKV01] if a ma-
jority of processes are correct (and there are runs in which more crashes are toler-
ated).

Failure detectors. There are implementations that satisfy the properties of3P
and3S in a lot of real systems: see the (practical) discussion in Section2.1.3.A.
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Chapter 3

Introduction to performance
evaluation

Performance evaluation is required at every stage in the life cycle of a computer
system, including its design, implementation/manufacturing, sales/purchase, use,
upgrade, and so on. In this chapter, we introduce some basics of the performance
evaluation of computer systems. The purpose of the chapter is to introduce the
terminology and the techniques used in this thesis, rather than providing the com-
plete picture. For a more thorough and detailed introduction, we refer the reader to
[Jai91]; in fact, most of this chapter is taken from this book.

3.1 A systematic approach to performance evaluation

Most performance problems are unique: the metrics, workloads, and evaluation
techniques cannot be used for the next problem. Nevertheless, there are steps com-
mon to all performance evaluation projects that help avoid some common mistakes.
These steps are listed in this section. This section serves as a roadmap for the rest
of the chapter.

1. State the goals of the study and define the system boundaries.Given the
same set of hardware and software, the definition of the system may vary
depending on the goals of the study. Moreover, the choice of system bound-
aries affects the performance metrics as well as workloads used to compare
systems.

2. List system services and possible outcomes.Each system provides a set of
services, with a number of possible outcomes, some of which are desirable
and some of which are not. A list of services and possible outcomes is useful
in selecting the right metrics and workloads.

3. Select performance metrics.Criteria to compare the performance are called
metrics. In general, the metrics are related to the speed, accuracy and avail-

19
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ability of services. The performance of a network, for example, is measured
by the speed (throughput and delay), accuracy (error rate) and availability of
the packets sent. Performance metrics are discussed in Section3.2.

4. List system and workload parameters.Parameters are variables that affect
performance. System parameters generally do not vary among various in-
stallations of the system, whereas workload parameters vary from one in-
stallation to the next.

5. Select factors and their values.The parameters to be varied in a study are
called factors and their values are called levels. The parameters that are
expected to have a high impact on the performance should be preferably
selected as factors. It is important to limit the number of factors and levels,
in order to make the study feasible.

6. Select evaluation techniques.The choices are analytical modeling, simula-
tion and measurements. They are further discussed in Section3.3.

7. Select the workload.The workload consists of a list of service requests to the
system. It is essential that the workload be representative of the system usage
in real life. To produce representative workloads, one needs to measure and
characterize the workload on existing systems.

In the context of this thesis, whether and how failures of components oc-
cur are often a part of the workload. This part is sometimes calledfault-
load [MKA +01].

8. Design the experiments.One needs to decide on a sequence of experiments
that offer maximum information with minimal effort.

9. Run the experiments.Techniques that determine the length and number of
experiments are presented in Section3.5, just after the statistics tools that
they rely on (Section3.4).

10. Analyze and interpret the data.The outcomes of measurements and simula-
tions are random quantities. The statistical techniques to correctly analyze
them are presented in Section3.4. Correct interpretation of the results is a
key part of the analyst’s art, as interpreted results form the basis of decisions.

11. Present results.It is important that the results be presented in a manner that
is easily understood. This often means presenting the results in graphical
form.

3.2 Performance metrics

For each performance study, a set of performance criteria, calledmetrics, must be
chosen. One way to prepare this set is to list the services offered by the system.
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For each service request made to the system, there are three categories of possible
outcomes: the system may perform the service correctly, incorrectly, or refuse
to perform the service. For example, a network gateway may forward a packet
correctly, or to the wrong destination, or it may be down, in which case it will not
forward it at all.

There are metrics associated with each type of outcome. If the system performs
the service correctly, its performance is measured by the time taken to perform
the service (responsivenessmetrics), the rate at which the service is performed
(productivitymetrics), and the resources consumed while performing the service
(utilization metrics). The common name for these metrics isspeedmetrics. For
example, the responsiveness of a network gateway is measured by its response
time, the time interval between the arrival of a packet and its successful delivery.
Its productivity is measured by its throughput, the number of packets forwarded
per unit of time. The utilization gives an indication of the percentage of the time
the resources of the gateway is busy forwarding packets for a given load level.
The resource with the highest utilization is called thebottleneck. Performance
optimizations at this resource offer the highest payoff.

If the system performs the service incorrectly, anerror is said to have occurred.
It is helpful to classify errors and to determine the probability of errors and/or the
time between errors. Such metrics are calledreliability metrics. For example, the
gateway may lose packets from time to time, and the percentage of packets lost
may be of interest.

If the system does not perform the service, it is said to be down, failed, or
unavailable. Once, again, it is helpful to classify the failure modes and characterize
their occurrence. Such metrics are calledavailability metrics. For example, the
mean time to failure (MTTF) of the gateway may be one month, and the failure
may be due to memory errors in 40% of all cases.

Given a number of metrics, one should use the following considerations to
select a subset: low variability, non-redundancy, and completeness. Low variabil-
ity helps to reach a given level of statistical confidence with fewer repetitions of
experiments. Studying redundant metrics may not provide more insight than just
studying one of them. Finally, the set of metrics included in the study should be
complete, reflecting all possible outcomes. Otherwise, it is easy to optimize a sys-
tem for just a few metrics, whereas the metrics left out of the study may reach
unacceptable values.

Depending upon the utility function of a performance metric, it can be catego-
rizes into three classes:

• Higher is better (HB).System throughput is an example.

• Lower is better (LB).Response time is an example.

• Nominal is best (NB).Both high and low values are undesirable; a particular
value in the middle is considered best. System utilization is an example:
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Criterion Analytical
modeling

Simulation Measurement

1. Life-cycle stage of
system

Any Any Post-prototype

2. Time required Small Medium Varies
3. Most important tools Analysts Computer

languages
Instrumentation

4. Accuracy Low Moderate Varies
5. Trade-off evaluation

of parameters
Easy Moderate Difficult

6. Cost Small Medium High
7. Saleability of results Low Medium High

Table 3.1: Criteria for selecting an evaluation technique [Jai91].

very high utilization yields high response times, whereas low utilization is a
waste of resources.

3.3 Selecting evaluation techniques

The three techniques for performance evaluation are analytical modeling, simula-
tion and measurement. Analytical modeling computes the performance of a system
based on a parameterized model of the system and its environment using sophis-
ticated mathematics, e.g., Markov models or queuing systems. In the simulation
approach, one builds an executable model of the system and its environment and
then runs this model and observes its characteristics. Finally, in the measurement
approach, the real system or its prototype is run and observed in an environment
similar to the real execution environment.

There are a number of considerations that help decide the technique to be used.
These considerations are listed in Table3.1. The list is ordered from most to least
important. A few remarks are appropriate. First of all, accuracy does not guarantee
correctness: even highly accurate results may be misleading or plainly wrong, or
can be misinterpreted. Also, the time required and the accuracy given by the mea-
surement technique were characterized varying. The reason is simply that Mur-
phy’s law strikes measurements more often that other techniques: due to the influ-
ence of a high number of environmental parameters which is difficult to account
for, if anything can go wrong, it will.

It is helpful to use two or more techniques simultaneously, to verify and val-
idate the results of each one. In fact, until verified and validated, all evaluation
results are suspect. This leads us to the following three rules of validation:

• Do not trust the results of a simulation model until they have been validated
by analytical modeling or measurements.
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• Do not trust the results of an analytical model until they have been validated
by a simulation model or measurements.

• Do not trust the results of a measurement until they have been validated by
simulation or analytical modeling (most commonly ignored rule).

3.4 Statistical tools

3.4.1 Summarizing data

Summarizing performance data is one of the most common problems faced by
performance analysts. The goal is to understand and present the results of the
experiments, which can produce a huge number of observations on a given variable.

Summarizing data by a single number. In the most condensed form, a single
number may be presented that gives the key characteristics of the data set. This
single number is usually called anaverageof the data. This average should be
representative of a major part of the data set.

The most frequently used average is calledsample mean. Given a sample
{x1, x2, . . . , xn} of n observations, the sample mean is defined by

x̄ =
1
n

n∑
i=1

xi

The mean always exists and is unique. It gives equal weight to each observation
and, in this sense, makes full use of the sample. A consequence of this is that the
mean is affected a lot by outliers, so special care must be taken to identify and
exclude outliers. The mean also has a linearity property: the mean of a sum is a
sum of the means.

Of course, there are cases when the mean, or even any single number, is not
appropriate, because the data set cannot be meaningfully summarized with one
number: the values of the data set may be grouped around two or more values.

Summarizing variability. Given a data set, summarizing it by a single number
is rarely enough. It is important to include a statement about its variability in
any summary of the data. This is because given two systems with the same mean
performance, one would generally prefer one whose performance does not vary
much from the mean.

Variability is specified most often using thesample variance. The sample vari-
ance of a sample{x1, x2, . . . , xn} of n observations is defined by

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2
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Note that the sum of squares is divided byn − 1 and notn. Often, the square
root of the sample variance, thesample standard deviations, or the coefficient
of variation (C.O.V.),s/x̄, is preferred to the sample variance:s is in the unit of
the mean, and the C.O.V. is dimensionless, and thus these quantities are easier to
understand. Beware: these quantities are affected by outliers.

3.4.2 Comparing systems using sample data

By doing experiments, we can only collect a finitesampleof data, collected of an
infinite populationof all possibilities. In most real-world problems, the population
characteristics, e.g., the population mean, are unknown, and the goal is to estimate
these characteristics. The population characteristics, calledparameters, are fixed
values, whereas the sample characteristics, calledstatistics, are random variables.
Hence there is a need to specify how precise our estimate of a parameter is, so that
we can take well-founded decisions based on the estimate.

One possibility is to useconfidence intervals. For a parameterµ, we can state
something like

P{c1 ≤ µ ≤ c2} = 1− α

that is, the probability ofµ falling betweenc1 andc2 is 1− α. The interval[c1, c2]
is called theconfidence intervalfor µ, α is called thesignificance level, and1− α
is called theconfidence level. The levels are often expressed as percentages.

Confidence interval for the mean. The (two-sided)100(1 − α)% confidence
interval for the population mean is given by

x̄± z1−α/2 · s/
√

n

wherez1−α/2 denotes the(1 − α/2)-quantile of a unit normal variate. Some
frequently used coefficients arez0.975 = 1.645 for a 90% confidence interval,
z0.975 = 1.958 for a 95% confidence interval, andz0.995 = 2.576 for a 99% con-
fidence interval. The formula is only valid ifn > 30 (this is necessary to make
sure that the central limit theorem applies; the assumption underlying the formula
is that the sample mean is normally distributed).

For small samples (n ≤ 30) taken from a normally distributed population, we
have

x̄± t[1−α/2;n−1] · s/
√

n

wheret[1−α/2;n−1] denotes the(1−α/2)-quantile of at-variate withn−1 degrees
of freedom (see the tables in [Jai91]).
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Comparing two systems. The mean and its confidence interval can be used to
compare two systems. If one makespaired observations, i.e., there is a one-to-
one correspondence between the observations of the two systems involved, then
one should estimate the mean of the difference of each pair of observation. If the
confidence interval for the mean includes zero, the two systems are not significantly
different. If the confidence interval does not include zero, the two systems are
significantly different, and the sign of the mean indicates which one is better.

If one makesunpaired observations, one can estimate the means of the two
systems. If the confidence intervals do not overlap, the systems are significantly
different. If they overlap and the one mean is in the confidence interval for the
other mean, the systems are not significantly different. Otherwise, more advanced
statistics should be used [Jai91].

Determining sample size. The larger the sample, the higher is the associated
confidence. However, larger samples require more effort. Hence the analyst’s
goal is often to find the smallest sample size for a desired confidence. Suppose
that we want to determine the mean performance with an accuracy of±r% and a
confidence level of100(1−α)%. We do some preliminary experiments to obtainx̄
ands, then set the desired interval equal to that obtained withn observations, and
solve forn:

x̄± z1−α/2s/
√

n = x̄ (1± r/100)

n =
(

100z1−α/2s)
rx̄

)2

3.4.3 Multiple linear regression

Regression model. A regression model allows one to estimate or predict a ran-
dom variable as a function of several other variables. The estimated variable is
called theresponse variable, and the other variables are calledpredictor variables,
predictors, or factors. We only summarizemultiple linear regression, the technique
in which the data is fit to a linear combination of the predictor variables in such a
way that the squares of differences of data points and their estimates is minimal.

The regression model allows one to predict a response variabley as a function
of k predictor variablesx1, x2, . . . , xk using a linear model of the following form:

y = b0 + b1x1 + b2x2 + . . . + bkxk + e

Here,b0, b1, . . . , bk arek + 1 fixed parameters ande is the error term.
Given a sample ofn observations

(x11, x21, . . . , xk1, y1), . . . , (x1n, x2n, . . . , xkn, yn)

the model consists of the following equations:
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y1 = b0 + b1x11 + b2x21 + . . . + bkxk1 + e1

y2 = b0 + b1x12 + b2x22 + . . . + bkxk2 + e2
...

yn = b0 + b1x1n + b2x2n + . . . + bkxkn + en

In vector notation, we have

y = Xb + e

wherey = [y1 . . . yn]T , b = [b0 b1 . . . bn] ande = [e1 . . . en] are column vectors
andX is a matrix withX(i, j + 1) = 1 if j = 0 andxij otherwise. The goal is to
find the regression parametersb that minimizee2 = e2

1 + e2
2 + . . . + e2

n.

Estimation of model parameters. The regression parameters are estimated by

b =
(
XTX

)−1 (
XT y

)
A part of the overall variation (SST) ofy is explained by the regression model

(SSR) and another part is not (SSE). We know that

SST = SSR + SSE =
∑

y2 − nȳ2 and SSE = yTy − bTXTy

The goodness of the regression is measured by thecoefficient of determination
R2 = SSR/SST. The inequality0 ≤ R2 ≤ 1 always holds, and higher values are
better.

The standard deviation of errors is given by

se =

√
SSE

n− k − 1
It is used in computing standard deviations for the regression parameters:

sbj
= se

√
Cjj

whereCjj is thej-th diagonal term ofC =
(
XTX

)−1
.

Confidence intervals for the regression parameters are computed using thet-variate
t[1−α/2;n−k−1] (see Section3.4.2):

bj ± t[1−α/2;n−k−1]sbj
/
√

n

Assumptions. The multiple linear regression model is based on a number of as-
sumptions that should be verified before the analysis: (1) errors are independent
and identically distributed normal variates with zero mean; (2) errors have the same
variance for all values of the predictors; (3) errors are additive; (4)xi’s andy are
linearly related; (5)xi’s are non-stochastic and are measured without error.
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3.5 Running experiments

A number of issues related to running experiments are discussed in this section.
They are of concern when one evaluates the performance using simulation or mea-
surements. The considerations apply to the analytical modeling technique as well
if the model is solved by simulation.

3.5.1 Transient removal

Most often, the analyst is only interested in thesteady-state performanceof a sys-
tem, that is, the performance after the system has reached a stable state. The results
of the initial part of the experiment, calledtransient state, should not be included
into the computations of the data analysis. The problem of identifying the end
of the transient state is calledtransient removal. We now introduce three meth-
ods for transient removal based on statistical techniques: the initial data deletion
technique, the method of moving averages, and the method of batch means.

The first two methods try to identify akneeon a graph listing all observations
along the x axis. This graph is usually highly variable, hence the points are replaced
by means of subsets of the data, in order to get a smoother graph where the knee is
more easily identified. At first, the observations are averaged over several replica-
tions of the same experiment, to obtain amean trajectory: givenm replications of
sizen, if xij denotes thej-th observation in thei-th replication,

x̄j =
1
m

m∑
i=1

xij

is computed.

Initial data deletion technique. This technique continues as follows: one com-
putes the overall mean̄̄x and the mean after deleting the firstl observations̄̄xl

¯̄x =
1
n

n∑
j=1

x̄j and ¯̄xl =
1

n− l

n∑
j=l+1

x̄j

and plots the relative change in the overall mean

¯̄xl − ¯̄x
¯̄x

for l = 1, 2, . . . until the knee is found.

Method of moving averages. The method of moving averages of independent
replications computes a trajectory of the moving average of2k + 1 successive
values:
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¯̄xj =
1

1 + 2k

k∑
l=−k

x̄j+l for j = k + 1, k + 2, . . . , n− k

This trajectory is plotted fork = 1, 2, . . . until the resulting curve is smooth
enough to allow one to find the knee.

Method of batch means. This method requires running a very long simulation
and later dividing it up into severalbatchesof equal size. The method studies the
variance of the mean of observations in each batch as a function of the batch size.
Consider a long run ofN observations and divide it intom batches of sizen each,
wherem = bN/nc. At first, one computes a batch mean for each batch

x̄i =
1
m

n∑
j=1

xin+j

and then computes the variance of batch means Var(x̄). This quantity is plotted
againstn = 2, 3, . . .. The resulting curve has an irregular first part, and then the
variance decreases. The rightmost local maximum of the resulting curve shows the
length of the transient interval.

3.5.2 Stopping criteria

From the discussion in Section3.4.2, it follows that the length of the simulation
or measurement experiment must be chosen appropriately, long enough to allow
the confidence interval for the mean of an observed quantity to narrow to a desired
width. In Section3.4.2, we discussed how the confidence intervals can be com-
puted, givenn independent data values. The problem here is that the observations
within the same replication of the experiment arenot independent. We introduce
two methods to produce independent values which can then be used to compute the
confidence interval.

Method of independent replications. In this method, one runs several replica-
tions of the same experiment, while ensuring that the replications are fairly inde-
pendent. For each replication, one removes the initial transient interval and com-
putes the mean of all observations. The resulting means are independent random
variables.

Method of batch means. In this method, one runs a long experiment and re-
moves the initial transient period. The remaining observations are split up into
batches, and the mean of observations in each batch is computed. If the batches
are long enough, the means are independent – assuming that there are no long term
correlations in the measured data. This assumption can be verified by computing
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the covariance of successive batch means; this quantity is also called autocovari-
ance. This analysis is repeated with increasing values for the batch size until the
autocovariance of the batch means is small compared to their variance.

3.5.3 Random number generation

The issue of random number generation is specific to simulation. Usually, one
usesrandom number generators, functions that produce streams of seemingly ran-
dom (pseudo-random) numbersxi, with xi+1 computed fromxi andxi only. The
starting valuex0 is called theseed. The choice of the seed determines the whole
stream.

Nowadays, the standard random number generators, provided with the pro-
gramming language, are of good enough quality to fulfill all the needs of simula-
tions, i.e., pass all the important statistical tests for randomness. The analyst only
needs to know how many streams to use and how to choose the seed values for
each stream. Some rules are listed next.

• Do not subdivide one stream.If you need to generate values for several
independent variables, use an independent stream for each. Otherwise, the
variables are likely to have a strong correlation.

• Use non-overlapping streams.In particular, do not use the same seed for all
streams. If you know that any given stream is used only 10000 times, then the
following random numbers from the same stream are good seeds:x0, x10000,
x20000, etc. For a lot of generators, e.g., the linear congruential generator
used by Java, it is possible to calculatexi directly, without generating the
whole stream.

• Reuse seeds in successive replications.There is no need to reinitialize the
streams between replications.

• Do not use truly random seeds,e.g., ones computed from the current time or
by the operating system. If you do, two problems arise: your experiments
become non-repeatable, and it is not possible to guarantee that the streams
will not overlap.
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Chapter 4

Neko: A single environment to
simulate and prototype
distributed algorithms

The three basic approaches to performance evaluation are analytical modeling,
simulation and measurements. Their respective advantages and limitations were
discussed in Section3.3. It was also mentioned that in order to increase the cred-
ibility and the accuracy of the analysis, it is considered good practice to compare
the results obtained through at least two different approaches.

In spite of its importance in the context of distributed systems, performance
engineering often does not receive the attention that it deserves. Part of the dif-
ficulties stems from the fact that one usually has to develop one implementation
of the algorithm for measurements, and a different implementation (possibly in a
different language) for simulations. In this chapter, we propose a solution to this
last problem. We presentNeko, a simple communication platform that allows us
to both simulate a distributed algorithm and execute it on a real network, using
thesame implementationfor the algorithm. Using Neko thus ultimately results in
lower development time for a given algorithm. Beside this main application, Neko
is also a convenient implementation platform which does not incur a major over-
head on communications. Neko is written in Java and is thus highly portable. It
has been deliberately kept simple, extensible and easy to use.

The rest of the chapter is structured as follows. Section4.1describes the most
important features of Neko. We intend to illustrate the simplicity of using Neko
throughout this section. Section4.2presents the various types of real and simulated
networks that Neko currently supports. Section4.3describes algorithms and other
building blocks for applications developed with Neko. Section4.4discusses other
work that relates to Neko.

31
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4.1 Neko feature tour

We start with an overview of Neko. We first present the architecture of the platform,
and the most important components seen by application programmers. We then
illustrate the use of Neko with a simple application. We also show how to start
up and configure the example, to run either as a simulation or on a real network.
Finally, we discuss the differences between simulations and distributed executions.

4.1.1 Architecture

As shown in Figure4.1, the architecture of Neko consists of two main parts:ap-
plicationandnetworks(NekoProcess is explained later).

Layer 1

Layer 2

NekoProcess

Network (real or simulated)

send deliver

Layer n

send deliver

A
pplication

N
etw

orks

Layer 1

Layer 2

NekoProcess

send deliver

Layer n

send deliver

process 0 process n-1

Figure 4.1: Architecture of Neko.

At the level of the application, a collection ofprocesses(numbered from 0 to
n− 1) communicate using a simple message passing interface: a sender process
pushes its message onto the network with the (asynchronous) primitivesend, and
the network then pushes that message onto the receiving process withdeliver. Pro-
cesses are programmed as multi-layered programs.

In Neko, the communication platform is not a black box: the communication
infrastructure can be controlled in several ways. First, a network can be instantiated
from a collection of predefined networks, such as a real network using TCP/IP or
simulated Ethernet. Second, Neko can manage several networks in parallel. Third,
networks that extend the current framework can easily be programmed and added.

We now present some important aspects of the architecture that are relevant for
Neko applications. Details related to the networks are explained in Section4.2.

Application layers. Neko applications are usually constructed as ahierarchy
of layers. Messages to be sent are passed down the hierarchy using the method
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send, and messages delivered are passed up the hierarchy using the methoddeliver
(Fig. 4.1). Layers are eitheractiveor passive. Passive layers (Fig.4.2) do not have
their own thread of control. Messages are pushed upon passive layers, i.e., the
layer below calls theirdeliver method. Active layers (Fig.4.3), derived from the
classActiveLayer, have their own thread of control. They actively pull messages
from the layer below, usingreceive (they have an associated FIFO message queue
supplied bydeliver and read byreceive). The call toreceive blocks until a message
is available. One can also specify a timeout, and a timeout of zero corresponds to
a non-blocking call toreceive.

Active layers might interact with the layers below usingdeliver, just like pas-
sive layers do (Fig.4.2). In order to do this, they have to bypass the FIFO message
queue of Fig.4.3by providing their owndeliver method.

Layer i

Layer i+1

Layer i-1

deliver

send

code (passive)

Figure 4.2: Details of a passive layer.

deliver

send

receive

Layer i

Layer i+1

Layer i-1

thread (active)

code (passive)

message queue

Figure 4.3: Details of an active layer.

Developers are not obliged to structure their applications as a hierarchy of lay-
ers. Layers can be combined in other ways: Fig.4.4 shows a layer which multi-
plexes messages coming from several layers into one channel (and demultiplexes
in the opposite direction), based on the message type. Layers may also interact by
calling user-defined methods on each other, i.e., they are not restricted tosend and
deliver/receive. In general, developers may use Java objects of any type, not just
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MUXMessage
type

Figure 4.4: Sample layer that multiplexes messages from the upper layers.

layers, arranged and interacting in an arbitrary fashion.

NekoProcess Each process of the distributed application has an associated ob-
ject of typeNekoProcess, placed between the layers of the application and the
network (Fig.4.1). TheNekoProcess takes several important roles:

1. It holds some process wide information, e.g., the address of the process. All
layers of the process have access to the NekoProcess. A typical use is for
Single Program Multiple Data (SPMD) programming: the same program is
running on several processes, and it branches on the address of the process
on which it is running. This address is obtained from theNekoProcess.

2. It implements some generally useful services, such as logging messages sent
and received by the process.

3. If the application uses several networks in parallel (e.g., because it commu-
nicates over two different physical networks, or uses two different protocols
over the same physical network) theNekoProcess dispatches (and collects)
messages to (from) the appropriate network.

NekoMessage All communication primitives (send, deliver andreceive) trans-
mit instances ofNekoMessages. A message can be either a unicast or a multicast
message. Every message is composed of a content part that consists of any Java
object, and a header with the following information:

Addressing (source, destinations)The addressing information consists of the ad-
dress of the sender process and the address of the destination process(es).
Addresses are small integers; the numbering of processes starts from 0. This
gives a very simple addressing scheme, with no hierarchy.

Network When Neko manages several networks in parallel (see Fig.4.1), each
message carries the identification of the network that should be used for
transmission. This can be specified when the message is sent.

Message typeEach message has a user-defined type field (integer). It can be used
to distinguish messages belonging to different protocols.
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Network (real or simulated)

send deliver

send deliver

send deliver

send deliver

send deliver

send deliver

FailureDetector

Coordinator

NekoProcess

Heartbeat

Worker

NekoProcess
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process 0 process 1 process n-1

send deliver send deliver send deliver

Figure 4.5: Architecture of a sample Neko application: farm of processors.

4.1.2 Sample application: farm of processors

In this section, we illustrate the application layers using an example. The example
is explained in detail in order to highlight how easily one can develop distributed
applications with Neko. Some more complex applications are described in Sec-
tion 4.3.

Our example is the following: a complex task is divided into sub-tasks, and
each sub-task is assigned to one machine out of a pool of machines. When a
machine has finished a sub-task, it sends back the result and gets a new sub-task.
We also have a fault tolerance requirement. As we use a large number of machines,
it is most likely that a few of them are down from time to time. We do not want to
assign sub-tasks to these machines.

The implementation has two layers on every process, as shown in Fig.4.5. We
now describe these layers.

Top layers. TheCoordinator distributes the task and collects the result, and the
Workers do the actual computation. TheWorker code is shown in Fig.4.6 (we
only give code for the simplest layers due to space constraints). It is an active
layer: active layers extendActiveLayer which extendsNekoThread, which is used
similarly to a Java thread. The thread executes itsrun method. This method uses
receive to get a message from the network. The result is computed and sent to
the layer below (stored in thesender variable).1 After going through the protocol
stacks, this message is delivered to theCoordinator.

TheWorker layer can also be implemented as a passive layer, extendingLayer;
this implementation is shown in Fig.4.7. Whenever the layer is delivered a mes-
sage, it computes some result and sends the message to the layer below (sender).

Bottom layers. By describing the bottom layers, we intend to show here a code
example and a few possible uses of the hierarchy of layers.

1The layer above is stored in thereceiver variable.
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public classWorker
extendsActiveLayer

{
public void run() {

while (true) {
// receive work from coordinator
NekoMessage m = receive();
// process work
Object result = compute(m.getContent());
// send back results
sender.send(newNekoMessage(0, RESULT, result));

} } }

Figure 4.6: Code example for an active layer.

The Heartbeat andFailureDetector layers cooperate to implement failure de-
tection. The basic scheme is thatHeartbeat layers send aheartbeatmessage every
second, and theFailureDetector starts suspecting a processp if no heartbeat arrived
from p in 2 seconds. Upon suspicion, theFailureDetector delivers aNekoMessage
containing a notification to theCoordinator, which can then re-assign the sub-task
in progress on the faulty process. This illustrates one possible use of the hierar-
chy of layers: notifying layers about asynchronous events (in this case, about the
failure of a process).

Another use of the hierarchy of layers is that lower layers can observe messages
going to and coming from higher layers. We can exploit this to optimize the basic
scheme for failure detection: let replies from Workers also act as heartbeats, so that
we can reduce the number of heartbeats. In other words, a Heartbeat only needs to
send an (explicit) heartbeat if no reply has been sent for 1 second, and the Failure
Detector only needs to suspect a processp if no replynor heartbeat is received for
2 seconds. The code for a Heartbeat is shown in Fig.4.8. It is an intermediate layer,
with methodssend anddeliver. The methoddeliver simply passes on messages; it
uses the data memberreceiver which points to the layer on top (in this case, the
Worker). The methodsend also passes on messages (and uses the data member
sender that points to theNekoProcess below) but additionally, it sets thedeadline
variable, which indicates when the next heartbeat has to be sent. Heartbeat is an
active layer, thus it extendsActiveLayer and has its own thread of control. Itsrun
method takes care of sending a heartbeat message whenever thedeadline expires.2

4.1.3 Easy startup and configuration

Bootstrapping and configuring a distributed application is far from being trivial. In
this section, we explain what support Neko provides for this task.

2The careful reader might notice thatsynchronized blocks are missing. The concurrent execution
of Neko and theHeartbeat thread may indeed result in heartbeats sent more often than intended,
but this does not compromise the integrity of the application.
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public classWorker
extendsLayer

{
public void deliver(NekoMessage m) {

// process work received from coordinator
Object result = compute(m.getContent());
// send back results
sender.send(newNekoMessage(0, RESULT, result));

} }

Figure 4.7: Code example for a passive layer.

Configuration. All aspects of a Neko application are configured by a single file.
The name of this file is the only parameter to be passed to Neko on startup. Neko
ensures that each process of the application has the information in the configuration
file when the application starts. Possible configuration files for the example of Sec-
tion 4.1.2are shown in Fig.4.9; distributed executions need the file in Fig.4.9(a)
and simulations the file in Fig.4.9(b). The entries are explained in the rest of this
section.

Bootstrapping (Fig. 4.9, lines 1-2). Bootstrapping a Neko application is differ-
ent for a simulation and a distributed execution; this is why some entries of the
configuration files differ.

Launching a simulation is simple: only one Java Virtual Machine (JVM) is
needed with the name of the configuration file, and Neko will create and initialize
all processes. The number of processes is specified by the entryprocess.num.

For a distributed execution, one has to launch one JVM per process. The pro-
cess launched last (calledmaster) reads the configuration file and interprets the
slave entry which lists the addresses of all the other processes (calledslaves). Then
it builds acontrol networkincluding all processes (by opening TCP connections to
each slave), and distributes the configuration information.3

It is tedious to launch all the JVMs by hand for each execution of the applica-
tion. For this reason, Neko providesslave factoriesto launch slaves automatically.
The slave factories run as daemons on their hosts. Upon bootstrapping, themas-
ter contacts each slave factory and instructs it to create a new JVM which will
act as a slave. Also, there exists another way of bootstrapping, useful in clusters
where a command is provided to launch processes on multiple machines, like the
mpirun script in an MPI environment [SOHL+98, GHLL+98]. Here, all JVMs are
launched at the same time and establish connections based on the information in
the configuration file.

3The master-slave distinction only exists during bootstrapping. All processes are equal after-
wards.
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public classHeartbeat
extendsActiveLayer

{
doubledeadline = clock() + PERIOD;

public void send(NekoMessage m) {
deadline = clock() + PERIOD;
// PERIOD is 1 second
sender.send(m);
// sender is the layer below: the network

}

public void deliver(NekoMessage m) {
receiver.deliver(m);
// receiver is the Worker

}

public void run() {
while (true) {

sleep(deadline−clock());
send(newNekoMessage(0, HEARTBEAT,null ));

} } }

Figure 4.8: Code example for an intermediate layer.

Initialization (Fig. 4.9, lines 3-7). The networks are initialized next (Fig.4.9,
line 3). The names of the classes implementing the networks are given by thenet-
work entry, which is, of course, different for simulations and distributed executions.
The components of a real network in different JVMs usually need to exchange in-
formation upon initialization; the control network, built in the bootstrapping phase,
is used for this purpose.

Then comes the initialization of the application (Fig.4.9, lines 4-6). Each
process has an initializer class, given by theprocess.i.initializer entry for process #i.
The initializer code of process #1 is shown in Fig.4.10. It constructs the hierarchy
of layers in a bottom-up manner by callingaddLayer on theNekoProcess. The
code has access to all configuration information; it uses the (application specific)
entryheartbeat.interval (Fig. 4.9, line 7) to configure the Heartbeat layer.

Execution. Once all the initialization is finished, allNekoThreads are started and
the application begins executing. The application has access to the entries of the
configuration file.

Shutdown. Terminating a distributed application is also an issue worth mention-
ing. There is no general (i.e., application independent) solution to this issue. Neko
provides ashutdown function that any process can call and which results in shut-
ting down all processes. Processes may implement more complex termination al-
gorithms that end with calling theshutdown function. The termination algorithm
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1 process.num = 3
2 slave = host1.our.net,host2.our.net
3 network = lse.neko.networks.TCPNetwork
4 process.0.initializer = lse.neko.alg.CoordinatorInitializer
5 process.1.initializer = lse.neko.alg.WorkerInitializer
6 process.2.initializer = lse.neko.alg.WorkerInitializer
7 heartbeat.interval = 1000

(a) for a distributed execution

1 process.num = 3
2 # no corresponding line
3 network = lse.neko.networks.MetricNetwork
4 process.0.initializer = lse.neko.alg.CoordinatorInitializer
5 process.1.initializer = lse.neko.alg.WorkerInitializer
6 process.2.initializer = lse.neko.alg.WorkerInitializer
7 heartbeat.interval = 1000

(b) for a simulation

Figure 4.9: Example of a Neko configuration file (line numbers are not part of the
file).

executed by theshutdown function exchanges messages on the control network
(built during the bootstrapping phase).

4.1.4 Simulation and distributed executions

One of the main goals of Neko is to allow the same application to run (1) as a
simulation and (2) on top of a real network. These two execution modes are fun-
damentally different in some respects. This section summarizes the (few) rules
to follow if the application is to be run both as a simulation and as a distributed
application.

No global variables. The first difference is that all processes of a simulation run
in the same Java Virtual Machine (JVM),4 whereas a real application uses one JVM
for each process. For this reason, code written for both execution modes should not
rely on any global (static) variables. Global variables have two uses in simulations:
they either keep (1) information private to one process, or (2) information global
to the whole application. In the first case, the information should be accessed
using theNekoProcess object as a key. In the second case, there are two choices.
Either the information should be distributed using the network, or (if constant and
available at startup) it can appear in the configuration file (see Section4.1.3).

4Simulations are not distributed. They only simulate distribution.
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public classWorkerInitializer
implementsNekoProcessInitializer

{
public void init(NekoProcess process, Configurations config) {

Heartbeat heartbeat =newHeartbeat();
process.addLayer(heartbeat);
Worker algorithm =newWorker();
process.addLayer(algorithm);
heartbeat.setInterval( config.getInteger("heartbeat.interval") );

} }

Figure 4.10: Code example for initializing an application.

Threads. The other difference lies in the threading model. Real applications use
the classjava.lang.Thread, whereas thread based discrete event simulation pack-
ages have their special purpose threads, which maintain simulation time and are
scheduled according to this simulation time. The two threading models usually
do not have the same interface.5 Both have operations specific to their application
area. For example, SimJava [HM98], one of the simulation packages used in Neko,
defines channels between active objects as a convenient way to have threads inter-
act. Even the overlapping part of the interfaces is different, e.g., Java threads are
started explicitly withstart, while SimJava threads are started implicitly upon the
start of the simulation.

Neko hides these differences by introducingNekoThread, which encapsulates
the common functionality useful for most applications. All threads of the applica-
tion have to extend this class or use it with aRunnable object.NekoThreads behave
like simplified Java threads: in particular, they supportwait, notify andnotifyAll as
a mechanism to synchronize threads. The differences are the following:

• Threads started during the initialization of the application only begin execu-
tion when the whole Neko application is started. This simplifies the initial-
ization of the application to a great extent.

• Time is represented with variables of typedouble in Neko (and the unit is
milliseconds). Thereforesleep andwait with a timeout takedouble as argu-
ment.

The classNekoThread and more generally, all classes that have the same inter-
face but a different implementation in the two execution modes are implemented
using the Strategy pattern [GHJV95]. This makes adding other execution modes
rather easy. As an example, Neko already supports two simulation engines, Sim-
Java and a more lightweight simulation engine developed for Neko. One could
imagine integrating further simulation packages.

5The reason is that most Java simulation packages are inspired by existing C or C++ packages
and do not follow the Java philosophy of threading.
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It must be noted that no restrictions apply if the application is only to be run in
oneof the execution modes. Thus distributed applications may use all features of
Java and forget aboutNekoThreads, and simulations may exploit all features of the
simulation package.

4.2 Networks

Neko networks constitute the lower layers of the architecture (see Fig.4.1). The
programmer specifies the network in the configuration file. No change is needed
to the application code, not even if one changes from a simulated network to a real
one or vice versa. In this section, we present real and simulated networks.

4.2.1 Real networks

Real networks are built on top of Java sockets (or other networking libraries). They
use Java serialization for representing the content ofNekoMessages on the wire.

TCPNetwork is built on top of TCP/IP. It guarantees reliable message deliv-
ery. A TCP connection is established upon startup between each pair of processes.
UDPNetwork is built on top of UDP/IP and provides unreliable message delivery,
which is sufficient for sending heartbeats in the example of Section4.1.2. Mul-
ticastNetwork can send UDP/IP multicast messages.PMNetwork uses the PM
portable communication library [THIS97] which bypasses the TCP/IP stack to
take advantage of low-latency cluster interconnection networks, like Myrinet. Fi-
nally, EnsembleNetwork integrates the Ensemble group communication frame-
work [VBH+98, Hay98] into Neko, to do reliable IP multicasts.

Neko is focused on constructing prototypes. Nevertheless, we performed some
measurements to evaluate Neko’s performance. We compared Neko’s performance
with the performance of Java sockets, using both TCP and UDP. According to
[DAK00] the performance of Java and C sockets are rather close (within 5%)
with the newest generation of Java Virtual Machines (JVMs), hence our com-
parison gives an indication of Neko’s performance versus C sockets. We used
the same benchmarks as [DAK00], from IBM’s SockPerf socket micro-benchmark
suite [IBM00], version 1.2.6 The benchmarks are the following:

TCP_RR_1 A one-byte message (request) is sent using TCP to another machine,
which echoes it back (response). The TCP connection is set up in advance.
The result is reported as a throughput rate of transactions per second, which
is the inverse of the round-trip time for request and response. With Neko, we
useNekoMessages with nullcontent; they still include 4 byte of useful data
(type) and constitute the shortest messages we can send.

6These experiments do not benchmark all aspects of communication. Nevertheless, they should
give an indication of the overhead imposed by Neko on the native sockets interface. The experiment
CRR_64_8K was not performed, as it has no equivalent in Neko.
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performance Neko Java relative
TCP_RR_1 [1/s] 3836 8104 47%
UDP_RR_1 [1/s] 3756 8074 46%
TCP_STREAM_8K [kbyte/s] 7689 10861 71%

Table 4.1: Performance comparison of Neko and Java sockets.

UDP_RR_1 Same asTCP_RR_1, using UDP instead of TCP as a transport proto-
col.

TCP_STREAM_8K A continuous stream of 8 kbyte messages is sent to another
machine, which continuously receives them. The reported result is bulk
throughput in kilobytes per second.

We used two PCs running Red Hat Linux 7.2 (kernel 2.4.18). The PCs have
Pentium III 766 MHz processors and 128 MB of RAM, and are interconnected by
a 100 Base-TX duplex Ethernet hub. The Java Virtual Machine was Sun’s JDK
1.4.1_01. The absolute results, as well as the relative performance of Neko ver-
sus Java sockets, are summarized in Table4.1. They show that Neko performance
reaches at least 46% of Java performance in all tests, with TCP_STREAM_8K
performance reaching 71%. Response times are more affected than throughput.
The overhead is probably due to (1) serialization and deserialization ofNekoMes-
sages, (2) the fact that Java objects includingNekoMessages are allocated on the
heap and (3) the necessity of having a separate thread that maps from thesend-
receive communication mechanism of sockets to thesend-deliver mechanism of
Neko.

We will continue working on the performance optimization of Neko. The most
promising directions are (1) to adapt standard Java serialization so that it performs
well for short messages [PHN00] (it is optimized for dumping long streams of
objects into a file) and (2) to improve its buffering strategy.

4.2.2 Simulated networks

Currently, Neko can simulate simplified versions of Ethernet, FDDI and CSMA-
DCR [HLL98] networks. Complex phenomena, like collision in Ethernet net-
works, are not modeled, as they do not influence the network behavior significantly
at low loads. The models are motivated and described in detail in [Ser98, TBW95].
Other models can be plugged into Neko easily, due to the simplicity of the network
interface.

Simple complexity metrics can help predicting the performance of an algo-
rithm. Several such metrics can be evaluated by simulation using Neko; the model
behind each metric is implemented as a simulated network. The metrics include
time complexity, which is roughly the number of communication steps taken by
the algorithm, and message complexity, which is the number of messages gener-
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ated by the algorithm [Lyn96, Sch97]. Neko was also helpful in evaluating the
contention-aware metrics described in Chapter5.

A different kind of simulated network proved to be useful in debugging dis-
tributed algorithms. The network delivers a message after a random amount of
time, given by an exponential distribution. This network, although not particularly
realistic in terms of modeling actual performance, usually “exercises” the algo-
rithm more than an actual implementation. The reason is that this network tends to
behave in a less deterministic way than a real network, as the message delays are
independent and their variance is relatively high.

4.3 Algorithms

Neko was used for all the simulations and measurements in the remaining chapters
of this thesis. The relevant parts of Neko are described in more detail there.

Group communication. Neko was used to develop various algorithms in the
context of fault tolerant group communication (see Section2.1.3.Aand2.2). They
form the base of a future group communication toolkit. A list of algorithms imple-
mented follows, grouped by the distributed problem they solve. A generic interface
is defined for each problem.

• Failure detectors A heartbeat and a ping based failure detector are imple-
mented, as well as a failure detector optimized for the Chandra-Toueg con-
sensus algorithm that uses no failure detection messages. Two emulated
failure detectors are included: the one detects an emulated crash after a fixed
amount of time, and the other generates suspicions of correct processes at a
certain rate, each suspicion lasting for a certain duration. They are mostly
useful in simulation studies in which the failure detector is not modeled in
detail. Finally, one of the failure detectors implements an alternative in-
terface (Ω, see [CHT96]): instead of offering access to a list of crashed
processes, the detector returns one process which is likely correct (the im-
plementation returns the first process trusted by another underlying failure
detector).

• ConsensusSeveral published algorithms are implemented. Most are asyn-
chronous and rely on failure detectors: [CT96] with some optimizations,
[MR99], [Lam01] with some optimizations. The R-consensus algorithm re-
lies onweak ordering oracles[PSUC02a] (see Section2.1.3.B).

• Reliable broadcastSeveral algorithms from [FP01] are implemented.

• Atomic broadcast [DSU00] surveys and classifies most published atomic
broadcast algorithms. Algorithms in the following classes are implemented:
one uniform and one non-uniform fixed sequencer algorithm, one uniform
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and one non-uniform privilege based algorithm, one communication history
algorithm, and three destination agreement algorithms. Two of the destina-
tion agreement algorithms are fault tolerant: [CT96] (when used with a fault
tolerant consensus algorithm) and [PSUC02a] (based on weak ordering ora-
cles). The fixed sequencer algorithms [BSS91] have been integrated with a
group membership service. The other algorithms do not tolerate crashes.

• Group membership One primary partition group membership algorithm is
implemented [MS95]. It uses failure detectors to start view changes, and
relies on consensus to agree on the next view.

• Replication strategiesActive or state-machine replication [Sch90] of ser-
vices is implemented. There is also an optimistic variant, in which the appli-
cation is provided hints about the final order of requests, usually before the
actual delivery of the request.

Benchmarks. The SockPerf benchmarks (see Section4.2.1) are implemented
and extended for multicast communication. Benchmarks for consensus and atomic
broadcast algorithms (see Chapter6) are implemented as well.

Other components. One component streams large arrays of values over the net-
work as a sequence of relatively small messages. For instance, this component is
useful when data recorded during a measurement session is collected: handling all
the data as a single message is impractical because of the size of the data. Another
component implements a “leaky bucket”: it buffers outgoing messages to ensure
that the rate of messages sent does not exceed a maximum rate.

Visualization tool. Neko contains a debugging tool that displays logs of mes-
sages graphically. The display options are configured using a GUI and/or an XML
file.

4.4 Related work

Prototyping and simulation tools. Thex-kernel and the corresponding simula-
tion tool x-sim [HP91] constitute an object oriented C framework that has similar-
ities with Neko. It is designed for building (lower level) protocol stacks. Efficient
execution of the resulting protocols is a major goal. Instead, Neko’s focus is easy
prototyping of distributed protocols/applications. Neko is a much smaller frame-
work that supports building the application as a hierarchy of layers, which resemble
x-kernel protocol stacks, but in a simpler, more flexible way: (1) a layer is not re-
stricted to adding/removing headers and fragmenting/reassembling messages, and
(2) and a thread-per-layer (rather than thread-per-message) approach is possible.
Moreover, Neko benefits from the advantages of using Java rather than C: serial-
ization and deserialization of complex data and multithreading are supported.
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The NEST simulation testbed [DSYB90] also supports prototyping to some
extent. The code used for simulation is rather similar to UNIX networking code
(in C): normally, only a few system calls have to be changed.

Microprotocol frameworks. Microprotocol frameworks aim at providing more
flexible and ways for protocol composition than traditional ISO/OSI stacks. In
these frameworks, protocol layers are only allowed to interact in well specified
ways (e.g., a typical restriction is that layers cannot share state; they have to com-
municate using events that travel up or down the protocol stack). As a result, the
code for protocols tends to be more maintainable than code built in a more ad hoc
manner, and new protocols or protocols with a new set of properties can be com-
posed easily.x-kernel, Ensemble [VBH+98], Coyote and Cactus [BHSC98, SH99]
and Appia [MPR01] are examples of such systems, and these systems were used
to construct group communication protocols, just like Neko. Neko also composes
protocols out of layers, but as we have used it primarily for prototyping so far,
we did not feel the need for the advanced architecture that microprotocol frame-
works have. If the need arises, we plan to integrate some of the ideas behind these
frameworks into Neko.

Simulators. There exist a variety of systems developed to simulate network pro-
tocols. Most of them concentrate on only one networking environment or protocol;
a notable exception is NS-2 [FK00], where the goal is to integrate the efforts of
the network simulation community. These tools usually focus on the network layer
(and the layers below), with (often graphical) support for constructing topologies,
detailed models of protocols and network components. Neko is focused on the ap-
plication layer, rather than on support for constructing complex network models.
We see the two directions as complementary: in order to obtain realistic simula-
tions on detailed network models, Neko will have to be integrated with a realistic
network simulator. The simplicity of Neko’s network interface eases this task.

Message passing libraries. Neko (when used for prototyping) can be seen as a
simplified socket library, with support for frequently occurring tasks like sending
data structures, startup and configuration. A variety of simplified versions of the
BSD C sockets interface are available (e.g., [ECM02]). However, they are at best as
easy to use as the Java interface to sockets. Other message passing standards exist:
MPI [SOHL+98, GHLL+98] and PVM [Sun90]. They focus on different aspects
of programming than Neko: they are mostly used in high performance computing
to implement parallel algorithms, and efficient implementation on massively par-
allel processors and clusters is crucial. The result is that their APIs are complex
compared with Neko: they provide operations useful in parallel programming but
hardly used in distributed systems: e.g., scatter, gather or reduce. The APIs tend
to be complex also because they are C/Fortran style, even in Java implementations
like mpiJava [BCFK99], jmpi [Din99], JPVM [Fer98] and jPVM [BS96].
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Chapter 5

Contention-aware performance
metrics

Resource contention is widely recognized as having a major impact on the perfor-
mance of distributed algorithms. Nevertheless, the metrics that are commonly used
to predict their performance take little or no account of contention. In this chap-
ter, we define two performance metrics for distributed algorithms that account for
network contention as well as CPU contention. We then illustrate the use of these
metrics by comparing four atomic broadcast algorithms, and show that our metrics
allow for a deeper understanding of performance issues than conventional metrics.
We also validate the metrics using measurements on atomic broadcast algorithms
running on a cluster.

The chapter is structured as follows. Section5.2presents related work. In Sec-
tion 5.3, we present the system model on which our metrics are based. Section5.4
presents a latency and a throughput metric. Section5.5presents a tool to help pro-
ducing formulas for the metrics. Atomic broadcast algorithms used to illustrate
and validate the metrics are presented in Section5.6. We then illustrate the use of
our metrics by comparing some algorithms in Section5.7. Finally, the validation
of the metrics follows in Section9.

5.1 Introduction

State of the art: evaluating the performance of distributed algorithms. A va-
riety of people are involved in the construction of distributed systems: algorithm
designers invent and publish new algorithms, and engineers implement and deploy
these algorithms. Both have a need for performance evaluation, though the tech-
niques they use are different (performance evaluation techniques were introduced
and contrasted in Section3.3). Engineers need accurate results for a specific sys-
tem, and have an implementation of the algorithm available, so they most often
use simulations or measurements on a prototype. In contrast, algorithm designers
invest considerable effort in proving the correctness of their algorithms (which is

47
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essential) but often oversee the importance of predicting the performance of their
algorithms. They most often use simple complexity metrics, which can be seen as
very simple analytical models of performance, as these are easy to evaluate and
give results meaningful for a wide range of systems. The price to pay is the low
accuracy of the results. In fact, there is a wide gap between the results of the two
classes of specialists, in terms of accuracy: the value of simple complexity metrics
in predicting the performance of distributed algorithms is questionable. Let us next
investigate some of the complexity metrics in detail.

Existing metrics for distributed algorithms. Performance prediction of dis-
tributed algorithms is usually based on two rather simplistic metrics: time and
message complexity.

The first commonly used metric,time complexity, measures thelatencyof an
algorithm, i.e., the cost ofoneexecution of the algorithm. There exist many def-
initions of time complexity that are more or less equivalent. A common way to
measure the time complexity of an algorithm (e.g., [ACT98, Sch97, Lyn96, Kri96,
HT93, Ray88]) consists in considering the algorithm in a model where the message
delay has a known upper boundδ. The efficiency of the algorithm is measured as
the maximum time needed by the algorithm to terminate. This efficiency is ex-
pressed as a function ofδ, and is sometimes called the latency degree.

The second metric, calledmessage complexity, consists in counting the total
number of messages generated by a single execution of the algorithm [Lyn96,
HT93, ACT98]. This metric is useful when combined with time complexity, since
two algorithms that have the same time complexity can generate a different volume
of messages. Knowing the number of messages generated by an algorithm gives a
good indication of its scalability and the amount of resources it uses. Furthermore,
an algorithm that generates a large number of messages is likely to generate a high
level of network contention.

Resource contention. Resource contention is often a limiting factor for the per-
formance of distributed algorithms. In a distributed system, the key resources are
(1) the CPUs and (2) the network, any of which is a potential bottleneck. The ma-
jor weakness of the time and message complexity metrics is that neither attaches
enough importance to the problem of resource contention. While the message
complexity metric ignores the contention on the CPUs, the time complexity metric
ignores contention completely.

Contention-aware metrics. To solve the problem, we define two metrics (one
latency metric and one throughput metric) which account for resource contention,
both on the CPUs and the network. These metrics are still rather easy to evaluate:
only one new parameter is introduced with respect to time and message complexity
(see Section5.3).
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5.2 Related work

Resource contention in network models. Resource contention (also sometimes
called congestion) has been extensively studied in the literature. The bulk of the
publications about resource contention describe strategies to either avoid or reduce
resource contention (e.g. [HP97, HYF99]). Some of this work analyze the per-
formance of the proposed strategies. However, these analyses use models that are
often specific to a particular network (e.g., [LYZ91]). Distributed algorithms are
normally developed assuming the availability of some transport protocol. A met-
ric that compares these algorithms must abstract out details that are only relevant
to some implementations of a transport layer. In other words, it is necessary to
relinquish precision for the sake of generality.

Resource contention in parallel systems. Dwork, Herlihy and Waarts [DHW97]
propose a complexity model for shared-memory multiprocessors that takes con-
tention into account. This model is very interesting in the context of shared mem-
ory systems but is not well suited to the message passing model that we consider
here. The main problem is that the shared memory model is a high-level abstrac-
tion for communication between processes, and as such, it hides many aspects of
communication that are important in distributed systems.

Computational models for parallel algorithms. Unlike for distributed algo-
rithms, many efforts have been directed at developing performance prediction tools
for parallel algorithms. However, the execution models are not adapted to dis-
tributed algorithms: for instance, the PRAM model (e.g., [Kro96]) requires that
processors evolve in lock-steps and communicate using a global shared memory;
the BSP model [Val90] requires that processors communicate using some global
synchronization operation; the LogP model [CKP+96] assumes that there is an ab-
solute upper bound on the transmission delay of messages. These models are not
adequate to predict the performance of distributed algorithms. The main reason is
that they do not naturally suit distributed algorithms designed for the asynchronous
system model, which do not assume any form of global synchronization nor any
restriction on communication delays.

Competitive analysis. Other work, based on the method of competitive analysis
proposed by Sleator and Tarjan [ST85], has focused on evaluating the competi-
tiveness of distributed algorithms [AKP92, BFR92]. In this work, the cost of a
distributed algorithm is compared to the cost of an optimal centralized algorithm
with a global knowledge. The work has been refined in [AADW94, AW95, AW96]
by considering an optimaldistributedalgorithm as the reference for the compari-
son. This work assumes an asynchronous shared-memory model and predicts the
performance of an algorithm by counting the number of steps required by the al-
gorithms to terminate. The idea of evaluating distributed algorithms against an
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optimal reference is appealing, but this approach is orthogonal to the definition
of a metric. The metric used is designed for the shared-memory model, and still
ignores the problem of contention.

5.3 Distributed system model

The two metrics that we define in this chapter are based on an abstract system
model which introduces two levels of resource contention:CPU contentionand
network contention. For easier understanding, we split the description of the model
in two parts. In the first part, we give an overview of the model and sketch how
distributed algorithms are executed in the model. In the second part, we give a
complete detailed specification of the execution of algorithms. Finally, we illustrate
the model with an example.

5.3.1 Overview of the model

The model is inspired from the models proposed in [Ser98, TBW95]. It is built
around two types of resources: CPU and network. These resources are involved in
the transmission of messages between processes. There is only one network that
is shared among processes, and it is used to transmit a message from one process
to another. Additionally, there is one CPU resource attached to each process in the
system. These CPU resources represent the processing performed by the network
controllers and the communication layers, during the emission and the reception of
a message. In this model, the cost of running the distributed algorithm is neglected,
and hence this does not require any CPU resource.
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Figure 5.1: Decomposition of the end-to-end delay (tu=time unit).

The transmission of a messagem from a sending processpi to a destination pro-
cesspj occurs as follows (see Fig.5.1):
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1. m enters thesending queue1 of the sending host, waiting forCPUi to be
available.

2. m takes the resourceCPUi for λ time units, whereλ is a parameter of the
system model (λ ∈ R+).

3. m enters thenetwork queueof the sending host and waits until the network
is available for transmission.

4. m takes the network resource for 1 time unit.

5. m enters thereceiving queueof the destination host and waits untilCPUj is
available.

6. m takes the resourceCPUj of the destination host forλ time units.

7. Messagem is received bypj in the algorithm.

The parameterλ can be understood as the ratio of the amount of processing a
message on aCPU resource to the amount of processing a message on thenetwork
resource. Being a ratio of positive quantities, it is a dimensionless quantity, ranging
from 0 to infinity (bounds excluded).

5.3.2 Resource conflicts

The model as presented so far is not completely specified: it leaves unspecified
the way some resource conflicts are resolved. We now extend the definition of the
model in order to specify these points. As a result, the execution of a (deterministic)
distributed algorithm in the extended system model isdeterministic.

In our description, each resource (CPU and network) is associated with one
task, run concurrently with all other tasks. We now describe how these tasks resolve
resource conflicts, and justify our decisions regarding the resolution of resource
conflicts.

Network task. Concurrent requests to the network may arise when messages
at different hosts are simultaneously ready for transmission. The access to the
network is modeled by a round-robin policy,2 illustrated by Algorithm5.2.

We chose a round-robin policy as this is the simplest deterministic policy that
is fair: if messages from several processes are waiting for transmission, this policy
makes sure that each process gets an equal share of the network resource over a
long time.

1All queues in the model (sending, receiving, and network queues) use a FIFO policy. For the
sake of simplicity, queue sizes arenot bounded: unlike real systems, the model has no built-in flow
control.

2This was suggested by Jean-Yves Le Boudec.
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i← 1
loop

wait until one network queue is not empty
while network queue ofCPUi is emptydo

incrementi (mod n)
m← extract first message from network queue ofCPUi

wait 1 time unit
insertm into receiving queue ofCPUdest(m)

incrementi (mod n)

Figure 5.2: Network access policy (executed by the network task).

CPU tasks. CPU resources also appear as points of contention between a mes-
sage in the sending queue and a message in the receiving queue. This issue is
solved by giving priority on every host to outgoing messages over incoming ones.

We decided to give priority to outgoing messages because the equally simple
alternative (priority to incoming messages) results in unacceptable behavior. Sup-
pose that a process gathers messages from several sources but is only interested in
the message arriving first: upon receiving this message, it sends a reaction mes-
sage. If priority is given to incoming messages, the reaction is delayed until all
incoming messages are processed. This behavior is not consistent with what a lot
of distributed algorithms (e.g., replication algorithms) expect: outgoing messages
are not delayed in such a way by incoming messages.

Interaction of tasks. At some values ofλ (actually, rational values) the CPU and
network tasks may want to take steps at exactly the same time: e.g., the network
task may take a message from an outgoing queue when a CPU task puts a message
into another outgoing queue. We want deterministic executions, therefore the order
of taking these steps must be defined. We do so by assigning priorities to tasks: the
network task has higher priority than process tasks. The choice is deliberate: its
effect is as if messages spentλ + ε time units on a CPU resource, rather thanλ,
whereε is an infinitesimally small value. Consequently, algorithms do not exhibit
a singular behavior in a system model withλ = 0; they behave atλ = 0 just like
at small values of lambda (ε). A singular behavior atλ = 0 would not have any
counterpart in reality: messages cannot be processed in a truly instantaneous way.

A similar problem arises when process tasks interact with the task(s) of the
application. The solution is also similar: the process tasks have higher priority than
the application tasks. Consequently, applications that react to incoming messages
in time 0 and in timeε behave the same way; once again, there is no singular
behavior corresponding to an application that reacts in a truly instantaneous way.

5.3.3 Messages sent to oneself

When describing an algorithm, it is often convenient to have processes send mes-
sages to themselves, or include themselves in the set of destinations of a message.
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Such messages take neither CPU nor network resources in our model.

5.3.4 Multicast messages

Distributed algorithms often send a message to several processes. The way this
is actually performed depends on the model (see below). Let processp send a
messagem to destinationspi1 , pi2 , . . . , pik wherei1 < i2 < . . . < ik andk ≥ 2.

Definition 1 (point-to-point) ModelMpp(n, λ) is the model with parametersn ∈
N and λ ∈ R+

0 , wheren > 1 is the number of processes andλ is the relative
cost between CPU and network. Multicasting is defined as follows:p sends the
messagem consecutively to all destination processes in lexicographical order:
pi1 , pi2 , . . . ,pik .

Many networks are capable of broadcasting/multicasting information in an effi-
cient manner, for instance, by providing support for IP multicast [Dee89]. For this
reason, we also define a model that integrates the notion of a broadcast/multicast
capable network.

Definition 2 (broadcast) ModelMbr(n, λ) is defined likeMpp(n, λ), with the
exception of multicast messages:p sends a single copy ofm (rather thank copies),
the network transmits a single copy ofm (rather thank copies), and each destina-
tion process receives one copy ofm (just like inMpp(n, λ)).

5.3.5 Illustration

Let us now illustrate the model with an example. We consider a system with three
processes{p1, p2, p3} which execute the following simple algorithm. Processp1

starts the algorithm by sending a messagem1 to processesp2 andp3. Upon recep-
tion of m1, p2 sends a messagem2 to p1 andp3, andp3 sends a messagem3 to p1

andp2.
Figure5.3shows the execution of this simple algorithm in modelMbr(3, 0.5).

The upper part of the figure is a time-space diagram showing the exchange of mes-
sages between the three processes (message exchange, as seen by the distributed
algorithm). The lower part is a more detailed diagram that shows the activity (send,
receive, transmit) of each resource in the model. For instance, processp1 sends a
messagem1 to processp2 andp3 at time 0. The message takes the CPU resource
of p1 at time 0, takes the network resource at time 0.5, and takes the CPU resource
of p2 andp3 at time 1.5. Finally,p2 andp3 simultaneously receivedm1 at time 2.

Similarly, Fig.5.4shows the execution of the algorithm in modelMpp(3, 0.5).
The network is point-to-point, so whenever a message is sent to all, many copies
of that messages are actually sent. For instance, processp3 sends a copy of mes-
sagem3 to processp1 (denotedm3,1) at time 3. The message takes the CPU
resource ofp3 at time 3, takes the network resource at time 4.5, and takes the CPU
resource ofp1 at time 5.5. Finally,m3 is received byp1 at time 6.
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Figure 5.3: Simple algorithm in modelMbr(3, 0.5).

5.4 Definition of the contention-aware metrics

5.4.1 Latency metric

The definition of the latency metric uses the terms: “start” and “end” of a dis-
tributed algorithm. These terms are supposed to be defined by the problemP that
an algorithmA solves. They are not defined (and cannot be defined) as a part of
the metric.

Definition 3 (latency metric, point-to-point) Let A be a distributed algorithm.
The latency metricLatencypp(A)(n, λ) is defined as the number of time units that
separate the start and the end of algorithmA in modelMpp(n, λ).

Definition 4 (latency metric, broadcast) LetA be a distributed algorithm. The
latency metricLatencybr(A)(n, λ) is defined as the number of time units that sep-
arate the start and the end of algorithmA in modelMbr(n, λ).
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Figure 5.4: Simple algorithm in modelMpp(3, 0.5) (mi,j denotes the copy of
messagemi sent to processpj).
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Relation to complexity metrics. When λ = 0, that is, processing messages
on the CPUs takes no time,Latency(A)(n, λ) gives the number of messages ex-
changed by the algorithmA and is hence related to message complexity (it is not
equal to message complexity, as message complexity is defined in a system model
without contention).

Whenλ → ∞, that is, processing messages on the network takes no time,
limλ→∞ Latencybr(A)(n, λ)/λ is related to time complexity. Consider an algo-
rithm that executes in synchronous rounds: in each round, every process sends
a message to every other process. Given such an algorithm, the above quantity
is proportional to the number of rounds3 , i.e., the latency degree of the algo-
rithmA [Sch97].

5.4.2 Throughput metric

The throughput metric of an algorithmA considers the utilization of system re-
sources in one run ofA. The most heavily used resource constitutes a bottleneck,
which puts a limit on themaximal throughput, defined as an upper bound on the
frequency at which the algorithm can be run.

Definition 5 (throughput metric, point-to-point) LetA be a distributed algorithm.
The throughput metric is defined as follows:

Thputpp(A)(n, λ) def=
1

maxr∈Rn Tr(n, λ)

whereRn denotes the set of all resources (i.e.,CPU1, . . . ,CPUn and the net-
work), andTr(n, λ) denotes the total duration for which resourcer ∈ Rn is uti-
lized in one run of algorithmA in modelMpp(n, λ).

Thputpp(A)(n, λ) can be understood as an upper bound on the frequency at
which algorithmA can be started. Letrb be the resource with the highest utilization
time: Trb

= maxr∈Rn Tr. At the frequency given byThputpp(A)(n, λ), rb is
utilized at 100%, i.e., it becomes a bottleneck.

Definition 6 (throughput metric, broadcast) Let A be a distributed algorithm.
The definition of the throughput metricThputbr(A)(n, λ) is the same as Defini-
tion 5, but in modelMbr(n, λ).

Relation to message complexity. The throughput metric can be seen as a gener-
alization of the message complexity metric. While our metric considers different
types of resources, message complexity only considers the network. It is easy to
see that the utilization time of the network in a single run gives the number of
messages exchanged in the algorithm.

3n times the number of rounds inMbr(n, λ); every process performs one send andn−1 receive
operations per round.
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5.4.3 Mathematical properties of the metrics

The (latency or throughput) metric for a given (deterministic) algorithm running
on a fixed number of processes is a function ofλ; let us denote itF (λ). It follows
from the system model (see Section5.3.2, interaction of tasks) thatF (λ) is right
continuous:limλ→λ0+0 F (λ) = F (λ0). F (λ) is not left continuous: jumps are
still possible. Also, as all actions in the system model take eitherλ time units or 1
time unit (or another constant amount of time, if the algorithm has timeouts), each
continuous piece ofF (λ) is a linear function ofλ.

5.5 Tool to compute the metrics

Computing the contention-aware metrics by hand is often tedious, especially for
the latency metric. Nevertheless, this method provides maximal insight: it pro-
duces parametric formulas withn andλ as parameters (and possibly other param-
eters associated with the algorithm). One can also compute the metrics by simu-
lating the algorithm and the system model. However, this method only yields the
metrics at fixed values ofn andλ.

In this section, we describe a tool that provides more insight than plain sim-
ulation: it yields parametric formulas withλ. The formula is produced in a fully
automated manner. The tool simulates the algorithm at certain fixed values ofλ
and records all events related to message passing. It then determines the interval
λ1 ≤ λ < λ2 in which the algorithm produces the same sequence of events. In this
interval, the metric is a linear function ofλ; the tool computes this function. These
steps are repeated until formulas are found for the whole domain ofλ (R+

0 ).

5.5.1 Building an activity network for an execution

Let us run a simulation of the algorithm in the system modelM(n, λ) (that is,
Mpp(n, λ) orMbr(n, λ)) at some fixed value ofn = n0 andλ = λ0. During the
execution, we build the following graph:

• Nodes of the graph areactivitiesoccurring on any task (application process,
CPU task or network task). There are input, output and local activities. The
output activity send(m) and the input activity receive(m) correspond to pass-
ing a message with identifierm between tasks. Local activities of interest are
those that take a certain timet to execute; other events take time0. During
the simulation, all these activities are recorded.

• Nodes are labeled by the amount of time that the corresponding activity
takes. In our model, only the activity of processing messages takes time:
1 time unit on the network andλ0 time units on the CPUs.

• Arcs of the graph correspond toprecedence relationsamong activities. An
activity can only start when all immediately preceding activities have fin-
ished. For any messagem, send(m) precedes receive(m). Moreover, an
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activity e precedes another activitye′ if they are executed by the same task
ande is executed beforee′. Arcs are drawn when an activity is recorded: the
new node has an arc coming from the node that corresponds to the previous
activity on the task, and, if it is the activity receive(m), it also has an arc
coming from the node corresponding to send(m).

Graphs of this type are known asactivity networkor PERT (Program Evaluation
and Review Technique) chart. Using well-known techniques, it is possible to com-
pute minimum completion times between any two activities, and many more things.

We use this activity network to compute the latency metric. Let us record the
start and the end of the algorithm as activities. Then the latency metric is simply
the minimum completion time between these two activities.

Of course, in this particular setting, one can compute the latency metric much
easier, without constructing the activity network: during the simulation, one records
the value of the simulation clock at the start and the end of the algorithm and then
computes the difference. However, simulation only yields results for fixed values
of λ, whereas the method based on the activity network is easily extended to yield
parametric formulas. The extended method is described in the next section.

5.5.2 Parametric computations

Let us now label each node of the activity network with a parametric formula of the
form a + b · λ rather than a scalar value. The latency metricLatency(A)(n0, λ) is
computed as before: it is the minimum completion time between the start and the
end of the algorithm. The result is a linear function of lambda:

Latency(A)(n0, λ) = ac + bc · λ (5.1)

with some constantsac andbc. This formula is not only valid forλ = λ0, the value
used for the simulation that built the activity network. We now compute a valueλ1

and show that the formula is valid for anyλ such thatλ0 ≤ λ < λ1, supposing that
the algorithmA is deterministic.

On deterministic algorithms. We first precise what we mean by a deterministic
algorithm. We modeled the system (the algorithm and the network; see Section5.3)
as a set of tasks interacting with instantaneous message passing; the interactions
appear as activities in the activity network. A task isdeterministicif it is fully de-
scribed by a state machine, i.e., the state of the task only changes when it executes
an activity, and the state of the task just before the activity and the activity itself
determine the state just after the activity. The algorithm is deterministic if all of its
tasks are deterministic.4

4This means that a deterministic algorithm cannot use random numbers or clocks. Neither can
it have non-deterministic scheduling of its tasks, nor can it communicate with the outside world. If
these assumptions are too restrictive, one can resort to probabilistic evaluation (for random numbers)
or one can include a model of clocks, threading, and the outside world into the model.
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If the algorithm is deterministic, the whole system is deterministic as the CPU
and network tasks are deterministic (see Section5.3.2). In a deterministic system,
the relative order of activities on each task determines the whole execution. The
activity network records the relative order of activities forλ = λ0.

Computing λ1. λ1 is the value up to which one can increaseλ without changing
the relative order of activities on tasks. Formula5.1is thus valid in the rangeλ0 ≤
λ < λ1. We computeλ1 as follows. Let us compute theslack for each activity
Ai (i = 1, 2, . . . , k wherek is the number of activities), i.e., the amount of time
for which Ai can be delayed without altering (increasing) the overall minimum
completion time between the start and the end of the algorithm. All the slacks are
parametric formulas; let us denote the slack forAi by ai

s + bi
s · λ. As we increase

λ, the order of activities on each task remains the same as long as all slacks are
non-negative:

∀i = 1, . . . , k ai
s + bi

s · λ ≥ 0

λ1 is simply the highest value for which this holds. It is computed as follows:

λ1 = min
i=1,...,k

{
−ai

s/bi
s if bi

s < 0
+∞ if bi

s ≥ 0

}
We still need to explain whyλ1 is strictly greater thanλ0. The reason is simply

that we gave CPU tasks, i.e., the tasks that takeλ time, the lowest priority of all (see
Section5.3.2): an activity of message processing on a CPU that finishes at some
time T executes after all other activities that finish at timeT , hence it is possible
to increaseλ by a small value without changing the order of activities.

5.5.3 Summary: the algorithm

The tool repeats the parametric computations described in the previous section
until the latency metric is computed for all of the domain forλ. An overview of
the algorithm is presented in Algorithm5.5.

1: λ1 ← 0
2: repeat
3: λ0 ← λ1

4: simulate the algorithmA with λ = λ0 and build the activity network
5: compute formulas for the overall completion timeac + bc · λ and the slacks
6: computeλ1 using the slacks
7: output the result “latency isac + bc · λ if λ0 ≤ λ < λ1”
8: until λ1 = +∞

Figure 5.5: Overview of the algorithm that computes a parametric formula for the
contention-aware metrics.
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A few remarks regarding the algorithm are appropriate:

• In line 4, the algorithm only actually constructs the nodes for activities that
take non-zero time.

• For a lot of problems, several different definitions are appropriate for the
latency metric. E.g., for a broadcast algorithm, the start of the algorithm is
the sending of a message, but the end of the algorithm can be the earliest
delivery of the message, the latest delivery, etc. In line 4, the algorithm can
compute several definitions of the latency metric in one go: as the completion
time is computed for each activity, it is easy to compute each definition as
the difference of the completion times of the start and end activities.

• The tool is not restricted to the latency metric. The throughput metric can
be easily computed as well: in each simulation (line 3), one has to record
the utilization of each resource (CPU and network resource), and use the
utilizations to compute the throughput metric (in parametric form).

5.6 Atomic broadcast algorithms

In this section, we describe the atomic broadcast algorithms used in the perfor-
mance studies of Sections5.7and9.

Atomic broadcast ensures that all destinations deliver the messages in the same
order (see Section2.2.3). Our previous work [DSU00] classifies more than 60 dif-
ferent algorithms into four classes, based on differences in the ordering mechanism:
sequencer,5 privilege-based, communication history, anddestinations agreement.
For the performance studies, we chose representative algorithms of each class. The
representative algorithms are simplified variants of existing algorithms. Whenever
possible, we consider both a uniform and a non-uniform variant. For readability
and conciseness, we give only an informal description of each algorithm, illustrat-
ing their execution on a time-space diagram. Each scenario illustrates an execution
of the algorithm wherein a single process broadcasts one messagem only. We
also assume that no failure occurs during the execution. The communication pat-
tern thus described is sufficient for computing the contention-aware metrics. The
pseudo-code of each algorithm is given in the Appendix, in SectionA.2.

5.6.1 Sequencer

In sequencer algorithms, one process or several processes are elected as sequencers
that are responsible for ordering all messages. [DSU00] distinguishesfixed se-
quenceralgorithms with one sequencer process frommoving sequenceralgorithms
in which the role of sequencer passes from one process to another. We chose two
simple fixed sequencer algorithms to represent this class (moving sequencer algo-
rithms are discussed later on).

5Actually, [DSU00] distinguishesfixed sequencerandmoving sequenceralgorithms.



60 CHAPTER 5. CONTENTION-AWARE PERFORMANCE METRICS

 m 

 m,seq(m) 
p

1

p
2

p
3

p
4

(a) Non-uniform delivery

 m 

 m,seq(m) 

 ack

 stable 
p

1

p
2

p
3

p
4

(b) Uniform delivery

Figure 5.6: Representative for sequencer algorithms.

The representative algorithms run as follows (see Fig.5.6): when a processp
wants to broadcast a messagem, it sendsm to the sequencer. The sequencer
assigns a sequence number tom, and sends bothm and the sequence number to
the other processes. In the non-uniform algorithm, processes deliverm as soon as
they receive it with its sequence number. In the uniform algorithm, the processes
can deliverm only after it has been acknowledged by all processes, as shown on
Fig. 5.6(b).

Fixed sequencer algorithms described in the literature are rarely uniform. The
main reason is probably because the cost of uniformity is comparatively higher
for fixed sequencer algorithms than for those of other classes. Isis [BSS91] and
Amoeba [KT91b] are two well-known examples of fixed sequencer algorithms.

Moving sequencer algorithms are not represented in our studies. As the role of
sequencer is passed from one process to another by means of a token, the commu-
nication pattern of moving sequencer algorithms is very close to that of privilege-
based algorithms, described in the next section. For this reason, analyzing such
algorithms would not yield a lot of additional information. The Atomic broadcast
algorithm proposed by Chang and Maxemchuck [CM84] is a well-known example
of a moving sequencer algorithm.

5.6.2 Privilege-based

With privilege-based algorithms, the delivery order is determined by the senders.
Whenever a process has a message to broadcast, it must first obtain the privilege to
do so.

The non-uniform algorithm works as follows (see Fig.5.7). A token carrying
a sequence number constantly circulates among the processes. When a processp
wants to broadcast a messagem, it simply storesm in a send queue until it receives
the token. Whenp receives the token, it extractsm from its send queue, uses
the sequence number carried by the token, and broadcastsm with the sequence
number. Then,p increments the sequence number and transmits the token to the
next process. To reduce the number of messages,p can broadcast the token along
with m in a single message. When a process receivesm, it deliversm according
to its sequence number.
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Figure 5.7: Representative for privilege-based algorithms.

In the uniform algorithm (Fig.5.7(b)), the token also carries the acknowledg-
ments. Before delivering a messagem, processes must wait until they know that
m is received by all, which requires a full round-trip of the token.

Totem [AMMS+95] is a typical illustration of a privilege-based Atomic broad-
cast algorithm.

5.6.3 Communication history

With communication history algorithms, the delivery order is determined by the
senders, just like with privilege-based algorithms. The difference is that processes
can send messages at any time. The destinations observe the messages generated
by the other processes to learn when delivering a message will no longer violate
the total order.

 empty m 
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(a) Uniform delivery

Figure 5.8: Representative for communication history algorithms.

The algorithm that we consider in this paper (see Fig.5.8) works as follows.
A partial order is generated by using logical clocks [Lam78] to “timestamp” each
messagem with the logical time of theA-broadcast(m) events. This partial order
is then transformed into a total order by using the identifier of sending processes to
arbitrate concurrent messages as follows: if two messagesm andm′ have the same
logical timestamp, thenm is beforem′ if the identifier ofsender(m) is smaller
than the identifier ofsender(m ′). It follows that a processp can deliver some
messagem only once it knows that no messagem′ received in the future will carry
a lower timestamp (or an equal timestamp and a smaller identifier forsender(m ′)
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than the identifier ofp). The algorithm requires FIFO channels (which are easily
implemented by attaching sequence numbers to messages).

The algorithm as described so far would not be live because a silent process
would prevent other processes from delivering. To avoid this, a processp is re-
quired to broadcast anemptymessage after a delay∆live, if it has nothing else to
broadcast. When computing the latency metrics, we make the simplifying assump-
tion that∆live = 0. In the case of computing the throughput, the scenario does not
generate any empty message anyway.

Communication history algorithms are basically an application of Lamport’s
mutual exclusion algorithm based on logical clocks [Lam78]. Some examples are
given by Psync [PBS89], and Newtop [EMS95].

5.6.4 Destinations agreement

With destinations agreement algorithms, the delivery order is determined by the
destination processes. In short, this is done in one of two ways; (1) ordering infor-
mation generated by every process is combined deterministically, or (2) the order
is obtained by an agreement between the destinations (e.g., consensus).
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Figure 5.9: Representative for destinations agreement algorithms.

The non-uniform representative algorithm uses the first approach and is adapted
from Skeen’s algorithm, as described by Birman and Joseph [BJ87]. The algorithm
works as follows (see Fig.5.9(a)). To broadcast a messagem, processp1 sendsm
to all processes and acts as a coordinator for the delivery ofm. Upon receivingm,
a processq sends an acknowledgment and a logical timestamptsq(m) back top.
Processp1 gathers all timestamps and computes the final timestampTS (m) as the
maximum of all received timestamps. Finally,p1 sendsTS (m) to all processes
which deliverm according toTS (m).

The uniform representative algorithm uses the second approach and is due to
Chandra and Toueg [CT96]. The algorithm works as follows (see Fig.5.9(b)).
Messages are sent to all processes without any additional information. Whenever
the algorithm has messages to order, it runs a consensus algorithm to decide on
the order (see Section2.2.1). We use the Chandra-Toueg3S consensus algorithm
[CT96] for this purpose: one process (calledcoordinator) proposes an order, waits
for acknowledgments from a majority of all processes (these are all positive if no
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process is suspected to have crashed), and then broadcasts its decision to all. Upon
receiving the decision, the processes deliver the messages concerned. A detailed
pseudocode description of the algorithm is given in SectionB.2, in the Appendix.

5.7 Comparison of atomic broadcast algorithms

We now illustrate the use of our two metrics by comparing four different atomic
broadcast algorithms described in Section5.6, using the contention-aware met-
rics, as well as time and message complexity. The four algorithms are the non-
uniform sequencer algorithm (called Seq in the sequel; see Fig.5.6(a)), the uni-
form privilege-based algorithm (PB; see Fig.5.7(b)), the uniform communication
history algorithm (CH; see Fig.5.8(a)), and the non-uniform destinations agree-
ment algorithm (DA; see Fig.5.9(a)). We show that our metrics yield results that
are more precise than what can be obtained by relying solely on time and message
complexity. This confirms the observation that contention is a factor that cannot be
overlooked.

The purpose of this section is to illustrate the use of the contention-aware met-
rics; the actual results of the comparison are of less interest. The reason is that in
order to obtain truly useful results, one would have to carefully choose algorithms
with more similar properties: the four algorithms differ not only with respect to
uniformity, but also regarding that some of them are easily adapted to open groups,
where senders can be outside of the destination group, while others only work in
closed groups (just to name another difference). Also, one would need to examine
them under a variety of workloads and faultloads. Hence a truly useful comparison
would require a much more extensive study. In fact, such extensive studies with
comparable algorithms are the subject of Chapters7 and8.

An extension of the study described in this section, comprising a uniform and
a non-uniform variant for each class of atomic broadcast algorithms [DSU00] and
using the same metrics, appears in [Déf00].

5.7.1 Latency metric

We now analyze the latency of the four atomic broadcast algorithms. The workload
is such that a single process broadcasts one messagem only. We also assume that
no failures occur. The latency of the algorithm with respect to a messagem is
defined as follows: the algorithm starts when a process executes A-Broadcast(m)
and ends when the last process executes A-Deliver(m).6 Only the PB algorithm
(Fig. 5.7(b)) constituted a special case: the latency of this algorithm depends on
where the token is at the moment of executing A-broadcast(m). We computed the
latency supposing that the token arrives after its expected arrival time, that is, one
half of the time needed for a full round-trip.

6This definition corresponds tolate latency, introduced in Section6.1.
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The results for the modelMpp(n, λ) are summarized in Table5.1 and com-
pared in Fig.5.10(a).7 Table5.1also shows the time complexity of the algorithms.
For time complexity, we use thelatency degree[Sch97]: roughly speaking, an
algorithm with latency degreel requiresl communication steps.

Alg. A Latencypp(A)(n, λ) Time complexity

Seq 2(2λ + 1) + (n− 2)max(1, λ) 2

PB (2.5n− 1)(2λ + 1) + max(1, λ)(n− 1) 2.5n− 1

CH

≈ 3(n− 1)λ + 1 if n ≤ λ + 2

≈ 1
2
n(n− 3) + 2λn + 1

2
λ2 − 3

2
λ if n ≤ 2λ + 3

≈ 1
2
n(n− 1) + 2λn + λ2 − 7

2
λ− 3 if n ≤ 4λ− 4

≈ n(n− 1) + λ2 + λ + 5 otherwise

2

DA
≈ 3(n− 1) + 4λ if λ < 1

≈ (3n− 2)λ + 1 if λ ≥ 1
3

Table 5.1: Latency metric: evaluation of atomic broadcast algorithms (in model
Mpp(n, λ)).

Figure5.10(a)represents the results of the comparison between the four algo-
rithms with respect to the latency metric. The area is split into three zones (I, II
and III) in which algorithms perform differently with respect to each other (e.g., in
Zone I, we have Seq> CH> DA > PB, where> means “better than”). The latency
metric and time complexity yield the same results for three of the four algorithms:
Seq, PB and DA. Both metrics yield that Seq performs better than DA, which in
turn performs better than PB. For CH, time complexity (Table5.1) suggests that
it always performs better than the other algorithms. This comes in contrast with
our latency metric which shows that the relative performance of CH are dependent
on the system parametersn andλ. The reason is that CH generates a quadratic
number of messages and is hence subject to network contention to a greater extent.
Time complexity is unable to predict this as it fails to account for contention.

5.7.2 Throughput metric

We now analyze the throughput of the four algorithms. In a throughput analysis,
one run of the algorithm should not be considered in isolation. Indeed, many algo-
rithms behave differently whether they are under high load or not (e.g., CH does not
need to generate null messages under high load). For this reason, the throughput
metric is computed by considering a run of the algorithmunder high load. We also
assume that every process atomically broadcasts messages, and that the emission

7For reasons of clarity, we choose to give approximate formulas forLatencypp(CH)(n, λ) and
Latencypp(DA)(n, λ). The expressions given for these two algorithms ignore a factor that is neg-
ligible compared to the rest of the expression. The exact expressions are given in the appendix,
SectionA.3. A description of the analysis is given in [UDS00a].
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Figure 5.10: Comparison of atomic broadcast algorithms in the point-to-point
model (A > A′ meansA “better than”A′).

is distributed fairly among them. For each algorithm, we compute the value of the
throughput metric in modelMpp(n, λ). The results are summarized in Table5.2.
The full description of the analysis is given in [UDS00a].

Figure5.10(b)illustrates the relative throughput of the four algorithms. The
graph is split into three zones (I, II and III) in which algorithms perform differently
with respect to each other. The throughput metric and message complexity both
yield that CH performs better than PB which in turn performs better than DA.
However, the two metrics diverge when considering Seq. Indeed, while message
complexity (Table5.2) suggests that Seq always performs better than PB and DA,
our throughput metric shows that it is not always the case. In fact, Seq is more
subject to CPU contention than the other three algorithms. This type of contention
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Figure 5.11: Comparison of atomic broadcast algorithms in the broadcast model
(A > A′ meansA “better than”A′).
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Algorithm A (Thputpp(A)(n, λ))−1 Message complexity

Seq (n− 1
n
) ·max(1, λ) n− 1

n

PB n ·max(1, 2λ
n

) n

CH (n− 1) ·max(1, 2λ
n

) n− 1

DA 3(n− 1) ·max(1, 2λ
n

) 3(n− 1)

Table 5.2: Throughput metric: evaluation of atomic broadcast algorithms (in model
Mpp(n, λ)).

is especially noticeable in systems with large values ofλ. Message complexity
fails to pinpoint this, as it does not take CPU contention into account.

5.7.3 Latency and throughput in broadcast networks

The analyses in modelMbr(n, λ) are not much different. The full description of
the analysis is given in [UDS00a]. In fact, there are fewer messages and less con-

Algorithm A Latencybr(A)(n, λ)

Seq 2(2λ + 1)

PB ( 5n
2
− 1)(2λ + 1) + max(1, λ)

CH 4λ + n

DA 6λ + 3 + (n− 2) ·max(1, λ)

Table 5.3:Latencybr(A)(n, λ): evaluation of atomic broadcast algorithms.

Algorithm A (Thputbr(A)(n, λ))−1 Msg complexity

Seq 2n−1
n

max(1, λ) 2− 1
n

PB max(2, n+2
n

λ) 2

CH max(1, λ) 1

DA max(n + 1, 4n+1
n

λ) n + 1

Table 5.4:Thputbr(A)(n, λ): evaluation of atomic broadcast algorithms.

tention. Table5.3and Table5.4show the results of the two metrics in a broadcast
network (Latencybr(A)(n, λ) andThputbr(A)(n, λ)). Apart from the fact that
these results are simpler than in a model with point-to-point communication, there
are interesting differences.

According to the latency metric, for any value ofλ andn, the algorithms are
always ordered as follows:

Seq > CH > DA > PB

Unlike the results obtained withLatencypp(A)(n, λ), there is only one single zone
with a broadcast network (hence not shown in Fig.5.11). This zone corresponds
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to zone I depicted on Figure5.10(a)but, in modelMbr(n, λ), the algorithms are
not ordered differently asn increases. This is easily explained by the fact that CH
generates a quadratic number of messages in modelMpp(n, λ) while it generates
a linear number of messages in modelMbr(n, λ). The latency of the three other
algorithms is not so much different in the two models because they generate a linear
number of messages in both models.

Similarly, Thputbr(A)(n, λ) yields simpler results thanThputpp(A)(n, λ).
As shown in Figure5.11, the parameter space is cut into two zones I and II (instead
of three forThputpp(A)(n, λ), as shown on Fig.5.10(b)). The difference between
the two zones is the relative performance (throughput) of Seq and PB. This yields
that PB is better than Seq when the CPU is a limiting factor. In fact, Seq is limited
by the sequencer process which becomes a bottleneck. Conversely, PB spreads
the load evenly among all processes, and thus no process becomes a bottleneck.
Once again, both classical metrics (time and message complexity) fail to capture
this aspect of the algorithms’ execution.

5.8 Experimental validation

In this section, we present the results of the validation of the contention-aware
latency metric by measurements performed on a local area network. For each of
the seven atomic broadcast algorithms described in Section5.6(four of which were
also used in Section5.7) we (1) measured the latency, (2) computed the contention-
aware latency and (3) computed some traditional complexity metrics. We then
used regression models to estimate the values of the parameters of the metrics.
Our results show that the contention-aware metric is a better estimate of measured
values than traditional complexity metrics, according to the sums of squared errors
given by the regression models.

5.8.1 Workloads and metrics

In our experiments, we vary the number of participating processesn from 2 to 11.
We consider isolated broadcasts: all messages belonging to a given broadcast are
transmitted before a new broadcast starts (with the measurements, sending broad-
casts every 10 ms was enough to guarantee this). Each broadcast is sent to all
processes. Broadcasts are sent by each process using a round-robin scheme. No
failures and no failure suspicions occur during the experiments.

For each broadcast, we measure the time that elapses from the time of sending
to the time of thei-th delivery, for alli = 1, . . . , n (that is,n latency values are
recorded for each broadcast). The time until the first delivery is calledearly la-
tency, and the time until the last delivery is calledlate latency.8 All latency values
are averaged over all executions and the set of senders.

8See Section6.1for more verbose definitions of latency metrics.
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Altogether, we evaluate 7 algorithms, withn = 2 to 11 processes andn latency
metrics for each value ofn. Our data set comprises thus7 · (2 + . . . + 11) = 455
data points.

5.8.2 Computing the metrics

We computed the contention-aware latency metric using the tool described in Sec-
tion 5.5. We ran the tool once for each combination of algorithm, number of pro-
cesses and possible sender. We then averaged the latency formulas over the set
of senders. Both the point-to-point model (Mpp(n, λ)) and the broadcast model
(Mbr(n, λ)) were used.

Simpler complexity metrics (time and message complexity) have been com-
puted manually.

Finally, we would like to point out that the privilege-based algorithms needed
special treatment. Contrary to all other algorithms, the privilege-based algorithms
generate messages even when no atomic broadcast is taking place (the token is
passed around; see Fig.5.7). For this reason, the tool that computes the latency
metric cannot detect the end of an atomic broadcast; it usually detects the end of
a broadcast by noticing that there are no messages are in transit on the simulated
network. To cope with this problem, we had to (1) generate the token at the sending
process when a broadcast begins, (2) remove the token after three round-trips, and
(3) add half of the token round-trip time, i.e., the mean time until the token arrives
at a given process, to the computed latency formulas.

5.8.3 Measurements

We used the TCP protocol to implement the algorithms. We chose TCP as all
algorithms require reliable channels. As future work, we would like to repeat the
measurements using a lightweight reliable multicast layer on top of IP multicast.

The duration of each experiment was 2000 s; as broadcasts are sent every 10
ms, this corresponds to 200’000 broadcasts. We need such long experiments be-
cause the Java just-in-time (JIT) compiler only acts after a large number of broad-
casts: the latency only stabilizes after about 20’000-50’000 broadcasts. For this
reason, we discard the first one third of the measured values. We also drop out-
liers, defined as being at least 5 times as much as the mean latency. Most outliers
seem to be due to Java garbage collection; a garbage collection run shows up as
an increasing sawtooth in the scatter plot (we ignore garbage collection as (1) it
is unpredictable and (2) its overhead could easily be decreased by careful mem-
ory allocation policies). In each run, less than 2% of all data are dropped. As
the remaining data still shows long term correlations (over minutes), we computed
95% confidence intervals from 3 independent experiments for each possible setting
(algorithm and number of processes).
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5.8.4 Analyzing the data

Predicting latency with the contention-aware metric. In order to relate the pre-
dictions of the contention-aware metric to the measured values, we need to deter-
mine the parameterλ, as well as the time unit of the metric, denoted bytn: the time
that a message spends on the network resource. We could determine these parame-
ters by (1) measuring the latency of two simple algorithms, (2) setting the measured
values equal to the corresponding formulas given by the contention-aware metric,
and (3) solving the resulting set of equations forλ and tn. Unfortunately, the
contention-aware metric is not a sufficiently accurate description of reality to make
this simple approach work: it abstracts away a lot of differences in the execution
of algorithms, e.g., the length and the structure of messages (the more complex
the structure of a message, the more time it takes to serialize and deserialize the
message).9 Therefore we need to use a more indirect way of determining the pa-
rametersλ andtn: we build a regression model to fit the predictions to all measured
data points, in whichλ andtn appear as predictor variables.

The regression model for the contention-aware metric is as follows. Suppose
for a moment that the latency formula is given bya · λ + b over the whole range of
λ, with some constantsa andb. Then we can use the following simple regression
model to getλ andtn:

L = (aλ + b) · tn + L · e

whereL is the measured value, ande is the relative error of estimating the latency.
The model can be rewritten as follows:

1 =
a

L
· (λ · tn) +

b

L
· tn + e

In this form, it is more visible that the model is a regression model with two
predictor variablesλ · tn andtn. We used well-known techniques to find values for
the predictor variables that minimize the sum of squared errors (SSE) fore over all
data points. The basic assumptions for using such a regression technique hold: in
particular, it is safe to assume that the magnitude ofe values is constant, or, in other
words, that the magnitude of the absolute error of estimating the latency (L · e) is
proportional to the measured latencyL.

In the general case, the latency formula is not linear over the whole range of
λ, as we supposed so far. It is a piecewise linear function ofλ, as illustrated in
Fig. 5.12(see also Section5.4.3). Just as before, we are looking for theλ value
that gives the least sum of squared errors (SSE) globally. We do so by performing
a regression for each of the pieces, with different values fora andb in the regres-
sion model. Then we check if theλ computed falls within the right interval. If it
does (lines A and C in Fig.5.12) then it is a candidate that might yield the global
minimum for the SSE. If it does not (lines B and D in Fig.5.12) then the bounds of

9The results in Section5.8.5 show what accuracy can be achieved with the contention-aware
metric.
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the interval forλ are candidates.10 The SSE values that each candidate yields are
compared to find the global minimum for the SSE.

L

λ0

λ that might yield
the smallest global SSE

λ that yields the smallest SSE
in each regression
(if different from     )

A

B

C

D

Figure 5.12: Latency as a function ofλ in the general case.

We performed the above regression study for both network models:Mpp(n, λ)
andMbr(n, λ).

Predicting latency with traditional complexity metrics. We consider three met-
rics: time complexity, and two kinds of message complexity: given a multicast
message tok destinations, we consider this message ask messages in the first
kind, and as one message in the other kind.

Fitting the predictions of any of these complexity metrics to the measured val-
ues only requires one time parameter, denoted byt. Just as before, we determine
this parameter using regression. The regression model is the following:

L = c · t + L · e (5.2)

wherec is the value of the complexity metric, andt is the only predictor variable.
Only one regression model is necessary.

Comparing metrics. We compare the metrics (both contention-aware and tradi-
tional) using the SSE that the regression yields for each. Lower values indicate that
the metric in question is better at predicting the latency.

Note that the contention aware-metrics have two parameters, whereas tradi-
tional complexity metrics have only one parameter. Hence a direct comparison of
the contention-aware metrics and the traditional complexity metrics might seem
unfair: the flexibility provided by the extra parameter might partially explain why
the contention-aware metrics yield better predictions. In order to have a fair com-
parison, we also consider the linear combination of time and message complexity.

10Actually, the explanation and Fig.5.12is simplified for better readability. One might also need
to consider other values ofλ. The reason is that the SSE as a function ofλ might have several local
minima, asλ is computed as a ratio of two regression variables.
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Metric se Parameters of metric

contention-aware,Mpp(n, λ) 0.131 λ = 4.01 tn = 35.5 µs
contention-aware,Mbr(n, λ) 0.201 λ = 0.187 tn = 267µs
time complexity 0.582 t = 590µs
message complexity (pp) 0.595 t = 72.1 µs
message complexity (br) 0.403 t = 293µs
time and message complexity
(pp) combined

0.449 ttc = 368µs tmc = 43.1 µs

time and message complexity
(br) combined

0.403 ttc = −41.5 µs
tmc = 309µs

Table 5.5: Estimating the latency of algorithms using a variety of metrics using
regression.se denotes the standard deviation of errors; the lower, the better.

The resulting metrics have two parameters, just like the contention-aware metric.
The regression model is then the following (compare with Formula5.2):

L = ctc · ttc + cmc · tmc + L · e

wherectc andcmc are the values of the time and message complexity metric, re-
spectively, andttc and tmc are the corresponding predictor variables. The SSE
obtained from this model is directly comparable with the SSE obtained from the
contention-aware metric. Note that this model is by no means inspired from re-
ality, unlike the complexity metrics and the contention-aware metric; it is just a
mathematical construction.

5.8.5 Results

Our main results are summarized in Table5.5. Similarly to the contention-aware
metrics, the table shows two variants of message complexity: the point-to-point
(pp) variant considers a multicast message as multiple point-to-point messages,
whereas the broadcast (br) variant considers it as one message.se, the standard
deviation of relative errors, is proportional to the SSE and is thus a lower-is-better
measure of the goodness of the regression. Comparing these values, we can make
a number of observations:

• All of the traditional metrics do much worse at predicting latency than the
contention-aware metric in eitherMpp(n, λ) orMbr(n, λ), including the
models with the same number of parameters, namely the combinations of
time and message complexity. This is the main result of this study. It shows
that resource contention is a phenomenon worth modeling.

• Mpp(n, λ) yields more accurate predictions thanMbr(n, λ). This is hardly
surprising, as we used the point-to-point TCP protocol in the measurements,
and thus we could not exploit the multicast support at the network level.
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Hence we expected that the model with only point-to-point messages is a
better fit.

• Of all traditional metrics, time complexity gives the second worst results. It
is significantly surpassed by the broadcast variant of message complexity,
and is not much better than the point-to-point variant. This is surprising
because, unlike time complexity, message complexity is usually not thought
of as a latency metric.

The regression techniques used depend on the assumption that the measured
values have been determined with no error. In practice, this means that the errors
of measurement should be much smaller than the error of the regression. In our
study, this assumption holds: the average relative error, computed from the 95%
confidence intervals for the measured values, is0.0405, much smaller than any of
these values in Table5.5.

Graphs. In the rest of the section, we present some graphs to illustrate our re-
sults (Figures5.13to 5.16). Each graph shows the relative error of the latency on
the vertical axis, i.e., the difference of the values estimated with a metric and the
measured value, divided by the measured value. The zero horizontal axis is given
as a reference; the closer a curve is to the reference axis, the better. The horizontal
axis shows the number of processes. Each row shows results for one algorithm
only. The left and right columns show the relative errors of the early and the late
latency, respectively.

Figures5.13and5.14show the relative error of the latency estimates obtained
with five different metrics: all metrics from Table5.5, except for standalone mes-
sage complexity. The purpose of the graphs is to show visually that the contention-
aware metrics yield better results than conventional complexity metrics, for nearly
all of the atomic broadcast algorithms. Comparing graphs with different algorithms
is less interesting, hence the vertical scales are different in each graph in order to
make the curves fill up all available space.

The second set of graphs (see Figures5.15 and5.16) show only the relative
error of the latency estimated by the contention-aware point-to-point metric, the
best match in Table5.5. The vertical scales are the same in all graphs. One can
make a number of observations:

• One can see that the errors are systematic rather than random. This is not
surprising, as the contention-aware metric relies on a simple model.

• The metric systematically overestimates the latency of some algorithms (see
e.g., the uniform destinations agreement algorithm in Fig.5.16) and underes-
timates the latency of some other algorithms (see e.g., the uniform sequencer
algorithm in Fig.5.15). This seems to be correlated to how simple the mes-
sages generated by each algorithm are. Simple messages are shorter and
are serialized faster, while complex messages are longer and serialization is
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Figure 5.13: Relative error of latency for a variety of metrics (1).
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Figure 5.14: Relative error of latency for a variety of metrics (2).
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Figure 5.15: Relative error of latency for the contention-aware metric in model
Mpp(n, λ) (1).
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Figure 5.16: Relative error of latency for the contention-aware metric in model
Mpp(n, λ) (2).
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slower. The metric does not take this difference into account, hence it has
a tendency to overestimate the latency of algorithms with simple messages
and vice versa. The sequencer and the communication history algorithms
generate simple messages (the timestamped atomic broadcast message, or
just a timestamp); all the corresponding graphs (except early latency, non-
uniform sequencer algorithm) show that latency is underestimated. On the
other hand, the destinations agreement algorithms and the uniform privilege-
based algorithm use complex messages, and their latencies are underesti-
mated.

• One can also see that the (signed) relative error is lower on the graph showing
the early latency of an algorithm (leftmost graph in a row) than on the graph
showing the late latency (rightmost graph in the same row). This holds for all
algorithms except the non-uniform privilege-based algorithm. Hence there
seems to be a factor that increases late latency more than early latency, and
that the contention-aware metric does not account for.

This factor is probably the distribution of message transmission times in an
Ethernet network: as Fig.5.17 shows, the distribution is bimodal, with a
mode at≈ 0.2 ms and another at≈ 0.7 ms, the latter representing about
6% of all messages. The causal chain of messages leading to the last A-
deliver event of an atomic broadcast (used in defining late latency) is likely
longer than the chain leading to the first A-deliver event (used in defining
early latency), hence the fact that the distribution is bimodal increases late
latency to a greater extent. The contention-aware metric does not represent
this bi-modal distribution: the end-to-end transmission time is constant if no
resource in the network model is busy.
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Figure 5.17: Cumulative distribution of the end-to-end transmission time in a
lightly loaded Ethernet network.
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Chapter 6

Benchmarks for atomic broadcast
algorithms

Agreement problems (see Section2.2) have been extensively studied in various
system models, and many protocols solving these problems, with different levels
of guarantees, have been published [BMD93, DSU00]. However, these protocols
have mostly been analyzed from the point of view of their safety and liveness prop-
erties, and little has been done to analyze theirperformance. Moreover, it is diffi-
cult to compare the results of performance studies of agreement algorithms as the
assumptions of each study are wildly different: there is no agreement on the metrics
and the workloads used to analyze algorithms. Also, most papers focus on analyz-
ing failure free runs, thus neglecting the performance aspects of failure handling.
In our view, the lack of well defined benchmarks, in both failure free scenarios
and scenarios with failure handling, is an obstacle for adopting such protocols in
practice.

This chapter defines benchmarks for atomic broadcast. These benchmarks are
extensively used in the performance studies in Chapters7 and8. The benchmarks
include well-defined metrics, workloads and failure scenarios (faultloads). The fo-
cus is on defining the metrics and faultloads; in the case of workloads, we preferred
simplicity over detailed, realistic models. The reason is that metrics and faultloads
are more likely to be relevant for several performance studies, whereas the types of
workloads vary a lot from one study to another.

The chapter is structured as follows. We start by describing performance met-
rics in Section6.1, followed by workloads in Section6.2. Faultloads, i.e., the part
of the workload that describes how failures and failure suspicions occur, are pre-
sented in Section6.3. Related work is presented in Section6.4.

6.1 Performance metrics

In this section, we are only concerned with speed metrics (see Section3.2 for the
terminology); reliability and availability metrics are discussed in Section6.3.

79
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We are looking for metrics defined in terms of theinterfaceto atomic broadcast,
i.e., the time and frequency of occurrences of A-broadcast and A-deliver events.
This ensures that our metrics are valid for all possible atomic broadcast algorithms,
which would not be the case if we used details of the implementation.

6.1.1 Latency metrics

We define several responsiveness metrics for atomic broadcast, i.e., metrics re-
lated to the time it takes the system to respond to an A-broadcast event request-
ing the transmission of messagem by A-deliveringm on processes. Let the A-
broadcast(m) event occur at timet0. and the corresponding A-deliver(m) event on
pi at timeti, for eachi = 1, . . . , n. Each variant of latency, denoted byL and an
index, measures the time that elapses from sending the message until it is delivered
on some process.Early latencyis defined as the time until the first delivery:

Learly
def=

(
min

i=1,...,n
ti

)
− t0

Late latencyis defined as the time until the last delivery:

Llate
def=

(
max

i=1,...,n
ti

)
− t0

Note that this definition works even when processes crash, if we consider that
ti is not defined if processpi crashes (and thus never deliversm).

A good metric for a system component reflects an aspect of the component’s
performance that is important for the system using the component. For this reason,
we now list systems which include an atomic broadcast algorithm and in which
Learly andLlate are relevant:

• Consider a service replicated using active replication [Sch90]. Clients of
this service send their requests to the server replicas using atomic broadcast.
Once a request is delivered, the server replica processes the client request,
and sends back a reply. The client waits for the first reply, and discards the
other ones (identical to the first one). If we assume that the time to service a
request is the same on all replicas, and the time to send the response from a
server to the client is the same for all servers, then the first response received
by the client is the response sent by the server to which the request was
delivered first. Thus there is a direct link between the response time of the
replicated server and the early latencyLearly .

• Llate is related to the time after which the request takes effect on all replicas
of the replicated server.

Llate is important for another reason as well. We are usually interested in
the mean latency of an algorithm at a certain workload, in a steady state of
the system. As an atomic broadcast algorithm must deliver the message to
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all destinations, the system is in a steady state ifall mean latencies stabilize
over time. AsLlate is the highest of all possible definitions of latency, it is
actually enough to check ifLlate stabilizes over time.

In this thesis, we always useLearly andLlate . There are other possibilities to
define latency metrics whose use can be justified. Two examples follow.Majority
latencyis defined as the time until a majority of all processes deliver the message:

Lmaj
def= t(dn+1

2
e) − t0

wheret(j) is the j-th smallest element of{t1, . . . , tn}. Average latencyis defined
as the mean time until delivery, averaged over the set of destination processes:

Lavg
def=

∑
i=1,...,n ti

n
− t0

The following inequalities hold for the latency metrics:Learly ≤ Lmaj ≤ Llate

andLearly ≤ Lavg ≤ Llate . Each latency metric is an LB (lower is better) metric.

6.1.2 Maximum throughput

An atomic broadcast algorithm must deliver all messages, hence the rate of sending
is equal to the rate of delivery if the system reaches a steady state. We only define
one productivity metric: the maximum throughputTmax . The metricTmax is the
highest number of requests per second with which the system is able to reach a
steady state, i.e., the late latencyLlate stabilizes (ifLlate stabilizes, all latency
metrics stabilize, as they are smaller thanLlate ).1 Tmax is a HB (higher is better)
metric.

We would like to point out thatTmax might be difficult to measure. One possi-
ble reason is that, once under high load, a number of algorithms have only a small
marginal cost for each additional atomic broadcast. E.g., the algorithm in [Cri91]
uses a token that circulates on a ring to carry all information. With this algorithm,
increasing the rate of atomic broadcasts only increases the length of the token mes-
sage, but does not generate any additional messages. Another possible difficulty is
that a lot of algorithms (e.g., [Cri91]) require the set of senders to be a part of the
set of destinations (closed groupalgorithms; see [DSU00]). With such algorithms,
the contributions of (1) the generation of A-broadcast events and (2) the atomic
broadcast algorithm to the overall load on CPUs might be comparable. A value for
Tmax measured with such a algorithm is tied more to the scheduling policies of the
operating system than to any objective characteristic of the algorithm itself.

1Another possibility would be to define a maximum acceptable level of latency and find the
corresponding throughput.
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6.1.3 Notes

The metrics defined in this section are not specific to atomic broadcast: they can
be used with any broadcast primitive that is not allowed to lose messages, e.g.,
reliable broadcast (see Section2.2).2

We defined responsiveness and productivity metrics, but no utilization metrics.
The reason is that (1) such metrics are not specific to atomic broadcast and that
(2) the performance studies in the following chapters do not consider utilization
metrics.

6.2 Workloads

In all the workloads considered, processes send atomic broadcasts, each to the
same destination groupp1, . . . , pn. The workloads specify how the A-broadcast
events are generated. The generation of A-broadcast events has three aspects: (1)
the set of senders, (2) the number of broadcasts per second and (3) the distribution
of these broadcasts.

Set of senders. We can include all destination processes or a subset thereof in the
set of senders. Also, if the algorithm accepts broadcasts fromexternalprocesses,
processes which are not destinations (open groupalgorithms [DSU00]) we might
include those as well. We now list a few simple choices for the set of senders:

All destination processesThe workload on the system is symmetric. The case
studies in this thesis use this workload.

External processesThe workload on the system is symmetric. Compared to Case
1, this choice is less general: it only applies to open group algorithms.

Two destination processesThe workload is asymmetric. Certain algorithms can
take advantage of this: e.g.,privilege basedalgorithms [DSU00], in which
the privilege to send is passed to processes that send a lot of messages
[CMA97].

One destination processIn this extreme case with asymmetric load, no ordering
needs to be done. This choice measures how well an algorithm can take
advantage of this fact.

Throughput. The throughputT is the number of A-deliver events per second.
In a steady state of the system, it is equal to the number of A-broadcast events per
destination process per second, as atomic broadcast may not lose messages (unless
processes crash). For this reason,T is a parameter rather than a metric in our case
studies.

2With lossy broadcast primitives, metrics for the loss rate should be defined in addition to these
metrics.
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Distribution of broadcasts. In this thesis, we assume that all processes gener-
ate atomic broadcasts independently, at the same rate. As for the distribution of
broadcasts sent by a given process, the A-broadcast events come from a Poisson
(stochastic) process, i.e., the time between two events on the same process follows
an exponential distribution.3 This is the simplest possible choice. Nevertheless, it
models certain kinds of systems rather well: e.g., systems in which a lot of clients
delegate the execution of their requests to one server of a group of servers, set up in
a load balancing configuration. The fact that each server aggregates requests from
a lot of sources results in exponential inter-arrival times. A cluster of web servers
may exhibit such a behavior.

Notes. The workloads defined in this section can be used with any broadcast
primitive that is not allowed to lose messages, like reliable broadcast. However,
some choices for the sets of senders (one, two and all destination processes) were
only presented because they allow to test how efficiently messages are ordered, and
are thus more interesting when used with atomic broadcast.

6.3 Faultloads

The faultload is the part of the workload that describes failure-related events that
occur during an experiment [MKA +01]. We concentrate on (1) crash failures of
processes, and (2) the behavior of unreliable failure detectors. We first clarify
our assumptions about the system in which the algorithms run, and then present a
number of representative faultloads. Finally, we present an abstract model of the
behavior of failure detectors.

6.3.1 Assumptions about the system

We choose faultloads based on the following assumptions about the system:

• Processes only fail by crashing, and the network is reliable. Process failures
are independent. This is the failure model that all algorithms in this thesis
(and a major part of all published atomic broadcast algorithms) use.

• Process crashes are rare, and process recovery is slow (or processes do not
recover at all): both the time between crashes and the time to repair are
much greater than the latency of the atomic broadcast algorithms or the time
needed to reach a steady state after a crash.

We need these assumptions to define the scope of our studies: the focus is
the steady-state performance of the algorithms, as well as the transient state
performance after a crash. Issues that happen on a greater timescale are out

3The only exception is when we investigate algorithms at a very low throughput, such that any two
subsequent atomic broadcasts are independent. In this case, only one process generates A-Broadcast
events, and the time between two events is a constant higher than the late latencyLlate .
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of scope: this includes (1) the details of process recovery, (2) dependability
metrics like MTTF (mean time to failure) and (3) scenarios in which mul-
tiple process crashes occur within a short time. Note that studying these
issues would require a number of additional assumptions: e.g., defining a
cost parameter for process recovery or characterizing how often crash fail-
ures occur.

• Failure detectors are unreliable (see Section2.1.3.A). We study (1) how fast
they detect failures and (2) how often and for what duration they wrongly
suspect correct processes. Note that whereas we assume that process crashes
are rare, (wrong) failure suspicions may occur frequently, depending on the
tuning of the failure detectors.

6.3.2 Steady state of the system

We define a number of faultloads for a system in its steady state. Steady state is
reached a sufficiently long time after the start of the system or after any crashes.
With these faultloads, the performance metrics (e.g., latency) are averaged over a
sufficiently long observation period.

We distinguish three faultloads, based on whether crashes and wrong suspi-
cions (failure detectors suspecting correct processes) occur:

• normal-steady: Neither crashes nor wrong suspicions occur in the experi-
ment.

• crash-steady: One or several crashes occur before the experiment. The
parameter of this faultload is the set of crashed processes. As we assume
that the crashes happened a long time ago, all failure detectors in the system
permanently suspect all crashed processes at this point. No wrong suspicions
occur.

• suspicion-steady:No crashes occur, but failure detectors generate wrong
suspicions. Wrong suspicions generally have a negative impact on perfor-
mance. The parameters of this faultload describe how often wrong suspi-
cions occur and how long they last. These parameters are discussed in detail
in Section6.3.4.

It would be meaningful to combine the crash-steady and suspicion-steady fault-
loads, to have both crashes and wrong suspicions. In the performance studies of
the following chapters, we omitted this case, for we wanted to observe the effects
of crashes and wrong suspicions independently.

6.3.3 Transient state after a crash

In this faultload, we force a crash after the system reached a steady state. After
the crash, we can expect a halt or a significant slowdown of the system for a short
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period. We would like to capture how the responsiveness metrics (different kinds of
latency) change in atomic broadcasts directly affected by the crash. Our faultload
definition represents the simplest possible choice: we determine the latency of an
atomic broadcast sent at the moment of the crash (by a process other than the
crashing process). Of course, the latency of this atomic broadcast may depend on
the choice for the sender and the crashing process. In order to reduce the number
of parameters, we consider the worst case, i.e., the choice that increases latency the
most.

The precise definition for the faultload is the following:

• crash-transient: Consider that a processp crashes at timet (no other crashes
nor wrong suspicions occur). Let processq (p 6= q) executeA-broadcast(m)
at t. Let L(p, q) be the mean latency of broadcastingm, averaged over a lot

of executions. ThenLcrash
def= maxp,q∈P L(p, q), i.e., we consider the crash

that increases the latency most.

The parameter of this faultload describes how fast failure detectors detect the
crash (discussed in Section6.3.4). In fact, we introduce this faultload in order to
be able to study this aspect of failure detectors.

We could combine the crash-transient faultload with both the crash-steady and
suspicion-steady faultloads, to include other crashes and/or wrong suspicions. In
the performance studies of the following chapters, we omitted these cases, for we
wanted to observe the effects of (1) the recent crash, (2) old crashes and (3) wrong
suspicions independently. Another reason is that we expect the effect of wrong
suspicions on latency to be secondary with respect to the effect of the recent crash:
wrong suspicions usually happen on a larger timescale.

6.3.4 Modeling failure detectors

One approach to examine the behavior of a failure detector is implementing it and
using the implementation in the experiments. However, this approach would re-
strict the generality of our performance studies: another choice for the algorithm
would likely give different results. Also, often it is not justified to model the failure
detector in so much detail, as other components of the system, like the execution
environment, might be modeled much more coarsely. Yet another reason is that
it is difficult to control an implementation such that it exhibits the whole range of
possible behaviors of a failure detector: usually, a given implementation in a given
system restricts the set of possible behaviors to a great extent.

To answer these concerns, we present a more abstract model of failure detec-
tors, using the notion of quality of service (QoS) introduced in [CTA02]. This
model can be used in simulations and in measurements as well (in a fault injection
experiment).

The authors of [CTA02] consider the failure detector at a processq that mon-
itors another processp, and identify the following three primary QoS metrics (see
Figures6.1and6.2):
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Figure 6.1: Quality of service metric related to the completeness of failure detec-
tors. Processq monitors processp.

Detection timeTD: The time that elapses fromp’s crash to the time whenq starts
suspectingp permanently.

Mistake recurrence timeTMR: The time between two consecutive mistakes (q
wrongly suspectingp), given thatp did not crash.

Mistake duration TM : The time it takes a failure detector component to correct a
mistake, i.e., to trustp again (given thatp did not crash).

Not all of these metrics are equally important in each of our faultloads (see
Section6.3). In thenormal-steadyfaultload, the metrics are not relevant. The same
holds in thecrash-steadyfaultload, because we observe the system a sufficiently
long time after all crashes, long enough to have all failure detectors to suspect the
crashed processes permanently. In thesuspicion-steadyfaultload, no crash occurs,
hence the latency of atomic broadcast only depends onTMR andTM . In thecrash-
transientfaultload, no wrong suspicions occur, henceTD is the relevant metric.

In [CTA02], the QoS metrics are random variables, defined on a pair of pro-
cesses. In our system, wheren processes monitor each other, we have thusn(n−1)
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Figure 6.2: Quality of service metrics related to the accuracy of failure detectors.
Processq monitors processp.
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failure detectors in the sense of [CTA02], each characterized with three random
variables. In order to have an executable model for the failure detectors, we have
to define (1) how these random variables depend on each other, and (2) how the dis-
tribution of each random variable can be characterized. To keep our model simple,
we assume that all failure detector modules are independent and the tuples of their
random variables are identically distributed. Moreover, note that we do not need
to model howTMR andTM depend onTD, as the two former are only relevant in
thesuspicion-steadyfaultload, whereasTD is only relevant in thecrash-transient
faultload. In the performance studies of the following chapters, we considered var-
ious settings forTD, and various settings for combinations ofTMR andTM . As for
the distributions of the metrics, we took the simplest possible choices:TD is a con-
stant, and bothTMR andTM are exponentially distributed with (different) constant
parameters.

Note that these modeling choices are not realistic: suspicions from different
failure detectors are probably correlated in a real system, as wrong failure sus-
picions might be caused by an overload situation that affects several or even all
processes. Our choices only represents a starting point, as we are not aware of any
previous work we could build on (apart from [CTA02] that makes similar assump-
tions). We will refine our models as we gain more experience.

Finally, note that this abstract model for failure detectors neglects that failure
detectors and their messages put a load on system components. This simplification
is justified in a variety of systems, in which a rather good QoS can be achieved
with failure detectors that send messages infrequently.

6.4 Related work

In this section, we review a number of papers that analyze the performance of
atomic broadcast algorithms, or other related algorithms that tolerate crash failures:
consensus [SDS01, CUBS02, HUSK02] (defined in Section2.2.1) and terminating
reliable broadcast [DCS97].4 We do not consider (1) papers using only complexity
metrics on an isolated atomic broadcast execution (a lot of papers describing new
atomic broadcast algorithms have a section with such a simplistic analysis); or (2)
studying atomic broadcast as a component of a larger system (e.g, a replicated
database [Wie02]).

Metrics. A lot of papers consider latency metrics. The most popular metric
is the late latencyLlate [MSS95, GMS91, CdBM94, CMA97], also called ter-
mination time, broadcast delivery time or broadcast stability time; the latter two
terms are used for algorithms that provide two delivery events per broadcast, the

4Terminating reliable broadcast is like reliable broadcast (see Section2.2.2). The difference is
that the destinations are always delivered something if the sender crashes: either the message sent,
or a special message indicating the crash of the sender. In a system with Byzantine failures, such a
primitive is usually referred to as Byzantine agreement or the Byzantine generals problem.
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first signaling non-uniform delivery and the second uniform delivery [CdBM94,
CMA97]. Papers often implicitly meanLlate by latency (e.g., [BC94]). [SDS01]
uses an analogous latency definition for consensus. The early latencyLearly is
used in [PSUC02a], and a latency metric analogous toLearly is used in [CUBS02,
HUSK02]. Lavg is used in [May92]. [FvR97, RPL+02] define the latencies of
more complex message exchanges that occur in their workloads; in fact, these la-
tencies are inversely proportional to the maximal throughputTmax (see the next
paragraph).

[CSG+00, CBG01, FvR97, BC94] consider maximal throughputTmax as a
metric. All the algorithms analyzed include some (sometimes implicit) flow control
mechanism (see also the workloads paragraph). If we consider thatA-broadcast
events can be generated at any rate (i.e., generating them is not subject to flow
control) our definition ofTmax applies to these studies: if the throughput is higher
than what flow control allows,A-broadcastevents end up in ever growing queues
and thusLlate never stabilizes.

Some papers also define utilization metrics: channel utilization [MSS95] and
CPU load distribution [CdBM94, CMA97], the maximal size of the algorithms’
buffers [CM84, CdBM94, CMA97] and the number of messages per broadcast
[CM84, GMS91, CdBM94, CMA97].

Workloads. The most frequently used workload is the isolated atomic broad-
cast [May92, GMS91, DCS97] or consensus [SDS01, CUBS02, HUSK02], which
is a special case of our workloads, corresponding to a very low setting for the
throughput. Results obtained with this workload are only applicable to (very)
lightly loaded systems.

[May92] also defines two other workloads different from ours: one at very low
throughput, with two processes sending at the same time (in order to exercise the
ordering mechanism in the algorithm); and another in which one process broad-
casts at regular intervals.

Workloads in other papers haveA-broadcastevents generated by a Poisson pro-
cess, just like our workloads do [CM84, CdBM94, CMA97, MSS95, PSUC02a].
The set of senders is the set of all destinations in each paper.

Poisson workloads assume a nearly constant rate of broadcast arrivals on each
sender process. A lot of real systems, however, have broadcasts arriving in bursts.
In the networking literature, self-similar models [LTWW94] are often used to char-
acterize such arrival patterns. We might need to define such workloads in the future,
as there are atomic broadcast algorithms (e.g., On-demand in [CMA97]) optimized
for bursty arrival patterns.

Another common workload [BC94, FvR97, RPL+02, CSG+00, CBG01] is one
in which processes send atomic broadcasts as often as the flow control mechanism
of the algorithm allows. All the algorithms in these papers can be understood
as algorithms having a built-in flow control mechanism: in [BC94], flow control
mechanisms are described as such; in [CSG+00, CBG01], the polling performed
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by the wireless access point plays this role; in [FvR97, RPL+02], only a fixed num-
ber of outstanding atomic broadcasts are allowed per sending process. In all the
papers, the set of senders is all destination processes, except for [FvR97], which
also considers one destination process as sender (and needs acknowledgment mes-
sages from all other processes to implement flow control), and [BC94] where the
set of senders is unclear.

Faultloads. Most papers only consider failure free executions (our normal-steady
faultload), which only gives a partial and incomplete understanding of the behavior
of the algorithms. We only note the exceptions here, starting with the papers that
have faultloads similar to ours, concerned with process crashes and their detection.

The permanent effects of crashes are studied relatively often: [CUBS02] and
[HUSK02] use the crash-steady faultload.

The transient effects of a crash are studied in [RPL+02, SDS01], but the fault-
load is different from our crash-transient faultload. [SDS01] assumes that the crash
occurs at the worst possible moment during an atomic broadcast, in order to obtain
the worst case latency in the case of a crash. In contrast to the crash-transient fault-
load, this faultload requires a detailed knowledge of the execution. This knowl-
edge is only available if one considers very simple workloads (isolated executions
of consensus in [SDS01]) in an analytical or simulation model; in particular, this
faultload is not suited for measurements. The other paper [RPL+02] measures the
latency of the group membership service used by the algorithm to tolerate crash
failures.5 This way of considering the transient effects of a crash is less general
compared to our crash-transient faultload, as it is stated in terms of an implemen-
tation detail of the atomic broadcast algorithm.

The effect of wrong failure suspicions on atomic broadcast algorithm is studied,
to our knowledge, only in our previous work [CUBS02, PSUC02a]. The former
paper uses the suspicion-steady faultload, while the latter uses a faultload whose
parameter is the timeout value used by a particular implementation.

Only three papers investigate failure detectors in detail. [SDS01, PSUC02a]
uses particular implementations of failure detectors rather than an abstract model.
[SDS01] considers several implementations and compares their effects. Our previ-
ous work [CUBS02] performs simulations with the abstract model of Section6.3.4
and measurements with an implementation (and contrasts the results).

We assume reliable communication in all our performance studies. A number
of papers, however, consider message losses. [CM84, MSS95, CSG+00, CBG01,
DCS97] assign a fixed probability for losing each message, whereas [CdBM94,
CMA97] consider one message loss in the messages generated by each atomic
broadcast.

[DCS97, CSG+00, CBG01] are also concerned with dependability metrics,
which are out of scope for our studies. They assign a fixed probability for losing
each message, and, in the case of [DCS97], also a fixed rate for the crash of each

5Certain kinds of Byzantine failures are also injected.
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process. Over time, this may lead to a violation of the algorithms’ assumptions
about the system (number of failures / subsequent omissions); the papers derive
the probability that the algorithm is still working after a certain time.

Isolating the cost of ordering. Conceptually, atomic broadcast consists of reli-
able broadcast and an ordering guarantee (see Section2.2.3). Some papers attempt
separating the costs of ordering from the cost of a reliable broadcast. [RPL+02]
analyzes both a reliable broadcast algorithm and its extension to an atomic broad-
cast algorithm, and contrasts the results. [May92] also assumes an architecture in
which atomic broadcast starts with a reliable broadcast and exchanges some mes-
sages only concerned with ordering. The time for which a message is delayed
from the moment of its receipt is summed over all destinations and all messages
(a similar definition to the average latency metricLavg ). The limitation of this ap-
proach is that not all atomic broadcast algorithms start with a reliable broadcast
or an equivalent exchange of messages. A whole class of algorithms (called priv-
ilege based in [DSU00]) delays the sending of messages rather than their delivery
in order to obtain total ordering. Nevertheless, we consider isolating the cost of
ordering an important step towards the understanding the performance trade-offs
of atomic broadcast algorithms.



Chapter 7

Comparison of failure detectors
and group membership:
performance study of two atomic
broadcast algorithms

Unreliable failure detectors vs. group membership. In this chapter, we com-
pare two (uniform) atomic broadcast algorithms, the one based onunreliable fail-
ure detectorsand the other on agroup membership service. Both services provide
processes with estimates about the set of crashed processes in the system.1 The
main difference is that failure detectors provide inconsistent information about fail-
ures, whereas a group membership service provides consistent information. While
several atomic broadcast algorithms based on unreliable failure detectors have been
described in the literature, to the best of our knowledge, all existing group com-
munication systems provide an atomic broadcast algorithm based on group mem-
bership (see [CKV01] for a survey). So indirectly our study compares two classes
of techniques, one widely used in implementations (based on group membership),
and the other (based on failure detectors) not (yet) adopted in practice.

The two algorithms. The algorithm that uses unreliable failure detectors is the
Chandra-Toueg atomic broadcast algorithm [CT96] with one of the consensus al-
gorithms described in the same paper, which can toleratef < n/2 crash failures,
and requires the failure detector3S. As for an algorithm using group membership,
we chose an algorithm that implements total order with a mechanism close to the
failure detector based algorithm, i.e., a sequencer based algorithm (which also tol-
eratesf < n/2 crash failures). Both algorithms were optimized (1) for failure and
suspicion free runs (rather than runs with failures and suspicions), (2) to minimize

1Beside masking failures, a group membership service has other uses. This issue is discussed in
Section7.4.

91
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latency under low load (rather than minimize the number of messages), and (3) to
tolerate high load (rather than minimize latency at moderate load).

We chose these algorithms because they are well-known and easily compara-
ble: they offer the same guarantees in the same model. Moreover, they behave
similarly if neither failures nor failure suspicions occur (in fact, they generate the
same exchange of messages given the same arrival pattern). This allows us to focus
our study on the differences in handling failures and suspicions.

Elements of the performance study. The two algorithms are evaluated using
simulation. We model message exchange by taking into account contention on the
network and the hosts, using the metrics described in Chapter5. We model failure
detectors (including the ones underlying group membership) in an abstract way,
using the quality of service (QoS) metrics proposed by Chen et al. [CTA02] (see
Section6.3.4). We study the atomic broadcast algorithms in several benchmarks
defined in Chapter6, including scenarios with failures and suspicions: we evaluate
the steady state latency in (1) runs with neither crashes nor suspicions, (2) runs
with crashes and (3) runs with no crashes in which correct processes are wrongly
suspected to have crashed, as well as (4) the transient latency after a crash.

The results. We show that the two algorithms have the same performance in
runs with neither crashes nor suspicions, and that the group membership based al-
gorithm has an advantage in terms of performance and resiliency a long time after
crashes occur. In the other scenarios, involving wrong suspicions of correct pro-
cesses and the transient behavior after crashes, the failure detector based algorithm
offers better performance. We discuss the implications of our results to the design
of fault tolerant distributed systems.

Structure. The rest of the chapter is structured as follows. We introduce the
algorithms and discuss their expected performance in Section7.1. Section7.2de-
scribes all important elements of our performance study. Our results are presented
in Section7.3, and the chapter concludes with a discussion in Section7.4.

7.1 Algorithms

This section introduces the two atomic broadcast algorithms and the group mem-
bership algorithm. Then we discuss the expected performance of the two atomic
broadcast algorithms.

7.1.1 Chandra-Toueg uniform atomic broadcast algorithm

The Chandra-Toueg uniform atomic broadcast algorithm (with one of the con-
sensus algorithms described in [CT96]; see below) uses failure detectors directly
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[CT96] (see Sections2.2.3and2.1.3.Afor definitions). We shall refer to it as the
FD atomic broadcast algorithm, or simply as theFD algorithm. A process executes
A-broadcast by sending a message to all processes.2 When a process receives such
a message, it buffers it until the delivery order is decided. The delivery order is
decided by a sequence of consensus numbered 1, 2,. . .. The initial value and the
decision of each consensus is aset of message identifiers. Letmsg(k) be the set of
message IDs decided by consensus#k. The messages denoted bymsg(k) are A-
delivered before the messages denoted bymsg(k + 1), and the messages denoted
by msg(k) are A-delivered according to a deterministic function, e.g., according
to the order of their IDs.

A detailed pseudocode description of the algorithm is given in SectionA.2.7,
in the Appendix.

Chandra-Toueg 3S consensus algorithm. For solving consensus (defined in
Section2.2.1) we use the Chandra-Toueg3S algorithm [CT96].3 The algorithm
toleratesf < n/2 crash failures. It is based on the rotating coordinator paradigm:
each process executes a sequence of asynchronous rounds (i.e., not all processes
necessarily execute the same round at a given timet), and in each round a process
takes the role ofcoordinator(pi is coordinator for roundskn + i). The role of the
coordinator is to impose a decision value on all processes. If it succeeds, the con-
sensus algorithm terminates. It may fail if some processessuspectthe coordinator
to have crashed (whether the coordinator really crashed or not). In this case, a new
round is started.

The details of the execution are not necessary for understanding the rest of
the chapter. A detailed pseudocode description is given in SectionB.2, in the
Appendix.

Example run of the FD algorithm. Figure7.1 illustrates an execution of the
FD atomic broadcast algorithm in which one single messagem is A-broadcast and
neither crashes nor suspicions occur. At first,m is sent to all processes. Upon
receipt, the consensus algorithm starts. The coordinator sends its proposal to all
other processes. Each process acknowledges this message. Upon receiving acks
from a majority of processes (including itself), the coordinator decides its own
proposal and sends the decision (using reliable broadcast) to all other processes.
The other processes decide upon receiving the decision message.

7.1.2 Fixed sequencer uniform atomic broadcast algorithm

The second uniform atomic broadcast algorithm is based on a fixed sequencer
[BSS91]. It uses a group membership service for reconfiguration in case of a

2This message is sent using reliable broadcast. We use an efficient algorithm inspired by [FP01]
that requires one broadcast message if the sender is not suspected. The algorithm is described in
SectionB.1, in the Appendix.

3Actually, we included some easy optimizations in the algorithm, described in Section8.1.2.
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Figure 7.1: Example run of the atomic broadcast algorithms. Labels on the
top/bottom refer to the FD/GM algorithm, respectively.

crash. We shall refer to it as the GM atomic broadcast algorithm, or simply as
theGM algorithm. We describe here theuniformversion of the algorithm.

In the GM algorithm, one of the processes takes the role ofsequencer. When a
process A-broadcasts a messagem, it first broadcasts it to all. Upon reception, the
sequencer (1) assigns a sequence number tom, and (2) broadcasts the sequence
number to all. When non-sequencer processes have receivedm and its sequence
number, they send an acknowledgment to the sequencer.4 The sequencer waits for
acks from a majority of processes, then deliversm and sends a message indicating
that m can be A-delivered. The other processes A-deliverm when they receive
this message. The execution is shown in Fig.7.1. A pseudocode description of the
algorithm is given in SectionA.2.2, in the Appendix.

Note that the messages denotedseqnum, ackanddelivercan carry several se-
quence numbers.5 This is essential for achieving good performance under high
load. Note that the FD algorithm has a similar “aggregation” mechanism: one
execution of the consensus algorithm can decide on the delivery order of several
messages.

When the sequencer crashes, processes need to agree on a new sequencer. This
is why we need a group membership service: it provides a consistentviewof the
group to all its members, i.e., a list of the processes which have not crashed (infor-
mally speaking). The sequencer is the first process in the current view. The group
membership algorithm described below can toleratef < n/2 crash failures (more
in some runs) and requires the failure detector3S.

4 Figure7.1 shows that the acknowledgments and subsequent messages are not needed in the
non-uniform version of the algorithm. We come back to the issue of uniformity in Section7.4.

5This aspect does not appear in the pseudocode.
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7.1.3 Group membership algorithm

A group membership service (see Section2.2.4) maintains theviewof a group, i.e.,
the list of correct processes of the group. The current view6 might change because
processes in the group might crash or exclude themselves, and processes outside
the group might join. The group membership service guarantees that processes
see the same sequence of views (except for processes which are excluded from the
group; they miss all views after their exclusion until they join again). In addition to
maintaining the view, our group membership service ensuresView Synchronyand
Same View Delivery: correct and not suspected processes deliver the same set of
messages in each view, and all deliveries of a messagem take place in the same
view.

The group membership algorithm [MS95] uses failure detectors to start view
changes, and relies on consensus to agree on the next view. This is done as follows.
A process that suspects another process starts a view change by sending a “view
change” message to all members of the current view. As soon as a process learns
about a view change, it sends its unstable messages to all others.7 When a process
has received the unstable messages from all processes it does not suspect, sayP , it
computes the unionU of the unstable messages received, and starts consensus with
the pair(P,U) as its initial value. Let(P ′, U ′) be the decision of the consensus.
Once a process decides, it delivers all messages fromU ′ not yet delivered (all
processes deliver the messages in the same deterministic order) and installsP ′ as
the next view. The protocol for joins and explicit leaves is very similar.

State transfer. When a process joins a group, its state needs to be synchronized
with the other members of the group. What “state” and “synchronizing” exactly
mean is application dependent. We only need to define these terms in a limited
context: in our study, the only processes that ever join are correct processes which
have been wrongly excluded from the group. Consequently, the state of such a
processp is mostly up-to-date. For this reason, it is feasible to update the state of
p the following way: whenp rejoins, it asks some process for the messages it has
missed since it was excluded. Processp delivers these messages, and then starts to
participate in the view it has joined. Note that this only works because our atomic
broadcast algorithm is uniform: with non-uniform atomic broadcast, the excluded
process might have delivered messages never seen by the others, thus having an
inconsistent state. In this case, state transfer would be more complicated.

6There is only one current view, since we consider anon-partitionableor primary partitiongroup
membership service.

7Messagem is stablefor processp whenp knows thatm has been received by all other processes
in the current view. The goal of this message exchange is to ensure that all messages sent in the
current view are stable.
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7.1.4 Expected performance

We now discuss, from a qualitative point of view, the expected relative performance
of the two atomic broadcast algorithms (FD algorithm and GM algorithm).

Figure7.1 shows executions with neither crashes nor suspicions. In terms of
the pattern of message exchanges, the two algorithms are identical: only the con-
tent of messages differ. Therefore we expect the same performance from the two
algorithms in failure free and suspicion-free runs.

Let us now investigate how the algorithms slow down when a process crashes.
There are two major differences. The first is that the GM algorithm reacts to the
crash ofeveryprocess, while the FD algorithm reacts only to the crash ofp1, the
first coordinator. The other difference is that the GM algorithm takes a longer
time to re-start delivering atomic broadcast messages after a crash. This is true
even if we compare the GM algorithm to the worst case for the FD algorithm,
i.e., when the first coordinatorp1 fails. The FD algorithm needs to execute Round
2 of the consensus algorithm. This additional cost is comparable to the cost of
an execution with no crashes (3 communication steps, 1 multicast and about2n
unicast messages). On the other hand, the GM algorithm initiates an expensive
view change (5 communication steps, aboutn multicast andn unicast messages).
Hence we expect that if the failure detectors detect the crash in the same time by
the two algorithms, the FD algorithm performs better.

Consider now the case when a correct process is wrongly suspected. The al-
gorithms react to a wrong suspicion the same way as they react to a real crash.
Therefore we expect that if the failure detectors generate wrong suspicions at the
same rate, the FD algorithm will suffer less performance penalty.

7.2 Elements of our performance study

7.2.1 Performance metrics and workloads

Our main performance metric is theearly latencyof atomic broadcast, i.e., the time
that elapses from the broadcast to the first delivery (see Section6.1). Early latency
is simply referred to as latency and is denoted byL. In our study, we compute the
mean forL over a lot of messages (thousands) and several independent executions.

Latency is always measured under a certain workload. We chose a symmet-
ric workload where (1) the set of senders is all destination processes and (2) the
A-broadcast events follow Poisson arrival (see Section6.2). The workload is char-
acterized by the throughputT , i.e., the overall rate of atomic broadcast messages.

In general, we determine how the latencyL depends on the throughputT .
Other parameters that influence latency are the choice for the algorithmA and the
number of processesn. We also determine the maximal throughputTmax .
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7.2.2 Faultloads

We evaluate the latency of the atomic broadcast algorithms using a variety of fault-
loads from Section6.3. The steady state latency is determined with the normal-
steady, crash-steady and suspicion-steady faultloads. These three faultloads in-
volve neither crashes nor suspicions, crashes, and failure detectors wrongly sus-
pecting correct processes, respectively. The transient latency after a crash is deter-
mined with the crash-transient faultload.

Failure detectors are described with an abstract model which was presented in
Section6.3.4. Wrong suspicions are characterized with the two parameters mistake
recurrence timeTMR and mistake durationTM . We study how latency depends on
these parameters with the suspicion-steady faultload, our only faultload with wrong
suspicions. The speed of detecting crash failures is characterized with the detection
time parameterTD, which is a parameter of the crash-transient faultload.

7.2.3 Modeling the execution environment

Our approach to performance evaluation is simulation, which allowed for more
general results as would have been feasible to obtain with measurements in a real
system (we can use a parameter in our network model to simulate a variety of
different environments). We used the Neko prototyping and simulation framework
(see Chapter4) to conduct our experiments.

We used the model of Section5.3 for the execution environment. This simple
model accounts for resource contention on the network and the hosts. We used the
broadcast (rather than the point-to-point) variant of the model for our study. The
model has one parameter (λ) that reflects the relative cost of processing on the hosts
and the network in the transmission of messages. We used several representative
settings for this parameter.

It is worthwhile to describe in detail how crashes appear in our model. If a
processpi crashes at timet, no messages can pass betweenpi andCPUi after t;
however, the messages onCPUi and the attached queues are still sent, even after
time t. In real systems, this corresponds to a (software) crash of the application
process (operating system process), rather than a (hardware) crash of the host or a
kernel panic. We chose to model software crashes because they are more frequent
in most systems [Gra86].

7.3 Results

We now present the results for all four faultloads. We obtained results for a vari-
ety of representative settings forλ: 0.1, 1 and 10. The settingsλ = 0.1 and10
correspond to systems where communication generates contention mostly on the
network and the hosts, respectively, while 1 is an intermediate setting. For exam-
ple, in current LANs, the time spent on the CPU is much higher than the time spent
on the wire, and thusλ = 10 is probably the setting closest to reality.
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Most graphs show latency vs. throughput. The maximum throughputTmax is
approximately the highest throughput value, that is, thex coordinate of the right-
most point, in all graphs showing the steady-state latency; beyond this throughput,
the late latencyLlate (see Section6.1) did not stabilize. For easier understanding,
we set the time unit of the network simulation model to 1 ms. The 95% confidence
interval is shown for each point of the graph. The two algorithms were executed
with 3 and 7 processes, to tolerate 1 and 3 crashes, respectively.

Normal-steady faultload (Fig.7.2). With this faultload, the two algorithms have
the same performance. Each curve thus shows the latency ofbothalgorithms.
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Figure 7.2: Latency vs. throughput with the normal-steady faultload.

Crash-steady faultload (Fig.7.3). The figure shows that the GM algorithm of-
fers a slightly lower latency at the same throughput, as well as a slightly higher
maximum throughput, than the FD algorithm. With both algorithms, the latency
decreases as more processes crash. This is due to the fact that the crashed processes
do not load the network with messages. The GM algorithm has an additional fea-
ture that improves performance: the sequencer waits for fewer acknowledgments,8

as the group size decreases with the crashes. By comparison, the coordinator in
the FD algorithm always waits for the same number of acknowledgments. This
explains why the GM algorithm shows slightly better performance with the same
number of crashes.

8The GM algorithm waits for acknowledgments from a majority of the group; see Section7.1.2.
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Figure 7.3: Latency vs. throughput with the crash-steady faultload. In each graph,
the legend lists the curves from the top to the bottom.
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With the GM algorithm, it does not matter which process(es) crash. With the
FD algorithm, the crash of the coordinator of Round 1 gives worse performance
than the crash of another process. However, the performance penalty when the
coordinator crashes is easily avoided: (1) each process tags its consensus proposal
with its own identifier, and (2) upon decision, each process re-numbers all pro-
cesses such that the process with the identifier in the decision becomes the coordi-
nator of Round 1 in subsequent consensus executions. This way, crashed processes
will stop being coordinators eventually, hence the steady-state latency is the same
regardless of which process(es) we forced to crash. Moreover, the optimization
incurs no cost. Hence Fig.7.3shows the latency in runs in which non-coordinator
processes crash.

Note also that the GM algorithm has higher resiliency on the long term if
crashes occur, as the group size decreases with the crashes. E.g., withn = 7
and 3 crashes, the GM algorithm can still tolerate one crash after excluding the
crashed processes, whereas the FD algorithm can tolerate none.

Suspicion-steady faultload (Figures7.4 to 7.9). The occurrence of wrong sus-
picions are quantified with theTMR andTM QoS metrics of the failure detectors.
As this faultload does not involve crashes, we expect that the mistake duration
TM is short. In our first set of results (Fig.7.4 for λ = 0.1; Fig. 7.5 for λ = 1;
Fig. 7.6 for λ = 10) we hence setTM to 0, and latency is shown as a function of
TMR. In each figure, we have four graphs: the left column shows results with 3
processes, the right column those with 7; the top row shows results at a low load
(10 s−1; 1 s−1 if λ = 10) and the bottom row at a moderate load (300 s−1; 30 s−1

if λ = 10); recall from Fig.7.2 that the algorithms can take a throughput of about
700 s−1 (70 s−1 if λ = 10) in the absence of suspicions.

The results show that the GM algorithm is very sensitive to wrong suspicions.
We illustrate this on Fig.7.5: even atn = 3 andT = 10 s−1, that is, the settings
that yield the smallest difference, the GM algorithm only works ifTMR ≥ 20 ms,
whereas the FD algorithm still works atTMR = 10 ms; the latency of the two
algorithms is only equal atTMR ≥ 5000 ms. The difference is greater with all
other settings. The reason for the difference is that the GM algorithm has much
more work to do than the FD algorithm when a suspicion occurs, as discussed in
Section7.1.4.

In the second set of results (Fig.7.7for λ = 0.1; Fig.7.8for λ = 1; Fig.7.9for
λ = 10) TMR is fixed andTM is on the x axis. We choseTMR such that the latency
of the two algorithms is close but not equal atTM = 0. For example, withλ = 1
(Fig.7.8), (i) TMR = 1000 ms forn = 3 andT = 10 s−1; (ii) TMR = 10000 ms for
n = 7 andT = 10 s−1 and forn = 3 andT = 300 s−1; and (iii) TMR = 100000
ms forn = 7 andT = 300 s−1.

The results show that the GM algorithm is sensitive to the mistake durationTM

as well, not just the mistake recurrence timeTMR. The reason is that the greater
TM , the longer it takes to include the wrongly suspected process (p) in the group
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Figure 7.4: Latency vs.TMR with the suspicion-steady faultload, withTM = 0
(λ = 0.1).
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Figure 7.5: Latency vs.TMR with the suspicion-steady faultload, withTM = 0
(λ = 1).
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Figure 7.6: Latency vs.TMR with the suspicion-steady faultload, withTM = 0
(λ = 10).
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Figure 7.7: Latency vs.TM with the suspicion-steady faultload, withTMR fixed
(λ = 0.1).
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Figure 7.8: Latency vs.TM with the suspicion-steady faultload, withTMR fixed
(λ = 1).
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Figure 7.9: Latency vs.TM with the suspicion-steady faultload, withTMR fixed
(λ = 10).
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again. Therefore a lot of broadcasts are generated during the transitional view in
which p is excluded. Oncep joins the group again, all these messages have to be
retransmitted top; see the description of state transfer in Section7.1.3. In fact,
the number of state transfer messages can be so high that they prevent the second
view change from finishing on every process until all state transfer messages are
transmitted. This increases the latency of concurrent broadcasts by a great deal. In
our implementation, we had to limit the rate of state transfer messages to avoid this
increase in latency.

Crash-transient faultload (Fig. 7.10). With this faultload, we only present the
latency after the crash of the coordinator and the sequencer, respectively, as this is
the case resulting in the highest transient latency (and the most interesting compar-
ison). If another process is crashed, the GM algorithm performs roughly the same,
as a view change occurs. In contrast, the FD algorithm outperforms the GM algo-
rithm: it performs slightly better than with the normal-steady faultload (Fig.7.2),
as fewer messages are generated, just like with the crash-steady faultload (Fig.7.3).

Figure7.10shows thelatency overhead, i.e., the latency minus the detection
time TD, rather than the latency. Graphs showing the latency overhead are more
illustrative; note that the latency is always greater than the detection timeTD with
this faultload, as no atomic broadcast can finish until the crash of the coordina-
tor/sequencer is detected. The latency overhead of both algorithms is shown for
n = 3 (left) andn = 7 (right) and a variety of values forλ (0.1, 1 and 10 from top
to bottom) andTD (different curves in the same graph).

The results show that (1) both algorithms perform rather well (the latency over-
head of both algorithms is only a few times higher than the latency with the normal-
steady faultload; see Fig.7.2) and that (2) the FD algorithm outperforms the GM
algorithm with this faultload.

7.4 Discussion

We have investigated two uniform atomic broadcast algorithms designed for the
same system model: an asynchronous system (with a minimal extension to allow
us to have live solutions to the atomic broadcast problem) andf < n/2 process
crashes (the highestf that our system model allows). We have seen that in the
absence of crashes and suspicions, the two algorithms have the same performance.
However, a long time after any crashes, the group membership (GM) based al-
gorithm performs slightly better and has better resilience. With the faultload in-
volving wrong suspicions of correct processes and the one describing the transient
behavior after crashes, the failure detector (FD) based algorithm outperformed the
GM based algorithm. The difference in performance is much greater when correct
processes are wrongly suspected.
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Figure 7.10: Latency overhead vs. throughput with the crash-transient faultload.
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Combined use of failure detectors and group membership. Based on our re-
sults, we advocate a combined use of the two approaches [CBDS02]. Failure de-
tectors should be used to make failure handling more responsive (in the case of a
crash) and more robust (tolerating wrong suspicions). A different failure detector,
making fewer mistakes (at the expense of slower crash detection) should be used
in the group membership service, to get the long term performance and resiliency
benefits after a crash. A combined use is also desirable because the failure detector
approach is only concerned with failure handling, whereas a group membership
service has a lot of essential features beside failure handling: processes can be
taken offline gracefully, new processes can join the group, and crashed processes
can recover and join the group. Also, group membership can be used to garbage
collect messages in buffers when a crash occurs [CBDS02].

Generality of our results. We have chosen atomic broadcast algorithms with
a centralized communication scheme, with one process coordinating the others.
The algorithms are practical: in the absence of crashes and suspicions, they are
optimized to have small latency under low load, and to work under high load as
well (messages needed to establish delivery order are aggregated). In the future, we
would like to investigate algorithms with a decentralized communication scheme
(e.g., [Lam78, AS00]) as well.

Non-uniform atomic broadcast. Our study focuses on uniform atomic broad-
cast. What speedup can we gain by dropping the uniformity requirement in either
of the approaches (of course, the application must work with the relaxed require-
ments)? The first observation is that there is no way to transform the FD based algo-
rithm into a more efficient algorithm that is non-uniform: the effort the algorithm
must invest to reach agreement on Total Order automatically ensures uniformity
([Gue95] has a relevant proof about consensus). In contrast, the GM based algo-
rithm has an efficient non-uniform variant that uses only two multicast messages
(see Fig.7.1). Hence the GM based approach allows for trading off guarantees
related to failures and/or suspicions for performance. Investigating this tradeoff in
a quantitative manner is a subject of future work. Also, we would like to point out
that, unlike in our study, a state transfer to wrongly excluded processes cannot be
avoided when using the non-uniform version of the algorithm, and hence one must
include its cost into the model.



Chapter 8

Comparing the performance of
two consensus algorithms with
centralized and decentralized
communication schemes

The two algorithms. In this chapter, we present a comparison study of two con-
sensus algorithms. The one algorithm (due to Chandra and Toueg [CT96]) uses a
centralized communication pattern, while the other (due to Mostéfaoui and Raynal
[MR99]) uses a decentralized communication pattern. Other aspects of the algo-
rithms are very similar. Both are designed for the asynchronous model with3S
failure detectors, toleratingf < n/2 crash failures. Also, both follow the rotating
coordinator paradigm for reaching agreement.

Elements of the performance study. The two consensus algorithms are ana-
lyzed in a system in which processes send atomic broadcasts to each other. Since
the atomic broadcast algorithm that we use [CT96] leads to the execution of a
sequence of consensus to decide the delivery order of messages, evaluating the
performance of atomic broadcast is a good way of evaluating the performance of
the underlying consensus algorithm in a realistic usage scenario. In our study, the
atomic broadcast algorithm uses either of the two consensus algorithms. We study
the system using simulation, which allows us to compare the algorithms in a vari-
ety of different environments. We model message exchange by taking into account
contention on the network and the hosts, using the metrics described in Chapter5.
We use several benchmarks defined in Chapter6. We evaluate both (1) the steady
state latency of atomic broadcast in runs with neither failures nor suspicions and
(2) the transient latency after a process crash.

The results. The centralized algorithm requires three communication steps under
the most favorable conditions, while the decentralized one needs only two. Hence
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it is often believed that the decentralized algorithm is more efficient. Our results
show that, contrary to these expectations, the centralized algorithm performs better
under a variety of settings. The reason is that the centralized algorithm generates
less contention on both the hosts and the network, which often offsets the costs due
to the additional communication step.

As the problem of choosing between a decentralized and a centralized variant
of an agreement algorithm recurs often in distributed systems (e.g., two and three
phase commit protocols have variants of both kinds), we expect that our results are
useful in other settings than the ones assumed in this chapter.

Structure. The rest of the chapter is structured as follows. We introduce the
algorithms in Section8.1. Section8.2describes all important elements of our per-
formance study. Our results are presented in Section8.3, and the chapter concludes
with a discussion in Section8.4.

8.1 Algorithms

This section sketches the two consensus algorithms, concentrating on their com-
mon points and their differences. We then introduce the atomic broadcast algorithm
built on top of consensus.

8.1.1 The consensus algorithms

For solving consensus (defined in Section2.2.1) we use the Chandra-Toueg3S al-
gorithm [CT96] and the Mostéfaoui-Raynal3S algorithm [MR99]. In the sequel,
we shall refer to the algorithms asCT algorithmandMR algorithm, respectively.
We also use these names to refer to the atomic broadcast algorithm used with the
corresponding consensus algorithm if no confusion arises from doing so.

Common points. The algorithms share a lot of assumptions and characteristics,
which makes them ideal candidates for a performance comparison. In particular,
both algorithms are designed for the asynchronous model with3S failure detectors
(see Chapter2 for definitions). Both toleratef < n/2 crash failures. Both are
based on the rotating coordinator paradigm: each process executes a sequence of
asynchronous rounds (i.e., not all processes necessarily execute the same round at
a given timet), and in each round a process takes the role ofcoordinator (pi is
coordinator for roundskn + i). The role of the coordinator is to try to impose a
decision value on all processes. If it succeeds, the consensus algorithm terminates.
It may fail if some processessuspectthe coordinator to have crashed (whether the
coordinator really crashed or not). In this case, a new round is started.

Execution of a round. In each round of a consensus execution, the CT algorithm
uses a centralized communication scheme (see Fig.8.1) whereas them MR algo-
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rithm uses a decentralized communication scheme (see Fig.8.2). We now sketch
the execution of one round in each of the two algorithms. We suppose that the
coordinator is not suspected. Further details of the execution are not necessary for
understanding the rest of the chapter. Detailed pseudocode descriptions are given
in ChapterB, in the Appendix.

proposal ack decision

coordinator

p5

p4

p3

p2

p1
t

decide(v)
propose(v)

estimate

Figure 8.1: Example run of the CT consensus algorithm.

proposal

coordinator

p5

p4

p3

p2

p1
t

propose(v)

ack / estimate decide(v)

Figure 8.2: Example run of the MR consensus algorithm.

• In the CT algorithm, the coordinator first gathers estimates for the decision
value from a majority of processes (estimatemessages in Fig.8.1) to choose
its proposal from. This phase is only necessary in the second round and later;
this is why the messages are grayed out in Fig.8.1.

• In both algorithms, the coordinator sends a proposal to all (proposalmes-
sages in Fig.8.1and8.2).

• Upon receiving the proposal, processes send an acknowledgment (ackmes-
sages). In the CT algorithm, acks are sent to the coordinator only. In the
MR algorithm, the ack is sent to all. Moreover, processes in the MR algo-
rithm piggyback their current estimate on theackmessage, in order to allow
the coordinator of the next round to choose a proposal. This is why the MR
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algorithm does not require a separate phase to sendestimatemessages. Pig-
gybacking estimates in a similar way is not possible in the CT algorithm, as
the coordinator of the next round does not receive theackmessages.

• Upon receiving a positive ack from a majority of processes, the coordinator
(in the CT algorithm) and all processes (in the MR algorithm) decide. The
coordinator in the CT algorithm needs to send its decision to all (decision
message in Fig.8.1). This is not necessary in the MR algorithm, because
each process decides independently.

Crashes are handled in the following way: if the coordinator is suspected, the
suspecting process sends a negative ack. Negative acks prevent a decision, and lead
to another round with a new coordinator.

8.1.2 Optimizations to the consensus algorithms

The consensus algorithms implemented contain several optimizations with respect
to the published versions [CT96, MR99]. The goal of the optimizations is to reduce
the number of messages if neither crashes nor suspicions occur.

• As mentioned before, the estimate messages are not sent in the first round of
the CT algorithm.

• In the original CT algorithm, processesp2, . . . , pn start the second round
immediately after sending the ack. This generates unnecessary messages.
To prevent this, the coordinator sends anabort message if it receives nega-
tive acks, and processes wait for the abort message before starting the new
round.1

• The decision message in the CT algorithm must be sent using reliable broad-
cast (see Section2.2.2). We use an efficient algorithm (described in Sec-
tion B.1 in the Appendix) that requires one broadcast message if the coordi-
nator is not suspected.

• The MR algorithm faces a similar problem: the decision is likely to take
place at every process, but this must be verified to ensure the liveness of
the algorithm. [MR99] requires that each process sends a decision message
upon deciding. These decision messages have a catastrophic effect on perfor-
mance: in our simulations, the MR algorithm always performed worse than
the CT algorithm if these decision messages were used. Our solution is to
send decision messages with the efficient reliable broadcast algorithm used
to send the decision message in the CT algorithm, but without performing its
first step: sending the message to all. In other words, processes that decide

1Processesp2, . . . , pn also start a new round if they start suspecting the coordinator.
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enter the reliable broadcast algorithm as if they had already received a de-
cision message from the coordinator. This solution ensures that no decision
messages are sent unless the coordinator is suspected.

8.1.3 The Chandra-Toueg atomic broadcast algorithm

The Chandra-Toueg atomic broadcast algorithm was introduced in detail in Sec-
tion 7.1.1and a pseudocode description of the algorithm is given in SectionA.2.7,
in the Appendix. We just review its most important features here.

A process executes A-broadcast by sending a message to all processes.2 When
a process receives such a message, it buffers it until the delivery order is decided.
The delivery order is decided by a sequence of consensus numbered 1, 2, etc. The
initial value and the decision of each consensus is aset of message identifiers.
Upon receiving a decision, the messages concerned are delivered according to a
deterministic function, e.g., according to an order relation defined on their IDs.

The algorithm inherits the system model and any fault tolerance guarantees
from the underlying consensus algorithm.

8.2 Elements of our performance study

8.2.1 Performance metrics and workloads

Our main performance metric is theearly latencyof atomic broadcast, i.e., the time
that elapses from the broadcast to the first delivery (see Section6.1). Early latency
is simply referred to as latency and is denoted byL. In our study, we compute the
mean forL over a lot of messages and several executions.

Latency is always measured under a certain workload. We chose a symmet-
ric workload where (1) the set of senders is all destination processes and (2) the
A-broadcast events follow Poisson arrival (see Section6.2). The workload is char-
acterized by the throughputT , i.e., the overall rate of atomic broadcast messages.

In general, we determine how the latencyL depends on the throughputT .
Other parameters that influence latency are the choice for the algorithmA and the
number of processesn. We also determine the maximal throughputTmax .

8.2.2 Faultloads

We evaluate the latency of the atomic broadcast algorithms using two faultloads
from Section6.3. The steady state latency is determined with the normal-steady
faultload. This faultload involves neither crashes nor suspicions. The transient
latency after a crash is determined with the crash-transient faultload.

In contrast to Chapter7, the crash-steady and suspicion-steady faultloads are
not used. The reason is that, unlike in Chapter7, even the normal-steady faultload

2This message is sent using reliable broadcast. We use an efficient algorithm inspired by [FP01],
described in SectionB.1, in the Appendix.
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offers an interesting comparison. A consequence is that failure detectors only need
to be modeled with the detection time parameterTD (a parameter of the crash-
transient faultload).

8.2.3 Modeling the execution environment

Our approach to performance evaluation is simulation, which allowed for more
general results as would have been feasible to obtain with measurements in a real
system (we can use a parameter in our network model to simulate a variety of
different environments). We used the Neko prototyping and simulation framework
(see Chapter4) to conduct our experiments.

We used the model of Section5.3 for the execution environment. This simple
model accounts for resource contention on the network and the hosts. We used
both the point-to-point and the broadcast variant of the model for our study. The
model has one parameter (λ) that reflects the relative cost of processing on the hosts
and the network in the transmission of messages. We used several representative
settings for this parameter.

It is worthwhile to describe in detail how crashes appear in our model. If a
processpi crashes at timet, no messages can pass betweenpi andCPUi after t;
however, the messages onCPUi and the attached queues are still sent, even after
time t. In real systems, this corresponds to a (software) crash of the application
process (operating system process), rather than a (hardware) crash of the host or a
kernel panic. We chose to model software crashes because they are more frequent
in most systems [Gra86].

8.3 Results

We now present our results for both faultloads and a variety of network models. We
obtained results for a variety of representative settings forλ: 0.1, 1 and 10. The
settingsλ = 0.1 and10 correspond to systems where communication generates
contention mostly on the network (atλ = 0.1) and the hosts (atλ = 10), while 1 is
an intermediate setting. For example, in current LANs, the time spent on the CPU
is much higher than the time spent on the wire, and thusλ = 10 is probably the
setting closest to reality. We obtained results with both the point-to-point and the
broadcast variant of the network model. As these sets of results are quite different,
they are presented in separate subsections.

Most graphs show latency vs. throughput (some show latency vs. the num-
ber of processes). The maximum throughputTmax is approximately the highest
throughput value, that is, thex coordinate of the rightmost point, in all graphs
showing the steady-state latency; beyond this throughput, the late latencyLlate

(see Section6.1) did not stabilize. For easier understanding, we set the time unit of
the network simulation model to 1 ms. The 95% confidence interval is shown for
each point in the graphs.
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The two algorithms were always run with an odd number of processes. The
reason is that the same number of crash failuresk (k = 1, 2, . . .) is tolerated if
the algorithms are run with2k + 1 and2k + 2 processes; thus adding a process to
a system with an odd number of processes does not increase the resiliency of the
system.

8.3.1 Results in the point-to-point network model

Normal-steady faultload, scalability study (Fig.8.3). In each graph, latency is
shown as a function of the number of processesn. Logarithmic scales are used
on both axes, to visualize a big range of latency and to emphasize small values of
n. Atomic broadcast are sent at a very low rate (0.1 requests/s). At this through-
put, executions of subsequent atomic broadcasts do not influence each other. The
parameterλ varies from graph to graph.
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Figure 8.3: Latency vs. number of processes with the normal-steady faultload
(point-to-point model).

Each graph can be divided into three regions, depending on the value ofn:

• The MR algorithm always performs better atn = 3. The reason is that
decentralized coordination (MR algorithm) requires one communication step
fewer than centralized coordination (CT algorithm; see Figures8.1and8.2).
Moreover, this advantage is not offset by the higher resource utilization of
the MR algorithm, as it is at higher values ofn.



114 CHAPTER 8. CENTRALIZED VS. DECENTRALIZED CONSENSUS

• At very high values ofn (n ≥ 9 if λ = 0.1; n ≥ 11 if λ = 1; approximately
n > 40 if λ = 10) the MR algorithm performs much worse. The graphs also
show that the latency of the CT algorithm scales linearly withn whereas the
latency of the MR algorithm scales quadratically: the slopes of the latency
curves in the log-log graphs are about1 and2, respectively. The reason is
that the CT algorithm usesO(n) messages, whereas the MR algorithm uses
O(n2) messages, though each process only handlesO(n) messages in both
algorithms. This makes the MR algorithm network bound at high values of
n, and the effect of a quadratic number of messages shows directly.

• At intermediate settings forn, the two algorithms perform roughly the same.
The reason is that the higher resource utilization of the network resource
starts to show (unlike atn = 3) but both algorithms are still CPU bound
(unlike at high values ofn).

Normal-steady faultload, algorithms under load (Figures8.4 to 8.6). Nine
latency vs. throughput graphs are shown, three in each figure. The parameterλ
changes from figure to figure, and each graph within a figure shows results for
n = 3, 5 and7, respectively.
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Figure 8.4: Latency vs. throughput with the normal-steady faultload (λ = 0.1,
point-to-point model).

One can observe two different behaviors:

• The CT algorithm has worse performance atn = 3, and also atn = 5
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Figure 8.5: Latency vs. throughput with the normal-steady faultload (λ = 1, point-
to-point model).
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Figure 8.6: Latency vs. throughput with the normal-steady faultload (λ = 10,
point-to-point model).
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and7 whenλ = 10. The relative performance difference grows withλ at
n = 3. The performance difference is roughly proportional to the throughput
atλ = 10; atλ = 0.1 and1, the difference is small.

The reason for this behavior is that the CT algorithm loads the coordinator
much more than the MR algorithm: beside providing a proposal, it also must
collect acks and send the decision, as shown in Fig.8.1(the coordinator has
the most loaded CPU with both algorithms). This explanation holds when
the network utilization is the same in both algorithms (n = 3: the same
number of unicast messages pass on the network) or the cost of processing
a message on the CPUs is much higher than processing it on the network
(λ = 10).

• The MR algorithm has worse performance atn = 5 and7 whenλ = 0.1
or 1. The performance difference is roughly proportional to the throughput.
The relative performance difference grows withn.

The reason for this behavior is that the load on the CPUs does not matter
with these settings forn andλ, unlike in the previous case. Instead, the de-
termining factor is that the MR algorithm loads the network more; the higher
n, the more the network is loaded. Also, increasing the throughput leads to
higher queuing times in the network buffers of the model (see Section5.3).

Crash-transient faultload (Figures 8.7 to 8.9). With this faultload, we only
present the latency after the crash of the coordinator, as this is the case resulting
in the highest transient latency (and the most interesting comparison). If another
process is crashed, both algorithms offer roughly the latency observed with the
normal-steady faultload.

The figures show thelatency overhead, i.e., the latency minus the detection
time TD, rather than the latency. Graphs showing the latency overhead are more
illustrative; note that the latency is always greater than the detection timeTD with
this faultload, as no atomic broadcast can finish until the crash of the coordinator
is detected. The arrangement of the figures and graphs is the same as with the
normal-steady faultload, with the throughput on the x axis.

We set the failure detection timeoutTD to 100 ms atλ = 0.1 or 1 and to 1000
ms atλ = 10. This choice models a reasonable trade-off for the failure detector:
the latency overhead is comparable toTD, to make sure that the failure detector
does not degrade performance catastrophically when a crash occurs. On the other
hand, the detection time is high enough (in most networking environments) to avoid
that failure detectors suspect correct processes.

The results are very similar to the previous set of results, as can be seen by
comparing Fig.8.4with Fig. 8.7; Fig. 8.5with Fig. 8.8; and Fig.8.6with Fig. 8.9.
The same observations and explanations apply.
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8.3.2 Results in the broadcast network model

Normal-steady faultload, scalability study (Fig.8.10). In each graph, latency
is shown as a function of the number of processesn. Linear scales are used on both
axes. Atomic broadcast are sent at a very low rate (0.1 requests/s). The parameter
λ varies from graph to graph.

One can see that the MR algorithm offers a slightly lower latency. Moreover,
the difference in latency does not depend onn. The reason is that in the broadcast
model, the MR algorithm terminates in one communication step fewer, and that
the most heavily loaded resources (the network and the CPU of the coordinator)
process one message fewer per consensus (n with the MR algorithm andn + 1
with the CT algorithm).

Normal-steady faultload, algorithms under load (Figures8.11to 8.13). Just
as before, nine latency vs. throughput graphs are shown, three in each figure. The
parameterλ changes from figure to figure, and each graph within a figure shows
results forn = 3, 5 and7, respectively.

The MR algorithm performs better at any load. The reason is that in the broad-
cast model, the most heavily loaded resources (the network and the CPU of the
coordinator) process one message fewer per consensus (n with the MR algorithm
andn + 1 with the CT algorithm).
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Figure 8.7: Latency overhead vs. throughput with the crash-transient faultload
(λ = 0.1, point-to-point model).
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Figure 8.8: Latency overhead vs. throughput with the crash-transient faultload
(λ = 1, point-to-point model).
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Figure 8.9: Latency overhead vs. throughput with the crash-transient faultload
(λ = 10, point-to-point model).
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Crash-transient faultload (Figures 8.14to 8.16). Once again, we only present
the latency after the crash of the coordinator, as this is the case resulting in the
highest transient latency (and the most interesting comparison). The figures show
the latency overhead. The arrangement of the figures and graphs is the same as
with the normal-steady faultload with the throughput on the x axis. Just as with the
point-to-point model, we set the failure detection timeoutTD to 100 ms atλ = 0.1
and1 and to 1000 ms atλ = 10.

With this faultload, the performance of the CT algorithm is much worse, at all
settings ofn andλ. The reason is that, in addition to the differences observed with
the normal-steady faultload, the CT algorithm takes one communication step more
(the first phase of the second round; see the grayestimatemessages in Fig.8.1) than
the MR algorithm. Theseestimatemessages are piggybacked onackmessages in
the MR algorithm, as discussed in Section8.1.1. The fact that piggybacking is
possible is an advantage of the decentralized structure of the MR algorithm.

8.4 Discussion

We have investigated two consensus algorithms designed for the same system
model: an asynchronous system (with a minimal extension to allow us to solve
the consensus problem) andf < n/2 process crashes (the highestf that our sys-
tem model allows). Also, both algorithms are based on the rotating coordinator
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Figure 8.10: Latency vs. number of processes with the normal-steady faultload
(broadcast model).
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Figure 8.11: Latency vs. throughput with the normal-steady faultload (λ = 0.1,
broadcast model).

paradigm. The main difference is that, in each round, the CT algorithm uses a
centralized and the MR algorithm a decentralized communication pattern.

Summary of the results. We now summarize the results of the study as a list
of observations. These observations can be used by implementors when deciding
which algorithm to deploy in a given system.

1. We found that in a network model with point-to-point messages only, the MR
algorithm performs much worse both when the number of processesn or the
load on the system is high. The reason is that the MR algorithm generates
much more contention on the network.

2. In a network model with broadcast messages, the MR algorithm performs
slightly better. The difference in latency does not depend on the number of
processes.

3. In a network model with broadcast messages, the MR algorithm reacts much
faster to failures. The reason is that its decentralized nature allows it to
piggyback information in order to save a communication step when a crash
failure occurs.

4. Frequently, only one crash failure needs to be tolerated. If this is the case,
i.e., the consensus algorithm runs on three processes, the MR algorithm is
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Figure 8.12: Latency vs. throughput with the normal-steady faultload (λ = 1,
broadcast model).
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Figure 8.13: Latency vs. throughput with the normal-steady faultload (λ = 10,
broadcast model).
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Figure 8.14: Latency overhead vs. throughput with the crash-transient faultload
(λ = 0.1, broadcast model).

a better choice regardless of whether the network supports broadcast mes-
sages.

On the use of time complexity. Time complexity predicts that the MR algorithm
performs much better: it only needs 2 communication steps to decide, whereas the
CT algorithm needs 3. Even our simple model shows that this does not always
hold: Observations 1 and 2 cannot be explained using time complexity (in the case
of Observation 2, the MR algorithm indeed performs better, but the performance
difference is really small). The phenomenon that time complexity misses and our
model includes is the contention on system resources generated by message pass-
ing.

Early decision schemes. In the MR algorithm as described in [MR99], a process
sends a decision message to all when it decides. The authors call this an early
decision scheme; the underlying intuition is that this scheme shortcuts the execu-
tion of the algorithm, as a process can decide when it sees a decision message.
We found that, contrary to its name, the early decision scheme delays decisions,
by loading the hosts and the network with messages (see Section8.1.1). This is
not surprising: the early decision scheme generatesO(n2) messages in a network
with point-to-point.messages only. The lesson is that intuition is often misleading
when it is based on a view of the system that does not take resource contention into
account.
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Figure 8.15: Latency overhead vs. throughput with the crash-transient faultload
(λ = 1, broadcast model).
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Figure 8.16: Latency overhead vs. throughput with the crash-transient faultload
(λ = 10, broadcast model).



124 CHAPTER 8. CENTRALIZED VS. DECENTRALIZED CONSENSUS



Chapter 9

Chasing the FLP impossibility
result in a LAN or how robust
can a fault tolerant server be?

Fault tolerance can be achieved in distributed systems by replication. However,
Fischer, Lynch and Paterson have proven an impossibility result about consensus
in the asynchronous system model [FLP85]. Similar impossibility results have
been established for atomic broadcast and group membership, and should be as
such relevant for implementations of a replicated service. However, the practical
impact of these impossibility results is unclear. For instance, do they set limits to
the robustness of a replicated server exposed to extremely high loads?

This chapter tries to answer this question by describing an experiment con-
ducted in a local area network (LAN). It consists of client processes that send
requests to a replicated server (three replicas) using an atomic broadcast primitive.
The experiment has parameters that allow us to control the load on the system and
the failure detection time offered by the failure detectors underlying the replicated
server.

Our main observation is that the replicated server never stops processing re-
quests, not even at arbitrarily high load and very small failure detection times
(1 ms). The result was surprising to us, as we expected that our atomic broadcast
algorithm would stop delivering messages at such small failure detection times. So,
by trying to illustrate the practical impact of impossibility results, we discovered
that we had implemented a very robust replicated service.

The rest of the chapter is structured as follows. Section9.1 presents the mo-
tivation for our work and summarizes the experiment and the results. Section9.2
presents related work. Section9.3 introduces the algorithms used in the experi-
ment. Section9.4 describes the environment and some features of the implemen-
tation. Section9.5 explains how we tested the robustness of the replicated server.
Section9.6 describes in detail the results obtained in our experiments. Finally,
Section9.7discusses these results.
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9.1 Introduction

High availability is often achieved by the replication of components or services.
Although replication is an intuitive and readily understood concept, its implemen-
tation is difficult. Replicating a service in a distributed system requires that the
states of all replicas of the service are kept consistent, which can be ensured by a
specific replication protocol [Sch90, BMST93]. A replication protocol is typically
implemented using group communication primitives, e.g. atomic broadcast (see
Section2.2.3).

However, Fischer, Lynch and Paterson have proven an impossibility result for
consensus in the asynchronous system model [FLP85], a result commonly known
as the FLP impossibility result (see Section2.2.5).1 The impossibility result also
applies to atomic broadcast [CT96]. The impossibility of group membership —
another problem related to replication — in asynchronous systems was also estab-
lished [CHTCB96]. Formally, these impossibility results set a limit on the level of
robustness that a replicated service can achieve. Practitioners, however, disregard
these impossibility results, i.e., they consider them of no practical relevance. The
reason is that real systems usually exhibit some level of synchrony, i.e., they are not
exactly asynchronous. Consequently, the implications of the impossibility result to
real systems are difficult to see, and these theoretical results are largely ignored in
practice.

On the other hand, no paper in the literature refers to experiments in which the
implementation of replication is exposed to extremely high loads. How robust can
a system be under these conditions? Do high loads actually prevent the system
from making progress (as stated by the FLP impossibility result), and so limit the
robustness of the system? How robust can a fault tolerant server be?

To answer these questions, we designed an experiment for a local area network
(LAN). It consists of client processes that send requests to a replicated server using
an atomic broadcast primitive. The experiment has a parameter which specifies the
load on the system (the rate of requests coming from the clients). The other param-
eter is the timeout used by our heartbeat failure detectors. The implementation is
such that this timeout is an upper bound on the failure detection time offered by the
failure detectors: the smaller the timeout, the faster the failure detection. It is clear
that if we use very slow failure detection, say with a detection time of one minute,
our system could be extremely robust, as false failure suspicions would be avoided
with a high probability. However, the behavior of our system in the case of a crash
would be disastrous: with a detection time of one minute, the response time could
be extremely high (if the crash affects a process which has an important role at the
moment of the crash). In order to avoid such robust, but badly performing systems,
we were decreasing the detection time values (and increasing the frequency of
sending heartbeats). A side effect is that the failure detectors make more and more

1 An asynchronous system — which models a system with unpredictable CPU and channel loads
— is a system in which there is no assumption neither on message communication delays nor on
relative speeds of processes. See also Section2.1.1.
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mistakes by suspecting correct processes. Our intuition was that, as we decrease
the detection time (and increase the frequency of heartbeats), the atomic broadcast
algorithm would stop making progress at some point in its execution. Interestingly,
our experiment showed that this was not the case: up to very small detection times
(i.e., 1 ms) and at arbitrarily high load conditions, the atomic broadcast algorithm
never stops delivering messages (i.e., it always works). Thus, by challenging our
implementation with high loads and small failure detection times, we discovered
that we had implemented a replicated service which is extremely robust in a LAN.

9.2 Related work

To the best of our knowledge, no paper in the literature refers to experiments in
which the implementation of replication is exposed to extremely high loads. Nev-
ertheless, there are two papers [CF99, CTA02] which implicitly suggest ways of
implementing extremely robust replicated servers, and support their arguments by
performance evaluation results.

[CF99] introduces the timed asynchronous system model for distributed algo-
rithms. This model, extended with what the authors call progress assumptions, al-
lows them to solve consensus. Therefore, if the timed asynchronous model matches
reality, one can build extremely robust replicated servers using algorithms devel-
oped for this model. The authors support the assumptions of their model by an
extensive set of measurements performed in a LAN. They validate the assump-
tions of their core model even under high load. However, the progress assumptions
(which make the model powerful enough to solve consensus) are validated only
under moderate load (1/4 of the network capacity).

[CTA02] presents a failure detector based on heartbeats and proves that this
algorithm is optimal (in terms of the quality of service measures defined in the pa-
per and in the class of heartbeat failure detectors), for any kind of distribution for
the message delays. The paper also gives an adaptive version of the algorithm that
approximates the optimum even if the distribution of message delays is not known
in advance or changes over time. The results are supported by analytical compu-
tations and a simulation study. Indeed, such a failure detector would be ideally
suited to implement a replicated server which is extremely robust in a variety of
environments and for a variety of loads. However, the paper assumes that message
delays areindependentrandom variables. This assumption is far from being true
for two subsequent messages if the network is under high load (as we saw in our
experiment when logging messages): if a message suffers a high delay, usually the
next message suffers a comparably high delay as well.

9.3 Algorithms

Active replication. Our experiment consists of a replicated server and several
clients. Each client repeatedly sends a request to the replicated server and waits for
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a reply. The server is replicated by means ofactive replication(also calledstate
machine approach) [Sch90, Sch93, Pol94]. In active replication, clients use atomic
broadcast to send their requests to the replicas. Atomic broadcast ensures that all
server replicas receive the client requests in the same order (see Section2.2.3).
Upon reception of a request, each server replica performs the same deterministic
processing (in our case, writing a number to a file) and sends back a reply to the
client. The client waits for the first reply, and ignores all further replies to the same
request.

Atomic broadcast. The atomic broadcast algorithm used is due to Chandra and
Toueg [CT96]. This algorithm was introduced in detail in Section7.1.1 and a
pseudocode description of the algorithm is given in SectionA.2.7, in the Appendix.
We just review its most important features here.

The algorithm solves atomic broadcast by executing a sequence of consensus,
where each consensus decides on a set of messages to be delivered. The algorithm
inherits the system model and any fault tolerance guarantees from the underlying
consensus algorithm.

Consensus. We use the Chandra-Toueg3S consensus algorithm [CT96] (see
Section2.2.1 for a definition of the consensus problem), an algorithm designed
for the asynchronous system model with the failure detector3S and a majority of
correct processes. We only give an overview of the algorithm here, explaining the
parts necessary for understanding the rest of the chapter. A detailed pseudocode
description is given in SectionB.2, in the Appendix.

The algorithm is based on the rotating coordinator paradigm. Processes pro-
ceed in consecutive asynchronous rounds (not all processes are necessarily in the
same round at a given time). In each round a predetermined process acts as the
coordinator. The coordinator proposes a value for the decision. A round succeeds
if a decision is taken in that round; if some process decides (and does not crash) it
forces the other processes to decide, and thus the algorithm is guaranteed to termi-
nate shortly. A round might fail when its coordinator crashes, or when its coordi-
nator, while correct, is suspected by other processes. Consensus might terminate in
a single round, i.e., the first round can already succeed. Some runs might require
more rounds, though; in general, the more often the coordinator is suspected, the
more rounds the algorithm will take to terminate.

Failure detection. The consensus algorithm relies on a failure detection mecha-
nism implemented using heartbeat messages (Fig.9.1). Each process periodically
sends a heartbeat message to all other processes. Heartbeat messages are times-
tamped with the time of sending. Failure detection is parameterized with a timeout
valueT and a heartbeat periodTh. When a processp receives a heartbeat message
from processq with timestampt, it trustsq up to timet+T , and then starts suspect-
ing q to have crashed (unless a more recent heartbeat message arrives). Application
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messages are timestamped also with the time of sending, and are used as heartbeat
messages.

Failure detectors can be characterized by the quality of service metrics intro-
duced in [CTA02], and extensively discussed in Section6.3.4. One of these metrics
is thedetection timeTD, characterizing the speed of detecting failures:TD is the
time that elapses fromp’s crash to the time whenq starts suspectingp permanently
(see Fig.6.2). Our failure detector implementation is such that it ensures a detec-
tion time ofTD = T or better: if a processp crashes at timetc, all failure detectors
will permanently suspectp at timetc + T . The reason is simply that all heartbeats
coming fromp are timestamped with a time earlier thantc.

p

q

heartbeat 
messages

t

t

Th Th Th
crash

reset
timer

reset
timer

reset
timer

reset
timer

q suspects p

timeoutT T T T

Figure 9.1: Heartbeat failure detection.

9.4 Environment and implementation issues

9.4.1 Environment

The experiment described in the previous section was run on a cluster of 13 PCs
running Red Hat Linux 7.2 (kernel 2.4.18). The hosts have Pentium III 766 MHz
processors and 128 MB of RAM, and are interconnected by a 100 Base-TX duplex
Ethernet hub. Three server replicas were used, as three is the minimum number of
replicas for which the atomic broadcast algorithm used tolerates process crashes.
Each server replica ran on a different host, while the remaining 10 hosts were
used for the clients (there was more than one client per host). We had to use a
lot of hosts, otherwise the client hosts turned out to be a bottleneck and thus we
could not generate a sufficiently high rate of client requests. The algorithms were
implemented in Java (Sun’s JDK 1.4.1_01) on top of the Neko framework (see
Chapter4).

9.4.2 Communication protocols

We have three types of messages with different delivery requirements in our sys-
tem: (1) heartbeat messages, (2) client requests, as well as (3) messages between



130 CHAPTER 9. CHASING THE FLP IMPOSSIBILITY RESULT. . .

server replicas and replies to clients. We use the UDP protocol for transmitting
heartbeat messages, for the loss of a heartbeat message is not critical. The other
messages need reliable transmission, therefore the straightforward choice is the
TCP protocol (nevertheless, we chose UDP rather than TCP for client requests,
for reasons discussed in the next paragraph). However, TCP has problems with
extreme overload situations. In such situations, two hosts can be partitioned from
each other for a long time, and TCP connections break, for a lot of retransmissions
fail in a row. The number of times TCP tries to retransmit a packet is given by
the parametertcp_retries2 of the Linux TCP implementation. We solved the
problem by setting the parameter from the default value (15) to a very high value,
for all the hosts involved.2

We could not use TCP for transporting client requests. To understand why, re-
call that the goal of our experiment was to investigate the behavior of our system
under arbitrarily high loads. Therefore we had to avoid that flow control decreases
the load on the system, i.e., the rate of client requests.3 In the context of our experi-
ment (many clients on one host), the implication is that we cannot use a single TCP
connection per host for the client requests: in this case, TCP’s congestion control
mechanism makes sure that the network never gets overloaded. We cannot use one
TCP stream per client, either, for the servers would have to handle a huge number
of simultaneous connections, more than the operating system allows. We have the
same problem if we use one TCP connection for each request (and send the reply
on another connection). The remaining choice for transporting client requests is
UDP.4 This way, the network can be arbitrarily loaded with client requests.

9.4.3 Flow control in the application

Flow control is an essential mechanism in distributed systems: it ensures that com-
ponents do not receive more work than they can handle. Any non-trivial system
needs flow control, but a lot of systems can rely on flow control offered by TCP.
This was not sufficient for our system. We explain the reasons below and then
present our flow control mechanism (implemented within the application layer).

Systems that rely on TCP use a send primitive that blocks whenever TCP’s
sending buffer fills up (e.g., because the receiver is slow). A blocking send prim-
itive only works well for client-server interactions; they constitute a poor way of
synchronizing more complex distributed systems. In our case, blocking sends led
to deadlocks: under high load, all server replicas got blocked in their send op-
erations and could not receive messages to resolve the deadlock. Using threads
dedicated to receiving messages does not solve the problem. No deadlocks appear,

2Another possibility is to use a session layer protocol which re-establishes the connection and
ensures that messages are delivered exactly once. Such a protocol is described in [EUS03].

3Otherwise, we would have constructed a controlled environment which includes the replicated
service,as well as its clients. The high load scenarios we are interested in would not occur at all in
such an environment.

4Retransmitting lost or dropped client requests is the responsibility of the client.
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but — depending on the exact implementation — the number of threads or the size
of message queues continues growing until system resources are exhausted.

We solved the problem by adding anoutgoing message queuein the application
layer. Send operations which are non-blocking deposit messages in that queue,
and a dedicated thread empties the queue and performs the TCP send operation.
Without flow control, the outgoing message queues can still grow indefinitely and
cause “out of memory” errors. Our (stop-and-go) flow control mechanism acts
whenever the size of the outgoing message queue is above a threshold. When this
happens, we disable the generation of (most) outgoing messages as follows:

• We disable the generation of heartbeat messages (but the timeout for sus-
pecting processes does not change!).

• We suspend the thread on the servers that receives client requests. This stops
the generation of new outgoing messages. As a consequence, the UDP pro-
tocol which delivers client requests will start dropping requests, and this
eventually slows down clients, for they have to retransmit the dropped re-
quests.

Another queue where messages tend to accumulate is the queue holding un-
ordered messages in the atomic broadcast algorithm: messages come in relatively
fast, but go out relatively slowly, because deciding on their delivery order using
consensus might take a lot of time. We limit the size of this queue using the same
flow control mechanism as for the outgoing message queue.

9.5 How robust is our system?

The correctness of a distributed algorithm has two aspects:safety(“nothing bad
ever happens”) andliveness(“good things must eventually happen”). We call an
algorithmrobust if it is both safe and live, even when exposed to extremely high
loads. The atomic broadcast algorithm that we chose [CT96] is safe under any
conditions. Therefore, robustness is related to liveness in our experiment: is our
atomic broadcast always able to deliver messages? The goal of our experiment is
to find an answer to this question. The experiment has parameters which influence
the load conditions of the system. For various settings of these parameters, we ran
the experiment and checked whether the atomic broadcast algorithm was live. This
section discusses the parameters of the experiment, as well as the method used for
verifying liveness.

Note that we do not emulate process crashes in our experiment. This would pri-
marily give information on the fault tolerance characteristics of the atomic broad-
cast algorithm, which are well understood [CT96]. The robustness of the algorithm
is a major issue even if no crash occurs.5

5Note also that the FLP impossibility does not stem from the fact that crashesdo occur, but from
the fact that crashesmay happenin an unanticipated manner at any point in the execution of the
atomic broadcast algorithm, and that consequently, the algorithm has to be prepared for them.
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9.5.1 Parameters of the experiment

We classify the parameters of our experiment into two categories: (1)application
parameters, over which the implementor of the server has no control, and (2)sys-
tem parameters, over which the implementor of the server has full control.

An application parameter influences the load on the network and the hosts.
Our application parameter isr, the rate of requests coming from the clients, i.e.,
the number of requests per second.6 A larger generates a high load on the network
and on the replicated server. The number of clients is sufficiently high to maintain
any reasonable value ofr, even if the server processes requests very slowly. In
order to demonstrate that our system is robust, we have to show that our replicated
server works for any setting of the application parameterr.

Our system parameter isT , the timeout value for the failure detector. The
time Th between two consecutive heartbeat messages is set toT/2. Low timeout
values yield frequent false suspicions, and thus increase the time needed to solve
consensus, and for the client the time to get the reply after sending the request.
High timeout values increase the detection time of the failure detector, and thus
reaction time of the algorithm to process crashes.

As already mentioned in the introduction, the robustness of our server can eas-
ily be increased by settingT very high, say to one minute. However, this would
imply that the replicated server may block for a minute when a process crashes.7

We consider that such a behavior is unacceptable for a server replicated for high
availability. For this reason, we explored how the replicated server behaves for
small values ofT .

9.5.2 Testing if the atomic broadcast algorithm can deliver messages

Given a setting of the parameters, how can we detect (1) if the atomic broadcast
algorithm continues delivering messages forever or (2) if it will never deliver mes-
sages any more? The best that we can do is to detect conditions that allow us to
conclude with some confidence that the behavior of the algorithm has stabilized.
We use the following conditions to terminate a run of the experiment:

1. The clients have collected a certain number of replies (N ) from the replicated
server.

2. One instance of the consensus algorithm has not terminated after executing
a certain number of rounds (R).

6Requests are generated by a Poisson process, thus we model independent requests. This is,
however, not crucial to the experiment.

7Suppose that the coordinator of a round of the consensus algorithm crashes. At this moment,
the other processes wait for either a message from the coordinator or that the failure detector starts
suspecting the coordinator. With a timeout of one minute, the algorithm is blocked at this point for
about one minute.
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In every run of our experiment, one of these conditions is necessarily fulfilled.
In case 1, we conclude that the algorithm was live in the current run: sending a
requestm using atomic broadcast eventually leads to the delivery ofm, and thus
to a reply tom. In case 2, the conclusion is that the algorithm was not live in the
current run.

The valuesN and R should be chosen sufficiently high, to ensure that the
behavior of the algorithm stabilizes. In the experiment, we usedN = 10 000 and
R = 10 000. N = 10 000 was sufficient to ensure that each host participating in
the experiment starts sending messages, and that at least 50 consensus are executed
after the startup, for even the most unfavorable setting of the parametersr andT .
R = 10 000 was sufficient because we had no consensus that took10 000 rounds:
the consensus algorithm was always live.

9.6 Results of our experiment

In spite of our expectations, we observed that the atomic broadcast algorithm works
even under the most extreme conditions: a request rate that saturates the network
(20 000 requests/s) and a very small detection time for the failure detector, ap-
proaching the resolution of the clock used (1 ms). We present the detailed results
of the experiment in this section and discuss those results in Section9.7.

We performed measurements for a variety of client request rates. We only
present two sets of results which are characteristic: one for 100 requests/s and one
for 20 000 requests/s (Figures9.2(a)and9.2(b)). The rate of 100 requests/s is well
below the capacity of the replicated server. This rate corresponds to normal op-
eration. Smaller rates give very similar results (with a different average response
time). The other rate is20 000 requests/s. It is pointless to increase the request
rate beyond this point because at this rate, the network is already saturated with re-
quests.8 As for request rates between 100 requests/s and one for20 000 requests/s,
the observed behavior is in between the two extreme behaviors.

For both request rates and different timeout values, we measured two quan-
tities: (1) the average response time (the time between the sending of a request
and the reception of the corresponding reply, as seen by the client) and (2) the
average number of rounds per consensus. The average response time is shown
in Figure9.2(a). The average number of rounds per consensus is shown in Fig-
ure 9.2(b). The characteristics of the “response time” curve and the “consensus
rounds” curve are rather similar under moderate load; this is not surprising, as the
number of rounds per consensus execution largely determines the response time.
Under the extreme load, the response time is extremely high, and is influenced by

8The size of the Ethernet frame encapsulating a request is 383 bytes, and each request is sent in
three copies (one per server). Knowing this and the bitrate of the Ethernet network (100 Mbit/s), we
can compute an upper bound for the request rate:≈ 11 500 requests/s (the real value is probably
much lower, as the utilization of the network is usually far from 100%). Moreover, we measured that
the each client host can pass at least 2000 requests/s through its socket interface. Thus 10 client hosts
are certainly sufficient for overloading the network with requests.
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Figure 9.2: Performance of the replicated server (three replicas) for an extreme and
a moderate request rater vs. the failure detection timeoutT . Each point represents
a mean value obtained from 100 independent experiments. The 95% confidence
interval is shown.

other factors (queuing times in buffers and the flow control mechanisms described
in Section9.4.3).

In each curve (except for the response time curve at the extreme load) we can
observe two kinds of behavior:

• at r = 100/s, the one behavior with a timeout value belowT = 5ms, and
the other behavior with a timeout value aboveT .

• atr = 20 000/s, the one behavior with a timeout value belowT = 2000ms,
and the other behavior with a timeout value aboveT .

At high timeouts (T ≥ T ), the measured quantities are largely independent of
the timeout. The average number of consensus rounds is close to 1.

At low timeouts (T < T ), both the number of rounds and the response time
(at moderate load) increase as the timeout decreases. This is due to the more and
more frequent failure suspicions. Compared to the case of high timeouts, the con-
fidence intervals for both the response time and the number of rounds are large,
showing that these quantities are more unpredictable. We found that even at low
timeouts, most consensus executions take relatively few rounds, but a few instances
of consensus take a lot of rounds and thus increase the average significantly. The
distribution of the number of rounds is shown in Fig.9.3, for the most extreme set-
ting of parameters:r = 20 000/s andT = 1 ms (as Fig.9.2(b)shows, this setting
of parameters results in the highest number of rounds per consensus execution on
the average).

Finally, note that we did not try to optimize the response times of the server
(shown in Fig.9.2(a)). Even under light load (20 requests/s), the average response
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Figure 9.3: The distribution of the number of rounds per consensus execution, for
r = 20 000/s, T = 1 ms. 621 consensus executions are shown, coming from
10 independent experiments. The distribution of small round numbers is shown
separately as well.

time was 4.36± 0.04 ms (for a sample of10 000 independent requests).9 Our goal
was to evaluate the robustness of the server, and we could achieve this without
optimizing the performance.

9.7 Discussion

The experiment showed that our replicated server is extremely robust. It worked
under any conditions, even the most extreme ones: a request rate that saturates the
network (20 000 requests/s) and a very small failure detection time, approaching
the resolution of the clock used (1 ms). In this section, we discuss why it proved to
be so robust.

The replicated server is robust because the underlying atomic broadcast algo-
rithm is robust. In turn, as the atomic broadcast algorithm uses a sequence of
consensus algorithms to decide what messages it can deliver next (Section9.3), the
atomic broadcast algorithm is robust because the underlying consensus algorithm
always terminates. This can be explained as follows.

9An optimized implementation similar to the one used in the measurements described in could
achieve a response time below 2 ms in this experiment. The main reason for the difference is that
we could not use the efficient reliable broadcast algorithm of SectionB.1, as this algorithm performs
poorly if message losses and failure suspicions are frequent.
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Recall from Section9.3 that processes proceed in rounds in the consensus al-
gorithm. In each round, a predetermined process acts as the coordinator. A suc-
cessful round is a round in which a decision is taken. A round might fail because
its coordinator may be suspected by other processes. Therefore the more often sus-
picions occur, the more rounds the consensus algorithm takes until it decides. The
frequency of suspicions is directly related to the failure detection timeoutT , and
indirectly to the load of the system, influenced by the client request rater. We now
examine how the system behaves as we decreaseT .

If T is high, consensus terminates in one round. This holds even if the system
is loaded to the maximum extent, i.e., when client requests saturate the network
(r = 20 000/s). This is shown in Fig.9.2(b), for r = 100/s andT ≥ 20 ms and
r = 20 000/s andT ≥ 500 ms. The reason is that the coordinator is hardly ever
suspected by the failure detector. This means that the coordinator can successfully
send messages more often than at a frequency of1/T , as a failure detector stops
suspecting a process whenever it receives a (recent enough) message from that
process. This is not surprising: the Ethernet network strives to provide fair access
to the transmission medium for each host on the network, and the result is that each
host can successfully send a message every 500 ms.10

As we decreaseT , suspicions get more and more frequent. With small timeout
values, we expected that the coordinator of each round of the consensus algorithm
would always be suspected, i.e., the consensus algorithm would forever proceed
from one round to the next one without ever being able to decide. This is not the
case: even for the smallest value forT and the highest possible load (T = 1 ms
and r = 20 000 ms in Fig. 9.2(b)) consensus executions take 81 rounds on the
average, and the longest consensus execution we could find had 545 rounds. So,
while consensus executions may take a large number of rounds and the number of
rounds is rather unpredictable, each consensus execution terminates nevertheless.
By analyzing logs of messages produced during the experiment, we were able to
understand the reasons for this. We present our arguments in three steps:

1. The consensus algorithm tries to decide repeatedly, in every round. There-
fore, if the algorithm does not terminate, the probability that a given round is
successful (i.e., that the coordinator can decide in that round) must be very
close to zero. We shall next argue that this is not the case.

2. Out of our three processes, one is always late: it never participates actively in
the algorithm. The reason is that the algorithm needs the cooperation of only
two processes (this is why it tolerates one crash failure). Thus the process
that finishes one consensus execution late is likely to finish all subsequent
executions late.

3. We now present a scenario depicting a successful round (see Fig.9.4) and ar-
gue that this scenario occurs with a small but non-negligable probability. We

10Actually, Ethernet is the LAN technology that is the least fair among all LAN technologies.
FDDI, for example, guarantees a bound on the access time to the shared medium.
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only describe those details of the algorithm which are absolutely necessary
for understanding the scenario.

q

p

m1 m2

q decides if p not suspected here 

m3 m4

decision 

Figure 9.4: Consensus algorithm:q must suspectp before the reception ofm3 to
prevent a decision in the current round. The late process is not shown.

(a) Processq is the coordinator of roundr, and processp is the coordinator
of roundr + 1. The third process is the late process. This scenario
likely repeats in every third round. The messages of the late process
do not arrive in time to influence the scenario (and are thus omitted in
Fig. 9.4).

(b) Processp sendsm1 to q in roundr, indicating that roundr failed. Upon
receivingm1, q starts executing roundr +1, by sending a messagem2

to the new coordinatorp. Receivingm1 also indicated toq that p is
alive. Thereforeq likely will not suspectp for some time after sending
m2.

(c) Processp waits for m2. Upon receivingm2, it sendsp3 to q. In the
meantime, processq waits either (1) until it receives messagem3 from
p, or (2) until it suspectsp.

(d) If q receivesm3 before suspectingp, thenp will be able to decide(when
receiving the replym4). Messages of the algorithm reset the timer of
the heartbeat failure detector, hence it is unlikely thatq will always
suspectp between the reception ofm1 and the reception ofm3. Con-
sequently, in every third round (at least), the decision may take place.
Thus eventually, there is one round in which the coordinator decides,
and forces the other processes to decide.

Our lowest setting for the failure detection timeTD was 1 ms. The question
arises whether we could have lowered the timeout value and observe consensus
executions that do not terminate. The answer is that we could have loweredTD, and
possibly observed consensus executions which do not terminate, but such smallTD

values do not make sense in practice. The reason is the following. The motivation
to decreaseTD is to speed up the reaction of the algorithm to crashes. The reaction
time is difficult to define precisely, but it is certainly related to the performance
of the replicated server from the client’s point of view. DecreasingT further can
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improve the response time of the server by at most 1 ms in the case of a crash. This
improvement is insignificant: recall from Section9.6that the best case (no crashes,
no suspicions, light load) response time of our server is 4.36 ms.



Chapter 10

Conclusion

10.1 Research assessment

The thesis has major contributions in three domains. As for new tools, a simula-
tion and prototyping framework offers a practical and some new complexity met-
rics a theoretical tool for the performance evaluation of agreement algorithms. As
for methodology, the thesis proposed a set of well-defined benchmarks for atomic
broadcast algorithms; such algorithms are important as they provide the basis for
a number of replication techniques. Finally, three case studies were presented that
investigate important performance issues with agreement algorithms. Let us now
assess each of the contributions in more detail.

The Neko prototyping and simulation framework. We presented Neko, a sim-
ple Java communication platform that provides support for simulating and proto-
typing distributed algorithms. The same implementation of the algorithm can be
used both for simulations and executions on a real network; this reduces the time
needed for performance evaluation and thus the overall development time. Neko is
also a convenient implementation platform which does not incur a major overhead
on communications. Neko is written in Java and is thus highly portable. It was
deliberately kept simple, easy to use and extensible: e.g., some more types of real
or simulated networks could be added or integrated easily. It includes a library of
agreement algorithms, as well as support for centralized configuration, the control
of experiments and gathering statistics. It was successfully used to conduct all the
simulation and measurement studies in this thesis, and was also used in a number
of student projects at EPFL.

Contention-aware performance metrics. We proposed two metrics to predict
the latency and the throughput of distributed algorithms. Unlike other existing
metrics, the two complementary metrics that we present here take account of both
network and CPU contention. This allows for more accurate predictions and a finer
grained analysis of algorithms than what time complexity and message complexity
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permit; we have shown this using analytical computations for the throughput metric
and both analytical computations and measurements for the latency metric. In
addition, our metrics make it possible to find out whether the bottleneck is the
network or the CPU of one specific process.

The problem of resource contention is commonly recognized as having a major
impact on the performance of distributed algorithms. Because other metrics do
not take account of contention to the same extent as ours, our metrics fill a gap
between simple complexity measures and more complex performance evaluation
techniques.

Beside the metrics themselves, a tool that helps evaluating them was presented,
and extensive validation studies were conducted. The use of the metrics was also
illustrated in the two chapters describing detailed simulation studies.

Benchmarks for atomic broadcast algorithms. In the field of group communi-
cation, comparing performance results from different sources is difficult, partly due
to the lack of well-defined benchmarks. In an attempt to consolidate the situation,
we defined a number of benchmarks for atomic broadcast, an important agreement
problem requiring that all destinations of messages deliver the same set of mes-
sages in the same order. The benchmarks include well-defined metrics, workloads
and failure scenarios (faultloads). The use of the benchmarks was illustrated in
the two chapters describing detailed simulation studies. We hope that other re-
searchers will find the simplicity and implementation independent formulation of
the benchmarks attractive enough to start using them.

Comparing unreliable failure detectors and group membership. We com-
pared the performance of two atomic broadcast algorithms designed for an asyn-
chronous system. The two algorithms use different mechanisms for handling fail-
ures: unreliable failure detectors which provideinconsistentinformation about fail-
ures, and a group membership service which providesconsistentinformation about
failures, respectively.

Based on our results, we advocate a combined use of the two approaches to
failure handling: unreliable failure detectors should be used for making failure
handling more responsive and robust; and a group membership service with a dif-
ferently tuned failure detector, making fewer mistakes, should be used to get the
long term resiliency and performance benefits after crashes occur.

Comparing centralized and decentralized coordination. The second of our
detailed case studies compared two consensus algorithms designed for an asyn-
chronous system. They differ in how they coordinate the decision process: the one
uses a centralized and the other a decentralized communication schema. It must be
noted that the problem of centralized and decentralized communication recurs in
solutions to a lot of agreement problems.
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Our results show that the relative performance of the two algorithms is highly
affected by a number of characteristics of the environment, like the availability of
multicast and the amount of contention on the hosts versus the amount of con-
tention on the network. This information can be used to guide deployment deci-
sions.

On the robustness of replicated servers. Famous theoretical results state that
consensus, atomic broadcast and group membership are not solvable in the asyn-
chronous system model. However, the impact of these results to implementations
of replicated services is unclear.

We investigated the problem by stress testing a replicated service in a local area
network. As the impossibility results are based on the difficulty of distinguishing
slow and crashed processes, we put a focus on the failure detectors underlying
the replicated service. In particular, we overloaded the network with requests,
and required that the failure detectors detect crashes very fast (as the impossibility
results stem from the difficulty of doing reliable failure detection). We found that
our replicated server continued working even with the most extreme settings. Thus,
by trying to investigate the effects of impossibility results, we discovered how to
implement replicated servers which are extremely robust in a local area network
setting.

10.2 Open questions and future research directions

Further development on the Neko framework. We plan to continue developing
Neko. The short term goals include implementing some more components useful
for group communication, and integrating a transport layer with an efficient (IP
multicast based) reliable multicast protocol. Some long term goals are integration
with an advanced network simulator (such as NS-2 [FK00]), and improving the
efficiency of message serialization (currently, the standard Java serialization mech-
anisms are used). Also, we plan to switch to XML based configuration files, to
have a cleaner way of configuring parts of a Neko application (i.e., configuration
entries with a scope). Furthermore, there is a need for more sophisticated protocol
composition features than the simple protocol stacking currently used. The most
ambitious project involves re-working the internals of Neko to make it suitable for
studies of scalability, with hundreds or thousands of nodes.

The Neko source code is available freely athttp://lsrwww.epfl.ch/neko [Urb00],
along with documentation. Given sufficient interest, we will set up an Open Source
project around it.

Contention-aware performance metrics. The system model for the contention-
aware metrics (including one CPU resource per host and a shared network resource
can be extended in a variety of ways. For example, modeling a separate network
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processor beside the CPUs would bring it closer to the architecture of current net-
works. Also, the bus-like network could be replaced by more complex topologies.1

Careful experimentation is needed to decide which extensions result in more realis-
tic models, without making the computation of the metrics unnecessarily difficult.
Note, in particular, that a principal merit of the contention-aware metrics is that
there is only one parameter.

Benchmarks for atomic broadcast algorithms. Future work will probably re-
quire extensions to the set of benchmarks. Asymmetric workloads and bursty
workloads are likely needed, as there are atomic broadcast algorithms optimized
for such workloads. Self-similar workloads hold a promise for modeling bursti-
ness. If the algorithm being analyzed tolerates message losses and/or Byzantine
process failures beside crash failures of processes, such failures should be included
in the set of faultloads.

Similar benchmarks could be defined for other agreement problems. Adapting
the benchmarks to other multicast primitives, with different ordering guarantees,
is relatively easy. Many-to-many communication primitives, like consensus, are
more problematic.

Comparing unreliable failure detectors and group membership. We have cho-
sen atomic broadcast algorithms with a centralized communication scheme, with
one process coordinating the others. The algorithms are practical: in the absence
of crashes and suspicions, they are optimized to have small latency under low load,
and to work under high load as well (messages needed to establish delivery or-
der are aggregated). In the future, we would like to investigate algorithms with a
decentralized communication scheme (e.g., [Lam78, AS00]) as well.

Another future research direction is to compare non-uniform atomic broadcast
algorithms (our study was performed with uniform algorithms). Some theoretical
results give hints that failure detector based algorithms cannot take advantage of
non-uniformity to decrease their latency. In contrast, the group membership based
algorithm has an efficient non-uniform variant, though we must point out that,
unlike in our study, a state transfer to wrongly excluded processes (as opposed
to simply replaying the messages missed) cannot be avoided when using the non-
uniform version of the algorithm. Any studies on this issue should include the cost
of state transfer into their model.

Comparing centralized and decentralized coordination. In our study, we as-
sumed that all hosts work at equal speeds. A real system often has more asymmet-
ric configurations, either because the hardware is different or the hosts are loaded
to a different extent. The behavior of the algorithms should be investigated in such

1We view the bus-like network of the model as a mechanism to introduce network contention,
rather than an attempt at modeling Ethernet networks. In fact, it is the simplest such mechanism we
could think of.
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systems. The algorithms could even be modified to adapt to asymmetric config-
urations and changing loads. E.g., each consensus execution could decide which
process should be the first coordinator for the next consensus execution. The first
coordinator should preferably be on a lightly loaded or relatively powerful host.

On the robustness of replicated servers. Our experiment was performed in a
local area network (LAN) setting. It would be interesting to perform a similar
experiment in a Wide Area Network (WAN) as well. In such a setting, message
delays vary a lot more than in a LAN, partly because message losses are much
more frequent. Hosts can even be partitioned from each other for a long time.
Such an environment is definitely closer than a LAN to the asynchronous model
in which the impossibility results about various agreement problems were proven,
and an experiment might unveil their effects.
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Appendix A

Atomic broadcast algorithms

All atomic broadcast algorithms used in this thesis have been informally described
in Section5.6. In this appendix, we first introduce the pseudocode notation in Sec-
tion A.1. We then present the assumptions on which the algorithms are based, and
we give the pseudocode for each algorithm, in SectionA.2. Finally, SectionA.3
gives the full formulas obtained by the analysis for the contention-aware metrics.
Most pseudocode descriptions and formulas are taken from [Déf00] with small
adaptations only.

A.1 Pseudocode notation

The pesudocode notation is rather straightforward. A few elements, however, de-
serve some explanation.

Parallelism. Most algorithms are described in an event triggered manner:proce-
dures are called andwhen statements are triggered when their condition becomes
true. Only onewhen statement orprocedure executes at any given time, unless
execution is blocked in await until statement or new tasks arespawned explicitly.
This policy helps avoiding problems arising from parallel access to variables.

Sequences. A lot of algorithms are expressed with sequences, that is, finite or-
dered lists of elements. With a few minor exceptions, the notation defined here is
borrowed from Gries and Schneider [GS93].

A sequence of elementsa, b, andc is denoted by the tuple〈a, b, c〉. The sym-
bol ε denotes the empty sequence.

Elements can be added at the end of the sequence. Adding an elemente at the
end of a sequenceseq is called appending and is denoted byseq � e. The same
operator is used for appending sequences.

The first element of the sequence is denoted ashead .seq . The tail of a non-
empty sequenceseq is the sequence that results from removing the first element
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of seq . Thus, we have
seq = head .seq � tail .seq

Sequences are also considered sets and are used with the standard set notation:
e.g., given an elemente and a sequenceseq , e is an element ofseq (denotede ∈
seq) if e is an element of the set composed of all elements ofseq . The difference
of a sequenceseq and a setS is worth mentioning:seq \ S produces the sequence
that results from removing fromseq all elements that appear inS, thereby keeping
the order of elements inseq .

Sending messages to all.Unless stated otherwise, when a processp sends a
message to all (“sendm to all”), it sends that message to all processesexceptitself.
When it isexplicitly stated that a processp sends a message to allincluding itself
(“sendm to all (including itself)”), the copy of the message that is sent to itself
does not actually transit on the network. The system only activates the rightwhen
statement to handle the message.

A.2 Pseudocode descriptions

The algorithms are based on the following assumptions (see Chapter2 for the def-
initions of the terms used):

• There is no bound on communication delay or process speed (asynchronous
system).

• The algorithms can be made tolerant of process crashes using a group mem-
bership service.

• Communication channels are reliable (implies no partition).

Exceptions are marked when appropriate.
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A.2.1 Non-uniform sequencer algorithm

Code of sequencer:
Initialization:

seqnum ← 0 {last seq. number attributed to a message}

procedureA-broadcast(m) {To A-broadcast a messagem}
seqnum ← seqnum + 1
send(m, seqnum) to all
deliver(m)

when receive(m)
A-broadcast(m)

Code of all processes except sequencer:
Initialization:

lastdeliveredp ← 0 {sequence number of the last delivered message}
receivedp ← ∅ {set of received yet undelivered messages}

procedureA-broadcast(m) {To A-broadcast a messagem}
send(m) to sequencer

when receive(m, seq(m))
receivedp ← receivedp ∪ {(m, seq(m))}
while ∃m′, seq s.t. (m′, seq) ∈ receivedp ∧ seq = lastdeliveredp + 1 do

deliver(m′)
lastdeliveredp ← lastdeliveredp + 1
receivedp ← receivedp \ {(m′, seq)}

 m 

 m,seq(m) 
p

1

p
2

p
3

p
4

A.2.2 Uniform sequencer algorithm

 m 

 m,seq(m) 

 ack

 stable 
p

1

p
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Code of sequencer:
Initialization:

seqnum ← 0 {last seq. number attributed to a message}
lastdelivered ← 0 {sequence number of the last delivered message}
received ← ∅ {set of received messages}
stable ← ∅ {set of stable yet undelivered messages}

procedureA-broadcast(m) {To A-broadcast a messagem}
seqnum ← seqnum + 1
send(m, seqnum) to all
received ← received ∪ {(m, seqnum)}
spawn

wait until ∀q ∈ π(t) : received(m, seq , ack)
send(m, seq , stable) to all
stable ← stable ∪ {(m, seq(m))}
while ∃(m′, seq ′) ∈ stable s.t. seq ′ = lastdelivered + 1 do

deliver(m′)
lastdelivered ← lastdelivered + 1
stable ← stable \ {(m′, seq ′)}

when receive(m)
A-broadcast(m)

Code of all processes except sequencer:
Initialization:

lastdeliveredp ← 0 {sequence number of the last delivered message}
receivedp ← ∅ {set of received messages}
stablep ← ∅ {set of stable yet undelivered messages}

procedureA-broadcast(m) {To A-broadcast a messagem}
send(m) to sequencer

when receive(m, seq)
receivedp ← receivedp ∪ {(m, seq)}
send(m, seq , ack) to sequencer

when receive(m, seq , stable)
stablep ← stablep ∪ {(m, seq)}
while ∃(m′, seq ′) ∈ stablep s.t. seq ′ = lastdeliveredp + 1 do

deliver(m′)
lastdeliveredp ← lastdeliveredp + 1
stablep ← stablep \ {(m′, seq ′)}
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A.2.3 Non-uniform privilege-based algorithm

Initialization:
sendQp ← ε {sequence of messages to send (send queue)}
recvQp ← ε {sequence of received messages (receive queue)}
lastdeliveredp ← 0 {sequence number of the last delivered message}
toknextp ← p + 1(modn) {identity of the next process along the logical ring}
if p = p1 then {virtual message to initiate the token rotation}

send(⊥, 0, 1) to p1 {format: (message, seq. number, next token holder)}

procedureA-broadcast(m) {To A-broadcast a messagem}
sendQp ← sendQp � m

when receive(m, seqnum, tokenholder)
if m 6= ⊥ then {Receive new messages}

recvQp ← recvQp � (m, seqnum)

if p = tokenholder then {Circulate token, if appropriate}
if sendQp 6= ε then {Send pending messages, if any}

msg ← head .sendQp

sendQp ← tail .sendQp

send(msg , seqnum + 1, toknextp) to all
recvQp ← recvQp � (msg, seqnum + 1)

else
send(⊥, seqnum, toknextp) to toknextp

while ∃m′ s.t. (m′, lastdeliveredp + 1) ∈ recvQp do {Deliver messages that can be}
recvQp ← recvQp \ {m′}
deliver(m′)
lastdeliveredp ← lastdeliveredp + 1

 token 

 m 

 token 

p
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p
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p
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A.2.4 Uniform privilege-based algorithm

Initialization:
sendQp ← ε {sequence of messages to send (send queue)}
recvQp ← ε {sequence of received messages (receive queue)}
stableQp ← ε {sequence of stable messages (stable queue)}
lastdeliveredp ← 0 {sequence number of the last delivered message}
toknextp ← p + 1(modn) {identity of the next process along the logical ring}
acksp ← (∅, . . . , ∅) {array [p1, . . . , pn] of message sets (acknowledged messages)}
if p = p1 then {send a virtual message to initiate the token rotation}

send(⊥, 0, 1, acksp) to p1 {format: (message, seq. number, next token holder, acks)}

procedureA-broadcast(m) {To A-broadcast a messagem}
sendQp ← sendQp � m

when receive(m, seqnum, tokenholder , acks)
if m 6= ⊥ then {Receive new messages}

recvQp ← recvQp � (m, seqnum)

while ∃m′ s.t. (m′, seq′) ∈ recvQp do {Ack recv’d messages and detect stability}
acks[p]← acks[p] ∪ {m′}
if ∀q ∈ π(t) : m′ ∈ acks[q] then

stableQp ← stableQp � (m′, seq′)
recvQp ← recvQp \ {(m′, seq′)}

if p = tokenholder then {Circulate token, if appropriate}
if sendQp 6= ε then {Send pending messages, if any}

msg ← head .sendQp

sendQp ← tail .sendQp

send(msg , seqnum + 1, toknextp , acks) to all
recvQp ← recvQp � (msg, seqnum + 1)

else
send(⊥, seqnum, toknextp , acks) to toknextp

while ∃m′ s.t. (m′, lastdeliveredp + 1) ∈ stableQp do {Deliver messages that can be}
stableQp ← stableQp \ {m′}
deliver(m′)
lastdeliveredp ← lastdeliveredp + 1
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A.2.5 Uniform communication history algorithm

The channels used by this algorithm are reliable and FIFO.

Initialization:
receivedp ← ∅ {Messages received by processp}
deliveredp ← ∅ {Messages delivered by processp}
deliverablep ← ∅ {Messages ready to be delivered by processp}
LCp [p1 , . . . , pn ]← {0 , . . . , 0} { LCp [q ]: logical clock of processq as seen by processp}

procedureA-broadcast(m) {To A-broadcast a messagem}
LCp [p]← LCp [p] + 1
send(m,LCp [p]) to all

whenno message sent for∆live time units
LCp [p]← LCp [p] + 1
send(⊥,LCp [p]) to all

when receive(m, ts(m))
LCp [p]← max(ts(m),LCp [p]) + 1 {Update logical clock}
LCp [sender(m)]← ts(m)

receivedp ← receivedp ∪ {m}
deliverablep ← ∅
for eachmessagem′ in receivedp \ deliveredp do

if ts(m ′) < minq∈π(t) LCp [q ] then
deliverablep ← deliverablep ∪ {m ′}

deliver all messages indeliverablep , according to the total order=⇒ (see Sect.5.6.3)
deliveredp ← deliveredp ∪ deliverablep

 empty m 
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A.2.6 Non-uniform destinations agreement algorithm

Initialization:
receivedp ← ∅ {set of messages received by processp, with a temporary local timestamp}
stampedp ← ∅ {set of messages received by processp, with a final global timestamp}
LCp ← 0 {LCp : logical clock of processp}

procedureA-broadcast(m) {To A-broadcast a messagem}
send(m,nodeliver) to all (including itself)

spawn
wait until ∀q ∈ π(t) : received(m, tsq(m))
TS(m)← maxq∈π(t) tsq(m)
send(m,TS(m), deliver) to all (including itself)

when receive(m,nodeliver)
tsp(m)← LCp

receivedp ← receivedp ∪ {(m, tsp(m))}
send(m, tsp(m)) to sender(m)
LCp ← LCp + 1

when receive(m,TS(m), deliver)
stampedp ← stampedp ∪ {(m,TS(m))}
receivedp ← receivedp \ {(m,−)}
deliverable ← ∅
for eachm′ in stampedp such that∀m′′ ∈ receivedp : TS(m′) < tsp(m

′′) do
deliverable ← deliverable ∪ {(m′,TS(m′))}

deliver all messages indeliverable in increasing order ofTS(m)
stampedp ← stampedp \ deliverable

 m  ack  ts(m)
p
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p
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p
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A.2.7 Uniform destinations agreement algorithm

This algorithm uses no group membership service. It relies on the underlying con-
sensus and reliable broadcast algorithms to tolerate process crashes.

The following pseudocode improves on [CT96]: it uses message identifiers
rather than messages wherever possible and does not use sets that grow indefinitely.

Initialization:
receivedp ← ∅ {set of messages received by processp}
unorderedp ← ∅ {set of identifiers of messages received but not yet ordered by processp}

{each messagem has a unique identifier denoted byid(m)}
orderedp ← ε {sequence of identifiers of messages ordered but not yet A-delivered byp}
k ← 0 {serial number for consensus executions}

procedureA-broadcast(m) {To A-broadcast a messagem}
R-broadcast(m)

whenR-deliver(m)
receivedp ← receivedp ∪ {m}
if id(m) 6∈ orderedp then

unorderedp ← unorderedp ∪ {id(m)}

whenunorderedp 6= ∅ {a consensus is run whenever there are unordered messages}
k ← k + 1
propose(k, unorderedp) {k distinguishes independent consensus executions}
wait until decide(k, idSetk)
unorderedp ← unorderedp \ idSetk

idSeqk ← elements ofidSetk in some deterministic order
orderedp ← orderedp � idSeqk

{delivers messages ordered and received}
whenordered 6= ∅ and∃m ∈ receivedp such thathead .orderedp = id(m)

A-deliver(m)
orderedp ← tail .orderedp

The figure below displays the algorithm with the Chandra-Toueg3S consensus
algorithm (see SectionB.2). Reliable broadcast is depicted as a simple send to all
operation.

 m 
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A.3 Formulas for the contention-aware metrics

A.3.1 Non-uniform sequencer algorithm (Seq)

Latencypp(Alg. A.2.1)(n, λ) = 2(2λ + 1) + (n− 2)max(1, λ)

Latencybr(Alg. A.2.1)(n, λ) = 2(4λ + 1)

Thputpp(Alg. A.2.1)(n, λ) =
n

(n2 − 1) max(1, λ)

Thputbr(Alg. A.2.1)(n, λ) =
n

(2n− 1) max(1, λ)

A.3.2 Uniform privilege-based algorithm (PB)

Latencypp(Alg. A.2.4)(n, λ) =
5n

2
(2λ + 1)

+


(n− 2)(1− 2λ) if λ ≤ 1

2⌊
n−2

2

⌋
(2− 2λ) if 1

2 < λ ≤ 1
(3− 2λ) max

(
0,

⌊
n−4

3

⌋)
if 1 < λ ≤ 3

2
(λ− bλc) max

(
0,

⌊
n−4

3

⌋)
if 3

2 < λ ≤ 2
(λ− bλc) max

(
0,

⌊
n−3

5

⌋)
otherwise

Latencybr(Alg. A.2.4)(n, λ) =
(

5n

2
− 1

)
· (2λ + 1)

Thputpp(Alg. A.2.4)(n, λ) =
1

(n− 1) max
(
1, 2λ

n

)
Thputbr(Alg. A.2.4)(n, λ) =

1
max(1, λ)
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A.3.3 Uniform communication history algorithm (CH)

Latencypp(Alg. A.2.5)(n, λ)

=



4λ + 2 if n = 2
6λ + 2 + max(0, 2− λ)

+ max(0, 1− λ) + max(0, 1− 2λ) if n = 3

3(n− 1)λ + 1 if n ≤ λ + 2

n2−3n
2 + 2nλ + bλcλ− bλ+3c·bλc

2

+
{

1 if bλc = n− 3
0 otherwise

} if n ≤ 2bλc+ 3
andλ ≥ 3

n2−n
2 + 2nλ + bλcλ− bλ+3c·bλc

2

− b2λc − 3 +


b2λ− 1c if n = 5
2 if n = b2λ + 1c
1 if n = 7 andλ = 11

4
0 otherwise


if n ≤ 4λ− 4

n2 − n +


2λ if λ < 1{

5λ− 3 if n = 4
4λ− 2 if n > 4

}
if 1 ≤ λ < 2

5λ− 4 if 2 ≤ λ < 3
2bλcλ− bλc − bλc2 + 5 otherwise

 otherwise

Latencybr(Alg. A.2.5)(n, λ) = 2(2λ + 1) + (n− 2)max(1, λ)

Thputpp(Alg. A.2.5)(n, λ) =
1

(n− 1) ·max
(
1, 2λ

n

)
Thputbr(Alg. A.2.5)(n, λ) =

1
max(1, λ)
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A.3.4 Non-uniform destinations agreement algorithm (DA)

Latencypp(Alg. A.2.6)(n, λ)

=



3(n− 1) + 4λ + 2λ ((n− 1) mod 2) if λ < 1
2

3(n− 1) + 4λ +

 2λ if n mod 3 = 2
2λ− 1 if n mod 3 = 0
0 otherwise

 if 1
2 ≤ λ < 1

(3n− 2)λ + 1

+

 2 + (4− n)λ if n < 5
4− 2λ if n = 5
X(n, λ) otherwise (see below)

 if 1 ≤ λ < 3
2

(3n− 2)λ + 1 +

 2 + (4− n)λ if n < 5
max(0, 4− 2λ) if n = 5
0 otherwise

 otherwise

whereX(n, λ) = max

0,

 λ + 1 if n mod 4 = 0
2 if n mod 4 = 1
3 otherwise


− (n− 4)(2λ− 2)


Latencybr(Alg. A.2.6)(n, λ) = 6λ + 3 + (n− 2) max(1, λ)

Thputpp(Alg. A.2.6)(n, λ) =
1

(3n− 3)max
(
1, 2λ

n

)
Thputbr(Alg. A.2.6)(n, λ) =

1
max

(
n + 1, 4n−2

n λ
)



Appendix B

Consensus algorithms

This chapter presents the two consensus algorithms used in this thesis, due to Chan-
dra and Toueg [CT96] and Mostéfaoui and Raynal [MR99], using the pseudocode
notation of SectionA.1. Both algorithms are designed for the asynchronous sys-
tem model with3S failure detectors and toleratef < n/2 crashes wheren is the
number of participating processes. As described here, they both rely on a reliable
broadcast-like primitive. For this thesis, we used the algorithm introduced next in
SectionB.1 for both consensus algorithms.

The Chandra-Toueg algorithm enters the reliable broadcast algorithm by call-
ing the R-broadcast primitive. The Mostéfaoui-Raynal algorithm also calls the
R-broadcast primitive but omits sending the first message of the reliable broadcast
algorithm (Section8.1.2explains the reason). We shall denote this special type of
entry as R-broadcast∗.

B.1 An efficient reliable broadcast algorithm

We use an efficient algorithm inspired by [FP01]. The algorithm requires one
broadcast message if the sender is not suspected (the most frequent case) and at
most two broadcast messages if crashes occur but correct processes are not sus-
pected.

The algorithm works as follows. Consider a reliable broadcast messagem sent
from s to d1, . . . , dk. s simply sendsm to all destinationsd1, . . . , dk. Processes
buffer all received messages for later retransmission.di retransmitsm when its
failure detector suspects the senders and all destinations with smaller indexesd1,
. . . ,di−1.

As for garbage collection: all processes piggyback which messages they re-
ceived on outgoing messages. A messagem is removed from the buffer (1) upon
retransmission and (2) when its stability is detected from the piggybacked infor-
mation on incoming messages.

169
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B.2 The Chandra-Toueg3S consensus algorithm

We applied several optimizations to the algorithm published in [CT96], in order
to reduce the number of messages if neither crashes nor suspicions occur. The
optimizations have been described in Section8.1.2.

procedurepropose(vp)
estimatep← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in whichp updated estimatep }

while statep = undecided do {rotate through coordinators until decision reached}
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {all processesp send estimatep to the current coordinator}
if rp > 1 then

send(p, rp, estimatep, tsp) to cp

Phase 2: {coordinator gathers
⌈

n+1
2

⌉
estimates and proposes new estimate}

if p = cp then
if rp > 1 then

wait until [for
⌈

n+1
2

⌉
processesq : received(q, rp, estimateq, tsq) from q]

msgsp[rp]← { (q, rp, estimateq, tsq) | p received(q, rp, estimateq, tsq) from q}
t← largesttsq such that(q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep← select oneestimateq 6= ⊥ such that(q, rp, estimateq, t) ∈ msgsp[rp]

send(p, rp, estimatep) to all

Phase 3: {all processes wait for new estimate proposed by current coordinator}
wait until [received(cp, rp, estimatecp) from cp or cp ∈ Dp] {query failure detectorDp}
if [received(cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep← estimatecp

tsp ← rp

send(p, rp, ack) to cp

else {p suspects thatcp crashed}
send(p, rp, nack) to cp

Phase 4: {the current coordinator waits for replies:
⌈

n+1
2

⌉
acks or 1 nack. If they indicate

that
⌈

n+1
2

⌉
processes adopted its estimate, the coordinator R-broadcasts a decide message}

if p = cp then
wait until [for

⌈
n+1

2

⌉
processesq : received (q, rp, ack) or for 1 processq:

(q, rp, nack)]
if [for

⌈
n+1

2

⌉
processesq : received(q, rp, ack)] then

R-broadcast(p, estimatep, decide)

{if p R-delivers a decide message,p decides accordingly}
whenR-deliver(q, estimateq, decide)

if statep = undecided then
decide(estimateq)
statep ← decided
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B.3 The Mostéfaoui-Raynal3S consensus algorithm

We applied several optimizations to the algorithm published in [MR99], in order
to reduce the number of messages if neither crashes nor suspicions occur. The
optimizations have been described in Section8.1.2.

procedurepropose(vp)
estimatep← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}

while statep = undecided do {rotate through coordinators until decision reached}
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}
est_from_cp ← ⊥ {est_from_cp is the coordinator’s estimate or invalid (⊥)}

Phase 1: {coordinator proposes new estimate; other processes wait for this new estimate}
if p = cp then

est_from_cp ← estimatep
else

wait until [received(cp, rp, est_from_ccp) from cp or cp ∈ Dp]
{query failure detectorDp}

if [received(cp, rp, est_from_ccp) from cp] then {p received est_from_ccp from cp}
est_from_cp← est_from_ccp

send(p, rp, est_from_cp) to all

Phase 2: {each process waits for
⌈

n+1
2

⌉
replies. If they indicate that

⌈
n+1

2

⌉
processes

adopted the proposal, the process R-broadcasts a decide message}
wait until [for

⌈
n+1

2

⌉
processesq : received(q, rp, est_from_cq)]

recp ← { (q, rp, est_from_cq) | p received(q, rp, est_from_cq) from q}
if recp = {v} then

estimatep ← v
R-broadcast∗ (p, estimatep, decide) {R-broadcast without the initial send to all}

else ifrecp = {v,⊥} then
estimatep ← v

{if p R-delivers a decide message,p decides accordingly}
whenR-deliver(q, estimateq, decide)

if statep = undecided then
decide(estimateq)
statep ← decided
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