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Another point of view on PhD research…. 

 

• Number of field days 104
• Number of measured dead trees 1812
• Fully inventoried forest area (each tree) 61 ha
• Number of photo-interpreted and digitised dead trees 8’222
• Distance walked in order to reach sampling points for 

measurements 
478 km

• Working files 2’569 Mo
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Preface 

 

 

“…When it comes to counting, evaluating, and 

explaining the distribution of dead wood in our 

forests, it is, to put it mildly, incredibly complicated.” 

   

Ohmann, J.L. and Waddell, K.L. 

two scientists at the Pacific Northwest Research Station 

 

 

The field data for this research were collected over four years, between 1998 and 2001. 

As emphasised by the above quotation, dead wood quantification by fieldwork is 

“incredibly complicated”, and time-consuming. I had the chance to supervise several 

Master diploma theses in Environmental Sciences during my time as Assistant in the 

EPFL’s Laboratory of Ecosystem Management. Field data from two of these have 

considerably enlarged the data-set of the present research. In addition, Prof. Per 

Angelstam at the Centre for Landscape Ecology, Örebro University, Sweden kindly 

accepted to suggest one of my research topics to his diploma students. Peter Ekelund 

became interested in the dead wood problem. He placed all the data collected in Sweden 

for his diploma thesis at my disposal for this research. 

This thesis is divided into two parts. Part A summarises all the doctoral research. It 

answers the two main questions: i) How much dead wood is there in managed forests? 

and ii) How much dead wood is enough in managed forests? Part B comprises four 

research papers, each addressing one specific objective. The 2nd and 4th papers are 

currently in press, whereas the 1st and 3rd are reproduced here in their current state as 

submitted to the relevant journals. 
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Abstract 
 

The aims of this research were twofold: to develop an efficient method for the 

quantification of large spruce snags (standing dying and dead trees), and to establish 

snag target values for sustainable forest management. We answer the two basic 

questions: how much dead wood is currently available in managed forests? And how 

much dead wood is enough for biodiversity conservation? 

It is widely accepted that modern forest management has to be sustainable. One 

generally recognised criterion of sustainability is the maintenance of biodiversity. Since 

this concept encompasses a large range of scales and features (landscapes, 

ecosystems, species and genes; components, processes, functions, etc.), biodiversity 

indicators have been identified for measurement and monitoring purposes. ‘Dead wood’ 

has been recognised as a key indicator for biodiversity in forest ecosystems. Verifying 

and assessing progress towards biodiversity maintenance or restoration hence requires 

the measurement of different kinds of dead wood. Yet cost-efficient and rapid methods 

are still lacking. That is why we developed in this thesis an efficient method for the 
quantification of large spruce snags. Being based on infrared Aerial Photos and a 

Geographic Information System (GIS), it is called the AP-GIS-method. It enables 

mapping of snags and calculation of the spatial snag-density, i.e. the number of snags 

per hectare, and can be used to answer the question: How much dead wood is in 

managed forests? 

Beside techniques to assess dead-wood quantities, forest managers need quantitative 

target values, i.e. guidelines in order to know how much dead wood should be maintained 

in managed forests for biodiversity conservation. Natural forests may be used as 

reference systems to define such targets. However, since dead-wood amounts in natural 

forests may be extremely high, up to 30% of dead trunks, the retention of such amounts 

in managed forests would hardly be compatible with economic objectives. Another 

possibility for defining guidelines is the translation of the habitat requirements of dead-

wood-dependent species into management targets. The Three-toed woodpecker 

Picoides tridactylus has previously been recognised as a potential indicator species of 

features characteristic for forests with natural dynamics (especially old-growth). Although 

ecological studies had demonstrated its need of dying and dead trees for foraging, 

nesting and drumming, the required density of such trees has never been quantified. In 
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this thesis, we analysed the dependence on dead wood for both European sub-
species, the Alpine Picoides tridactylus alpinus and the northern P. tr. tridactylus. 

The study was conducted in sub-Alpine spruce forests in Switzerland and boreal forests 

in central Sweden. In both countries, we found a significant non-linear response of the 

probability of woodpecker presence to different amounts of dead trees, and identified 

critical ecological thresholds for the local presence of this species. Clearly, the Three-toed 

woodpecker depends on relatively high amounts of dying and dead trees. In Switzerland, 

the road network density negatively affected the presence of this woodpecker species, 

since a high road density facilitates forest management intensification and the removal of 

diseased and dead trees. Based on our results, and since several other links with 

biodiversity have previously been demonstrated, we suggest that Three-toed 

woodpeckers be considered indicators of dead wood and habitat quality. This species 

has therefore been used in this thesis to find an answer to the question: How much dead 

wood is enough in managed forests? 

In order to ascertain dead-tree targets, we developed a bioenergetic model for Three-
toed woodpeckers, enabling estimation of snag amounts required by this species 
to satisfy its energy needs. By comparing modelling results with the previously 

identified critical dead-wood thresholds, we were able to derive reliable targets, since 

both approaches resulted in similar critical values. 

We recommend, for both boreal and sub-Alpine spruce forests, aiming for 5% of the 

standing tree basal area, or volume to be dead. Such snag-retention levels, to be applied 

over an area of about 100 ha, correspond in sub-Alpine forests to a basal area of ≥ 1.6 

m2 ha-1, or a volume of ≥ 18 m3 ha-1, or a minimum of 14 snags with a diameter ≥ 21 cm 

per hectare. 

Considered as a pragmatic way to stimulate forest managers’ interest in dead wood 

maintenance or restoration, we analysed the potential usefulness of Three-toed 
woodpeckers as natural agents against bark beetles. By defining three scenarios for 

different levels of woodpecker effectiveness, we compared the numbers of bark beetles 

consumed with those caught in pheromone traps used in forestry. We demonstrate that 

woodpeckers catch 2-19 times more bark beetles than traps do. This result is true for 

both cases, when one woodpecker is compared with one trap, and when the whole Swiss 

woodpecker population is compared to all traps installed in Swiss forests. 



 

 viii

  

Version abrégée 
 

Cette recherche poursuit deux buts: d’une part de développer une méthode efficace pour 

quantifier des arbres morts sur pied, et d’autre part, d’élaborer des valeurs de références 

pour une gestion forestière durable en ce qui concerne la quantité de tels arbres 

nécessaires pour le maintien de la diversité biologique. Nous traitons les deux questions 

suivantes: Combien de bois mort se trouve-t-il actuellement dans les forêts gérées ? Et 

quelle est la quantité nécessaire, afin de garantir une biodiversité élevée ? 

A l’heure actuelle, le principe d’une gestion forestière moderne dite durable est largement 

accepté. Parmi les critères de durabilité figure la conservation de la diversité biologique. 

Ce concept complexe englobe cependant de multiples échelles (paysages, écosystèmes, 

espèces et gènes), ainsi que de nombreuses caractéristiques (composantes, processus, 

fonctions etc.), ce qui rend sa mesure et surveillance fort compliquées. C’est la raison 

pour laquelle des indicateurs de biodiversité ont été identifiées. Le « bois mort » figure 

parmi les indicateurs clé pour la diversité biologique dans l’écosystème forestier. Cela 

signifie que pour vérifier les progrès effectués en vue de maintenir ou de restaurer la 

biodiversité, le bois mort dans ses différents états doit être quantifié. Néanmoins, il 

n’existe pas encore de méthodes efficaces et rapides. Afin de combler cette lacune nous 
avons développé une méthode efficace permettant de quantifier des épicéas morts 
de gros diamètre. Cette méthode, appelée AP-GIS-méthode, s’appuie sur la photo 

aérienne infra-rouge (Aerial Photo) et un Système d’information géographique 

(Geographic Information System). Grâce à elle, il est possible de créer des cartes de 

répartition spatiale d’arbres secs, ainsi que de calculer leur nombre par surface (p.ex. par 

hectare). Cette méthode permet de répondre à la question de savoir combien de bois 

mort se trouve actuellement dans les forêts gérées. 

Outre des techniques fiables de mesure de bois mort, les gestionnaires des forêts ont 

également besoin de valeurs quantitatives de référence, c’est-à-dire des recomman-

dations précisant la quantité de bois mort nécessaire au maintien de la diversité 

biologique. Une possibilité de définir de telles valeurs est de se fonder sur des systèmes 

de référence, telles les forêts naturelles. Néanmoins, les quantités de bois mort dans ces 

forêts peuvent s’avérer extrêmement grandes, allant jusqu’à 30% du volume total sur 

pied. Appliquer des valeurs de référence si élevées serait incompatible avec les objectifs 

économiques de forêts exploitées. Une autre possibilité de définir des recommandations 
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de gestion est de se baser sur les besoins d’habitats de certaines espèces dépendant du 

bois mort. Le Pic tridactyle Picoides tridactylus a déjà été identifié comme indicateur 

potentiel de caractéristiques typiques de forêts avec une dynamique naturelle (en 

particulier de vieux peuplements). Même si des études écologiques concernant ce pic ont 

démontré son besoin en arbres sénescents et morts pour se nourrir, creuser sa cavité et 

tambouriner, la quantité nécessaire en termes absolus n’a jamais été évaluée. Dans 

cette recherche nous avons analysé la dépendance des deux sous-espèces 
européennes alpine et nordique, le Picoides tridactylus alpinus et le P. tr. 
tridactylus du bois mort. L’étude a été menée dans des forêts subalpines en Suisse, 

ainsi que dans des forêts boréales en Suède. Dans les deux pays nous avons pu mettre 

en évidence une relation non-linéaire entre la probabilité qu’un territoire de pic soit 

effectivement occupé par cet oiseau et la quantité d’arbres morts présents. Il a été 

possible de déterminer des valeurs seuil de bois mort nécessaire, afin d’assurer la 

présence locale du Pic tridactyle. Très clairement, ce pic dépend d’une quantité d’arbres 

sénescents et mort relativement élevée. Nous avons également constaté que la densité 

élevée du réseau routier forestier en Suisse exerce une influence négative sur la 

présence de cet oiseau. La raison est qu’une densité de route élevée facilite l’accès à la 

forêt et ainsi l’intensification de la gestion, souvent allant de pair avec l’abattage d’arbres 

malades ou morts. En nous basant sur nos résultats, et en nous référant à d’autres 

études ayant démontré des liens entre le Pic tridactyle et la biodiversité, nous suggérons 

de considérer cette espèce comme indicatrice de bois mort et d’un habitat de qualité. 

Dans la suite de notre recherche nous avons donc utilisé ce pic pour répondre à la 

question suivante : Combien de bois mort devrait-on maintenir dans une forêt gérée, afin 

de garantir une biodiversité élevée? 

Avec le but d’élaborer des valeurs de référence de bois mort, nous avons développé 
un modèle bioénergétique pour le Pic tridactyle. Ce modèle permet de prédire la 

quantité d’arbres morts nécessaire, pour que cet oiseau puisse satisfaire ses besoins 

énergétiques. Par la comparaison des résultats de modélisation avec les valeurs seuil de 

bois mort identifiées auparavant, nous avons pu déterminer des valeurs de référence 

jugées fiables, car les résultats des deux approches étaient très similaires. 

Nous recommandons de laisser un volume (ou une surface terrière) d’arbres morts sur 

pied correspondant à 5% du volume total (ou de la surface terrière totale) sur pied. Ce 

pourcentage de bois mort devrait être maintenu sur des surfaces d’environ 100 ha. Dans 

les forêts subalpines cela représente une surface terrière de ≥ 1.6 m2 ha-1 ou un volume 
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de ≥ 18 m3 ha-1 ou au minimum 14 arbres morts avec un diamètre de ≥ 21 cm par 

hectare. 

En tant que moyen pragmatique pour stimuler l’intérêt des gestionnaires pour le maintien 

de bois mort dans la forêt, nous avons analysé l’utilité potentielle du Pic tridactyle 
comme ennemi naturel des bostryches. En définissant trois scénarios différents 

d’efficacité du pic, nous avons comparé le nombre de bostryches capturés par cet oiseau 

avec celui piégé par des pièges à phéromones utilisés en foresterie. Il s’est avéré que le 

pic détruit 2-19 fois plus d’insectes que les pièges. Ce résultat est valable si un individu 

de pic est comparé à un piège, mais également si l’on compare toute la population de 

Pics tridactyles suisses avec tous les pièges installés dans les forêts en Suisse. 
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Kurzfassung 
 

Diese Studie verfolgt zwei Ziele: erstens die Entwicklung einer rationellen Methode für die 

Quantifizierung von grossen, stehenden toten Fichten und zweitens die Erarbeitung von 

ökologischen Totholz-Zielgrössen zur Erhaltung von Biodiversität. Wir beantworten die 

folgenden zwei grundlegenden Fragen: Wieviel Totholz ist zur Zeit in Wirtschaftswäldern 

vorhanden? Und wieviel Totholz ist nötig zur Erhaltung der biologischen Vielfalt? 

Gemäss der heutigen allgemeinen Auffassung muss moderne Waldbewirtschaftung 

nachhaltig sein. Ein wichtiges Nachhaltigkeitskriterium ist die Erhaltung der biologischen 

Vielfalt. Dieses Vorhaben ist jedoch kompliziert und umfasst vielerlei Ebenen 

(Landschaften, Oekosysteme, Arten, Gene) sowie Merkmale (Komponenten, Abläufe, 

Funktionen). Deshalb sind für Mess- und Monitorzwecke schon verschiedene 

Biodiversitäts-Indikatoren bestimmt worden. Ein Schlüsselindikator für biologische Vielfalt 

im Waldökosystem ist Totholz. Um die Fortschritte in Richtung Erhaltung oder 

Wiederherstellung der Biodiversität zu überprüfen, müssen darum die verschiedenen 

Totholzformen gemessen werden. Jedoch fehlen zur Zeit noch kostengünstige, schnelle 

Methoden. Aus diesem Grund haben wir in dieser Studie eine rationelle Methode für 
die mengenmässige Erfassung von Totholz, genauer gesagt von grossen, 
stehenden toten Fichten entwickelt. Die Quantifizierung erfolgt mittels Luftbildern 

(Aerial Photos) und einem Geografischen Informationssystem (Geographic Information 

System), und wird deshalb AP-GIS-Methode genannt. Mit Hilfe dieser Methode können 

einerseits Totholz-Karten angefertigt werden, andererseits kann die Totholzdichte pro 

Flächeneinheit (z.B. Hektare) berechnet werden. Die Methode dient somit zur 

Beantwortung folgender Frage: Wieviel Totholz ist zur Zeit in Wirtschaftswäldern 

vorhanden? 

Nebst Techniken für Totholzquantifizierung brauchen Forstpraktiker auch Zielgrössen, 

d.h. Richtlinien, um zu wissen, wieviel Totholz für die Erhaltung der biologischen Vielfalt 

nötig ist. Für die Festlegung solcher Zielgrössen kann man sich z.B. an Totholzmengen 

in Naturwäldern orientieren. Jedoch sind diese manchmal extrem hoch, bis zu 30% des 

stehenden Vorrats, weshalb solche Richtwerte in Wirtschaftswäldern mit vorwiegend 

ökonomischer Funktion kaum anwendbar wären. Eine andere Möglichkeit besteht darin, 

Zielgrössen aus Habitatsansprüchen totholzabhängiger Tierarten abzuleiten. Der 

Dreizehenspecht Picoides tridactylus ist in früheren ökologischen Untersuchungen als 
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potentielle Indikatorart für Merkmale natürlicher Wälder (insbesondere Altholzbestände) 

erkannt worden. Obwohl seine Abhängigkeit von sterbenden und toten Bäumen für 

Nahrungssuche, Höhlenbau und Trommeln bekannt ist, wurde nie untersucht, wieviel 

Totholz für diese Spechtart effektiv nötig ist. Deshalb haben wir in unserer Studie die 
quantitative Totholzabhängigkeit der beiden europäischen Unterarten, d.h. der 
Alpinform Picoides tridactylus alpinus und der Nominatform P. tr. tridactylus, 
untersucht. Diese Untersuchung ist in subalpinen Fichtenwäldern der Schweiz sowie in 

borealen Nadelwäldern Schwedens durchgeführt worden. In beiden Fällen fanden wir 

eine signifikante nichtlineare Korrelation zwischen zunehmender Totholzmenge und der 

Wahrscheinlichkeit, dass ein Spechtterritorium besetzt ist. Wir konnten daraus 

ökologische Totholz-Schwellenwerte für das lokale Vorkommen dieser Art ableiten. Es 

zeigt sich eindeutig, dass der Dreizehenspecht relativ grosse Totholzmengen braucht. In 

der Schweiz stellten wir zudem fest, dass die Wahrscheinlichkeit, ein besetztes 

Spechtterritorium anzutreffen, durch ein dichtes Waldstrassennetz negativ beeinflusst 

wird. Dies liegt daran, dass eine hohe Strassendichte eine Intensivierung der 

Bewirtschaftung und somit das Entfernen geschwächter und toter Bäume erleichtert. 

Aufgrund unserer Resultate sowie anderer Hinweise aus der Wissenschaft auf 

Beziehungen zwischen Dreizehenspecht und Biodiversität schlagen wir vor, diese 

Vogelart als Indikator für Totholz und Habitatsqualität zu qualifizieren. Aus dieser 

Ueberlegung haben wir diese Spechtart auch benützt zur Beantwortung der folgenden 

Frage: Wieviel Totholz braucht es in Wirtschaftswäldern? 

Wir haben ein bioenergetisches Modell für den Dreizehenspecht erarbeitet mit dem 
Zweck, Totholz-Zielgrössen festzulegen. Dieses Modell sagt voraus, wie viele 

stehend-tote Bäume nötig sind, damit dieser Specht seinen Energiebedarf decken kann. 

Die Aussagen des Modells sind anschliessend mit den schon besprochenen Totholz-

Schwellenwerten verglichen worden. Da beide Ansätze zu ähnlichen Resultaten führten, 

konnten wir verlässliche Zielgrössen formulieren. 

Wir empfehlen sowohl für subalpine als auch für boreale Nadelwälder einen Anteil von 

5% toten Bäumen (Basalfläche oder Volumen) anzustreben. Dieser prozentuale 

Totholzanteil sollte auf etwa 100 ha grossen Flächen als Mittelwert vorliegen. Für 

subalpine Nadelwälder entspricht dies einer Basalfläche von ≥ 1.6 m2 ha-1 oder einem 

Volumen von ≥ 18 m3 ha-1 oder 14 toten Stämmen mit einem Durchmesser von 

mindestens 21 cm pro Hektare. 

Wir haben überdies den potentiellen Nutzen des Dreizehenspechts als natürlicher 
Borkenkäferfeind analysiert, sozusagen als pragmatischen Weg, um unter Forstleuten 
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das Interesse für das Belassen von Totholz im Wald zu fördern. Wir haben die Anzahl 

vertilgter Borkenkäfer verglichen mit der Anzahl Käfer, die in herkömmlichen 

Borkenkäfer-Pheromonfallen gefangen werden. Dafür wurden drei Szenarien mit 

unterschiedlicher Effizienz des Spechtes definiert. Gemäss unseren Resultaten vertilgen 

Dreizehenspechte 2-19 mal mehr Käfer als Fallen. Dies gilt sowohl für den Vergleich 

eines Spechtes mit einer Falle als auch für die Gegenüberstellung der ganzen Schweizer 

Spechtpopulation und sämtlicher Borkenkäferfallen in Schweizer Wäldern. 



 

1 

Chapter 

1 Study background 
 

 

1.1. Sustainable management, biodiversity, criteria and 
indicators 

Global concern for the loss of biodiversity made its first appearance in the political arena 

in the early 1990s and constituted a main theme of the United Nations Conference on 

Environment and Development held in Rio de Janeiro in 1992. “Forestry” and 

“biodiversity” issues were considered a priority at the conference. As a result, a large 

number of European countries i) signed a framework agreement, the “Convention on 

Biological Diversity”, ii) agreed on a set of “Forest Principles” and finally, iii) contributed to 

a component of “Agenda 21”, outlining a non-legally binding authoritative statement of 

principles for a global consensus on the management, conservation and sustainable 

development of all types of forest. 

Since the Rio Conference, various national and international initiatives, dealing with 

criteria and indicators including the maintenance of biological diversity in forests, have 

been implemented world-wide. Among the most notable were the “Intergovernmental 

Seminar on Criteria and Indicators for Sustainable Forest Management” (the Helsinki 

Process, 1994), the meetings of the “Intergovernmental Working Group on Global 

Forests” (the Montreal Process, 1995), and the “Tarapoto Proposal of Criteria and 

Indicators for Sustainability of Amazon Forest” (1995). 

Throughout Europe, many pan-European activities to implement the Convention on 

Biological Diversity are currently under way (cf. Table 1). Regional and national initiatives 

have also been drafted and in most cases implemented, or are being researched. 
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Table 1:  Framework and ongoing activities for implementing the conservation of 
biodiversity in forest ecosystems (not exhaustive). 

 
Framework On-going activities 

Global level: 
 

• Convention on Biological Diversity 1992 
• Agenda 21, Chapter 15 

 
 

• Intergovernmental Working Group on 
Global Forests (Montreal Process), 1995 

• International Tropical Timber 
Organization ITTO efforts 

• The Tarapoto Proposal of Criteria and 
Indicators for Sustainability of the Amazon 
Forests, 1995 

• Forest certification processes (Pan 
European Forest Certification, Forest 
Stewardship Council FSC, ISO 14001 
Environmental Management System 
Standard, etc.) 

 
Pan-European level: 
 

• Pan-European Biological and Landscape 
Diversity Strategy (PEBLDS), 1996-2000 

• A) Resolution H2: General Guidelines for 
the Conservation of the Biodiversity of 
European Forests; B) Resolution L2: Pan-
European Criteria, Indicators and 
Operational Level Guidelines for 
Sustainable Forest Management  

• Bern Convention 1979: Convention on the 
Conservation of European Wildlife and 
Natural Habitats 

 
 

• The Ministerial Conference “Environment 
for Europe”, Dobris (1995), Lucerne 
(1993), Sofia (1995) 

• The Ministerial Process “Ministerial 
Conference on the Protection of Forests 
in Europe” (MCPFE), 1990 in Strasbourg, 
1993 in Helsinki and 1998 in Lisbon 

• The Community Biodiversity Strategy 
developed by the EU Commission 

• The implementation of EU Habitats 
Directive – NATURA 2000 

• Pan-European Process on the Protection 
of forests in Europe 

• The Community Forestry Strategy for the 
European Union, developed by the EU 
Commission 

 
Swiss level: 
 

• Law on Forests 1993 (Loi fédérale sur les 
forêts LFo, RS 921.0). Art. 20 al. 4 

• Ordonnance sur les forêts 1992 (OFo), RS 
921.01. Art. 21 al. 5b, Art. 50 al. 1, 2d 

• Loi fédérale sur la protection de la nature et 
du paysage 1966 (LPN), RS 451 

• Ordonnance sur la protection de la nature et 
du paysage 1991 (OPN), RS 451.1. Art. 14 
al. 2a, Art. 15 al. 1, Art. 20 al. 3a, Art. 21 c, 
Art. 27 al. 1 

 
 

• Biodiversity-Monitoring Switzerland 
• Swiss National Forest Programme 

(Waldprogramm Schweiz WAP-CH) 
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The conservation of biological diversity is one of the goals of sustainable forestry, 

although the concept encompasses much more. Biodiversity includes diversity at the 

genetic, species, ecosystem and landscape levels. Given this complexity, it is difficult to 

judge whether forests are being managed in an ecologically-sustainable way 

(Lindenmayer et al. 2000). Moreover, it is impossible to measure and monitor the effects 

of various management practices on all species. To overcome this problem, many 

indicators – a subset of attributes that could serve as surrogates for total biodiversity – 

have been identified. Indicators can be used to provide decision-makers with useful 

information on biodiversity status and trends, and to help determine if broad goals and 

targets for conservation are being reached. An indicator may be a species, a structural 

component, a process or some other feature of the biological system, the presence of 

which insures the maintenance or restoration of the most important aspects of 

biodiversity for that system (Hansson 2000). 

The recently increased interest in dead wood coincides with the world-wide discussion on 

the role of forests as carbon sink and rich reservoirs of biodiversity (Bobiec 2002). The 

importance of dead wood in forest ecosystems is becoming more and more evident to 

conservation biologists, forest and wildlife managers and political circles. This is why 

“dead wood” has recently been proposed as a key factor of European forest biodiversity 

(Project BEAR1; Larsson, 2001) and a new indicator of forest biodiversity, to be approved 

by the Fourth Ministerial Conference on the Protection of Forests in Europe in 2003 

(<http://www.minconf-forests.net> April 29th 2002). It also appears in modern certification 

standards for best forestry practices, for example those defined by the Forest 

Stewardship Council (FSC). 

 

1.2. “Dead wood” indicator not yet operational 

A major problem affecting the use of biodiversity indicators is that ecological knowledge 

lags behind policy initiatives (Lindenmayer et al. 2000). It is difficult to determine how the 

indicators might be identified, measured, interpreted and monitored. Standardised 

methodology and protocols are still lacking. In particular, for dead wood no agreement 
                                                      
1  BEAR : The project “ Indicators for monitoring and evaluation of forest biodiversity in Europe BEAR”, 

initiated in 1998, is a pan-European concerted action, bringing together expertise from 27 European 
research organisations to build a framework for the development of forest biodiversity indicators on 
various scales. 
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exists on the kind of dead wood items to be inventoried: e.g. standing or lying dead wood, 

from small up to large tree diameters, expressed in volume or number of stems per ha? 

In addition, dead wood inventories for research and monitoring purposes, are generally 

carried out using labour-intensive and expensive field methods. Taking a long-term view, 

a system of biodiversity indicators must however be cost-effective and standardised. This 

thesis intends to contribute to the introduction into operational use of the biodiversity 

indicator “dead wood”. 

The establishment of reference values and critical thresholds for forest biodiversity is 

among priorities for the further development of biodiversity evaluation tools (Esteban 

1999). Scientific knowledge is still lacking on the fundamental question: “How much dying 

and dead wood is enough in managed forests?” (Angelstam 1997). This lack would 

appear evident for European forest standards, as illustrated for example by the English 

national initiative of the FSC: “Due to the lack of scientific evidence it is not possible at 

present to give precise guidance on the amount, distribution and composition of dead 

wood that is appropriate to the individual site” (Anonymous 1999). In Switzerland, the 

non-governmental national organisation Pro Natura and the Swiss Agency for the 

Environment, Forests and Landscape (Bolliger 2001) both demand for “more dead wood” 

in managed forests, without any quantitative precision. Quantitative recommendations, 

however, are essential as operational management goals. Without quantitative targets, 

neither verification of progress towards sustainable forest management nor sound 

adaptive management is possible. This thesis will contribute towards defining dead-tree 

target values, derived from identified dead-wood thresholds important for the Three-toed 

woodpecker. 
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Chapter 

2 Aims of the study 
 

 

2.1. Conceptual and methodological design 

A general overview of the relationships addressed in this thesis is presented in Fig. 1.  

Ecologists and forest resource managers need measurement techniques to judge the 

success or failure of management regimes designed to sustain biodiversity. Total 

biodiversity is an extremely complex concept and cannot be measured using only one 

indicator (species). Currently, the relationships between potential indicator species and 

total biodiversity are not well established (Lindenmayer et al. 2000). In addition to taxon-

based indicators of biodiversity in forests, there are also structure-based indicators. One 

of them is “dead wood”, more precisely dying and dead trees, a stand-level characteristic 

of structural complexity. Currently, rapid and cost-effective techniques for dead-wood 

inventories are not available. Therefore, we want to develop a new method for the 
quantification of spruce snags. Based on infrared Aerial Photos and a Geographic 

Information System, this method is called the AP-GIS-method. It is presented in § 4.4. 

and some potential applications are outlined in § 4.5. Paper I provides a detailed 

presentation of the method and its validation. 

A next step is to determine the critical thresholds regarding what amounts of the 
dead wood found in landscapes with a natural dynamic are sufficient for 
maintaining biodiversity in the managed landscape. Species that are unique to the 

different habitats and ecological properties of forest landscapes with natural dynamics 

have to be identified (Angelstam 1998a). Following this author, if it is possible to translate 

the species’ habitat requirements into criteria based on their environmental demands, 

these criteria can be used as opposed to the more costly inventories of certain indicator 

species in the field. The Three-toed woodpecker Picoides tridactylus has been identified 

as a species associated with old-growth forests and indicating properties of naturally 

dynamic forests (Angelstam & Mikusinski 1994; Derleth et al. 2000; Hess 1983; Imbeau & 

Desrochers 2002; Mikusinski et al. 2001). We hence use this species as functional 

indicator and want to determine if it is dependent on dead wood. 
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This question is addressed in Paper III, and § 5.1. presents the main results. In order to 

verify this relationship for both European sub-species P. tr. tridactylus and P. tr. alpinus, 

we conducted a case study in boreal and sub-Alpine forests.  

Since the Three-toed woodpecker shows a significant dependence on dead wood, its 

requirements can be used to derive dead-wood management targets for the forest types 

it inhabits. In order to define such targets, two complementary approaches have been 

adopted. The idea is that, if we obtain similar results using both approaches, we are able 

to confirm the reliability of the defined snag targets for management purposes. The first 
approach involves the development of a theoretical bioenergetic model, enabling 

estimation of snag amounts required for the local persistence of Three-toed 

woodpeckers. For the validation of this model in different study sites, we used the 

previously developed AP-GIS-method. The model is outlined in the second part of  

Paper II and § 5.4. A more rigorous presentation is contained in Paper IV. The second 
approach is based on the previous case study in boreal and sub-Alpine forests, 
resulting in an empirical model predicting the snag amounts necessary for the 
Three-toed woodpecker. This empirical model is also presented in Paper IV. The 

proposed dead-tree management targets are given in § 6.4. 

A more psychological aspect is the still wide-spread “fear” of harmful insects, such as 

bark beetles, among (Swiss) foresters. Indeed, forest land owners and forestry managers 

consider(ed) dead wood as a potential threat to forest sustainability. Depending on the 

local susceptibility of managed forests to pests or wild fire, management systems have 

been developed that implicitly include radical reduction of amounts of dead wood. Since 

biodiversity conservation is not only a scientific, but primarily a management issue, 

intensive co-operation and mutual understanding between scientists and managers is 

essential. That is why we analyse in this thesis the usefulness of Three-toed 
woodpeckers as natural agents against bark beetles. This question is addressed in 

Paper II and § 5.5. Our demonstration of the usefulness of Three-toed woodpeckers is 

considered a pragmatic way to stimulate managers’ interest in dead-wood maintenance 

or restoration. Finally, the Three-toed woodpecker’s presence in a landscape indicates 

that a range of other species depending on the same or similar dead-wood amounts and 

habitat qualities is also present (cf. § 5.3.).  
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2.2. Axioms and postulates 

Here we present the axioms on which this thesis is based, and the postulates tested. 

According to Ford (2000) an axiom is a proposition assumed to be true on the basis of 

previous research, and is used in defining the working part of the foundation of the 

research. A postulate is a conjecture, a new or unexplored idea. It is untested, or 

considered sufficiently uncertain to be the subject of further investigation. 

Axiom 1:  Coarse woody debris, in particular large standing dead trees, are a key 

element of forest biodiversity. 

Axiom 2:  Dead-wood amounts in managed forests are in general much smaller than 

in natural forests, and may cause a lack of habitat and resources for 

species dependent on dead wood. 

Axiom 3:   Woodpeckers are considered the most demanding guild among resident 

bird species, and the presence of the most specialised woodpecker 

species, in particular the Three-toed woodpecker, is indicative of the 

properties of forests with natural dynamics. 

 

Postulate 1:  Large standing dead spruce trees can be effectively quantified by a method 

based on remote sensing and GIS techniques. → § 4.4. and Paper I 

Postulate 2: The presence of Three-toed woodpeckers shows a non-linear response 

related to dead-wood quantities in both boreal and Alpine spruce forests.  

→ § 5.1. and Paper III 

Postulate 3: The amount of dying/dead trees required for the presence of Three-toed 

woodpeckers can be predicted by modelling and translated into 

management recommendations. → § 5.4., 6.3. and Papers IV and II 

Postulate 4: Three-toed woodpeckers are an interesting alternative to bark beetle 

control using pheromone traps in spruce forests. → § 5.5. and Paper II 
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2.3. Specific objectives 

This thesis addresses the following specific objectives: 

Paper I:  1) to present a method enabling efficient quantification of large snags 

(standing dying and dead trees) using a combination of colour infrared 

aerial photos scaled to 1:10,000 and a Geographic Information System;  

2) to validate it by comparing the results obtained with these combined 

techniques at several study sites with the ground-truth using classical field 

methods. 

 

Paper II:  1) to compare the effectiveness of Three-toed woodpeckers in bark-beetle 

control with bark-beetle traps; 2) to determine the number of declining/dead 

spruce trees per ha required to meet the Three-toed woodpecker’s foraging 

needs. 

 

Paper III:  1) to test the dependence of Three-toed woodpeckers on dead wood in a 

boreal and a sub-Alpine landscape by a field study; 2) to search for 

possible dead-wood threshold values important for the local continued 

presence of Three-toed woodpeckers; 3) to derive quantitative targets for 

management implications. 

 

Paper IV:  1) to predict the spatial densities of declining/dead trees required to meet 

the Three-toed woodpecker’s energy requirements by developing and 

validating a theoretical model based on the energy budgets of this 

woodpecker species; 2) to verify these predictions by a subsequent field 

study; 3) to derive quantitative management recommendations through the 

definition of dead-tree target values. 
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Chapter 

3 Material and methods 
 

 

3.1. Study sites 

In this thesis we used a total of 50 study sites of a size of 0.6-3.1 km2 (Table 2), located in 

Switzerland (30) and central Sweden (20). The sites in Switzerland are situated in the 

sub-Alpine vegetation zone, between 1300 and 1700 m a.s.l., and were dominated by 

Picea spruce forests, sometimes interspersed with pastures. The main vegetation in the 

Swedish boreal forests, sometimes including bogs, were Norway spruce and Pinus pine. 

In general, the forests were > 100 years old. Two types of study sites have been 

selected:  

i) with breeding Three-toed woodpeckers, such as defined in the International 

Ornithological Atlases (Sharrock 1973), and  

ii) without Three-toed woodpeckers, i.e. where this species has neither been observed by 

local birdwatchers before the study, nor by ourselves during the study. 

 

3.2. Gathering of dead-wood data 

We used three methods to gather dead-wood data: a) AP-GIS-method, b) complete field 

inventory in forest stands using a tree calliper, and c) point relascope sampling (cf. Table 

3). The AP-GIS-method is a new method developed in this thesis (cf. Paper I and § 4.4.). 

The other methods are based on fieldwork. 

Table 2 gives an overview of methods used for dead-wood data gathering on each study 

site, and the sites involved in data analyses and presented figures. 
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Table 3:  Methods and material used to gather dead-wood data. 

Method Material Type of data 

AP-GIS-method Infrared aerial photo, 
stereoscope, scanner, digital 
elevation model, GIS 

Number of snags ha-1 

Complete field inventory Tree calliper Snag diameter [cm] 
Snag characteristics 
Stage of decomposition

Relascope point sampling Relascope Basal area [m2 ha-1] 
 

a) AP-GIS-method 

Details of the development and validation of this method are given in Paper I. The 

validated method was used to produce maps of the spatial distribution of snags (with a 

breast-height diameter of ≥ 25 cm) and to calculate the density of snags per area for 

several study sites (cf. Table 2) with the aim of validating the bioenergetic model. 

b) Complete field inventory of snags in forest stands 

In ten study sites (cf. Table 2) a random sample (n = 16 to 35, depending on the size of 

the study site) of forest stands of about 0.5 ha have been visited in the field to make a 

comprehensive inventory of standing dying and dead trees (minimal breast-height 

diameter 10 cm). The main variables were: diameter, snag decomposition stage, and 

treetop condition. Other variables describing the stand structure and physical parameters 

have also been recorded. 

c) Relascope point sampling 

A systematic grid of 16 sampling plots, 250 m apart, has been put onto each observation 

unit of 1 km2 in size. The total number of trees at each sampling plot with a dbh ≥ 10 cm, 

i.e. wider than the gap in the angle relascope, represented the basal area of the forest at 

that plot. Basal areas were recorded for snags, logs and living trees. Other variables 

related to exploitation, physical parameters and Three-toed woodpecker traces have also 

been recorded. 
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3.3. Methods used to test the postulates 

Postulate 1:  Large standing dead spruce trees can be effectively quantified by a method 

based on remote sensing and GIS techniques. 

The AP-GIS-method has been developed in a case study using four study 

sites (cf. Table 2) by interpreting recent (< 2 years old) infrared aerial photos 

on a scale of 1:10,000 with a stereoscope. All dying and dead spruce trees 

visible on the photos of the study sites have been marked. After integrating 

the aerial photos into a Geographic Information System and digitising snag 

data, snag distribution maps were drawn up. The AP-GIS-method was 

validated by comparing these maps with complete field inventories of snags 

that have been made on the same study sites. Details of the development 

and validation of this method are given in Paper I.  

Postulate 2:  The presence of Three-toed woodpeckers shows a non-linear response 

related to dead-wood quantities in both boreal and Alpine spruce forests. 

This postulate was tested by conducting a case study in Switzerland and 

central Sweden. We sampled dead-wood data in paired study sites with and 

without breeding woodpeckers (2x12 in Switzerland and 2x10 in Sweden), 

using the relascope point sampling method. Other variables describing 

forest management and important habitat features of this species have also 

been recorded. To test for differences between the two groups of forests 

within a country, we mainly used two sample t-tests pair-wise. Logistic 

regression was used to evaluate the existence of non-linear responses 

related to different dead-wood quantities. Details of the methods are given 

in Paper III. 

Postulate 3:  The amount of dying/dead trees required for the presence of Three-toed 

woodpeckers can be predicted by modelling and translated into 

management recommendations. 

In order to test this postulate, we developed a theoretical mathematical 

model, known as a bioenergetic model, based on the energy requirements 

of the Three-toed woodpecker and on different assumptions regarding food 

selection and prey availability. For estimation of model variables we used 

literature data. The model output is a prediction of the probability of 
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woodpecker presence as a function of snag density. We analysed the 

sensitivity of the model and then validated it on ten study sites (cf. Table 2) 

by quantifying the snags using the AP-GIS-method and comparing the 

predicted probability of woodpecker presence with its occurrence on these 

sites. As a second model, known as an empirical model, predicting the 

probability of woodpecker presence as a function of dead-wood quantities, 

we used logistic regression models (cf. Postulate 2). By comparing the 

predictions of the two models, we defined critical dead-wood amounts for 

woodpecker presence. These critical values were then translated into 

quantitative dead-wood management targets. The details of the methods 

used are given in Paper IV. 

Postulate 4:  Three-toed woodpeckers are an interesting alternative to bark beetle control 

using pheromone traps in spruce forests. 

We tested this postulate by the development of different scenarios for 

woodpecker effectiveness in bark-beetle control and their comparison with 

available statistical data of bark beetles caught by pheromone traps in 

Swiss forests. In order to define three scenarios, the energy requirements of 

Three-toed woodpeckers were estimated based on literature data on its 

feeding ecology. Details of the methods are given in Paper II. 
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Chapter 

4 Snag quantification by remote sensing and 
GIS 

 

 

4.1. Ecological importance of dead wood: a literature review 

Dead wood or coarse woody debris (CWD), i.e. snags2, stumps, logs3, large branches, is 

a very complex substrate. Its value for different species depends on the total volume, 

species, dimension, location, stage of decay and continuity. According to Albrecht (1991), 

both spatial and temporal continuity of various dead-wood types, each fulfilling different 

ecological functions, are necessary to maintain dead-wood-dependent species in the long 

term. Lack of CWD is one of the most crucial factors for many threatened species of 

bryophytes, lichens, fungi, insects and birds (Nilsson et al. 2001; Utschick 1991). 

Removal of woody microhabitats is hence considered a major threat to biodiversity and 

the stability of forest ecosystems. For Europe, Speight (1989) estimates that 40 percent 

of saproxylic beetle species are endangered in the greater part of their distribution area.  

Both large animals and small organisms use logs and snags for hiding and cover, 

reproduction and feeding sites. Some use them as lookout posts (squirrels), for 

drumming (woodpeckers) or for sunning themselves (lizards). Small mammals may use 

CWD as bridges for reaching the opposite side of a small river. Many species of 

invertebrates are known to depend on CWD, especially beetles (Coleoptera). Their 

possible benefits from CWD are: source of food and breeding site, nesting site, source of 

construction materials, protection from predators, protection from environmental extremes 

(e.g. desiccation), over-wintering site, etc.  

Epiphytic bryophytes and lichens are the main vegetation components on standing and 

newly-fallen stems and persist to rather late stages of decay. CWD also provides habitat 

for an enormous number of species of fungi. In former West Germany, for example, there 

are approximately 1500 macromycetes which require dead wood (Albrecht 1991). Travé 

et al. (1999) found in a French nature reserve that one third of the fungi species, i.e. 103 

species, are wood decomposers. Recent studies show correlation between densities of 
                                                      
2 Snag : in this thesis defined as all standing dead and dying trees 
3 Log : down woody material 
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dead trees and, for example, richness of wood-beetles (Martikainen et al. 2000; Okland et 

al. 1996), and wood-fungi (Bader et al. 1995) (cf. Fig. 10). 

In mature and old-growth forests, logs also play a role as “nurse logs” for tree 

regeneration, since tree seedlings are commonly found rooted in or on logs (Harmon 

1986).  

☞ Dead wood is of prime importance for numerous plant and 
animal species in the forest ecosystem. 

 

4.2. Relevance of large snags 

In this section we present different reasons justifying why it is important to focus on large 

snags. 

a) Extensive literature data demonstrate the preference of many organisms (cavity 

nesting birds, wood-dependent beetles, red-listed cryptogams) for large dead trees 

(cf. examples in Nilsson et al. 2001, Raphael & White 1984, Thomas 1979, Kruys et 

al. 1999, Samuelsson et al. 1994). For example, for cavity users, a smaller snag may 

be replaced by a larger one, but the reverse is not true. In particular, woodpeckers 

prefer larger snags to smaller ones for foraging (Fig. 2). This preference, which we 

verified on our study sites without differentiation of woodpecker species, is 

corroborated by literature concerning the Three-toed woodpecker (Hess 1983; 

Imbeau & Desrochers 2002). 

b)  Large-diameter snags provide a more stable microclimate for organisms than smaller 

ones because of wood thickness. For example, thickness of the wood surrounding a 

cavity is important for thermal regulation, and protection from environmental extremes 

and predators. Large snags remain moist in their centre even during long droughts, 

hence preventing small organisms from desiccation. 
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Fig. 2: Relationship between snag diameter and number of 
woodpecker beakmarks, signs of foraging. Number of analysed 
snags = 371 on 3 study sites (cf. Table 2). Woodpecker 
species were not differentiated. 

 

c)  Longevity, i.e. the length of time a snag stands, is positively correlated with snag 

diameter (Everett et al. 1999; Morrison & Raphael 1993). A larger snag may therefore 

have a long(er) use as a wildlife tree. For example, Subalpine fir (Abies lasiocarpa) 

and Engelmann spruce (Picea engelmannii) with a dbh of 23 cm reach decay stage 3 

(i.e. absence of bark and branches, intact bole with a minimum of top breakage;  

cf. Fig. 5) 65 years after mortality (Everett et al. 1999). 

d) Large, standing declining and recently dead trees are the rarest of the diverse dead 

wood substrata, especially in managed forests (Fridman & Walheim 2000; Green & 

Peterken 1997). Since such trees still have a certain economic value, they may be cut 

when timber is harvested, or they are removed by sanitary logging. As illustrated in 

Figure 3, the diameter-frequency distribution of the snags on our study sites was 

clearly skewed towards small diameters. This tendency is less marked in forests with 

Three-toed woodpeckers, where harvesting is in general less intensive than in the 

other studied forests. 
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Fig. 3:  Snag-diameter frequency distribution in sub-Alpine forests 
with (7 sites, n = 1162) and without (3 sites, n = 571) Three-
toed woodpeckers, respectively. Distribution is skewed 
towards small diameters, especially in forests without 
Three-toed woodpeckers. On the x-axis: diameter class  
1 = 10-19 cm dbh, 2 = 20-29 cm, etc. 

 

e)  The number of large dead trees above certain diameters may be crucial rather than 

the total volume of dead wood. Nilsson et al. (2001) suggest that for a given volume 

of dead wood, big trees can host more species than the same volume of thinner 

trees. 

f)  Dead trees of larger-diameter classes generally account for most of the CWD volume 

and basal areas in old-growth forests (Nilsson et al. 2002; Siitonen 2001). We found 

the same relationship in our study sites located in slightly managed forests in the 

Western Pre-Alps (Pays-d’Enhaut region): the proportion of the total basal area of 
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dead trees with a dbh ≥ 30 cm was 72%, whereas numerically they only accounted 

for 25% (n = 338). High volumes are important for biodiversity conservation, since it 

has been demonstrated that the volume and basal area of CWD is positively 

correlated with saproxylic beetle species richness (Grove 2002; Martikainen et al. 

1999; Martikainen et al. 2000; Okland et al. 1996). 

Since large snags seem to have particular ecological relevance, we intended to develop 

a method that is especially efficient for quantification of large snags. 

☞ Among the different dead-wood types, large snags have a 
particular relevance for biodiversity, and they are especially rare 
in managed forests. 

 

 

4.3. Why a new snag-quantification method? 

There are two major reasons justifying the urgent need for new methods of dead-wood 

quantification. 

a) Growing demand from various users: Initially, dead-wood data were collected to 

address wildlife habitat issues. More recently, dead wood is also considered relevant 

to issues of forest health, site productivity, fuel, and carbon stores. Groups interested 

in dead-wood inventories include those studying criteria and indicators defined for 

sustainable forest management (e.g. criteria 1 and 4 in the Helsinki process, i.e. 

global carbon cycles and biodiversity), wildlife managers or those concerned with 

forest certification processes. In the future, dead wood will hence be inventoried more 

and more frequently. 

b) Methodical difficulties in field methods: Large dead trees are rare objects in managed 

forests. Most classic sampling designs will not be efficient for rare elements (Yoccoz 

et al. 2001). A high level of natural variability in rates of creation and amounts of dead 

wood is typical in unmanaged forests. Large snags may cluster and many plots with 

no such trees are to be expected. Large sample numbers and plot sizes are therefore 

required to monitor densities of large snags (Gray 2002). In monitoring programmes 

for land management, however, money and personnel are limited. A major problem is 
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to ensure adequate sample numbers and plot sizes for field recording of such a 

patchily-distributed resource. Strip or line transect sampling, which have been 

proposed instead of plot-based methods (Lämas & Stahl 1998; Ringvall et al. 2000; 

Stahl et al. 2001), present similar problems. Recent work has focused on adaptive 

sampling designs (Thompson & Seber 1996), which seem to be promising for rare 

elements that form clusters (Acharya et al. 2000). In such designs, however, the 

sample size is not known beforehand, since the intensity of sampling is dependent on 

initial sampling results. This may be a drawback when evaluating survey costs. A 

large group size increases the efficiency of systematic adaptive cluster-sampling. 

When groups become too large, however, such sampling becomes equivalent to 

(near) full enumeration and survey costs may be extremely high. 

☞ For large-snag inventories, classic field-based methods present 
numerous sampling difficulties and are hardly cost- and time-
efficient. 

 

 

4.4. AP-GIS-method 

For both research and management purposes, simple, rapid and accurate methods for 

dead-wood quantification are required. To date, remote sensing as a data source is only 

seldom used for European national forest inventories (Köhl et al. 1998), and under-

utilised for the assessment of forest biodiversity (Innes & Koch 1998), in spite of its high 

potential and frequent use in forest research. In this thesis we developed the AP-GIS-

method, coupling infrared Aerial Photos scaled to 1:10,000 and a Geographic Information 

System, in order to map and quantify large standing dying/dead spruce trees. For details 

we refer to Paper I. Given both the patchy distribution and relative scarcity of large snags, 

especially in managed forests, air borne data sources, such as aerial photos, facilitate 

inventories. Our method uses the differences in spectral reflectance in the near-infrared 

region (wavelength 700-1500 nm) between sound and dying/dead spruce trees. The 

latter can be detected on colour infrared photos because of their greyish-white colour  

(cf. Fig. 4). Mathematical processing based on a digital elevation model is necessary to 

transform the scanned images into so-called digital ortho-photos. These are geo-
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referenced in a Geographic Information System and prepared for spatial analyses and 

mapping on various scales. 

With the developed method, a map of the spatial distribution of snags with a dbh ≥ 25 cm 

can be obtained in about 16 hours for an area of 3 km2 in size (i.e. 3 minutes per ha of 

map). Quantitative estimations, expressed as number of snags per hectare, can easily be 

derived. 

Field verifications revealed that 90% of the detected snags had a dbh ≥ 25 cm (n = 270). 

As demonstrated above (cf. § 4.2.), such large snags have a particular ecological 

relevance. In very good conditions – isolated tree, stand with open canopy - the smallest 

detected snags measured less than 20 cm. Tree diameter, treetop condition (broken or 

intact) and the canopy closure of the forest stand significantly affected the success of 

detection. The AP-GIS-method detected 71% of snags with a dbh ≥ 35 cm (67% for dbh 

≥ 25 cm). The main reason for detection failure was a broken treetop. When only snags 

with an intact treetop were considered, the method detected 93% of the snags with a dbh 

≥ 35 cm (90% for dbh ≥ 30 cm; 82 % for dbh ≥ 25 cm). A second reason for undetected 

snags was that they belonged to the understory and were therefore not visible. The 

method’s main limitation is its inefficiency for the detection of snags in an advanced stage 

of decomposition (i.e. stages 4 and 5 in Fig. 5), which may be important wildlife trees. 

Based on our results for snag detection failure, we developed a correction coefficient in 

order to take into account the bias caused by undetected snags. The accuracy of the  

AP-GIS-method after application of this correction factor was ≤ 0.6 snags ha-1, when 

compared with ground-truth field data. Including a security factor, we estimate that the 

AP-GIS-method gives results lying within 1 snag ha-1 of the ground-truth field data for 

snag densities, i.e. number of snags per hectare. 

 

☞ The new AP-GIS-method enables mapping and time-efficient 
quantification of snags with a diameter ≥ 25 cm with an 
uncertainty of ± 1 snag ha-1 when compared to the ground truth. 
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Stage 1

Declining or
recently dead

Stage 2

Loose
bark

Stage 3

Clean

Stage 4

Broken

Stage 5

Decom-
posed

 

Fig. 5:  Snag decomposition stages, as defined in this thesis (modified from 
Maser et al. 1979). 

 

4.5. Prospective applications 

A method based on remote sensing offers various advantages for rapid inventories of 

large snags. It facilitates the study of spatial and temporal variation in snag amounts and 

distribution in remote and inaccessible areas. In particular, the assessment of spatial 

arrangement of dead trees within a stand or across a landscape becomes possible 

thanks to the full enumeration of large snags over large areas (cf. Fig. 6). Another 

possibility is to represent the spatial arrangement of snags as a snag-density map  

(cf. Fig. 7). This map highlights the uneven spatial distribution of snags within a forest 

landscape. The third example shows how the road network may influence the spatial 

distribution of snags (cf. Fig. 8). Most of the snags are located where the road network 

density is low, i.e. at a certain distance of forest roads. GIS techniques enable many other 

types of spatial analyses and cartographic representation of geo-referenced data 

combined with snag maps. Our AP-GIS-method may be used as a basis to define, for 

example, an adaptive sampling design for field measurements in hectare or smaller plots. 

It may also be used for sampling on the landscape scale: one aerial photo couple scaled 

to 1:10,000, with 23x23 cm dimensions and an overlap of 80 percent, permits 

investigation of a forest area of 3.5 km2. Even larger sampling plots would be possible by 

combining several photos in a composite. The potential of such large plots (3.5 km2 
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instead of 1-hectare field plots) for different applications (wildlife studies, forest 

certification, etc.) may be considerable. 

☞ The new AP-GIS-method may be used for forest inventories, 
certification processes, wildlife studies, etc. 

 

 

4.6. Quantity and quality of dead wood in unmanaged 
versus managed forests 

In § 4.7. we present our results of dead-wood amounts measured in forests with and 

without Three-toed woodpeckers. In order to situate our findings in a wider context, in this 

section we give a literature review on dead-wood amounts found in unmanaged and 

managed forests. 

a) Unmanaged forests:  

The volume of CWD in a natural forest depends on productivity of the site, decomposition 

rate of dead wood, and disturbances affecting input rate and stand succession (Harmon 

1986). Aggregation does occur, since factors such as insects, disease, and wind-throw 

tend to cause localised mortality rather than random death throughout the stand (Caza 

1993). The volume of dead wood varies considerably among forest types, about one 

order of magnitude (20-200 m3) in European forests. On many sites, 30-50 m3 standing 

and about 100 m3 downed dead wood were probably commonly occurring amounts 

before European forests were subjected to human exploitation (Nilsson et al. 2002). For 

European unmanaged old-growth forests, volumes of > 250 m3 ha-1 have been reported 

(Korpel 1995), whereas in North America CWD volumes may exceed 1000 m3 ha-1 

(Harmon 1986). For Swedish natural forests Siitonen (2001) reported CWD of around  

18-40% of the total wood volume. Many studies in North America have demonstrated that 

CWD volume is highest at early successional stages immediately after the disturbance, 

lowest in the middle of succession, and high again in old-growth forests (Clark et al. 1998; 

Lee et al. 1997). Nilsson et al. (2002) synthesised several studies of European old-growth 

forests and found that among all standing trunks about 10% are dead. This proportion is 

independent of total basal areas (and site productivity) and may therefore serve as 

reference value. 
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In 15 European old-growth forests, the density of standing dead trees with a dbh ≥ 20 cm 

was 34 ± 7 ha-1 (mean ± S.E.) and their basal area was 5.1 ± 0.7 m2 ha-1 (mean ± S.E.; 

dbh ≥ 10 cm) (Nilsson et al. 2002). 

b) Managed forests: 

Due to intensive forest management (shorter rotation lengths, commercial thinning, etc.), 

the volume of dead wood has decreased and its quality is less diverse in managed than 

in naturally-disturbed forests (e.g. Similä et al. 2002, Siitonen 2001). Thinning of 

managed stands reduces CWD in the mid-successional stages, since dead, damaged 

and weakened trees are usually removed. If large quantities of CWD are created by 

natural disturbances, such as wind-throw, snow breakage or insect outbreaks, the dead 

trees are habitually harvested in salvage or sanitary logging. According to Siitonen 

(2001), the average amount of CWD has been reduced by 90-98% in managed forests in 

Fennoscandia, compared to old-growth forests. Forest management does not decrease 

all CWD uniformly. It reduces densities of large dead trees relatively far more than thinner 

trunks (e.g. Green & Peterken 1997, Kirby 1998). The spatial distribution of CWD is 

uneven (cf. Fig. 7 and 8). In Fennoscandia, for example, large parts of the managed 

landscape contain extremely low amounts of CWD compared to natural stands, while 

some areas, stands or patches can contain relatively large quantities (Siitonen 2001). For 

Middle Europe, the few existing studies show similar trends (cf. in Albrecht 1991; Derleth 

et al. 2000; Erdmann & Wilke 1997; Guby & Dobbertin 1996; Meyer 1999).  

In Switzerland the national mean value of CWD in forests is 11.9 m3 ha-1, i.e. 3.3% of total 

wood volume (Brassel & Brändli 1999). Forests in lowland areas contain 4.9 m3 ha-1 

(1.1%) and forests in the Alpine zone 19.5 m3 ha-1. In Sweden, the average volume of 

CWD in managed forests is 6.1 m3 ha-1 (4.5% of total wood volume) on productive forest 

land (Fridman & Walheim 2000). In France the mean national volume is 2.2 m3 ha-1 

(Vallauri & Poncet 2002). In production forests, 1-3 m3 ha-1 has been reported for 

Bavaria, Germany (Ammer 1991), and 2-10 m3 ha-1 for Finland (Siitonen 2001). 

☞ Dead-wood amounts, and in particular the densities of large 
dead trees, are generally much lower in managed (1-12 m3 ha-1; 
< 5% of total wood volume) than unmanaged forests  
(20-250 m3 ha-1; up to 40% of total wood volume). 
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4.7. Quantity of dead wood in forests with and without 
Three-toed woodpeckers 

In our study we consistently found, for sub-Alpine and boreal regions, that forests with 

breeding Three-toed woodpeckers, where management intensity is usually low, had 

significantly more CWD than forests without this species (Table 4). The differences 

between these two forest types were largest for the basal areas of snags (the foraging 

substrates preferred by this bird). The total volume of CWD in forests without Three-toed 

woodpeckers corresponded to the national mean values for Switzerland and Sweden, 

respectively (cf. § 4.6.), whereas woodpecker forests had more than three times that 

volume. It should be noted, however, that the differences between these two forest types 

are small if compared with the decline from unmanaged to managed forests  

(cf. § 4.6.). 

A significant positive linear relationship exists between the basal areas of snags and all 

standing trees (forests with woodpeckers: rPearson = 0.67, N = 22, p = 0.0007; without 

woodpeckers: rPearson = 0.67, N = 22, p = 0.0007; Fig. 9a). This indicates that basal area 

(and volume) of CWD is related to site productivity, which is higher in sub-Alpine than 

boreal forests (Fig. 9a). It explains why the absolute CWD volume and basal area are 

higher in sub-Alpine than boreal forests (cf. Table 4). By contrast, the snag ratio seems to 

be independent of site productivity, since no significant linear relationship has been found 

between the basal area ratio of snags to all standing (dead and living) trees (with 

woodpeckers: rPearson = 0.34, N = 22, p = 0.12; without woodpeckers: rPearson = -0.15,  

N = 22, p = 0.51). Similar findings have been reported for old-growth forests (Nilsson et 

al. 2002). 

Our study shows that forests without Three-toed woodpeckers have generally ≤ 3% dead 

standing trees, whereas most forests with this bird species have ≥ 5% up to ratios > 10%, 

which are comparable with European old-growth forests (Fig. 9b). As illustrated 

graphically in this Figure, Three-toed-woodpecker forests occupy an intermediate rank 

between intensively-managed and old-growth forests in terms of dead-tree ratios. Three-

toed woodpeckers could therefore serve as a tool to derive dead-tree management  
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Fig. 9: a) Basal area of snags in sub-Alpine and boreal forests with and without 

Three-toed woodpeckers, respectively. Equation of the linear regression 
line fitted to forests with woodpeckers: y = -0.7785 + 0.1065x; without 
woodpeckers: y = 0.0027 + 0.0154x. b) Basal-area ratio of snags in three 
types of forests: European old-growth forests (black dots; data from 
Nilsson et al. 2002), forests with breeding Three-toed woodpeckers (red 
squares), and forests without Three-toed woodpeckers (green dots). 
Range ellipses, whose lengths projected onto the axes are equal to the 
mean ± 0.95 range of the plotted variables. 
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targets, if a) a critical dead-wood threshold value exists for its presence; b) it has 

desirable properties of an indicator species; and c) other species are associated with its 

presence. In the following three chapters we demonstrate that these requirements are 

met. 

 
Table 4:  Dead-wood amounts measured on our study sites in Swiss and Swedish 

forests with and without breeding Three-toed woodpeckers. Mean values and 
ranges. All differences between forests with and without woodpeckers within a 
country are significant at a level p<0.05. 

 

 Switzerland (sub-Alpine forest) Sweden (boreal forest) 
 
Measured feature 

With 
woodpeckers 

Without 
woodpeckers 

With 
woodpeckers 

Without 
woodpeckers

 n = 6 n = 4   

Snags [N ha-1] 1) 6.6 (2.9-11.2) 1.4 (0.8-1.9) n.a. 3) n.a. 
 n = 12 n = 12 n = 10 n = 10 

Snag basal area ratio of all 
standing trees [%] 2) 

8 (3-22) 1 (0-3) 5 (3-6) 2 (0-3) 

Snags [m2 ha-1] 2) 2.3 (0.6-6.0) 0.4 (0.0-0.8) 0.8 (0.4-1.0) 0.2 (0.1-0.4) 

Logs [m2 ha-1] 2) 2.2 (0.9-4.1) 0.6 (0.2-1.2) 1.8 (0.9-2.9) 0.8 (0.4-1.1) 

Total dead wood [m2 ha-1] 2) 4.5 (1.5-10.1) 1.1 (0.5-2.0) 2.6 (1.3-3.8) 1.0 (0.5-1.4) 

Snags [m3 ha-1] 2) 19 (6-34) 5 (0-10) 7 (3-10) 2 (0-3) 

Logs [m3 ha-1] 2) 21 (10-43) 7 (2-16) 16 (7-28) 7 (3-10) 

Total dead wood [m3 ha-1] 2) 40 (16-65) 12 (5-26) 23 (10-37) 7 (3-11) 
 

1) from AP-GIS-method; dbh ≥ 25 cm; 
2) from fieldwork with relascope sampling; dbh ≥ 10 cm; 
3)  n.a.: not analysed. 

 

 

☞ Forests with Three-toed woodpeckers have significantly more 
dead wood, and in particular snags (5-15% of the total standing 
basal area), than managed forests without this species (≤ 3%). 
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Chapter 

5 Snag targets based on Three-toed 
woodpecker’s habitat requirements 

 

 

5.1. Dependence on dead wood: significant non-linear 
response 

Our data indicate the existence of critical dead-wood thresholds for the presence of 

Three-toed woodpeckers. Both in Swedish boreal and Swiss mountain forests, snag and 

log amounts were significantly higher when the Three-toed woodpecker was present than 

in forests where it was absent (cf. Table 4). In Switzerland mean snag basal area  

[m2 ha-1] was 2.3 vs 0.4 (paired t-test, n = 12, t = 4.78, p = 0.0006), whereas mean log 

basal area was 2.2 vs 0.6 (paired t-test, n = 12, t = 6.23, p = 0.0001). In Sweden we 

recorded 0.8 vs 0.2 m2 ha-1 of snags (paired t-test, n = 10, t = 7.07, p = 0.0001) and  

1.8 vs 0.8 m2 ha-1 of logs (paired t-test, n = 10, t = 5.59, p = 0.0003). The snag ratio of all 

standing trees was also significantly higher in woodpecker forests. In Switzerland the 

snags represented 8.3 ± 1.5% (mean ± S.E.) in woodpecker forests against 1.3 ± 0.2% in 

forests without woodpeckers (Fig. 2 in paper III). In Sweden, the snag proportion was  

4.8 ± 0.3% against 1.9 ± 0.3%. These results suggest that Three-toed woodpeckers are 

clearly confined to forests with high dead-wood amounts. Univariate logistic regression 

models for snags resulted in significant non-linear responses for the probability of 

woodpecker presence, indicating the existence of critical ecological thresholds for both 

sub-species P. tr. alpinus and P. tr. tridactylus (Fig. 4 and Table 3 in paper III). In these 

empirical models, the probability of Three-toed woodpecker presence increased from 

0.10 to 0.95 when snag basal area increased from 0.6 to 1.3 m2 ha-1 (Switzerland) and 

from 0.3 to 0.5 m2 ha-1 (Sweden).  

☞ The probability of Three-toed woodpecker presence exhibits a 
significant non-linear response to varying dead-wood amounts, 
indicating the existence of a critical dead-wood threshold. 
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5.2. Is the Three-toed woodpecker a good indicator species? 

As demonstrated in the following section, this species meets most of the desirable 

requirements for indicator species, and, therefore, has a potential to be used as such. 

According to Hansson (2001) an indicator should have the following characteristics: 

1) be specialised in the ecosystem or landscape to be monitored (habitat specialist). The 

Three-toed woodpecker is one of the species most closely associated with old-growth 

spruce stands, i.e. > 120 years old (Imbeau et al. 1999; Virkkala 1987; Virkkala et al. 

1994a); 

2) be sensitive to artificial disturbance in at least one specific factor, over a wide range of 

natural variability. Its sensitivity to different dead-wood amounts has been 

demonstrated by this thesis (cf. § 5.1.); 

3) consist of populations with rapid density responses to disturbances or habitat 

changes. Three-toed woodpeckers are known to respond opportunistically to insect 

outbreaks following fires or windfall in coniferous forests (Koplin 1969; Murphy & 

Lehnhausen 1998). Among boreal forest bird species, this woodpecker is possibly the 

most negatively affected by long-term changes induced by commercial forestry in 

eastern Canada (Imbeau & Desrochers 2002). The ongoing decline of populations in 

Fennoscandia is directly related to modern forestry’s practice of removing old and 

dead trees (Tucker & Heath 1994; Virkkala 1987, 1991). 

4) have fairly large area and resource requirements. It is the only woodpecker occurring 

in both the New and Old Worlds (Winkler et al. 1995). It has a circumpolar range and 

some more southern isolated breeding ranges in the mountains, for example in the 

Alps (Hagemeijer & Blair 1997). Reported home range sizes vary between 44 and 

176 ha (Bürkli et al. 1975; Dorka 1996; Hess 1983; Pechacek 1995; Pechacek et al. 

1999; Ruge et al. 1999; Scherzinger 1982); 

5) be fairly common, easily and cheaply identified and sampled. While being classified 

as a Species of European Conservation Concern with “Declining” threat status (SPEC 

Cat 3) (Hagemeijer & Blair 1997), it is a species of least concern, i.e. not threatened, 

in Switzerland (Keller et al. 2001). Its presence can easily be verified based on ringed 

trees (cf. § 5.6. and Fig. 11). 

6) have continuous and demographically-balanced populations (cf. 4)); 
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7) be a resident species. Alpine populations P. t. alpinus are sedentary also in winter 

(Winkler et al. 1995), whereas the nominate form P. t. tridactylus is not completely 

resident (Hogstad 1970); 

8) if their populations are characterised by sinks and sources then the monitored habitat 

should contain source populations. Populations in Fennoscandia are in an ongoing 

decline (Angelstam & Mikusinski 1994; Nilsson 1992; Tucker & Heath 1994), whereas 

Swiss populations have been increasing for some years (Schmid et al. 1998). For this 

thesis, study sites have been selected in Sweden and Switzerland; 

9) the populations examined should not be affected by any conspicuous demographic 

stochasticity or genetic impoverishment due to long-term marginal population sizes. 

The history of intensive land use is much shorter in northern than central Europe 

(Angelstam 1997). The ongoing decline of northern Three-toed woodpecker 

populations is recent and they are not yet expected to be subject to genetic 

impoverishment. 

 

Based on this different literature information, we think that the Three-toed woodpecker 

has good potential as a useful indicator species. 

 

☞ The Three-toed woodpecker meets most desirable 
requirements for an indicator species and is therefore an 
interesting species on which to focus. 

 

5.3. Three-toed woodpecker as indicator of dead wood and 
habitat quality 

We demonstrated with our data the dependence of Three-toed woodpeckers on relatively 

high amounts of dead trees (cf. § 5.1.) and, therefore, suggest this bird species be 

considered as indicator of dead wood. If dead-wood thresholds for Three-toed 

woodpeckers are to be applied as practical management targets, it is necessary to 

evaluate the umbrella4 value of this woodpecker species for other taxa. Several links with 
                                                      
4  Umbrella species : a species whose conservation confers a protective umbrella to numerous co-occurring 

species (Fleishman et al. 2000b). A species whose occupancy area (plants) or home range (animals) are 
large enough and whose habitat requirements are wide enough that, if they are given a sufficiently large 
area for their protection, will bring other species under that protection. (Heywood, 1995). 
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biodiversity and habitat quality have previously been demonstrated by other studies  

(cf. Fig. 10). Mikusinski et al. (2001) found that the number of forest bird species is 

correlated positively with the richness of woodpecker species and, in particular, with the 

presence of the Three-toed woodpecker. Suter et al. (2002) demonstrated that the 

Capercaillie (Tetrao urogallus), co-occurring with the Three-toed woodpecker, is an 

umbrella for red-listed mountain birds. Pakkala et al. (2002) found a positive correlation 

between the occurrence of breeding Three-toed woodpeckers and territory and 

landscape quality. In a case study, Derleth et al. (2000) concluded that this species can 

be considered as an indicator of habitat quality. Since there exists a quantitative link 

between Three-toed woodpeckers and dead wood, we can assume that the maintenance 

of sufficient dead wood for this bird’s presence may also favour the presence of other 

dead-wood-dependent species. In addition, this woodpecker is characteristic of naturally 

dynamic old-growth forests, which have a high biodiversity conservation value per se. 

This is why different authors have already proposed it as “indicator species”. Angelstam 

(1998b) suggested this woodpecker species as an indicator of gap-phase dynamics in 

Picea spruce boreal forests and of the diversity of seral stages (old and old-growth) after 

large-scale disturbances. This species figures on the list of 32 selected birds suggested 

as indicators of the functioning of mature forests in the report on criteria and indicators of 

the Canadian Council of Forest Ministers (Anonymous 1997). Nilsson et al. (2001) 

propose a preliminary list of species indicating high biodiversity or many red-listed 

species. This list includes the Three-toed woodpecker, since it requires larger forest 

patches with a high density of dead Picea abies spruce (Amcoff & Eriksson 1996). 

Clearly, this species can be qualified as an “indicator of dead wood and habitat quality”. 

Whether it can even function in a broader sense as an “indicator of a high biodiversity” 

should be tested by systematically analysing its umbrella value in different landscapes. It 

seems to be potentially qualified, since we demonstrated that it meets most of the 

desirable requirements for an indicator species (cf. § 5.2.). 

☞ Due to its dependence on dead wood, and to several links with 
other aspects of biodiversity, the Three-toed woodpecker can be 
qualified as an indicator of dead wood and habitat quality. 
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5.4. Estimation of snag requirements using a bioenergetic 
model 

We intend to use the Three-toed woodpecker as a tool to derive dead-tree management 

targets. Striving for reliable target values, we chose two complementary approaches to 

estimate snag requirements for this woodpecker species: an empirical approach, where 

we measured dead-wood amounts in forests with and without this bird species (cf. results 

in § 5.1.) and a theoretical approach by developing a bioenergetic model. In this section 

we present the basic idea behind this bioenergetic model. For detailed information we 

refer to Paper IV. 

Bioenergetic models are based on quantitative energy budgets of a given species. Such 

models have above all been used for relatively large-sized animals, for example to 

estimate the grazing impact of large ungulates on forest ecosystems (e.g. Vivas et al. 

1991; Armstrong & Robertson 2000), or the possible concurrence of seabirds with a 

marine fishing industry (e.g. Gremillet et al. 1995; Wanless et al. 1998). Our application is 

original, since it uses a small-bird species and estimates the resources required for its 

protection instead of its possible negative impact on ecosystems or markets. Three-toed 

woodpeckers occur in old coniferous forests, where Picea spruce is the dominant tree 

species (Imbeau et al. 1999; Pakkala et al. 2002; Virkkala 1987; Virkkala et al. 1994b). 

Their food consists of 69-97% bark beetles (Fayt 1999, Glutz von Blotzheim 1994; Hess 

1983; Hogstad 1970, 1978; Murphy & Lehnhausen 1998; Pechacek & Kristin 1993, 

1996). The preferred foraging substrate is large, standing dying and recently dead spruce 

trees (Hess 1983; Murphy & Lehnhausen 1998; Pechacek 1995). Such trees can be 

successfully detected by our AP-GIS-method. If we are able to quantify the energy needs 

of Three-toed woodpeckers, and the available energy sources (i.e. bark beetles) within a 

given area, then we can predict the probability of woodpecker presence in this area. 

Since Three-toed woodpeckers are sedentary also in winter, we can assume that they 

have to find sufficient energy sources to fuel all their activities over the course of a year 

(reproduction, moulting, over-wintering etc.) within their home-range. The starting point of 

our model was an equation proposed by Koplin (1972) for the daily energy requirements 

of free-living woodpeckers, which served as a basis for estimation of yearly energy 

requirements. We introduced several variables to estimate the abundance of available 

bark-beetle prey as a function of available snags, measured by the AP-GIS-method. Our 

model output is the probability of woodpecker presence. The model predictions for 10 



Snag targets based on Three-toed woodpeckers 

41 

study sites (6 sites with woodpeckers and 4 sites without) were compared with 

woodpecker occurrence on these sites. Snag amounts required for the local continued 

presence of Three-toed woodpeckers in sub-Alpine forests, as predicted by this 

bioenergetic model, are presented in § 6.3.  

☞ The developed bioenergetic model enables estimation of snag 
amounts required for the local continued presence of Three-
toed woodpeckers. 

 

 

5.5. Natural agent against bark beetles? 

Since the Three-toed woodpecker feeds primarly on bark beetles, and since it locally 

concentrates in areas after natural disturbances (windfall, fire), it may be an interesting 

species for bark-beetle control in forest management. The importance of woodpeckers as 

natural control agents was often reported for North America, in particular during epidemic 

bark-beetle outbreaks (Baldwin 1968; Hutchinson 1951; Knight 1958; Kroll & Fleet 1979). 

However, the number of bark beetles consumed by Three-toed woodpeckers has never 

been compared with pheromone-trap statistics. Such traps have been used in 

Switzerland for bark-beetle control after heavy windfalls and subsequent bark-beetle 

calamities, and are still being used for bark-beetle population monitoring. We evaluated 

the effectiveness of woodpeckers during endemic5 bark-beetle levels, arguing that these 

birds may contribute to maintaining bark beetles at low levels. It has been recognised that 

high endemic beetle levels are an important element aggravating beetle outbreaks after 

natural disturbance. To prevent high endemic levels and reduce the spread of infestation, 

a common strategy in Swiss forest management is to remove infested dying, damaged 

and dead trees. But this reduces food resources for woodpeckers, possibly causing 

population decline, such as in Fennoscandia (BirdLife 2000; Tucker & Heath 1994). 

By defining three scenarios for different levels of woodpecker effectiveness, we 

demonstrated that woodpeckers catch 2-19 times more bark beetles than traps do 
                                                      
5 endemic : normal level in opposition to epidemic level during an insect outbreak 
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(cf. Paper II for details). This result applies for both when one woodpecker is compared 

with one trap, and when the whole Swiss woodpecker population is compared to all traps 

installed in Swiss forests. These findings corroborate other studies showing the limited 

effect of pheromone traps in bark-beetle elimination (Duelli et al. 1997; Wichmann & 

Ravn 2001). We therefore argue that Three-toed woodpeckers should be considered an 

interesting alternative to bark-beetle control by pheromone traps. That will mean, 

however, that a sufficient number of dying and dead trees would have to be maintained in 

forests in order to meet this bird’s foraging requirements. Such a management strategy 

would bring other biodiversity benefits and would probably also be economically 

profitable, since removing dying and dead trees is an expensive operation. 

☞ The Three-toed woodpecker is an interesting alternative to bark-
beetle control by pheromone traps, thus playing a role in 
stimulating  conservation awareness among forest managers. 

 

 

5.6. Ringed trees as indicators of breeding continuity 

We have shown that the Three-toed woodpecker is a potentially useful indicator species 

of good habitat quality (cf. § 5.2. and 5.3.) and an interesting alternative to bark-beetle 

control by pheromone traps (cf. § 5.5.). If it were to play a role in practical forest 

management, it would be important to easily be able to establish its presence on a given 

site. In this section we present the “ringed trees”, characteristic signs of its presence and 

relatively easy to detect (cf. Fig. 11). 

Sap-licking is a general habit of European Three-toed woodpeckers (Bürkli et al. 1975; 

Glutz von Blotzheim 1994; Hess 1983; Pechacek 1995; Ruge 1968; Scherzinger 1982), 

resulting in characteristic ringed trees. Such trees, most often spruce and pine, have 

small holes in the bark made by the woodpecker (Fig. 11a), and may sometimes display 

bulges as signs of continuous use over a long period (Fig. 11b). Therefore, we 

hypothesised that a long-term presence of this bird species in the same habitat would 

result in i) a high number of ringed trees and ii) trees with bulges. Our data support this 

hypothesis. We found more ringed trees in Switzerland than Sweden (Table 2 in paper 

III), and no trees with signs of very long use in Sweden. These differences in breeding 
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continuity in Swiss and Swedish forests can be explained by the different management 

regimes and histories of Alpine and boreal forests. In Switzerland, selective tree-cutting 

creates a dynamic of small gaps within stands, which retain favourable habitat features 

for the woodpecker over time. By contrast, in Sweden clear-cutting is the general 

harvesting type since the late 19th century and the rotation time of about 80 years for 

Norway spruce and 100 years for Scots pine is relatively short. Three-toed woodpeckers 

need forests with dead wood, either in old-growth stands or in stands subject to stand-

replacing disturbance by fire or wind (Angelstam & Mikusinksi 1994). Consequently, in 

managed forests in Sweden they would not be expected to stay longer than about 10-30 

years in the same old-forest patch, too short a time to create numerous signs or signs of 

long use. Our findings are corroborated by Nilsson & Ericson (1997) who expect species 

in temperate forests to be more dependent on continuity (i.e. the presence over a long 

period of features such as high tree cover or big dead trees) than species in boreal 

forests, due to the different disturbance regimes. Our results suggest that the number and 

age of ringed spruce and pine trees may be used as indicators of breeding continuity  

(cf. Fig. 4 in paper III). These signs are easily detectable in forests throughout the whole 

year and could therefore become a tool for forest managers to verify the presence of 

breeding Three-toed woodpeckers. However, it must be pointed out that the Great 

spotted woodpecker (Dendrocopos major), a sympatric species, may occasionally ring 

spruce and pine trees, even if it prefers deciduous trees. In order to acquire a better 

knowledge of the differences in ringed trees between these two species, it would be 

necessary to study the Great spotted woodpecker’s ringing habits in different regions. 

☞ Ringed trees are indicators of breeding Three-toed woodpeckers 
and may become a tool to easily establish their presence. 
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      a) 

Photos: R. Bütler 

 

 

 

 

 

Fig. 11: 

a) Ringed tree with fresh signs of 
woodpecker sap-licking and 

b) tree that has formed bulges, a 
sign of continuous woodpecker 
use over a long period. 

 
 
 
 
      

     b) 
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Chapter 

6 Forest management and biodiversity 
 

 

Forest management practices often have a major impact on biodiversity (Larsson 2001). 

In Finland for example, 43% of all species classified as endangered are thought to be so 

as a result of forest practices (Kouki & Niemelä 1997). In the lowland areas of Switzerland 

30% of forest plant species and 34% of the 83 forest bird species are red-listed (Bolliger 

1996; Landolt 1991). Lack of dead wood is one of the main reasons for this decline in 

biodiversity. As an example of the influence of forest management on dead-tree amounts, 

we analysed the impact of forest roads.  

 

6.1. Negative impact of forest roads in Switzerland 

Management intensity is directly linked with the accessibility of harvesting areas. A high 

level of road-network development facilitates forest management intensification and 

salvage cutting, i.e. the removal of diseased and dead trees (cf. Fig. 8), which is often 

practised in Switzerland. Indeed, we found a significant negative linear relationship 

between road density on the Swiss study sites and dead-wood amounts (r = -0.64,  

t = 3.93, p = 0.0007, n = 24; Fig. 3 in paper III). In addition, road network density had a 

non-linear negative impact on the presence of Three-toed woodpeckers, with an 

accelerated drop beyond a density of about 2.6 km per km2. If the current 10%-per-

decade growth of the road network (Brassel & Brändli 1999) continues, this critical 

threshold could be reached in about 30 years. 

Easily-accessible forests, characterised by a high forest-road network density, have 

significantly smaller dead wood amounts than forests that are difficult to access. The road 

network therefore has an indirect impact on the spatial distribution of woodpeckers. 

☞ Since a high road network density facilitates the removal of 
dying and dead trees in forests, it negatively affects 
woodpecker presence. 
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6.2. Remove or not remove dead wood in managed forests? 

Although recognised as ecologically important, dead wood is still lacking in most 

managed forests. For example, after the heavy storm “Lothar” in 1999 in central Europe, 

during which 12.5 Mio. m3 of wind-thrown wood was created in Swiss forests, less than 

2.5 Mio. m3 has been left in situ (Anonymous 2002). One main reason for removing wind-

thrown trees is the possible subsequent damage caused by insect pests. More than  

260 Mio. SFr. (of a total of 510 Mio. of public subsidies invested after “Lothar”) has been 

devoted to removing wind-thrown and insect-damaged trees (Anonymous 2002). This 

corresponds to 36 SFr. per inhabitant. While this measure may be necessary in forests 

with a protective function, it is less justified elsewhere. It is important to point out that, 

from a forest-protection point of view, harmful insects use a tree only the first two years 

after its death (in Samuelsson et al. 1994, p.43). 

It is, however, difficult to predict the possible damage caused to forests if most of the 

wind-thrown trees had not been removed. Similarly, the possible benefits for biodiversity 

in the same case are difficult to estimate. It can be expected that in well-functioning forest 

ecosystems, where the antagonists of harmful insects are present in naturally balanced 

numbers, the damage would be smaller than in intensively-managed forests that lack 

suitable habitat for antagonist populations. As we demonstrated in § 5.3. (and Paper II), 

the Three-toed woodpecker is an effective bark-beetle eater. Favouring its presence in 

forests would enable better control of infestation by such insects than the currently used 

pheromone traps. Related to the dead-wood habitat feature, the fundamental question is 

then: How much dead wood is enough in managed forests to maintain dead-wood-

dependent species? 

 

6.3. How much dead wood is enough? 

This question is extremely difficult to answer. Generally, scientists prefer giving vague 

qualitative recommendations to stating absolute figures. “Leave as many large standing 

dead trees at harvest as possible”, (Mccarthy & Bailey 1994); “It is important to maintain 

standing dead trees, wherever possible, during harvesting and renewal operations”, 

(Greif & Archibold 2000); “There is a need to increase the input of large dead trees”, 

(Kruys et al. 1999). Without clear quantitative guidelines, however, it is impossible to 
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assess progress towards biodiversity maintenance or restoration in managed forests, two 

challenges which must be taken up by foresters. Aware of the controversial character of 

quantitative figures, we nevertheless venture to conclude this thesis with such concrete 

recommendations (cf. § 6.4.), arguing like Hagan & Grove (1999): “If forest ecologists 

don’t know how much coarse woody debris is needed to maintain biodiversity, how are 

foresters supposed to know?” 

One way to achieve a better understanding of dead-tree requirements for biodiversity 

preservation is to measure these features in natural forests, and then derive 

management targets from these reference systems. However, no, or very few, natural 

forests remain in most parts of Europe. In addition, the amount of dead wood in natural 

forests may be so extensive – up to 30% of dead stems (Linder et al. 1997) or 25% of 

above-ground biomass (Bobiec 2002; Nilsson et al. 2002; Siitonen 2001) – that such 

targets would be incompatible with the economic objectives of multifunctional forestry. 

Another approach, such as undertaken in this thesis, involves quantification of the 

ecological preferences of species of special interest (in our case the Three-toed 

woodpecker) and derivation from their habitat requirements of quantitative target values 

for management use (Fahrig 2001; Simberloff 1995; With & Crist 1995). 

Table 5 presents the snag amounts required in order to achieve a given probability of 

presence of the Three-toed woodpecker in sub-Alpine and boreal forests, by applying a 

logistic regression model to our data collected in Switzerland and Sweden. The predicted 

required volumes and basal areas are considerably lower in boreal than sub-Alpine 

forests. One reason is that both total volume and basal area depend on site productivity, 

which is lower in boreal than in sub-Alpine forests (cf. § 4.7.). We therefore also 

considered the ratio of dead trunks to the total number of trunks, since this ratio is 

independent of site productivity (cf. § 4.7.). In this case, the values are more similar, even 

if a difference, although small, between predictions for both forest types still remains. This 

result may indicate that the boreal sub-species P. tr. tridactylus needs a lower density of 

snags than the Alpine sub-species P. tr. alpinus.  

We argue, however, that this is not true. Instead the figures must be put into the context 

of woodpecker population trends, stable or even increasing in Switzerland and declining 

in Sweden, due to loss of suitable habitat and decrease in the quality of the remaining 

habitat caused by forest management (cf. Table 6). 



How much dead wood is enough in managed forests ? 

48 

Table 5:  Snag amounts required for local continued presence of the Three-toed 
woodpecker, as predicted by an empirical logistic regression model based on 
data for Switzerland (sub-Alpine forest) and Sweden (boreal forest). Mean 
values ± S.E. for snag basal area, volume, and ratio dead/all trees of forests 
with breeding Three-toed woodpeckers (n = 12 for Switzerland and n = 10 for 
Sweden). 

 

P(woodp.) Basal area [m2 ha-1] Volume [m3 ha-1] Ratio dead/all1) [%] 

 sub-Alpine  boreal sub-Alpine boreal sub-Alpine  boreal 

0.50 0.9  0.4 10 3.2 3.4  3.1 
0.75 1.0  0.5 12 3.8 4.1  3.5 
0.90 1.2  0.5 14 4.1 4.5  3.7 
0.95 1.3  0.6 16 4.4 4.9  3.9 

Mean ± S.E. 2.3 ± 0.4  0.8 ± 0.1 19.4 ±3.4 6.8 ± 0.8 8.3 ± 1.5  4.8 ± 0.3 

1) Ratio of basal areas of standing dead to all standing (dead and living) trees 

 

According to Tilman et al. (1994), metapopulation decline in response to habitat 

destruction occurs with a time delay, called “extinction debt”. This means that many 

species may be remaining for a long time in a landscape that has already lost its capacity 

to support them in the long term. We think that the metapopulation capacity, i.e. the sum 

of contributions from individual suitable habitat fragments (Hanski & Ovaskainen 2000) of 

the studied central Swedish landscape may already be below the threshold value 

required by Three-toed woodpeckers. It is also possible that the central Swedish 

population is a sink population (Pulliam & Danielson 1991), whose survival hinges on 

migration from source populations further to the north, where more naturally-dynamic 

forests with much dead wood remain. In view of these considerations, and referring to the 

precautionary principle, we suggest that management recommendations for boreal 

forests be based on the higher values derived from sub-Alpine forests.  

Predictions by the bioenergetic model developed for sub-Alpine forests were in the same 

order as results of the field approach (Table 7). In particular, for p(woodpecker) = 0.75 

both approaches predicted the same snag amounts. The similarity in the results of our 

two completely different approaches enables us to affirm the reliability of predicted snag 

amounts to achieve a given probability of Three-toed woodpecker presence.  
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☞ Snag targets should be based on dead-tree requirements of the 
increasing Alpine, instead of the declining northern, Three-toed 
woodpecker populations. 

 

Table 6:  Three-toed woodpecker population trends in Switzerland and Sweden 

Switzerland Sweden 
Three-toed woodpeckers in Switzerland have 
been increasing for some years (Schmid et al. 
1998). New breeding populations have been 
detected in the western Pre-Alps (first breeding 
proved in the Pays-d’Enhaut in 1991; cf. Beaud 
et al. 1995) and the Jura mountains (first 
breeding proved in 1994, Chabloz & Wegmüller 
1994). As a reason for this population growth in 
the western Pre-Alps, Derleth et al. (2000) 
identified a decrease of forest exploitation since 
World War II accompanied by growing dead-
wood amounts.  

Populations in Fennoscandia are in a drastic 
ongoing decline (Angelstam & Mikusinski 1994; 
Nilsson 1992; Virkkala 1991). Between 1970-
1990 the Swedish and Finnish populations, 
totalling 20,000–35,000 pairs, declined by more 
than 20% (Tucker & Heath 1994), due to 
habitat loss caused by intensive forest 
management (Virkkala 1987, 1991). Virgin 
forests, over 200 years old and with plenty of 
dead trees, have been replaced by managed 
thinned and young forests, where most dead 
trees have been removed (Virkkala 1991). 

 
 
 
 
 

 

Table 7:  Snag amounts required for local continued presence of the Three-toed 
woodpecker in sub-Alpine forests, as predicted by the bioenergetic model. 

 

P(woodpecker) Basal area [m2 ha-1] Volume [m3 ha-1] Density [N ha-1]1) 
 sub-Alpine sub-Alpine sub-Alpine 

0.50 0.6 7 5.0 
0.75 1.0 12 8.5 
0.90 1.6 18 14.0 
0.95 2.2 25 19.5 

1) trees with a dbh ≥ 21 cm 
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6.4. Recommendations 

Management objectives will define which level of probability of woodpecker presence will 

be specified. According to the principle of precautionary, the following management 

recommendations are based on a strategy intended to maximise the probability of 

woodpecker presence (i.e. probability of woodpecker presence ≥ 0.9 in both 

approaches). For sub-Alpine spruce forests, we recommend that at least 5% of the 

standing basal area (or volume) should be dead. Since this ratio is independent of site 

productivity (cf. § 4.7.), it can be used as a general target for spruce forests in different 

geographic regions. In Swiss sub-Alpine spruce forests, this target corresponds to a 

basal area of ≥ 1.6 m2 ha-1, or a volume of ≥ 18 m3 ha-1, or a minimum of 14 snags with a  

dbh ≥ 21 cm per hectare. Such snag-retention levels should be applied to forest patches 

of about 1 square kilometre, which corresponds to the mean home-range of a 

woodpecker breeding pair. These recommendations can be relevant in spruce forests 

with small-scale gap-phase-dominated dynamics, such as those prevailing in the Alpine 

forests, which is where selective tree cutting is the usual harvesting type. 

For boreal forests, we also recommend a snag target of 5% of the standing basal area (or 

volume) of older forests. However, for boreal forests with large-scale stand replacing by 

clear-cutting, the relevance of these targets should be further examined both at the stand 

and landscape level. For example, the usefulness of snag retention in clear-cuts for 

Three-toed woodpeckers should be assessed. We think that in Sweden the spatial clear-

cut patch design (directly affecting the amount of residual dead wood, and indirectly 

affecting the local density of old-forest patches), and stand-rotation time are closely 

related to the Three-toed woodpecker’s population trends. There is hence a need to 

analyse the configuration of the landscape mosaic and determine the proportion of 

forests with dead wood, either old-growth stands or stands subject to stand-replacing 

disturbance by fire or wind. 

Neither the 18 m3 ha-1 recommended as a snag target amount for managed sub-Alpine 

spruce forests, nor the 7 m3 ha-1 found in the Three-toed woodpecker forests of central 

Sweden can play the same role as that of 30-60 m3 ha-1, the volume of snags determined 

in European old-growth forests (Linder et al. 1997, Nilsson et al. 2002, Siitonen 2001). 

We nevertheless suggest aiming for our recommended values in managed-forest 
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patches, which are supposed to play the role of stepping stones within a more intensively 

managed landscape, and, as a complementary measure, for the creation of totally 

protected forest areas left entirely untouched. 

 

☞ Five percent of the standing basal area, or volume, should be 
dead. In sub-Alpine mountain forests, this corresponds to a  
basal area of ≥ 1.6 m2 ha-1, or a volume of ≥ 18 m3 ha-1, or a 
minimum of 14 snags with a dbh ≥ 21 cm per hectare. 

 
 

6.5. Is it reasonable to base recommendations on one 
species? 

Our recommendations for dead-tree targets in spruce-dominated forests are derived from 

the habitat requirements of one focal species, the functional indicator Three-toed 

woodpecker. It is necessary to ask whether it is reasonable to base recommendations on 

one species. Various shortcuts that rely on identifying key species to be focused on 

during planning efforts have been developed by conservation biologists since the 

eighties. Both management approaches based on one single species and multi-species 

approaches have met with criticism. There is at present a wide debate in the literature on 

which approach should be suggested for practical management. Clearly, no agreement 

exists on this question. Use of the keystone6, indicator, focal and umbrella species 

concepts (Fleishman et al. 2000a; Lambeck 1997; Pearson 1994; Simberloff 1998) is 

currently increasing, in spite of many remaining scientific uncertainties regarding certain 

species being appropriate proxies for others (Landres et al. 1988; Lindenmayer et al. 

2000). In this thesis the Three-toed woodpecker has been identified as a suitable species 

to be focused on for management purposes, provided always that its umbrella value – to 

be systematically tested –  for other species and taxa proves high.  

                                                      
6  Keystone species : a species whose loss from an ecosystem would cause a greater-than-average change 

in other species’ populations or ecosystem processes; species that have a disproportionately large effect 
on other species in a community. (Heywood, 1995). A species that shaped the habitat in which it lives and 
allows the presence of other species. (Farina, 1998). 
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We think that no single biodiversity surrogate or management approach will be best. 

Rather, applying different concepts and management regimes to different places will 

mean spreading the risk of failure. We argue that management strategies must remain 

flexible and responsive to new information, such as for example that provided by this 

thesis. “Management of diversity requires a diversity of management”, (Lindenmayer & 

Fischer 2002). 



 

 53

Chapter 

7 Limitations, outlook and further research 
 

 

Our newly developed AP-GIS-method for spruce-snag quantification was shown to be 

efficient for the inventory of unbroken snags. However, for broken snags, which may be 

important wildlife trees, although they are not preferred by Three-toed woodpeckers, its 

effectiveness is limited. One way to overcome this drawback would be to enhance 

knowledge of dead-wood profiles, i.e. the frequency distribution of different snag 

decomposition stages in various forest types and successional stages. It would then be 

possible to derive correction coefficients for the bias caused by undected snags in an 

advanced stage of decomposition, but more difficult for fresh treetop breakage. The  

AP-GIS-method should be further tested in various spruce-forest landscapes by applying 

the developed correction coefficient and assessing the accuracy achieved. More 

differentiated correction coefficients, taking spatial heterogeneity (i.e. topography, canopy 

closure of forest stands) within a forest landscape into account, would have to be 

developed if high accuracy is necessary. Applications in forests dominated by other 

coniferous tree species (for example pine) seem possible. 

There is a gradient in the productivity of forests with variation in latitude and altitude, and 

also within each forest vegetation zone from dry via mesic and moist sites. Hence the 

average annual input and equilibrium volume7 of dead wood probably varies accordingly. 

As we did not explicitely analyse the productivity of our study sites in central Sweden, it is 

difficult to recommend dead-tree targets expressed as volume or basal area for Swedish, 

and, more broadly, boreal forests. For sub-Alpine forests, such targets seem justified, 

since the bioenergetic model was developed and validated in the Alpine zone. A further 

research question is to analyse if Three-toed woodpeckers respond differently to various 

volumes and densities of snags, in other words, if the number per hectare of snags, or 

their absolute volume, is decisive. 

One way to evaluate the relevance of the proposed dead-tree targets would be to 

undertake management experiments. After increasing snag levels in intensively-
                                                      
7  Equilibrium volume of CWD: the hypothetical state in which average input and decay rates are in balance. 

In old-growth stands, the actual volume is often close to the equilibrium volume, but depends on recent 
small-scale disturbances and stand development. 
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managed forest landscapes up to the recommended targets, the impact on Three-toed 

woodpeckers (and other dead-wood-dependent species) should be assessed. Before the 

proposed dead-tree targets are widely applied in spruce-forest management, it would be 

important to evaluate the umbrella value of the Three-toed woodpecker for other species 

and taxa, in order to know which other species would be brought under its protection by 

conserving its habitats. Another point to verify is the usefulness to Three-toed 

woodpeckers of snag retention in clear-cut areas, since currently only few data are 

available on the effectiveness of such techniques. 

Our dead-tree targets are developed for an intermediate scale between the stand and 

landscape level, since they should be applied to areas of about 1 km2. To date, little 

knowledge exists on the amount, spatial density and configuration of suitable forest 

patches required by Three-toed woodpeckers at the landscape level. Since this species 

is dependent on a continuous snag supply in space and time, one important question is 

for example: how far apart can home-range forest patches meeting the dead-tree target 

be? 

We suggest the possible use of ringed trees as indicators of Three-toed woodpecker 

breeding continuity. It would, however, be necessary to study the ringing habits of the 

Great-spotted woodpecker, and the difference between trees ringed by these two 

sympatric woodpecker species. 
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Chapter 

8 Conclusion 
 

 

In this thesis we developed a method enabling efficient quantification of large unbroken 

spruce snags. Such trees have a particular relevance for forest biodiversity. In order to 

provide management guidelines for dead-tree amounts in managed forests, we 

ascertained quantitative dead-tree targets, based on the habitat requirements of Three-

toed woodpeckers. In doing so, this research goes beyond previous works on dead-wood 

quantification, since it makes ‘hard’ quantitative management recommendations. With 5% 

of the standing basal area, or volume of trees, being dead over an area of 1 km2 (home-

range size of a woodpecker breeding pair), this woodpecker species is expected to be 

locally maintained. Since Three-toed woodpeckers are indicators of good habitat quality, 

many other species dependent on dead wood may be maintained by applying our target 

value of 5% dead trees. We recommend that forest managers create such dead-tree 

levels in managed forests as an important contribution towards maintaining or restoring 

forest biodiversity. This woodpecker is also an effective bark-beetle eater, thus playing an 

important role in the control of this insect population. 
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Abstract 

Among different dead wood types, large snags have a particular ecological relevance for 

biodiversity in forest ecosystems. For both research and management purposes, rapid 

and cost-effective inventories of large snags are required. Due to the great variability 

within stands and across the landscape, field recording of large snags is labour-intensive 

and expensive, if adequate sample sizes have to be ensured. We present a new method 

enabling efficient mapping and quantification of large snags by coupling colour infrared 

aerial photographs and a Geographic Information System (GIS). The method is validated 

by comparing the results with the data assessed by field methods in four spruce-

dominated mountain forests in Switzerland. The different steps for implementing the 

method are: 1) stereoscopic interpretation of aerial photos for snag detection; 2) scanning 

and production of orthophotos; 3) geo-referencing and integration of the orthophotos and 

other data layers into a GIS; 4) digitisation of detected snags and drawing up of snag 

distribution maps. With the developed method, a map of the spatial distribution of spruce 

snags with a dbh ≥ 25 cm can be obtained in about 16 hours for an area of 3 km2 (i.e. 3 

minutes per ha of map). Tree diameter, treetop condition (broken or intact) and the 

canopy closure of the forest stands significantly affected the success of snag detection. 

The method detected 82% (93%) of snags ≥ 25 cm (≥ 35 cm) with an intact treetop, and 
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67% (71%) when broken snags ≥ 25 cm (≥ 35 cm) were also included. Given our 

encouraging results, the method should be further tested on similar study sites in order to 

obtain more certainty regarding validity of the coefficient correcting underestimation. The 

method may become a promising tool, complementing standard field methods, with 

various prospective applications, such as wildlife studies, forest inventories, certification 

processes etc. 

 

Keywords: snag, dead tree, inventory, map, infrared aerial photo, CIR, remote 

sensing, geographic information system, GIS, biodiversity 

 

1. Introduction 

Large standing dead trees (snags) are of prime importance for forest biodiversity. Using 

standard field methods, however, it is difficult to effectively quantify snags, in particular on 

the landscape scale, such as required for different wildlife management issues. In this 

paper we describe a new snag quantification method based on colour infrared (CIR) 

aerial photos and a Geographic Information System (GIS). 

Dying and dead trees provide habitats and resources for numerous threatened animal, 

plant and fungal species (Thomas 1979, Utschick 1991, Morrison and Raphael 1993, 

Samuelsson et al. 1994, Smith 1997). The lack of dead wood as resource and habitat in 

forest ecosystems is therefore considered a major threat to biodiversity. Recently, dead 

wood has been proposed as a new indicator of forest biodiversity, to be approved by the 

Fourth Ministerial Conference on the Protection of Forests in Europe in 2003 

(<http://www.minconf-forests.net/> 24.10.2002). Dead wood also figures in modern 

certification standards for best forestry practices, such as for example those defined by 

the Forest Stewardship Council FSC (<http://www.fscoax.org/index.html> 24.10.2002). 

Other international initiatives intended to develop criteria and indicators of sustainable 

forest management - e.g. Montreal Process, Helsinki Process, or International Tropical 

Timber Organization ITTO - retained as indicator rare, threatened and endangered 

species, many of them depending on dead wood. 
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In spite of the growing awareness of conservation biologists, forest and wildlife managers 

and political circles of the importance of dead wood as indicator of forest biodiversity, this 

indicator is not yet operational. For example, no agreement exists on the kind of dead 

wood pieces to be inventoried: e.g. standing or lying dead wood, from small up to large 

tree diameters, expressed in volume or number of stems per area? According to Albrecht 

(1991), both spatial and temporal continuity of different dead wood types, such as snags, 

stumps, lying dead trees (logs) and large branches, each fulfilling different ecological 

functions, are necessary to maintain dead wood-dependent species in the long term. 

However, snags with larger than average diameters have been recognized as being of 

prime importance for a good forest ecosystem structure and biodiversity (Thomas 1979, 

Raphael and White 1984, Samuelsson et al. 1994, Kruys et al. 1999). 

Dead wood inventories for research and monitoring purposes are currently generally 

carried out using labour-intensive and expensive field methods (Stierlin et al. 1994, 

Harmon and Sexton 1996, Anonymous 1998, Buckland et al. 1998, Davis 1998, Hurlburt 

et al. 1998, Bate et al. 1999, Ganey 1999). The data is collected using sample plots, 

strips or transects. Because of the naturally high variability of snags through time and 

across the landscape, sampling is not easy and the sampling intensity must by fairly high 

to achieve reliable results. The fieldwork is not only cost- and time-consuming (Boyle et 

al. 1998), but also difficult in remote areas, rough terrain or steep slopes. A more 

practical, cost-effective, reliable method based on remote sensing techniques - i.e. aerial 

photo or satellite imagery - to quantify dead trees and stands on large areas would be a 

relevant contribution to overcome these difficulties. Combined with Geographic 

Information System (GIS) techniques, it would for example become possible to map the 

spatial arrangement of snags, useful for various applications, such as dead wood 

monitoring or the assessment of habitat quality for species depending on large snags. As 

far back as in 1996, the Intergovernmental Panel of Forests (IPF) of the UN-Commission 

on Sustainable Development suggested emphasizing the use of modern technologies, 

and in particular remote sensing, for the assessment of key parameters characterizing 

sustainable forest management (ISCI 1996). 

CIR aerial photos have often been used in forestry, e.g. for management planning, stand 

description and mapping, time studies, or assessment of forest disease (Huss 1984, 

Akça et al. 1991, Ekstrand 1994, Kusché et al. 1994, Hildebrandt 1996, Franklin 2001). 

However, for the study of forest biodiversity, remote sensing has been under-utilized 

(Innes and Koch 1998). In particular, for dead wood inventories and snag quantification, 
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only few studies have used aerial photos: for example mapping of dead wood in insect 

outbreak areas (Nüsslein et al. 1997) and windfall areas (Scherrer 1993, Schmidtke 

1993, Koch et al. 1998). In both cases damaged stands and not single snags have been 

assessed. The few existing studies on the assessment of single dead or defoliated trees 

by CIR aerial photos are based on large-scale images, i.e. 1:6000 to 1:1000 presenting 

many details (Oester 1991, Ekstrand 1994, Dendron Resource Surveys Inc. 1997, Haara 

and Nevalainen 2002). For applications at the landscape level, however, smaller scales 

(less detail, but larger areas) would be preferable. As a contribution towards making the 

“dead wood” indicator operational, this paper aims: 1) to present a method allowing an 

efficient quantification of large snags by means of a combination of CIR aerial photos 

scaled to 1:10,000 and a GIS; 2) to validate it by comparing the results with the ground-

truth assessed by field methods. 

 

2. Material and methods 

Colour infrared is one of the most frequently used forms of aerial photography. 

Differences in reflectance create differences in colour and tone on the photographic 

image that allow discrimination of vegetation types and plant species. The characteristic 

surface, thickness, internal structure and pigment content of leaves, and the characteristic 

structure and geometry of the canopy, as determined by orientation of the plants and their 

leaves, all affect the amount of radiation reflected. Vegetation reflects much more near-

infrared (wavelength 700-1500 nm) than visible light, and subtle differences between 

species in crown characteristics can show up as large differences in infrared reflectance 

(colour/tone). Typical CIR imagery combines this reflectance information from the near-

infrared with information from the green and red visible bands in a “false-colour” display. 

For example, red tones indicate deciduous vegetation, the ground appears in shades of 

blue, green, or white depending on soil type, and objects like buildings, roads, or houses 

will show up on CIR film as dark blue, greyish blue, or black. 

Damages in the tree crowns cause changes in the reflectance of trees, especially in the 

near-infrared region. In our method, the detection of dead trees by means of CIR aerial 

photos uses these differences in spectral reflectance properties of living, damaged and 

dead trees. If the near-infrared radiation entered entirely into the plant cell, then 

temperature would rise, chlorophyll would break down, and photosynthesis would stop. 
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Water-rich plant cells are very efficient at preventing near-infrared radiation from entering 

their structure, whereas water-poor cells of decaying or dead trees are not. For detection 

of the vitality of spruce trees a variety of colour-based interpretation keys for CIR photos 

have been developed (Gilsa 1984, Oester 1991, Anonymous 1993). During the dying 

phase of a spruce tree, its colour appearing on the CIR photo changes from intensive 

dark red (living, sound tree) via light violet and violet-grey (stressed tree) and grey 

(declining tree) to greyish-white or greyish-green (dead tree). It is hence possible to 

distinguish on a CIR aerial photo between living, dying and dead spruce trees in a forest 

stand. 

Our approach consisted of the development of a new snag quantification method, which 

we call Aerial photo (AP) – GIS-method, and its validation by field measurements (Fig. 1). 

We adopted the snag definition following Thomas et al. (1979) as any dead tree at least 

10 centimetres in diameter at breast height (dbh) and at least 1.8 meters tall. We used 

CIR aerial photos scaled to 1:10,000, 23x23 cm, taken using NAGA-F 7176 and NAGA-F 

7171 lenses, respectively, with a focal length of 210 mm. In order to assess the 

soundness of the method, we chose four topographically different study sites in 

Switzerland, resulting in different light conditions among different aerial images and within 

an image. The median surface slope between the sites varied from 8 to 15 degrees (with 

ranges from 0 to 47 degrees). The aerial photos were taken during the vegetation period 

in July at about midday, local time. 

Table 1:  Study sites and field sampling intensity for validation of the AP-GIS-method. 

Study site Height above 
sea level 

 
m 

Total 
area 

 
ha 

Forest 
area 

 
ha1) 

Verified random 
forest stands 

 
Number (ha) 

Verified 
random 
snags 

Number (%) 
3) 

Digitised 
snags 

 
Number 

Sampling 
intensity 

2) 
% 

Measured 
snags inside 
forest stands

Number 

Ibergeregg 1280 - 1600 183.9 90.5 35 (10.5) 86 (12) 718 12 235 
Mont Pelé 1300 - 1540 300.6 252.0 25 (14.5) 110 (24) 461 6 180 
Bärenegg 1360 - 1630 86.5 45.8 16 (3.7) 74 (15) 510 8 158 
Langenegg 1300 - 1540 55.6 40.5 16 (4.1) n.d. 4) 74 10 60 

Total Min. 1280 
Max. 1630 

626.6 428.8 92 (32.8) 270 (15) 1763 Mean 7.6 633 

1) Map data: VECTOR25  2000 Federal Office of Topography (DV002210) 
2) Area of verified random forest stands divided by forest area 
3) Percentage of digitised snags 
4) n.d.: no data collected 



Paper I 

 70

The study sites had a size of 0.5 to 3.0 km2 and were located in the sub-alpine vegetation 

zone between 1280 and 1630 metres above sea level (Table 1). They were dominated by 

mature spruce (Picea abies L.) forests, the natural forest type at this altitude, interspersed 

with pastures. The fieldwork was done in the same year, during a maximum of twelve 

months following the flight for aerial photos. No harvesting occurred between these two 

dates. 

 

2.1. Development of the AP-GIS-method 

The AP-GIS-method was based on the following steps (cf. Fig. 1):  

Step 1: Stereoscopic CIR aerial photo interpretation 

The study sites were delineated on the aerial photo. For each site we used one or several 

couples of photos for a stereoscopic interpretation that was performed with a Wild Leica 

Aviopret. 

On the aerial photo, we delineated forest stands that were homogenous by age, vertical 

structure, canopy closure and tree species. First, we described each stand using the 

Swiss Forest Inventory method (Stierlin et al. 1994) according to the following variables: 

tree development stage (young growth/thicket; pole wood; young timber; medium timber; 

old timber); canopy closure (packed; normal; loose; wide-spaced; single trees without 

contact; packed tree groups) and percent of coniferous trees (< 50%; 51-90%; > 90%). 

Secondly, all visible dying and dead standing trees were marked on the photos, i.e. trees 

whose colour was grey, greyish-white or greyish-green and/or whose shadow, a fine dark 

line, revealed a dead tree without branches (Fig. 2a and Fig. 1). 

Step 2: Production of orthophotos 

The photos were scanned with a Digital Scanning Workstation DSW200 and stocked with 

a mean resolution of 50 cm per pixel. For the rectification into vertical frame photographs 

(orthophotos), we used the ERDAS IMAGINE v8.4 software package. The Digital 

Elevation Model, based on the height information of the National Map 1:25 000 (basic 

model) and the resulting interpolated heights arranged in a 25-meter grid (matrix model), 

was supplied by the Swiss Federal Office of Topography. 
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Fig. 2a):  Detection of dead spruce trees on colour infrared aerial photos (here black 
and white) 
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Fig. 2b):  Map of detected dead trees and forest area after data integration into a GIS.
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Step 3: Data integration into a GIS 

The orthophotos were geo-referenced and integrated into a GIS, using the MapInfo 

Professional 5.5 software package. We digitised the previously delineated forest stands 

and detected snags. The area of the study sites and delineated forest stands was then 

calculated. We added slope and geographic-aspect maps derived from the Digital 

Elevation Model, road networks and a layer of the forest areas. The latter were supplied 

by the Swiss Federal Office of Topography (Vector25). 

Step 4: Snag density and spatial distribution 

By means of the GIS we drew up snag distribution maps (cf. Fig. 2b) and calculated the 

density of snags (number * ha-1) both for each study site and for a selection of  n  random 

stands in each site (cf. Validation by field measurements). 

 

2.2. Validation by field measurements 

Sampling design and data gathering 

On each study site we selected i) a random sample of the snags detected by photo-

interpretation and ii) a random sample of the delineated forest stands (Fig. 1 and Table 

1). In the study site Langenegg we did not sample snags, since too few snags were 

present on this site (cf. Table 1). Random sampling was preferred to other types of 

sampling, since the mortality of individual trees is a stochastic, rare, and irregular 

phenomenon (Eid and Tuhus 2001). The sample size was defined by considering the 

area of the study sites and available time for fieldwork, in order to achieve similar 

sampling intensities between study sites. Each random snag was localized in the field 

and described according to the following variables: snag or other object; dbh in cm; single 

tree or tree with neighbours within a distance of 2 m; number of treetops; broken or 

unbroken. Each random stand was visited in the field, and its stand characteristics were 

verified following the Swiss Forest Inventory method (Stierlin et al. 1994) (cf. Step 1).  

A complete snag inventory was drawn up (minimum dbh 10 cm) and each snag 

described by: dbh; broken or unbroken; detected or not by CIR aerial photo-interpretation; 

reason for undetected snags if dbh ≥ 20 cm, i.e. i) the snag is broken (B); ii) the snag is 

closely grouped together with a neighbour snag, i.e. ≤ 2 m distance between the 
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individuals (G); iii) the snag splits into two (or several) treetops below breast height and is 

therefore counted as two (or several) trees by field methods (ST); iv) the snag belongs to 

the understory and is therefore not visible (NV). If there was a second possible reason for 

an undetected broken snag, then “broken” was retained as the main reason. The mean 

values for slope and geographic aspect of the verified stand, derived from the Digital 

Elevation Model, were attributed to all the snags within a stand. 

 

Data analyses 

The validation aimed: 

a) to identify the ground-truth of detected objects on the CIR aerial photo and determine 

the minimal diameter at breast height (dbhmin) of the detected snags. We calculated 

the detection limit or dbhmin, defined as the dbh exceeded by 90% of the detected 

snags, separately for each study site and for the four sites together (N = 270). 

b) to test if the variables tree diameter, broken treetop, canopy closure, surface slope 

and geographic aspect are related to snag detection. All the sampled random stands 

(N = 92 containing 633 measured snags) were considered as coming from one 

population. Statistical analyses were performed with the STATISTICA 6.0 software 

package. Logistic regression (Hosmer and Lemeshow 1989) was chosen as the 

appropriate method to identify significant variables for snag detection, due to the 

binary nature of the response variable (detection and failure, coded as 1 and 0). We 

tested for possible collinearity of the continuous variables slope and diameter. The 

first step in regression analysis was to calculate univariate models for all variables 

and test for significance of the coefficients by the Wald statistic. Variables with a  

p-value < 0.25 (Hosmer and Lemeshow 1989) associated with the Wald statistic were 

excluded for the second step, corresponding to the calculation of multiple models. 

The second step was performed by a forward stepwise approach (p-value 0.25 to 

enter and remove variables), first for all snags (n = 633), secondly for snags ≥ 25 cm 

(n = 211) and thirdly for unbroken snags ≥ 25 cm (n = 168). The remaining variables 

were assessed for the significance of their coefficient by the Wald statistic, and each 

estimated coefficient was compared with the coefficient from the univariate model 

(Hosmer and Lemeshow 1989). 
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c) to calculate detection rates for different snag diameters.  

We defined: 
−= 1

APd FR S S   (1) 

with: R = detection rate; 

  d = minimal dbh of snags; 

  SAP = number of snags detected by aerial photo interpretation; 

  SF = number of snags with a dbh ≥ d inventoried by fieldwork. 

Detection rates were computed for different minimal tree diameters d and as a 

function of canopy closure (open, i.e. loose, wide-spaced or single trees without 

contact – closed, i.e. packed, normal or packed tree groups) and aspect (north, i.e. 

280°-360°-80° – south, i.e. 145°-215°). Equation (1) was applied to the random stand 

sample (N = 92 containing 633 measured snags). 

d) to qualitatively explain the probable reasons for undetected snags and their 

respective contribution to detection failure. All the sampled random stands (N = 92 

containing 633 measured snags) were considered as coming from one population.  

e) to calculate the accuracy of the AP-GIS-method by comparing for the sampled stands 

the corrected photo snag density with the snag density resulting from field data. 

We defined: 

−
−  =  

1 -1  n haAPAP GISD S A  (2)  and  −  =  
1 -1  n haF FD S A  (3) 

with: DAP-GIS = snag density resulting from the AP-GIS-method; 

  A = total surveyed forest area; 

  DF = snag density resulting from ground-truth field data. 

We further defined: 

( ) 1 -1
25

* 1      n haAP APAP GISD S R S A−
−   = + −       (4) 

with:  D*
AP-GIS = corrected photo snag density = snag density resulting from the 

AP-GIS-method after correction for bias due to underestimation; 

  R25 = detection rate for snags with a dbh ≥ 25 cm; 
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1- R25 = proportion of undetected snags with a dbh ≥ dbhmin, i.e. 25 cm (cf. 

Results). 

We further defined: 
*

FAP GISD D−∆ = −   (5) 

with: ∆ = Accuracy = difference between corrected photo snag density and snag 

density resulting from ground-truth field data. 

Applying equations (2) and (3) to the random stand samples, we calculated for each 

study site snag densities using the AP-GIS-method and the ground-truth field data. 

We did not calculate the accuracy for the Langenegg study site, since only 2 out of 74 

detected snags were located within sampled stands. The minimal dbh corresponded 

to the detection limit (dbhmin) of the AP-GIS-method (i.e. ≥ 25 cm; cf. dbhmin results of 

the detected snags). In order to take into account snag detection failure and the 

resulting bias of the AP-GIS-method, we then applied equation (4) using the mean 

R25 of the three study sites, and obtained a corrected snag density with the AP-GIS-

method. The accuracy of the AP-GIS-method was then calculated with equation (5). 

f) to compare snag densities of forest landscapes from the AP-GIS-method (full 

enumeration of snags) with mean snag densities from the field inventory 

(extrapolation from random stands to the whole forest area). We calculated the mean 

snag density resulting from the AP-GIS-method for each studied forest landscape by 

(4) ± (5), assuming that the accuracy previously determined on sampled stands is 

representative for the whole forest landscape. For the Langenegg site we assumed 

the same accuracy as for Bärenegg, since these sites were located in the same 

management unit. For the field inventory, we then calculated basic statistics for the 

random stand samples in each study site. The mean snag density obtained was 

extrapolated to the whole forest landscape, assuming that the random stands were a 

statistical sample of the whole snag population in the forest landscape. Decreasing 

plot size is known to negatively affect accuracy for tree density estimations, resulting 

in greater proportional error from sampling populations with lower densities (Gray 

2002). To obtain a mean snag density, each stand was therefore weighted by its 

area, since the latter was not identical for all stands. Finally, we compared the snag 

density from the AP-GIS-method with the mean snag density from the field inventory. 
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3. Results 

The main results of the AP-GIS-method presented are GIS maps at the landscape level, 

showing the spatial distribution of snags (Fig. 2b). Following steps 1-4 of the 

“Development of the AP-GIS-method”, about 16 hours are required to obtain such a map 

for an area of 3 km2 (or 3 minutes per ha of map), if the required material is available. The 

results presented below focus mainly on the comparison between those achieved with 

the AP-GIS-method and those determined by fieldwork in the corresponding study sites. 

We will now deal with points a to f (cf. Data analyses). 

a) Ground-truth and dbhmin of detected snags: 

All detected snags on the aerial photo that we verified in the field (n = 270) could be 

clearly localized and turned out to be snags. None of them were revealed as other 

objects that may appear on the CIR photo in similar colours as snags: for example 

stones, rocks, open water or bare ground (cf. Fig. 2a). 

For all the verified random snags in three study sites (n = 270), we got a detection limit of 

25 cm (22, 26 and 27 cm for each study site). In very good conditions - isolated tree, 

stand with open canopy etc. - the smallest snags detected by this AP-GIS-method 

measured less than 20 cm dbh (minimum 11 cm). 

b) Significant variables for snag detection: 

Possible factors influencing the success of snag detection include snag characteristics 

(diameter, broken or not), topographic variables (slope, aspect) and stand characteristics 

(canopy closure). Forest stands with a relatively open canopy are less dense and the 

visibility of single snags may be better than in closed canopy stands. Flights for CIR aerial 

photography are usually made in good weather conditions, i.e. low cloud cover. In the 

northern hemisphere, more “dark zones” (shadow) may be expected on north-oriented 

than south-oriented or flat terrain. The shadow problem could also influence the tree 

visibility on steep slopes (Fig. 2a). 

Univariate logistic regression models showed that the variable slope was not significant 

for successful snag detection (Table 2). The variable aspect was significant in univariate 

models, while not included in multiple models. For both snag categories  ≥ 10 cm dbh and 

≥ 25 cm dbh, the significant variables retained by the stepwise forward variable selection 
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method, were “diameter”, “unbroken snags” and “open canopy” (Table 2). For “unbroken 

snags” with a dbh ≥ 25 cm, both variables “diameter” and “open canopy” were significant. 

c) Detection rates for different snag diameters: 

Since the variable “unbroken” was highly significant for snag detection (cf. Table 2), we 

calculated detection rates separately for all (including broken) snags and unbroken snags 

(Table 3). The detection rate rose with increasing tree diameter from 0.27 (for ≥ 10 cm 

dbh) to 0.71 (for ≥ 35 cm dbh). It was higher for unbroken snags than when all snags 

were considered (Fig. 3 and Table 3). Our AP-GIS-method detected 93% of the unbroken 

snags with a dbh ≥ 35 cm.  

For snags located in south-oriented stands (145° - 215°) detection rates were higher than 

for snags in north-oriented stands (280° - 360° - 80°), even if the variable “aspect” 

showed low statistical significance in logistic regression models. Snags in stands with an 

open canopy showed a better detection rate than snags in stands with a closed canopy. 

 

Table 3:  Detection rate Rd for snag detection as a function of tree diameter at breast 
height (dbh), canopy closure and geographic aspect.  

 

Snag dbh ≥ 10 cm 

(n = 633) 

R10 

Snag dbh ≥ 25 cm

(n = 211) 

R25 

Snag dbh ≥ 30 cm 

(n = 154) 

R30 

Snag dbh ≥ 35 cm 

(n = 116) 

R35 

Snag category 

all 1) unbroken 2) all unbroken all unbroken all unbroken 

All snags 0.27 0.35 0.67 0.82 0.73 0.90 0.71 0.93 

Open canopy 0.36 0.42 0.76 0.86 0.80 0.92 0.76 0.93 

Closed canopy 0.21 0.29 0.58 0.77 0.67 0.89 0.68 0.94 

Aspect 280°-80° N 0.16 0.21 0.40 0.64 0.42 0.71 0.45 0.82 

Aspect 145°-215° S 0.27 0.39 0.68 0.86 0.72 0.91 0.70 0.94 

1)  all snags considered 

2)  broken snags not included 

0 ≤ Rd ≤ 1; d = minimal dbh 
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Fig. 3:  Number of detected snags (left scale) and detection rate (right scale) for the 
AP-GIS-method as a function of the diameter at breast height of the verified 
snags. 

 

d) Probable reasons for undetected snags: 

The four reasons explaining why a snag was not detected by our AP-GIS-method were: 

B (broken), G (grouped), ST (several treetops) and NV (not visible) (cf. Sampling design 

and data gathering). The problems of shadow, canopy closure and topographical location 

of a forest stand may occur in conjunction with the four probable reasons analysed. For 

example, a broken tree in an open and south-oriented stand may be detected, whereas 

the same tree would not be detected if located in a closed and north-oriented stand. In 

the field, however, it is hardly possible to objectively decide that a snag was not detected 

because of its topographical location (leading to shadow) or because of the canopy 

closure of the forest stand. Topographical location and canopy closure were therefore not 

used to explain the detection failure of an individual snag. 

Fig. 4 shows that 67% and 73% of snags with a dbh of ≥ 25 and ≥ 30 cm respectively 

were detected (cf. also detection rates in table 3). Almost 20% of all snags verified in the 

field presented broken treetops. This was the main reason for detection failure of snags 
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with a dbh ≥ 25 cm. Only 10% of broken snags (dbh ≥ 25 cm) were successfully detected 

by the AP-GIS-method. The second reason for detection failure was invisible snags, 

belonging to the understory. The proportion of invisible understory snags decreased from 

11% to 5% when tree diameter increased from 25 to 30 cm. The two other reasons (ST 

and G) were of less importance, and together concerned less than 5% of snags. 

 

Fig. 4:  Proportion of detected and undetected snags by the AP-GIS-method and 
probable reason for detection failure. D = detected snag ; UD-B = undetected 
broken snag ; UD-G = undetected snag grouped together with another snag 
(distance < 2 m) ; UD-ST = undetected: part of a snag with several treetops ; 
UD-NV = undetected: snag not visible on aerial photo (understory tree). 

 

e)  Accuracy of the AP-GIS-method: 

Snag densities resulting from the AP-GIS-method (DAP-GIS) were smaller or equal to 

densities from field data (DF), due to undetected snags as mentioned above (Table 4). 

The accuracy was ≤ 0.6 snags ha-1 for all three study sites. Including a safety factor, we 

estimate that the corrected AP-GIS-method gives results within 1 snag ha-1 of the ground-

truth field data. 

f) Snag densities of forest landscapes: comparison AP-GIS-method and field 

inventory: 

One prospective application of the AP-GIS-method is the creation of maps showing the 

spatial distribution of snags (Fig. 2b). Such maps may serve as a basis for calculating

Snags ≥ 25 cm d.b.h. (n = 211) 

11%
2%

2%

18%
67%

Snags ≥ 30 cm d.b.h. (n = 154) 

5%
1%

2%

19%

73%

= D

= UD-B

= UD-G

= UD-ST

= UD-NV



Paper I 

 83

 

Table 4:  Accuracy of the AP-GIS-method: snag densities [number ha-1] for 

random forest stands resulting from aerial photo data compared 

with ground-truth field data and percentage difference. 

Study site Snag density [number ha-1] Accuracy 

 DAP-GIS 
1) D*AP-GIS 

2) DF 3) ∆ (%) 4) 

Ibergeregg 7.5 9.7 9.4 0.3 (+ 3) 

Mont Pelé 2.1 2.7 2.1 0.6 (+ 29) 

Bärenegg 14.4 18.6 18.9 -0.3 (- 2) 

1)  DAP-GIS  Snag density resulting from the AP-GIS-method 
2)  D*AP-GIS  Snag density resulting from the AP-GIS-method after 

correction for bias due to underestimation 
3)  DF   Snag density resulting from field data (dbhmin ≥ 25 cm) 
4)  ∆   D*AP-GIS - DF 

 

 

 

Table 5 :  Mean snag densities [number ha-1] of forest landscapes: snag densities 
resulting from the AP-GIS-method compared with field data extrapolated from 
random stands to the whole forest area. 

Study site AP-GIS-method: whole forest area Field data: Random stands → whole forest area 

 D*AP-GIS 1) [number ha-1]   DF  
3) [number ha-1] 

 Mean ± ∆ 2)   n Mean ± SE Min. 1.Qu. Median 3.Qu. Max.

Ibergeregg 10.2 ± 0.3   35 9.4 ± 1.2 0.00 3.8 8.0 10.5 52.9 

Mont Pelé 2.4 ± 0.7   25 2.1 ± 0.4 0.00 0.0 1.7 2.4 37.4 

Bärenegg 14.4 ± 0.1   16 18.5 ± 3.9 0.00 9.9 16.3 32.4 56.5 

Langenegg 4) 2.4 ± 0.0   16 3.2 ± 0.6 0.00 0.0 4.1 7.6 28.2 

1)  D*AP-GIS   Snag density resulting from the AP-GIS-method after correction for bias due to 
underestimation 

2)  ∆ Accuracy of the AP-GIS-method 
3)  DF   Snag density resulting from field data (dbhmin ≥ 25 cm) 
4)  The same accuracy as for Bärenegg was assumed. 
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mean snag densities of a forest landscape. For our study sites, the mean snag densities 

resulting from the AP-GIS-method were between 2.4 and 14.4 snags ha-1 (Table 5). 

Basic statistics on the field data demonstrated a high variability of snag densities within 

each site, i.e. large standard deviations and ranges (Table 5). The differences between 

snag densities resulting from both approaches − full enumeration of snags by AP-GIS-

method and inference from samples for field data − were higher for study sites where the 

sample size  n  of random stands was small. 

 

4. Discussion 

Limitations of standard field methods and sampling designs for the inventory of 
large dead trees 

Extensive literature exists on structural and functional characteristics of dead wood and 

its importance for biodiversity (Caza 1993, Samuelsson et al. 1994). However, 

quantitative studies are still scarce, in particular for temperate European forests. One 

reason may be the only recent acknowledgement by researchers, forest and wildlife 

managers of the importance of dead wood. Another probable reason is the 

methodological problems involved in making cost- and time-effective dead wood 

inventories. Although probability sampling methods theoretically ensure unbiased 

estimation, the precision of the estimates depends largely on spatial patterns. Most 

standard sampling designs will not be efficient for rare elements, such as large dead trees 

in managed forests (Yoccoz et al. 2001). In unmanaged forests - on which most studies 

have been based - a high level of natural variability in the rates of creation and amounts 

of dead wood is typical. Large snags may cluster and many plots with no such trees are 

to be expected. Large sample numbers and plot sizes are therefore required to monitor 

densities of large snags (Gray 2002). Grove (2001), for example, strongly suggests that 

further sampling would have been desirable to obtain more precise estimates of dead 

wood in his study, although the sampling intensity used was at least as high as in most 

other cited studies. On our study sites, with a sampling intensity between 6% and 12% 

and mean plot sizes of 0.25 to 0.60 hectares (Table 1), we obtained standard errors of 

13% to 21% for the mean snag density (Table 5). Higher standard errors corresponded to 

a smaller sample size (n = 16) and lower errors to a larger sample size (n = 35). Our 

sampling intensity, although considerably time-consuming with 14 days for a 33-hectare 
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sampled forest area, should have been three times higher (100 hectares needed) in order 

to obtain standard errors ≤ 10% of the mean on all study sites. Since estimation errors for 

a given plot size are relatively large and accuracy increases with plot size, Gray (2002) 

recommends plot sizes of 1 hectare for large snags. 

In monitoring programmes for land management purposes, however, money and 

personnel are usually limited. One of the main problems is to ensure adequate sample 

numbers and plot sizes for field recording of such an irregularly distributed resource. 

According to Yoccoz et al. (2001), most estimates of biological diversity are not based on 

an appropriate spatial sampling type. As a consequence, in most forest monitoring 

programmes, replication and statistical power are low (Foster 2001). 

Since plot-based methods are in most cases inefficient for surveys of rare elements, 

other methods such as strip or line transect sampling have been proposed as 

(competitive) alternatives to circular plots. Line transect sampling is based on the 

probability of detecting an object as a function of its perpendicular distance from the 

inventory line. An important difficulty is estimation of the parameters of the true 

probability-of-detection function (Lämas and Stahl 1998), while choice of the model for 

the detection function is somewhat subjective. The accuracy of line transect sampling 

depends on how well the detection function can be estimated (Lämas and Stahl 1998). 

Ringvall et al. (2000) point out that important bias may be caused by systematic and 

random errors made by the surveyor. These authors suggest considering other 

reasonable alternatives to line transect sampling for surveying inanimate populations, 

such as large snags. 

Recent work has focused on adaptive sampling designs (Thompson and Seber 1996), 

which seem to be promising for rare elements that form clusters (Acharya et al. 2000). In 

such designs, however, the sample size is not known beforehand, since the intensity of 

sampling is dependent on initial sampling results. This may be a drawback when 

evaluating survey costs. A large group size increases the efficiency of systematic 

adaptive cluster sampling. When groups get too large, however, such sampling becomes 

equivalent to (near) full enumeration and survey costs may become high. 
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Advantages and prospective applications of the AP-GIS-method 

Initially, dead wood data were collected to address wildlife habitat issues. More recently, 

dead wood is considered relevant to issues of forest health, site productivity, fuels, and 

carbon stores. In the future, dead wood will hence have to be inventoried more and more 

frequently. Interest groups for such inventories are for example those studying criteria 

and indicators (C&I) defined for sustainable forest management (e.g. criteria 4 and 1 in 

the Helsinki process, i.e. biodiversity and global carbon cycles), wildlife managers or 

groups concerned with forest certification processes, such as the Forest Stewardship 

Council FSC. Dead wood is referred to in modern FSC certification standards at national 

or regional levels (for example United States, United Kingdom, Germany, Sweden, 

Netherlands, Switzerland, British Columbia etc.). 

Both the increasing demand of various users and the discussed limitations of standard 

field methods and sampling designs emphasize the importance of developing rapid, 

simple and cost-effective dead wood inventory methods. Up until now, remote sensing as 

a data source is only seldom used for European national forest inventories (Köhl et al. 

1998), in spite of its high potential and frequent use in forest research. A method based 

on remote sensing offers advantages for rapid inventories of large snags. It facilitates the 

study of spatial and temporal variation in amounts and distribution of snags in remote and 

inaccessible areas. In particular, the assessment of spatial arrangement of dead trees 

within a stand or across a landscape becomes possible thanks to the (almost) full 

enumeration of large snags over large areas. On the one hand, our AP-GIS-method may 

be used as a basis for defining, for example, an adaptive sampling design for field 

measurements in hectare or smaller plots. On the other hand, it may also be used for a 

sampling on the landscape scale: one aerial photo couple scaled to 1:10,000, with  

23x23 cm dimensions and an overlap of 80% offers the possibility of investigating a forest 

area of 3.5 km2 in size. Even larger sampling plots would be possible by combining 

several photos into a mosaic. The potential of such large plots (3.5 km2 instead of  

1-hectare field plots) for different applications may be important. As an example, we 

mention an ongoing application for the management of the three-toed woodpecker (Bütler 

et al., unpublished data), an indicator species of spruce forest biodiversity (Nilsson et al. 

2001). A sample of 10 three-toed woodpecker home-range areas, each measuring about 

0.5 – 1.5 km2 and representing one sampling plot on the landscape scale, has been 

entirely inventoried for snags. Our AP-GIS-method allowed the analysis of the density 
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and spatial distribution of snags and the derivation of snag retention levels for the 

presence of this woodpecker species. 

 

Limitations of the AP-GIS-method 

A first limitation is the minimum diameter of snags that are detected. This depends on 

both forest type and structure and has to be determined before the method can be 

applied. Since this detection limit is not abrupt but continuous, some uncertainty in 

relation to the diameter of the detected snags remains. In our study sites, 90% of 

detected snags had a dbh ≥ 25 cm, but some smaller snags were nevertheless detected 

in good conditions. 

A second limitation is determination of the snag detection rate. This depends on forest 

type and structure, but some more variables such as geographic aspect, surface slope of 

the site, weather conditions and hour of flight may influence it. The detection rate 

transformed into a correction coefficient must be known in order to obtain an accurate 

quantification. Yet the detection rate may vary within a study site and also depends on 

tree diameter (cf. Table 3). In this paper, we determined a mean detection rate (0.70 for 

trees ≥ 25 cm dbh) from three study sites. The difference compared with ground-truth 

field data was ± 0.6 snags per hectare. The correction coefficient should be further tested 

on new study sites to acquire more certainty on accuracy and possible generalization. If a 

lower bias is necessary, more investigation to elaborate subtly differentiated correction 

coefficients within a site would be required. This problem, however, also affects field 

methods. All methods, such as fixed-area circular or rectangular plots, or line transect 

sampling, used to estimate standing amounts of woody debris in coniferous forests lead 

to a certain degree of error. Ringvall et al. (2000), for example, report an underestimation 

as high as –22.2% in their study on line transect sampling, partly due to violation of the 

assumption that all objects on or very close to the survey line are detected. But in many 

cases, the error is not known or estimated. 

A third limitation is the fact that most snags with a broken treetop are not detected. Our 

detection rate for broken snags larger than the detection limit - i.e. ≥ 25 cm dbh - was only 

10%, and the main detection error was due to these broken snags (cf. Fig. 4). 

Consequently, our method is not efficient for quantifying snags in an advanced decay 
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class, defined by Thomas (1979) as stages 6 and 7 (broken and decomposed). From a 

biodiversity viewpoint, these broken snags are important, since it has been demonstrated 

that they may have a higher wildlife value than whole snags. Considering all our study 

sites, snags ≥ 25 cm dbh that were broken represented a mean value of 20% of total 

snags. 

A fourth limitation is the need for high technology equipment and material, if precise snag 

distribution maps and density estimations are required: CIR aerial photos, a digital 

scanning workstation to scan the aerial photo slides and special software to produce 

orthophotos. For an approximate snag quantification, however, a simple count of the 

snags on the original photos with an estimation of the forest cover area using topographic 

maps may be sufficient. In such a case, apart from a stereoscope, no special equipment 

would be required. 

We developed and tested the AP-GIS-method in spruce forests. Since the spectral 

reflectance properties for other coniferous tree species are similar, our method may not 

be limited to spruce snag detection. For deciduous trees, however, the method would 

probably be more limited, due to their different reflectance behaviour and less compact 

tree crowns. 

 
5. Conclusion 

For both research and management purposes, simple, rapid and accurate methods for 

the quantification of dead wood are required. Our study presents the feasibility and 

usefulness of a method coupling infrared aerial photos scaled to 1:10,000 and GIS, in 

order to map and quantify large standing dead spruce trees. In spite of the high 

ecological value of such trees, few quantitative inventories or maps of their spatial 

distribution exist, because of the many difficulties arising from the use of standard 

methods for field inventories. Given both the irregular distribution and relative scarcity of 

large snags, especially in managed forests, air borne data sources, such as aerial 

photos, facilitate inventories. With the AP-GIS-method presented, a map of the spatial 

distribution of snags with a dbh ≥ 25 cm can be obtained in about 16 hours for an area of 

3 km2 in size. Quantitative estimations, expressed as number of snags per hectare, can 

easily be derived. Considering our encouraging results, the AP-GIS-method may become 
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a promising tool, complementing standard field methods, with various prospective 

applications: national, regional or local forest inventories; certification processes; wildlife 

studies of the habitat quality for species depending on dead trees; classification of old-

growth stands etc. 
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Abstract 

The efficiency of the Three-toed Woodpecker (Picoides tridactylus) as a natural agent 

against spruce bark beetles was compared with the number of Ips typographus beetles 

captured in pheromone traps commonly used in Swiss forestry. The woodpecker’s 

energy requirements and statistics derived from use of Swiss bark beetle traps served as 

input data. Our results demonstrate that one woodpecker destroys more bark beetles 

than one trap, and the whole Swiss woodpecker population destroys more beetles than 

all installed traps together. 

In a second step, we determined the number of standing declining and dead trees, one of 

the most important habitat features, required by this woodpecker species. A simple model 

was developed relating the number of potential foraging substrates per unit area to five 

variables: the woodpecker’s potential home range size in endemic bark beetle population 

levels, the bark area per foraging substrate infested by bark beetles, the breeding density 

of bark beetles, the woodpecker’s foraging efficiency, and the woodpecker's energetic 

requirements. Although the model has to be further developed and validated, we have 

derived a provisional management recommendation. Based on the preliminary Monte 

Carlo simulation results, we recommend a snag retention level of at least 14 snags/ha 

(d.b.h. ≥ 21 cm) over 200 ha forest areas, distributed patchily within a forest landscape. 
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Zusammenfassung 

In dieser Studie wurde die Wirksamkeit des Dreizehenspechtes Picoides tridactylus als 

natürlicher Feind des Borkenkäfers mit Fangzahlen von Pheromon-Borkenkäferfallen 

verglichen. Der berechnete Energiebedarf des Spechtes und die daraus resultierende 

Anzahl vertilgter Käfer wurde Daten aus Schweizer Borkenkäferfallen-Statistiken 

gegenübergestellt. Unsere Resultate zeigen, dass ein Specht deutlich mehr Borkenkäfer 

zerstört als eine Pheromonfalle und die gesamte Schweizer Spechtpopulation mehr als 

sämtliche Fallen in Schweizer Wäldern. In einem zweiten Schritt bestimmten wir die 

notwendige Menge eines für diesen Specht wichtigen Habitatelementes: absterbende 

und tote stehende Bäume. Es wurde ein einfaches Modell entwickelt, das die notwendige 

Anzahl potentieller Nahrungsbäume in Abhängigkeit von fünf Variablen berechnet: 

Aktionsraumgrösse während endemischen Borkenkäfer-Populationsniveaus, durch 

Borkenkäfer befallene Stammoberfläche pro Nahrungsbaum, Borkenkäferbrutdichte, 

Effizienz des Spechtes bei der Nahrungssuche und sein Energiebedarf. Obwohl das 

Modell noch Verbesserungen und weiterer Tests bedarf, gestatten die vorläufigen Monte 

Carlo-Simulationsresultate bereits, eine provisorische Management-Empfehlung 

abzuleiten. Wir empfehlen, in einer Waldlandschaft extensiv bewirtschaftete Gebiete von 

ungefähr 200 ha Grösse mit durchschnittlich 14 absterbenden und toten Bäumen pro 

Hektare (Brusthöhendurchmesser ≥ 21 cm) patchworkartig auszuscheiden. 

 

Keywords: Three-toed Woodpecker, Picoides tridactylus, bark beetle, pheromone 

trap, dead wood, snag. 

 

1. Introduction 

The Three-toed Woodpecker (Picoides tridactylus) is a highly specialised bird that feeds 

on bark beetles (Formosow et al. 1950 cited in Glutz von Blotzheim 1994, Hess 1983, 

Hogstad 1970, 1978, Sevastjanow 1959 cited in Scherzinger 1982). For foraging, this 

woodpecker prefers standing spruce (Picea spp.) trees with a relative large diameter 

(Hess 1983, Murphy & Lehnhausen 1998, Villard 1994), corresponding to the preferred 

breeding tree of Europe’s most important spruce bark beetle species Ips typographus 

(Schmidt-Vogt 1989). 
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For some years, the Swiss Three-toed Woodpecker population has been growing 

(Schmid et al. 1998). In parallel, dead wood volumes in mountain forests have also been 

increasing, partly due to an increase of unexploited and rarely exploited forest areas due 

to economic reasons (see Figure 149 in Brassel & Brändli 1999). It is possible that this 

increase of dead wood in mountain forests has led  to an improvement of the Three-toed 

Woodpecker’s habitat conditions. However, if the timber market price increases, what 

would be the woodpecker’s future? 

Woodpeckers, and in particular the Three-toed Woodpecker, have been shown to be 

indicators of forest bird diversity and forests with a high conservation value (Angelstam & 

Mikusinski 1994, Derleth et al. 2000, Mikusinski et al. 2001). Maintaining habitat features 

favouring woodpeckers can therefore be a goal for sustainable forest management. In the 

case of Three-toed Woodpeckers, however, their preferred prey, i.e. spruce bark beetles, 

are feared by forest managers because of their cyclic outbreaks, especially after natural 

disturbances (storms, fire, etc.).  

A common strategy used in forestry to control bark beetle populations is to install 

pheromone traps during the flight season of beetles. In addition, salvage harvesting, i.e. 

the removal of infested dead or damaged trees, is often practised to prevent or reduce 

the spread of the infestation. But this kind of beetle management artificially diminishes the 

abundance of potential foraging substrate and thus likely negatively influences 

woodpecker populations. Finland and Sweden provide examples where the modern 

forestry practice of removing old and dead trees has caused a decline of this bird 

(Väisänen et al. 1986 cited in Amcoff & Eriksson 1996, Hagemeijer & Blair 1997). 

The importance of woodpeckers as natural control agents of bark beetles has often been 

reported for North America, in particular during epidemic bark beetle outbreaks (e.g., 

Baldwin 1968, Hutchinson 1951, Knight 1958, Kroll & Fleet 1979). One reason 

aggravating Ips typographus outbreaks after natural disturbance is a high endemic 

population level of the beetle. Because of its predatory impact on bark beetles, the Three-

toed Woodpecker should be a bird species of interest to foresters because of their 

potential to maintain bark beetles at low levels -- particularly during endemic phases. 

Through this study we evaluate the potential value of Three-toed Woodpeckers to 

forestry and provide forest management recommendations for maintaining Three-toed 

Woodpecker habitat features. We try to answer the following questions: 
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1.  What is the efficiency of Picoides tridactylus in bark beetle control compared with bark 

beetle traps? 

2.  How many declining and dead spruce trees per ha are required to meet the foraging 

needs of Picoides tridactylus? 

 

2. Methods 

For the first question, we compare Swiss bark beetle trap statistics with the number of 

bark beetles consumed by Three-toed Woodpeckers. The latter figures were calculated 

using the model developed by Koplin (1972) for the bird's energetic requirements. Data 

from the literature, both on the woodpecker’s feeding ecology and on capture success of 

bark beetle pheromone traps served as input to define three scenarios used to evaluate 

the efficiency of traps and woodpeckers for bark beetle control. 

To answer the second question we developed, as a first step, a simple model relating the 

woodpecker’s potential home range size (PHR) in endemic bark beetle levels to five 

variables (defined below under “Modelling”). In a second step, the model variables were 

estimated from literature data and our own field data. In a third step, the model was 

validated against literature home range sizes. Finally, we used our model to estimate the 

number of declining and dead spruce trees needed by the Three-toed Woodpecker to 

satisfy its energy requirements. 

 
2.1. Modelling 

The home range size of a woodpecker breeding pair lies between a minimal and maximal 

value. The presence of all habitat elements required by the bird species, in minimal, but 

sufficient quantities, defines the minimal size. The upper limits of home range size are 

defined by the size at which too high an energy expenditure is required for moving 

around. By definition a viable home range lies within these extreme values. The factors 

influencing food availability and requirement are the most important ones for an 

insectivorous bird spending most of its time searching for food. The potential home range 

size (PHR) depends on the following factors (Figure 1): 
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Fig. 1:  Different factors influence the potential home range size of a Three-toed 
woodpecker. Extremely favourable / unfavourable conditions lead to a minimal / 
maximal viable home range size. DFS = Density of potential Foraging 
Substrate, MIA = Mean Infested Area of potential foraging substrate,  
APR = Available Prey in the foraging substrate, FEF = Foraging Efficiency of 
the woodpecker, CPR = Consumed Prey during a time unit. 
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1) The density of potential foraging substrate (DFS) is the number of trees per 

hectare, which present a minimal diameter for the woodpecker’s foraging and 

which may contain bark beetles. 

2) The mean infested area (MIA) is the mean area of bark surface per foraging 

substrate (tree) that is infested by bark beetles. 

3) The available prey (APR) values are the annual mean number of potential prey 

items (adult bark beetles and their larvae) per infested square meter of bark. 

4) The foraging efficiency of the woodpecker (FEF) is the proportion of APR that is 

really detected and consumed by the woodpecker. 

5) The consumed prey (CPR) values are the number of bark beetles (larvae and 

adults) consumed by a woodpecker during a year. 

Based on these variables, we define the following model: 

PHR = (DFS * APR * FEF * MIA)-1 * CPR 

with:  PHR = potential home range size (ha) 

DFS = density of potential foraging substrates (number ha-1) 

 MIA = mean infested area of potential foraging substrate (m2) 

APR = available prey in the foraging substrate (number m-2 bark) 

 FEF = foraging efficiency of the woodpecker (percent) 

 CPR = consumed prey during a time unit (number) 

The model variables were estimated (see  “Estimation of the model variables”) and the 

model validated (see  “Validation of the model”). Then, the same equation, solved for 

DFS, was used to estimate the number of declining and dead trees required to meet the 

Three-toed Woodpecker’s foraging needs. This estimation was done by a Monte Carlo 

approach (10 simulations), based on a sample size of N = 10,000 (see “Estimation of the 

snag density required to meet the Three-toed Woodpecker’s foraging needs”). 
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2.2. Case studies for the estimation of the DFS 

The variables MIA, APR, FEF, and CPR were estimated mainly by means of data from 

the literature (see “Energy model to calculate food requirements of Three-toed 

Woodpeckers” and “Estimation of the model variables”). No literature data being available 

on DFS, we estimated this variable from field data collected at six study sites. 

Study sites 

We chose six study sites in different geographic regions of Switzerland between 1280 

and 1700 m above sea level. Four sites supported at least one Three-toed Woodpecker 

breeding pair before and during the two study years: Hobacher (HO), Hinteregg (HE), 

Hinterberg (HB), and Bärenegg (B). Two sites, presenting the same forest types, but with 

a more intensive forest exploitation, did not have any breeding pair: Langenegg (L) and 

Mont Pelé (MP). All sites lie in the sub-alpine vegetation zone. They are dominated by 

spruce (Picea abies) forests, the natural forest type at this altitude, and were interspersed 

with pastures. Their size was between 0.5 and 3.0 km2. Mean monthly temperature 

varied from about - 6 °C in winter to 12 °C in summer, with yearly precipitation of about 

1800 - 2600 mm. 

Infra-red aerial photo interpretation 

For each study site we used pairs of false colour infra-red aerial photos in a 1:10,000 

scale, 23 x 23 cm, taken either by an objective NAGA-F 7176 or NAGA-F 7171 with a 

focal length of 210 mm. After delimitation of the study sites on aerial photos, they were 

prepared for a stereoscopic analysis done using a Wild Leica Aviopret. Forest stands 

were delimited, each one homogenous by age, vertical structure, canopy closure, and 

tree species. All visible declining and dead standing trees (snags) were marked. On the 

photo, such trees present a grey, greyish-white or greyish-green colour and/or a fine 

shadow line, which corresponds to a dead tree without branches. 

Field measures 

At each study site we chose 16 - 35 random stands (N = 152) for field verifications. In 

each stand a complete inventory of snags (N = 1367) was done in order to collect the 

following data: (1) diameter at breast height (d.b.h.); (2) detected/not detected by aerial 
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photo; (3) stage of decomposition according to Maser et al. (1979), but slightly modified 

for our purpose (stage 1= declining or recently dead; 2= loose bark; 3= clean; 4= broken; 

5= decomposed); (4) billmarks or other signs of Three-toed Woodpeckers. 

GIS and calculations 

The photos were scanned using a Digital Scanning Workstation DSW200. For the 

rectification into vertical frame photographs (ortho-photos), we used ERDAS IMAGINE 

v8.4 software. The Digital Elevation Model (the Swiss DHM25), based on height 

information from the National Map at a scale of 1:25,000 and arranged in a 25-meter grid, 

was supplied by the Federal Office of Topography. The geo-referenced ortho-

photographs were integrated in a Geographic Information System (GIS), working with the 

MapInfo Professional 5.5 software. We digitised the positions of the previously delimited 

forest stands and snags. The density of snags (number per hectare) was calculated in 

the GIS for each study site and snag distribution maps were drawn. 

 

3. Results and discussion 

3.1. What is the Three-toed Woodpecker’s efficiency in bark beetle control 
compared with traps? 

We compare the number of bark beetles (adults and larvae) consumed by one/all Three-

toed Woodpecker(s) during one year with the number of beetles captured by one/all 

Swiss pheromone trap(s) during one season. Statistics on Swiss bark beetle traps from 

16 years, provided by the Forest Insect and Disease Survey (FIDS) of the Swiss Federal 

Research Institute WSL, were used. 

Energy model to calculate food requirements of Three-toed Woodpeckers 

Koplin (1972) developed a deterministic model in order to predict the predatory impact of 

the Three-toed Woodpecker on endemic and epidemic populations of larval spruce 

beetles. This model predicts the number of prey items consumed by the predator under 

given temperature conditions by the following equation: 

ER = (63.3 - 0.37 * (TC / (5/9) + 32)) * 4185 J 
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with  ER = energy requirement in J (Joules) per bird-day (1 cal = 4.185 J) 

TC = temperature in ° Celsius. 

The mean caloric content of one bark beetle larva is 83.7 J (0.02 kcal), estimated from 

807 items (Koplin 1972). This estimation seems to be realistic, as shown by the following 

calculation with data from two other sources. The mean energetic content of animals (dry 

weight) is 23.77 kJg-1 (Barbault 1997) and the dry weight of an adult bark beetle Ips 

typographus 4.1 mg (B. Wermelinger, personal communication). Based on these data we 

obtain an energetic content of 96.3 J (0.023 kcal) for one adult bark beetle. 

According to Koplin’s equation, a woodpecker needs 2573 larvae per day at 0° C to 

satisfy its energy requirement ((63.3 - 0.37 * (0° / (5/9) + 32)) * 4185 J / 83.7 J = 2573). If 

we assume the moisture content of a bark beetle larva as 70% (Bell 1990), this 

represents 35 g of fresh weight. Considering Picoides tridactylus’ body weight (male 

about 70 g and female about 60 g (Hogstad 1970)) and literature data about bird 

digestion (Karasov 1990), this seems to be a realistic winter daily diet for an insectivorous 

bird. 

Table 1:  Energy requirement per day [kJ] for one Three-toed Woodpecker, calculated 
for the study sites Mont Pelé (MP), Hobacher (HO), Langenegg (L) and 
Bärenegg (B), based on the model of Koplin (1972). Number of bark beetles 
consumed daily and monthly by one Three-toed Woodpecker, calculated with 
the assumptions that the caloric content of one larva or adult bark beetle is 
83.7 J and the proportion of bark beetles in the woodpecker’s diet is 75 %. 

 Mean 
temperature 
°C 

Energy 
requirement per 
day [kJ] 

Number of consumed 
bark beetles (larvae 
and adults) per day 

Number of consumed bark 
beetles (larvae and adults) 
per month 

 MP HO L/B  MP HO L/B MP HO L/B MP HO L/B 

January - 6 - 6 - 6  232 232 232 2080 2080 2080 64’480 64’480 64’480 
February - 2 - 6 - 4  221 232 226 1980 2080 2030 55’440 58’240 56’840 
March - 2 - 2 - 2  221 221 221 1980 1980 1980 61’380 61’380 61’380 
April 2 2 2  210 210 210 1880 1880 1880 56’400 56’400 56’400 
May 6 8 6  199 193 199 1780 1730 1780 55’180 53’630 55’180 
June 10 10 10  187 187 187 1680 1680 1680 50’400 50’400 50’400 
July 10 12 10  187 182 187 1680 1630 1680 52’080 50’530 52’080 
August 12 12 12  182 182 182 1630 1630 1630 50’530 50’530 50’530 
September 10 10 10  187 187 187 1680 1680 1680 50’400 50’400 50’400 
October 6 6 4  199 199 204 1780 1780 1830 55’180 55’180 56’730 
November 2 0 0  210 216 216 1880 1930 1930 56’400 57’900 57’900 
December - 2 - 6 - 6  221 232 232 1980 2080 2080 61’380 64’480 64’480 

Total CPR1)           669’250 673’550 676’800

1)  CPR (consumed prey) is the totally consumed bark beetles (larvae and adults) during one year. 
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The calculated daily energy requirement of one Three-toed Woodpecker (Table 1) is 

based on Koplin’s model (1972) and on monthly mean temperatures for the study sites 

(Kirchhofer 1982). To calculate the number of consumed bark beetles (larvae and adults) 

we assumed that the caloric content of one larva or adult beetle is equal (83.7 J) and that 

the proportion of bark beetles in the woodpecker’s diet is 75% (Hutchinson 1951 cited in 

Baldwin 1968, Formosow et al. 1950 cited in Glutz von Blotzheim 1994, Hess 1983, 

Hogstad 1970, Pechacek & Kristin 1993, Sevastjanow 1959 cited in Scherzinger 1982). 

During one year a Three-toed Woodpecker consumes about 670,000 bark beetles  

(Table 1). Schmid et al. (1998) estimate the Swiss Picoides tridactylus population to be 

1000 - 1500 breeding pairs, that is 2000 - 3000 individuals. According to our calculations 

the whole woodpecker population, i.e. 2500 individuals, consumes, during one year, 

about 1,675,000,000 (1675 million) bark beetles. 

Bark beetle trap statistics 

Since 1984 pheromone traps have been installed in Switzerland, in order to control Ips 

typographus. In Figure 2 we show the estimated total number of beetles captured per 

year, and the mean number of captures per trap (data from the Forest Insect and 

Disease Survey FIDS of the Swiss Federal Research Institute WSL, Birmensdorf). After 

the storm “Vivian” of February 1990, the total number of captures increased drastically to 

a maximum of 137 million in 1992. The number of captures per trap has been growing 

during outbreaks, probably due to both the increase of the bark beetle population and the 

improvement of capture techniques. Between 1984 and 1999, a mean of 84.6 million 

bark beetles have been captured yearly; that is 6272 individuals per trap. 

Efficiency of woodpeckers and traps in bark beetle control 

Woodpeckers feed on both, bark beetle larvae and adults. Traps, however, only capture 

adult beetles. To capture an adult female means also to destroy its potential offspring, 

since this female will not breed any more. In order to compare the efficiency of 

woodpeckers and traps, respectively, we have thus to take into account the development 

stage of the captured item (larvae or adult) and also its sex. Traps capture both sexes in 

a proportion depending on season, outbreak or non-outbreak condition, etc.  

(B. Wermelinger, personal communication). The proportion of larvae and adult beetles in 
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Fig. 2:  Number of installed bark beetle Ips typographus traps in Switzerland since 
1984, number of captures per trap and total number of yearly captured 
beetles. After the storm “Vivian” of February 1990, an increase, both, of the 
total number of captured beetles and beetles per trap is visible.  Data from 
the Forest Insect and Disease Survey FIDS of the Swiss Federal Research 
Institute WSL, Birmensdorf. 

 
the woodpecker diet may also vary. These varying conditions (male/female ratio for traps 

and larvae/adult ratio for woodpeckers) are taken into consideration by defining three 

different scenarios: low woodpecker efficiency, medium (realistic) woodpecker efficiency, 

and high woodpecker efficiency. 

a)  Low woodpecker efficiency scenario: In this scenario, the Three-toed Woodpecker 

feeds on 100 percent larvae (no adults) and the traps capture only females. The 
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view, this scenario is pessimistic. Fayt (1999) for example reports a proportion of  
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males. This corresponds to the observations of several authors mentioning a male 

proportion after hibernation of about 40 percent. 

c) High woodpecker efficiency scenario: The woodpecker feeds on 50 percent larvae, 

25 percent adult females and 25 percent adult males. The traps capture 80 percent 

males and 20 percent females. In the woodpecker’s view, this scenario is very 

optimistic, since it is not probable that the traps only capture 20 percent females. 

There are some common points in all three scenarios. The Three-toed Woodpecker’s diet 

is based on 75 percent bark beetles and 25 percent other food. All captured or consumed 

adult beetle females are supposed to breed successfully, if they would not have been 

destroyed. According to Schmidt-Vogt (1989), the average number of eggs per female is 

supposed to be 40 and the average egg and larva mortality (without woodpecker 

predation) 60 percent (Balazy 1968). Thus, the results suggest production of 16 larvae 

per female. 

We define the efficiency E as the number of destroyed bark beetles (adults plus larvae 

plus theoretical offspring of females). EW is the efficiency of one woodpecker and ET the 

efficiency of one trap. EWtot is the efficiency of the whole Swiss Three-toed Woodpecker 

population and ETtot the efficiency of all installed bark beetle traps in Swiss forests. The 

efficiency relation is defined as EW / ET and EWtot / ETtot. First, we calculated efficiency 

relations for the whole statistical period 1984 to 1999. Then the calculations were done 

for the endemic level (not outbreak situation) and for the epidemic level (outbreak 

situation). The endemic level is defined as years with < 1200 new beetle attacks of > 10 

spruce trees, i.e. the years 1989-90 and 1998-99. The epidemic level is defined as years 

with > 3000 new beetle attacks of > 10 spruce trees, i.e. the years 1984-85 and 1992-96. 

The results in Table 2 show that the efficiency relation in all tree scenarios is clearly in 

favour of woodpeckers. In the realistic scenario, one Three-toed Woodpecker is about  

16 times more efficient than a trap. The whole woodpecker population is about 3 times 

more efficient than all installed traps together. In general, during the endemic level, the 

efficiency relation is higher than during the outbreak. In contrast to the traps that caught 

more beetles during the outbreak, the woodpecker in our scenario did not increase its 

bark beetle consumption, since its energetic requirements are not supposed to change. 
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Table 2:  Efficiency relation for bark beetle control of the Three-toed woodpecker 
compared to bark beetle traps. One woodpecker individual is compared with 
one trap, and the total Swiss woodpecker population with the total of installed 
traps in Swiss forests. The statistic period for bark beetle traps is from 1984 to 
1999. L = larvae, F = females, M = males. 

Scenario 
5) 

Consumed bark 
beetles by Picoides 
tridactylus during one 
year 

Number of 
destroyed 
items 1) 

Captured beetles in 
traps during one 
season 2) 

Number of 
destroyed items 

Efficiency 
relation 

 1 individual whole 
pop. 

EW 
 

EWtot 
 

1 trap all 
traps 

ET ETtot 
 

EW / ET EWtot / 
ETtot

  [Mio.] [Mio.] [Mio.]  [Mio.]  [Mio.]   

Whole statistic period 1984 – 1999 considered 

Low 670'000 L 1675 L 0.67 1675 6300 F 84.6 F 100’800 1354 6.7 1.2 

Medium 
603'000 L 
33'500 F 
33'500 M 

1508 L 
84 F 
84 M 

1.17 2936 4410 F
1890 M

59.2 F
25.4 M 72’450 973 16.2 3.0 

High 
335'000 L 
167'000 F 
167'000 M 

838 L 
419 F 
419 M 

3.18 7961 1260 F
5040 M

16.9 F
67.7 M 25’200 338 126.3 23.6 

Endemic level 3) 

Low 670'000 L 1675 L 0.67 1675 5400 F 49.4 F 86’400 790 7.8 2.1 

Medium 
603'000 L 
33'500 F 
33'500 M 

1508 L 
84 F 
84 M 

1.17 2936 3780 F
1620 M

34.6 F
14.8 M 62’100 568 18.9 5.2 

High 
335'000 L 
167'000 F 
167'000 M 

838 L 
419 F 
419 M 

3.18 7961 1080 F
4320 M

9.9 F
39.5 M 21’600 198 147.3 40.2 

Epidemic level 4) 

Low 670'000 L 1675 L 0.67 1675 7900 F 114.6 F 126’400 1834 5.3 0.9 

Medium 
603'000 L 
33'500 F 
33'500 M 

1508 L 
84 F 
84 M 

1.17 2936 5530 F
2370 M

80.2 F
34.4 M 90’900 1318 12.9 2.2 

High 
335'000 L 
167'000 F 
167'000 M 

838 L 
419 F 
419 M 

3.18 7961 1580 F
6320 M

22.9 F
91.7 M 31’600 458 100.7 17.4 

1)  Number of consumed / captured larvae plus adults plus theoretical offspring of 16 larvae per female 
with the assumption that all females would breed successfully, if they were not destroyed; 

2)  Average number of captured bark beetles by Swiss traps; 

3)  1989 – 90 and 1998 – 99, that is years with < 1200 new beetle attacks of > 10 spruce trees; 

4)  1984 – 85 and 1992 – 96, that is years with > 3000 new beetle attacks of > 10 spruce trees; 

5)  Scenario: low, medium and high woodpecker efficiency. 
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One reason for the high efficiency relation is the fact that woodpeckers consume bark 

beetles during the whole year, whereas traps work only during a relatively short period 

between spring and autumn. Several authors report up to 90 percent bark beetles in the 

woodpecker’s diet (Hutchinson 1951 cited in Baldwin 1968, Hogstad 1970, Pechacek & 

Kristin 1993). We based our calculations on a 75 percent Ips typographus proportion, 

considering that the food could also contain other bark beetle species. It is indeed 

possible that during endemic bark beetle population levels the Three-toed Woodpecker 

switches over to other insect prey or other foods. However, data from the literature for the 

Three-toed Woodpecker’s diet during endemic levels are still lacking.  

We assumed that the destruction of females would have a strong negative impact on the 

bark beetle population and made no such assumption for the destruction of males. 

According to Schmidt-Vogt (1989), a new breeding tree is attacked in a proportion of  

1 male to 2-3 females. Polygamy compensates for the high dispersal mortality of males. 

Even if males are captured in a high number, females are thus supposed to be able to 

find a polygamous male. The capture of females seems therefore to have a differential 

negative effect on breeding success. 

Based on Thalenhorst (1958 cited in Schmidt-Vogt 1989) and Balazy (1968), we chose a 

mean egg and larva mortality of 60 percent (without woodpecker predation). In our 

calculations we assume that all females breed successfully, producing a surviving brood 

of 16 immature beetles. It is, however, probable that adult females are themselves 

subjected to mortality factors after flight and before breeding. In this case, the efficiency 

relationship would even be stressed in favour of the woodpeckers. 

Three-toed Woodpeckers have been shown to destroy more bark beetles than their 

effective consumption. This happens as a consequence of the woodpecker removing 

bark and exposing numbers of brood to the external environment (Kroll & Fleet 1979). 

Fungi also invade galleries of bark beetles via openings created by woodpecker foraging. 

Considering these arguments, we conclude that Three-toed Woodpeckers are more 

efficient in bark beetle control than traps. They should be considered as an important 

natural alternative to bark beetle control by traps. 
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3.2. How many declining and dead trees are required by the Three-toed 
Woodpecker? 

A forest manager could decide to favour Three-toed Woodpeckers as an alternative to 

bark beetle control by traps. In this case, he should know which are the important habitat 

features for this bird. In this study we considered food as the limiting and thus the most 

important factor. Management decisions influence the availability of declining and dead 

trees, i.e. the woodpecker’s foraging substrate. It is therefore important to determine the 

necessary density of foraging substrate to guarantee enough food, in particular during 

endemic bark beetle levels. 

Estimation of the model variables 

a) Density of potential foraging substrate DFS 

As a specialist feeding on spruce bark beetles, the Three-toed Woodpecker strongly 

selects spruce trees as its foraging substrate (97.5% in Hess 1983, 97.8% in Hogstad 

1970, 93.2% in Murphy & Lehnhausen 1998, 88.8% in Pechacek 1995). In concert with 

the habitat of its preferred prey, this woodpecker forages on declining, dying, and recently 

dead trees (all three categories 95.5% in Hess (1983) and 97% in Hogstad (1970)). The 

diameter at breast height of its foraging substrate was > 15 cm in Norway forests 

(Hogstad 1978), whereas in Alpine forests it was > 40 cm (Hess 1983). In Alaska’s boreal 

forests the mean diameter was 34.6 cm for females and 42.4 cm for males (Murphy & 

Lehnhausen 1998). 

Our aerial photo interpretation suggested that 95% of the detected snags had a breast 

height diameter ≥ 21 cm (n = 501). According to the literature, smaller trees that were not 

detected by our method are hardly used by this woodpecker. Field data compared with 

aerial photo data revealed an underestimation of about 20 percent of the real snag 

density (≥ 21 cm d.b.h.). This error is due to snags that were not visible on the aerial 

photo for several reasons (shadow, understory tree, broken tree, etc.). This error of 20 

percent was taken into account to calculate the snag density (Table 3). 

Snags whose stage of decomposition is ≤ 2 can be considered as potential foraging 

substrate. The decomposition stage frequency distribution (Figure 3) shows a similar 

pattern for all study sites with 58 to 94 percent of the snags belonging to stages 1 and 2. 
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Table 3:  Density of potential foraging substrates, calculated by multiplying the total 
snag density of the forest landscape (including not forested areas) with the 
percentage of snags belonging to the snag decomposition stages 1 and 2 
(declining, recently dead and loose bark) that are suitable foraging substrates 
for Three-toed woodpeckers because of their potential presence of bark 
beetles. The snag density of the forest area is also indicated. 

 
 
Study site 

Snags in decomposition 
stages 1 and 2 2) 

[%] 

Total snag density 
Landscape 3) 

[number per ha] 

DFS 
Landscape 4) 

[number per ha] 

Total snag density 
forest area 5) 

[number per ha] 

Hobacher 69 4.7 3.2 7.1 
Hinteregg 84 8.9 7.5 11.2 
Hinterberg 94 2.3 1.9 2.9 
Bärenegg 82 7.1 5.8 10.7 
Langenegg 1) 87 1.6 1.4 1.5 

Mont Pelé 1) 58 1.8 1.1 1.9 

1)  Site without Three-toed woodpeckers 
2)  Field data 
3)  Aerial photo data calculated for the forest landscape, i.e. including pastures, meadows, etc. 
4)  Aerial photo data combined with field data 
5)  Aerial photo data calculated for the forest area only (without pastures, meadows, etc.) 
 

 

 

Fig. 3:  Percentage of snags in different stages of decomposition: 
1: declining or recently dead, 2: loose bark, 3: clean and hard 
snag, 4: clean and soft snag, 5: broken, decomposed snag. 
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We define: DFS = (S1 + S2) * A-1 

where  S1 = number of snags belonging to decomposition stage 1 

 S2 = number of snags belonging to decomposition stage 2 

 A = total area (in hectares) of the study site (including not forested areas) 

The resulting DFS for our study sites are shown in Table 3. 

 

b) Mean infested bark area MIA 

There exist only few literature data on the proportion of bark area that is infested by 

spruce bark beetles (Gonzalez et al. 1996, Weslien 1994, Weslien & Regnander 1990). 

The mean d.b.h. of the potential foraging substrates (trees with a d.b.h. ≥ 21 cm) in our 

study sites was 35 ± 13 cm (S.D.). During an epidemic level Gonzalez et al. (1996) found 

a MIA of 21 m2 for spruce trees with a mean d.b.h. of 46 ± 5 cm. Weslien & Regnander 

(1990) indicate in endemic populations attacks of 50 percent of the tree height for spruce 

trees with a mean d.b.h. of 30 cm. Based on these authors, we assume the MIA for an 

endemic level in our study sites was 12.5 m2. 

 

c) Available prey APR 

As it is shown by literature data, the breeding density of Ips typographus is highly variable 

within a tree, between trees, and in different bark beetle population levels (endemic to 

epidemic). We had to estimate an annual mean APR for an endemic breeding density. 

First, we calculated the APR for each week by multiplying the bark beetle attack density 

by the mean number of eggs per female and by a mortality factor for eggs, larvae, pupae, 

imagos, and immature beetles, respectively. The annual mean APR was then obtained 

by adding the weekly APR values and dividing by 52. For sub-alpine mountain forests, 

we expect only one beetle generation per season and set the egg laying to the second 

week of June (Nierhaus-Wunderwald 1995). Figure 4 shows the estimated weekly APR 

values based on the following assumptions: 
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With an attack density of 150 nuptial chambers m-2 (Weslien & Regnander 1990) we 

expect an average of 27 eggs per nuptial chamber (Thalenhorst 1958 cited in Schmidt-

Vogt 1989). According to Balazy (1968) and Thalenhorst, the expected mortality is 25% 

for eggs, 45% for larvae and 15% for pupae and imagos. (The mortality caused by the 

Three-toed Woodpecker itself is taken into account.) During maturate feeding, 

hibernating, flight, and invasion on new trees, another mortality of half of the individuals 

that reached full development is expected. 

The estimated annual mean APR value is 657 m-2. 

 

Fig. 4:  Estimated number of weekly consumed Ips typographus items by one 
Three-toed Woodpecker and a woodpecker family, respectively. 
Estimated available Ips typographus items per m2 bark (all development 
stages without eggs) for an attack density of 150 nuptial chambers per m2 
(endemic level) and 27 eggs per nuptial chamber. CPR = consumed prey 
items during one week, APR m-2 = available prey items per m2 of bark. 
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d) Foraging efficiency FEF 

Even if virtually scaling the tree, the woodpecker will not discover one hundred percent of 

the available prey. Removed bark chips falling to the ground may contain bark beetles or 

larvae that are not consumed. When the bark beetle breeding density is low, the 

woodpecker may decide not to inspect any parts of a tree. Capture rates of an insect 

species vary seasonally in relation to weather and other factors (Wolda 1990). Based on 

Baldwin (1968), a reasonable assumption for a mean FEF is 50 percent. 

 

e) Consumed prey CPR 

We calculated the CPR (i.e. adult bark beetles and their larvae) for one woodpecker 

during a year (see above). Our PHR-model is defined for a woodpecker breeding pair. 

Therefore, we have to calculate the CPR for two adult woodpeckers (male and female) 

and their young. The CPR for an adult woodpecker is obtained by dividing its daily energy 

requirement (according to Koplin 1972) by the energy content of one bark beetle (larva or 

adult) and multiplying by the proportion of bark beetles in the diet of an adult woodpecker. 

For a young woodpecker (nestling, fledgling and until its departure from its parents’ home 

range), the daily CPR is calculated as follows: 0.7 * bird weight * proportion of bark 

beetles in the bird’s diet * (fresh weight of a larva or an adult bark beetle (13.7 mg, both 

assumed to be equal))-1. 

Table 4:  Assumed change of the diet of young Three-toed Woodpeckers until their 
departure from their parents’ home range. 

Week Bird weight (g) Assumed percent of 
bark beetles in the 

bird’s diet 

Estimated number of 
consumed bark 

beetles per bird per 
day 

Estimated number of 
consumed bark beetles 
per week by 1.8 young 

birds 

1. 20 5.8 59 743 
2. 50 5.8 148 1865 
3. 65 5.8 193 2432 
4. 65 10 332 4183 
5. 65 20 664 8366 
6. 65 30 996 12’550 
7. 65 50 1661 20’929 

8. – 14. 65 75 2491 31’387 
Departure of 

the young birds 
   Total: 270’777 
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According to Glutz von Blotzheim (1994), the mean breeding success of Three-toed 

Woodpeckers is 1.8 young birds. During the nestling period, only about 5.8 percent of the 

diet is comprised of  Scolytidae and Ips typographus larvae (Pechacek & Kristin 1996). 

We hypothesise that the diet gradually changes up to a 75% proportion of bark beetles 

until the departure of the young from their parents’ home range (Table 4). The estimated 

annual CPR of a woodpecker family is about 1.61 million beetles (Tables 1 and 4). 

 

Validation of the model 

The PHR-model is validated against literature home range sizes. The European Picoides 

tridactylus home range sizes reported in the literature vary between 44 and 176 ha (Bürkli 

et al. 1975, Dorka 1996, Hess 1983, Pechacek 1995, Pechacek et al. 1999, Ruge et al. 

1999, Scherzinger 1982). 

For our study sites we get the following PHR: 

Hobacher:  PHR = (3.2 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.615 * 106 = 123 ha 

Hinteregg:  PHR = (7.5 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.615 * 106 = 52 ha 

Hinterberg:  PHR = (2.2 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.615 * 106 = 179 ha 

Bärenegg:  PHR = (5.8 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.621 * 106 = 68 ha 

Langenegg:  PHR = (1.4 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.621 * 106 = 282 ha 

Mont Pelé:  PHR = (1.1 ha-1 * 657 m-2 * 0.5 * 12.5 m2)-1 * 1.607 * 106 = 356 ha 

The first four calculated PHR (sites with a Three-toed Woodpecker breeding pair) lie 

roughly within observed home range sizes (Hinterberg slightly higher). The other PHR 

(sites without breeding pairs) far exceed observed home range sizes. We cannot exclude 

the existence of such large home ranges. The energy expenditure for a breeding pair to 

move around in such a large home range, however, would probably be too high. These 

first validation results suggest that the model describes our study sites quite well. 
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Estimation of the snag density required to meet the Three-toed Woodpecker’s foraging 

needs 

Our validated PHR model is now used in order to find a response to the question: How 

many declining and dead spruce trees per ha are required to meet the Picoides 

tridactylus’ foraging needs? 

We use the same equation, solved for DFS: DFS = (PHR * APR * FEF * MIA)-1 * CPR 

We hypothesise that during bark beetle outbreaks, the woodpecker is not subjected to a 

scarcity of food. In contrast, during endemic bark beetle population levels, it may have 

difficulty in satisfying its foraging needs. It is important that forest management maintains 

sufficient habitat features, i.e. potential foraging substrate, during endemic bark beetle 

population levels, too. For variables related to bark beetle infestation (APR, MIA), we 

therefore chose probability distributions whose mean values describe an endemic bark 

beetle population level (Table 5). For variables assumed to be normally distributed, we 

chose relevant limits in a way to get 95 percent of the values within those limits and then 

calculated the corresponding standard deviations. 

Table 5:  Probability distribution functions chosen for the variables in the model 
used to estimate the snag density required to meet the Three-toed 
woodpecker’s foraging needs. 

Variable [unit] Type of 
distribution 

xmin / xmax µ / σ  1) xa / xb  
2) 

PHR [ha] uniform 44 / 176   

APR normal  657 / ± 216 234 / 1080 

FEF normal  0.5 / ± 0.1 0.25 / 0.75 

MIA [m2] normal  12.5 / ± 3.8 5 / 20 

CPR uniform 1.605*106 / 1.623*106   

1)  µ = mean; σ = std dev. 
2)  Pr(xa < Z < xb) = 95 % 

 

After sampling of each variable (n = 10,000) the output probability distribution for DFS 

was simulated by a Monte Carlo approach. The results presented in Figure 5 are based 

on 10 simulations. The snag density is DFS/0.8, i.e. DFS divided by the mean value (for 

our study sites) of snags in decomposition stages 1 and 2 (see Table 3). The resulting 

snag density values are related to the forest area. The expected mean value is 7.5 ± 0.24 



Paper II 

 114

snags/ha (mean and S.E.). With ≥ 5 snags/ha (d.b.h. ≥ 21 cm), the probability to provide 

sufficient foraging substrate is 50 percent. In order to attain a 90 percent probability,  

≥ 14 snags/ha are necessary, and > 19 snags/ha for a 95 percent probability. Expressed 

as basal area (m2/ha) or volume (m3/ha), the snags ≥ 21 cm d.b.h. have to represent  

> 0.5 m2/ha and > 4.3 m3/ha (p = 0.5), > 1.3 m2/ha and > 12.0 m3/ha (p = 0.9) and  

> 1.8 m2/ha and > 16.3 m3/ha (p = 0.95). 

 

Fig. 5:  Simulated probability distribution function of the snag density required 
to meet the Three-toed Woodpecker’s foraging needs and required 
snag densities for different probability levels. CDF = Cumulative 
distribution function. The input model is DFS = (PHR * APR * FEF * 
MIA)-1 * CPR. 
DFS = density of potential foraging substrates [number ha-1],  
PHR = potential home range size needed by a woodpecker breeding 
pair [ha], APR = available prey under 1 m2 of bark [number m-2], FEF = 
foraging efficiency of the woodpecker [percent], MIA = mean infested 
bark area of a potential foraging substrate [m2], CPR = consumed prey 
items by a woodpecker family during a time unit [number]. 
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With their current snag densities (Table 3) our study sites without woodpecker breeding 

pairs present only a rather low chance for woodpecker settling (sites with woodpeckers: 

Hobacher 7.1 snags/ha (p = 0.65), Hinteregg 11.2 snags/ha (p = 0.84), Hinterberg 2.9 

snags/ha (p = 0.18), Bärenegg 10.7 snags/ha (p = 0.83); sites without woodpeckers: 

Langenegg 1.5 snags/ha (p = 0.02), Mont Pelé 1.9 snags (p = 0.04)). 

A recommendation for forest management can, for example, be based on a p = 0.9 level. 

Comparisons with recommendations for other cavity nesting birds from literature data are 

not easy, due to differences in considered minimal tree diameter, decomposition stages, 

tree species, forest type, age, and structure, etc. 

 

Limitations of the model 

The model presented in this paper is a simple and theoretical model intended as being a 

first approach to answer the question: How many declining and dead spruce trees per ha 

are required to meet Picoides tridactylus’ foraging needs? Some limitations of the present 

model are discussed here in order to show how it could be improved in a next step. 

i)  At present, this model is mainly based on literature data. Measuring bark beetle 

breeding density, infested bark area and Three-toed Woodpecker home range sizes 

in our study sites during endemic bark beetle levels could be a further validation step. 

Indeed, only few bark beetle studies have been conducted on endemic populations. 

Most studies report outbreak conditions. Our assumptions for the Three-toed 

Woodpecker’s diet are based on the available literature results, essentially obtained 

during outbreaks (Pechacek, personal communication). The bark beetle proportion in 

the woodpecker’s diet during endemic levels could be lower than in cited literature. If 

future research findings indicate that other insect groups are important prey for the 

Three-toed Woodpecker, they will have to be integrated into the presented model. 

ii) The uncertainty of values for the variables MIA and FEF is rather high, since literature 

data on these topics are still scarce. 

iii) Another limitation is the validity of Koplin’s model (1972), developed for American 

Three-toed Woodpeckers and not for European populations. 
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iv) Validation was done for six study sites. It should be repeated for other sites, if 

possible in different Alpine regions with spruce mountain forests. 

v) It is hardly possible by aerial photo interpretation to detect a tree that is freshly 

attacked by bark beetles (just before decomposition stage 1). Needle loss or other 

stress symptoms appear slightly later. To handle with this problem, we considered 

spruce trees with bark loss (decomposition stage 2) as potential foraging substrate, 

although such trees are probably not inhabited by bark beetles any more. We argue 

that these trees could have been bark beetle breeding trees some time ago. Breeding 

trees, being continuously created in a dynamic forest ecosystem, this time-related 

delayed snag inventory can be justified. It was therefore important to choose study 

sites where the state of presence and absence of Three-toed Woodpeckers has been 

constant for some years. 

 

4. Conclusion 

By our comparison of bark beetle Ips typographus trap statistics for Switzerland with the 

energetic requirements and the resulting bark beetle consumption of Three-toed 

Woodpeckers, we demonstrated that woodpeckers capture more insects than traps. 

These birds could therefore be an important alternative to bark beetle control by traps. In 

addition to their role as natural agents against bark beetles, they are considered to be 

indicators for forest bird diversity (Mikusinski et al. 2001) and natural forests (Amcoff & 

Eriksson 1996, Angelstam & Mikusinski 1994, Derleth et al. 2000). Removing of infected, 

declining and dead trees from the forest is not always cost-effective. Apart from this 

drawback, this management practice is also detrimental to many other dead wood 

dependent species (Samuelsson et al. 1994). By the potential economic benefit that the 

presence of Three-toed Woodpeckers instead of traps may induce, this species 

demonstrates that biodiversity and economic forestry can be complementary goals. 

Nature protection organisations often call for more dead wood in managed forests. Due 

to the lack of scientific information, it is, however, difficult to give quantitative targets. 

Dead wood quantification is only a recent research field in ecology. Our study is an 

attempt to give quantitative management recommendations for snag retention in spruce 

forests. Even if the developed model is mainly literature based and needs some further 
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validation, we can already use it to derive some provisional management 

recommendations. Based on our preliminary simulation results, we recommend the 

retention of a mean of > 14 declining or dead spruce trees per hectare (d.b.h. ≥ 21 cm) 

over about 200 hectares (home range of a Three-toed Woodpecker breeding pair), in 

order to create favourable habitat features for this species. This value corresponds to a 

basal area of > 1.3 m2/ha and a volume of > 12 m3/ha (d.b.h. ≥ 21 cm). Forests with such 

snag levels should be distributed patchily within the landscape. The closer the patches, 

the higher the Three-toed Woodpecker population density may become (examples 

presented in Scherzinger (1982)). A snag management following our recommendations 

also favours many other dead-wood-dependent species (fungi, mosses, lichens, 

invertebrates, secondary cavity nesting animals, etc.). During all decomposition stages 

from a hard towards a soft snag and, after falling down, as a log, a dead tree plays an 

important ecological role. 
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Abstract 

Predicting species’ responses to habitat loss is a significant challenge facing conservation 

biologists. We examined the response of the Three-toed Woodpecker Picoides tridactylus 

to different amounts of dead wood, one of the most important habitat features of old-

growth forests. We studied the dependence between two Palearctic subspecies of this 

woodpecker (P. tr. tridactylus and P. tr. alpinus) and dead wood in a boreal and a sub-

Alpine coniferous forest landscape in central Sweden and Switzerland, respectively. 

Habitat variables were measured by fieldwork in forests with breeding woodpeckers  

(n = 10+12) and in control forests without breeding woodpeckers (n = 10+12) in the same 

landscape. Logistic regression analyses revealed steep thresholds for the amounts of 

dead standing trees and the probability of Three-toed Woodpecker presence in both 

Sweden and Switzerland. The probability of the presence of Three-toed Woodpeckers 

increased from 0.10 to 0.95 when snag basal area increased from 0.6 to 1.3 m2 ha-1 in 

Switzerland and from 0.3 to 0.5 m2 ha-1 in central Sweden. In Switzerland, a high road 

network density negatively affected the presence of woodpeckers (r = -0.65, p = 0.0007). 
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The higher volumes of dead wood in Switzerland, where population trends are more 

positive, than in central Sweden, where the population is declining, would suggest that 

the volumes of dead wood in managed forests in Sweden are too low to sustain Three-

toed Woodpeckers in the long-term. In terms of management implications, we suggest a 

quantitative target of at least 5% of standing trees in older forests being dead over at least 

100 ha large forest areas. This corresponds about to ≥ 1.3 m2 ha-1 (basal area) or  

≥ 15 m3 ha-1 (volume), still depending on site productivity. 

 

Keywords: Picoides tridactylus, habitat thresholds, dead wood, forest management, 

biodiversity conservation 

 

1. Introduction 

Loss of habitat is the major reason for local extirpation and, ultimately, the extinction of 

species. While habitat loss is often a continuous change in the process of habitat 

fragmentation in ecological systems, the response of different components of ecosystem 

integrity to habitat loss may be non-linear (Fahrig 2001; Muradian 2001). Both models 

and empirical studies have demonstrated the existence of ecological thresholds of habitat 

proportions for different species at the landscape scale (e.g., Andren 1994; Jansson & 

Angelstam 1999; With & Crist 1995; Fahrig 2001). Thus, an answer to the question “How 

much habitat is enough?”, or in other words knowledge of ecological thresholds for the 

amount of habitat area or habitat features required at different ecological scales, is 

necessary to prevent further local and regional loss of species (Fahrig 2001). 

Consequently, ecological thresholds are a key feature that should be taken into 

consideration (Muradian 2001; Simberloff 1995; With & Crist 1995) in the context of forest 

biodiversity maintenance, both by nature conservation per se, and by sustainable forest 

management and forest certification processes. 

The usefulness of keystone species (Paine 1966) and umbrella species (Fleishman et al. 

2001; Fleishman et al. 2000) for biodiversity conservation is gaining increasing 

acceptance among ecologists and conservation biologists (Simberloff 1999; Roberge & 

Angelstam in press). Among vertebrates, woodpecker species are a particularly 

interesting group to be studied with respect to non-linear responses to habitat loss. They 
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are of special importance due to their key-stone role in supplying forests with tree-

cavities, that serve secondary users as nesting or roosting holes (Saari & Mikusinski 

1996). Moreover, among area-demanding species specialised in natural forest 

components such as old trees, dead wood and structural diversity (Angelstam 1990; 

Angelstam & Mikusinski 1994; Mikusinski & Angelstam 1997), they are also considered to 

be the most demanding guild in terms of their ecological requirements. Furthermore, a 

positive relationship has been reported between woodpecker species richness and the 

number of other forest species (Martikainen et al. 1998; Mikusinski et al. 2001). 

In the case of conifer-dominated forests, the Three-toed Woodpecker is a potential 

umbrella species for which habitat threshold values could be developed (Angelstam 

1998; Mikusinski et al. 2001; Nilsson et al. 2001; Angelstam et al. in press). Moreover, 

Imbeau (2001) defined the Three-toed Woodpecker as a keystone species (sensu 

Thompson and Angelstam (1999)). In addition to its qualities as a potential umbrella and 

keystone species, other reasons justify its suitability as an important candidate for the 

development of habitat threshold values for the purpose of forest biodiversity 

management. It is the only woodpecker occurring in both the New and the Old Worlds 

(Winkler et al. 1995), thus showing a large geographic distribution. Consequently, habitat 

threshold values translated into management recommendations could be applied over a 

wide geographic area. Moreover, Alpine populations are also sedentary in winter (Winkler 

et al. 1995), and Swedish populations mostly sedentary (Svensson et. al. 1999). Local 

reasons, such as forest management practices, must, therefore, be considered to explain 

population fluctuations. For example, the ongoing decline of populations in Fennoscandia 

is directly related to the modern forestry practice of removing old and dead trees 

(Angelstam & Mikusinski 1994; Nilsson 1992; Tucker & Heath 1994). Finally, Three-toed 

Woodpeckers are important predators of insects that are prone to outbreaks. Examples 

of these insects include Polygraphus and Ips in Eurasia and spruce bark beetle 

Dendroctonus obesus in America. Thanks to their ability to concentrate locally in burned 

sites or windfall areas (Koplin 1969; Murphy & Lehnhausen 1998), Three-toed 

Woodpeckers can be considered as natural agents against insect plagues (Bütler & 

Schlaepfer in press).  

Three-toed Woodpeckers mainly feed on the larvae of scolytid beetles and other insects 

found in dying and dead trees (Fayt 1999; Murphy & Lehnhausen 1998; Pechacek & 

Kristin 1993) and, in spring, they occasionally lick sap from tree trunks in which they 
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make small holes (Glutz von Blotzheim 1994; Pechacek 1995). Consequently, dead trees 

are one of the most important habitat features for foraging (Hess 1983; Hogstad 1970; 

Murphy & Lehnhausen 1998; Pechacek 1995; Ruge et al. 1999). Dead wood amounts in 

woodpecker habitats, however, have rarely been quantified (Derleth et al. 2000), and the 

existence of a dead wood threshold value for this species has never been tested using 

dead wood as a resource (but see Pakkala et al. 2002). 

The aims of this study were to search for possible dead wood threshold values playing an 

important role in the local continued presence of Three-toed Woodpeckers in boreal and 

mountain forests, and to derive quantitative targets for management implications. We 

chose an original approach replicated in two different landscapes and with two palearctic 

subspecies P.t.tridactylus (in Northern Europe) and P.t.alpinus (in the mountains of 

Central, Southern and South-East Europe). 

 

2. Material and methods 

2.1. Study areas 

We conducted our study in two coniferous forest regions, one located in central Sweden 

(SE) and one in Switzerland (CH) (Fig. 1). Whereas Norway spruce (Picea abies) is the 

main tree species in the Swiss sub-Alpine mountain forest landscape, the Swedish forest 

landscape is characterised by boreal forests dominated by a mixture of Scots pine (Pinus 

sylvestris) and Norway spruce. In order to take into account the heterogeneity arising 

from the topography of Swiss mountain regions, data was collected in three areas (Fig. 1) 

situated in the eastern/central and the western Lower Alps and in the Jura Mountains. In 

1993 a small population of Three-toed Woodpeckers was detected the first time in the 

Swiss Jura (Chabloz & Wegmüller 1994), where the species was not present before. As 

the Swiss Three-toed Woodpecker population is obviously in expansion (Schmid et al. 

1998), it seemed interesting to us to include such a newly colonised area. In contrast, 

boreal forests in central Sweden are homogenous and population trends are generally 

negative (BirdLife 2000). For this reason, there was no sub-division into different areas. 
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2.2. Study design 

In each region pair-wise sampling units of 1 km squares were studied (10+10 units in 

Sweden and 12+12 in Switzerland). Each pair consisted of one unit where the Three-toed 

Woodpecker had been breeding (called “presence”) in the years of field work (1998 to 

2001) and one randomly selected unit where it was not observed (called “absence”). In 

accordance with the criteria of probable breeding as defined in the International 

Onithological Atlases (Sharrock 1973), presence was indicated where nests were found 

or birds observed. The selection of presence/absence of breeding Three-toed 

Woodpeckers in the field units was based on data provided by the Swiss ornithological 

station (Sempach) and by local amateur ornithologists in Switzerland and Sweden. In 

Switzerland, the study areas were located at altitudes between 1200 and 1700 m a.s.l. 

and in Sweden between 100 and 300 m a.s.l.  

3

Switzerland

2

Jura

1

Central Plateau

Lower Alps

Alps

100 km

100 km

b)

Sweden

100 km

a)

3

Switzerland

2

Jura

1

Central Plateau

Lower Alps

Alps

100 km

100 km

b)

Sweden

100 km

a)

 

Fig. 1:  Study sites: a) a boreal landscape located in central Sweden and b) a Swiss 
sub-Alpine landscape, sub-divided into three areas, situated in the 
eastern/central (1) and western Lower Alps (2) and in the Jura Mountains (3). 

 

2.3. Data gathering 

In each 1 sq. km sampling unit a total of 16 systematically placed sampling plots were 

used to sample the amount of dead wood. The distance between sampling plots was  

250 m. Four types of variables were defined (Table 1). Measurements of the basal area 
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of trees were made using a relascope. A snag was defined as any standing dead tree 

with a minimal height of 1.7 m. The minimal diameter for recording snags, logs (laying 

dead trees) and living trees was 10 cm dbh., and the measurement unit was stand basal 

area (m2 ha-1). Slope and aspect were measured in degrees. Road/track density was the 

total length of roads and tracks in the field unit accessible by a tractor. Roads and tracks 

were measured using topographical maps. Harvesting intensity was defined as the 

 

Table 1:  Measured variables in 1x1 km field units (n = 12+12 in Switzerland (CH) and 
n = 10+10 in central Sweden (SE)), in which the Three-toed Woodpecker was 
present and absent, respectively. Each field unit contained 16 systematic 
sampling plots. 

Type Variable Unit Type of measure Level Landscape

Habitat features Snags m2 ha-1 Relascope Plot CH / SE 
 Logs m2 ha-1 Relascope Plot CH / SE 
 Living trees m2 ha-1 Relascope Plot CH / SE 
 Spruce trees % of living trees Relascope Plot CH / SE 
 Pine trees % of living trees Relascope Plot SE 
 Deciduous trees % of living trees Relascope Plot SE 
 Tree height m Heightmeter Plot CH / SE 
Topography Slope degrees Clinometer Plot CH 
 Aspect degrees (0 –360°) Compass Plot CH 

Management Road/track density km km-2 Topographical maps Field unit CH / SE 
 Intensive harvesting % of occurrence Visual appreciation Field unit CH / SE 
 Extensive harvesting % of occurrence Visual appreciation Field unit CH / SE 
 Recent harvesting % of occurrence Visual appreciation Field unit CH / SE 
 Past harvesting % of occurrence Visual appreciation Field unit CH / SE 

Continuity Snags with bark % of occurrence Visual appreciation Field unit CH / SE 
 Snags without bark % of occurrence Visual appreciation Field unit CH / SE 
 Hard logs % of occurrence Visual appreciation Field unit CH / SE 
 Soft logs % of occurrence Visual appreciation Field unit CH / SE 
 Ringed trees Number, age Visual appreciation Field unit CH / SE 

 

density of tree stumps within the plot. It was classified in two categories: ≤ 3 stumps per 

plot (extensive harvesting) and ≥ 10 (intensive harvesting). Harvesting time was also a 

dichotomous variable used to date the harvesting period into recent (tree stumps are 

hard, uncovered by mosses or vegetation) or past (tree stumps are soft or decomposed 

and/or covered by mosses or vegetation). A plot could, therefore, present both recent and 

past harvesting. 

Ringed trees are trees having small holes made in the bark by woodpeckers (and in 

particular by Three-toed Woodpeckers), typically distributed as horizontal lines on the 
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trunk (Glutz von Blotzheim 1994; Ruge 1968; Scherzinger 1982). The total number of 

ringed trees in the 1 km squares was counted by walking on transect lines between the 

plots (total distance 6 km per sampling unit), and their approximate age determined using 

the following categories: i) fresh signs (transparent, sticky and flowing resin in the holes); 

ii) quite fresh signs (white or yellow resin not flowing any more); iii) old signs (no resin, 

only small holes); iv) signs of long use (the tree has formed bulges). Because two 

different persons did the fieldwork in Switzerland and Sweden, we estimated the 

between-person difference of basal area measurement. This estimation was based on 

data from 209 plots, measured twice separately by two different persons. 

 

2.4. Statistical analyses 

For the statistical analyses we used STATISTICA 6.0 statistical software. The analyses 

were carried out separately for Switzerland and Sweden, except for ringed trees, where 

all data were merged. For dichotomous variables (i.e. intensive/extensive harvesting, 

recent/past harvesting, snags with/without bark, hard/soft logs; cf. Table 1), we calculated 

the proportion of sampling plots per field unit where the observed characteristic occurred. 

For each 1 sq. km sampling unit, we calculated mean values for all variables measured in 

the sampling plots. The field units were then separated into two groups (woodpecker 

forests and control forests, i.e. without woodpeckers) and group means and ranges were 

calculated for all variables. The continuous variable aspect was transformed into a 

categorical variable (eight categories of 45 degrees from 0 to 360 degrees), and a Chi-

square goodness-of-fit test was conducted on plot data frequency distribution (n = 192 for 

presence and n = 192 for absence plots) to test for differences between groups (Zar 

1999).  

Because of the binary nature of the response variable for the Three-toed Woodpecker 

(“presence” and “absence”, coded as 1 and 0), logistic regression (Hosmer & Lemeshow 

1989) was chosen as the appropriate method to evaluate the existence of dead wood 

threshold values. Following Hosmer and Lemeshow (1989), the potential predictor 

variables were first assessed for significance in a univariate analysis by a pair-wise two-

sample t-test. Thus, variables in percentages (cf. Table 2) were arcsine square-root 

transformed in order to normalise the data distribution (Zar 1999). 
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A correlation matrix was calculated between all significant independent variables to 

examine possible co-linearity. After this we calculated univariate logistic regression 

models. The resulting models were assessed using goodness-of-fit based on maximum 

likelihood estimates, and the overall rate of correct classification of the response variable 

(“presence” and “absence”). For the regression models for snag basal area, we 

calculated the first derivative function to compare the steepness of the slopes between 

the models for Sweden and Switzerland. The x-values of the inflexion points of the two 

models were tested for statistical difference at a level of α = 0.01 by calculating its 

standard errors. 

To enable comparison with other studies reporting dead wood amounts in forest stands, 

which are usually expressed as volume per hectare (m3 ha-1), we also calculated the 

dead wood volumes (V) by a formula: V = basal area * tree height * shape index 

(correction factor for tree shape of trees estimated as the ratio between the actual volume 

of the cone-shaped tree and an assumed cylinder with constant diameter corresponding 

to the basal area at breast-height) (Anonymous 1982:213). While shape indices range 

from 0.55 to 0.75 in well-managed forests, to be conservative, we used a shape index of 

0.5. This means that our volume estimates are in the low range. 

 

3. Results 

3.1. Factors explaining the presence/absence of the Three-toed Woodpecker 

For Switzerland: 

A strong positive linear relationship existed between the amounts of logs and snags  

(r = 0.86, t = 8.01, p = 0.0000, n = 24). Snag and log amounts differed significantly 

between woodpecker forests and control forests (Table 2). The basal area of snags was 

more than five times higher in woodpecker forests than in control forests, whereas the 

basal area of logs was more than three times higher. The proportion of snags compared 

to all standing trunks was significantly higher in woodpecker forests (presence: 8.3 ±  

1.5 %; absence: 1.3 ± 0.2 %; mean ± SE; Fig. 2). Tree height and the percentage of 

spruce trees did not differ in the two groups. The basal area of living trees was lower in 

woodpecker forests. 
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Fig. 2:  Box-plots for the basal area proportion of snags 

compared to all standing (living and dead) trunks, shown 
separately for forests with Three-toed Woodpeckers 
versus forests without this bird species. Box-plots 
represent median, 25, 75 percentiles, non-outlier min, 
non-outlier max. The two boxes on the left present data 
from Switzerland (distribution of mean values for field 
units of 1 square kilometre; n = 12 each, presence and 
absence) and the two boxes on the right present data 
from central Sweden (n = 10). 

 

The topographical situation was not identical in both groups. In woodpecker forests, the 

slope was steeper than in control forests, although the difference was not highly 

significant (Table 2). Woodpecker forests were more SE oriented than control forests, 

where the most frequent orientation was NW to NE (Chi-square = 82.30, df = 7,  

p < 0.000). 

Extensive harvesting was significantly more frequent in woodpecker than in control 

forests (Table 2). The road/track density was three times higher in control forests than in 

the woodpecker forests. It negatively affected dead wood amounts (Fig. 3). A positive 

linear relationship existed between the variables extensive harvesting and snags  

(r = 0.64, t = 3.93, p = 0.0007, n = 24) and a negative relationship between road/track 

density and snags (r = -0.64, t = 3.95, p = 0.0007, n = 24). There was no difference in 

management history (i.e. recent/past harvesting) between the two groups. 
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Snags with or without bark and hard or soft logs (i.e. variables measuring the continuity 

over time of food resources) occurred more frequently in woodpecker forests than control 

forests (Table 2). These variables were positively correlated with the two quantitative 

variables snag and log basal area, as they described the quality of dead wood. 

 
Fig. 3:  Negative linear correlation between dead wood amount and road 

network density for Switzerland. On the x-axis, the total length per 
square kilometre of roads and tracks suitable for trucks or tractors 
to convey harvested wood. On the y-axis the basal area of all 
standing and lying dead wood (minimal dbh 10 cm). 
Black squares: units with breeding Three-toed Woodpeckers; white 
circles: units without Three-toed Woodpeckers. 

 

 

For Sweden: 

In accordance with the results for Switzerland, snag and log basal area showed the most 

significant between-group differences for all measured habitat variables (Table 2). A 

strong positive linear relationship existed between log and snag basal area (r = 0.80,  

t = 5.58, p = 0.0000, n = 20). The basal area of snags was four times higher in 

woodpecker forests compared to control forests, and the basal area of logs twice as high. 

Between-group differences for snags and logs were less marked than in Swiss forests. In 
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Sweden, snag amounts in woodpecker forests were smaller than in Switzerland  

(0.8 ± 0.1 m2 ha-1 and 2.3 ± 0.4 m2 ha-1; mean ± SE), whereas this was not the case for 

logs (1.8 ± 0.2 m2 ha-1 and 2.2 ± 0.3 m2 ha-1). As in Switzerland, the proportion of snags 

compared to all standing trunks was significantly higher in woodpecker forests (presence: 

4.8 ± 0.3%; absence: 1.9 ± 0.3 %; mean ± SE; Fig. 2). In contrast to Switzerland, the 

basal areas of living trees was significantly higher in woodpecker forests compared to 

control forests (Table 2). The percentage of pine trees was smaller in woodpecker 

forests, whereas the proportion of spruce trees, even if slightly higher in woodpecker 

forests, did not differ significantly between groups. There was no difference between the 

groups for deciduous trees. 

Intensive harvesting occurred more frequently in control forests as compared with 

woodpecker forests, however the difference was not highly significant (Table 2). The 

road/track density between groups was not different, and no correlation was found 

between dead wood amounts and road/track density. As was the case for Switzerland, 

there was no between-group difference for management history (i.e. recent/past 

harvesting). 

Both hard and soft logs occurred more frequently in woodpecker forests than control 

forests (Table 2). Snags without bark occurred more often in woodpecker forests, 

whereas snags with bark did not exhibit any difference between the groups. As for 

Switzerland, these variables describing dead wood quality were positively correlated to 

the basal areas of snags and logs. 

 

3.2. Road network and ringed trees 

Road/track density negatively affected Three-toed Woodpecker presence in Switzerland. 

We found a non-linear relationship indicating a threshold between 2.6 and 3.5 km km-2  

(x-values at p = 0.9 and p = 0.5; Table 3). More ringed trees were found in Switzerland 

than in Sweden (Table 2). The number of ringed trees exhibited a significant non-linear 

relationship with the probability of woodpecker presence in Switzerland and Sweden 

(Table 3), and also when all data were merged (χ2 = 16.68, df = 1, p = 0.00004; odds 

ratio = 9.1; CC = 72.7%; Fig. 4).  
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Fig. 4:  Logistic regression showing a significant relationship 
between the number of ringed trees in boreal and sub-
Alpine forest and the probability of Three-toed Woodpecker 
presence. Samples from Sweden and Switzerland matched 
(n = 44). Figures: number of samples. 
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versus living trees, tree height, logs and hard logs; always r > 0.65, p < 0.002, n = 20). 
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probability of Three-toed Woodpecker presence drops quickly, were not identical for 
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Fig. 5:  Univariate logistic regression models for Switzerland (broken line) 

and Sweden (whole line) showing significant relationships between 
the amounts of snags and the probability of Three-toed Woodpecker 
presence (a). First derivative function of these two regression curves 
(b). Crosses: Swedish sample units (n = 20); circles: Swiss sample 
units (n = 24). 
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measurement of snag basal area (field unit mean ± 9.6 %) was too small to invalidate this 

result. This also applies to the propagated error for the proportion snags/all standing trees 

(field unit mean ± 11 %). The first derivative function of the regression model resulted in a 

narrow and high peak for Sweden and a larger and lower peak for Switzerland (Fig. 5b), 

indicating the existence of an abrupt threshold with a steep slope for Swedish forests. In 

the model, the probability of Three-toed Woodpecker presence increased from 0.10 to 

0.95 when snag basal area increased from 0.6 to 1.3 m2 ha-1 for Switzerland and from 0.3 

to 0.5 m2 ha-1 for central Sweden. 

 

4. Discussion 

Critical dead wood threshold 

Several authors have demonstrated that Three-toed Woodpeckers forage on dying and 

dead trees, and, in particular, on recently-dead standing spruce trees (Hess 1983; 

Hogstad 1970; Murphy & Lehnhausen 1998; Pechacek 1995; Ruge et al. 1999). 

Accordingly, in our study the basal area of snags, which was highly correlated with the 

basal area of logs, was the best predictor of Three-toed Woodpecker presence in both 

Switzerland and Sweden. The probability of presence exhibited a significant non-linear 

response to different amounts of dead wood, thus indicating that below a critical minimal 

amount, breeding woodpeckers may disappear from the habitat. 

Our results suggest that the amount of standing dead trees related to a given probability 

of woodpecker presence is smaller in Sweden than in Switzerland (Fig. 2 and 5). Does 

this mean that Alpine Three-toed Woodpeckers need a higher density of snags than 

boreal birds? We think not. Instead, the figures should been put into the context of 

woodpecker population trends in the two study areas. The Swiss Three-toed 

Woodpecker population is stable or even increasing (Schmid et al. 1998), possibly due to 

an under-exploitation of marginal mountain forests since World War II (Derleth et al. 

2000), a factor that is related to a rapid increase of wood harvesting costs (Brassel & 

Brändli 1999). Under such conditions, the amounts of dead trees and the availability of 

food resources are likely to increase. By contrast, the Swedish population is decreasing 

(BirdLife 2000), due to the loss of suitable habitat and the decline in the quality of the 

remaining habitat caused by forest management. Considering the fact that the 
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occurrence of a species is expected to track environmental changes with a time delay 

(“extinction debt” Tilman et al. 1994), the current situation in central Sweden may already 

be below the landscape threshold for the woodpecker metapopulation capacity (Hanski & 

Ovaskainen 2000). It is possible that the central Swedish population is a sink population 

whose survival hinges on migration from source populations further to the north where 

more naturally dynamic forests remain.  

Results from extinction models and some empirical data for vertebrates indicate that 

regional species extinction starts to accelerate when the suitable habitat area drops 

below 20-30% of the original suitable habitat area (cf. (Andren 1994; Carlson 2000; 

Jansson & Angelstam 1999)). Thus, Nilsson et al. (2001) suggested that at least 20% of 

original densities of large dead trees are needed at the landscape level for biodiversity 

preservation. Central Swedish dead wood amounts in Three-toed Woodpecker habitats 

may be close to or below 20% of the amounts found in naturally dynamic forests (cf. 

Table 4). In addition, our data suggest a higher sensitivity to changes in dead wood 

amounts for boreal Three-toed Woodpeckers than their sub-Alpine counterparts; i.e. the 

peak of logistic regression model is narrow and the slope sharper (Fig. 5b), which means, 

for example, that a small decrease in dead wood amounts results in a quick drop of the 

probability of woodpecker presence. 

For the purpose of the precautionary principle, we suggest, therefore, that forest 

management recommendations be based on a strategy maximising the probability of 

woodpecker presence. For example, to achieve a level of probability of p = 0.95, our 

model predicted necessary snag amounts of 1.3 m2 ha-1 for Switzerland and 0.5 m2 ha-1 

for Sweden (Fig. 5a). For the studied sub-Alpine forests, a basal area of ≥ 1.3 m2 ha-1 

corresponds to a volume of ≥ 15 m3 ha-1 or ≥ 5% of the standing basal area being dead 

trees. Both basal area and volume depend on the site productivity, which is probably 

lower in boreal forests than in sub-Alpine forests. Thus, consideration of the ratio of dead 

trunks to the total number of trunks, independently of the site productivity, is a better way 

of providing general recommendations. With the aim of reversing the negative population 

trends in central Sweden, we would suggest aiming for ≥ 5% of standing dead trunks in 

older forests, as is the case in Switzerland. This corresponds approximately to a mean 

volume of ≥ 15 m3 ha-1, still depending on site productivity, over at least 100 ha large 

forest areas. 
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Whereas many studies on dead wood requirements of different woodpecker species 

have been conducted in North America (e.g., Bull et al. 1997; Keisker 2000; Samuelsson 

et al. 1994), few literature data are available for Northern Europe, and even fewer for 

European sub-Alpine forests. The critical value of at least 5% dead trunks in older forests 

that we determined for Three-toed Woodpecker requirements lies within the range of  

5-10 percent recommended by Utschick (1991) as an optimal snag proportion for forest 

birds.  

The comparison with other studies shows that for both studied landscapes, dead wood 

amounts measured in forests without Three-toed Woodpeckers correspond well to the 

amounts that have been found in other managed forests by different methods (Table 4). 

Fridman and Walheim (2000) report around 2-3 m3 ha-1 dead wood in the lowland part of 

central Sweden where our study was carried out. It should be noted that the differences 

in the amount of dead wood within our study areas are small compared with the 

difference between naturally dynamic forests and our study areas, especially for central 

Sweden (Table 4). Siitonen (2001) reviewed publications of the amount of dead wood in 

unmanaged boreal forests and found it to vary from 18% to 37% of the total wood 

volume. Nilsson et al. (2002) reported for old-growth boreal and temperate forests that 

around 10% of all standing trunks are dead. The dead wood volume in recently disturbed 

forest is often considerably larger. In general, the amount of dead wood in managed 

boreal forests is 2% to 5% of the amount found in naturally dynamic forests (Siitonen 

2001; Angelstam unpublished data). When considering that remaining unmanaged 

reference areas where dead wood can be studied generally are located on sites with 

poorer than average productivity (e.g. Yaroshenko et al. 2001), and that dead wood 

should be divided into different categories of diameter and decay stage (Stokland 2001), 

it is likely that the decline in certain types of dead wood (e.g. large and decayed) from 

natural to managed landscapes is even greater. 

To recommend critical dead wood thresholds for Three-toed Woodpeckers as a practical 

management target, however, it is necessary to evaluate the umbrella value of this 

woodpecker species for other taxa in conifer-dominated boreal and mountain forest 

(Angelstam et al. in press; Roberge & Angelstam in press). Several links with biodiversity 

and habitat quality have previously been demonstrated. Mikusinski et al. (2001) found 

that the number of forest bird species is correlated positively with woodpecker species 

richness and, in particular, with the presence of the Three-toed Woodpecker. Suter et al. 

(2002) demonstrated that the Capercaillie (Tetrao urogallus), co-occurring with the Three-
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toed Woodpecker, is an umbrella for red-listed mountain birds. Pakkala et al. (2002) 

found a positive correlation between the occurrence of breeding Three-toed 

Woodpeckers and territory and landscape quality. In addition to these findings, it would 

be important to analyse systematically the umbrella value of this species in different 

landscapes. 

 

Ringed trees as indicators of breeding continuity 

We observed more ringed trees in Switzerland than in Sweden. Assuming that sap licking 

is a general habit of European Three-toed Woodpeckers (Glutz von Blotzheim 1994; 

Pechacek 1995; Ruge 1968; Scherzinger 1982), a longer presence of this bird species in 

the same habitat would result in a higher number of ringed trees. Also, the estimated age 

of ringed trees does not refute this hypothesis. Indeed, we found no signs of very long 

use (i.e. the tree has formed bulges) in Sweden, whereas in several breeding forests in 

Switzerland such trees have been observed. Based on these findings, we therefore 

expect a longer breeding continuity in Swiss forests as compared to Swedish forests. 

This hypothesis may be explained by the different forest management regimes in Alpine 

and boreal forests. In Switzerland, selective tree cutting creates a dynamics of small gaps 

within stands, which retains favourable habitat features for the woodpecker over time. 

Hence, the Three-toed Woodpecker’s presence in the same habitat may be continuous 

over a very long time and many and very old signs can be found. By contrast, in Sweden 

clear-cutting has been the general harvesting type since the late 19th and the rotation time 

of around 80 years for Norway spruce and 100 years for Scots pine is relatively short. 

Three-toed Woodpeckers need forests with dead wood, either in old-growth stands or in 

stands subject to stand-replacing disturbance by fire or wind (Angelstam & Mikusinski 

1994). Consequently, in managed forests in Sweden they would not be expected to stay 

longer than about 10-30 years in the same old forest patch, a too short a time to create 

numerous signs or signs of long use. The introduction of variable retention in forestry 

(Angelstam & Pettersson 1997) is likely to increase the time with sufficient amount of 

dead wood during a rotation by about 10 years at the beginning of the succession. Our 

findings are corroborated by Nilsson and Ericson (1997) who expect species in temperate 

forests to be more dependent on spatial and temporal forest continuity than species in 

boreal forests, due to the different disturbance regimes. 
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Our data suggest the existence of a non-linear relationship between the number of ringed 

trees and the probability of woodpecker presence. Thus, the number and age of ringed 

trees may be used as indicators of breeding continuity. However, it is not easy to 

differentiate the ringed trees of Three-toed Woodpeckers from those of the Great Spotted 

Woodpecker (Dendrocopos major), a sympatric species, which, although it prefers 

making rings in deciduous trees, may occasionally do so on spruce and pine trees. In 

addition, while the presence of a breeding species can be easily demonstrated, it is 

difficult to establish its absence. Hence, we cannot exclude the presence of breeding 

Three-toed Woodpeckers in our control forests. We are aware of this limitation of our 

study design. 

 

Influence of management intensity and accessibility 

In managed forests, dead wood amounts are closely related to the intensity of forest 

management, which is also linked to the accessibility of harvesting areas, as 

demonstrated in this study. Because of Switzerland’s difficult terrain, in about 80% of the 

area, trees are felled by hand using chainsaws and then they are transported by tractors 

or cable cranes to the nearest forest road. In addition to regular selective tree cutting, 

diseased and dead trees are removed by salvage cutting (Guby & Dobbertin 1996). In 

our study, the road network density negatively affected dead wood amounts, and, 

indirectly, the spatial distribution of Three-toed Woodpeckers in Switzerland (Fig. 3). 

In Switzerland, the network of forest roads grew by about 10% or 2.5 m ha-1 over the past 

ten years (Brassel & Brändli 1999). Thus, the forest in the Alps and Lower Alps has 

become more accessible, whereas accessibility in the Central Plateau has only improved 

slightly. If this trend in forest road growth in mountain areas continues, and if the 

management goals do not change in favour of more dead wood in the forests, we can 

expect a negative influence on woodpecker populations. The predicted threshold value, 

beyond which road density has a strong negative impact on Three-toed Woodpecker 

presence, was between 2.6 and 3.5 km per km2. Assuming that the current growth of the 

forest road network of 10% per decade continues, the critical threshold of 2.6 km per km2 

could be reached in about 30 years (based on the current mean value of road density in 

Three-toed Woodpecker forests of 1.8 km per km2).  
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In Sweden the road network density was generally lower than in Switzerland and did not 

explain the presence or absence of Three-toed Woodpeckers. Indeed, for the range of 

road network density found in Sweden (i.e. 0-2.9 km per km2; cf. Table 2 and Fig. 3), we 

found no significant correlation between dead wood amounts and road/track density in 

Switzerland either. In Sweden the presence of a dense road and track network has been 

easy to establish due to the flat topography. It was variation in the intensity of forest 

owner’s management practices rather than variation in road density that determined the 

amount of dead wood in Sweden. 

 

Perspectives 

Based on the observed differences between the Swedish and Swiss study areas, we 

suspect that Three-toed Woodpeckers in central Sweden have to move around 

considerably in the search for adequate forest patch islands within a generally intensively 

managed forest landscape. In contrast, Three-toed Woodpeckers in Switzerland are likely 

to be more sedentary, often located in areas on steep slopes and difficult to access 

(Bütler & Schlaepfer 1999), i.e. where the road network is poorly developed. Two 

important management consequences follow from this hypothesis: in Sweden clear-cut 

patch design (directly affecting the amount of residual dead wood and indirectly affecting 

the local density of old forest patches), and stand rotation time are likely to be closely 

related to the trend in the Three-toed Woodpecker population; and in Switzerland, the 

level of road network development that facilitates forest management intensification and 

salvage cutting, whereby declining and dying trees are removed, is likely to affect Three-

toed Woodpecker populations. Testing these hypotheses would necessitate studies of 

the detailed use of habitat by Three-toed Woodpeckers using radio-telemetry. 

The accuracy of the recommended targets for dead tree volumes and basal areas should 

be verified in other sub-Alpine and boreal forests with various site productivity conditions 

and forest management types. Some further work has to be done in order to account for 

the large scale succession, for example assessment of the usefulness of snag retention 

in clear-cuts for the Three-toed Woodpecker. 
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5. Conclusion 

We demonstrated the dependence between Three-toed Woodpecker presence and high 

dead wood amounts, both in Switzerland and central Sweden. Thresholds related to 

dead wood amounts, and, in particular, to standing dead trees existed for both the 

nominate P.t. tridactylus and P.t. alpinus subspecies of this bird. In Switzerland the high 

road network density, a measure for the good accessibility of the forest stands for 

harvesting, negatively affected the woodpecker’s presence. We suggest that a 

quantitative target for Three-toed Woodpeckers is at least 5% standing dead trees in 

forest stands over about 100 hectares. This proportion corresponds to about ≥ 1.3 m2 ha-1 

(basal area) or ≥ 15 m3 ha-1 (volume), still depending on site productivity. Because of its 

dead wood dependence, the Three-toed Woodpecker may also be considered as an 

indicator species for sites with a high value for other specialised species dependent on 

dead wood, many of which are red list species. Our results suggest that the number of 

ringed spruce or pine trees resulting from sap drinking, a characteristic habit of this 

woodpecker, can be used as an indication of the continuity of its presence.  
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Abstract 

Sustainable forest management goals include the conservation of biological diversity and 

its constituent elements. Dying and dead trees, in particular, have been recognised as 

being of prime importance as resource and habitat for numerous animal and plant 

species. Nevertheless, few quantitative target values have been defined for dead wood 

management purposes, and they often lack well-founded scientific bases. 

In this study we developed such quantitative targets for standing dying and dead trees 

(defined as snags), based on the habitat requirements of the three-toed woodpecker 

Picoides tridactylus, a keystone species whose presence is considered an indicator of the 

properties of naturally dynamic forests. First we developed a theoretical model based on 

energy requirements and with predictions for woodpecker breeding probabilities as a 

function of available snag quantities. Then an empirical field study was conducted in 

Switzerland with the aim of verifying the model predictions. For this purpose, 12 pairs of 

sites of 1 km2 in size and comprising one site with and one without a breeding 

woodpecker, were sampled for snags. We compared these sites using logistic 
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regression. Finally, the comparison of the theoretical model with the field approach 

enabled the derivation of quantitative snag targets for spruce forests. 

Both our theoretical model and the logistic regression analyses resulted in similar snag 

quantities for predicted woodpecker occurrence. For management purposes, we 

recommend the observation of the precautionary principle by striving for target values of 

1.6 m2 ha-1 (basal area) or 18 m3 ha-1 (volume) or 14 (dbh ≥ 21 cm) snags per hectare in 

an area of 100 ha, corresponding to a probability of ≥ 0.9 for woodpecker occurrence in 

both approaches. Maintaining or achieving such optimal snag levels allows the local 

persistence of three-toed woodpeckers in forest patches and may serve to define 

strategies for the maintenance of local populations. 

 

1. Introduction 

The conservation of biodiversity has become one of the key goals of sustainable forest 

management (Lindenmayer et al. 2000). At a certain level of forest management 

intensity, the lack of habitat components causes once naturally occurring species to 

decline to the level where they risk extinction. Habitat destruction and degradation is 

currently considered as the major cause of species extinction (e.g., Tilman et al. 1994, 

Dobson et al. 1997, Fahrig 2001). In Switzerland, for example, in addition to selective 

logging of large trees, diseased and dead trees are often systematically removed for 

sanitary reasons by means of salvage cutting (Guby and Dobbertin 1996) causing a lack 

of habitats and resources for species that depend on dead wood. Quantitative target 

values may be derived from reference systems, such as naturally dynamic forests, with 

the aim of restoring dead wood and other important habitat components in managed 

forests. However, none or very few natural forests remain in most parts of Europe. Also, 

the amount of dead wood in natural forests may be so extensive – up to 30% of dead 

stems (Linder et al. 1997) or 25% of above ground biomass (Siitonen 2001, Nilsson et al. 

2002, Bobiec in press) – that such targets would be incompatible with the economic 

objectives of multifunctional forestry. Another approach involves the quantification of the 

ecological preferences of species of special interest and derivation of quantitative target 

values for use in management (Simberloff 1995, With and Crist 1995, Fahrig 2001). One 

difficulty here, however, is the definition of species of special interest and justification of 

their role as biodiversity surrogates (Thompson and Angelstam 1999). The use of the 

keystone, indicator, focal and umbrella species concepts (Pearson 1994, Lambeck 1997, 
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Simberloff 1998, Fleishman et al. 2000) for management considerations is currently 

increasing, in spite of many remaining scientific uncertainties in relation to certain species 

being appropriate proxies for others (Lindenmayer et al. 2000). 

Among vertebrates, woodpeckers are of special importance due to their key role in 

supplying forests with tree-cavities, serving secondary users as nesting or roosting holes 

(Saari and Mikusinski 1996). In terms of their ecological requirements, woodpeckers are 

considered as being the most demanding guild among resident bird species (Angelstam 

1990, Mikusinski and Angelstam 1997). The occurrence of several species of 

woodpeckers is indicative of the properties of naturally dynamic forests (e.g. old trees, 

dead wood, structural diversity) (Mikusinski and Angelstam 1997). The three-toed 

woodpecker Picoides tridactylus, in particular, has recently been proposed as a keystone 

species (Imbeau 2001) and a possible indicator of high biodiversity, i.e. old trees and 

large dead trees (Mikusinski et al. 2001, Nilsson et al. 2001). 

One of the most important habitat features for three-toed woodpeckers are large, 

standing dying and recently dead trees (Hogstad 1970, Hess 1983, Pechacek 1995, 

Murphy and Lehnhausen 1998, Ruge et al. 1999b). Such dead wood pieces are the 

rarest of the diverse dead wood substrata, especially in managed forests (Green and 

Peterken 1997, Fridman and Walheim 2000). They still have a certain economic value 

and may, therefore, be cut when timber is harvested. Ecological studies on dead wood 

have demonstrated the prime importance of large diameters and standing compared to 

lying dead trees (Samuelsson et al. 1994). They provide habitats and resources for 

numerous threatened animal, plant and fungal species (Thomas 1979, Utschick 1991, 

Morrison and Raphael 1993, Samuelsson et al. 1994, Smith 1997, Jonsson and Kruys 

2001). Recently, dead wood has been proposed as a new indicator of forest biodiversity 

to be approved by the Fourth Ministerial Conference on the Protection of Forests in 

Europe in 2003 (<www.minconf-forests.net> 29 April 2002). Dead wood also figures in 

modern certification standards for best forestry practices, as defined, for example, by the 

Forest Stewardship Council (FSC). With its requirement of forests with relatively high 

dead wood amounts (Derleth et al. 2000) and demonstration of threshold responses 

related to dead wood (Bütler et al. unpubl.), the three-toed woodpecker is directly linked 

with the structure-based biodiversity indicator ‘dead wood’. 

In spite of the growing agreement between conservation biologists, forest managers and 

political circles on the importance of dying and dead trees, the few existing quantitative 
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dead wood management targets for European forests often lack well-founded scientific 

bases. Without sound quantitative targets, however, the achievement of management 

goals and progress towards sustainable forestry cannot be assessed. Due to its specific 

requirements for standing dying and dead trees (defined as snags), and due to its 

qualities as a keystone species and biodiversity indicator, the three-toed woodpecker was 

used in this study to define quantitative snag target values for sustainable management 

of spruce forests. The aims of this paper are: 1) to develop and validate a theoretical 

model based on the energy budgets of the three-toed woodpecker, thus predicting the 

spatial densities of snags required to meet this woodpecker’s energy requirements; 2) to 

test these predictions by carrying out a subsequent field study and 3) to derive 

quantitative management recommendations through the definition of snag target values. 

 

2. Methods 

The probability of presence of the three-toed woodpecker Picoides tridactylus was 

predicted as a function of the snag density (SNAG) by developing a simple model based 

on the energy requirements of the three-toed woodpecker, and on different assumptions 

with respect to food selection and prey availability. After a sensitivity analysis, this 

theoretical model was validated on ten study sites in Switzerland. In order to verify the 

model predictions concerning snags, a field study, aimed at measuring the quantities of 

snags actually available in sites where three-toed woodpeckers do and do not breed, was 

subsequently carried out at 24 sites. A logistic regression analysis on the “presence – 

absence” data in these sites also resulted in a prediction of the probability of woodpecker 

presence as a function of the snag density. Through comparison of both probability 

predictions, quantitative snag target values were then derived for this woodpecker 

species. 

 

2.1. The bioenergetic model 

The basic idea behind our model is that a three-toed woodpecker breeding pair has to 

find sufficient energy sources within its home-range so as to fuel all its activities over the 

course of one year (reproduction, moulting, over-wintering etc.). According to Glutz von 

Blotzheim (1994), the mean reproduction of a successfully breeding pair is 1.8 young 



Paper IV 

 153

birds. Such a bird group (2 adults and 1.8 young) is defined as a family. Thus, we 

included in our model the energy needs of the young birds over 14 weeks, after which 

they are supposed to leave the home-range definitely. Following Hess (1983) we defined 

the number per area unit of foraging trees as the most important habitat feature, while 

regarding the availability of trees for nesting, drumming etc. as not being limiting factors. 

For practical management considerations, the density of all snags, and not only potential 

foraging trees, was defined as key variable in the model (Fig. 1). As an insectivorous bird, 

the three-toed woodpecker gains its energy through insect predation. According to the 

literature, bark beetles (above all Ips typographus) were considered as the most 

important energy source (Hutchinson 1951 cit. in Baldwin 1968, Hogstad 1970, 

Sevastjanow 1959 cit. in Scherzinger 1982, Hess 1983, Pechacek and Kristin 1993, 

Formosow et al. 1950 cit. in Glutz von Blotzheim 1994). Bark beetles occur only in a 

certain phase in the gradual change in the properties of a dying and dead tree. Hence, 

only a given proportion (b) of snags, trees which have still some bark left, are potential 

foraging trees. Koplin (1972) estimated the daily energy requirements of free-living three-

toed woodpeckers by measuring gross energy intake and energy in excrement. In his 

model, the energetic requirement is a function of air temperature, considered as the most 

important metabolic factor. This model served as basis for the estimation of the yearly 

energy requirements of woodpeckers in our model, defined as the number of consumed 

prey during one year (CPR). As a substitute for lacking data on movements and energy 

expenditure by woodpeckers, we used the potential home-range size (PHR), defined as a 

home-range within a minimum and maximum size, facilitating the viability of the 

woodpecker family. The size range was based on home-range sizes reported in the 

literature. 

The available prey number (APR) of the most important energy source, i.e. bark beetles, 

was estimated on the basis of reproduction and mortality rates from the literature  

(cf. Variable estimation). Since bark beetles live beneath the tree bark, the mean bark 

area infested by beetles (MIA) was a further variable included in the model. Finally, we 

defined the woodpecker’s foraging efficiency (FEF) as a variable that takes into account a 

certain loss of prey during foraging. Indeed, even when virtually scaling the bark of a 

foraging tree, the woodpecker will not capture all available prey items, since bark chips 

that fall to the ground may contain undetected items. In addition, other insectivores may 

consume bark-living insects. 
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Fig. 1:  Definition of snags and potential foraging trees for the 
three-toed woodpecker, as used in this study. 

 

Based on the above considerations, the snag density needed to meet the woodpecker’s 

energy requirements can be estimated by calculating: 

 

=21 * * * *
CPRSNAG

b PHR APR MIA FEF
  (1) 

where 

SNAG21 = density of snags with a diameter at 1.3 m (dbh) ≥ 21 cm (cf. Validation of the 

bioenergetic model) required to meet the annual energy requirements of a 

woodpecker family [snags * ha-1], 

CPR  = bark beetle prey consumed in the course of one year by a woodpecker family 

[consumed beetles * year-1], 
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PHR  = potential home-range size of a woodpecker breeding pair [ha], 

APR  = available prey over one year per square meter of bark on potential foraging 

trees in the woodpecker’s home-range area [available beetles * m-2 * year-1], 

MIA  = mean infested bark area of a potential foraging tree [m2 * foraging tree-1], 

FEF  = foraging efficiency of an adult woodpecker [consumed beetles * available 

beetles-1]. 

b  = proportion of potential foraging trees to all snags [foraging trees * snags-1]. 

 

Since a woodpecker breeding pair consists of two adult birds and is supposed to produce 

1.8 young birds annually,  

CPR is further defined by 

CPR = 2 * CPRa + 1.8 * CPRy  (2) 

where 

CPRa = bark beetle prey consumed over one year by 1 adult woodpecker, 

CPRy = bark beetle prey consumed over 14 weeks by 1 young bird. 

 

CPRa is further defined by 

 

=

= ∑
12

  1

( )30 * *i

i
a a

GEI TCPR p
e

   (3) 

where 

GEI = gross energy intake in Joule per day = (51.46 – 0.67 * Ti) * 4185 J, according to 

Koplin (1972), 

Ti = mean monthly temperature in °C 
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e = energy content in Joule of 1 bark beetle item, 

pa = proportion of bark beetles in the diet of an adult woodpecker. 

 

CPRy is further defined by 

=

= ∑
14

  1

( ) * ( ) * ( )
7 *

j

y
y

f

BW j p j p BW
CPR

w
  (4) 

where 

BW(j) = body weight in week j [g] 

py (j) = proportion of bark beetles in the diet of a young bird in week j 

p(BW) = proportion of body weight a young bird is eating per day, 

wf = fresh weight of a bark beetle larva or adult [g]. 

 

APR is further defined by 

=

= ∑
52

  1

1 * * * 1- ( )
52 a

j
APR a n m j   (5) 

where 

a = bark beetle attack density, i.e. the number of nuptial chambers per square meter of 

bark [m-2], 

na = mean number of eggs per nuptial chamber, 

m(j) = cumulative mortality rate of eggs, larvae, pupae, imagos, immature and adult 

beetles in week j. 
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2.2. Variable estimation 

CPR 

In order to estimate the consumed prey  CPR  we assumed a moisture content of 70% 

for Ips typographus larvae or adults (Bell 1990), a mean caloric content of 83.7 J for one 

item (Koplin 1972, Barbault 1997) and a dry weight  wd  of 0.0041 g (Wermelinger pers. 

comm.) and, thus, fresh weight wf = wd /0.3. Following Koplin’s GEI-model, at 0 °C an 

adult woodpecker was supposed to consume prey whose fresh weight represents about 

0.5 times the woodpecker’s body weight. Based on the consideration of the data 

available on bird digestion (Karasov 1990) and energy requirements for different bird 

sizes (Kendeigh 1970), this appeared to be a realistic winter daily diet for an insectivorous 

bird. The proportion of bark beetles in the diet of an adult woodpecker  pa  was assumed 

to be 0.75 (Hutchinson 1951 cit. in Baldwin 1968, Hogstad 1970, Sevastjanow 1959 cit. in 

Scherzinger 1982, Hess 1983, Pechacek and Kristin 1993, Formosow et al. 1950 cit. in 

Glutz von Blotzheim 1994). 

The body weight in week j  BW(j)  of young woodpeckers was estimated according to the 

growth curve of Pechacek and Kristin (1996), in which the body weight is 20 g in the first 

week, 50 g in the second week and 65 g from the third week on. Since the nestlings’ 

growth is fast and the energy cost of growth is high, and considering data for other bird 

species (Westerterp 1973), we assumed that a young bird consumes 0.7 times its body 

weight per day. The proportion of bark beetles in the diet of a young bird in week j  py (j)  

was defined as 5.8% during weeks 1-3 (Pechacek and Kristin 1996), 10% in week 4, 

20% in week 5, 30% in week 6, 50% in week 7 and 75% from week 8 on. 

Based on the above assumptions and on mean monthly temperatures Ti between –6 and 

+12 °C, the estimated CPR varied between 1.605*106 and 1.623*106 bark beetle items 

per year (Table 1). Its probability distribution was assumed to be uniform (cf. Monte Carlo 

simulation). 

 

PHR 

The potential home-range size  PHR  was assumed to vary uniformly between 44 and 

176 ha, corresponding to the maximum and minimum home-range size reported in the 
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literature for Picoides tridactylus alpinus (Bürkli et al. 1975, Scherzinger 1982, Hess 1983, 

Pechacek 1995, Dorka 1996, Pechacek et al. 1999, Ruge et al. 1999b). 

 

APR 

The breeding density of Ips typographus is highly variable within a tree, among trees and 

at different bark beetle population levels (endemic to epidemic). Our estimation was 

based on data for endemic (no outbreak) population levels in natural sub-Alpine spruce 

forests. Only one beetle generation per season was expected and the egg laying was set 

to the second week of June (Nierhaus-Wunderwald 1995). With an attack density  a  of 

150 nuptial chambers per m2 (Weslien and Regnander 1990) we expected an average  

na  of 27 eggs per nuptial chamber (Thalenhorst 1958). The duration of the development 

cycle was defined as 3 weeks for eggs, 3 weeks for larval stage and 6 weeks for pupal 

and imago stage. The mortality rate  m(j)  in week j was expected to be linear during each 

development stage and to reach 25% of the initial population in week 3, 70% in week 6 

and 85% in week 12 (Thalenhorst 1958, Balazy 1968). During the 40 weeks of maturate 

feeding, hibernating, flight and invasion on new trees, another linear mortality of 50% of 

the individuals that reached full development was expected. 

Based on the above assumptions, we estimated the APR as 657 ± 216 (mean ± SD) and 

normally distributed within xa = 234 and xb = 1080 (Pr(xa < Z < xb) = 0.95); cf. Monte Carlo 

simulation. 

 

MIA 

Very little data exists on the proportion of spruce tree bark area, MIA, infested by Ips 

typographus. Gonzalez et al. (1996) reported a MIA of 21 m2 for spruce trees with a 

mean dbh of 46 cm for an endemic population level. Weslien and Regnander (1990) 

indicated attacks of 50% of the tree height for spruce trees with a mean dbh of 30 cm. 

Based on Gonzalez et al. (1996) and Weslien and Regnander (1990) and our own data 

on the diameter frequency distributions of spruce trees (Bütler unpubl. data), we 

estimated the MIA as 12.5 ± 3.8 m2 (mean ± SD) and normally distributed within xa = 5 

and xb = 20 (Pr(xa < Z < xb) = 0.95); cf. Monte Carlo simulation. 
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FEF 

Capture rates of insect prey vary seasonally, mainly in relation to weather (Wolda 1990). 

No data was found on the foraging efficiency of bark beetle predation by woodpeckers. 

Bark chips removed by the woodpecker fall to the ground and may contain bark beetle 

items that are not consumed. Based on Baldwin (1968), we estimated the FEF as 

normally distributed with 0.50 ± 0.13 (mean ± SD) within xa = 0.25 and xb = 0.75 (Pr(xa < 

Z < xb) = 0.95); cf. Monte Carlo simulation. 

 

b 

The proportion of potential foraging trees to all snags  (b)  was determined by field 

measurements of randomly selected snags (N = 1392) at six study sites (Bütler unpubl. 

data). The decomposition stage of each tree was determined using the method described 

in Thomas (1979). Only trees with the decomposition stages “dying”, “dead” and “loose 

bark” were considered as potential foraging trees (Fig. 1). As we observed small 

variations of  b  between the six study sites, we defined it as a constant (b = 0.8). 

 

2.3. Monte Carlo simulation and sensitivity analysis 

The input variables (CPR, PHR, APR, MIA and FEF) do not have one determined value, 

but are defined as independent random variables. In order to calculate the outcome 

variable SNAG21, we undertook a random experiment by means of ten Monte Carlo 

simulations, based on a sample size of N = 10'000 for each input variable. The variables 

PHR and CPR were supposed to have a uniform probability distribution. The largest and 

smallest home-range sizes reported in the literature for European three-toed 

woodpeckers were used to define the upper and lower limits  xmax  and  xmin  for PHR 

(Bürkli et al. 1975, Scherzinger 1982, Hess 1983, Pechacek 1995, Dorka 1996, 

Pechacek et al. 1999, Ruge et al. 1999a). For CPR, the definition of  xmax / xmin  was 

based on lowest/highest monthly mean temperatures within the range of the three-toed 

woodpecker’s geographic distribution. We assumed a normal distribution for the variables 

APR, MIA and FEF. The mean values of the variables related to bark beetle infestation 

(APR, MIA) corresponded to an endemic bark beetle population level (cf. Table 1). 

Ecologically relevant limits  xa  and  xb  were chosen in such a way as to obtain 95% of 
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the values within those limits, and the corresponding standard deviations were then 

calculated. Finally, we plotted the probability density function of the simulated output 

random variable SNAG21 and its cumulative distribution function. 

Table 1:  Probability distribution functions defined for the variables in the 
bioenergetic model used to estimate the density of dying and dead 
trees required to meet the three-toed woodpecker’s energy needs. 

 
Variable [unit ] Type of 

distribution 
xmin / xmax µ / σ  1) xa / xb  

2) 

PHR [ha] uniform 44 / 176   

APR [m-2] normal  657 / ± 216 234 / 1080 

FEF [percent] normal  0.50 / ± 0.13 0.25 / 0.75 

MIA [m2] normal  12.5 / ± 3.8 5 / 20 

CPR [number] uniform 1.605*106 / 1.623*106   

1)  µ = mean; σ = standard deviation 
2)  P(xa < Z < xb) = 0.95 

 

The parameter estimation of the input variables (xmin, xmax, xa, xb, mean and standard 

deviation) for the model variables is subject to uncertainties. A sensitivity analysis 

changing each variable in turn by ± 20% revealed the extent of changes of the predicted 

SNAG-value. A simultaneous change of ± 20% for all variables was undertaken to 

demonstrate an extreme situation. 

 

2.4. Validation of the bioenergetic model 

The bioenergetic model was validated at 10 study sites in Switzerland, where the three-

toed woodpecker was present (n = 6) and absent (n = 4), respectively. Woodpecker 

presence was determined by visual and aural detection and fresh foraging signs. All of 

the study sites were dominated by sub-Alpine spruce forests and the surveyed areas 

varied between 0.6 and 3.0 km2. The snags were measured at each site using a recently 

developed method that is further described elsewhere (Bütler and Schlaepfer unpubl.). 

This method quantifies snags by coupling remote sensing techniques with a Geographic 

Information System. The dbh of snags that can be quantified by this method is ≥ 21 cm. 

With the model eq. (1), and with the defined probability distribution functions as input 

values (Table 1), the p-value (probability of woodpecker presence) associated to each 
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measured SNAG21-value was then calculated and compared with information on the 

presence/absence of the woodpecker. 

 

2.5. Study sites and design for the empirical model 

The field study was conducted between 1998 and 2001 at 24 sites located in Switzerland 

in the eastern/central and western Pre-Alps and in the Jura Mountains. Regional pairs of 

field plots of 1 km2 in size were selected (2x12 units). Each pair of plots consisted of one 

plot where the three-toed woodpecker was present during the breeding season of the 

study years (referred to as “presence”) and one where it has never been observed 

(referred to as “absence”). Breeding was proven for three plots, whereas it was probable 

for the others, according to the definition in the International Ornithological Atlases 

(Sharrock 1973). The selection of presence/absence field plots was based on data 

provided by the Swiss ornithological station of Sempach (cf. Schmid et al. 1998) and local 

bird watchers in Switzerland, and was subject to the following criteria: a) spruce tree 

dominated forests; b) the majority of the forest stands more than 100 years old, i.e. 

mature to over-mature, the stand age preferred by three-toed woodpeckers; c) between 

1200 and 1700 m a.s.l., where the probability of three-toed woodpecker occurrence is 

highest (cf. Schmid et al. 1998). 

In each field plot, a 4 x 4 sampling grid was established, with sampling points 250 m 

apart. 

 

2.6. Data gathering and statistical analyses 

Data was collected by fieldwork at the sampling points using angle relascope, clinometer 

and compass. The minimal inventory diameter for snags was 10 cm dbh (SNAG10) and 

their minimum height 1.7 m. The number of trees being wider than the gap in the 

relascope at each point represented the basal area (i.e. the area of the cross section of a 

tree stem at 1.3 m inclusive of bark; m2 ha-1) of the forest at the sampling point. 

For statistical analyses we used the STATISTICA 6.0® software package. The mean 

basal area of SNAG10 at the sampling points was calculated for each field plot. The plots 

were then separated into two groups (“presence” and “absence”) and group means and 

ranges were calculated. We checked for between-group differences by calculating  
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t-statistics. Logistic regression (Hosmer and Lemeshow 1989) was chosen as the 

appropriate method to predict the probability of the presence or absence (coded as 1 and 

0) of three-toed woodpeckers as a function of the SNAG10-densities.  

 

3. Results 

3.1. The bioenergetic model and its validation 

The simulated model solution predicted a probability of < 50% for presence of the three-

toed woodpecker, if the density of standing SNAG21 (dbh ≥ 21 cm) is less than five trees 

per hectare (Fig. 2). For densities rising from five to fourteen trees, the expected 

probability increased from 50 to 90%. 
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Fig. 2:  Simulated solution of the bioenergetic model predicting the probability of three-
toed woodpecker presence as a function of the density of dying and dead trees 
with a dbh ≥ 21 cm. 
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Table 2:  Sensitivity analysis for the output value of the bioenergetic model: 
changes in predicted SNAG21-values for p(woodpecker presence) = 
0.5 after 20% changes of input variables. 

 
Changed variable New SNAG21

1) (+ ∆) New SNAG21 (- ∆) Deviation 2) 

CPR 6.2 4.1 - 0.9 to + 1.2 

PHR 4.3 6.5 - 0.7 to + 1.5 

APR 4.2 6.4 - 0.8 to + 1.4 

MIA 4.3 6.5 - 0.7 to + 1.5 

FEF 4.2 6.5 - 0.8 to + 1.5 

CPR, PHR, APR, MIA, FEF 2.9 10.3 - 2.1 to + 5.3 
 

1)  Original SNAG21-value for p(woodpecker presence) = 0.5 was 5.0 
2)  Deviation is the change in predicted upper and lower limits for the SNAG21-value 

 

The results of the sensitivity analysis (Table 2) show the deviation of the SNAG21-values 

(for p(woodpecker presence) = 0.5) due to changes of ± 20%, in turn, of each input 

variable. The original SNAG21-value (p = 0.5) was 5.0. Deviations of the output SNAG21-

value varied between – 0.9 and + 1.5. For example, changing the number of consumed 

prey  CPR  by + 20% (i.e. assuming lower air temperatures), increased the required 

SNAG21-density from 5.0 to 6.2 trees per hectare. Positive shifts in SNAG21-values were 

always larger than negative shifts. 

Table 3:  Validation of the bioenergetic model for 10 study sites. The SNAG21-
value was measured for each study site and the associated p-value 
calculated with the bioenergetic model equation and the defined 
probability distribution functions (Table 1) as input values. 

 
Site with three-toed woodpeckers SNAG21 [n ha-1]1) P(Woodpecker)2) 

Hobacher 7.1 0.7 
Hinteregg 11.2 0.8 
Bärenegg 10.7 0.8 
Hinterberg 2.9 0.2 
Bois des Fayes 4.5 0.4 
Bödmeren 3.4 0.3 

Site without three-toed woodpeckers   

Langenegg 1.5 < 0.02 
Mont Pelé 1.9 < 0.05 
Schraewald 1.2 < 0.01 
Les Arses 0.8 < 0.01 

1) measured SNAG21- value 
2) predicted probability of three-toed woodpecker presence by the bioenergetic model 
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The validation of the model resulted in predicted probabilities of three-toed woodpecker 

presence ≥ 0.2 for sites where the species was actually present and p < 0.05 for those 

where it was absent (Table 3). 

 

3.2. Results of the empirical model 

The mean basal area of SNAG10 showed significant differences between the one km2 

field plots with and without woodpeckers. For “presence” plots we obtained 2.3 (0.6 – 6.0) 

m2 ha-1 (mean; range) and for “absence” plots 0.4 (0.0 – 0.8) m2 ha-1 (DF = 22, t = 4.37,  

p = 0.0002). 

Indeed, the probability of woodpecker presence increased significantly with SNAG10  

(Fig. 3; χ2 = 25.04, p < 0.000, DF = 1). In this empirical model the probability of three-toed 

woodpecker presence increased from 0.10 to 0.95 when the basal area of SNAG10 rose 

from 0.6 to 1.3 m2 ha-1. 

Fig. 3:  Logistic regression model showing a significant relationship 
between the stand basal area of dying and dead trees and the 
probability of three-toed woodpecker presence. 
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3.3. Comparison of the bioenergetic with the empirical model 

In order to compare the results of the bioenergetic model with those of the field study, a 

data transformation was necessary, since both the measurement units and minimum dbh 

for snags differed. For this transformation we used an experimental curve of tree 

diameter distributions from field data from six study sites (Bütler unpubl. data; Fig. 4). 

Fig. 4:  Experimental determination of the proportion of the total 
tree basal area for snags with a dbh ≥ 21 cm and  
< 21 cm, respectively. Number of snags (nsnags) – the 
broken line – on the left axis and tree basal area 
multiplied with nsnags (TBA * nsnags) on the right axis. See 
text for details. 

 

The predicted SNAG21-value, given as tree density (n ha-1 ≥ 21 cm), was translated into 

stand basal area (m2 ha-1 ≥ 10 cm) in two steps: 

a) ≥ ≥      
-1 2 -1

21cm 21cmdbhn ha  * TBA  = m  ha  

with: TBA = tree basal area [m2] = (0.5 dbh)2 
*π 

 dbhTBA  = tree basal area of the mean-sized tree with a dbh ≥ 21 cm 

 

nsnags TBA * nsnags [m2]

p<21

p≥21

d.b.h. [cm]10 21

p<21 + p≥21 = 1100 2

nsnags TBA * nsnags [m2]

p<21

p≥21

d.b.h. [cm]10 21

p<21 + p≥21 = 1100 2
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b) ≥ ≥

≥

      
2 -1 2 -1

21cm 10cm
21cm

1m  ha  *  = m  ha
p

 

with: p≥21 = proportion of total basal area of trees with a dbh ≥ 21 cm 

 

The mean-sized tree with a dbh ≥ 21 cm was 33.5 ± 12.1 cm (mean ± standard deviation; 

N = 485), corresponding to a dbhTBA  of 0.09 m2. The resulting p≥21 was 0.77. 

 

Figure 5 and Table 4 show the direct comparison between the solution of the 

bioenergetic model and the results of the logistic regression. Both probability functions lie 

close together, in particular for p(woodpecker presence) between 0.7 to 0.8. A SNAG10-

density of less than 0.6 m2 ha-1, i.e. p(woodpecker presence) < 0.5 in both, theoretical 

modelling and empirical field approaches, is considered as unfavourable for the 

woodpecker, whereas a density in excess of 0.9 m2 ha-1, i.e. p(woodpecker presence)  

> 0.5 in both approaches, is considered as favourable. 
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Fig. 5:  Comparison of the solution of the bioenergetic model and the 
regression results of the empirical model. Predicted probability of 
woodpecker presence as a function of the stand basal area 
[m2 ha-1] of dying and dead trees with a dbh ≥ 10 cm. 
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Table 4:  Necessary amounts of standing dying and dead trees required for predicted 
probabilities of the three-toed woodpecker presence. Comparison between the 
bioenergetic model results and the results of the logistic regression on field 
data. 

 
p(woodpecker presence) Results SNAG10 1) [m2 ha-1] SNAG10 [m3 ha-1] 2) SNAG21 3) [n ha-1] 

0.50 SNAG-model 0.6 7 5.0 

 Logistic regr. 0.9 10  

0.75 SNAG-model 1.0 12 8.5 

 Logistic regr. 1.0 12  

0.90 SNAG-model 1.6 18 14.0 

 Logistic regr. 1.2 14  

0.95 SNAG-model 2.2 25 19.5 

 Logistic regr. 1.3 16  
 
1)  SNAG10   standing dying and dead trees with a dbh ≥ 10 cm 
2)  approximate volume calculated with (stand basal area * tree height * shape index) according to 

Lindroth (1995) 
3)  SNAG21  standing dying and dead trees with a dbh ≥ 21 cm 

 

4. Discussion 

In North America, some land-management agencies have defined standards requiring 

the retention of specified numbers and kinds of snags to provide habitats for wildlife. For 

ponderosa pine (Pinus ponderosa) and mixed-conifer forests, for example, US Forest 

Service recommendations call for retention of 4.9 and 7.4 snags ha-1 with a minimum dbh 

of 46 cm and minimum height of 9 m (Ganey 1999). This author demonstrated, however, 

that these snag standards were seldom met even in unlogged forests and concluded that 

current standards may be unrealistic and should be reconsidered. One reason is that no 

solid scientific basis was provided for the recommended snag densities, thus highlighting 

the great need for additional work in these areas. The lack of scientific bases would also 

appear evident for European forest standards, as illustrated for example by the English 

national initiative of the Forest Stewardship Council (FSC): “Due to lack of scientific 

evidence it is not possible at present to give precise guidance on the amount, distribution 

and composition of dead wood that is appropriate to the individual site” (Anon. 1999). 

Several national FSC initiatives (e.g. Sweden, Germany, Switzerland) therefore provide 

only vague qualitative dead wood recommendations, such as “standing dead wood 
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should be created” or “in general, forest owners should maintain some dead trees in a 

stand”. The conclusions of numerous scientific papers emphasising the ecological 

importance of dead wood only seldom suggest quantitative recommendations (Table 5). 

Being careful, they remain generally qualitative: “There is a need to increase the input of 

large dead trees” (Kruys et al. 1999); “It is important to maintain standing dead trees, 

wherever possible, during harvesting and renewal operations” (Greif and Archibold 2000); 

“Leave as many large standing dead trees at harvest as possible” (Mccarthy and Bailey 

1994). 

Quantitative recommendations, however, are essential as operational management 

goals. Without quantitative targets neither the verification of the progress towards 

sustainable forest management nor a sound adaptive management is possible. Sippola 

et al. (1998) argue that quantitative recommendations are too rigid to imitate the variation 

occurring in natural forests. For example, whereas 5 m3 ha-1 of dead wood may be 

enough for some species, it would, however, always be too little for other species. The 

patchy distribution of snags observed in numerous studies argues against the application 

of uniform targets for snag retention across the landscape (Ganey 1999, Meyer 1999). 

Thus, in accordance with Sippola et al. (1998) and Ganey (1999), we suggest that a more 

reasonable goal might be to maintain high snag densities across portions of the 

landscape, while allowing a smaller than average investment in other areas. Hence 

quantitative recommendations should be associated with a distribution of the values 

representing species with different quantitative requirements. In this way the specialised 

species’ requirement regarding the local resource density within the home-range size of a 

breeding pair could be satisfied even if the recommended mean is considerably lower. 

Mikusinski et al. (2001) showed that the presence of three-toed woodpeckers was 

strongly associated with the presence of other forest bird species. Consequently, in spite 

of remaining uncertainties and an awareness that quantitative targets will never obtain the 

full endorsement of the various scientific, political and practical management viewpoints, 

in this paper we still propose provisional snag target values for the maintenance of 

biodiversity in spruce forests at the stand scale. 
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Table 5:  Amounts of dead trees in European sub-Alpine spruce forests (a) and 
recommended quantitative values for standing dead trees in North American 
and European forests (b). 

 
a) Stand age 

[years] 
Standing dead 

trees  
[m3 ha-1] 

Mean (range) 

Total lying and 
standing dead trees 

[m3 ha-1] 
Mean (range) 

Authors 

Managed forests     

Switzerland  0.0 – 4.2 3.9 – 25.8 Guby & Dobbertin (1996)
Switzerland > 100 12 19 Derleth et al. (2000) 
Switzerland all age classes 9 16 Brassel & Brändli (1999) 

Unmanaged forests     

Germany 140 - 260 28 84 (10 – 180) Rauh & Schmitt (1991) 
Germany old  20 - 60 Utschick (1991) 
Poland all age classes 59 131 Holeksa (2001) 
Slovakia all age classes  80 - 273 Korpel (1995) 
Slovakia all age classes  42 Korpel (1995) 
Slovakia all age classes  80 - 220 Korpel (1995) 
Switzerland > 100 32 63 Derleth et al. (2000) 

b) Recommendation Managed organism Authors 

North America   
California 1 clump per 2 ha of 15 snags 

> 23 cm d.b.h. 
Cavity-nesting birds Raphael & White (1984) 

Oregon 0.35 sound snags > 51 cm d.b.h. 
per ha 

Pileated woodpecker Bull & Meslow (1977) 

Oregon ≥ 8 snags per ha Pileated woodpecker Bull & Holthausen (1993)

Oregon ≥ 14 snags per ha Cavity-nesting birds Schreiber & Decalesta 
(1992) 

Washington 6 hard and 3 soft snags per ha Cavity-nesting birds Zarnowitz & Manuwal 
(1985) 

   
Europe   
Germany ≥ 2.5 – 5 m3/ha (medium term) 

≥ 7.5 – 15 m3/ha (long term) 
 Ammer (1991) 

Germany 5–10 m3/ha, i.e. 1-2 % of stems 
(target value);  
20-60 m3/ha, i.e. 5-10 % of stems 
(optimal value) 

Birds Utschick (1991) 

Sweden > 10 snags per ha Lesser spotted 
woodp. 

Olsson et al. (1992) 

United Kingdom 11-50 snags per ha, all d.b.h. 
(medium target) 
> 50 snags per ha, all d.b.h. (high 
target) 

 Kirby et al. (1998) 



Paper IV 

 170

Limitations and further development of the bioenergetic model 

The model presented in this paper was based on literature data for bark beetle breeding 

density, infested tree bark area and woodpecker home-range sizes. Our assumption 

about the preferred diet of the woodpecker as consisting mainly of bark beetles, i.e. Ips 

typographus, is a simplified view of a real diet that might be much more diverse, 

especially in the case of endemic bark beetle population levels. Since most studies on 

woodpecker diets have been conducted during bark beetle outbreak conditions, however, 

only very little data is currently available on diet components other than bark beetles. 

Another point to discuss is the validity of Koplin’s (1972) model for the gross energy 

intake that served as the input for our bioenergetic model. According to Blem (2000), the 

metabolised energy and the consequent food requirements of birds vary in relation to a 

complex number of factors, including body size, level of reproductive, digestive and 

physical activity, phase of moult cycle, radiation, air temperature, wind etc. Koplin’s 

model, considering only air temperature as the most important metabolic factor, is hence 

a simplified way to calculate energetic requirements. In addition, Koplin developed it for 

American three-toed woodpeckers and not for European populations. Different energy 

requirements between woodpecker subspecies cannot be excluded, even if no data is 

available on this question. 

Our model is based on the assumption that three-toed woodpeckers are completely 

resident in winter and do not leave their breeding home-range during a whole year. While 

this hypothesis is true for the Alpine subspecies Picoides tridactylus alpinus (Glutz von 

Blotzheim 1994), the nominate subspecies Picoides tridactylus tridactylus may undertake 

a partial migration to winter territories (Hogstad 1970). However, the size of measured 

winter feeding territories (5.5 to 8 ha in Hogstad 1970) is so much smaller than breeding 

home-ranges that the assumption of ‘all energy sources within the home-range’ seems to 

be acceptable for the nominate subspecies also. 

Our model exhibits an asymptotic curve (Fig. 2 and 5), suggesting an increase, even if 

diminishing, of the probability of woodpecker presence with increasing availability of 

snags. Raphael and White (1984) found that the density of all cavity nesting birds in the 

Sierra Nevada increased with the density of large snags (> 38 cm dbh) until reaching a 

snag density of about 7.5 ha-1. Above this snag density level, bird densities were 

evidently limited by other factors. Considering these findings, we believe that there is an 
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upper limit of snag density favouring woodpecker presence. Therefore, our model should 

not be over-interpreted at the upper end. We suggest that it should not be used where the 

p-value for occurrence is >>0.95. 

 

Snag targets for the three-toed woodpecker 

Our two approaches, undertaken in order to define quantitative snag target values based 

on three-toed woodpecker habitat preferences, were different. The bioenergetic model 

was mainly based on theoretical considerations, and its validation performed by a method 

using remote sensing techniques, i.e. aerial photo interpretation and Geographic 

Information System (Bütler and Schlaepfer unpubl.). Because of the limitations of these 

techniques, the results produced involved densities of snags with a minimum dbh of  

21 cm (i.e. numbers of trees per hectare). In contrast, the empirical model started from 

field measurements executed with the angle relascope technique and resulted in stand 

basal areas of snags with a minimum dbh of 10 cm (i.e. m2 ha-1). Due to the different 

measurement units and a different minimum dbh obtained by each approach, a 

transformation from n ha-1 to m2 ha-1 was necessary for comparison purposes (Fig. 4). In 

spite of the different approaches, the predicted amounts of required snags were similar at 

a 70-80% probability of woodpecker presence (Fig. 5, Table 4). This fact allows us to 

strengthen the reliability of the derived snag targets. 

We considered a basal area higher than 0.9 m2 ha-1 (p(woodpecker presence) > 0.5 in 

both approaches) as favourable for the woodpecker. However, in order to maximise the 

probability of local woodpecker presence and following the precautionary principle, for 

management purposes we suggest a higher snag target value. For the last ten years, 

Swiss three-toed woodpecker populations have been stable or even increasing (Schmid 

et al. 1998). Among the possible reasons for population growth figures the under-

exploitation of marginal mountain forests since the Second World War (Derleth et al. 

2000), which is related to a rapid increase in timber harvesting costs (Brassel and Brändli 

1999). In such conditions, the amount of dying and dead trees and the available food 

resources are likely to increase. A possible economic recovery of the timber market, 

leading to a harvesting intensification of marginal forests, however, could rapidly cause a 

reversal of the currently positive trend for the woodpecker population. Such 

considerations emphasise the usefulness of the precautionary principle. Spruce forests 
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favourable to three-toed woodpecker breeding must contain, among other features, 

sufficient amounts of dying and dead trees. We recommend the following target values 

for dying and dead trees: about 1.6 m2 ha-1 (basal area) or 18 m3 ha-1 (volume) of trees 

with a dbh ≥ 10 cm, corresponding to 14 standing trees per hectare with a dbh of ≥ 21 cm 

within an area with a size of an average home-range size (44–176 ha); i.e. corresponding 

to our sampling area of 100 ha. For such levels, the probability of three-toed woodpecker 

presence in our study was ≥ 0.9. As demonstrated in Figure 4, large snags are generally 

rare in managed forests (main mortality of small trees by stem exclusion processes), 

whereas their contribution to the total basal area is substantial. Considering the prime 

importance of large snags, we would argue that management recommendations either be 

given as basal area, or, if expressed in n ha-1, should specify the minimum tree diameter, 

and the area in ha for which this recommendation applies. Density targets without 

diameter precision and area of application may fail to fulfil the ecological objective they 

aimed for (Table 5). 

Our targets are higher than the dead wood amounts that have been measured in 

managed Swiss sub-Alpine forests, while they do not reach amounts measured in 

unmanaged forests (Table 5). Considering mean values for living trees in Swiss forests of 

32.3 m2 ha-1 and 354 m3 ha-1 (Brassel and Brändli 1999), the suggested snag target 

values represent not more than 5% of the living wood stock. We argue that, even in 

production forests, such a loss in favour of biodiversity should be acceptable. 

Our values are of the same order as the snag retention recommendations for North 

American and European forests that are based on cavity-nesting birds or other 

woodpecker species (Table 5). They are higher than Ammer’s (1991) recommendations, 

which were not, however, based on ecological preferences of birds. Many snag 

requirements for different woodpecker species are based only on their use of snags as 

nesting trees (Imbeau and Desrochers 2002). They implicitly assume that snags required 

for nesting are an important limiting factor to woodpecker populations. Imbeau and 

Desrochers (2002) argued that such models are highly unlikely to be successful in 

predicting long-term habitat needs, considering the extensive use of snags for foraging. 

Unlike these models, our snag retention prescriptions are designed to ensure a 

continuous supply of foraging trees and go beyond the aim of maintaining a supply of 

potential nesting trees. 
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So far quantitative recommendations for forest management have been made mainly for 

the scales of trees and stands, but rarely for forest management units and landscapes. 

However, maintenance of viable populations involves the provision of targets at multiple 

spatial and temporal scales (Larsson 2001, Angelstam et al. unpubl.). Using area-

demanding birds as modelling tools stresses the need for formulating targets at the levels 

of individuals, populations as well as metapopulations. For Alpine and boreal forests, bird 

groups such as woodpeckers (e.g., Pechacek and d’Oleire-Oltmanns, in press), grouse 

(e.g., Angelstam et al. 2001) and resident tits (e.g., Jansson and Angelstam 1999) are 

important focal species to begin with. 

Hence, for a species as the three-toed woodpecker, which is dependent on a continuous 

supply in space and time of snags of a particular quality, there still remains work to be 

able to formulate targets within the framework of sustainable forestry for the following 

issues: 1) How far apart can home-range sized areas exceeding the stand scale target 

be? 2) What proportion of a landscape needs to be in what phase of successional 

development of snags to maintain a local viable population? 3) Finally, in regions with 

other forest dynamics than the gap-phase dominated one prevailing in Alpine forests, the 

large-scale succession after stand-replacing disturbances need to be accounted for. 

 

5. Conclusion 

In this study we presented a model based on energetic needs of three-toed 

woodpeckers. Although simple, it enabled the quantification of snag requirements for this 

woodpecker species, which has been corroborated by a field study approach. The results 

made it possible to identify the snag quantities of local forest patches that are necessary 

to maximise the probability of local three-toed woodpecker presence. Forest patches 

presenting optimal quantities may be mapped and integrated into management planning 

concepts in order to define strategies for the maintenance of local populations of this bird 

species. Since the three-toed woodpecker is an indicator of forest biodiversity, 

management aimed at the maintenance of this species will also enable the fulfilment of 

other biodiversity goals. 
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