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Abstract

The purpose of this thesis is to define efficient parallel preconditioners based on the domain
decomposition paradigm and to apply them to the solution of the steady compressible Euler
equations.

In the first part we propose and analyse various domain decomposition preconditioners
of both overlapping (Schwarz) and non-overlapping (Schur complement-based) type. For the
former, we deal with two-level methods, with an algebraic formulation of the coarse space.
This approach enjoys several interesting properties not always shared by more standard two-
level methods. For the latter, we introduce a class of preconditioners based on a peculiar
decomposition of the computational domain. The domain is decomposed in such a way that
one subdomain is connected to all the others, which are in fact disconnected components. A
class of approximate Schur complement preconditioners is also considered. Theoretical and
numerical results are given for a model problem.

In the second part we consider the application of the previous domain decomposition
preconditioners to the compressible Euler equations. The discretisation procedure, based on
multidimensional upwind residual distribution schemes, is outlined. We introduce a frame-
work that combines non-linear system solvers, Krylov accelerators, domain decomposition
preconditioners, as well as mesh adaptivity procedures. Several numerical tests of aeronauti-
cal interest are carried out in order to assess both the discretisation schemes and the mesh
adaptivity procedures.

In the third part we consider the parallel aspects inherent in the numerical solution of the
compressible Euler equations on parallel computers with distributed memory. All the main
kernels of the solution algorithm are analysed. Many numerical tests are carried out, with the
aim of investigating the performance of the domain decomposition preconditioners proposed
in the first part of the thesis, in the applications addressed in the second part.
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Version abrégée

L’objet de cette thése est la définition de préconditionneurs paralléles performants basés sur
une approche de décomposition de domaines ainsi qu’a leurs applications a la résolution des
équations d’Euler stationnaires compressibles.

Dans la premiére partie de la thése, nous proposons et analysons différents précondi-
tionneurs de décomposition de domaines avec recouvrement (méthodes de type Schwarz) et
non-recouvrement (méthodes basées sur le complément de Schur). Pour les premiers, nous
utilisons des méthodes a deux niveaux avec une formulation algébrique de l’espace grossier.
Cette approche posséde plusieurs propriétés intéressantes qui ne sont pas toujours mises en
évidence par des méthodes & deux niveaux standards. Pour les seconds, nous introduisons
une classe de préconditionneurs basés sur une décomposition particuliére du domain de cal-
cul. Nous considérons également une classe de préconditionneurs avec une méthode de Schur
approchée. Nous donnons des résultats théoriques et numériques pour un probléme modéle.

Dans la deuxiéme partie de la thése, nous appliquons ces préconditionneurs de décom-
position de domaines aux équations d’Euler compressibles. Nous décrivons la procédure de
discrétisation basée sur des schémas distributifs de type multidimensional upwind. Nous intro-
duisons un cadre qui combine des schémas non-linéaires, des solveurs itératifs de type Krylov,
des préconditionneurs de décomposition de domaines ainsi que des maillages adaptatifs.

Dans la troisiéme partie de la thése, nous considérons les aspects paralléles des précondi-
tionneurs proposés dans la premiére partie de la thése. Des résultats numériques sont présentés
pour des cas test issus de 'aéronautique.
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Introduction

1.1 Motivation

In this thesis we consider parallel algorithms for the solution of the three dimensional steady
compressible Euler equations (CEE), which describe the conservation of mass, momentum,
and energy of inviscid flows.

The volume of literature of the last decade about the CEE and, more generally, about
Computational Fluid Dynamics (CFD), is impressive. Important improvements have been
achieved, due to the development of both computer hardware and numerical schemes. The
first leads to powerful supercomputers that employ parallel architectures, while the second
leads to efficient and robust numerical methods, that must be well-suited for the parallel
design of the supercomputers.

To obtain a numerical solution of the CEE, the equations have to be discretized both in
space and time. For space discretisation, there are four main classes of numerical methods:
finite difference (FD) methods, based on the direct discretisation of the derivatives, finite
element (FE) methods, based on the weak formulation of the equations, finite volume (FV)
methods, based on the Gauss theorem on each cell (or volume), and spectral methods, which
use high-order polynomial approximations.

The amount of literature about the CEE is impressive. Generally, for their solution,
FV methods are used; see for instance [Lev02| and the references therein. More recently,
some approaches based on FE procedures have been proposed. Among them, in this thesis
we will consider multidimensional upwind residual distribution (MURD) schemes, also called
fluctuation splitting schemes, which have been studied during the last 20 years. These schemes

1



2 INTRODUCTION CH. 1

were introduced by P.-L. Roe at the beginning of the 1980’s and have been subsequently
developed mainly by H. Deconinck and co-workers.

The starting point is a reinterpretation of 1D FV schemes using the concept of fluctua-
tion. Considering the continuous piecewise-linear data representation classically used in FE
methods rather than the discontinuous cell-wise constant reconstruction used in FV methods,
the flux difference (F;1 — F;) between two nodes i + 1 and ¢ is reinterpreted as the flux
balance (or fluctuation or residual) over the interval (or element) [i,i + 1], which has to be
distributed to the vertices of the element. This interpretation can be carried over to several
dimensions, provided the fluctuation is now the flux balance over a simplex (triangle in 2D
and tetrahedron in 3D) to which is associated a continuous piecewise-linear data representa-
tion. The multidimensional nature of the problem can be taken into account by distributing
the residual to the vertices of the simplex rather than to the two neighbours of an edge.

MURD schemes are not constructed by concentrating on any particular direction of the
grid. An advantage is that, at least for scalar equations, one can construct a fully second-order
accurate scheme on triangular grids with a very compact stencil, since only the nodes in the
triangle are used in the evaluation of the fluctuation.

One of the most appealing aspect of MURD schemes is that they can be easily applied
to unstructured grids. Nowadays, unstructured grids are an essential component for a suc-
cessful use of numerical methods in industrial applications. In fact, these applications are
often defined on complex shape domains. For such domains, the grid generation process is
difficult and can be very time-consuming, unless completely unstructured grids are used. This
is attractive as fully automatic unstructured tetrahedral grid generators have been developed.
These generators can be directly coupled to CAD systems and incorporated within a unique
software tool which can — at least in principle — provide a solution of the problem, without
the intervention of the user, once the domain and the boundary conditions have been speci-
fied. Furthermore, unstructured grids can easily handle adaptation cycles. Grid adaptivity is
particularly attractive in CFD, as it offers the possibility of resolving localised flow features
in the most efficient and cost-effective manner.

Space discretisation is just one aspect of the numerical solution of the CEE. Their discreti-
sation leads to a large system of non-linear equations, solved by iterative procedures, such
as the Newton method or its variants. However, an exact Newton method is rarely optimal
in terms of memory and CPU resources for large scale problems. Moreover, in general, a
Newton method will not suffice, since initial estimates sufficiently near to the solution are
not available. Therefore, the scheme is made more robust through a continuation scheme:
a pseudo-time derivative term is added to the original non-linear system, whose root is now
found as a steady-state solution of the time-dependent problem.

The continuation procedure requires, at each (pseudo)time level, the solution of a linear
system whose matrix is the Jacobian (or a convenient approximation of it). Using a MURD
scheme for the space discretisation, this matrix turns out to be sparse, non-symmetric, and
particularly ill-conditioned, especially when the CFL number is “large.”



§1.1 MOTIVATION 3

For the solution of the linear system, one can use either direct or iterative solvers. The
former are usually a better choice for small-size problems, since they are much less sensitive
with respect to the conditioning of the problem. On the other hand, iterative solvers are com-
monly used in many applications, and in particular in CFD problems. Indeed direct solvers
are prohibitively expensive for large-size problems. The substantially sequential algorithm
makes efficient parallel implementations of direct solvers on modern parallel computers trou-
blesome. Furthermore direct solvers require a lot of storage to perform the factorisation. As
the dimension of the linear system increases, iterative solvers are very often the matter of
choice.

Other reasons may suggest the use of iterative solvers. In an iterative solver, the system
matrix A is not needed in explicit form but only a procedure to compute the matrix-vector
product Ax for a given vector x is required. Furthermore, prior knowledge about the solution
can be introduced into the solution process via the initial approximation. Finally, iterative
methods can be terminated when the desired accuracy is achieved. In fact, the linear system
under consideration is the discrete version of a system with an infinite number of degrees
of freedom (which itself is only a model of the real system). It does not make any sense
to compute the solution of the linear system with accuracy higher than the discretisation
error. Hence, they require only the employment of those resources (time, memory) which are
necessary to obtain the required accuracy.

Unfortunately, the performance of iterative solvers depends strongly on the spectral prop-
erties of the linear system matrix, and in particular its condition number. If the matrix is
ill-conditioned, one is forced to devise an efficient preconditioner. A preconditioner is an op-
erator that transforms the initial linear system into another one having the same solution,
but better conditioned and hence easier to solve.

Many constraints must be satisfied in the definition of the preconditioner. Firstly, it must
be inexpensive to compute and apply, in terms of memory usage and computation time. If
possible, it should be general-purpose. Even more importantly, it should be optimal, that is
its performance should be independent of the problem size. Finally, since we are interested
in parallel applications, it should be scalable, that is its performance should not degradate as
the number of processors increases.

A class of preconditioners, well-suited for parallel computations, is based on the domain
decomposition (DD) approach. The basic idea of DD methods is to decompose the com-
putational domain €2 into M smaller parts €2;, ¢ = 1,... , M, called subdomains, such that
UM Q, = Q. Next, the original problem can be reformulated within each subdomain €2;, of
smaller size. This family of subproblems is coupled one to another through the values of the
unknown solution at subdomain interface. This coupling is then removed at the expense of in-
troducing an iterative process which involves, at each step, solutions on the 2; with additional
interface conditions on 9€2; \ 9.

Note that the term DD can embrace a large variety of numerical schemes. Each subdomain
may refer to a different physical region, modelled with different physical or numerical models.
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Q. Q. Q,

Figure 1.1: Example of overlapping (left) and non-overlapping (right) DD. Overlapping area
is shaded.

This leads to the so-called heterogeneous DD; see [QV99, Chap. 8]. On the other hand, when
each subdomain is modelled and discretized using the same equations and numerical model,
one has homogeneous domain decomposition.

The class of homogeneous DD methods is rather large. A common classification divides
these DD methods into two groups [CM94, SBG96, QV99|.

In the first group, named after Schwarz, the computational domain is subdivided into
overlapping subdomains (as depicted on the left of figure 1.1), and local Dirichlet-type prob-
lems are then solved on each subdomain. The communication between the solutions on the
different subdomains is here guaranteed by the overlapping region. This method has been
proposed by H.-A. Schwarz in 1870 to prove the existence of solution of elliptic PDEs on
domain of complex shape, that is, a domain for which no exact solution of the problem is
available [Sch70].

The second group uses non-overlapping subdomains (as shown on the right of figure 1.1). It
is thus possible to decompose the unknowns into two sets: one formed by the unknowns on the
interface between subdomains, the other formed by unknowns associated with nodes internal
to the subdomains. At the algebraic level, one may then compute the Schur complement (SC)
matrix by “condensing” the unknowns in the second set. The system is then solved by first
computing the values of the interface unknowns and then solving the independent problems
for the internal unknowns.

These DD methods are usually rather inefficient when used as solvers of the linear problem;
however, they can be reformulated as efficient parallel preconditioners. Note that all the state-
of-art DD preconditioners consist of local and global components. The local part, acting at the
subdomain level, captures the strong couplings that appear between neighbouring subdomains,
while the global part provide an overall — although inexpensive — communication among the
subdomains. Should a preconditioner act only locally, then the iterative method that uses
such a local preconditioner will have convergence rate that depends strongly on the number
of the subdomains.

The global component is usually referred to as a “coarse space correction”, since usually it
is defined on a space that is coarse with respect to the fine space containing the solution. The
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complexity of this auxiliary problem is much lower than that of the original problem, and its
role is to diffuse information among the subdomains. In an analogous manner to multigrid
methods, this coarse space is used to correct the “smooth” part of the error, whereas the
(local) preconditioner is used to dump the “high-frequency” part.

1.2 Thesis Outline

The main objective of this thesis is the investigation of parallel preconditioners based on
the DD paradigm for problems defined on unstructured grids. Several new preconditioning
techniques, for both overlapping and non-overlapping decompositions, are proposed.

A computational kernel we will frequently address is the FE problem

(1.1)

Find wp € V}, such that:
a(up,vn) = f(vp) Yop € Vi,

V() being the space of FE function on a tessellation 73, of Q, a(-,-) : Vj x V, — R a bilinear
function and f: Vj, — R a linear functional.

For an elliptic linear problem (like our model problem, see section 3.1) we have that
a(up,vp) is a coercive bilinear form and wy, is the approximated solution, while for the CEE
(see section 4.3) a(up,vy,) should be regarded as the bilinear form expressing the Jacobian of
the Euler system (after time and space discretisation) and uy, plays the role of the increment
of the physical variables.

Chapter 2 gives some background on Krylov accelerators, how accelerators accommodate
preconditioning, and outlines the main issues encountered in the definition of the precondi-
tioner. The main classes of parallel preconditioners which are reported in the literature are
addressed and compared.

Chapter 3 is mainly devoted to addressing the theoretical properties of DD precondi-
tioners. The chapter is divided into two parts.

Part I, covered in section 3.2, focuses on overlapping Schwarz preconditioners. The main
issue is the definition of the coarse space, an area of research that has been very prolific in
recent years and is still so. The usual way to define the coarse matrix is based on the FE
approximation of the variational problem, that is, the coarse operator is formed by discretising
the problem at hand on a much coarser grid. However, the construction of a coarse grid and
of the corresponding restriction and extension operators may be difficult or computationally
expensive on general unstructured grids and arbitrary geometries. In addition, for a general,
possibly non-convex domain, it is difficult to ensure that the boundary conditions are correctly
represented on the coarse level. This way of defining the coarse space may be problematic
also for the implementation details. To deal with a coarse grid may result in a much more
complex — and therefore more difficult to validate and maintain — code.

To avoid these problems, we have resorted to a definition of the coarse space that does
not require the explicit construction of a coarse grid. Starting from previous papers [PSFQ97,
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JKMKO00, LT00, SF01], we propose a general framework to build a coarse operator by using a
procedure that operates directly on the matrix entries, based on the concept of aggregation.
We consider a set of assumptions on the coarse basis functions. Theorems 3.2.4 and 3.2.5
represent the main results of this section. The theory here developed extends previous results
presented in the literature. The influence of the geometrical properties of the aggregates
and of the subdomains, and the influence of the smoother, have been kept separate in the
final bound. This allows a better appreciation of the role of the three different phases of
our smoothed aggregation algorithm. Numerical experiments are reported to illustrate the
performance of the proposed methods.

In Part II, covered in section 3.3, the solution of the SC system is discussed. The section
opens with a review of some results for SC-based methods and the preconditioners presented
in literature. We analyse in detail the differences between element-oriented (EO) and vertex-
oriented (VO) decompositions. In the former, the computational domain is decomposed so
that each element of the grid belongs to a different domain, while in the latter the decompo-
sition acts on the vertices of the grid, so that each vertex belongs to a different subdomain.
The SC systems arising from the two approaches are clearly different. We present a new
preconditioner arising from the VO decomposition, whose spectral properties are defined in
proposition 3.3.3, as well as a class of preconditioners obtained from the approximate SC
systems. Proposition 3.3.3 gives a theoretical bound for this latter class of preconditioners,
whose idea is to approximate the computationally expensive part of the SC (i.e., the solution
of the internal Dirichlet problems), and to use this approximate solver as a preconditioner
for the unreduced system. The preconditioner obtained is numerically proved to be robust
and shows good parallel properties. Preconditioners based on approximate Schur complement
methods are also presented.

Chapter 4 introduces the CEE and their spatial discretisation, based on MURD schemes.
In their current state, MURD schemes can be used for complex aerodynamic flows, both in
the subsonic and transonic regime. It is clear that the the full potential of the approach
may be revealed only if these methods could effectively lead to scalable parallel codes. In
particular, this requires the definition and implementation of a scalable preconditioner and of
a parallel grid adaptation technique, to improve the solution accuracy whilst optimising the
computational resources.

For the solution of the large, sparse, non-symmetric linear system arising from the New-
ton method, we use Krylov techniques. In order to control the number of Krylov itera-
tions and to obtain a scalable algorithm, we precondition them with DD-based precondition-
ers, of Schwarz or Schur type. The resulting framework, called WNKS, can deliver asymp-
totic rapid convergence through pseudo-transient continuation and inexact Newton meth-
ods, reasonable parallelisation for an implicit method through a Krylov solver, and high
per-processor performance through attention to distributed memory and cache locality, es-
pecially through Schwarz (or Schur) preconditioners. The idea is to obtain (asymptotically)
second-order convergence in time through the Newton iterations and a reasonable parallelism
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due to the use of a Krylov solver complemented with a Schwarz-type preconditioner; see
also [NAWK95, CKV97, GMTKO00, GKKS01|. Combined with grid adaptation techniques
this also offers a way to improve the quality of the solution whilst optimising the use of
computational resources. The resulting framework is called «WNKS. To the author’s knowl-
edge, this chapter — and the corresponding paper [SL02] — represents the first application of
a complete aWNKS scheme to the CEE using MURD schemes.

Numerical results for aeronautical applications are reported. Several 2D and 3D cases, of
aeronautical interest, have been extensively studied: a NACAQ0012 profile, two full aircrafts
(Falcon and X29), and a typical test case for aeronautical codes, the ONERA M6 wing.

In Chapter 5, we analyse the aWNKS framework from the point of view of its final im-
plementation on a parallel computer. An efficient implementation of this framework requires
a careful analysis of all its main steps. A distributed data structure, capable of handling in
an efficient way all the main operations required by the aWNKS code, must be defined.

Several issues are addressed: how to implement the local solver, the data exchange, and
the construction of the coarse components of the preconditioners. Also, the good parallel
properties of the upwind methods and of the preconditioners proposed in chapter 3 are shown.

At the end of the chapter, numerical results using these preconditioners are presented for
aerodynamic applications. The numerical results, obtained on distributed memory computers,
using MPI as a message passing library [For95|, confirm the applicability of the proposed
methods to the compressible Euler equations.

1.3 Notation

Throughout this thesis, we will adopt the following notation. Capital italic Roman letters
denote matrices and bold lowercase Roman letters denote vectors. The (i,j) component of
the matrix A is denoted by A;; or by A(7,j), and the i—th component of the vector v is
denoted by v; or by v(i). Calligraph letters indicate linear operators. \;(A) indicates the
i—th eigenvalue of A, o(A) the set of all eigenvalues of A, and o(A) the spectral radius of A:

o(A) = i:Irllﬁxn{IAi(A)l} :

)

In particular,

Amaz(A) = 0(A),  Amin(A) = min {[Ai(A)]}.

i=1,....,n

We shall use (x,y) or x -y to denote the Euclidean inner product between two vectors x and
y, while || - || will denote the Euclidean norm.
For a symmetric positive definite matrix A, the symbol x(A) denotes the condition number:

(1.2)
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while for a general matrix A the condition number is
r(A) = [I1AIl - AT,

|| - ||| being a matrix norm [QSS00].
For a matrix P symmetric and positive definite, we shall indicate using a slight change of
notation the condition number of the preconditioned problem x(P~1A) as
AM

H(P_lA) = )\—7

where Ay and A, are two positive constants such that
Am(Px,x) < (Ax,x) < Ay (Px,x), VxeR"™

This definition follows from the identity o(P~1A) = o(P~Y/2AP~1/?),

Finally, we introduce here the definition of the adjacency graph of the matrix A. An
(undirected) graph G is a pair (V, E), where V is a finite set of points called vertices and F
is a finite set of edges. An edge e € F is an unordered pair (v, w), where v,w € V' . An edge
indicates that vertices v and w are connected. By definition, the adjacency graph of A is a
graph G = (V, E), whose vertices are in the index set V' = {1,2,... ,n} and whose edges are
defined as (i, j) € E if and only if A4; ; # 0.



Setting the Ground for the Solution of Linear
Systems

THE TERM ITERATIVE method refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear systems at each step.

One can distinguish between two different aspects of the iterative solution of a linear
system. The first one in the particular acceleration technique for a sequence of iterations
vectors, that is a technique used to construct a new approximation for the solution,
with information from previous approximations. This leads to specific iteration methods.
The second aspect is the transformation of the given system to one that can be more
efficiently solved by a particular iteration method. This is called preconditioning. A good
preconditioner improves the convergence of the iterative method, sufficiently to overcome
the extra cost of its construction and application. Indeed, without a preconditioner the
iterative method may even fail to converge in practice.

In this chapter, iterative methods for the parallel solution of large sparse linear systems
are presented. The main lines of iterative methods are recalled, and the main aspects of

parallel preconditioning are introduced.

2.1 Generalities on Iterative Methods
Iterative methods provide the solution to a linear system of type

Au=f, (2.1)
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where A € R™™" uand f € R", as the limit of a sequence {u,,}. Typical situations in which
iterative methods are involved are large sparse problems, or band matrix problems, when the
band itself is sparse, making decomposition algorithms difficult to implement.

Classical iterative methods are generally analysed in term of splittings of the matrix A.
Given a non-singular matrix P, the splitting A = P— N defines an iterative method as follows:
starting from a tentative solution ug, compute u,,; solving the linear system in P

Pu,,11 = Nu,, + £, (2.2)
or, equivalently,
u,,11 = Bu,, +c, (2.3)

where B = PN is the iteration matrix and ¢ = P~!'f. P should be an “inexpensive”
matrix. For example, in the Jacobi method, P is the diagonal part of A, and in the Gauss-
Seidel method, P is the lower part of A; see for instance [Var00, Chapters 3 and 4].
Since B does not depend on the iteration count m, these iterative methods are called
stationary. The method (2.3) converges for any uy if and only if p(B) = p(I — P71A) < 1.
Note that (2.2) can be rewritten in an equivalent form as

P (upmq1 — up) = iy,

where r,, = f — Au,, is the residual of the linear system at the m—th time step. This leads
to the class of Richardson methods; see [Axe94, Saa96b, QSS00] for more details. Richardson
methods contain all the main features of modern iterative methods: the scheme is composed
by matrix-vector products, vector-vector products, and vector updates, plus the solution of a
linear system in P, the preconditioning matrix.

In modern terms, classical iterative methods are seldom used in practice, whereas they are
often employed as preconditioners of a more performing iterative procedure like the projection
methods, covered in the following section.

2.1.1 Projection Methods

The idea of projection methods is to extract an approximate solution from a well-chosen sub-
space of R™. This subspace, say V,,, will be of dimension m (generally m < n); therefore the
candidate solution will be found out by imposing m constraints. A typical way of describing
these constraints is to impose m (independent) orthogonality conditions. In general, given
an approximate solution u,,, the residual r,, is constrained to be orthogonal to m linearly
independent vectors, which defines another subspace, say W,,, of dimension m. W,, is called
the subspace of constraints.

In all generality, we may define a projection method for the solution of (2.1) as a process
which finds as approximate solution u,, by imposing the Petrov-Galerkin condition that wu,,
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belongs to the affine space ug + V,, and that the new residual vector be orthogonal to W,,:

Find u,, € ug + V,, such that (2.4)

f— Au,, L W,,. ’
To obtain a matrix representation of problem (2.4), let V,,, = [v1,...,V,y] bean xm
(real) matrix whose column vectors form a basis of V,, and, similarly, W,,, = [wy,... ,w,,] be

a n x m (real) matrix whose column vectors form a basis of W,,. Writing the approximate
solution as

W, =uo+ Vin¥m, Ym€R™, (2.5)
the orthogonality condition leads to the system of equations
WL (f— Aug — AV,ym) =0,
and therefore
W, = g + Vi (WEAV;,) ™ Wi,

Clearly, this approximate solution u,, is defined only when the matrix W,1 AV}, is non-singular,
which, for arbitrarily chosen spaces V,, and W,, is not guaranteed to be true even though A
is non-singular. It can be shown that W,Z:AVm is non-singular for any basis of V,,, and W,,, of
W, and V,,,, respectively, is A is positive definite and W,,, = V,,,, or if A is non-singular and
Wi = AVp,; see, for instance, [Saa96b, Chapter 5.

In modern iterative methods, the subspaces V,, and W,, are Krylov subspaces, that is
subspaces spanned by vectors of the form P, (A)v, where P,,,(A4) is a polynomial of degree m
in A, and v is a vector. The Krylov subspace V,, may be defined as

K = Kin(4;19) = span {ro,Aro, .. ,Am_lro} )

The main classes of Krylov subspace accelerators fall into three categories, depending on
the choice of W,,:

e The Ritz-Galerkin approach (W, = V,,): construct u,, for which the residual is orthog-
onal to the current space. When A is symmetric positive definite, this choice minimises
the A norm of the error u,, — u. An example is the Conjugate Gradient (CG) method
of Hestenes and Steifel [HS52]. See also [GO89] for an overview of CG methods;

e The minimum residual approach (W,, = AVy,): identify u,, which minimises the resid-
ual norm ||f — Au,,||2. Examples are the GMRES method of Saad and Schultz and its
equivalents [SS86, Saa93, VV94];
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e The Petrov-Galerkin approach: find u,, so that the residual is orthogonal to some other
m~—dimensional space. A possible choice is W,, = K,(AT,Tg), where Tq is a vector
non-proportional to rg. This choice was designed for non-symmetric problems, and
may provide a short-term recurrence relations for the Krylov subspace bases. Exam-
ples are Bi-CG method of Fletcher [Fle76], the CGS method of Sonneveld [Son89], the
Bi-CGSTAB method of van der Vorst [vdV92], and the QMR method of Freund and
Nachtigal [FN91], and the TFQMR method of Freund [Fre93|.

As a general rule, we can say that if the matrix is symmetric positive definite, the CG
method is the best choice, while for non-symmetric problems usually GMRES is the most
stable of all methods. An appealing property of GMRES if that, in exact arithmetic, the
method cannot breakdown! or, more precisely, it can only breakdown when it delivers the
exact solution. However, GMRES it is also the most expensive of the presented method in
terms of memory. A restarted GMRES can be employed to reduce memory requirements, at
the price of possibly non-convergence of the scheme. This restarted GMRES is usually called
GMRES(k), where k is the maximal dimension of the Krylov subspace. Bi-CGSTAB and
TFQMR are a compromise between stability and required memory, while the convergence
behaviour of CGS is normally too erratic to be used for our problems.

Many other methods have been proposed in literature, like FOM, ORTHOMIN, OR-
THODIR, ORTHORES, MINRES, SYLMMLQ. For an exhaustive presentation the reader is
addressed to [BBC194, Saa96b, Gv97, Sv00].

2.2 Definition of the Preconditioner

The convergence of iterative methods depends on the spectral properties of the linear system
matrix. The basic idea is to replace the original system (2.1) by

P 'Au=P'f
(left-preconditioning), or by
AP 'Pu=f

(right-preconditioning), using a linear transformation P~!, called preconditioner, in order to
improve the spectral properties of the linear system matrix. In general terms, a preconditioner
is any kind of transformation applied to the original system which makes it easier to solve.
It is not clear who coined the term “preconditioning” first. According to Golub and
O’Leary [GO89], it may have been Turing. In the paper of 1952 by Lanczos [Lan52] the notion
of polynomial preconditioning is clearly defined: “The construction of the inverse matriz is
equivalent to a linear transformation which transforms the given matriz into the unit matriz.
The unit matriz can be conceived as the extreme case of a well-conditioned matrix whose

' A breakdown occurs when a division by zero is encountered in the algorithm.
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eigenvalues are all 1. We will ask for much less if we merely demand the transformation of
the original system whose dispersion is moderate.”

In a modern perspective, the general problem of finding an efficient preconditioner is to
identify a linear operator P with the following properties:

1. P is a good approximation of A is some sense. Although no general theory is available,
we can say that P should act so that P! A is near to being the identity matrix and its
eigenvalues are clustered within a sufficiently small region of the complex plane;

2. P is efficient, in the sense that the iteration method converges much faster, in terms
of CPU time, for the preconditioned system. In other words, preconditioners must be
selected in such a way that the cost of constructing and using them is offset by the
improved convergence properties they permit to achieve;

3. P or P7! can take advantage of the architecture of modern supercomputers, that is,
can be constructed and applied in parallel environments.

It should be stressed that computing the inverse of P is not mandatory; actually, the role
of P is to “preconditioning” the residual r,, through the solution of the additional system
Pz, = r,,. This system Pz,, = r,, should be much easier to solve than the original system.
Note that some recent preconditioning techniques aim to compute P~! directly instead of P
(see section 2.3.2).

The choice of P varies from “black-box” algebraic techniques which can be applied to
general matrices to “problem dependent” preconditioners which exploit special features of
a particular class of problems. Although problem dependent preconditioners can be very
powerful, there is still a practical need for efficient preconditioning techniques for large classes
of problems. Between these two extrema, there is a class of preconditioners which are “general-
purpose” for a particular — although large — class of problems. These preconditioners are
sometimes called “grey-box” preconditioners, since the user has to supply few information
about the matrix and the problem to be solved.

Note that all the accelerators presented in section 2.1.1 require the preconditioner to be
constant at each iteration. Other methods have been developed to consider non-constant
preconditioners by different authors. Axelsson and Vassilevski [AV91] have proposed a Gen-
eralised Conjugate Gradient (GENCG) with variable preconditioning, Saad [Saa93] has pro-
posed a scheme very similar to GMRES, called Flexible GMRES (FGMRES), and Var der
Vorst and Vuik have published a GMRESR scheme [VV94].

FGMRES has probably received most attention, mainly because it is easy to implement:
only the update direction in GMRES has to be preconditioned, and each update direction
may be preconditioned differently. This means that only one line in the GMRES algorithm
has to be adapted. The GENCG and GMRESR are slightly more expensive in terms of
memory requirements and computations overhead per iteration step. In exact arithmetic the
two methods produces the same results; however, GMRESR required only one matrix-vector
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product per iterations. In GMRESR the residual vectors are preconditioned, and if this gives a
further reduction then GMRESR does not breakdown. This give more control on the method
with respect to FGMRES, even if this latter scheme is probably slightly more efficient.

2.2.1 Incomplete LU Preconditioners

A broad class of effective preconditioners is based on incomplete factorisation of the linear
system matrix [MvdV77, Saa96b], and it is usually indicated as ILU. The ILU-type precon-
ditioning techniques lie between direct and iterative methods and provide a balance between
reliability and numerical efficiency.

The preconditioner is given in the factored form P = LU, with L and U being lower and
upper triangular matrices. Solving with P involves two triangular solutions.

The incomplete LU factorisation of a matrix A can be described as follows. Let Ay = A.

By Fy
Ap—1 = .

Thus, we can write the k—step of the Gaussian elimination in a block form as

o I 0 By Fy
SO : R 0 A )’

where Ay, = C,— Ep B, LE,.. If By, is a scalar, then we have the typical point-wise factorisation,

Then, for k =2,... ,n, we have

otherwise we have a block factorisation. Pivoting, if it is necessary, can be accomplished by
reordering Aj at every step.

To make the factorisation incomplete, entries as dropped in A, i.e. the factorisation
proceeds with

A = A, — Ry,

where Ry is the matrix of dropped entries.

Dropping can be performed by position, for example, dropping those entries in the update
matrix E B, LF, that are not in the pattern of C. This simple ILU factorisation is known
as ILU(0). Although effective, in some cases the accuracy of the ILU(0) may be insufficient
to yield an adequate rate of convergence. More accurate factorisations will differ from ILU(0)
by allowing some fill-in. The resulting class of methods is called ILU(f), where f is the level-
of-fill. A level-of-fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the level-of-fill. The level-of-fill should be indicative of the size
of the element: the higher the level-of-fill, the smaller the elements. A simple model can be
employed to justify to effectiveness of this approach is detailed in [Saa96b, Section 10.3.3].

Alternative dropping techniques can be based on the numerical size of the element to be
discarded. Numerical dropping strategies generally yield more accurate factorisations with the
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same amount of fill-in than level-of-fill methods. The general strategy is to compute an entire
row of the L and U matrices, and then keep only the biggest entries in a certain number. In
this way, the amount of fill-in is controlled; however, the structure of the resulting matrices is
undefined. These factorisations are usually referred to as ILUT, and a variant which performs
pivoting is called ILUTP.

Many other variants have been presented in literature; see for instance [Axe94, Saa96b,
Cv97]. Latest developments concern multilevel methods, like ILUM [Saa96a] or BILUM
[SZ99], or ARMS [SS02]|. These approaches try to combine the “general-purpose” approach
of ILU-type preconditioners with the superior convergence rate of multilevel methods, and,
in particular, of (algebraic) multigrid methods (see section 2.3.3), using some idea from DD
methods.

Remark 2.2.1. As for complete factorisations, ILU methods depend on the order in which the
variables are eliminated. Thus, the ordering of a matriz plays an important role in determining
the quality of the ILU preconditioner. In [DM80] an extensive study is reported, although
limited to symmetric matrices. In [BSvD99] the authors found numerically that the reverse
Cuthill-McKee (RCM) achieved the best results for the majority of the test cases. Even when
RCM was not the optimal, it still gave good results, that is, similar results to those provided
by the best reordering.

2.2.2 Preconditioners Induced by Iterative Procedures

Iterative methods can be used to construct preconditioners. This is especially true for sta-
tionary methods of section 2.1. Whether these methods are used in conjunction with a Krylov
accelerator, they can effectively improve their convergence ratio.

Let us consider, for example, the use of the preconditioned CG method to accelerate a
linear iterative solver in the form

U1 = P 'Nu, + P7If
with P symmetric and definite. This process converges provided that
I[P N|a= I - P Ala=q<L

By simple computations, it is possible to show that the condition number of the matrix P~1A
can be bounded by

—_

p(P1A) < 4.

—_
B

Therefore, the application of preconditioned CG method with preconditioner P! yields a
superior convergence factor, as

Vr(PTA) — 1 -1 =g
< < <q Vqe(0,1).
VE(PTA) +1 L 4 q
—q
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Therefore, for a given splitting A = P — N, the CG method, with P as a preconditioner, can
be used to effectively accelerate (2.3).

2.3 Parallel Preconditioners

Here we briefly discuss the main classes of parallel preconditioners proposed in the literature.
We start with polynomial preconditioners in section 2.3.1; then, we briefly outline sparse ap-
proximate inverses (SPAI) preconditioners in section 2.3.2, multigrid methods in section 2.3.3.
DD preconditioners, which are the main subject of this thesis, will be covered in details in
chapter 3.

2.3.1 Polynomial Preconditioners

A first class of (parallel) preconditioners is based on polynomial preconditioners. The main
motivation for considering polynomials in A is that the matrix-vector product is often more
parallelisable than other parts of the solver like, for instance, the vector-vector product.
Hence, a preconditioner which makes use of matrix-vector product only (plus local vector
update) should be expected to have interesting parallel properties. The main problem is to
find effective low degree polynomials Py (A), so that the iterative solver can be applied to
Pk(A)Au = Pk(A)f

One approach for obtaining polynomial preconditioner is to use low order terms of a
Neumann expansion of (I — B)~!, if A can be written as A = I — B (with p(B) < 1). More
general polynomial preconditioners have also been proposed, and they are usually shifted
Chebyshev polynomials over intervals that are estimated from the iteration parameters of a
few steps of the unpreconditioned solver, or from other spectral information.

2.3.2 Sparse Approximate Inverse Preconditioners (SPAI)

Rather than constructing an approximation P of A, an alternative is to build M = P~!
which approximates A~! directly. When M is available, no inversion or solve operations will
be required on the preconditioning stage. Preconditioners based on this technique are called
“explicit” preconditioners, while those based on the former are called “implicit.”

To approximate A~! is a difficult task since this matrix is in general dense, and moreover
the construction should be done in parallel. One possible way to operate is to minimise the
Frobenius norm of the residual matrix ||[I — AM||r. An important feature of this objective
function is that it can be decoupled as the sum of squares of the 2-norm of the n individual
column:

n
11— AM|IE =) lle; — Amy|13, (2.6)
j=1

in which e; and m; are the j—th column of the identity matrix I and of matrix M, respectively.
Hence, one can minimise the individual functions ||e; — Am;||3. This approach has been
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proposed by Grote and Huckle [GH97]. Of course, the exact inverse will be found if no
restriction is placed on M. Usually, a sparsity pattern (that is, the set of non-zero indexes)
for M is prescribed (or other dropping strategies as in ILU preconditioners), or minimisation
is performed using an iterative method like GMRES, implemented with sparse matrix-vector
and sparse vector-vector operators.

A notable disadvantage of this approach is that it is difficult to assess in advance whether
or not the resulting matrix will be non-singular. An alternative is to seek a two-sided ap-
proximation, i.e. a pair of L and U respectively lower triangular and upper triangular, which
attempt to minimise the objective function

|l — LAU|%.

Gould and Scott [GS98] indicate that the SPAI preconditioner may be a good alternative
to ILU, but it is more expensive to compute both in terms of time and storage, at least if
computed sequentially. Thus, the use of SPAI preconditioner can be of interest when used for
several right-hand sides.

References about SPAI methods can be found in [BMT96, BT98, Zha98, Cho00]. For a
comparative study of various SPAI preconditioners we refer to [BT99].

2.3.3 Multigrid Methods

A very important class of methods, mainly developed during the 80’s, is the class of multigrid
methods (MG) as solution methods (for both linear and non-linear systems).

Multigrid methods require the operator to be defined on a sequence of coarser grids, an
iterative method that evolves the solution (called a smoother) and interpolation operators
that transfer information between the grids. The principle behind the algorithm is that the
high-frequency errors can be efficiently solved on the fine grid, while the low-frequency are
treated on the coarser one, where there frequencies manifest themselves as high-frequencies.
Geometric multigrid (GMG) methods cannot be applied without the existence of an under-
lying grid (this is their major limitation). This led to the development of algebraic multigrid
method (AMG), initiated by Ruge and Stiiben [RS85]. In AMG, both the matrix hierar-
chy and the prolongation operators are constructed just from the stiffness matrix. Since the
automatic generation of a grid-hierarchy for GMG and especially the proper assembly of all
components would be a very difficult task for unstructured problems, the automatic algebraic
construction of a virtual grid is a big advantage.

More recently, a variant called AMGe has been proposed in [BCFT00]. AMGe assumes
that the element matrices is available, and then determines local representations of the smooth
error components which provide the basis for constructing effective interpolation operators.

The literature about multigrid methods is astonishing. We refer the reader to Brandt
[Bra86], Wesseling [Wes92], and Hackbusch [Hac94]. Recent developments can be found
in [CEVHT00, Stii01]. As regards CFD, see, for instance, [SLD92, VM94, Mav96, Mav98,
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Mav00, CL00, Mav02]. Results concerning MURD schemes can be found within the IDeMAS
project [IDe01].

Remark 2.3.1. A comparison between multigrid methods and CG methods with precondi-
tioning based on domain decomposition ideas is given in [HJ98] for non-linear boundary value
problems arising from finite element discretisation of magnetic field computations and solid
mechanics problems. The authors found the DD methods more scalable than the others, even
if the geometric multigrid preconditioners has appeared as the more appropriate in term of
CPU times.

2.4 Concluding Remarks

Although the past years have seen the development of a very lively area of research on iterative
methods, probably their evolution has come to a (temporary) end. The main challenge faced
now is the solution of very large systems for which iterative methods are often the only way
to obtain a solution. For these problems the choice of a good preconditioner can affect the
computational time more substantially than the choice of the Krylov accelerator itself. In fact,
for a good preconditioner there is not much difference between the various Krylov subspace
methods. Clearly, this shifts the attention to the identification and construction of good
preconditioners.

It is very difficult to construct efficient preconditioners for a given class of problems, and
even more if these also have to be parallel.

The first attempts in the definition of parallel preconditioners aimed at bringing minimal
changes to existing preconditioners, therefore, ILU-based preconditioners were made parallel
using an approach — termed “level-scheduling” or “wavefront” approach, which tried to unravel
parallelism from the forward and backward solves. However, these techniques were soon
viewed as having a limited potential, since ILU-based preconditioners are also very sequential
in nature.

For this reason many researchers tried to develop parallel preconditioners based on new
methods, or to reinterpret old schemes (like DD methods). Polynomial preconditioners have
a performance relative to existing alternatives that was not too convincing, especially when
using a small number of processors. Moreover, it is difficult to find a good polynomial in the
case of indefinite matrices. As a result, current interest for these kinds of preconditioners is
almost vanished, and there has been a shift of focus toward methods like MG, DD, and SPAI.

Despite some partial success, SPAI are still in their infancy, especially for their application
in parallel environments.

As regards MG methods, we can say that, in general, they can be extremely efficient when
they work — far more efficient than preconditioned Krylov methods. However, their efficiency
relies essentially on the inter-level restriction and prolongation operators, the choice of which
will vary for one application to the next. Full MG efficiency can only be achieved for problems
associated with certain types of partial differential equations defined on regularly structured
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domains which have sufficient regularity. Though AMG methods have been designed to deal
with more general problems, the success of such methods and the type of problems solved
are still limited, and more in general it is difficult to define multigrid algorithms which are
capable of efficiently solving general unstructured sparse linear systems.

On the contrary, DD techniques have been successful for large class of problems. From
the theoretical point of view, scalable and optimal algorithms can be defined, as described
in chapter 3. From the point of view of the final application, instead, the DD approach
may be seen not only as an effective way to define parallel preconditioner, but also as an
approach to decompose the data among the processors. In chapter 5, we analyse all the
main computational kernels of a solution algorithm for the compressible Euler equations, the
Newton-Krylov-Schwarz (or -Schur) framework, and we show how DD can lead to an efficient
data structure, which cluster on each processor the data corresponding to a given subdomain,
and then use these data in a computationally and mathematically efficient way.
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Theoretical Properties of Domain Decomposition
Preconditioners

THE THEORETICAL PROPERTIES of domain decomposition preconditioners can be ex-
tensively analysed for model elliptic problems. Well-understood and powerful mathemat-
ical theories can be developed for this model problem. As a result, sharp bounds on the
condition number can be derived. This is true for both overlapping and non-overlapping
methods.

First, the model problem is detailed in section 3.1. Then, the remaining part of the chapter
is divided into two parts. Section 3.2 is devoted to overlapping (Schwarz) methods, and
in particular to the definition of a coarse space based on the concept of aggregation.
Section 3.3 considers non-overlapping (Schur complement) based methods for element-

oriented and vertex-oriented decompositions.

3.1 Model Problem

Let © be a bounded domain in R%, d = 2,3, with a piecewise smooth boundary 9. We will
consider the model problem

Lw = f inQ
{ w = g on Jf2 (3:-1)

where
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with the coefficient matrix o s uniformly positive definite and bounded. Problem (3.1) can
be restated in terms of an equivalent variational Galerkin problem:

(3.2)

Find u € V such that
a(u,v) = F(v) YveV

where V = H}(Q),

ou Ov
a(“?“) = /Z rsax 8.%'

r,s=1

F(U) = (fv )_Q(Rg7v)a

where Ry is a prolongation of g and u = w — Rg; see [QV94]. Throughout this chapter, we
will always suppose that a(-,-) is symmetric and coercive.

The finite element discretisation reformulates problem (3.2) as problem (1.1), where V}, is
a finite-dimensional subspace of V and

= wipi(x)
i—1

with n = dim(V},). Here and in the following, {¢;,i = 1,... ,n} represents the set of standard
(compact-stencil) finite element basis functions of V},, and h the maximum diameter of the
elements of the triangulation 7} of the shape-regular domain (2.

The corresponding algebraic formulation of problem (1.1) gives rise to equation (2.1),
where u = [uq, ... ,u,] is the vector of unknowns, f; = F'(¢;), and the entries of A, called the
stiffness matrix, are given by

0p; 0p;
Ad—a(pj,(pl Z/ TS@SD 8-%'7]" Q

r,s=1

3.2 Part I: Schwarz Preconditioners

Schwarz methods move from partitioning the domain () into overlapping subdomains £2;.
The solution on the original domain, belonging to the space V},, is obtained by an iterative
procedure involving at each step solutions on subspaces V;, defined on the subdomains f2;.
To obtain scalable methods, a further space V| is considered. V| represents a discretisation of
the original problem on the complete domain, although its dimension is remarkably smaller
than that of V4. Usually, Vj is defined by means of a grid which is coarser than the grid used
to define V},. For our model problem, this may lead to a scalable and optimal preconditioner
— depending on the definition of the overlap among the subdomains.

The definition of the coarse grid can be difficult or computationally expensive for 3D
unstructured grids on complex-shape domains. To overcome this difficulty, we have considered
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Figure 3.1: Subdivision of a 2D rectangular region 2 partitioned into 9 non-overlapping
regions €; (on the left), and the extended subdomain Q5 (on the right).

aggregation (or agglomeration) procedures, an algebraic approach which does not demand for
a geometrical definition of the grid. First, the differential problem is discretized on the fine
grid, giving rise to a linear problem with a matrix, say A. Then, the matrix corresponding
to the discretisation of the differential operator on the coarse grid is built starting from the
entries of A.

Part I is organised as follows. Sections 3.2.1 and 3.2.2 introduce the one-level Schwarz
preconditioner. In section 3.2.3 we present the aggregation procedure. Some bounds for
the resulting preconditioners and their proofs are given in sections 3.2.4, 3.2.5, 3.2.6, and
numerical results are reported in section 3.2.7. Finally, section 3.2.8 draws some concluding
remarks.

3.2.1 One-level Schwarz Preconditioners

The simplest Schwarz preconditioner is the one-level preconditioner, defined as follows. We
divide Q into M subdomains {Q;}, such that UM,Q; = Q and with an overlap width of the
order of at least § = &h, £ € NT. (€ = 1 corresponds to minimal overlap, that is, in that case
we mean that the overlap among the subdomains is of one element.) From an algorithmic
point of view, we can think to subdivide {2 into M non-overlapping subdomains Q);, and then
extend each of them to (2; adding all layers of elements in {2 within a distance § from Qi. See
figure 3.1 for an illustration of a 2D rectangular region {2 partitioned into 9 non-overlapping
regions €); (on the left) and an extended subdomain (on the right).

By notation, let H be the linear size of the subdomains, H = max{diam(2;)}. We assume
that all subdomains have comparable size, i.e., C1H < diam(2;) < CyH, with Cy and C5 two
positive constants independent of H.

Consider the variational formulation of the model problem (1.1) and its corresponding
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discrete part (2.1). V}, is the standard finite element space spanned by the basis functions
associated to the nodes in Q \ 09;. Let V; C V}, be the finite element space spanned by the
basis function associated to the nodes in 2;\ 9€2;, and let n; be the dimension of V;. Moreover,
let R; be the restriction operator V;, — V; and R; the associated n; x n matrix. RZ-T is the
injection map, more precisely R} is a n x n; matrix whose action extends by zero a vector
with nodal values in ; \ 0;.

It is now possible to define the local bilinear forms

ai(,):VixV;—=R, i=1,..., M

which are in general an approximation of a(-,-) (yet often it coincides with a). Should af(-,-)
be coercive, then a;(+,-) is coercive too. This guarantees that the corresponding algebraic
matrix A; is non-singular. In the case of a;(-,-) = a(-,), the algebraic counterpart of a;(,-)
is the matrix

A; = R;AR.

Let the non-singular symmetric matrix A; be either A; itself or an approximation of it. Then,
the one-level Schwarz preconditioner can be written as

M
Pyt => RTA'R;. (3.3)
i—1 N——

B;

Remark 3.2.1. Non-symmetric preconditioners can be obtained using different restriction
and prolongation operators. A typical choice consists of using Rg:o instead of RZT, where RZO

represents the restriction operator for the minimal overlap case. This preconditioner is called

RAS [CS99, FS01].

Preconditioner 3.3 is not scalable: its convergence rate deteriorates as the number of
subdomains increases (i.e., H decreases), as stated by the following theorem.

Theorem 3.2.1. Let A; = A;. Then, there exists a positive constant C independent of H
and h (but possibly dependent on the operator coefficients) such that

1
PglA) < C—.

wPs ) < O

Proof. See [DW90]. O

3.2.2 Block-Jacobi Preconditioners

In the case of minimal overlap, the one-level Schwarz preconditioner may be seen as a block-
Jacobi preconditioner, whose blocks have size n;. In this particular case, it is possible to
derive a bound for the condition number which does not rely on the existence of the bilinear
form a(-,-).
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Let w be the set of vertices of the graph associated to A, and w;,i = 1,..., M, non-
overlapping sets of w (that is, a node of w is included in only one set w;). We indicate by
W; = span{ej,j € w;} where e; is the canonical j—th basis vector of W. By construction,
W = W71 x Wa x ... x Wps. The block-Jacobi preconditioner Pg; can be formally defined as

M
-1 T ~—1
Pg;=> RIC;'R;.
i=1
Here, R; the projector from W into the subspace W; and C; € R™*™ are square matrices.

Remark 3.2.2. The Schwarz preconditioner of section 3.2.1 may be seen as an extension of
the BJ preconditioner. In fact, to each subdomain €); we can associate a set w; composed
by the nodes internal to the subdomain. Hence, the BJ preconditioner corresponding to the
non-overlapping sets w; may actually be seen as a minimal overlap among the subdomains £;
(see figure 3.2 and section 3.3.2).

Let A be partitioned consistently with W;:
Aig o A
A= : : . (3.4)
Ava - Amwm
Then, the preconditioner Pp; can be written as
Cy 0
0 Cym

In the following, we will assume that A is a symmetric positive definite matrix, as well as the
Cii=1,..., M.

Property 3.2.1. We suppose that, fori,j =1,... , M, there exist three constants «;, §;, and
€;,j such that

a. (A ixi, %) < (Bixi, Xq) < Bi{Aiixi, xq) V% € Wi g
b. <Ai,iXi,Xi> < 5i,j<Aj,ijan> V(Xi,Xj) e W; x Wj.

Property 3.2.1.a defines the quality of the approximation B; of A;;, while property 3.2.1.b
evaluates if the matrix A is properly block-wise scaled.
The following lemma holds.

Lemma 3.2.1. The condition number of P]_;}A can be bounded as follows:

w(eg3a) <ma{ (5 (14 30+ mpmagyan -v) ) S

where a;, 3;, and ¢; ; are the constants of the property 3.2.1.
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Proof. To find a bound for the condition number of Pg}A, we have to characterise the extreme
values of the generalised eigenvalue problem

APgjx=Ax, xeW,

i.e., the extrema of the Rayleigh quotients

xT Ax

RQ(Ppj,A) = iy —

x € W. (3.6)

Let’s consider first the upper bound of RQ(Ppgy, A). Because of the block-structure (3.4),

each vector x € W can be written as [x1,...,Xys], with x; € Wj. We have:
T 24{XTA"X‘—|-Z» xT' A, ‘X‘}
x' Ax o i (i P el JFEL L))
xT'Pgjx >k Xt Brxy,

Y {XzTAi,ixi + 2 <XzTAi,iXi + XJTAJJXJ> / 2}

- Zk X{kak

_ Zz {XZTAZ‘,Z‘XZ' + %(M — 1)XZTA1',Z'Xi + % Zj#i X,]rAj,ij}

- Zk X{kak

< Zz {[1 + (M — 1)/2] x;prm-Xi + %(M — 1)XZTA1',Z'X2‘}

- >k x{kak

< max 1—|—(M—1)/2+man€i7j(M—1)/2

= i=1,..,.M o )
Thus,

1 1 1
Amaz (Pg A) < max § — 1+ 5 1+ mjaxem (M—-1)]|¢. (3.7)
(3
For the lower bound, we have
xT Ax Amin(A)xTx
Amin (PRt A) = mi T
mzn( BJ ) )I(Iélvrll/ XTPBJX - ZZ XZTBiXi
max; {3 Amaz (Aii) }

Thus, the resulting bound for the condition number is

max; {O% (1 + %(1 + max;je; ;) (M — 1))}

K(Pgjd) < o) max {5} Amaa(Aii)
ﬁi 1 )‘mam(Ai,i)
< mlax{a—i <1—|—§(1+m]ax€,~7j)(M— 1))} Do (A) (3.8)

0
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Figure 3.2: A minimal-overlap two-subdomain partition. wi contains all the ‘e’ nodes, and wo
the ‘o’ nodes. Clearly, in this case w1 Nws = 0. To w;,i = 1,2, we can associate a subdomain
Q;, composed by all the elements of the triangulation of €2 having a node in w;. Therefore,
the two subdomains 2; and €25 share an overlap of 1 element.

Although not sharp (because of the generality of our assumptions), the estimation given
by lemma 3.2.1 states that the condition number of Pg}A grows linearly with the number of
blocks used (which might not be of the same size) and the ratio Ayez(Aii)/Amin(A). Note
that the above result can be sharpened in the case of two subdomains [Axe94, Chapter 9.

3.2.3 Two-level Schwarz Preconditioners

The non-scalability of the one-level Schwarz preconditioner of section 3.2.1 is due to the fact
that information are exchanged only locally through the overlapping regions, while for elliptic
problems the domain of dependence is global. The Green function is non-zero throughout
the whole domain, and some way of transmitting global information is needed to make the
algorithm scalable.

In a two-level Schwarz preconditioner, a further correction term By is added to the cor-
rections on the subdomains, obtaining

M
Pglaaa=Bo+Ps' = B, (3.9)
i=0

where By = ROTAa 'Ry is the coarse level correction. Ay corresponds to the solution of the
original variational problem in the space Vj, which is “coarse” in the sense that it contains a
limited number of degrees of freedom so to make the “exact” inversion of Ay computationally
acceptable — if ng is the dimension of the coarse space, one has ng < n.

Since rank(RoTAa 'Ry) = ng, By has a large null space. Therefore, it cannot be directly
used as a preconditioner: any component of the error which lies in the null space of ROTAa 'Ro
would never be corrected. Therefore, the formulation of equation (3.9) completes By. Note
that By reduces only the components of the error that can be represented on the coarse space,
that is, the low frequencies, whereas Pg corrects the high frequencies.
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Figure 3.3: Example of coarse mesh using a structured grid for a 2D domain. Triangles of the
fine mesh are in fine line, while the bold lines identify the triangles of the coarse mesh.

Remark 3.2.3. An alternative two-level method adopts the following three-steps Richardson
method

un+1/3 = u"+ Byr"
antl/2 = yntl/3 +P§1rn+1/3
a”tl = yntl/2 —|—Bor”+1/2,

where r™ and u” are respectively the residual and the approzimate solution at the n—step of
the Richardson method. The corresponding preconditioning matriz can be formally written as

PG pgmiad = 1 — (I — BoA)(I — PsA)(I — BoA) (3.10)

This approach is very close to the balancing Neumann-Neumann method for non-overlapping
decompositions [Tal94[; see also section 3.3.3.
Clearly, the roles of By and Ps can be interchanged. Thus, a further preconditioner can
be derived, which reads
PgépprianA = 1= (I = PsA)(I — ByA)(I — PsA)
This can be regarded as a multigrid approach, where Ps can be seen as a smoother, while By
corrects the error on the coarse-level grid.

The spectral properties (and the parallel performances) of two-level Schwarz precondition-
ers will depend strongly on the definition of the coarse space V. There are virtually unlimited
choices of the coarse grid correction that may be used. Convergence of the entire scheme will
depend on the particular interpolation and coarse grid operator used. When possible, the
coarse space Vp may be itself embedded into V},. Usually, the coarse operator represents the
discretisation of the continuous problem on a very coarse mesh. This is the common case,
for instance, of structured grids like the one depicted in figure 3.3. In this case, the following
result holds.
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Theorem 3.2.2. Consider the additive two-level overlapping Schwarz method, where the over-
lap is uniform of width O(0), the coarse grid space Vi corresponds to the finite-element func-
tions on elements of O(H), and Vo C V},. Then

H
k(P3¢ aannd) < C (1 + f) ; (3.11)
where C' is a constant independent of h, H and 9.
Proof. See [SBG96]. O

In a more general setting, with a coarse space which is not embedded in the fine space, it
is possible to prove the following theorem.

Theorem 3.2.3. For the additive two-level overlapping Schwarz method, when the overlap is
uniform of width O(0), the coarse grid space Vi corresponds to the finite-element functions on
elements of O(H), Vo ¢ Vi, and Vo ¢ HZ(Q), we have:

H\2
k(P ¢ qaard) < C (1 + g) ; (3.12)
where C' is a constant independent of h, H and 9.
Proof. See [CSZ96]. O

With this approach, the fine and the coarse grid need not to be identical. One important
constraint is that the closure of the coarse grid must cover any portion of the fine grid bound-
ary for which Neumann boundary conditions are given. Multilevel extensions are presented
in [CZ96, CGZ99|.

Remark 3.2.4. To build up the stiffness matriz on the coarse grid, one has two possibilities.
The first one is to assemble the coarse grid exactly in the same way as on the fine level. This
can be easily implemented in simple cases, whereas it is more difficult if the coefficient exhibits
rapid variation since in that case data must be scaled down to the coarse grid. The second
possibility is to build up the coarse matriz using the method called the Galerkin approximation,

Ay = RoARY. (3.13)
This can be performed using matriz multiplication techniques.

Theorems 3.2.2 and 3.2.3 rely on the definition of a coarse grid. For structured meshes, it
is relatively easy to find such a coarse grid. For unstructured meshes, it is not always a trivial
task to define the interpolation operator from the fine mesh to the coarse mesh. Moreover,
the implementation of this operator can be difficult or computationally expensive, especially
for 3D computations.

Note that in many applications where the programmer has complete control of the soft-
ware, generation of a (nested) coarse grid can be straightforward. One simply begins with
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an appropriate FE coarse grid, and then refines it one or several times to obtain the fine
grid. This fine grid will automatically inherit the shape regularity of the coarse one. When
the coarse grid is defined in this manner, calculations of the interpolation and restriction
operators is straightforward and inexpensive.

However, it is often neither possible nor practical to generate the fine grid from the coarse
grid in a nested process. A possible approach is then to run the grid generating procedure
twice, to generate two (uncorrelated and possibly non-nested) grids. The construction of
the interpolation operators then becomes more difficult and expensive unless sophisticated
algorithms are used to locate the fine grid nodes in the coarse grid. Another approach is
to coarsen the given fine grid, finding a set of nodes and then building a tessellation of the
domain. Note that for 2D domains is fairly easy to obtain a triangulation from a set of nodes,
while for 3D domains is more difficult. Moreover, it is not evident that the resulting grid will
be shape regular. Another important problem is the treatment of the boundary conditions,
since the definition of the boundaries may be troublesome for the coarse domain.

To overcome these problems, we consider here aggregation procedures, which will be shown
to be of particular advantage, especially when dealing with problems on unstructured grids.
Aggregation procedures have been presented in literature by various authors. An aggregation
technique was first introduced in 1951 by Leontief [Leo51, Chapter 9]. Here, it is written that
“in the case of products which comprise final demand, if enough is known to form a group
of products whose use is strictly complementary, the whole group of products is sufficiently
identified by one of its members. If the structure of final demand changes — and the use of
the group of products is really complementary — such a change will affect the whole group
in the same way. Therefore, no information is sacrificed by lumping them together. By the
same token, products which are substitutable but have dissimilar production functions must
separately identified since a change in their relative consumption will have different effects on
the economy.” The justification to use this approach was the observation that “/the production
of | each industry [...] must be some kind of aggregates of products.” This approach has been
extensively used in Economics; see [MS83| and the references therein.

In the domain of partial differential equations, smoothed aggregation techniques have been
used, for example, for multigrid applications in [BV99, VBMO01]|, where investigations of the
smoothed aggregation properties have been reported. In the framework of domain decomposi-
tion methods, the focus is mainly on two-level methods. Results are presented in [PSFQ97] for
the shallow water equations and 2D potential flows, in [FSQ94] for 3D potential flow compu-
tations, in [JKMKO0| for groundwater flows, in [KMJKO01]| for multiphase flows, in [LT00] for
discontinuous Galerkin approximation of advection-diffusion problems, and in [SF01, SF02]
for 3D compressible Euler equations on unstructured tetrahedral grids.

The basic idea of aggregation is to adopt an algebraic setting to overcome the difficulties
of the definition of a coarse grid. As suggested by equation (3.13), we first define the operator
Ry, and consequently A using two matrix-matrix products. The aggregation coarse space
Vp is defined such that each element of Vj is actually composed by a linear combination of
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Figure 3.4: Fine-mesh and coarse-mesh functions in the case of two subdomains in one di-
mension. ¢; is a generic basis function for the fine space, whereas ®; and ¥, are the two basis
functions for the coarse space.

elements of V},, and therefore Vy C Vj. More precisely, we will group the nodes of the fine
grid into aggregates ©;. Then, the basis functions of the coarse space Vy will be formed by
summing the finite element basis functions of the nodes in each aggregate.

The procedure is as follows. First, the differential problem is discretized on the fine grid.
Then, the matrix corresponding to the discretisation of the differential operator on the coarse
space is build using the elements of the fine-grid matrix. The basis functions of the coarse
space will be formed by summing the finite element basis functions of the nodes in each
aggregate. The algorithm uses a simple procedure to build the restriction operators Ry and
the prolongation operator Rg and to form the coarse matrix as Ag = ROARg.

The construction of Ry is sometimes referred to as smoothed aggregation (SA). Its first
step corresponds to define a restriction operator Ry so that each aggregate will eventually
correspond to a “degree of freedom” of the coarse operator. Typically, each aggregate is
formed by the nodes belonging to a subdomain, although one may have more aggregates
than subdomains, for instance by further subdividing each subdomain into a set of contiguous
nodes. This decomposition is usually obtained using a graph partitioning algorithm. The
number of aggregates ng represents the dimension of the coarse space Vj, since each aggregate
will be given a unique coarse grid function.

The ng x n (real) matrix Ry is constructed in such a way that each row corresponds to a
node and each column to an aggregate. We will indicate with 9; the set of nodes that form the
non-smoothed aggregate i, G the set of nodes lying on 0f2, (:)j = int (Uieéj supp((I)i)), Hy =
max;—;, o, diam(©;), and dy the amount of overlap among the (non-smoothed) aggregates.
A possible way to define the entries of Ry is as follows:

= 1 ifjed,
Roi, j) = { 0 ifjgd;orjeg. (3.14)

Ry can be viewed as a simple grid transfer operator corresponding to piecewise constant
interpolation. A one-dimensional example in the case of Ry and with two subdomains is given
in figure 3.4, while figure 3.5 reports a 2D example. Figure 3.6 represents graphically the
basis functions of V}, and Vj for a 2D case.

Remark 3.2.5. In general, one lets each processor build the aggregate corresponding to its
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Figure 3.5: Examples of aggregation for a 2D domain. The nodes marked with ‘W, ‘o’; and
‘e’ belong to U1, U9, and U3, respectively. The bold line defines ©1, the dotted line ©4, and
the shaded background ©s.

Figure 3.6: On the top, example of fine grid (on the left) and aggregates (on the right). On
the bottom, basis function for the fine grid (on the left), and non-smoothed basis function for
the coarse space (on the right).
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piece of the grid (corresponding to the triangulation of the computational domain), ignoring
the connections among subdomains. That is, each processor is assigned a subgrid of the entire
grid (that corresponds to the triangulation of the subdomain given to that processor); then, a
serial aggregation algorithm is used on each subgrid. This variant, sometimes referred to as
decoupled aggregation, works quite well if the load balance of the grid data among the proces-
sors is satisfactory. In general, when the ratio between the number of nodes and the number
of aggregation is large enough, like for the two-level methods here presented, the decoupled
aggregation offers good partitioning. On the contrary, when large number of aggregation are
required (like, for instance, in multilevel methods), decoupled aggregation may result in a some-
what irreqular decomposition. In this case, it is usually worth to re-equilibrate the partitioning
among the subdomains to minimise the dependency of the resulting algorithm on the subdo-
main decomposition; see [TT00] for discussions and results on parallel smoothed aggregation
applied to multigrid methods.

The second step (that may be avoided) consists of applying a prolongation smoother Sy to
produce the final prolongation operator R = ROTSO. Let ®; be the tentative coarse functions,
as defined by Ry. This function will be smoothed out by increasing its support using the stencil
of suitable polynomials in A. Then, the (smoothed) coarse space reads

‘/0 = span{q)l-, 1= ]_, e ,no}, (I)z = SO(I)Z (315)

Typically, Sy = P, (D~'A), where D is a suitable diagonal matrix, which can be chosen
to be the diagonal part of A, and P, a polynomial of degree k.
Possible choices for the smoother are a simple Richardson smoother [LT00, LT01]:

S = So(w, k) = (I —wD LA, (3.16)

where @ > 0 is a real parameter and k € Ny, or a recursive Richardson smoother [BV99,
VBT99|, or else a SPAI smoother [BGMRO1|. For a comparison of these smoothers the
reader is addressed to [LT00| or [LT01]|, where it is shown (experimentally) that the effect
of the mentioned smoothers are quite similar. Hence, in the following we will focus only on
smoother (3.16).

Note that, unless A has particular properties, the spectral radius of a non-damped Jacobi
method is larger than one. In this case, @ must be chosen such that w < 2/p(D~1A).
The need of an estimation of the largest eigenvalue is common to other smoothers as well.
However, it might be not too difficult to obtain an estimate of the largest eigenvalue. For
example, if A is a M —matrix, the Gershgorin theorem can be applied to bound the spectral
radius of A. If the matrix is scaled to have unit diagonal entries, this leads to the number
‘2’ for the largest eigenvalue. For non M —matrices, it is possible to estimate the eigenvalue
using a small number of Lanczos or conjugate gradient or power method iterations. It may
be useful to scale the estimate by a small factor, because most computational methods give
lower bounds to the largest eigenvalue.
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Remark 3.2.6. In the case of one aggregate per subdomain, a SA technique can be used to
define the overlapping subdomains ;. One possible way to proceed is as follows: one starts
with a minimal-overlap decomposition Q;, then a SA technique is applied to form V. Then,
set Q; = supp{®;},i = 1,... ,M. The amount of overlap among the subdomains (and the
aggregates) will depend on the degree of the smoother.

Let us indicate with ©; = int (Ui@gj supp(gpi)) the support of ®;, and

Hy= max diam((:)j),j =1,...,ng.
j:17"'>n0

We assume that the node aggregation has been carried out so that all ©; are connected subsets
of 1. In the following we will use the term aggregate for both ¥; and ©;, depending on the

context.

3.2.4 Algebraic Interpretation

The aggregation procedure can be reinterpreted as an algebraic manipulation of matrix A. For
the sake of generality, let us associate a (row) vector 1; € R" to the aggregate ©;,i = 1,... ,no,
such that the Ry matrix becomes

ni

u

that is, Ro(k, j) = m3,(j). With this notation, a basis function of Vj can be written as
® = Ro(k, §)¢), (3.18)
j=1

while a generic function ug € V| reads
no
ug =Y ugpPp. (3.19)
k=1

Then,

no n

ug = Zuo,kZRo(k,j)%‘
=1 =1
n

= > (Z uO,kRO(kaj)> ©;
=1

n

- Z (Rguo)j #j

J=1
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and this demonstrate that R] is the natural choice for the operator which interpolates from
the coarse space Vj to the fine space V.

We are now ready to define the variational problem on coarse problem as

{ Find ug € Vg : (3.20)

a(up,vo) = f(vo) , Yoo € Vo,

a(-,-) being the bilinear form associated to the considered problem on the fine grid and f(-)
the corresponding linear functional (see section 3.1).

Using (3.19), problem (3.20) reads

a (ZUO,kq)k(X),‘I’l(X)) =f(®i(x) 1=1,...,no.
k=1

Then, from equations (3.18) and (3.17) we derive

no n n n
a > uord megeid mper | = FD_mper| I=1,....m0
k=1 j=1 p=1 p=1
no n n n
Zu()?kznkvjznlypa (QOJ’QDP) = anvpf (SDP) l = ]‘7‘ i anO
k=1 j=1 p=1 p=1
no n n n
S uord Mg > mpdip = Y mpfy 1=1,...,n.
k=1 j=1 p=1 p=1
Hence, the element (k,[) of the stiffness matrix Ay is given by
n n
Ao(k,1) = Z Mk,j Z M,iAi s
j=1 i=1
and the right-hand side reads
n
fo(l) = an,pfp-
p=1

In the case of minimal overlap, Ry has a special form. We order the set of nodes starting
from those in 21, and then proceeding with those in Qs,... ,Qs. Correspondingly, we order
the degree of freedom of Vj. As a result, the prolongation matrix R} € R™ " has the
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following block structure:

N 0 0

n3. 0 0

: 0 0

77:50,1,1 0 0

0 ni, 0

Rl = : : L . (3.21)

0 7750,2,2 0

0 o ... ni,

0 0 ... nhy,

Note that each vector 1, ; can be constructed at the subdomain level, using only the local
information about the grid of €.

3.2.5 Convergence Analysis of Abstract Schwarz Methods

To bound the condition number of (3.9) with V{ given by (3.15), we use the abstract conver-
gence theory for the Schwarz methods [DSW94]. This theory, defined for symmetric problems,
centres around 3 parameters, Cp, p(e) and w later defined. The theory is quite general and
does not rely on any specific definition of the coarse space Vj.

In this section we report the main lines of this convergence theory, following [SBG96].
Then, in section 3.2.6 we will make use of this abstract theory to prove theorem 3.2.4.

Consider again our model problem (1.1) and its discrete counterpart (2.1). As always in
this thesis, we suppose to have M subspaces V; C V}, plus a subspace Vo C V}, which will
play the role of coarse space, and therefore will be treated slightly differently from the other
subspaces. We assume that there exists a set of interpolation operators Z; : V; — V},, and that
a continuous and coercive bilinear form a;(+,-) that approximates a(-,-) is defined on each V;.
Finally, let the projection-like operators 7; : Vi, — V; defined as

ai(Tiu,v) = a(u,Tiv) Yo eVii=1,..., M (3.22)

and the operators 7; : Vj, — Vj, as Z;7;. Algebraically, we can define a projection operator T}
as

T;=RFA;'R;A, i=0,..., M

where A; is the algebraic operator (the matrix) associated to a;(-,-), which in the case where
a;(-,-) = af(-,-) takes the form R,AR;”. Note that if u is the solution of problem (2.1)
associated with the FE approximation of (3.2), then

T,u= RiTAiflRiAu = RiTAiflRi f. (323)
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Thus, the result of T;u depends solely on f.

The idea is to define a new equation, using polynomials in 7;. This equation will have
the same solution u. Note that it is possible to calculate these polynomials since we already
know how to compute T;u from (3.23), as well as T;v for any given v. Let P(Ty,T1,... ,Ta)
be any homogeneous polynomial in 7}, and let g = P(Tp,T1,... ,Thr) u. The general abstract
Schwarz method replaces the given linear equation Au = f by the operator equation

P(To,Tl, cee ,TM) u=g, (324)

which can be solved using, for instance, a Krylov subspace method. In this way we have
replaced the (possibly) ill-conditioned operator A with a preconditioned operator that we can
write as P(Ty, T4, ... ,Th) = BA. The preconditioner B is therefore defined implicitly.

From the abstract formulation (3.24) we can obtain the two-level additive Schwarz method
as defined by equation (3.9) setting

Pgé,addA =BA=Ty+T1+...Ty. (3.25)

Here, the preconditioner is implicitly defined by the sum of projections T; onto the subspaces
V;. Since T; = B; A, we have

M M
—1
Pt =31 ()
i=0 i=0
as previously defined by equation (3.9). This preconditioner is called additive since the pro-
jections onto the subspaces are simply added.

Remark 3.2.7. Another noticeably case is the full multiplicative Schwarz method, that reads
Pyt A = (I = To)(I =T1) ... (I = Twp). (3.26)

Although the multiplicative Schwarz method reveals to be better conditioned that the additive
one, it is clear from (3.26) that the subspaces must be treated one after the other, in a sequential
way, while in (8.25) one can consider each projector T; separately and then simply add the
results. Therefore, for the definition of parallel preconditioners (3.25) has to be preferred to
(3.26).

Now we introduce the tools that are used in the convergence analysis of Schwarz methods.
We start with the following lemma. This proof can be found, for instance, in [SBG96, Section
5.2] (see also pages 160 and 161 of the same book for further references about this lemma),
and is reported here for the sake of completeness.

Lemma 3.2.2. Define T = Zi]\io’ﬂ. Then, Yuy, € V},

a(T tu,u) = min a;(ug, u;). 3.27
( ) min Z@: (ws, i) (327)
uzzgofiui
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Proof. First, we construct a particular decomposition of u which satisfies (3.27) exactly, and
then we prove that

a(T tu,u) < Z a;(ug,u;)  Yu; € Vi, ZL’U@' = u. (3.28)

Let u; = ’j}Ti_lu; then >, Zju; = <ZZ Il’j;) 714 =w and

Zai(ui,ui) = Zai <’Z~}’T*1u,’2~}’f*1u>

= Z a (’T—lu, ’TiT_lu)

= a(7 lu,u).
Now, we prove (3.28) as follows:

(T tu,u) = a(T tu, ZLUZ)
= Z a(T Y, Tyu;)
= a(TT 'u,u;)

1/2
[by C-S] < Zai(’j}Tlu,’j}Tlu)] [Z ai(ui,ui)]

1/2

1/2 1/2
— Za(Tlu,’Z;Tlu)] [Z ai(ui7ui)]

% 7

1/2
= (J,(’Z'*lu,u)l/2 [Z ai(ui,ui)] }

(2

This yields (3.28). Here, C-S means that use has been made of the Cauchy-Schwarz inequality.
[l

The abstract convergence theory for symmetric problems centres around three parameters,
defined in terms of the following three definitions.

Definition 3.2.1. Let Cy be the minimum constant such that for all up € Vj, there exists a
representation up = Zf\io Liui,u; € V; such that

M
ai(ug, u;) < Cla(up, up). (3.29)
1=0
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Definition 3.2.2. Let

¢ — |la(Ziui, Ziug)|
e u €V5,0; €V a(Iiui,Iiui)l/Qa(Ijuj,Ijuj)l/Q ’

Note that 0 < ¢; j < 1. Then, let p(e) be the spectral radius of the matriz € whose entries are
the €i,js

Definition 3.2.3. Let w be the minimum constant such that
a(Iiui,Ziui) < wai(ui, ul) Vu; € V;,1=0,... ,M (330)
where we assume that the a;(-,) are suitably scaled.

Remark 3.2.8. Definitions 3.2.1, 3.2.2 and 3.2.8 are usually inferred to as assumptions; see,
for instance, [SBGY6].

For a linear operator £, which is self-adjoint with respect to a(:,-), we use the Rayleigh
quotient characterisation of the extreme eigenvalues:

N () = max BEC) 5@ () iy UE),
u#0 a(u, u) min Y a(u7 u)
The condition number of £ is then given by
(a)
K(L) = A’g)liff(ﬁ)

In order to apply the preconditioned conjugate gradient method to the operator 7, it must
be symmetric with respect to a(-,-), that is

a(Tu,v) = a(u, Tv).

It easily seen that the operators 7; defined in (3.23) are self-adjoint in a(-,-).

We can now provide a bound for the abstract additive Schwarz method in terms of the
parameters in definitions 3.2.1, 3.2.2 and 3.2.3.

Lemma 3.2.3 (abstract Schwarz method). The abstract additive Schwarz method satis-

fies
K(Pg s aqad) < w1+ p(e)] C3,

where Cy, p(€) and w are the constants of definitions 3.2.1, 8.2.2 and 3.2.8, respectively. In
particular, 1/CZ is a sharp lower bound on the smallest eigenvalue of BA and w [1 + p(€)] is
a bound on the largest eigenvalue of BA.
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Proof. The bound on the smallest eigenvalue follows immediately from lemma 3.2.2 and def-
inition 3.2.1.

We now bound the largest eigenvalue. We first treat the subspaces V;,i = 1,... , M, while
the space V) is treated separately. We have

M M M
a > Tw,> T | =Y a(Tv,Tv)
i=1 j=1 ij=1
M
[by def. 3.2.1] < Z e; ja(Tiv, Tw)Y?a(Tjv, Tjv)'/?
ij=1
M
< p(e) Za(’]}v,’]}v)
i=1
M ~ ~
[by def. 3.2.2] < wpl(e) Z a;(Tiv, Tv)
i=1
M
—op(@) S alv, Tv)
i=1
M
by C-5] — wp(da(v. 3 Tw)
i=1
M M 1/2
< wple)a(v,v)?a ZZU,Z’Z}U
i=1 j=1
Therefore
M M M
a(Y_ TPv,v) = ad_ Tw, ) Tv)
i=1 i=1 j=1
< Ww?p?(e)a(v,v). (3.31)

Thus, the largest eigenvalue of Z -, 7; is bounded by wp(e). To estimate the largest eigenvalue
of 7y we proceed as follows:

a(Tov, Tov) < wag(Tov, Tov)
[(3.22)] = wa(v, Tyv)
< wa(v, v)"2a(Tov, Tov) /2.
Thus,
a(Tov, Tov) < w?a(v,v),

which implies that

a(Zov,v) < wa(v,v). (3.32)
Combining (3.31) with (3.32) completes the proof for the upper bound. O
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3.2.6 Spectral Properties of SA Preconditioners

In this section we will apply lemma 3.2.3 to the aggregation coarse space. First, we need to
make precise some geometrical information about the decomposition used. This is done in
the following properties.

Property 3.2.2 (partition). There are two constants Cy and Co so that, for each aggregate
©;,i=1,...,n9, we have:

a. dlam(@z) < ClHo,i = 1, ..., Noy
b. the Lebesque measure |O;| of ©; satisfies |©;] > CoHY;
¢. the overlap among the aggregates is of order dg.

Property 3.2.2 states that the aggregates have diameter of comparable size Hy and are
shape-regular. The following property 3.2.3, instead, requires a certain regularity on the
coarse space basis function ;.

Property 3.2.3 (coarse space). There exists a constant C' > 0 such that the basis functions
{®;} of the coarse space satisfy

H
a. ’(pi‘%fl(ﬁ) <C 5 ;
b. "q)i"%Q(Q) < CHg;'

c. There is a domain Q) C Q such that > Pi(x) =1 for every x € Q and SUD, o0 dist(z, 002) <
CH,.

We note that a non-negative function ®;, which is constant in the interior of ©; and
decreases to zero with [|[V®;|| ooy < 1/dp in a layer of width dy, satisfies the bounds 3.2.3.a
and 3.2.3.b. In particular, the non-smoothed case defined by equation (3.14), corresponding
to Ro, will bring to a set of functions {®;} which satisfies property 3.2.3 with dy = h.

Let us define the operator Qg : Vj, — Vy by

ng 1
Qou = Z%“I)z‘, a; = —/ 7 (x)u(x)dS2,
i=1 Vi Je;

where ~; is a coefficient to be precised and 7;(x) is a weighting function, whose support is at
most ©;. We suppose 7;(x) € L?(0;). Using the Cauchy-Schwarz inequality we get

no

no 1
Za? < Z ?HWH%%Q)HUH%Q(Q) (3.33)
i=1 =1 '?
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Figure 3.7: On the left, in shaded colour, Q'. On the right, in shaded colour, €, and in white,
Q.

If we take n; and ~; such that 2 ||77@||L2(e ) < < CH (for example, 7; = 1 on ©; and ~; = |0;|)
and properties 3.2.2 and 3.2.3 Eold we finally get

Za u) < CHy Y[ul[72()- (3.34)

We can now prove the following lemma.

Lemma 3.2.4. If definitions 3.2.2 and 3.2.3 are satisfied, then there exists a constant C' > 0
independent of Hy,dg and h such that Yup € Vj

a. ||lu Q0u||L2 Q) < CH0|U|H1(Q

H
b. |Q0u|%{1(g) < C#(]Huﬁp(g)-

Proof. The proof extends a similar proof proposed in [JKMKO00]. It is split into 2 parts. First,
we prove lemma 3.2.4 in Q\Q; then, in Q, where (2 is the domain introduced in property 3.2.3.
Throughout the proof, C represents a generic positive constant independent of H, Hy, J, and
50.

We consider first the L?-estimate.

Let us set 2 = Q\ €. Further, we define

B={i:0,NQ#0 E:U iy, W =sup inf dist(z,y)
cB zeQ YEID

and set
U'— {2 e Q] dist(x,00) < W}.

Figure 3.7 graphically explains the domains 2 and QF.
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From property 3.2.2.c it follows that W < CHjy, and therefore the Poincaré inequality
yields

[ullz, @) < lullzzry < CHolulgar)- (3.35)

The restriction of Qou onto € can be expressed as

(Qou) lg =Y ci(u)®i(x)lg

i€eB
Further, let us set
Ni={j1©;n0; £0}. (3.36)

We have

||Q0U||i2(()) Z Z (ai(u) @, a;(u )(I)j)L2(Q)

i€B jeN;NB

<Z Z |l ()] - e (w)] - [Pl 2 () 1951 2 ()

i€B jeN;NB

[by prop. 3.2.3.b] < CH{ Z Z 2(u))

i€B jEN; mB
< CHg max {card NV;} Z o2 (u)
i€eB

< ClulZ2ar
Using the last inequality together with inequality (3.35) gives
lu = Qoull L2y < Cllull 20y < CHolulgar)-
In an analogous way, we can estimate 3.2.4.b in Q exploiting property 3.2.3.a, obtaining

|Qoul}i ) < CHy /o0 ||ul72ary
[by (3.32)] < CHo /o [uly qr) -

Now, we turn our attention to Q.
For every function u € V}, let us consider an extension up satisfying

luelm @y < llullgiQ), we=uin.

For j = 1,... ,ng, we define ©F = Ujen;0; with A given by (3.36), and =; to be the ball
circumscribing @}*. From property 3.2.2 is follows that

diam(Ej) < CHQ
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We now use the Friedrichs’ inequality of the form

lullzoe) < CHo iz, + Vue { e HI(E))| [ v o}. (3.37)
Ej
For every j =1,... ,ng we define

cj:/ updr, U; =Uug — cj.

=J

Then, the Friedrichs inequality holds for every #;. Due to property 3.2.3.c, for every x € ©; al¢)
it holds

(Qou)(x) = (Qotj)(z) + Qoc;

= Z a;(u;)®@i(x) + ¢; Z ®i(x)

iEN; iEN;
[by prop. 3.2.3.c| = (Qotj) () + ¢;.
Therefore,
2 S 2
HU - QOUHL2(Q) < Z HU - QO“HL2(EmQ)
i=1
= Y I - Qo)(mi + Cz‘)||ia(gim§z)
= 2 = Qill ez 0
< 22 <”77Ji”i2(5im§)) + HQOﬁi”i?(EimQ)) : (3.38)
Further,
2
”QOUZHL2 mQ) Z O‘j(ai)q)j
JEN: L2(Q)
2
<[ D2 lay @)l 195120
JEN;
< card{N;} Z ;) || @, HL2 (E:iNQ)
JjEN;
[by 3.2.3.b and (3.33)] < Cllaill3 22,00

Substituting the last inequality into (3.38), using the Friedrichs inequality (3.37) and exploit-
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ing the bounded intersections of balls {Z;}.°,, we get

no
C> N,
=1

0

< CH Y luilin,
i=1

< CH§ luljp g -

IN

||u - Q0u||i2(())

We have therefore proved lemma 3.2.4.a, since

= QoullZaiy = llu— QoullZay + e — QoullZsq,
CH§ |ulf ory + CHG [ul g
< CHgluljp gy -

IN

To finish the proof, we turn out to 3.2.4.b in Q. We have
o
2 2
|QOU|H1(Q) < Z |Q0u|Hl(eimQ)
i=1

no
i=1
2

< > aj(u)®;
=1 |jeN; Hl(Q)

no
<D ey @) - D] 171

Hd—l no
by prop. 3.2.3.a and (3.33)] <C go Hy "3 il 720,

1=1 jeN;

2

Hy <X,
[by (3.37)] <oy > Juili s,
=1

To prove theorem 3.2.4 we need other two lemmas. The first one is the following.

Lemma 3.2.5. Let Q; C R d = 2,3, be a rectangle of diameter H, and let Ts, be a strip
along its boundary of width 6 > 0. Then, for any function v € H'(;),

H 1
lullZer,,) < €62 [(1 + F) [ultr ) + H—5||u||%2(gi) : (3.39)
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Proof. The proof that we report here is taken from [DW94], and is only bounded to a square
region (0, H) x (0, H). Since
Yo
uw,0) =utay) - [P

we find, by elementary arguments, that

H H H H H
H/ lu(x,0)|*dz < 2/ / |u(:n,y)2dmdy—|—H2/ /
0 0 0 0 0

dxdy.

@
oy
Therefore,
= 2 2
H /0 [0z, 02 < 2ull 2y + B2l ).

Now consider the integral over a narrow layer of {); next to one of the sides of the squares.
Using similar arguments, we obtain

H 9 ) ) H )
| [ e Pedy < Pl +25 [ ute.0) P

Combining this and the previous inequality yields

H 9 2
lu(z, y)[Pdedy < 8[ulgi(a,) + 26 | = lull 22 + Hlulin g, ) -
o Jo H
O

We can now prove the following result, which extends other results presented in the liter-
ature.

Lemma 3.2.6. Under definition 3.2.1 and for every finite element function uw € V}, there
exists a decomposition {u;},1=0,... , M, u; € V;, such that

M
u = E Uy,
=0

and

M
H H
i <C(14+ =) (1422 |ul?
zz;m |H1(Q) _C< " 5) < * do |u|H1(Q)’
with Hy < H and 6y > 6.

Proof. Define Ij, to be the fine mesh operator I, : V' — V}, such that

n

In(w) = ulxi)ei

i=1
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where @; is a generic finite element basis on the fine mesh, and x;’s are the fine mesh nodal
points. Let 7; be a partition of unity such that n7; € C§°(£2;) and 0 < n; < 1. We then define

ug = Qou, w=u—ug, u;=Ip(nw).

Clearly, by construction,

Because of the definitions on the overlap, we can ensure that the gradients of n; are well
behaved. That is, we can construct 7; so that |Vn; %OO(Q) < C/§2. If K is a single element in
the triangulation this can be expressed as

i = 7ill 700 (1) < C(/6)?, (3.40)
(

7; being the average of 7; on element K.
Over a single element K and using the inverse inequality, we get

wilingey = 1n ew + (n = 02wl 7n g
< 20mwlin g + 2 1n0m — )wlin k)
< 20wl ey + CP2 In(mi = 73) w72 )
< 2 |ﬁiw|§{1(K) +Ch I — ﬁiH%DO(K) \|Ihw||%2(1<) -

Now, we sum up over all the elements. The last term is identically zero for all elements K in
the interior of €2;. Therefore, when we take the sum over all the elements, the last term only
includes those elements in the overlapping region. Moreover, since a finite number, bounded
independently of h, §, H and Hj, of w; is non-zero for any element K, we obtain summing
over i and using (3.40)

M M M
D uilfnggy <O luilfngy +C52) Hui||%2(r51,)-
i=1 i=1 i=1

Using lemma 3.2.5 to bound the last term, we get

M M H 1
2
Z il gy < C \w\%p(g) + CZ [(1 + g) \Uz‘\fm(m T s ”uiH%Q(Q)
=1 =1
H 1
< Clw|fg +C <1 + F) [wli o) + Oz Il
H H?
H H H
[by 3.2.4.b, Hy < H] <C(1+= ) (1+=2) ulipg + C5 lulfn g
5 5 5
H H
[60 > ] <C(14+ =) (1+==) [ulfn -

5 8
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Note that we have used the fact that dg > 0 and Hy < H. This latter inequality states that
the coarse space must be sufficiently rich with respect to the number of subdomains.
O

The following theorem holds.

Theorem 3.2.4 (aggregation coarse space). Let properties 3.2.2 and 3.2.3 hold. Then,
for the additive two-level overlapping Schwarz method, when the overlap is uniform of width
O(0) and Vy = span{®;,i = 1,... ,ng}, there exists C > 0 such that

H, H
K(Pg & aad) < C (1 + 5—00> (1 + F) . (3.41)

Proof. The proof of theorem 3.2.4 is easily obtained using lemma 3.2.3. As verified by lemma
3.2.6, the first parameter C§ of definition 3.2.1 is bounded by

H H
2 < - =),
co_<y+5><1+50>

The second parameter can be estimated by using a colouring argument. We know that we
can colour the subdomains with V. colours, independently of h and H. Taking the coarse
space into account we have therefore that we can group the T; into N. + 1 classes. Hence,
p(€) < N.+ 1. w =1 since we suppose to use exact solvers on the subdomains. From lemma
3.2.3 the thesis follows. O

Remark 3.2.9. If g = § = nh, n > 1, and the diameter of the aggregates ©; bounded by
H/x, where x > 1, that is, xHo = H, we have that

o (4 5) (1 )
% (%)2 (3.42)

Equation (3.42) states that we can reduce the condition number by increasing the number of

IN

-1
K <P S,C,addA)

aggregates and the overlap. The overlap has a stronger influence on the reduction of the con-
dition number; however, it is usually computationally expensive to use wider overlap, whereas
larger values of x have influence only on the coarse problem, whose size is remarkably smaller
than that of the global problem. Hence, using a given overlap the effect of the preconditioner
increases with the number of aggregates.

Theorem 3.2.4 considers only the final aggregate space V. It is possible to separate the
effect of the smoother Sy and of the non-smoothed aggregates. To that aim, we need the
following two lemmas.
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Lemma 3.2.7. Consider non-smoothed functions ;i = 1,...,ng, such that V®; is zero
outside the overlapping part I'g  of ©;, and bounded by 1/80 in Lg.. Then, ®; satisfy prop-
erty 8.2.83 with Hy = Hy and § = 0.

Proof. Let ®;,i =1,... ,ng be a generic coarse function. We have that
~ - 2 1 o
|2 . . d—1
il 1 () < qu% 1T P, < C bl

The second inequality follows from the fact that I'g , where the gradient of ®, is non-zero, has
a Lebesgue measure of order O(Sg[zlg_l) and the mesh is quasi-uniform. This proves 3.2.3.a.
Now, 3.2.3.b is proved noting that

||‘i)i||%2(9) < C|6;] < CH.
where ©; is the support of ®;. [

Lemma 3.2.8. Let Sy be defined as in equation (3.16), and let ®;i = 1,... ,ng satisfy
properties 3.2.2 and 3.2.3 with Hy replaced by Hy and 8 by 8y. Then, for a fized degree k
of the smoother, the coarse functions ®; = S'o(k)(i% satisfy properties 3.2.2 and 3.2.3 with
Ho = Ho + kh and &y = do + kh.

Proof. The effect of the smoother is to increase the diameter of the subdomains and the
overlap. The application of the smoother results in a diameter of the aggregates of O(Hg+kh)
and an overlap of order O(dy 4 kh). Since the triangulation is quasi-uniform, we have that

diam(©;) = C(Hy + kh) < CH,.

This verifies property 3.2.2.a. Using similar arguments, property 3.2.2.b is verified.
Now, let us prove that property 3.2.3.a holds. We have

2 ~

P, 2 = ‘g (i)z < S0)? “i)l
| |H1(Q) 0 Hi©Q) p(S0) Q)
gt
< Cp(So)*—2—
do
B Hd—l
< Cp(S8p)*—2—, (3.43)
do
since ]:Io < Hy and dg = 50 + kh =ih + kh > C’SO for fixed values of 7 and k.
As regards property 3.2.3.b, we have:
2y = [|S0i], < (S0 ] (3.44)
tlr2(Q) — 014 2Q) P90 i LQ(Q)' .

To prove property 3.2.3.c, we define the function

u(e) = 3 &i(a),
i=1
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is equal to one Vx € Q, and consequently at every z € Q) outside a strip of width (9(50) around
0f). Thus, we obtain

D ®i(z) = (50 Z(i)z) (x) = (Sou)(z) =1
i=1 =1

at every x € Q outside a strip of width O(dy) + kh = O(8y) around 9. O
The following theorem holds.

Theorem 3.2.5 (smoothed coarse space). Let properties 3.2.2 and 3.2.8 hold, with Hy
replaced by FIO and &g by 5~0, and let 5'0 be a smoother, such that Ry = S'ORO, and p(SO) be the
spectral radius of So. Then, there ezists a C' > 0 such that

5 (Pt od) < © (1 F(+ ,,(50)2)%) (1+%)-

Proof. The proof can be carried out by modifying the final part of the proof of theorem 3.2.4.
Let Qo : Vi, — Vi be the restriction operator corresponding to matrix Ry and Qo : Vi, — Vp
the restriction operator defined by a tentative matrix Ry. Then, we have

|Q0u|§{1(ﬁ) < u’RTARyu
= u’RYISyASyRou
< p(S§)u" Rj ARou
= p(S)IQoulF -

We finally obtain

~ H,
Qoulipg < CO+p(S)?)="

IN

0

In the applications, often minimal-overlap Schwarz preconditioners are used. This means
that 6 = h. In this case, it is convenient to use dg = 0 = h. This correspond to consider
Ry, as defined by equation (3.14). Then, this tentative coarse matrix can be smoothed out
using the simple Richardson smoother of equation (3.16). The required estimation of the
spectral radius of A can be obtained by computing the spectral radius (or an approximation
of it) of Ay, whose dimension is remarkably smaller than that of A. This matrix, of moderate
dimension, can be used to estimate the largest eigenvalue of A. The resulting smoother reads

. 1.5 \*F
So(k) = (I - p(Ao)A> , (3.45)
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where 1.5 is a chosen correction factor to correct possible under-estimation of p(A).

For each subdomain, the extended support of the smoothed coarse function can be used
to increase the overlap, see remark 3.2.6.

The application of the minimal overlap smoothed aggregation preconditioner gives rise to
the following algorithm 3.2.1.

Algorithm 3.2.1 (minimal-overlap smoothed aggregation preconditioner).

a. Define a minimal-overlap partition into subdomains;

b. Define a minimal-overlap partition into aggregates;

c. Form the non-smoothed restriction operator Ro, and compute the
non-smoothed coarse matrix 1210;

d. Estimate the condition number of 1210;

e. Compute Ry by smoothing out k times Ry, using the smoother (3.45);

f. Apply Pscadd or Pschybria as defined by equations (3.9) and (3.10).

An Improved Convergence Bound

A possible improvement of the estimation given by theorem 3.2.5 can be obtained by assuming
that each subdomain defines an aggregate. The proof, already presented in [LT01], is here
reported for the sake of completeness. Using the notation of that paper, in this case one has
Hy = H, §g =6, and ng = M. We also need an additional function &y € V}, associated to
the boundary of 0f, so that the augmented set of functions forms a partition of the unity on
the entire (). This additional function is only needed for the proof and not implemented in
practice.

Property 3.2.4. We assume that the basis functions {®;},i=0,... ,M of the coarse space
Vo satisfy

a. H(biH%OO(Q) <C;
b VP70 < C/8%;

c. Zi‘io Q,(x)=1, Vrel;

d. supp (®;) C Q;.

The following theorem holds [LT01, Lemma 7].
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Theorem 3.2.6. Let the properties 3.2.2 (with Hy replaced by H and 6 by 6) and 3.2.4 hold.
Then, there exists a constant C' > 0 such that

_ H
k(P56 4) < C <1+ 7)-

Proof. The proof is similar to that of theorem 3.2.5. The difference is that now we consider
the coarse basis functions ®; to decompose u € V}, instead of the partition of the unity as we
did before. This gives

() :Qou, U; :Ih(q)i(u—uoﬂ')), iZO,... 7]\4

where uy = > "% ®jup; and, by construction, ng = M + 1 (the M aggregates plus the
additional function ®q. This is a proper decomposition, since

> u = Zuoﬁ-th i(u— o))
= ZIhq)uOH—fI)u D ;)

= Zfbu—u

since Y, ®;(x) = 1,Vz € Q, owing to assumption 3.2.4. Let ®f ; indicate the average of ®;
over the element K. Using inverse inequality, we get

\Uiﬁql(K) = | [‘i[gﬂi‘f’((I)K,i_(i)Kﬂ)u”?{l(K)
< 2ol 20— bl
< 2By + O (0~ Bl

< 2 |¢KZU‘H1 + Ch™? H(I) q)K,iHioo(K) HIhuH%?(K) :

Now, we sum up over all the elements. The last term has a non-zero contribution only near
the boundaries of 2;, giving

wilin,y < Cluiltng,) +C67 HUz‘H%%rai)
= Cln(@(u —u0)) 30,y + CO 1In(®(u = u00))l|Zer, )

H
_ Clh@w qu))\Hl(Q)—i—C(l—l— )uhu w0 i)

H
< C <1 + F) |U|3{1(Q) )
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where we have used lemma 3.2.5. Finally, from lemma 3.2.4.b with Hy = H and dg = 4, we
obtain

M M
2
D luiltg < luoligy + D luilhn g
i=0 i=0

H H
< CF |u|§{1(9) + <1 + 7) |U|§{1(Q)

HY o
< C (1 + F) lul () -
O
3.2.7 Numerical Results

We report in this section some numerical results for the problem

—Au = 1 inQ=(0,1) x(0,1)
3.46
{ v = 0 on 01, ( )

which is a special case of our model problem (3.1), with oy, s =1, f = 1, and Q = (0,1) x (0, 1),
I'p = 09. The mesh is built by dividing € into n? equal squares and subdividing them into two
triangles. Thus, we obtain a triangulation with h = % As regards the domain decomposition,
we consider overlapping squares §); of area H?. We use linear finite-elements, and solve
the linear system (2.1) by the conjugate gradient method. The tables report the estimated
condition number for the preconditioned system; see for instance [GvL83]. This is obtained
by computing the condition number of a suitable Lanczos matrix, which approximates the
preconditioned operator. The stopping criteria is €2, where € is the machine precision.

Table 3.1 gives the condition number for the one-level Schwarz preconditioner. The min-
imal overlap version (§ = h) is used here after. The condition number grows as O(1/hH)
as theory predicts [QV99]. The following tables 3.2 and 3.3, which are about the two-level
Schwarz preconditioner, confirm the bound provided by theorem 3.2.2. Hybrid precondi-
tioners behave only slightly better than additive ones, therefore their use for these problems
seems inconvenient. Tables 3.4 and 3.5 report the influence of a non-smoothed aggregation
procedure, with minimal overlap among the aggregates (09 = h). The effect of the parame-
ter x of equation (3.42) can be clearly appreciated. PS_, é',hybri 4 shows the same convergence
rate of the additive version, although the estimated condition number is sensibly smaller.
Note that two matrix-vector products are needed by Pq é’,hybm’ 4> thus making its application
computationally more expensive than that of Pq é wda- However, differently from “classical”
coarse spaces, hybrid preconditioners perform much better than their additive versions, with
significant reduction in the condition number.

Finally, the tables 3.6, 3.7, 3.8, 3.9, and 3.10 show the influence of the smoother (3.45) for
different values of k. Note that, for all the smoothers, the hybrid version performs significantly
better than the additive version.
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Py H=1/2 H=1/4 H=1/8 H=1/16
h=1/16 | 15.95 27.09 52.08 -
h=1/32 | 31.69 5452  104.85  207.67
h=1/64 | 63.98  109.22  210.07  416.09
h=1/128 | 127.99 21848  420.04  832.57

Table 3.1: Estimated condition number using the one-level Schwarz preconditioner Pg with

minimal overlap (§ = h).

Pscaa |H=1/4 H=1/8 H=1/16 H=1/32
h=1/32 | 7.03 4.94 - -
h=1/64 | 1273 7.59 4.98 -
h=1/128 | 23.62 13.17 7.66 4.99
h=1/256 | 45.33 24.34 13.28 -

Table 3.2: Estimated condition number for Py é waqAs With a coarse space built using a coarse

grid (standard coarse space).

Pscngria | H=1/4 H=1/8 H=1/16 H=1/32
h=1/32 6.11 3.56 - -
h=1/64 | 1147 6.24 3.58 -
h=1/128 | 22.26 11.71 6.27 3.58
h=1/256 | 43.86 22.71 11.77 -

Table 3.3: Estimated condition number for Pg é‘,hybm’ 4A, with a coarse built using a coarse

grid (standard coarse space).

Pscadd | X|H=1/4 H=1/8 H=1/16
h=1/16 | 1| 13.37 8.87 -
h=1/32 | 1| 2693 17.71 9.82
h=1/64 | 1| 54.33 35.21 19.70
h=1/128 | 1 | 109.39 70.22 39.07
h=1/32 | 2] 13.13 7.78 -
h=1/64 | 2| 27.18 15.28 9.96
h=1/32 | 3] 761 ] -
h=1/64 | 3| 17.13 8.39 -

Table 3.4: Estimated condition number for Pg é,a 4qA, with a coarse space built using non-

smoothed aggregation.
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Pscongpria | X | H=1/4 H=1/8 H=1/16
h=1/16 | 1| b5.24 2.89 -
h=1/32 |1 10.64 5.66 2.97
h=1/64 | 1 21.60 11.34 5.79

h = 1/128 1 43.65 22.77 11.55
h=1/32 | 2| 55 2.7 -

Table 3.5: Estimated condition number for Py é,hym 44, with a coarse space built using non-

smoothed aggregation.

Pscaia | H=1/4 H=1/8 H=1/16 H=1/32
h=1/16 | 11.91 6.02 - -
h=1/32 | 2559 14.95 6.28 -
h=1/64 | 50.03 32.64 16.23 6.36
h=1/128 | 108.13 67.75 35.81 16.631
h=1/256 | 21857  137.91 74.55 -

Table 3.6: Estimated condition number for PS_7 é wda A, with a coarse space built using aggre-

gation and smoother (3.45) with £ =1 and y = 1.

Ps ¢ hybrid

H=1/4 H=1/8 H=1/16 H=1/32

h=1/16
h=1/32
h=1/64
h=1/128

5.09 2.86 - -
10.49 5.63 2.96 -
21.46 11.31 5.77 2.99
43.51 22.75 11.54 5.82

Table 3.7: Estimated condition number for Pzt

aggregation and smoother (3.45) with £ =1 and y = 1.

Ps ¢ add

H=1/4 H=1/8 H=1/16 H=1/32

h=1/16
h=1/32
h=1/64
h=1/128

10.71 5.70 - -
24.28 12.78 5.92 -
51.77 30.35 19.70 10.12
106.89 65.42 32.97 13.82

Table 3.8: Estimated condition number for Pg é wdqAs With a coarse space built using aggre-

gation and smoother (3.45) with £ =2 and x = 1.

5.0 hybrri 4A, with a coarse space built using
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Pscpymia | H=1/4 H=1/8 H=1/16 H=1/32
h=1/16 | 5.00 2.82 - -
h=1/32 | 10.39 5.611 .
h=1/64 | 21.36 11.29 5.78 2.98

Table 3.9: Estimated condition number for Pg é hybridA7 with a coarse space built using
aggregation and smoother (3.45) with £k =2 and x = 1.

Pscad | H=1/4 H=1/8 H=1/16 H=1/32
h=1/16 | 9.77 5.59 - -
h=1/32| 23.12 11.08 5.88 -
h=1/64| 50.56 28.31 11.55 -

Table 3.10: Estimated condition number for Py é wdq4s with a coarse space build using aggre-
gation, using smoother (3.45) with k£ = 3 and y = 1.

3.2.8 Concluding Remarks about Schwarz Preconditioners

In this section we have considered both one-level and two-level Schwarz preconditioners. For
the latter, a coarse space V) based on the concept of aggregation has been introduced. The
basis functions of V|, are built as a linear combination of the basis functions of the fine space,
and the use of a coarse grid is not required.

A theoretical analysis is reported for an elliptic model problem, discretized on a quasi-
uniform mesh with finite-elements. The theory extends results presented in literature; see
[JKMKO00, LT01]. There, the authors assume equal overlap among the subdomains § and the
aggregates dg, and equal size of the subdomains H and the aggregates Hy. Instead, in the
bound of theorem 3.2.5, the influence of the subdomain decomposition, the non-smoothed
aggregates, and the smoother, are kept separate. The bound involves geometrical quantities
on the subdomains (H and 0) and on the aggregates (Hp and dp), and the spectral radius of
the smoother p(Sp).

Although the presented condition number estimate is less favourable than other estimates
proposed in literature based on a coarser triangulation, the aggregation procedure here out-
lined has many advantages. First of all, it does not require the generation of a coarse grid, as
other two-level methods do. This opens the possibility to use the aggregation procedures for
more general cases with complex geometries without loosing the power of two-level methods.
Secondly, it can be constructed automatically and for any computational grid with no input
from the user, except for the matrix A and the dimension of the coarse space. Moreover, the
computational complexity of the aggregation procedure is smaller since the method is sim-
pler to implement. This simplicity has its origin in the way the restriction and interpolation
operators are defined.
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For the special case H = Hy and § = §p, theorem 3.2.6 furnishes an improved conver-
gence bound, which depends linearly on H/J. Although, the basis functions of the coarse
space must satisfy different properties: property 3.2.3 for theorem 3.2.5 and property 3.2.4
for theorem 3.2.6. It can be proved that the smoother presented in section 3.2.3 satisfies
property 3.2.3, while, to our knowledge, there are no proofs that they satisfy property 3.2.4.
Theorem 3.2.5 is more general and allows aggregates and subdomains of different shapes and
overlap, but numerical results (at least for our model problem) seem to satisfy theorem 3.2.6.

3.3 Part II: Schur Complement Based Preconditioners

In this section we present non-overlapping DD methods based on the solution of the Schur
complement system.

We will introduce two different decompositions, named element-oriented (EO) and vertex-
oriented (VO). The focus is on the latter. First, we reinterpret the VO decomposition as a par-
tition of the computational domain €2 into M non-overlapping subdomains ;,¢ =1,... , M,
plus a further “subdomain” Qr, so that €; N Q_] =0and Q;NQr #0,i =1,...,M. Hence,
one subdomain is connected to all the others, that are in fact disconnected components. The
resulting decomposition may be seen as a 2-subdomain formulation where one of the two
subdomains plays a special role and allows a rapid transfer of information. Several precondi-
tioners for the Schur complement matrix arising from the VO decomposition are presented and
analysed for a model elliptic problem. Numerical comparison with the Neumann/Neumann
(NN) and the balancing Neumann/Neumann (BNN) preconditioners for EO decompositions
are given. Finally, an algebraic preconditioner derived from approximate solutions of the
internal problems is presented.

This part is organised as follows. After some general results about SC in section 3.3.1,
in section 3.3.2 we outline the main differences between EO and VO decompositions. The
solution of the SC system and the set up of a also preconditioner is also addressed. Here,
an unusual precondition, the so-called “swiss carpet preconditioner”, is presented for the VO
decomposition. This preconditioner will be extended in section 3.3.4. Section 3.3.5 introduces
the approximate SC methods. Numerical results are presented in section 3.3.6. In section 3.3.7
we draw some concluding remarks.

3.3.1 General Results about Schur Complements

In this section we report some general results about Schur complements, taken from [Axe94,
Chapter 3] and [LMO00].

Let I and B be two disjoint sets of indices, whose cardinality is n; and npg, respectively,
such that a generic vector x € R" can be written as x = [x7,xp], and a generic matrix
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A € R™™™ can be reordered consistently with I and B,

A= ( At Arp ) (3.47)

Apr Ass
where A;;r and App are square matrices.
Definition 3.3.1. If Aj; is non-singular, we define
S=A/A;r = App — Apr A} Arp. (3.48)
If Ayr is singular, we define
S=A/A; = App — Ap1A};Arp (3.49)

where A}FI is the Moore-Penrose inverse of matriz Arr. S is called the Schur complement of

A with respect to Ajpy.

Note that S is the matrix that results when we eliminate the block Ap; using block
Gaussian elimination with Aj as pivot block. In fact, the block matrix triangular factorisation
of A is readily found to be

I 0 Arr 0 Ir A} A
A 1_1 II 1 A Arp 7 (3.50)
AprA;; Ip 0o S 0 Ip
I; and Ip being the identity matrices whose dimension is n; and np, respectively. From
(3.50), if A is definite,

I —A7'Arg AL 0 I 0
A1 = I1 II 51
(o I ) ( 0 St ~ArpA;l 1 (3:51)

or
At [ A AT AS T A AL —Ap ApST! (3.52)
_SflABIAl—Il Sfl ’ '
An alternative expression for A1 is
_ S;t ~ A ApST!
41— I _
( _SflABIAl—Il 571 ’ (3 53)
where S; = A/ABB = A — AIBAE;}BABI-
If A (and henceforth S) is indefinite but A} exists, we find
-1 -1 -1 -1
At — A + A ArgST At Al A ArpS™ _ (3.54)
—StAprA;} S+
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Note that from formula (3.54) we can obtain AT as follows:

S+:<0 IB)A+<I(;>. (3.55)

Thus

S+vB:(0 IB)A+<I(;>VB,

for a given vector vg € R"B.
Whether A is invertible, equation (3.55) can be rewritten as

I ( 0 Ip )A*I ( 1(,)9 > . (3.56)

The following theorem shows that if A is symmetric and positive definite, then S is sym-
metric and positive definite too.

Theorem 3.3.1. Let A be a symmetric positive definite, Ary be regular, and x = [x7,xp]| be
a partitioning of x consistent with the partitioning of A (3.47). Then

a. Arr and App are symmetric and positive definite;

b. (Ax,x) > (Sxp,xB);

c. For any xp, ming, (Ax,x) = (Sxp,xB);

d. miny, x,+0(AX,X) = miny,+0(SXp,XR).

Proof. To prove 3.3.1.a, note that (Ax,x) = (Arrxs,x5) if xp = 0 while (Ax,x) = (Appxp,xpB)

if x; = 0, provided that x is partitioned consistently with the partition of A. Next, from
(3.50) and the fact that Ar‘gl = Asp it follows

<AX,X> = <A[[X[ + A;}A[BXB,X[ + A;}A[BXB> + <SXB,XB> > <SXB,XB>,

which shows 3.3.1.b. Properties 3.3.1.c and 3.3.1.d follow from the above inequality by choos-
ing x7 = —A;}A[BXB. O

The following relation between x(A) and x(S) holds.

Lemma 3.3.1. Let A be symmetric positive definite and partitioned into the form (8.47),
where Agy is reqular, and let S be its the Schur complement (3.48). Then

(a) Amzn(A) S )\mzn(AII) S Amax(AII) S )\mam(A) and; hence, /{(AII) S K(A);

(b) Amin(A) < Apin(S) < Mnaz(S) < Anaz(A) and, hence, x(S) < k(A).
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Proof. Being A (and henceforth S) symmetric positive definite, their extreme eigenvalues are

given by
A A
Amin(A4) = min (Ax, X>, Amaz(A) = max (Ax, X>.
x#b (X, X) x#b (X, X)
We have
<AX,X> _ <A[[X[,X]>
<X7 X> <X17 XI>
for any x = [x7,0]. In particular,
A
M)
where m; is the eigenvector of Ay for A (Arr). Similarly,
)\mam(A) 2 )\max(AII)a
which together with (3.57) shows 3.3.1.a. Similarly, we have
Nonin (A) < (Ax,x) _ (Sxp,xp) < (Sxp,xp)
(x,x) (xr,x71) + (xB,xB) ~ (XB,XB)
for any x = [x7,xp]|, where x; = —A;IIAIBXB and xp is arbitrary. Hence

Amin(A) < Amin(S).
From (3.53) and (3.57) we have that Ayuin(A™1) < Muin(S™1), that is,
Amaz(A) = Amaz (S)
which shows part 3.3.1.b. O

In the case when A is symmetric semi-positive definite, the following result holds.

Theorem 3.3.2. Let A be a symmetric semi-positive definite matriz, and let € be a positive
number. Then,

lim S. = S, (3.58)
e—0

where S¢ is the Schur complement matriz of A + eI with respect to the set of nodes B.

Proof. Let U be a unitary matrix such that

Aa—yr|( D0 U,
0 0
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O3] Q- Q,

Figure 3.8: Example of element-oriented (left) and vertex-oriented (right) decomposition.

where D > 0 is a diagonal matrix of eigenvalues. Then for any ¢ > 0, by computation and
using the fact that A;jp = AR for a suitable matrix R (see [LM00]),

S. = (App+el)—Apr(Arr+el) P Arp
= (ABB+€I)—RTA[[(AII—F&“I)ilA][R

—1
—  (App +el) — RTUT ( D(D+0d) b 8 )UR

‘=" App— RTA;R
= App— RTAALANR
= App— ApiA}; A

= S
U

Remark 3.3.1. According to [Aze94], the term Schur complement seems to have first ap-
peared in Haynsworth [Hay68]. Nowadays, the amount of literature about SC is enormous.
The reader is referred to [WZZ99, LMOO] for recent overviews on the subject.

3.3.2 Element-oriented and Vertex-oriented Decomposition

Let Q ¢ R d = 2,3 be a generic shape-regular domain. The construction of the partition of £
will be made in the following way. We first triangulate (2 and indicate by 7 the corresponding
mesh. For the sake of simplicity we assume that the boundary of (2 coincides with that of the
triangulation.

We partition 7j into M + 1 non-overlapping parts, namely 751, 7,2, ... , 7 p and 7Ty, p.
For each i = 1,... , M we may associate to 7}, ; a subdomain (2;, formed by the interior of the
union of the elements of 7}, ;, while Qr is formed by union of the elements contained on 7j, r.
For Qr = O\ UM, Q; we may face the two following cases:

e Or reduces to a finite number of disjoint measurable d — 1 manifolds; see the picture
on the left of figure 3.8 for an example of such decomposition in the case M = 2. This
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situation represents the common case where ﬂi]‘ilﬁi = Qr, i.e. Qr is the discretisation
of the common part Qr of the boundary of ;. This type of decomposition will be called
element oriented (EQ) decomposition, because each element of 7; belongs exclusively
to one of the M subdomains Q;;

e Qr is a subset of R? formed by only one layer of elements; see the picture on the right
of figure 3.8 for an example of such a decomposition. The portion of space Qr of which
Ty, is a triangulation, is now formed by the union of a finite number of “strips” laying
between the €;. It will be called vertex oriented (VO) decomposition, because each
vertex belongs exclusively to one of the M subdomains ;. The crucial aspect of this
partitioning is that dim(Qr) = dim(2;).

The nodes on Qr will be called border nodes, and in particular those on 73 ; N Qr are
the border nodes of the domain €;. A node of 7, ; which is not a border node is said to be
internal to ;,1=1,... , M.

We will consistently use the subscripts I and B to indicate internal and border nodes,
respectively, while the subscript ¢ will denote the domain we are referring to. Thus, ur; will
indicate the vector of unknowns associated to nodes internal to 2;, while up ; is associated to
the border nodes. These two sets will be indicated by o7, and op;, and their cardinality by
nr,; and np;, respectively. For ease of notation, in the following we will often avoid to make
a distinction between a domain ) and its triangulation 7;, when no ambiguity is possible.

Note that by construction, in an EOQ decomposition all the vertices on 2 are shared
among two or more subdomains {2;, while in a VO decomposition those vertices belong to
exactly two subdomains: Qr and one of the ;. EO decompositions lead to well-known SC
based schemes, while VO decomposition allows a variational reinterpretation of some algebraic
schemes and gives rise to new schemes.

The choice of a VO or EO decomposition largely affects both the numerical algorithm
and the data structures used in a parallel code. Often, a VO approach is preferred since
the transition region 2 may be replicated on the processors which holds §2; and provides a
means of data communication. In this way if the discrete operator associated to matrix A has
a compact stencil (as it is often the case with finite elements or finite volume techniques) the
matrix-vector product may be easily made in parallel. The VO technique is also the matter
of choice of many parallel linear algebra packages. Indeed, with a VO approach one may
derive the local operators directly from the assembled global matrix A, while adopting an EO
decomposition would require to work at the level of the (problem dependent) assembly process.
On the other side, some quasi-optimality results have been proved for EO SC matrices.

The difference between the two approaches can be easily seen for the case M = 2.
We will first consider the EO approach.

We renumber the vector u of the unknowns by putting first the unknowns associated to
nodes internal to {21, followed by the ones internal to €23, and finally those on Qpr. Equation
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(2.1) can be written in block form as

Arra 0 Ar ur fra
0 Arr2 Arp2 ure | =1 fr2 | . (3.59)
Apr1 Aprp Appi+ Abpp up fp

Here Arr; contains the elements of A involving internal nodes of subdomain 2;, while Arp ;
are blocks formed by the contribution of boundary nodes to the linear equations associated to
the internal nodes. In Apr; we have the terms that link the border nodes with the internal
ones. Since A is symmetric matrix, Apr; = A?B,i. Finally, App = 2?21 App, is the block
that involves only border nodes and it is split into two parts, each built from the contribution
coming from the corresponding subdomain,

[ABB,ilk,; = alejla,, vrle.), (3.60)

where ¢y, ¢; are the finite element shape functions associated to border nodes k and j,
respectively, restricted to the subdomain €2;. An analogous splitting involves the right hand
side fg = fp 1 + fp 2. The two blocks of zeros arise since the discrete operator has a compact
stencil.

The elimination of internal nodes leads to the equation

SEouB =g (361)

where S = 51 + S5 and g = g1 + g9, with
Si = App,;— AB[,iAﬁl,iAIB,i (3.62)
g = fBﬂ' — ABIviAl_Il,iffﬂ' (363)

The generalisation to an arbitrary number of subdomains is straightforward. We introduce
the restriction matrix R; € R"™B:*"B which extracts from a global vector u € R"3 the
entries corresponding to the border nodes of €);, i.e. ug; = R;jup. Its transpose RZ-T is the
prolongation matrix relative to subdomain €2; which extends by zero a vector of border values.

In the multi-domain SC system, we have

M M

Spo = (Z R?SiRi) ., g=1Ip— Z R} ApriAp} i fr.
i=1 =1

Remark 3.3.2. The construction of the matrices App,; in (3.60) requires to operate at the

level of the matriz assembly by the finite element code. In general, there is no way to recover

them from the assembled matriz A.

We turn now to the VO approach. If M = 2,

Arrn ArB1 0 0 urg f11
(1,1) (1,2)
Apri Appi+Agpr O Appr ug: | | fB1
Au — ’ ’ (364)
0 0 Arr2 ArB2 uro fro

0 A(Bgial,)r Apra App2+ AS’,E?F upa/ \f2
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Here,
[ABBli; = alejla vila,)
for two generic nodes i,j € op;,l = 1,2, and
l7
[A%5i5 = alejlor, ilor)

for two generic nodes i € op; and j € o, l,m = 1,2.
Formally proceeding as for the EO approach, we obtain

1,1 1,2
oo — Sl"‘ASBB,)P A(BB,)I‘ ug1) (8 (3.65)
VOTB = AZD S +A(2’2) ups) \g)’ .
BB T 2 BB, )

with S; and g; defined by (3.62) and (3.63).
If M subdomains are considered, we have:

1,1 1,2 1,M
S+ Ay, ARD A ug, g1
Ag}é) Sy + A(gﬁ,)r e A(tgg\/[) uB,2 82
Syoup = . ; ) . : - : ’
JYEIN RN T B Y R W

(3.66)
Beware that some of the Ag’é),r blocks may be in fact empty. This happens when no element
in the triangulation contains nodes belonging to both €; and Q_]

Note that the matrix Sy o can be formed operating algebraically on A, using the block
form (3.48) or (3.49).

3.3.3 Solution of the Schur Complement System

Both linear systems (3.61) and (3.66) are usually solved by an iterative method. This is
because S; can be applied to a vector without its explicit formation, using three matrix-
vector products and solving one linear system in Ajr;. This last step corresponds to the
solution of an internal Dirichlet problem in €2;.

Once we have computed the border values ug, we may build the internal solutions uy;,
by solving the completely independent linear systems

Arrgur; =fr; — Arpiup. (3.67)

Remark 3.3.3. Note that thanks to the splitting of S and g, an iterative scheme for the
solution of (3.66) can be made parallel. However, some communications among subdomains
will be required, whereas (3.67) may be solved in a perfect parallel fashion.
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As regards EO decompositions, it can be shown that x(Spp) < Ch~! for a suitable
constant C' independent of h; see [QV99, pag. 51|. To obtain a bound for x(Syp), we
rewrite equation (3.66) using a two-subdomain formulation. The subdomains are Qr and
Q, = Uﬁ‘ilﬁi. We have that

1,1 1,2 1M
S; 0 ... 0 AEBZBl;F AEBsz)F AéB]\}IF;
G 0 S 0 Appr Appr ARBr
vo=| + ) :
0 0 ... Sy ALY o AREY
=S, +Appr
— S, + 5. (3.68)

Here, S, = blockdiag{S;,i =1,... ,M}, and

[ApBrlk,j = al@jlor, ¢klar)

for two generic nodes k and [ of Qr \ 9. In the two-subdomain formulation Q = Q, UQr, S,
is the Schur complement obtained by eliminating the internal nodes of )., while the Schur
complement of domain Qr, indicated by Sr, coincides with Agp 1, since no internal nodes
have been included in Qr.

Note that S, has a (dense) diagonal block form, while App 1 is sparse and, in general, with
many zero-blocks. Since Sy is symmetric, eigenvalues are given by the Rayleigh quotient

(Svom,m)
Asy, = ————, m € R"5\ {0}. 3.69
vo o \ {0} (3.69)
Classical theory of finite elements gives the following bounds for S;,¢ =1,... ,M and Appr

[QV94, QV99].

Proposition 3.3.1. Foreachi=1,... ,M, there ezist two constants C; and C’i, independent
of h, such that

Ci(nism;) < (Simiumy) < Cimyum)h ™ Vm, € Vi,
being V; the finite-dimensional space associated to the set of nodes op ;.

Proposition 3.3.2. There ezist two constants Cr and Cr, independent of h, such that

Cr(n,m) < (Agprn,n) < Cr(n,m)h~2 V¥ne V.

Lemma 3.3.2. Consider a VO decomposition with M + 1 subdomains, where the width of Qr
1s of 1 element. Then the following bound holds

K(Svo) < h~ ' (C1 + Cah™t), (3.70)

where the two constants C1 and Cy are both independent of h and M.
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h | 6(8)  w(A)  K(AppS) #(ApprS)
1/10 | 20.34  58.47 4.42 9.35
1/20 | 44.79 23528  9.84 17.15
1/30 | 69.31  529.97  15.61 25.57
1/40 | 93.85 94252  21.27 33.15
1/50 | 118.41 1472.39  26.95 41.83

Table 3.11: VO decomposition with a strip of width § =1, and M = 2.

Proof. A lower bound for (3.69) can be obtained using propositions 3.3.1 and 3.3.2 as follows

(S« + Apr)n,m) = (S«m,m) + (Apsrn,m)
M

= Z(Slnla 777,> + <ABB,F"73 77)

i=1

M

> (minCy) Y (m;,m;) +~Crin.m)
i=1

= (m.in Ci + C’F) (n,m)

for allm € Ry, \ O.
For the upper bound, still using propositions 3.3.1 and 3.3.2, we obtain

((Se+Appr)nm) < (maxCy)h™'(nm) + Crh™>(n,n)
= (max Cih~ !+ C’rh2> (n,m).
The inequality (3.70) follows now from the definition of the spectral condition number. [

Although the condition number of A and Sy share the same kind of upper bound with
respect to h, it is found numerically that S is better conditioned than A; see table 3.11.

Neumann-Neumann Preconditioners

The original Neumann-Neumann (NN) preconditioner operator P&}V was proposed by De
Roeck and le Tallec [RT91]| and is based on the assembly of the global SC from the local
subdomain SC matrices. The idea is to precondition the sum of the local matrices with the
sum of the inverses of these local matrices. The preconditioner reads

71

Pyy =)  RiDiS; ' DiR;. (3.71)

||M§
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The weight matrices D; are an important component of the method allowing to preserve good
conditioning even when the subdomains differ in certain aspects, for instance because of the
different values of the coefficients of the differential operator.

Note that if all subdomains are similar (that is, all the S; are spectrally equivalent), this
yields an optimal preconditioner, since

M M
i=1 i=1

At the differential level, the application of S, 1 corresponds to solving local Neumann prob-
lems on the subdomains. This can be done without forming explicitly .5;, as stated by equa-
tion (3.56). If A; is non-definite, exact application of formula (3.56), using for instance a
singular value decomposition, may be computationally expensive. More favourable solutions
are available: one can compute the LU decomposition of A; and replace the zero-pivots by
large numbers, or else to compute the inverse of A; + eI for € > 0 small enough. In the latter
case, from Theorem 3.3.2 we know that the SC matrix of A; + eI is “close enough” to the SC
matrix of A.

The following estimation holds.

Theorem 3.3.3. For the Neumann-Neumann preconditioner applied to the model problem 3.1,
we have

K (PynS) < % (1+log(H/R))?. (3.72)
Proof. See [RT91]. O

The term 1/H? cannot be avoided with this formulation since the NN algorithm fails to
provide any means of global distribution of information beyond that of local exchange and,
as expected, suffers from steep deterioration of convergence as the number of subdomains
increases.

The convergence of the Neumann-Neumann algorithm for a small number of subdomains is
quite good. As noted in [Tal94|, the NN preconditioner becomes impractical when applied to
problems with a number of subdomains larger than about 16. The cause of this deterioration
is the lack of a global distribution of the information. Therefore, in order to overcome this
drawback, Mandel [Man93| proposed the balancing Neumann-Neumann preconditioner (BNN)
by adding to the NN preconditioner a simple coarse correction constructed by using piece-
wise constant coarse grid space. The corresponding coarse operator involves one unknown per
subdomain in the scalar case. It can be proved that the resulting preconditioner satisfies

H 2
k(PgayA) <O (1 + log ﬁ> : (3.73)

We will not detail the algorithm, referring the reader to [Man93, DSW94| or [QV99, Section
3.2.9].
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“Swiss Carpet” Preconditioners for VO Decompositions

Now we address the choice of the preconditioner for the VO decomposition. The results here
presented are taken from [QSVO03].
Some preconditioners may be derived from equation (3.68):

® [ = Ox;
[} PF :SF;
o Pyy = (S*_l + SEI)_l.

P, and Pr are formally equivalent to Dirichlet-Neumann (DN) preconditioners [QV99,
Section 3.2]. In the former, M Neumann problems are solved (one in every ;). In the latter,
one Neumann problem is solved on r; this problem is somehow unusual since all the nodes
of Qr stand on the border of the domain Qpr. Pypy is the 2-subdomain NN preconditioner.
Note that other two preconditioners may be derived as well: P = App, and P» = App =
App«+ ABBT-

Remark 3.3.4. The DN and NN preconditioners are optimal for the two-subdomain case.
Howewver, the analysis requires that the subdomains have a given measure which is independent
of h. This is not verified by preconditioners Py, Pr, and Pyy, since the width of Qr is h.
Clearly, if the computational domain is refined so that § is fized (and therefore elements are
added inside Qr), then P,, Pr, and Pyy yield optimal preconditioners.

We now derive a convergence estimate for the swiss carpet preconditioner. For the sake
of simplicity, the estimate of the condition number of the preconditioned Schur complement
Sp 1S will be presented only in a case of simple geometry and the Laplace operator with
homogeneous boundary conditions. However, by following similar arguments, the interested
reader could easily extend the result to many more general situations (for instance, the result
is true for any second order elliptic operator having no zero order terms and being associated
to a symmetric and coercive bilinear form, or for the two-dimensional elasticity system; but
also other boundary conditions and domains can be taken into account).

Let us consider the square Q = (0,1) x (0,1), and a family of uniform triangulations 7}, of
it. We assume that (2 is subdivided into the union of the disjoint squares Q;, j = 1,... , VM,
with side-length H = vM 71(1 + h) — h, and of the domain Qr, which is connected and
consists of the union of (v/M — 1)? non-disjoint strips of length 1 and width h. Let us also
set

QL=UlQ; , =0\ , T=0,n0r. (3.74)

This subdivision of the domain 2 will be called the swiss carpet.
Ny € A denote the trace space on I' of the piecewise linear functions belonging to Vj.
Then, Vny, € I'y,, By .np the discrete harmonic extension of 7, in €2, and Ej, rn, the discrete
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harmonic extension of 7, in Qp. Since in Qp there are no internal nodes (the width of Qr is
equal to h), the function Ej, rny, is simply the interpolant of 7, in Qr.

As it is well-known, the action of the Schur complements S and Sr can be expressed
through the local bilinear forms in the following way (here i denotes the vector of the nodal
values of 1) (see [QV99, pag. 22]):

(Smym) = /Q VEn .l + /Q VEwrml? 5 (Semm) = / IV By
* T

Qr

We can prove the following proposition.

Proposition 3.3.3. The following estimate holds:

(Sem,m) < (Sm,m) < C1 <Srn,n> Vn € R"7,
where the constant C1 does not depend on h and H.

Proof. The first inequality is evident. To prove the second one, we need to bound fﬂ* ]VE;L*nhP,
and this can be done by adding the contributions to the integral from each square €2;.

By means of a translation, instead of €; we can consider the square Qg centred in (0,0)
and with sides of length H. Then the change of variable (z,y) = T'(x,y) = (x/H,y/H), we
map g over the unit square @ The triangulation over Q) is transformed into a triangulation
over @; the correspondent mesh size is given by h/H. Introducing, for each function g defined
in Qp, the function § = goT~! defined in @, and denoting by Eh /i the discrete harmonic

—

extension of 7, with respect to the triangulation in @, it is easily verified that E’h JHh = En s
and that

/ |V Epn|* = /A IV Epy il (3.75)

H Q

The well-known uniform extension theorem (see, e.g., [XZ98], Sect. 4.2.2) gives that
/@’VEh/HﬁMZ < Co!ﬁhﬁ/w@ ; (3.76)

where the constant Cy does not depend on h and H and |- | /2,00 denotes the seminorm of
HY2(0Q).

Let us now observe that the set Qr is the union of Fj, N (2, where the “frames” F},
are the sets of width h around ;. (note that these sets are not disjointed, but any possible
intersection concerns at most four of them). Moreover, by means of a translation, we can
think that each set F}, is the “frame” Fyyj, of the square Qp.

Let us consider now the set F1 1/2, that is, the “frame” of width 1 /2 around Q We want
to construct a function in F1 1/2 such that its value on the internal boundary of F1 1/2 (that is,
on 3@) is equal to 7. The natural idea is to start from Ej, pny, that is, from the interpolant
of np, in Qr. For simplicity, we will write 1, = Ej, 15, and we recall that Yur = M-
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Now we have to pass from the domain Fj, (or, equivalently, from F p) onto ﬁl,l /2. First
of all, note that the transformation 7' maps Fp 5, over the set F' 5 /r7. Moreover, having defined

HE) = {5 if ¢ < 1/2
1201+ h7 H(IE] - 1/2)1¢/1] if1/2<f[ <1/2+h/H

we introduce the transformation

K(7,y) = (¢(2), t(y)) ,

that maps ﬁLh/H onto ﬁl,l /2, leaving fixed the internal boundary 3@. We are now in a
position to set

¢ﬁ = ¢h\FH,h oT loK™! ) sz)ﬁ : ﬁ171/2 — R,

and we easily verify that Q,Z)fa@ = Mh.

We can thus use the trace theorem and obtain

< 1|V (3.77)

~ 12
|77h|1/27a@ Oaﬁl,l/Q

(see [XZ98, Theorem 4.1]). We can estimate of the right hand side, taking into consideration
the explicit expression of the transformations 7" and K:

812 . -1 2
W2, <Co ' / /F TS (3.78)
Coming back to the domain €, from (3.75), (3.76), (3.77) and (3.78) we have thus obtained

| VBl <G H [ [ VEnrm P

J

= CghilH fFL*ﬁQ ‘VEh,FnhP ,

having extended 7, by 0 on the boundary of F} , outside € (this happens for the squares 2,
that have at least an edge on 09).

Keeping in mind the geometry of Qr we easily obtain the estimate

 WEemP =Y [V
Qr g ij*ﬂﬂ

The thesis now follows by summing up the contribution of all the domains €2 , and the frames
F; . O
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Figure 3.9: Variation of the cross width ¢ using an unstructured decomposition, with M = 4
and § = 1 (left) and § = 3 (right).
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Figure 3.10: Variation of the cross width ¢ using an unstructured decomposition, with M = 4
and 0 =5 (left) and 6 = 7 (right).
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3.3.4 Generalised VO Decompositions

The VO decomposition presented in section 3.3.2 can be generalised as follows. Let us indicate
with A;; the minimum number of edges that one has to cross when moving from an arbitrary
node belonging to €); to a node of Q;, 4,5 =1,...,M,i # j. Now, we will indicate with
0= i Ay
z]:HlHnM Y
the width of Qp. Clearly, in the VO decomposition described so far, we have § = 1. However,
this value can be easily increased using the following algorithm.

Algorithm 3.3.1 (VO decomposition with ¢ > 1).

a. For k=1,... ,N Do

b For every element j of 7;, i=1,... ,M Do:

c If k£ is a border node, assign the element j to 771,1‘
d. End For

e Update the set of internal and border nodes

f. End For

Algorithm 3.3.1 allows the construction of a cross whose width is § = 1+ 2/N. Example of
VO decomposition for M =4 and § = 1, 3,5, 7 are given in figures 3.9 and 3.10. As J increases,
Qr covers a wider part of {2. However it is worthwhile to note that, as the numerical results
reported in the following section show, we aim at a value of § as close as possible to 1. Indeed,
although higher values of § have positive effect on the preconditioner we are about to propose,
as we will see in section 3.3.6, the computational complexity of the associated problem on Qr
can become of the same order as the solution of A.

3.3.5 Approximate SC Methods

The computational bottleneck of SC-based methods is due to the solution of the internal
Dirichlet problems. Whether this step is replaced by an approximate solver, a preconditioner
based on the SC can be derived.

Let A;; and S be two approximations of A;; and S, respectively; an approximate SC
(ASC) preconditioner can be derived by setting

I] 0 121[[ 0 II A_lABI
P = . - 1 3.79
ASC <ABIAI_11 IB> ( 0 S> (0 In ) (3.79)

The following simple lemma holds.
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Lemma 3.3.3. Let Cy, Cy, Cs and Cy be four constants such that

Cr(Army,my) < (Ammy,myp) < Co(Apmypmy) Vo € RM (3.80)
Cs(Snp,mp) < (Snp,mp) < Cu(Snp,mp) Ynp € R, (3.81)

Then, the preconditioner defined by (3.79) satisfies

min{l,Cy, —

; C3}{(Pascm,m) < (An,m) < max{1, Cy, =, C4}(Pascn,n) (3.82)

C C

Proof. Pasc can be written as

Pysc = Art AAIB 4
Apr AprArfAip+ S
We have, with n = (n;,n5),

(An,m) = (Armpmp) +2(Aieng.n;) + (A Argng, Argn) + (Sng.np)

. 1 . X
< Coy(Armyp,myp) +2(Aremp,m) + a<A[[1AIBnB7 Argn) + Cy(Snp,np)

1
< max{1l,Cy, —

P .
cr Cy}(Pascn, n)

In an analogous way,

R 1 . R
(An,m) > Ci(Armyp,nr) +2(Aeng.m;) + _<A111AIBUB7AIB77> + C3(Snp,np)

Cy
. 1
2 mln{laclaa?c3}<PASC’rl7n>‘
O
Once Ajg is chosen, S can be defined as
S’ = App — AB[A;;A[B. (3.83)
The following corollary holds.
Corollary 3.3.1. Let Cy and Cs be defined by (3.80), and S by (3.83). Then,
1 1
min{1,C1, — G HPascm,m) < (An,n) < max{l,Cy, — c HPascm,n). (3.84)

Proof. The thesis follows immediately by noting that Cs = min{1, CLQ} and Cy = max{1, C%}v
and applying lemma 3.3.3. O
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Equation (3.84) states that the spectral properties of the global preconditioner (3.79)
depend on the quality of the local approximation (3.80). In particular, if A;; is spectrally
equivalent to Ay, then Psygc provides an optimal preconditioner for A. Note however that
the use of Psgc requires the application of the exact inverse of Pg, i.e., a linear system with
the matrix Ps has to be solved up to the machine precision.

Remark 3.3.5. Each application of Pasc requires two applications of Arp and one of S. In
principle, the same approzimation Arp may be used also to build S as in (3.83). Note that
Pasc operates on the whole system while S on the interface variables only. Note however that
Pasc does not need to be explicitly built up.

Remark 3.3.6. ASC preconditioners have received a certain attention in literature. Azelsson
and co-workers defined two nested grids, and then compute the SC matrixz with respect to
vertices of the coarse grid [AL97]. Other approaches are closer to the DD paradigm, see for
example [Zha00].

3.3.6 Numerical Results

In this section we present some numerical results to compare the “swiss carpet” preconditioner
Pr with one of the state-of-art preconditioner for the EO SC system, the BNN preconditioner
Ppnnw, applied to problem (3.46) of section 3.2.7. The computational cartesian grid, whose
elements have characteristic dimension A, has been partitioned using METIS. The SC system
has been solved with the CG method up to a tolerance of 10719.

In table 3.12, it_I' and it_BNN indicate the iterations to converge using Pr and Ppyn,
respectively. flops_I' and flops_BNN refer to the flops required to solve the problem, as
indicated by the MATLAB command flops. To count the flops, we have not considered the
operations required to explicitly form the SC matrix, and the coarse matrix of BNN. The
Neumann problems have been solved using a LU decomposition. The operations needed to
compute the LU factors have not been included in the flop count.

Few considerations are in order. BNN always outperforms Pr in terms of iterations to
converge; however, it is worth to note that the preconditioning phase is much cheaper for
Pr than for BNN, for what concerns both CPU-time and memory storage. In fact, to apply
the BNN preconditioner we have to solve a Neumann problem on each subdomain. If a direct
method is used, we have to compute the LU decomposition of the matrix A;, while, in the
case of an iterative method, we usually have to provide a (local) preconditioner. Instead, to
apply Pr we have to solve just one Neumann problem in 2p. Therefore, at least for this test
case, Pr reveals to be computationally cheaper than Ppy .

Finally, in table 3.13 we report some results about the generalised VO decomposition of
section 3.3.4. One can note that the gain in iteration number can be significant as J gets
large. When 1/h = 60 and we make use of 16 connected components for 2., we can observe
a reduction of about 40% in the iterations to converge from § =1 to § = 4.
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1/h M H(SEo) it_BNN flops_BNN K(Svo) it_ I' flops_T
1/10 4 19.1 10 1.15e+05 34.4 21 7.82e+04
1/10 8 27.5 11 1.86e+05 47.0 28 1.32e+05
1/10 16 38.8 14 4.05e+05 56.1 29 1.80e+-05
1/20 4 34.1 9 4.55e+05 80.5 30  4.09e+05
1/20 8 52.7 13 9.20e+05 109.5 33 5.46e+05

1/20 16 91.28 18 1.80e+06 145.8 36 7.99e+05
1/20 32 111.8 16 2.94e+06 190.6 39  1.08e+-06
1/30 4 59.6 12 1.91e+06 123.9 36  1.08e+06
1/30 8 85.82 15 2.62e+06 189.3 40  1.45e+06
1/30 16 123.5 18 4.24e+06 254.6 45  2.06e+06
1/30 32 185.9 19 7.11e+06 321.9 46  2.62e+06
1/40 4 71.9 10 3.65e+06 180.1 38  1.78e+-06
1/40 8 128.2 16 5.90e+06 254.1 48  2.99e+06
1/40 16 168.2 19 8.31e+06 343.9 52 3.96e+06
1/40 32 230.1 20 1.33e+07 462.3 53  4.91e+06
1/40 64 343.8 22 2.66e+07 608.7 51  7.72e+06
1/40 128 | 463.8 21 5.72e+07 770.4 44  1.29e+07
1/60 4 125.1 12 1.65e+07 268.4 45  4.69e+06
1/60 8 187.7 16 1.82e+-07 406.3 959  8.04e+-06
1/60 16 255.2 20 2.31e+07 522.0 97  8.97e+06
1/60 32 357.8 22 3.37e+07 712.3 59  1.12e+07
1/60 64 539.4 22 5.61e+07 971.4 99  1.53e+07

Table 3.12: Comparison of Peyy (EO decomposition) and Pr (VO decomposition). it_BNN
and it_I indicate the iterations to converge of Ppyy and Pr, respectively, while f1ops_BNN
and flops_I' the MATLAB flops required by the solution of the problem using CG.

Ny x Ny M | Py Prs—1 Prs— Prs=3
20 x 20 4 9 30 20 17
30 x 30 4 12 36 23 20
60 x 60 4 11 45 - -
20 x 20 8 - 33 23 -
30 x 30 8 13 40 26 23
60 x 60 8 16 59 35 31
30 x 30 16 18 45 28 -
60 x 60 16 21 57 39 33

Table 3.13: Iterations to converge using Ppyny and Pr for different values of 4.
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3.3.7 Concluding Remarks about Schur Complement Preconditioners

We have introduced a new decomposition and a corresponding preconditioner. Instead of
defining a coarse space, the main idea is to decompose the original domain in order to have
one subdomain which is connected to all the others. This subdomain Qr is reduced to the
minimum width of 1 element, and it allows the definition of global preconditioners. The
preconditioner requires the solution of a Neumann problem in Qr. Consequently, the precon-
ditioning step requires the solution of only one linear system on a subdomain of a particular
shape. Numerical tests confirm the good properties of such a decomposition, and comparison
with the balancing Neumann/Neumann preconditioner shows that, from the point of view of
computational cost, this approach may be of interest.

The exact SC matrix is dense and expensive to compute. In some cases, even if good
preconditioners are available for this matrix, the resulting method can be computationally
expensive because of the time required to form (or to apply) the SC matrix. Therefore, we
have also presented approximate SC (ASC) preconditioners for the global unreduced system.



Application to the Compressible Euler Equations

THIS CHAPTER IS devoted to the applications of preconditioners based on the DD ap-
proach to a classic aerodynamic problem, namely, the steady compressible Euler equations
(CEE).

The space discretisation is based on multidimensional upwind residual distribution
(MURD) schemes. These schemes are targeted to the solution of advection-dominated
systems on unstructured grids. The MURD formalism is introduced in section 4.1 for
a scalar equation, and in section 4.2 for a system of equations. The extension to the
CEE is carried out in section 4.3, where the elliptic/hyperbolic splitting of the 3D CEE
is presented.

This space discretisation results in a system of non-linear equations, solved using the
Newton method. Consequently, a linear system with the Jacobian matrix has to be
solved at each Newton step. This is done with a Krylov method with DD-based precon-
ditioners, as described in section 4.4. A-posteriori mesh adaptation schemes are covered
in section 4.5. Results about space discretisation and mesh adaptation are reported in
section 4.6. Finally, concluding remarks are given in section 4.7.

4.1 Fluctuation Splitting Formalism

In this section we consider the hyperbolic multidimensional scalar conservation law

V- f(u) =0, (4.1)
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together with its quasi-linear form
A Vu =0. (4.2)

Here, d = 2,3 is the dimension of the problem, V = zgzl 0/0x;, w = u(xy,...,xq) the
conserved scalar variable, f(u) = [f1(u),... , f4(u)] the flux function, that can be linear or non-
linear depending on the considered equations, and A = df /du. Suitable boundary conditions
need to be specified in order to close the differential problems (4.1) and (4.2).

We now focus on the quasi-linear form (4.2). First, we introduce a conforming trian-
gulation 75(€2) of the computational domain, composed by simplices (triangles in 2D and
tetrahedra in 3D). Then, we look for the numerical solution uy, in a piecewise-linear FE space
Vp,, which will be chosen in order to fulfill the specified boundary conditions. If n = dim(V},),
we have that

un(x) =Y unipi(x), (4.3)
i=1

where uy, ; is the value of uy, at node i and the trial (or shape) function ¢;(x) is the Lagrange
basis function associated to node 1.

Let 1;(x) be the test function (to be properly chosen) associated to node i. We will choose
it as a function of A, as will explain in section 4.1.1. In particular, in the non-linear case when
A = A(u), 1; will depend on A(up). The Petrov-Galerkin discretisation of (4.2) reads

z;/wM-VmﬂQ:Q i=1,...,n. (4.4)
T T

Assume that A is constant over a generic element 7. As a consequence, the term A\ - Vuy,
is constant over T. Now, let us denote

&mw:/wim (4.5)
T
the residual or fluctuation over T', and by
1
T
;= idS2, 4.6
o= v (4.6

the distribution coefficient of element T' associated to node i. In (4.6), |T| is the area (or
volume) of 7. Note that 3] depends on uj, through A(uy,) in the non-linear case.
Using equation (4.5), we can rewrite (4.4) as

[by (4.6)] =Y 80" (un).
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Therefore,
Rz(uh) :07 1= 1,... ,n, (47)

where R;(un) = X qjer BT (up,) is the called the nodal residual. Equation (4.7) expresses
that the nodal residual, which is the sum of all the contributions from neighbouring elements
of node 4, vanishes.

Finally, let us indicate

of (up) = B 6" (un) (4.8)

the part of the elemental residual distributed to node i. For consistency reasons, we require
that

> A=
€T

This yields

o" (up) = o1 (up) + ... + by (un).

The distribution coefficients can also be defined as
B = 0"

if T £ 0.

Note that the test functions v; appears in (4.7) only through their averages {3!} over
the elements 7. Therefore, what counts is the choice of the {3! }, which will be addressed in
section 4.1.1. Once the {37} have been specified, the solution of (4.7), to be completed with
the appropriate boundary conditions, gives the numerical solution of (4.2).

Equation (4.6) is not sufficient to uniquely associate a test function t; to a residual
distribution coefficient ﬁiT unless the functional form of 1; is prescribed and depends on a
single parameter. However, we could look for a piecewise-linear test function over 7', which
can be represented as

wZ‘T = %’T + O% 7 ) (49)

where a is the upwind bias coefficient and v7 is a piece-wise constant function equal to 1
on element T and 0 elsewhere. Note that 1); turns out to be a piecewise-linear discountinuous
function on €. The equation (4.6) yields

giving the following relation between the coefficients {a?} and {38!}
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where d + 1 is the number of vertices of the simplex. Hence
T 1 T
Vil = @il + | B; “ari) 7

Clearly, should the residual be equidistributed over all vertices, ﬁiT = #, one has ¢; = ¢;
(i.e., test and trial functions do coincide), thus the residual distribution scheme reduces to a
pure Galerkin FE method.

The Petrov-Galerkin interpretation of MURD schemes allows a straightforward extension
of the discretisation to the advection-diffusion equation

A-Vu+V-wVu)=0, v>0, (4.10)

completed by appropriate boundary conditions. Multiplying formally the diffusion term of
equation (4.10) by the test function v;, integrating by parts and using the Gauss theorem, we
obtain

d
Z/ Ovi |, Oun 4 _ v Oun_m
7 JT o0

a$j a$j ane:mt

Jj=1

In the case the test functions satisfy (4.9),

Vilr = Vilr,
and therefore this reduces to a standard Galerkin discretisation of the diffusion term.

The main computational kernel of MURD schemes is the computation of ¢7 (uy). This
can be done in an efficient way as follows. For each node ¢ (in local element numbering) of
T, we can define the inflow parameter

1
/{?g = 8)\ + 1y, (4..11)

ny being the vector normal to the face (or the edge if d = 2) opposite to node ¢, scaled
by its areas (or length if d = 2) opposed to node ¢; see figure 4.1. In 2D, these inward scaled
normals are given by

n; = [To9— 392, —T21 + T3]
ny = [w32— 12,31+ T1,1] (4.12)
n3 = [T12—T22,—T11+ T2,1),
while in 3D one has
n; % (X4 — Xg) X (Xg — Xg)
n = %(X?)_Xl) X (x4 — X1) (4.13)
_ 1 .
n3 = 7(x4—x1) % (x2—x%1)
ng = %(Xz—xl) X (x3 — x1)
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3

Figure 4.1: Tetrahedron with scaled inward vector normal n;.

where a x b represents the vector product between a and b, and x; = [z, /2] is the position
of node /.

Since for any T

j{ ndl’ =0,
oT

where n is the non-scaled normal unit vector, the scaled normals n, of a given element T'
satisfy the following identity:

d+1

Z ny = O,
=1

and, as a consequence,

> ke=0. (4.14)

The normals ny can be used to compute the (constant) gradient of the linear shape func-
tions ¢, over T' as

11

——1y. 4.1
pi |T|n€ (4.15)

VT =

Equations (4.3), restricted to 7', and (4.15) give

d+1 d+1

1
Vuh|T = Zuh,ZV@AT = m Zuh7gng. (4.16)
(=1 /=1
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Using equation (4.16) and the property that A is constant over T, we obtain

ol (up) = /TA-vuh|TdQ

= |T|X-Vuy|r
d+1

= |T| A Z uh7gng
/=1

d+1

= E kguh,g.
/=1

Therefore, the computation of the local residual ¢* (uy,) reduces to d+1 multiplications and
additions, plus the operations required to compute the scaled normals n; and the coefficients
k.

4.1.1 Properties of Distribution Schemes

The only remaining ingredient to be specified for a precise definition of the MURD scheme in
equation (4.7) is a formula to calculate the coefficients 3. Different schemes, corresponding
to different ways of computing the distribution coefficients, have been designed in order to
satisfy several kind of properties. The first, important property to be satisfied is the following
one.

Property 4.1.1 (multidimensional upwind). Let us define downwind vertex a vertex op-
posite to an inflow face, so that the corresponding coefficient given by (4.11) is positive. Con-
versely, an upwind vertex is a vertex for which k; < 0. A scheme is called as multidimensional
upwind scheme if

(MU) B =0if ki <0, (4.17)

that is no residual is distributed to upwind nodes. This property is called upwinding because
it is the exact extension of the upwinding notion for the resolution of the one dimensional
convection equation.

A graphical representation of upwind and downwind nodes for a 2D case is reported in
figure 4.2. The definition of 3 for the one-inflow case, depicted on the left of figure 4.2,
is straightforward: the whole fluctuation is distributed to the downstream node, and the
distribution is said to be one target. The two-inflow case, depicted on the right, on the other
hand is more difficult to treat, since the fluctuation must be split between the two downstream
nodes. In this case, the distribution is called two-target. Analogous definitions hold for the
3D case, represented in figure 4.3.

Property 4.1.2 (positivity). A fluctuation splitting scheme is said to be positive if the
scheme does not create local extrema or, if we write the contribution of element T to node i
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4

Figure 4.2: Upwind distribution of the fluctuation in 2D. On the left, ﬁjT = Bg = 0. On the
. T _
right, 3, = 0.

Figure 4.3: Upwind distribution of the fluctuation in 3D. From left to right: one-inflow face,
two-inflow faces, three-inflow faces. ‘e’ indicates downwind nodes, while ‘o’ indicates upwind
nodes.

as ¢} = > Ci,jUn,j, We impose
cj <0, Vi#j.
Note that 3 ¢; j =1 because of (4.14).

A more restrictive property, called local positivity, is obtained by considering the contri-
bution from each element, taken separately, and requiring the scheme to be positive for this
contribution. Note that if a scheme is locally positive, i.e. considering only the contribution of
a given element, it will also be positive for the global scheme, obtained by taking into account
all the elements T' surrounding the node . Usually, local positivity is simpler to impose. If
a scheme is locally positive, then a maximum principle will hold for the discrete steady-state
solution; see [PD97, Section 2.2.2].

Property 4.1.3 (continuity). The distribution coefficients 31 must be continuous (C) func-
tions of both the advection and the solution-gradient directions.

When framed in a time-dependent setting, if the numerical scheme originates a solution
with large jumps, the convergence toward steady-state may not be correct. These schemes can
cause the solution to be struck into a limit circle. This is an instationary behaviour where the
solution oscillates around the steady-state solution. Of course, this is an undesirable property
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of a scheme and should be avoided. The continuity of the scheme is required to obtain a
smooth convergence to the steady-state solution.

Property 4.1.4 (linearity preservation). A scheme is said to have the linearity preserva-
tion property if

(LP) BLe¢T — 0 when ¢T — 0.
Therefore the distribution functions [3; have to remain bounded.

(LP) expresses the ability of the numerical scheme to reproduce linear solutions of equa-
tion (4.2) exactly. Since we are using piece-wise linear FE functions, a linear solution can
be exactly calculated. When this property is satisfied the scheme is said to be linearity
preserving.

It is well-known that in one dimension, linear monotone schemes are at most first-order.
This theorem, known as Godunov’s theorem, has an equivalent formulation for multidimen-
sional schemes on unstructured meshes: linear schemes cannot be both positive and linearity
preserving; see [Str94]. As a consequence of this theorem, to combine both positivity and
linearity preservation, it is necessary to introduce some non-linearity into the scheme.

Remark 4.1.1 (second order accuracy). A more general way of getting a second order
accuracy is to require that the residual ¢} (up,) satisfies the property ¢1 (uy,) = O(h®) for an ez-
act solution assumed to be reqular and uy, its piecewise linear interpolation on the mesh [Abg01].
Indeed, because of the accuracy property of the piece-wise linear interpolation on a reqular grid,
it can be proved that the total residual evaluate for uj, satisfies ¢ (up,) = O(h?), so that the

boundedness of 31 = z—; implies ¢F (up) = O(h3).

We will not cover the different scalar distribution schemes in details. The expression
of some of them can be found in table 4.1. The N-scheme is a linear monotone first-order
upwind scheme, and it is an optimal positive linear scheme in the sense that it has the lowest
cross-diffusion of its class. The LDA is a second-order linear upwind scheme, and the PSI
scheme is a non-linear second-order and monotone upwind scheme, obtained by applying a
limiter to the distribution coefficients of the N-scheme. It is possible to show that the PSI
scheme is related to the MinMod limiter, which allows to write the scheme in its simple
form [PD97, Section 4.2]. Note that the limiting is applied on the same compact stencil as
the original linear positive scheme, i.e., (almost) second-order accuracy is achieved without
enlarging the discretisation stencil. This turns out to have very favourable consequences for
the development of implicit time-step schemes.

Remark 4.1.2. The first-order N-scheme cannot be obtained from a Petrov-Galerkin ap-
proach since the distribution coefficients and hence the corresponding test functions are un-
bounded for vanishing element residual, due to the fact that the N-scheme is not (LP).

The reader is referred to the specialised literature for more details on these schemes. See,
for instance, [DSA00] and the references therein, or the book [DK96].
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Scheme ] type u P LP
N ki (0" > k?j_)_l >k (uni —uny) linear v vV
LDA Z](k;r)ilk;r linear Vv v
LW ﬁll + Zk—fkj‘ linear i
SUPG 7 + Tﬁ %n_hn linear Vv

A
PSI  max(0, )/Z max(0, 3) non-linear +/  /

Table 4.1: MURD schemes for a scalar equation. N is the Narrow-scheme, LDA the Low
Diffusion A scheme, LW the Lax-Wendroff scheme, SUPG the Streamline Upwind Petrov-
Galerkin scheme. k" = max(0, k;), k; = min(0,k;). BV refers to the distribution coefficient
of the N-scheme. Formulae valid both in 2D and 3D.

Remark 4.1.3. MURD schemes have originally been developed for steady-state conservation
laws. More recently, extensions to unsteady problems have been proposed, based on a space-
time approach, see [CRDPO01]. The idea is to consider the space-time operator [ = [at,V]
and then apply the MURD scheme to solve the “unsteady” equation

ou

0 [ fw)] =0

-

on triangular element in space-time, whereby no distinction is made between the temporal
and spatial components of the flux at the level of the scheme. Due to the upwind property
of MURD schemes, a natural decomposition of the temporal slabs can be achieved for a well-

defined construction of the space-time mesh, so that effectively a time-marching scheme is
obtained; see [HDRO1].

Remark 4.1.4. MURD schemes are a multidimensional generalisation of Roe’s schemes,
and they have therefore in common some failures with Roe’s schemes. Because shocks can
be captured over a single element (or cell), the numerical scheme can produce unphysical
expansion shocks. Also, on very regular or sufficiently refined grids, carbuncle phenomena

may occur when trying to compute strong bow shocks. Therefore, entropy fix and carbuncle
cure have been developed, see [SD02].

In the case of advection vectors A independent on w, equation (4.7) reduces to a linear
system of type (2.1), where the element (7, ) of the matrix can be computed as

> 8k
T|(3,5)€T

Table 4.2 reports the expression of A;; for the linear schemes of table 4.1. Note that ap-
propriate boundary conditions still have to be imposed in order to obtain a solution of the
resulting linear system.
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scheme Ag)
kTkT
N 621kz+ — %
’, T km
i
LA ST
k;
LW <d+1 + m) k-
SUPG (g + )y

Table 4.2: Computation of the element (4, j) of the linear system matrix corresponding to the
contribution of element 7" associated to equation (4.7). J; ; is the Kronecker symbol.

Oun the other hand, if non-linear MURD schemes are in order, or A is a function of u, (4.7)
represents a systems of non-linear equations. In this case, the numerical solution is usually
found by considering the steady-state solution of the time-dependent equation

Ouy,
q Ot

Because time accuracy is not an issue, the time derivative is discretized using a first-order

Zh a0 = —/ A Vu,dQ. (4.18)
Q

approximation in time:

k-1 k-1
Aun ) 7| i~ Uy uf —uy
O~ d : ~ S . 4.1
Z/ ZT:d—Fl Z Ok Ok (4.19)
Here, S = diag{S;,i =1,... ,n}, with
7|

Si = )
> It
T|ieT

which is no more than the volume of the dual cell of node i (see figure 4.4), dj is the time-step
parameter at time step k, and uZ and u]fl_l are vectors containing the nodal values of the FE
solution u; at time step k and k — 1, respectively.
Equation (4.19) reads, at node i,
Si (g k—1 k—1
5 (b —uli) = ~Riu )
if an explicit time-marching scheme is used, or
Si (g k—1 k
6;: (uhZ uy, ; > = —R;(uy) (4.20)
if an implicit time-marching scheme is employed. Equation (4.20) is still non-linear; although,
the Newton method applied to (4.20) generally results in a more robust scheme, with respect
to the direct application to (4.7).
The process of adding a (pseudo-)time derivative to equation (4.2) is usually called pseudo-
transient continuation. It will be covered in details in section 4.4.
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A

Figure 4.4: Node i and dual cell S;, with surrounding elements and residuals ¢? .

Remark 4.1.5. Note that by restricting the distribution schemes to the nodes of the element
itself, the stencil of the scheme remains compact, at most a subset of the support of the
linear shape functions ¢!, as indicated in figure 4.4 for a 2D case. As will be described in
section 4.1.1, the coefficients 31 can be specified to satisfy certain properties of monotonicity
and accuracy in the solution, while remaining the same compact stencil. This is one the
advantages of the method compared to high-order FV schemes on unstructured meshes, for
which the stencil typically includes more rows of cells around each node.

As an example, we consider the solution of equation

ou ou
—_— 2— p— .
P + D9 0, (4.21)

in Q= (0,1) x (0,1) with the boundary conditions
u(y,0) =3, wu(z,0)=>5, u(0,0)=4.

This equation represents a discontinuity in the origin of the coordinate system. The outlet
boundaries are not submitted to any boundary conditions because the information is leaving
the domain through these boundaries. Results using some of the schemes reported in table 4.1
are reported in figure 4.5. Note that the N-scheme is more diffusive than other schemes,
which, for this test case, perform quite similarly. Finally, figure 4.6 reports the eigenvalues
distribution of the linear system matrix for the LDA, LW and N-scheme. The SUPG scheme
is also reported.

4.1.2 Extension to Non-linear Systems

MURD schemes presented so far requires that A is constant over 7. The general case of A
varying as a function of u can be taken into account by using a conservative linearisation.
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Figure 4.5: (a) Grid used for the solution of the linear problem (4.21). The grid has 724
nodes and 1366 elements. Schemes used: (b) N-scheme (max(up) = 5,min(uy) = 3), (c)
LDA-scheme (max(up) = 5.04, min(up) = 2.83), (d) PSI-scheme (max(up) = 5, min(up) =
3), (e) LW-scheme (max(up) = 5.08, min(up) = 2.85), (f) SUPG-scheme (max(up) =
5.56, min(up) = 2.35), using 7 = %”—i\l” and h = maxy(ng1,1n02).
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Figure 4.6: Distribution in the complex plane of the eigenvalues of the linear system matrix
obtained from equation (4.21), using: (a) LDA-scheme, (b) LW-scheme, (c) SUPG-scheme.



90 APPLICATION TO THE COMPRESSIBLE EULER EQUATIONS CH. 4

This consists in finding on each T an average state A" such that, for the integral form of the
residual, one has

/ V- fd) = % f- nemdr = ’T|5\T . Vuh = qbZT(uh), (4.22)
T orT

with Vuy, constant over T' because of (4.3). In this way, the non-linear system of conservation
laws V -f = 0 is locally approximated by the linear system |T° \XT -Vuyp, = 0. Let us show that,
with such a linearisation, conservation is indeed satisfied. Summing up over the elements of
2 and using (4.22), we obtain

/ Vo £dQ =" ¢ (uy) = Y TNy = nyf Megydl = yf f - ngqdl.
Q T T T Q

In general, it is quite cumbersome to find an average state A" that obeys (4.22). However,
if f is a quadratic function of u; a very simple analytical expression can be obtained. This
is a severe restriction, but it turns out that the CEE belong to this class of equations having
quadratic flux-functions.

In this case, the element residual ¢ (u) can be rewritten as

d
¢T(uh):/v-fd9 = /Z)\i%dﬁ
T T4 Ly
= Z( /T Mm) P,

7

_ d+1z<§)\ )auh

=1

Here, use is made of
e uy varies linearly with x;
e ); is a linear function of up;

e the integral of a linear function over a simplex is the arithmetic average of that function
times the area or the volume.

As an example, we examine the particular case of the 2D variant of the inviscid Burgers
equation

1 Ou? ou

-7 422 = 4.2
2 8.%'1 + 8.%'2 0 ( 3)

whose advection vector is A = [u, 1]. The problem is set up in 2 = (0,1) x (0,1), and the
boundary conditions are

u(0,y) = 1.5, wu(x,0)=1.5—-2z, z(1,y)=—0.5.
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(a,) 01 02 03 04 05 06

(C) 01 02 3 D. 05 06 0.7 08 - 09 1 (d) 01 02 3 D. 05 0.6 07 08 : 0.9 1
Figure 4.7: Solution of the inviscid Burgers equation (4.23) using: (a) N-scheme (max(up) =
1.5, min(up) = —0.5), (b) LDA-scheme (max(up) = 1.70, min(uy) = —0.79), (c) PSI-scheme
(max(up) = 1.5, min(up) = —0.5), (d) LW-scheme (max(up) = 1.87, min(up) = —0.71).

Here, the average state X' = A, AT] can be calculated as

QNP VLIRS
3
Results obtained using four of the schemes of table 4.1 are reported in figure 4.7. The
grid is the same used for problem 4.21). The compression fan is resolved by all of the schemes
in about the same way. LDA and LW, not satisfying property (P), are non-monotone, and
produce some oscillations around the discontinuity line. The N-scheme is monotone, but
diffusive. The nonlinear PSI-scheme captures the shock without oscillations.

4.2 Hyperbolic Systems

Now, we turn our attention to the linear hyperbolic system

d
ouU

Z Aja—xj =0, (4.24)

7j=1
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whose numerical solution is searched in a piece-wise linear FE space defined on a triangulation
7}, of the domain €2 made up of simplices. As in the scalar case, we suppose that the matrices
Aj are constant over each element 7. Appropriate boundary conditions need to be specified
in order to close system (4.24).

In the remaining part of this chapter, we will indicate by U : R™ — R? both the solution
of (4.24) and its numerical solution, where no ambiguity is possible. Furthermore, U; will
indicate the value of the numerical solution of (4.24) at node i.

Equation (4.7) is formally extended to systems as (4.24) as

R;(U) =0,
where

Ri(U)= > ¢;(U)=> 6]
T

T|ieT

is a vector of dimension m which expresses the residual at node i of the mesh, BZT € Rmxm
the distribution matrix, and ¢,(U) the fluctuation, defined as

" => KU,
i
where the inflow matrix K; € R™*™ are written as
d
K=Y Ajmy(j). (4.25)
j=1

Here, n;(j) represents the j—th component of the scaled normal vector n;, defined by equa-
tion (4.12) if d = 2 or (4.13) if d = 3.

Because of the hyperbolic nature of (4.24), the inflow matrices have a complete set of real
eigenvalues and eigenvectors. Consequently, K; can be written as

K; = L'\ L,

where the columns of L; contain the left eigenvectors, A; is the diagonal matrix of the eigen-
values.

To introduce upwinding in the numerical schemes, use is made of matrices K, and K;L ,
which generalise the scalar coefficients k; and k" of table 4.1. They are defined as

K = RA;Li, K;"=RAS L,
with
1
Af = 3 (As £ A])

The design criteria for distribution matrices are the same as for distribution coefficients for
the scalar advection equation, plus the additional requirement of invariance under a similarity
transformation.
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Property 4.2.1 (invariance for similarity transformations). An important design prop-
erty of the system distribution schemes is that the residual sent to the nodes be independent of
the choice of variables for which the actual distribution is performed. This property is called
invariance (Z). Under the similarity transformation OU = T0Q, the hyperbolic system (4.24)
transforms into

0Q
Agi=— =0
; Q?] axj ?
where Ag ;=T 1A;T. The residual of the transformed equation being
¢zT = Zﬁg,ifbgm
€T
we require that
ﬁg,i = T_lﬁz‘TT-

Property 4.1.1 can be extended to systems by requiring that 37 = 0 when all the eigen-
values of K; (which are real due to the hyperbolic nature of the system) are negative. As
regards property 4.1.2, we have that, with (bZT =gr ol =% y C;,;Uj, the positivity condition
becomes C; ; < 0,Vj # i. Property 4.1.4 now implies that the distribution matrices BT remain
bounded as ¢ — 0, or, for a regular mesh and a regular solution of (4.24), ¢ = O(h?).
Property 4.1.3 is easily extended.

From property 4.2.1, it results that if the system is diagonalisable, i.e., if the matrices
A; have common eigenvectors, then taking () as the diagonalising transformation, the trans-
formed distribution matrix BSJ is the diagonal matrix of scalar distribution coefficients for
each decoupled equation.

Instead, when system (4.24) is not diagonalisable, the schemes listed in table 4.1 can be
formally extended to systems as follows.

e The N-scheme for systems is defined by

-1
o =KD K| Y K (U -U;). (4.26)
j j

The scheme is defined provided that ;K is invertible. It can be shown that for
the CEE, this matrix is always invertible, and depends continuously of the data. This
scheme is dissipative.

e The LDA-scheme for systems is defined by

T,LDA __ 7+ +
B =K DK
j
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For the CEE, it is possible to show that distribution matrix is always well-defined,
whatever the flow conditions. No dissipation property of the scheme has yet been
proved. In [Abg01] it is shown that, for symmetric systems, the LDA scheme is less
dissipative than the N-scheme.

e The non-linear PSI-scheme for system is more difficult to define. Considering the scalar
PSI-scheme as a limited N-scheme, its formal generalisation is
~1

TPSI T Nt T Nt
Zﬂ C

Note that the distribution matrix of the N-scheme ﬁ;[ N is not explicitly defined by
equation (4.26). For diagonalisable systems, the condition of invariance under similarity
transformations suffices to define ﬁiT N and hence B;‘F’PSI uniquely. For general non-
diagonalisable systems, the invariance condition is no longer sufficient. The PSI scheme
for systems used in the numerical applications is based on a particular definition of BiT’N

which satisfies this condition. For further details, see for instance [PDvdW97|.
e The Laz- Wendroff scheme for systems is obtained with a formal generalisation of the
scalar scheme given in table 4.1. We have

1 At
T,LW _

—1
I s T o
with I; the identity matrix of dimension d. The Rudqyard extension of the time step
At allows to obtain a matrix LW scheme which does not depend on At:

1
3T LW Z ,U'cell z : P.'Jr
N )

v d+1 ‘T’ ’

where pi.e; is a constant taken to 1; see [BR99].

4.3 The Compressible Euler Equations

The stationary compressible Euler equations describing non-viscous fluid flows in a domain
Q) C R3 can be written as
OF1(W) n OF3(W) n OF3(W)

= 4.2
31‘1 31‘2 31‘3 0, ( 7)

where

pul
W = pu2
pu3
pe



§4.3 THE COMPRESSIBLE EULER EQUATIONS 95

is the vector of conservative variables. More precisely, p is the density, u1, ua, and us are the
x1—, xo— and x3—components of the velocity vector V, and e is the specific total energy. The
quantities F1, F5, and F3 are homogeneous functions of W, called fluxes. Their expression is

puL pu2 pu3
pui +p puiUs pusty
Fi=| puus |, Fo=| pud+p |, Fs=| pusuy
puIUZ puU3 Pu§ +p
puih push push

Here p is the (static) pressure, and h the specific total enthalpy. Considering air as a perfect
gas, p and h are defined as

V?2 \'%&
p:,y(e__), PR
2 y—1p 2

~ being the heat coefficient ratio. We have neglected all the heat conduction terms, and we
have considered the fluid as a perfect gas [Hir89, Chapter 2]. This means, p = pRT, where T
is the absolute temperature and R is the gas constant. If the gas is calorically perfect, then
the specific energy is directly proportional to the absolute temperature and is given by

e(T) =C,T,
where C), is the specific heat at constant volume for the gas, and the specific enthalpy by
h
MT)=e+—=C,T
P

where C), is the specific heat at constant pressure, R = C), — C,, and v = % For air, v = 1.4.

v

Finally, one can define the speed of sound a as

a:\/’yRT:U%.

The CEE are currently used in aeronautical contexts, e.g. for calculating aerodynamic
loads, in flutter analysis, and for verification of the shock locations in transonic flows. For
application of interest, Equations (4.27) are posed in a bounded domain Q c R? d € {2,3},
and completed by appropriate boundary conditions; see [Hir90].

Remark 4.3.1. One of the perceived advantage of schemes based on element vertices is the
fact that, on the boundaries, the solutions values are actually stored at those vertices that
lie on the boundaries. Therefore, it is not necessary to extrapolate to the boundary from the
cell-centers that lie off of the boundary as in F'V schemes. The counterpart is that in FV
schemes it is easy to apply boundary conditions on the flures, whereas MURD schemes do
not actually compute fluxes through control domains. For a more detailed discussion on the
boundary conditions for the CEE, the reader is referred to [Iss97, section 3.7] or [vd W98,
section 5.2/.
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To obtain a numerical solution of (4.27), we make use of MURD schemes. To that aim,
we consider the quasi-linear form of (4.27), which reads

oW oW A%

A A A = 4.2
. + 2 9ta + 3 O 0, (4.28)
with
_ 8F1 N 8F2 . aFB
A = W Ay = W Az = W

Equation (4.28) can be discretized using the methods outlined in section 4.2. However, since
now the A; are not constant over a generic element 7', we need to introduce a conservative
linearisation, as done in section 4.1 for a scalar conservation law. This conservative linearisa-
tion, originally proposed by Roe [Roe81], introduces a vector Z = (1, uy,ug,us, H) such that
over each simplicial element is assumed. Since the conserved variables and the flux vectors
(4.28) are both quadratic in Z, such that the Jacobian matrices are linear in Z.

Another important ingredient for the application of MURD schemes to (4.27) is the ellip-
tic/hyperbolic splitting, outlined in section 4.3.1. The result of this discretisation is a system
of non-linear equations, which will be solved using a Newton-type scheme, as outlined in sec-
tion 4.4. The Newton method leads to the solution of a sparse, ill-conditioned linear system,
for which the application of iterative methods of Krylov types is the matter of choice. Finally,
preconditioners based on Domain Decomposition strategies are applied. The resulting frame-
work is referred to as WNKS framework. A further extension is given in section 4.5, where
a-posteriori mesh adaptation techniques are applied to the resulting scheme.

4.3.1 Hyperbolic/Elliptic Splitting using Preconditioning

In this section we recall the hyperbolic/elliptic decomposition of the Euler equations. This
decomposition, inspired by the Deconinck-Hirsch-Peuteman decomposition [DHP86], is crucial
for the schemes used to discretise the Euler equations.

Two changes of variables have to be made in order to obtain the hyperbolic/elliptic de-
composition. In a first step, we use the symmetrising variables

9p

pa

8U1
0Q = Ouo = wiU,

Oug

dp — adp
with
P 0 0 0 0 1/pa
uq 0 100 O
U=| w |, w= 0 010 O

usg 0 001 O
p -a? 00 0 1
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where a is the speed of sound.
With the variable @), the Euler equations become

0Q 0Q 0Q

A Ay—= + A 0
PRI I
with
uy a 0 0 O u 0 a 0 O
a u; 0 0 O 0 ug 0 O O
A= 0 0 w 0 0|, A4=] a 0 wu 0 0
0 0 0 wu O 0 0 0 wuy O
0 0 0 0 wu 0 0 0 0 wu

o Q@ O O

97

After this symmetrisation of the Euler equations, we introduce the second change of variables

58p+Ms Ju
ﬁﬁp Ms - Ou
OW = Mt - du = LOQ
%+Mn-8u
dp — a0p

with

B M81 M82 MSg

B —M51 —M52 —MSg
L=]1 0 Mt Mtq Mts

1 Mn1 M’rlg MTL3
0 0 0 0

_ o O O O

where M is the free-stream Mach number and 3 is defined as

B = \/max (1’27 ‘MZ - 1’)7

with ¢ = 0.05, like in [Pai95], is introduced to remove the singularity in the sonic point, and

n= The vectors (n,s,t) are mutually orthogonal.

IIUII
This change of variables leads to

OW aVv OW OW
50 Q 1 R + 2 R 2y + 3 R 9% 0

with R = L~1.

(4.29)

In order to obtain the hyperbolic/elliptic decomposition, one can use the preconditioning
matrix which was introduced by Van Leer and co-workers in [SDR91] and then extended to

o O O O



98 APPLICATION TO THE COMPRESSIBLE EULER EQUATIONS CH. 4

the 3D case by Bonfiglioli and co-workers.
xM? —xMuy —xMuz —xMus

2 7 #e g O
S i R
1 M w2
P=_1 252 02 +x  ng  n*% 0
1 —fl\/(flm u(fm ugus gg
e e X N ng 0
0 0 0 0 1

with ¢ = ||u|| and x, n defined as

B X+
X_maX(M,l) P = 32 X

With this matrix, we write (4.29) in an equivalent form

OW - OW - OW - OW
— P 'R|LPA\R— + LPAyR—— + LPAsR——| = 0.
20 gy TR Ay -t BEA T
This new form leads to
OW . -
——P "RII(W)=0 4.
50 (W) (4:30)
with
i+ s Xp n 3 0 0
xpn xputn — %s %t 0 0
(W) = 35t 35t xn 0 0 | VW (4.31)
0 0 0 n O
0 0 0 0 n
with

o M? -1+ ,6’2.
232
Thus, Equation (4.30) is an equivalent form of the Euler equations, at least locally on each
element 7.

In this new form, two different parts can be identified. The first three equations of (4.31)
constitute a subsystem which is independent of the last two equations and is called the acoustic
subsystem. The last two ones are entirely decoupled scalar advection equations. Using this
decomposition we can treat the two parts in different ways, using different schemes. Indeed,
the divergence of the fluxes can be written as the sum of the residual of the acoustic subsystem
and of the residual of the last two scalar advection equations:

W,
OF, OF, OF A - ;
S = (ryra,ms) [ AV | W || R A Warg+ s - Wars
Ox dy 0z W —
3

T T
¢enthalpy ¢entropy

TV
T
coupled
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where r; are the vectors of the matrix %—IgP_lR, A; the advection vectors of the last two
scalar equations, and

t
t = (a1, a9, as).

xpn+%s  xpn
a= Xy n xutn — %s

Xt Xt

< W< W=

n

At this point, the strategy of the discretisation scheme is to split the acoustic residual,
qbgmpled, with a matrix fluctuation splitting, and the two scalar (beTnthalpy and qbzmmpy with

scalar fluctuation splitting scheme.

Remark 4.3.2. In the LW-PSI scheme, the system LW scheme is used to split (bz;upled and
the scalar PSI scheme is used to split d)znthalpy and q.’)eTntmpy. This scheme is outlined in details
in [BR99]. There, the authors claim that this scheme allows Euler computations over a wide

set of Mach numbers, from 0.01 up to 2.

Remark 4.3.3. Numerical comparison between MURD schemes and more classical F'V schemes
are reported in [IDe01]. The authors show that, compared to standard F'V methods on compa-
rable grids, the MURD schemes show an increased accuracy, which becomes comparable with
structured grid algorithms.

4.4 Generalities on Non-linear Solvers

This section presents a theoretical framework to characterise non-linear iterative solvers for
the solution of a system of non-linear equations of type

R(U) =0, (4.32)

arising from the space discretisation of a steady PDE problem. In the following, we suppose
that the spatial discretisation has been carried out by using MURD schemes.
The Newton method defines a suite {Uy} that, under some conditions, converges to U,

solution of (4.32). The algorithm is as follows: given Uy, for £k = 1,... until convergence,
solve
OR
Je(Up-1) (Up = Ug—1) = ~R(Ui-1),  Jp(Up-1) = | 55(Us-1) (4.33)

Newton method introduces a local full linearisation of the equation. Solving a system of linear
equations at each Newton step can be very expensive if the number of unknowns is large, and
may not be justified if the current iterate is far from the solution. Therefore, a departure
from the Newton framework consists of considering inezract Newton methods, which solve
system (4.33) only approximatively.

In fact, in practical implementation of the Newton method, one or more of the following
approximations are used:
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1. The Fréchet derivative J for the Newton step is not recomputed at every Newton step;
2. The equation for the Newton step (4.33) is solved only inexactly;

3. Defect-correction methods are employed, that is, Ji is numerically computed using low-
order (in space) schemes, while the right-hand side is built up using high-order methods.

Strategy 1 is particularly interesting when linear system (4.33) is solved by a direct method.
In this case, evaluation and factorisation of the Jacobian matrix is not done at every Newton
step. Other techniques aim to update the Jacobian without recomputing it, and for problems
where the Jacobians are slowly varying, this leads to significant performances gains. On
the contrary, for rapidly varying and ill-conditioned Jacobians, this procedure can produce a
premature termination of the Newton process.

Strategy 2 means that the equation for the Newton step is solved inexactly in the sense
that AU, = U — Ug_4 is meant to satisfy

[Jk(Ug—1)AUg + R(Ug_1)[| < G| 2(Ug)||

for some small (j, which may change as the iteration progresses.
Strategy 3 means that J; is computed (or applied to a vector) using a low-order space
discretisation scheme, while the right-hand side is calculated using a high-order scheme.

The convergence of exact and inexact Newton methods can be difficult to achieve. Newton
method requires initial iterates sufficiently near to the root, which are usually not available,
especially when the solution has complex flow features, such as discontinuities (shocks, slip
lines) that are not present in the initial iterate. Compressible flows induce, with respect to
these possible discontinuities in their solution, a different framework from other problems, like
for instance incompressible flow problems, where one can use Newton techniques alone.

For these reasons, system (4.32) is usually framed in a time-dependent setting. Its root
U is found by seeking for a steady-state solution of the time-dependent problem

Sd—U +R(U) =0, (4.34)
dt
with a convenient initial condition U(¢ = 0) = Uy. In (4.34), S is a non-singular (lumped)
mass-matrix.

Framing the steady-state equation into a time-dependent setting constitutes a sort of
continuation process, with continuation parameter ¢, which can be considered as an attempt
to widen the domain of convergence of Newton method, or as a procedure to obtain sufficiently
close starting points. The resulting procedure is referred to as pseudo-transient Newton (V.NV)
methods.

General results about Newton method and its variants can be found on reference books:
see for instance [QSS00] for a global presentation on the subject, the book by Ortega and
Rheinboldt [OR70], or the book by Kelley [Kel95].
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4.4.1 The UN Framework

It its simplest form, the pseudo-transient continuation Newton method numerically integrates
the initial value problem (4.34) with initial condition U(t = 0) = Uy, to steady-state using
an evolutive time-step strategy which attempts to increase the time-step as Uy — U. The
time derivative is discretised using a backward Euler scheme. Starting from a given Uy, the
solution at (pseudo-)time step £ =1,2,... is found by solving the non-linear system

Uy — Ui

S 5

+R(Ug) =0
or, equivalently,
S5, Uy, — 86, 'Us_1 + R(Uy) = 0, (4.35)

where J; the time increment at step k.
A Newton iteration at time level k for the solution of (4.35) would then read

-1

Up;=Ugyg + |96 + g—ﬁ(UkH) (=86, ' Up 1 — R(Ug, 1) + 56, Up_1) (4.36)
with [ =0,1,... , being the index associated to the Newton procedure, and Uy g = U;_1. The
Newton iteration should stop when either a certain tolerance level is reached or after a fixed
number of iterations. Although it is possible in principle to take more Newton correction it-
erates, convergence results from [KK98b| show that, for steady-state computations, quadratic
convergence can be eventually achieved provided that a suitable time-step evolution strategy
for §; is found. Therefore, in the following we suppose to take just one Newton iteration of
process (4.36). This leads to the following linear problem:

-1

., OR
Uy =Uj_1 + |56, + 55 Ur-1)|  (~R(Ug-1) (4.37)

that can be written as
Akuk = fk, (438)

where A, € R™*" and uy, fi, € R™. More precisely,

R

Ak = S(SI;I + 8—U(Uk_1)
u, = (Up—-Up)
f, = —R(Up)).

A strategy for the definition of d; is needed. One strategy consists of keeping the time
step small until all flow features are resolved, then large time steps may be taken near the
solution to obtain super-linear or quadratic convergence of Newton’s method.
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To that aim, the so-called “switched evolution relation rule” (SER) can be used; see [DES82].
In its simplest form, SER increases the time step in inverse proportionality to the residual

reduction,
IR(Uo)|l
Ok = 007 m AT
IR(Uk)||
which implies that, for & > 1,
[R(Up—1)
Op = g1
IR(Uk)|l

Sometimes, §; is computed using the formula

oLy IR
b =i B 429

with 0,4, @ real parameter which may be oc. This is called “switchover to steady-state form”.
Another way is to adopt the “exponential rule”, i.e.

8, = min {50 x (o)F, CFLmM} , (4.40)

where Jg is the initial time step and o > 1 is a prescribed growing factor.

A third, more involved strategy, called “expert rule”, can be found in [VCR00]. Based
on our numerical results, the performances of SER and exponential rule are comparable.
Therefore, in the numerical results presented in section 4.6, we have adopted the latter to
define the sequence {dy}.

As an example, we have applied the UN framework to problem (4.23). Figure 4.8 reports
the convergence history using (4.35) and (4.40) with 0 = 2 and CF L4, = o0 to define the
time increment. For this scalar problem, convergence is obtained for all the tested MURD
schemes. Note, from figure 4.9, that the spectral condition number of J; rapidly increasing in
the first 10 iterations, then slightly decreases, then it remains almost constant when 1/4; ~ 0.
In the latter phase, WN reduces to the Newton method for the solution of the stationary
problem.

The exponential rule (using 0 = 2 and o = 10) and SER are compared in figure 4.10.
Finally, figure 4.11 reports the convergence history of process (4.35) and of (4.37) using 2,3
or 4 Newton iterations at each time level. Note that no improvements are achieved in the
initial phase (the first 10 iterates) if more than one Newton iteration is used. The convergence
using L > 1 Newton iterations is more rapid, but note that each step costs L times more with
respect to (4.35). Note also that L = 4 results in the most irregular convergence history
among the presented cases.

Process (4.37) requires the construction of the Jacobian matrix (as regards Jacobian-free
methods, see the following remark 4.4.1). First, note that a generic (i,j) element of Jj is
a-priori non-zero only if ¢ and j correspond to quantities defined on nodes which are mesh
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Figure 4.8: Convergence of the ¥N framework applied to problem (4.23) using different MURD
schemes. The exponential rule has been chosen for §; with ¢ = 2, and one Newton iteration
is used.
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Figure 4.9: Spectral condition number of J; at different time-levels.
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Figure 4.10: Convergence of the WN scheme applied to problem (4.23) using the PSI-scheme
and one Newton iteration, using the exponential rule (with ¢ = 2 and o = 10) or the SER.
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Figure 4.11: Convergence of the YN scheme applied to problem (4.23) using the PSI-scheme
and 1,2,3 or 4 Newton iterations. The exponential rule has been chosen for §; with o = 2.
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connected. Ji is therefore a sparse matrix and the sparsity pattern for schemes on simplices
is induced by the mesh structure itself. Moreover, for system of equations m unknowns are
stored on each mesh node, so that the (i,;) Jacobian entry is a small dense matrix relating
the influence of every variable at node ¢ on every variable at node j. Suitable matrix storage
formats can be used at this purpose.

To compute the sparse matrix Ji, different approaches are available. A first approach
uses analytical formulae, that is, the element of J; are evaluated using exact derivatives of the
residual distributed to each node. The task of differentiating this quantity — and the boundary
conditions — might be cumbersome and error-prone. This is because the nodal residual is
computed according to a series of phases: the conservative linearisation, the evaluation of the
residual, and its distribution to the nodes of the element. For this reason, analytical Jacobians
are used only for some first-order schemes. Moreover, the exact derivatives are often replaced
by approximate formulae, computationally cheaper to compute.

A second approach uses FD approximations of the derivative. Using a first-order forward
formula, the generic (7, 7) element is computed as

Ri(U + cej) — Ri(U)

Ji(i,3)(U) = :

where R;(U + ce;) represents the i—th component of U when the j—th component of U
is perturbed by a small quantity . The advantage of this approach is that it requires only
a function to evaluate the residual for a given U, and therefore any spatial discretisation
scheme can be numerically differentiated without insight of the discretisation chosen nor any
intricated analytical formulae. One drawback is its cost: for the 3D laminar CEE, 21 residuals
have to be computed on each element 7. Another drawback is that the precision achieved
depends on a proper choice of €. For our problems, a value of ¢ = 107% was experimentally
found to provide the optimal result in terms of convergence of the overall scheme.

Other techniques that can be employed to compute the Jy: automatic differentiation (AD)
tools, the Picard method, and the (sparse) Broyden update. In [Iss97], all the approaches
mentioned in this section are numerically compared. It results that the computational cost
of first-order FD schemes is comparable with that of analytical computations, and that the
nonlinear convergence obtained by using first-order FD approximation is almost identical to
that obtained using analytical Jacobians.

In the numerical results later reported, we have used both analytical and FD Jacobians
for first-order MURD schemes, and FD Jacobians for second-order MURD schemes.

Remark 4.4.1. In F'V application, Jacobian free methods are often employed, meaning that
the Jacobian matriz is not explicitly stored, but only applied to vectors (using Fréchet deriva-
tives) within an iterative solver. However, a preconditioning matriz is to formed, usually
resorting to low-order methods. For F'V methods this approach is justified by the wider sten-
cil of high-order methods. For MURD methods, instead, the Jacobian free approach is quite
questionable, since high-order schemes have the same computational stencil of low-order ones



106 APPLICATION TO THE COMPRESSIBLE EULER EQUATIONS CH. 4

(although they may be more expensive to compute). We have not considered Jacobian-free
methods in this work

4.4.2 The YNKS Framework

Once the matrix and the right-hand-side of (4.38) have been formed, a linear system has to be
solved at each pseudo-time step k. A Newton-Krylov method adopts for this purpose a Krylov
acceleration procedure (such as GMRES). Although in principle the matrix of the system
needs not to be explicitly formed (matrix-free method), it may be convenient to form it (being
enough memory storage available), at least if one wishes to apply algebraic preconditioners.
Here we will not consider here matrix-free methods. Indeed, our strategy is to use a Schwarz
or Schur preconditioner (like those introduced in chapter 3) in the course of the solution of
the Newton iterates by Krylov methods. The resulting algorithm is called YNKS (S stands
for Schwarz or Schur); see, for instance, [CKK02, KKS99], [NAWK95, CKV97, GMTKO0O0,
GKKSO01]). The parallel issues of the resulting scheme will be addressed in chapter 5.

4.5 The aVNKS Framework

The WNKS algorithm allows the solution of problem (4.32), resulting from a space discretisa-

9). To improve the solution quality and to optimise the computa-

tion on a given mesh, say 7 (
tional resources, a-posteriori adaptation cycles are considered. This means that, after conver-
gence on the initial grid, the mesh 7 is adapted one or several time, following adaptation
criteria, as detailed in section 4.5.1. At adaptation cycle i, the solution U corresponding
to the solution of the pseudo-transient problem on the mesh 70~1  is projected on the mesh

7@ and then used as a starting solution for problem (4.32), discretized on 7.

Note that different space discretisation techniques can be used at different meshes adap-
tation cycles. In general, we start with first-order schemes on non-adapted meshes, then we
turn to second-order schemes on adapted meshes. The final algorithm 4.5.1 will be called
aWNKS.
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Algorithm 4.5.1 («¥?NKS).

a. Define a mesh 7(©)
b. Choose a starting solution w©)

c. For 1=0,..., Do
1. solve the non-linear ODE problem

dU®
dt

S +R(UYD)=0 with UD(t=0)=wWO

resulting from the space discretisation on T(i);
2. if the solution has the desired accuracy, Stop;
3. adapt 7" to obtain 70+
4. set WD) as the projection of U on 70+

d. EndFor

4.5.1 Generalities on Mesh Adaptation

One of the main advantages of unstructured grids is their capability to adapt dynamically
the mesh by localised refinement/derefinement during the calculation to enhance the solution
accuracy and to optimise the computational time. Mesh adaption is a very active research
field; the reader is referred to [Ver96, AO00, BS01] for a complete presentation of the subject.
This section outlines the main lines of the mesh adaptation algorithms we have used. The
parallel issues related to parallel mesh adaptivity will be found in section 5.3.8.

The goal of mesh adaptation is to increase the accuracy of the solution process by reducing
the mesh size when needed — thus increasing solution accuracy, while minimising the number
of elements where the solution is already accurate enough — thus optimising the computational
resources.

The first step in a mesh adaptation algorithm is to locally refine the mesh according to
some criteria; these criteria used should be as close as possible to the error estimations of
the underlying discretisation scheme. For the mesh adaptation procedures developed here, a
strategy based on an a-posteriori error estimate where the computed residual of the solution
R(Uy) is used to define the error has proved to be robust and precise for inviscid flows and
for tracking discontinuities. These solution based criteria evaluate the following: difference on
the edge, gradient on the edge, flux through the edge (upwind and downwind), applied on the
sensitive variables, such as the density, the pressure, the local Mach number or the entropy.
Other criteria are based on geometrical quantities, for instance the absolute edge length, the
relative edge length with respect to neighbouring elements, and the geometrical form of the
elements (solid angle).
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Using one or a combination of these criteria, mesh refinement and derefinement operations
are performed. Then, an optimisation step follows, based on geometrical properties of the cur-
rent mesh, to improve some mesh quality parameters without affecting the mesh connectivity.
These phases are followed by repartition, reordering and renumbering.

Local Mesh Refinement

The local mesh refinement algorithm consists in testing the edges of an existing mesh and
deciding whether they have to be split or not. First, the selected criterion function is evaluated
on the entire mesh. Call this field variable c. A low- or high-pass filter is applied on the
solution field c. Let ¢ denote the corresponding filtered field, and let ¢; be the value of ¢ on
the edge 1.

For each edge, the function f = F(¢) is computed, where F(¢) is one of the following:

e the difference of ¢ between the two vertices of the edge;
e the gradient of ¢ between the two vertices of the edge;
e the upwind flux of ¢ through the edge;

e the downwind flux of ¢ through the edge.

Finally, the refinement criterion is built with the mean value f of f over the grid. Edge i
will be refined, that is, a vertex is added in the medium point of that edge, if f, > af, or kept
unchanged otherwise. Here, « is a real parameter. The factor F is used to set the criterion
as a function of the mean value f.

In 2D, this procedure may create 1, 2, or 3 new vertices in an adapted triangle. This sub-
division strategy is called of the Red-Green type (figure 4.12). For geometrical considerations
of maintaining non-acute angles, elements of type Green II are replaced by elements of type
Red. The Red-Green concept is extended to the faces of the tetrahedral in 3D meshes. For
each element, 1, 3 or 4 new vertices may be created (figure 4.13). Element refinement thus
subdivides elements into 2, 4, 8 new elements in 3D (see figure 4.13).

Green I Green II Red

Figure 4.12: Two-dimensional element refinement types.
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1 edge marked 3 edges marked 6 edges marked

Figure 4.13: Three-dimensional element refinement types.

Mesh Derefinement

In order to minimise the number of vertices and elements used in the computation, and to
improve the geometrical quality of the mesh, a derefinement algorithm is employed. The
procedure is as follows. First, a set of nodes not to be deleted is identified. This is done
using the same criteria of the refinement. A particular care must be given to some nodes, like,
for instance, the corners of the computational domain, the symmetry points, or the vertices
belonging to edges to be refined. There is a number of possible fixed vertices allowing a
maximal coarsening which come either from the boundary or from internal configurations.
To find these, first the border of the domain is scanned so that each second vertex is marked
as a fixed point. Then all elements containing no fixed points must have at least three fixed
neighbouring vertices, as shown in figure 4.14. All the remaining vertices are marked, and the
other ones are subject to be deleted.

Figure 4.14: An element defined with 3 removable vertices should be surrounded by 3 fixed
vertices. Fixed vertices are marked.

Vertices to be deleted are removed using an edge collapsing procedure, see figure 4.15.
The shell built with the surrounding elements around a marked vertex is considered as a new
element. The inner curvature angle of the shell is then computed at each non-marked vertex
neighbour. The vertex is deleted by collapsing one of its neighbouring edges. The actual edge
to be collapsed is chosen to be the one that joins the deleted vertex to the neighbouring vertex
for which the shell curvature angle is maximal (figure 4.16). This procedure works in two and
in three dimensions. If an element inversion happens, the incident is detected by controlling
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the shell volume conservation and the vertex is not removed.

/N

Figure 4.15: Vertex deletion using edge collapsing

Choosing the largest curvature angle tends to minimise the risk of element inversion, and
therefore the number of failing deletion processes. This improves also the quality of the
resulting mesh (figure 4.16).

Examples of 2D derefinement sweeps are given in figure 4.17. Note that exactly the same
algorithm is applied on the shells in 3D.

K &
@ &

Figure 4.16: Coarsening by edge collapsing. a) Original shell. b) Wrong edge collapsing

causing an element inversion. c¢) Wrong edge collapsing causing element distortions. d)
Appropriate edge collapsing.
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Figure 4.17: Derefinement sweeps in 2D.

Mesh Optimisation

The adaptive methods previously presented modify the local vertex density, and strong in-
homogeneities may be created across the mesh, depending on the element size as well as the
vertices angles. Moreover, the number of neighbours may vary in a large spectrum from one
vertex to one other. To minimise such dependencies it is necessary to optimise the structural
quality (element shape) and to globally smooth out the mesh.

First, it is necessary to determine the optimal number of neighbours for each element
Nopt- For 2D meshes, this is straightforward: the optimal vertex angle is /3 in the Euclidean
metric, and the complete area around the vertex is filled with six elements. The number of
neighbouring vertices needed to form those elements around a vertex is then Nyt = 6.

In 3D, the spherical angle of the tetrahedron at each vertex is the given by ¢ = 3o — 7.
« is evaluated by considering the theorem of the cosine which leads to av = arccos(1/3), see
figure 4.18. The number of tetrahedral elements needed to fill the space around a vertex
is then 7' = 47 /e = 23. The Euler-Descartes relation may be used to express the relation
between the numbers of elements, vertices, edges and faces within a given triangulation. Let
consider the shell built with the elements surrounding the vertex as a triangulation. The
Euler-Descartes relation V — E+ F = T + 1 [Car97] links the number of vertices V', of edges
E, of faces F' of a grid with its element number 7. On the shell boundary, the number of
vertices is Nopt, and the number of faces is 7. It follows that T' = 2Npy — 4, which leads to
13 < Nopt < 14.

Once defined the optimal number of neighbours for each element, structural optimisation
operations are performed, so that each element has a number of neighbours which is not too
far away from the optimal. These structural optimisation operations are diagonal swapping
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Figure 4.18: Spherical angle at an equilateral element vertex. The angle ¢ equals 7/3, and
a = arccos(1/3).

and collapsing of edges in 2D and faces in 3D. Diagonal swapping checks for each edge if
configuration is improved by a swap and reduces the number of neighbours N; when this is
too high. i.e swapping is accepted if:

{ N3 + Ny < N1 + Ns

max (N3, Ny) <  max (N, N3).
Graphically, we have:

R

Instead, the edge collapses N; when it is too low. The procedure checks for each edge
if a vertex has an insufficient number of neighbours — then it is removed by collapsing; see
figure 4.19. A histogram of these structural optimisations is given in figure 4.20.

Once structural optimisation is completed, geometrical optimisation is performed by smooth-
ing and stretching algorithms. The underlying idea of mesh smoothing is to optimise the mesh
by modifying the vertex position, using the so-called spring analogy (see figure 4.22). Note
that in this step the mesh connectivity — and the corresponding data structures — remains
unchanged.

The spring analogy consists of replacing each mesh edge by an elastic spring and minimis-
ing the deforming energy of the corresponding elastic system. Let a; be the spatial coordinated
of vertex i. At each vertex, the resulting force is given by Hook’s law:

Fi = Z ai7j(a:j — a:l) = 0, (4-41)
Jj€k;
and therefore the equilibrium position is given by
PIRIRES
J€Ek;

E , i, j

J€Ek;

(4.42)

i =
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Figure 4.19: Collapsing of elements.

Here k; indicates the set of neighbouring vertices of vertex ¢, o ; the spring stiffness of the
edge joining the vertex ¢ with the neighbour j.

Remark 4.5.1. Equation (4.42) requires the resolution of a linear system, for ezample an
iterative scheme like Jacobi can be used. This is particularly well suited for our parallel
computations, since it mainly corresponds to parallel matriz-vector products (plus diagonal
scaling). In general few steps of the Jacobi method are enough to significantly improve the
mesh quality.

To complete the algorithm a definition of the value «; ; is needed. The simplest choice
a;,j = 1 tends to produce equilateral elements. However, as shown in figure 4.23 (b), a vertex
with N; < Nopt will attract its neighbours, while a vertex with N; > Nop¢ will move them
away. Here Nopt is the optimal number of neighbours for each vertex (14 in 3D). x This effect
can be reduced by using a weight function for ¢; j, related to the number of neighbours for
the vertex j € k; Nj:

;= aj = max [1, Nopt + a (N — Nopt )], (4.43)

where a is a real coefficient to be chosen. The influence of (4.43) appears in the figure 4.23
(c).

Further improvements of the spring analogy have been developed in [Blo98, SL00]. These
techniques may be of particular interest near boundary regions. They correspond to taking
different equilibrium lengths for Hook’s law. Possible choices are:

e Lineal vertex spring with zero equilibrium length and stiffness o, j = ¢((z; — ;) + (y; —
yj)Q)w, where ¢ is a function of the boundary curvature and v is a parameter;
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Figure 4.20: Structural optimisation for one of the test cases, the ONERA M6 wing. Red
lines refers to before optimisation, blue lines after optimisation. Note the improvement of the

neighbour number distribution.

e Edge spring taking the equilibrium length to be the edge length. Then, the Hook’s law
applied to vertex displacement d; gives

k;
Fi = Zai’j(éj — 51)
7=1

and the spring stiffness is taken proportional to the inverse of the edge length,
1
V(@i — )% + (yi — y5)?

aiyj =

Increasing ¢ near boundaries increases the stiffness and keeps the vertices close to the
boundary. An increased rigidity near boundaries is also necessary to avoid distortion and
inversion in these zones, and an additional term which is function of the local boundary
curvature is also introduced; see figure 4.24. Further techniques include also torsional springs
which enforce edge springs to work only in one direction to avoid inverted elements.

We conclude the section with the following remark.

Remark 4.5.2. The extension of the presented adaptation techniques to the solution of the
compressible Navier-Stokes equations requires a careful handling of the stretched elements used
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Figure 4.21: Example of the mesh improvement with an optimisation procedure.

Figure 4.22: Physical interpretation of the spring analogy

in the boundary layers. These elements have, by construction, a dimension which is much
smaller that the others, and ad-hoc adaptation techniques must be considered to exploit this
peculiar aspect of the mesh.

4.6 Validation of the Euler Code

A set of test cases has been run to validate the aWNKS. The test cases are summarised in
table 4.4. In the table, N_vertices and N_ele refer, respectively, to the total number of
vertices and elements of the computational grid, while N_unks is the number of unknowns of
the linear system (before adaptation, if performed). All computations have been conducted
on an SGI Origin 3800 computer, whose characteristics are outlined in table 4.3.

The CEE solver we have adopted is THOR. This parallel code for the solution of the
compressible Euler (and Navier-Stokes) equations has been developed at the von Karman
Institute (Belgium) by the group of Prof. H. Deconinck. THOR is written mainly by E. van
der Weide and K. Sermeus. The code, common basis of the IDeMAS project, uses MURD
schemes for the discretisation of the steady CEE, with the elliptic/hyperbolic preconditioning
detailed in section 4.3.1. A continuation technique is used to find the solution of the steady
equations, as explained in section 4.4.

THOR has been extended by the author of this thesis to include two-level DD precondi-
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Figure 4.24: Effect of boundary spring.

tioners and SC-based solvers and preconditioners, whose parallel issues will be addressed in
chapter 5 (see also remark 5.3.4). The adaptivity module of THOR described in section 4.5.1
was developed by P. Leyland and Y. Savoy at STI/LIN/EPFL during the IDeMAS project,
and integrated in a common framework with the work on DD preconditioners by the author
of this thesis together with P. Leyland and F. Moussaoui. The grid and the definition of the
boundary conditions have been kindly furnished by the von Karman Institute (NACA0012 and
M6), Dassault Aviation (FALCON), and P. Leyland (X29).

A special comment is in order for the 3D visualisations. Once the numerical solution
is computed, several interesting quantities (such as pressure distribution or Mach number
contours) are firstly visualised on the border of the domain — i.e. the considered aeronautical
body. Then, to have a better insight of the flow field, internal values are analysed. This task
is not trivial for complex 3D configurations, and it must be driven by a physical knowledge of
the problem, by experimental data, or by automatic algorithms capable to capture interesting
flow features. We have mainly used streamlines and cutting planes, as reported in [QSST03].
There, the authors have shown that appropriate visualisation tools for complex simulations
can greatly help in both monitoring the solution and analysing it. Streamlines, iso-surfaces
and particle tracking can provide a global understanding of the flow field that may be of
paramount importance during the whole simulation process. To visualise the solution, we
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Machine name SGI-Origin 3800
Number of processors 128

Processors MIPS R14000
MHz 500

RAM / processor 512 Mbytes
first level cache 32 Kbytes
second level cache 8 Mbytes
communication MPI

Table 4.3: Characteristics of the SGI Origin 3800 used in our computations.

name d My a N_vertices N_ele N_unks adaptation
NACA0012 2 08 1.0 2355 9423 9420 yes
FALCON 3 045 1.0 45387 255944 226935 no
M6 3 084 3.06 94493 666569 472465 yes
X29 3 0.75 5.00 136767 683835 726713 yes

Table 4.4: Main characteristics of the test cases.

have used VISUAL3 by B. Haimes [Hai91| and TECPLOT (R).

For all the test cases, the starting solution is a constant solution. For first-order schemes,
we have used the N-scheme for systems for the elliptic part and the scalar N-scheme for the
hyperbolic part, while for second-order schemes we have used the system LW-scheme for the
elliptic part and the PSI-scheme for the hyperbolic part. As regards the CFL number, we
have used

CFLj, = min{CFLg x 0 CF L4}, (4.44)
where C'F' Ly, is the CFL number at the k—time level.

NACAQ012 is a transonic 2D test case. Figure 4.25 reports the complete aWNKS cycle,
which is as follows. First, first-order N-schemes are used on the original, non-adapted grid,
followed on the same grid by a second order PSI/LW scheme. Then, several adaptation cycles
follows. The residual, based on second-order schemes, is reduced up to a factor of about 10~7.
From figure 4.26, it is possible to observe the improvements in solution quality induced by
the use of second order schemes and adaptation techniques.

FALCON is representative of a complete aeronautical configuration of an industrial airplane,
with body, wing and nacelles. This is the only subsonic test case. The mesh is rather coarse,
and we have used this test case to validate the Krylov accelerators and the basic properties
of the preconditioners. Slip boundary conditions are imposed on the airplane. Since the
problem is symmetric, as well as the boundary conditions, the mesh is represented by half a



118 APPLICATION TO THE COMPRESSIBLE EULER EQUATIONS CH. 4

NACAO0012 airfoi

I I
o lldensity res||2
o ||density res|| |

adaptation
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Figure 4.25: NACAOO012 test case. Convergence history for the complete « WNKS cycle. On the
x—axis, we have reported the time levels, while on the y—axis the L? and L* norm of the
density residual.
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Figure 4.26: NACA0012 test case. From top to bottom, the original grid, the first-order solution
on the original grid (Mach number contours), the adapted grid, and the second-order solution
on the adapted grid (Mach number contours). The different colours in the grid refer to the

subdomain partitioning.
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sphere, where we have imposed far-field and symmetry-plane boundary conditions. Referring
to equation (4.44), we have used CFLg = 1.0, 0 = 2, and CF L4, = 10°. The numerical
results using a first-order scheme are reported in figure 4.27.

X29 is a very interesting transonic test case. It represents the experimental Grumman
Model 712, designated X-29A by the USAF, a single-seat jet aircraft fitted with a wing
mounted at the rear of the fuselage, swept forward at 35°, and with canards just behind the
cockpit. Two airplanes were built to determine the effectiveness of forward swept wings, as
well as advanced avionics and structural composites. A picture of the airplane is reported in
figure 4.28, while a close-up of the computational grid is given in figure 4.29.

Equation (4.44) is used, with CFLy = 0.2, 0 = 2, CF Ly, = 1000. The complete
aW¥NKS cycle has been applied. Starting from an initial grid 7(©), 2 stes of refinement and
derefinement, and structural optimisation gave the mesh 7). Then, smoothing optimisation
is performed on 7™ to obtain 7). On 7 refinement and optimisation gave a final mesh
7®) made up of 1.47 million nodes and 8.7 million elements.

The effect of smoothing optimisation can be seen by superposing 7() and 7® in fig-
ures 4.30 and 4.31. Finally, figure 4.32 details the solutions on these first refinements, and
further details of the refinement on the wing surface are shown in figures 4.33. Note that the
shocks on the wing surface are only clearly visible when the refinement is carried out. Mach
number contours on the surface and streamlines for the grid 7®) are reported in figure 4.34.

M6 is the last test case we have considered. It represents a ONERA M6 wing, a widely
used test case for 3D flows from subsonic to transonic regimes. The selected transonic case if
My, = 0.84 and o = 3.06, which results in several shock waves over the wing. In the flow-field,
a shock originates at approximatively 80% of the wing span. A second leading-edge shock is
caused by the 30% sweep angle of the M6 wing. Near the tip of the wing, a lambda-shock
structure is observed. Contours of Mach number in critical areas of the flow field provide
useful information on the flow characteristics. Iso-surfaces of Mach number over a wing are
shown in figure 4.36. The red zone on the upper part of the wing represents a supersonic
area. The sudden transition from red to green indicates the presence of a strong shock wave;
moreover, the concentration of iso-surfaces behind it reveals that a further (weaker) shock
wave develops.

The far-field is half a sphere with a radius of 12.5 root-chord length. Two steps of mesh
adaptation are performed. Each adaptation phase corresponds to at least two steps of adap-
tation (refinement coarsening and optimisation). The final grid is composed by 585725 nodes
and 3477090 elements.

As one can seen from figure 4.35, first-order N-scheme rapidly converges to steady-state
solution in very rapidly. In this phase, CFLg = 10,0 = 2.0,CF L., = 10°, and analytical
Jacobian are used. These initial iterations are needed to place the shocks in a more or less
correct position, so that they do not have to move consistently when second-order schemes are
employed. For second-order schemes, we have used CF Ly = 0.2,0 = 2.0, CF L4, = 1000.

As already reported by [vdW98| and, more recently, by [Abg01], the iterative convergence
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Figure 4.27: FALCON test case. Mach number contours on the airplane (top) and particular of
the surface mesh (bottom).
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Figure 4.28: X29. Picture of the X29 aircraft.

Figure 4.29: X29. Mesh used in the computations. The mesh is composed by half a sphere
since the problem and the boundary conditions are symmetric.
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Figure 4.30: X29. Superposition of the symmetry plane meshes before (black lines) and after
the first refinement (coloured by processors).

Figure 4.31: X29. Results obtained before and after mesh optimisation and smoothing. The
non-smoothed and non-optimised mesh (on the left)shows, on the symmetry plane, elements
with a number of neighbouring elements larger than the optimal one. This is no longer the
case for the smoothed and optimised mesh (on the right).



124 APPLICATION TO THE COMPRESSIBLE EULER EQUATIONS CH. 4

Figure 4.32: X29. Zoom over part of the refinement (top) and Mach number distribution on
the body for the mesh 7 (bottom).



§4.6 VALIDATION OF THE EULER CODE 125

"

B oo Mach X290
. First Adaptation

Initial Grid

Big Refinement

| B
0 380634

0264001
| pre
00309062

Figure 4.33: X29. Refinement criteria taken here are edge length and Mach gradients. The
initial mesh 7(® (on the left) steps by an intermediate refinement which detects the wing
shocks (in the centre), and a final mesh 73 is obtained by leading and trailing edge refinement
(on the right).

Figure 4.34: X29. Streamlines and Mach number contours on the airplane.
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Figure 4.35: M6. Convergence history of the a WNKS cycke. On the r—axis, we have reported
the time levels, while on the y—axis the L? and L norm of the density residual.

of second-order schemes is very poor; basically, for non-adapted meshes the L? density residual
stagnate at about 1072 = 1073, where the residual is compared to the first iteration. The
situation is slightly improved on adapted meshes, even if it was not possible to reduce the
residual more than a certain factor, here about 10~® with respect to the first iteration on the
non-adapted mesh.

Mach number isolines over the wing and the symmetry plane are depicted in figure 4.37
for the first-order non-adapted grid, and in figure 4.38 for the second-order adapted grid.

Experimental surface pressure distributions at several spanwise cross-section are avail-
able [AGAT9]. Figure 4.39 shows the comparison between the experiments and the computa-
tions of the CEE. Due to the absence of shocks,on the pressure side, the pressure distribution
on this part of the wing is mainly determined by inviscid phenomena. Consequently, the
results of the computations and experiments are almost identical. On the suction side, the
prediction of the location of the first shock is rather good. The second shock, instead, in
computed far downstream and therefore it is too strong. This is a consequence of neglecting
the viscous term (the Reynolds number based on the mean aerodynamic chord is 11.74 x 10°).
Taking into account that the computation is inviscid, the agreement between computations
and experiments is quite good.
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Figure 4.36: M6. Plot of Mach number contours on the wing and Mach number iso-surfaces.
The asymptotic Mach number is 0.84 and the angle of attach 3.06.

4.7 Concluding Remarks

MURD schemes have reached a certain degree of maturity for the solution of the steady CEE
on unstructured grids made up of simplices. In this chapter we have briefly recalled the main
lines of MURD schemes, focusing with particular attention to their FE interpretation.

In their current stage of development, MURD schemes can be used for complex aerody-
namic flows, both in the subsonic and transonic regime. However, it is clear that the full
potential of this approach may be revealed only if these methods could effectively lead to
scalable parallel codes. Moreover, mesh adaptation techniques are of paramount importance
to capture the flow physics, especially when strong discontinuities (like shock waves) arise in
the domain.

To that aim, we have presented a fully parallel algorithm, here called aWNKS, which
couples a non-linear solver, a Krylov accelerator, DD preconditioners of both Schwarz and
SC-based type, and mesh adaptation procedures. The numerical results we have reported
show that this process can effectively improve the quality of the solution obtained using
MURD schemes for problems of aeronautical interests.
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Figure 4.37: ONERA M6 wing. Partition and solution (iso Mach lines) with the initial mesh,
composed by 555514 elements and 94493 nodes. Note that the wing shock is not captured
since only first-order schemes are used.
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Figure 4.38: ONERA M6 wing. Partition and solution (iso Mach lines) with the final grid,
composed by 3477090 elements and 585725 nodes. The PSI/LW scheme is used. Note that

the lambda shock is very well captured.
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Figure 4.39: ONERA M6 wing. Pressure coefficient comparison for the different adaptations

taken at a station at 20% of the wing span.



Parallel Aspects

THE DEVELOPMENT OF a scalable parallel «NKS code requires the definition of an
efficient distributed data structure. This data structure must efficiently handles the
preconditioning phase, which is probably the most important aspect of the « WNKS solver,
as well as all the other computational kernels of the scheme.

The actual implementation claims for a in-depth analysis of many implementation issues,
like memory organisation, communication protocols, and parallel architecture.

This chapter is organised as follows. In section 5.1 we present a brief introduction of the
basic aspects of parallel computing. Section 5.2 covers the first step required by a parallel
code: subdomains partitioning. The main computational kernels of a «WNKS solver are
figured out in section 5.3, focusing in particular on the preconditioners presented in
chapter 3. Parallel issues of mesh adaptation techniques are covered in section 5.3.8.
Numerical results are reported in section 5.4 to validate most of the DD preconditioners
presented in chapter 3. Finally, in section 5.5 we draw some concluding remarks.

5.1 Basic Aspects of Parallel Computing

The definition of an efficient parallel algorithm requires a model of the architecture one is
actually using. This model should represent the main features that are supposed to influence
the performances of the algorithm: mainly, the memory organisation and the ratio commu-
nication/computation. This analysis which is important to minimise communication, can be
done resorting to the different taxonomies for parallel computing presented in literature, as
done in section 5.1.1. Then, another model is required to understand how to optimise com-
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munication that cannot be avoided. This is the subject of section 5.1.2. Finally, programming
paradigms are addressed in section 5.1.3.

5.1.1 Taxonomies for Parallel Computers

A first taxonomy divides computers into three categories: single instruction single data stream
(SISD), single instruction multiple data stream (SIMD), multiple instruction multiple data
stream (MIMD). The SISD model takes a single sequence of instructions and operates on a
single sequence of data. The speed of SISD is limited by the execution of a single sequence
of instruction and the speed at which information is exchanged between memory and CPU.
Information exchange can be increased by the implementation of cache memory and the
execution rate can be improved by the execution pipelining techniques.

A SISD architecture is a sequential computer, while SIMD and MIMD architectures both
belong to the parallel computer category. A SIMD architecture system has a single control
unit furnishing instruction to each processing element in the system. The SIMD architecture
is capable of applying exactly the same instruction stream to multiple streams of data simul-
taneously. For certain classes of problems this architecture is perfectly suited to achieve very
high processing rates. This requires data to be split into many different independent pieces,
so that multiple instruction units can operate on them at the same time. SIMD architectures
proved to be too inflexible; consequenly, they are now used only for very specific applications.

A MIMD architecture system has each control unit in each processing element in such a
way that each processor is capable of executing a different program independent of the others
in the system. A MIMD architecture is capable of running in true “multiple-instruction” mode,
with every processor doing something different, or every processor can be given the same code.
The latter case is sometimes called Single Program Multiple Data Stream (SPMD). SPMD
architecture is a generalisation of SIMD with much less strict synchronisation requirements.

A second taxonomy is based on granularity, i.e., the ratio of the time required for a basic
communication operation to the time required for a basic computation. Parallel comput-
ers with small granularity are suitable for algorithms requiring frequent communication and
the ones with large granularity are suitable for algorithms that do not require frequent com-
munication. The granularity of a parallel computer may also be defined by the number or
processors and the speed of each individual processor in the system. Computers with large
number of less powerful processors will have small granularity and are called fine-grain com-
puters or Massively Parallel Processors (MPP). In contrast computers with small number
of very powerful processors have large granularity and are called coarse-grain computers or
multicomputers.

In the middle of the 80’s MPP computers were predicted to be the next big advance
in high performance computing. Many companies were formed to build MPP systems, like
nCUBE and Thinking Machine. In addition, several existing companies like INTEL, IBM,
and Cray Research decided to build these systems. However, nowadays only few centres host
and currently use MPP systems. Industry is more oriented to Symmetric Multi Processors
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(SMP) systems. An SMP system is a coarse-grain parallel computer. To reduce price, they
are usually composed of commodity processors. In addition to SMP systems, the so-called
Commercial Off-the-Shelf (COTS) systems are increasingly adopted by many institutions,
even if these systems are not really a single parallel computer but a collection of systems.
Both SMP and COTS systems belong to the class of MIMD systems, with a moderate number
of high-performance (and relative low price) processors.

More recently, research is focusing on NOW (Network Of Workstation) architectures, and
its generalisation, COMPS (Cluster Of Multi-Processor Systems). Among the NOW systems,
an example is represented by the Beowulf system. Is consists of a cluster of PCs or work-
stations dedicated to running high-performance computing tasks. Instead, a COMPS is a
network of multiprocessor computers, and it differs from NOW in that it links multiprocessor
workstations. The last frontier is now represented by grid computing. A grid is a collection of
distributed computing resources available over a local or wide area network that appear to an
end user or application as one large virtual computing system. For high-performance comput-
ing, the present feeling is that NOW, COMPS and grid computing are still not competitive
with SMP systems.

A third taxonomy is based on memory organisation, and distinguishes parallel computers
between shared memory systems and distributed memory systems. Shared memory systems
were extensively used in the beginning of the 90’s. A parallel code running on a shared memory
system uses more processors (even if generally few), all sharing the same main memory. The
CRAY X-MP, Y-MP, C-90, the IBM 3090-600, ALLIANT FX/80, the NEC SX/4 and SX/5,
and the CONVEX C3800 belong to this class.

Using shared memory systems, the communication between processors is implicit and
transparent. Processors access memory through the shared bus; see the picture on the left
of figure 5.1. Processors do not explicitly communicate with each other so communication
protocols are hidden within the system. This means communication can be close to the
hardware (or built into the processor), with the shared bus system deciding on how most
efficiently to manage communication. Therefore, a serial code can run on these systems with
no modification (although maybe performances will be poor).

On the contrary, in distributed memory systems the processors must explicitly commu-
nicate with each other through messages. See the picture on the right of figure 5.1 for a
graphical representation. The resulting parallel computer has a “simple” architecture overall,
since it is composed by local components, connected by a network. The construction of the
network (and the definition of a software library to access it) becomes the key to success in
the definition of the parallel computer.

Because of cost reasons, industry has now turned the attention to distributed memory
systems. The Connection Machine, the INTEL iPSC860 and Paragon, the IBM SP/2, the
SGI Origin series, and the ASCI project supercomputers are example of this class of parallel
machines. Here every processor has its own local memory and data is communicated among
the processors via communication network. Due to the explicit interface to communication,
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Figure 5.1: Shared memory systems (on the left) and distributed memory systems (on the
right). P represents the CPU unit, M the memory, I/O a generic input/output systems.

distributed memory systems are more scalable in the sense that hundreds or even thousands
of identical processors can work on one problem, without the need of an (expensive) global
memory. Moreover, the distributed memory eliminates the cache coherency problems that
are typical of the shared memory systems. The price to pay is a more aggressive redesign of
the algorithm the code is actually running.

We conclude this section with few references on the subject. More details about the
classification of parallel computers and a recent overview of the history of high-performance
computing may be found, for instance, in [WDH"99, SDMS99]. The book by Hockney and
Reship [HJ88] is a valid reference for vector and parallel computers till the end of the 1980’s,
while the book by Ortega [Ort88] is a good mix between implementation details and mathe-
matical aspects of vector and parallel computers.

5.1.2 Cost of Communication Among Processors

We now discuss communication in more details, following [Ort88]. The typical communication
problem is to send n words from the local memory of one processor, say P;, to the memory
of another processor, say P». On a distributed memory system this communication will be
accomplished by a combination of hardware and software. First, the data are loaded into
a buffer memory or collected into contiguous locations in memory. Then, a send command
will be executed on P;, while P, will execute a receive command and the data will be routed
to their final destination in the memory of P,. Although many technical details have been
omitted in the previous description, the main points of communications are clear:

1. data are collected from the memory of the sending processor;
2. data are physically transfered over the network;

3. the received information are put in the correct memory location of the receiving proces-
SOT.
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Usually, the time t,, required for these 3 phases to send n words is approximately given by
tn =s+an, (5.1)

where s is the startup time and « is the incremental time necessary for each of the n words to
be sent. In nowadays implementations, s is generally several order of magnitude greater than
.

This simple — although effective — model can furnish a guideline in the development of
parallel algorithms: it is better to have an algorithm which groups communication, that is,
sent many data few times, instead of one which requires many send/receive with a small
amount of carried data. The number of processors that a given processor has to communicate
with, is also to be minimised, since it contributes to additional communication time. This
is because each time a processor has to communicate with a processor, a latency penalty for
starting a new message is incurred.

Using equation (5.1), the parallel performances of simple algorithms can be studied to
optimise the algorithms themselves. Instead, the parallel performances of complex algorithms
are usually analysed looking to the global behaviour of a code implementing the algorithm, as
the number of processors varies. This global evaluation considers the following parameters:

o clapsed time T, that is the CPU-time needed to carry out the algorithm using p pro-
Cessors;

o speedup sy, defined as

execution time using a single processor T}

Sp =

execution time using p processors T,

One can also define the speedup of a parallel algorithm over the best serial algorithm:

,  execution time using a single processor for the fast serial algorithm 77
S, = : : : )
execution time using p processors T,

e relative speedup s, 4, defined as the ratio

T, x q
Spa = T4
' T

P

(5.2)

where Tj, ~ T1/q is a reference time using ¢ processors. In fact, often s, turns out to
be hard to compute accurately. Problems that can run on a large number of processors
may not fit the memory of a single processor, so that the time for one processor would
have to include I/O time to secondary memory — typically, the one of another processor.
In this case, ¢ represents the minimum number of processors which can run the defined
problem without requiring secondary memory.
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o cfficiency e,, defined as

ep =T1/(PTy) = sp/p-

It is also possible to define the efficiency of an algorithm with respect to the best serial

algorithm as e, = s, /p.

One goal in the development of a parallel algorithm is to achieve as large a speedup as
possible. For perfectly parallel algorithms we would expect an ideal speedup s, = s; = p (that
is, using p processors we can reduce the elapsed time by a factor p). In practise, this value
cannot be achieved unless the algorithm does not require communications, or the ratio between
communication and computations is extremely low (the so-called embarassing parallelism).
In general, an efficient parallel algorithm will present speedup values close enough to the ideal

ones.

Remark 5.1.1. Sometimes superlinear speedups may be observed, that is, s, > p or s;, > p.
This is due to non-linear effects, like, for instance, the cache reuse: as the dimension of the
problem to be solved diminishes, the code can use in a more efficient way the values in the
high-performance cache memory, therefore resulting in a consistently lower CPU time.

The degradation of the speedup value is mainly due to the following factors:

1. lack of perfect degree of parallelism in the algorithm and/or of load balance. Load
balance means the assignment of tasks to processors of the system so as to keep each
processor doing useful work as much as possible. Load balance may be done either stat-
ically or dynamically. In static load balance tasks (and data) are assigned to processors
at the beginning of computation. In dynamic load balance tasks (and data) are assigned
to processors as computation proceeds. The implementation of a dynamic load balance
algorithm may be difficult on distributed memory systems since data transfer between
local memories is in general required as a part of a task assignment;

2. communication, contention, and synchronisation time. We have already discussed about
communication. Data contention mainly arises in shared memory computers. Synchro-
nisation is necessary when certain parts of computation must be completed before the
overall computation can proceed. There are two aspects of synchronisation that con-
tribute to the overhead. The first is time required to do the synchronisation. The
second aspect is that some processors may become idle. Communication, contention,
and synchronisation time are usually referred to as data ready time.

All these factors may be grouped in a model for the speedup, which reads:
Ty
S = .
P (a1 +aa/k+a/p)Ti +1g

Here T is the time for a single processor, a; is the fraction of operations done with one

processor, e the fraction of operations done with k processors (k < p), « if the fraction of
operations done with degree of parallelism p, and t,4 is data ready time. Clearly, a4+a;+as = 1.
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Figure 5.2: Efficiency e, for various values of a.

A special (simple) case can be obtained considering as = 0 (that is, all the operations

have the maximum degree of parallelism) and with no delays (t; = 0). In this case, we obtain
T !

o - a

(5.3)

and

1
ep:%—i—(l—a):a—i—(l—a)p' (54)

=

Expression (5.3) is known as the Amdahl’s law or Ware’s law. Although very simple, (5.3) is
instructive. Consider, for example, « = 1/2. Then,

2
Sp = m < 2,
that is, no matter how many processors there are, and ignoring all communication, delays,
and synchronisation problems, the speedup is always less than 2. Hence, a “good” value of «
is of fundamental importance to obtain interesting parallel properties. Figure 5.2 reports the

behaviour of e, with respect to p for several values of .

5.1.3 Programming on MIMD Computers

Parallel programming is more challenging than serial programming for various reasons. First,
parallel programs must include mechanisms for data exchange. Second, in an efficient parallel
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program the work must be evenly divided among processors. This is an algorithmic problem
that has no counterpart in the serial programming. And finally, the data structures must be
divided among the processors to preserve data locality. This is obviously true for distributed
memory systems in which data movement is costly. It is also true for shared memory systems
since data locality reduces the cost of maintaining cache coherence, hence resulting in a faster
implementation of the algorithm.

To help the programmer in developing parallel codes, several different parallel methodolo-
gies have been pursued. In the class of MIMD systems, there are different aspects for devel-
oping a parallel program, one more suited for shared memory and the other for distributed
memory systems. In shared memory programming, programmers view their programs as a
collection of processes accessing a central pool of shared variables. In the message passing
programming, programmers view their programs as a collection of processes with private local
variables and the ability to send and receive data between processes by passing messages. On
one side, we have the implicit parallelisation, automatically performed by the machine (and
the compiler); on the other side we find the ezplicit parallelisation, that requires the users to
take control of all the parallel aspects.

For shared memory computers, one can exploit the parallel programming using threads.
The parallel code is composed by many independent processors, thus manipulating data
stocked in a common area. FEach thread is given to a different processor. A more recent
approach for the programming of SMP is the standard OpenMP. It consists in a set of pro-
cedures and directives that are added to the (sequential) source code to aid the compiler to
build up the parallel code. In this case, the aim is to produce parallel code starting from
the sequential one. Some compiler directives are added to help the compiler in detecting the
parallel cycles and the optimal distribution of data among the processors. An example of this
approach is High Performance FORTRAN. This approach is very practical for the program-
mer, and it can work well for problems with a regular structure. Instead, it is in general quite
difficult to apply for unstructured data and for a large number of processors. This approach
is somehow less common than others, and in general the automatic parallelisation is more
effective on shared memory than on distributed memory architectures. Moreover, the best
results are obtained for codes lying on cycles whose parallelism does not rely on the input
data.

For distributed memory computer, instead, the interaction among the processor is made
up using messages. The parallel program is organised as a collection of processes running on
a certain number of processors, each of them owning its private local memory. Data exchange
is performed only by means of explicit send and receive operations.

Message passing is often preferred to other approached because, although explicit message
passing may be more complex to code with respect to other parallelisation techniques, it
has a key advantage over other approaches: it focalizes the programmer’s attention on the
performance-critical issue of the parallel hardware — data locality. The programmer is forced
to exploit the data structure of the problem, and to use (or develop) numerical methods which
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minimise the use of non-local data in all the various phases of the code.

The two important standards for message passing are PVM and MPI [For95]. Although
the first is somehow more flexible, the latter is the de facto standard for high-performance
parallel computing.

PVM was mainly built around the notion of ‘virtual machine’ — a set of heterogeneous
hosts connected by a network that appears logically to the user as a single large parallel
computer. The exchange of data, or in other words, communication, is accomplished using
simple message-passing constructs. The concept of portability was considered much more
important than using the natural message passing constructs of the underlying hardware.
This in fact has paved the way for the present large scale use of PVM.

MPI, in contrast to PVM, was designed not with portability as the main aim, but with
the view of creating a standard message passing interface for high-performance parallel com-
puting. The focus of MPI developers’ team was more on performance, which they tried to
improve with the natural message-constructs of the unrelying hardware. One of MPI’s prime
goals is to produce a system that would allow manufacturers of high performance massively
parallel processing computers to provide highly optimised and efficient implementations, while
PVM was designed primarily for network of workstations with the goal of portability gained
at the sacrifice of optimal performance. MPI has advantages in the areas of point to point
communication, collective communication, ability to specify communication topologies and
ability to create derived data types. There is also a study going on for developing a sys-
tem PVMPI [FD96], which uses the already proved and widely ported MPI message-passing
system within PVM to enable interoperability with different implementations execution on
heterogeneous distributed hardware and more recent projects to built interfaces portable to
both MPI and PVM [AKK99|.

5.2 Subdomain Partitioning

From the discussion of the previous section, it is clear that both load balance and data ready
time are strongly affected by the way data is distributed among the processor. In a DD
approach, this means that an algorithm to partition the computational domain is required,
to have optimal load balance and as little communication between processors as possible.
Ideally, one would like each processor to do exactly the same amount of work. That way, each
processor is always working and not staying idle. The way to do this is to first determine
what the basis computational task for the algorithm is. For our WNKS solver, the two main
tasks are the matrix-vector product and the preconditioning step. Therefore, it makes sense
to partition the grid such that each processor gets a (nearly) equal number of grid vertices.
Moreover, the amount of communication among processors should be minimised, as well as
the number of neighbouring processors.

Remark 5.2.1. From the point of view of parallel computing, DD often means data decom-
position, that is, the process of distributing data among the processors in a distributed memory
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computer. In fact, the cost function of memory access is composed by mildly varying plateaus
separated by sharp discontinuities that correspond to changes in the memory hierarchy. Within
a DD algorithm, these discontinuities can be explicitly respected by the user application by as-
signing data that are locally less used to the slowest memory, and the most used data to the
fastest memory. As a result, the computational domain is partitioned into a set of subdomains
and parallel computation is achieved by attributing each subdomain to a different processor.

During the last years, much work has been done is the area of unstructured grid parti-
tioning. Here we review three algorithms of increasing complexity.

5.2.1 The Recursive Coordinate Bisection

The Recursive Coordinate Bisection (RCB) is the simplest and fastest partitioning strategy
of the three presented here. It is based upon the ordering of the elements according to the
spatial coordinates of their centroids.

Here is the principle. For a given grid, determine along which direction the bisection will
operate (for example, the longest direction), say, the x—direction. Now, sort the elements
according to the x—direction, and choose the median value of the x—components so that
equal number of elements lies in each partition.

Although RCB is very simple, the partition it can produce may be disconnected, and this
is not a desirable property since it will result in large communication times. Clearly, the
poor parallel properties of RCB are caused by the fact that the algorithm ignores all the grid
connectivity. The other two algorithms that we are about to present, instead, use the grid
connectivity to obtain high-quality partitions.

5.2.2 The Recursive Graph Bisection

The basic ideas of the Recursive Graph Bisection (RGB) algorithm are as follows. The two
vertices that are furthest apart graphically within the grid are chosen as the starting points
for the method!. Actually, this is a difficult problem in graph theory, by there are fast ways
to find two vertices that are approximately the furthest apart.

Now, start at one of these vertices; call it root. Then, find all the first-order vertices (see
figure 5.3) to this root vertex. This set of vertices forms what is called the first level set.
The next level set if found by determining all of the neighbours of the first level set that are
not already part of a level set. This process continues until half of vertices are members of a
level set. It turns out that RGB guarantees that one of the two subdomains produced will be
connected. Note that the RGB algorithm is also called the Cuthill-McKee algorithm, and it
is often used to reduce the bandwidth of sparse matrices.

!The graphical distance between two vertices is defined as the minimum number of edges one has to traverse
to get from one vertex to the other
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Figure 5.3: First-order nodes (indicated by ‘o’) and second-order nodes (indicated by ‘J°) of

node ‘e’.

5.2.3 The Recursive Spectral Bisection

The objective of Recursive Spectral Bisection (RSB) is to divide the graph into two parts
having equal number of vertices such that the number of edges cut is approximately minimised.
The key feature is its clever use of eigenstructure of what is called the Laplacian matrix of
the graph.

Given a graph G with |G| = n (where |G| represents the number of nodes of G), the
Laplacian of G is the matrix L € R™*™ defined as

L=-D+H,
where H is the adjacency matrix,

.- 1 if edge(v;,vj) belongs to G
“7 1 0 otherwise,

and D is a diagonal matrix with entries equal to the degree of each vertex, that is the number
of its first-order neighbours. Clearly, the rows of L sum to zero, and therefore there is at least
one zero eigenvalue. Disconnected graph may have multiple non-zero eigenvalues; however,
for this discussion we assume that the graph is connected.

RSB is defined as in the following algorithm.
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Algorithm 5.2.1 (2—way recursive spectral bisection).

a. Compute the Laplacian matrix L of the graph.

b. Determine its smallest (in magnitude) non-zero eigenvalue and the
corresponding eigenvector. This is called the Fiedler vector.

c. Determine the median value of the entries in the Fiedler vector.

d. Those vertices whose Fiedler vector entry is greater than zero form
one subgraph. The remaining vertices form the other subgraph.

It is interesting to see why and how the Fiedler vector plays in this procedure. The
argument given below follows closely that given in [Bar94].

Define a partitioning vector p that assigns each vertex of the graph either a +1 or a —1,
with p; = 41 if vertex i belongs to the first partition. An equal partition of the graph, which

will be assumed to have an even number of vertices, means that
s 1 p,

where s is a vector of 1’s.
The key observation is to notice that the number of cut edges E. is precisely related to
the Li—norm of the Laplacian matrix multiplied by the partitioning vector,

AE. = [|Lp|1.

Since the goal is to minimise the number of cut edges, one should find the vector p = p
that minimises the norm || Lp||;, where ||p||; = n, and s L p. Because L is real symmetric
negative semidefinite, it has a complete set of eigenvectors that can be orthogonalised with
each others. Therefore, one can write p as

n
P = E Q; Vi,
i=1

v; being the eigenvectors of L. It is possible to show that ||Lp||; is minimised by choosing
p = nvy/|va|l1, and therefore the Fiedler vector defines a partition of the graph which
minimises the number of cut edges. This is done using a Lanczos algorithm.

The numerical cost of RSB is higher than that of RCB or RGB because of the computation
of the Fielder vector. However, RSB can be applied to partition general unstructured grids,
and results in partition of good quality.

5.2.4 Multilevel Graph Partitioning

The methods proposed in sections 5.2.1, 5.2.2, and 5.2.3, are bisection methods, that is, the
domain is decomposed in two subdomains. This is also called 2-way partition. The 2-way
partition has a multilevel extension, which is briefly presented here. More detailed descriptions
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can be found, for instance, in [KK98a, KK99]. A 2—way partition is commonly represented by
a partition vector p of length n, such that for every vertex v € V,p(v) is an integer between
1 and 2, indicating the partition at which vertex v belongs to.

A multilevel 2—way partitions algorithm for a graph G = (V, E) can be written as in
algorithm 5.2.2.

Algorithm 5.2.2 (2—way multilevel graph bisection algorithm).

a. Coarsening phase. The graph G is transformed into a sequence of
smaller graphs Gi,...,G,, such that |[V|> [Vi| > |Vo| > ... > |[Vpu|;

b. Partition phase. A 2-way partition F,, of the graph G,, = (Vi,,E,) is
computed that partitions V,, into two parts, each containing half the
vertices of (, using algorithm 5.2.1;

c. Uncoarsening phase. The partition P, of G,, is projected back to G
by going through intermediate partitions pm—1,Pm-2,-.. ,P1,P.

We describe very briefly each of the 3 phases. As regards step 5.2.2.a, a set of vertices of
G; is combined to form a single vertex of the next level coarser graph. Let V¥ be the set of
vertices of (G; combined to form vertex v of G;y1. v is usually referred to a multinode. To
preserve the connectivity information in the coarser graph, the edges of v are the union of the
edges of the vertices in V.

The step 5.2.2.b computes a high-quality bisection P, of the coarse graph G,, = (V,,, Enn)
such that each part contains roughly half of the vertex of the original graph.

During the step 5.2.2.c the partition p,, of the coarser graph G, is projected back to the
original graph. Since each vertex of G;11 contains a distinct subset of vertices of G, obtaining
p; from p;11 is done by simply assigning the set of vertices V," collapsed to v € G;41 to the
partition p;11(v). Since G; has more degrees of freedom than G, 1, it may be possible to
improve the quality of the partition by local refinement heuristics, using a partition refinement
algorithm.

The k—way partition problem is frequently solved by recursive bisection. That is, we
first obtain a 2—way partition of V}, and then we further subdivide each part using 2—way
partitions. After log k& phases, the graph G is partitioned into k parts. Thus, the problem
of performing a k-way partition can be solved by performing a sequence of 2—way parts or
bisections. Even though this scheme does not necessarily lead to optimal partition, it is used
extensively due to its simplicity.
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Figure 5.4: M6. Decomposition using 16 subdomains using RSB.
X29 p=16 p=32 p—64
min; n; n;  max;mn; | min; n; n; max;mn; | min; n; n;  max; n;
ny 35790 37580 40115 16000 17506 19985 6750 7803 9670
np 2630 5165 6955 1385 3866 5375 1020 2882 3925
ng 3070 5646 7640 1585 4387 6325 1195 3396 5115
N_neighs 3 6 14 3 9 18 2 9 21

Table 5.1: X29. Number of internal, border, and external nodes for different numbers of

processors using RSB. In the table, n; represents the average number of internal nodes n;,i =

1

P

,p. N_neighs is the number of neighbouring processors.
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Figure 5.5: Example of vertex-oriented (left) and element-oriented domain decomposition
(right).

5.3 Analysis of the Main Operations of the aUVNKS Solver

The first step of a «WNKS solver is the generation of the starting grid, generally obtained from
a CAD description of the computational domain. Today, grids of 2 or 3 millions of elements
may be routinely obtained on workstations and PCs using Delauney generators, while for
constructing larger grids one should use parallel algorithms. In this case, a possible approach
is first to geometrically partition the computational domain, then to generate the grid in every
subdomain independently, starting from the inter-domain boundary meshes, and finally post-
processed the grid, mainly to equilibrate the workload. We will not consider parallel mesh
generation in the following. On the contrary, we suppose that the starting mesh, of moderate
size, say, up to some millions of elements, has been generated on one processor. This mesh is
partitioned the p processors. The algorithm we have used to define the subdomains is the &-
way graph partitioning algorithms. Then, parallel adaptation techniques are used to improve
the solution quality, as described in section 4.5.1.

In the numerical results later reported, we have adopted a VO decomposition of the grid;
see figure 5.5, left. The nodes assigned to processor ¢ form its update set, whose size is n;.
Clearly, ¥ | n; = n, n being the global dimension of the problem. The nodes belonging to
the processor, but not in its update set, are called ezternal nodes. The size of this set is ng ;.
The update set is further divided into two subsets: internal set and border set, whose sizes
are nr; and np;, respectively. A component corresponding to an index in the internal set
is updated using only information on the current processor, while a component whose index
is contained in the border set uses informations stored in the external set (and henceforth
assigned to other processors).

As a result of the VO decomposition, each vertex of the computational grid is assigned to
a unique processor, whereas there exist elements shared by several processors. These elements
are called cut elements — since their edges have been intersected — and they form a layer of
elements that actually belong to more than one processor. The cut elements are stored on all
processors which have at least one node of the element in their update set. For example, in
figure 5.6 the shaded elements are stored on both processor P, and processor P;.

Remark 5.3.1. For unstructured grids, load balancing can be obtained using a one-to-one
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Figure 5.6: Vertex-oriented decomposition. Example of the overlapping stripe and respective

Processor P,

J
!
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mapping onto processors P; and P, update and external nodes. For processor p, ‘o’ represents
the internal nodes, ‘0’ the border nodes, and ‘N’ the external nodes. For processor ¢, ‘e’
represents the internal nodes, ‘I’ the border nodes, and ‘[’ the external nodes.

correspondence between subdomains and processors. This approach has proven to be optimal
for the considered problems in the course of the IDeMAS project [IDe01]. Henceforth, it is
assumed that the number of subdomains M is equal to the number of processors p.

The mesh generation step and the graph partitioning algorithm results in p input files;
each input file contains a list of elements 7' (grid connectivity and spatial coordinates of each
vertex), and a list of (physical) boundary nodes, grouped in the so-called patches. Each patch
corresponds to a part of the boundary, like, for instance, the nacelle, the wing, or the symmetry
plane, on which the same boundary conditions are imposed. The mesh is represented in terms
of element-based data structure.

At this point the parallel aWNKS solver is operated. Its most important computational
kernels are:

1. construction of the distributed matrix;
2. distributed space matrix-vector products (DSMVP);

3. distributed AXPY? operations (DAXPY);

2An AXPY operation is defined as u < u + av, for two given vectors u and v and a real o
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4. distributed vector-vector products (DVVP);
5. application of the parallel preconditioner;
6. parallel mesh adaptation procedure.

After convergence, each processor writes the solution corresponding to its update set as a
part of the global data. Often, these partitioned data are merged into a single file for global
solution analysis and visualisation. However, certain packages also work directly on the par-
titioned solution, and can also monitor the solution. We will not consider visualisation issues
in the following, since we have used stand-alone software tools, as described in section 4.6.

We now analyse these operations in more details. Throughout our description, we make
the following assumptions:

e the parallel computer is of multiple instruction multiple data (MIMD) architecture;

e the parallel computer is assumed to use distributed memory architecture. In fact, this
is not a restriction at all since it can be emulated on almost every type of parallel
computers including shared memory computers;

e communications are achieved using a message passing interface, like MPI, whose imple-
mentations are currently available on almost every type of architectures.

We start with the DSMVP, since all the data structures are driven by this kernel.

5.3.1 Distributed Sparse Matrix-Vector Product

We recall that the main convention we have adopted is that when calculating elements of
y = Ax, a processor computes only the elements in its update set, that is y;. This means
that the VO decomposition of section 3.3.2 is used to define the basic data structure.

Using the same notation of section 3.3.2, on processor i, the (local) matrix-vector product

Yi,i Arri Arp X1, 0
) — ’ ? ’ + 5 5-5
( YB,i ) ( Apri ABB;i ) ( XB,i ) ( AR iXE, ) (5.5)

where Ap ; = Z#i A%%)F, X71,i, XB,i, and X ; are the values of x corresponding to its internal,

reads

border, and external set, respectively.
Our DSMVP reads as in algorithm 5.3.1.
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Algorithm 5.3.1 (DSMVP). On processor i and on all processors, do:

a. Exchange boundary data, that is, update the value of the external
nodes Xp;;
b. Compute yr; = ArriXri+ ArBiXn,i;

c. Compute yp; = ApriXr; + ABB:iXB, + ABEiXE; -

Note that steps 5.3.1.a and 5.3.1.b can be overlapped, since the values of xg; are required
only in step 5.3.1.c.
If matrices A; and Af; are explicitly formed, algorithm 5.3.2 can be used instead of 5.3.1.

Algorithm 5.3.2 (modified DSMVP). On processor i and on all
processors, do:

a. Exchange boundary data, that is, update the value of the external
nodes Xp;;

b. Compute the local matrix-vector product y; = A;u;;

c. Compute the external matrix-vector product y; < y; + Agug;.

Also in this case steps 5.3.2.a and 5.3.2.b can be overlapped.

p=4 p=8 p=16 p=32
n = 226.935

Computation 1.98e-1 1.25e-1 3.77e-2 1.59%e-2

Communication | 1.15e-3 5.69e-3 6.96e-4 1.44e-3

Sp 4 6.3 21.0 49.2
n = 472.465

Computation - 1.63e-1 8.29¢-2 4.29e-2

Communication - 1.20e-2 1.17e-2 2.12e-2

Sp - 8 14.8 31.1

Table 5.2: T}, (in seconds) for DSMVP.

Table 5.2 reports the communication and computational time required by the DSMVP for
the two test cases. All the numerical results presented in this chapter refer to the computer
of table 4.3. Note the almost linear speedup values. This means, if implemented carefully,
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DSMVP does not constitute a severe bottleneck for the aWNKS solver. This optimal result
requires some pre-processing and post-processing phases, as briefly described in the following.
We suppose that, on each processor i, the user provides the lines of A corresponding to
the update set, stored in a structure Amat, and a vector update of size n;;. The elements
of Amat are given in global numbering, while update[i] contains the global number of local
node 1.
First, a pre-processing phase is performed, to

1. determine the sets of internal and border nodes. The update vector is reordered so that
all the internal nodes are inserted first, followed by border nodes. The new ordering is
stored in a integer vector update_index. update_index[i] is the local numbering for
update[i];

2. determine the set of external nodes, using an integer vector external, of size ng;.
Furthermore, the processor owner of each external node is found. external is ordered
so that all the nodes belonging to the same processor are ordered contiguously;

3. the nodes contained in external are reordered. This local numbering is contained in
an integer vector extern_index;

4. the local matrix A; is reordered so that the lines corresponding to the internal set are
inserted first. This local numbering is done processor-wise, and it is therefore a local
operation;

5. additional information is computed, like the number of neighbouring processors, the
number of internal, border, and external nodes, and stored in an auxiliary vector.

Note that for unstructured grids, step 2 this is not a trivial task. However, this is of
paramount importance, since data to be sent to a processor have to be packed and sent using
only one MPI call per processor to avoid latency problems occurring within the network, as
suggested by equation (5.1). This step of packing data into buffers aims to create contiguous
data from irregularly distributed structures.

Remark 5.3.2. One of the advantage of MURD schemes is that the computational stencil
of a generic vertex i is compact, i.e., it depends only on information from vertices that are
one edge-distance away in the grid structure. Therefore, the Jacobian matriz will have non-
zero elements only for the contributions corresponding to the first-order neighbouring nodes
even for second order schemes, while the so-called second-order nodes do not contribute to the
computation of the residual. This simplifies considerably the communication and allows the
use of the same data structure for first-order and second-space discretisation schemes.

5.3.2 The VO SC Matrix-vector Product

As pointed out in chapter 3, the SC matrix S is never formed. Therefore, for each matrix-
vector multiplication that involves S, we have to solve a local Dirichlet problem in each
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subdomain. This is by far the most time and resources consuming part of the application of
S. We have used a direct solver, even if iterative solvers may be used as well. The resulting
algorithm is as follows. As regards data exchange, it is possible to proceed as outlined in the
previous section.

Algorithm 5.3.3 (VO SC matrix-vector product). On processor ¢ and on
all the processors, do:

a. Exchange boundary data, that is, update the value of the external
nodes ug;;

Compute z;; = —Arpiup,;

Solve the linear system Ajr;yr; = Zr;;

Compute yp,; = Appup,; + ABr:yr,;

. Compute the external matrix-vector product yp; < yB, +AE,qu,z’-

®© QA o o

Steps 5.3.3.b, 5.3.3.c, and 5.3.3.d are independent of step 5.3.3.a. Therefore, communica-
tions of step 5.3.3.a can be overlapped with the computations of the other three steps. Note
that step 5.3.3.c can be fairly expensive if the size of Ajy; is large. Before the first appli-
cation of the SC matrix, a startup phase is needed to extract the submatrix A7; and the
submatrices Aps i, A1, App, and Ap;. Figure 5.7 graphically explains the process.

5.3.3 Construction of the Local Matrix

As typical in a finite-element code, the main operation in the construction of the matrix is a
loop over the elements to compute the elemental matrix AT corresponding to each element
T. Then, this contribution is added to the global matrix. To perform this operation in
parallel using a VO decomposition, row contributions of A) not corresponding to nodes in
the update set are simply discarded. The resulting matrix is sparse, as shown in figure 5.8.

5.3.4 Distributed AXPY Operation

An AXPY operation (i.e., u < u+ av for u and v two given vectors and « a given real
number) is done as follows.

Algorithm 5.3.4 (DAXPY). On processor i and on all the processors, do:

a. Verify that all processors share the same value of «;

b. For all the elements of the local vector u;, do u; «— u; + av;.
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B Main routine
& &
[ Jacobian evaluation ] [ residual eva uation]
<
Distributed <] Distributed
prec P matrix A
= =
Definition Definition
of V_O of VO SC
- = - =
— [ Krylov solver ] -

Figure 5.7: Structure for the construction and the solution of the linear system. Given a

distributed matrix A and a right-hand side, both the SC matrix and its preconditioner are

built by resorting to algebraic manipulations on A.

Figure 5.8: FALCON. Sparsity pattern of the Jacobian matrix.

Apart from the synchronisation of the value of « (this step is often avoided), no commu-

nication occurs in vector updates and DAXPY operations.

Table 5.3 reports the CPU time required by a typical DAXPY operation. Speedup values

are almost equivalent to the ideal speedup. A super-linear value is found in one case, probably
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due to the better cache reuse. Note the different performances for the basic vector operations
carried out with or without using the BLAS libraries.

| p=4 p=8 p=16 p=32
n = 226.935

Computation (without BLAS) | 3.52e-3 1.67e-3 8.14e-4 4.28e-4
Computation (using BLAS) 6.08e-4 3.15e-4 1.65e-4 8.56e-5
sp (with using BLAS) 4 8.4 17.3 32.9
sp (using BLAS) 4 7.7 14.7 284
n = 472.465
Computation (without BLAS) - 3.48¢-3 1.69e-3 9.32e-4
Computation (using BLAS) - 6.36e-4 3.24e-4 1.48e-4
sp (with using BLAS) - 8 16.5 29.9
sp (using BLAS) - 8 15.7 34.4

Table 5.3: T}, (in seconds) for a DAXPY operation.

5.3.5 Distributed Vector-Vector Product

Using a VO decomposition, the parallel scalar product o« = (u,v) on processor ¢ is carried
out by the following algorithm.

Algorithm 5.3.5 (DVVP). On processor ¢ and on all the processors, do:

a. Compute the local value «; = (u;,Vv;);

b. Sum up the local contributions of all the processors: o = Zf‘il ;.

Communications are required only in the second step. Before computing the final value
of «, all processors must have finished the computations in the first step. Therefore, DVVP
always act in a parallel environment as synchronisation points and require global communi-
cation. This is because all the processors have to send their contribution to complete this
operation, and then wait to receive back the final result. Vector-vector operations area block-
ing operations, like other all-to-all reducing operations. The MPI library provides specific
functions which can be used to this purpose.

Table 5.4 reports the time needed for the vector-vector product. We may note a difference
of one order of magnitude between the non-BLAS and the BLAS routines.
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| p=4 p=8 p=16 p=32
n = 226.935
Computation (without BLAS) | 2.11e-4 1.05e-3 4.04e-4 2.03e-4
Computation (using BLAS) 2.56e-5 4.85e-5 3.04e-5 3.68e-5
n = 472.465
Computation (without BLAS) - 8.48e-5 3.96e-4 5.27e-5
Computation (using BLAS) - 3.04e-5 3.04e-5 4.08e-5

Table 5.4: T}, (in seconds) for DVVP.

5.3.6 Application of the Schwarz Preconditioner

Using a VO decomposition, it is particularly easy to implement a one-level Schwarz precondi-
tioner Pg with minimal overlap, i.e., with an overlap among the subdomains of just one layer
of element (see sections 3.2.1 and 3.2.2). The computation of z = Pg 'r reads, on processor i,

~1
Zr, Arri Al rr;
i) = (4 , ). 5.6
(ZB,Z'> (ABM ABB,z‘) (rB,i> (5.6)

Ay

Matrix A; is already stored and formed in the local memory of processor i. To use wider
overlaps, the following algorithm 5.3.6 has to be used to create the necessary data structures.

Algorithm 5.3.6 (data exchange to increase by 1 the overlap). On
processor ¢ and on all the processors, do:

a. Group the external nodes such that the ones stored on the same

processor are ordered contiguously in memory;

b. Allocate memory to store the local matrix corresponding to the wider
overlap A;;

c. Request the lines of A corresponding to the external nodes, and store
these lines in A;;

d. Update the data structure required for data communication in the

preconditioning phase.

Step 5.3.6.a is required to reduce the number of calls to communication routines. These
calls will be coded as asynchronous calls, meaning that the program starts sending data to
all the neighbouring processors, then starts receiving, and finally checks if communication
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is completed. Asynchronous calls can help to avoid dead lock phenomena and to overlap
communication and computations. Note that intensive data exchanges occur in Step 5.3.6.c.

After one (or several) applications of algorithm 5.3.6, Equation (5.6) reads:

-1

Zr Arry Arpi 0 rr;
zp; | = | ABri ABB,; ABE, rg; (5.7)
ZE, 0 Agp; AEEg: rp

A;

where A; represents the “extended” matrix, and Ag B, and Agg; correspond to the lines
exchanged by algorithm 5.3.6. Note that the values of zf; ; can be weighted or simply discarded
(see Remark 3.2.1).

Remark 5.3.3. The optimal amount of overlap is clearly a compromise between the effec-
tiveness of the preconditioner and its computational complexity. For this class of problems,
we have found convenient to use the minimal overlap version. This is equivalent to a block-
Jacobi procedure, where the blocks have size n;. An ILU(0) or BILU(0) factorisation (using
a Reverse Cuthill McKee reorder) of the block matrices gives satisfactory results (in terms of
CPU times) with respect to other “richer” incomplete factorisations [SF01]. In fact, compared
with other variants, ILU(0) is computationally fast and memory efficient.

Algorithm 5.3.7 (one-level Schwarz preconditioner). On processor i and on
all the processors, do:

a. If the overlap involves more than 1 element, exchange the lines
corresponding to the external nodes to increase the overlap;

b. Factorise the local matrix (using an incomplete factorisation) and
store the L and U factors.

Table 5.5 reports the time in seconds for the setup and the application of Pg. Note that
the time required by the setup phase is remarkably larger that the time needed for applying
the preconditioner. The speedup for the setup phase is super-linear, mainly because of non-
linearities in the factorisation algorithm. Moreover, the smaller the subdomain (and therefore
the smaller the dimension of the local matrix), the more consistent the cache reuse.
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p=4 p=2_8 p=16 p=32

n = 226.935
Setup 1.13e+2 4.21e+1 1.45e+1 5.17e+0
Speedup for setup 4 10.7 31.2 87.4
Computation 2.00e-1  1.26e-1  3.81e-2  1.61e-2
Communication 1.17e-3  5.76e-3  7.04e-3  9.45e-3
n = 472.465
Setup - 2.13e+2 6.65e+1 2.4le+1
Speedup for setup - 8 25.6 70.7
Computation - 1.73e-1  8.57e-2  4.44e-2
Communication - 1.24e-2  1.42e-2  6.02e-1

Table 5.5: T}, (in seconds) for the one-level Schwarz preconditioner.

As regards two-level methods (section 3.2.3), we have used non-smoothed aggregation pro-
cedures. Consider again the algebraic interpretation given in section 3.2.4, and in particular
the expression of Ry given by (3.21). In our case (piece-wise linear finite-element functions),
the graph of the local matrix A; can furnish the information needed to produce the aggre-
gates, and henceforth the grid data are not required by the algorithm. Note moreover that
the vectors 7 ; are not explicitly required, as detailed in algorithm 5.3.8.

Algorithm 5.3.8 (decoupled aggregation). On processor 7 and on all the
processors, do:

a. Build (locally) no; aggregates v;;

b. Assign to each aggregate a unique number, that is, the local
aggregate j will be j+ b " ngx;

c. On each i, build up the lines of Ay corresponding to the local
aggregates;

d. Prepare to solve a linear system with Ag;

e. Prepare to apply Ry and R] .

Step 5.3.8.e can be implemented in this way. We constructs an integer vector p, so that p;
represents the (local) degree of freedom associated to the aggregates ¥, ;. The size of vector p
isny;+np;+ng;. First, communication occurs to exchange the actual values of pr; among
the processors. Then, in the aggregation procedure to compute the coarse matrix as in (3.13)
no communication will occur to compute, on each subdomain, the rows of Ag corresponding
to the degree of freedom of 1} contained in that subdomain.
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|

P1 P2 P3 P4 P1 P2 P3

Figure 5.9: Construction of the coarse matrix. Each processor F;,i = 1, 2, 3 builds up the lines
of Ay corresponding to the aggregates that it contains, then the complete matrix is formed
on all processors (right) or on a (possibily dedicated) processor (left).

Solving the linear system with coarse grid on a parallel computer presents a potential
performance problem, since the coarse grid problem is often relatively small. This is because
solving small problems in parallel on distributed memory processors can often lead to slower
solution than if only a single processor is used. In the case when Ay is quite small, one is faced
with two choices: redundantly solve the coarse grid problem on all processors, or solve it on
one processor and distribute the result to the other processors. In the former, all coarse grid
nodal values are scattered to all processors, each of them will independently form its portion
of the result; see figure 5.9, left. In the latter, instead, a further phases of communication is
required after the solution of the linear system; see figure 5.9, right. We have chosen to solve
the coarse problem on each processor using a direct LU decomposition. For large values of
ng, instead, it may be worthy to keep Ay distributed among the processors, then solve the
linear system with Ay in parallel, possibly by an iterative method.

5.3.7 The ASC Preconditioner

We now consider the approximate SC preconditioners introduced in section 3.3.5. A possible
way to compute z = Pgslcr is described in the following algorithm 5.3.9.

Algorithm 5.3.9 (ASC preconditioner).
Compute y; = Aﬂlrl;

Compute yp =rp — Apryr;

Solve the approximate SC system S'ZB =Y¥yB;

Qa o0 o e

Compute z; =ys; — A;IIA[BZB .
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Step 5.3.9 corresponds to the computation of the right-hand side for the (approximate)
Schur complement system.

Steps 5.3.9.a and 5.3.9.b correspond to the appliocation of the lower triangular part of
Pasc, while steps 5.3.9.c and 5.3.9.d to the application of the upper triangular part of P4gc.

Everyone of the computations 5.3.9.a, 5.3.9.b and 5.3.9.d can be accomplished in parallel,
as they require no communications among the different subdomains. On the other hand,
step 5.3.9.cq is a global operation, which, however, may be split in several parallel steps
preceded and followed by scatter and gather operations involving communication among sub-
domains. Note that the matrix S may itself be preconditioned.

Remark 5.3.4. The preconditioners described in sections 5.5.6 and 5.3.7 and the SC solver
of section 5.3.2 have been implemented by the author in a common library, built on the top of
the AZTEC library [THHS99]. In fact, the “open” structure of this library allows the user to
write its own matriz-vector product and preconditioning functions. The library, written in C,
implements some Krylov subspace methods and one-level Schwarz preconditioners, with either
complete or various kind of incomplete factorisations.

5.3.8 Parallel Mesh Adaptation

In order to perform the mesh adaptation procedures on a parallel computer, two approaches
can be pursued. The first one is the master-slave approach, in which a processor is responsible
for the management of the mesh data (and in general of I/O routines). In the master-slave
approach, once a preliminary solution has been obtained, it is gathered from the slave pro-
cessors to the master processor, where sequential mesh adaptation is started. Then, the mesh
is partitioned using a graph partitioning algorithm, and redistributed among the processors.
This approach works quite well for “small” meshes, while intensive calculations require a no-
master approach, in which the completely parallel dynamic mesh adaptation algorithm takes
place entirely on the network of processors. This is precisely the approach we have followed.
A more detailed description of the no-master approach may be found in [LR00].

The paradigm we have adopted is based upon the concept of non-hierarchical mesh adap-
tation, i.e., the successive meshes do not remember their original affiliation, see [Ric93, RL95].
This allows high flexibility and quality for the different stages of adaptation as the mesh at
a certain time does not rely on background macro mesh. Hence, radical changes and op-
timisation are possible. Also, efficient automatic dynamic adaptation, which is particularly
interesting for following evolving or transitional phenomena, is facilitated. These concepts
can also be developed for general element types when based on a concept of generalised el-
ements consisting of the group of nearest neighbours called “shells”; see [Car97, SL00]. This
non-hierarchical technique, associated with an optimisation, produces similar meshes to those
obtained by a re-meshing strategy. The drawbacks reside in the complexity of programming
and the coherent re-projection on the CAD definitions defining the boundary surfaces.

The parallelisation of the mesh adaptation schemes presented in section 4.5.1 requires
careful renumbering and re-ordering techniques internally per processor (local) and globally.
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Figure 5.10: Layout of the segments during parallel adaptation.

Also the treatment of elements in the overlapping regions (the cut elements) is crucial. In
particular, for refinement, nodes created on an updated segment become new processor in-
terface border nodes, as reported on the left of figure 5.10. For coarsening, when attempting
to delete a border node, a border segment must be chosen (figure 5.10, right). Also diagonal
swapping and edge collapsing requires a careful implementation to avoid to recompute the
sets of internal, border, and external nodes. The treatment of elements in the overlapping
region is undoubtedly the most problematic aspect of parallel mesh adaptation using VO
decompositions.

Repartitioning

The mesh adaptation procedure may result in an unbalanced distribution of the workload
among the processors. Hence, the workload for each subdomain may be different, and this can
produce inefficient parallel performances. Effectively, the processor with the largest workload
will delay the process. In fact, the starting domain decomposition was obtained to balance the
workload for the initial mesh (that is, the same number of nodes on each subdomain and the
minimum number of cut elements), whereas the adaptation algorithm could have generated
many nodes on some subdomains (leading to more computing resources on the corresponding
processors), and may have derefined in subdomains given to other processors (thus requiring
less computational resources). Therefore, the computational domain is repartitioned dynam-
ically within the parallel adaptation procedure using a parallel graph partitioning algorithm.
Our implementation is based on the public library ParMETIS [KK97|. ParMETIS is called
concurrently by each process and gives the new destination for each internal node. Then,
data structure corresponding to moved nodes are sent using MPI calls.

Reordering and Renumbering

To complete the parallel adaptation procedure, fast efficient multiple renumbering techniques
are necessary for the mesh entities: elements, segments, faces and nodes. For this MPI
library routines are called explicitly and a fast dynamic binomial search tree to sort during
renumbering procedures is implemented based on a balanced binomial search tree algorithm
AVL (Adelson-Velskii and Landis); see [Wei92]. Consequently, all the vectors and matrices
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no dim Vj (see section 3.2.3)

D number of processors

ov overlap for VO decompositions (see section 3.3.2)

ILU(f) incomplete LU factorisation with factor of fill-in f (see sec-
tion 2.2.1)

CPU-time elapsed CPU-time (in seconds)

total CPU-time sum of elapsed CPU-times for the considered time levels

CFL CFL number (see section 4.4.2)

Ps one-level Schwarz preconditioner (see section 3.2.1)

Ps ¢ add two-level Schwarz preconditioner with aggregation, additive
version (see section 3.2.3 and formula 3.9)

Ps ¢ hybrid two-level Schwarz preconditioner with aggregation, hybrid
version (see section 3.2.3 and formula 3.10)

Pasc approximate SC preconditioner (see section 3.3.5)

Table 5.6: List of symbols used in this section.

used in the code may have to be re-allocated in memory. In particular, the data structure for
the parallel matrix-vector product must be recomputed.

An AVL tree is a dynamically balanced binary search tree that is height H balanced.
Height balanced means that for every node in the tree, the height of the left and right subtrees
differ by at most one. The height of a tree is the number of nodes in the longest path from
the root to any leaf. The implementation is as a recursive structure of interlinked nodes. The
difference in height H between different branches is kept minimal by imposing that pairs of
such subtrees of every node differ in height by at most 1. As it is a binary tree for n nodes,
H < n <2H —1 where the extrema correspond to a balanced tree.

When a new node is inserted into the tree, it appears at the root, then moves along the
branches until it finds an attachment to the tree. Once the node is inserted, the tree balance
is checked. If no unbalance is found, another node is inserted and the process continues. If
an imbalance is found, the heights of some nodes are fixed and the process repeated. When
a node is deleted, the root becomes unbalanced. The look-up is performed to balance again.

Look-up, insertion and deletion operations are of O(logn), where n is the number of nodes
in the tree, when the tree is balanced. Search steps S(n) needed to find an item are bounded
by log(n) < S(n) <n.

5.4 Numerical Results

We have carried out several numerical tests with the aim of analysing the parallel properties
of some of the preconditioners outlined in section 5.3.6 and 5.3.7. The characteristics of the
parallel computer we have used are reported in table 4.3.
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Figure 5.11: NACA0012. Number of iterations to converge at each time level using a non-
preconditionned GMRES methods.

The choice of the iterative scheme is analised in figures 5.12 and 5.13. The former reports
the iterations to converge at each time-level, while the latter the convergence history of the
10-th time step. Even for small 2D problems, like NACA0012, convergence cannot be achieved
without preconditioning, unless small CFL numbers are used, as can be appreciated from figure
5.11. We recall that the CFL number is increased by a fixed factor at each time iteration. As
CFL increases, the linear systems becomes more skew-symmetric and less diagonal-dominant.
Therefore, more linear system iterations are required to converge. Therefore, we have always
used preconditioned Krylov accelerators, Our reference preconditioner is the one-level Schwarz
preconditioner Pg with ILU(0) and one-element of overlap among the subdomains.

The accelerators considered are: BI-CGSTAB, CGS, TFQMR, GMRES(25) and GM-
RES(60), and the test case is FALCON. It can be observed:

e for all the considered Krylov accelerators, convergence of the linear system solver is
reached at any time step;

e in all cases, GMRES is characterised by a smooth monotonically decreasing convergence
behaviour;

o GMRES is slightly faster than the other methods; it takes more iterations to converge,
but the single iteration is faster, since it requires only one matrix-vector product, instead
of two as in the other methods.
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GMRES it is quite sensitive to the dimension of the Krylov space, especially as the
number of processor used in the computation increases;

CGS has the most erratic convergence history, followed by Bi-CGSTAB, which performs
quite well but it is still erratic;

TFQMR is characterised by an initial plateau, where no reduction in the residual norm
is achieved, followed by rapid decreasing of the residual norm,;

the differences among the Krylov accelerators are particularly evident as the number of
processors grows. This may reflect the fact the Schwarz preconditioners with no coarse
correction worsen its performances as the number of subdomains increases.

From this analysis, it can be concluded that:

GMRES is the most robust of the studied Krylov methods, but requires a certain amount
of memory to store the Krylov vectors. Therefore, if enough memory is available, it
should be preferred to the other schemes;

if schemes not too memory-demanding are in order, TFQMR seems to be the best choice
in terms of iterations to converge.

Most of the time required by the linear system solver is spent to set up the preconditioner,

that is, to compute the extended matrix A; if ov> 1 (see section 5.3.6), and to compute the

incomplete LU factorisation.
Table 5.7 reports the CPU-time (in seconds) required to solve the linear system at the
10—th time level, using different Krylov solvers. Once again, the preconditioners is Pg, and

various fill-in factors and amount of the overlap are tested. It can be observed:

as expected, for all the fill-in values and overlap, the number of iterations to converge
increases as the number of subdomains increases;

increasing the amount of the overlap always results in more CPU-time.

From this analysis, it can be concluded that

using fill-in factors greater than 0, the reduction in the iterations to converge may be
significant, although this gain is not enough to compensate the additional time required
to compute the exact factorisation;

using wider overlaps increases the CPU-time. For example, using 4 processors, GM-
RES(60) and ILU(0) factorisations on the subdomains, the total CPU-time needed to
solve with minimal overlap is of 1243 seconds, with an overlap of 2 elements 1807 sec-
onds, and of three elements 2319 seconds;

the minimal overlap ILU(0) is the optimal compromise between robustness (that is,
iterations to converge) and CPU-time.
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Figure 5.12: FALCON. Iterations to converge at each time level using Pg with minimal overlap
and ILU(0). Processors used in the computations: 4 (top, left), 8 (top, right), 16 (bottom,

left) and 32 (bottom, right).
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FALCON. P_S using 8 processors.
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Figure 5.13: FALCON. Iterations to converge at the 10—th time level using Pg with minimal

overlap and ILU(0).
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As a result of this analysis, GMRES with one-level Schwarz preconditioner, using ILU(0)
an minimal overlap, is found to be the optimal one-level Schwarz preconditioner.

Two level Schwarz methods are studied in tables 5.8 and 5.9 and figure 5.14. Table 5.8
is about the X29 test case. Iterations to converge and CPU-time required by GMRES(10) at
different time-levels are reported. Some results refer to Pg to compare one-level and two-level
methods. Instead, table 5.9 reports the total CPU-time required by both the additive and
the hybrid version of Ps ¢ for M6 to reduce the density residual by a factor of 107% using a
first-order method. Figure 5.14 compares the iterations to converge required by the two-level
additive and the hybrid method for FALCON.

We can note:

e the gain in number of iterations to converge is rather modest (if present) for low values
of the CFL number;

e for large CFL numbers, the use of the aggregation coarse space reduces both the number
of iterations to converge and the CPU-time;

e the optimal dimension of the coarse space seems to be of about 4 aggregates per subdo-
mains. The use of just one aggregate per subdomains has a positive effect, although the
reduction in the number of iterations to converge is modest, and only partially justified
by the CPU-time;

e the construction of the coarse matrix requires a very modest time using a moderate
number of aggregates per subdomains. In fact, in this test case and no/p = 4, this
time was of 0.54 seconds for p = 16, of 0.37 seconds for p = 32, and of 0.91 seconds for
p =64

e both the additive and the hybrid method outperform Pg in terms of iterations to con-

verge;

e the hybrid version is much more performant with respect to the additive one for a fixed
dimension of the coarse space. However, the gain in terms of CPU-time may be modest
(or even the additive version may result quicker than the hybrid one).

We may conclude:
e Pg should be used instead of Ps ¢ for low CFL numbers;
® Ps ¢ hybrid Should be the matter of choice when high values of the CFL number are used;

e for the considered test cases, the number of aggregates on each subdomain should be of
about 4;

e although no explicit rule could be found, the hybrid version should be preferred to the
additive one.
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Linear p | Prec Iters CPU

Solver time
GMRES(25) 4 | Ps, ILU(0), ov=1 82 163.88
GMRES(25) 8 | Ps, ILU(0), ov=1 87  87.38
GMRES(25) 16 | Ps, ILU(0), ov=1 93 27.73
GMRES(25) 32 | Ps, ILU(0), ov=1 122  21.67
GMRES(25) 16 | P, ILU(0), ov=2 75  46.29
GMRES(25) 32 | Ps, ILU(0), ov=2 98  36.64
GMRES(25) 8 | Ps, ILU(0), ov=3 72 189.32
GMRES(25) 16 | Ps, ILU(0), ov=3 68  89.14
GMRES(25) 16 | Ps, ILU(1), ov=1 54 175.50
GMRES(25) 16 | Ps, ILU(1), ov=2 43 239.56

U
U
U
U
U
U
U
TFQMR 4 | Ps, ILU(0), ov—1 46 166.39
TFQMR 8 | Ps, ILU(0), ov—=1 47  83.56
U(0), ov=1 55 47.74
U(0), ov—1 88 2425
U
U
U
U
U
U

(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(1)
(1)
(0)
(0)
TFQMR 16 | Ps, ILU(0)
(0)
(0), ov=2 57  45.74
(0)
(0)
(0)
(1)
(1)
(0)
(0)
(0)
(0)
(0)
(1)
(0)
(0)
(0)

TFQMR 32 | Ps, IL
TFQMR 32 | Ps, IL
TFQMR 16 | Ps, IL
TFQMR 8 | Ps, IL
TFQMR 16 | Ps, IL
TFQMR 16 | Ps, IL
TFQMR 16 | Ps, IL
Bi-CGSTAB 8 | Pg, ILU
Bi-CGSTAB 16 | Ps, ILU
Bi-CGSTAB 32 | Pg, ILU
Bi-CGSTAB 16 | Ps, ILU
Bi-CGSTAB 32 | Py, ILU
U

U

U

0), ov=2 49  69.43
0), ov=3 43 172.17
0), ov=3 41 111.31
1), ov=1 37 184.30
, OV=2 28 244.84
0), ov=1 68 104.47
0), ov=1 72 55.09
0), ov=1 113  28.82
0), ov=2 61 75.81
0), ov=2 92  59.62
, ov=1 49 183.17
CGS 16 | Pg, ILU(0), ov=1 40 88.84
CGS 32 | Pg, ILU(0), ov=1 88  29.30
CGS 32 | Pg, ILU(0), ov=2 56 46.02

Bi-CGSTAB 16 | Pg, IL

Table 5.7: FALCON. Iterations to converge and CPU-time at the 10—th time level (when the
CFL number is 5120), using different Krylov accelerators. The preconditioner is Pg, with
different combinations of the overlap and fill-in factor.
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time level  CFL p Prec no/p ‘ Iters CPU-time
2 04 32 Ps - 2 27.04
4 1.6 32 Ps - 2 27.06
10 1024 32 Ps - 29 33.26
14 1000.0 32 Ps - 84 54.79
2 0.4 64 Pg - 2 10.24
4 1.6 64 Ps - 3 10.51
10 1024 64 Ps - 33 15.57
14 1000.0 64 Pg - 90 25.28
2 04 16 Pscngmia 4 2 88.67
4 1.6 16 Pscpyoria 4 3 89.77
10 1024 16 Psopypria 4 16 96.69
14 1000.0 16 Pycpyria 4 51 117.64
2 04 32 Pscpgbrid 4 2 27.45
4 1.6 32 Pscnyoria 4 3 927.70
10 1024 32 Pycpyria 4 16 31.38
14 1000.0 32 Pscpypria 4 39 37.93
2 04 64 Pscpgpria 4 2 11.64
4 1.6 64 Pscpypria 4 3 11.28
10 1024 64 Pocpyria 4 15 14.77
14 1000.0 64 Pocpypria 4 35 19.45
2 04 64 Pscpgria 1 2 10.42
4 1.6 64 Pscpgpria 1 3 10.51
10 1024 64 Pycpypria 1 20 13.53
14 1000.0 64 Pscpypria 1 79 23.46

167

Table 5.8: X29. Comparison between Ps and Ps ¢ pypriq at various time levels. ILU(0) factori-

sations and minimal overlap have been used to define Ps. The Krylov solver is GMRES(10).
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Table 5.9: M6.

PARALLEL ASPECTS

p Prec no/p Total CPU-time
8  Pscadd, ov=1, ILU(0) 4 1008.23
8  Ps.cadd, ov=1, ILU(0) 8 978.26
8  Ps.cadd, ov=1, ILU(0) 16 912.62
8 PS,C,adda ov=1, ILU(O) 32 883.93
16 PS,C,addu ov=1, ILU(O) 4 502.89
16 PS,C,adda ov=1, ILU(O) 8 506.94
16  Ps,c add, ov=1, ILU(0) 16 515.42
16  Ps ¢ qdd, ov=1, ILU(0) 32 457.29
32 PS,C,adda ov=1, ILU(O) 4 208.32
32 PS,C,adda ov=1, ILU(O) 8 245.92
32 Ps,ada, ov=1, ILU(0) 16 300.81
32 Ps,add; ov=1, TLU(0) 32 505.14
8  Ps.c hybrid; ov=1, ILU(0) 4 934.25
8  Psc hybrid, ov=1, ILU(0) 8 945.62
8  Pschybria; ov=1, ILU(0) 16 909.40
8  Pgc hybria; ov=1, ILU(0) 32 925.75
16 Ps.c hybria; ov=1, ILU(0) 4 458.87
16 PS,C,hybrid; ov— 1 ILU(O 8 405.14
16 Ps.cnybria, ov=1, ILU(0) 16 413.97
16 Ps.chybria, ov=1, ILU(0) 32 442.39
32 Psc hybrid, ov=1, ILU(0) 4 164.29
32 PS,C,hybrid; ov— 1 ILU(O 8 164.23
32 Ps ¢ hyprid, ov=1, ILU(0) 16 181.82
32 Pscnybria; ov=1, ILU(0) 32 515.42

CH. 5

Total CPU-time required by GMRES(50) and PS,C,add and PS,C,hybrid-
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SC-based methods have been analysed using the FALCON test case. First, table 5.10 reports
the total number of iterations to converge and the CPU-time in seconds to solve the original
system Au = f and the eract Schur complement system Sup = g using GMRES(60). For
both system the preconditioner is Ps with ILU(0) and minimal overlap. It can be observed:

e the reduction in the iterations to converge is significant;

e the CPU-time is remarkably larger, except if many subdomains are used in the compu-
tation.

Au="~ SvouB =g
p | iter time iter time

1 440  11180.97 - -

4 | 501 2751.95 174 10042.35
8 511 1342.63 199  3871.39
16 | 502 798.23 244 1818.70
32 | 559 466.72 288 719.96

Table 5.10: FALCON. Total iterations required to reach the convergence and CPU-time (in
seconds) on a SGI-Origin 2000.

Instead, the effectiveness of the ASC preconditioner is analysed in figure 5.15. The outer
Krylov solver is GMRESR, while the we have used L iterations of a nested GMRES solver
for the solution of the linear system with S. The approximation used to construct Ajy is the
ILU(0) decomposition of Arr. It can be obeserved that

e increasing the value of L results in a more robust method. Although, the CPU-time
may increase significantly.

e the scalability of the Psgc preconditioner is rather good;

e the CPU-time is larger with respect to the two-level Schwarz preconditioner.
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Figure 5.15: FALCON. Iterations to converge at each time level using P4sc and GMRESR.
Processors used in the computations: 4 (top,left), 8 (top,right), 16 (bottom,left) and 32
(bottom,right).
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Linear p Prec Total
Solver CPU-time
GMRES(50) 8 PS,Chybm’d, ov:l, ILU(O), no/p =4 909.40
GMRES(50) 16 Ps.c hybrid, ov=1, ILU(0), no/p = 4 405.42
GMRES(50) 32  Psc hybrid, ov=1, ILU(0), no/p = 4 164.09
GMRESR 8 Pasc, L =2 1538.82
GMRESR 8 Pasc, L=4 1600.52
GMRESR 16 Pssc, L =2 544.96
GMRESR 16 Pasc, L =4 569.15
GMRESR 32 Pasc, L =2 248.52
GMRESR 32 Pygc, L =4 286.63
GMRESR 32 Pysc, L =8 358.04

Table 5.11: M6. Comparison of the total CPU-time required by Ps ¢ nybria and Pasc.

Finally, table 5.11 and figure 5.11 compares Pg c pybria and Pasc for the M6 test case.
One can see that the both preconditioners have superlinear speedups, and that Pgs c pybria
outperforms Pagc.

5.5 Concluding Remarks

Up to the author’s knowledge, current parallel implementation of MU schemes are based on
one-level Schwarz preconditioner and do not consider mesh adaptation procedure. Therefore,
it was one of the aim of this thesis to present a complete framework which couples these two
aspects with the characteristic aspects of MU schemes.

The main kernels of the «WNKS algorithm have been analysed. A data structure, based
on a VO decomposition of the grid, has been described. This data structure allows an effi-
cient implementation of all the main computational kernels. Of particular importance is the
definition of the preconditioner.

The parallel implementation of one-level and two-level Schwarz preconditionerss are pre-
sented. The coarse matrix is constructed automatically in an efficient way, for any compu-
tational grid with no input from the user (except for the matrix A and the dimension of the
coarse space). This simplicity has its roots mainly in the way the restriction and interpola-
tion operators are defined. The results show an improvement of performance with respect to
the one-level Schwarz method, which is the preconditioner usually adopted in literature for
multidimensional upwind residual distribution schemes.

Our numerical experiment show that the Schur Complement as a solver is not competitive
in terms of CPU-time with methods which operate on the unreduced matrix. Clearly, the
CPU-time results are largely affected by the type of the computer architecture and the char-
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acteristics of the processors used in the computations. However, our feeling is that the Schur
complement solver gives good results only when the ratio unknowns/number of processors
is “low”, or ratio CPU speed/communication speed is high. This is because of the cost of
the solution of the internal problems. Instead, the approximate Schur complement precon-
ditioners seems an interesting extension of the SC approach. Although the best results are
obtained using two-level Schwarz method with agglomeration coarse space, the approximate
SC preconditioner can be effectively used to solve the considered problem.



Conclusions

The use of domain decomposition methods for the solution of the compressible Euler equa-
tions was the main subject of this work. In this respect, the thesis has presented several
preconditioning techniques, discussed their spectral properties on a model problem, their
implementation on parallel computers with distributed memory, and finally compared their
performance.

First, our analysis was focused on 2-level Schwarz preconditioners. We have defined a
coarse correction operator that does not require the definition of a coarse grid. The basis
functions of the coarse space are built as a linear combination of the basis function of the
fine space. This procedure may be reinterpreted as an algebraic manipulation of the fine-grid
matrix. The resulting method can be seen as a 2-level black-box method.

A theoretical estimation of the condition number was given for a model problem. This
definition of a coarse space results in a less favourable condition number with respect to
other definitions of coarse spaces presented in the literature. However, its use presents some
advantages for problems defined on unstructured grids for domains with complex shape. The
coarse matrix can be constructed automatically and for any computational grid with no input
from the user (except for the matrix A and the dimension of the coarse space). The coarse
triangulation is not necessary in the aggregation procedure as is the case for other 2-level
methods. This opens the possibility of using the proposed method for more general cases with
regions of complex geometry without losing the power of a 2-level method. The computational
complexity of the proposed preconditioner is smaller since the method is simpler to implement.
This simplicity has its origin mainly in the way the restriction and interpolation operators
are defined. Moreover, even though the analysis assumes an elliptic functional discretized on
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a quasi-uniform mesh of P! or Q' elements, numerical experiments confirm its applicability
to general unstructured meshes and to more general problems.

We have also considered SC methods derived from either element-oriented or vertex-
oriented non-overlapping decompositions. We have presented a new approach for the solution
of the SC system based on the reinterpretation of the VO decomposition. Instead of defin-
ing a coarse space, the main idea is to decompose the original domain in order to have one
subdomain which is connected to all the others. This subdomain 21, which is reduced to the
minimum width of 1 element, allows the definition of global preconditioners. In particular,
among the preconditioner reported here, the best choice appears to be a DN preconditioner,
for which a Neumann problem is solved in Qr. Consequently, the preconditioning step re-
quires the solution of only one linear system on a subdomain of a special shape. Numerical
tests confirm the good properties of such a decomposition, and comparison with the balancing
Neumann/Neumann preconditioner shows that, from the point of view of computational cost,
the new approach may be of interest.

We have also described preconditioners based on approximate SC solutions. The key
idea is to replace the “exact” SC matrix with an approximate one, which is less expensive to
compute and to store in memory. The resulting approximate SC system is solved itself using
a few steps of a Krylov subspace accelerator.

The thesis then focused on the application of these preconditioners to the steady com-
pressible Euler system for aerodynamical applications. The space discretisation was based
on multidimensional upwind techniques on unstructured grids, which can be interpreted as
Petrov-Galerkin finite-element schemes for the solution of CFD problems. We have presented
a pseudo-continuation technique to obtain the solution of the nonlinear system of discrete
equations. A pseudo time derivative is added to the stationary problem and discretised us-
ing the backward Euler method. At each time level, the nonlinear system is solved by one
step of the Newton methods. This leads to a large, sparse, non-symmetric linear system,
which is solved by resorting to Krylov techniques. The preconditioner arises from domain
decomposition methods of both Schwarz and Schur complement type. The resulting frame-
work, completed by mesh adaptation techniques, is called aWNKS. The numerical results
show that mesh adaptation can effectively improve the quality of the solution obtained using
multidimensional upwind discretisations for problems of aeronautical interest.

Finally, we have considered the parallel aspects related to an efficient implementation of the
aWNKS algorithm on parallel computers with distributed memory. The main computational
kernels of this algorithm have been analysed. A data structure, based on a vertex-oriented
decomposition of the grid, has been described. The parallel implementation of most of the
preconditioners presented in the first part of the thesis is outlined. A master-free mesh
adaptation procedure is also presented. The various steps of mesh adaptation (refinement,
derefinement, optimisation, reordering and renumbering) and the associated algorithms are
described.

Numerical results, obtained on distributed memory parallel computers, are presented for
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large scale computations. It is shown that the combination of the Krylov-Schwarz approach
with a mesh adaptation procedure leads to an effective and scalable solution of the compress-
ible Euler equations on unstructured grids.
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