
THÈSE NO 2725 (2003)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

SECTION DES SYSTÈMES DE COMMUNICATION

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

Master en Informatique, Charles University, Prague, République Tchèque
et de nationalité tchèque

acceptée sur proposition du jury:

Prof. J.-Y. Le Boudec, directeur de thèse
Dr P. Droz, rapporteur

Dr T. Przygienda, rapporteur
Dr J. Rexford, rapporteur

Prof. P. Thiran, rapporteur

Lausanne, EPFL
2003

Lukas KENCL

LOAD SHARING FOR MULTIPROCESSOR
NETWORK NODES

2

c© Copyright by Lukas Kencl 2003

All Rights Reserved

i

ii

Abstract

This thesis discusses techniques for sharing the processing load among multiple pro-

cessing units within systems that act as nodes in a data communications network.

Load-sharing techniques have been explored in the field of computer science for

many years and their benefits are well known, including better utilization of processing

capacity and enhanced system fault tolerance. We discuss deploying such methods in

the specifics of the networking environment. We concentrate particularly on the data

plane, or the data packet-processing tasks. After reviewing the main results in the

fields of load sharing and multiprocessor networking systems architectures, we conduct

a preparatory optimization study of a router system to gain better understanding of

the optimization issues in a particular multiprocessor system.

The main contribution of this thesis, the adaptive load-sharing method, is pre-

sented next. We first formulate the optimization problem of mapping packets to

processors. The goal is to minimize the likelihood of flow reordering, while respecting

certain system constraints, such as the acceptable probability of a packet loss. As we

show that the task is an NP-complete problem, we propose a heuristic method that

uses an adaptive hash-based mapping to assign packets to processors. We demon-

strate its advantages and prove that the method adaptation policy possesses the key

minimal disruption property with respect to the mapping. In other words, the adap-

tation results in a minimum number of flows being moved among processing units.

Further on, the method is validated in an extensive set of simulations designed to

imitate the networking environment.

Finally, two sample applications, an architecture of a multiprotocol router and

an implementation of a server load balancer on a network processor demonstrate the

applicability of the method.

iii

iv

Zusammenfassung

Thema der vorliegenden Doktorarbeit sind Techniken zur Lastverteilung zwischen

Prozessoren in Systemen, welche die Funktion von Netzwerkknoten in einem Daten-

kommunikationsnetz haben.

Techniken zur Lastverteilung werden in der Informatik schon seit vielen Jahren

erforscht, und ihre Vorzüge, wie bessere Ausnutzung der Rechnerkapazität und eine

grössere Fehlertoleranz des System, sind bestens bekannt. Die vorliegende Arbeit

befasst sich mit der Anwendung dieser Methoden unter den spezifischen Bedingungen

von Datennetzen. Hierbei liegt der Schwerpunkt der Betrachtung auf der Datenebene,

bzw. auf der Verarbeitung von Datenpakten.

Nach einer Übersicht zu den wichtigsten Resultaten aus den Bereichen Lastver-

teilung und Architekturen von Multiprozessor-Netzwerksystemen wird eine erste Opti-

mierungsstudie eines Router-Systems erarbeitet. Ziel ist hier die Erlangung eines

tieferen Verständnisses der Optimierungsproblematik am Beispiel eines ausgewählten

Multiprozessorsystems.

Anschliessend wird der Hauptbeitrag der vorliegenden Doktorarbeit, die Meth-

ode adaptiver Lastverteilung, vorgestellt. Zuerst wird das Optimierungsproblem für

die Verteilung von Paketströmen auf Prozessoren formuliert. Ziel hierbei ist die

Minimierung der akzeptablen Wahrscheinlichkeit einer ungewünschten Neuzuordnung

eines Datenstromes bei Berücksichtigung bestimmter Systemvorgaben, wie z.B. der

Wahrscheinlichkeit eines Paketverlustes. Da im folgenden gezeigt wird, dass diese

Aufgabe ein NP–vollständiges Problem ist, wird eine heuristische Methode vorgeschla-

gen, welche ein adaptives, hash-basiertes Verfahren für die Verteilung der Pakete

auf die Prozessoren verwendet. Die Vorzüge dieser Methode werden aufgezeigt und

v

es wird bewiesen, dass das Adaptionsverfahren die grundlegende Eigenschaft mini-

maler, durch Neuzuordnung verursachter Paketstromunterbrechungen (minimal dis-

ruption property) besitzt. Damit verursacht der Adaptionsvorgang die Verschiebung

einer lediglich minimalen Anzahl von Paketströmen zwischen den Prozessoren. An-

schliessend wird die Methode in umfassenden Simulationen validiert. Dabei werden

typische Einsatzbedingungen modelliert.

Die Anwendbarkeit der Methode wird anhand zweier Beispiele – der Architek-

tur eines Multiprotokoll-Routers und der Netzwerkprozessor-Implementierung einer

Lastverteilung für eine Serverfarm – unter Beweis gestellt.

vi

To Jitka.

vii

viii

Acknowledgments
First of all, it is a great pleasure to thank my advisor, Prof. Jean-Yves Le Boudec,

who has provided me with excellent guidance throughout my Ph.D. research and has

had enormous patience with me. I thank him for the many fruitful discussions and

his vital contributions to this thesis.

I also thank the IBM Zurich Research Laboratory for providing me with a splendid

working environment. It is a delight to work in a modern environment and with such

competent and creative people. I am especially grateful to my manager, Patrick Droz,

who has supported me throughout, helped me narrow the scope of the thesis by asking

the right questions and made sure I had enough time and energy to finish it.

Furthermore, I thank my colleagues, namely Daniel Bauer, Ed Bowen, Robert

Haas, Ton Engbersen, Laurent Frélechoux, Mitch Gusat, Andreas Herkersdorf, Ilias

Iliadis, Andreas Kind, Bernard Metzler, Cyriel Minkenberg, Sean Rooney, Patricia

Sagmeister, Jan Van Lunteren, Marcel Waldvogel and many others, for providing

me with excellent comments and pointers to relevant publications and for creating a

friendly working atmosphere. Special thanks go to my office mates, Sonja Buchegger

and Roman Pletka, who not only spent endless time in scientific discussions with me,

but were also enormous fun.

I also thank our visiting students, Bozidar Radunovic and Riccardo Russo, for

their creative approach to the problems studied and their significant contributions to

exploring the various subtopics of this work.

My sincere thanks to Lilli-Marie Pavka, Charlotte Bolliger and Urs Bitterli for

helping me improve the quality of my publications enormously.

Last, but certainly not least, I thank my wife, Jitka. It is only by virtue of her love

and sacrifice that I was able to finish this work. Being a wonderful wife and a caring

mother, she has made the years spent working on this thesis fine and enjoyable.

ix

”However, how to distribute packets across parallel links while achieving load bal-

ance among the links and maintaining packet order in the same flow remains chal-

lenging.”

H. Jonathan Chao, Next Generation Routers, September 2002.

x

Contents

Abstract iii

Zusammenfassung v

Acknowledgments ix

1 Introduction 1

1.1 Optimizing network nodes . 1

1.2 Outline . 3

1.3 Claims . 4

2 State of the art 7

2.1 Introduction . 7

2.2 Load sharing and networking . 7

2.2.1 Load sharing in general . 7

2.2.2 Load sharing in networking 8

2.2.3 Robust hash routing . 10

2.3 Router architecture . 14

2.4 Server farms . 18

2.4.1 Architectural demands . 18

2.4.2 Web caching and content delivery networks 19

2.4.3 Server farm load balancing . 20

2.5 Conclusions . 24

xi

3 Optimizing router architecture 27

3.1 Introduction . 27

3.2 General distributed router architecture 28

3.2.1 Router model . 28

3.2.2 LFE and MFE model . 30

3.2.3 Switch model . 33

3.2.4 Time a packet spends within the system 37

3.3 Cost optimization . 37

3.3.1 Forwarding engine cost . 37

3.3.2 Switch cost . 37

3.3.3 Total system cost . 39

3.3.4 Optimization problem . 39

3.4 Numerical results . 39

3.4.1 Optimization . 39

3.4.2 Total system cost . 40

3.4.3 Distribution of resources—LFEs, MFEs and switch capacity . 41

3.4.4 Distribution of processing capacity—LFEs and MFEs 42

3.4.5 Switch speed . 45

3.5 Load sharing in a router . 47

3.5.1 Acceptable load sharing . 47

3.5.2 Other system requirements . 48

3.6 Conclusions . 49

4 Adaptive load sharing 51

4.1 Introduction . 51

4.2 Notation and assumptions . 52

4.3 Packet-to-NPU mapping . 54

4.4 Optimization problem statement . 57

4.5 Adaptive load-sharing heuristic . 59

4.5.1 Adaptation algorithm . 59

4.5.2 Triggering policy . 60

xii

4.5.3 Minimal disruption . 63

4.5.4 Adaptation policy . 67

4.6 Conclusions . 69

5 Method validation 71

5.1 Introduction . 71

5.2 Simple simulator—proof of concept 72

5.2.1 Potentially congested case . 74

5.2.2 Wrong initial weights case . 76

5.3 Realistic traffic generation . 76

5.4 Router system model . 80

5.5 Results . 81

5.5.1 Adaptive load sharing . 81

5.5.2 Influence of maximal flow rate εf 86

5.5.3 Fractional factorial analysis of the load-sharing method . . . 87

5.5.4 Influence of the number of processors 89

5.6 Conclusions . 91

6 Applications in networking systems 93

6.1 Introduction . 93

6.2 Multiprotocol router . 94

6.2.1 Router architecture . 94

6.2.2 Load indicator . 96

6.2.3 Pseudo-random function . 96

6.3 Server load balancer on a network processor 100

6.3.1 Server farm topology . 100

6.3.2 Load Balancer on the PowerNP network processor–

–general overview . 103

6.3.3 Network processor data plane 105

6.3.4 HRW weights representation on the network processor 107

6.3.5 HRW weights data structure 111

6.3.6 Network processor data plane implementation 118

xiii

6.4 Conclusions . 119

7 Conclusions 121

7.1 Open issues . 121

7.2 Concluding remarks . 122

Bibliography 123

A List of publications and Curriculum Vitae 131

xiv

List of Tables

5.1 Acceptable load sharing. 83

5.2 Flow remappings. 85

5.3 Fractional factorial analysis results. 87

5.4 Effects of factors. 88

5.5 Influence of the number of NPUs. 91

6.1 Kernel IP routing table . 101

6.2 Kernel ARP table . 102

6.3 Results of the simulation using a flat data structure. 114

6.4 Results of two simulations on hierarchical data structure 117

xv

List of Figures

2.1 Mapping disruption problem . 11

2.2 Robust hash routing minimizes the mapping disruption. 13

2.3 Distributed router architecture . 16

2.4 Parallel router architecture . 17

2.5 Server load balancing topology. 20

3.1 LFEs, switch and MFEs within the general distributed router archi-

tecture model. 29

3.2 Model of the general distributed router architecture with multiple LFEs

and MFEs. 30

3.3 Traffic flows within the switch . 35

3.4 Total system cost. 41

3.5 Fraction of traffic enqueued at LFEs, r. 42

3.6 Total processing power of the FEs. 43

3.7 Total cost of the FEs. 43

3.8 Switch saturation throughput. 43

3.9 Switch cost. 44

3.10 Optimal processing power per individual LFE. 44

3.11 Total processing power of the LFEs (note that the graph was adjusted

for the reader’s convenience in order to be able to depict the values

equal to 0, which would normally tend to negative infinity on a loga-

rithmic graph). 44

3.12 Total processing power of the MFEs. 45

3.13 Fraction of LFE processing power out of total system processing power. 45

xvi

3.14 Switch port transmission speed. 46

3.15 Traffic at the switch master port—the header passing overhead within

the switch. 46

3.16 Fraction of the header passing overhead out of the total switch traffic. 46

4.1 Load-sharing scheme abstraction . 55

4.2 Load sharing with feedback . 60

4.3 Adaptation algorithm. 61

4.4 Example of the dynamic workload intensity threshold as a function of

a hypothetical filtered total system workload intensity. 62

4.5 Example of the hysteresis bound as a function of a hypothetical filtered

total system workload intensity. 63

4.6 Example of the triggering threshold as a function of a hypothetical

filtered total system workload intensity. 64

4.7 Minimal disruption property of the adaptation. 68

5.1 The simple load-sharing system simulator. 72

5.2 Number of packets at the ingress queue 75

5.3 Evolution of the weights’ value . 75

5.4 Total number of packets queued in the output queues 75

5.5 System workload intensity . 75

5.6 Standard deviation . 75

5.7 Number of packets at the input queue. 77

5.8 The evolution of the weights’ value. 77

5.9 Queue occupancy. 77

5.10 Link workload intensity. 77

5.11 Standard deviation function. 77

5.12 Flow length cumulative distribution. 78

5.13 Per-processor workload intensity . 82

5.14 Packets dropped . 83

5.15 Triggering and adaptation policy. 84

5.16 Flows re-mapped . 85

xvii

5.17 Influence of maximal per-flow fraction rate limit εf 86

5.18 Influence of the number of NPUs . 90

6.1 Load sharing within a distributed multiprotocol router 94

6.2 Multiprotocol router, consisting of an input- and output switch/shared

memory and a pool of multiple NPUs, sharing the load of N line cards 95

6.3 Sample server farm topology . 102

6.4 Server load balancer on the PowerNP network processor. 104

6.5 NP state diagram . 106

6.6 Ross’ weights distribution. 109

6.7 Russo’s weights distribution. 110

6.8 HRW Mapping computation algorithm 112

6.9 Flat data structure. 113

6.10 Hierarchical data structure . 115

6.11 Topology for the hierarchical data structure simulations 117

xviii

Chapter 1

Introduction

1.1 Optimizing network nodes

With the ever-increasing transport capacity of links of complex data networks such as

the Internet, it is the various processing nodes along the paths that the data traverses

that are becoming the bottlenecks, preventing speedy and reliable data delivery.

As we are unable to raise the processing capacity of individual processors at an ad-

equate rate, solutions on the device system level that aggregate capacities of multiple

processors are increasingly being designed to support the growing data rates.

The functionality requirements for such network elements (routers, servers, server

farms, proxies, caches, load balancers, firewalls) are becoming increasingly complex.

With respect to networking, we typically distinguish between two kinds of function-

alities associated with data communication:

• the control plane functionality, which exercises the overall control of the net-

working communication and the signaling among nodes, and

• the data plane functionality, which exercises the actual forwarding, processing,

alterations or manipulations of data packets.

The work presented in this thesis concentrates on optimizing the data plane func-

tionality of network elements, or, more specifically, optimizing the data plane func-

tionality of network nodes that consist of multiple processing units.

1

2 CHAPTER 1. INTRODUCTION

The key contribution of this work is a method that optimizes the way the processing

load is shared among the multiple processors, while respecting the specific constraints

of the networking environment.

We assume that data for processing arrives over network links in the form of

packets and that individual packets belonging to a specific connection between end

hosts form a flow. Thus, traffic over each network link consists of packets belonging

to various flows.

For several reasons, it is desirable that packets belonging to the same flow be

processed by the same processor. Processing at different processors may result in

packet reordering within a flow. Furthermore, a number of networking applications

requires that packets from one flow be processed within some context—for example

for reasons of policing or shaping, or in order to process subsequent requests from

the same host. The information carried in each packet may require various amounts

of processing power and the flows may consist of uneven amounts of packets. The

method we present aims to fulfill the flow-preservation requirement while keeping

the load on the multiple processors within some degree of balance. Furthermore, the

decision where to process a packet is reached fast and without maintaining state

information on the flows.

There are several factors that contribute to the difficulty of solving this task.

There is high variation in network traffic patterns and they are not easily predictable.

Furthermore, even if knowledge of the near future were available, the task of mapping

various flows to processors and keeping the load balanced, while optimizing a system-

wide function such as the amount of packets reordered, is NP-Complete.

The advantages of deploying such a load-sharing method are manifold:

• It increases the total processing capacity of the system. The total load of the

system is distributed over the processing elements in an optimal way and thus

its processing capacity can be fully utilized;

• It increases the system flexibility. Addition or removal of processing capacity can

be performed in a seamless manner with minimal disruption to the processing

system;

1.2. OUTLINE 3

• Scalability. The method ensures that increasing the processing capacity of the

system results in equivalent increase in processing performance of the system;

• Fault tolerance. A failure in one of the processing nodes is seamlessly hidden

by others assuming its task (sharing its load).

There are many applications or systems in the networking area, for which deploy-

ing such a method is beneficial. We present two examples, a router and a server farm,

but any system requiring that the packet processing load be spread over multiple pro-

cessing units or destinations would benefit from the method.

The main contribution of this work is the presented load-sharing method. It is an

adaptive heuristic: adaptive to cope with the varying traffic patterns, and a heuristic

as it estimates the near-optimal solution within a very short time.

The method is hash-based, extending the robust hash routing method by Ross [50].

The fact that it is hash-based means that the mapping decision is achieved fast and

that no state information on individual flows needs to be stored.

As the robust hash routing method leads to perfect load balancing over non-

biased traffic patterns, we introduce the adaptive control loop to cope with the biased

patterns. The key contribution of this work is the adaptation policy—we prove that

the proposed adaptation policy possesses the minimal disruption property with respect

to the flow-to-processor mapping—meaning that only a minimum amount of flows is

moving among processors when the mapping is adjusted.

Furthermore, we present an extension of the method that shows how, by main-

taining little state information, mapping disruption can be avoided altogether.

1.2 Outline

In Chapter 2, we present an overview of the load-sharing methods in general and of the

specific solutions to load-sharing problems encountered in networking. Furthermore,

we review the state-of-the-art in the two domains considered for deployment of the

load-sharing method, router architecture and server load balancing.

4 CHAPTER 1. INTRODUCTION

In Chapter 3, a preparatory study of a router architecture is presented, to provide

a better understanding of the router design space and of the potential benefits of

deploying a load-sharing method within a router.

The main contributions of this thesis are presented in Chapter 4. Here, the adap-

tive load-sharing method is described in detail and the minimal disruption property

is proved by theoretical means.

In Chapter 5, a practical validation of the method is performed. First, a small,

Java-based implementation is used as a proof of concept, and than a large, Matlab-

based set of simulations to explore various parameters of the method over Internet-like

generated traffic is carried out and discussed.

Real-world system applications of the method are discussed in Chapter 6. An

existing implementation of a server farm load balancer on an IBM PowerNP network

processor is described in detail, as well as potential implementations in a router

system. Some method implementation issues, such as the optimal data structure for

the mapping weights, are reviewed.

Finally, in Chapter 7, we offer some concluding remarks on the future applicability

of the method and related open issues.

1.3 Claims

• A new method for providing adaptive load sharing among multiple processing

units in a networked environment is presented. The method is hash-based, re-

quires a minimum of state information to be maintained and leads to a minimum

of packet flow disruptions. The method comprises a flow-to-processor mapping

and an adaptive feedback mechanism;

• The minimal disruption property is proved by theoretical means;

• Model of a router equipped with the load-sharing method has been implemented

in MATLAB;

• A traffic generator for generating realistic Internet traffic patterns has been

1.3. CLAIMS 5

implemented in MATLAB. The method has been tested extensively using the

generated traffic;

• An extension of the method, which leads to zero flow disruption by adding a

small amount of state information and duplicating the hash computation, has

been developed;

• A prototype of the method has been implemented on the IBM PowerNP network

processor to act as a Web server load balancer;

• A study of optimizing the router architecture has been conducted, concluding

that parallelism and load sharing on the router data path are applicable and

advantageous;

• Two patent applications have been submitted on the two versions of the load-

sharing method.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

2.1 Introduction

In this chapter we are going to review the previous fundamental results in fields

related to the topic of this thesis.

Load sharing or load balancing problems have been extensively studied in com-

puter science for many years and there exists a number of works in this area. We

present those that were crucial for our work and in the final part of the load sharing

discussion we examine in detail the robust hash routing technique, which forms the

basis of our optimized load-sharing method.

In the second and third sections of the chapter, we examine more closely previous

works on the two classes of network nodes that we discuss in more detail throughout

the thesis—multiprotocol routers and Web server farms.

2.2 Load sharing and networking

2.2.1 Load sharing in general

For a general survey of load-sharing algorithms, see [55]. A widely accepted taxonomy

of load-sharing algorithms has been presented by Casavant and Kuhl [8].

Eager, Lazowska and Zahorjan [17] have studied specific adaptive load-sharing

7

8 CHAPTER 2. STATE OF THE ART

policies, consisting of a transfer and a location policy. Their work shows that simple

adaptive load-sharing policies yield significant performance improvements relative to

the no load-sharing case and, at the same time, performance very close to complex

adaptive policies. In addition, a threshold-based location policy is shown to bring

substantial improvements over a random selection location policy.

The task of determining a processing unit on which a specific processing job should

be executed so that a system-wide function is optimized has been shown to be NP-

complete in general. El-Rewini, Ali and Lewis [19] provide an overview of the NP-

completeness proofs for various instances of the problem and discuss some candidate

heuristics for the solutions.

A heuristic, producing an answer which is not necessarily optimal, but is achieved

in short time, is typically used. Such a global task scheduling heuristic usually takes

some kind of dynamic processor workload information as input. The most effective

representation of the workload index has been a topic of intensive research. Kunz [35]

has demonstrated that a single, one-dimensional workload descriptor yields better

results than more complex descriptors.

2.2.2 Load sharing in networking

Load-sharing methods have recently been studied in relation to the task of distributing

Internet traffic over multiple links or paths within the network [7], [6] [53]. Cao, Wang

and Zegura evaluate in [7] the performance of various fast static hashing schemes, as

well as of one adaptive, for splitting traffic among multiple links. The following static

hash functions are studied:

1. Modulo over Destination Address

H(·) = DestIP mod N.

2. XOR Folding of Destination Address:

H(·) = (D1 ⊕ D2 ⊕ D3 ⊕ D4) mod N,

2.2. LOAD SHARING AND NETWORKING 9

where Di is the i-th octet of the destination IP address

3. XOR Folding of Source and Destination Addresses:

H(·) = (S1 ⊕ S2 ⊕ S3 ⊕ S4 + D1 ⊕ D2 ⊕ D3 ⊕ D4) mod N,

where Si and Di are the i-th octets of the source and destination IP addresses,

respectively.

4. Internet Checksum of the TCP 5-tuple (source and destination IP address,

source and destination port, and protocol ID):

H(·) = CheckSum(5 − tuple) mod N.

5. The 16-bit Cyclic Redundancy Check (CRC) function:

H(·) = CRC16(5 − tuple) mod N.

The study concludes that except for the CRC-based hash, other methods result

in relatively poor traffic load-balancing.

Furthermore, the authors study an adaptive, table-based method, which, when

adapted according to the monitored load, gives comparable performance as the CRC-

based function, even when using the XOR folding as the primary indexing technique

into the table. However, note that such method, as presented, requires to main-

tain considerable state information on the mapping of table bins. Furthermore, the

adaptations may lead to significant disruptions in the mapping.

Basturk et al. [6] explore the possibilities of using the IP anycast routing to dis-

tribute traffic load among multiple paths or servers. Several load distribution tech-

niques that pin packets from a particular flow to certain route are discussed. Four

different disciplines for selecting the route are evaluated on real network traffic traces:

round-robin, random, hash-based and least connections. An interesting finding with

respect to the work presented in this thesis is that all the disciplines perform approx-

imately equally well in the key metric of distributing the number of bytes transferred

10 CHAPTER 2. STATE OF THE ART

among the multiple destinations.

Shaikh, Rexford and Shin [53] concentrate on the problem of mapping traffic flows

onto multiple network paths in order to achieve better bandwidth utilization and

routing stability. The method divides traffic flows into short-lived and long-lived and

uses different mapping disciplines for each group, an adaptive one for the long-lived

and a static one for the short-lived flows. It is demonstrated that for this problem,

thanks to the particular length distribution of network flows, such a hybrid approach

is beneficial over each method stand-alone, achieving better balance on one hand and

saving on signalling overhead on the other. The study of flow length distribution in

[53] has been inspirational for some of the experiments presented in Chapter 5.

Particular interest in load sharing has recently been raised in the areas of Web

servers, Web caching and clustered digital libraries [5], [24], [50], [69].

2.2.3 Robust hash routing

The robust hash routing (also known as Cache Array Routing Protocol (CARP))

distributed caching scheme, which uses the highest random weight (HRW) algorithm

developed by Thaler and Ravishankar [62], and its more fine-grained, weighted version

by Ross [50], is a popular choice for Web caches and is implemented in products offered

by Microsoft [5]. This algorithm has become a foundation for our work.

The following example illustrates the general mapping disruption problem, the

flaws of basic mapping functions and subsequently the advantages provided by the

robust hash routing.

Let h(·) be a hash function that maps the space of all n-bit binary numbers

vectors ~v to a hash space H. The hash space H is partitioned into N consecutive

intervals, corresponding to N destinations for the mapped objects. Assume that

a new destination is added to the N existing ones and thus there are now N + 1

possible destinations. What fraction of objects do change their destination, if the

same mapping (hash) function is still being used? Thaler and Ravishankar [62] refer

to this fraction as the disruption coefficient.

2.2. LOAD SHARING AND NETWORKING 11

Figure 2.1: Mapping disruption problem

Initially, the hash space is divided into N sets as follows:

[

0,
1

N

]

,

[

1

N
,

2

N

]

, . . . ,

[

N − 1

N
, 1

]

.

If the hash function produces the score sc ∈
[

j
N

, j+1
N

]

, then destination j will be

chosen. Suppose that all destinations are equally probable to be mapped to, meaning

that the distribution of sc is uniform over the hash space H. Then, the hash space

will be divided, upon the addition of the new destination, as follows (see Fig. 2.1):

[

0,
1

N + 1

]

,

[

1

N + 1
,

2

N + 1

]

, . . . ,

[

N − 1

N + 1
,

N

N + 1

]

,

[

N

N + 1
, 1

]

.

Only flows that belong to the following subsets have not changed their destination:

[

0,
1

N + 1

]

,

[

1

N
,

2

N + 1

]

,

[

2

N
,

3

N + 1

]

, . . . ,

[

N − 1

N
,

N

N + 1

]

.

12 CHAPTER 2. STATE OF THE ART

The sum of these intervals represents the disruption coefficient:

N−1
∑

i=0

N − i

N(N + 1)
=

1

N(N + 1)

N
∑

i=1

i =
1

2
.

This means that in this case 50% of the mapped objects have changed destination.

Thaler and Ravishankar prove that the disruption coefficient ranges between 1/N and

1 for all mappings.

The robust hash routing is a mapping designed to avoid large disruption coefficient.

With the robust hash routing [62], the object identifier ~v and the destination index j

are used together to generate a hash value or score. For every destination j, a score

h(~v, j) is computed and the final destination chosen is the one with the maximum

score:

f(~v) = j

⇐⇒ (2.1)

h(~v, j) = max
k ∈ [1,N]

h(−→v , k).

Thaler and Ravishankar [62] demonstrate that if a new destination is added, only

a fraction of 1
N+1

of the objects is re-mapped (see Fig. 2.2), which is the minimum

amount. Thus, we say that the HRW mapping possesses the minimal disruption

property.

In the form above, the robust hash routing guarantees balancing of the mapped

objects over the destinations, but only in case of homogenous size of the destinations.

Ross [50] adds multiplicative weights into Eq. 2.2 to provide for heterogenous load

distributions over destinations:

2.2. LOAD SHARING AND NETWORKING 13

Figure 2.2: Robust hash routing minimizes the mapping disruption.

Def. 1 HRW Mapping f. Let h(~v, j) be a pseudo-random function h : V ×
{1, 2, . . . ,m} → (0, 1), i.e., we assume h(~v, j) to be a random variable in (0, 1) with

uniform distribution. The HRW mapping f(~v) is then computed as follows:

f(~v) = j

⇐⇒ (2.2)

xj · h(~v, j) = max
k ∈ [1,N]

xk · h(~v, k)

where xj ∈ R
+ is a weight multiplier assigned to each destination.

Ross [50] also introduces a formula for computing the weights xi, depending on the

target probability pi of each destination:

Theorem 1 (Ross) Let p1, . . . , pN be given target probabilities. Reorder the desti-

nations so that p1 ≤ . . . ≤ pN . Let

x1 = (Np1)
1/N

14 CHAPTER 2. STATE OF THE ART

and let x2, . . . , xN be calculated recursively as follows:

xn =

[

(N − n + 1)(pn − pn−1)
∏n−1

i=1 xi

+ xN−n+1
n−1

]
1

N−n+1

. (2.3)

Then the robust hash routing algorithm with multipliers x1, . . . , xN will map the frac-

tion pn of incoming objects to the n-th destination, n = 1, . . . , N.

To summarize, the HRW mapping possesses the following significant advantages

over other hash-based load balancing schemes [50] [62]:

Load balancing The mapping provides load balancing over the request object space,

even for the heterogeneous case. It allows to split the hashed objects into hash

buckets of arbitrary size, as determined by predefined weights.

Minimal disruption In case of a processor failure, removal or addition, the number

of request objects that are re-mapped to another destination is minimal.

2.3 Router architecture

Latest developments in transmission technologies have led to an enormous increase in

the amount of data transported over the links of the Internet. Such a rapid evolution

places significant strain on the interconnecting equipment, primarily routers, to scale

with the pace of the transmission speed increase. Recent works [21], [34] have provided

a basis for the new generation of interconnecting devices by presenting the first gigabit

and terabit router architectures. These works have built on new developments in the

areas of switch architectures [20], [39] and fast lookup algorithms [14], [65], [44].

It is becoming increasingly difficult to satisfy the demands for router performance

with a traditional centralized architecture [21]. In the case of multiple router inputs

and high throughput, the single central processor is not able to cope with its process-

ing task. In order to eliminate the packet processing bottleneck, multiple processing

units, known as forwarding engines (FE), or, more sophisticated, network processors

2.3. ROUTER ARCHITECTURE 15

(NPU), are typically deployed in contemporary routers. A router system thus con-

sists of multiple processing units gathered around a switch element. Packet processing

within such a system is essentially distributed. The previously centralized router de-

vices are thus being replaced by routers of more effective architectures, distributed

or parallel [10], [64], [11].

In principle, packet processing can either be carried out directly at router inputs,

using local forwarding engines (LFE), or at remote master forwarding engines (MFE),

reachable through the switch element. Both of these paradigms may be combined in

one system. Given the performance demands, a single MFE may not be sufficient and

thus MFEs are often grouped into pools of parallel MFEs. Critical related questions

emerge—what are the best capacities, locations and schemes of cooperation of all

the elements (switch, LFEs, MFEs) within a router system in order to satisfy given

system performance demands, and what is the most economical alternative to satisfy

those demands?

In the case of a distributed architecture [9], most of the packet processing load

is performed by processors typically located directly at the router inputs. Such an

architecture has the drawback of poor utilization because all the processors are hardly

ever saturated, as the load is almost never evenly distributed over the inputs and does

not always reach the nominal rate. Parallel router architectures [4], [23] are based on a

pool of parallel processors, located remotely from the inputs, with all of the processors

being able to perform the data path processing tasks. Packets may be buffered at the

inputs, and relevant fields of the packet (for example, the packet header) are being

sent to the pool for resolution. Such an architecture does not suffer from under-

utilization because loads of all the inputs are combined at the pool. Instead, the pool

interconnect tends to become a major bottleneck. Another drawback is that if load

balancing is performed over the pool, the load balancing device is a single point of

failure for the entire router.

Two of the possible router architectures belonging to this space (albeit without

considering the switch element), fully distributed and parallel, were examined and

compared in [10]. In the fully distributed case (Fig. 2.3), each line card (LC) has

a dedicated LFE attached. When a packet arrives at an LC, its LFE searches for

16 CHAPTER 2. STATE OF THE ART

Figure 2.3: Distributed router architecture (LC: line card, LFE: local forwarding
engine, MFE: master forwarding engine, CP: control point).

the appropriate route. If the route is found, the packet is immediately forwarded

through the switch to the output LC. If an LFE is not able to determine the route

(e.g. contains only a part of the routing table), or does not have enough processing

power to handle all the arriving packets, it sends the packet header to the MFE,

which contains a copy of the entire routing table and therefore is able to find the

appropriate route. In general, as the MFE stores the entire routing table and should

be able to assist all LCs, it is considerably more powerful than an LFE.

In the case of a parallel router architecture (Fig. 2.4), the router contains a pool of

several high-performance MFEs that handle the router’s entire workload. Any MFE

can take on a new request as soon as it has processed the previous one. As long

as the switch can handle the additional traffic, the total system processing power is

considerably higher than in the case of a fully distributed system, but also the total

system cost rises accordingly.

The content of the routing table is managed by the router control point (CP),

which often resides in the same hardware unit as the MFE. The CP uploads the table

to the FEs. As the CP is a processor dedicated to the control plane rather than to

the data plane within router, it is not considered in the optimization, neither in [10],

2.3. ROUTER ARCHITECTURE 17

Figure 2.4: Parallel router architecture (LC: line card, MFE: master forwarding en-
gine, CP: control point).

nor in this work.

A simple framework for assessing the cost vs. performance ratio was applied in

[10]. The cost and performance differences between a fully distributed and a parallel

architecture, as well as the influence of various system parameters on the ratio, were

studied. The optimizations were carried out by constraining the maximal packet-

processing time and the maximal FE processing power while minimizing the total

cost of the system.

The results of the optimization in [10] in the case of the distributed architecture

indicate that as the cost ratio between MFE and LFE increases, it is more efficient

to use the fully distributed architecture rather than a centralized one without LFEs.

Similar behavior occurs when the fraction of packets an LFE unsuccessfully processes

decreases. The parallel architecture is more expensive than the distributed one for

the same workload, but it is scalable and thus able to handle a much higher workload.

Other designs [21], [51] seek to combine both approaches by containing remotely

located (at a different switch port than the input line cards) network processors or

forwarding engines, which serve a certain predefined set of inputs to carry out the

packet processing tasks on packets arriving at a these inputs. Again, the traffic may

not be evenly distributed over these sets, which leads to less efficient utilization.

18 CHAPTER 2. STATE OF THE ART

Tantawy, Zitterbart and Koufopavlou [33] [61] have concentrated on exploring

the possibilities of parallel implementations of the TCP/IP packet processing within

routers. In these studies, functional decomposition of individual packet processing

tasks has been determined and various possible forms of parallelism have been cate-

gorized: spatial parallelism, pipelining or concurrent operation.

In a study on future router architectures, Kumar, Lakhsman and Stilliadis [34]

emphasize that due to the nature of networking transport protocols, it is often illegal,

or at least extremely undesirable, to allow packet reordering within a packet flow.

Although the widely used TCP protocol attempts to tackle this problem by correct

reordering at the destination, reordering slows down data delivery, increases receiver

buffer size and still may not prevent some undesirable retransmissions and subsequent

network congestion. If packets from the same flow are to be processed by different

processors, packet reordering can easily occur. Therefore, packets belonging to a

particular flow should be processed by the same processor.

Dittman and Herkersdorf [16] present a hardware-based load balancer, designed

for scaling the performance of network processors that handle the load at router

interfaces. A single high-speed link can be balanced over multiple network processors

of lower capacity. The load balancer uses an adaptive hash-table. Flows that exceed

the capacity of a single processor are sprayed over multiple processors.

2.4 Server farms

2.4.1 Architectural demands

Connection speed, low latency, fault tolerance, and ease of management are the key-

words for the contemporary web server architectures. As web sites handle ever-

increasing numbers of clients, the traditional solution, increasing the capacity of the

servers, is becoming neither economically sound, nor scalable. Various techniques

have been proposed and implemented in recent years in order to scale with the growth

of the Internet.

2.4. SERVER FARMS 19

The solutions must continue to function appropriately even as they (or their con-

text) evolve in size or volume. Flexible, easy-to-integrate products are required. Fault

tolerance is a must, as the web sites must be able to operate not only under any traf-

fic condition (including hostile traffic such as hacker attacks), but also in cases of

unexpected internal problems (like software errors or hardware failures).

The typical contemporary solutions addressing the Web growth are server farm

load balancing, Web caching and Content Delivery Networks (CDNs). Before review-

ing the server farm load balancers in more detail, we provide a general overview of

the other two solutions.

2.4.2 Web caching and content delivery networks

Web caching

This technique employs local memories (caches) containing copies of the objects ac-

cessed most often (for example web pages). There are typically three ways to imple-

ment caching. With Proxy Cache, the internet browser is configured to first look for

the resource directly in the cache. If the cache does not contain the object the web

browser will contact the Web server. This approach is not generally used because it

requires manual configuration. With Transparent Caching, the network automatically

redirects the request to one or more caches through devices called cache re-directors.

If a cache does not contain the required content, the request is redirected to the actual

web server. Finally, with Reverse Proxying, the Web cache receives requests from the

clients, proxies them to the Web server, and caches the response itself on its way back

to the client. This means that when the request is repeated, the proxy server itself

can provide static content from its cache.

Content delivery networks

Content Delivery Networks (CDNs) are private networks of geographically dispersed

caching servers at the edge of the Internet. They bring content (like, for example,

multimedia streaming) closer to the users and speed up its delivery. The CDNs

20 CHAPTER 2. STATE OF THE ART

Figure 2.5: Server load balancing topology.

are an evolution of the caches. When the Web user clicks on a URL, the content-

delivery network re-routes that user’s request away from the site’s original server

to a cache server closer to the user. The three main techniques for the redirection

are HTTP redirection, Internet Protocol (IP) redirection, and domain name system

(DNS) redirection. In general, DNS redirection to the cache server is the most effective

technique. The cache server determines what part of the content of the request exists

in the cache, serves that content, and retrieves any non-cached content from the

originating server. Any new content is also cached locally. Other than faster loading

times, the process is generally transparent to the user, except that the URL served

may be different from the one requested. CDN technologies are developed for example

by Akamai [56] or Speedera [57].

2.4.3 Server farm load balancing

This is the most common technique of scaling a Web server capacity. As shown in

Fig. 2.5 a pool of web servers, forming a server farm together, is connected to the

Internet by a load balancer that acts as a front-end machine that intelligently directs

2.4. SERVER FARMS 21

the clients (their TCP connections) to the servers according to the servers’ capacities

and status. This allows each server to operate more efficiently. The choice of the

server falls into two basic categories: content unaware and content aware.

In the content unaware case there are no dedicated web servers for some specific

protocols and thus all of them can process any kind of request. Every time the load

balancer receives a request for a connection (SYN), it redirects the TCP connection to

a server that will execute the TCP three-way handshake. The redirection is generally

based on Layer 2, 3 or 4 information such as IP addresses or ports numbers.

In the content aware case, the load balancer is an end-point of the TCP connection,

and can interpret the user’s request through parsing the layer-7 information (i.e. the

URL). The redirection happens after the TCP three-way handshake between the

load balancer and the user. Each server may contain different contents or possess

different levels of security. This solution is more flexible, but more demanding than

the unaware case, considering that the load balancer must be able to parse layer-7

information spread over several packets.

It is typically required that the load-balancing solution is able to ensure sticky

connections, that is, connections that are always redirected to the same server. Some

applications require sticky connections, like, for example, filling of forms, shopping

carts or bank transactions.

These particular connections are typically handled in three ways:

• The load balancer stores the pair [user ID, IP address] into a table. This solution

does not work with the Network Address Translation (NAT), because for each

new connection of the same user, there may be a new, dynamically assigned

source IP address;

• The real server or the load balancer are able to distinguish a sticky-connection

and send a cookie back to the user that is used next time to redirect the con-

nection. This solution does not work with encrypted connections;

• The real server or the load balancer uses HTTP to redirect to the correct real

server.

22 CHAPTER 2. STATE OF THE ART

DNS-based server load balancing

A readily available software load balancer is the Berkeley Internet Name Daemon

(BIND) [12], developed by the Internet Software Consortium (ISC). It resides in the

primary web server and intercepts packets as they enter the web site. When a DNS

request arrives, it uses the DNS Round Robin to select a particular IP address from a

pool of addresses. The selection pointer selects the addresses in a round-robin fashion.

This solution has numerous drawbacks:

• Even if the load balancer spreads the connections evenly, there is no relationship

to the load of individual connections. Thus some servers might have to handle

much more load than others.

• If the primary web server fails, the entire farm is disabled.

• No consideration about the type of content requested.

• Does not work well if session state must be maintained.

• Does not work well if the servers are of heterogenous capacity.

• With large server farms, DNS Round Robin is difficult to configure.

Shaikh, Tewari and Agrawal [54] conduct a study on the effectiveness of a DNS-

based server selection. The authors identify as a significant drawback the fact that

DNS-based schemes typically disable client-side caching of name resolution results,

thus increasing the resolution overhead by up to two orders of magnitude.

Advanced load balancers

A large variety of more complex load balancers exist nowadays. We provide a brief

overview of some of the commercially available products.

The Central Dispatch from Resonate [48] is a software-based server management

solution. It employs port load balancing: after creating the additional server processes

in the actual server cluster, Central Dispatch users simply specify the range of ports

on the server to which incoming requests should be mapped. The incoming requests

2.4. SERVER FARMS 23

are then forwarded to the most suitable server based on predefined scheduling policies.

When port load balancing is configured, port selection at the server is performed, for

example, in a round-robin manner; if one port does not respond, another port on the

same machine is selected.

The Windows NT Load Balancer Service (WLBS) [41] from Microsoft is controlled

by a distributed management software, which distributes the incoming load of IP re-

quests across a cluster of multiple Windows nodes. The load-balancing scheme is

based on the robust hash routing algorithm, described in Section 2.2.3, that incor-

porates the client IP address, its port number, or both, to determine which server

responds. It is possible to specify a load percentage for each server. When changes

occur, the load balancer starts a convergence process that automatically reconciles

the changes in the cluster and transparently redistributes the incoming load.

IBM Network Dispatcher [24] is a software tool that routes TCP connections to

multiple servers that share their workload, based on a monitored load metric. The

algorithm contains an adaptive control loop, but it is required to maintain state

information where each TCP connection has been mapped.

A dedicated load balancer is a configurable stand-alone appliance, which offers

some router-like functionalities or is tightly integrated with an existing router sys-

tem. Examples of such load balancer appliances are the Equalizer from Coyote Point

Systems [60], BIG-IP LoadBalancer from F5 Networks and Cisco’s Local Director.

The F5 Networks BIG-IP LoadBalancer 520 [22], is situated between the network

and the server farm and automatically routes incoming queries to the most available

server. It also provides support for heterogeneous server farms. The load balancer

intercepts all data packets addressed to the site’s IP address and distributes them to

the appropriate server. The supported load-balancing algorithms are:

• Fastest–user connections are passed to the available server that responds the

fastest;

• Round Robin–traffic is sent to the next available server in a predetermined

sequence;

24 CHAPTER 2. STATE OF THE ART

• Least Connections–the user is connected to the server with the least number of

current connections;

• Ratio–assigns fractions to the server that best fits the request, according to a

system that assigns weights for various factors, such as server capacity.

Local Director from Cisco Systems [59] is a connection manager appliance, tightly

integrated with the Cisco routing and switching (”forwarding agent”) products. When

a forwarding agent receives a connection request, the request is forwarded to the man-

ager (Local Director). The manager makes the load balancing decision and instructs

the forwarding agent with the optimal destination. After destination selection, session

data is forwarded directly to the destination without further manager participation.

The load-balancing decisions can be based on various algorithms: application avail-

ability, server capacity, round robin, least connections, or Dynamic Feedback Protocol

(DFP).

Another family of server load-balancing devices falls into the category of content

smart switches and routers. These are standard switches or routers with some extra

features enabled, including server load balancing. Examples are the suite of Alteon

switches from Nortel Networks [42] or the Content Smart Switches and Routers from

Cisco Systems [58]. Typically, they support load balancing over various entities, like

servers, firewalls or multi-homed links. The server selection is based on server load

and application response time, or the least connections or the round-robin algorithms.

2.5 Conclusions

In this chapter, we have reviewed the previous research and developments in the areas

relevant to this thesis—in the load-sharing field and in the field of router architecture

and of web server farm load balancing, as examples of multiprocessor systems within

networks. In the load-sharing discussion, we have covered in depth the highest random

weight (HRW) mapping algorithm, as it is a foundation for our adaptive load-sharing

method presented in Chapter 4.

2.5. CONCLUSIONS 25

Some conclusions with respect to the topic of this thesis can be reached based on

the works reviewed. Firstly, it is a clear trend, primarily for the reasons of scalability

and fault tolerance, to equip network nodes with multiple processors. However, there

are open questions as to what kind of architecture exploits such a multiprocessor

system best.

Other findings show that it is non-trivial to design a hash-based, and thus fast,

load-sharing method that would yield reasonable load balancing performance and yet

not be computationally intensive. In the field of web servers, clearly the load-sharing

techniques rely primarily on maintaining some form of state information about the

connection mapping, regardless of the discipline used for the mapping establishment.

This results in good load balancing performance, as the discipline can be periodically

adapted, yet at a high cost of maintaining large amount of state information. It is the

goal of this thesis to develop a method that preserves the advantages and overcomes

the drawbacks of the techniques discussed.

26 CHAPTER 2. STATE OF THE ART

Chapter 3

Optimizing router architecture

3.1 Introduction

In this preparatory chapter, a model of an essentially distributed router is optimized

from various perspectives, to obtain a more detailed understanding of the issues in

the router architecture design space.

In the first part, we optimize the model from the perspective of the total cost of

the entire system. The objective of the method is to serve as a general means for

optimizing a router architecture with a given set of input constraints. The constraints

are maximum line interface bandwidth, number of router line cards and maximum

packet processing delay within the system.

To carry out the optimization on a realistic system model, the system model

contains further constraints, which can be interpreted as technological limits, such

as the maximum processing power of the forwarding engines (FEs) or the maximum

switch port speed. The full set of constraints defines a space of feasible solutions over

which the optimization is carried out. The optimization cost function is an aggregate

of estimated market-based costs of the individual elements. The cost is expressed as

a function of the technological parameters of each element.

The optimization output consists of variables describing the optimal architecture–

the processing power of the local forwarding engines (LFEs) and of the main forward-

ing engines (MFEs), number of MFEs, switch port speed, and the distribution of

27

28 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

packet processing among LFEs and MFEs. Based on the results of the optimization,

we reach some general conclusions about the most economical router architecture for

a given set of constraints.

In the final section of this chapter, optimization in terms of maximizing the pro-

cessing capacity while remaining within certain performance constraints is discussed.

We define the term of acceptable load sharing and show how abiding by such principle

routers may increase their processing capacity. Finally, some conclusions with respect

to the applicability of load sharing within a router system are presented.

The chapter is organized as follows: Section 3.2 presents the router architecture

model, and, in Section 3.3, the cost optimization problem is described in detail. In

Section 3.4, results of the most interesting cost optimizations are discussed; Section 3.5

explores router optimization from the load-sharing point-of-view, and, finally, Section

3.6 contains some concluding remarks.

3.2 General distributed router architecture

3.2.1 Router model

A general model of an essentially distributed router architecture is optimized. Our

model (see Fig. 3.1) contains a fixed number of LFEs (one per router input) of vari-

able processing power (including null processing power, meaning that the LFEs are

absent), a variable number of MFEs with variable processing power, and a switch

of variable port speed. This work extends the model presented in [10] by a switch

element and an LFE queuing and queue overload model. Furthermore, we present

a hybrid, more general router architecture model, encompassing a large space of

possible, in essence distributed, router architectures, including the centralized, fully

distributed and parallel cases presented in [10].

We consider a router having k LCs, with an LFE attached at every LC (see Fig.

3.1). A switch element interconnects all the LFEs and the pool of m parallel MFEs.

All the possible sequences the processing of a packet may take–at an LFE, at an MFE,

or at both processing units—are accounted for. A fraction r ∈ [0, 1] of the incoming

3.2. GENERAL DISTRIBUTED ROUTER ARCHITECTURE 29

MFE

MFE

MFE

CPLC

LC

SWITCH

LFE

LFE

Figure 3.1: LFEs, switch and MFEs within the general distributed router architecture
model.

traffic is processed locally at the LFEs; the fraction 1 − r is diverted directly to the

MFEs without being enqueued at the LFEs (see Fig. 3.2). Thus, if r = 0, LFEs are

not used at all and the router consists only of a pool of parallel MFEs and a switch.

When r > 1 the LFE may not be able to handle all the traffic destined for it locally,

for various reasons, such as for being overloaded (see Section 3.2.2). Such traffic is

sent to the MFEs as well, but only after passing through the LFE. Thus, if r = 1, all

the traffic is enqueued at the LFEs, yet a fraction that the LFEs will not be able to

process will still subsequently be sent to the MFEs.

Arriving traffic is modelled as a Poisson process. The mean arrival rate at each

input LC is λi packets per second (pps). The total router load is thus λ = k λi. The

analysis carried out is a worst-case scenario, where we consider all the links to be

fully loaded. In reality, workloads on different LCs are generally not uniform and

may vary significantly over time. This implies that LFEs with a higher workload

would forward more packets to the MFEs for processing than LFEs with a smaller

workload, and one can imagine a feasible problem solution where for some periods of

time, individual LFEs would be overloaded. We have experimented with nonuniform

workload distributions on different LCs and the LFE overload, but the optimization

results did not differ significantly from the uniform model. Nonuniform LC workloads

are therefore not included in the model. The LFE model, as presented in Section

3.2.2, is applicable for the overload modelling, however the optimization never finds

an overloaded LFE solution to be the optimal one.

30 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

T 1

λ i b’ λ iλ rf)= r b (1−

b’ λ iλ o=r

λ iλ p=(1−r)

λ sum

T 2

λ LFE

µ MFE

µ MFE

µ LFE

n

MFELFE SWITCH

Figure 3.2: Model of the general distributed router architecture with multiple LFEs
and MFEs.

With respect to the optimization, parameters k and λi are a part of the optimiza-

tion input, whereas values of r and m are a part of the output.

3.2.2 LFE and MFE model

The processing power of an MFE is µMFE pps, and that of an LFE is µLFE pps. We use

µmax as a bound on the maximum number of packets an FE can handle per second.

The possible scenarios of packet-processing distribution among LFEs and MFEs

are depicted in Fig. 3.2. The fraction of traffic arriving at an LFE is λLFE = rλi. A

fraction λp = (1 − r)λi is pre-scheduled directly for processing at the MFEs.

Regarding the packets sent for resolution through the switch to the MFEs, we

assume that it is only the packet control information, i.e. the packet header, that

travels through the switch (as in [27]). The packet payload is assumed to be buffered

until a resolution of the packet processing task arrives from the MFE pool, again,

travelling through the switch. Thus, in terms of number of packets, the amount

travelling through the switch is the same, yet in terms of bits, only a fraction of the

packet size makes the trip to the MFEs. In this work, the processing overhead and the

memory size requirements for the packet header detachment, the payload buffering,

and the packet reassembly are not considered.

3.2. GENERAL DISTRIBUTED ROUTER ARCHITECTURE 31

Furthermore, we assume that a single LFE workload, λLFE, can be greater than

its processing power µLFE. The LFE queue size n is introduced as a parameter to

model the LFE overload. When the LFE queue is full, a packet cannot be processed

by the LFE and is forwarded to the MFE pool. Note that the overload traffic does

not have a Poisson distribution because the probability that an LFE queue is full

depends on the LFE load, but, for the sake of simplicity, we approximate it with a

Poisson distribution as follows: the LFE queue is an M/M/1/n queue. Thus, the

probability of a packet arriving at a full LFE queue is (see [31]):

b′(λLFE) = Pn =
1 − ρ

1 − ρn+1
ρn, ρ = λLFE/µLFE. (3.1)

Thus, we assume the fraction of traffic λo = b′ λLFE = r b′ λi to be sent to the MFE

pool due to LFE overload.

Furthermore, as in [10], even if a packet is being processed by an LFE, with a fixed

probability b the LFE will not be able to find the packet next hop, and the packet is

likewise forwarded to the MFE pool. Such packets account for route table misses, for

example when the LFE acts only as a cache, storing a fraction of the routing table.

We denote such a fraction of traffic as λrf = r b (1 − b′)λi.

Finally, the fraction of traffic that actually does get resolved at the LFE and

is forwarded directly to the outgoing switch port is λq = λi − (λp + λo + λrf) =

r(1 − b)(1 − b′)λi.

In Fig. 3.2 we observe that there are three possibilities for a packet to be queued.

Either a packet is queued at an LFE and waits for time T1, it is forwarded to the

MFE and waits for T2, or it is queued at both the LFE and the MFE owing to the

LFE resolution failure.

Note that given the various paths the packet processing in the router can take,

packets belonging to a particular flow may be reordered, which is highly undesir-

able [34]. In the interest of simplicity, we do not consider the additional processing

overhead required to prevent reordering in this section.

32 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

LFE processing time

The average number of packets in a processor, the average workload arriving at the

LFE queue, and the average LFE response time are

N(λLFE) = ρ × nρn+1 − (n + 1)ρn + 1

ρn+2 − ρn+1 − ρ + 1
(3.2)

λa = λLFE ∗ (1 − Pn) = λLFE ∗ 1 − ρn

1 − ρn+1
(3.3)

W (λLFE) =
N(λLFE)

λa

=
1

µ
× 1 − ρn+1

1 − ρn
× nρn+1 − (n + 1)ρn + 1

ρn+2 − ρn+1 − ρ + 1
. (3.4)

Observing the behavior of a saturated LFE, we see from Eq. (3.4) that for higher

n, the waiting time is longer. Therefore, a router with long LFE queues would be

penalized with respect to the packet delay time compared to an equivalent router with

smaller queues. On the other hand, a router with extremely small LFE queues (e.g.

n = 1) would have frequent queue overflows even on the nonsaturated LFEs, which

would again penalize its performance. The queue length n thus has to be chosen

carefully in order to achieve optimal performance. Ideally, n should be included in

the optimization of the system parameters. Experimentally, though, we have found

that changes in n do not have a very significant influence on the optimization in

comparison to other factors, especially as the optimization never finds an overloaded

LFE to be the optimal solution. Thus, to simplify the analysis, we use fixed n values.

Note however that in reality, a queue of larger size would be necessary to handle

bursty traffic, for which we do not account for in our model. Time T1 is simply the

average response time W (λLFE).

MFE pool processing time

The MFE pool queue is, as in [10], a simple infinite M/M/m queue, with the input

workload representing the sum of non-processed packets from the LFEs, together with

the pre-scheduled packets. As the part of workload sent for resolution to the MFE

represents a sum of Poisson processes, the sum is a Poisson process as well. This

3.2. GENERAL DISTRIBUTED ROUTER ARCHITECTURE 33

workload and the corresponding M/M/m queue waiting time are on average [31]:

λsum = k (λp + λo + λrf) (3.5)

T2 =
1

µMFE

+
ρPQ

λsum(1 − ρ)
, (3.6)

where

ρ =
λsum

mµMFE

, P0 =
1

m−1
∑

j=0

(mρ)j

j!
+ (mρ)m

m! (1−ρ)

, PQ =
P0(mρ)m

m! (1 − ρ)
. (3.7)

Considering the MFE pool an M/M/m queue may not necessarily be realistic, as we

again do not account for the overhead to prevent packet reordering. Either a load

balancing device in front of the pool, or packet re-sequencer at the exit of the pool

would have to be in charge of maintaining the packet order. However, such mechanism

may prevent the pool from acting as an M/M/m queue. For simplicity, we do not

consider the devices and overhead required to ensure the packet sequence.

3.2.3 Switch model

General input/output switch

The switch is characterized by two parameters—the switch port speed s and the

number of input ports k. As k is an input to the optimization, s is the only parameter

optimized by the method. The switch port speed is expressed in terms of transmission

time per the fixed size switch cell, that is, in seconds per cell. The parameter s is

constrained from below by the technological limit of smin, s > smin, which means

that a fixed-size switch cell cannot be transmitted at a switch port in less than smin

seconds. To avoid confusion with the intensity indicators in packets per second, the

intensity indicators in switch cells per second are denoted with ∗ , e.g. λ∗ instead of

λ.

We include the switch in our model by introducing the switch delay. In order

to model the switch delay time, we consider a formula for an input/output-queued

34 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

switch derived in [26] and [25]. In the interest of simplicity, we assume that the

switch has infinitely large output queues, and that the number of inputs is large (i.e.

greater than 16, [26]). In the case of a lower number of inputs, the performance of

the switch is actually better than the formula depicts (as described in [30]), owing to

lower contention, but in such a case the formula can still be used as a rough upper

bound. Note that the head-of-line congestion at the input port considered in [26] and

[25] has been eliminated in the latest switch architectures; however, in this work, we

conform to this model in order to obtain a simple analytical formula for computing

the switch delay.

A cell arriving at an input port first waits at the input queue, then at the head of

the input queue because of head-of-line congestion, and, finally, at the switch output

port (see Fig. 3.1). We denote Wi(λ
∗
x) as the average waiting time until the head of

the input line is reached. The term λ∗
x denotes the intensity of the input traffic (in

switch cells per second). This is an M/G/1 queue with service time Wb(λ
∗
x) equal to

the time a cell spends waiting at the head of the input queue owing to head-of-line

congestion. We denote Dout(λ
∗
y) as the average delay from the instant a cell appears

at the head of its input queue until the instant it begins transmission at the output

port. As shown in [26], this is an M/D/1 queuing system, as we assume the switching

matrix speed to be constant and the input traffic to be Poisson. The term λ∗
y is the

intensity of the aggregated Poisson flow arriving at the output port (in switch cells

per second).

The switch traffic consists of k equally loaded local ports and one additional port,

the master port, used for transferring the packet headers to and from the MFE pool

(see Fig. 3.3). As we consider infinite output queue sizes, waiting time due to head-of-

line congestion is Wb(λ
∗
x) = 0 because a cell can be queued at the output the moment

it arrives at the head of an input queue. It follows from [26, Eq. (2.9)] that

Wi(λ
∗
x) =

λ∗
xs

2

2(1 − λ∗
xs)

,

where λ∗
x denotes the intensity of the input traffic (in switch cells per second) and s

denotes the switching matrix processing time. From the analysis of an M/D/1 queue

3.2. GENERAL DISTRIBUTED ROUTER ARCHITECTURE 35

λ
1

λ
2

LFE

MFE

*

*

Figure 3.3: Traffic flows within the switch; λ∗
1 represents the amount of traffic leaving

the local port (equal to the amount arriving at the local port), and λ∗
2 represents the

amount of traffic arriving at the master port (equal to the amount that leaves the
master port).

we have

Dout(λ
∗
y) =

λ∗
ys

2

2(1 − λ∗
ys)

,

where λ∗
y is the intensity of the aggregated Poisson flow arriving at the output port

(in switch cells per second).

In order to exploit the above switch model in conjunction with the FE models,

we need to transform the load variables to a common unit: packets per second. As

Internet packets are variably sized, we need to use some approximations to establish

a relationship to the fixed-size switch cells. Two kinds of packets travel through the

switch—entire packets, and the packet headers traveling between the LFEs and the

MFE pool (see Fig. 3.3). Let S̄P denote the average size of a packet in the router

incoming traffic, and S̄H the average size of a header message traveling in the switch.

We assume that a packet header corresponds in size to a single switch cell. We

denote c as the ratio between the packet header cell size and the average packet size,

c = S̄H/S̄P . Thus an average packet accounts for 1/c switch cells. Measurements

and analysis have shown that the Internet traffic distribution is highly nonuniform.

Empirical values in recent studies show S̄P
.
= 300 B [63]. A typical switch cell size

is 64 B, with the payload part being equal to 60 B. Thus, a 40–44 B packet header

usually fits into a single such cell, S̄H = 64 B and, consequently, c
.
= 0.2 is a good

typical value.

36 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

The transfer of packet headers among the processing engines may be time con-

suming, especially when the switch traffic is already high. In the interest of simplicity,

we assume that the two kinds of traffic travelling within the switch, entire packets

and packet headers, are not distinguished in any way by the switch element. Thus,

the packet header communication overhead traffic saturates the switch further. Note

that with the latest switch designs, full decoupling of the two kinds of traffic may be

achievable by using different switch priorities or separate switch planes. The following

paragraphs describe the introduction of the overhead into the model.

A fraction of traffic is sent to the MFE pool for processing. With reference to Fig.

3.3, we have

λ∗
1 =

λi

c
+ (λp + λo + λrf), λ∗

2 = k (λp + λo + λrf), (3.8)

where λ∗
1 is the total switch outgoing traffic at an LFE port (comprising both packet

headers and entire packets) and λ∗
2 is the switch outgoing traffic at the master port

(comprising packet headers only). The values of λ∗
1 and λ∗

2 are expressed in switch

cells per second, whereas λi, λp, λo, and λrf are expressed in packets per second.

From the above discussion, we see that the waiting time for a packet header

traveling to the MFEs is Wi(λ
∗
1) + Dout(λ

∗
2) and that the waiting time for the way

back to the output port is Wi(λ
∗
2)+Dout(λ

∗
1), hence the total switch delay for a packet

header trip is

DH(λi) =
λ∗

1s
2

1 − λ∗
1s

+
λ∗

2s
2

1 − λ∗
2s

. (3.9)

An entire packet traveling through the switch after its destination output port has

been found by the next-hop resolution process experiences a per-cell delay of Wi(λ
∗
1)

at the switch input and a per-cell delay of Dout(λ
∗
1) at the output port, and occupies

on average 1/c switch cells. Thus the mean switch delay for the entire packet is

DP (λi) =
1

c
(Wi(λ

∗
1) + Dout(λ

∗
1)) =

λ∗
1s

2

c (1 − λ∗
1s)

. (3.10)

3.3. COST OPTIMIZATION 37

3.2.4 Time a packet spends within the system

The mean time T a packet spends in the system is

T =
λi − λp − λo

λi

T1 +
λp + λo + λrf

λi

T2 +

+
λp + λo + λrf

λi

DH(λi) + DP (λi), (3.11)

where the first element represents the fraction of packets processed by the LFEs, the

second the fraction of packets processed by the MFEs, the third the switch delay for

a remotely processed packet header, and the fourth the switch delay for the entire

packet traveling through the switch.

3.3 Cost optimization

3.3.1 Forwarding engine cost

To simplify the problem, the cost associated with an FE is assumed to be a linear

function of processing power of the form:

costMFE (US $)
.
= c1 µMFE, costLFE (US $)

.
= c2 µLFE, (3.12)

where µLFE and µMFE are expressed in packets per second. We denote a as the ratio

of the two coefficients, a = c1/c2.

3.3.2 Switch cost

Effective switch throughput

Recall that s is the switch speed, and k the number of input ports. In order to establish

a general measure of the switch performance, we define the saturation throughput of

the switch to be λ∗
s = k/s (in switch cells per second). The notion comes from the

38 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

fact that the switch delay,

D(λ∗
i) =

λ∗
i s2

(1 − λ∗
i s)

, (3.13)

tends to infinity as the per-input switch load λ∗
i (in switch cells per second) approaches

1/s (see [26]).

We denote as the effective switch throughput λ∗
e = αλ∗

s a fraction α of the satura-

tion throughput for which the delay remains within reasonable bounds. For Internet

applications, we assume α = 0.9. A common switch performance metric used by

the industry is the switch effective throughput λ′
e measured in bps. The relationship

between λ∗
e and λ′

e holds as:

λ′
e = 8 S̄H λ∗

e . (3.14)

Switch cost function

To establish a switch cost function costS(s, k) dependent on the switch performance,

we establish a relationship between λ′
e in bps and the switch cost in US $. We assume

that within certain limits of k ≤ k0, there is a linear dependency of the switch cost

on the switch effective throughput λ′
e, which can be characterized by the following

formula:

costS(s, k) (US $)
.
= c3 λ′

e(s, k), where k ≤ k0. (3.15)

The limit of k0 denotes the limit for single-stage switches. For k > k0, we assume

more aggressive growth of the switch cost with λ′
e, because we assume that such a

switch can only be built using a multistage architecture. A typical empirical value of

k0, which is also used in this work, is k0 = 64. From the fixed point of k0, we assume

a cost function dependency of linear-logarithmic form, approximately:

costS(s, k) (US $)
.
= c3 λ′

e(s, k) log(λ′
e(s, k)), where k > k0. (3.16)

3.4. NUMERICAL RESULTS 39

In the interest of a smooth transition and reasonable values, we normalize the function

as followings:

costS(s, k) (US $)
.
= c3 λ′

e(s, k) log

(

e +
λ′

e(s, k) − λ′
e(s, k0)

λ′
e(smin, k0)

)

, where k > k0.(3.17)

3.3.3 Total system cost

The total system cost formula holds as

cost = m c1 µMFE + k c2 µLFE + costS(s, k). (3.18)

3.3.4 Optimization problem

The cost is optimized over the tunable system parameters: (r, µMFE, µLFE, s,m).

Given the maximum allowed mean packet processing time Tmax, we derive the follow-

ing optimization problem:

Optimization function Parameters Constraints

m c1 µMFE + k c2 µLFE + costS(s, k) {r, µMFE, µLFE, s,m} 0 ≤ r ≤ 1

0 ≤ µMFE < µmax

0 ≤ µLFE < µmax

smin < s

T < Tmax

1 ≤ m.

Note that m is an integer, whereas all the other optimized parameters are rational

numbers.

3.4 Numerical results

3.4.1 Optimization

Numerical results have been obtained using the Matlab Optimization Toolbox en-

vironment. First, the value of m is increased until there exists a feasible solution,

40 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

and then the constrained nonlinear optimization function fmincon is used to find the

optimum. The system variables in our optimizations have been set to the following

values: Tmax = 10−6 s, c2 = 6 × 10−5, c3 = 10−8, µmax = 6 × 106 pps, smin = 10−9 s

(meaning a fixed-size switch cell would have to be transmitted at a switch port within

1 ns), n = 100. The values have been selected to approximate the limited market

information available.

The ratio of costs of equally powerful LFEs and MFEs, a, is alternated in our

simulations over values a ∈ {2, 10, 100} and influences several variables. Variable c1

is dependent on c2 and a, c1 = ac2. The value of b reflects a in the following manner:

we assume that a can be interpreted as a difference in memory size available to the

processing engines. Thus a determines a fraction of the memory available at an LFE,

and b, the fraction of nonresolvable packets at an LFE, reflects the cache miss rate at

an LFE. A sample dependency between a cache hit-rate and cache size can be found

for example in [40]. Based on that, we use the following pairs of (a, b): (2, 0.1), (10,

0.2), (100, 0.9).

Figures 3.4 - 3.16 show plots of the output variables over a spectrum of the number

of inputs k and link speeds λi. The number of inputs k grows geometrically with

a coefficient of 2, k ∈ {8, 16, 32, ..., 1024}. The values on the maximum interface

bandwidth λi axis grow geometrically with a coefficient of
√

2, thus including link

speeds approximately corresponding to the capacities of 10 Mb – 1 Gb Ethernet and

OC-48 – OC-768 links, in Mpps, that is, λi ∈ {0.025, 0.035, 0.050, ..., 6.40, 9.05} Mpps.

3.4.2 Total system cost

Figure 3.4 depicts the system cost on a linear and a logarithmic plot for a = 10. The

cost grows exponentially along both the k and λi dimensions, with a steeper increase

in the high λi segment, which is due to the increasing influence of the switch cost on

the total cost.

3.4. NUMERICAL RESULTS 41

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0.0×10
0

4.0×10
6

8.0×10
6

1.2×10
7

1.6×10
7

System cost

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

System cost

Figure 3.4: Total system cost.

3.4.3 Distribution of resources—LFEs, MFEs and switch ca-

pacity

Figure 3.5 shows how the optimization selects between the two extreme points of the

solution space. For a smaller part of the problem space, r attains the value of 0,

meaning no LFEs are needed. When r is equal to 1, the results indicate that it is

cheaper to add and fully stress the LFEs to be able to handle the load.

It is clearly visible that a certain boundary divides the problem space into two

regions. Typically, for systems with a small number of inputs and small link loads,

deploying LFEs is too expensive and r = 0. This somewhat counter-intuitive result

comes from the fact that the processing capacity needed for one M/M/1 queue serv-

ing the aggregate load is smaller than the processing capacity needed for k M/M/1

queues, each serving 1/k of the aggregate load, if both systems need to conform to

the same time constraint. As the relationship is nonlinear, with the increase in the

total amount of processing capacity required, at a certain boundary it becomes more

economical to use the multiple, less powerful processors, and thus, for systems with

a higher number of ports or higher link loads, LFEs are more economical to fulfill

the performance requirements and r = 1. The exact curve of the shift differs for

various a. Two further observations can be made. For a = 2 and a = 100, r starts to

decrease from 1 towards 0 for very high λi. Furthermore, for a = 100 and very high

42 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

r

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

r

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

r

Figure 3.5: Fraction of traffic enqueued at LFEs, r.

k and λi, r is undefined, meaning that it is not feasible to build a router with the

constraints given. Observing the optimization results of other parameters leads to a

better understanding of these phenomena.

Figures 3.6 and 3.7 show on a logarithmic scale the optimal amount of total

processing power within the system and its cost. Figures 3.8 and 3.9 show on a

logarithmic scale the optimal switch, characterized by the saturation throughput,

and its cost.

Figures 3.6 to 3.9 explain the differences in the shape of the boundary between

r = 0 and r = 1 in Fig. 3.5. We observe a trade-off between increasing the switch

throughput and deploying LFEs. The influence of the switch cost, however, differs

when the factor a changes. The lower a, the higher the influence of the switch cost

on the boundary shape, because when a and b are low, the total system cost remains

lower and the switch cost influences the trade-off between r = 0 and r = 1, described

above. However, when a is large, b becomes large as well, and a large fraction of

the packets processed at the LFEs have to travel to the MFEs anyway, thus the

introduction of LFEs is beneficial only for very high link speeds. The MFEs and the

system in total are then very expensive, and the switch cost is no longer a factor in

the trade-off.

3.4.4 Distribution of processing capacity—LFEs and MFEs

Figure 3.10 shows the optimal amount of processing power at each individual LFE.

For a = 2 and a = 100, the LFE processing power µLFE reaches the upper limit µmax in

3.4. NUMERICAL RESULTS 43

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

k µLFE + m µMFE [Mp/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

k µLFE + m µMFE [Mp/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

k µLFE + m µMFE [Mp/s]

Figure 3.6: Total processing power of the FEs.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

FEs cost

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

FEs cost

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

FEs cost

Figure 3.7: Total cost of the FEs.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
1

10
3

10
5

λs [10
6
 c/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
1

10
3

10
5

λs [10
6
 c/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
1

10
3

10
5

λs [10
6
 c/s]

Figure 3.8: Switch saturation throughput.

the very high λi region. As the LFE is overloaded at that point, it does not make sense

to enqueue additional packets at the LFEs because they only incur additional delay.

Thus it is more efficient to send the appropriate fraction of the packet headers directly

to the MFEs, resulting in a decrease of r. The boundary where the LFE processing

power limit is reached differs for various a. This phenomenon is again dependent on

the particular pairing of (a, b), which, as described in Section 3.4.3, influences the

boundary where it becomes advantageous to use LFEs, and, in particular, on the

44 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

Switch cost

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

Switch cost

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
0

10
2

10
4

10
6

Switch cost

Figure 3.9: Switch cost.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

2

4

6

µLFE [10
6
 p/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

2

4

6

µLFE [10
6
 p/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

2

4

6

µLFE [10
6
 p/s]

Figure 3.10: Optimal processing power per individual LFE.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

k µLFE [Mp/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

k µLFE [Mp/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

k µLFE [Mp/s]

Figure 3.11: Total processing power of the LFEs (note that the graph was adjusted
for the reader’s convenience in order to be able to depict the values equal to 0, which
would normally tend to negative infinity on a logarithmic graph).

fraction of the LFE resolution failures b, which increases the required LFE processing

power.

Figures 3.11 and 3.12 show the total amount of processing capacity of the LFEs

and the MFEs, respectively. Figure 3.13 shows how the total amount of processing

power is partitioned among the LFEs and MFEs. In most of the problem space,

3.4. NUMERICAL RESULTS 45

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

m µMFE [Mp/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

m µMFE [Mp/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

10
-1

10
1

10
3

m µMFE [Mp/s]

Figure 3.12: Total processing power of the MFEs.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

k µLFE / (k µLFE+m µMFE)

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

k µLFE / (k µLFE+m µMFE)

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

k µLFE / (k µLFE+m µMFE)

Figure 3.13: Fraction of LFE processing power out of total system processing power.

the major part of the optimal system processing power rests with the LFEs. In the

segment of routers with high-speed links, for a = 2 and a = 100, the LFE processing

power limit µmax is reached and thus the bulk of the processing capacity begins to

shift towards the MFEs. At the same time, as described in Section 3.4.3, in the

segment of devices with few, low-speed links, LFEs are not used at all and thus their

share of the total capacity is equal to 0.

3.4.5 Switch speed

Figure 3.14, 3.15 and 3.16 depict the optimal switch port transmission speed and the

overhead of the header-passing traffic compared to the total switch traffic. We see

why there is no feasible solution for a = 100. Given the dependence of b on a, a

large fraction of traffic (b = 0.9) fails to be resolved at the LFEs and still travels

through the switch to the MFE pool. Thus, LFEs cannot be used to a great extent to

decrease the packet delay in a router, and the switch, the master port in particular,

46 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10
-6

 s/cell]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10
-6

 s/cell]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10
-6

 s/cell]

Figure 3.14: Switch port transmission speed.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

500

1000

1500

2000

λ
*
2 [Gb/s]

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

500

1000

1500

2000

λ
*
2 [Gb/s]

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

500

1000

1500

2000

λ
*
2 [Gb/s]

Figure 3.15: Traffic at the switch master port—the header passing overhead within
the switch.

a=2

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

λ
*
2 / (λ

*
2 + k λ

*
i)

a=10

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

λ
*
2 / (λ

*
2 + k λ

*
i)

a=100

0.01

0.1

1

10

λi [10
6
 p/s]10

100

1000

k

0

0.25

0.5

0.75

1

λ
*
2 / (λ

*
2 + k λ

*
i)

Figure 3.16: Fraction of the header passing overhead out of the total switch traffic.

is placed under increased demand to compensate the delay. For the very high-speed,

many-input case, the switch is not able to cope with the demand and reaches the

limit of its port transmission speed. Therefore a feasible solution for this region does

not exist. Note that a similar phenomenon is only narrowly avoided in the case of

a = 2, when the LFEs are already saturated as well.

3.5. LOAD SHARING IN A ROUTER 47

To summarize the optimization results, we observe that for each a and b, a sim-

ilar trend of dividing the problem space according to the optimum solution exists.

However, the boundary line and the appropriate switch element parameters vary sig-

nificantly for different a and b, which suggests that they are important factors in any

router design. Note that the results are, to a large extent, also dependent on c, the

ratio of the average packet size and the packet header size. If, for example, the aver-

age packet size were to decrease, the influence of the packet-header-passing overhead

traffic on the system would gain a much higher significance, and vice versa.

3.5 Load sharing in a router

In this section, we outline some desired properties of router architectures. In particu-

lar, we postulate the requirements for a router that deploys a load-sharing mechanism,

and reason why such mechanism is beneficial for a router system.

3.5.1 Acceptable load sharing

Our basic premise is that a router which provides for load sharing among the multiple

Network Processors (NPUs) or forwarding engines present within the system, is able

to support a greater number of interfaces, while upholding the performance guaran-

tees. We demonstrate a load sharing–based packet processing scheme maximizes the

number of router interfaces that can be supported with a fixed amount of network

processors of given processing power, while keeping the advantages and avoiding the

drawbacks of the router architectures discussed in Section 2.3.

The packet processing tasks are carried out by multiple distributed processors, and

packets are scheduled among them according to a mapping computed at run-time.

Thus, the total load of the router system is shared among the multiple processing

units. The subsequent increase in processor utilization lowers the total system cost

and the electricity power consumption. In addition, router fault tolerance is improved.

Our objective can be reformulated as follows: given a router, containing a set

of m network processors of processing powers µj and given a maximum line card

48 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

speed γ̂, maximize the number of interfaces n that such a router can support with a

performance constraint P (packet loss) < εp, where εp is a given constant. We assume

that any processor j ∈ {1, . . . ,m} is able to process any packet.

Definition 2 provides a useful reference point for achieving the objective.

Def. 2 Acceptable Load Sharing. Let λj(t) be the packet processing load at pro-

cessor j at time t and let λ(t) =
∑m

j=1 λj(t) be the total packet processing load on

the system. Let µ =
∑m

j=1 µj be the total system packet processing capacity. Let us

define as acceptable load sharing a scheme distributing the interfaces’ load among the

network processors with the following properties:

• if λ(t) ≤ µ, then ∀j, λj(t) ≤ µj, i.e., if the system is not overloaded, then none

of the individual processors is overloaded,

• if λ(t) > µ, then ∀j, λj(t) > µj, i.e., if the system is overloaded, then all of the

individual processors are overloaded.

Generally, P (packet loss) =
∑m

j=1 P (λj(t) > µj). In the case of acceptable

load sharing, a single processor is overloaded if and only if the entire system is

overloaded, thus P ′ (packet loss) = P (λ(t) > µ) = P (
∑m

j=1 λj(t) >
∑m

j=1 µj).

Clearly, P ′ (packet loss) ≤ P (packet loss) and P ′(packet loss) is the minimal achiev-

able packet loss probability. Thus, as acceptable load sharing minimizes the packet loss

probability for a given total system load, it enables to increase the total system load

to the uppermost limit possible within the above packet loss probability constraint.

Assuming a proportional equivalence between the number of router interfaces of given

speed and the maximal total packet processing load on the system, the number of

supportable interfaces is thus maximized.

3.5.2 Other system requirements

In addition to performance guarantees, a load-sharing system among parallel NPUs

should possess the following properties:

Flow order preservation–packet reordering could occur if packets belonging to

the same flow were processed by different NPUs. Thus, the assignment of packets to

3.6. CONCLUSIONS 49

processors should either be fully deterministic with respect to flows, or should attempt

to minimize the probability of packets belonging to the same flow being treated by

different processors.

Absence of state information–keeping state information on assignment of concur-

rent flows is extremely costly in terms of memory and processing overhead. Therefore,

it is highly desirable that the assignment of flows to processors can be carried out

without the state information being stored.

Support for heterogeneous processors–the system must be able to support het-

erogeneous architectures, that is, where there are processors with various processing

capacities present or where preference should be given to some processors as to the

amount of requests processed.

Fault tolerance–the system must be able to adjust to a processor failure quickly

and gracefully, i.e. without great disruption.

3.6 Conclusions

In this preparatory chapter, we have carried out an analysis and optimization of a

router architecture in order to obtain an understanding of the influences of various

system elements and packet processing paths on the system architecture. We have

presented a model for analyzing a general distributed router architecture and deter-

mining its most economical variant, given a set of performance requirements.

The studies bring insight into how the individual elements influence the router

architecture with a given set of constraints. We have demonstrated that for most

systems, although deploying LFEs is advantageous because the switch bottleneck

and the high MFE cost are avoided, putting a load-sharing method into operation is

necessary in order to reach the optimal architecture. Without a load-sharing method

in place, the packet processing load can not be spread over multiple processors, as is

required in the case of the MFE pool.

In the final part of the chapter, we have analyzed the contribution of deploying a

load-sharing method within a router system. We have defined the notion of acceptable

load sharing and demonstrated the benefits in router performance if the acceptable

50 CHAPTER 3. OPTIMIZING ROUTER ARCHITECTURE

load sharing property is upheld. Finally, we have listed other key requirements for

building a multiprocessor router system.

Chapter 4

Adaptive load sharing with

minimal flow disruption

4.1 Introduction

In this chapter, the key adaptive heuristic for mapping packets to processors is pre-

sented, together with proofs of the desired minimal disruption property of the adap-

tation.

In the initial section, we define an abstract, parameterized model of a router

system, equipped with multiple Network Processors (NPUs). In the next section,

we define the packet-to-NPU mapping, a computation based on which the packets

are mapped to NPUs for processing. Afterwards, the problem statement for opti-

mizing the mapping in order to approach the desired load-sharing characteristics is

presented. We show the NP-Completeness of the optimization problem and discuss

the difficulties related to predicting the mix of future packet arrivals.

In the next section, we present the adaptive heuristic, based on a feedback control

loop, that seeks to produce a near-optimal solution to the optimization problem. We

discuss the role of various parameters in the heuristic. Finally, we prove that the

adaptation possesses the minimal disruption property, the key property for achieving

the desired goal of minimizing remappings.

51

52 CHAPTER 4. ADAPTIVE LOAD SHARING

4.2 Notation and assumptions

We consider a router model where different processors are dedicated to the data plane

and to the control plane. We use the term Network Processor (NPU) to denote the

device performing the packet processing tasks (such as address lookup, classification,

filtering, etc.), that means, the processor dedicated to the data path within a router.

In contrast, we denote as Control Point (CP) a processor that performs the router

control functions such as shortest path computation, topology information dissemi-

nation or traffic engineering. Our work concentrates on issues primarily related to

the data path within a router.

The router consists of n input-output line cards, m NPUs and at least one CP.

With respect to NPUs we consider a heterogeneous router model, where each processor

may have different processing power. Thus, by µj we denote the processing power of

NPU j, that is, the maximum number of packet processing units an NPU j is able to

carry out per time unit ∆t. We denote µ the total system processing power, that is,

µ =
∑m

1 µj.

By λj(t) we denote the actual packet processing load of NPU j, that is, the amount

of packet processing units carried out at NPU j during the interval (t − ∆t, t]. By

λ(t) we denote the total processing load of the system within the time interval, that

is, λ(t) =
∑m

1 λj(t). By ρj(t) we define the workload intensity of each NPU, that is,

ρj(t) = λj(t)/µj, and by ρ(t) the total system workload intensity, ρ(t) = λ(t)/µ.

By γi(t) we denote the amount of packets that arrived at line card i in time interval

(t − ∆t, t]. The maximum transport capacity of each link is γ̂, thus, ∀i, γ̂ ≥ γi(t).

We define the packet information vector ~w = (w1, w2, . . . , wkw
) as the set of kw

packet fields that are examined, processed or altered within a router and that carry

the information based on which the subsequent next-hop of the packet and the treat-

ment applied to the packet within a router are determined (i.e., for example, the

destination address, the source port, TTL, URL, label, etc.). We denote as W the

packet information vector space, i.e. the vector space consisting of all possible values

of packet information vector ~w ∈ W .

A packet containing an information vector ~w consumes l(~w) processing units at

4.2. NOTATION AND ASSUMPTIONS 53

an NPU. We define as arrival vector ~a(t) = (a~w1
(t), . . . , a~w|W |

(t)) a vector of size |W |,
where the element a~w(t) denotes the number of packets containing the information

vector ~w that arrived at a router during a time interval (t− ∆t, t]. Thus
∑n

1 γi(t) =
∑

~w a~w(t) and λ(t) =
∑

~w a~w(t) l(~w).

We denote as flow identifier vector ~v = (v1, v2, . . . , vkv
) a set of predefined packet

fields that do not change within a particular flow. Each vi represents a piece of data

within the packet and the integer kv, kv ≥ 1, represents the number of fields contained

in vector ~v. Typically, but not necessarily, ~v is composed of some fields contained

within the packet header. For our purposes, any predefined set of fields (or just one

of them) that remain constant within a flow can serve as the identifier vector. In this

work we assume that ~v ⊆ ~w. By V we denote the vector space corresponding to all

the possible values of the identifier vector ~v (once the format of the identifier vector

is established).

A typical example of an identifier vector would be the traditional flow ID, con-

sisting of a 5-tuple of protocol number (prot), source and destination ports (SP, DP)

and source and destination addresses (SA, DA), that is, in such a case, kv = 5 and

~v = (prot, SP, SA, DP, DA). Alternatively, one could use the destination address as

a unique parameter, thus ~v = (v1) = (DA). In the first case, V would represent a set

of all possible flow IDs, whereas in the second case, V would be equal to the protocol

address space.

Let us define as identifier persistence vector ~∆(t) = (∆~v1
(t), . . . , ∆~v|V |

(t)), ∆~v(t) ∈
{0, 1} a vector that monitors the persistence of certain flow (determined by an iden-

tifier vector) within a time interval (t − 2∆t, t]. We consider a flow persistent if in

each of the two consecutive time intervals (t − 2∆t, t − ∆t] and (t − ∆t, t] a packet

belonging to the flow arrives. We assume that only persistent flows are vulnerable to

reordering, which can occur when consecutive packets belonging to a persistent flow

are processed by different processors.

We define time interval ∆T to be the maximum time a single packet spends in the

system. If no packet of a flow arrives during the time interval (t−∆T, t], we assume

that processing a subsequent packet from the flow at any processor does not lead to

reordering.

54 CHAPTER 4. ADAPTIVE LOAD SHARING

In our scenario, we assume that any processor j ∈ {1, . . . ,m} is able to process

any packet.

4.3 Packet-to-NPU mapping

According to the classification by Tantawy and Zitterbart [61] (see Section 2.2.2),

the specific kind of parallelism employed in the load-sharing algorithm presented here

would best be characterized as spatial parallelism, i.e., packets are scheduled to mul-

tiple processors, which are all capable of carrying out the same tasks (although they

do not necessarily possess homogeneous processing capacity). A mapping is estab-

lished between flows and processors. It is based on the CARP HRW [50] mapping, as

described in Section 2.2.3, extended by an adaptive control loop. As in the Network

Dispatcher [24] concept (see Section 2.4.3), flows are mapped to processors, yet no

state information on particular flows is stored. The HRW mapping is hash-based and

is thus easily computable at high speeds (as opposed to, for example, a table-based

lookup or classification). The mapping possesses several advantages over other hash-

based load balancing schemes–it allows to split the hashed objects into hash buckets of

arbitrary size, as determined by predefined weights, and, as we prove in Section 4.5.3,

a specific method for the weights’ adaptation can be found, which results in only a

minimal disruption of the mapping. Optimization and adaptation of the mapping is

the subject of this chapter.

The mapping adaptation procedure aims to prevent individual processor overload.

The design is complicated by the need to minimize the probability of packet reordering

within one flow. If packets from the same flow are to be processed by different

processors, packet reordering can easily occur. Therefore, packets belonging to a

particular flow should be processed by the same processor.

A fully optimal mapping is not achievable for several reasons. It is not possible

to monitor the full traffic characteristics in a router, including per-flow state, nor

to predict the exact traffic pattern in the next time interval. Even if that were the

case, one would have to solve an NP-Complete mapping problem at run-time, as we

show in Section 4.4. However, we show that the heuristic presented here, which uses

4.3. PACKET-TO-NPU MAPPING 55

Figure 4.1: Load-sharing scheme abstraction. Upon arrival, a packet is parsed to
extract the relevant fields, the identifier vector ~v and the packet information vector
~w. Then, the packet is buffered, the mapping f(~v) is computed and the packet
information vector ~w is sent for resolution to NPU j, f(~v) = j. At NPU j, the
vector ~w is processed and the resolution information is returned to the requesting
unit. The packet is then switched to the correct output port and the corresponding
packet alterations or manipulations, based on the resolution results, are applied.

aggregate traffic monitoring as feedback, stays within small bounds from the optimal

solution.

The basis of our load-sharing scheme is that the load of each input (ingress traffic

arriving at a line card) is distributed for processing among the NPUs using a deter-

ministic mapping f (see Figure 4.1). The mapping f is computed over the identifier

vector ~v. The computation f(~v) = j determines the particular NPU j to which the

packet is mapped for processing. The function f(~v), f : V → {1, 2, . . . ,m}, splits the

vector space V into m exclusive subspaces Vj. Packets from a particular subspace are

all mapped to the same processor.

Upon arrival of a packet at an input, the packet is parsed to extract the fields

relevant for packet processing, i.e., the identifier vector ~v and the packet information

vector ~w. The packet is buffered, the mapping f(~v) is computed and the packet

56 CHAPTER 4. ADAPTIVE LOAD SHARING

information vector ~w is then sent for resolution to NPU j, f(~v) = j.

At NPU j, the packet information vector ~w is processed and the resolution infor-

mation about the treatment to be applied to the packet (next hop, outgoing switch

port, QoS applied) is returned to the requesting unit. Then, the packet is switched to

the correct outgoing port and the corresponding packet alterations or manipulations,

based on the resolution results, are applied (this may mean, for example, applying

certain QoS, attaching an MPLS label or splicing with another TCP connection).

The mapping f we propose for such a purpose is based on the robust hash routing

scheme (alternatively called highest random weight (HRW) mapping) presented in

[62] and extended in [50].

Def. 3 Packet-to-NPU (HRW) Mapping f : Let g(~v, j) be a pseudo-random

function g : V ×{1, 2, . . . ,m} → (0, 1), i.e., we assume g(~v, j) to be a random variable

in (0, 1) with uniform distribution. Let a packet arrive at an input i, carrying an

identifier vector ~v ∈ V . The mapping f(~v) is then computed as follows:

f(~v) = j (4.1)

⇔
xj g(~v, j) = max

k∈{1,...,m}
xk g(~v, k), (4.2)

where xj ∈ R
+ is a weight multiplier assigned to each NPU.

The weights ~x = (x1, . . . , xm), as described in Section 2.2.3, are in a 1-to-1 cor-

respondence with the partitioning vector ~p = (p1, . . . , pm), which determines the

fraction of request object space (the identifier vector space V , in our case) assigned

for processing to each NPU, i.e., pj = |Vj|/|V |.
The following HRW mapping properties (see Section 2.2.3) are particularly useful

for the purpose of flow-to-processor mapping:

Load balancing over the request object space. The method provides load bal-

ancing even for the heterogeneous case. That is extremely useful for the ability

4.4. OPTIMIZATION PROBLEM STATEMENT 57

to support processors of heterogeneous processing capacities because the map-

ping weights allow the fraction of load mapped to a particular processor to be

controlled.

Minimal disruption. In the case of a processor failure, removal or addition, the

number of request objects that are re-mapped to another destination is minimal.

This property is useful for providing fault tolerance (if a particular processor

fails, only flows mapped to that processor are affected).

It is vital to realize, though, that even if the algorithm provides load balancing

over the request object space, it is not adaptive and therefore potentially vulnerable

to locality in the input traffic.

Note that the advantages of minimal disruption property are not limited to the

above special cases. In Section 4.5.3 we show that by a similar line of proof as

in [62], the minimal disruption property holds as well for certain special kinds of

adjustments of the mapping weights. We exploit that fact when carrying out the

mapping adaptation in order to minimize the amount of flow remappings caused by

the adaptation.

For the load-sharing purposes in general, there is no need for the mapping f to be

identical at all line cards. In fact, a different mapping can be used at each line card,

for example, at line card i, a mapping fi(~v) could be computed using function gi of

the form gi(~v, j) = g(~v, i + j). However, our scheme does require that the weights

vector ~x be identical at each card.

4.4 Optimization problem statement

Load sharing among multiple processors can become very inefficient if attention is not

paid to keeping the individual processor load under control. The goal of the adap-

tation is to prevent undesirable effects, mainly, processor overload and a consequent

packet loss. It may not be obvious how such effects can occur when, as claimed,

the HRW mapping provides load balancing. However, it is important to note that

58 CHAPTER 4. ADAPTIVE LOAD SHARING

it provides load balancing over the request object space, i.e., in our case, the identi-

fier vector space V . In contrast, the loads due to the actual traffic received at the

router input ports may by no means be distributed uniformly over this request object

space, but rather will exhibit certain locality patterns. That means that in spite of

the load-balancing property, mapping f can potentially lead to grossly imbalanced

load distributions. For such cases, the mapping must be adjusted to account for the

non-uniform load distribution in the received traffic. As thus the mapping f now

changes with time, we define f(t)(~v) : V → {1, 2, . . . ,m} as the instance of f at time

t.

The objective of the control loop is to prevent over-utilization of a single processor

when the system is under-utilized or, vice-versa, to prevent under-utilization of a

single processor when the system is over-utilized. At the same time, we aim to

minimize the amount of packet-to-NPU remappings. Assuming that the mapping f

is being adjusted periodically in time intervals ∆t, the objective for the adjustment

at time t − ∆t can be formulated as the following optimization problem:

Def. 4 NPU load-sharing optimization problem:

max
∑

~v∈V

∆~v(t)
∑

j∈M

1{f(t−∆t)(~v) = j} ∗ 1{f(t)(~v) = j}, (4.3)

with constraints:

if ρ(t) ≤ 1 ⇒ λj(t) ≤ µj,∀j, (4.4)

if ρ(t) > 1 ⇒ λj(t) ≥ µj,∀j, (4.5)

where

λj(t) =
∑

~v∈V

1{f(t)(~v) = j}
∑

~w⊇~v

a~w(t) l(~w). (4.6)

Note that this problem statement is only useful for defining the objective of our

method, but not for computing the actual solution f(t). In order to be able to carry out

the optimization described in Def. 4, one would have to know already at time t−∆t

both ∆~v(t), which would require to maintain a huge amount of state information, as

4.5. ADAPTIVE LOAD-SHARING HEURISTIC 59

well as a~w(t), which can only be speculatively predicted. Furthermore, even if such

knowledge were available, one would still have to solve an NP-complete problem, as

Def. 4 is an Integer Linear Programming optimization. Thus, heuristics, such as the

one presented below, are typically used, yet the above definition remains useful for

setting the objective and evaluating the quality of the solution ex-post.

Note that in order to connect the formula for minimizing the packet-to-NPU

remappings to minimizing the number of packets reordered, the adaptation interval

∆t must satisfy ∆t ≥ ∆T . Then, during the interval a flow is vulnerable to reordering,

∆T , a packet flow can be re-mapped at most once and thus the minimization of the

number of remappings applies to minimizing the number of re-orderings as well.

4.5 Adaptive load-sharing heuristic

4.5.1 Adaptation algorithm

The adaptation scheme works in the following general way (see Figure 4.2): period-

ically, the CP gathers information about the workload intensity of the NPUs. If an

adaptation threshold is exceeded, the CP adjusts the weights of the mapping f . The

new multiplicative weights vector ~x is then downloaded to the NPUs. Let ~x(t) be the

instance of weights’ vector ~x used to compute f(t) at time t.

In order to evaluate the status of individual processors, we need a processor work-

load intensity indicator. For that purpose, we introduce a smoothed, low-pass filtered

processor workload intensity measure ρ̄j(t) of the form

ρ̄j(t) =
1

r
ρj(t) +

r − 1

r
ρ̄j(t − ∆t), (4.7)

where r is an integer constant. A similar filtered measure for total system workload

intensity is introduced as ρ̄(t) = 1
r

ρ(t) + r−1
r

ρ̄(t − ∆t). The filtering is done to

reduce the influence of short-term load fluctuations and to obtain information about

the trend in processor workload intensity.

The adaptation algorithm consists of two parts (see Figure 4.3): the triggering

60 CHAPTER 4. ADAPTIVE LOAD SHARING

Figure 4.2: Load sharing with feedback. Periodically, the CP gathers informa-
tion about the workload intensity of the NPUs ~ρ(t) = (ρ1(t), ρ2(t), ..., ρm(t)). If the
adaptation is triggered, the CP adjusts the multiplicative weights vector ~x and the
new vector is then downloaded to the NPUs.

policy, which specifies the conditions to act, and the adaptation policy, which specifies

how to act. A trigger is periodically evaluated and, based on the result, specific action

is taken.

4.5.2 Triggering policy

We introduce a dynamic workload intensity threshold ε′ρ(t) defined as

ε′ρ(t) = ρ̄ (t) +
1

2
(1 − ρ̄ (t)) (4.8)

=
1

2
(1 + ρ̄ (t)). (4.9)

Thus the dynamic workload intensity threshold is positioned midway between the

current filtered total system workload intensity ρ̄(t) and workload intensity of 1. The

4.5. ADAPTIVE LOAD-SHARING HEURISTIC 61

Figure 4.3: Adaptation algorithm.

closer the total system workload intensity approaches 1, the higher the likelihood of

violating the acceptable load-sharing bounds and therefore the tighter the threshold

follows the total system workload intensity.

During time intervals when the total system workload intensity ρ̄(t) remains in the

vicinity of 1, the value of the workload intensity threshold may be too close to ρ̄(t) to

provide a meaningful threshold for adaptation. To prevent such cases, we introduce

a form of hysteresis into the threshold computation by defining a fixed threshold in

the close vicinity of 1.

Let εh > 0 be a fixed hysteresis bound, which prevents adaptation from being

carried out within the interval ((1 − εh) ρ̄(t), (1 + εh) ρ̄(t)). Typically, εh is set to a

value close to 0, for example 0.01, thus preventing adaptation when the load stays

within 1 percent of the total system workload intensity.

A dynamic triggering threshold ερ(t), which combines the workload intensity

threshold ε′ρ(t) with the hysteresis bound, is thus set for determining the amount

of over- (or under-) utilization allowed at one processor:

62 CHAPTER 4. ADAPTIVE LOAD SHARING

0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ρ(t), system in total

workload intensity threshold

Figure 4.4: Example of the dynamic workload intensity threshold as a function of a
hypothetical filtered total system workload intensity.

Def. 5 Triggering Threshold ερ(t): Let the dynamic workload intensity thresh-

old ε′ρ(t) and the hysteresis bound εh be defined as above. Then the triggering threshold

is defined (according to whether the system in total is over- or under-utilized) as fol-

lows:

ερ(t) = max (ε′ρ(t), (1 + εh) ρ̄(t)), ρ̄(t) ≤ 1, (4.10)

ερ(t) = min (ε′ρ(t), (1 − εh) ρ̄(t)), ρ̄(t) > 1. (4.11)

The result of the comparison of the filtered workload intensity to the threshold

then acts as a trigger for the adaptation to start. An appropriate trigger is again

chosen according to whether the system in total is over- or under-utilized:

ρ̄(t) ≤ 1 ⇒ if (ερ(t) < max
j

ρ̄j(t)) then adapt

ρ̄(t) > 1 ⇒ if (ερ(t) > min
j

ρ̄j(t)) then adapt .

4.5. ADAPTIVE LOAD-SHARING HEURISTIC 63

0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ρ(t), system in total

max, min hysteresis bound

Figure 4.5: Example of the hysteresis bound as a function of a hypothetical filtered
total system workload intensity.

4.5.3 Minimal disruption

Lemma 1 and Theorem 2 provide the theoretical basis for the mapping’s adaptation:

Lemma 1 Let α ∈ R
+, α 6= 1. Let A,B be two nonempty, mutually exclusive subsets

of M = {1, . . . ,m}, M = A ∪ B. Let f , f ′ be two HRW mappings using identical

pseudo-random function g(~v, j), but differing in the weight vectors ~x = (x1, . . . , xm)

and ~x ′ = (x′
1, . . . , x

′
m) as follows:

x′
j = α xj, j ∈ A, (4.12)

x′
j = xj, j ∈ B. (4.13)

Let pj and p′j, denote the fraction of request object space mapped to node j using the

HRW mapping with weights ~x and ~x ′, respectively. Then, if α < 1,

p′j ≤ pj, j ∈ A (4.14)

64 CHAPTER 4. ADAPTIVE LOAD SHARING

0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ρ(t), system in total

triggering threshold

Figure 4.6: Example of the triggering threshold as a function of a hypothetical filtered
total system workload intensity.

p′j ≥ pj, j ∈ B. (4.15)

and, conversely, if α > 1,

p′j ≥ pj, j ∈ A (4.16)

p′j ≤ pj, j ∈ B. (4.17)

Proof: We first prove the inequality (4.14) by contradiction. Assume that ∃j0 ∈ A

such that p′j0 > pj0 . It means that there exists at least one identifier vector ~v0, for

which f ′(~v0) = j0, yet f(~v0) 6= j0.

As f ′(~v0) = j0, we have x′
j g(~v0, j0) = maxk∈M x′

k g(~v0, k). But then:

xj0g(~v0, j0) =
1

α
x′

j0
g(~v0, j0)

≥ 1

α
x′

kg(~v0, k)

= xkg(~v0, k), ∀k ∈ A;

4.5. ADAPTIVE LOAD-SHARING HEURISTIC 65

xj0g(~v0, j0) =
1

α
x′

j0
g(~v0, j0)

≥ 1

α
x′

kg(~v0, k)

=
1

α
xkg(~v0, k)

≥ xkg(~v0, k), ∀k ∈ B.

Therefore, xj0g(~v0, j0) = maxk∈M xkg(~v0, k) and thus f(~v0) = j0, which is a contra-

diction to our assumption.

Inequality (4.15) can be proved in a symmetrical way, as well as the case of α > 1.

2

Equality in inequalities (4.14)-(4.17) is an extreme case, which can only take place

if α is so close to 1 that the weights ~x change so little that the change does not affect

any single identifier vector.

Note that given the complex relationship among vectors ~x and ~p (see [50]), it is

hard to say more in general about the effects of direct adjustments of ~x.

Theorem 2 (Minimal disruption) Let α ∈ R
+. Let A,B be two nonempty, mu-

tually exclusive subsets of M = {1, . . . ,m}, M = A ∪ B. Let f , f ′ be two HRW

mappings using identical pseudo-random function g(~v, j), but differing in the weight

vectors ~x = (x1, . . . , xm) and ~x ′ = (x′
1, . . . , x

′
m) as follows:

x′
j = α xj, j ∈ A, (4.18)

x′
j = xj, j ∈ B. (4.19)

Let pj and p′j denote the fraction of request object space mapped to node j using the

HRW mapping with weights ~x and ~x ′, respectively. Then, the fraction of request object

space mapped to two different nodes by the two mappings is equal to 1
2

∑

j |pj −p′j|, or,

in other words, the amount of request objects mapped by the two mappings to different

destinations is minimal.

Proof: The case of α = 1 is trivial. Let α < 1. We prove that for each node j,

exactly |pj −p′j| |V | objects have changed the mapping. The proof is divided into two

66 CHAPTER 4. ADAPTIVE LOAD SHARING

parts:

1. j ∈ A: from Lemma 1 we know that p′j ≤ pj. Let us show that all objects

mapped to j by f ′ are also mapped to j by f by contradiction: assume that

there exists at least one identifier vector ~v0, for which f ′(~v0) = j, yet f(~v0) 6= j.

But, if f ′(~v0) = j, it means that x′
j g(~v0, j) = maxk x′

k g(~v0, k) and therefore

xjg(~v0, j) =
1

α
x′

jg(~v0, j) (4.20)

≥ 1

α
x′

kg(~v0, k) (4.21)

≥ xkg(~v0, k), ∀k ∈ M. (4.22)

Thus, xj g(~v0, j) = maxk xk g(~v0, k) and f(~v0) = j, which is a contradiction to

our assumption. As all objects mapped to j by f ′ are also mapped to j by f ,

the amount of request objects in which the two mappings differ at node j is

equal to the fraction |pj − p′j| of request object space.

2. j ∈ B: from Lemma 1 we know that p′j ≥ pj. Let us show that all objects

mapped to j by f are also mapped to j by f ′ by contradiction: assume that

there exists at least one identifier vector ~v0, for which f(~v0) = j, yet f ′(~v0) 6= j.

But, if f(~v0) = j, it means that xj g(~v0, j) = maxk xk g(~v0, k) and therefore

x′
jg(~v0, j) = α xjg(~v0, j) (4.23)

≥ α xkg(~v0, k) (4.24)

≥ x′
kg(~v0, k), ∀k ∈ M. (4.25)

Thus x′
j g(~v0, j) = maxk x′

k g(~v0, k) and f ′(~v0) = j, which is a contradiction to

our assumption. As all objects mapped to j by f are also mapped to j by f ′,

the amount of request objects in which the two mappings differ at node j is

equal to the fraction |pj − p′j| of request object space.

Thus, the two mappings differ by |pj − p′j| |V | vectors at each node, which leads

to a fraction of 1
2

∑

j |pj − p′j| difference in total.

4.5. ADAPTIVE LOAD-SHARING HEURISTIC 67

The proof for α > 1 is symmetrical. 2

It is important to note that the minimal disruption property would not generally

hold for the adaptation if the weights’ adjustment were not carried out by the same

constant multiplier, as then the inequalities (4.21) and (4.24) would not necessarily

hold for all k ∈ M .

The minimal disruption property of the adaptation using a single multiplier is

illustrated on an example with three NPUs in Fig. 4.7.

4.5.4 Adaptation policy

We propose a simple scheme for the periodic adaptation, operating directly on the

weights’ vector ~x. As the minimal disruption property is crucial for minimizing the

amount of remappings, Lemma 1 and Theorem 2 serve as a background for designing

the adaptation of vector ~x to be carried out by a single, constant multiplier:

Def. 6 Weights-Vector ~x Adaptation: Let ρ̄(t) ≤ 1. Assuming that the trigger

condition (ερ(t) < maxj ρ̄j(t)) is satisfied, let

c(t) =

(

ερ(t)

min {ρ̄j(t) | ρ̄j(t) > ερ(t)}

)1/m

. (4.26)

Then

xj(t) := c(t) xj(t − ∆t), ρ̄j(t) > ερ(t), (4.27)

xj(t) := xj(t − ∆t), ρ̄j(t) ≤ ερ(t). (4.28)

Conversely, the adaptation for the case of ρ̄(t) > 1 is performed in a symmetrical

manner.

Thus, in the case that the system is under-utilized, the presented adaptation lowers

the weights for the exceedingly (with respect to a threshold) over-utilized processors,

whereas weights for others remain unchanged. Conversely, if the system in total is

over-utilized, the adaptation raises the weights for the exceedingly (with respect to

a threshold) under-utilized processors. The lowering or raising of weights is carried

68 CHAPTER 4. ADAPTIVE LOAD SHARING

�

���

���

� � �

��������	
����

��������	
����

������

� � �

���

�

�������

�������

��������	
����

��� ����������	
����

��� ����������	
����

������

���

��������	
����

���������	
�	���

��������	
�	���

���������������� ������������������ ����������

�� �

�� �

Figure 4.7: Minimal disruption property of the adaptation. There are three
NPUs (No. 1-3) present in the system, and weights of two of the NPUs (No. 1-2)
are lowered by a factor of 2/3. Objects migrate from the adjusted NPUs (No. 1-2)
to the unadjusted NPU (No. 3) only. The figure depicts the hash score range per-
processor, the sharing of the hash-score space among the processors and the effects
of the adjustment on the hash-scores.

out proportionally, either to the minimal workload intensity ρ̄j(t) which exceeds the

threshold ερ(t), or to the maximal workload intensity ρ̄j(t) which remains below the

threshold ερ(t).

The factor 1/m in the exponent of c(t) represents the effects of the number of

processors present–less aggressive adjustment is needed in the case of more processors.

Alternatively, the exponent of the form of 1/ log2(m) can be used, making the root

computation less complex. The effects of using either exponent are evaluated in

4.6. CONCLUSIONS 69

Sections 5.5.3 and 5.5.4.

4.6 Conclusions

In this chapter, we have introduced a technique how to provide load sharing in a

multiprocessor system that carries out the packet processing tasks within a network

node. The method is a heuristic that seeks to stay within close vicinity from the

optimal solution. The principal part is a fast computable, hash-based mapping, which

assigns packet flows to processors. The technique does not require to maintain state

information on the flow-to-processor mapping.

The mapping is coupled with an adaptation discipline that continuously evaluates

the distance from the optimal solution and, if a threshold is exceeded, adjusts the

mapping parameters proportionally to the distance (error) from the optimal solution.

We prove, by theoretical means, that the adaptation possesses the key minimal dis-

ruption property, which leads to minimizing the probability of packets belonging to

one flow being processed by different processors.

70 CHAPTER 4. ADAPTIVE LOAD SHARING

Chapter 5

Method validation

5.1 Introduction

In this chapter, we validate the adaptive load-sharing method, as presented in the

previous chapter, using an extensive set of simulations.

First, we present results using a simple Java-based simulator of the multiprocessor

system and of the incoming traffic to verify the basic concept of the method. A simple

traffic generation technique has been used to test the load spreading and the correct

weights’ adjustment by the adaptive control loop.

Next, we present results using a more sophisticated, Matlab-based implementation

of the multiprocessor system model that uses generated traffic as input. The traf-

fic generator, Matlab-based as well, aims to replicate the key characteristics of the

real-life Internet traffic, like the flow length distribution and the source address dis-

tribution. We test the influence of various parameters, or factors, on the performance

of the method.

Finally, we present some general conclusions about the adaptive load-sharing

method performance.

71

72 CHAPTER 5. METHOD VALIDATION

Figure 5.1: The simple load-sharing system simulator.

5.2 Simple simulator—proof of concept

We present some initial results of executing the mapping and adaptation algorithms

using a simple, Java-based simulator. The system setup is depicted in Fig. 5.1.

The following are the assumptions used in the simulations:

• We assume a system with eight outgoing links that act as the processing units.

There is an output queue (OutQueue) in front of each link, storing packets that

could not yet be forwarded. All the queues have different service rates (the link

speeds) and are considered infinite. The load percentages, pj, are: [5%, 5%,

10%, 10%, 10%, 15%, 20%, 25%];

• Incoming packets contain 8 random numbers uniformly distributed within [0,

1]. All the incoming packets are stored in and extracted for forwarding from a

large FIFO queue (InQueue);

• The UserPi is a fixed value describing the expected percentage of packets a

user wants to be forwarded on link i. PktProc is the maximum number of

packets that can be forwarded altogether over all the links in 1 second. Thus,

Ratei = PktProc · UserPi is the expected number of forwarded packets per

second on link i;

5.2. SIMPLE SIMULATOR—PROOF OF CONCEPT 73

• The traffic generator can be shaped by the user by setting three input parame-

ters: average, max and PBurst. average is defined as a percentage of PktProc.

The number of queued packets at the ingress queue per simulation second is the

following:

pkts =

{

average · PktProc with prob 1 − PBurst

average · PktProc + U [−max,max] with prob PBurst

• Time is discrete, and each second the simulator executes the triggering pol-

icy by evaluating where the incoming packets were forwarded. The weights’

adaptation, if triggered, is then performed instantaneously.

• The filtering constant r is set to r = 3 and the hysteresis bound εh is set to

εh = 0.01.

Simulation results

At every iteration, the queue occupancy, the number of packets forwarded to a specific

link, the utilization and the weights of that link are monitored. The following list

summarizes the response variables:

• Packets received standard deviation:

Std(t) =

N=8
∑

i=1

(InQueue[i].forw(t) − InQueue[i].Rate(t))2

N
(5.1)

• Per second occupancy of all queues (in packets)

• Per second sum of the packets in all queues

• Per second workload intensity of all links

• Per second workload intensity of the entire system

74 CHAPTER 5. METHOD VALIDATION

• Per second weights value.

Here we present the results of two simulations. We have tested the system model

near the critical threshold
(

ρ(t) =
∑

λi(t)
∑

µi(t)
≈ 0.95

)

to observe the system behavior

when close to congested. Then we observed the behavior of the system when staring

with incorrect initial weights.

Note that all data are merely indicative because the simulator is only a rough

approximation of the real system. For each simulation we will verify whether

• the queues’ occupancy does not grow explosively;

• the system and link workload intensity are close to 1;

• the standard deviation attains some acceptable values;

• the weights’ values do not oscillate.

5.2.1 Potentially congested case

This 300-sec simulation subjects the system model to load that could result in con-

gesting the load-sharing device. We set PktProc to 1000, and each second we generate

pkts =

{

950 with prob 80%

950 + U [−50, 50] with prob 20%

This scenario clearly harbors a possible congestion. We want to verify what hap-

pens when the difference between the number of packets forwarded to link j and

the rate of that link is about constant and nearly 0. If the load balancer forwards

the packets badly (e.g. too many packets to slower or congested links) we should

observe some queue filling effect. However, this phenomenon does not appear, as

on average only 50 packets are queued, with peaks of 100 packets (Fig. 5.4). More-

over, system workload intensity (Fig. 5.5) does not oscillate and always remains in

the range [-0.97, +1.03]. Likewise, the standard deviation (Fig. 5.6) is always in the

range of acceptable values. Finally the weights (Fig. 5.3) attain values in the range

[initial value − 0.02, initial value + 0.02] and we observe no apparent oscillation.

5.2. SIMPLE SIMULATOR—PROOF OF CONCEPT 75

Figure 5.2: Number of packets at the
ingress queue Figure 5.3: Evolution of the weights’

value

Figure 5.4: Total number of packets
queued in the output queues

Figure 5.5: System workload intensity

Figure 5.6: Standard deviation

76 CHAPTER 5. METHOD VALIDATION

5.2.2 Wrong initial weights case

This 300-sec simulation shows the behavior of the system model when the initial

weights are set incorrectly (∀i, xi = 0). The system converges automatically towards

the correct set of weights. We set PktProc to 1000, and each second we generate

pkts =

{

800 with prob 80%

800 + U [−50, 50] with prob 20%

We observe that the wrong initial weights (xi = 0) initially produce inappropriate

traffic splitting. There are two links in particular (the slowest ones) that can not

cope with the assigned load, and, consequently, a lot of packets are queued (Fig 5.8).

But the algorithm reacts quickly by adjusting the weights. After the first 30 seconds

of simulation (this means that the adaptation is performed 30 times), the weights’

values tend asymptotically to the correct ones.

Moreover, we observe that after t = 30, the initially large discrepancies in per-link

workload intensities Fig. 5.10 settle towards a realistic value slightly below 1. Finally,

note that the strong decrease in the standard deviation means that the control loop

has a negative feedback, which leads to reducing the queues occupancy.

5.3 Realistic traffic generation

We have used the MATLAB v.6 environment on an IBM PC Pentium III with Mi-

crosoft Windows 2000 machine to simulate a model of a router with multiple NPUs

and line cards.

For router input, we have used generated traffic. The parameters for generating

the per-interface traffic were approximated from OC-3 traces statistics gathered in

[2], [45] and [63] and approximated to OC-192 speed by shortening the time intervals

proportionally, i.e., 1 second of the monitored OC-3 traffic corresponds to 15 ms in

our OC-192-like traces. Note that this transformation is a simplification from reality,

since the scaled traces would differ not only along the time dimension, but the per-

flow data volume, the multiplexing effects and the packet inter-arrival times would

5.3. REALISTIC TRAFFIC GENERATION 77

Figure 5.7: Number of packets at the
input queue.

Figure 5.8: The evolution of the
weights’ value.

Figure 5.9: Queue occupancy. Figure 5.10: Link workload intensity.

Figure 5.11: Standard deviation function.

78 CHAPTER 5. METHOD VALIDATION

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(F

lo
w

 le
ng

th
 ≥

 X
)

Number of packets

Figure 5.12: Flow length cumulative distribution.

have to be taken into account as well.

The following parameters characterize the traffic:

• Number of packets arrived per time interval–a discrete time homogeneous Markov

chain, attaining values in the state space equal to the interval of [3000, 22000],

with uniform transition probability to states within a neighboring interval of

[−4000, 4000] at each iteration every 15 ms.

• Number of flows existent in a time interval–a stochastic recurrence, with state

space attaining values in the state space equal to the interval of [8000, 240000],

with uniform transition probability at each iteration every 15 ms to states within

a neighboring interval that ranges between a positive and negative value of

the maximum amount of packets per iteration divided by the mean number of

packets per flows finished in the previous iteration. The direction of change

(increase or decrease) in the number of flows is correlated with the direction

of change in the number of packets (number of flows grows when number of

packets grows and vice versa), as shown in [63] to hold.

• Flow length–the amount of packets in a flow. We have used a measured flow

length distribution, as documented in [53]. The distribution is shown in Fig.

5.12. As the measured distribution covers only a finite part of the spectrum

(up to flow length equal to 1886 packets), we have used Pareto distribution to

5.3. REALISTIC TRAFFIC GENERATION 79

approximate the heavy tail of the distribution. Other publications on the topic

of flow length distribution [63] [68] [13], as well as the analysis of [2] do exhibit

similar patterns and thus we believe it to be a good approximation.

• Maximal per-flow fraction of interface rate εf–the maximal fraction of the total

rate of an interface (in packets per second) a single flow is allowed to occupy. If

εf = 1/2, a single flow may occupy up to 50% of the interface transport capacity.

Note that the study [68] suggests that such limits on maximal per-flow rate are

in conformance with reality.

• Identifier vector values–for the distribution of identifier vector values, we have

approximated a typical distribution of IP source and destination addresses in

networking traffic, as described in [45]. The prevalence of class C addresses,

which occupy a relatively small portion of the address space (12.5%) and yet

account for approximately 65% of the packets in network traffic, led us to con-

sider a normal distribution of identifier vectors within a 32-bit integer space,

with parameters fitted to those measured in [45]. Thus, the identifier vectors of

flows are generated with a truncated normal distribution N (0, 1), rounded to

match the entries out of the 32-bit integer space.

• Load per packet–we have used a simplified representation of the packet load

in number of processing units it takes to process a packet. We have defined

three possible levels of the per-packet load l ∈ {1, 2, 3}. The rationale for such

a definition is an analogy with the most common router function–the address

lookup–where the forwarding table is often organized into a tree structure and

a lookup requires variable amount of memory accesses, depending on the tree

depth per particular prefix [14] [44]. Often, the trees are organized in three

levels, and thus an address lookup may require 1-3 memory accesses. In our

simulations, the distribution of the per-packet load over the identifier vectors is

uniform. That is certainly a simplification from reality, yet obtaining realistic

values would require to match traffic traces against a correspondent lookup

table, a task not within our means.

80 CHAPTER 5. METHOD VALIDATION

5.4 Router system model

The iterations of the traffic generation process, as well as the evaluations of the

adaptation trigger, are carried out at a time interval ∆t = 15 ms. Such interval

should be comfortably large to be greater than any hypothetical ∆T (maximal time a

packet can spend in the system), which is typically defined in the order of nanoseconds.

The unit of load at each NPU is equal to 1 memory access. If not stated otherwise,

we assume a homogeneous router model, where all the NPUs have equal processing

capacity, corresponding to a full load of a single router interface, which amounts to

22000 packet per 15 ms, which leads to µj = 44000 processing units (memory accesses)

per 15 ms. The NPUs are considered buffer-less devices that can not process more

traffic within an interval than the limit of maximum number of processing units per

time interval allows. Traffic exceeding this limit per time interval is assumed to be

dropped.

Where not stated otherwise, the low-pass filter constant r is set to r = 3 and

the hysteresis bound to εh = 0.1. The number of links n and processors m in the

simulations have been chosen such that the total system workload intensity remains

close to 1, where it makes sense to investigate the performance with respect to the

acceptable load-sharing bounds.

In the subsequent simulations, three alternatives of a router system model are

compared frequently, to demonstrate the functionality and advantages of the adap-

tive load-sharing method: a naive system where no load sharing is deployed over the

processors and thus the entire load of any single interface is mapped to a particular

processor; a static load-sharing system, which uses the HRW packet-to-NPU mapping

f to map packets to processors, yet with mapping weights remaining static, as con-

figured initially according to the capacities of the individual processors; and, finally,

the adaptive system, with the dynamically adapted weights of the packet-to-NPU

mapping f(t).

5.5. RESULTS 81

5.5 Results

5.5.1 Adaptive load sharing

Figures 5.13–5.16 illustrate on one simulation, how the adaptive load-sharing method

works in general. Load of n = 13 links is processed by a router equipped with

m = 8 processors. The cases where no load sharing is deployed, where load sharing

is deployed using the static mapping and where load sharing is deployed using the

adaptive mapping are compared. All the alternatives are put in perspective by a

comparison to the ideal solution.

Figure 5.13 compares the per-processor workload intensity when using each method.

Clearly, individual processor workload intensity remains within close vicinity of the

ideal workload intensity when adaptive load sharing is deployed. Figure 5.14 com-

pares the amount of packets dropped under the three scenarios. Again, the adaptive

case results closely follow the total system curve, which represents the global mini-

mum. Figure 5.15 depicts the functioning of the triggering and adaptation policies.

In Fig. 5.16, the number of per-iteration flow remappings when using the adaptive

load-sharing method is being examined. Note that the number of flows re-mapped

per iteration is several orders of magnitude smaller compared to the number of flows

appearing per iteration.

Relevant results of multitude of such experiments are summarized in Tables 5.1

and 5.2.

82 CHAPTER 5. METHOD VALIDATION

�

0 50 100 150 200
0

0.5

1

1.5

2

2.5

W
o
rk

lo
a
d
 in

te
n
si

ty

Time

ρ(t), system in total

(a) No load sharing.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

W
o

rk
lo

a
d

 in
te

n
si

ty

Time

ρ(t), system in total

(b) Static load sharing.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

W
o
rk

lo
a
d
 in

te
n
si

ty

Time

ρ(t), system in total

(c) Adaptive load sharing.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

W
o
rk

lo
a
d
 in

te
n
si

ty

Time

ρ(t), system in total

Max, min ρj(t), no LS

Max, min ρj(t), static LS

Max, min ρj(t), adaptive LS

(d) Combined.

Figure 5.13: Per-processor workload intensity. A load of n = 13 links is processed
by a router equipped with m = 8 processors. If no load sharing is deployed, the entire
load of each link is assigned to a particular processor. This is compared to a case where
load sharing is deployed using a static, non-adaptive mapping f and to load sharing
with the dynamically adapted mapping f(t). Figure 5.13(a) depicts the individual
processor workload intensity when no load sharing is deployed, figure 5.13(b) the
individual workload intensities when the static load-sharing method is deployed and
figure 5.13(c) when the adaptive method is deployed. Figure 5.13(d) summarizes
these results by showing the maximal and minimal per-processor workload intensity
per each scheme. On all figures, the total system workload intensity ρ(t), which is the
same in all three cases, is shown for comparison, as it represents an ideal reference
value. Clearly, individual processor workload intensity remains within the closest
vicinity of the ideal workload intensity when adaptive load sharing is deployed.

5.5. RESULTS 83

0 50 100 150 200
0

2

4

6

8

10

x 10
4

 P
a
ck

e
ts

 d
ro

p
p
e
d

 Time

System in total
No LS
Static LS
Adaptive LS

(a) Packets dropped in total.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 P
a
ck

e
ts

 d
ro

p
p
e
d

 Time

Static LS
Adaptive LS

(b) Packets dropped in excess.

Figure 5.14: Packets dropped. A load of n = 13 links is processed by a router
equipped with m = 8 processors. The graphs depict the numbers of dropped packets
when not using a load-sharing scheme, when using a static load-sharing method and
when using an adaptive method. Figure 5.14(a) shows the number of packets dropped
by the system using each of the schemes, compared to the ideal value of the minimal
number of packets the system would have to drop, should the individual processors
be ideally saturated. Figure 5.14(b) compares the static and the adaptive method
in the number of packets dropped in excess of the ideal minimal value. Clearly, the
adaptive method significantly outperforms the static one and avoids a large number
of unnecessary packet drops, in particular during periods when the ideal solution
likewise leads to no packet drops.

Table 5.1: Acceptable load sharing.

Packets dropped % of All

Acceptable Load Sharing (Ideal) 0.7548
Adaptive Load Sharing 1.3256
Static Load Sharing 2.2590

Packets dropped in excess of Ideal

Adaptive Load Sharing 0.5708
Static Load Sharing 1.5042

Improvement of Adaptive over Static %

1 - (Adaptive / Static) 60.4591

84 CHAPTER 5. METHOD VALIDATION

0 50 100 150 200
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
 Trigger evaluation

 T
ri
g

g
e

r
a

n
d

 t
h

re
sh

o
ld

 Time

Threshold
Filtered total system workload intensity
Up and down trigger

(a) Trigger evaluation.

0 50 100 150 200
−4

−2

0

2

4

6
 Adaptations triggered

 A
d

a
p

ta
tio

n
,

u
p

,
d

o
w

n
 o

r
n

o
n

e

 Time

(b) Number of adaptations triggered.

0 50 100 150 200
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
 Adaptation multiplier coefficient

 M
u

lti
p

lie
r

 Time

(c) Adaptation coefficient.

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
 Size of ID vector space moved

 S
p

a
ce

 f
ra

ct
io

n

 Time

(d) Fraction of space remapped.

Figure 5.15: Triggering and adaptation policy. This figure depicts the progress
of the triggering and adaptation policy in the same simulation as in Fig. 5.13. Fig-
ure 5.15(a) depicts the total system workload intensity, the triggering threshold and
the triggers for the upwards or downwards adaptation. Figure 5.15(b) then shows
the actual amount of adaptations carried out, a positive adjustment of 1 NPU is
represented by +1, a negative adjustment by -1. The adaptation coefficient used in
the adaptation iterations is shown in Figure 5.15(c) and Figure 5.15(d) depicts the
fraction of the identifier vector space V that changes destination in each iteration.

5.5. RESULTS 85

0 50 100 150 200
10

1

10
2

10
3

10
4

10
5

 F
lo

w
s

 Time

Flows appearing
Flows persistent
Flows remapped

Figure 5.16: Flows re-mapped. Load of n = 13 links is processed by a router
equipped with m = 8 processors, with the adaptive load-sharing method being exe-
cuted. The figure depicts, on logarithmic scale, the statistics on the number of flow
remappings occurring within an iteration. The top line shows the total number of
flows appearing within an iteration, the middle one the number of persistent flows
(flows that had appeared in the previous iteration as well) and the lowest one the
amount of persistent flows re-mapped within an iteration. Clearly, there is at least an
order of magnitude difference between each of the flow statistics, showing that only
a small fraction of flows are vulnerable to remapping and out of these, only a very
small fraction eventually are re-mapped.

Table 5.2: Flow remappings.

All Persistent Remapped

Mean over simulations
% of all 100.00 19.23 0.02
% of persistent - 100.00 0.11
Per iteration
Max, # of flows 77’076 15’304 204
Max, % of all 100.00 21.19 0.43
Max, % of pers. - 100.00 2.22

86 CHAPTER 5. METHOD VALIDATION

5.5.2 Influence of maximal flow rate εf

Simulations show that the fraction εf a single flow is allowed to consume from the

rate of a single interface, and, consecutively and more importantly, from the capacity

of a single NPU, is a key parameter, determining the effectiveness of the adaptive

method. The lower the limit on a single flow’s rate, the better the method performs,

as shown in fig. 5.17, where the same system model is subject to traffic varying in the

maximal flow rate factor: cases of the maximum flow rate being limited to 10%, 25%,

50% of the link capacity and the case where a single flow can occupy the entire link

(or NPU), are being compared. Clearly, the lower the limit, the better the adaptive

method performs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

 R
es

ul
t

 Max fraction of traffic per flow

Packets dropped in excess, fraction
10 * Appeared flows re−mapped, fraction
Persistent flows re−mapped, fraction

Figure 5.17: Influence of maximal per-flow fraction rate limit εf . The key
response variables–number of packets dropped in excess, the fraction of flows re-
mapped out of all flows seen per iteration and out of all flows persistent per iteration–
are shown for four different settings of the maximal per-flow rate εf : 10%, 25%,
50% and 100% of the line rate, or of a single processor’s capacity. All the observed
response variables grow with the increasing εf , which thus has a negative impact on
the method’s performance.

5.5. RESULTS 87

5.5.3 Fractional factorial analysis of the load-sharing method

To test the influence of various tunable parameters (factors) on the adaptive method’s

performance, we have employed the technique known as Fractional Factorial Analysis

[28]. Upon alternating the values of each factor, one can measure the influence of

each factor on the variance of the results.

Each factor has been alternated between two values (levels)–high (Hi) and low

(Lo). The following factors and levels have been explored:

• Adaptation coefficient exponent. The levels used were Lo = 1/ log2(m) and

Hi = 1/m;

• NPU processing capacity distribution. For level Lo, all the individual capacities

were equal, whereas level Hi implied an exponential distribution of capacities,

with relative capacities in {1, 2, 4, 8};

• Adaptation interval. The levels used were Lo = 1, meaning the adaptation

would be carried out at every iteration, if triggered, and Hi = 10, meaning the

adaptation would only be carried out every 10th iteration;

• Hysteresis bound εh. The levels used were Lo = 0.01 and Hi = 0.1;

Table 5.3: Fractional factorial analysis results.

NPU Adaptation Packets Flows
No. Exponent capacity interval Hysteresis Filter dropped re-mapped

1. -1 -1 -1 1 -1 87091 700
2. -1 -1 1 -1 1 223181 422
3. -1 1 -1 1 1 203333 306
4. -1 1 1 -1 -1 164660 438
5. 1 -1 -1 -1 1 177332 858
6. 1 -1 1 1 -1 228731 190
7. 1 1 -1 -1 -1 119675 926
8. 1 1 1 1 1 266604 16

Total / 8 183830 482

88 CHAPTER 5. METHOD VALIDATION

• Filtering parameter r. The levels used were Lo = 3 (meaning significant in-

fluence is given to the recently measured value) and Hi = 32 (meaning the

recently measured value has less influence).

The results of the experiments are shown in Table 5.3, where -1 represents the Lo

level and 1 the Hi level. The results on the impact of each factor on the variance of

the key response variables, the number of packets dropped in excess and the number

of flows re-mapped are shown in table 5.4.

The Fractional Factorial Analysis results show that out of the factors studied, only

three have significant influence on the results: the adaptation interval, the hysteresis

bound and the filtering parameter.

The most significant factor appears to be, not surprisingly, the adaptation interval.

Clearly, more frequent adaptation leads to more accurate load sharing and thus less

packet loss, yet more frequent adaptation leads to more flow remappings as well. The

exact duration of the adaptation interval thus needs to be set according to the desired

parameters of the system.

The amount of packets dropped is likewise significantly influenced by the filtering

parameter r. As this factor, in comparison, has relatively little influence over the

amount of flows re-mapped, it makes sense to choose a value of r which leads to less

packet drops. Clearly, when r is high, the system does not take into account the

recent information strongly enough. A lower value, like the r = 3 in the experiment,

can thus be recommended.

Table 5.4: Effects of factors.

Factor Packets dropped Flows re-mapped
Estimate % of Variation Estimate % of Variation

Total / 8 183830 482.0
Adaptation exponent 14260 0.066 15.5 0.003
NPU capacity dist. 4742 0.007 -60.5 0.040
Adaptation interval 36968 0.443 -215.5 0.512
Hysteresis bound εh 12164 0.052 -179.0 0.354
Filter parameter r 33787 0.370 -81.5 0.073

5.5. RESULTS 89

The second most influential factor on the variance of the number of flow remap-

pings is the hysteresis bound εh. The hysteresis bound, on the contrary, has little

effect on the amount of packets dropped and thus clearly it makes sense to set the

bound to a larger value, for example the εh = 0.1 used in the experiment, in order to

prevent unnecessary flow remappings.

The relatively insignificant influence of the NPU processing capacity distribution

factor confirms that the HRW mapping and the weights’ adaptation work equally

well with both uniform and highly non-uniform distributions of processing capacities.

Likewise, the exact value of the adaptation coefficient exponent does not have high

influence. Such outcome thus favors using the log2(m) option, as computing the root

in Eq. (4.26) is then less demanding.

5.5.4 Influence of the number of processors

In this simulation we evaluate the effects of alternating the total number of processors

present in the system, m. We compare systems where the total processing capacity

remains constant, yet the number of NPUs present and their processing capacity

differs. The scenarios compared involve again a router with n = 13 interfaces and

m = 8 NPUs of uniform processing capacity µj, plus a system with m = 64 processors,

where each NPU has processing capacity µj/8.

At the same time we compare the effects of alternating the exponent in the adap-

tation coefficient between the values of 1/m and 1/ log2(m), to observe which of the

two more accurately reflects the higher number of processors present. Furthermore,

we alter the maximal per-flow fraction εf , as the maximal fraction a single flow is

allowed to consume from a single interface’s rate is reflected in the maximal fraction

of processing capacity a single flow may consume at a single NPU. Thus, in one set

of simulations when m = 64, we decrease εf according to the ratio of the decrease of

a single NPU’s processing capacity, 1/8. Thus, εf attains a value of either εf = 0.1

or εf = 0.0125.

The individual experiments and the results are summarized in Table 5.5 and Fig.

5.18. Clearly, as shown in Section 5.5.2, the influence of the maximal per-flow rate εf

90 CHAPTER 5. METHOD VALIDATION

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

 F
ra

ct
io

n
of

 fl
ow

s
re

m
ap

pe
d

 Packets dropped in excess, fraction

1
2
3
4
5
6

Figure 5.18: Influence of the number of NPUs. This figure depicts graphically
the results presented in Table 5.5. Experiments 1 and 2 are conducted with m = 8
processors and 3-6 with m = 64 processors. In 5 and 6, the maximal per-flow rate
fraction εf is adjusted accordingly and thus results in these two experiments do not
differ too significantly from results of 1 and 2. However, clearly, with higher number
of processors, the accuracy of the method is affected.

is key for the results of experiments No. 3 and 4 and thus in order to fairly evaluate

the effects of the number of processors factor m, the maximal per-flow rate εf needs

to be adjusted accordingly, as in experiments No. 5 and 6.

When εf is adjusted, results of the system with m = 64 NPUs (No. 5 and 6)

differ not as significantly from results on a system with m = 8 NPUs, although

the performance does worsen in both of the key response variables. The effects of

the alternative exponents in computing the adaptation coefficients can be compared.

Using 1/m leads to less aggressive adaptation of the mapping weights, and thus

fewer flows are re-mapped. In contrast, the less fine-grained 1/ log2(m) adjusts the

mapping more aggressively and thus prevents packet loss, but at a cost of more flow

remappings.

5.6. CONCLUSIONS 91

Table 5.5: Influence of the number of NPUs.

Adaptation Maximal Packets dropped Flows
No. m exponent flow rate (%) in excess (%) re-mapped (%)

1 8 1/ log2(m) 10.00 0.343 0.0176
2 8 1/m 10.00 0.447 0.0151
3 64 1/ log2(m) 10.00 4.423 0.1345
4 64 1/m 10.00 6.605 0.0332
5 64 1/ log2(m) 1.25 0.795 0.0797
6 64 1/m 1.25 1.242 0.0204

5.6 Conclusions

In this chapter, the proposed adaptive load-sharing method has been validated. First,

the basic concept was verified on a simple model with some naive generated input

traffic. Then, more sophisticated modelling techniques have been used to evaluate

the influence of various system parameters (factors) on the method performance when

using realistically generated traffic as input.

We conclude that the theoretically derived results from Chapter 4 have been

verified by the simulations. At a modest rate of remapping on average less than 0.1%

of all flows, on average 60% of packets dropped by the static scheme are protected by

the feedback-based adaptation.

92 CHAPTER 5. METHOD VALIDATION

Chapter 6

Applications in networking systems

6.1 Introduction

In this chapter, we explore two of the possible applications of the adaptive load-

sharing method in multiprocessor network nodes.

In the first section, we present its applicability when designing multiprotocol

routers. Examples of router architectures which benefit from deploying the method

are given and some of the implementation issues are discussed, especially the pseudo-

random function implementation.

In the second part of the chapter, we discuss the application of the method in

a server farm load balancer appliance. We show how the method is extended to

avoid flow remappings altogether. A description of an existing implementation on

the IBM PowerNP network processor is given, together with a discussion of some of

the implementation issues, like the data structure used for storing the HRW mapping

weights.

93

94 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

6.2 Multiprotocol router

6.2.1 Router architecture

An implementation of a router combining the distributed router architecture with the

load-sharing scenario is depicted in Figure 6.1. In this distributed router system, an

NPU resides at every line card and the NPUs are interconnected through a switch.

The NPUs use the switch for switching data packets as well as for exchanging the

load among themselves.

The processors do not need to be dimensioned to handle the full link capacity—in

case of overload, the other processors will be able to help. Likewise, the system fault

tolerance is enhanced—in case of an NPU failure, the load of the interface affected

can be handled seamlessly by the other NPUs within the system. Depending on the

switch round-trip time, the mapping weights may be adjusted to give preference to

local processors.

Figure 6.1: Load sharing within a distributed multiprotocol router. Upon
packet arrival, the packet information vector ~w travels through the switch to NPU
j, chosen by computing the mapping f(~v) = j over the identifier vector ~v. At NPU
j, the vector ~w is processed and the resolution information is returned back to the
requesting NPU. The packet is then switched to the correct output port and the
corresponding packet alterations or manipulations, based on the resolution results,
are applied.

6.2. MULTIPROTOCOL ROUTER 95

Figure 6.2: Multiprotocol router, consisting of an input- and output
switch/shared memory and a pool of multiple NPUs, sharing the load
of N line cards. Every line card is connected to two switches/shared memories,
input and output. Each of the multiple NPUs is reachable from a line card through
a switch. Upon packet arrival, the packet is buffered in the input shared memory
and the information vector ~w travels through the input switch to NPU j, chosen by
computing the mapping f(~v) = j over the identifier vector ~v at the line card. At
NPU j, the vector ~w is processed and the resolution information is then switched
to the resulting port of the output switch. The packet is then retrieved from the
shared memory, the corresponding packet alterations or manipulations, based on the
resolution results, are applied and the packet is transmitted on the link.

Another potential implementation is shown in Figure 6.2. It is a load-sharing

extension of the concepts of the Juniper Networks routers, where the header and

the payload-processing paths are separated by two switches, input and output. The

control information in the packet header is processed in a remote NPU, while the

payload is temporarily stored in a distributed shared memory coupled to the input

switch. Sharing the load among the NPUs brings significant utilization benefits.

Furthermore, in this manner a centralized load balancer over the pool of NPUs is not

needed and thus a potential single point of failure within a router is being eliminated.

96 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

6.2.2 Load indicator

An open implementation issue is how to actually measure the load of the processors

or the amount of processing units spent per time interval. Alternative measures to

the one used in the simulations (number of memory accesses an NPU has performed

during the time interval ∆t) can be for example the number of processing cycles or the

number of packets processed per time interval. A counter value is periodically read

by the CP. Multiple indicators can be combined into one using relative weights, as

in the Network Dispatcher [24] application (see Section 2.4.3, yet note that results of

Kunz [35] indicate that the benefit over a one-dimensional load descriptor is minimal.

Although the load information gathering appears to present unnecessary extra

effort for the router system, note that similar statistics collection is readily available

and often required from the existing router equipment [18] [38] and therefore should

result in minimal load increase on the system.

6.2.3 Pseudo-random function

The major implementation issue related to the load-sharing method is how to provide

a fast computable pseudo-random function g for computing the HRW mapping f , with

the properties required in the mapping definition (Def. 3).

The device performing the mapping must compute N uniformly distributed pseudo-

random values (let us call them scorei) using some packet fields (vecv) and the outgo-

ing interface index i. These values are later used as inputs for the mapping function

that selects the forwarding port.

Let us recall some desired properties of the function:

• The function must map (at least) a 32-bit input to a 32-bit output score. Some

flow-dependent packet fields, such as the source IP address or the source port

number are used as input.

• The function should generate uniformly distributed and uncorrelated scores.

The number of collisions (different inputs that generate the same output score)

should be minimal.

6.2. MULTIPROTOCOL ROUTER 97

• The function must be deterministic–it must generate the same score for all the

packets of the same flow. This avoids that packets of the same connection are

being forwarded to different processors.

• We can not assume that the inputs are uniformly distributed. Nevertheless, the

output of the function should not show the effects of the bit correlation of the

input.

We propose a list of hash functions that scramble and mix the input digits to

obtain a score. We discuss their usability and evaluate the spreading quality and the

number of operations involved in the hashing process.

Knuth’s standard integer hash function

Knuth [32] recommends the following integer hash function:

for (hash=len; len--;)

hash = ((hash<<5)^(hash>>27))^*key++;

hash = hash % table_size;

Unfortunately, this hash function shows only mediocre scrambling performance.

The problem is the per-character mixing: it only rotates bits, instead of mixing them.

It can be demonstrated that every input bit affects only 1 bit of the hash.

Fibonacci golden ratio multiplicative hash function

In Section 6.4 of [32], Knuth introduces a multiplicative hashing scheme, which seems

to be a good candidate for the mapping purposes. It is based on the Fibonacci golden

ratio multiplier φ−1 = (
√

5 − 1)/2. The Fibonacci hash function leads to the “most

random” scrambling of sequences [32]. It is defined as follows:

hφ−1(x) = (φ−1 x)mod 1. (6.1)

98 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

In a 32-bit arithmetic, the key is multiplied by the golden ratio φ−1, computed

over 32 bits (2654435769) to produce a hash result:

unsigned int inthash(unsigned int key) {

return (key*2654435769) & 0xFFFFFFFF;

}

Because 2654435769 and 232 have no common factors, the multiplication produces

a complete mapping of the key to the hash result with no overlap. This method works

nicely for keys with small values. The spread of hash results is not so good if the keys

vary in the upper bits. As is true for all multiplications, variations of upper digits do

not influence the lower digits of the multiplication result. Furthermore, this method

requires a multiplication by a fixed number, which may be a cycle-intensive operation

for some systems.

The function can be fit into the mapping scheme as follows:

g(~v, j) = hφ−1(~v XOR hφ−1(j)). (6.2)

As the values hφ−1(j) can be pre-computed, the actual computation per vector ~v

requires only 4m basic operations and m comparisons (to find the maximum).

In our simulations in Chapter 5, we have used Fibonacci hashing to compute

g(~v, j).

Jenkins and Wang’s 32-bit Mix function

As multiplication is not always straightforward to implement, a fast computable func-

tion consisting of only simple bit operations may be necessary. Jenkins [29] defines

the 96-bit Mix function:

#define mix(a,b,c) \

{ \

a=a-b; a=a-c; a=a^(c>>13); \

b=b-c; b=b-a; b=b^(a<<8); \

6.2. MULTIPROTOCOL ROUTER 99

c=c-a; c=c-b; c=c^(b>>13); \

a=a-b; a=a-c; a=a^(c>>12); \

b=b-c; b=b-a; b=b^(a<<16); \

c=c-a; c=c-b; c=c^(b>>5); \

a=a-b; a=a-c; a=a^(c>>3); \

b=b-c; b=b-a; b=b^(a<<10); \

c=c-a; c=c-b; c=c^(b>>15); \

}

The input parameter c initially contains the input key and a and b are set by

default to the 32-bit value of the golden ratio (φ−1 = (
√

5− 1)/2). At the end of the

computation, the hash result is stored in c.

From this function, Jenkins derives a 32-bit Mix Function:

unsigned int inthash(unsigned int key) {

key += (key << 12);

key ^= (key >> 22);

key += (key << 4);

key ^= (key >> 9);

key += (key << 10);

key ^= (key >> 2);

key += (key << 7);

key ^= (key >> 12);

return key;

}

Wang [66] proposes a faster computable version of the above:

unsigned int inthash(unsigned int key) {

key += ~(key << 15);

key ^= (key >>> 10);

key += (key << 3);

key ^= (key >>> 6);

100 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

key += ~(key << 11);

key ^= (key >>> 16);

return key;

}

Depending on the computing capacity available, other hash functions may be used.

The study in [7] documented good spreading properties of the CRC16 function, yet

at a cost of higher complexity.

6.3 Server load balancer on a network processor

This describes a method where multiple servers forming a server farm are connected

to a front-end Network Processor, which balances the processing load among the

servers. We present an existing implementation of the method on the IBM PowerNP

network processor.

6.3.1 Server farm topology

The NP acts as a Virtual Server, representing the N real servers belonging to the

Server Farm and connected to the NP. The IP address of the Virtual Server is the IP

address of the entire farm to the outside world. When a packet arrives, the NP checks

whether the destination IP address is the server farm address. If not, it proceeds with

the standard IP forwarding; otherwise it starts the specific forwarding algorithm.

The server farm must be transparent to the Internet users. They must perceive

the connection as if connected to a Virtual Server, impersonated by the NP, even

if the NP switches the flow to a specific real server according to the load balancing

policy. This means for example that all the packets received by the user must have

the IP address of the Virtual Server. The are two different approaches to achieve this:

1. The real servers all have a private IP addresses, and the NP implements the

NAT function. This solution hurts the NP performance because the NP must:

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 101

• change the IP destination address of all incoming packets to the private

IP address of the real server to which the packets will be forwarded;

• change the IP source address of all outgoing packets to the Virtual Server

IP address.

Note that NAT translation involves resource-intensive operations, such as re-

computing the spacket checksum;

2. All real servers have the same IP address (identical to the address of the Vir-

tual Server). The real-to-virtual server connection must be a point-to-point

connection. Such a solution may lead to problems in the ARP/RARP protocol

operation, because the NP is linked to several nodes and shares the same IP

address with them. To avoid these problems, we have disabled the ARP/RARP

protocol on the interfaces towards the real servers and put some fixed entries

directly in the NP ARP tables for the IP/MAC mappings of the real server.

For our implementation, we have chosen the second alternative, for its speed and

ease of management. Fig. 6.3 shows the network topology used during testing. There

are three real servers and two hosts, acting as Internet users. Tables 6.1 and 6.2 show

the corresponding IP routing table and the ARP table, as stored in the Linux Control

Point of the NP:

Entries on lines ‘B’, ‘C’, ‘D’, ‘E’, ‘F’ and ‘G’ are pre-configured. Note that line

‘F’ is the link to the Control Point. Line ‘P’ is the default gateway. Thanks to lines

Table 6.1: Kernel IP routing table

Line Destination Gateway Genmask Flags Metric Ref Use Iface
A 12.0.0.2 * 255.255.255.255 UH 0 0 0 reth2
B 12.0.0.0 * 255.255.255.0 U 0 0 0 reth2
C 12.0.0.0 * 255.255.255.0 U 0 0 0 reth3
D 12.0.0.0 * 255.255.255.0 U 0 0 0 reth4
E 31.0.0.0 * 255.255.255.0 U 0 0 0 reth21
F 3.3.3.0 * 255.255.255.0 U 0 0 0 npctl0
G 15.0.0.0 * 255.0.0.0 U 0 0 0 reth5
H 127.0.0.0 * 255.0.0.0 U 0 0 0 lo
I default k64route.zurich 0.0.0.0 UG 0 0 0 eth0

102 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Figure 6.3: Sample server farm topology

‘L’, ‘M’ and ‘N’, the NP does not have to send an ARP request when it tries to

forward a packet (with destination IP equal to 12.0.0.2) to a real server, which is on

the interface reth2, reth3 or reth4, because it already knows the destination MAC

address of the network card of that machine.

Table 6.2: Kernel ARP table

Line Address HWtype HWaddress Flags Mask Iface
L 12.0.0.2 ether 00:55:0C:00:01:02 CM reth2
M 12.0.0.2 ether 00:55:0C:00:01:03 CM reth3
N 12.0.0.2 ether 00:55:0C:00:01:04 CM reth4
O 15.0.0.2 ether 00:55:0F:00:00:02 CM reth5
P k64route.zurich.ibm.com ether 00:00:0C:07:AC:00 C eth0

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 103

6.3.2 Load Balancer on the PowerNP network processor–

–general overview

The task of carefully balancing the load among multiple servers is non-trivial due to

the high volume (and thus high speed requirements) of data traffic and a contradictory

requirement of preserving the assignment of flows to servers, once established. To

best balance simultaneously a large number (10,000s or 100,000s) of packet flows in

hardware, it is necessary to determine a scheme that keeps minimum amount of state

on flows, but maintains the connectivity of active TCP flows between hosts. For TCP

flows, we must guarantee that the two end-points (the user and a Real Server) do not

change until the connection is explicitly ended (i.e. the Real Server receives a FIN or

RST message). As for the UDP packets, as the UDP protocol is connectionless, we

can forward the packets to different Real Servers without problems (considering no

fragmentation).

Zero flow remappings

When the NP receives a packet for the server farm, it computes the outgoing interface

(Target Port) using the robust hash routing mapping algorithm. At the initial phase,

one mapping function is configured, with the weights based on the resource capacities

of the servers. If the mapping weights do not change, the forwarding algorithm assures

flow preservation, meaning that all packets of the same flow are forwarded to the same

Real Server. The deterministic hash computation is performed on a portion of the

packet that remains constant for the duration of a flow, such as the IP source address

and the source port.

Once the method has been put into operation, statistics are accumulated on the

resources utilization. If some servers become over-utilized relative to other servers, a

new mapping computation is determined. The mapping computation Hnew optimally

distributes network traffic based on the statistics gathered.

Assume that at time t = t0 the CP adjusts the weights (using the adaptation

policy) and thus there may exist a TCP connection, whose packets, that arrive at the

NP at time t > t0, are forwarded to a new Real Server, which cannot handle such

104 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Figure 6.4: Server load balancer on the PowerNP network processor.

previously existing TCP connection, as it does not have any buffered state for it.

The solution is to alternate between a state where only one mapping is computed,

and a transient state, where two mappings are computed. During the transient pe-

riod, the method is complemented by a small set of Classifier rules that do treat the

minimum amount of flows affected by the transient state.

During the transient period, both the old (Hold) and the new (Hnew) mappings

are computed on each packet simultaneously. Packets in the intersection of the two

mappings (Hnew = Hold) continue to be routed to the resulting server. Packets that

do not fall in the intersection of the two mappings (Hnew 6= Hold) are redirected to the

CP for routing. The CP keeps state for each flow it sees and routes flows in progress

(flows where no SYN bit is seen) to the result of the old hash function and new flows

(flows where the SYN bit is seen) to the result of the new hash function. The state

for flows that are finished (flows where the FIN bit is seen) or do time-out is deleted.

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 105

After a configured period of time, Multi-Field Classification rules, which specify to

which server the flow is routed, are installed for the remaining (”long-lived”) flows in

the state table. The old mapping function is then discarded and the method returns

to a state of a single mapping. The Multi-Field Classification rules are being further

monitored and removed upon flow termination or time-out.

The method continually alternates between the one-mapping and two-mapping

states, to continually optimize the load balance for current traffic conditions.

Advantages of this approach include:

• No flows in progress are ever moved between servers, ensuring uninterrupted

flow connectivity;

• State information is only maintained for flows not in the intersection of the two

mapping functions, minimizing hardware costs;

• The intersection of the two mapping functions is mathematically maximized,

thus further minimizing the state kept.

• Routing is performed partially in hardware, using hashes performed by the TSE

coprocessor in the NP, thus exploiting the high data rate of the device.

6.3.3 Network processor data plane

The NP must first determine whether the packet is classified as belonging to the set

of long-living flows. For all these packets, regular IP forwarding is disabled, and the

NP uses the information provided by the classifier rule for forwarding the packet.

The forwarding algorithm, based on the robust hash routing, is only carried out

(using the sets of the new and the old weights) on the non-filtered packets, destined

to the Server Farm. Using TPNew and TPOld, the NP forwards the packet to TPNew

in case of equality or to CP in case of ambiguity. Non-filtered packets having a

destination IP that is not equal to the Server-Farm IP are routed normally: the NP

uses the routing tables to determine the Target Port.

Fig. 6.5 shows the state diagram for the forwarding algorithm carried out on the

data plane of the NP:

106 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Figure 6.5: NP state diagram

INSTALL (H) is an API that, considering the percentages set by the user, installs

the corresponding set of weights (H) in the NP memory;

HASH UPDATE (H) is a similar API that modifies the set of weights. This is done

by overwriting the values of the old set (Hold) with those of the new set and

installing in Hnew the set passed as parameter (H);

PKT IN (pkt) simulates a new packet destined for the Server Farm, arriving at the

NP;

MATCH is performed by the Multi-Field Classifier which can filter and handle the

packets (LFLOW STATUS function) based on the filtering rules (F) installed

by the CP (FILTER UPDATE);

HASH CONFLICT is the redirection of the packet to the CP. Note also that together

with the packet also the TPnew and TPold must be sent.

PKT POUT (pkt) is the setting of the TP and consequently the eventual forwarding

of the packet.

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 107

6.3.4 HRW weights representation on the network processor

The robust hash routing algorithm requires that the probability distribution of the

hashed values is U(0, 1). These uniformly distributed values then have to be multi-

plied by the weights.

This is complicated to execute for several reasons. One is that the PowerNP

assembler-based pico-code does not include a specific operand for the multiplication.

If we need to multiply two 16-bit registers, it is quite easy to see that the time

complexity is ∼ O(const · 16). Moreover the multiplication must be executed for

every packet and for all N ports. Thus, the time complexity for the overall forwarding

process presented in (2.3) is ∼ O(const · 16 · N).

The following formula proposes a new way to compute the weights xi. The weights

are now used as additive offsets. The idea is that by applying the logarithm, which is

a monotonous increasing function, to both sides of Eq. (2.3), we preserve the equality:

f(~v) = j

⇐⇒
log(xj · h(~v, j)) = max

k ∈[1,N]
log(xk · h(~v, k)) (6.3)

The logarithm of a product can be split into the sum of the logarithms of the

two numbers and thus we do not have to compute a multiplication, but a logarithm.

Recalling the inverse transform method for the continuous distributions, we note that

the logarithm of uniformly distributed values produces an exponential distribution (in

our case a negative exponential). The following lemma proves that the key properties

of the HRW mapping hold for after the logarithm substitution as well:

Lemma 2 (R. Russo) Let p1, . . . , pN be given target probabilities. Reorder the

targets so that p1 ≤ . . . ≤ pN . Let

x1 =
ln Np1 + S

N
,

108 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

with S =
N

∑

i=1

xi, and let x2, . . . , xN be calculated recursively as follows:

xn =
1

N − n + 1
· ln

(pn − pn−1)(N − n + 1)

exp

(

n−1
∑

i=1

xi − S

) + exp
(

xn−1 · (N − n + 1)
)

(6.4)

Then the robust hash routing algorithm with offsets x1, . . . , xN for every score h1, . . . , hN

will route the fraction pn of incoming objects to the n-th target for n ∈ 1, . . . , N.

Using this lemma, we can compute the weights xi that are the offsets of the robust

hash routing function. Thus, the mapping algorithm now holds as:

f(~v) = j

⇐⇒ (6.5)

xj + h(~v, j) = max
k ∈ [1,N]

xk + h(~v, k).

This solution does not require multiplication, only summation. However, designing a

pseudo-random function with the probability distribution of hashing values equal to

exp(−x) is not straightforward.

Lemma 2 presents the statement of the multiplier theorem only in another way.

Clearly, if xi and x′
i are weights computed with (2.3) and (2), S is the sum of the

weights x′
i, and assuming that

∏N
j=1 xj = 1, then

x′
i = log xi + S/N. (6.6)

This property is vital because all the properties of the mapping and adaptation

described in Chapter 4 are also valid for the set of weights x′
i. For example, thanks to

Eq. (6.6), the adaptation of the weights x′
i will uphold the same minimal disruption

property.

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 109

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Distribution of the values of the K.R.’s weights

F
re

q
u

e
n

c
y

Figure 6.6: Ross’ weights distribution.

Another important issue is understanding what range of values can such weights

attain. The original weights xi are always greater than zero. This does not hold for

the transformed x′
i set. Because these weights must be loaded in the NP registers and

we have to use a fixed-point notation to represent them, it is important to understand

their possible distribution. In particular we need to know how many bits are needed

for representing the integer part of the weight in order to guarantee that all possible

percentage combinations (and thus the corresponding weights) are representable. We

have conducted a C and Matlab simulation to anlayze the weights’ values distribution.

For N CY CLES = 10000, we randomly assigned percentages to the N = 8 ports

and then computed the weights for both mapping algorithms. The results obtained

are shown in Figs. 6.6 and 6.7.

The maximum and the minimum values of the weights appearing during the sim-

ulation (for (2.3) and (6.4) respectively) were

Ross :

{

max = 592.083951

min = 0.231048

}

Russo :

{

max = 6.383648

min = −1.465130

}

We conclude that it is sufficient to use 1 + 4 bits (instead of 0 + 10) to represent

the sign and the integer part of the weights described in (6.4).

As explained in Subsection 6.3.2, in order to avoid flow remappings altogether,

110 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500
Distribution of the values of the R.R.’s weights

F
re

q
u

e
n

c
y

Figure 6.7: Russo’s weights distribution.

the CP provides two sets of weights to the NP: the new weights xnew
k and the old

weights xold
k . The weight xk may be positive or negative, and, contrary to the hash

score which is always in the interval [0, 1], we have to provide some bits for the integer

part of xk. Thus, it is non-trivial how to store the weights most efficiently.

Considering that the sum of weights (S) represents a degree of freedom, for any

set of weights we can compute a set of weights which is equivalent and representable

in our notation by only changing the value of S. Obviously, if a common offset is

added to all the weights, the outcome of the HRW mapping will remain the same.

Thus, the weights can be stored, for example, in the 1-4-27 fixed-point notation,

aligned for 32-bit processor arithmetic. This leads to a decimal precision of 2−27 ∼ 7×
10−9, which should be precise enough for the possible weights adjustments. Sufficient

precision is crucial for implementing a hierarchical weights storage data structure, as

presented in Subsection 6.3.5.

As we need to add scorei to the weight according to Eq. (6.5) and as we assume

the weights are represented in a 1-4-27 (sign-integer-fractional) fixed point notation,

we can use only the first 27 bits of the 32 produced by the uniform hash generator.

Denoting by a0, a1, . . . , a30, a31 the bits generated by the uniform generator, then the

scorei is computed as follows:

scorei = a02
−1 + a12

−2 + . . . + a252
−26 + a262

−27

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 111

6.3.5 HRW weights data structure

We use a table to store the weights on the NP. The NP can handle both static-size

and dynamic-size tables. As we do not require that the table changes its size, and

as accessing a dynamic-size table is slow (because it requires first to access a table

that stores its size), it makes sense to use a static table to store the weights structure.

Static tables on the NP do not have specific interfaces for setting and writing the data

and thus we need to implement our own APIs. We can also choose the location in

the memory for these tables: internal, SRAM or DRAM. The fastest memory is the

internal, and we should use it because the table is read continuously. The internal NP

RAM configuration, with 512 bits per line, guarantees that for each memory access,

the NP reads 8 new and 8 corresponding old weights.

Flat data structure

Fig. 6.8 depicts the flow chart of the HRW mapping computation algorithm, as pre-

sented in Section 2.2.3. On two occasions, the execution waits for the results of the

hash-coprocessor, which has been called before asynchronously earlier, to finish the

desired computation. The algorithm contains two cycles: one for reading a 512-bit

line from the memory and another one for computing the hash score for all the weights

of that line. To implement these two cycles we used two indexes: M and N .

Using M and decrementing it each time by 8, the NP can parse one by one the N

pairs of weights (xnew
k , xold

k) contained in one line of the Weight Table. M is used as

offset in the load operand which reads the 32-bit block from the memory. The starting

value of M depends on the number of weights expected to be on the line. For example,

if N = 12 we need to parse two 512-bit lines: the first line contains 8 pairs of weights

(and thus M = 56), while the remaining 4 pairs (and thus M = (N − 1) ∗ 8 = 24) are

in the second line.

The initial value of N is the number of servers, but further on the variable is used

for the hash score generation. The robust hash routing requires that an ID (or an

index or a tag, etc.) of the server is inserted in the hash key, we can use N in the

hash key, as it is decremented every time a pair of weights (xnew
k , xold

k) is read. As N

112 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Figure 6.8: HRW Mapping computation algorithm

holds a different value per each server, it can be considered an ID.

Thus, for generating the hash scores it is sufficient to append N at the end of the

hash key (the input to the hash coprocessor) as follows:

src IP@‖src IP@ + src port << 8‖N.

Unfortunately, the hash scores must be uncorrelated, and if only five bits are used

for representing N , the hash coprocessor provides highly correlated results. Therefore,

we use a 32-bit register for storing N and decrement it not by 1, but by a fixed

32-bit value, for example, the Fibonacci golden ratio (see Section 6.2.3). Thus, N

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 113

Figure 6.9: Flat data structure.

various indexes are generated, that, when plugged into the same hash key, result in

independent hash scores.

Test results on the flat data structure

To test the algorithm implementation, we used a trace file [3] that logged the HTTP

connections collected from 00:00:00 July 1, 1995 to 23:59:59 July 31, 1995, of the

NASA Kennedy Space Center WWW server in Florida. There are about 260’000

different connections present in the log-file. This particular file has been chosen, even

if being quite old, because the NASA server receives connections worldwide (we obtain

a consistent view of the IP addresses spread) and because, for privacy reasons, it is

now impossible to obtain trace files with real IP addresses (typically, IP addresses are

encoded in the publicly available traces).

We simulated a server farm with three host (IDs: 120, 130, 140), having load

percentages set to 20%, 30% and 50%. We sent 6496 UDP packets using the packet

information (i.e. IP addresses) collected by the NASA server [3]. The results, summa-

rized in Table 6.3, are close to desired, even if the number of packets sent is relatively

small.

114 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Table 6.3: Results of the simulation using a flat data structure.

ID User percentage pi (%) Packets received Percentage (%)
130 20 1160 17.86
140 30 2052 31.59
150 50 3284 50.55

Hierarchical data structure

Unfortunately, the complexity of the algorithm presented in Subsection 6.3.5 is linear

with the number of servers N (we need to find the maximum among N different

values). There are two cycles present: the inner one for parsing the weights inside

a 512-bit line, computing the hash score and finding the maximum value, and the

outer one for reading the 512-bit lines from the memory banks. Implementing these

cycles means inserting branch operands that require many CPU cycles. Moreover,

considering a server farm with, for example, 50 servers, it is difficult to set the 50

different percentages and it is hard to represent those because of the lack of precision.

One alternative to avoid the drawbacks above is to use a hierarchical approach,

as illustrated by the following example:

max(A,B,C,D,E, F,G) = max (max(A,B,C,D), max(E,F,G,H))

= max (max (max(A,B), max(C,D)), max (max(E,F), max(G,H)))

This recursive approach changes the flat data structure (as shown in Fig. 6.9) into

a multi-level hierarchical data structure (as shown in Fig. 6.10). The advantage is

the lower computational complexity of the algorithm (logarithmic instead of linear).

Unfortunately, the increased speed is traded for the increased space requirements, as

well as for losing some of the algorithm’s properties.

Firstly, more than N weights are needed now. There needs to be a weight present

at every node of the decision tree. Let us illustrate that using an example (see

Fig. 6.10): there are three levels of the decision tree, and the users must set the per-

centages of seven different clusters : those at the lowest level ((pA, pB), (pC , pD), (pE, pF)

and (pG, pH)), those at the middle level ((pL11, pL12) and (pL21, pL22)) and those at

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 115

Figure 6.10: Hierarchical data structure

the top level ((pL1, pL2)).

At each cluster, the sum of the fractions must be equal to 1. Server A now receives

a fraction equal to pA · pL11 · pL1 of the incoming load. Such arrangement serves to

provide better support for server heterogeneity–less powerful servers may now be

combined into clusters, leading to more uniform load spreading.

Secondly, the CP must now execute multiple different adaptation policies, one per

each cluster. For example, imagine that in cluster Set11 of Fig. 6.10, the mapping

algorithm forwards too many packets to cluster Set111. What happens when the CP

adapts the value of the weight xL11? Some flows are redirected from cluster Set111

to cluster Set112, yet xL11 does not depend on xA and xB and thus some flows with

real server A or B as original endpoint will be redirected to C or D, without changing

xA or xB. Likewise, a change in xL1 (because too many flows arrive at Set11) will

result in some flows originally directed to A, B, C and D to be redirected to E, F,

G or H. Thus, changing at least one weight within a cluster will affect all the flows

passing through that cluster.

In such a case, it is not possible to determine which particular flows are re-mapped.

It can easily happen that some child clusters will have more flows re-mapped than

others. Thus, adapting at level n could cause a cascade of adaptations for all clusters

at lower levels .

116 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

The number of occurrences of this effect can be minimized by avoiding to carry

out the adaptation at higher levels of the tree too often. This can be achieved by

increasing the hysteresis bound in the adaptation policies related to the higher level

clusters. When the higher levels are adapted, it is vital to avoid the adaptation on

the lower levels for a certain period, to avoid cascades of adaptations.

The above considerations lead to the following set of rules when building the

hierarchical structure:

• Reasonable tree depth. Too many levels aggravate the redirection problem, re-

sulting in bad performance. Choosing typically 2, or at most 3 levels guarantees

a fast execution and minimizes the redirection problem.

• Reasonable number of branches. It makes sense to group servers into au-

tonomous sets of sufficient size. They must be neither too large, because of

difficulties with setting the percentages and with weights representation, nor

too small, because that increases depth of the tree unnecessarily. A reasonable

maximal number of children of a node is 16, but a smaller number may be used

as well. For example, when N = 8, the user can choose one level with 8 weights

or 2 levels with 2 sets of 4 servers at the lower level.

Another implementation difficulty arises from the fact that in cases where the old

and the new mappings differ (see Fig. 6.5), not only the packet, but also the new and

the old result must be forwarded to the CP. Thus, knowing that TP ∗
New is not equal

to TP ∗
Old is not sufficient, we must compute TPNew and TPOld as well. The easiest

way is to save all parameters concerning the old path and computing TPNew, then

restoring them and computing TPOld. Note that the algorithm thus must handle the

special cases when TPNew and TPOld are located at different tree depths.

Finally, it is vital to avoid correlation of hash keys between clusters. If the hash

key for computing the scores inside two clusters (a father and a child) is always the

same, it can happen that the result of the first cluster is highly correlated with that

of the cluster-child, which is not desirable.

One option to avoid correlation is to add a 16-bit offset to the central part of the

6.3. SERVER LOAD BALANCER ON A NETWORK PROCESSOR 117

Figure 6.11: Topology for the hierarchical data structure simulations

hash key in order to un-correlate the results of different clusters. In our implemen-

tation we have used a constant 0xBEAF, as there are many bits set to 1, leading to

stronger un-correlation of the hash keys. Moreover, depending on the level, one may

change the value of the decrement of N and thus further un-correlate the results.

Test results on the hierarchical data structure

We simulated a topology as shown in Fig. 6.11, and again the IP addresses collected

by the NASA server [3] as input. We present the results of two simulations (see Table

6.4), and show how correlation between the results of different clusters can adversely

affect performance of the method.

In the first simulation we used 0x9E377A|01 (the 24-bit Fibonacci golden ratio, see

Subsection 6.2.3) as a decrement value for all clusters, and at the second level the first

part of hash key was updated with src IP@‖src IP@+src port << 8+0xBEAF <<

Table 6.4: Results of two simulations on hierarchical data structure

ID total % expected (pi) % obtained with Sim 1 % obtained with Sim 2
TPA 0.2 0.225 0.266
TPB 0.2 0.236 0.204
TPC 0.12 0.85 0
TPD 0.18 0.152 0.178
TPE 0.3 0.302 0.352

118 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

8. Even if the results are not as good as those obtained with the flat data structure, the

difference between the desired and the obtained percentages is not overly significant.

In the second simulation, N was decremented by 0x9E377A|01 at the top level,

while at the second level the decrement was 0x61c886|01 (the 24-bit complement of

the Fibonacci golden ratio 1 − φ−1), and the first part of the hash key was updated

with src IP@‖src IP@ + src port << 8 + 0xBEAF << 8. Clearly, this results

in high correlation between the scores of clusters A and C. In fact, we observe that

the server at TPC is never chosen. An optimal way of reducing correlation among

clusters remains an open problem.

6.3.6 Network processor data plane implementation

Several software and hardware components of the PowerNP have been used in pro-

totyping the load balancer application: standard layer-2, layer-3 and layer-4 (Multi-

Field Classification) forwarding elements, as well as the hash function of the TSE

coprocessor. The availability of these ready-made components made the data-path

programming on the NP shrink to the relatively modest work of implementing the

hash routing method, its managing API and the CP redirection. The speed and good

spreading properties of the hash function in the TSE coprocessor enable us to consider

the hash computation a black-box, eliminating the necessity to implement one’s own

hash function.

The number of processor instructions required to execute the hash routing method

on each packet is dependent on the number of balanced servers M . The instructions

are primarily dedicated to reading and carrying out operations on the per-server

weights, while calling the TSE coprocessor in parallel. Up to M = 8 the prototype

implementation requires executing 75 + M ∗ 20 instructions. For M > 8, the number

of instructions executed grows logarithmically with M , as the weights’ table is then

organized into a tree structure.

6.4. CONCLUSIONS 119

6.4 Conclusions

In this chapter, we have demonstrated the practical applicability of the adaptive

load-sharing method.

First, we have presented two examples of router architectures that would signifi-

cantly benefit from executing the load-sharing method among the processors present

within a router. We have discussed some key implementation issues, such as the

pseudo-random function computation and the load information gathering and pro-

posed suitable alternatives.

In the second part of the chapter, we have described and documented an existing

implementation of the load-sharing method on the IBM PowerNP network processor.

In this scenario, the network processor acts as a server farm load balancer. We have

addressed some specific problems with implementing the HRW mapping computation

and data structures. The parallelism of the network processor is exploited in order to

provide a fast solution and to extend the method in order to avoid flow remappings

altogether.

120 CHAPTER 6. APPLICATIONS IN NETWORKING SYSTEMS

Chapter 7

Conclusions

7.1 Open issues

Further insight needs to be acquired into the impact of remote packet information

processing—the influence of the information vector round-trip time on packet delay

within a multiprocessor system. A related aspect to study is the ability to assign a

preference to locally attached processors over remotely located ones.

Another open issue is the dissemination and gathering of load information. In the

scenarios presented in this thesis, feedback information gathering has been performed

by a central entity–the router control point or the server farm load balancer–which are

natural points for maintaining centralized control over the entire multiprocessor sys-

tem and would have been in an equivalent position without the load-sharing method

in operation. However, one may well imagine a fully distributed multiprocessor en-

vironment without a controlling entity. Devising a specific distributed version of the

adaptation algorithm for such a purpose remains a challenge.

When a load-sharing method of the kind described here is deployed, it may in fact

be exploited to achieve even further performance benefits than those described in this

thesis. Given the fact that the knowledge about what traffic is mapped where can

easily be made available not only to the entity that performs the mapping, but also to

other elements within the system, in particular the processing units, one can envision

a system where the processing units adjust their processing methods to the locality

121

122 CHAPTER 7. CONCLUSIONS

enforced on the incoming traffic by the mapping. Significant further performance

gains may be achieved by such partitioning of the problem space.

7.2 Concluding remarks

In this work, we have demonstrated the advantages of deploying a load-sharing

method in a multiprocessor system that acts as a node in a networked environ-

ment. We have presented an adaptive load-sharing method and demonstrated its

favorable properties, both by theoretical means and by simulations. In addition, we

have presented two practical examples, a router architecture and server load balancer

implementation, of the method’s application.

The value of the proved minimal disruption property of the mapping adaptation

has been demonstrated in the extensive set of simulations. At the negligible cost of

remapping on average less than 0.1% of all flows, the method reduces the probability

of a packet loss on average by 60% in comparison to a static, non-adaptive load-

sharing method. Furthermore, the remappings can be avoided altogether by a simple

additional classification mechanism.

Such a scheme is particularly useful in systems with many input ports and packets

requiring large amounts of processing. With the proposed scheme, a kind of statistical

multiplexing of the incoming traffic over the multiple processors is achieved, thus in

effect transforming a network node into a parallel computer. The improvements of

processor utilization decrease the total system cost and power consumption, as well

as improve fault tolerance.

The spectrum of potential applications is not limited to a router or a server farm.

The method can be deployed in any networking system that benefits from spreading

the load over multiple processing units and that requires packets belonging to a single

flow to be processed by the same processor. Such applications include, for example, a

distributor of traffic over multiple network links or a distributed caching mechanism.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.

[2] AIX–MAE West interconnection at NASA Ames OC-3 trace. National

Laboratory for Applied Network Research (NLANR), March 19 2000.

http://moat.nlanr.net/PMA/.

[3] The Internet Traffic Archive. Trace file of NASA Kennedy Space Center WWW

server in Florida, 2002.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.

[4] A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski. Towards a Gigabit

IP router. Journal of High Speed Networks, 1(4):281–288, 1992.

[5] G. Barish and K. Obraczka. World Wide Web caching: trends and techniques.

IEEE Communications Magazine, 38(5):178–184, May 2000.

[6] E. Basturk, R. Engel, R. Haas, V. Peris, and D. Saha. Using network layer

anycast for load distribution in the Internet. In Proceedings of the Global Internet

Symposium, Sydney, 1998.

[7] Z. Cao, Z. Wang, and E. W. Zegura. Performance of hashing-based schemes for

Internet load balancing. In Proceedings of the INFOCOM’00 Conference, pages

332–341, 2000.

123

124 BIBLIOGRAPHY

[8] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering,

14(2):141–154, February 1988.

[9] Cisco Express Forwarding (CEF). Cisco Systems white paper, 1997.

http://www.cisco.com.

[10] H. C. B. Chan, H. M. Alnuweiri, and V. C. M. Leung. A framework for optimiz-

ing the cost and performance of next-generation IP routers. IEEE Journal on

Selected Areas in Communications, 17(6):1013–1029, June 1999.

[11] H. J. Chao. Next generation routers. Proceedings of the IEEE, 90(9):1518–1558,

September 2002.

[12] Internet Software Consortium. Berkeley Internet Name Domain (BIND), May

2002.

http://www.isc.org/products/BIND/.

[13] M. Crovella, M. Taqqu, and A. Bestavros. A Practical Guide To Heavy Tails,

chapter 1: Heavy-Tailed Probability Distributions in the World Wide Web, pages

3–26. Chapman & Hall, 1998.

[14] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables

for fast routing lookups. ACM Computer Communication Review, 27(4):3–14,

October 1997.

[15] P. A. Dinda and D. R. O’Hallaron. An evaluation of linear models for host load

prediction. In Proceedings of the Eighth IEEE International Symposium on High

Performance Distributed Computing, Redondo Beach, CA, August 1999.

[16] G. Dittmann and A. Herkersdorf. Network processor load balancing for high-

speed links. In Proceedings of the International Symposium on Performance

Evaluation of Computer and Telecommunication Systems (SPECTS 2002), pages

727–735, San Diego, CA, July 2002.

BIBLIOGRAPHY 125

[17] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in ho-

mogenous distributed systems. IEEE Transactions on Software Engineering,

12(5):662–675, May 1986.

[18] F. Baker (editor). Requirements for IP version 4 routers. RFC 1812, Internet

Engineering Task Force, June 1995.

[19] H. El-Rewini, H. H. Ali, and T. Lewis. Task scheduling in multiprocessing sys-

tems. IEEE Computer, 28(12):27–37, December 1995.

[20] A. Engbersen and C. Minkenberg. A combined input and output queued packet-

switched system based on a Prizma switch-on-a-chip technology. IEEE Commu-

nications Magazine, 38(12):70–77, December 2000.

[21] C. Partridge et al. A fifty gigabit per second IP router. IEEE/ACM Transactions

on Networking, 6(3):237–248, June 1998.

[22] f5 Networks. BIG-IP intelligent load balancing, 2002.

http://www.f5.com/f5products/bigip/LB520/.

[23] G. C. Fedorkow. Cisco 10000 Edge Services Router (ESR) technology overview,

2000.

http://www.cisco.com.

[24] G. Goldszmidt and G. Hunt. Scaling internet services by dynamic allocation of

connections. In Proceedings of the Sixth IFIP/IEEE International Symposium

on Integrated Network Management, pages 171–184, May 1999.

[25] I. Iliadis and W. Denzel. Performance of a packet switch with input and output

queueing under unbalanced traffic. In Proceedings of the IEEE INFOCOM 1992,

pages 743–752, May 1992.

[26] I. Iliadis and W. Denzel. Analysis of packet switches with input and output

queueing. IEEE Trans. on Communications, 41(5):731–740, May 1993.

126 BIBLIOGRAPHY

[27] Juniper Networks Inc. M160 Internet backbone router datasheet, August 2001.

http://www.juniper.net.

[28] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley &

Sons, 1991.

[29] R. Jenkins. Details of some hash functions and block ciphers, 2002.

http://www.burtleburtle.net/bob/hash/index.html.

[30] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a space-

division packet switch. IEEE Trans. on Communications, 35(12):1347–1356,

December 1987.

[31] L. Kleinrock. Queuing Systems, volume 3. John Whiley & Sons, 1975.

[32] D. E. Knuth. Sorting and searching, volume 3 of The Art of Computer Program-

ming. Addison-Wesley, second edition, 1998.

[33] O. G. Koufopavlou, A. N. Tantawy, and M. Zitterbart. Analysis of TCP/IP for

high performance parallel implementations. In 17th IEEE Conference on Local

Computer Networks, Minneapolis, September 1992.

[34] V. P. Kumar, T. V. Lakshman, and D. Stilliadis. Beyond best effort: router

architectures for the differentiated services of tommorrow’s Internet. IEEE Com-

munications Magazine, pages 152–164, May 1998.

[35] T. Kunz. The influence of different workload descriptions on a heuristic load

balancing scheme. IEEE Transactions on Software Engineering, 17(7):725–730,

July 1991.

[36] T. Kurz, P. Thiran, and J-Y. Le Boudec. Regulation of a connection admission

control algorithm. In Proceedings of INFOCOM’99, pages 1053–1061, New York,

March 1999.

[37] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

BIBLIOGRAPHY 127

[38] K. McCloghrie and M.T. Rose. Management information base for network man-

agement of TCP/IP-based internets:MIB-II. RFC 1213, Internet Engineering

Task Force, March 1991.

[39] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in

an input-queued switches. In Proceedings of the 1996 IEEE INFOCOM, pages

296–302, San Francisco, CA, March 1996.

[40] N. McKeown and B. Prabhakar. High performance switches and routers: Theory

and practice. In Tutorial M2 of the 1999 ACM SIGCOMM, Cambridge, MA,

August 1999.

[41] Microsoft. Windows NT Load Balancing Service, July 2001.

http://www.microsoft.com/ntserver/ProductInfo/features/WlbsFeat.asp.

[42] Nortel Networks. Alteon portfolio.

http://www.nortelnetworks.com/products/01/alteon/, 2002.

[43] P. Newman, G. Minshall, T. Lyon, and L. Huston. IP switching and Gigabit

routers. IEEE Communications Magazine, January 1997.

[44] S. Nilsson and G. Karlsson. Fast address lookup for Internet router. In Pro-

ceedings IFIP 4th International Conference on Broadband Communications ’98,

pages 11–22, 1998.

[45] WAN traffic distribution by address size, Fix-West trace. National Laboratory

for Applied Network Research (NLANR), May 1997.

http://www.nlanr.net/NA/Learn/Class.

[46] Z. Opalka and S. Soman. Will the new super routers have what it takes? Nexabit

Networks White Paper, March 1999.

[47] R. Perlman. Interconnections - bridges and routers. Addison-Wesley, 1992.

[48] Resonate. Central Dispatch, 2002.

http://www.resonate.com/solutions/products/.

128 BIBLIOGRAPHY

[49] Jennifer Rexford, John Hall, and Kang G. Shin. A router architecture for real-

time communication in multicomputer networks. IEEE Transactions on Com-

puters, 47(10):1088–1101, October 1998.

[50] K. W. Ross. Hash routing for collections of shared web caches. IEEE Network,

11(6):37–44, November-December 1997.

[51] Ch. Semeria. Internet backbone routers and evolving Internet design. Juniper

Networks white paper, September 1999.

http://www.juniper.net.

[52] J. Sethuraman and M. S. Squillante. Optimal stochastic scheduling in multiclass

parallel queues. Performance Evaluation Review Vol. 27 1, MIT, 1999.

[53] A. Shaikh, J. Rexford, and K. G. Shin. Load-sensitive routing of long-lived IP

flows. In Proceedings of SIGCOMM ’99, September 1999.

[54] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the effectiveness of DNS-

based server selection. In Proceedings of the IEEE INFOCOM 2001, Anchorage,

AK 2001.

[55] B. A. Shirazi, A. R. Hurson, and K. M. Kavi (editors). Scheduling and Load

Balancing in Parallel and Distributed Systems. IEEE CS Press, 1995.

[56] Akamai Web site.

http://www.akamai.com/.

[57] Speedera Web site.

http://www.speedera.com/.

[58] Cisco Systems. Cisco content networking devices, 2002.

http://www.cisco.com/en/US/products/hw/contnetw/index.html.

[59] Cisco Systems. Overview: Load balancing with the multinode load balancing

(MNLB) feature set for LocalDirector, 2002.

http://www.cisco.com.

BIBLIOGRAPHY 129

[60] Coyote Point Systems. Equalizer, 2002.

http://www.coyotepoint.com/equalizer.htm.

[61] A. Tantawy and M. Zitterbart. Multiprocessing in high performance IP routers.

In Proceedings of the 3rd IFIP WG 6.1/6.4 Workshop on Protocols for High

Speed Networks, Stockholm, May 1992.

[62] D. G. Thaler and C. V. Ravishankar. Using name-based mappings to increase

hit rates. IEEE/ACM Transactions on Networking, 6(1):1–14, February 1998.

[63] K. Thompson, G. J. Miller, and R. Wilder. Wide-area Internet traffic patterns

and characteristics. IEEE Network, 11(6):10–27, November-December 1997.

[64] J. Turner and T. Wolf. Design issues for high performance active routers. IEEE

JSAC, 19(3):404–409, March 2001.

[65] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed

IP route lookups. In Proceedings of ACM Sigcomm ’97, pages 25–37, Cannes,

France, 1997.

[66] T. Wang. Integer hash functions: principles and solutions, August 2002.

http://www.concentric.net/∼Ttwang/tech/inthash.htm.

[67] X. Xiao and L. Ni. Parallel routing table computation for scalable IP routers.

In Proceedings of the IEEE International Workshop on Communication, Archi-

tecture, and Applications for Network-based Parallel Computing, pages 144–158,

Las Vegas, February 1998. Published by Springer as Lecture Notes in Computer

Science 1362.

[68] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics and

origins of Internet flow rates. In Proceedings of ACM Sigcomm ’02, Pittsburgh,

August 2002.

[69] H. Zhu, T. Yang, Q. Zheng, D. Watson, O. H. Ibarra, and T. Smith. Adaptive

load sharing for clustered digital library servers. In Proceedings of the Seventh

130 BIBLIOGRAPHY

International Symposium on High Performance Distributed Computing, pages

235–242, July 1998.

Appendix A

List of publications and

Curriculum Vitae

Journal papers

• L. Kencl, J. Y. Le Boudec. ”Adaptive Load Sharing for Network Processors”.

IEEE/ACM Transactions on Networking, in submission.

• R. Haas, P. Droz, L. Kencl, A. Kind, B. Metzler, C. Jeffries, R. Pletka, M.

Waldvogel. ”Creating Advanced Functions on Network Processors: Experience

and Perspectives”. IEEE Network, in submission.

Conference papers

• L. Kencl, J. Y. Le Boudec. ”Adaptive Load Sharing for Network Processors”.

In Proceedings of the IEEE Infocom 2002, New York, June 2002.

• E. Bowen, C. Jeffries, L. Kencl, A. Kind, R. Pletka. ”Bandwidth Allocation for

Non-Responsive Flows with Active Queue Management”. International Zurich

Seminar on Broadband Communications 2002, Zurich, Switzerland, February

2002.

131

132 APPENDIX A. LIST OF PUBLICATIONS AND CURRICULUM VITAE

• L. Kencl, B. Radunovic. ”General Method for Finding the Most Economical

Distributed Router Architecture”. In Proceedings of the Communication Net-

works and Distributed Systems Modelling and Simulation Conference 2002, San

Antonio, Texas, January 2002.

Research reports

• R. Russo, L. Kencl, B. Metzler, P. Droz. ”Scalable and Adaptive Load Balanc-

ing on IBM PowerNP”. IBM Research Report No. RZ-3431, July 2002.

Patents

• L. Kencl, E. Bowen, P. Droz, B. Metzler. ”Load Balancing in Data Networks”.

European Patent Office Application No: 02014116.4, June 2002.

• P. Droz, L. Kencl. ”Method and System for Processing Data Packets”. Euro-

pean Patent Office Application No: 00114246.2, July 2000.

Curriculum Vitae

Personal

Name: Lukas KENCL

Date of birth: January 2, 1970

Place of birth: Prague

Nationality: Czech Republic

Marital status: married

Contact

Work Address: IBM Zurich Research Laboratory

Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

Tel.: (+41)-1-724 8426

E-mail: lke@zurich.ibm.com

lukas.kencl@ieee.org

Private Address: Isengrundstrasse 12

CH-8134 Adliswil

Switzerland

133

134 APPENDIX A. LIST OF PUBLICATIONS AND CURRICULUM VITAE

Employment history

1999 - present Researcher

Network Processor Software Group

Department of Communication Systems

IBM Zurich Research Laboratory

1998 Network Design Specialist

Technical Division

Eurotel s.r.o., Prague

1997 Oracle Express Consultant

VUMS Software a.s., Prague

1997 Assistant

Department of Mathematics

Prague Institute of Chemical Technology

Education

1999 - present Ph.D. Candidate

Laboratory for computer Communication and Applications (LCA)

Swiss Federal Institute of Technology (EPFL)

Lausanne, Switzerland

2000 - 01 Micro MBA Program

MBA courses in Finance, Marketing and Strategy

successful finish in June 2001.

1997 - 98 Graduate School of Communication Systems

EPFL, Lausanne

successful finish in July 1998

Project: IP Routing Address Lookup Algorithms Evaluation

1988 - 95 School of Computer Science

Faculty of Mathematics and Physics

Charles University, Prague

graduated M.S. in Computer Science in June 1995

Thesis: Approximations of a Maximum Cut of a Graph

