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Abstract

Musical and audio signals in general form a major part of the large amount of
data exchange taking place in our information-based society. Transmission of
high quality audio signals through narrow-band channels, such as the Internet,
requires refined methods for modeling and coding sound. The first important
step is the development of new analysis techniques able to discriminate between
sound components according to effective perceptual criteria. Qur ultimate goal
is to develop an optimal representation in a psychoacoustical sense, providing
minimum rate and minimum “perceptual distortion” at the same time. One of
the most challenging aspects of this task is the definition of a good model for
the representation of the different components of sound. Musical and speech
signals contain both deterministic and stochastic components. In voiced sounds
the deterministic part provides the pitch and the global timbre: it is in a sense
the fundamental structure of a sound and can be easily represented by means of
a very restricted set of parameters. The stochastic part contains what we might
call the “life of a sound”, that is an ensemble of microfluctuations with respect
to an electronic-like /non-evolving sound as well as noise due to the physical
excitation system. The reproduction of the latter is of fundamental importance
to perceive a sound like a natural one. We faced this challenge by developing a
new sound analysis/synthesis method called Fractal Additive Synthesis (FAS).

The first step was the definition of a new class of wavelet transforms, namely
the Harmonic-Band Wavelet Transform (HBWT). This transform is based on
a cascade of Modified Discrete Cosine Transform (MDCT) and Wavelet Trans-
forms (WT). By means of the HBWT, we are able to separate the stochastic
from the deterministic components of sound and to treat them separately.

The second step was the definition of a model for the stochastic components.
The spectra of voiced musical sound have non-zero energy in the sidebands of
the spectral peaks. These sidebands contain information relative to the sto-
chastic components. The effect of these components is that the waveform of
what we call a pseudo-periodic signal, i.e. the stationary part of voiced sounds,
changes slightly from period to period. Our work is based on the experimentally
verified assumption that the energy distribution of a sideband of a voiced sound
spectrum is mostly shaped like powers of the inverse of the distance from the
closest partial. The power spectrum of these pseudo-periodic processes is then
modeled by means of a superposition of modulated 1/ components, i.e., by
means of what we define as a pseudo-periodic 1/ f-like process. The time-scale
character of the wavelet transform is well adapted to the selfsimilar behavior
of 1/f processes. The wavelet analysis of 1/ f noise yields a set of very loosely
correlated coefficients that in first approximation can be well modeled by white
noise in the synthesis. The fractal properties of the 1/ noise also motivated
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xii Abstract

our choice of the name Fractal Additive Synthesis.

The next step was the definition of a model for the deterministic components
of voiced sounds, consistent with the HBWT analysis/synthesis method. The
model is from some point of view inspired by the sinusoidal models. The two
models provide a complete method for the analysis and resynthesis of voiced
sounds in the perspective of structured audio (SA) sound representations. For
the stationary part of voiced sounds compression, ratios in the range of 10-15:1
are easily achievable.

Even better results in terms of data compression can be obtained by taking
psychoacoustic criteria into consideration. A psychoacoustic based selection of
perceptually relevant parameters was implemented and tested. Compression
ratios of 20-30:1, depending on the musical instrument, were achieved.

An extension of the method based on a pitch-synchronous version of the
HBWT with perfect reconstruction time-varying cosine-modulated filter banks
was also studied. This makes the method able to handle, for instance, the slight
pitch deviations or the vibrato of a musical tone or more relevant changes of
pitch as in a glissando.

Finally, the method has been successfully extended to non-harmonic sounds
by the introduction and definition of an optimization procedure for the design of
non-perfect reconstruction cosine-modulated filter banks with inharmonic band
subdivisions. These extensions make FAS more flexible and suitable to analyze,
encode, process and resynthesize a large class of musical sounds.

The final result of this work is the development of a method for modeling in
a flexible way both the stochastic and the deterministic parts of sounds at a very
refined perceptual level and with a minimum amount of parameters controlling
the synthesis process. In the context of SA the method provides a sound analy-
sis/synthesis tool able to encode and to resynthesize sounds at low rate, while
maintaining their natural timbre dynamics for high quality reproduction.



Sommario

I segnali audio, musicali e non, sono una parte consistente dell’enorme quantita
di dati che vengono scambiati nella nostra societa fondata sull’informazione.
La trasmissione ad alta qualita di segnali attraverso canali di comunicazione a
banda stretta quali niernet richiede dei metodi sofisticati per la codifica e la
modellazione del suono. Il primo passo importante & lo sviluppo di una nuova
tecnica di analisi capace di discriminare tra le componenti del suono secondo
dei criteri percettivi efficaci. La nostra meta finale & quella di sviluppare una
rappresentazione ottimale dal punto di vista psicoacustico, che assicuri contem-
poraneamente un rate di dati minimo ed una minima “distorsione percettiva”.
Uno degli aspetti pill impegnativi a questo fine & la definizione di un buon
modello per la rappresentazione delle differenti componenti del suono. I segnali
musicali e vocali contengono sia componenti deterministiche che stocastiche.
Nei suoni intonati la parte deterministica fornisce 'altezza ed il timbro globale.
E’ in un certo senso la struttura fondamentale del suono e pud essere facilmente
rappresentata mediante un insieme molto ridotto di parametri. La parte stocas-
tica contiene la “vita del suono”, vale a dire un complesso di micro-fluttuazioni
rispetto all’andamento di un suono elettronico privo di evoluzione, come pure il
rumore dovuto all’eccitazione fisica del sistema. La riproduzione della compo-
nente stocastica & di fondamentale importanza al fine di percepire un suono come
naturale. Abbiamo affrontato questo compito sviluppando un nuovo metodo di
analisi e sintesi chiamato Sintesi Additiva Frattale (FAS).

Il primo passo é stato quello di definire una nuova classe di trasformate
wavelet, vale a dire la trasformata wavelet a bande armoniche (HBWT). Questa
trasformata & basata sulla successione di una trasformata coseno discreta modi-
ficata (MDCT) e di una trasformata wavelet (WT). Mediante la HBWT & pos-
sibile separare le componenti stocastiche di un suono da quelle deterministiche
e ricostruirle perfettamente, in modo indipendente le une dalle altre.

Un secondo passo ¢ stato quello di definire un modello per le componenti sto-
castiche del suono. Dal punto di vista del dominio della frequenza sappiamo che
lo spettro dei suoni intonati ha energia non nulla nelle bande laterali dei picchi
spettrali. Queste bande laterali contengono Vinformazione relativa alle compo-
nenti stocastiche. L’effetto di queste componenti & che le forme d’onda di cio
che abbiamo chiamato un segnale pseudo-periodico, ovvero la parte stazionaria
dei suoni intonati, cambia lentamente periodo per periodo. Il nostro lavoro &
basato sull’assunto, sperimentalmente verificato, che la distribuzione di ener-
gia delle bande laterali dei suoni intonati ha per lo piu un andamento uguale
all'inverso di una potenza della distanza dalla parziale pit vicina. Lo spettro
di potenza di questi processi pseudo-periodici pud essere pertanto modellato
da una sovrapposizione di componenti 1/f modulate, ovvero tramite 1'oggetto
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matematico che abbiamo definito come processo pseudo-periodico di tipo 1/f.
Il carattere tempo-scala della trasformata wavelet & ben adattato alle proprieta
di autosomiglianza dei processi 1/f. I’analisi wavelet del rumore 1/f fornisce
un insieme di coefficienti debolmente correlati tra loro, che nella sintesi possono
essere modellati, in prima approssimazione, da rumore bianco. Le proprieta
frattali del rumore 1/f sono anche il motivo della nostra scelta del nome Sintesi
Additiva Frattale.

Un passo successivo € stato quello di definire un modello per le componenti
deterministiche del suoni intonati, consistente con il metodo di analisi/sintesi
delle HBWT. Il modello ¢ ispirato da un certo punto di vista ai modelli sinu-
soidali. T due modelli introdotti per le componenti stocastiche e deterministiche
del suono nel loro insieme forniscono un metodo completo per I'analisi e la resin-
tesi dei suoni intonati nell’ottica della rappresentazione dei suoni proposta nella
definizione dell’Audio Strutturato (SA). Per la parte stazionaria dei suoni into-
nati rapporti di compressione dell’ordine di 10-15:1 sono facilmente ottenibili.

Risultati anche migliori in termini di compressione dati possono essere ot-
tenuti prendendo in considerazione criteri psicoacustici. Una selezione di para-
metri rilevanti basata su criteri psicoacustici & stata implementata e valutata
sperimentalmente. In questo modo si possono ottenere rapporti di compressione
dell’ordine di 20-30:1, a seconda dello strumento musicale.

E’ stata realizzata un’estensione del metodo basata su una versione pitch-
sincrona delle HBWT, ottenuta mediante banchi di filtri coseno modulati tempo-
varianti e a ricostruzione perfetta. Cio rende il metodo in grado di trattare, per
esempio, le piccole deviazioni di intonazione, il vibrato di una nota musicale o
anche piu rilevanti cambiamenti del pitch come in un glissando.

Infine, il metodo & stato esteso a suoni non armonici mediante I'introduzione
e lo sviluppo di una procedura di ottimizzazione per il disegno di banchi di filtri
coseno modulati a ricostruzione non perfetta, con una suddivisione in bande
non armoniche. Queste estensioni rendono la FAS piu flessibile ed adatta per
lanalisi, la codifica, I’elahorazione e la resintesi di una vasta classe di suoni

musicali.

1l risultato finale di questo lavoro ¢ lo sviluppo di un metodo per model-
lare in modo flessibile sia le parti stocastiche che quelle deterministiche del
suono ad un livello percettivo molto raffinato e con una minima quantita di
parametri controllanti il processo di sintesi. Nel contesto dell’audio strutturato
il metodo fornisce una tecnica di analisi e sintesi del suono capace di rappre-
sentare parametricamente e di resintetizzare i suoni a basso rate, mantenendo
la loro dinamica timbrica naturale al fine di ottenere una riproduzione di alta
qualita.



Chapter 1

Introduction

In this introduction we illustrate the motivations that led to this work. We also
try to provide an historical background to the ideas on which this work lies.
For this purpose we propose some considerations about reciprocal influences
between technological research and aesthetic research in particular for what
concerns signal processing applied to musical sounds and the electroacoustic
music experience of the last 50 years, respectively. Timbre is one of the most
important constructive element of the music of the 20** century. The main idea
is that this fact is intimately related to the nowadays need for a timbral high
quality reproduction in any kind and gendre of music.

In order to face the increasing demand of audio products both in terms of
quantity and of timbral quality, we need to investigate deeper in the domains
of signal processing and psychoucoustics at the same time, in order to find new
representations for sounds, which are eflective both in terms of audio quality
reproduction and of data compression. As discussed in Section 1.1.2, our idea
is that this can be done without indulging in solutions as those proposed by
higher-level coding, which would reduce timbre back again to the role it had in
19" century and earlier. Fractal Additive Synthesis (FAS) technique claims to
be one of the possible method for low rate coding of high quality audio.

1.1 Towards a complete and intuitive spectral model
of sounds

One of the main disciplines where timbre research and timbre perception in-
vestigation is carried out is electroacoustic music. One of the electroacoustic
music composers main task consists of looking for new timbres and studying
what are the perceptual relationships with other new or already known timbres.
By combining and composing these new sounds in a musical sense, it is often
possible to discover new relationships and meanings and to push our perceptual
and cognitive border and experience of timbre beyond the already known.
Timbre is an incredibly complex physical and perceptual phenomenon. Sev-
eral attempts to produce a convincing classification of timbre failed to find a
satisfying and exhaustive system [70] [33] [12] [60]. Especially when noisy sounds
are taken into account, classifying timbres and defining perceptual distances be-
tween timbres in a rigorous fashion is an extremely hard task. The history of
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timbre classification for the analysis of electroascoustic music works began with
Pierre Schaeffer in 1967 [76]. His main idea was to consider timbres as ‘sound
objects’ (‘'objet sonore’), indivisible and unique entities. His classification is for
sure incomplete and possibly not precise. However, it is interesting to notice how
the problem stated by schaeffer is the same one that nowadays people involved
in the MPEG-7' standard have to face in order to define proper timbre descrip-
tion tools for audio retrievial. In this context noise assumes a fundamental role
as a component of any timbre, even of tuned sounds.

In the next section we sketch a short history of timbre with the main purpose
of tracing the perceptual and aesthetical discovery of noise. The reason for this
is that the FAS starting goal was the achievement of an effective and convincing
model for the noisy components of sounds.

1.1.1 Timbre: an historical perspective

From Pythagoras through the Middle Ages, when music was part of the Quadriv-
uwm, music was included in the scientific part of human knowledge, together
with arithmetic, geometry and astronomy. J. S. Bach is one of the most well-
known example of what is considered the use of arithmetic in music. In that
vision of music, timbre was considered as a tool and never as a goal until the
very end of the 18" century. As an extreme statement one could say that the
different instruments had the purpose only of making the polyphony and the
harmonic syntax as intelligible as possible. Noise entered music only through
drums -recalling war— or theater effects as the simulations of thunders or other
atmospheric events.

The experience of the big romantic orchestra of the 19*" century, finding its
climax in Hector Berlioz and Richard Strauss’ Treatise on Instrumentation (5],
opens the doors to a new conception of timbre. The timbral possibilities offered
by the instrument combinations of the big orchestra raise the role of timbre to
that of a goal and no longer a mere tool. This concept became extreme in the
Second Viennese School in the first half of the 20** century. Schoenberg’s and
Webern’s compositions developed what Schoenberg himself called the Klang-
farbenmelodie (sound-colour-melody), i.e. the idea of using musical instrument
timbres as the main syntactical elements in the compositional process.

Also during the first half of the 20** century, the Italian futurist Luigi Rus-
solo devoted his life to building instruments for generating and playing noises.
He performed various concerts with his instruments, mainly in Paris. Stravinsky
had planned to use Russolo’s main creation: the intonarumori (noise-player) in
Les Noces, but gave up for technical reasons. Edgar Varése was also very inter-
ested in Russolo’s work and did a presentation of Russolo’s new Rumorarmonio
(Noise-harmonium) instrument in 1929. Many other composers were attracted
by the mechanical noise of the new sound environment of industrial towns. An
example is Honneger’s symphony Pacific 231, written in 1923, a work depicting
a locomotive (the Pacific 231 of the trans-American railway) and featuring in-
dustrial sonorities. Edgard Varése himself realized Russolo’s dream of a compo-

'MPEG-7 is an [SO/IEC (International Organization for Standardization) standard de-
veloped by MPEG (Moving Picture Experts Group). MPEG-7, formally named “Multimedia
Content Description Interface”, is the description of multimedia content data that supports
some degree of interpretation of the information meaning, which can be passed onto, or ac-
cessed by, a device or a computer code.



1.1. Towards a complete and intuitive spectral model of sounds 3

sition based only on noises, by writing Ionisation for 41 percussion instruments
and two sirens (1931) [90]. By means of Jonisation Varése freed music not only
from harmony, as did Schoenberg, but also from pitch. Tonisation can be seen as
an anticipation of the advent of electronic music. Some years later, John Cage
used for the first time the loudspeaker as a “performer” in a concert: Imaginary
Landscape no. 1 for two variable-speed turntables, piano strings and cymbal
(1939) was the first piece of what he called electric music.

Electroacoustic music as an autonomous gendre started with the French
experience denominated by Musigue Concréle in the Studios of Radio France
in Paris with the works of Pierre Schaffer [77]. The main idea of the Musique
Concreéte is to use any recorded sound, typically noise, to generate a musical
language and to create musical compositions. The products of the Musique
Concréte of the fifties and of the following decades as well are music pieces
recorded on tapes.

Later on contemporary music produced what is usually called live electronics
[97]. The idea of live electronics is essentially to augment the possibilities of
traditional instruments by means of real-time digital processing of sounds. Once
more Cage produced the first pre-digital examples of lzve electronics: Cartridge
Music for contact microphones and phonograph cartridges attached to various
household objects (1960). The use of real-time processing of sound in electroa-
coustic music was consolidated by Karlheinz Stockhausen, who wrote in 1964
Miztur for 5 orchestra groups, 4 sine-wave generators, 4 ring-modulators and
Mikrophonie I, for 6 performers: 2 tam-tam players, 2 microphone “players”, 2
filter “players”. A new great period for Live electronics based on digital sound
processing started years later in the Stidwestrundfunk (SWR) Experimentalstu-
dio in Freiburg with Das Atmende Klarsein [54] (1981), for bass flute, small
chorus and live electronics by Luigi Nono. This was the first work of three years
of experimentation culminating in Prometeo, la tragedia dell’ascolto (1984-85)
[33] [41], [35]. One of the principal targets of Nono’s research is the microscopic
dimension of the timbre space. The noise is the interesting and uncontaminated
part of instrumental sounds, where to look for new possibilities of expressivity.
Prometeo is not only a research into timbre. In this work, Nono realizes also
the ideal of a total artwork, joining music, poetry, use of lights, architectural
acoustics and spatialized sound diffusion, all augmented by the employment of
digital technology. The people who collaborated with Nono were the architect
Renzo Piano, the conductor Claudio Abbado, the writer and philosopher Mas-
simo Cacclari, the sound engineers Alvise Vidolin and Hans Peter Haller and
the painter Emilio Vedova (see Figure 1.1).

What is the effect of all of this experience nowadays? Are the concept of
“sound” as “timbrical print” of any pop ensemble or the huge widening of tim-
bres employed in any gender of music, a consequence of this growth of timbrical
sensitiveness? In our opinion the answer is yes. Often the success of a pop group
is due to a “guessed sound” rather than to any melodic and/or harmonic or,
even less, any compositional invention. In this sense the electroacoustic musician
community can be thought as the avant-garde of what are the main direction
of listening in the future and of what is the aesthetical research concerning a
widening of timbre vocabulary.

Another example of anticipation coming from the electroacoustic music ex-
perience is the use of space in music and listening. Very early examples of this
aspect are the Gesang der Juenglinge for tape solo (1956) by Karlheinz Stock-
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hausen and Artikulation for tape solo (1958) by Gyorgy Ligeti, both produced
in the Westdeutscher Rundfunk (WDR) studios in Cologne [43]. In this pieces,
Stockhausen and Ligeti use diffusion systems composed by five and four loud-
speakers, respectively, placed around the audience. The movements of sound
from one loudspeaker to the other are notated in the score and become a compo-
sitional element. Today, surround systems such as the 5.1 system for surround-
ing effect in movies are a standard. Nowadays, the investigation into spatial
perception of sound done by electroacoustic musicians goes much further, to-
wards directions that could be interesting for virtual reality research in terms
of synthesis of sound localization.

We believe that new aesthetical requirements and investigations can lead to
a different concept of music potentially capable of influencing people’s way of
listening. In particular they determine an expectation for higher sound quality
with a consequent need for enhancement of technical requirements for music rep-
resentation, transmission and reproduction. It will be clear that the main point
of FAS is to provide a convincing model for the noisy components of sounds. The
goal is to provide high-quality reproduction, in which the resynthesized sounds
maintain their naturalness. The noisy components turn out to be extremely
important in order to preserve naturalness even in synthetic sounds. FAS pro-
vides an intelligent /signal-adapted spectral representation of sound where both
high-quality timbre reproduction and low data rates are achieved.

1.1.2 Data compression. Perceptual versus symbolic coding

MPEG-42? includes two main approaches to audio music coding: the synthesis
language called SAOL (Structured Audio Orchestra Language) for synthetic
sounds and the Parametric Audio Coding (PAC) for natural sounds.

The SAOL language is used to define an “orchestra” made up of “instru-
ments”, which create and process control data. An instrument is a small net-
work of signal processing primitives that might emulate specific sounds such
as those of a natural acoustic instrument. The instruments are downloaded in
the bitstream. MPEG-4 does not standardize “a single method” of synthesis.
Any current or future sound-synthesis method can be described in SAOL, as
wavetable, FM, additive, physical-modeling, and granular synthesis. Control
of the synthesis is accomplished by downloading “scores” in the bitstream. A
score is a time-sequenced set of commands that calls various instruments at
specific times. The score description is downloaded in a language called Struc-
tured Audio Score Language (SASL). The SASL allows the musicians to gain
finer control over the final synthesized sound. For synthesis processes that do
not require a fine control, the established Musical Instrument Digital Interface
(MIDI) protocol may also be used.

In the early 80’s, when computer music was starting, computer synthetic
reproductions of baroque music had a certain short-lived success. We might go
so far as to say that Bach would be satisfied by a MIDI coding of his music,

MPEG-4 is an ISO/IEC (International Organization for Standardization) standard de-
veloped by MPEG (Moving Picture Experts Group). MPEG-4 provides standardized techno-
logical elements, enabling the integration of the production, distribution and content access
paradigms of fields as digital television, interactive graphics applications and interactive mul-
timedia in the world wide web. More information about MPEG-4 can be found at MPEG’s
home page: http://mpeg.telecomitalialab.com.
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where sounds are reduced to pitch, (rough) dynamics, duration and timbre (i.e.
synthetic or sampled instruments chosen within a preset bank). Nevertheless it is
not possible to put timbre back to the age of Bach or Mozart by means of a more
or less sophisticated MIDI-like coding technique. It is symptomatic to observe
that musicians, after an initial enthusiasm, are mainly escaping synthetic sounds
in favor of digital processing of real-life sounds, whose timbral richness cannot
be renounced.

PAC uses the Harmonic and Individual Lines plus Noise (HILN) technique
to code audio signals at bit rates of 4 kbit/s and above using a parametric
representation of the audio signal. The basic idea of this technique is similar
but simpler to FAS. The sound is decomposed into audio objects, which are
represented by model parameters. In the HILN coder models for sinusoids,
harmonic tones, and noise are provided. A perceptual model is employed to
select those objects that are most important for the perceived quality of the
signal. For example, the frequency and amplitude parameters are quantized
according to the Just Noticeable Differences (JND).

Like HILN, FAS is a parametric audio coding technique in a strict perceptual
sense. No alteration of the perceptual content of the sound is previewed or
allowed. The indivisible ‘objet sonore’ (sound object) of Schaefler, certainly not
representable by means of MIDI-like codes, is preserved. No orchestra piece
and no solo instrument piece as well can be coded in a satisfactory way by
means of a SAOL-SASL approach: roughly speaking, Miles Davis’ trumpet is
unique and cannot be reduced to a synthetic trumpet played by a sequencer.
Our task is to find a coding approach looking into the intimate structure of
the signal and into the intimate functioning of our auditory system. This has
to be the result of the cooperation of signal processing and psychoacoustics.
Any backward-sighted score-like coding is constrained by the unavoidable and
culturally-related limitations of any music notation system:.

1.1.3 Sound synthesis and high level parameter representation

In the early 30’s in the Westdeutscher Rundfunk (WDR) studios in Cologne,
Karlheinz Stockhausen and other composers started producing a new kind of
music synthetically generated by means of analog instruments as oscillators and
noise or impulse generators. The music composed in the WDR studios reflected
the ideal of the total control belonging to part of the contemporary music of
that time.

Later came digital music. The father of digital or computer music is Max
Mathews [50] [51], director the Acoustical and Behawvioral Research Center at
Bell Laboratories from 1962 to 1985. About the birth of computer music Math-
ews writes: “Computer performance of music was born in 1957 when an IBM
704 in NYC played a 17 second composition on the Music I program, which
I wrote. The timbres and notes were not inspiring, but the technical break-
through is still reverberating. Music I led me to Music II through V...”. Music
V is the first program for software synthesis widely employed by electroacoustic
musicians until the early 90’s, when it was substituted by the more user-friendly
Csound.

However, the real great success of sound synthesis came with Frequency
Modulation (FM) [10]. FM has also been the greatest commercial success of
electronic music, well exploited by Yamaha. Its synthesizers are still in the
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house of any musician who has been concerned with electronic music during the
80’s and 90’s. The FM technique was invented at Stanford University in the late
60’s by John Chowning. The main reason for such a great success is certainly the
extreme effectiveness of its control interface both in terms of simplicity and per-
ceptual intelligibility. Only two intuitive parameters are used: one controls the
spectral density, the other the harmonicity /inharmonicity factor. The drawback
of this simplicity is of course that no detailed control on the timbre is possible.
FM is a kind of “marvelous kaleidoscope” where the beautiful pictures that are
generated cannot be adapted at one’s own will; they have just to be taken as
they are. Nevertheless, the lesson coming from FM concerning the success of
its perceptual metaphor is extremely important.

The importance of an appealing interface is also a goal of our method. In
the last chapter of this thesis we present a real-time implementation of FAS,
which is equipped with a very intuitive interface.

We will spend only a few more words about another powerful family of
synthesis algorithms, i.e. physical models. In physical modeling the perceptual
meaning of the parameters and the naturalness of sound results are also very well
achieved objectives. On the other side, they are anchored to the “physicality”
of the model in the same way as the traditional luthery is. From a coding point
of view, it would be necessary to provide a physical model of each particular
instrument (not just a generic clarinet, for example) and of the player behavior
as well.

1.2 Outline of the thesis

The structure of the thesis is the following. Chapter 2 provides an overview
of the whole method without entering into technical details. Chapter 3 goes
into some details by introducing the mathematical formalism of the pseudo-
periodic 1/ f-like model. The discussion concerns the fractal properties of the
1/f noise and its relationships with the time-scale representation provided by
the wavelet transform. In Chapter 4, we show how it is possible to reduce the
pure pseudo-periodic 1/f spectral model to a more concrete and perceptually
oriented modeling technique, which is FAS. FAS provides an effective coding
method for high quality audio at low rate by means of a set of perceptually
meaningful parameters. Chapter 5 introduces some important extensions of the
method in order to include a larger class of sounds and instruments that can be
encoded by means of FAS. Finally, in Chapter 6, we draw our conclusions.






Chapter 2

Fractal Additive Synthesis, a
Method for Sound Analysis
and Synthesis

One of the most challenging aspects of sound analysis and representation is the
definition of a useful model for the noisy part of sounds. We need a faithful
representation of those components of sound whose spectra lie outside the fre-
quency support of the partials. We subdivide a sound into its deterministic and
stochastic components. The deterministic part of sounds provides the global
timbre of a sound; it is in a sense the fundamental structure of the sound.
The stochastic part contains the “life of a sound”, that is all the microfluctua-
tions with respect to an electronic-like/purely deterministic sound including the
noise due to the physical excitation system. The main idea of our method is
that these microfluctuations with respect to a pure deterministic behavior can
be reconstructed from the power spectrum.

This chapter provides a complete overview of the whole Fractal Additive
Syntehsis (FAS) method, leaving the formalism and the details to the following
chapters. The starting point is the experimental evidence that the spectra of
voiced sounds, i.e. sounds with a well defined pitch are formed by harmonic
partial peaks, whose sidebands have an approximately 1/f behavior around the
peak itself (see Figure 2.1), i.e. a pseudo-periodic 1/ f-like behavior. We then
define a well-suited analysis and resynthesis method based on the Harmonic-
Band Wavelet Transforms (HBWT). Thanks to the mathematical properties of
the HBWT, the synthesis of signals with pseudo-periodic 1/ f —like power spectra
is straightforward. These spectra are very good approximations of those of real-
life voiced sounds. In first approximation, the only thing we need to do is to
control the energies of white noise coefficients, according to a restricted number
of parameters derived from the analysis of real sounds.

The following step is a parametric model for representing the synthesis coef-
ficients in case of voiced sounds with stable pitch. Finally, we extend the method
to the case of voiced sounds with variable pitch and to the case of sounds with
non-harmonic spectra, such as percussive sounds.

The first type of parameters come from a further insight into the HWBT
analysis, which reveals the existence of a small but non-zero correlation be-

9
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tween the coefficients. An autoregressive (AR) analysis and resynthesis model,
employing white noise as excitation and reproducing the above-mentioned loose
correlation, generalizes the white noise coefficient model. We also take into ac-
count the scale-dependent time evolution of the resynthesis parameters. This
provides an efficient parametric model for the stochastic part of sound. Finally,
a model for the harmonic components is developed, inspired by the sinusoidal
modeling techniques. The idea is to model a complex version of the coeffi-
cients corresponding to the deterministic components by means of a polynomial
interpolation of their amplitudes and phases.

The already mentioned FAS extension to the case of voiced sounds with
time-varying pitch provides a model able to deal with the slight detunings that
occur in natural voiced-sounds, as well as to deal, for instance, with vibrato
effects. In order to do this we design a perfect reconstruction time-varying
filter bank whose number of channels is tuned to the variation of the pitch
of the analyzed voiced-sound. This filter design technique and its adaptation
to the fractal additive scheme are the main subjects of the first part of the
fifth chapter. Finally the extension of the technique to inharmonic sounds is
illustrated. A inharmonic filter design procedure is defined in order to apply
the same principles of the method for voiced sounds to sounds produced by
percussion instruments as gongs, tympani or tubular bells, as well as to sounds
with expanded quasi-harmonic spectrum as piano sounds.

This method as a whole can be seen both as a data compression technique
and as a musical tool for sound synthesis and processing able to provide synthetic
sounds with a natural timbre dynamic.

In Section 2.1 and 2.2 we briefly review traditional wavelets, in order to
introduce the Harmonic-Band Wavelets and the pseudo-periodic 1/ f-like model,
respectively. In Section 2.3 and 2.4, we give a complete overview of the FAS
method from the methodological and experimental point of view.

2.1 Wavelets and harmonic-band wavelets

The wavelet transform has been widely employed in sound analysis and process-
ing (39], [17], [21], [40], [42]. The main idea of the transform is to provide a
bidimensional representation of signals in order to overcome the intrinsic lim-
itations of the Fourier transform [69], [13], [37]. [11], [46] ,[47]. The wavelet
transform or expansion provides in fact a time-scale representation of digital
signals. Other bidimensional signal representations have been proposed, start-
ing with the time-frequency representation provided by the Short Time Fourier
Transform (STFT), the phase vocoder and the Wigner distribution [59].
Since time and frequency are conjugate variables, they obey the uncertainty
principle:
Aw- Al >1/2 (2.1)

This means that it is not possible to have simultaneously an arbitrarily high
resolution both in time and frequency. The higher the resolution of our signal
representation in the time-domain the lower the resolution in the frequency-
scale domain and vice-versa. Let us make precise what we mean by “scale”.
This concept is fundamental in wavelet theory and is intrinsically related to the
human perceptual system, not only for what concerns the auditory system but
also for the visual system. Scaling is represented by contraction and expansion
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Figure 2.1: Magnitude Fourier Transform (FT) of a trumpet

in the domain of the function, which correspond to expansion and contraction,
respectively, in the frequency-domain.

The wavelet transform leads to a multi resolution analysis (MRA), where the
indetermination product Aw- At of the analysis functions is invariant by scaling
and time shift. This is a peculiar type of time-frequency analysis. In the wavelet
case, the time-frequency plane is subdivided into rectangles, corresponding to
a logarithmic segmentation of the frequency axis and of the time intervals at
various scales. In other words, the wavelet-based representation provides a time
and frequency domain subdivision scheme imitating the “logarithmic® human
hearing system by means of a logarithmic tiling of the time-frequency plane
(see Figure 2.2). According to the representation of Figure 2.2, we have a more
detailed frequency localization in the low frequency area but a coarser time
resolution, while a sharper time resolution but a coarser frequency resolution is
achieved in the high frequency area.

2.1.1 WT and multiresolution analysis

The wavelet representation is obtained by projecting a signal over the set of
wavelets 1, (), where the first index n represents the scale and the second
index m represents time-shift. When we compute the wavelet transform of a
sound, we actually stop our analysis at a finite scale level. At each scale, the
residual signal corresponds to the residual low-pass band. In other words, we
look at the signal at different “zoom” scales, corresponding to different frequency
contents, i.e. to different detail levels. We can associate an approximation
subspace to each resolution scale, i.e. to each residual low-pass frequency band
(see Figure 2.2):

{Valnen with V., C V,_1 (2.2)
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time shift
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Figure 2.2: Time-Fequency Plane Tesselation of the ordinary wavelet transform.
Each dot corresponds to a wavelet coefficient. At each scale n the sampling rate is
divided by two.

The wavelet components are nothing but the difference between the compo-
nents of two successive subspaces.

In Figure 2.3 we show an example of wavelet at three different scales, both
in the time domain and in the frequency domain. The relationship between
time and frequency resolution is evident. Each wavelet can be thought of as
a “grain” 27|, {71], representing a certain frequency band “presence” (energy)
at a specific time-interval. These grains, multiplied by the analysis coeflicients
and overlap-added at the same sampling rate of the original sound, return the
whole original signal.

We observe that we are dealing with the particular case of dyadic wavelets.
Thus, since the frequency band of each residual component decreases by a factor
two, we can decrease the sampling rate (downsample) by a factor of 2 as well.
This is the reason for the denomination “multirate analysis”. The coefficients of
the different wavelet scale levels have a different sampling rate. It is like having a
system whose parts work at different speeds, in order to optimize the effort. The
“effort” in this case corresponds to the amount of data. This corresponds also to
the idea of “critical sampling”, i.e. the idea of employing the minimum possible
number of samples in order to be able to perfectly reconstruct the original signal.
In this way, the total amount of data of the wavelet representation remains
approximately the same as that of the time-domain sound representation.

The dyadic wavelets can be simply generated by a pair of Quadrature Mir-
ror Filters (QMF) Ho(w), Hi(w). These filters satisfy the condition of power
complementarity (see Figure 2.4):

| Ho(w)[* + | Hy (w)[* = 2

This is one of the conditions, actually the most intuitive one, which grant
the perfect reconstruction of the system. In this type of analysis we are always
able to backtrack, i.e. the transform operates under perfect reconstruction con-
straint. In other words, a time-limited signal can be reconstructed by means of
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Figure 2.5: Scheme of a two-channel critically sampled filter-bank, implementing
the wavelet transform. The filters H are low-pass QMF filters implementing the
scale function. They perform multiresolution analysis, i.e. they separate the sub-
spaces V;,. At each scale level n we obtain the scale residue of the signal, i.e., the
projection of the signal onto the subspace V,,. The filters H; are high-pass QMF
filters implementing the wavelet projection onto the spaces W,, = V;,_; — V}, at the
different scale levels.

a discrete and finite grid of wavelet transform values, i.e. the dots in Figure 2.2.
We are able to disassemble a signal into different resolution components and to
assemble it back. The challenge is to find decompositions that are perceptually
and musically meaningful. This will be achieved by means of the harmonic-
band wavelets. The wavelet decomposition of the signal can be computed by
means of the filter bank of Figure 4. We need only two prototype filters. The
boxes containing a downward and an upward arrow stand for downsampling and
upsampling, respectively. The filter H;(w) with impulse response h;(n) imple-
ments the projection of the signal onto the spaces W,, = V,,_1 — V,, at different
scales n, while the filter Hy(w) with impulse response ho(n) implements the
projection of the signal onto the spaces V/,.

Another intuitive image of the wavelet transform consists in looking at the
sequence of the scale coefficients as a “time-shrunk” (downsampled) version of
the low-pass filtered signal. As the scale n increases, the residue represents
the “trend” of the signal. According to this perspective, signal decomposition
of sounds in wavelet “grains” can also be thought of as the separation of the
global behavior from the fluctuations with respect to this global behavior at
different, scale levels. At a certain scale, this global behavior becomes the lo-
cal mean of the signal. This point of view will be important in the discussion
of the Harmonic-Band Wavelets, i.e. a frequency-periodic version of the or-
dinary wavelets. The frequency resolution of the dyadic wavelet transform is
one octave. This introduces severe limitations in their use for musical sound
processing. Improvements of the frequency resolution up to arbitrary band-
width tiling by means of frequency warping have been proposed [21], [20], [38],
[7]. Nevertheless the results of that work do not satisfy our requirements. For
voiced sounds, one would like to tune the characteristics of the transform to
the pitch of the signal. A first approach to the problem has been introduced in
[19], {18] with the Pitch-Synchronous Wavelet Transform (PSWT). In that case
the “global behavior” of a voiced sound, i.e. a sound with a detectable pitch
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is its average period. The PSWT components represent the fluctuations of the
sound with respect to its average period. By introducing the Harmonic-Band
Wavelet Transform (HBWT) we gain considerable flexibility. With respect to
the PSWT, the HBWT allows one to analyze and resynthesize each harmonic
separately. With respect to ordinary wavelets, the PSWT and the HBWT pro-
vide a much more meaningful representation of voiced sounds.

The HBWT as well as the PSWT realize a periodic version of the frequency-
domain subdivision of ordinary wavelets (see Figure 2.6). This is obtained
by means of the modulation and demodulation scheme described in the next
chapter. Here it is sufficient to know that it is possible to tune the frequency
domain subdivision of the HBWT to the pitch of any given voiced sound by
choosing the proper number of bands, i.e. of channels of the HBWT filter
bank. More precisely, each frequency range corresponding to a single harmonic
component and its two 1/ f-like spectral sidebands is analyzed by means of two
channels of a HBWT (see Figure 2.6). In the ordinary wavelet representation the
higher scales (corresponding to the low frequencies) represent the slow changes
of a signal with respect to the “average” of the signal (0 in the case of an audio
signal), i.e. with respect to a constant. The lower scales (high frequencies)
represent the changes with respect to the local mean at different rates. In
the HBWT representation of voiced sounds the “local means” are the average
waveforms of each of the harmonics, while the lower scales (the bands away from
the harmonics) contain the information concerning the fluctuations with respect
to the average waveforms at different rates. In this way we are able to separate
the harmonic part of voiced sounds from the noisy components containing the
“timbre dynamics” of the sound.

2.1.2 Harmonic-Band Wavelet Transform (HBWT)

The HBWT are implemented by means of a P-channel filter bank, followed by
P wavelet filter banks (see Figure 2.7). The number of channels P is tuned to
the average pitch of the voiced sound to be analyzed and/or synthesized. Each
filter of the P-channel filter bank is a bandpass filter separating a single sideband
of the corresponding harmonics. The outputs of the P-channel filter bank are
then downsampled P times and separately wavelet transformed. The P-order
downsampling is possible since the bandwidth of each output is w/P. The
resulting coefficients at the multirate time shift m are represented by the dots of
Figure 2.6, channel by channel (i.e. sideband by sideband) and wavelet scale by
wavelet scale (i.e. subband by subband). In Figure 2.6 the sidebands correspond
to the index p, while the subbands correspond to the index n of Figure 2.3. In
the synthesis structure (see Figure 2.8) each inverse wavelet transform (IWT)
reconstructs the single sideband. The subsequent P-order upsampling shrinks
back the spectrum of the reconstructed signal to the proper sideband bandwidth,
providing a periodic spectral version of the sideband. Finally the P-channel filter
bank selects the proper sideband frequency range for each channel. The sum of
the outputs is the perfectly reconstructed signal.

In order to implement the P-channel filter bank, we employed a Type IV
cosine modulated basis or Modified Discrete Cosine Transform (MDCT) [53],
[89].
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Figure 2.7: HBWT analysis filter bank. The filters &, implement the MDCT,
while the WT blocks represent a wavelet transformation implemented as in Figure
2.5.
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Figure 2.8: HBWT synthesis filter bank. The same notation of the previous figure
holds. The blocks IWT represent the inverse WT,
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The DTFT of the HBWT is given by:
@n,rn,p(w) = ‘I}n,m(Pw)GP(w)

where Gp(w) is the frequency response of the p** filter of the P-channel filter
bank, U,, ,,, (Pw) is the upsampled version of the Fourier transform of the wavelet
function at scale n and time-shift m (see Figure 2.2) and ©,, ;n »(w) is the Fourier
transform of the HBWT p*" sideband at n'* scale (n** subband) and time shift
m (see Figure 2.6). The magnitude frequency response of the HBWT filter bank
is given in Figure 2.14.

The HBWT is discussed in more details in Sections 3.3 and 3.5. For an
overview on Wavelet Transforms and Cosine Modulated Filter Banks the reader
is referred to the existing literature [13], [47], [89], [96].

2.2 The pseudo-periodic 1/ f-like model

The main reason for defining and studying the pseudo-periodic 1/f -like noise
model is the experimental evidence revealing an approximate pseudo-periodic
1/f behavior of the spectral harmonic sidebands of voiced sounds in music
(see Figure 2.1). In the next chapter, we give a rigorous definition of the
pseudo-periodic 1/ f-like noise in terms of a cosine modulation and demodu-
lation scheme. For the present discussion it is sufficient to think about pseudo-
periodic 1/f signals as signals with spectral harmonic peaks, whose sidebands
have approximately a 1/ |f — fx| behavior, where f}, is the frequency of the k*
partial. The main idea is to adapt the spectrum of a synthesized pseudo-periodic
1/ f-like signal to that of a real-life sound. The synthesis process is controlled
by means of a restricted set of parameters defining the 1/f shape of each har-
monic sideband of the synthetic spectrum. The analysis scheme necessary for
the extraction of the resynthesis parameters and the synthesis scheme are im-
plemented by a HBWT filter bank and its inverse, respectively. This model has
the advantage of being extremely concise. The lower limit of a single parameter
controlling the spectral shape of the corresponding harmonic sideband would be
an extremely good result from a data compression point of view. Actually, some
refinements are necessary in order to reach a good quality in sound reproduction
at the cost of an increased number of parameters. These refinements are the
subject of the next section. In this section we describe the pure pseudo-periodic
1/ f-like model.

2.2.1 The WT and the 1/f noise

As a first step we consider the analysis and synthesis method of simple 1/f
noise by means of wavelets introduced in the previous section. The main idea
is to exploit the scaling properties of both wavelets and 1/f signals. In the
previous section we have seen how dyadic wavelets are based on a dyadic scale
law, i.e. at different scale the wavelet functions are similar. This dyadic scale
law corresponds in the frequency domain to an octave band subdivision of the
frequency axis. The same conclusions can be drawn from the analysis of 1/f
signals, when we consider a logarithmic subdivision of the frequency axis (for
instance an octave band subdivision as in dyadic wavelets). In first approxi-
mation, the 1/f spectrum has constant energy within each octave (see Figure
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Frequency (H2)

Figure 2.9: Magnitude FT of a 1/ noise

2.9). From an intuitive point of view, what happens at low frequencies happens
in the same way at higher frequencies with exponentially decreasing amplitude.
Roughly speaking, it is in this, which the fractal properties of the 1/f noise
consist. Combining these characteristics with the time-scale analysis provided
by wavelets one obtains a well suited tool for the analysis and synthesis of 1/ f
noise. We are able to model a 1/f spectrum by means of a superposition of
properly scaled wavelets (Figure 2.10 and 2.11). The main point of the model
is that, having a set of wavelet filters, we can just “feed” them with white noise
coefficients. The scaling factor of the wavelet bands, i.e. the 1/f slope, will be
determined by the energies of the white noise coefficients.

The fractal nature of 1/f signals and the idea of modeling the harmonic
sidebands of voiced sounds by means of 1/f “spectral segments” justify the
denomination “fractal synthesis”. The term “additive” is due to the fact that
we process each 1/ f sideband separately and then we sum all of them together.
With respect to the ordinary additive synthesis we not only add sinusoidal
components but also noisy components. It is possible to show (see the next
chapter) that a discrete-time signal synthesized by means of a wavelet filter
bank, employing zero-mean white noise coefficients with properly scaled energy,
has an average power spectrum of the following type:

N
Snw) =023 2 W0 ()P + 277 @0 (), (2.3)

n=1

where ¥, o (w) represents the Fourier transform of the wavelet function, @y ¢ (w)
the Fourier transform of the corresponding scaling function, + is a parameter
controlling the slope of the 1/f spectrum and o is a parameter controlling
the overall energy. The second index m was set arbitrarily to 0, since both
|W,,.0 (w)]? and |® .o (w)|* are invariant by time shift. The spectrum in (2.3) is
a multilevel approximation of a 1/f behavior as depicted in Figure 2.10. The
amplitude at each scale is controlled by the factor 622™”, i.e. by the parameters
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Figure 2.10: Magnitude FT of the filters implementing the DWT.

«v and 0. Notice that the approximation of the 1/f spectrum synthesized by
Daubechies wavelets [13] is very accurate.

The synthesis of 1/f noise by means of the WT is illustrated in a more
formal way in Section 3.2.

2.2.2 The HBWT and the pseudo-periodic 1/ f-like noise

We want to extend this method to the pseudo-periodic case, i.e. to voiced sounds
whose spectrum is }: 1/|f — fx|-like, where fx = k/P is the k' harmonic peak,

k=12,...,|P/2] ~1 and P is the sound average pitch. As already mentioned,
we want to separate each sideband of the harmonics by means of wavelets. This
is the purpose of the P-channel filter bank, where the number of channels P
corresponds to the average pitch of the sound. Each filter g,(), p=0,1,.., P—1
has a nominal bandwidth of Aw = @/P or, equivalently, Af = 1/2P and its
central frequency is tuned to one of the sidebands of the harmonics.

In other words, the k** harmonic is processed by means of the pair of filters
corresponding to the indexes p = 2k — 1 and p = 2k. In Figure 2.12, we show a
single harmonic component of a voiced sound, while Figure 2.13 represents the
analytical “frequency grid” of the 2V + 2 HBWT subbands spanning the band
of width 27/P, which correspond to the harmonics and their two sidebands.
Actually, what the cosine modulated P-channel filters perform is not only a
bandpass filtering but also a base-band shift of the resulting signal, according
to the demodulation scheme illustrated in the next chapter. The base-band
signal can then be downsampled P times. After downsampling, we obtain a
1/ f-like signal. This signal can be processed by means of a wavelet filter bank,
according to the method for the analysis and synthesis of simple 1/f noise
described before. According to the results for the simple 1/f noise, we can
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Figure 2.11: Synthesis of 1/f noise. a) Magnitude Fourier Transforms of
Daubechies Wavelets. b) 1/f-like noise synthesized by means of Daubechies
Wavelets (solid line) compared to the ideal 1/ behavior (dashed line).

thus adopt sets of white noise coefficients to reproduce the 1/ f-like behavior of
each harmonic sideband. The average spectrum of a synthetic pseudo-periodic
1/ f-like signal is given by:

P N
Sw) = % Y 02 1Gpow)? <Z 2" [ W0 (Puw)|” + 2N |‘I’N,0(Pw)l2> ;
p=1 n=1

(2.4)
where G, o(w) is the frequency response of the p'* filter of the P-channel filter
bank, ¥, o (Pw) is the Fourier transform of the upsampled version of a wavelet
function at scale n and ®y ¢ (Pw) is the Fourier transform of the upsampled
version of the corresponding scale residual function. Each sideband is then
characterized by the parameters o, and ,, of equation (2.4). The first parameter
controls the overall spectral energy of the sideband and the second one the shape
of the 1/f slope, i.e. the energies of the white noise coefficients at the different
scales. A larger parameter corresponds to a narrower sideband. In the following
section we will see more in detail how these parameters can be extracted from
the HBWT analysis. Equation (2.4) is a “periodic version” of equation (2.3).
The spectrum resulting from (2.4) is shown in Figure 2.13.

Our goal is to employ the inverse HBW'T as a synthesis tool for modeling a
pseudo-periodic spectrum of a real-life voiced sound of the type shown in Figure
2.1. The whole method is schematized in Figure 2.16, where one can see how the
amplitudes of the HBWT subbands are scaled according to the analysis of a real-
life sound. The resulting “spectral mask” is then fed by means of white noise
coeflicients, in order to provide a sound whose spectrum is similar to that of
the input. In this way, we obtain an efficient scheme for reproducing the noisy
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Figure 2.12: Magnitude FT of a single harmonic of a trumpet
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Figure 2.13: Magnitude Fourier transforms of the HBWT subband decomposition
of a single harmonic. Left and right sidebands.



2.3. Fractal additive analysis and synthesis method 23

Figure 2.14: Magnitude Fourier transform of the harmonic-band wavelet.

sidebands of the spectrum of voiced sounds in music. By means of very few
parameters, compared to the amount of audio data, we are able to generate the
necessary synthesis coefficients, i.e. white noise with properly scaled energies.
As already said, the parameters o, and 7, are derived from the HBWT analysis
itself.

In Section 4.2, we present in more detail the experimental evaluation of the
parameters 7, by means of the results of linear regression tests on the energies
of the HBWT analysis coeflicients of the subbands. According to these ex-
perimental results, the Z 1/|f — fxl-like spectral shape assumption is justified.

The pseudo-periodic 1/ f like model is discussed in a more exhaustive way in
Sections 3.3 and 3.4.From an acoustic point of view the method requires further
refinements. The white noise resynthesis coefficient assumption is too strict and
not satisfactory. The next section discusses how it is possible to overcome these
limitations.

2.3 Fractal additive analysis and synthesis method

Based on the pseudo-periodic 1/ f-like scheme, we want to build a complete,
flexible and acoustically efficient analysis-based synthesis method. The whole
method is limited to the stationary part of sound and is particularly well suited
for long, sustained sounds. One of the principal aims of the method is to repro-
duce the natural dynamics of the timbre of a sustained sound, avoiding the static
character of sustained synthetic sounds. Currently, one of the most successful
synthesis methods is the wavetable synthesis, based on overlap-add techniques
of one-period-waveforms of the instrument to synthesize. The synthetic result
in the case of long sustained sounds misses the naturalness of timbre that we
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claim for our method.

The transient, that is the sound attack, is preserved as it is. A pitch detector
can be adopted in order to define the extension of the transient. Only the
portion of sound where a steady pitch is detected is processed according to the
FAS model.

2.3.1 FAS stochastic model

We decompose the stationary part of a sound in its harmonic-band time-frequency
components. We distinguish these components into three groups. The first
group corresponds to the deterministic components of the sound (see Figure
2.6 the narrow white subbands). These components cannot be reproduced by
means of noisy coefficients. The model for the deterministic components will
be described later. The second group corresponds to the portion of the spec-
trum close to the harmonics, which contains the microfluctuations with respect
to pure periodicity (see Figure 2.6 the light gray subbands). The behavior of
these components is well approximated by the > 1/|f — fi| model. We can
k

either use one parameter v per sideband that controls the energy of all of its
subbands, or estimate independent parameters controlling the energy of each
HBWT subband separately. In the first case, we need to perform a linear re-
gression and we minimize the total number of parameters. In the latter case
we are able to provide a better approximation of the spectrum at the cost of
an increased number of parameters. The third group of components includes
the first subbands of the HBWT decomposition (see the dark gray subbands in
Figure 2.6). According to the analysis results, it is possible to see how these
subbands, which lie far away from the harmonics, contain the most significant
and unmasked information concerning the additional noise due to the excitation
systems. These noises include, for example, breath noise or reed buzz in wind
instruments and bow noise in string instruments. Usually their energy is larger
than that expected according to the >~ 1/|f — /x| model.
%

At this point, it is necessary to define the parameters of the model, i.e. the
parameters that represent the analysis coefficients and control the generation of
the synthesis coefficients (see Figure 2.17 and 2.18). As already mentioned, the
simple white noise coefficient approximation is not satisfactory from an acousti-
cal point of view. We obtain something that sounds as properly energy-scaled
white noise. In fact, we know that the HBWT analysis coefficients are not
completely uncorrelated. A non-zero autocorrelation is detectable within the
coefficients of each scale of each channel, while no relevant cross correlation ex-
ists between coeflicients of different scales and different channel. Thus, it was
necessary to improve the method by introducing an LPC (Linear Predictive
Coding) analysis of the HBWT analysis coefficients in order to detect and then
reproduce the existing autocorrelation. The autoregressive (AR) filters so ob-
tained are used to color the white noise used as input to the resynthesis filter
bank, thus reproducing the time-correlation within the subbands. This is fun-
damental to make the noisy synthetic subbands similar to the real ones from
an acoustical point of view. Additionally in the analysis part (Figure 2.17) we
compute the variance of the coefficients of each subband, in order to estimate
their energy. The estimate is performed over windowed sets of coefficients and
a time envelope is extracted from the energy values. The FAS stochastic model
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Figure 2.18: Fractal additive synthesis scheme.

is presented more in details in Section 4.3.

2.3.2 FAS deterministic model

Our model for the deterministic components recalls somehow the sinusoidal
modeling techniques even if it has different implications. In the sinusoidal ap-
proach, one models the amplitude and the phase of the partial sinusoidal compo-
nents. In the FAS the role of the sinusoidal partials is played by the two MDCT
sidebands of the partial spectral peak. For the resynthesis, it is necessary to
model the detuning of the real life sound partial with respect to a fixed pitch
P. In order to do this, we consider a complex combination of the two sets of
HBWT analysis coeflicients relative to each peak and we model the amplitude
and the phase of the so obtained complex coefficients. From Figure 2.19 and
2.20, it is easy to see that the curves drawn by the amplitudes and the phases
of the complex sinusoidal coefficients form somehow smooth and regular curves.
In particular, the phases are almost linear, where the slope of the linear curves
is related to the fact that the pitch of the sound is in general not an integer
division of the sampling frequency. The amplitude curves present some ripples,
which are nevertheless irrelevant from a perceptual point of view. Therefore,
the piecewise linear approximation shown in 2.19 is more than sufficient in order
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Figure 2.19: Polynomial interpolation of the amplitude envelopes of the first 5
harmonics of a violin sound (D3)

to reproduce the synthesis coefficients for a high quality reproduction of a real
life sound.

The high-level parametric representation of the synthesis coeflicients makes
our method also an interesting tool for sound synthesis and sound processing
in terms of digital audio effects. In the latter case, the resynthesis coeflicients
are generated by means of a modulation of the parameters obtained from the
analysis of the processed sound.

The FAS deterministic model is presented more in details in Section 4.4.

2.3.3 FAS extensions

The case of sounds with variable pitch is the next problem one needs to face.
Typically, a vibrato sound is a good example in this sense. Its pitch varies like
in Figure 2.21. By means of a pitch detector one obtains the pitch values of
the kind shown in Figure 2.22. P(r) is now the time-varying pitch and thus the
time-varying number of channels of the multiband filter bank. The design of a
P(r)-channel filter bank as the one shown in Figure 2.23 is not a straightforward
task. The overall structure of the wavelet transformation and the coefficient
parametric modeling do not change at all. The only matter is the design of
a filter bank able to change the number of channels period by period, while
maintaining the PR constraints and the smoothness of the coefficients curves as
those of Figure 2.19 and 2.20. An example of that is introduced and discussed
in Section 5.1.

Finally, an extension of the method to the inharmonic case is taken into
consideration. So far the HBWT model has been confined to the harmonic
spectrum case. The time-frequency plane tiling was strictly harmonic. This is
a major limitation and makes the method unusable for a large class of sounds,
for instance all the sounds produced by percussion instruments. The spectra of
many of these instruments show relevant peaks centered on non-harmonically
distributed frequencies (see Figure 2.24). These peaks are the partials or de-
terministic components of the sound and can be sinusoidally modeled. The
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Figure 2.20: Polynomial interpolation of the phase envelopes of the first 5 har-
monics of a violin sound (D3)
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Figure 2.21: 9 periods of a flute note with pitch variable from 148 to 150 samples
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Figure 2.22: Varying pitch of a flute note with vibrato. r indexes the periods.
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the sequence of periods.
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Figure 2.24: Magnitude FT of a tubular bell sound

partials also show an approximately 1/f spectral behavior around the peaks as
in the harmonic case. These 1/ f-shaped spectral sidebands are treated as sto-
chastic components, i.e. the same stochastic model used in the harmonic case
is employed. It is therefore useful to find a way to extend the FAS method to
sounds with spectra of the kind of Figure 2.24. The main problem is to provide
a more flexible analysis/synthesis structure extending the FAS model to inhar-
monic sounds. In order to do this, we abandon the perfect reconstruction (PR)
structure provided by the HBWT and resort to a non-PR scheme able to deal
with aperiodic spectra like the one in Figure 2.24. A non-PR structure leads
to aliasing problems and artifacts in the resynthesis. These artifacts are mini-
mized by the filter design procedure and optimization. Figure 2.25 shows how
by reconstructing both the n** partial and the aliasing due to the downsampling
of order P, and subtracting it to the partial residue one can keep track of the
aliasing through the following partial analysis steps. In this way, we obtain a
reduction of the aliasing. At the limit of the overall residue tending to zero, the
scheme of Figure 2.25 is PR. This part is discussed more in detail in Section
5.2

2.4 Experimental results

FAS can be seen both as a method for audio coding and data compression and
as a sound processing tool for sound synthesis and processing. These subjects,
introduced in the next two subsections, are discussed in a more exhaustive way
in Chapters 4 and 5.

2.4.1 An audio coding tool

The experimental results change significantly according to the instrument we
analyze and resynthesize. The first step is the choice of the wavelet scale at
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inharmonic sound we find a “hypothetical pitch” P,, which could “fit” the partial
itself. From the P,-channel filter bank we select only the filters corresponding to
the channels 2k — 1 and 2k, where k is the index of the harmonic of the P,, bands
coinciding with the partial n. The outputs of the filters Gax—1(w)* and Gag(w)*
undergo a wavelet transformation as in the harmonic case. The reconstruction of
each partial by means of the filters Go5—1 (w) and Gor(w) and the subtraction from
the residue signal allow us to keep track of the aliasing, with the purpose of reducing
It.
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Figure 2.26: Magnitude Fourier transform of a real-life clarinet note.

which we stop the analysis. This defines which portion of the spectrum we
resynthesize by means of the stochastic model and which portion by means of
the deterministic-sinusoidal model. Normally 2 or 3 scales are reasonable in
order to preserve the main time characteristic of the sound as the harmonics
and their time envelopes. The second step is to define the extension of the
transients; the length of the attack varies largely according to the instrument,
the pitch and the stabilization speed of the sound.

We tested our algorithm with different instrument sounds: a violin, a viola,
a cello, a flute, an oboe, a bassoon, a clarinet, a trumpet, a French horn and a
trombone. The two different degrees of approximation, i.e. a) a single parameter
~ per sideband, b) independent subbands give appreciably different acoustical
results. The last case provides very good results in terms of sound reproduction.
The AR filters employed are of the 10* order for the second subband. The order
diminishes with the order of the subbands. The energy values of the subbands
are updated every 20 coeflicients. We performed a perfect reconstruction of
each subband separately in order to compare them with the synthetic ones. In
Figure 2.26 and 2.27 the magnitude FT of a real-life clarinet and the magnitude
of the synthetic clarinet, respectively, are reported.

In order to use this method as a data compression tool, psychoacoustic
criteria play a fundamental role. By means of the computation of masking
effects, we are able to discard a significant percentage of the analysis coefficients.
This leads to compression performances of the order of 25:1 for the stationary
part of a monophonic voiced sound. For more details and numerical results, see
Section 4.5.
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Figure 2.27: Magnitude FT of a synthetic version of the clarinet of Figure 2.26
obtained by means of the FAS.

2.4.2 A sound design tool

From the previous discussion, it is also evident how the HBWT perfect recon-
struction scheme can be used as a powerful sound analysis tool. It is possible
to separate the harmonic components from the noisy components at different
scales. We can in fact employ any subset of the HBWT analysis coefficients
as input to the IHBWT filter bank. We can for instance reconstruct a single
wavelet-band n of all the channels p. We can extract one specific subband of
one specific sideband (fixed n and p), as well as any other arbitrary combination
of subbands. Also, we can separate the whole noisy component of a single har-
monic sideband. Each component can be processed and analyzed separately. We
are for instance able to separate the lip impulses of a brass-instrument player,
as in the case of a trombone.

From another perspective, the method is a powerful tool for sound hybridiza-
tion. From a single real-life sound we can in fact extract a wide gamut of new
sounds, according to the already described possibilities of combining the HBWT
subbands. In such a way timbre hybridization is straightforward: we can realize
any “mixture” of subbands coming from the analysis of different instruments. A
very simple example can be obtained by combining the reconstructed harmonic
components of one instrument with the noise sidebands of another one. For
instance an oboe with the noise of the bow of a string instrument or a violin
with the noise of the breath of a flute. This can be successfully employed as
a new cross-synthesis technique. We obtained interesting results in combining
the subbands of a horn, a trumpet, a bassoon, a clarinet and an oboe. See also
Section 4.1.

Finally, the method is also a new synthesis method on its own. OQur final
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goal is to realize a real-time system. A prototype has been realized in Pure data
(Pd) [66], [63], a software environment for real time digital audio processing (see
Section 5.3). An ordinary additive synthesis system is easily implementable in
real-time by means of an amplitude controller per harmonic partial. By means
of a set of “sliders” one is able to control dynamically the energy of the cor-
responding sinusoidal components. As already mentioned, FAS is a form of
additive synthesis, where one adds both sinusoidal and noisy components to-
gether. Thus, in the case of FAS, the number of sliders per harmonic partial
increases. We can decide to have for instance 2 or 3 sliders per harmonic partial,
according to the degree of accuracy one wants to reach. By means of 2 sliders we
can control the partial amplitude and the slope of both the 1/ |f — fi|-like side-
bands, i.e. of all of the noisy components of the harmonics at once. If one wants
to control the two sideband slopes independently, 3 sliders would be necessary.
Finally one could employ a number of sliders equal to the number of subbands
plus one (7 for 3 scale levels) in order to control the stochastic components and
the deterministic components of each partial energy separately. As illustrated in
the last chapter, this is the solution adopted in our prototype. In order to gen-
erate the colored noisy coefficients, the system would also need to implement a
bank of 2N AR filters per harmonic partial. The AR filters organized in presets,
come from the analysis of real-life musical instruments. The interpolated time
envelopes of both the stochastic and deterministic coefficients are also drawn
from the analysis and stocked as presets and editable in a graphical way. A
random generator provides the raw white noise coefficients. The implemented
prototype is described in more detail in Section 5.3.
Some audio examples are retrievable at the address:
http://lcavwww.epfl.ch/ " pietro/audio__examples.

2.5 Summary

In this chapter, we have given an overview of FAS. FAS is a method to deal
with the different components of voiced sounds, focusing our attention on their
noisy components, which are important for maintaining a real-life “color” in
sounds. QOur method provides a convincing noise model for voiced sounds in
music with very good experimental results. The performance of the method as
a data compression tool, even if confined to the stationary part of voiced sounds,
are satisfactory. We have pointed out that this method is also an analysis tool
able to separate the harmonic components from the noisy components of sound.
Alternately, it can be viewed as an independent synthesis method.

An improvement of the method was achieved by devising a pitch synchronous
version, i.e. a time varying version of the filter banks. This frees the method
from the limitations of a fixed number of channels, which restricted the set of
sounds that one can analyze to those with a well-defined and stable pitch. By
means of this extension, the method can be applied, for instance, to vibrato
sounds.

Another extension was obtained by means of an inharmonic version of the
P-channel filter bank. This allows one to define the frequency range of the
sidebands, i.e. of the partials, in an arbitrary way. We are able to employ
the method also in the case of nearly inharmonic sounds, such as in the low
register of the piano, or in the case of inharmonic sounds as those produced by
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percussion instruments.






Chapter 3

The Pseudo-Periodic 1/f
Noise

In this chapter, we detail the pseudo-periodic 1/f model and provide a for-
mal definition of both the pseudo-periodic 1/f noise and the Harmonic-Band
Wavelet Transform (HBWT). 1/f noise and long term correlated stochastic
processes inspired the first steps of this research for a new and effective model
for noise in musical sound that led to the FAS method.

The starting point is a powerful method for the synthesis of 1/f stochastic
processes by means of orthonormal wavelet bases introduced in [99]. The main
idea is that, in order to obtain a good approximation of a given 1/f stochastic
process, it is possible to adopt collections of mutually uncorrelated zero-mean
processes with proper scale-dependent energy as wavelet synthesis coefficients.
A single parameter is sufficient to control the slope of the 1/f —shaped power
spectrum of the synthetic signal. This parameter determines the variances,
i.e. the energies of the synthesis coefficients for each different wavelet subband.
Based on this result, we will introduce a scheme for the analysis and synthesis
of pseudo-periodic signals. We need:

a) to define in a formal way a pseudo-periodic signal model, i.e. the pseudo-
periodic 1/ f-like noise

b) to define an appropriate mathematical tool for the analysis and the syn-
thesis of this type of signals, i.e. the HBWT.

The theoretical investigation of this chapter is aimed at solving both prob-
lems at once by introducing a general cosine modulation and demodulation
scheme. Thanks to this scheme we are able to provide a rigorous definition of
the pseudo-periodic 1/ f-like noise, as well as to define consistently the multi-
channel filter bank basis functions, which form with the ordinary WT one of the
two ingredients of the HBWT. The introduction of a multirate filter bank as a
signal vectoring operator allows one to extend the class of Multiplexed Wavelet
Transforms (MWT) [19] to the HBWT. The HBWT provides a new class of
wavelet transforms well-suited for separating and analyzing the harmonics of
sounds with a detectable pitch. As it will be discussed in detail later in this
chapter, harmonic separation is performed by means of a cosine modulated filter
bank. Each output of the filter bank is then analyzed by means of a wavelet
filter bank. Compared to the MWT, the HBWT allows one to process each

37
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sideband of each partial independently.

The chapter is organized as follows. In section 3.1, we revisit the properties
and the characteristics of the 1/f noise. In Section 3.2, we briefly review the
synthesis of 1/f processes by means of the WT. In Section 3.3, we define the
pseudo-periodic 1/f noise process by means of a harmonic-band modulation
and demodulation scheme. In Section 3.4, we illustrate the theoretical result on
which the FAS is based. The proof of the main theorem is reported in Appendix
A. In Section 3.5, we introduce the discrete-time HBWT and their properties.
We also describe an operational scheme for the analysis and synthesis of the
pseudo-periodic 1/ f noise. Section 3.6 illustrates the results obtained by means
of a refinement of the method, which adopts a Frequency Warped version of the
Wavelet Transform (FWWT).

3.1 1/f noise

As illustrated in the previous chapter, the power spectra of musical signals of the
kind of Figure 3.2 contain peaks centered on the harmonics, whose shape is in-
fluenced by the long-term correlation of the stochastic luctuations with respect
to a pure periodic behavior. From a perceptual point of view, these chaotic but
correlated microfluctuations are relevant if one needs to emulate naturalness
and timbre dynamics in sounds with a detectable pitch. 1/f processes arise in
many physical and biological systems as well as in man-made phenomena such
as variations in traffic flow, economic data, network traffic as well as in music
[98] [102]. These processes are significantly correlated at large time lags. In this
perspective, 1/f noise plays somehow the role of the “main character” in our
work.

This section is devoted to a short review of the principal points characterizing
the 1/f noise. As a general introduction to the problem one can state that the
1/f noise is a random and non-stationary process, whose name refers to the
behavior of its average ” power spectrum “.

const

e

where f is the frequency and 7 is a parameter with 0 < v < 2. Usually v ~
1. The ”power spectrum” in (3.1), strictly speaking, is not defined. As an
anticipation, we could say that the meaning of the (3.1) lays on the fact that,
even if the 1/f noise is non-stationary, its increments are stationary. This main
problem and the other two main characteristics of the 1/f noise, i.e. its long
term correlation and its fractal nature are shortly recapitulated in the following
subsections.

S() = (3.1)

3.1.1 The 1/f noise: a non stationary random process.

The 1/ f noise appears as the spectrum of the fluctuations of the parameters of
many physical systems [36]. It was detected first as an excess of low frequencies
in the vacuum tubes and much later in the semiconductors. Bernamont in 1937
[6] and McWorther in 1955 [101] developed models for the 1/f noise for the
vacuum tubes and for the semiconductors, respectively. From the first half of
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the 30s the 1/f noise was observed as fluctuation of the parameters of many
other physical systems.

Soon, the non stationariety of the 1/ f noise or, in other words, the divergency
of the integral of the spectrum (3.1) appeared as a problem. Different theoretical
approaches were attempted in order to solve the problem. A first proposal for
the definition of the spectrum of the 1/ f processes was given by Mandelbrot. He
suggested that the 1/f noise could be considered as a non stationary process. In
this hypothesis the variance is time dependent and the autocorrelation R(t1,2)
depends on both ¢; and 7, explicitly. In this perspective, it becomes fundamental
to consider that the process can be observed only for a finite time (that means a
finite variance) and that one needs to know the state of the system at a certain
time o < ¢ , where { is the present time. The experimental evidence is in open
contradiction with Mandelbrot’s hypothesis. In fact the power spectrum of the
1/f noise can be measured with no assumptions on its stationariety and without
knowing its initial state.

In the time domain, without going into details of models such as the frac-
tional Brownian motion (fBm) [49] [28] [26] or the discrete fractional Gaussian
noise (dfGn) [4] [16], we can say at an intuitive level that one can consider
the 1/f noise as a non stationary process, whose increments are stationary. In
the frequency domain this corresponds to say that the 1/f noise is a stochastic
process that appears stationary when filtered by means of an ideal bandpass
filter. A more detailed characterization and definition of the 1/f noise in the
frequency domain is illustrated in Section 3.1.4

3.1.2 The “ memory” of the 1/f noise

A second fundamental characteristic of the 1/f noise is that of being a stochastic
process "less random” than other types of noise. In fact, the 1/f noise presents
a long term correlation among events, i.e. it has an evolutionary character. In
other words, the behavior at a certain time is strongly influenced by the previous
history of the process. The influence of the events at increasing time lag decays
in a much slower way with respect to the exponential decays corresponding to
the differential equations usually associated to the models of physical systems.
It is relevant how the 1/f noise appears to be also effective for modeling the
fluctuations of the notes and the dynamics of many genders of music, i.e. of a
product of the human mind.

By memory of a stochastic process we mean the decay rate of its autocorre-
lation: the lower the decay rate, the more the present events are influenced by
the past behavior of the process itself. White noise does not have memory of
the past: its autocorrelation R(t1,%2) is 0 for ¢; s ¢. Many processes are not
white, but their autocorrelation decays quickly. On the contrary 1/f processes
have a very long memory, that is the decay of the autocorrelation function is
very slow, of the order of 1/t™ or even logarithmic but never exponential. The
nearer <y is to 1 the bigger is the influence of the past. For v approaching 0
or 2 the autocorrelation decay with time lag becomes faster. Assuming that
the process is modeled by a linear system and that its past history is entirely
represented by the present values of its state variables, how many variables are
necessary for a system when its fluctuations have a power spectrum 1/f7? i.e.
how many numbers are necessary in order to describe the influence of the past
on the present? For the white noise (y = 0) the answer is 0; for the Brownian
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motion (v = 2) is 1: the initial position; for v =1 the answer changes radically.
We can estimate it, for instance, by determining how many variables are neces-
sary for a linear fit with an error of #5%. The present behavior is influenced in
a homogeneous way by each of these variables and each one represents a trend
of the data at. different time scales. The idea that the information describing the
past is summed up and stored as trends at different time scales is particularly
appealing. It seems close to the fashion in which human beings record informa-
tion as parts of consistent models through more levels rather than as separated
and uncorrelated pieces. Also noticeable the fact that music parameters present
a statistical behavior similar to the 1/ noise and that randomly chosen notes
sound more musical, if their spectral density is 1/f-like. This suggests a rela-
tionship between the structure of the 1/ f noise and the way in which we perceive
and remember. Finally, the influence of memory as an experience of the past
is implicit in the development of anything produced by humans. This could be
an appealing interpretation of the recurrency of a 1/ spectral behavior also in
the analysis of economic or sociological data.

3.1.3 Fractal properties of the 1/f noise

The third fundamental characteristic of the 1/ noise is that of being statis-
tically selfsimilar, i.e. the statistic of 1/f noise is scale invariant. Intuitively
this is the junction element with the WT and its multiresolution properties.
More precisely, by statistically selfsimilar processes one denotes all the random
processes x(t) that satisfy the relationship:

2(t) £ a=Hz(at), (3.2)

where = denotes identity in a statistical way, a is any real number and H is the
homogeneity degree of the process. If z(t) is Wide Sense Stationary (WSS) and
its power spectrum is of the kind of 3.1, it follows that:

R.(7) = a*"R,(aT) Va € R

Tractal geometry is recurrent in nature. Fractal waveforms characterize, for
instance, geographic contours, earthquake distributions, turbulent flows and
many others [48] [3]. According to the relation (3.2) 1/f processes are fractal
signals. The fractal dimension allows one to measure the density of a fractal
object within a space C(X), where C'(X) is the space of the compact subsets
of the metric space X defined on some particular metric. If A € C(X) is a
compact set, N(A,¢) = M is defined as the minimum number of closed spheres
of radius ¢ necessary to cover A. One can define a quantity D in the following
way [3]:
D < lim In(N(A,¢))
«—0 In(1/¢)

where the term D, when it exists, is called the fractal dimension of A and
D, - 1< D < D, where D, is the dimension of the space X.

As an example, the fractional Brownian motion self-similar parameter lies
in the interval 0 < H < 1 (corresponding to 1 < v < 3 [99]) and its fractal
dimension is:

(3.3)

5

D=2-H=3- (3.4)

l\?.lQ
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which intuitively provides a measure of its indentation [2], [99] [100]. Equations
(3.3) and (3.4) provide one of the possible way to deduce the value of the para-
meter v that is one of the two main parameters necessary for the synthesis of
pseudo-periodic signals.

3.1.4 Frequency domain 1/f noise characterization

The fundamental notion for a characterization of the 1/f processes in the fre-
quency domain lies on empirical considerations: a 1/f process is a statistically
selfsimilar process, which is stationary when filtered by means of ideal bandpass
filters. Since the spectral measures of physical processes can be only referred to
a frequency range related to finite times of observations and to a finite resolu-
tion, this seems to be the most natural way to define and discriminate the 1/f
noise from other statistically self-similar processes. More precisely the following
definition is given in [99]:

Definition 3.1 A wide-sense statistically self-similar zero mean random process
x(t) shall be said to be a 1/ [ process if there exist wy and wy selisfying 0 < wy <
wi < 0o such that when x(t) is fillered by an ideal bandpass filler with frequency
response

|1, wo < |w| < w
B(w) = { 0, otherwise

the resulting process y(t) is wide-sense stationary and has finite variance.

Also in [99] one can find the following result:

Proposition 3.1 A 1/f process z(t), when filtered by an ideal bandpass filter
with frequency response

_ 1, wr, < |OJ| < wy
Bw) = { 0, otherwise
with 0 < wy, <wy < 0o, yields a random process y(t) wide-sense stationary,
with finite variance and having power spectrum, for some o2 > 0

)

271 17
_ | o/l wr < |w| <wy
Sylw) = { 0, otherwise

where the spectral exponent 7y is related to the selfsimilarity parameter H
according to the following relationship v = 2H + 1.

3.2 1/f noise analysis and synthesis by means of
WT

Theorem 3 in [99] shows that given an orthonormal wavelet basis v, ,,(t) and
a collection of mutually uncorrelated zero-mean synthesis coefficients ., (m) we

obtain a process
o0 o0

z(t) = Z Z Zn (M), m (1)

N=—00 M=——00
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Figure 3.1: Magnitude FT of al/f stochastic process.
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Figure 3.2: First 6 harmonics of a violin note (B2).
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that is nearly 1/f | i.e. its time-averaged power spectrum

S;w)y=0 ) 2" (2 w)? (3.5)

n=—oo

satisfies the relationship:

‘7% S, (w) < UU
ol =l
for some 0 < 207, < 20y < oo, i.e. the average power spectrum of z(f) is

upper and lower bounded by an 1/f spectrum. Furthermore the following self-
similarity relationship holds for any integer k:

w[” Sp(w) = |2Fw]|” §,(25w) (3.6)

In order to extend this result to pseudo-periodic signals we will introduce a
new set of multiwavelets. These multiwavelets are associated to a continuous-
time filter bank with an infinite number of channels, whose outputs are down-
sampled and analyzed by means of the Discrete-Time Wavelet Transform (DTWT),
A discrete-time counterpart of the previous result is thus necessary. It is easy
to show that the discrete-time synthesis process.

o0

22 Z n(M)Ym D)+ D an(m)dy, (1), (3.7)

— M=o

where ¢y o(1) is the scaling sequence relative to the DTWT ¢, (1), is wide-sense
cyclostationary (WSCS) of period 2N with average power spectrum

2

2
Sn(w) = 22"7”'"3( D)l 4 o |q’”’2°]5”)’ (3.8)

n=1
Here U, o (w) represents the DTFT of the wavelet sequence v, o(I) and @, o (w)
the DTF'T of the corresponding scaling sequence ¢,, o(l).
Let Hy(w) and Ho(w) be the frequency responses of the QMF filters used to

generate the discrete-time dyadic wavelets 1/)n’0(l). They satisfy the relationships
(see also Figure 2.4):

|Hy (w)[* + [Ho (w)|* =2
and

Hy (W) Hf (w+n)+ Hf (w+7) Hy (w) =0

From this and the recursive definition of the Discrete-Time Wavelet Transform
(DTWT), we have:

[no @) _ [H1 (2271w) Suyo @) [Ha ( 2"- )| = 1Ho ( mr
o - on - H -

r=0
(3.9)
The spectrum in (3.8) is a multilevel approximation of a 1/f behavior as de-
picted in Figure 3.3. The accuracy of the approximation depends on the flatness
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Figure 3.3: 1/f -like noise: ideal spectral behavior (dashed line), synthesized by
means of Daubechies wavelet (solid line) and synthesized by ideal bandpass wavelets
(dashed-dotted line).

and on the order of the filters. In the case where Hgy and H; are ideal filters,

ie. for \/_
_ 2 if F<<w<E
Holw) = { 0 otherwzse

and

Hi(w) = v2 ~ Ho(w)

we obtain from (3.9):

lwn,o<w)|2:{ 1 for we (=%t (1- 2t 7

VAS 0 otherwise

which yields a synthesized average power spectrum:

Snlw) =2N7y UJ)J{: 2y W), w>0

[0_< 2N 1 — 2n 1) ( 2'21”1 1>"]

{1 Jor 0sw<i
A7 0 otherwise

This corresponds to the staircase function shown in Figure 3.3.

While staircase approximation using octave band ideal filters has a pure
demonstrative value, the approximation obtained by means of easily imple-
mentable Daubechies’ filters is a very accurate one, as shown in Figure 3.3.

The self-similarity relation (3.6) does not carry over to discrete-time since
the invariance for scale is only approximately true in that case.
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3.3 Modulation scheme and pseudo-periodic 1/ model

In this section we consider a general modulation and demodulation scheme that
leads to a useful representation of pseudo-periodic processes. Based on this
scheme, we provide a definition of pseudo-periodic 1/f-like noise suitable for
the synthesis and the analysis of voiced sounds [62] [63].

3.3.1 Harmonic-band modulation and demodulation

The frequency spectra of pseudo-periodic signals are characterized by harmon-
ically spaced peaks at frequencies &y, = %f where Tp is the average period of
the signal. In order to separate the contribution of each of the harmonic bands,
one can devise a set of ideal narrow-band filters of bandwidth Aw = 7;}-; each
fitting a single sideband of the harmonics (see Figure 3.4). The magnitude of

the Fourier transform of these filters is given by:

) = X[%:gy}l})w[(w) D2 g
X] g e w) »p<
where p = 0, 1,42, ..., and

1 ¢f A<w<B
X(4,((w) = { S A<

0 otherwise

is the characteristic function of the interval [A,B[. In our notation, the positive
frequency right sideband Rtof the k**harmonic corresponds to the band indexed
by p = 2|k|. Its negative frequency companion, which we still denote as the right
sideband R, is the band indexed by p = —2|k| — 1. Similarly, positive and
negative left sidebands, Lt and L™, are indexed, respectively, by p = 2|k| — 1
and p = —2|k|. Notice that for the d.c. component (k¥ = 0) the bands R~
and L™, respectively, coincide with the bands L* and R¥. The outputs of these
filters may be baseband shifted, according to a suitable demodulation scheme.
In dealing with real signals, it is convenient to combine positive and negative
frequencies in such a way that the resulting component signal is still real. This
is achieved by demodulating the output of each filter by the frequency of the
corresponding harmonics, i.e. by multiplying the band p signal by

%e—j( (5142 t+5,)

N

where 3, = 8_,_; are otherwise arbitrary phase factors. We then add together
the outputs of the demodulated R* and R~, and those of the demodulated
LT and L~. This results in the demodulation scheme reported in Figure ??.
Considering couples of positive and symmetric negative bands, demodulation
may be described as the projection (K,(t,e),z(e)), p =0,1, ..., of a signal z(t),
where K, is a set of real linear operators with kernels

_ 1 = (=)’ @2p+1)7 . ft—T
Ky(t,7) = T cos ( Ty 7+ B, | sinc 5T ) p= O(./ 1, )
3.10

where the sinc function represents ideal lowpass filtering, properly baseband
demodulated by the cosine term. The operators described by the kernels (3.10)
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Figure 3.4: Harmonic sideband allocation.

perform a harmonic cosine demodulation to baseband of the signal subband
with frequency support in

W, z]l%—-*;—mf:%] U [;—Z(i;%h [ (3.11)

The presence of the constant phase factors 3, allows us to generalize the cosine
demodulation scheme to other schemes, such as sine demodulation. We denote
by V,, the L? subspace of signals bandlimited to W, . The operator K, defines
an isomorphism V, «— Vj, where Vj is the space of bandlimited baseband

ol T

signals, with frequency support in ] ~ T Tr [ In fact, one can verify that K,

is invertible, with inverse kernel K;'(t,7) = Kp(7,t) = K} (t,7), where the
symbol f denotes the adjoint. Hence K, is unitary. Conversely the operators
K, I perform a harmonic cosine modulation, repositioning the demodulated
subband to the domain given by (3.11). It should be noted that, unless p = 0,
domain and range space of the operator are different. Thus, K;, and K 1 do
not commute, rather the domain and range space of K, 'K, is V,, , while the
domain and range space of K, K 'is Vo . Also, the identity operator in V), has

kernel I,,(¢,7) = TLP cos (i%%ﬂ)sinc(-’z’—}f) . which, for p = 0, corresponds

l_z

= L
to Ip(t,7) = Tpsmc( T
Harmonic cosine modulation and demodulation is the main ingredient of our
representation and formal definition of pseudo-periodic signals.

3.3.2 Pseudo-periodic 1/f-like noise: a rigorous definition

We model acoustic pseudo-periodic signals with fundamental frequency fp =
wo /27 by means of a superposition of cosine modulated bandlimited 1/ f processes.
Each process contributes to a single side band of one of the harmonics of a
pseudo-periodic signal. Each one of these 1/ f processes is characterized by two
parameters ¢ and v (see equation (3.5)). The parameter ¢ controls the global
energy of the process, while the parameter v controls the slope of the spectral
curve. In the pseudo-periodic case we denote each harmonic partial by means



3.3. Modulation scheme and pseudo-periodic 1/f model 47
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Figure 3.5: Baseband shift of harmonic sidebands: (b) sidebands of the 2"¢ har-
monics; (a) demodulation of the left sidebands; (c) demodulation of the right
sidebands.
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Figure 3.6: Pseudo-periodic 1/ f-like power spectrum. Each modulated 1/ f process
has bandwidth 7/P. All the processes have same ¢ but different ~.

of the index &k and we distinguish between the left and right sideband by means
of the indexes I and R, respectively. We obtain a set of parameters 0',%, g and
crf 1.-corresponding to the amplitudes of the side bands of the harmonics k& and
a set of parameters v, g and =y, ; controlling the slope of their 1/ f-like spectra.

An example of ideal pseudo-periodic 1 /f spectrum is shown in Figure 3.6.
In this case the parameter ¢ is the same for each process, while the parameter
v, i.e. the slope changes from process to process. The modulating frequencies
are chosen to be harmonically related. The bandwidth B of each process equals
half the harmonic spacing, i.e. B = wg/2 = w/Tp.

In other words, the average spectrum of the model process has the following
form!:

Jk R
Z lw kujol’}’k RX[kwo, (k+1/2)wo] (UJ)

2
Ok.L
+ |w _ k'(d0|’yk'L X[(k—l/Z)wo, kwol (w) s w Z 0 (312)

We can provide a formal definition of pseudo-periodic 1/f —like noise that
extends that of the 1/f noise given in [6]. In fact, if each sideband of the
harmonics is baseband shifted by means of cosine demodulation, as described in
the previous Section, the resulting process is 1/ f, bandlimited to [—wo /2, wq/2].
This is equivalent to say that, by passing the demodulated component processes
through an ideal bandpass filter:

G(E) (U.)) = X[—wg/Z,—e] ("“)) + X[e,wg/Q] (CU)

LA notation remark: in the following equation and for the rest of this work a sum with
unspecified boundaries denotes that the index runs from -co to +00.
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with € arbitrarily small, one obtains a finite-variance wide-sense stationary
process. This is actually the main idea of the definition of 1/ noise in Section
3.1. Therefore, we can provide the following:

Definition 3.2 A stochastic process z(t) is said to be a 1/ f-like pseudo-periodic
noise if there exists a Tp > 0 such that when (L) is operated by Kp, in (3.10) it
yields a collection of processes

1)_/ (L. 7)2(r)dr, p=0.1,.. , (3.13)

which, when fillered through H)(w), with we = -TL becorne
wide-sense stationary and bandlimited processes with power spectrum.

S, () = { gf,/ lw[™  if e <|w| <wo/2 (3.14)

otherwise
for some 7y, and o,.

The operations involved in (3.13) are equivalent to filtering the single side-
bands of each of the harmonics, separately for the positive and negative fre-
quencies, and properly baseband shifting the result. The phase factors B, in
(3.10) are arbitrary. It can be shown that the power spectrum S, (w) does
not depend on the choice of 5,. Similarly, any signal generated by harmonic
modulation of a 1/f baseband process with arbitrary phase yields a 1/ f process
when demodulated by means of (3.13). This is true even if the phase factors do
not coincide. Therefore, our definition is consistent.

Comparing (3.14) with the model spectrum in (3.12), we can make the fol-
lowing associations:

Vosa = Y2k—1 = Tk,L> Vpever = Y2k = Vk,R
and
Opoga = O2k—1 == Ok,L, O peven = 02k = Ok,R
Since the resulting processes z,(t) in Definition 3.2 are bandlimited to
[~wo/2,wo/2], they can be sampled with sampling rate £ = =z~ . It can

be shown that the operations in (3.13) followed by sampling at a rate 1/Tp are
equivalent to the projection of z(t) on the set of functions {gp,r(£)},_0;  .rez:
defined as follows:

Gp.r(t) = gpo(t —rTp) (3.15)

oo L 2p+1 : t .
gpo(t) = \/T; cos ( 5Tr ) sinc (2TP) (3.16)

The set in (3.16) is easily shown to form an orthonormal basis. The functions
9p,0(t) are the impulse responses of ideal bandpass filters, with passband (3.11),

with

that is, the sinc (ﬁ) ideal lowpass filter with passband ] , modulated

7o Ty
to the band (3.11) by the cosine function. It is clear that the coefficient obtained
by projecting a signal z(¢) on a basis element g,, (t), where r corresponds to the
time rTp and p corresponds to the band (3.11), is just the sample at time 7Tp
of the component of z(t) bandlimited to (3.11), i.e. (z,gpr) = VIpz,(rTr).
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3.4 Synthesis of pseudo-periodic 1/ f noise by means
of HBWT

In order to extend the result of Section 3.2 to the synthesis of 1/f pseudo-
periodic processes by means of wavelet bases, and to introduce their discrete-
time counterpart, we need the following:

Lemma 3.2 A stochastic process (1) defined as follows:

oo

i Z r)gp,r ( (3.17)

where the gy »(t) are given in (3.15) and {v,(r)} are jointly stationary discrete-
time stochastic processes, i.e. R, . , (r,r)) = Ry, (r—r'), is wide sense
cyclostationary (WSCS) with period Tp.

Proof. We have

o (If + kTp, t+ ATP) =

<Z i yp(r)gp,,.(HkTp) Z E Ngp (' + kTp)

p==0 r=-—o00 —

which, by making the substitutions ' —r = [ and k& —r = r” and using (3.15)
becomes

R, (t+kTp,t' +kTp) =

= Z Z gp,O(t — 7.//Tp)gp/,.0 (tl - (l +Tll) TP)Rup,V,,/ (l) = Ra: (tctl)

p;p'=01r"=~00

which does not depend onr. m
We now introduce a continuous time multiwavelet basis forming the Harmonic-
Band Wavelet set, i.e. the HBWT:

gn,m,p(t) = Zd)n,m(r)gp,r(t) (19) (318)

wheren € N,me Z,p=0,1,...P, P € N and {w”:m(T)}neN.mGZ is an
ordinary discrete-time wavelet basis while g, (t) are defined in (3.15).
The Fourier transform of the HBWT corresponds to comb versions of ordi-

nary wavelets, filtered by the filterbank with frequency responses G o(w) :
En,m’p(w) = ‘I’n,m(TPUJ)Gp’o(LU) (319)

In (3.19) Gpo(w) is the Fourier transform of gp0(t) and ¥, ,,(Tpw) is the
Fourier transform of a comb wavelet [19]. This means that we have infinite comb
wavelets, one for each p, and that the action of filtering is essentially equivalent
to selecting a single sideband of the harmonics. What we have obtained is to
wavelet transform each single sideband independently.
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Furthermore, the harmonic-band wavelets (3.15) satisfy the following shift
property:
gnmp(f+2NerP) nm —2N- "T‘p(f) (320)

Consider the case where the {v,(r)} in (3.17) are WSCS processes with
period 2V P (see also (3.7)) defined as follows:

N oo
=50 3 B

where the v7!(m) are unit variance mutually uncorrelated coefficients, while
3, = 0;732"’1’ are scale dependent energy factors. We can prove the following:

Lemma 3.3 A stochastic process x(t) such that

=3 3 =30 30 A 0
p=0r=—00 p=0n=1m=—oco
where the §,, ., p( ) are defined in (3.18), is cyclostationary with period 2NTp.

Proof. We have:
R, (t+2"rTp,t' +2VrTp) =

oo N oo
- E{ <Z SN B m)n mp(t+ erTP)>

p=0n=1m=—o0
Z Z Z /Bn /2 n /)‘En’,nll,p’ (tl + 2N’T‘Tp)

pP=0n'=1m'=

(3.21)

By using (3.15), the shift property (3.20) and the fact that R, . , o (mm/) =
BpOn,np,psm,m» €quation (3.21) becomes:

oo N oo
R (t+2NTTP t +2NTTP :ZZ Z /B;lsn,m—wv‘"r,p(t)gn,m—‘ZN_"r,p(t/)'

p=0n=1m=—co

Finally, by the substitution m’ = m — 2¥~"r we obtain

o0

Ry (L4+2VrTp, ' +2V7Tp) =Y 3~ Y Bplnmp®bnmp(t) = Re (4,1),

p=0n=1m'=—o0

which is independent on r. ®
The same result holds for the scale residue in (3.7).
We are then able to derive the following result for the synthesis:
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Proposition 3.4 Consider an orthonormal set of functions {g,+(0)},_01 . rez

as defined in (5.15) and a collection of jointly uncorrelated sets of coefficients
{vp(r)}ymo.1,..» related to (3.7) by the following relation:

oo

1/,,(7‘) \/__ \/— (Z Z bp n n’m(’l') + Z (LP,N(m)¢N’,7n (T)>

n=1m=—0co m=-00
(3.22)
where {b, n(m)} and {ay n(m)} are jointly uncorrelated WSS white noise processes
with variances Var {byo(m)} = 022" and Var {apn(m)} = 022N7. Then

the random process
s =2 > vp(r)gnr(t)

p=0r=—c0

has an average power spectrum. of the form:

N
= —fo Gro(w) <Z 2% W0 (W) 427 t<1>n,o(wTP>iQ>
T p—O n=1
(3.23)
For the proof see Appendix at the end of the chapter.
In the ideal case ]Gno(w)]z = (X —inr —pn ] (W) F X[ o ¢ Lz (w)) and
] Tp ' Tp ] [TP [

3.23) is approximately 1/f near each harmonic k2% with & LH
p Tp 2
0,1,.... That is for

(2 — 1) — < w < Zhmm- if p is odd (right sideband)
T Tn
or -
2AT— w < (2k + 1) — if p is even (left sideband)
we have 9 2
o — o
b2 <Snw) < Lr
- 262 o = 20

for some 0 < 207, , < 20y, < oc.

It follows from Proposition 3.4 that one can synthesize a signal with an ap-
proximately pseudo-periodic 1/f —like behavior, as shown in Figure 3.7. The
inverse Harmonic-Band Wavelet Transform with random coefficients is used as
a synthesis scheme for pseudo-periodic 1/ f-like noise. We are able to simulate
a real-life pseudo-periodic signal with arbitrary pitch P. The parameters nec-
essary to define the behavior of each sideband are only two: o, and 7,. They
control respectively the amplitude and the slope of the sideband spectrum.

3.5 Discrete-time harmonic-band wavelets

The discrete-time counterpart of (3.15) is the basis associated with an ideal P
band filter bank, where P is the length in samples of the period of the pseudo-
periodic signal. In order to obtain an efficient scheme for the analysis and
synthesis of pseudo-periodic 1/f noise we consider an approximation of the
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oo

Figure 3.7: Synthesized pseudo-periodic 1/f -like noise: three harmonics with
different o, and v,,. a) solid line: ideal spectrum behavior b) dotted line: synthesis
by means of ideal filter banks.

ideal filter bank by a perfect reconstruction structure [89]. In particular, we
consider the Modified Discrete Cosine Transform basis (MDCT):

pr(l) = gpo(l —TP) p=0,..P-1 reZ (3.24)

with
p0(l) = w(l) cos (2’1; L@-Pt1) 7() , (3.25)

where the length 2P lowpass prototype impulse response w(l) satisfies the sym-
metry conditions given in [53]. That is:

w(l) =w(2P -1-1) for [=0,...2P -1 (3.26)
w () +w?(P-1-1)=2 for 1=0,..,P-1 (3.27)
w(l)=0 for l<0,1>2P~1

The magnitude F'T of the Discrete-Time Harmonic-Band Wavelet (DT-HBWT)
is shown in Figure 3.9.

In order to synthesize the samples of 1/f -like processes z,(I) we adopt the
discrete-time version of the method illustrated in Section 3.2. The overall struc-
ture is realized by introducing the DT-HBWT. The synthesis of 1/ pseudo-
periodic noise is achieved by using white noise coefficients. The DT-HBW are
defined by:

LoD =D (Mg (0) n=12..N;mecZ p=0,1,..,P-1
' (3.28)
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Figure 3.8: Synthesized pseudo-periodic 1/f -like noise: three harmonics with
different o, and 7,,. a) solid line: ideal spectrum behavior b) dotted line: synthesis
by means of MDCT and Daubechies Wavelet.
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Figure 3.9: Magnitude Fourier transform of a 8 channel MDCT. Only the channels
2-7 are shown and the position of the related three harmonic peaks.
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where 9, . (r) are discrete-time ordinary wavelets and g, (1) are the MDCT
functions (3.24). The corresponding scale residue function is given by:

(N =D onm () pr (1) meZ; p=0,1,...,P—1 (3.29)

The conditions of orthogonality and completeness of the DT-HBW

o0

Z gn,m,p(l)gn,nhp’ (l) =

l=—o00
Z (anm(v G lenm ) r,()) S S

l=—o0

and
ZEn,rn,p(l)gn,’m,p(l/) == Z Z (wn,m('r)gp,r(l)'lvbn,m(r)gpw(l/)) = 5l,l’7
p P T

respectively, follow from the orthonormality and completeness of the MDCT
and the WT. Thus any signal s(I) € I? can be expanded on a DT-HBW set
according to the:

Z (ZZan[m]gnmp ) +Za,,N )¢ (1 )), (3.30)

p=1 \n=1 m

where the b, »[m]’s and the a, x[m]’s are the DT-HBW expansion coefficients
and the corresponding harmonic-band scale residue coeflicients at scale N, re-
spectively. The DTET of the basis elements (3.28) are shown in Figure 2.14. A
structure for computing the DT-HBWT and its inverse is shown in Figure 3.10
and 3.11, respectively.

In the analysis structure, the signal is sent to a P-channel filter bank sepa-
rating the sidebands. In view of perfect reconstruction, the output can then be
downsampled by P. Each P-downsampled signal is then wavelet transformed.
Signal reconstruction is achieved by separately inverse wavelet transforming the
HBWT analysis coefficients and passing these sequences through the inverse P-
channel filter bank with upsampling factor . Upsampling moves the spectrum
of each subsignal back to its proper subband.

The HBWT generalizes the Multiplexed Wavelet Transform (MWT), re-
cently introduced in [19], to which they revert when g, 0(l) = é(1), where d(1) is
the unit pulse sequence. Similarly to the MWT, the HBWT is useful for sep-
arating, for each harmonics, the sinusoidal behavior (scaling component) from
transients and noise (wavelet components). The idea of our model is to employ
the theoretical result of Proposition 3.4 in order to have an efficient scheme for
synthetically reproducing the noisy sidebands of the spectrum of voiced sounds
in music. Experimental results confirm the validity of the 1/f model for the
sidebands in a wide class of musical pseudo-periodic signals. Thanks to the
result of Proposition 3.4 we can easily reproduce the synthesis coeflicients in
our scheme by means of white noise or weakly correlated noise. The coefficient
energy is controlled by few parameters (2 per each sideband) drawn from the
analysis scheme of the signal. In the next chapter we illustrate the experimental
results, validating the existence of a pseudo-periodic 1/ f-like behavior in many
voiced sounds.
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Figure 3.10: HBWT implementing scheme.
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Figure 3.11: Inverse HBWT implementing scheme.
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Magriuxde (dB)

3 8

Figure 3.12: Magnitude FT of a French horn. Relevant spectral peaks different
from the harmonic ones are detectable.

3.6 A refined spectral design via frequency-warped
WT

By means of the HBWT, introduced in Section 3.4, the result concerning the
synthesis of 1/ f-like processes by means of the WT was extended to the pseudo-
periodic 1/ f-like case. We showed that it is possible to synthesize signals with
pseudo-periodic 1/ f-like power spectra by employing white noise coefficients,
with wavelet-band dependent energy. Our goal is to adapt the spectrum of the
synthetic signal to that of a real-life pseudo-periodic sound.

Different levels of approximation can be achieved in the synthesis of noise
components of pseudo-periodic sounds. A simple refinement consists in employ-
ing as resynthesis parameters the individual variances of the HBW subbands.
This can be seen as a first acoustical refinement of the FAS method towards
an acoustical refinement. This means to set the method free from the rigid
1/ f-like pseudo-periodic model increasing the cost for a higher quality sound
reproduction. As illustrated in the next chapter, in order to do this we need to
replace the parameters 27> with a set of parameters 0pn corresponding to the
energies of the single n'* subband of the p* sideband. Another refinement of
the technique consists in setting our method free from the strict constraints of
the 1/ f model in order to obtain a better approximation of the spectrum shape.
This can be achieved by employing the Frequency-Warped Wavelet Transform
(FWWT), recently introduced in [21}, [20]. We obtain an arbitrary segmenta-
tion of the frequency axis, i.e. of the wavelet analysis and synthesis bands. In
this way we can reproduce the deviations of real spectra with respect to the
strict pseudo-periodic 1/ f -like model [61]. An example is shown in Figure 3.12,
where relevant non-harmonic peaks are present in the spectrum of a French
horn.

In this section we briefly review the FWWT. Then, we introduce the Harmonic-
Band Frequency-Warped Wavelet Transform (HB-FWWT). The experimental
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results are discussed in Chapter 4.

3.6.1 Frequency warping and Laguerre transform

The term warping denotes an operation of “distortion” of a function through
some mapping of its domain. For signals represented in the frequency domain
this mapping is represented by the notation:

Q=0(w)

where w is the original frequency domain and 6 is the frequency mapping. The
frequency warped version of a signal s() can be written in the frequency domain
as:

Sulw) = SO(w)) = S(Q)

In the following paragraphs we consider the particular case of frequency
warping via the Laguerre Transform (LT). The LT is the main element for
defining the FWWT {20]. A frequency-warped version of the HBWT is then
straightforward.

The Laguerre sequence is given by the sum:

min(r,l)

Ara () = /1 —d? Z (=) (I+7r—m)! e

ml(l —m)! (r — m)!

m=0
whose z transform is:
; -1 r
27 —d
Ara () = VT — =4 (3.31)
' (1-d=z"1)
The functions in (3.31) satisfy the following recursive relation:

Ava(2) = A Ar—1.4a (2) = A(z) Ao (2),

where
z7 1 —d
C1-dz!
is the system function of a stable and causal allpass filter. On the unit circle
A(e7?) = e719), with

A(2)

B(w) = —arg A(e’) = w + 2tan™? (%) . (3.32)

The function (3.32) is the frequency warping mapping generated by the LT.

Since the Laguerre sequences are infinite length, the LT has to be approxi-
mated to a finite number of coefficients. It is possible to estimate [21] a minimum
number M of Laguerre coefficients providing a good accuracy in the represen-
tation of a signal s(I) of L samples:

L(1+|d])

M>
~ 1-ld]

(3.33)



3.6. A refined spectral design via frequency-warped WT 59

GO r;\izrgresal Af2) ‘le ;:(Z)—g, =Az(z) ;;E :;(Z) élﬂ)

Figure 3.13: LT implementation scheme. The uy form the LT of the signal s(1).
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Figure 3.14: inverse LT implementation scheme.

When (3.33) is strictly satisfied, the maximum error is less than the 5% of the
maximum absolute value of the signal:

emax < 0.05 - |max(s(1))]

Figure 3.13 and 3.14 show the implementation structure for the LT and its
inverse, respectively. The parts of the scheme included in the rectangles in the
two figures form a switched dispersive delay line and a tapped dispersive delay
line, which will be denoted, respectively, by the symbols of Figure 3.15 a) and
b)

3.6.2 Frequency warped wavelets

Wavelet transforms are almost a useful tool for multiresolution analysis. Their
most appealing feature is related to the non-uniform octave band subdivision
of the space-frequency or time-frequency spaces in image and sound process-
ing, respectively. The octave band subdivision as well as the principle of scale
covariance seem to be successful from a perceptual point of view for both our
hearing and visual system.

, O 4@y (1) | () 4@ GO

Figure 3.15: Graphic symbols for a) switched dispersive delay lines and b) tapped
dispersive delay lines.
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What we are trying to do here is to model the spectra of pseudo-periodic
signals. The harmonic peaks of these spectra have an approximately 1/ f-like be-
havior, well fitting the power-of-2 observation perspective of the wavelet trans-
form. Nevertheless this model can be improved and/or corroborated, if one
makes the power-of-2 law more flexible and adaptable to real-life deviations
from the model itself. This can be obtained by introducing in the FAS scheme
the FWWT, i.e. a WT with an arbitrary non-uniform subdivision of the fre-
quency axis replacing the octave-band subdivision. In the following paragraphs
we give a concise review of the FWWT.

The frequency warped wavelets %, , (I) and their corresponding frequency
warped scale sequences (Apn’m(l) obey, fespectively, the following recursive rela-
tion:

,(,/‘)n,m(l) = Zgn,m(k)@n—l,k(l)
k=0

and

Pr,m () = Z hn,nb(k)‘zbn-l,k(l)

where the g, and the A, .. are some auxiliary sequences given by:

(k) =D Anr (k)b (r — 2m)

r=0

and

o0

hnm(k) =D Anr(k)ho(r — 2m),

r=0
where the symbol A, , denotes a Laguerre sequence of order r associated to the
n** wavelet scale. The ordinary quadrature mirror filters by and hg in this case
play the role of coefficients of the Laguerre expansion of the functions g, and
hn, m respectively.

The frequency warped wavelets form orthonormal and complete sets. For

any s(I) € 12 (N U {0}) it is possible to write:

N
s =D bambnm@ + D anmbyml)

n=1 m m

Frequency warping or frequency axis deformation is obtained by means of the
LT and is controlled subband n by subband n by the parameters d,, according
to the following recurrence:

d; = tan [(7 — 2w,) /4]

and

d,, = tan [% -1 (wn)] ,

where the w,, are the arbitrary cut-off frequencies by which we subdivide the
frequency axis, with w; >wy >...>w, and the frequency mapping 2, (w) is
given by [20]: :
Qn(w) = 0,(20,-1(...202(01 (w))...))
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Figure 3.16: Magnitude frequency response of a filter bank implementing the
ordinary HBWT, two harmonics (a), compared with the case of a HB-FWWT (b).

where, according to the (3.32), the ;(w) are:

d;sinw
0i(w) =w+2tan™! | ————
(@) =w+2tan (1 - d; cosw)

fori=1,2,...n.

3.6.3 Harmonic-Band Frequency-Warped WT (HB-FWWT)

The DT-HBW introduced in Section 3.3 form an orthonormal and complete set
in 2. Computation of the DT-HBWT is achieved by means of a P-channel
filter bank based on the MDCT cascaded by a WT of each channel. Any signal
s(l) € I? can be expanded on a DT-HBW set {§,L7,n7p(l): CN_'m’p(l)} according to
the (3.30), where the &, ,,, (1) and the {y ,, ,(I) are given in (3.28) and (3.29),
respectively, with p = 0,1,....,.P -1, n=1,..,N. m € Z. P is the number of
channels and p is the channel index. In order to obtain a Frequency Warped
version of the HBWT (HB-FWWT) we need simply to substitute 1 and ¢ in

3.22 with their warped version ¥ and ¢ :

N
vp(r) = (Z Zi)p,n[m]"z}n,m("') + Z &,p,N[m]&)N’m(r))

n=1 m

The great advantage is that each subband of each sideband can be adjusted by
an optimization procedure, in order to fit any real-life spectrum of the kind,
for instance, of Figure 3.12. In Figure 3.16b we show an example of how the
frequency spectrum of Figure 3.16a can be modified by means of the FWWT.
The position and bandwidth of each subband can be independently set by means
of properly chosen parameters {dy, ,} for each p and n.

At the same time we obtain a finer tool for verifying the pseudo-periodic
1/f-like model on data. In fact by means of the HBWT analysis we obtain
for each sideband p a set of parameters corresponding to the energies of the
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N scales FWWT
.
— =
Laguerre Transform
0 M) P 4 4P| %) = a0 [ 40 [P KO
2 .
P H(1r2) '
v 2 2
N scales FWWT O P
in; ——t——— ~
1 Frequency-Warped
Goui(1/2%) FWWT | Harmonic-Band Wavelet
output coefficients

Figure 3.17: HB-FWWT analysis filter banks. A | is a switched dispersive delay
line implemented by a cascade of all-pass filters (see Figure 3.15a).
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Figure 3.18: HB-FWWT synthesis filter bank. A T is a tapped dispersive delay
line implemented by a cascade of all-pass filters (see Figure 3.15b).
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subbands. Each parameter is a point of the hypothetical 1/ f-like spectrum of
the sideband p. By subdividing the latter with a finer resolution we have more
points at our disposal, by which we can test the validity of the pseudo-periodic
1/f-like model. The experimental results confirm the validity of the pseudo-
periodic 1/ f-like model and are discussed in the next chapter. In Figure 3.17
and 3.18 we show the filter bank scheme, implementing the HB-FWWT and its
inverse, respectively.

From a coding point of view, using the HB-FWWT with three scale levels
implies a growth of the number of parameters of approximately a factor 3, but
we still obtain a very good coding rate. Also, as it will be illustrated in the next
chapter, many improvements can be obtained in terms of coding rate by means
of parameters and coefficient modeling and the introduction of psychoacoustic
criteria in the method.

3.7 Summary

In this chapter we introduced a new method for sound synthesis that allows us
to control and reproduce the microfluctuations present in real life voiced sounds.
This method is a sort of additive synthesis where one adds not only the har-
monics but also modulated 1/ signals. We defined a new class of stochastic
processes, i.e. the pseudo-periodic 1/f -like noise. We introduced a new type
of multiwavelet. transform useful for the representation of these processes, the
Harmonic-Band Wavelet Transform (HBWT). We devised an efficient analy-
sis/synthesis scheme able to generate pseudo-periodic 1/f -like noise.

The claim of this method is that it allows for reproduction of the stochastic
fluctuations in sounds by means of a very restricted number of parameters.
A better spectral modeling can be obtained by introducing energy parameters
independently for each wavelet scale and by means of a Frequency Warping
version of the HBWT (HB-FWWT).

In order to both improve the acousitcal results and at the same time make the
method interesting in terms of coding rate, a further insight into the behavior of
the HBWT coefficients has to be achieved. This is the subject of the next two
chapters, where the results of HBWT coefficient modeling for voiced sounds
with stable pitch P are discussed and then extended to voiced sounds with
variable pitch and to inharmonic sounds. As we will see, these results make the
Fractal Additive Synthesis (FAS) appealing both for audio coding and for sound
synthesis and processing.

Appendix
We prove Proposition 3.4 of Section 3.4. We form
o« o0
s)=3 > vr)gpe(t)
p=0r=-—o0

where

Gp,r(t) = gpo(t —7Tp)
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with X 241 | t
gpo(t) = \/T—PCOS ( 9T, 7Tt> sinc (-Q—ﬁ)
and
1 (L& oo
Vp (T) = ﬁ (nz—:l mzoo bP-,n [TFL] wn,m(r) + m__zoo ap, N {m] (bN,m(”.))

From Lemma 3.3 we know that s(t) is 2V Tp-ciclostationary. Then the time-
average power spectrum of the process s(1) is:

0o 2Ny
oo 2
— — . d , '
S(w) = / R, (T)G—JwTdT = / 2N77—* e—dwT / R, ('[,, i+ T)dt,
- —oo i _2NT1p

2

which can be written as follows:

S(w) =

2Nrp
o0 o0

5 oo
= ﬁ— / dt / dr Z Z Lk,k’;-r,r’ (t, T)Rup (,,.: ’I“/—}—QN(/{'—/C))e_ij,
P
oN

I oo p,p' =0 k.’ =—oc0

where
2V 1
Ligjoor e (1, 7) = E Ypo(t —Tp — 2VkTp)gy o(t +7 —7'Tp — 2N K Tp).
ro!=0

The trick of the proof is to exploit the 2V WSCS of the v, (m) proved in Lemma
3.2, in order to transform the finite integral over ¢ into an integral over (—oo, o)
equal to G (w), i.e. the complex conjugate of the Fourier transform of g, o(t).
After routine calculation we obtain:

oo 2N-1

5@ = g D Gaalel 30 T Ryl ke =

k=—oo =0

1 & 2
= };Z’G”’O(w)l Sp(wTp),

p=0

where TS'-p(w Tp) is the time-average power spectrum of the nearly 1/ f processes
bandlimited and modulated to the band (3.11). The result in (3.8) concludes
our proof.
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Encoding the Sound

The main goal of this chapter is the definition of a method for the extraction
of a reduced set of parameters describing the behavior of the HBWT analysis
coefficients of voiced sounds within the frame of the 1/f pseudo-periodic model.
We show how the output coefficients b, [m] of the filters i (l) in Figure 3.10,
can be efficiently modeled in terms of energy scaled and filtered white noise
coefficients. The energy scaling envelopes parameters and the AR filter coeffi-
cients provide the FAS parametric representation of the stochastic components
of voiced sounds.

A second model for the output of the last of the filters ho(l) of each channel
p in Figure 3.10, Le., for the Harmonic-Band (HB) scale coefficients ap, n[m)|
corresponding to the deterministic part of voiced sounds is then defined. What
the HB-scale coefficients provide is a pseudo-sinusoidal model and only slight
corrections are necessary in case the pitch is not perfectly tuned with the MDCT
filter bank. Due to the smoothness of the curves generated by these coefficients
a polynomial interpolation is well suited to provide a parametric representation
of the coefficients themselves. In this way we obtain a full method for the
resynthesis of a real-life voiced sounds. The resynthesis process is driven by
a set of perceptually meaningful parameters, deduced from the analysis of the
real-life sound itself.

Also, we have studied the potentialities of the method in terms of data
compression by considering a psychoacoustic approach. Section 4.5 discusses an
evaluation of the method in terms of psychoacoustic criteria.

In the next two sections, before introducing the two models, some applicative
and experimental considerations on the HBWT and the pseudo-periodic 1/f
model are presented. In particular in Section 4.1 we consider the possibility of
partial reconstruction and resynthesis of sounds offered by the HBW'T. In other
words the HBWT can be viewed also as a method for timbre hybridization via
cross-synthesis and sound morphing. Section 4.2 provides an evaluation of the
experimental consistency of the pure pseudo-periodic 1/f model without any
further coefficient modeling consideration except for the result of Proposition

34.
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4.1 HBWT as a sound decomposition tool

We start with a very simple consideration about the analysis possibilities of
the HBWT in terms of "sound decomposition tool” with interesting analytic,
perceptual and musical applications. Due to the peculiar frequency domain
subdivision shown in Figure 4.1, allows one to perform a partial reconstruction
of the signal. We can extract one of the N subbands from all the harmonics (a
single wavelet-band n from all of the channels) or one specific subband of one
specific sideband, (fixed n and p) as well as any other arbitrary combination
of subbands. This provides several possibilities in terms of sound processing
results. More precisely we can define the n'* noise subband as:

.
5aD) = 3 S bpalmlm (1) (4.1)

p=1 m

and the n** noise subband of the p** sideband as

Sp:n(l) - Z bpwn[nl’]‘gn,m,p(l)'

m

Also. we can separate the noisy components of a single harmonic sideband, i.e.,
the p** noise sideband

Sp(l) = Zzb ,n[nb]gn,m,p(l)'

n=1 m

In this way timbre hybridization is straightforward: we can realize any ”mix-
ture” of subbands coming from the analysis of different instruments. A very
simple example can be obtained combining the reconstructed harmonic compo-
nent

P
Shar (l) = Z Z ap,N[m]Cn,m,p(l)

p=1 m

of one instrument with the noise sidebands s,(l) of another one. This can
be successfully employed as a new sound morphing technique [36], [24]. We

obtained interesting results by an hybridization of the subbands of a trumpet
with a bassoon and an oboe with a viola.

4.2 The pseudo-periodic 1/f abstract model

The results of Chapter 3 provide a method for the synthesis of the stochastic
microfluctuations of the steady part of sounds. By means of HBWT and the
pseudo-periodic 1/f model a separation of sounds in harmonic peaks and sto-
chastic components is straightforward. The reconstructed harmonic components
sound clearly poor and unnatural to our ear. The reproduction of the harshness
of the stochastic components is essential to provide sound with a convincing,
natural "flavor”. The HBW subbands of each harmonic peak are well suited to
represent the stochastic fluctuations with respect to the harmonic components.

The synthesis technique for the pseudo-periodic 1/ f-like model requires the
estimation of three parameters per each harmonic partial k: ok, 75 g: Vi .- The
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Figure 4.1: Magnitude FT of a HBW basis set, 12 channels a) and a detailed
representation of two channels/one harmonic subband decomposition.

meaning of these parameters is intuitively appealing. The parameter o controls
the amplitude of the k** harmonic, while the parameters v, g = Vo1, = Vpeven
Vi, = V2k—1 = Vp,q, cOntrol the 1/f-like slopes of the right and left semiband
of the k** harmonic, respectively (see Section 3.3.2). The parameters oy can be
estimated from the frequency spectrum by means of a peak-picking algorithm.
The estimation of the parameters v is based on the results of the HBWT analysis
as follows. Each HBWT subband is a piecewise approximation of a 1/f spectral
curve. Considering the logarithm of the energies of each of the subbands of a
single sideband p, we find a linear relationship for the corresponding parameter
7p- More specifically we perform the following linear regression:

log,(Var(by,n[m])) = v,n + const, (4.2)

where k = [%IJ is the k** harmonic and b, ,[m] = Y- z(1)€,, ,, (1) are the
7

analysis sequences at the different subbands n. The lower values of the parame-
ter v there correspond higher energies of the stochastic components distributed
in the subbands.

The first experiment we performed was a test on the limits of the pseudo-
periodic 1/f model. We considered different wind instruments (clarinet, trum-
pet, oboe, bassoon) and bow instruments (cello and violin) and we applied (4.2)
to the output coefficients of the HBW analysis. From the experimental results
it is clear that not all of the sidebands of the harmonics are representable by a
1/ f-like model. In most cases the first wavelet subbands do not fit the model
(see Figure 2.6, dark gray areas). These are the bands containing the extra noise
due to the physical device of production of sound and noise from the recording
equipment, or, more precisely, the bands where this type of noise is not masked.
This type of noise is due, for instance, to breath noise in wind instruments or
bow noise in string instruments. The energy of the noise falling in the first
level subbands is generally higher than that provided by the 1/f slope. This
additional noise is masked (but present) in the proximity of the harmonic peaks
but it stands out in the first HBW'T spectral subbands, where it overlaps the

Freg.
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Figure 4.2: Estimation of the parameter ~: Linear regression result for the subband
energies of a left sideband of one of the first harmonics of a trumpet.
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Figure 4.3: Estimation of the parameter «v: Linear regression result for the subband
energies of a right sideband of one of the first harmonics of a trumpet.



4.3. A model for the stochastic components of voiced sounds 69

pseudo-periodic 1/ f spectral behavior. In most cases the first wavelet subband
and the subbands of resolution higher than the fifth level are not fitting the 1/f
model (see Figure 4.2 and 4.3 as an example for the case of a trumpet). The
conclusion is that only three or four subbands, depending on the instrument, are
well representable by means of the 1/f pseudo-periodic model. In fact the high
level subbands (the 6'* one in Figure 4.2 and 4.3) contain the harmonic part
and information concerning the time envelope. From the experimental results
shown in Figure 4.4, 4.5 and 4.6 it is possible to see how the pseudo-periodic 1/ f
-like model is well suited for representing the inner subbands, that is, the 2"¢,
3rd, 4™ and 5'* subbands. These results confirm that the pseudo-periodic 1/f
model provides a good method for reproducing synthetic voiced sounds with the
same power spectra as that of given real-life samples. Figures 4.7 - 4.9 show the
results of the resynthesis of an oboe, a trumpet and a flute.

As a further confirmation of the pseudo-periodic 1/ model we report the
results of the frequency warped version of the method presented in Section 3.6.
When the HBW filter bank is replaced by the HB-FWW filter bank in Figure
3.17 an optimization procedure has to be run in order to find an optimal sub-
division of the subbands according to the magnitude spectrum of the analyzed
sound. The optimization criterion consists of finding the best sequence of pa-
rameters dy, ..., dny providing sets of HB-FWWT coeflicients whose variances fit
in an optimal way a straight line. Table 4.1 shows some results for the first
3 harmonics (6 channels) of a trumpet note. As one can see the frequency
warping is biased in the sense that the optimized band subdivision is slightly
tighter than a pure pseudo-periodic 1/ behavior, i.e., the wavelet subbands are
larger than the normal dyadic tiling. However the order of the parameters d
is very small that it is possible to state that a relevant deviation with respect
to a pseudo-periodic 1/f model does not occur. Additionally, from listening
experiments it appears that the rigid HBW dyadic grid is sufficient for a high
quality reproduction of voiced sound with stable pitch. This is not the case for
voiced sounds with time-varying pitch, as it will be discussed in Chapter 5.

p=1 | p=2 p=3 |[p=14 p=5 |p=6

n=1 | 0.1801 | 0.2336 [ 0.0529 | 0.1668 || 0.2005 | 0.0667
n= 0.0616 | 0.0874 || 0.0713 | 0.0239 || 0.0765 | 0.1035
n=3 | 0.107 } 0.0129 || 0.152 | 0.0872 |} 0.0716 | 0.0664
n=4 [ 0.0255 | 0.1833 || 0.0788 | 0.0341 || 0.1466 { 0.0311

Table 4.1: Frequency warping d,, coefficients optimizing the frequency wavelet
tiling for the first 3 harmonics of a trumpet note (347.2 Hz) 4 wavelet scales.

4.3 A model for the stochastic components of voiced
sounds
From an acoustic point of view (going beyond the mere magnitude spectrum

matching), some refinements are necessary. The white noise coefficient approxi-
mation provides a good equilibrium between the energy of the harmonic compo-
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Figure 4.4: Trumpet 2"¢ harmonic, right sideband, 274,37 4" and 5** subbands,
e, p=4,n=2,3,4,5 Correlation coefficient: 0.9791
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Figure 4.5: Clarinet 1°¢ harmonic, left subband, 274 37¢ 4" and 5" subbands,
e, p=1,n=23,4.5 Correlation coefficient: 0.9911
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Figure 4.6: Cello 1% harmonic, left sideband, 2*¢ 37¢ 4% and 5" subbands, i.e.,
p=2n=2,3,4,5. Correlation coefficient: 0.9739.
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Figure 4.7: a) Real-life oboe (287.5 Hz) and b) resynthesized version.
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Figure 4.8: a) Real-life trumpet (347 Hz) and b) resynthesized version.

Figure 4.9: a) Real-life flute (208 Hz) and b) resynthesized version.
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nents and the stochastic ones. Nevertheless by means of white noise we obtain
something that sounds as ”properly energy-scaled white noise” with lack of
perceptual fusion with the deterministic components. Some kind of coefficient
pre-filtering, i.e., white noise coloring is necessary. The starting point are the
results in [99] and [88], which shows that the analytical wavelet coefficients of
a 1/f process have a small but non-zero correlation. This theoretical result is
confirmed by the experimental data. In order to simulate this correlation we
perform an LPC analysis of the HBWT coefficients. The resulting AR (autore-
gressive) filters are employed in the resynthesis, in order to color the raw white
noise coefficients (see Figure 4.16). The different "order” of acoustic quality
obtained by means of this technique is clearly audible. If we compare each per-
fectly reconstructed subband with the corresponding synthetic one, the degree
of resemblance is very high. This is one of the ingredients of the model for the
HBWT coeflicients relative to the stochastic components of sounds. The second
ingredient of the model is the time envelope of the HBWT analysis coeflicient
energy. Once extracted, these envelopes are applied to the resynthesis coeffi-
cients. As a consequence of these refinements the quality of the reproduced
sounds improves significantly at the expense of a larger number of parameters.

In section 4.3.1 a short introduction to LPC is proposed, in which we discuss
the role of LPC in terms of a physical model contribution to the spectral mod-
eling based FAS method. In sections 4.3.2 and 4.3.4 we introduce the stochastic
model for the HBW coefficient.

4.3.1 Sound modeling via Linear Predictive Coding (LPC)

As any musical instrument, our voice is formed by a resonant system and an
excitation system. The resonant system works as a filter and is formed by
the cavities of our breathing and oral system. We can partially change the
frequency response of this filter by our muscles, closing or deforming some of
these cavities. There are basic characteristics making distinct voices sounding
different. Various models can be devised in order to face speech-processing
problems.

One of the simplest and most appealing one is the exciter-plus-filter system
modeling the vocal cords and breath physical behavior and the oral cavity res-
onances. The model is essentially based on Linear Predictive Coding (LPC),
which allows one to extract from a given speech signal a suitable filter approxi-
mating the oral cavity response, excited by white noise. LPC is one of the most
succesful products of speech processing research [45] [44] [68] [67] [58] [25]. Fig-
ure 4.10 represents a model, which is clearly related to the physical structure of
our oral system. There are two different types of exciters: an impulse generator
for simulating and reproducing the effect of the glottal impulses and a noise
generator in order to model the breath noise. Different models of the glottal
pulse reproduction, i.e., the "vocal cord vibrations” can be considered. On ex-
ample is given by the Exponential Model or Rosenberg Model [75]. A possible
physical model for simulating the behavior of the oral cavity is the lossless tube
model [68]. This model has the advantage of being strictly related to our direct
physical experience of speech production.

The LPC model is quite simple and intuitive from a schematic point of view.
However it is quite sophisticated and extremely effective from the mathematical
and conceptual point of view. In other words it allows a deeper insight in the
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Figure 4.10: A physical model for speech synthesis.

stochastic characteristic of a speech signal itself, while it gives a clear represen-
tation of what is going on physically. It can be considered as the prototype of
physical modeling techniques. At the same time it provides a very interesting
interpretation of what is going on from the DSP point of view, both in time and
in frequency domain. In other words it also has a spectral modeling content.
This makes LPC one of the most attractive results in terms of audio coding and
audio analysis and synthesis.

In our case the AR filters obtained from the LPC analysis of the HBW coef-
ficients correspond somehow to the resonant cavity of the instruments. We said
’somehow’, since the HBW coeflicients are not the noisy components themselves
but a drastically downsampled version of the filtered noisy sidebands. The rough
white noise exciter provide a model for the breath or bow noise, different from
the sound produced by the vibrating reed/lips or string, respectively. In other
words the idea is to reproduce the breath or bow noise by means of white noise
and resonant filters modeling the physical behavior of musical instruments.

4.3.2 Autoregressive modeling

The main idea of linear prediction is to model a signal s [n] as a linear combina-
tion of its past values and present and past values of a hypothetical input v [n]
to a system whose output is the given signal [44]. The previous statement is
equivalent to:

sln] = —Zaks[n — k] + GZblu [n—1,bp =1, (4.3)
k=1 1=0

where ay, b; and the gain G are the parameters of the hypothetical system,
s[n — k] are the past values of the signal and u[n — k] are the samples of the
unknown input.

Equation (4.3) is based on the hypothesis that a signal s[n] is predictable
from its past and some inputs to a certain system H(z). In particular we are
interested in the case where b, =0, for 1 < < L, known as all-pole model or
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autoregressive (AR) model. In this case the 4.3 reduces to:

K
s[n]=— Z ags[n — k] + Gu[n]
k=1
that in the frequency domain becomes:

H(z) = ————. (4.4)

By assuming that the input u[n] is totally unknown and that the signal s[n] can
be predicted from a linearly weighted summation of past samples, it is possible
to write:

K
§[n]=- Zaks [n — k]
k=1

where §[n], denotes the approximation of s[n]. The error or residue is defined

as:
K

e[n] =s[n] —&[n]=sn]+ Z agsn — k|
k=1
From the minimization of the total squared error

oo [ K 2
E= Z (e[n])? = Z <s [n] + Zaks [n— k])
n=—oo n=—oo k=1
it is possible to derive the well known Yule-Walker equations
K
~R(1) = arR(GE-k),1<i<K (4.5)
k=1

and the minimum average error
' K
Errg =R(0)+ Y _arR(k),
k=1

where
oo

R(i) = Z s[n] sin+1.
n=—oo
Equations (4.3) can be solved to obtain the K coefficients defining the predictor
error filter (or whitening filter):

K
Alz) =1+ Zakz_k
k=1

and E'rry, corresponding in this case to the variance of the “whitened” output
signal. The vocal tract model filter H(z) is given by the inverse filter as in (4.4),
with G = 1. By defining the input model one has a complete set of parameters
characterizing the analyzed signal. The filter A(z) is called whitening filter
since it attempts to produce an output signal that is white (with flat spectrum).
Conversely, white noise can be used as input to H (z) in order to reproduce s{n].
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Figure 4.11: Magnitude FT of the HBWT analysis coefficients of a single subband
of a trumpet sound: 2"¢ WT scale.

4.3.3 LPC applied to the HBWT coefficients

In order to achieve an acoustical improvement in the reproduction of the noisy
components of sounds we need to consider the little but not zero autocorrelation
of the HBWT analysis coefficients [99]. This autocorrelation is very important
from a perceptual point of view. We cannot simply use white noise, but we need
to perform a spectral shaping of the resynthesis coefficients. In order to repro-
duce these correlations we perform an LPC analysis of the coefficients by, ,,[m].
By employing the Yule-Walker equations we compute the AR filter coefficients.
The order of the AR filters usually ranges from 10 to 20 according to the mu-
sical instrument and to the subband scale level. As represented in Figure 4.15,
the analysis is performed for each sideband p subband n. In Figures 4.11-4.14
a comparison between the Magnitude FT of the HBW analysis coefficients of
two different subbands of a trumpet and the respective synthetic coefficients
is reported. The result is that the reconstructed noisy subbands 4.1 and the
synthetic ones are hardly distinguishable in listening tests. This means that,
when mixed with the higher energy deterministic components in the final syn-
thesis, the synthetic subbands achieve a complete perceptual fusion with the
deterministic part and a transparent reproduction of the original sound noisy
components.

4.3.4 Energy time envelope extraction: a refined spectrogram

As shown in Figure 4.15 by means of a short-time evaluation of the variance of
the HBW coefficients b, ,[m] we extract an energy envelope of the coeflicients
themselves. Furthermore a polynomial interpolation of the obtained set of points
is performed by means of linear splines. The number of parameters per subband
is given by the knots and coeflicients of a linear spline interpolation. In the
resynthesis process the unitary variance white noise synthesis coefficients are
energy-scaled by means of these envelopes (see Figure 4.16). Figures 4.17, 4.18
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Figure 4.12: Magnitude FT of the HBWT resynthesis coefficients of a single sub-
band of a trumpet sound obtained by means of AR filters: 274 WT scale.
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Figure 4.13: Magnitude FT of the HBWT analysis coefficients of a single subband
of a trumpet sound: 3"¢ WT scale.
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Figure 4.14: Magnitude FT of the HBWT resynthesis coefficients of a single sub-
band of a trumpet sound obtained by means of AR filters: 3™ WT scale.

and 4.19 show the HBW analysis coeflicients of the first 3 scales of one sideband
of the spectrum of a trumpet with their energy envelopes and their interpolation.
Interpolation further reduces the number of parameters necessary to code the
stationary part of voiced sounds. The transient segment, which is by the way
the most significant in terms of energy, is perfectly reconstructed.

FAS can be thought of as an ”intelligent spectrogram”, i.e., a spectrogram
whose bins are adapted to the characteristics of the signal that has to be ana-
lyzed /processed /synthetized. With respect to a STFT coeflicient modeling FAS
results in a more sophisticated model

Several experiments of reproduction of separated subbands for all of the
channels p in the sense of (4.1) were performed and compared with the cor-
responding perfectly reconstructed subbands. The results are extremely good
for all the tested instruments: oboe, clarinet, trumpet, bassoon, french horn,
trombone, violin, viola, cello.

Listening sound examples are available at lcavwww.epfl.ch/ ~pietro/

4.4 A model for the deterministic components of
voiced sounds

The second set of parameters we need to define is associated to the HB scale
coeflicients corresponding to the deterministic components of voiced sounds.
This set specifies a model for that part of sound corresponding to the harmonic
peaks of the spectrum. Our model recalls somehow another spectral modeling
technique: the sinusoidal models. Before introducing the HB scale coefficient
model a short review of the sinusoidal modeling techniques is given.

4.4.1 Sinusoidal models

This subsection is a short overview of the sinusoidal modeling techniques. The
are two reasons for presenting this material here. The first reason is that our
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Figure 4.15: Resynthesis parameter extraction from the HBWT analysis coefficients
ap,n[m] and by, [m]. The parameters Acoefy and pcoefy, are the coefficients and
knots of the polynomial interpolation of the complexified HB scale coefficients of
the k™ harmonic. The Ecoef, . are the interpolation coefficients of the energy
envelopes of the HBWT coefficients b, »[m]. The LPCcoe [, are the filter coef-
ficients resulting from the LPC analysis of the b,, ,,[m].
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Figure 4.16: Parameteric resynthesis coefficient generation. The same notation as

in the previous figure is used.
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Figure 4.17: 1°¢ scale HBW analysis coefficients of one sideband of a trumpet with
their energy envelope (dotted line) and its linear interpolation (continuos line).

0.2 - T T T ~r

0.16

ot

0.05

-0.05 -

Figure 4.18: 2™ scale HBW analysis coefficients of one sideband of a trumpet
with their energy envelope (dotted line) and its linear interpolation (continuos line).
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Figure 4.19: 3" scale HBW analysis coefficients of one sideband of a trumpet
with their energy envelope (dotted line) and its linear interpolation (continuos line).

model for the deterministic component HBWT coefficients has some similitudes
with sinusoidal models. This will be illustrated in Section 4.4.2. The other
reason is to make a comparison between FAS and one of the most effective
spectral models of recent research on audio processing and coding, as discussed
at the end of this section.

The backbone of sinusoidal model is the STFT. The STFT provides a good
sound processing tool in terms of high fidelity reproduction and minimum com-
putation time. Moreover this tool is rather non-flexible and inefficient from a
coding point of view. Other models have been proposed as an evolution of the
STFT, with the aim of exploiting the computational efficiency of the STFT,
while adapting the inner organization of the data to the object of the analysis,
i.e., a sound with a spectrum presenting both relevant peaks and noisy bands
[14] [15] [72] [73] [93] [30]. One of these models is given by the sinusoidal model
introduced in [52]. In order to simplify the notation we will introduce this model
in continuous-time, even though its application is mostly performed in discrete-
time. The idea is to model and estimate time-varying parameters of sine waves
components by means of spectral peaks tracking in the STEFT. These parame-
ters are the time-varying envelope A,.(t) and the time-varying phase 6,.(t). The
input sound s(¢) is modeled as:

R(t)

s(t) = > A (t) cos[fn(t)]

with

&®=AMWW+@

where w,(t) is the instantaneous frequency or frequency track of the r** sine
wave. In order to obtain a sinusoidal representation of the sound, a detection of
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the spectral peak tracks in the STFT is performed. Finally the peaks and their
phases are organized as time-varying sinusoidal tracks. The number of tracks
R(t) varies from frame to frame according to the peak tracking algorithm.

An evolution of the straightforward sinusoidal model is the Sinusoidal plus
Residual Model or Spectral Modeling Synthesis (SMS) [83] [81] [84] [82] [95] [29]
[74]. The introduction of a residual and of a distinction between a deterministic
component and a stochastic component of sound makes the model much more
flexible and efficient with respect to the previous ones, while maintaining good
sound fidelity. The idea is to model a sound s(2) as

K(t)

s() = 3 Ault) cosli(t)] + e(t),

k=1

where e(t) is the residue. This residue is modeled as
e(t) = h(t) * w(t)

with w(t) is white noise, h(f) some appropriate, possibly time-varying filter and
* denotes convolution.

The SMS is a widely developed system for audio synthesis and coding, includ-
ing time-varying scenarios, through algorithms solving problems as frequency
matching criteria from one frame to the next one and decision for birth and
death of sinusoid tracks. This makes the SMS a well-suited method for process-
ing and encoding a large gamma of musical sounds. This is also the goal of
an extended FAS method. As illustrated in Chapter 3, part of these extensions
have already been achieved as a variable pitch version and a development of FAS
scheme in order to be able to handle inharmonic spectra. Nevertheless many
steps towards a full flexibility has still to be done.

The drawback of SMS is that the stochastic component e(t) is defined simply
as the difference between the original signal and the sinusoidal resynthesis. The
residue is synthesized as white noise whose spectrum is shaped by means of a
filter obtained from an approximation of the whole spectral behavior. This ap-
proximation is derived by means of a linear interpolation of the magnitude spec-
trum of the residue itself. The approach presents some limits in the synthetic
sound results. In this sense the FAS stochastic model presented in section 4.3
represents an extremely effective model for the stochastic components of sounds
and it can be seen as a significant improvement in the context of Structured
Audio (SA) and audio coding for high quality sound reproduction.

4.4.2 A model for the HB scale coefficients

In this section we introduce a model for the HB scale coefficients a, n[m], pre-
senting itself some analogies with sinusoidal models [64]. The tuned MDCT
section of the HBWT in theFAS model provides, in a sense, a broadband si-
nusoidal model in which each harmonic partial is modeled by two overlapping
sidebands. Information on the details of each partial, such as amplitude enve-
lope, bandwidth and center frequency is contained in the MDCT coefficients.
In the HBWT these coeflicients are further analyzed by means of WT in trend
and details. More in particular we resort to a complexification of the HB scale
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coefficients of pairs of adjacent channels, corresponding to the two sidebands of
one harmonic. In other words, we consider the set of coefficients

Ck,N [m] = 42k-1,N [m] +ja'2k,N [’H’L] R (46)

where the azk—1, v [m] and the ag n [m] are the harmonic-band scale-N coef-
ficients of the left and right sideband of the k** harmonic, respectively corre-
sponding to channels p = 2k — 1 and p = 2k of Figure 3.10.

Equation (4.6) in polar form becomes

agp N [mi )

jarctan| —===t o
s a2k —1,N M)

ce,n[m] = Jex,n[m]]e

— Ck,N [m] eJex,nm]

(4.7)

Additionally, we denote by a, ¢ [r] the MDCT coefficients at the output of the
filters g, (ie., at “wavelet scale 0”) and by ¢ o [r] their complex combination.
It is easy to show that these coeflicients are constant for a perfectly tuned
harmonic input signal with integer period. If the harmonic partials have a
slowly time-varying amplitude envelope, the magnitude Cy ¢ [r] = |ck0 [r]| of
the complexified coefficients represents a scaled and downsampled version of
the envelope of the k" harmonic. The phases o, o [r] = arg(cko[r]) depend
on the phase of the sinusoidal components. However, since the assumption on
integer periodicity is too strict to be verified by real-life sounds, we need to
investigate on their behavior.

It is also easy to show that, when the input signal s(I) is sinusoidal of type

cos(wl) = cos (E;Tk + Aw) \

with |Aw| € &, the coefficients cx o [r] have constant amplitude equal to

1sin PAw
Crolrl =Cro= yipra ot
S =

(4.8)

Furthermore the phase of the complexified coefficients linearly depends on the
index 7, according to the following relationship:

Pk,0 [r] =rPAw — G{Zk: (4.9)

where 65, is some phase depending on &, P and Aw (according to (4.28) in the
Appendix). A proof is given in the Appendix for the case where the window in
(3.25) is a sine window (4.16). But we also gave a proof for generic windows
within the PR condition of the MDCT.

The result is extendible to the superposition of sinusoidal signals with a time-
varying amplitude envelopes A (1) : Zk Ai(l) sin(ZE + Aw;). We assume that
each amplitude envelope is approximately constant within the MDCT window
w(l), ie., Ax(l) » Ag(rP) for L =7P,...,rP+ P —1. In this case, (4.8) becomes:

1 sin PAw

1 oin lw
4s1n2

Ck,O [’I’] = Ak (7‘), (410)
which is a scaled version of the amplitude envelope downsampled by a factor
P, where the scaling factor depends on Aw. This property is confirmed in our
experimental results.
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All the previous results also hold for the coefficients a,, x ] at the output
of the last filters hg of the WT filter bank and for their complexification in (4.6),
since the ap, n [m] are nothing but a lowpass filtered and downsampled version
of the a, ¢ [r].

The validity of FAS as a method based on an "intelligent spectrogram”, is
confirmed by the model for the deterministic components. In this spectrogram
the "frequency bins” (the HBWT subbands) are adapted to the spectrum of the
analyzed sound by tuning P to the period of the sound and by means of the
wavelet 1/ f-like frequency subdivision of each sideband of the harmonic peaks.
In the resynthesis the coefficients are modulated in amplitude (the deterministic
coefficients and the randomly generated stochastic coefficients) and phase (the
deterministic coefficients only), according to the analysis results. Also, the
spectra of the stochastic coefficients are shaped by means of the results of the
LPC analysis of each of the HBWT subband coefficients by, ,, [m] .

4.4.3 Experimental results

Our experimental results confirm the analytical results of the previous section
and show that the HB scale coefficients form smooth and slowly oscillating
curves. As a consequence, the amplitudes Cy, v [m] and the phases ¢y [m] in
(4.7) form smooth curves and nearly linear curves, respectively. These curves
can be easily and efficiently approximated by means of a polynomial interpola-
tion. In particular we adopted linear splines. The results in the case of a clarinet
note are shown in Figures 4.21 and 4.22. We considered a three-level HBWT
analysis of a clarinet sound of length 150984 samples and average pitch P = 189
samples (234.5 Hz, at a sr of 44.1 Khz), obtaining 110 HB scale coefficients
per sideband. We employed splines of order 2 with 9 knots as interpolating
functions for the amplitudes and with 11 knots for the phases. The amplitudes
of the Cy n [m], as already remarked in the previous section, are the scaled
time envelopes of the &** harmonic partial downsampled by a factor 2V P. The
phases represent the slow quasi-sinusoidal variation of the coeflicients due to the
difference between the harmonic partial frequency and the average %IT" of the
two central frequencies 4’2“]31 7 and %;—Hr of the MDCT filters corresponding to
the sidebands of the harmonic partial itself. Listening tests confirm that the
resynthesis coeflicients modeled by means of spline-interpolations provide high
quality results. Differences between the original and the synthetic sounds are
hardly perceivable.

In our model the transients are perfectly reconstructed from the original
analysis coefficients. Perfect reconstruction (instead of a simple cross fade) is
performed in order to maintain the deterministic and the stochastic components
separate.

An interesting byproduct of the analysis of the harmonic-band scale coef-
ficients is that the second derivatives of the ¢y y [m] provide a very efficient
transient detector (see Figure 4.23). Where the sound is stationary, the ab-
solute value of second derivative is less than 1. This becomes more than three
times larger where the transients occur. We employed this result in order to
define automatically the borders of the attack and decay transients.

The method was tested on several notes of different musical instruments: a
clarinet, an oboe, a bassoon, a trumpet, a French horn, a violin, a viola and a
cello. All of them gave equally good acoustic results.
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Figure 4.20: HB scale coefficients of a clarinet note at 234.5 Hz (B2). 3" scale
110 coefficients.

Cyylml

Figure 4.21: Amplitude Cy n [m] of the complex HB scale coefficients of a clarinet
sound (continuous line) for k = 1, ...., 5 and their spline interpolation (dotted line).
These curves are a scaled and downsampled version of the amplitude envelopes of
the partials. The polynomial approximation (dotted line) is sufficient in order to
make the synthetic sound not distinguishable from the original one.
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Figure 4.22: Phases ¢, )y [m] of the complex HB scale coefficients (continuous
line) for k =1, ....,5 and their spline interpolation (dotted line) of a clarinet sound.
The behavior is reasonably linear in the stationary part. A temporary slight detuning
is remarkable between coefficient 15 and 30. The non-linearity of the beginning and
the end of the curves correspond to the attack and the decay transients respectively.

Second derivative of §, , [m]

Figure 4.23: The second derivative of the phase of the complex HB scale coeffi-

cients of a violin.
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Figure 4.24: Psychoacoustic mask for an E2 legato cello note. The noisy compo-
nents in the range from 3000 Hz to 14000 Hz are above the masking threshold. In
order to provide a high quality sound one needs to reproduce also this part of the
sound.

4.5 A psychoacoustic approach

This section discusses the results obtained in terms of data compression, taking
into account psychoacoustic criteria and masking effects. The definition of a
perceptual masking threshold on the whole frequency range allows one to discard
all the HBWT coefficients that are perceptually irrelevant. In the following
paragraphs we briefly summarize the adopted psychoacoustic criteria and then
we illustrate the experimental results.

The first criterion is based on the following analytical approximation for the
absolute hearing threshold [57] [34] [103]:

ABTh(f) = 3.64(f/1000) =8 — 6.5¢=0-6(//1000-8.3)"
+1073(£/1000)* (dB SPL) (4.11)

The second criterion that we adopted is the non-uniform hearing capabil-
ities of the auditory system along the frequency range, i.e., the critical-band
subdivision of the frequency domain. This is modeled by means of the cochlear
continuous passband filter responses with non-uniform critical bandwidth

BW,(f) = 25 + 75[1 + 1.4(f/1000)?%|%-%° (Hz). (4.12)

By means of (4.12) it is possible to compute the critical bandwidth correspond-
ing to each partial peak of the spectrum of the analyzed sound. At every partial
peak we apply a Signal-to-Mask Ratio (SMR) of 24 dB for the Tone-Masking-
Noise (TMN) case. Finally we consider the spread of the masking effect, i.e., of
the SMR across the critical bands according to the function:

M(b) = 15.81 + 7.5(b + 0.474) — 17.5/1 + (b + 0.474)2(dB),
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Figure 4.25: FAS in the context of Structured Audio coding methods. Sounds
are represented by means of the parameters of the two models, deterministic and
stochastic. At the same time a psychoacoustic analysis of sounds themselves estab-
lishes which are the perceptually relevant coefficients and which are the coefficients
to be discarded. Only the first ones are encoded in terms of psychoacoustic relevant
parameters.

where b represents the frequency in bark units [57]:

b(f) = [13arctan(0.00076 1)+

7 2
+3.5 arctan l:(7—566)

The result is a masking threshold corresponding to the Just Noticeable Distor-
tion (JND). Figure 4.24 shows the global masking threshold for a cello note. All
of the HBWT coefficients corresponding to the spectral subbands lying under-
neath the masking threshold are discarded. Figure 4.25 represents a summary
scheme of the whole procedure.

(Bark)

4.5.1 Data compression results

Table 4.2 reports the results in terms of data compression for the case of a
trumpet. The compression rate is approximately of 20:1 before any adaptive
quantization of data (that is of the resynthesis parameters) and entropy coding.
Similar results are obtained with the other traditional musical instruments men-
tioned in the previous section. These results are extremely appealing compared
to MPEG coders, where at a digital audio level (with the exception of MPEG-4
HILN) only psychoacoustic criteria are considered. The SA noise model pro-
posed in HILN is the same as that of the Sinusoidal plus Residual model, i.e.,
as spectral modeling of the whole stochastic component by means of LPC or
simple spectral interpolation. In the perspective of SA coders the FAS method
can be seen as a transparent and effective tool for encoding and compressing of
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the stationary part of voiced-sounds including a highly efficient model for the
noisy components. In this sense FAS provides high quality audio reproduction
and excellent compression rates at the same time. In this work we do not con-
sider any further coding step. The complete scheme for a coding system would
be of the kind shown in Figure 4.26. Higher ratios in terms of coding rates are
expected by adding bit allocation and entropy coding to the FAS scheme.

Parameters Number of Thr. factor | Param. post
parameters Psycoac. anal.

A Knoty, 9*P [2=567 pi/ P~ 0.6 341

A Coefy, 9* P /2=567 pt/ P 0.6 341

¢ Knoty, 11* P /2=693 pt/ P>~ 0.6 417

¢ Coefy, 11*P/2=693 pi/ P> 0.6 417
Ecoefy, ,, 10*N*P=2540 0.1980 503
LPCcoefy,,, | 10*N*P/2=1270 | 0.3008 382
Total [ 6330 | 2401

Table 4.2: Data compression results for a 50000 samples long trumpet sound with
pitch P = 127. In the analysis we adopted a wavelet scale N = 2 and a STFT
window of length 4096 samples, corresponding at N = 2 to ~ 8 HB scale coeffi-
cients. p; denotes the last channel with energy above the masking threshold. All the
coefficients of the channels p; + 1, ..., P — 1 are discarded. The parameter notation
is the same as in figure 4.15. The knots and the coefficients of the spline interpo-
lation of the complex deterministic coefficients i x [m] are reported separately. In
this example we performed an order 10 LPC analysis for each harmonic & and scale
n. This means that at each scale n we performed only one LPC analysis for both
the sidebands of the harmonic. We used ten equispaced coefficients Ecoefy, , to
approximate the energy envelope of the random generated stochastic coefficients

bp.n,m .

4.6 Summary

In this chapter we provided a parametric model for generating the resynthesis co-
efficients of the stochastic components, i.e., the noisy part of voiced-sounds. The
model is based on a parametrization of the stochastic behavior of the HBWT
analysis coeflicients associated with the noisy components. Then we introduced
a model for the coefficients corresponding to the deterministic components of
voiced sounds based on a parametrization of the amplitude and phase of a com-
plex combination of the coefficients themselves.

The most attractive feature of the FAS is that it allows one to model both
the stochastic and the deterministic part of voiced sounds at a very refined
perceptual level and with a minimum amount of parameters controlling the
synthesis process. The result is a sound synthesis technique able to provide
synthetic sounds with natural timbre dynamics, which is at the same time a
powerful data compression method in the sense of Structured Audio algorithms.

Further developments are necessary in order to make FAS flexible enough
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Figure 4.26: A scheme for a complete FAS coder.

and really appealing from a coding point of view. As a first improvement a
pitch synchronous version is presented in chapter 5. The goal is to maintain a
Perfect Reconstruction (PR) structure, being able to follow the pitch deviation
of a vibrato note or more relevant change of pitch as, for instance, in a glissando.
This implies the necessity of building a PR P-channel filter bank where one can
change the number of channels P at each period. The requirement is that the HB
scale coeflicients a, v [m] have to form smooth curves as in the time-invariant
case.

A further degree of flexibility in the design of the P-channel filter bank is then
necessary in order to achieve an arbitrary subdivision of the whole frequency
range. This is the second subject of Chapter 5. An arbitrary band multichannel
filtered bank has to be implemented in order to deal, for instance, with non-
harmonic or polyphonic sounds. This can be obtained by giving up the PR
constrains of the HBWT scheme or by means of some generalized technique of
frequency warping [21] [20] [85], at the expense of an increased computational
complexity and number of parameters. The same wavelet spectral tiling as in
the harmonic case for modeling the noise and the peaks of the partial would be
still available. In this case the goal is to enlarge the class of instruments that
can be processed by means of FAS, including percussive instruments and, in
general, instruments with non-harmonic spectra.

Appendix

In this appendix we examine the behavior of the output coefficients of the MDCT
filter bank, to provide analytical support to the complex-sinusoidal model for
the HB scale coefficients. In the first subsection, we consider the case of a
P-—periodic signal, where P is also the number of channels of the MDCT filter
bank. In the second subsection, we handle the case of a sinusoidal signal with
frequency slightly “out of tune” with respect to the number of channels P.
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P—periodic signal
1) Let s(I) be a P—periodic signal. Then, if

Jor(l) = fp(l —rP),

with
p=0,....P-1;, [=0,..,2P-1, rcZ

we obtain:
apolr] = (s, fpr) =Y _ s fpl =rP) =Y _s(U)[,(1'), (4.13)
1 14

i.e., the result is independent from r. It is easy to show that by a simple change
of the index I’ = [ — rP in the sum and exploiting the periodicity of s({). In
particular this is true if s({) is represented by a Fourier series (additive synthesis
with amplitude Ag(l) = constant).

2) Tet s(l) be one of the sinusoidal components of a P—periodic signal, i.e.,

s(1) = cos (%kl) L k=0,%1,.., + [gJ

(the amplitude and the phase can be omitted, since these are constant and can
be factored) and let be

Folt) = wt)cos (T 10,

2P
where ¥ )
_(1=-P)2p+D)m
91) - 4P . (4.14)
After some algebra we obtain:
p,0 [T] fp r Z § l)fp (415)
1

- Re{ej;pw (27; (2(2k +p) + 1))

6_39

W (lp (2(2 —p — 1) + 1))} :

where

is the DTFT of the window w.
In the specific case of a sine window:

w(t) = sin (55 + ) (4.16)
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we have (geometric sum):

Py e_jp(“’_#) sin P (w ==

W(w) = — ~77) 4.17
(@) 2j ¢=i3(v-%) sing (w — 35) (4.17)
¢~ ¢IP(4 ) sin P (w + )
2j  ~it(wtds) sind (w+ &)

It is easy to show that:

W (Q_W?JD—I)E) =0, m # 2nP, m 7& 2nP —1.

It follows that, in the particular case of the sine window, (4.15) is non-zero only
for:

2k4+p=12nP
2k+p=2nP-1
2k-p—-1=2nP
2k —p—-1=2nP-1 (4.18)

Tt is easy to show that the only values of & that satisfy these conditions are

k| = [f—;L—lJ . (4.19)

In the case of a periodic signal this means that for each harmonic component
k only the coefficients corresponding to the two sidebands of the harmonic itself
are non-zero. These properties have to be approximately true for the other
windows.

Generic sinusoidal signal
We consider now the more general case of a sinusoidal signal
s(l) = cos(wl),
25

with frequency w not necessarily muitiple integer of <%, i.e., where the number
of channels P does not correspond to the period of the signal. In this case

:
= Re{e7"P*F,(w)},

apolr] = (s, fpr) =Re {Ze—jlwfp(l —TP)} =

where
el (2p+ D)m
= / — ————————
B = Sn (w o > +
€90 (2p + Dz
+ 5 w (w + _Q—P_) ,

and 6, is given in (4.14).
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If we write w as w = % + Aw, for |Aw| < %, then:

apo[r] = Re {e_erA“’Fp (%7;—1\ + Aw )} (4.20)

From the discussion in the previous subsection (4.19) and supposing & > 0, it
follows that only the elements for p = 2k — 1 and p = 2k are essentially non-zero
and

‘ 2k 92 -1
Fop_1 ('—p— + Aw) 2 w (Aw + ﬁ)

ok €192 7
(omk C(a T
sz( “ +Aw) W (Aw - P). (1.21)

Furthermore, for Aw = 0 from the (4.17) we have

W (80 Z) % o
2P 2j sin %‘i
T eI . 1 sin PAw
Aw— _) _Li(p-g)an Bl AW 4.22
( 2P 2y qlné’- ’ ( )
since the other terms in )
sin (PAw +7)
sin (Az“’ + %)
are not significant.
Thus we have:
A2k—1,0 [’I] ~ (423)
Re ) o—irPAw elf2-1 ¢iqp o H(P=%)Aw sin PAw
2 25 sin 82
a2k,0 [I‘] ~ (4.24)
Rele—irPau ei02% ¢=idF —i(P—4)aw sin PAw
2 sin &2
Therefore, the only non-zero CI’/LCLll/S’ib coefficients "of a sinusoidal componeni with
a frequencq deviation |Aw| < & with respect to the analysis frequency ﬂ are

the azr—1,0 [r] and the axk o [r] as given in (4.23) and (4.24), respectively. Theae
analysis coefficients oscillate sinusoidally with frequency PAw and a certain
phase also depending on Aw.

Showing that the phase of the complexified linear combination of the coeffi-
cients

crolr] = (s fon—1,r) +35(s, forr) = (4.25)
= aok-1,0 1] + jazmk,o[r]

is linear in r becomes now quite straightforward. From the (4.23) and the (4.24)
we can write:

1 sin PAw
aok—1,0 [7] 4—;111T * (4.26)

. 1 ™
* sin (rPAw —Oop_1 + (P — 2) Aw — 4P>
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1sin PAw
POl 4.27
aaxo0r] 4 sin A.—z'“’ ( )
in (rPAw — o+ (P - 1) Awt 2
* w — B, —= — .
smyr 2 B 4P
Since x T
w1 = Bop + — — —,
O2k—1 = O21 + 5 " 5p
(4.26) becomes
1sin PAw
ok—1.0 |r] /8 = ———r— s (rPAw — 8%, ,
a2k—1,0 [{'] 1 SinA_;{ * COS ('r W 2]\,) N
with )
T
9’2,6 = 92k - (P - 5) Aw — 4—P5 (428)
Writing ¢ o () in polar form results in
ciol] = Crolrlemnat) =
2 2 7 arct.a11(—a-2—deT()—))
= (azk—l,o [r}” + azk,o[r] )6 2k —1,00
and ( A o )
sin (rPAw — 85, ,
= arct =rPAw — 05,, 4.29
Sok,O [Ir] arctan cos (TPACL) _ 0’2k) T W 2k ( )
which proves the linear dependency on 7 of the phase ¢, o [r].
On the other hand
1sin PAw [
Crolr] = 1 endz sin® (SOk,o [7‘]) + cos? (Sok,,o [’f])
sin =2
1 sin PAw
- 22l 4.30
4 sin—A.Z—"’- (4.:30)

If we consider a sinusoid with a time-varying amplitude envelope A (1) cos(wl)
and supposing that this is approximately constant within a window w(l), i.e.,
Ai(l) = Ag(r), then we obtain

1sin PAw
Crolr] = =————Ai(r),
ko) = 37 ()
i.e., the result obtained experimentally that is a scaled version of the amplitude

envelope downsampled by a factor P. where the scaling factor depends on Aw.
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Towards a Flexible Method

In this chapter, we introduce two generalizations of Fractal Additive Synthesis
(FAS). The purpose is to extend the class of sounds that can be processed
and encoded by means of FAS beyond voiced sounds with stable pitch. The
first extension aims at handling voiced sounds with variable pitch. In order to
achieve this result we consider two alternate paths:

a) Modify the P-channel filter bank design in order to obtain a time-varying
structure able to follow the pitch variations of the analyzed sound.

b) Process the sound in order to make its pitch stable and analyze it with
the ordinary Harmonic-Band Wavelet Transform (HBWT) scheme.

The second extension allows us to employ FAS also for inharmonic sounds,
i.e. sounds with non-harmonically distributed spectral peaks as those of a gong
or of a tubular bell.

In the last section we present a real-time DSP module, implementing the
synthesis section of FAS on the basis of either artificially generated input pa-
rameters or parameter extracted from an off-line HBRWT analysis of a real-life
sound.

5.1 A pitch synchronous version

In this section, we discuss an extension of the FAS technique able to follow the
natural evolution of the pitch of real-life voiced sounds, as well as more signifi-
cant pitch modulations as in the case of vibrato effects. The main challenge of
this task is the design of a perfect reconstruction (PR) filter bank with time-
varying number of channels P(r), where P(r) is tuned to the pitch of the sound
at the r** period. Our previous HBW model was constrained to the case of fixed
harmonic spectra. In the HBW analysis, P was tuned to the average pitch of
the analyzed voiced sound. In order to set our method free from this limit, we
introduce a PR pitch-synchronous P-channel filter bank design technique, ob-
tained by modifying an already existing filter design method [79] and adapting
this filter bank design to the FAS scheme. The output of the time-varying P-
channel filter bank is processed in a similar way as in the previous FAS scheme.
Thus, every output of the filter bank is analyzed by means of wavelets and the
analysis coefficients are modeled by means of set of parameters with the same
meaning as in the fixed-pitch version of the method. This method is illustrated
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in Sections 5.1.1 and 5.1.2.

As a second solution for the varying-pitch problem we employed Time-
Varying Frequency Warping (TVFW). TVFW allows for the stabilization of
the pitch. It reverts the pitch-synchronous case to the fixed pitch case. Better
results from a perceptual point of view are obtained at the cost of an increased
number of parameters. This method is illustrated in Section 5.1.3.

5.1.1 Efficient cosine modulated filter banks

We introduce a method for designing a time-varying Py,.z-band filter bank able
to switch to an arbitrary number of bands P(r) < Pp,ue, while maintaining
PR and critical sampling during the transitions. More precisely, we are able to

R—1
switch to a number of bands P(R) < P4, at any time lp with I = > P(r)

=0

for some sequence P(0), P(1),..., P(R — 1) € Ppas. The P(r)’s form the time
sequence of number of bands of the time-varying filter bank. Our goal is to
obtain a pitch synchronous version of the HBWT scheme that is a scheme able
to deal with voiced sounds with varying pitch as in the flute segment shown in
Figure 2.21. The sequence of channels P(0), P(1),..., P(R—1) € Py, will be
tuned to the pitch variations of the type shown in Figure 2.22.

In order to do that, we consider a new class of cosine-modulated filter banks
recently introduced in [79] [80] [78]. The whole design method is based on the
polyphase representation of filter banks [89] [87]. The design technique consists
in a factorization of the polyphase matrices representing the filter bank. This
factorization decomposes the polyphase matrix into a set of elementary sparse
matrices, a diagonal matrix and a cosine-modulation matrix.

The great and general advantage of modulated filter banks is that the set
of filters can be designed by means of a simple modulation of an FIR baseband
prototype. From a computational point of view, this means that one needs to run
an optimization only for the prototype frequency response, in order to approach
as much as possible to the case of an ideal low-pass filter. Moreover the design
method that we are going to introduce allows one to deduce the ensemble of
filters banks for any P(r) < Py, number of channels from the single prototype
for the Py, case. For each P(r) the filter banks are biorthogonal.

We start by illustrating the case of time-invariant number of bands as pre-
sented in [79]. In the next section, we introduce the time-varying case. The
time-varying P-channel filter bank that we realized allows us to define the Pitch-
Synchronous Harmonic-Band Wavelet Transform (PS-HBWT) as discussed in
Section 5.1.2. We first subdivide the input sound s[l] into length-P vectors,
where P is the number of channels of the analysis and synthesis filter bank. In
this way, we obtain a polyphase representation of s[l]:

sr] = (solrl, -+ ssp-alr])”

with
si[r] = s[rP +1].

In the 2-domain, this can be written as:
S(2) =[So(2), -+, Spoa ()T (5.1)

where S;(z) is the z-transform of the signal sections s;[m).
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We then consider a type-2 polyphase representation of an analysis P-channel
filter bank [89] [87]. That is, we design a matrix A(z) whose elements are given
by:

o0

[A(2)],, = > gp (rP+ P—1-1) 27", p1=0,..,P-1 (5.2)
=0

where the ¢, are the impulse responses of the p'”* filter of the P-channel filter
bank. A type-1 polyphase representation provides the inverse P-channel cosine-
modulated filter hank. That is, the synthesis polyphase matrix R(z) can be
written as:

[R(Z)]p,, = ng (rP+1)z7", p,l=0,..,P-1.
r=0

The analysis/resynthesis polyphase matrices A(z) and R(z) satisfy the perfect
reconstruction relationship:

R(x) A(z) =L

The great advantage of the formulation introduced in this section is the extreme
simplicity of the design consisting, as we will see, of a simple product of ele-
mentary matrices. Also, it is well known that modulated filter banks provide
an efficient implementation based on the polyphase components of the proto-
types and a fast transform. This is a further advantage from a computational
point of view. Finally, as we will see, the formalism and implementation of
filter banks with time-varying number of channels will be extremely easy and
straightforward. First we write A(z) as:

A(x)=C-F(),

where C is the P x P Discrete Cosine Transform (DCT) type IV matrix, whose
elements are given by:

C,; = cos (% (p40.5) (I + 0.5)) ., 0<pl<P-1 (5.3)

and the filter matrix F(z) is a matrix with a sparse ”bi-diagonal form”, con-
taining the polyphase components of the prototype

] f0,0 0 fO,P 1
F=19 0
L fro 0 /rpP |

By means of the factorization introduced in [79] F(z) can be written as:
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where the matrices L;(z,m) have the following form:
Li(2) =3 +diag (I, ,lipyy_y,0, -+ ,0) 27
and where the lé are some arbitrary coefficients and I is the diagonal matrix
D = diag(dy, ...,dp_). (5.4)

The number of matrices v is directly related to the length of the impulse response
of the filters, i.e. it is related to the number of parameters l; at disposal to
optimize the frequency respomnses of the low-pass prototype filter. The inverse
or resynthesis polyphase matrix is given by

R(z)= -l (z) - c,

where C~! is the inverse of the P x P DCT type IV matrix (3.3) and F~! can
be easily computed as:

F ()=D7" J] L' (),

i=v—1

where

L7 (:) =3 —diag (0, 0L pyy .o 105 - =71

and D! is the inverse of (5.4). In this way, we obtain a PR analysis/resynthesis
scheme, where the analysis and resynthesis operations are given by:

Y()=A(z)-S(z2) and S(z)=R(2)-Y(2),

respectively.

5.1.2 The time-varying case: PS-HBWT

The main goal of this section is to provide a pitch-synchronous extension of
FAS, introducing a new class of wavelets: the Pitch-Synchronous Harmonic-
Band Wavelet Transform (PS-HBWT). The PS-HBWT can be viewed as an
extension of the pitch-synchronous wavelet transform [18]. We first need to
design a perfect reconstruction time-varying cosine modulated filter bank and
then we adapt it to the structure of fractal additive synthesis. An extension
of the P-channel filter design of the previous section to the case of filter banks
with time-varying number of bands is possible and it will provide the necessary
tool for the implementation of the PS-HBWT. In order to do this, we have to
modify the DCT matrix in order to make it suitable for modulating a matrix
F(z) of size Prnaa X P, while generating a number P(r) < P4 of bands. We
can obtain this by splitting the modulation matrices into two symmetric parts
(horizontally the analysis one and vertically the synthesis one) and inserting
in between the two parts a zeros matrix of size P(r) X(Ppqz — P(r)) in the
analysis case and of size (Ppnar — P(7)) x P(r) in the synthesis case. We obtain
the following matrices:

Cqu(r) = [Cleft_ (r) 1 0 [Crighe(r)]
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for the analysis case and

Cup(r)
Ciry=10
Cdoum("')
for the synthesis case, with
I 0
Ci(r) - Culr) = 0
0 1

The matrix F(z) has also to be adapted to the P(r) case. The time varying case
is constrained to using only one matrix L(z, r) at every period 7. The matrices
L(z, r) change period by period in the following way:

L(Z,’f‘) =J+dl(]g (lO :lfP(r)/Z]—lzoa”' 0) 'Z—-l

The reason of this restriction to only one matrix, as better explained later, is
due to the necessity of a short impulse response in order to obtain time domain
aliasing cancellation (TDAC) in the transition from one pitch to the following
one. The matrix D is also changed by means of an insertion of ones according
to:

D =diag (do, - ,dip(ry/21-15L; » Ldpu < [P(r)/21415 " s BPa—1) -

Notice that the matrices L(z,r) (and thus the resulting matrices F(z,r)) are of
size Pypaw X Prmae also for the P(r) case. In the time-varying case, the optimiza-
tion is performed only for the prototype of the P, filter bank.

Finally we modify the input sound in order to subdivide it into vectors of
length P in order to fit the Prpe X Prar F(z,r) matrices, while using only
P(r) input samples at each period r. In order to do this we simply insert
Priaz — P(r) zeros in the middle of the time-varying polyphase vector of the
input sound s]l], i.e. we build the following vectors:

T
slrl = (solr], -+, syp(rys2) =100, -+ .0, 8 py 2y [r], -+, sP@ry—11r])

where

r—1
Si[’r'] = 8 ZPJ+Z s \Vith 'L = 0-, ]-7 ----,P(T) -1
=0

Since the factorization at each period r includes only one matrix L(z, 7) and the
diagonal matrix D(r), only the vector s[r] and the first half of the vector s{r —1]
are relevant in the polyphase convolution. Thus, the zero-insertion (switching
to a lower number of channels) and “removal” (switching to a higher number
of channels) in the modulation matrices does not generate artifacts during the
transitions from one pitch to a different one. The same holds for the removal
(switching to a lower number of channels) and restoration (switching to a higher
number of channels) of the coefficients I; and d; in the matrices L(z,r) and D(r).
The output vectors y[r] of the analysis filter bank A(z,r) (see Figure 5.1) have
length P(r) and can be written as:

ylrl = Wolrl, -+ s ypn—ilr])”
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Figure 5.1: Polyphase representation of a cosine-modulated filter bank with time-
varying number of channels. The scheme includes also the wavelet transformation
of each channel. The whole structure implements the PS-HBWT.
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Figure 5.2: Polyphase representation of an inverse cosine-modulated filter bank
with time-varying number of channels with inverse wavelet transformation of each
channel. The whole structure implements the inverse PS-HBWT.
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Figure 5.3: A segment of a flute sound with vibrato. Average pitch 298 H:
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Figure 5.4: Magnitude frequency response of the PS-CMFB for the analysis of

flute of Figure 5.3 and, superposed, 4 harmonic peaks of the flute itself.
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Complex PS-HB scale coeff. amplitude

180

Figure 5.5: Magnitude of the complex PS-HB scale coefficients of the analysis of
the flute of Figure 5.3.
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Figure 5.6: Magnitude of the complex HB scale coefficients of the analysis of the
flute of Figure 5.3.
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Figure 5.7: Phase of the complex PS-HB scale coefficients of the analysis of the
flute of Figure 5.3.
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Figure 5.8: Phase of the complex HB scale coefficients of the analysis of the flute
of Figure 5.3.
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By means of simple zero-padding, we can make them all of the same length
Praz. In this way, the P,,,. sequences of analysis coefficients can be injected
into the wavelet filter banks as in the fixed-P HBW analysis. Finally the same
parameter extraction as in the fractal additive synthesis can be performed. Due
to the pitch-synchronous filter bank, the PS-HB scale coeflicients now represent
the period-by-period-time-varying harmonic peaks of the analyzed sound. In a
similar way, the PS-HBW coefficients corresponding to the stochastic compo-
nents represent the time-varying noisy sidebands of the harmonic peaks.

Figure 5.4 shows the first 4 harmonic spectral peaks of the flute in Figure 5.3
and the magnitude frequency response of a pitch-synchronous Cosine Modulated
Filter Bank (CMFB) tuned on the instantaneous pitch of the flute itself. The
overlapping of the adjacent filter bands is significant. This negative aspect
is due to the short length of the impulse responses, i.e. to the low number of
parameters at disposal for the optimization. Nevertheless, the relevant sidelobes
of each filter embrace either the second sideband of the corresponding harmonic,
or low energy spectral regions between the harmonics. Therefore, in spite of the
strong overlap between the filter bank frequency bands, the acoustic results of
the PS synthesis are still acceptable. This can be justified by the fact that since
the sidebands of each harmonics usually have similar shape, their independent
synthesis is often not necessary.

The introduction of the PS-HBWT allows one to deal with sounds with
varying pitch of the kind of the flute with vibrato of Figure 2.21, whose pitch
variations are shown in Figure 2.22. FExperiments have been performed with
many instruments, confirming the efficacy of the method. The main point of
this filter design technique is that the PS-HB scale coefficients show a regular
behavior through the transitions from one pitch to the other. Figures 5.5 and
5.7 show the amplitudes and phases of the complex version of the PS-HB scale
coefficients of five harmonics of the flute with vibrato of Figure 5.3. The phase
presents a slight “vibrato” behavior. Nevertheless, a piecewise linear interpo-
lation is sufficient in order to obtain acoustic results of the same quality as in
the fixed-pitch case. The envelopes in Figure 5.5 clearly follow the amplitude
envelope original sound in Figure 5.3. Figure 5.6 and 5.8 show what happens
to the amplitudes and phases, when the same flute is analyzed by means of a
HBW scheme with P equal to the average pitch of the flute itself. The envelope
distortions due to the variations of the flute pitch with respect to P are evident.
In conclusion the coefficients at the output of the time-varying P(r)-channel
filter bank provide smooth curves and, as a consequence, a robust sound model
as in the constant pitch case.

An additional problem has to be solved for the pitch synchronous synthesis.
While the PS-HBWT filter bank achieves TDAC, as soon as the resynthesis
coefficients are approximated by means of the FAS model, dicontinuities oceur
in the synthetic signal at the transition from one period to the next one. These
discontinuities embrace normally 4-6 samples. From the sequence P(r), one
has knowledge on the time position of the discontinuities are. By means of
polynomial interpolations it is then easy to smooth them in order to cancel their
effect on sound reproduction. Figure 5.9 shows two periods of a synthetic viola
sound with vibrato, where two irregular regions at the borders of the periods
are clearly visible. Figures 5.10 and 5.11 represent a detail of one period of the
same viola sound before and after smoothing, respectively.

It is necessary to note that the number of coding parameters increases, 1.e.
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Figure 5.9: Two periods of a viola sound with vibrato analyzed and resynthesized
by means of pitch-synchronous FAS.

the sequence of the P(r)’s has to be sent in terms of coding rate. This means one
parameter per period in the worst case. Since pitch variations do not usually
occur period by period, the number of parameters can be reduced by means of
run-length pitch encoding.

5.1.3 Pitch-synchronous FAS by means of the Laguerre trans-
form

In this section, we introduce a way to face the varying pitch case, which is dual
to the PS-HBWT. In other words, instead of acting on the P-channel filter bank
in order to make it able to follow the pitch variations, we act on the input sound.
More precisely, we modify the varying-pitch input sound in order to obtain a
sound with stable pitch P. The usual HBW scheme is sufficient in order to run
the FAS coding procedure. The tool to obtain this is Frequency Warping (FW).
FW was briefly reviewed in Section 3.6.1. Recently, a time-varying version of
FW was introduced in [22] and [23]. This powerful technique allows to perform
a FW sample by sample, i.e. to modify the “istantaneous” (defined sample by
sample) pitch according to an arbitrary sequence of distortion coefficients d(1),
l=0,1,..,L — 1, where L is the length of the analyzed sound. Our goal is
to obtain a sound with stable pitch equal to the average pitch P. From the
instantaneous pitch and by means of the (3.32) it is possible to compute the
sequence that stabilizes the pitch to the average pitch P of the input sound. The
usual HBW analysis, coeflicient modeling and resynthesis can be performed with
stable pitch P. The pitch sequence of a viola sound with vibrato is shown in
Figure 5.13 (before the TVFW) and 5.14, where it was stabilized by means of
a TVFW. Figure 5.15 and 5.16 reproduce the phases of the complex HB scale
coefficients of 5 harmonics of the same viola sound and the effect of the TVFW
on the same HB scale coefficients, respectively. Even if a slight vibrato effect is
still present, the pitch regularization effect of the TVFW is evident.
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Figure 5.10: One period from Figure 5.9, showing in detail the discontinuities
occurring at the junction of two periods.
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Figure 5.11: Same period as in Figure 5.10. The discontinuities have been
smoothed by means of a polynomial interpolation.
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Figure 5.12: Pitch synchronous scheme realized by means of TVFW and HBWT.

In this case, the number of additional parameters d(!) is equal to the number
of samples itself. However, d(l) follow the vibrato of the sound as shown in
Figure 5.18 for the case of the flute. The curve in Figure 5.19 is the lowpass
filtered version of the curve in Figure 5.18 and can be easily modeled by means
of polynomial interpolation. This reduces drastically the number of parameters
to the set of interpolation knots and coeflicients equal to two times the number
of oscillations. In conclusion, the number of additional parameters necessary to
code the d(1)’s is of the same order as the other FAS parameters and can be
included in the FAS scheme.

5.2 Inharmonic extension of the method

In the previous chapters, we demonstrated that the harmonic version of the
wavelet transform, i.e. the HBWT is a "natural” tool to separate, decompose
and resynthesize both the deterministic components and the noisy sidebands of
the harmonic spectral peaks. This decomposition allows one to represent the
different components of sound by means of a restricted set of parameters. These
parameters, different for the deterministic and the stochastic parts, correspond
to the two models that make the FAS an interesting method both for data com-
pression in the context of structured audio and for sound synthesis/processing.

In this section, we present the extension of the method to the inharmonic
case. The HBWT and PS-HBW'T models are confined to the case of harmonic
spectra. The time-frequency plane tiling is strictly harmonic. This is a major
limitation and makes the method not usable for a large class of sounds, e.g.,
for sounds produced by percussion instruments. The spectra of many of these
instruments show relevant peaks (see Figure 5.20). These peaks are the so
called partials or deterministic components of the sound and can be sinusoidally
modeled. These partials also show an approximately 1/f spectral behavior
around the peak as in the harmonic case. The 1/ f-shaped, spectral sidebands
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Figure 5.13: Pitch variations of a viola sound with vibrato. Average pitch 239.6
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Figure 5.14: Stabilized pitch of a viola sound with vibrato after pitch stabilization
via TVFW.
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)

Figure 5.15: Phase of the complex HB scale coefficients of a viola sound with
vibrato. Average pitch 239.6 Hz.

Figure 5.16: Phase of the complex HB scale coefficients of a viola sound with
vibrato after TVFW pitch stabilization.
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Figure 5.18: d(l) sequence for the stabilization of the pitch of the flute sound with
vibrato of Figure 5.17.
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Figure 5.19: Lowpass filtered version of the d(l) of Figure 5.18.

are the stochastic components. Thus, the same stochastic model used in the
harmonic case can be employed. It is therefore reasonable to find a way to
extend the FAS method to sounds with spectra of the kind shown in Figure
5.20.

The main problem addressed in this section is to provide a more flexible
analysis/synthesis structure, extending the FAS model to inharmonic sounds.
In order to do this, we abandon the PR structure provided by the HBWT and
resort to a non-PR scheme, which is able to deal with aperiodic spectra like
the one in Figure 5.20. A non-PR structure leads to aliasing problems and
artifacts in the resynthesis. These artifacts are minimized by a careful filter

design procedure and optimization. This part is discussed in detail in Section
5.2.2.

The peaks of inharmonic sounds correspond to deterministic physical events
as, for instance, vibrational modes of membranes, metallic or wooden surfaces
and bars occurring in many instruments as gongs, tam-tams, tympani, bells,
vibraphones, marimbas and other percussion instruments. These peaks are not
harmonically spaced but they show an approximately If_—l'fn_l shape as in the

harmonic case. Here, f,, denotes the frequency of the n'* partial. The idea

is to use the same two models as in the harmonic case in order to control the
resynthesis coeflicients of the partials peaks and of their sidebands, respectively.
The principle of the wavelet subband subdivision is therefore maintained. What
we need to change is the MDCT section of the method, which is limited to a
uniformly spaced subdivision of the frequency domain. For this purpose we
design a non-uniform cosine-modulated filter bank (CMFB), where the band-
pass filters are adaptively tuned to the non-equally-spaced spectral peaks of an
inharmonic sound. The system is not PR, in the sense that only the spectral
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Figure 5.20: Magnitude FT of a Gong sound.

regions corresponding to the main peaks are analyzed and the overlap of the
filter passbands is chosen empirically according to the spectral peak distribu-
tion. As a result of the analysis we obtain sets of analysis coefficients plus some
more or less relevant residue. The residue energy can be arbitrarily reduced at
the expense of an increasing computational time by means of recursive analysis
of the residue itself. The “main body” of the sound, including both the partial
peaks and their noisy spectral sidebands, is analyzed in a similar way as in the
case of the HBWT.

5.2.1 Spectral peak picking

A preliminary and fundamental step in our technique is the implementation of
a good spectral peak estimation algorithm. The task of this algorithm is not
trivial, due to the variety of spectra produced by inharmonic sounds. Often it
is hard to distinguish between noise and low energy partials. Also, resolution
problems due to the proximity of two or more partials occur. The goal of the
partial detection algorithm should be to find only the ‘significant’ peaks in the
magnitude Fourier transform (FT) of a sound, where to be significant or not
finally depends only on perceptual criteria. Once the peak picking algorithm
has defined the partial frequencies, we can design the associated filter bank.
With respect to an ordinary peak detection, we also need to define the optimal
bandwidth of the filters that will subdivide the spectral range. For this purpose
we need to take into account not only the partial position but also the position
of its two neighbors (see Figure 5.21).

As a first step we consider the average of the spectrogram frames of the
sound under analysis. This is an easy and effective way to make the partials
more distinct and to get rid of the noise in the spectrum. For this purpose, we
used the Blackman-Tukey method [86]. In this ‘cleaned’ spectrum, we perform
a peak detection. The basic principle of the algorithm used in this work consists
in comparing the magnitude of the candidate peak with a linear combination
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Figure 5.21: Magnitude FT of a CMFB a) Harmonic case b) Inharmonic case.

of the mean and standard deviation of a certain region R of the magnitude
FT. The region R is chosen in different ways (Figures 5.22 and 5.23) in the
neighborhood of the candidate peak itself. In order to make the algorithm
more robust, different values of the coefficients of the linear combination and
different criteria of definition of the region R are considered and compared before
designating a peak.

5.2.2 Optimized band subdivision and filter design

As a second step we need to define the bandwidih of the filters. A preliminary
estimate of the bandwidth is obtained by considering the distance of the peak
from the left and right neighbor peak positions (diep: and dyigne, respectively)

candidate peak /\
: \ last detected peak A
[ 1
/! \ /:\

t t
t '
// : d !
— ' d/so | d/2 , '
I 1 I3 1

i R I

Figure 5.22: Example of choice of region R for peak searching. d is the distance
between two consecutive peaks.
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Figure 5.23: Example of choice of region R = Ry U Ry for peak searching. R;
and R are the frequency intervals f,, & [ff ,%d] , where [,, is the nt* peak and d
the distance between two consecutive peaks.

and the approximately i f—l 7 shape of the sidebands of the n'* partial. As
a simple evaluation parameter of the shape we take the length dipresnoia of
an interval around the peak where the magnitude spectrum is above a certain
threshold, which depends on the spectral characteristics of the sound (see Figure
5.24). The chosen bandwidth is the minimum among d.s; /2. drigni/2 and
inreshoia/2. The parameter dipreshold 18 important in order to maintain an
analogy with the pseudo-periodic 1/f model, especially in the case of isolated
spectral peaks.

The design of an inharmonic CMFB requires the definition of the most ap-
propriate “hypothetical pitch” for each detected partial peak. As an example,
we consider the first spectral partial of an inharmonic sound. If the first partial
could correspond to a certain “harmonic” &y of a “hypothetical pitch” P;, then
we consider a Pj-channel MDCT filter bank of filters g,(l) as given in (3.25).
We implement only two filters out of the whole filter set, corresponding to the
indexes p = 2k; — 1 and p = 2k;. These filters cover the two sidebands of the
partial. As said in the previous subsection, the definition of the parameters P,
and k; depends not only on the position of the partial but also on the position
of the neighbor peaks. This provides a preliminary estimate of the bandwidth
w/P; of the Pj-channel filter bank. However, these are not the only criteria
for the choice of P, and k;. Additionally, it is worthwhile to define the filter
design procedure in a way to reduce the aliasing occurring in the analysis of
each partial.

As shown in the Appendix of Chapter 4, when a sinusoid at frequency kn/P
is analyzed by a P-channel cosine modulated filter bank, only the outputs of the
2k'" and (2k — 1) channels are different from zero. Therefore, due to the fact
that the P-channel filter bank is PR, this sinusoid can be reconstructed without
aliasing using these two bands only. This means that, if the crossover frequency
of the two filters is well centered on the peak frequency, we can achieve a nearly
aliasing-free reconstruction of the deterministic part of the sound, i.e. of the
part where the aliasing effects are more relevant. Additionally, increasing the
parameter P provides filters with narrower passbands. This obviously means
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Figure 5.24: The parameters for the definition of the first estimate of the bandwidth
(before the optimization) of the filters relative to one partial peak.

a higher resolution in terms of distribution of the cross over frequencies of the
filters and the possibility of getting closer to the partial frequency. The goal
of the optimization algorithm is to achieve a trade-off between the ‘tuning’ of
the filters around the partial peak and a large enough bandwidth to include
the sidebands of the partial. In order to do this, the following parameters are
considered: the frequency of the partial, the preliminary estimate of the band-
width, an interval for the variation of the bandwidth and an upper bound for the
deviation of the crossover frequency of the two tested filters from the frequency
of the partial. The algorithm calculates all of the filters with bandwidths in the
given interval and selects the one differing the least from the desired frequency.
If the difference does not fulfill the upper bound condition, then the algorithm
reduces the bandwidth until the condition is fulfilled. The same criteria are
applied to define the parameters P, and k,, of the other pairs of filters, for the
analysis of the other partials.

Once all the filters are defined, the inharmonic CMFB is implemented as in
Figure 5.25. The structure of Figure 5.25 has the advantage of being PR at the
condition of keeping the overall residue and adding it back to the reconstructed
sound. From a coding point of view the residue is not considered and the goal
is to reduce its perceptual relevance as much as possible.

In more detail, the filters separate the sidebands of the partials. Each n'*
partial is processed as the kX" harmonic of a hypothetic voiced sound with pitch
P,,. Each sideband undergoes a wavelet transformation, which decomposes it
into subbands as in the harmonic case. The meaning of the upsampling of order
P, and of the inverse filters g,(l) is to reconstruct both the n'* partial and
the aliasing due to downsampling of order P,. In this way we keep track of
the aliasing through the following partial analysis steps. When we reconstruct
the partials and add them up together with the overall residue, we are able to
achieve a time domain aliasing cancellation. As already mentioned, the overall
residue can be arbitrarily reduced in energy by means of a recursive analysis at
the cost of an increasing number of parameters.

Figure 5.26 represents some results of the peak detection algorithm applied
to a gong (a), the resulting CMFB coefficients (b) and the resulting scale coef-
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Figure 5.25: Analysis scheme. The index P, refers to the F,,-channel filter bank
chosen to analyze the n'? partial, n = 1,....,N. The indexes k,, refers to the
couple of filters selected from the P,-channel FB “embracing” the partial peak.
'"WT' denotes a wavelet transform block.
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ficients of the analysis of the first partial (c¢). From the last figure it is evident
how the scale coefficients form smooth and slowly oscillating curves as in the
harmonic case. The pseudo-sinusoidal model can thus be successfully applied
even in the inharmonic case. The stochastic model for the 1/ f-shaped sidebands
of the partials holds from both a numerical and a listening point of view.

5.2.3 Experimental results

We applied our method successfully to instruments with different degrees of
inharmonicity, ranging from very inharmonic sounds to quasi-harmonic sounds:
gongs, tympani, tubular bells, and a piano. All sounds have been partially
reconstructed (without the residue) by means of the analysis coefficients and
resynthesized by means of parametrically controlled coefficients. In some cases
(gong and tubular bells) the synthetic sounds are hardly distinguishable from
the original ones. Furthermore, the deterministic part and the different wavelet
scale (stochastic) components were synthesized separately.

As illustrated in Section 4.5 for the harmonic case, by taking into account
psychoacoustic criteria, compression ratios of the order of 1/30 can be easily
obtained. This result is achieved only by means of a parametric representation
of sounds, i.e. without any quantization and coding optimization. In the inhar-
monic case one has also to take into account the parameters P, and k,. If the
sound spectrum is sufficiently stable in time, then the number of parameters
increases of 2N with respect to the harmonic case. In the example of the gong
we considered 35 partials in order to have a sufficiently good result. In this
case we needed only 70 additional parameters for encoding a sound of 350,000
samples.

The inharmonic extension also enlarges FAS possibilities as a new synthe-
sis technique. The idea of FAS as a sort of augmented additive synthesis is
confirmed and consolidated. We can add an arbitrary number of partials, arbi-
trarily distributed in the frequency range. Furthermore, we can parametrically
control the shape of the partial sidebands, i.e. we can control the amount of
timbre dynamics and noisiness. A possible ‘minimal parameter scenario’ for a
FAS module could be to have two parameters per partial: one for the amplitude
and one for the ‘noisiness’, where the latter parameter would control the slope
of both spectral sidebands of the partial. Inner parameters (also editable) could
be the amplitude envelopes, the phase of the complex scale coefficients, the cen-
tral frequencies and bandwidths of the inharmonic CMFB. In the next section
we describe a more articulated module realized in Pd (Pure data), a software
environment for audio processing in real-time.

Digital audio effects as pitch shifting, time stretching, noise-to-harmonic
component ratio modifications are easily obtainable by means of interpolation
and modulations of the parameters controlling the resynthesis coefficients gener-
ation. As for the harmonic case, the most interesting feature is the possibility of
processing the stochastic and the deterministic components separately by means
of two distinct and appropriate models. The time-stretched and pitch-shifted
samples of the gong and of the tubular bell, which we reproduced, sound very
realistic. Another effect we implemented was to transform a inharmonic sound
into a harmonic one, i.e. to keep the partials and their natural behavior and
resynthesize them by means of an artificial harmonic CMFB. We realized differ-
ent versions of harmonized tympani and gongs, with different noisy sidebands
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Figure 5.26: a) Magnitude Fourier transform of a gong. The ‘x's denote the
detected partials. b) The output of the two channels of the inharmonic CMFB
corresponding to the first partials (the circled peak of figure a). ¢) The scale
coefficients resulting from the wavelet analysis of the coefficients of figure b.

widths. In conclusion, FAS can be also seen as a flexible sound processor al-
lowing one to manipulate the spectrum of a sound in a perceptually meaningful
way.

5.3 Real-time implementation of the method

A real-time (RT) implementation of the synthesis section of FAS was developed
by means of Pure data (Pd) [66], [65], a software environment for RT sound
processing, running under Linux and Windows operating systems. Pd is based
on a minimal graphical interface for visual programming. Data flows are repre-
sented by means of strings interconnecting one block to the next one. Figures
5.27, 5.28 and 5.29 give an example of how Pd patches look like. The DSP
engine is the computer CPU itself.

We had to implement the IWT and IMDCT blocks. No multirate processing
is implemented in Pd. However, a control rate allows one to perform data
processing at lower rates than the current sampling rate. Therefore, in order to
implement the multirate HBWT scheme, we implemented the whole WT section
as if it were a control section, i.e. working at. control rate. Having at disposal the
IWT and IMDCT blocks, it was possible to develop a complete FAS module for
RT generation and control of the resynthesis parameters for the general case of
inharmonic sounds. Figure 5.27 shows the main control panel of the resynthesis
process. The light grey sliders control the subband energies of the left and
right sidebands of all of the partials. We considered 3 scale levels analysis and
resynthesis. The 2 dark grey sliders in the center control the global energy of
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Figure 5.27: Main interface for playing the FAS in RT. The levels of the faders
reproduce the m spectral behavior around the partials f,, n =1, ..., N.

the harmonic components. The 2 sliders at the far right of the picture control
the position of the crossfade between the original transient and the synthetic
sound and the RT time stretching, respectively.

Figure 5.28 represents the subpatch for a single partial. The set of sliders
has the same function as those of the main interface, but they are applied to the
single partial. These sliders are directly controlled by the sliders in the main
interface. Furthermore, the time envelopes of the harmonic components and
of the noisy subbands are graphically displayed. These plots are editable by
means of the mouse. Also, an editable display for the phase of the harmonic
part is available. Figure 5.29 shows how it is possible to edit the envelopes. The
same scheme is repeated for all of the implemented partials. On a Pentium III
processor with a 1GHz clock rate it is possible to implement a RT synthesis of
at least 30 partials.

The analysis is not implemented in RT. It is possible to load the parameters
of any previously performed FAS analysis and then run the RT synthesis and
processing. The analysis parameters are loaded in the following format per
each partial i: Pitch P;, harmonic k;, complex HB scale coefficients Cj, and
¢y, » LPCcoefy, », for the 3 subband levels and distinct sets Ecoefp, , for the 6
subbands.

As further developments of the FAS Pd module, we envisage to make the
parameters P; controllable in RT in order to have a RT pitch shifter. Another
objective is to implement RT analysis and parameter extraction of an input
sound. This would provide a full RT sound processor based on a powerful and
articulated spectral modeling technique as that provided by FAS. At the same
time we would have a RT implementation of what is the main goal of our thesis,
i.e. a prototype of a low rate coding system for high quality audio transmission
and reproduction.
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Figure 5.29: Same partial as in Figure 5.28. The envelopes have been edited
graphically.
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5.4 Summary

In this chapter, we described an extension of FAS for pitch-synchronous analysis
and synthesis of voiced sound. FAS allows one to control and reproduce the
microfluctuations present in real-life sounds so important from a perceptual
point of view in order to perceive a sound as a natural one. By means of the filter
design technique introduced in Section 3.1.2 we extended the FAS method to
the more general case of voiced sounds with time-varying pitch. More precisely,
we adapted a new type of time-varying CMFB to the HBWT scheme, obtaining
what we called the Pitch-Synchronous Harmonic-Band Wavelet Transform (PS-
HBWT). We showed how the FAS parametric model can be extended to PS-
HBWT analysis/synthesis scheme. The most appealing feature of this method
is that it allows one to reproduce both the deterministic and the stochastic
components of voiced sounds with varying pitch by means of a very restricted
number of parameters.

An extension of the FAS to the case of inharmonic sounds has been intro-
duced. The new method is not PR. Nevertheless, an almost alias free recon-
struction of sounds can be achieved. Analysis and resynthesis by means of the
inharmonic FAS produce very good results for various percussion instruments.
We obtained excellent results even for sounds that are generally difficult to
model, such as gongs. However, further refinements are necessary in order to
obtain equally good results for a wider and more general class of instruments
with inharmonic spectra. As in the harmonic case, not only the deterministic
components of sounds are modeled and reproduced, but also the noisy compo-
nents, which are important in order to perceive a sound as realistic.

The method provides great flexibility in terms of sound processing. Exper-
iments on the modifications of the synthesis parameters show that there are
interesting applications in the fields of sound synthesis and digital audio effects
for electronic music.

Finally a real-time software implementation of FAS was realized and illus-
trated.






Chapter 6

Conclusions and Future Work

The goal of this work has been the definition of a complete synthesis by analysis
method for sound, providing two integrated models for representing both the
deterministic and the stochastic components of sound.

In Chapter 3 we introduced a general model for describing the behavior
of voiced sounds, i.e. of sounds whose spectra present harmonically-spaced
peaks. These peaks represent the deterministic components of sound, while the
sidebands in between two peaks correspond to the noisy/stochastic components
of sound. Our work was based on the assumption, experimentally verified,
that the energy distribution of the sidebands of voiced-sounds is approximately
shaped as powers of the inverse of the distance from the closest partial. In
other words we assumed that the spectral behavior in the neighborhood of the
partial is of the kind 1/(f — fi), where fx is the k*" harmonic. The fact that
the sidebands have an approximately 1/f behavior around the harmonic peak
recalls the fractal/self-similar characteristics of the 1/f-noise. Our idea is that
the 1/(f — fi)-like spectral behavior is related to a sort of band-limited self-
similar property. This is what we called the pseudo-periodic 1/f-like model
and self similarity is the reason for the name Iractal Additive Synthesis (FAS),
selected for our technique. In Chapter 3 we also introduced the Harmonic-Band
Wavelet Transform (HBWT) and we designed and implemented a scheme for
the analysis and the resynthesis of voiced sounds by means of the HBWT. The
HBWT is a harmonic extension of the ordinary Wavelet Transform (WT). Due
to its time-scale character, the WT provides a natural tool for the analysis and
synthesis of signals with 1/f-like spectra. Similarly, the HBWT is a natural
tool for extracting, decomposing into subbands and resynthesizing the noisy
1/(f — fn)-like sidebands of the harmonic spectral peaks.

In Chapter 4 we introduced two distinct models for the HBWT coefficients
of the two types of components of voiced sounds, defining FAS as a complete
method for the analysis, encoding, decoding and resynthesis of voiced sounds.
In other words we defined a complete model for the representation of both
the deterministic and stochastic components of voiced sounds in terms of high-
level /perceptually-relevant parametric representation. The method provides an
efficient data compression tool, while maintaining a high quality sound repro-
duction. In section 4.5 we discussed the compression results taking into consid-
eration psychoacoustic criteria as well. Perceptually transparent audio coding
with compression ratios of the order of 30:1 are easily attainable.
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In chapter 5 we extended FAS in order to obtain a method usable for a
sufficiently large class of instrumental sounds. The achieved flexibility allows
FAS to deal with voiced sounds with varying pitch and with sounds with in-
harmonic spectra. A prototype of a real-time implementation of the decoding
and resytnhesis section of FAS was also realized and illustrated in Section 3.3.
A complete real-time implementation of FAS including analysis and parameter
extraction is still under construction.

Refinements of the FAS technique are still necessary as well as improvements
and optimization of data compression results. Redundancies in the parameters
such as those present in Table 4.2 could be avoided by means of a deeper psy-
choacoustic evaluation of their eflects. Moreover, the inharmonic extension of
FAS needs improvements in the filter design in order to reach homogeneous
results on a larger class of percussion instruments.

Finally, as already mentioned, FAS does not concern transients. The attack
transient of the sound is a fundamental element for timbre perception. Our ear
is extremely sensitive to transient stimula. Due to their non-stationarity and
short duration modeling transients is not an easy task. There are various inter-
esting research directions towards a definition of an effective transient modeling
technique, as the DCT domain transient representation introduced in [94] [92]
[91] or the Exponentially Damped Sinusoidal (EDS) model [8] [9] [1]. Other pos-
sibilities of investigation are provided by matching pursuit modeling [31] [32]. A
high quality model for transients, integrated with FAS, would provide a global
method for voiced and inharmonic sound representation. Also, it would supply
a model for those sounds, whose main content is given by transients. This class
of sounds contains staccato sounds, pizzicatos in string instruments and fast
percussive sounds, such as castanettes.

In conclusion, we have defined, implemented and tested a method for the
analysis, coding, transmission and resynthesis of high quality audio at low bit
rate, which we called FAS. This method has been designed in the perspective of
MPEG-4 Structured Audio approach to audio and music coding. With respect
to the available synthesis algorithms, FAS claims to be a transparent coding
method for a large class of sounds. Furthermore, FAS provides a powerful tool
for sound synthesis and sound processing in the sense of digital audio effects.
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