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Abstract

Concern for the environment has been steadily growing in recent years, and it is becoming more common to
include environmental impact and pollution costs in the design problem along with construction, investment
and operating costs. To further complicate matters governmental controls on emissions are still changing
and the effect of increased emissions taxes may be critical in choosing a particular design solution.

Thermo-economic and environmental analysis has been used previously at LENT to model investment, op-
erating and pollution costs and aggregate them into a single objective that can be minimised. This has the
drawback of requiring multiple optimisations in order to determine the sensitivity of the optimum solution
to the presumed pollution costs. In addition, designers usually prefer a choice of different technological
solutions as well as a clear idea of the trade-offs between multiple objectives without the need to define a
common indicator (for example cost). Frequently, the thermodynamic and economic simulation of an energy
system is non-linear, disjoint and with multiple local optima making it difficult to optimise with derivative

based optimisation methods.

This work presents the development of a multi-modal, multi-objective optimisation tool to respond to this
-need, and then demonstrates it on two complex problems — the design of a district heating system and the
configuration of an advanced vehicle drivetrain.

Multi-objective optimisation techniques aim to find the trade-off between two or more conflicting objec-
tives. For example, if a design must be both efficient and low cost, then a multi-objective optimisation
will find a range of solutions between the lowest cost but least efficient solution and the most efficient but
most expensive solution, including some solutions that are fairly efficient and reasonable cost. Multi-modal

optimisation techniques aim to keep different local optima.

The optimisation tool developed here is the clustering pareto evolutionary algorithm (CPEA). As with other
evolutionary algorithms (EAs) it works with a population of solutions, each individual representing a dif-
ferent trade-off between objectives. New solutions are produced using real variable crossover and mutation
techniques and the population is ranked and thinned to avoid excessively large populations and maintain
convergence pressure. The algorithm uses statistical clustering techniques on the independent variables to

keep multiple different local optima simultaneously. The clusters maintain diversity in the population and
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identify local optima. In problems with many variables multi dimensional scaling (MDS) is used to reduce

the number of variables before clustering.

Applying the CPEA to the problem of designing a district heating system for minimum costs with and
without pollution costs, it was possible to repeat previous work in a fraction of the time. For the same
effort it was also possible to produce complete trade-off curves for cost and pollution, showing the dramatic
change in optimal solution when pollution costs were included. The clustering and in particular the MDS
were found to be key factors in the solution of this problem — without them the best overall solution was
not found. A three objective problem was solved and the results compared favourably to a combined two

objective problem, although convergence was found to be slower.

A parallel version of the CPEA was also applied to the optimisation of a vehicle drivetrain simulation with
respect to performance, emissions and costs over a test cycle. The multi-modal nature of the CPEA allowed
the simultancous solution of multiple hybrid and conventional solutions at no extra cost and improving
overall convergence. The pollution costs calculated using the same level of taxation as in the district heating
problem were found to be of little influence compared to the operating and investment costs, suggesting that

pollution costs from the energy domain are unlikely to promote hybrid vehicle technology.



Résumé

Les questions environementales ont pris, ces derni¢res années, de plus en plus d’importance, ¢’est pourquoi
il est devenu courant de considérer en plus des coiits d’investissement et d’opération, ceux liés a la pollution.
Par ailleurs les réglementations gouvernementales en matiére d’émissions se renforcent constamment et

conduisent a une importance croissante de ces aspects dans les prises de décision économiques.

Les techniques d’analyse thermoéconomique et environnementale sont en constant développement au Lab-
oratoire d’Energétique Industrielle avec la modélisation des cofits de pollution, et leur prise en compte
essentiellement jusqu’alors dans le cadre d’une seule fonction objectif. Cette méthode a le désavantage de
nécessiter plusieurs optimisations afin de déterminer la sensibilité de la meilleuse solution aux changements
des coiits de pollution. En plus, les ingénieurs préferent avoir un choix de solutions techniques différentes
ainsi qu’une idée claire du compromis entre plusieurs objectifs sans nécessairement recourir a un indicateur
commun (par exemple cofit).

Cette thése traite du développement d’un outil d’optimisation multi-modal, multi-objectifs pour répondre &
ces besoins, puis de son application a deux problémes complexes—la conception de systémes de chauffage

urbain et la configuration de systémes d’entrainement de voitures.

Les algorithmes multi-objectifs vise & déterminer le compromis entre deux (ou plusieurs) fonctions objectifs.
Par exemple, si un produit doit étre bon marché et efficace, une optimisation multi-objectif vise a trouver
toutes les solutions entre une solution trés bon marché mais peu performante et une solution trés chére
mais trés performante. Les algorithmes multi-modaux en plus permettent de trouver plusieurs solutions
différentes.

L’outil developpé est nommé le “clustering pareto evolutionary algorithm” (CPEA). Comme les autres al-
gorithmes évolutifs I’algorithme part d’une population de solutions, chaque individu (solution) représentant
un compromis entre les différents objectifs. Les nouveaux individus sont produits avec des techniques de
croisement et de mutation et lorsque la population devient trop grande les individus qui sont considérés

comme moins nécessaires sont progressivement éliminés.

L’algorithme utilise une technique statistique de groupement sur la base des variables indépendentes afin de
garder plusieurs optima locaux. Cette technique a comme effet complémentaire de garder la diversité de la
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population.

Dans les problemes avec beaucoup de variables le nombre de variables déterminantes est réduit sur la base

d’une technique de “multi-dimensional scaling” (MDS).

En appliquant le CPEA an probléme de minimisation des cofits (avec ou sans coit de pollution) d’un
réseau de chauffage urbain, il a été possible de réduire substantiellement le temps de résolution. Pour le
méme travail, il a été possible de produire les courbes de compromis pour mettre en relation les coiits
d’investissement/operation avec ceux de pollution. Le groupement statistique et en particulier le MDS
étaient essentiels pour résoudre ce probléme rapidement. Un probléme avec trois objectives a aussi été

considéré avec succes, mais le temps de convergence a été alors trés important.

Une version parallele du CPEA a été appliquée au probléme d’optimisation des composants d’un syst€éme

d’entrainment de vehicules afin de réduire les émissions et les cofits. La nature multi-modale du CPEA a

permis la résolution simultanée de plusieurs contigurations de systémes d’entrainement de vehicules dont
les systémes hybrides. Les cofits de pollution ont été calculés comme dans le cas du chauffage urbain, mais

ils se sont avérés n’avoir que peu de influence par rapport aux cofits d’investissment et d’utilisation.
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Chapter 1

Introduction

1.1 Background

1.1.1 Sustainability and the Environment

In recent years more emphasis and concern has been expressed over the damage done to the environment
by pollution. It has been speculated that in the next 100 years, temperatures worldwide will increase by the
same amount as they have in the last 20,000 years. An increase such as this is extreme and will carry with it
significant global implications. Climate warming is directly related to fossil fuel use and resulting emission

gases that absorb radiation* and contribute to the “greenhouse effect”.

The production, conversion and utilization of energy represents a principal source of local, regional and
global pollution, and they rely mainly on non-renewable resources. At the same time, industrial and eco-
nomic process in general are still heavily energy dependent. In the European Union'® it is estimated that
electricity production accounts for 29% of total CO; emissions. The industrial sector that includes electric-
ity generation for its own use is responsible for another 17.6%, the transport sector is responsible for 22.4%
and the residential sector 19.5%.

Mass-produced consumer goods affect the planet’s water, land and air quality through their development,
manufacture, use and disposal. Designers should be conscious of these environmental implications from the
beginning and take effort in including them in their designs. The (United States) National Research Council
estimates that at least 70 percent of the costs associated with product development, manufacture and use
are committed during the initial design stages’?. Therefore, in order to reduce the environmental impact
of consumer goods and plan for global sustainability, it is essential to consciously design the complete
life-cycle of products early in the design process.
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In order to find a good design for a modern, complex energy system it is necessary to consider the system as
a whole rather than individual components. Putting together a series of components each of which has been
individually optimised will not, in general, in a complex system result in an optimal system. Far from it, as

is clear in examples as diverse as cogeneration plants and America’s cup yacht designs.

Rather it is necessary to optimise the full system and that requires a methodology that is computationally

practical.

1.1.2 Holistic Design

Over the past 20 years powerful computational methods for aiding product design have been developed.
Typically, the methods and tools are specialized for different design domains (e.g. solid geometry, surface
geometry, mould flow analysis, design for assembly, etc.). These ’traditional’ analytical tools are isolated
and that makes the exchange of data and evaluation of tradeoffs between different domains difficult and time
consuming. However, this inefficiency has been offset by dramatic local improvements in design capabilities

and productivity.

In recent years there has been an explosion in analytical frameworks and tools related to environmentally
conscious design such as design for recycling and life-cycle inventory assessment. Like the traditional
computational design aids, these methods have helped designers improve a specific attribute or set of related
design attributes, but they are typically divorced from the larger product system context.

Fundamentally, sustainable product design must be at the system level and will require that the interactions
between a diverse range of design characteristics (including economic, performance, environmental and
social factors) are understood and appropriately balanced. A framework for holistic, but distributed design

modeling, evaluation and optimization is needed.

Holistic design is a multidisciplinary activity involving the cooperation and integration of many designers
and tools in a distributed environment. Members of the design team usually have specific areas of expertise
and may develop models that are useful, yet proprietary. Frequently economic models, marketing models
and engineering models are built by different people in different locations. In order to have a holistic view of
the project a decision maker is often faced with the problem of puting these separate analyses together, and
this can take some time. If it is necessary to change the engineering design it may be necessary to re-analyse
the marketing or economic or life cycle analysis. A means of dealing with distributed models called DOME
(Distributed Object Modeling Environment) has been developed at MIT® in order to address this problem
and allow different models in different locations, and using different interfaces, to be connected via network.
This allows the diverse models to be run remotely under the control of a decision maker without the need

for intervention by each team, thereby greatly increasing the potential to explore tradeoffs.

Tt is clear that this Kind of technique is necessary for reducing the lead time of designs, and this has been the
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framework into which this work is seen to fit.

The introduction of environmental concerns to the design problem is becoming more common, since it no
longer suffices to worry about environmental impact afterwards (indeed permission for a plant may only be
given if adequate proof can be provided of the environmental impact). Consequently the design problem has
become more complicated - it is no longer enough to consider construction, investment and operating costs.
Now it is necessary to consider pollution costs (perhaps even separately for different pollutants) during
construction, operation and maybe even decomissioning. To complicate matters further (for the design
engineer) governmental control of pollution is still changing, and the impact of increased pollution taxes
may be of extreme interest in the choice of design, particularly where plants may last more than twenty five

years and penalisation of certain types of pollution may bias new technology.

Simulation Model Complexity

Consumer demands are also in most cases not uniform, for example a district heating network will be heavily
used in winter but may be used very lightly in summer. A vehicle will have a completely different set of
requirements in town and on the highway.

This variation introduces the problem of finding an optimum solution when the load changes periodically
(but slowly, hence quasi-static), or continually as in a vehicle. The overall best (cheapest) solution is unlikely
1o be the best solution at any one time period, but is more likely to be a compromise. Many traditional
approaches consider a representative load for design purposes and solve the optimisation problem for this
point with constraints that the maximum load can be achieved. This approach may miss important and

interesting solutions, but has been necessary to reduce the problem to a manageable size.

The components used and the fashion in which they are connected frequently result in a system that is
nonlinear and noncontiguous in the design space. The complexity and nonlinearity of these systems mean
that optimisation requires many simulation evaluations, requiring heavy processing power (or long solution
times) to find optimal solutions. In the case of the waste incineration cogeneration model®*70716% that
included a time dependency (stocking of waste for the incinerator), several days of CRAY supercomputer

time were required to produce one optimised solution, for one combination of pollution costs.

1.1.3 Thermoeconomic and Environmental Analysis

In previous projects the Laboratoire d’Energétique Industrielle (LENT) has looked at the optimisation of
complex systems such as a distributed heating network >'?2, a cogeneration power plant7¢77 and a waste in-
cineration plant%-7%71%° The methodology used has been based on thermoeconomic analysis as developed
by®4,% ,and more recently?” and*®, as well as numerous others, and conists of combining thermodynamic,
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economic and environmental analyses by infernalising the costs of equipment, operation, economic fore-

casting and environmental impact.

The approach adopted was to consider a model superconfiguration containing all possible components and
designs and then to use an optimisation to choose both configuration (size and type of component) and
operating parameters for the chosen configuration. The chosen configuration can be used to determine
capital costs (including investment, maintenance and construction), and the model used to simulate the
thermodynamic behaviour of the chosen configuration. The resulting predictions for fuel use and pollution
(and to some extent maintenance and redundancy - components tend to need maintenaince or replacement
at a rate determined by there use) can then be used to calculate operating costs (for example fuel costs),

pollution costs and acceptability (does the design meet the requirements).

These costs can be aggregated as shown in (1.1).

Crotat = Y Ceapita + 3, Coperaring + ¥, Cpottusion L.y

where Ceapirat Coperating Cpotturion are the capital, operating and pollution costs respectively, and Cyq is the

total operating cost.

While capital costs are generally well known, and operating costs can be estimated with a good degree of

accuracy based on simulation results, pollution costs are heavily dependent on pollution factors (see (1.2)).

i o i f
Cpo/luliun - ('/)U[Iutitmf P (1.2)

;m,,m won I8 the total cost of emission of pollutant /.

c;m,,w,.‘m is the specific cost per unit of pollution produced expressed as a cost in this case.

whe ! is a pollution factor that modifies the specific cost of the poliution taking into account
re : :

the state of the environment and the current emission levels.
P is a mesure of pollution representing the intensity of the emissions, in line with the

definition of specific cost ¢ poliution

In order to find the best solution the total cost, ;g may be then minimised subject to the thermodynamic
(physical) constraints.

1.1.4 Drawbacks of Aggregated Environomic Analysis

While the internalisation of costs allows the designer to consider pollution and thermodynamic considera-

tions at the same time as economic concerns, it also introduces a lot of uncertain parameters. For example
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the capital costs depend on estimates of the interest rates and other governmental policies, and so will be
known only within limits. Operating costs depend on fuel costs that may change. Similarly the pollution

costs depend on a unit cost that is subject to change and that at the present time is very uncertain.

In order to deal with these problems a designer must consider many different options in order to understand
the sensitivity of the problem to the uncertain parameters. If costs are internalised and aggregated to form
an objective function that can be minimised the resultant optimum solution is dependent on the parameters
chosen in the aggregation process. The decision maker is then faced with questions such as :

o How sensitive is the optimum solution to changes in pollution costs ?
o At what unit pollution cost does a change in configuration occur ?

o How sensitive is the optimum solution to basic configuration ?

e What effect does utility cost have on the optimum solution ?

o Are the weights chosen to aggregate the objective reasonable ?

In order to answer such questions with a single objective optimisation algorithm many optimisations must be
performed, each with a new value for the uncertain parameter or a new aggregation weight, and this proves
costly both in time and computational effort.

In addition, decision makers and engineers both prefer a range of solutions from which they can make
a decision taking into account criteria that may not easily be introduced quantitatively in an optimisation
problem.

In the author’s opinion the true problem is a multi-objective problem, and should be posed as such. For
example capital costs, operating costs and pollution costs should each be kept separate and dealt with in a
multi-objective optimisation. Since local optima may also be of interest both for understanding the problem

domain and to provide alternative configurations a multi-modal optimisation is preferable.

Aggregation with environomic techniques can then be performed afterwards in “real time” allowing tradeoffs

between different solutions to be evaluated using traditional economic multi-criteria analysis methods.

1.2 Aim of this Work

The aim of this work has been to bring together work developed from previous projects and further de-
velop the new techniques that are needed to design a modern, optimal, integrated energy system. This

involved addressing the shortcomings of the existing methods and developing a method for treating complex
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“real-world” problems, where it is important to get as much information as possible from each simulation

evaluation.

The task has not simply been one of creating a cost and thermodynamic simulation and optimising it. Rather
it has been necessary to consider practical aspects such as speed of resolution, simulation precision, and the

quality of available input data—how to get more information from each simulation evaluation ?

This has meant :

o Developing a highly efficient multi-modal (to keep more than one solution), evolutionary multi-
objective optimisation method, that is practical to use with no need to tune parameters. This allows
uncertain data to be kept as a separate objective (for example CO; pollution rather than aggregating

an uncertain CO; cost into the objective.

o Dealing with computationally intensive and hence long simulations, necessitating the use of parallel

evaluation techniques to provide optimisation results in a user acceptable time frame.
In order to develop and demonstrate these ideas two real world test cases have been considered:

1. A distributed heating network. This was previously considered in?! using the internalised environomic
approach, so optimum values were known in advance and could be used to validate the methods. This

is treated in Chapter 5.

2. A vehicle drive train simulation that considers the optimum choice and size of drive train components
necessary to meet a given driving cycle. The choice of motive power and vehicle drivetrain is large
and is made up of many individual components, some of which are themselves complex systems. In
order to evaluate a proposed vehicle configuration, and compare it to an alternative the performance of
the vehicle must be simulated (or tested) through a test cycle which represents the proposed use of the
car, and results in a quasi-dynamic system model —a process that is computationally very intensive.

This is treated in Chapter 6.



Chapter 2

Optimisation

2.1 Introduction

The goal of optimisation in the real world of integrated energy systems design is not necessarily to find
the global optimum of a numerical model of the real system, but rather to find several good, but different,
solutions, ideally including the global optimum, that can be presented to a design engineer for discussion.
This allows the designer or decision makers to choose a solution taking into account limitations that may
exist in the numeric model and uncertainty in the available data, as well as personal preferences and criteria
that cannot be included quantitatively in a simulation.

The optimisation problems typicaily encountered in integrated energy systems design (as well as many other
- domains) are typically:

non-linear - both because they include non-linear components such as heat pumps and because of the

non-linear nature of the system connectivity;

non-contiguous - components can be turned on and off, and may have a limited range of operating

conditions;

mixed integer and real - choice of component size may be discrete - corresponding to a manufacturer’s
range of products - but operating conditions will tend to be continuous real values;

o non-differentiable - frequently systems include iterative solutions that can not be directly differenti-

ated;

e large - the number of variables makes it difficult to visuvalise results and understand the interactions;

involve unknown interactions in the sytem - frequently the best solution is not known beforehand, so

the initial search domain must be large - the simulation is frequently a black box;
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® possess many local optima - frequently the domain is fairly flat with little difference between the better
local optima and the global optimum. Consequently more than one solution is of interest, particularly

if each solution represents a different design solution.

o inherently multi-objective - for example minimisation of the investment cost, the operating costs and

more recently pollution.

This class of problem,MINLP (Mixed Integer Non-Linear Programming), forms the most difficult class of
problems to solve!'?. Various techniques exist to resolve this class of problem, but the most promising in

terms of robustness are based on genetic or evolutionary algorithmns (EAs).

Historically nearly all researchers in the field of EAs have taken natural evolution as a blueprint to design
optimisation algorithms as though this is in itself a good thing to do. Recently however, the trend has been
towards describing EAs in traditional mathematical terms by modeling the process of selection, crossover,
mutation and replacement as probability density functions describing a new set of solutions based on the
existing distribution®!. The benefit of this analysis is that proofs of convergence may be found to satisfy
mathematicians and improve the credibility of EAs, and more importantly, a whole new range of statistical

ideas and tools have become available.

In earlier work at LENI, some success was achieved with a single objective Genetic Algorithm termed
Struggle®®, developed at MIT and applied to the problems of Olsommer®, Curti?! and Pelster’®. However,
the Struggle GA proved to have several drawbacks, as did all of the GA’s studied, and these will be discussed

later in this section.

Existing multi-objective optimisation algorithms suffer from the need to tune too many parameters, as is the
case with many GAs. Nearly all focus on finding a non-dominated front to approximate the global Pareto
front, rather than finding multiple “local” non-dominated fronts.

In view of this, and in an attempt to better meet LENI’s requirements, the ideas of cluster analysis and
multi-dimensional scaling from statistical analysis were brought together with ideas from the EA world
and developed into a new multi objective multi-modal algorithm termed the Clustering Pareto Evolutionary
Algorithm (CPEA).

In this chapter some basic ideas of GAs will be introduced and the original Struggle algorithm will be
described before reviewing its disadvantages and introducing the new ideas. Multi-objective optimisation
will be briefly reviewed and the CPEA, will be presented. The clustering and multi-dimensional scaling
techniques, essential for the solution of the real world problems tackled later, will be described and the

results of several validation test problems will be presented.
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2.2 Genetic Algorithms

2.2.1 Brief Introduction to Classical GAs

In this section we briefly examine the basic operation of a GA and then look in more detail at niching
algorithms, in particular the Struggle GA, developed at MIT. For a more complete introduction to GAs and
GA theory the reader is directed to Fogel** or Deb.

Genetic algorithms were probably first proposed in the 60’s by John Holland while working on machine
learning at the University of Michigan, and the term Genetic Algorithm (or GA) became popular after the
publication of his book in 197547, Tn 1989 Goldberg*? published a book that provided a solid basis for
traditional GAs and included many sucessful applications of the GA. In recent years interest has continued
to grow with an international journal, regular conferences and much available software. Indeed GAs, and
more generally Evolutionary Algorithms (EAs), have become widely used as robust optimisation tools for
combinatorial problems and those problems that are not amenable to other forms of solution.

A traditional definition of a GA was given by Koza®’:

The genetic algorithm is a highly parallel mathematical algorithm that transforms a set (pop-
ulation) of individual mathematical objects (typically fixed-length character strings patterned
after chromosome strings), each with an associated fitness value, into a new population (i.e., the
next generation) using operations patterned after the Darwinian principle of reproduction and
survival of the fittest and after naturally occurring genetic operations (notably sexual recombi-
nation).

An EA for a particular problem can be seen as having the following S elements '6:

1. A representation for potential solutions to the problem.
2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solutions in terms of their “fit-

ness”.
4. Genetic operators that alter the composition of children.

5. Values for various parameters that the GA uses (population size, probabilities of applying genetic
operators, etc)

A single objective problem can be seen as a black box simulation that maps a vector of decision variables to

a real valued objective value. To apply the GA to the problem the decision variables are mapped to a binary
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bit string representation as illustrated in Fig. 2.1, and the objective mapped to a firness value that is some
function of the objective (scaled or inverted for example, to ensure all vatues will be positive).

Any constraints on the optimisation problem must be incorporated in the objective function using a penalty
function. Typically this transforms the objective function (2.1) to one of the form (2.2). Solutions proposed
that are infeasible for some reason may be given a very low fitness to eliminate them from the population
or may be corrected to be feasible (for example values modified after crossover and mutation in order to

produce a viable individual).

minimise fX)
subject to gi(X¥) < 0,i=1,....m,¥e Q.(2.1)
minimise (%) + P, (2.2)

where Py is the sum of the penalties for each constraint i:
p,= 2 Pyi @23
i

While many penalty functions are possible, historically logarithmic functions have been used in much of the
optimisation work at LENI.
Pg,': 1 +]0g(1 +|E,|) (24)

where E; is the error in the constraint /.

A fixed size population of potential solutions is maintained and basic GA operators such as selection,
crossover and mutation are applied 10 evolve towards an optimum solution. Each generation is replaced
by a new generation created by applying these operators (this scheme is often referred to as a simple GA).

There are many variations on this scheme, typically involving some kind of elitism (eg steady state GA)
where the best members of the current polulation are retained from one generation to the next. In general
these tend to perfrom better than simple generational GAs. The many variations will not be explained here
(see Goldberg*? for example) - rather a typical steady state GA will be described in order to understand the
ideas behind the Struggle GA, and later the CPEA, both of which have very strong elitism.

The basic scheme of a Steady State GA is shown in Fig. 2.2.

A population size is chosen and initialised randomly*. The main loop then begins, consisting of selection

*The initial population may laternatively be produced in some other way that is representative of the scarch domain
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| F(x,y) =3+ x?-xy Real Varlables

Several methods are available to
represent these in a GA. The

£9. Encodi 100 < x <100 simplest and fradittonal method
9. Encoding X, * is to discretize the value with 2
Choose a precision: 0.0001 fixed precls}op belween an upper
How many possible values are arrnd tower limit.( /f /s possible to
there between the limHs?: 200/0.601 = 200,000 directly use real values with
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$0 X can take any value from -100 to +100 in steps of
3000769, y P Integer Vartables
These pose no probiem since
Binary 1111111111111 — +108 they can be represented exaclly
Binary 000000000000000000 — -100 by a binary string.

Fig. 2.1: Simple Steady State GA - Binary Encoding

of parents, crossover of the chosen parents, mutation of the resulting offspring and replacement of the
new individual into the population. Selection may be performed in a wide variety of fashions but usually
involving a bias towards choosing parents with better fitness scores. A common method is proportional

selection, where individuals are chosen to breed in proportion to their fitness values.

Initialize the population. Selection
Random generation of a Use the score to bias the seleciion of

»l palrs
group (population) of // for crossover. Fitter individuals are more
solutions. / likely to be chosen.

[ s

Evaluate each individual. Combine the genes from 2 individuals to
Decode the information in praduce 1 or more children.

each gena and evaluate the *

model fo give each Mutation

individual a score.

Randomly change one or more gene in the
children. (Tries to keep diversity).

Replacement

Replace the worst members of the
population with the children.

Fig. 2.2: Simple Steady State GA Evolution Scheme

Similarly there are many alternative crossover methods - one commonly used method of crossover for binary

representations of solutions - single point crossover - is illustrated in Fig. 2.3,

Mutation is used to increase diversity. In typical binary encoded GA'’s this is achieved by flipping each bit
of the binary string with a small probability.
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Each colour represents a different 'gene’ 1e. a different vanable

Crossover point Crossover point

Parents

Oftspring

Fig. 2.3: Simple Steady State GA - Single Point Crossover

The loop shown in Fig. 2.2 is continued until some stopping criteria is reached or the whole population
has converged to identical copies of a single individual. In practice finding a non-arbitrary stopping criteria
is extremely difficult. Typically the optimisation is stopped after a certain number of evaluations (or gen-
erations) which is detemined by either the computer time available or when things seem to have stopped
evolving - however experience shows that populations may appear to stop evolving for a long time, before

restarting.

Simple schemes such as the one described above are surprisingly successful, however they have several
drawbacks. The rate of convergence depends on the selection pressure and the mutation rate - higher selec-
tion pressure increases exploitation (climbing local hills for example) while higher mutation rates increase
searching through the solution domain. However, mutation rates must be kept very small to avoid introduc-
ing too much random noise (after all the GA should try to be better than random search) and consequently
they tend to converge to local optima. If this convergence happens before the domain has been adequately
covered then the true global optimum may never be found since no diversity remains in the population. How-
ever, if convergence is too slow then no optima may found at all (the algorithm has effectively degenerated

to than random search?).

Much of the research into this type of GA has been on ways to keep population diversity and hence search
capacity while ensuring eventual convergence to the global optimum. In addition due to their stochastic
nature, and the initial random population, a traditional GA must be run several times (at least) in order
to determine whether the same solution is being found repeatedly, and even then there is no indication of

whether the solution is the global optimum or a strongly attractive local optimum.

Should the GA converge to a local optimum it is still difficult to determine the quality of the result obtained —
there is nothing to compare it with and repeated runs of the GA will produce different results when the

problem has many local optima.

1t should be noted that random search only works because it is elitist.
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2.2.2 Multi-Modal (Niching) Algorithms

In order to resolve some of these issues and to better meet the requirements of design engineers much
development has been centred on multi-modal algorithms, often referred to as niching GAs. These make an
attempt to find the global optimum by keeping multiple local optima in order to preserve diversity for longer
while keeping selection pressure high.

A number of methods have been proposed for niching, including Cavicchio’s (1970, Mahfoud 1992) pre-
selection (offspring can only replace one of the parents), De Jong’s?* crowding (new individuals replace

similar but less fit solutions), and several more recent methods including firness sharing®*.

Fitness sharing accomplishes niching by degrading the objective fitness of an individual according the the
presence of nearby, similar individuals. This type of niching requires a distance metric, as well as a param-
eter often referred to as the radius of the estimated niches.

Fitness sharing tends to spread the population out over multiple peaks in objective space in proportion to the
height of the peaks (ie not really niching - just spreading). GAs with proportional selection and carefully
tuned fitness sharing have been sucessfully used in solving a variety of multimodal test functions, although
frequently they require “finishing” with local hill climbing routines?® since the scaling of the objectives
tends to favour the edges of the niches.

De Jong crowding works on replacement by first selecting a sub- population at random (size controlled by
a parameter, the Crowding Factor and then finding the most similar (measured using a simple bit-by-bit

comparison) member of this sub-population to replace with the child.

However crowding and fitness both introduce more parameters into an optimisation process that already has
enough (rate of mutation, rate of crossover, selection parameters, size of population etc), all of which may

need to be tuned to solve a particular problem.

A modified version of the crowding algorithm, the Struggle GA, was developed at MIT**%3 and this has
been successfully used at LENI within several projects. This algorithm incorporates niching by replacing
the most similar member of the complete existing population with the new child only if the child has a better
fitness score.

The key differences are:

e real variable encoding - no longer necessary to discretise variables;
« blend crossover—incorporates an exploration component as well as an exploitation component;
e comparison between new individual and the complete population;

o niching - keeps multiple different solutions, which in turn helps to preserve diversity;



14 CHAPTER 2. OPTIMISATION

Initialize the population. Selection
Random generation of a ly choose 2 individuals. (a
group {(populationy of /—’ which can be used is ~ 15% time to
solutions. randomly choose 1 indivfdual then choose As
closest neighbon.
A J
Crossover

Evaluate each Individuat.

Decode the information in
each gene and evaluate the
modef to give each
individual a score.

For each gene (variable) use Blend
Crossoverto generate a new value.

NO Mutation
Or VERY little.

Replacement

Calculate the distance between the new
child and all the existing individuals and then
choose the closest (most similar). Replace il
If the new individual has a better score.

Fig. 2.4: Struggle GA - Evolutionary Scheme

The basic scheme for the Struggle GA is shown in Fig. 2.4 and an explanation of real variable encoding and

blend crossover is given in Fig. 2.5 and Fig. 2.6.

Variables are encoded directly - they may
be real or integer, continuous or with
arbitrary values.

The Ganarmes an aray
of values, each of which
may be of any type.

Continuows integer varible
14

Fig. 2.5: Real Variable Encoding

The key component of the Struggle (and equally of all the niching algorithms) is the idea of a similarity
measure between solutions (for example the euclidean distance between two points). This allows selection
pressure and more importantly replacement pressure to be applied to the process - only similar individuals
compete for existence. It does however raise the question of how to calculate a representative similarity (or
disimilarity). To date at LENI the distance has been calculated as a Euclidean distance between two solution

vectors as per (2.5).
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2.5)

where N is the dimension of the vectors ¥, and X, d, is the distance between them and w; is a weight.

While this is simple to calculate it becomes less representative as the number of dimensions increases.
Indeed, in order to solve the problems mentioned earlier it was necessary to weight a small number of the
independent variables —which introduces the problem of deciding which variables to weight, and by how
much.

2.2.3 Advantages and Disadvantages of the Struggle GA

The use of real or integer variables to represent the decision variables removes the need to encode variables
into binary representations, removing the need to decide what precision is needed and allowing the direct

manipulation of values in the crossover and mutation process.

The struggle uses strong elitism —only one individual is replaced at a time, and then only if the proposed

new solution is better. This tends to promote well separated niches, and makes the population stable.

However when the problem has many variables the definition of similarity becomes more difficult—this
has been termed the Curse of Dimensionality”. Any two randomly picked vectors in a high-dimensional
hypercube tend to have a constant distance from each other, no matter what the measure. So it seems
counter-productive to calculate distances using high dimension spaces. The effect of this was apparent from

the earlier work?' on a 38 variable prolem — when distance calculations were performed without heavily
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weighting a small number of important variables the Struggle GA performed poorly.

2.3 Multi-Objective Optimisation

2.3.1 Introduction

Multi-objective optimisation can be defined as the problem of finding (quoted from Coello Coello'® after

Gero?Y):

a vector of decision variables which satisfies constraints and optimizes a vector function whose
elements represent the objective functions. These functions form a mathematical description of
performance criteria which are usually in conflict with each other. Hence, the term “optimise”
means finding such a solution which would give the values of all the objective functions accept-
able to the designer. Formally, this can be stated as follows:

Find the vector ¥* = [x],x3,... ,x4]T which will satisfy the m inequality constraints:

G(®>0i=1,2,...,m (2.6
the p equality constraints
BE=0i=1,2,...,p eX))
and optimizes the vector function
FO =11, £, @] @8)

where ¥ = [x),x3,...,x,]7 is the vector of decision variables. In other words, we wish to de-
termine from among the set F of all numbers which satisty (2.6) and (2.7) the particular set
X},43,...,X; which yields the optimum values of all the objective functions.

In order to satisfy most design problems a compromise must usually be found among a series of conflicting
criteria. This is frequently done using some form of aggregating function to combine the multiple criteria
into one objective. Where the problem lends itself to this treatment then a single solution is produced and
no more analysis needs to be performed. In practice, though, this is rare, and decision makers prefer to have

a range of possible solutions to choose from, rather than be presented with one best solution.

There is also the evident problem that we must somehow scale the objectives in order to avoid one objective
dominating the others, and this in turn implies knowledge of each of the objective functions—something

that in most real world applications is often computationally too expensive.
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One of the most simple, and hence popular, aggregation methods is a weighted sum of the form shown in
(2.9), but this raises the question of choosing the weights (for example what weights do you give to pollution
and running costs in order to add them to investment costs?).

k
min 2 wifi(%) 2.9
i=1

where w; > (0 and
2 wi=1 (2.10)

2.3.2 Pareto Optimisation

In the 19th century Vilfredo Pareto”® formulated the idea of a Pareto optimum. A point X, € ¥ is Pareto
optimal if for every ¥ € ¥ either

A Fi® = £i6*) Q.10

iel
or, there is a least one { € [ such that

fi®) > fil¥) (2.12)

In other words, x* is Pareto optimal if there exists no feasible vector ¥ which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. The pareto front is formed by the set
of solutions that are Pareto optimal and may be continous or disjoint, convex or concave depending on the

optimisation problem.

The Pareto front is usually formed by a set of solutions called the non-dominated solutions or non-dominated
front (NDF), although it should be noted that if the objectives are non-conflicting then there will only be one
solution - not a Pareto optimal front.

The practical goal of a multi-objective optimisation is to find a suficient number of solutions on or near the
Pareto front such that the form of the tradeoff surface is discernible, and the decision maker can take an
informed decision. The surface actually found by a multi-objective optimisation is a non-dominated front

approximating the Pareto optimal front.
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2.3.3 Dominance and Ranking

If multiple objectives are not to be aggregated in some way to reduce the problem to a single objective then a
means must be found to decide if one solution is berter than another, and indeed what better actually means.

This is frequently done in terms of dominance.

The concept of dominance is key to multi-objective optimisation, and is defined by Deb2° as:

A solution xj is said to dominate the other solution X3 if both the following are true:

1. The solution £ is no worse that %3 in all objectives.

2. The solution x| is strictly better than %5 in at least one objective.

Solution £} can be said to dominate 5. Fig. 2.7(a) shows a simple population from a hypothetical two-
objective optimisation, illustrating the points that are non-dominated, and those that are dominated. The set
of points that are non-dominated form the non-dominated front (NDF) and this is shown in Fig. 2.7(a) by a

dotted line joining the non-dominated points.

However, simply dividing points into dominated and non-dominated sets is not sufficiently fine grained to
be of use in a multi-objective optimisation algorithm. Consequently a means of ordering points based on
this domanince is needed. The method is usually termed ranking and several alternative schemes have been

proposed by Goldberg*2, Fonseca and Fleming?’ and more recently that proposed by Zitzler '03.

Goldberg’s ranking has been used exclusively in this work since it does not suffer the tendency? to favour

points in the middle of the optimal front and was found to perform adequately in the tests.

The non-dominated points in the population are found and given the rank 1. Then these points are tem-
porarily removed from the population and the new non-dominating points are found and given rank 2. This
continues until all the points have a rank (or until a maximum number of ranks have been found, depending
on the requirements of the algorithm). Fig. 2.7(b) shows Goldberg’s ranking applied to the example points
from Fig. 2.7(a).

This rank can then be used either in a selection method, replacement method or, as in the CPEA, in a killing

strategy.

In the case of a single objective function this ranking scheme reduces to a simple sort on the objective value.
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Fig. 2.7: Dominance with two objectives, using Goldberg’s Ranking.

2.4 Finding Pareto fronts with EAs

Evolutionary algorithms are an obvious choice for finding Pareto fronts, since they operate with a population
of solutions. A survey of the literature reveals that multi-objective optimisation (MOO) is an active area with

several different approaches to Pareto-EA based optimisation.

There are several good reviews of the state of research in MOO, such as those produced regularly by Coello
Coello'6,!7 and that by Van Veldhuizen and Lamont®’, or earlier by Fonseca and Fleming3¢. Recently
Zitzler'93 proposed a new algorithm, the SPEA (Strength Pareto Evolutionary Archive), and compared this

- favorably with the earlier published algorithms, on a series of test problems proposed by Deb?* referred to
in the literature as Zitzler’s T1-T6.

Goldberg*? first proposed pareto based fitness assignment based on the ranking described in section 2.3.3.
His idea was taken up by Fonseca and Fleming® and ,independently, by Horn et al.*®. Fonseca used a
slightly modified ranking where an individual’s rank was equal to the number of individuals that it domi-

nates.

Horn et al.** developed a “Niched Pareto GA” making use of domination tournaments and sharing on the
non-dominated frontier. While they found that this was initially successful they also found that the perfor-
mance was very sensitive to the settings of certain paramters, in particular population size, sharing radius
and the tournament size.

56

Knowles and Corne®® proposed the Pareto Archived Evolution Strategy (PAES) which is an alternative

strategy based on local search with an archive of non-dominated solutions. Local search methods such as
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tabu were used to create new candidate solutions, and the objective space subdivided into a grid to encourage
a good distribution along the non-dominated front. This algorithm was found®> 10 be superior to the NSGA
or Horn and Nafpliotis, and the SPEA for all but a highly deceptive problem (Zitzler’s T5). As such this
has been suggested as a baseline comparison algorithm, and also as an alternative where local search is

appropriate.

Andersson and Wallace* proposed a modification of the Struggle GA for multi-objective optimisation,
termed the Multi Objective Struggle Genetic Algorithm (MOSGA), that incorporated the struggle crowd-

ing algorithm as described previously with the Pareto ranking used by Fonseca and Fleming*®.

New individuals were produced with blend crossover and the most similar solution in objective space was
replaced by the new individual if the new individual dominates. A variation was also proposed in which
the crowding algorithm was performed on an equally weighted combination of variable and objective space,
and this was found to improve retention of multiple solutions. There was no need to tune parameters, and

the EA seemed to perform better than many of the other published methods.

Recently Deb et al.?” proposed the “NSGA-II”, an update of their non-dominated sorting algorithm, that
makes use of the idea of ranking and crowding in objective space, together with tournament selection and
elitism in order to promote a distribution of solutions on the non-dominated front. Compared to PAES this
seems to produce a better distribution of points along the non-dominated front, and better convergence to

the Pareto front.

A non-generational, elitist MOO has been proposed by Borges and Barbosa'! that ranks each point on the
number of other points dominated and the local solution density in objective space, F (i} = (1+D(i))P(1 +
N(i)) where D(i) is the domination measure for solution i and N(i) is the neighbourhood density. New
points are generated from parents selected randomly. The worst point in the population is replaced with the

new point only if its domination score or its density is better. This idea is similar to the MOSGA*.

Deb® proposed a series of two objective problems designed to test different aspects of a MOO’s perfor-
mance - ability to find diverse pareto-optimal (PO) fronts, ability to converge to the global PO front and
ability to handle convex, non-convex or discontinuous PO fronts. An important observation made by Deb is
that assigning fitness proportional to the number of points dominated as done in Zitzler '%% and Fonseca and
Fleming 3, favors solutions in the middle of the pareto front if the pareto front is concave.

Coello and Christiansen'® propose a method based on aggregating different weighted objectives and per-

forming multiple optimisations.

While there is evidently a great deal of variation in the approaches, it is worth summarising the following

points:

» All except the MOSGA appear to use EA schemes with binary coded variables, in contrast to using
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real variables.

* Most use a population-replacing generational approach, where at each generation an entire new pop-
ulation, is generated from the previous. To avoid losing non-dominated solutions, some algorithms
use “‘elitism”, or marking the non-dominated solutions as a “special” population that will persist from
generation to generation. The algorithms with elitism consistently do better than those without.

They try to find only the global Pareto-optimal set of solutions for the problem, and tend to lose other
local optima.

Many use the concept of “fitness sharing”, in the objective domain to thin the points on the non-
dominated surface. Unfortunately, while similar points in parameter space will usually produce similar

results in objective space, the converse is not usually true —hence diversity in parameter space is lost.

There is little discussion on multi-modality in the MOO literature. In the practical world there is a need
for a technique that will find several “locally” non-dominated fronts, representing different technological
solutions to the problem at hand. There is a similar need for a robust technique that does not require tuning
to each new problem.

2.5 Clustering Pareto Evolutionary Algorithm

The motivation behind the CPEA was to develop a MOO method that required little or no tuning, and be-
haved well on a wide range of problems, producing a good distribution of solutions along the non-dominated
frontier, while simultaneously keeping a distribution of solutions in variable space. In some problems this
means finding multiple locally non-dominated fronts, while in others, different regions of the variable do-
main may contribute to the global Pareto front.

2.5.1 Description of Algorithm

In the CPEA, multi-objective optimisation is integrated with clustering and multi-dimensional scaling con-
cepts from statistical multivariate analysis. In contrast to many of the algorithms mentioned above, clustering
is in parameter space to try 1o preserve local optima, and a “breed and die” population control is employed

which allows the population to expand over the non-dominated fronts.

There are two separate processes which operate on the population of solutions. The first produces new
potential solutions, clusters and ranks the population. The second tries to remove individuals that are deemed
poor, and when absolutely necessary (due to over population) thins the population.

The algorithm begins as follows:
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1. An initial population of p; individuals is randomly generated and the objectives for each individual

are evaluated®.
2. The population is clustered into n, clusters as described below. If n; = 1 then there is no clustering®.

3. A dominance matrix is determined to identify which points are dominated by which others. If there is

already a dominance matrix it is updated.
4. The individuals in each cluster are ranked using Goldberg’s ranking scheme.
5. Each cluster is given the chance to produce n, children. A single child is created by the following
process:
e A parent is chosen at random from the cluster in question.

o A decision is made as to whether the second parent will come from this cluster, or from another.

Throughout this work 10% of the time the second parent was chosen from another cluster*.

e A child is created from the two parents using crossover and mutation as described below.

6. Each new individual is inserted into the existing population provided that it is not identical to an

existing point.
7. The new individuals are evaluated.

8. If the population of a cluster is greater than a pre-defined limit, nyqy cfustersize, then a killing and

thinning strategy is applied.

9. Steps 2 to 8 are repeated until a maximum number of problem evaluations neyayarions has been reached.

Clustering Policy. Clustering could be applied to all or any fixed subset of the variables. Before clustering,
the dimensions found to have zero standard deviation were removed from the set of variables to cluster. The
remaining variables were then adjusted to have a zero mean, and could be left in original units or normalised
either by the standard deviation or by the range of the data.

Following this step a Multi Dimensional Scaling (MDS) (see 3.2) technique could, if desired, be applied to
reduce the number of dimensions chosen for clustering to a manageable size, typically in this work chosen

as two so that plots of the two principal components could be produced.

Where the clustering technique permitted, the automatic detection of “natural” clusters in the data this could
also be performed, and the number of clusters set to be one more than apparently present in the data. This

#In the CPEA the initial population is chosen to cover the search domain, since the first killing phase will reducc the population
O Puniin_ctuster size

$The valuc for iy may be detcrmined automatically.

*An alternative idea was also considered, making use of the fuzzy degree of membership of the individual in cach of the
clusters. This was applicable only when using fuzzy c-means clustering and has not been fully investigated in light of the success
of the simpler method, although preliminary results indicated similar performance on the test problems,
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was done to promote the generation of new clusters, and hence exploration. Alternatively the number of
clusters could be fixed.

Crossover and Mutation. Two types of crossover were implemented - real variable blend crossover, de-
scribed previously in Fig. 2.6, and real variable uniform crossover (also referred to as naive crossover by

Deb?%, pg 108). A real variable mutation operator was implemented as shown in (2.13) (see Deb?6, pg 119).

YD = 4D 4 vgo,0,) (2.13)

where N(0,0;) represents a zero mean normal probability distribution with variance o;. The value of o; is
chosen as 10% of the variation in the cluster, o; = 0.1 maxx; — minx; and then trimmed to be within the

limits for each variable.

The blend crossover produces children in the hypercube formed by the two parents, and in order to search
the domain space relies on a large variation in the population from which the parents are chosen. If the two

parents have identical values for one of the variables, say x; =c, then the offspring will similarly have x; = c.

Fig. 2.8(a) and Fig. 2.8(b) show the distribution of 80 offspring produced by blend crossover with and
without mutation. The two parents were chosen from the sample set of 20 points used earlier in this section,

with all the points assumed to be in the same cluster.

Fig. 2.8(c) and Fig. 2.8(d) show the distribution produced by uniform crossover with and without mutation,

from the same two parents.

The uniform crossover produces new points spread around each of the vertices of the hypercube formed by
the two parents. This does not cover the domain adequately on its own and relies heavily on the mutation
operator for exploration.

Fig. 2.8 also shows that the mutation operator can greatly increase the domain explored with blend crossover
when the variables are aligned along one of the principal axes. The blend crossover produces points uni-
formly in the hypercube determined by the parents. The mutation effectively increases the size of the hyper-

cube.

Clearly it is necessary to use mutation with the uniform crossover, but it is not so clear with the blend
crossover. Tests performed by Leyland et al.%! showed that the uniform crossover with mutation consistently

outperformed blend crossover on the set of problems used by Zitzler '%%.

On Zitzler’s T4 the blend crossover with mutation took on average twice as long to converge to the opti-

mum non-dominated front as uniform crossover with mutation. Blend crossover without mutation did not

Isee later discussion of results in section 4.1.5 for a description of this problem
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Fig. 2.8: Tllustration of the distribution of offspring when using real variable blend crossover, and real

variable uniform crossover, together with mutation.

consistently find the global Pareto front, even when allowed to run for 4 times the maximum number of

iterations taken by the uniform crossover with mutation.

However, the preliminary analysis suggests that this may be due to inherent properties of the problem, and

that the best crossover and mutation method may be problem dependent — an idea that has lead to the idea

of evolving operator choice %63,

In light of this both crossover methods were tested in conjunction with clustering, and the results are dis-

cussed later.
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Killing Strategy. It is the killing strategy that applies the majority of the selection pressure. If a cluster
has more than #,.c_cusrer_size POINLS :

1. If the maximum rank r in a cluster is greater than r,,,. (usually this will be set to 1) then all of the
points with the highest (worst) rank are removed. This is repeated until the number of points in the

cluster is less than e cfuster size OF UNtil r = rypay.

2. If the number of points is still greater than My cfusrer_size and a thinning mechanism is active then it is

applied.

Without thinning the population grows continually once all the individuals are ranked r,,q, or better. While
this can be tolerated to a certain extent, when populations become larger that than approximately 500 indi-
viduals the ranking and clustering take an unacceptable timel,

The question of how to thin is clearly very important since it directly affects the non-dominated front. three

dimensionalZitzler '*3

used clustering in the objective space to thin points from the non-dominated front.
The population was clustered into n.j,g..s clusters, the individual closest to the centroid of each cluster was
considered representative and all the others removed. However the Pareto front will clearly lie at one edge
of each cluster and not at the centroid - so the best points (closest to true Pareto front) are systematically

removed and this is clearly not ideal.

Two Dimensional Thinning. The thinning used in the CPEA on two-dimensional problems was proposed
by Leyland et al.®'.

In each cluster that has more than gy ctuser size POINLS

1. Sort the points on the objectives.

2. Calculate the distance between each pair of points where a pair of points is separated by nguas — 2
intermediate points, and find the shortest section. This represents the shortest section of length ngu¢
points on the non-dominated front.

3. Regression fit a quadratic to the ng,q points.

4. Find all the points behind the quadratic. From these points find and remove the point who’s two

neighbours are the closest together.

5. Repeat steps ! to 4 until the cluster contains Mmax_clusrer_size POINS.

lIThe current implementation is in MATLAB, an interpreted vector oriented language. A dramatic speed increase could be
achieved by re-implementing the CPEA in a compiled language such as C or C++ but there would still be a limiting population size
although it would be much bigger.
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This procedure adds selection pressure since the point removed is chosen from among the points farthest

from the non-dominated front, and improves coverage since it removes the point that is in the densest region.

Three Dimensional Thinning. In three dimensions or more this method becomes impractical as the popu-
lation can no longer be sorted along one objective, and it takes an exponentially increasing number of points
to fit a quadratic surface. However the over-population problem becomes even worse with more objectives

since it becomes easier to find new non-dominated points.

The following thinning stategy, based on that used by Zitzler '*®, was used for the three objective problem

considered in chapter 5.

Within each cluster that has more than nyqy_ctuster_gize POINtS:

1. Cluster the objectives intO Mygux_fusrer_size SUb-clusters.

2. In each sub-cluster with more than 1 point, find the point closest to the cluster centre®. This point is

taken as the representative point for the cluster.
3. Remove all the points except the representative point from the sub-cluster.

4. repeat 2 and 3 for all of the sub-clusters.
This technique has demonstrated some limited success, although is far from ideal. Unfortunately this method
favors points behind the POF**.

and further work in this area is needed.

Parailel Implementation. The time to run the simulation models used in the later test cases of Chapters
3 and 4 varied from 0.2 seconds per evaluation for the district heating problem to 20 seconds for the vehicle
drive train (on a 700MHz PC).

In order to optimise these problems in a reasonable time it was necessary to implement a parallel simulation

evaluation strategy.

This is a simple PVM® based master slave configuration in which:

1. The CPEA master node produces a series of new solutions to evaluate, and placed them in a queue, to

be sent out to available slaves.

*The cluster centrc is available from the fuzzy clustering algorithm
**This is a problem with Zitzler's thinning.
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2. Whenever an evaluated solution was returned from a slave the population was ranked, killed and
thinned.

3. When a slave became available it was sent the next solution in the queue, to evaluate and return.

The number of slaves that can effectively be used with this structure is limited by the time to rank, kill, thin
and reproduce, all of which is handled by the master. Of these the ranking and thinning are the most time

consuming.

There is equally a network overhead — if the problem is extremeley quick to solve then the network overhead
becomes important with most of the time sent sending and receiving information between nodes. Conse-
quently, for this sytem to be of applicable the simulation must take longer than the ranking, killing, thinning
and reproduction stages.

For the majority of real world problems this will be the case, even with the relatively slow implementation
of CPEA in MATLAB.

Initiatly the computers used as slaves were not dedicated machines, but rather were individual computers
in the laboratory. A system was implemented to launch slaves as computers became available (for example
when turned on) and at set times (overnight) and the scheduling system was made robust — if a computer
was turned off while processing a job, the job was automatically re-scheduled on an available machine. This
was found necessary in the laboratory environment where machines were periodically turned off by users.

An added benefit of this mechanism was observed in the vehicle drive train simulation. When certain
infeasible solutions were presented to the ADVISOR model the slave crashed. In this event the job was
re-submitted three times and if it crashed each time the solution was marked as infeasible and effectively
removed from the population. This was found necessary as the complexity of the problem made it unable to
identify all the possible solutions.

During the work a cluster of 22 Linux machines became available, and the parallel system was modified
to work with these — these were dedicated, robust machines and permitted a dramatic increase in solution

times.

2.5.2 Notes on the CPEA

o The clustering is a key element of the algorithm, and several techniques were investigated before
finding a method that provided a good clustering behaviour along with satisfactory computational

performance. These are discussed in more detail below in 3.

o The number of clusters could be pre-defined or, if the clustering algorithm permitted, could be deter-
mined automatically. If chosen automatically, then the number of clusters was set to one more than
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the number of “natural” clusters identified, to encourage the development of new solutions.

In one iteration, each cluster can breed several times. Practically, this is because the reclustering and
ranking at the beginning of each iteration is very slow. Perhaps ideally, the reclustering could be
performed after each birth and death.

The algorithm gives an equal chance of breeding to each cluster, and not to each individual. This is
very important for the performance of the algorithm, as otherwise large clusters (which may have al-
ready finished evolving) get far more process time than smaller clusters (which are probably evolving

more rapidly).

The choice of the second parent favours a parent in the same cluster as the first, and small clusters are
more likely to chose a local parent than large ones, thus favouring the growth and evolution of small

clusters. If the parent is non-local, the parent’s cluster is chosen randomly.

Because more than one point can be removed by thinning, the population can, and occasionally does,
decrease. The long term trend, however, is for a growing population limited by a predetermined
maximum — generally as large as computing resources can handle.



Chapter 3

Clustering

3.1 Introduction

Cluster analysis is a way to partition a set of objects into groups, or clusters in such a way that the profiles
of objects in the same cluster are very similar, and the profiles of objects in different clusters are quite
distinct. The more distinct the clusters the “better” or more “crisp” the clusters. The goal of introducing
clustering was to deal with the difficulties encountered while optimising problems with many variables using

algorithms that have a concept of distance between solutions, such as the StruggleGA.

Exactly what constitutes a cluster is not well defined, and in many cases clusters are not in fact well separated
from one another. Considering Fig. 3.1 the intuitive answer (allowing nested clusters) is that there are two
clusters, each with three sub clusters.

However, it is equally reasonable to classify them as only two clusters, or as six clusters, or even as four.
The preference for the human visual system to classify them in one manner is not necessarily justified. In

general it is extremely difficult to determine the true number of clusters present in a data set.

The clustering in the CPEA is one of the key issues. Many different methods of clustering data were found
in the literature, and in order to find a suitable method for the clustering phase of the optimisation algorithm
several promising methods were implemented and tested on sample problems. The methods considered are
detailed below.

29
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Fig. 3.1: Example of 20 points showing 4 different ways they may be clustered.

3.2 Multi-Dimensional Scaling

The problems typically encountered in system integration have many very different variables. This makes it

difficult to visualise and inspect the results of an optimisation, even without introducing multiple objectives.

The curse of dimensionality’ makes it counter-productive to cluster on high dimension spaces, as well as

time consuming. It was thus essential to find a means of dealing with the dimensionality of problems in the

clustering, and hence in the similarity measurement>2.

Multi-dimensional scaling ! consists of a variety of statistical techniques aimed at reducing the dimension of

a set of data points with a minimum of information loss. Classical multi-dimensional scaling is the principal

method used here. This aims to find a mapping from N dimensional space to P dimensional space where
P < N and typically P is 2 or 3 so that results can be shown graphically. The mapping attempts to keep the
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distance between each pair of points in mapped space as close as possible to the distance in the original space.
In addition the order of distances should be retained. Although there are several alternative methods for
doing this, including optimisation®' and non-linear neural net approaches®, a simple and effective method
is principal component analysis (PCA), also referred to as the Karhunan-Loeve transform (see Jackson™ or
Geva®!). This is the method that is used in this work and allows the reduction of dimension from N to P
with a minimum squared error. It also permits the reconstruction of an estimate of the N original dimensions
from the reduced set P.

3.3 Distance Measures

In order to perform any kind of clustering a similarity or disimilarity metric is needed. The attributes of the
objects (in our case the variables forming the solution) can be of three types :

1. binary - two values

2. discrete - a finite number of values

3. continuous - real values
and can be measured on four different scales:

1. Nominal - qualitative where the values are just different “names”
2. Ordinal - qualititive where the values can be ordered good, better, best etc.
3. Interval - quantitative where the difference is meaningful e.g. objects rated on a scale of 1 to 10

4. Ratio - quantitative where the scale has an absolute zero so that ratios are meaningful.

The problems we are interested in typically have a mixture of variables that are on an ordinal scale (represent
the choice of components) or ratio scale (component operating parameters), and consequently the choice of

distance measure must be made with care.

Similarity of Binary Vectors Many possible measures, or similarity coefficients, exist for binary vectors,
usually having a value between 0 and 1, where 1 indicates vectors that are identical and 0 completely
disimilar. Tn addition many rationales exist for deciding which is appropriate (see '3, for more details).

The comparison of two binary vectors, p and g, leads to four quantities:
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o My = the number of positions where p was 0 and q was |
e M)y = the number of positions where p was 1 and q was 0
e Mpp = the number of positions where p was 0 and q was 0

e My = the number of positions where p was 1 and q was |

The simplest similarity coefficient, SMC, is the simple matching coefficient:

My + Moo
SMC = 3.
Mo+ Mg+ M+ M (

while another common measure is the Jaccard coefficient (also referred to as the Hamming distance %) :

My

Pl ) S 3.2
Mo +Mp+ My 32

The SMC equates similarity with the total number of matches, while J considers only matches on one’s as

important. The relevance depends on the case in question.

Similarity of Real Variables in the Solution Vector Several similarity measures exist for real values -
the most common one being the Euclidean distance. This can in fact be considered as special case of the

Minkowski metric, defined as :

d v
pij= (2 [Xik—xj/.-[r) (3.3)
=

where r is a parameter, d is the dimension of the data object and x;; and x  are respectively the K compo-
nents of the i* and i objects, x; and x;.

The parameter r frequently takes one of the following:

e r=1. The City Block (Manhattan, L; norm) distance.
e r =2, Euclidean distance - the most commonly used measure.

o r=0o_ The L norm distance is equivalent to the maximum difference between any component of the

vectors.



3.4. CLUSTERING TECHNIQUES 33

Similarity of Integer Variables in the Solution Vector. Frequently a variable is an integer that represents
a choice of component type, for example vehicle engine type may be diesel, petrol, gas or electric. However,
in this example the difference between any two of these types of engine should be equivalent. Consequently
the dissimilarity between two values can be measured only on a nominal scale and care must be taken to
ensure this.

Aggregation of different variable types. A common problem is the mixture of different variable types in
the same problem. How does a disimilarity measure cope with this? One approach that was adopted for an
earlier project® is to group the real parameters together with the controlling integers. For example engine
type would be grouped with engine size, and power. A solution vector representing a vehicle drive train with
a gas engine may then be compared with a vehicle containing an electric motor using a nominal scale, while

two alternative electric motor vehicles would be compared on a ratio scale using the relevant parameters.

A drawback of this approach is the added complication of calculating dissimilarities — each pair of object
types may need a different dissimilarity function, together with the implicit creation of clusters — two

individual deemed different on a nominal scale must be in different clusters.

An alternative is to weight the importance of the integer variables in the solution vector so that they dominate
the continuous parameters in the dissimilarity calculation.

3.4 Clustering Techniques

3.4.1 Hierarchical Clustering

Hierarchical clustering methods may be either divisive or agglomerative. Divisive methods start with one
cluster and repeatedly split it into sub clusters, and agglomerative methods start with every point as a sin-
gleton cluster then merge pairs of clusters. They typically make use of a proximity graph - the matrix of

dissimilarities between each pair of points.

A simple agglomerative clustering algorithm, known as the Lance-Williams > algorithm is:

1. Create n singleton clusters, one for each of the n points and calculate the initial proximity matrix as

the disimilarity matrix.
2. Merge the closest (most similar) two clusters.
3. Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.

4. Repeat steps 2 and 3 until only a single cluster remains.
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Fig. 3.2: Sample dendrogram for the sample 20 point dataset obtained with Ward linkage

The key element is the calculation of the distance between clusters, or linkage, and this is where techniques
differ. Any of the cluster proximity calculations used may be defined using the Lance-Williams formula for
the proximity between clusters Q and R, where R has been formed by merging clusters A and B:

p(R7 Q) = (IAP(A,Q) +GBP(B>Q)+SP(A’Q) +'Y|P(A,Q) “P(B,Q)I (34)

where a4, o, B and y depend upon the type of linkage calculation, as described below and in Table 3.1.
The result of this linkage process can best be described on a dendrogram, such as that in Fig. 3.2 for the data
from Fig. 3.1. once the linkage has been established the clusters can be obtained by cutting the tree where

desired.

Single Linkage. This is the nearest neighbour or minimum distance method, where two clusters are
merged based on the nearest two points. This is very quick to calculate but tends to result in the merg-

ing of ill-defined clusters. In particular this method tends to find “line” clusters.
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Linkage Type as ap B Y
Single linkage 3 i 0 -4
Complete linkage i : 0 i
Ward linkage ,—’R—”% %% m 0

Table 3.1: Several linkage methods tested with hierarchical linkage

Complete Linkage. Also called farthest neighbour or maximum distance method. Two clusters are
merged based on the farthest two points in the clusters. Again this is quick to calculate but tends to favor

smaller, tighter clusters.

Ward Linkage. This method corresponds to merging the two clusters which minimise the information
loss in terms of a the sum of the squared errors, defined as

K D
ESS = 2 2(.\‘,']'—)-’](/‘)2 3.5)

=15/€C; j=1
where K is the number of clusters, x; is point { in cluster k and D is the number of dimension of x.

This is the same objective that is used in k-means clustering as described later, however the objective is
applied at each merge step rather than on the overall population. There is a tendency to favor spherical

clusters.

Clustering the initial example of 20 points demonstrates some of the differences in the methods. Asking for
6 clusters gives the clusters shown in Fig. 3.3(a) for Ward and complete linkage but Fig. 3.3(b) for single
linkage. Asking for 4 clusters gives Fig. 3.4(a) for ward and single linkage, but Fig. 3.4(b) for complete
linkage.

Ward linkage appeared the most promising of the three hierarchical methods, although it requires the largest

computational effort.

Choosing the Number of Clusters with Hierarchical Methods. It is not simple to automatically decide
the number of clusters when using hierarchical clustering methods. A measure of inconsistency is suggested
in the MATLAB statistics toolbox* that compares link length of adjacent links. Clusters are then formed
by breaking links which have a higher inconsistency than a given value. While this may seem intuitive it is
based on a comparison of link length over a relatively small number of link levels and was later found to

make clusters that were unstable when adding points.
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Fig. 3.4: Original 20 sample points clustered with ward and simple linkage compared to complete linkage
hierarchical clustering, merging each in each case until 4 clusters are left.

3.4.2 Mutual Neighbourhood Value Hierarchical Clustering

This is a computationally efficient method of unsupervised multidimensional hierarchical clustering pro-

posed by Dugad and Ahuja® that is deterministic as well as able to detect non-spherical, non-compact and
density based clusters. This means it is independent of the order points are presented, does not require

starting centroids and will find, for example, donut shaped clusters.
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The algorithm considers the mutual neighbourhood value (MNV) between two points. If P and Q are two

points in a given data set. If P is the m™ nearest neighbour of Q and Q is the n** nearest neighbour of P, then
the MNV between P and Q is defined as m +-n.

A parameter M7 is used to decide if points are neighbours using the following conditions:

1. mnv(Q,P) < My

2. There exists no point K such that mnv(Q,K) < mnv(Q,P) but d(Q,K) > d(Q,P). A point
P violating this constraint is called invalid with respect to Q.

3. Qs not to be invalid with respect to P.

All points Q such that mav(P,Q) < M7 are said to belong to the neighbourhood of P.

The method was implemented in c++ for speed using the algorithm as described in2°:

1. Sort the distance pairs

. Find the mnvs

wN

. Sort the mnvs
. Make neighbours

. Find connected components

[« SRV N N

. Postprocess

By changing the value of My and graphing the results the natural number of clusters in the data set can be
identified by “flat” regions in the graph, as illustrated in Fig. 3.5.

The MNYV clustering algorithm is sensitive to both the density and the distribution of points.

3.43 K-Means Clustering

This is a common partition clustering method that tries to create an optimum partioning of the set of data
points into K clusters. There are a number of variations of this method (K-Medoid for example) but the
K-Means will be described here since it is important in understanding the final method chosen (see 3.4.4).
This is the method used by the SPEA to archive solutions, and so is worth describing here. The technique
is based on the idea that a cluster can be represented by a central point, that in most cases will not be an
existing data point. The basic algorithm is :

1. Select K points as the initial centroids.
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Fig. 3.5: MNV Clustering applied to an example problem.

2. Assign all points to the closest centroid.
3. Recalculate the centroid of each cluster.

4. Repeat steps 2 and 3 until the centroids no longer change.

This process will always converge, but in general will converge to a local optimum. The number of iterations
required to converge is typically small (5-10 iterations®®). The process minimises the sum of the squared
distances of each point from the “center” of the cluster.

K

Error = 2 2 |¥— ‘-',-|2 = i é (x; —c,‘j)2 (3.6)

=1X€C; 1=13€C; j=1

By differentiating the Error and setting it to zero, the minimum for a cluster p can be shown to be ((3.7))

G=— Y% )
Mo ¢,

the mean of the points in the cluster C,.
The biggest difficulty with this algorithm is the choice of the K initial starting centres. Although the simplest

method is to randomly choose the K centres, if they are not spread satisfactorily across the clusters some

may be missed. This also means that re-clustering with k-means may find different clusters.



3.4. CLUSTERING TECHNIQUES 39

K-means clustering is ecomonic in terms of computational effort but as with ward clustering tends to favor
well separated, equally sized spherical clusters. It also has the advantage that it can be started from the
existing cluster centres, greately improving cluster stability.

3.4.4 Fuzzy C-Means Clustering

In common with the K-means algorithm, the fuzzy c-means algorithm also requires initial cluster centroids.

The fuzzy clustering algorithm used was first proposed by Dunn0 and Bezdek® and is an iterative process

that minimizes the function :
n K ” 5
J= Wil —v; (3.8)

where n is the number of data points, K is the number of clusters, x; is the jth data point, v; is the ith cluster
centre, ji;; is the degree of membership of the jth data in the ith cluster, and m is a constant (fixed at 1.4 for
all of this work).

The degree of membership is defined as

1
2/(m—1)
K X j—V;

Given a number of clusters ¢ and and the initial centres this will converge to a local minimum.

Mij = (3.9

In practice this process is quite quick for a reasonable size (less than 300 individuals) population, and

produces results equivalent to k-means clustering with the added information about membership*.

Cluster Center Estimation. In order to find reproducibie and stable clusters it was necessary to choose

the initial centroids in a better than random manner.

This was done using a technique proposed by Chiu'?. This is a simple but effective algorithm for estimating
the number and, more importantly, the initial location of cluster centers. The method is relatively quick and
does not use an iterative non-linear optimisation, so is of linear complexity with the dimension but square

with the number of points (requires the calculation of distances between all the points).

*This was originally thought to be of use elsewhere in the algorithm for choice of parents for preproduction, but the adequacy
of the simpler strategy meant that this possibility has not been fully investigated.
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The method operates on a normalised space and considers each data point as a potential cluster center, and
defines a measure of the potential P; of data point x;, from the set of n data points {x|,x2,...,%,} as :

n 2
P = 2 exp_“”'r'_’\'f” 3.10)
=1
where 4
a= = 3.11)

and where r,, is a positive constant, set to 0.25 in the current work. Using the square of the distance clearly

reduces the work done.

After calculating the potential for each point the point x] with the largest potential P value is chosen as the

first cluster centre, and the potential of each remaining point updated as :

P = P, — P} exp~ bl (3.12)
where
4
p=— (3.13)
"y

and ry, is again a positive constant, set to 1.257, as in'*.

The points near the first cluster center will have greatly reduced potential and will be unlikely to be chosen
as the next cluster centre. This process is repeated until the remaining potential of all the data points are
below a fraction of the potential of the first cluster center P *. A value of 0.15 was chosen as the fraction for
this work as per Chiu', and in addition to this a stopping criterion acceptance and rejection criteria were

applied as explained in Chiu'4,

Determining the number of clusters. A method of determining the most valid number of clusters was

still needed and a survey of the literature produced several methods for use with fuzzy clustering !0!8:80,

Several of these methods were implemented and the most stable was found to be a simple ratio of compact-

o1

ness and separation, S proposed by "' and defined as:

- (12
s= 2f='27:"[’gjl|vi_l§l| (3.14)
nmin,-,ij,»—ij

2. . . .
It should be noted that Hv, —xj“ is the Euclidean distance between the cluster centre and each point, and
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this also suffers when the number of dimensions increases.

In order to identify the correct number of clusters the population was' clustered with number of clusters ¢
taken from 2 to ¢y (fixed at 12 for this work). The validity criterion S was then calculated for each ¢. The
minimum value of § indicates the most likely number of clusters.

3.5 Comparison of Clustering Stability

Three of the most promising clustering methods were evaluated in a simple test to determine the stability of
the clusters when adding points:

e Ward linkage hierarchical clustering

o MNV clustering

e c-means fuzzy clustering

The c-means algorithm was chosen in favor of the kmeans simply because the added membership informa-

tion for each point in each cluster was considered of potential value in the selection strategy of the CPEA*.

The initial set of 20 sample points was clustered with each of the methods, then three additional points were
added, one at a time, re-clustering after each addition.

Fig. 3.6,Fig. 3.7 and Fig. 3.8 show the initial clusters and the subsequent new clusters after each point has
been added, for each of the algorithms.

It should be remembered that the goal of introducing clustering in the CPEA was twofold —to preserve
diversity, allowing solutions in “difficult” areas to develop with a degree of protection, and to find multiple
different solutions. For this it is better to favour more clusters rather than less, provided that the clusters
remain stable.

By these criteria both the Ward and the c-means clustering algorithm produced acceptable, although differ-
ent, results.

However, the MNV algorithm, despite being promising on paper, demonstrated a lack of stability of the
clusters, and it proved difficult to establish the likely number of clusters that were present.

If clusters are periodically merged because of the addition of a new point the CPEA will rank them together
and remove the dominated points, never allowing “weaker” clusters the chance to develop. In problems

*The kmeans algorithm in conjunction with a cluster validity measure based on the ratio of inter to intra cluster distance would
be expected to produce the same clusters as the cmeans algorithm and § measure used here.
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Fig. 3.6: Original 20 sample points clustered with Ward hierarchical clustering, followed by the impact of

adding new points one at a time and reclustering.

where the eventual best solutions are difficult to find this would be expected to result in very poor perfor-

mance, and in the problems with multiple local pareto optimal fronts corresponding to clusters would result

in instability of the fronts and probable loss of some altogether.

Examining Fig. 3.7(b) and Fig. 3.7(c) it can be seen that part of the large cluster on the left of the figure is
merged with the cluster on the right when the first new point is added to the set, but then separated again

when the the second point is added. Addition of the third point result in a separation into three clusters.

Inspection would suggest that this is not desirable, and indeed on later tests on the Himmelbau problem (see
section 4.1.3 below) the MNV algorithm did not find all four clusters. Periodic insertion of a new point led

to the merging of clusters and subsequent deletion of the weaker, local optimum altogether.
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Chapter 4

Test Problems

4.1 Introduction

An earlier version of the CPEA without thinning was applied to several test problems and the results pre-
sented in Molyneaux et al. %

The CPEA without clustering has since been applied to more test problems taken from the literature '03:10425

in order to compare in more detail its performance with existing MOO algorithms. In particular the tests

103

used by Zitzler ™ in his thesis ( referred to as T1-T6) were used heavily since the results for the SPEA were

available online’, and because it is among the best algorithms currently published.

_The results of these tests®' show that the CPEA outperforms the SPEA, both in speed and in convergence
to the Pareto front. A speed increase of a factor of > 4 was achieved, conservatively measured as the mean
number of evaluations for the worst point in the CPEA population to be better than the best point in the
SPEA population. These preliminary results would suggest that the CPEA is clearly better than the current
existing algorithms on these types of problem, which do not inherently require clustering to solve.

Most of the test problems found in the literature deal with problems of finding a well distributed solution set
approximating the global Pareto optimal front, and introduce difficulties such as deception, multiple locally
non-dominated fronts, an uneven distribution of solutions along the Pareto front or a bias towards solution

density near a local optima.
In order to test the clustering capability of the CPEA specifically multi-modal problems were needed.

The following tests were used to investigate the different aspects of the CPEA.

Thup:/iwww.tik.cc.cthz.ch/ zitzler/

45
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1. Schaffers 1D®2 - This is a simple example to demonstrate the basic behaviour of the CPEA.

2. Sin-Cos - A simple one dimensional, two objective problem that was constructed to demonstrate the
behaviour of the CPEA with multiple non dominated fronts corresponding to multiple local minima

in each objective.

3. Himmelbau - A two objective problem constructed from the Himmelbau function, used previously to

64,45

test single objective niching and multi-modal algorithms . This was used extensively to develop

and test different clustering techniques.

4. Deb’s bi-modal - A difficult two objective problem from Deb?’ used to compare the multi-modal ca-
pability of the clustering technique to the existing MOO methods. This was also treated by Andersson
etal.,

5. Zitler’s T4 - A difficult problem with 10° local optima and 10 variables, already used to compare
the performance of the CPEA without clustering®. This was chosen in order to test the dimension
reduction technique, and to observe the effect of clustering on performance on a difficult problem.

The test problems were limited to one and two objective minimisations, both to aid visualisation and because
very few three or more objective test problems have been treated in the literature.
The following sections discuss these problems in more detail and present the optimisation results.

All of the tests were run with blend crossover and real normal mutation unless specifically stated otherwise.

4.1.1 Schaffers 1D - Single Variable, Single Pareto Front

This is a simple one dimensional test with 2 objectives, as proposed by Schaffer®” and used in48:1038¢ The

problem is :

Minimise f; =x* “.1
Minimise f; = (x—2)°

within the domain —1000 < x < 1000.
Parameters used were: pinirir=10, Puin_ctuster size= V05 Pmax_ctuster 5ize=10 , Repugrers=1, hence no clustering.

The results from a typical run after 1000 evaluations are shown in Fig. 4.1. Fig. 4.1(a) shows the distribution
of points and the corresponding fi and f, values. Fig. 4.1(b) shows the Pareto front in objective space.



4.1. INTRODUCTION 47

-as [] [T ] i ] i1 ' ] 0 ] 3 . [

() /) andl fy va v (b) The Pareto front and the final population.

Fig. 4.1: Schaffer's one dimensional problem.
412 Sin-Cos - Single Variable, Multiple Local Pareto Fronts

To demonstrate the local optima preserving features of the algorithm, the one dimensional function below
was constructed.

Minimisef; = sin(x) « (1 +./20) (42)
Minimise fy = cos(x) « (1 = x/20)

This function has three local Pareto-optimal regions in the domain 0 < x < 20, the rightmost completely
dominating the other two. The CPEA was run with the parameters: pogw=10 | Poi dumer siwr=10,
Prats_ctmseer siee =23 | Netyaners™3, C-means clustering

The results from a typieal i after 2000 evaluations are shown in Fig 4.2

All three local Pareto-optimal frontiers are wall defined after only 250 evaluations and remain stable even
after 20000 evaluations - the dominant frontier does not overwheim the other two.

If the CPEA is run without clustering, only the dominant, global Pareto front is found and maintained.

To examine the behaviour of the CPEA with automatic detection of the number of clusters the same problem
was re-run letting the ¢-means validity measure determine the number of clustars as described in section
Jas

This produced results identical to those produced by setting & fixed number of cluster, with Agugey=4. The
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natural clusters m the data were identified, but since CPEA algorithm deliderately requests one more cluster
than is apparent in the data one of the clusiers is split wio two. This was consistently found o be the middie
of the three local optima.

The results show the same three locally non-dominated fronts.
4.1.3  Himmelbau function - Two dimensional Multi-Modal

A problem was constructed from the Himmelbau function as:

f o= Etn-Wriasd -t «3

200
A= (“'?*z"-");;ﬂ‘”q'"’-s (&4)

In the interval —50 < x < 50.

The parameters used Were: Piini=10 | P sinser.or=10, Puss stusser size=25. The problem was run with
fixed cluster numMber, Agume=4, and also with sutomatic clustering,

The problem has three locally optimal regions and one global optimum, and was used extensively to test the
CPEA with clustering,
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The population after 10,000 function evaluations, with fixed cluster number and c-means custering is shown
in Fig. 4.3, and the resulting objective space in Fig. 44.

Tlumuwmam\'cm;mwmnmmummmmmmu:
find all four optimai regions. Periodicaily the four optimal regions would be found and then lost agmin as
two clusters “merged™ because of an infermediate point. This confirmed the behaviour found in the earfier
simple clustering tests.

mmhmwcmmum'mmmymuc-mmmnmd
clusters was fixed, but required a higher computational workload With a consistency measure to antomati-
cally mmuMcMWmMﬂIMclwmwﬂmmcm
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Fig. 4.4: Multi-modal Himmelbau function. Pareto fronts for each of the cluster. Clusters are shown in
different point styles.

depending on the setting of the consistency parameter.

Tests were carried out with no scaling before clustering, with normalisation by standard deviation and with
normalisation by maximum range and no significant difference was observed in the behaviour or the CPEA
for this problem.

Without clustering the CPEA consistently finds the global Pareto front* but evidently does not find the local
Pareto fronts in objective space.

*When run without clustering the population size was increased to 70.
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4.1.4 Deb’s bi-modal Test — Two dimensional Multi-Modal

This is bimodal problem defined using Deb>’s notation as:

minimise fi(x],x3) = x; 4.5)
minimise fo(x,x2) = g(:z),g(xg) >0, >0 (4.6)
Xi

where:

1 —0.2\2 —0.6\°
g(xz)=2_exp{—(\(2)004) }—O.Sexp{—<x204 ) } . @7

and 0 < xp < 1and 0 <xy < 1. The function g is shown in Fig. 4.5(a), and has a global optima at x; = 0.2
and a local optima at x; = 0.6. The function is biased —the solution density is much higher near and above
the local optima, as shown in a Fig. 4.5(b).

The function is expected to test the ability of the CPEA to keep the two distinct solution areas as well as
consistently identify the two Pareto fronts on a difficult problem.

2 20
18 —— Global Pareto front
18 S Rt Local Pareto front
1.6
14
)
3
12
1
0.8
08 0.2 04 0.6 0.8 1 81 02 03 04 05 08 07 08 09 1
x2 f1
(a) The function g(x2) has a global and local minimum (b) A random set of 10000 solutions showing the low
solution density at the global Parcto optimal front.

Fig. 4.5: Debs bi-modal test problem.

The parameters used were: Piniriar=60 , Pumin_ciuster size=10s Pmax_clustersize=25, and the maximum number
of evaluations limited to 10,000 (comparable to the 12,000 evaluations used in Andersson and Wallace*,
Andersson et al.?). The number of clusters was decided automatically using the c-means validity measure,
and the clustering was done by the c-means algorithm.
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The results from a typical run after 10,000 evaluations are shown in Fig. 4.6(a) and Fig. 4.6(b), and show

very good coverage, as well as very good convergence.

This problem was also used to investigate the effect of objective scaling and crossover/mutation operators.

The optimisation was repeated 80 times for each combination of:

» scaling - normalisation with standard deviation or no scaling.

e crossover - blend crossover+uniform mutation, blend crossover alone, and uniform crossover+uniform

mutation.

Normalising Objectives by Std. Dev. When run with uniform crossover and mutation, and with blend
crossover with mutation, both the local non-dominated front and the global Pareto front are found quickly
and reliably — 80 out of 80 tests.

However, with blend crossover and no mutation the solution was only found in 65 out of 80.

No Objective Scaling. This produced very similar results as scaling—uniform crossover with mutation
found both fronts in all tests, blend crossover with mutation found both fronts in 77 out of 80, the remaining
times being blocked at the local front. With blend crossover and no mutation the solution only found the

two fronts 57 out of 80.

This would suggest that scaling the objectives may be advantageous before clustering, although this is prob-

ably probiem related.

Once the two non-dominated fronts were found they remained stable when left to run for 100,000 evalua-

tions.

In contrast with these results Deb?> reported that the NSGA found the global Pareto front in only 41 out
of 100 trials. Andersson and Wallace* similarly observed that the MOSGA also found only one of the two
Pareto fronts per run when using a replacement strategy based on similarity in the objective space, but that
when including both objective and variable space in the similarity metric both fronts could be found.

* This problem can equally well be solved with clustering on only one dimension, x;, since the ranking and
thinning algorithms promote the distribution of solutions along the non-dominated fronts (which are aligned

on xy).
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(a) Global and local Parcto fronts, (b) Distribution of solutions in variable space —
clearly concentrated around the two local optima of
the g{x,) function.

Fig. 4.6: Debs bi-modal test problem. Results of the optimisation with automatic clustering.

4,1.5 Zitzler’s T4 — Two objective Multi-modal

This was one of the tests used by Leyland et al.®! to establish the performance of the CPEA relative to the
other MOOs in the literature. It has been used here to allow a comparison of the performance of the CPEA
with and without clustering, and to examine the behaviour of the dimensional reduction technique, since the

problem is posed with 10 variables.

minimise f;(x(,x) = xy 4.8)
minimise f>(x1,x2) = glx2,...,x,).h{f1,8) (4.9)
where: "
glegyen ) = 14+10(n—1) + Z(x,? —10cos(4nx;)) (4.10)
h(fiog)=1-4/= @11
8

and n=10,0 <x; <1, and —5 < x3,...,x, < 5. The global Pareto front is formed with g = 1 and the
best local front with g = 1.25. Not all the local Pareto optimal fronts are distinguishable in the objective
space. The function g is 1 when all of x3,...,x, are 0, but there are an infinite number of solutions that give
g=1.25.
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Initially the problem was run with the parameters: Pinirir=100 , Pmin_ctustersize=10, Prar.ctuster size=25,
Retusters® With the c-means clustering algorithm.

The results from this were not too encouraging—neither the global nor the best local optima were found,

either with or without dimensional reduction before clustering.

Typically, after 150,000 evaluations four local optima (not including the best local optima) were found as

illustrated in Fig. 4.7. The local fronts found, however, were fairly wel defined.
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Fig. 4.7: Test results for T4 with clustering and blend crossover after 100,000 evaluations. Neither the local
nor global front is found, although several other local fronts seem well defined.

In the earlier comparison work 8! without clustering a difference had been observed between blend crossover
and uniform crossover on this test problem. Based on results of 100 repetitions, the uniform crossover with
mutation took an average 6537 evaluations (std. dev 2285) to find the Pareto front, in 100/100 trials. In
contrast the same test with blend crossover and mutation took on average 12,432 evalations (std. dev 4100)

— nearly twice as long, although the Pareto front was still found.

With this in mind the crossover operator was changed 1o uniform crossover with mutation and the clustering
problem re-run 100 times, 10,000 evaluations each time. Typical results from this second series of optimisa-
tions are shown in Fig. 4.8. The Pareto front was found in all of the tests, on average after 8031 evaluations
(std. dev 2057), and the second best non-domindated front in 90% of the solutions. Repeating the tests with
dimension reduction set to reduce the number of variables for clustering from 10 to 2 made no significant

difference. The two principle components for the final results from Fig. 4.8 are shown in Fig. 4.9.
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Fig. 4.8: Test results for T4 with clustering and uniform crossover after 10,000 evaluations. Only the global
Pareto front is found.

However, when the optimisations were allowed to run for 100,000 evaluations, only the global Pareto front
was kept in 90% of the runs.

The results were considered strange, and it was suspected that the the lack of variability in the domain
(remember the Pareto front is found with x; = 0,...,x, = 0), and the lack of one fixed solution in variable
space corresponding to the second best non-dominated front may be causing unstable clusters, hence the
domination of all by the Pareto front.

The problems were re-run with no scaling of the variables before clustering.

This had a dramatic effect on the results. With uniform crossover the CPEA found the next best local
optimum as well as finding the global Pareto front, as before in less than 10,000 evaluations, but now the
second front was stable in more than 90% of the runs, even after 100,000 evaluations.

Using dimension reduction did not seem to affect this performance. However, the fact that the optimal
solutions are found with most of the x; values set to 0, and the second can be found by varying any one of
these from 0, would seem to correspond with this behaviour, although it also highlights some problems with
this test problem, that have been addressed recently by Leyland 6.
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Fig. 4.9: Test results for T4 with clustering and uniform crossover after 10,000 evaluation showing the two
principle components used to cluster.

Fig. 4.10: Test results for T4 with clustering and maximum range scaling, and uniform crossover after
15,000 evaluations. Both the global Pareto front and the next best local front are found.
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Fig. 4.11: Test resulis for T4 with clustering and maximum range scaling, with uniform crossover after
15,000 evaluations, showing the two principle components used to cluster.
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4.2 Conclusions

‘The CPEA without clustering has previously ®6! been shown to be an effective multi-objective optimisation

algorithm on test problems from the literature.

In this chapter the use of clustering has been shown to be effective in preserving diversity and keeping
multiple “different” solutions, where different refers to the variable space, and allowing multliple local non-

dominated fronts to develop in objective space.

Several clustering techniques have been investigated and one of these, the c-means fuzzy clustering algo-
rithm, has been found to be successful at identifying and keeping well defined, stable clusters. A technique
for identifying “natural” clusters has been tested with c-means clustering and found to be adequate, although
the tendency is to produce too many clusters, and adds a computational overhead to the clustering process.
The use of this automatic clustering does not, however, seem to affect the number of evaluations required to

solve a problem.

A multi-dimensional scaling technique has been used to reduce the number of dimensions before clustering,
and this seems to have no adverse effects on the convergence time in the problems tested, although this

should be examined in more detail in the future, and on the test applications.

The scaling used before clustering was found to have a dramatic affect on the convergence time and on the
eventual solutions found with Zitzler’s T4. Normalising with the standard deviation was found to reduce time
to convergence but resulted in no secondary optima being found. Normalising with the current maximum

range resulted in slower convergence but led to eventual results with multiple locally optimal fronts.

The use of clustering on problems that do not require it results in an increase in the number of evaluations
required to converge 1o the global Pareto optimal front. In the tests performed here the increase was found

to be a factor of approximately two.

A significant difference in the time to converge was observed when using uniform crossover instead of blend
crossover, both with normal mutation. This was also observed in work on the non-clustering version of the
CPEA®!, Tt should, however, be noted that the test problems possess special characteristics favoring uniform

crossover that are probably not present in real problems.

The custom built two objective problem based on the Himmelbau function is solved quickly. Use of the
autoclustering does not hinder the evolution, and correctly identifies the clusters, although the process of

determining the number of clusters is relatively time consuming”.

*It should not be forgotten that the test problems are trivial to calculate whereas generally the real-life problems will not be.
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Things to look at in the future include:

impact of ranking scheme,

alternative thinning schemes.
¢ thinning in three dimensions,

e alternative crossover mechanisms - impact on convergence of uniform crossover instead of blend

Crossover.

impact of scaling before clustering on convergence

® atwo objective function similar to the Himmelbaus function but with locally non-dominated front that

cross would be an interesting test case.






Chapter 5

Distributed Heating Network

5.1 Introduction

Heating represents an important fraction of modern society’s energy needs and the replacement of existing
heating systems with advanced, integrated solutions has the potential to significantly reduce environmental
pollution. The continuing concern for energy efficient solutions has renewed interest in distributed heating
and cooling networks and these were the subject of an earlier research project by Curti®! at LENI.

The earlier work at LENI considered the methodology of designing a highly efficient urban heating systems
using heat pumps and cogeneration units taking into account simultaneously the life cycle and environmen-
tal impact while meeting the required heating demand. Traditionally it has been the job of an experienced
engineer to find a good solution, a process essentially of guided trial and error, that tends to favor conven-
tional solutions. Curti’s work improved upon this by calculating a total cost and minimising this with the
Struggle GA.

This current work will take the process one step further by using multi-objective optimisation technigues to

simultaneously optimise the separate cost and pollution criteria without combining them.

5.1.1 Aim of this Work

Using the same simulation and superstructure (described below) as in the earlier work the current project

has several aims :

o reproduce the results of the previous work and demonstrate the reduced solution time required with

the new multi-objective optimisation algorithm, the CPEA.

61
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investigate more throroughly the solution domain using a byproduct of the CPEA.

demonstrate the advantages of post processing low level optimisation results, rather than incorporating

uncertain cost parameters in the optimisation process (and hence requiring multiple optimisation runs

to investigate the importance of these parameters).

o look in more detail at the interaction of poliution with system configuration and the tradeoffs between

different technology types.

e look in detail at the importance of the cost of utilities (gas and electricity) with a three objective

optimisation.

demonstrate the need for, and effectiveness of, clustering in order to maintain solution diversity with-

out introducing problem dependent heuristics.

The following section explains in detail the cases considered and presents results comparing the performance
of the new algorithm on the original single objective problem, followed by results and discussion on the
results from the CPEA.

5.2 Description of the District Heating Problem

Clearly, a district heating system must meet the demands of its clients. However, with a heat pump based
central plant, adapting the delivery temperature to the most demanding client is frequently detrimental to the
overall performance of the system when using centralised heat pump based plant. To avoid this a model was
designed that could make use of decentralised heat pumps on the supply or return line of each user. Fig. 5.1

shows the overall schematic network layout.

The model superconfiguration, consisting of a central plant with a heat pump, a cogeneration system and
an auxiliary furnace is shown in Fig. 5.2. The users are connected to the main network either with a heat
exchanger or a local heat pump as shown in Figs. 5.3 and 5.4. The local heat exchangers and heat pumps
may be connected either to the outbound or return lines introducing the potential for further reducing relative

network costs.

The model considers thermodynamic, economic and environmental aspects associated with the entire life
cycle of a distributed heating system, beginning with the manufacture of equipment and energy sources,
continuing with operation and ending with equipment removal. Environmental characteristics of the system
are internalised through the use of pollution factors that adjust the costs of damage due to pollutant emis-
sions in construction, operation and decomissioning. Unfortunately the pollution factors depend in turn on

constants that are either subjective or involve a high degree of uncertainty.
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Fig. 5.1: Schematic layout of the overall network

5.2.1 Central Plant
The central plant superconfiguration consists of a combination of :

e a heat pump to upgrade heat from a low temperature heat source such as a lake
e a gas turbine cogeneration system to produce both heat and electricity
e an internal combustion gas engine cogeneration system producing both heat and electricity

s an auxiliary boiler directly producing heat.

To simplify the problem the network is arranged with users in series, with no branches, and is driven by an
electric pump.

The pollution calculations are taken to include the pollution produced during the fabrication of the compo-
nents, the preparation and transport of the primary fuel sources and the production of the electricity. Any
mixture of pollution production during electricity may be introduced into the model but for consistency with
Curti this chapter deals with the Swiss mix*.

Electricity could be bought from the national grid, and produced by central plant for use internally or to
supply users of the heating network but could not be sold back to the electricity grid.

5.2.2 Users

The users have a superconfiguration as shown in Fig. 5.3 for the intermediate users and Fig. 5.4 for the end
user. They consist of:

*The European mixture was considered bricfly and is presented in Appendix A.1.2.
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Fig. 5.2: The superconfiguration of components forming the central plant?!

o a heat exchanger on the supply line

a heat pump on the supply line

e 2 heat exchanger on the return line (except for the last user)

a heat pump on the return line (except for the last user)

two heat exchangers for domestic hot water at different temperature levels

an auxiliary electric water heater for the domestic hot water demand that cannot be met by the hot

water exchangers.

The last user is considered as a special case since the supply and return lines are effectively the same.
Consequently the choice is limited to a single heat pump or heat exchanger for the heating demand as shown
in Fig. 5.4.

5.2.3 Simulation

The network thermodynamic behaviour is solved for a nominal steady state operating regime - dynamic
effects are not considered. Demand variation throughout the year is modeled in a simplified manner as an

adjustment to the nominal operating regime.
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Fig. 5.3: The superconfiguration of components forming an intermediate user in the network 2!

The cases considered had four user classes, where a class represented a grouping of users with the same

requirements.

The resulting model is both disjoint (different solutions can have different basic elements in the final configu-
ration) and non linear (due to thermodynamic non-linearities and also non-linear cost and pollution factors)
and in the cases considered has 37 independent variables (depending on the chosen optimisation options
some of these may be inactive) and almost as many constraints. In addition there are a number of fixed
parameters such as gas and electricity costs, lake temperature, etc.. The simulation was implemented in
Fortran 77 independently of operating system and hardware, and a simple free format data file was used to
set the fixed parameters and limits for the independent variables and constraints.

In the previous work the Struggle GA (see Chapter 2) was used to simultaneously optimise the configuration
and operating conditions with the aim of minimising overall cost. Constraints were taken into account with

penalty functions added to the overall cost.

While this approach allowed the inclusion of environmental costs the drawback was that the optimisation
was performed for one chosen set of pollution factors and had to be repeated in order to investigate the
sensitivity of proposed solutions to the pollution factors.
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Fig. 5.4: The superconfiguration of components forming the last user in the network '

The approach taken in this work has been to make use of a multi-objective optimisation technique to op-
timise pollution costs, and investment plus running costs separately and then to post-process the results to

investigate the effect of pollution factors, allowing a comparison with the results found in Curti et al.?2,
In this Chapter the following notation will be used:

Crotal refers to the overall cost including pollution.

Chpottuion  tefers to the sum of pollution costs.

Crval refers to the cost without pollution, Ciyra — Cpottution-
Colec refers to the cost of electricity bought from the grid.
C;m,, refers to the cost of gas and maintenaince.

5.2.4 Choice of Demand Case

In order to verify the original model, Curti?' treated a reference case corresponding to an existing demand
in part of the city of Lausanne, and then considered a network corresponding to a new quarter in which
the majority of buildings would be equipped with (for example) under floor heating, typically working
at low temperature, while still including some older buildings and equipment with a higher temperature
requirement. This demand case was referred to as demand B in the original work and was chosen for the
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current work.

The demand is for 62.7MW overall, with an initial user that takes 85% of the total power followed by 3
more classes that each take 5%. Fig. 5.5 shows this together with the imposed temperature requirements.
The form of the demand case suggests strongly that the initial user will have a dramatic effect on the optimal
solution and this does indeed prove to be the case.
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Fig. 5.5: Demand Case B: This represents a new installation in a new quarter with overall thermal require-
mement of 62.7MW. User class 1 covers 85% of the total power, each of the others takes 5%.

5.3 Clustering Applied to the District Heating Problem

This problem is one of the cases which requires clustering in order to prevent the population converging to
a very small subset of solutions very quickly. Once diversity has been reduced too far, and the domain is
poorly represented in the population of solutions, new optima become difficult to find.

The clustering algorithm used in the CPEA was previously described in chapter 2, together with a method
of multi-dimensional scaling to improve the clustering make the results more amenable to graphical inter-
pretation.
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Two approaches were used in this problem. Initially the clustering was performed on a reduced set of
transformed independent variables using the method described in section 3.2, and fixing the number of
transformed variables at two. This allowed simple visualisation of the clusters. After several initial optimi-
sations using this technique a post processing of the distribution of the solutions showed that the dominant

independent variable was clearly the network supply temperature.

In light of this the clustering was changed to use only the network temperature, economising the computa-

tional effort needed to calculate and apply the multi-dimensional scaling transform.

The results produced in this manner were largely the same as those with the multi-dimensional scaling of 37
variables (as was to be expected since the variable that accounted most strongly for the variance in the final

population was temperature), and proved simpler to analyse as well as marginally faster to optimise!.

On reflection, these observations are not so surprising. It is nearly possible to decompose the problem into
two isolated sub-problems - one being the central plant and the other the users - since the only common
independent variable is the network supply temperature. However, the matter is complicated because the
electricity produced by the central plant cogeneration systems can be used in the remote heat pumps.

5.4 Single Objective Optimisation - The Original Problem

The original optimisation problem, to minimise overall cost, was repeated using the CPEA and the original
internalized cost model for the two cases: with pollution and without pollution. The optimisation was run
repeatedly and the best solution taken from each final population after 50,000 simulation evaluations. In
fact it was observed that the algorithm converged to the best solution on average after 10,000 evaluations, as
compared with the original work with the Struggle GA which took 400,000 evaluations (4,000 generations
with a population of 100} to achieve comparable results. This is thought to be due 10 the better clustering
technique and better thinning methods maintaining diversity while still applying convergence pressure?.

The optimisation was repeated ten times to verify the consistency of the solution and no alternative optimum
solutions were found. In all cases the final results obtained were better (lower cost) or equal to those found

previously and the number of evaluations reduced by a factor of approximately 40.

Without pollution costs. The optimum solution for the case without pollution costs occurs at 89.5°C.
The configuration of the central plant at this point is shown in Table 5.3 and the breakdown of costs as a
percentage of total cost in Table 5.2. The central plant consists of a heat pump, a gas turbine and an auxilliary
boiler. The high network temperature means that the hot water demand for the users may be met completely

f An optimisation for pollution cost and and total cost (see section 5.6) using dimension reduction is given in the Appendix A.1.1
*1t would be interesting to note the cffect of using the MDS in the Struggle GA
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with heat exchangers on the supply line. The heating demand may also be met by heat exchangers on the
supply line for class 1,3 and 4, and by a heat exchanger on the return line for user class 2. The mass flow
rate for users 3 and 4 is high enough to allow the second user to make use of the return line heat exchanger.
The solution is comparable to that obtained in the earlier work as shown in Table 5.3.

With pollution costs. ¥ The optimum solution for the case with pollution costs occurs at a network supply
temperature of 52.5°C. The configuration of the central plant at this point is shown in Table 5.5 and the costs
as a percentage of the total in Table 5.4. The central plant consists of a heat pump that supplies 100% of the
heating demand. The network temperature is hot enough to allow a heat exchanger to be used on the supply
line for the first (largest) user. The remaining users use heat pumps on the supply line to meet the heating
requirements. The network is just hot enough to meet the hot water demand (45°C) with a heat exchanger?.

The behaviour of these optima with and without pollution costs is analysed in more detail in the following

section.

5.5 Pseudo Multi-Objective Optimisation - Temperature and Cost

5.5.1 Introduction

During the development of the CPEA an idea was conceived which proved both interesting and useful. In
problems where there is only one objective but the solution domain is complex (many problems, including
the district heating problem as originally posed) it is very important to understand the sensitivity of the

optimal solution to changes in one (or several) of the more important independent variables.

Traditionally a sensitivity analysis would be performed by fixing the chosen variable and performing an
optimisation. Repeating this a series of optimum solutions, one for each fixed value may be found. This

process can prove costly, and so the number of different values chosen will typically be limited.

However, the new idea was that rather than optimise a single objective, a multi-objective optimisation could
be performed using one of the independent variables that is of interest as an artificial second objective.

Two optimisations need to be performed :

1. Minimise the objective function and minimise the chosen variable.

2. Minimise the objective function and maximise the chosen variable.

¥Pollution costs used were 13.8 sfr/kg for NO,and 0.03 sfirkg for CO,.
Ithe hot water requirement for cach user was fixed at 10% of the uscr’s energy requirement, and at a temperature of 45°C .This
assumcs that once per week the water temperature will be raised to 60°C to avoid problems of legionella’s discase



70 CHAPTER 5. DISTRIBUTED HEATING NETWORK

This produces the equivalent of a parametric study where the optimal solution is found for many fixed
values of the independent variable, at the cost of only two optimisations - hence a dramatic saving in time

and computational effort.

This works because in the first stage while minimising the independent variable the CPEA finds the part of
the curve with a negative slope, the area to the left of the vertical line in Fig. 5.6. In the second optimisation
the maximisation of the independent variable finds the positive sloping part, the area to the right of the

vertical line in Fig. 5.6.

In the event that the function that describes the minimum values is concave with multiple minima then

clustering is necessary to find various the various parts of the function.

\ /
\  -ve sloping part +ve sloping part /]
L
® \ of pareto front of pareto front /
3 /

S /
/o
3 \ /
iy \ /

[} N /

Independent Variable

Fig. 5.6: Pseudo multi-objective optimisation. The negative part of the pareto front is found by the minimi-
sation of the independent variable and the positive part by the maximisation.

5.5.2 Temperature and Cost Results

To demonstrate this idea the district heating model was optimised for overall cost taking network temperature
as the artificial second objective. This was done for the case with pollution and without pollution, and to

minimise and maximise network temperature, requiring a total of four runs.
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Fig. 5.7: Multiobjective Optimisation with Pseudo Objective Temperature and Cost

Fig. 5.7 presents the combined results or these four runs with several features labeled A-E, and Fig. 5.8,
Fig. 5.9 and Fig 510 show the configuration and costing breakdowns against network tempernture. The
characteristics of each region are as follows

Leftof A To the lefi of the point labeled A on Fig. 5.7 is a region that corresponds 1o a network lemperatire
less than 20°C. At this low temperature the hot water requirement of the users must be met completely by an
electric water heater. since the inlet water temperature ( 12°Clis too close to the network temperature (o allow
the heat exchangers 1o work. The centrl plant consists of a heat pump that provides 100% of the petwork
heating. and each of the users has & heat pump on the supply line. At point A the network temperature
becomes high enough 1o begin to use the hot water heat exchangers to preheat the domestic hot water.

Section Ato B To the right of A and up to the point labeled B the network temperature increases and hence
so does the temperature to which the hot water can be pre-heated. Consequently the electricity required for
the electric heaters decreases as shown in Fig. 5.8 and also visible in Fig. 5.9 as the energy cost. The central
plant still consists of a heat pump that meets the network heating requirements, and each user has a supply
line heat pump. The central plant configuration Is indicated in Fig. 5.10 by the percentage of the network
energy requirement provided by each component.
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Fig 5.8: Multobjective Optimisation with Psendo Objective Tempermiure smd Total Cost considermg pol-
tution costs. The electrical power consumed by the users 1n onder 1o meet the hot water regquirements can be
clearly seen to be responsibie for the changes in slope of the parcto lronner.

As the network lemperature increases the local heat pumps need 10 do less work, while the central heat
pump needs 1o do more. Since the central heat pump is significantly muose efficient there s 4 net reduction
energy usage (electricity ) and hence cost. However, the dominant influence during this section of the graph
in clearly the electricity needed 10 meet the hot water requirement as illustrated in Fig. 5.8,

Points B and € Between the points labeled B and € in Fig. 5.7 there is a sudden diop in the cost, that
oceurs between 47°C and 48°C. This is caused by a change in the optimal configuration of the first user
(that makes up 85% of the load) from a bear pump on the supply line (pomt B) to & heat exchanger on the
supply fine (at point €). The increase in network operating temperature makes it possible 1o meel this user’s
requirements directly with a heat exchanger, saving both in energy 1see Fig. 5.9) and mvestment cost. The
central plant still consists of a heat pump o meet (he network requirements.

Section C to D The decrease in overall cost continues unti] the point labeled 1, a1 a temperature of ap-
proximately S2°C which is & sharp minimum, suggesting that a constraint or fimit has become active At
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Fig. 5.9: Total cost breakdown from the Multi-objective optimisation of temperature and cost including
pollution costs.

this lemperature (he users” hol water requirement can be met completely by a heat exchanger, and the total
cost is no longer dominated by the electric water heaters. The effect of the hol water requirement is more
clearly visible in Fig. 5.8, which shows a graph of total cost together with the clectrical power consumed
by the de-centralised clectric water heaters!. To the left of this point (point D) the effect of pollution on the
optimal configuration and overnll running costs are negligible - the best solutions are the same whether or
not pollution is considered. In fact the costs of pollution are minimal throughtout this region and are due
partly to fabrication but mainly 1o the production of the imported electricity™

Section D to E with pollution costs - Continuing o the right of point I towards the point labeled E the heat
pump becomes less efficient due 1o higher operating temperatures. and the optimal choice moves towarnds a
mixture of heat pump to preheat the network supply and an auxialliary boiler 1o augment the lemperature,
a6 shown on Fig. 5,10, The cost continues 10 rise because af the cost of fuel and electricity required (o raise

1 was found thar remaosing the hot water demand sesulied i an oy & when doving pollution
comtn al aronnd 48°C wmmhxmumukummuiwu-dumw

TEThiN I ociuse ut thess how e thie ideal solution without polliution costs is @ beat prmp in ihe centmil plant. Using the
Swia mix of electricity genertim prod tatively bow pollution, fuvoring te importation of electeity over local genevbion,
i Immutmhmmlu e central plint. A different wix of electricily production such as the Buropean mix changes (his
o Appendix A1)




4 CHAPTER 5. DISTRIBUTED HEATING NETWORK

the network supply lemperature.
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Fig 5.1 Composition of the central plant. mmdlhlﬁdmwh’uﬁm
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Section D to F without pollution costs mmnmaqwmmmmnw
rmmumumuqﬁmamwc There are some small discontinaitics that
mewiummmmmw,uumwmwymmw
dmnumhmﬂmmﬂmmlhmmmmm&. The optimal
mmmmmm-pmwnm-ﬂ-mmmmm
mluﬁimp«hmdmutﬂyﬂﬂhﬂmuﬂlmﬂlyfmﬂwhﬁm The network is pre-heated by
ummmmrmmmmpmmmm.wuumumwm'nn
mmmmmmmww,mmwhmmumw}
hnmilimnlychuwnwhmpullmmmmh:wd.mwmmm“(mdmhcm
muunmwmmmmmmmmlmws.mouw.siwo'r1u1)-nwumll
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Fig. 510 shows thecompmllhndmmpawmainllumml plant when considering pollution and from
dlhhisclnlMhap.immunhlﬁmhhﬂvilyhﬂmuiwlh:mldihu pollition die 1o the gas
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Fig. 5.11: Component breakdown as a percentage of overall energy supplied to the network against temper-
ature from the pseudo-multiobjective optimisation of tlemperature and cost neglecting pollution cosis, The
step changes in heat pump use are due 1o changes in local user configuration as the network temperature is
mereased.

turbine and auxilinry heater

Fig 5.11 shows the composition of components in the central plant when pollution costs are neglected.
The major configuration change occurs at approx 59°C when it becomes advantageous 1o include a gas
turbine cogeneration system in the system. along with an auxiliary boiler. The gas turbine is one of the
major sources of pollution although it also produces elecineaty which is used to supply the heat pumps,
which tums out 10 be cheaper than buying elecinaily provided pollution costs can be neglected. As the
lemperature mcreases there are step changes where local user configurations change (o use heat exchangers
where possible (including heat exchangers on the return line), changing in twm the electneity requirements
and hence the aptimim combinution of gas turbing, heat pump and suxiliary heater.
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Miscellaneous Values
Overall Demand 62.7TMW
Electricity Cost 13cts/kWh
Gas Cost 5 cts/lkWh
Pollution Cost NO, | 13.8 sfr/kg
Pollution Cost CO; | 0.03 sfr/kg

Table 5.1: Specific costs

Breakdown of Cost as a % of the Total

Struggle CPEA Thermal Power as a % of the Total
Buildings 15.8 159 Struggle | CPEA
Equipment 21.6 21.1 Network Temperature °C 89.5 89.3
Network 9.7 9.8 Heat Pump 50.5 473
Administration 15.6 155 Gas Turbine Cogeneration System 233 20.9
Energie 37.2 377 Gas Engine Cogeneration System 0.0 0.0
Pollution 0.0 0.0 Boiler 26.2 31.8
Total [cts’kWh} | 7.59 7.59 Table 5.3: Breakdown of power supplied by each

component of the central plant for the optimum so-
Table 5.2: Cost breakdown for the opti- P P P

. - lution not taking into account pollution.
mum solution not taking into account pol-

lution.
Breakdown of Cost as a % of the Total
Struggle CPEA
Thermal Power as a % of the Total
Buildings 11.3 11.4
Network Temperature °C 5251 525
Equipment 22.7 22.7
Heat Pump 100 | 100
Network 10.9 10.9
Gas Turbine Cogeneration System | 0.0 | 0.0
Administration 154 154
Gas Engine Cogeneration System | 0.0 | 0.0
Energie 39.0 39.0
Boiler 0.0 | 0.0
Pollution 0.7 0.6
Table 5.5: Breakdown of power supplied by each
Total [cts/kWh] 7.66 7.66 .
component of the central plant for the optimum so-

Table 5.4: Cost breakdown for the opti- lution taking into account pollution.

mum solution taking into account pollu-

tion.
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5.6 CPEA - Pollution Cost and Overall Cost

In his thesis Curti aggregated the cost of pollution with the investment and operating costs into a single
objective function, as was done in section § 4.

The pollution costs were calculated using a representative cost per kilogram together with a pollution factor
calculated from the baseline Iocal level of that pollutant. Both CO; and NO, were considered during the
fabrication and construction of components and buildings and during the production and transport of primary
energy source (for example natural gas) and production of electricity consumed from the grid.
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Fig. 5.12: Pareto Surface showing Cost vs Cost of Pollution

For this section the total cost,C,, was taken us the overall cost (Including pollution) minus the pollution
costs (these values were readily svailable from the simulation model), and a two objective optimisation of
Croeat A0 Cooltuion Performed. The pollution costs were calculated as in the previous work. This ks the multi-
objective equivalent o the two cases (with and without pollution) that have been considered separately a4
single objective optimisation problems, and used the same fixed CO; unit cost as the earlier work.

The optimisation problem was run with the parameters: Puuin=400, Puin stwser sine=10, Prtciamer =30,
Retumery™4, Clustering with c-means fuzzy clustering on the petwork temperature. The optimisation was
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continued for S0000 evaluations 2s in the previous single objective work, using clustering on the nerwork
temperature.

Fig. 5.12 is & graph of C_; ¥5 Couituien With network tempearture indicated by colour. The results show
scveral well defined non-dominated fronts, each one representing a differeat cluster. Each of the Clusters
repeesents 4 local non-dominated froat (as described in chapter 2),

The puint labeled F on Fig. 5.12 corresponds to the sams solution marked with &n F on Fig. 5.7, and
represents the best solution if ignoring pollution. This solution consists of & gas turbine, heat pump and
suxiliary heates, and if it was built snd pallution costs were Introduced afterwards then it would clearly not
be & good solution. The point labeled D represents the minimum solution taking into account pallution, snd
comresponds to point D on Fig. 5.7. The minimum of the sum of the two objectives, min(Castuim + C o ):
18 7.66 cte/kWh, the same as found in the earlier single objective wark.

Note that the point E on Fig. 5.7 corresponds 1o 4 point somiewhere in the region of E* on Fig. 5.12.
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Fig. 5.13: Multi-objective optimisation of Total Cost and Coat of pollution. Central Plant composition as
percentage of total heat produced vs pollution cost

The composition of components in the central plant ks shown in Fig. 5.13, which shows thie fraction of energy
each composant produces against the cost of the pollution produced by that configuration. Looking more
closely at Fig. 5.13 severnl interesting trends are visible. Moving along the pollution cost axis (pollution
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costs increasing) the optimal solution changes progressively from just a heat pump (the optimum solution
when pollution costs are considered) to an approximate 50/50 mix heat pump and auxiliary boiler. There is
an apparent gap in the graph at this point that corresponds to the change in configuration of the central plant,
and the introduction of a gas turbine cogeneration system. Continuing further up the pollution scale the gas
turbine produces an increasing percentage of the energy requirement (together with the electricity) but also
produces an increasing amount of pollution.

Clustering was the key factor in solving this problem. When run without clustering only the low network
temperature solutions are found, since the high temperature, high pollution alternatives are more difficult to
find and require sufficient diversity.



B0 CHAPTER 5. DIS‘IRIBUTEDHEA‘IWG NETWORK

5.7 MOO-OvanllCnltlndQundtyolC(hpmdlnd
Tmmmclqnlummm the pmmucunn mdmwdlhctwnm:ﬂuwopdnﬁmdc.“
(aumlnnm;pulmtmmlmum,.nnqunmdﬂh meﬂmﬁmﬂuym‘i.

The principal i i L polhnmmmHmNO.:ewdm
pletely.

Fig. 5.1% Wmuww;mpmdmwnm
mnuwkwmwnmua s&l‘JMwMﬂulnudpml)

L e sl [ e



5.8 APPLICATION OF POST PROCESSING TO COST, CO; OPTIMISATION L1

-

Heat Pump
Aux. Heater

Gas Turbine

-
Y

el
.

3
%
ft
N

Percentage Tolal Central Plant Power by Componant
B : 2
“ F
I
S
3

' 4
{
v -
L w ©o gl =

o o 02 03 04 08 08 07 08 08
Carbon Diokide Production (i/s]

=]

Fig. 5.15: Breakdown of Central Plant Composition for the case of carbon dioxide vs investment and running
costs

58 Application of Post Processing to Cost, CO; Optimisation

To illustrate the ides of post processing, the results from the optimisation of C_ and CO; were post
WNWBMUMMMDMWNMUG);M The
results of this are shown in Fig. 5.16 which was produced by calculating the cost of the CO; produced over &
range of unit pollution costs, adding the remaining costs, then choosing the solution with the lowest ovenll
coit.

The graph shows the linear variation due to the increasing specific pollution cost up to the point where &
radical change of configuration produces a marked change of siope. This point corresponds to the change n
configuration of the network from a central plant with heat pump, gas turbine and suxiliary heater, to a cen-
tral plant with only heat pump. This involves a change in network supply temperature from approximately
80°C to approximately 52°C and s correspanding change in the first (major) user configuration from a hear
exchanger to a hest pump.

The eritical value for CO; unit pollution cost in this case is approximately 5.3 sfrftonne COy. This may be
mmumwmpﬁhﬁmmwﬂludbbnhmﬂmminmmmlm
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Fig. 5.16: Post processed results of the cost, CO; optimisation showing the sensitivity of the solution to an
imposed specific carbon dioxide cost

change in the technology used®®

HCum used 30sfr/TonneCOy 10 his work, based on then accepted values in the lheranie
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5.9 Three objective problem - Operating, Electricity and Gas Costs

This involved a three objective optimisation of investment cost, electricity (bought - quantity of imported
electricity), and the remaining operating costs, composed largely of gas costs, but including maintenance.

These were calculated from readily available values in the simulation, as:

inv = Crotal — Caperaring (5.1)

Cfuel + = Coperaling ~Celec 5.2)

where Cpppe, Cinw and Coperaring Were directly available, and Cry.r4. consists of the gas costs together with
the remaining operating costs (such as maintenance that could not be easily isolated in the simulation). The
problem was posed like this in order to make it directly comparable with previous results, and to minimise
the changes to the simulation model. In order to verify the results a further two objective optimisation was
performed to find the non-dominated front for the two objective optimisation problem of investment costs,
Cinv and operating costs Coperaring, defined in the same way. This could then be compared to results of the
three objective problem by summing the Cyyery. and Cepe costs to reproduce the Coperqsing COSL.

The problem was run without clustering, since the three objectives were expected to introduce enough di-
versity. The other parameters were: Pinitiai=400, Pmin_cluster_size=T0, Piax_ciuster size=160.

As has been mentioned previously the major problem with multi-objective optimisations with more than two
objectives is the rapid growth of the population,

5.9.1 Results and Analysis
Verification - Investment and Operating costs

The problem was run both with and without pollution costs, but for brevity and clarity only the results
without pollution will be presented. A plot of each objective against the network supply temperature is
shown in Fig. 5.17.

It is difficult to present clearly the three dimensional objective space, however, the three combinations of two
objectives are shown in Fig. 5.18 together with a three-dimensional representation of the objective space.

Closer investigation of the three dimensional results reveals that the points lie very nearly in a plane, sug-



Investment
Electricity
Fuel + Maintenance
';i:tl?.l ’ L} *s . -
Lol - T F' .“'_
.x 0 ;i‘:?&, 1
o 1SS
-3y :.;'i
«t > L -\':
feae £ -a
;l‘n. =B ~]
R (6]
% % % ™ % 0 w10
Supply Temperature® C

Fig 5.17: Results from the optimisation of investment cost, electricity cost and the remaining operating
costs shownagainst temperature

mumdammunaulmmmdumumm
two.

mu-mwmnmmwp\uuushmuhmm
supply temperature solutions more easily visible in Fig. 3.17. These are solutions with very low fuel costs
and low investment costs, but high slectricity costs. They correspond to configurations which have only
mnautlmnmlnmawmlplmmmhmwmlnenhdmnum—cmum
Wmhmmmmﬂmnm.mmmwmwmwuwmm
a high electricity demand.

mumuummmmmmuwmumu&
MmuupﬂemmhMummmmmm Fig 5.19
shows the results of the tw0 ObJective G 280 Caperwing G35 with results of the three objective optimisation.

Looking at the results of the investment vs operating in Fig 5.19 it can he seen that the three objective
Mmmmm'dmuﬂm-mmmmmmm
show the same trends, This is a due to the shorcomings of the 3D thinning algorithm.
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Fig. 5.18: Results of the 3 objective optimisation of Investment cost, electricity bought cost and fuel costs.

However, it is still interesting and informative to continue the post processing of the results. As electicity
costs are varied from 30% below to 30% above the nominal cost of 13 cts/kWh, keeping fuel costs fixed,
the non-dominated front of operating cost and investment cost changes as indicated in Fig. 5.20 by the lines
joining non-dominated points (points themselves have been omitted for clarity).

The best overall solution is defined by summing the the separate costs and finding the solution with the
lowest total cost Ciprar, as per equation (5.3).

Cloml = E cinv + Cfue]-}— + aeleccelec (53)

where O, was varied from 0.7 to 1.3 to represent changes in electricity prices from 9.1 cts/kWh to 16.9
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Fig. 5.19: The results of an optimisation of investment cost and operating cost from & two objective opti-
nusation, compared to the sume resulis calculuted by post processing an optimisation of invesmment cost,
electricity cost and the remaining operating costs. Results are for the case neglecting pollution costs.

cts/kWh., These solutions are murked with «'s in Fig. 5.20. The nominal 100% solution is marked with a 0.

As might be expected, the changes in electricity cost do not directly influence the investment cost until there
is a change in configuration. This is apparent on the graph (Fig. 5.20) and Is due to a change of central plunt
configuration. The change occurs al an approximate 10% decrease in electricity prices, and coresponds to
2 change from heat pump, gas turbine and suxiliary heater at the nominal electricity price of 13cte/k'Wh to
& heat pump and auxiliary heater as the electricity price I8 dropped. The solution configuration stays more
or less constant below and above this point. This is interesting in that it suggests that the gas mrbine is only
beneficial when the electricity price becomes high enough (as might be expected). 1t is important to realise
that this information can not be found from the two objective optimisation withour re-optimisition since
this represents results for the fixed ratio of O = 1.0,

While the resulis are not fully converged they are close enough w correctly show the wends and 1o demon-
strate the advantage of keeping costs separate until after the optimisation process. This information was
obtained with 200, 000 evaluations, representing a significant gain in information.
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Fig. 5.20: Part of the investment cost vs operating cost graph, showing the effect of varying electricity
mmummmnmmmmadusmwmd
investment cost, slectricity cost and fuel coste. The sudden jump corresponds to & change in configuration,
with the network supply temperature changing from 56.3 t0 91.3 *C. Costs are in Sulsse cents.

5.10 Conclusions

mmmummimmmmmmmmmmmm.
strated. The single objective version outperforms the algorithm used in earlier work with an apparent forty
fold reduction in function evaluations.

A new method of performing an optimised parsmetric study has been presented and used to examine fhe
solution domain with respect to temperature, giving 2 more complete view of the solution domain without
increasing the computational work iosd

The multi-objective CPEA for two objective pollution and cost optimisations has been shown to reproduce
the same results as the two single objective optimisations. in 4 single optimisation process, again halving the
function evaluations. Thers are additional free benefits, including the removal of uncertain pollution costing
mmmmmpmmanmwmaumm,




88 CHAPTER 5. DISTRIBUTED HEATING NETWORK

‘The potential benefits of three objective optimisations have been explored and the current limitations high-
lighted. The technique still represents a powerful tool in the solution of such integrated problems, reducing
even further the computational work load and allowing a greater portion of the uncertainty to be examined

in a post processing step.

The effectiveness of clustering has been demonstrated, and it has been found that multi-dimensional scaling
of the independent variables in this problem, to reduce the clustering space to two dimensions, produces
equivalent solution spaces to clustering on network supply temperature alone.



Chapter 6

Hybrid Vehicle Drivetrain

6.1 Introduction

Transport presents a major problem for sustainability, and energy use for transport is rising faster than in any
other sector. In Switzerland transport is responsible for around a third®® of the man-made CO; produced, as
well as many other directly harmfu! pollutants including NO,, SO, hydrocarbons (HCs) and ozone. In high
concentrations ozone can damage lung tissue, reduce lung function and sensitize the lung to other irritants,
as well as damaging crops”*. NO, and particulate emissions have been linked 22 (o severe health problems
and even premature death.

To address this, new, energy-efficient and less polluting transport technologies must be evaluated against
traditional solutions (and advances in traditional solutions) in a wide variety of situations to aid decisions on
new policies.

The simulation of vehicle drivetrains is a difficult task - useful simulations tend to be complex and hence
computationally expensive, even with many simplifying assumptions in the modeling. In addition there is a
great deal of uncertainty and variability in the component data, and in the evaluation of potential objective

critera.

To be acceptable to a large public a vehicle must have a competitive performance* as well as a good fuel

economy, and as seen in earlier work %2

there is a tradeoff between fuel economy, performance and emissions.
When investment, operation and potential pollutant costs are introduced the overall problem becomes even
more complex. The CPEA optimisation technique is attractive in this kind of problem because it allows
more information to be gathered about the solution domain for the same effort as a single point optimisation,

allowing costs and emissions to be considered separately.

*The trend in the demand in the US is still towards faster 0-60mph acceleration times 7

89
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The work presented here aims to demonstrate the feasibility of perfoming MOO in this highly demanding

area, and to produce some initial results as to the potential for some of the newer vehicle technologies.

6.1.1 Hybrid Vehicles

In a conventional vehicle, the vehicle’s final drive (differential and wheels) is driven directly by the internal
combustion engine (ICE) through a clutch and gearbox. The gearbox means that the ICE can be run near its
optimal speed over a wide range of vehicle speeds. However, engine efficiency and emissions are strongly
dependent on load, as well as speed, as illustrated in Figs. 6.1 and 6.2.

Fusl Canvertes Operation
G80 1.0 (414W) SI Engine - Gansient data

90

80F

ok £25 / // . ch
o \

\/

Toraue (Nm)
< d
ll'u
1
i
/

L
\
N\,

.25
sl y)
a0k R o . o
. . £
A M
[ 1000 2000 3000 4000 5000 6000

Speed (rpm}

Fig. 6.1: ICE Efficiency countours for a 41kW gasoline SI engine, shown against speed and torque, together
with the maximum torque envelope.

Consequently, while an ICE’s peak efficiency can be over 30%, overall vehicle efficiencies can be lower
than 15%*6. Most of these losses are due either to the engine running away from its most efticient point,
or to the engine running while the vehicle is stopped (more than half of the time in most homologation
cycles). Conventional gearboxes and differentials, for example, are extremely efficient, and drivetrain losses
are generally only on the order of 5%. Hybrid vehicles are an attempt to reduce these losses by flattening the
demands on the ICE. In addition, they can improve efficiency by recovering some of the energy dissipated
in braking, which otherwise only serves to heat and wear out the braking system.

A hybrid vehicle, in the broadest sense, is a vehicle that contains several power sources, and attempts to use

those power sources in order to maximise overall efficiency. In this and earlier work © the emphasis has so



6.1. INTRODUCTION 91

Brake Spesitic NOx Emissions (g/kWh} -
Geo 1.0L (43kW) I Engine - tiansient data

W0,
——  Max Torque

sob

70

o
T
Z
@ 50
g
8
2ot
4
w

30F g,es

20k /"\_\

549 / ™y
~
w0l . ’{49 1
/
o . . N . . ,
0 1000 2000 3000 4p00 5000 6000

Engine Speed (rpm)

Fig. 6.2: ICE NO, production in g/lkWh for a 41kW gasoline SI engine, shown as contours against speed
and torque, together with the maximum torque envelope.

far been on thermal-electric hybrids with an internal combustion engine and an electric motor!. These may
be configured in a series or parallel configuration. A hybrid vehicle superconfiguration, showing a seties
hybrid with bold arrows, is shown in Fig. 6.3.

In a series hybrid, an internal combustion engine is connected to a generator, which either charges a battery
or powers an electric motor. The motor powered either by the battery or the generator, then powers the
wheels. This means that the ICE can, if the control system wishes, always be run at its best operating point
¥, while the electric motor, with better characteristics over a wider load/speed range, copes with demand
variations. Series hybrids are relatively simple compared to parallel hybrids (described below). However, in
situations where the vehicle operating point would allow the ICE to run well, such as at constant speed on
a motorway, there is nothing to gain from the hybrid series configuration, but one still has to pay the losses
of the complex mechanical-electrical-mechanical energy chain. There are also additional problems’* such
as the limited capacity of the batteries to absorb the energy produced by the engine operating at an optimal
point, and the potential for increased emissions when repeatedly stop starting the engine.

Parallel hybrids solve this problem by allowing the ICE to either drive the generator or power the vehicle

final drive directly. This involves the use of a torque coupling device (for example, the Toyota Prius has an

TThis is the most likely next step to improve emissions and fuel economy and to mect demand for short term acceleration. Fuel
cells for small cars arc still very much in the prototype stage, and information on performance is currently limited,
*Clearly the “best™ is not clear - best for pollution or best for cconomy?
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External Fuel Processing and Distribution:
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Fig. 6.3: Hybrid Vehicle Superconfiguration in its broadest sense. The links showing a series hybrid are
shown in bold.

epicyclic gearbox controlled by the generator °2) between the ICE, electric motor, generator and final drive.

However parallel hybrids suffer from increased complexity and potentially higher maintenance costs than

conventional solutions’.

Generally, battery capacity in a hybrid is low (the Prius has 50 kg of batteries while the General Motors EV
electric car has 520 kg*®) and the ICE needs to be run frequently to top up the battery charge, as well as
whenever the vehicle has high power demands. In order to reduce charge cycle losses and improve battery
life, batteries are usually kept within a narrow range of charge situated around half full. Consequently the
batteries are usually larger and heavier than strictly necessary. If, however, the battery capacity is high, the
ICE can be turned off completely for short periods, which may be interesting, for example, for crossing a

town centre where only non-emitting vehicles are allowed.

The best choice of battery capacity, as with most vehicle design choices, is not evident - the Toyota Prius*?

has twice as many battery modules as the Honda Insight '*2,

One reason for the slow growth of the hybrid car market is the cost of the electric components (since these

$1n a survey published by the TCS® the cost of maintenance of conventional vehicles is shown to vary dramatically - from as
little as 400 sfr for 100,000km up to 4200 sfr.
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are not in mass production in the same way that IC engines are) and the doubt over the operational benefits.
In order to address this it is necessary to compare the cost of different options as well as emissions and
performance, in particular to identify the sensitivity of the best choice to the relative cost of the electrical
components.

6.2 The Vehicle Simulation Model

6.2.1 Problems in Simulating a Vehicle

Modelling a vehicle poses several particular difficulties:

o To evaluate a vehicle design it must be “driven” around a test cycle, equivalent for example to a car

following a test cycle on a rolling road. If unable to follow the cycle what should be done?

A vehicle is a highly dynamic system. Considering even quasi-static behaviour means evaluating the
performance at many hundreds if not thousands of points around the test cycle. To model detailed
dynamic behaviour (for example what happens in the combustion chamber as the throttle is opened)
is not feasible as part of a system-level simulation.

Many of the sub-components that make up a vehicle are themselves complicated, may be non-linear
and may themselves require optimisation to run efficiently. During a drive cycle many components

*99

will be running “off-design*”, so simulation models must be detailed enough to predict off-design

losses, or follow an optimal control map.

To help deal with these complications several ideas were considered:

o Adaptive simulation precision - time consuming models of sub-components could be replaced by
simpler, faster approximate models, derived from training artificial neural nets or using lookup tables,
based on the results of off line sub-optimisations.

o Wherever possible model connectivity “intermediate” result values that are not directly used to calcu-
late objective values should not be calculated.

As part of the Alliance for Global Sustainability’s T Holistic Design project®®, LENI developed simula-
tion models of several vehicle powertrains, some in co-operation with the University of Tokyo*?. These

*A component will usually have one optimal operating state. When used away from this state the component is being used
“off-design™.

tThe Alliance for Globat Sustainability (AGS) is a joint venture between the Swiss Federal Institutes of Technology, MIT and
the University of Tokyo.



94 CHAPTER 6. HYBRID VEHICLE DRIVETRAIN

models allow the engineer to specify the layout of a vehicle drivetrain, specify component sizes and con-
trol strategies, and then run the vehicle through any number of test cycles, measuring performance (how
well the vehicle managed to follow the cycle), emissions, fuel economy, battery charge, catalytic converter
performance and many other variables. The models were largely based on data from tests of petrol and
compressed natural gas engines and catalytic converters performed in LENT’s engine laboratory. Models of

other components were derived from first principles or from the literature.

This system was in turn interfaced to “DOME”"* (Distributed Object Modeling Environment), developed
by MIT to create a common interface to many different programs, and allow the interconnection between
analysis and other programs such as LCA (Life Cycle Analysis) systems. Details of this original simulation
are available in the final report of the Holistic Design project®, and the simulation was used (via DOME)

as input to an LCA and emissions impact study by Amundsen?,

Despite a large effort in developing this in-house framework it became apparent that resources were not
available to develop enough vehicle components to allow a thorough study*. A search of the literature
identified a MATLAB Simulink vehicle simulation model called ADVISOR %, with a functionality very
similar to the system developed at LENI.

6.2.2 ADVISOR Vehicle Simulation

ADVISOR was developed by the Vehicle Systems Analysis Team (VSAT) of the National Renewable En-
ergy Lab (NREL)’s Center for Transportation Technologies and Systems (CTTS)'®, and currently has ten
engineers involved directly in the development of component models and testing of components and vehi-
cles, as well as the support of many industrial collaborators and universities (with more than 600 users in
May 1999'%)

It is freely available for research purposes and has an open, extensible, modular strticture with a user friendly
graphical interface, shown in Fig. 6.4, primarily aimed at allowing direct user interaction. Use of ADVISOR
has greatly increased the number of component models available and allowed the work to concentrate on

optimisation¥.

The ADVISOR simulation toolbox allows a vehicle to be built up from a series of components, each of
which publishes a set of controlling parameters that may be modified from an initial default value. Once
specified, a given configuration (a car) can be driven through a drive cycle using a specific strategy and fuel

economy, emissions and many other quantities monitored throughout.

However, the ADVISOR Simulink model is computationally expensive - requiring several tens of seconds

A model of a CNG and petrol ICE, catalyser and clcctric motor were developed and comparisons between simulated perfor-
mance and measured performance on the ECE-EUDC test cycle were presented in Wallace ct al. 99,
¥Future work may intcgrate the previously developed compressed natural gas engine and other models from the AGS project.



6.2 THE VEHICLE SIMULATION MODEL 9

Fig. 6.4: Screen shot of ADVISOR interface showing initial values for a paralle] ST hybrid vehicle.

10 run on & modern PC. To optimise all but the most trivial of examples reguires thousands of simulations.
In order 1o cope with this  paraliel version of the CPEA was implemented as described earlier in section
9 which allowed multiple computers o run the simulation concurrently® on either 8 loose collection of
Windows 2000 machines, or more recently on a dedicated Linux cluster™ of 22 machines, The Linux
cluster hins allowed the previously published work®® 1o be greatly enhanced and developed.

The models are o combination of mbularised test data (or example engine emissions maps) and thermo-
dynamic caleulations. A vehicle “structure” Is chosen (for example parallel hybrid) that defines specific
components and defuilt values Tor parametens. Model parameters may be changed, and the component
midels will reflect these changes where appropriate - for example scaling the maximum power of an 1C
engine will scale the emissions test data and fuel consumption and also the engine mass. This in turn will
be reflected in the overall vehicle muss,

6.2.3 ADVISOR Vehicle Models

The work presented here made use of 6 standard vehicle models. and 2 specific vehicle types for comparisan

» Conventional SI - A conventional vehicle with a spark igmition 41kW gasoline engine (based on a
Gieo Metro 1.0L gasoline engine) and $ speed manual gearbox. This engine was also used i the S1



96 CHAPTER 6. HYBRID VEHICLE DRIVETRAIN

hybrids.

o Conventional CI - A conventional vehicle with a compression ignition 60kW diesel engine (based on
a Mercedes 1.7L Diesel engine) and 5 speed manual gearbox. This engine was also used in the CI
hybrids.

Series SI - A series hybrid with a 41kW gasoline engine, a Unique Mobility 32kW permanent magnet
motor, and a second 32kW permanent magnet motor as the generator. Nominally 50 Ovonic NiMh
28Ah 6V battery modules.

Series CI - A series hybrid with a 60kW diesel engine, a Unique Mobility 32kW permanent magnet
motor, and a second 32kW permanent magnet motor operating as the generator. Nominally 50 Ovonic
NiMh 28Ah 6V battery modules.

Parallel ST - A parallel hybrid with 41kW gasoline engine and Unique Mobility 32kW permanent
magnet motor. The electric motor was also used as the generator. Nominally 50 Ovonic NiMh 28Ah

6V battery modules.

Parallel CI - A parallel hybrid with 61kW diesel engine and Unique Mobility 32kW permanent magnet
motor. The electric motor was also used as the generator. Nominally 50 Ovonic NiMh 28Ah 6V

battery modules.

Each of the standard vehicles made use of a typical small car body with a glider mass (without engine,
gearbox, exhaust system, drivetrain, motor etc.) of 592kg, frontal area of 2m? and the coefficient of drag
(Cd) of 0.33. With a conventional 41kW SI engine and powertrain, together with 5 speed gearbox this
resulted in a total vehicle mass of 1192kg. A stoichiometric close coupled catalyser was fitted to all vehicles.

The series configuration used is shown in Fig. 6.5 and the parallel configuration in Fig. 6.6.

In addition certain of the optimisations were run with ADVISOR models of the Toyota Prius (Japanese
version)(see Fig. 6.7) and the Honda Insight. The Honda Insight and the Toyota Prius both have a lightweight
chassis, low Cd and low rolling resistance wheels. The Insight is a “thin” parallel electric assist (similar to
Fig. 6.6) with a 10kW electric motor taking the place of the flywheel and with the clutch between the
engine/motor assembly and the gearbox. The engine is an advanced VTEC 1.0 litre three cylinder gasoline
engine with variable valve timing. Unfortunately no emissions data was available for the Insight, so it could
not be included in the optimisations for pollution or NO,.

The Prius uses a planetary gear set as a power split device with the electric motor speed directly proportional
to the wheel speed, and the IC engine speed controlled by the torque applied by the generator.

Both the Prius and the Insight seem to use the same spiral wound NiMh 6.5 Ah batteries, with a nominal
7.2V per module. The Insight has 20 modules and the Prius 40.
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Fig 6.6 Parallel Hybrid Configuration (from Advisor documentation)

Hybrid Control Strategies
There are many possible strategies for controlling the 1C engine and electric motor interaction. and this can

have & dramatic impact both on Tuel economy and on enissions

For this work the Advisor control strategies outlined below were used for the paraflel and series hybrids
These all made use of the maximum and minimum state of charge (SOC) of the battéry pack as parameters
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Fig 6.7: Toyota Prius Configuration (from Advisor documentation).

10 the control system.

Parallel Electric Assist  The parallel clectric asust control strategy sses the motor for addinonal power
when necided by the vehicke and maintains charge in the battenies.

A relatively simple parallel assist strategy ' was used that controlled the electric motor in a variety of ways:

o The electric motor can be used for ull driving tongue below a certain minimum vehicle speed.

o The clectnic motor is used for torgue assist if the required torgue is greater than the maximum that can
be produced by the engine al the engine’s current operaling speed.

® The motor charges the batienies by repencrative braking

® When the engine would run imefficiently at the required engine torque at a given speed, the engine will

shut off and the electric moior will produce the required orgue. Clearly there is an energy requirement
to restart the engine

o When the battery SOC is low, the engine will provide excess torgue which will be used by the muolor
to charge the battery.

Series Electric Control Strategy  The senies strategy controls the 1C Engine as follows

® The IC engine may be tmed ol if the battery pack SOC gets too high
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o The IC engine may be turned on again if the power required by the generator (to meet the demand
from the motor) gets high enough.

o The IC engine may be turned on again if the SOC gets too low.

When the IC engine is on, its power output tends to follow the power required by the motor, accounting for
losses in the generator so that the generator power output matches the motor power requirement. However,

o The IC engine output power may be adjusted by the SOC, tending to bring the SOC back to the center
of its operating range.
e The IC engine output power may be kept above some minimum value.

o The IC engine output power may be kept below some maximum value (which is enforced unless the
SOC gets too low).

o The IC engine output power may be allowed to change no faster than a prescribed rate.

Prius Control Strategy The Prius has a planetary gear system to control the flow of power (torque) be-
tween the motor, the IC engine, the generator and the wheels (Fig. 6.7).

For a given vehicle speed, and a desired output power (determined by drive cycle, or driver inputs)

& determine the desired operating point of the engine (based on max efficiency curve)

determine the generator speed (which is controlled by generator torque) to have engine at the desired

operating point

¢ determine motor torque (power or regeneration) to provide necessary power to the wheels (or recapture

energy from wheels)

o batteries provide additional power when needed or take back extra charge provided by generator or

motor in regeneration.

There are several heuristics:

e Below a SOC of 0.5 the engine is always on.
o If the SOC is > SOCye;, then the batteries are not charged.
e Ifthe SOC is < SOCy, then the batteries are charged if the engine can produce enough torque.

o The batteries are charged on braking via the generator.
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In addition the IC engine is started if the temperature drops below a certain limit - by keeping the engine

near operating temperature, emissions at restart can be minimised.

Interestingly this strategy can result in the engine running to charge the batteries even when the vehicle is

stationary.

Insight Control Strategy The Honda Insight control strategy in ADVISOR is based on test data collected
at NREL3.

The demand is translated to a required torque at the clutch. Based on this value and the vehicle speed,
the electric motor torque contribution is calculated. The remaining torque is demanded from the ICE. The
electric motor torque is decided based on the following criteria:

o When accelerating, based on the torque and rate of acceleration, the electric motor assists the ICE,

producing around 10 Nm of torque.

o During regeneration (in reality, when the brake is depressed), the electric motor regenerates a portion
of the negative torque available to the driveline. Regeneration can only take place if the clutch is

engaged.
o Atlow vehicle speeds, typically below 10 mph, the braking is primarily only the friction brakes.

o There is no electric assist in the first gear.

6.2.4 Comparison of ADVISOR Models with Published Test Data

As part of a student project® several vehicles were modeled and compared to data available from a review
article’ ; the Peugot 307, the Ford Focus 1.8 TDCi, and the European version of the Prius.

Simulations were run over the ECE-EUDC cycle in order to compare the three vehicles, which were later

used as a basis for the cost estimates. Table 6.1 shows the results of the comparison.

It is clear that there are discrepancies between simulation and experimental test data. Indeed it is interesting
to note that in the published tests the Prius has better fuel economy in the urban cycle than on the inter urban
cycle. Other researchers have found similar discrepancies in the emissions simulations of ADVISORS,
since the emissions behaviour is based on limited tests available from IC engine experimental tests typicaily
performed at static speed/torque points. Consequently they are extremely sensitive to catalyst temperature
and behaviour, as well as dynamic effects. However the emissions simulations are considered adequate for

comparative purposes>! even though they may not be considered absolute.

9IThis is the model currently implemented in Advisor but represents a very carly model Insight. In newer models clectric assist

is clearly active®®.
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Fuel Economy (1/100kmy) Emissions (g/km) 0-60mph (s)
ECE-EUDC HC CO | NO, | PM
European Prius 5.4 0.214 | 0.210 { 0.080 | - 14.09
European Prius (Experimental) 6.3 0.03 0.4 0.05 - 13.8
Peugot 8.7 0.082 | 0.28 [ 0.079| - 10.2
Peugot (Experimental) 8.6 0.06 0.3 0.06 - 10.6

Table 6.1: Comparison of Experimental data and ADVISOR simulation by Bauman®.

6.3 Drivetrain Optimisations

6.3.1 Optimisation Variables, Conditions and Parameters

The ADVISOR simulation gives access to an extremely large number of variables that could be optimised,
including the structure of the vehicle - choice of catalyser, battery type etc.

However, with the already heavy overhead of the ADVISOR simulation it was decided to limit the number
of variables optimised. In addition to a choice of basic vehicle configuration, seven variables were chosen,
although not all are operative for all of the configurations.

Four drive cycles were used in the optimisations. The ECE cycle representing a urban European city '
(Paris, Rome), the EUDC cycle representing inter urban use with a maximum speed of 120km/h, and the
USO6HWY cycle representing an American short highway driving cycle.

The ECE-EUDC is a combined cycle consisting of 4 ECE segments followed by an EUDC cycle. Tt is
currently used for homologation in Switzerland and was used in the majority of the optimisation work as

representative of typical mixed use.

The USO6HWY, ECE, EUDC and ECE-EUDC cycles were used for the multi-cycle optimisation of fuel
economy.

The drive cycles are shown in Figs. 6.8 and 6.9. During the optimisations all of the cycles were run with
initial conditions set to standard ambient conditions - i.e. cold start.

The vehicle configuration problem posed particular difficulties not confronted in the other problems. No-
tably, with the complete change of vehicle configuration between conventional and hybrid drivetrains, some
components are added and removed from the configuration, and the optimal dimensions of others differ
greatly.
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Independent Variable Limits

ICE Size 2-74kW for SI,12-108kW for CI)

Final Drive Ratio 0.5 to 5 (needed for Prius which has fi-
nal drive ratio of 3.94)

SOCigh 0.31t00.85

SOCypw 0.3t00.85

(SOChigh < SOCjoy was considered infeasible)

Electric Motor 481058 kW

Electric Generator 4.8 to 58 kW

No. of Battery Modules 1to 60

Table 6.2: Independent Variables and Limits

In order to deal with this the similarity comparison used to identify duplicates in the population was modified
to take into account only those variables that were relevant for the configuration — for example the value of
battery SOC for a conventional vehicle is clearly meaningless. The variables were implemented as scaling

factors, so were equally appropriate for the vehicles with different basic components.

The unused variables do, however, contribute to the evolution of the population as a whole - when crossing
two different vehicle configurations all the variables are taken into account and hence the variation in the

population is preserved.
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Fig. 6.8: The ECE-EUDC and ECE drive cycles.
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Fig. 6.9: The US06-HWY Drive Cycle.

In order to avoid unfairly biasing hybrid configurations with large battery capacities, the state of charge of
the vehicle batteries at the end of the cycle was required to be within 0.5% of its initial state. To achieve this
the cycle had to be run iteratively, adjusting control parameters until the required final charge state could be

achieved. Hybrid vehicles which failed to satisfy this requirement were also removed from consideration.

A vehicle design was also considered infeasible if it could not follow the chosen cycle within 0.01km/h.
This was chosen to be small since it was found that optimum solutions will tend to take advantage of the
minimum acceleration required.

The vehicle was required to accelerate from 0 to 60mph in less than 12 seconds*.
This meant that the Prius (Japanese and European versions) could not meet the requirement as it stood.

Though the CPEA can perform optimisations with more than two objectives, results from these optimisations
are difficult to visualise and interpret (and do not converge so well, Chapter 5). Consequently the work was
restricted to a two-objective optimisation, where the results could be seen as simple trade-offs between the

two objectives.

Unless otherwise indicated in the following work the CPEA was run with the parameters: pjpiri=250,
Nepusters=8 corresponding to one cluster for each vehicle type and with clustering limited to the vehicle
type!. The relatively large initial population was used to ensure a good spread of solutions over the vehicle
types, since it proved more difficult to find feasible solutions randomly for certain vehicle configurations*

*The US Council for Automotive Rescarch (USCAR) proposed the PNGV%, which suggests this value.
tWhere the Insight was not included the number of clusters was adjusted to 7.
#The initialisation code could alternatively have been changed to produce an equivalent number of cach vehicle type.



104 CHAPTER 6. HYBRID VEHICLE DRIVETRAIN

6.3.2 Economy vs NO,

Earlier work®? considered a conventional drive-train vehicle and optimised the size of the ICE and final
drive ratio to minimise NO, and fuel economy around the ECE-EUDC cycle, and this was repeated here.
The results are by no means surprising but provide a simple example of the methodology. The NDF (Non
Dominated Front) gives a clear illustration of the trade-off between NO, and fuel economy, as shown in
Fig. 6.10.
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Fig. 6.10: Results from the optimisation of NO; emissions and fuel economy over the ECE-EUDC cycle.
Only the results for a conventional SI vehicle are shown.

Since fuel economy is nearly proportional to engine size this behaviour is to be expected - as the ICE gets
smaller, the car gets lighter, the mean ICE regime approaches wide open throttle and engine pumping losses
decrease*S,

Thus the best fuel economy is obtained at a very small engine size, below which the vehicle is no longer
capable of following the drive cycle, or has to use a very high speed regime, pushing it into the high NO, area
on Fig. 6.2. As the ICE gets larger, fuel economy gets worse for the same reasons, but the NO, emissions
drop, because the engine is operating in a regime where cylinder gas temperatures are low, and less NO; is

formed. Effectively, the engine regime can move into the lower-left comer of Fig. 6.2 while still generating
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sufficient power.

6.3.3 Fuel Economy Over Multiple Drive Cycles

The aim of this optimisation was to identify whether different vehicle configurations were, as might be
expected, preferable for different driving patterns. Earlier work®? had considered the USO6HWY and ECE-
EUDC cycle and had produced a slightly surprising set of results favoring parallel hybrid designs. With
ADVISOR running on a Linux cluster with 22 machines the optimisation could be repeated in a fraction
of the time taken in previous work. This quickly highlighted some faults in the earlier work that had been
penalising conventional vehicles - indeed most were being marked as infeasible.

The objectives chosen were fuel economy over the drive cycle, where fuel economy for diesel engine vehi-
cles was converted to the equivalent gasoline value. Two different combinations were run: the US06 HWY
cycle (see Fig. 6.9) against the ECE-EUDC mixed cycle (see Fig. 6.8), and the US06 HWY against just the
ECE urban cycle (4 cycles as shown in Fig. 6.8).

The initial results for the Prius were surprising — much worse fuel economy on the ECE cycle than on the
other cycles. Closer inspection of these results showed that the Prius ran the ICE continuously. The control
system will run the ICE until it reaches operating temperature®, which happens more quickly on the more
aggresive USOGHWY cycle, and which happens on the ECE-EUDC cycle because it is longer.

In order to alleviate this fact the problem was run again with hot initial starting conditions.

Fig. 6.11 shows the NDFs from the current work using the USO6HWY cycle and mixed ECE-EUDC cycle,
and Fig. 6.12 shows the equivalent for the USO6HWY and ECE only cycles. Table 6.4 gives values for the
points labeled in Fig. 6.12 and Table 6.3 does the same for Fig. 6.11.

ICE (kW) | Final Drive | SOChign | SOCiow | Motor (kW) | Battery Modules
A | Insight 96.9 0.7 0.8 0.3 8.8 36
B | Parallel CI 358 0.9 0.7 0.5 41.6 28
C | Parallel C1 51.6 0.6 0.8 0.5 437 28
D | Prius 60.2 4.7 0.5 0.4 36.1 60
E | CI 68.2 1.0 - - - -
F | CI 95.6 0.7 - - - -
G | Parallel SI 32.2 1.2 0.6 0.5 50.8 35
H | Parallel SI 455 1.1 0.6 0.4 527 39
I |[SI 74.1 1.5 - - - -
J | SI 77.2 1.4 - - - -

Table 6.3: Variable values for points labeled in Fig. 6.11 from the optimisation of fuel economy over the
USO6HWY and ECE-EUDC cycles.

YPractical expericnce with the Prius* confirms this behaviour.
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Fig. 6.11: Two cycle fuel economy optimisation results for USO6HWY and ECE-EUDC mixed cycle with
hot initial starting conditions. The fuel consumption for diesel has been adjusted to an equivalent gasoline
value. The vehicles must also meet the 0-60mph in 12s acceleration test.

config ICE (kW) | Final Drive | SOCye | SOCipy | Motor (kW) | Battery Modules
A | Insight 98.2 0.7 0.7 03 8.9 38
B | Parallel CI 38.9 1.0 0.7 0.5 344 25
C | Parallel Ci 538 0.6 0.7 0.5 449 24
D | Prius 59.3 5.0 0.8 0.3 355 58
E | CI 68.2 1.0 - - - -
FICt 105.2 0.7 - - - -
G | Parallel SI 29.6 14 0.7 0.6 49.1 33
H | Parallel SI 48.2 1.1 0.8 0.6 46.9 28
I |SI 70.3 1.6 - - - -
J |1 76.8 14 - - - -

Table 6.4: Variable values for points labeled in Fig. 6.12 from the optimisation of fuel economy over the
USO6HWY and ECE-EUDC cycles.

Overall Behaviour The results are not quite as expected—notably there are no conventional drivetrains

at all in the Pareto-optimal set, and these had been expected to perform well in the US-06 HWY cycle. The

results show that there is a clear difference between performance on an urban cycle and a highway cycle,

and that in general parallel hybrids are favoured over the other vehicle types.
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Fig. 6.12: Two cycle fuel economy optimisation results for USO6HWY and ECE urban cycle with hot initial
starting conditions. The fuel consumption for diesel has been adjusted to an equivalent gasoline value. The
vehicles must also meet the 0-60mph in 12s acceleration test.

The series vehicles are heavily punished since the ICE must still be dimensioned for the acceleration, so that
when cruising the ICE is not running at maximum efficiency.

It was speculated earlier that conventional drivertains should perform well on highway driving, as a hybrid
drivetrain, at first view, offers no advantages in this mode. However, while the US-06 HWY cycle is for the
most part at a constant high speed, it also contains a hard acceleration at the start of the cycle. Thus, in a
conventional vehicle, the ICE must be sufficiently large to provide the acceleration and so is not dimensioned
for economy.

The parallel hybrid configurations show a marked reduction in ICE size and consequently marked reduction

in fuel consumption achieved by using an electric assist for the accleration phase.
As expected they still show the same basic trend.

The battery capacities in the cars that perform well on the US-06 HWY are used to provide acceleration,

rather than storage — thus it is the battery’s power density, rather than its energy density that is important.
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All of the vehicles show the same trends with respect to ICE size. Vehicles with smaller ICEs do better on
the ECE and ECE-EUDC cycles than on the USO6HWY cycle and this is more noticable on the ECE cycle
as might be expected. Here the ICE is being sized for the aggresive acceleration of the USO6HWY cycle.

Note that the fuel economy results for the Prius do not show much in the way of a trade-off, and this is
thought to be due to the controt strategy that results in the ICE turning on and off much more frequently than

with simple strategy in the other parallel hybrids.

The Insight had better economy on the ECE-EUDC than on the ECE, and better still on the USO6HWY.
Since it is much lighter than the other vehicle types (see Fig. 6.15 and Section 6.5.2) it has a distinct advan-
tage for the acceleration. The small electric motor assists in order to further boost the performance on the
acceleration phase of the USO6HWY cycle, and the efficient ICE then supplies the required cruising ability.
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6.4 Vehicle Costing

A very simple cost model was introduced to estimate operating costs, Coperaring and investment costs, iy
as:

Ciny = CicePice + CetecFPotec + Cfi.r 6.1)

where Cjce.Cele are respectively the cost per kW of the IC engine and the electrical components, and Pee,Pojec
are the maximum rated power output in kW.

In order to account for parallel hybrid designs that have no generator the P, was taken defined as :

P, elec = Pootor + P, generator (6.2)

It was considered that a diesel engine, due to the higher compression ratio and high pressure common rail
(or direct injection) would be 20% more expensive.

Cer=1.2¢s; 6.3)

The Cy;. is taken to include the bodywork and all the anciliary components, and is assumed to be fixed and
the same for a hybrid or conventional vehicle. In reality it is clear that this is a greatly simplified costing,
since as engine power varies so does the cost of many associated components such as braking systems,

suspension systems and tyres.

Operating costs were calculated as:

Cn,wru/iug = cgum[im'Mgus()Iin(' + CdiesetMdieset (6.4)

where Cgasoline-Cdieset are respectively the cost per litre of gasoline and diesel, and Myqsoiine.Muieser are the
volume of fuel used over the assumed life of the vehicle. Values of cgasotine = 1.35sfr/1 and Cyieser =
1.36sfr/1 were used.

The average distance driven in Switzerland (per vehicle) is given as 15,000km by the TCS (Touring Club
Suisse)®?, and maintenance and running costs are typically calculated over 100,000km (ie a life of 7 years).
However, in light of the 5 year / 100,000km guarantee offered on the hybrid system of the Prius, this was
modified to assume 20,000km per year over 7 years as a more reasonable estimate, and to allow the expected
better economy of hybrids to be more apparent.
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For the purposes of this analysis the maintenance costs have been neglected - this is valid if the maintenance

cost is more or less similar for the hybrid and conventional cars (see footnote on p94).

This suggests that maintenance costs are not very closely tied to technology but are much more dependent

upon good design and marketing choices.

The electrical system cost was not broken up into individual components partly because detailed costs were
not readily available, but also to keep the model simple. It would, however, seem reasonable 10 assume
that the two major elements in the electrical system of a hybrid are the electric motor/controller assembly,
and the batteries. The cost of the electric motor/controller can be expected to increase with rated power.
The cost of batteries can be considered to be accounted for indirectly since they form a significant mass
disadvantage that is included in the vehicle mass and hence apparent both in the acceleration test and the
fuel use. Consequently solutions with fewer batteries will have lower operating (fuel) costs, and hence be

better than solutions with an excessive number of battery modules.

To estimate initial values for ¢... and ¢, data was taken from a comparative review?> of the performance
and cost of the Prius, Peugeot 307 (gasoline) and the Ford Focus (diesel). Additional data was taken from
tests performed by TCS®#6%7_ The major characteristics of each are given in Table 6.5.:

Characteristic Data
Ford Focus | Peugeot 307 | Toyota Prius

Fuel Diesel Gasoline Gasoline
Drive Type Conventional | Conventional Hybrid

IC Engine Power 85kW 80kW 53kW
Electric Motor - - Siemens 33kW
Electric Generator - - 15kW
Cost 27450chf 24000chf 38800chf

Table 6.5: Characteristic vehicle data used for cost model.

This resulted in initial values for cs; = 157, cc; = 188, Cejee = 396 str/kW. The calculated value for the cost
of electric components, cerec, Was varied to determine its impact on optimisation results. Values of ¢ were
chosen as 396, the nominal calculated value and 198, half the nominal value representing a major reduction

in costs that might be imagined due to increased numbers being produced.
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6.5 Investment Cost vs Operating Cost

This aim of this was to identify the relationship between investment costs and operating costs (as defined
by fuel costs, since maintenance costs have been neglected for this study*, and to investigate the impact of

reducing the cost of the electric components, Cyec-

The vehicles were evaluated over the ECE-EUDC drive cycle, initially with the nominal ¢, = 396sfr/kW,

and the results are presented below. The value of ¢, was then halved and the optimisation rerun.

6.5.1 The Impact of Clustering

This optimisation was run both with and without clustering, to determine the impact of the clustering. The
NDF for the case without clustering is shown in Fig. 6.13 with the NDF from the clustered optimisation
superimposed and the NDF’s from the clustered optimisation are shown in Fig. 6.14 . Several points are
labeled on Fig. 6.13 and the corresponding independent variable values are shown in Table 6.6.

From the algorithm standpoint the NDF found with the clustering is slightly better than without - the results
shown are for approximately 20000 function evaluations for each case. The overall best solution, as defined
by Ciwn + Coperating» (labeled at point C) is slightly better than the best point found without clustering (point
B) although the difference is small (approximately 200sfT).

A close inspection of the absolute best values shows that a conventional ST vehicle has the miniumum
investment cost (point G), while the minimum operating cost is a modified Insight. The lowest combined
cost, Coperating +Ciny, is similarly an Insight based vehicle (point A).

More important than the very small difference in overall costs, the clustered case provides a lot more useful
information. With the optimisation being run without clustering no information could be obtained about
the vehicle configurations not on the POF. Either individual optimisations for each vehicle type would be
needed or the investment cost / operating cost would need to be artificially modified to penalise the winning
vehicles. Either of these solutions implies many more evaulations (up to 8 times as many to run each vehicle

type separately).

6.5.2 Discussion

A complete set of graphs showing the variables for each of the vehicle configurations is given in A.2.4.

*as previously noted the TCS figures demonstrate that maintenance costs are not casily predictable.
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Fig. 6.13: Investment vs Operating Cost (without Pollution) over the ECE-EUDC cycle with 0-60mph 12s
acceleration. Comparison of the NDFs between the optimisation with and without clustering, showing

slightly better performance with clustering.

Contfig. | ICE (kW) | Final Drive { SOCpig | SOCip. | Motor (kW) | Battery Modules
A | Insight 51.2 1.1 0.7 0.6 34 15
B | Insight 52.8 1.1 0.5 0.4 2.1 10
C | Insight 527 1.1 0.6 0.3 1.5 11
D[ st 55.6 1.1 - - - -
E | SI 54.7 1.2 - - - -
F | SI 54.4 14 - - - -
G | SI 53.1 1.5 - - - -

Table 6.6: Variable values for points A-G in Fig. 6.13 from the optimisation of investment cost vs operating
cost over the ECE-EUDC cycle.

Overall Behaviour Fig. 6.14 seems to show the clear dominance of the Insight configuration. The Insight

and the Prius both have advanced engines *, so can be argued to have comparable ICE costs. However, the

Insight is a two door, two person vehicle, in contrast to the other vehicles which are taken as small four

person vehicles, and the Prius which is a four door sedan. Tn addition to this the Insight has a light weight

Aluminium structure.

Fig. 6.15 shows the vehicle mass shown plotted against the sum of investment and operating cost,Cp, +

Coperating: and clearly shows the Insight to be the lightest and the Prius the heaviest, even more so than the

*VTEC in the case of the Insight and Atkinson cycle for the Prius
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Fig. 6.14: Results of the optimisation of investment vs operating cost (no pollution) over the ECE-EUDC
cycle with 0-60mph 12s acceleration.

series hybrids.

The Prius is probably unfairly punished in that no weight was added to the structure of any of the other vehi-
cle types to account for an increase in drivetrain component weight - so the series hybrids are unrealistically
light. Since fuel use and hence operating costs are directly related to vehicle mass T it is to be expected that
a lighter vehicle will outperform a heavier one. This is alleviated to some extent in the hybrid vehicles since

some of the energy can be recuperated, but still poses problems on continual climbs.

In general the parallel hybrids are heavier than the conventional vehicles due to the electric motor and
batteries. Similarly the series hybrids are heavier than the parallel hybrids because of the extra need for a

generator.

The lowest investment cost is for a conventional ST vehicle, the lowest operating cost for the Insight configu-
ration. The Insight also has the minimum overall cost (Ciny, + Coperaring). The Tnsight does in fact have a very
low level of hybridization - it is nearly a lightweight conventional car with advanced engine - the electric

motor helps out with maximum acceleration.

A reduction of n kg in vehicle weight can be considered to translate directly to a fucl economy of m see OTA report - cant
remember figures
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Fig. 6.15: Vehicle Mass from optimisation of investment vs total costs (no pollution costs)

Conventional Vehicles The conventional vehicles show a simple relationship between engine size and
operating cost (see points D,E,F,G in Fig. 6.13). A smaller ICE must (in general) operate at a higher speed
in order to generate the same power, with a corresponding increase in final drive ratio. This results in a

reduced Cjy,y but at the expense of fuel economy and hence Cperaring-

Series Hybrids Fig. 6.14 shows that the series based hybrids are considered unfavorable, with much higher
investment cost than any other vehicle configuration, and with operating costs higher than the equivalent
alternative configurations. In general the series hybrids have a small (around 12-14kW) ICE with similarly
sized generator, and a large motor. The ICE runs most of the time and the large battery storage is used to
meet the intermittent loads. As the motor power decreases the generator power drops and hence the ICE
power drops accordingly - all of these contribute to reducing Cjy,. As with the conventional vehicles smaller

ICE means higher ICE speed and so higher fuel consumption and hence higher Cyperasing-

Parallel Hybrids The parallel hybrids are clearly more favorable, as might be expected since they do not
suffer from the drivetrain losses experienced by the series hybrids. The ratio of electric motor power to
ICE power (the degree of hybridization) is shown against the operating cost for each of the paraliel hybrid
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configurations in Fig. 6.16.

This shows clearly the tradeoff between investment cost and operating cost. A large motor with appropriately
high number of battery modules and small ICE produce a high Cj,, and low Coperating, since the ICE is
operated at high efficiency with the motor meeting the acceleration requirements. As the motor size is
reduced, the number of battery modules can also be reduced but the ICE power must increase to meet the
demand and cope with the acceleration, hence increased fuel consumption and Cpperaring. As the motor size
becomes very small (very small degree of hybridization), the NDFs for the parallel hybrids approach those
for the conventional vehicles.

The final drive ratio drops as the motor size increases, since this reduces engine speed and hence reduces
fuel use.

The SOCyqy and SOC,,i, show in general a less smooth trend than the other variables,although both the C1
and ST based configurations follow the same trend.

Prius The Prius is slightly odd in that it makes use of a generator to control the power flow between the
batteries and wheels. The ICE and motor show the same trend as the parallel hybrids - increasing ICE power,
decreasing motor power results in lower Ci, but higher Coperaring as described above. The generator power
drops approximately in line with the motor, although less smoothly, as does the number of battery modules.
There is a clear change of operation at small motor power (high ICE power), with the generator size dropping
suddenly and the number of battery modules jumping to near the maximum (see Fig. 6.17). This will allow
the ICE to charge the batteries for much of the working part of the cycle, with the batteries then providing
extra torque via the motor when needed at high loads. The Prius shows slightly better operating costs than
the simple parallel SI hybrid and better than the series hybrids.

6.5.3 Reduced Costs for Electric Components

Reducing the value of ¢, will lower the investment costs of all of the hybrid vehicle configurations. It was
not necessary to re-optimise the problem - by decomposing the investment costs and recalculating the new
costs the new curves could be reconstructed, and the resulting set of solutions ranked to provide a new set
of NDFs.

The Insight remains the most favorable configuration (mild hybrid) until a drop in cost of electric compo-
nents to around 25% of the current value, at which point the CI parallel hybrid takes over, due to the greater
degree of hybridization.

If the Insight is removed from contention then the best solution becomes the conventional CI vehicle, and

the parallel hybrid CT vehicle will become favourable if the cost of electric components drops to around 55%
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of the current value.
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6.6 Total Cost vs Pollution Cost

This was to investigate the impact of applying the pollution costs used in the district heating model to the
domain of transport. The Insight is not included in this optimisation because engine emissions data was not

available.

6.6.1 Pollution Cost Calculations

Pollution costs were limited to the cost of CO; and NO, and the values used were the same as in the district
heating network optimisation, notably 13.8 sfr/kg for NO, and 0.03 sfr/kg for CO,.

While the NO, emissions are produced directly from the ADVISOR model, the CO, emissions were calcu-

lated from the fuel use as:

MCOz = (0'640 *44/]2)Mgasnlinc (65)

where 0.640 represents the carbon content (in kg) of one litre of gasoline.

6.6.2 Results

A complete set of graphs showing the variables for each of the vehicle configurations vs the poliution cost

is given in A.2.5.

Fig. 6.18 shows the NDFs for the optimisation of Ciy + Coperaring and Cpg. Fig. 6.19 shows the same
information without the series hybrids with labels at certain sites. Variable values at the labeled points are

given in Table 6.7.

ICE (kW) | Final Drive | SOC,), | SOCin, | Motor (kW) | Battery Modules

AfCI 52.6 0.8 - - - -

B | Parallel CI 46.3 1.0 0.6 0.4 6.2 14
C | Parallel CT 43.3 1.0 0.6 0.4 10.4 16
D | SI 54.3 1.2 - - - -

E | Parallel SI 49.8 1.1 0.6 0.3 6.6 14
F | Parallel SI 25.7 1.1 0.6 0.5 345 30
G | Prius 50.8 50 0.6 0.6 26.3 54
H | Prius 43.7 4.8 0.6 0.6 33.0 56

Table 6.7: Variable values for points labeled in Fig. 6.19 from the optimisation of fuel economy over the
USO6HWY and ECE-EUDC cycles.
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For the specific pollution costs considered the calculated pollution costs are so low as to be insignificant
compared to the overall investment and operating cost over the supposed life time — indeed comparing the
results to the operating cost shows that it can be expected to have only a limited impact. This is in contrast
to the heating domain where the optimum solution is very sensitive to pollution costs. This is largely due
to the already high level of taxes imposed on the fuel prices, that already acts to improve fuel economy and

swamps the direct pollution costs.

The cheapest, but most polluting solution is a conventional diesel car, while the least polluting but most
expensive is the Prius* configuration. Indeed, only the diesel series hybrid configuration is more polluting
than the conventional diesel configuration, as might be expected since it makes use of the IC diesel engine

continually during the cycle.

The overall best solution as defined by Ciu + Cperaring +Cpor 13 also the conventional CI vehicle. The
pollution cost must be increased five fold before there is a change towards conventional SI vehicles, and
nearly thirty fold before there is a change towards a hybrid CI vehicle. It should be stressed, however, that
the pollution costs do not include particles or hydrocarbons or any of the many other potentially harmful

fecinne 32
emissions2.

6.6.3 Discussion

Conventional vehicles Both the SI engine and CI engine vehicles show very little tradeoff between pol-
lution cost and total cost. In the case of the SI engine vehicle approximately 40% of the investment and
operating cost is operating cost (fuel cost), and this contributes to approximately 65% of the pollution costs
(CO;). The small tradeoff is due to a small (0.5%) change in engine size that allows the engine to be more
fuel efficient while keeping the NO; nearly constant. This is due to the specific characteristics of the engine

efficiency and NO, maps and can only happen over a very small change in engine size.

For the CI engine vehicles only 30% of the investment and operating cost is the operating cost and this
contributes to only 35% of the pollution costs, the majority being due 1o NO,. The more significant NO,
costs dominate the pollution cost and account for the tradeoff - a bigger engine produces more NO,. This is

again due to the specific characteristics of the engine maps.

Series Hybrids vehicles The series vehicles suffer from high cost due to the generator and large motor
costs. This aside the pollution costs are higher than the equivalent conventional vehicles since the ICE
spends more time running at high efficiency. The SI series hybrid shows almost no tradoff. As for the
conventional equivalent the pollution costs are dominated by CO; and so follow closely the operating costs
(the two objectives are very nearly the same). The CI series hybrid pollution costs are due mainly to the

*The Insight was not considered here since no emissions were available.
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NO; costs - small ICE gives low operating costs and investment costs but high NO, costs, and conversely.
The electric motor size is fixed by the cycle requirements, and the generator more or less fixed by the ICE

size, so there is little room for manoeuvre.

Parallel Hybrid vehicles Both the SI and the CI parallel hybrids show the same trend - smaller ICE and
bigger electric motor gives improved fuel economy and lower pollution, and this is clear in Fig. 6.20. It is
more noticeable in the case of the SI engine since the CI engine hybrid is penalised by the increased NO,
production of more efficient CI engines. The CI hybrids tend to have bigger ICE (and a lower degree of
hybridization), since the diesel ICE are themselves more efficient. Consequently they have fewer battery

modules,

Prius The Prius configuration follows the same trends as the SI parallel hybrids. Reducing the ICE size
improves fuel economy and so reduces CO; but at the cost of increased NO, - however the CO, effect is
dominant, hence reduced engine size leads to reduced pollution cost. Investment increases because of the

larger proportion of power from the electric motor (see Fig. 6.20) hence larger investment.

6.6.4 Effect of Decreased c,,,

The NDFs for the optimisation with ¢, = 198sfr are shown in Fig. 6.21. Halving the ¢y used in the
calculation of Cjy,, brings the cost of the electrical components down to nearly the same as the cost of the

ICE engines.

This results in a change of overall best solution from a conventional CI vehicle to a parallel hybrid CI
(although the extremely low pollution costs still have a minimal influence). Increasing pollution cost by
five fold moves the overall best solution to a SI parallel hybrid, and an increase of 30 fold favors the Prius
configuration.

The range of parallel hybrid solutions is reduced since the difference between ¢, and c;. was the major
driving force in the tradeoff between size of motor and size of ICE. This is apparent in the graphs showing
the ratio of P, and P, in Fig. 6.22.
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6.7 Total Cost vs Quantity of NO,

NO, emissions have been shown to have a direct impact on human health 2028 3nd vehicle NO, emissions are
of particular importance because they produce NO, in areas where it impacts directly on people. Considering
NO, vs operating and investment cost provides a clearer picture of the hybrid behaviour, particularly since

the operating costs are fuel costs and so are directly proportional to the CO; produced.

Fig. 6.23 shows the NDFs from the optimisation with the series hybrid not shown for greater clarity. The
ratio of ICE to electric motor power are given in Fig. 6.24. Table ?? shows values of the independent

variables at the points labeled in Fig. 6.24.
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Fig. 6.23: Total Cost vs Quantity of NO, output over the ECE-EUDC cycle.

The best economy and lowest investment cost hybrid can be expected to use the IC engine at its full capacity
for as long as possible to reduce fuel consumption by running the IC engine at its most efficient, and to

reduce the size of the IC engine. However this means high NO, emission for the IC engine.

6.7.1 Results

A complete set of graphs showing the variables for each of the design configuration are given in A.2.6
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Fig. 6.24: Degree of hybridisation shown against quantity of NO, output, from the optimisation of total cost
vs NO,.

The global Pareto front contains hybrid gasoline vehicles (C,D), hybrid diesel vehicles (F,G), conventional
gasoline vehicles (E) and conventional diesel vehicles (HI). This will change if the investment cost of the
hybrid electric components is reduced. The conventional vehicles tends to disappear as ¢, is reduced, as
does the diesel hybrid.

Conventional vehicles The SI and CI conventional vehicles both follow the same trend as the total cost
vs pollution cost optimisation. The SI engine vehicle follows the expected trend - as the ICE size reduces
the engine runs more efficiently but produces more NO,. The CI engine vehicle similarly follows the same
trend as the total cost vs pollution cost optimisation, with a small increase in CI engine size leading to an
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config ICE (kW) | Final Drive { SOCpign | SOCjw | Motor (kW) | Battery Modules

A | SI 54.3 1.2 - - - -

B | Parallel ST 47.0 1.2 0.7 0.6 6.7 14
C | Parallel ST 53.7 1.2 0.6 0.4 7.9 14
D | Parallel ST 27.5 1.2 0.7 0.7 30.0 23
E | Prius 53.7 5.0 0.7 0.6 24.8 59
F | Prius 64.0 5.0 0.7 0.6 23.2 58
G | Parallel CI 47.4 1.0 0.5 0.4 8.2 14
H | Parallel CI 46.9 1.0 0.8 0.3 5.1 14
I CI 51.9 1.0 - - - -

Table 6.8: Variable values for points A-I in Fig. 6.23 from the optimisation of overall cost vs quantity of
NO,. produced over the ECE-EUDC cycle.

increase in NO,. In both cases the changes are fairly small.

Series Hybrids Again these follow the same trends as the total cost vs pollution cost optimisation.

Paraliel Hybrids The CI parallel hybrid shows a reversed trend for the ICE, as does the Prius.

6.8 Conclusions

The most striking result is the inadequacy of the pollution costs for CO; and NO,. These result in an overall
pollution cost for all the vehicles that is negligible compared with the investment cost and the cost of fueling

a vehicle over its life, without even considering the maintenance costs.

This is in contrast to the district heating case where the best result is highly sensitive to the inclusion of

pollution costs, and even a small pollution cost causes the solution to radically change technology.

From a political point of view, the idea of a CO; tax accross all sectors (heating, transport etc) would
encourage solutions such as the fully electric vehicle, where it would be advantageous to produce energy
at the central power station. The current situation with high taxation already on fuels used for transport
overwhelmes the additional direct cost of pollution taxes, which would need to be increased five fold to have
any significant effect.

Tt should be noted that the direct effect of many other pollutants (for example hydrocarbons, carbon monox-
ide, and particulates) on health have been ignored in this study, and a health tax might be more effective,
linked to the toxicity.

1t would be interesting to examine in more detail the control strategies, since the SOC,i, and SOC,q, vari-
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ables used in the optimised appeared to have only a secondary impact on the hybrid behaviour (although

were probably necessary in order to find feasible solutions).

It should be noted when comparing the results from the Honda Insight model to the Toyota Prius and other
simple vehicles that the Honda Insight is a two person vehicle with a light weight chassis, in contrast to the

other vehicles.



Chapter 7

Conclusions

7.0.1 Clustering Pareto Evolutionary Algorithm

An evolutionary multi-objective optimisation algorithm with clustering, the CPEA, has been developed to
solve fundamentally multi modal problems. The CPEA has been developed to be robust, and to produce a
well defined non-dominated front, approximating the Pareto front, quickly and without the need for prob-
lem specific tuning. The CPEA sucessfully finds multiple local Pareto fronts and demonstrates that multi-
objective optimisation is a viable alternative to aggregation of conflicting objectives - giving better use of
each function evaluation as well as extra information at no cost. In addition the CPEA has beed shown to be
practical on large computationally intensive problems.

Initial testing on two objective problems from the literature shows that the CPEA is capable of solving
a wide range of problems, as well as specifically multi-modal problems. Preliminary comparisons with
existing algorithms indicate that the CPEA finds the non-dominated front in fewer function evaluations than
the best of the competitors, and produces an equally well or better defined front.

The use of clustering in the independent variable space has been shown to be an effective method of pre-
serving diversity in the evolving population, and has shown itself able to identify multiple different solutions
in multi-modal problems. It is considered a key element in the CPEA strategy, directly responsible for the
success in solving the district heating test case.

Several clustering techniques have been investigated, and one of these, the c-means fuzzy clustering algo-
rithm, has been adopted as a successful compromise between computational effort and stable, well defined
clusters. A technique for determining natural clusters with c-means clustering has been found in the litera-
ture and shown to be adequate at keeping clusters, although with a computational overhead. Determining the
number of clusters automatically does not seem to adversely affect the number of evaluations to converge to

the Pareto front, although there is a large overhead in computation. Clustering on non multi-modal problems

129
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would seem to slow the convergence by a factor of approximately two.

The use of clustering requires calculating distances or differences between solutions, which poses a problem
in a many dimensional space. To deal with this method of multi-dimensional scaling, principal component
analysis, has been used to reduce the number of dimensions before clustering. This has been shown to work
on a 10 variable problem from the literature and on a real test case, the district heating network. Indeed the
multi-dimensional scaling before clustering proved to be essential to the solution of the many variable district
heating problem. As a side effect the reduction of dimension speeds up the clustering process (dramatically

for problems with many variables).

7.0.2 District Heating Problem

The CPEA was successfully applied to the problem of designing a district heating network around a central
heat pump and considering pollution, and new insight has been gained into the behaviour of the system as a

whole.

Originally this problem was tackled using environomic analysis to internalize the costs associated with
potlution, and optimised with a single objective GA, showing that the optimal solution coasidering pollution
was completely different to the optimal solution without pollution, demonstrating the sensitivity of the

optimal solution to imposed pollution costs in this domain.

The results of the original work were verified and the CPEA proved effective in greatly reducing the number
of evaluations to solve the original single objective problem. The original problem was transformed into
a two objective optimisation problem by isolating the costs associated with pollution from all other costs.
The non-dominated front from this optimisation included the optimum solutions both with and without
pollution, along with the form of the intermediate tradeoff surface, all for significantly less than the number
of evaluations necessary for a single solution in the original study. The non-dominated front was disjoint
with several locally non-dominated fronts.

Mulii-dimensional scaling and clustering were necessary in order to fully solve this problem. Without them
the CPEA only found the parts of the non-dominased front corresponding to Jow pollution cost configu-
rations, since the high pollution cost configurations, while having lower capital and operating costs, were
difficult to produce. The clustering also produced locally non-dominated fronts corresponding to different
central plant configurations. Further post analysis of the reduced number of variables indicated that network

temperature was clearly the dominant variable.

In the earlier work a simple parametric study of the network supply temperature was performed, by fixing
its value and performing an optimisation to find the optimal solution. This could only be repeated at a few
different temperatures since it required many function evaluations per optimisation. An alternative to this

procedure was proposed, using the CPEA to first maximise, then minimise the value of network supply



temperature while minimising the original single objective. This produced a much more detailed parametric
optimal study, allowing a detailed investigation of the solution domain that was not possible with a single
objective optimisation algorithm, since it would require too many optimisations and hence a prohibitive
computational cost. Several interesting features of the problem were revealed, that were not noticed in
the original study, such as the importance of the domestic hot water supply in determining the optimal

configuration, and identifying clearly the energy cost as the critical factor.

Mutti-objective optimisation was shown to be a valuable alternative to environomic internalisation of costs,
allowing uncertain parameters to be kept out of the optimisation process. The environomic analysis could
then be applied afterwards in “real” time, allowing the uncertainty in calculating pollution costs to be inves-
tigated quickly without re-optimisation. This provides a dramatic saving in computational effort and elapsed

time.

A three objective version of the district heating network problem considering electricity costs, investment
costs and gas costs was optimised with limited success. Convergence to the non-dominated front was found
to be slower and not as good as in the two objective cases due largely to the problems of thinning with three
or more objectives.

7.0.3 Vehicle Drivetrains

The CPEA has also been applied to the problem of vehicle drivetrain analysis, which posed several specific
difficulties, notably the time dependent simulation and requirement to mode! compticated sub-components
efficiently. A simulink model of a vehicle, ADVISOR, was used to evaluate conventional, series electric
hybrid and parallel electric hybrid drivetrain configurations over the ECE-EUDC and USO6HWY drive

-cycles, and evaluate performance in terms of CO;, NOy, fuel economy, estimated investment, operating and
pollution costs. To optimise this problem it was necessary to parallelise the CPEA, and develop a robust
problem handling mechanism to deal with infeasible proposed solutions that caused the modeling system to
crash.

The results demonstrated once again the advantage of multi-modal multi-objective optimisation in providing
the maximum information per evaluation in a situation where solving the simulation is time-consuming, and
showed the feasibility of optimising such complex models.

The parallel hybrids were shown to be preferable to series hybrids in all cases studied, but were frequently
beaten by conventional vehicles. In particular diesel engine vehicles prove difficult to beat in terms of
operating cost, or even overall investment and operating cost, since they have very good fuel economy. Even
including pollution costs as calculated in the district heating problem was not sufficient to change the overall
best solution. Indeed it was found that a five fold increase in pollution costs would be needed before any
difference would be observed.
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The Honda Insight, a mild hybrid with ultra light weight structure, was found to be a highly attractive
configuration. However, the Insight is a two person vehicle and care is needed in comparing the performance
with the Toyota Prius and other simple four person vehicle configurations.

It is interesting to note that the pollution costs were found to be insignificant in comparison with the operating
and investment costs of a vehicle. This is in contrast with the heating domain where the same pollution costs
per kg of CO» and NO, prove to be extremely significant, changing the overall best solution significantly. A
large part of this effect is suspected to be due to the high level of tax already applied to fuel in the transport

domain, and hence the already high pressure to reduce fuel consumption.

Politically it would seem that applying a uniform CO; cost accross the board to all energy domains will have
a limited effect on the transport industry. Perhaps more interesting would be to attribute more penaliies to

NO, and other pollutants that are known to be directly harmfut to human health.

7.1 Future Work

The Advisor models currently take into account the changes in vehicle mass as the engine and other compo-
nents are scaled. However the models do not take into account secondary changes - for example increasing
the engine size may require uprating the braking and suspension system, This in turn may require increased
chassis rigidity adding even more mass. The cost model used could be improved, for example to consider

the cost of the batteries separately from the electric motor and controller.

[t would be interesting to consider the impact of other pollutants such as particulates on vehicle choice, and
also to consider the impact on human health directly as an objective rather than indirectly via pollution.

More work is needed on solving problems with three and more objectives. The current thinning algorithm
(for three or more objectives) favors points just behind the pareto optimal front and results in too many
points in the population. This in turn slows convergence and overall performance. The impact of variable
scaling on clustering and optimisation, particularly the interaction with crossover on certain problems needs

more investigation.
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A.2.2 Fuel Economy vs NO
Full results for the fuel economy vs NO, optimisation
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A.2.3 Multi Cycle
ECE-EUDC vs USO6HWY
Full results for the ECE-EUDC vs USO6HWY fuel economy optimisation.
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Fig. A.17: Independent variable values for the conventional SI vehicle from the optimisation of fuel economy
over USO6HWY vs ECE-EUDC cycles.
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ECE vs USO6HWY

Full results for the ECE vs USO6HWY fuel economy optimisation.

APPENDIX A. APPENDIX

T
o
76) o
s
78] *
£ .
gu R
H kN
138 &
&
g -
72|
&
R4 M
7 o
+
.6 8.7 98 99 10 101 102
ECE Fuel Economy (1100km}
(a) IC Engine Power

1
K S
%
1.58 +
AN
156 A
2 A
E"s’ .
0
s -,
= "
215
<
149 v,
1.48 .
-
.44 AN
1.
98 97 101

98 99 10
ECE Fuel Ecoromy (V100km)

(b) Finat Drive Ratio

Fig. A.25: Independent variable values for the conventional SI vehicle from the optimisation of fuel economy

over USO6HWY vs ECE cycles.

IC Engine Rower (kW)

8 85 9 95 10 10.5
ECE Fuel Economy (V100km)

(a) IC Enginc Power

Final Drive Ratio

o ey o

° o °

S d s B e &
.

°
:3

&

[ 85 9 95
ECE Fuel Economy (¥100km)

(b) Final Drive Ratio
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A.2.4 Investment Cost vs Operating Cost

Full results for the investment vs operating cost optimistaion.
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Fig. A.33: Independent variable values for the conventional ST vehicle from the optimisation of investment

vs operating cost.
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Fig. A.34: Independent variable values for the conventional CI vehicle from the optimisation of investment
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A.2.5 Total Cost vs Pollution Cost

Full results for the total cost vs NO, optimisation.
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Fig. A.41: Independent variable values for the conventional SI vehicle from the optimisation of total cost vs
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A.2.6 Total Cost vs NO,

Full results for the total cost vs NO, optimistaion.
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