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ABSTRACT

‘T'he main topic of this thesis 1s related to the state of the art in designing cryptographic primi-
tives from a hardwarc point of view. A special emphasis is dedicated to low-power/low-encrgy
CMOS design. A sct of solutions is proposcd including an 1LFSR bascd strcam cipher with sclf-syn-
chronizing capabilitics, a new memory-less Rijndacl block cipher architecture and a public key
scheme in the class of discrete logarithm. The former 1s based on arithmetic in large finite ficld,
mainly Galois extension ficld GF(2%). ‘I'hese solutions are droved using low-encrgy techniqucs, in
order to decrcase both the switching activity and the total delay. T'he fundamental motivation sup-
porting this work, is to demonstrate that practical solutions can be obtained for implementing such
complex primitives in large scaled circuits, that arc at once, high performance architectures (low-
power, high-speed) and cryptographicaly strong, using the well known trade-off between arca-
speed or arca-power. Sceurity constraint has been duly considered, mainly by increasing the key-
size.

In this work, we explore the general aspects of designing the above mentioned cryptographic
functions. We give an extensive survey of some cryptographic primitives from the hardware point
of view and cxposc their sccurity propertics. ‘The thesis favours stream cipher and public-key
schemes, as currently the most promising advance to capture the notion of key gencration and cs-
tablishment and data bulk encryption. Onc contribution is the convenient notation for expressing
cryptographic sclf-synchronizing stream ciphers SSSC schemes and our SSMG proposal, a scheme
bascd on packet fingerprint identification, that relies on keyed cryptographic hash function to
achieve the sceurity requirements. We maintain an important distinction between hardware imple-
mentation and algorithm’s security, because the security of cryptographic primitives cannot be
based on mathematically strong functions only but requires an extensive cryptanalysis at different
levels including the application. This causes a concern for a formalization of the security of an im-
plemented cryptographic primitive. Nevertheless, while some schemes are well known to be secure
such as DL based public key schemes and enough cryptanalyzed such as the new standard Riyndael,
some security aspects of the SSMG are discussed.

A part of this work studies the specific aspects related to hardware implementation of Rindael
block cipher, the new standard designed to be a substitute for DES. An efficient architecture is de-
veloped targeting FPGA implementation, by simply avoiding memory blocks dedicated to the im-
plementation of S-boxes and replacing them by on-chip forward computation using composite
Galois field. This technique helps to reduce considerably the amount of hardware required at the
cost of little increase of the switching activity.

‘The main conclusion is that, while security constraint of cryptographic primitives increases the
hardware complexity and reduces the performances, practical solutions exist for reducing such
complexities while keeping or increasing the level of security. Neverthcless, major open questions
remain both for a firm theoretical foundation and the proper cryptanalysis of certain solutions.






RESUME

Ce travail est dédié a I’état de Part dans la conception de circuits intégrés implémentant des prim-
itives de cryptographie. L’accent est mis la conception d’architectures CMOS a basse consomma-
tion et basse énergie. Un ensemble de solutions est proposé incluant les 2 procédée de cryptage: a
voir le cryptage en continu avec des stream ciphers, ou générateurs de suites de bits a base de reg-
istres et le cryptage en block basé sur implémentation sans mémoire de I'algorithm Rijndael. D’au-
tres architectures sont proposées, qui implémentent des arithmétiques utilisées par une classe
d’algorithmes a clé publique (asymétriques) basés sur la difficulté de résoudre le logarithme
numérique dans un ensembile fini, principalement dans le champ polynomial de Galois GE(27). Ces
solutions sont établies en utilisant des techniques qui réduisent a la fois Pactivité des circuits et le
délai total de calcul. La motivation fondamentale est de démontrer que des solutions pratiques ex-
istent, qui sont 2 la fois performantes et cryptographiquement sires, tout en se basant sur le com-
promis surface-vitesse de traitement ou surface-consommation. La contrainte de sécurité est
directement liée a la clé qui permet de changer le niveau de sécurité.

Dans ce travail nous explorons les aspects généraux liés a la conception des primitives susmen-
tionnées. Nous exposons quelques fonctions cryptographiques ainsi que leurs propriétés de sécurité
de point de vue de leur implémentation matériclle. On favorise les primitives a clé publique pour la
génération et Pétablissement de la clé secret ainsi que celle du cryptage en continue qui accélére net-
tement les débits et autorise le cryptage en masse des données. Une autre contribution consiste en
la formulation de 'expression de stream cipher auto-resynchronizé SSAS et la proposition de notre
solution SSMG. Ce dernier est un stream cipher basé sur le principe d’identification des paquets
avec une fonction de hachage cryptographique a clé afin d’augmenter le degré de sécurité. Dans ce
travail on maintient une distinction entre 'implémentation matérielle et la sécurité des algorithmes
car la sécurité des primitives de cryptographie ne peut pas étre basée sur des fonctions mathéma-
tiques sures seulement, mais une cryptanalyze approfondie doit étre fournie. Ceci pose le probléeme
de formuler théoriquement la sécurité de chaque primitive implémentée. Néanmoins, alors que
quelques primitives exposées ici ont des propriétés bien connues, comme celles des algorithmes 2
clé publique basés sur Pexponentiation dans un champ fini, et celle de Rijndael block cipher qui est
bien cryptanalyzé, quelques aspects de sécurité du SSMG sont discutés.

Une partie de ce travail est dédiée a 'implémentation de I'algorithme Rijndael, le nouveau
standard désigné parla communauté internationale comme remplagant pour DES. Une architecture
optimisée en surface a été développée pour une implémentation FPGA. Dans cette architecture les
S-boxes ont été remplacés par des calculs a la volée en utilisant de P'arithmétique dans le champ
composite de galois. Cette technique permet de réduire considérablement la surface du circuit mais
augmente sensiblement son activité.

Bien que la contrainte de sécurité de ces primitives augmente la complexité matérielle de leurs
circuits correspondant et réduits les performances, des solutions pratiques existent pour réduire ce-
tte complexité et maintenir le méme niveau de sécurité. Néanmoins, la base théorique et la cryptan-

‘alyze de certaines solutions restent a developpées.






CHAPTER 1

1 INTRODUCTION

1.1 MOTIVATION

The advent of the Information age and the emergence of the Internet and world wide network-
ing technology made Cryptography as an essential part of today’s information systems for both the
public and commercial sectors, in order to protect sensitive, but unclassified information. Cryptog-
raphy a set of mathematical tools helps provide fairness, privacy, accuracy and confidentiality serv-
ices. These tools described by algorithms must be well designed and implemented as software or
hardware layers for a specific application.

For performance as well as for physical security reasons, it is often less convenient but highly
desirable to realize cryptographic algorithms in hardware. The availability of fast/low-power hard-
ware cryptographic cores tends to follow wide range of application starting from applications with
potential data rates in the gigabit range, such as offered by high bandwidth networks till portable
applications with embedded processor blocks performing computations with power efficiency.

Meanwhile, the increasing security demands by increasing the keys size, put many constraints on
the design of a secure, but suitable high throughput cryptosystem implementing public-key and data
confidentiality schemes. These applications require hardware that operates at link speed, imple-
menting one-way functions such as GF(2”) exponentiator, large stream or block cipher. Also, for
applications requiring bit-synchronization some mechanisms such as stream cipher resynchroniza-
tion if doesn’t increase the band-width it adds latency.

These cryptographic circuits have to be regular and scalable in order to makes them simple to
extend to even larger widths in future implementations requiring higher degree of security. In the
other hand, arithmetic operators in long public-key cryptosystem and or stream/block cipher ex-
hibit in general a great activity and dissipate consequent shares of the power supply. Unltke most
rescarch involving large number of cryptographic primitives, this work targets a low-power/low-
energy crypto-components through the application of various well defined power reduction tech-
niques to different types of architecture and comparing their power consumption among other fac-
tors, rather than comparing complexity measures such as gate count or area. Gate count is used as
a starting point to choose potential architectures.

Currently, the design of low-power high-performance architectures is the major challenge in
most areas of VLSI design. Quantifying and exploring the trade-off between power consumption
and speed should stimulate the research and development of cryptographic primitives according to
the security requirements, which was forced too long in the past to proceed without actual fast and
low-power hardware.
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1.2 CURRENT AND FUTURE TRENDS FOR CRYPTOGRAPHY

1.2.1 DESIGNING CRYPTOGRAPHIC PRIMITIVES

Mainly, three are four common cryptographic primitives: block ciphers, stream cipher, on-way
hash functions and public-key schemes.

1.2.1.1 BLOCK CIPHERS

‘The popularity of block ciphers is closely related to the popularity of DES [1]. It has influenced
conventional cryptography in a major way. Today DES has exceeded his life time; 1t is no longer
secure in presence of huge computational methods and resources available today. Researchers ac-
tually redirect their activity toward the design of more convenient block cipher cither for software
as well as hardware implementation with a high degree of security.

A large number of recent block cipher proposals are based on special operations to thwart some
cryptanalysis attacks. These proposals include the same components for global structure, the
number of rounds, non-linearity, diffusion and key schedule. They are designed based on non-linear
substitutions such as S-Blocks, transposition such as bit permutation to ensure the diffusion. These
techniques are alternated with mixing functions in order to diffuse and confuse the redundancy by
the mixing transformation. Feistel structure of DES is an example of transformation that ensures
both substitution and transposition. Then, the strength of the block cipher can be obtained by re-
peating this simple transformation.

1.2.1.2 STREAM CIPHERS

Anyone looking through the cryptographic literature will be struck by a great difference in the
treatment of block ciphers and stream ciphers. Practically all work in the cryptanalysis of block ci-
phers is focused on DES and nearly all the proposed block ciphers are based in some way on the
perceived design goals of DES. There is no algorithm occupying an equivalent position in the field
of stream ciphers. There are a huge variety of alternative stream cipher designs and cryptanalysis
tends to be couched in very general terms.

Many stream ciphers have been proposed in the vast literature, which use very basic building
blocks. The mathematical analysis of these components has been very advanced for some consid-
erable time, and intensive design and cryptanalysis over the years has resulted in the formulation of
a set of ground rules for the design of stream ciphers. It is well known that highly developed analytic
techniques facilitate both design and cryptanalysis. Today, more developers look to stream ciphers
to provide the encryption speed they need. In this work a particular attention 1s considered for a
class of synchronous stream cipher of clock contro/ LFSR type. This scheme is particularly well suited
strong for hardware implementation. Moreover, they are fast enough to include more some mech-
anism such as seff-synchronization.

1.2.1.3 SYNCHRONOUS STREAM CIPHERS

Binary self-synchronous stream ciphers (SSSCs) while are useful for widespread applications,
they have received little attention in the open cryptographic literature. While some design and se-
curlty criteria are known for synchronous stream ciphers and block ciphers, only little 1s known
about the design of SSSCs. These are synchronous stream ciphers with self-synchronization capa-
bilities using a synchronization parameters, 1.g., using ciphertext to generate the &eystrean sequences.
In this work, we present a dedicated SSSC design based on clock controlled LESR stream cipher
and fingerprint of subsequent ciphertext blocks as synchronization parameters. This scheme
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presents the feature of high degree of security and conserves the size of the original ciphertext/
plaintext. Thus, it doesn’t increase the bandwidth of the communication channel between the trans-

mitter and receiver at the cost of increasing latency but suit a range of application such as securing
a2 DVB MPEG-2 stream.

1.2.1.4 PUBLIC-KEY CRYPTOSYSTEMS

The public key label covers a large number of cryptographic algorithms having different capa-
- bilities. It is interesting to note that most of these algorithms are incapable of data encryption. How-
ever, their principal applications are for digital signatures, secure exchange of secret keys, and
authentication. In fact, the existing public key algorithms, while satisfactory for securing key gen-
eration (key distribution decrease the possibility of secret keys falling into the wrong hands), are not
fast enough and not suitable, even when implemented in hardware, to encrypt high volumes of data
traffic and hardly perform at speeds suitable for today's communications systems. Rather, they are
well suited for use in digital signature generation and key establishment. The generated message key
can be used by a conventional secret key cipher, which actually enciphers the data. Thus, hybrid sys-
tems could be constructed giving rise to public-key based either stream or block encryption. The
security of the underlaying algorithms of these schemes is based on the difficulty of solving a math-
ematical problem. The discrete logarithm based scheme is one of these problem (DLP) that is at
least as hard as the well defined Integer factorization problem (IFP) on which RSA [50] is based
(named for its inventors Rivest, Shamir and Adleman). We'll discuss it here as the representative of
the entire class mainly the arithmetic in large Galois field GF(2%).

1.2.2 CRYPTO STANDARDIZATION

Over the last 5 years, a huge effort has been undertaken to provide a Standard Specifications for
Public Key Cryptography under a process called IEEE P1363 project, bringing together many of
the important developments of the past 20 years into a single reference document for the first time.
The project is scheduled to be published later this year (2001) and has as its goal the issuance of
Standard Specifications For Public-Key Cryptography. This is accomplished via a series of stand-
ards documents. The IEEE P1363 working group is writing the actual standards documents and
determines what kinds of algorithms should be included in them. This process is open to the public,
and occasional editorial teleconferences.

The IEEE 1363 standard defines a full range of common public-key techniques such as key
agreement, public-key encryption and digital signatures for the principal cryptographic families.
The standard supports a wide range of application and security requirements and offers detailed
descriptions of the main algorithms employed in today's most popular public-key cryptographic
technologies, including the RSA public-key cryptosystem, Diffie-Hellman key agreement and ellip-
tic curve cryptography. It is designed to accommodate improvements in technology over time. The
standard was given final approval by the IEEE-SA Standards Board at its meeting in Singapore in
January 2002.

In the other hand, DES which was developed in 1977 with an anticipated lifetime of 5 years, has
been the most commonly used encryption algorithm in the industry for the last twenty years and
became the de-facto standard world-wide. With the advent of technology and improved computa-
tional resources to handle the huge amounts of data involved in some attacks, the 56-bits DES be-
came obsolete in today high security-demanding applications. It has exceeded its lifetime by a large
margin and researchers demonstrated that it can be broken using brute force attack (see Section
3.3.2.1) in 2.5 days, on average, with a $10°000 initial investment into custom hardware [22]. Triple-
DES [23] emerged as a temporary solution in applications such as banking, but its performance
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mainly speed was not sufficient for other tasks like streaming multimedia contents. The ongoing
request of security and performance brings the National Institute of Standards and Technology
(NIST) to define a set of new encryption standards. In 1997, NIST announced an international in
progress standard effort to define a new bulk data encryption standard for masses with extremely
high security and high performance. This process is called the Advanced Encryption Standard
(AES) conducted by a list of specifications, which must be met by an AES candidate. Unlike DES,
which was designed specifically for hardware implementation, on of the design criteria for AES
candidate algorithms 1s that they can be efficiently implemented in both hardware and software. In
2000, NIST released a draft standard called RIJNDAEL algorithm, that have been have chosen as
a replacement for DES. It likely to be the international cipher of choice for the next 30 years.

1.3 SECURITY AND CRYPTANALYSIS

Cryptographic design may seem as easy as selecting a cipher from a book of ciphers. But ciphers,
per se, are only part of a secure encryption system. It is common for a cipher system to require cryp-
tographic design beyond simply selecting a cipher, and such design is much trickier than 1t looks.

In general, beside cipher cryptanalysis which concentrate on braking the block using mathemat-
ical background the strength of keyed cryptographic schemes is related to the difficulty of discov-
ering the key, which in turn depends on the length of the key. This is a fact when cryptanalysis fail
to attack the cryptographic primitive. In such case the only one measure of security 1s the amount
of effort undertaken under brute-force attack to break the system. Encryption strength is often de-
scribed in terms of the size of the keys used to perform the encryption, where longer keys provide
stronger encryption. Nevertheless, when considering cryptanalysis, different ciphers may require
different key lengths to achieve the same level of encryption strength. This is the case when com-
paring the IFP versus DLP based cryptosystem (see Section 3.4.3.2).

1.4 SYSTEM DESIGN AND IMPLEMENTATION

The security of most modern public-key ciphers is related to some long-studied mathematical
problem that 1s difficult to solve (i.g., the integer factoring problem IFP or finding discrete loga-
rithms DLP). Technology advances quickly and day by day it becomes more likely that this security
rely on key sizes beyond the proven security based on the hard or difficult mathematical problem
[2]. Also the best (practice) known attack against secure symmetric key systems is a brute-force
search in the key space, which is purely exponential. Nothing else seems to work. Why not simply
oversize the encryption algorithm to solve this inconvenient but inevitable security problem? The
main reason is speed beyond the problem of key management and distribution for symmetric key
systems. It 1s usually claimed that long keys slow down the algorithm too much. That’s particularly
true in software implementation because execution time increases at least by the key size at power
of two in general purpose processor [3]. A hardware implementation can be of consideration in or-
der to overcome this limitation. However, the effect is an increase in the cost function defined by
power and area constraints. Furthermore, practical cryptography is rarely broken through the math-
ematic; other parts of systems are much easier to break (software, computer and network security)
especially, the people-key management, human/computer interface security, access control.
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Performance Characteristics

Parallet processing of yes yes limited

data

Pipelining yes yes limited

Word size variable variable fixed

Speed very fast fast moderately fast

Power optimization variable Limited Limited
Functionality and Security

Algorithm agility no yes yes

Temper resistance strong limited weak

Access control to keys strong moderate weak

Development process
Description language VHDL, Verilog HDL VHDL, Verilog HDL | C, C++, Java, Assem-

bly language
Design cycle long moderately long short
Design tools very expensive moderately expensive inexpensive
Testing expensive moderately expensive inexpensive
Maintenance and expensive inexpensive inexpensive

upgrades

Table 1-1: Characteristic features of implementations of cryptographic transformations in ASICs, FPGAs, and
Software

An increases number of applications uses software implementation of cryptographic algorithms
in order to provide an acceptable security at low cost. Currently, most ciphers are implemented in
software; that 1s, by a program of instructions executed by a general-purpose computer. Normally,
software is cheaper, but hardware can run faster. Of course, there are levels to hardware, from chips
(which thus require significant interface software) to external boxes with communications lines run-
ning in and out. But there are several possible problems:

* Software, especially in a multi-user system, is almost completely msecure. Anyone with ac-
cess to the machine could insert modified software which would then be repeatedly used
under the false assumption that effective security was still in place. This may not be an issue
for home users, and real solution here may depend upon a secure operating system.

* Hardware represents a capital expense, and is extremely inflexible. So if problems begin to
be suspected in a hardware cipher, the expense of replacement argues against an update. In-
deed, a society-wide system might well take years to update anyway.

One logical possibility is the development of ciphering processors (little ciphering computers)
in secure packaging. Limited control over the processor might allow a public-key authenticated
software update, while otherwise looking like hardware. But probably most users will not care until
some hidden software system is exposed on some computers.

1.4.1 PERFORMANCE VERSUS SECURITY

Achieving high performance at the cost of security?!l. It is clear that someone with a good
knowledge of present day cryptanalysis can design a secure but slow algorithm with a very limited
effort. At present, there exist a trade-off between the security and the performance requirements
of cryptographic primitives. In fact, most of these ciphers are sccure after sufficiently many rounds
but are too slow. The performance of these primitives depends on the implementation details, even
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for a given environment, 1.c. processor and memory in software, and power and area constraints in
hardware.

14.2 PERFORMANCE EVALUATION AND OPTIMIZATION

Optimizing the performance of software and hardware implementation of the cryptographic
primitives is quite different as shown in Table 1-1. Fast hardware relies on parallelism and pipelin-
ing, while for software the access to memory is a key to high performance. Other aspect which in-
" fluence software performance are word size, byte ordering endianness, which is processor dependent.
Running an algorithm on a processor that has a smaller word size than that of the algorithm will
normally result in reduced performance (it requires more instructions to perform the same opera-
tions). Software optimization aims to minimize access to slow memory, and performing calcula-
tions on chip as much as possible using registers and cache memory. Also, the conducting recent
evolutions in general purpose processors towards more inherent parallelism, contributed to in-
crease the performance both on the hardware level using superscalar architectures (multiple execu-
tion units) and software level (SIMD instructions).

Hardware implementation helps to achieve the required speed, since working on low-level on
dedicated architecture. Nevertheless, an effort must be handled to achieve the requested perform-
ances mainly power consumption for ASIC implementation.

1.4.3 ASIC VERSUS FPGA DESIGN

FPGA costs and time-to-market are looking awfully attractive. The design cycle for ASICs is get-
ting longer due to the deep sub-micron effects. On the other hand, FPGAs have grown to become
multi-million gate devices with system level features that can implement complete systems on a
chip. Today’s largest FPGAs approaches the few-million-gate size of a typical ASIC design, and
continue to sprout embedded cores, such as CPUs, memories, and interfaces. But still ASIC tech-
nology provide a continuum of possibilities among these are power performance and high density
about 20 times improvement over standard FPGAs.

In spite of programmability and the short design cycle features within FPGAs, there are per-
formance issues including power and speed and density issues. Obviously, ASICs will still be faster
with smaller area than FPGAs and consuming low power when using the same technologies. Quan-
tifying and exploring area and power gap between ASIC and FPGA is all wrong. Performance is-
sues can be addressed with new logic styles while density issues can be addressed by introducing a
small degree of mask programmability [4]. In the same way (concurrently), as process geometries
shrink and new design styles and methodologies are developed, ASIC is pushed toward opportuni-
ties with more and more logic, speed and less power consumption. It is still a fact so far as existing
ASIC design tools and design methodologies are not overpowered for future sub-100 7 fabrica-
tion technologies.

1.5 Low POWER HARDWARE DESIGN

Power dissipation has emerged as an important design parameter in VLSI circuit design. The
huge impact of power on ASIC design is new and prompting significant changes in design meth-
odology. Power is moving up behind timing in significance, and pushing area to third place.

The general increase in power dissipation in complex ICs presents several classes of problems.
One is simply the power budget of the overall system. Many kinds of equipment have power ceil-
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ings constrained by relatively fixed factors such as battery life for portable applications. Another
class of problems is associated with temperature and its impact on reliability.

Traditional reliability issues generally place a ceiling on acceptable junction temperatures, and
these ceilings don't scale with Moore's Law. As a result, higher-power chips generally demand more
elaborate packaging and cooling infrastructures, which can add rapidly to the manufacturing cost,
size and weight of the end equipment. Newer reliability concerns such as electromigration affect
metal pitch and routability. Finally, chip temperatures have a small but significant impact on elec-
trical performance. In a high-performance chip, internal power dissipation may determine the dif-
ference between meeting or missing timing constraints. Thus, reducing power consumption is
equally important for non-portable systems.

1.5.1 LOW-POWER DESIGN FOR SOC

A simple view of SOCs is that they integrate functionality that previously would have taken sev-
eral different ICs. Among other factors at work are increases in clock frequencies, higher device
densities at 0.18 um and smaller geometries, increases in architectural sophistication and features,
and the migration of functionality from power-thrifty hardware (especially analog) into power-hun-
gry software. As a result of these influences, chip designs now routinely dissipate several watts or
more on a single chip and the figures are increasing.

1.6 HIGH PERFORMANCE VLSI ARCHITECTURES FOR CRYPTOG-
RAPHY

Latency 1s the major consequence of increasing security level in cryptographic primitives. Low
latency can be achieved by buffering data as little as possible and high performance (high speed,
low power) design may be achieved by using custom design in order to save silicon area (compact
design) and increase the speed using dynamic logic on critical paths [5]. Custom design allows using
of different dedicated design styles to improve the power consumption [6]. This task can be
achieved using different power reduction techniques, applied at different levels, mainly logical lev-
el[9]. Further, there are two ways to improve an algorithm's performance from the process point
of view. One can choose a dense but slow technology such as silicon CMOS and increase perform-
ance by parallelizing the algorithm or flattening the logic. Alternatively, one can choose a fast but
low-density technology such as silicon ECL or GaAs DCFL. The GaAs DCFL offers higher density
than silicon ECL, which is the highest-performance bipolar silicon technology, but cannot yet com-
pete with silicon CMOS, the densest silicon technology [7]. Compared with CMOS, GaAs is faster
by a factor of two to three while power consumption favours GaAs only at clock frequencies higher
than 100 MHz [7]. The target technology process in this work is the CMOS 0.18um from TSMC
using fully ASIC methodology, as the full-custom front-end kit is not available.

The ultimate performance can be substantially improved by optimized architectures: regular
high-density structures operating at low voltages with clock gated. Optimization aims at finding a
suitable balance between speed, power consumption, and silicon area. The area can be traded for
higher throughput or lower power.
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1.7 SCOPE OF THIS WORK

In this thesis, appropriate design methods have been undertaken for spanning the range from
algorithm to VLSI implementation without sacrificing performance (throughput/speed) using a
low-power sub-micron oriented design. We investigated the options arising from very different
fields, among these are low-power design methodologies and flows, long operands arithmetic in
large GF(2”), cryptographic primitives and cryptanalysis. Our task was focused on trying to bring
together some approaches such as memory-less design, massively/partially parallel architectures,
high regularity design, low-voltage and clock gated circuit, power analysis and power optimization
techniques for digital CMOS VLSI design at the gate level.

The major topics which, have been investigated are:

* Low-power automated design methodologies and flows.

* Arithmetic in large Galois field GF(2”) targeting hardware development and integration of
low energy-delay product architectures and providing a public-key cryptographic schemes

(i.e. modular exponentiation over large GF(27)).

* Exploring block and stream ciphers from the hardware point of view, mainly the class of
LESRs based stream cipher.

¢ Exploring the state of the art in the construction of secure Keyed Hash Functions KHF
from a one-way hash functions for application in SSSC.

* Designing SSMG (Self-Synchronized Mixture Generator) based on a KHF suitable for hard-
ware implementation and used for packet fingerprint identification. The packet digest is
then used for initializing the stream cipher.

¢ Securing Real-Time MPEG-2 stream using different schemes of selective and full encryp-
tion to cover the main aspects related to the performance analysis during the encoding
phase (encryption) and Real-time playback (decryption) of different strong ciphers. Our
SSMG have been validated using software implementation in the frame of MPEG-2 video
stream encryption.

* Development of PK-SSMG cryptosystem: dedicated for securing multimedia contents in
conformance to MPEG-2 specifications for applications such as DVB and DBS. PK-SSMG
1s a public-key stream based encryption in the class of discrete logarithm schemes (arithme-

tic in Large Galois Field GF(2"), including the SSMG. The architecture is programmable on
security and implements a security level up to 1279-bit key size. Beyond the arithmetic unit,
the general structure and behaviour have been optimized in order to implement a low-
power architecture.

* Efficient hardware implementation of Rijndael block cipher on FPGA as an IP (the external
mnterface of the module (architecture) could be coupled with a microprocessor bus) for data
confidentiality using memory-less architecture. The algorithm is-implemented in iterative
looping approach including the key-schedule and the round function. The study includes
ASIC for power analysis and FPGA-based performance evaluation of this new architecture.

1.8 COMPLEXITY

Although, it appear easy or more convenient to build cryptographic primitives from scratch, it
is by far the desirable and advised method. Cryptography cover a vast span of knowledge coming
from different fields: number theory, complexity theory, information and Coding theory, probabil-
ity theory, abstract algebra (finite ficld theory) and formal analysis. A strong mathematical back-
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ground 1s required. A little knowledge is dangerous, inexperienced cryptographers almost always
design flawed systems. A good cryptographic system strikes a balance between what is possible and
what is acceptable. Designing with security objectives in mind to achieve performances constraints
of new cryptographic primitives is by far an easy task. What can help the cryptographer is designing
systems based on existing secure or well-studied primitives design. With this in mind, though there
exist a huge solutions for providing data information security services, it leads me to believe that
some cryptographic primitives are not well designed for hardware implementation. Is it possible to
reduce the hardware complexity and increase the performances of such primitives?.

Furthermore, some primitives are not yet well addressed and a lack of solutions is noticed. This
1s the case of self-synchronizing stream cipher. Is it possible to design a secure or strong stream
cipher?.

In the other hand, other than classical performance evaluation and optimization, mainly area and
speed, 1s it possible to design high performances architectures (low-power/high specd) implement-
ing strong cryptographic primitives?.

In this work we try to answers these questions and give some solutions by finding the good com-
promise between speed, area, power and security. The latter constraint rely on the security of
strong, well defined and enough cryptanalyzed building blocks, while an effort is conducted toward
designing new primitives components based on these blocks and the way to combine them. Prac-
tical proposals are provided and implementations are done, which provide some interesting results
that could be an added value to both cryptography field and low-power design.

1.9 STRUCTURE OF THIS THESIS

The outline of this thesis is as follows. Chapter 2 presents some facts related to power consump-
tion in CMOS circuit, methodologies and techniques for designing for low-power. Chapter 3 pro-
vides knowledge of cryptographic primitives and their hardware modelization based on Finite State
Machine (FSM). In Chapter 4 finite field arithmetic mainly multiplication and exponentiation op-
crations are presented. It focuses on implementing a suitable low-energy oriented architecture per-
forming the modular exponentiation operation over large GF(2”) and trying to investigate the
possibilities of further improvements in the circuit performance, complexity and especially power
consumption by reducing the switching activities using digit-serial and clock gating techniques.

In Chapter 5 we explore stream cipher design with a particular emphasis on adding self-synchro-
nization mechanism without increasing the length of the ciphertext. A special cpher feedback tech-
nique 1s presented and implemented, which performs the function of self-synchronizing mixture
generator in combination with clock controlled LFSR stream cipher for pseudo-random stream
generation. The approach is particularly secure and useful for applications requiring data transmis-
sion over a network/ broadcasting channel. It keep both sender and receiver in synchronization
without increasing the bandwidth and keeping computational overhead (delay) as low as possible
by reducing the critical path and increasing the clock frequency.

In Chapter 6 the SSMG architecture is combined with the resulting architecture implementing
the modular exponentiation operation in large GF(2”) for building a public-key stream based cryp-
tosystem PK-SSMG. The concept of PK-SSMG has been validated using software and hardware
implementation. The architecture structure is a direct mapping of the cryptosystem algorithm. A
first block stage performs the modular exponentiation in order to generate the key for the initiali-
zation of the stream cipher. A second fast block performs the streaming with self-synchronization
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capabilities. The cryptosystem has been verified at the gate level and adapted for DVB and DBS
applications aiming to provide confidentiality for multimedia content in conformance with MPEG-
2 system layer standard. It supports SPI interface according to the MPEG-2 codec application re-
quirements and doesn't increase the bandwidth. Some interesting results obtained at the gate-level
and post-layout have been reported.

Further, different schemes of selective and full encryption have been investigated and are pre-
sented in Chapter 6, which cover the main aspects related to the performance analysis during the
encoding phase (encryption) and Real-time playback (decryption) of different strong ciphers and
our SSMG algorithm in the frame of MPEG-2 video stream encryption.

Chapter 7 introduces Rijndael block cipher and describes an efficient memory-less FPGA im-
plementation. In this chapter the efficiency of the circuit generated by this technique 1s also dis-
cussed and compared with further existing implementations. Finally in Chapter 8, conclusions are
drawn and suggestions are made for future work and improvement issues.



CHAPTER 2

2  DESIGNING FOR LOW-POWER/LOW-ENERGY

In this section, a survey of techniques for low-power CMOS design are presented. These are the
most important techniques yielding to significant power savings that are used in this work. There
exist many other general and specific techniques that are illustrated in the vast literature. An exten-
stve and detailed overview of the scientific activity in this area is given in |8]. Further, we discuss
methods of power analysis, estimation, and related CAD tools. We describe our methodology for
power metric reporting and optimization. Our emphasis during power estimation is on pattern-in-
dependent simulation technique while our strategy for synthesizing circuits for low power con-
sumption is to restructure/optimize the circuit to obtain low switching activity factors at nodes,
which drive large capacitive loads.

2.1 MOTIVATION FOR LP DESIGN

Silicon technology advances have made it possible to pack millions of transistors, switching at
high clock speeds, on a single chip. Consequently, power consumption has become an overall con-
cern for the IC industry. It is no longer solely a problem for portable applications since low power,
yet high-throughput and computationally intensive circuits are becoming a critical domain. One
driving factor behind this trend is the growing class of personal computing devices as well as the
rapidly increasing demand for portable devices. Another critical factor is that excessive power con-
sumption is becoming the limiting factor in integrating more transistors on a single chip. The need
for low power has caused a major paradigm shift, in which power dissipation is as important as per-
formance speed and area.

The optimization of ICs with respect to power consumption has well known advantages. The
primary factors for lower power dissipation in VLSI circuits are the cost associated with packaging
and cooling in large high performance circuits as the heat may limit the feasible packaging and re-
duce the device reliability. It helps also to enhance the run time of battery operated portable appli-
cations for portable applications.

2.2 SOURCE OF POWER IN CMOS CIrRCUIT

Power consumption in standard CMOS technology originates from two different sources:

* Static power is dissipated in several ways. It is caused by hrough currents which are caused by
transistors opcrated in their saturation regions and by leakage currents. The largest percent-
age of static power results from source-to-drain sub threshold leakage, which is caused by



35 CHAPTER 2: DESIGNING FOR LOW-POWER/LOW-ENERGY

reduced threshold voltages that prevent the gate from completely turning off. Static power
is also dissipated when current leaks between the diffusion layers and the substrate. For this
reason, static power is often called leakage power.

¢ Dynamic power caused by charging and discharging capacitors during signal computation
(Switching power). Short circuit power occurs also in the dynamic phase when both nMOS
and pMOS transistors are conducting, and

Hence, the total power dissipated in a CMOS gate with a capacitive load C),,,1s given by,

2-1)

P = 'C1oad 'VDZDf‘N +Qsc'VDD 'f‘N +Ileak 'VDD

1
2
Where Vj,, denotes the voltage swing, and f is the frequency of operation, IN the activity factor,

i.e., the number of gate output transitions per clock cycle. The factor Q,, tepresents the quantity
of charge carried by the short circuit current per transition and I;, , is the leakage current.

In traditional design the average power consumption of a CMOS gate is dominated by the
switching activity (dynamic power) and contributes to more than 90% of the total power consump-
tion [9]. In certain circumstances, however, static power can be significant and may even dominate
the power consumption of a given circuit, as with certain memory structures. For recent technolo-
gies (deep sub-micron) short-circuit current and leakage current may be neglected, but this may
change for future developments of high scaled integration [10]. As the device size and threshold
voltage continue to decrease, the short-circuit power dissipation is no longer a negligible factor. Re-
ducing the power consumption amounts to the reduction of one or more of these factors. In ener-
gy-cefficient design, we seck to minimize the energy consumed per operation or the energy-delay
product of the circuit, which is the factor of merit for high performance architectures.

From (2-1) it turn out that lower supply voltages can achieve extremely low power consumption.
However, lowering supply voltage leads to performance degradation. Delays drastically increase as
Vpp approaches the threshold voltages V, of the device (see Equation2-2).

Since the delay time is proportional to 1/V,,, the supply voltage can be reduced to a certain
value, so that the chosen frequency matches with the longest critical path. The propagation delay
equation of a CMOS circuit is given by [11],

= —Ciow Vo _

They = 2-2)
"k W=V,

Where £ depends on the transistors aspect ratio (W/L) and other device parameters, V, is the
transistor threshold voltage.

When the propagation delay is less than the clock period by a factor 8, we can reduce the supply
voltage by a factor B such that T, is equal to 7, . Hence,

Cload 'IB'VDD . (2-3)
k'(ﬁ‘VDD_Vr)

T, = ) -Tdezay Vop) = Tdelay (ﬁ Vo) =

Parallelism and pipelining can be exploited to improve the performance (to compensate for the
increased gate delays) of low-voltage circuits [9][10]. Also, much higher reductions in power con-
sumption are possible when using clock-gating technique in order to reduce the activity factor N in
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(2-1). Further, increasing the concurrency of internal operations, and rearranging the gate topology
from array-type to tree-type reduces the switching power.

2.3 CMOS Low POWER DESIGN TECHNIQUES

Lowering the power of a VLSI circuit can be achieved at various levels: fabrication technology,
circuit optimization, logic design, control and clocking strategies, architectural partitioning and lay-
out, and the underlaying system’s algorithm and interface. Mainly, these techniques could be sub-
divided into two main categories: high level and physical level power optimization techniques. In
this section, instead of classifying these techniques per their category or level at which the optimi-
zation can be done. We exposc different strategies to reduce the power according to parameters in
(2-1) that contribute in the calculation of power dissipation in static CMOS circuits. It should be
noted that using one of such techniques may have an effect by either reducing of increasing other
parameters.

2.3.1 POWER SUPPLY AND TECHNOLOGY

2.3.1.1 VOLTAGE SCALING

Power is proportional to the square of the supply voltage "pp. Although the relationship is
complicated by the fact that N is also voltage dependent. This makes 'pp reduction as the most
effective way for reducing power, and the industry has thus steadily moved to lower 'pp This
trend should and will continue. Clearly the design engineer does not normally have control over
I'pp 1n an automated design unless a full- and or semi-custom methodology is used. However, de-
velopments in fabrication are already scaling down the voltage as soon as process geometries con-
tinue to shrink and new sub-100#z# fabrication technologies are developed.

One of the main motivations in technology development has been to increase the levels of in-
tegration by reducing feature sizes. However, as gate lengths are reduced (without reducing voltage
levels) the electric field strength increases in the gate region. Another issue with voltage scaling is
that to maintain performance, threshold voltage V, also needs to be scaled. Atlow V,, leakage pow-
er starts becoming a bigger factor[12]. Lower 'pp also introduces noise and reliability concerns.

2.3.1.2 TECHNOLOGY MAPPING

Power savings from cell libraries can come from two sources: device sizing and logic and phys-
ical layout structures of cells. As the cells and transistor devices shrink into deep sub-micron <200
nm, the operating supply voltages can be reduced to an acceptable level of circuit functionality with
a trade-off between delay and power consumption. This has forced also, interconnect to be an im-
portant factor of overall system power.

Mainstream design methodologies are emerging that actively seek to manage and minimize pow-
er in system-level ICs. While global approaches such as selecting low-voltage technologies and low-
power logic families are effective, engineers can normally also significantly impact power through
design itself, i.e., minimizing wire-lengths by exploiting locality (see Section 2.3.3.2).

2.3.2 REDUCING THE ACTIVITY FACTOR

Power is only expended when a node is switched; if switching is restricted to when information
changes then power is minimized. This can be summarized by the term fransition avoidance. As a first
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observation, this argues against the use of circuit styles, which involve precharging and discharging
as a part of logic evaluation.

2.3.2.1 GLITCH AVOIDANCE

With some digital circuit, there are spurious transitions (known as g/iches), which occur typically
in combinational circuits due to partially resolved functions or unequal delays of gates paths (due
to signals with skewed arrival times). A typical example of power loss through spurious transitions
1s the ripple adder. In this logic design, each bit-adder unit passes its carry to the next unit in a carry-
chain; the value of its own input is not, however, valid until all the less significant bits have been
resolved; thus cach carry-bit in the chain may change (along with the corresponding sum outputs)
as the valid carry signal propagates along the chain.

In order to reduce these spurious transitions, the delays of paths that converge at each gate in
the circuit should be roughly equal. By selectively adding unit-delay buffers to the inputs of gates
1n a circuit, the delays of all paths 1n the circuit can be made equal. This addition will not increase
the critical delay of the circuit, and will effectively eliminate these needless transitions. However,
the addition of buffers increases capacitance, which may offset the reduction in switching activity.
Therefore, one should evaluate a cost function by introducing a minimal number of unit-delay buff-
ers instead of reducing completely eliminate the spurious switching power.

2.3.2.2 CLOCK AND SIGNAL GATING

Large VLSI circuits contains units and control logic that are not often accessed in each clock
cycle. Similarly, in an arbitrary sequential circuit, the values of particular registers need not be up-
dated in every clock cycle. If simple conditions that determine the inaction of particular registers
can be determined, then power reduction can be obtained by gating the clocks of these registers
[10]. When these conditions are satisfied, the switching activity within the registers is reduced to
negligible levels.

Some CAD tools are actually offering an automatic RTL clock gating that is easily configurable,
automatically implementable, which allows maximal reduction in power requirements with minimal
designer involvement and no software involvement. However, clock gating cannot be used indis-
criminately since there are some issues that need to be considered. An important concern is that
the disabled clock may not power up in time, or that modified clocks may generate glitches. This
imposes strict timing constraints on the enable signals and calls for careful timing verification [8].
In addition, at clock frequencies of 100 MHz and above, clock skew becomes critical and every ex-
tra gate used to qualify the clock can potentially introduce timing critical skews. Appropriate buffers
could be used to overcome this problem during clock tree construction. Large buffers generally
have good insertion delay and skew characteristics, but consumed much more power than neces-
sary.

Many other effective power-reduction approaches are available at the RTL. Signal gating is con-
ceptually similar to clock gating but focuses on reducing transitions in non-clock signal. This
scheme is often employed on decoders. Since a change on a signal decoder input results in two out-
put pins switching state, it’s desirable to block the outputs from switching when decoder updates
aren’t required. This can be accomplished by using an enable on a decoder. Another example con-
cern the design of datapaths containing multipliers. Power can be saved by gating or registering the
multiplier inputs. The registers are clocked only when the multiplier is active, thus reducing the
number of unnecessary multiply operations.
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2.3.2.3 POWER-DOWN MODES OF GLOBAL CLOCK GATING

Large reductions in power can be achieved using power-down techniques. These methods are used
to disable large functional blocks when they're inactive. The blocks are disabled by mechanisms
analogous to those used with clock gating, except that in this case the gating is done at a global level
instead of at the register or local level. This then shuts off the operation of entire units such as ex-
ecution units, bus controllers, or memory managers.

Compared to local clock gating, the use of global clock gating usually results in much larger pow-
er reductions. Power savings of 90 percent or more can be achieved in applications such as /aptop
computers and cell phones. This technique isn't limited to traditional low-power designs but can
also be used in many high-performance applications to minimize overall average power consump-
tion.

2.3.2.4 ALGORITHM OPTIMIZATION (REVIEWING)

Component power consumption corresponds to the usual algorithmic performance criterion of
speed since algorithmic speed is a function of the number of operations and this translates into the
component as the amount of switching. Thus, reducing the number of steps in a computation will
naturally reduce the power of its implementation.

Further, the most obvious approach to reduce the switched capacitance, is to reduce the number
of operations (and hence the number of switching events). While reducing the operation count typ-
ically has the effect of reducing the effective capacitance, the effect on critical path is case depend-
ent. This trade-off is clearly illustrated when choosing between long operators arithmetic functions
in bit-serial and bit-parallel architectures.

Another factor which can be useful under algorithmic transformations consist of operation sub-
stitution. Certain operations inherently requires less energy per computation than other operations.
A prime example of transformation which explores this option and often used in software compil-
ers 1s multiplications. These operations are substituted by additions. Although this situation is not
of common use in CMOS LP design, some times it is possible to realize significant power savings
using this approach.

2.3.3 REDUCING THE CAPACITIVE LOAD

2.3.3.1 PARTITIONING INTO BLOCKS

As general rule, it is best to partition large blocks into smaller ones. This principle can be of ben-
efit when implementing large memories. The power consumption of 2 memory access operation is
based upon the capacitances of bit and word lines, which run vertically and horizontally across the
whole array. It, instead, when the memory array is broken down into sub-units (each with its own
support circuitry) and only one unit 1s addressed with each access, then the product of activity and
capacitance can be significantly reduced. The same technique is used in the Coo/RISC [13] called
memory pagination.

2.3.3.2 LOCALITY OF REFERENCE

This is a design philosophy in which signals are generated and used locally in terms of their phys-
ical location on the silicon surface, since the further a signal has to travel, the higher is the capaci-
tance of that connection. With signals being processed locally, there is greater opportunity for
parallel execution and thus greater throughput which could be traded-off for a lower supply voltage
and so lower power consumption.
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Another reason is related to the new fabrication technologies. Interconnections are achieved us-
ing metal layers. For large feature sizes the RC delay on such lines is relatively small compared with
the transistor delays in the circuit. However, while transistor delays scale down with feature size,
the RC delays actually mncrease as fringing capacitance begins to dominate the total capacitance (and
doesn’t scale) and the resistance increases as the interconnect lines become narrow. Thus, in sub-
micron technologies, interconnect capacitance dominates total gate loading and resistance increas-
es, because of shrinking wire widths that 1s, the communication delays predominate [14]. Using lo-
cality of reference as a style avoids the major potential source of delay. Architectural strategies based
upon this idea may include: processing of data locally to where it is stored, communication only
with physically adjacent functional units, and dedication point-to-point buses rather than shared
ones. This technique is useful unless it does increase the total capacitance of such buses when com-
pared with the capacitance of single shared bus.

2.3.3.3 CLOCK AND CONTROL SIGNALS DISTRIBUTION

In architectures with distributed processing, the question arises as to whether there should be
global control and clock signals. The problem is the widely distributed clock signals. The global dis-
tribution network has a very large capacitance and is switched frequently. There are several possible
strategies such as true single phase clocking (ISPC) [15] and asynchronous design using se/f-tzmed circuits
[16]. These techniques are out of this work since the former is a custom design methodology and
because of the lack of appropriate verification tools for the last one.

2.3.3.4 BUFFERING THE HEAVILY LOADED LINES

One recurrent problem is the design of circuitry to drive a relatively large capacitance (particu-
larly external loads). The basic solution is a sequence of buffers with increasing gate widths; the de-
sign 1ssue is what should be the size ratio o of each successive buffer. Once more, there exist a
trade off between speed and power. With speed as the main consideration, one can choose a large
buffers to overcome the driving capabilities. However, large buffers consume more power. If pow-
er is the main issue, one can evaluate a cost function to determine «, which give the best trade-off
between power and delay. More detail related to this approach is given in Chapter 4.

2.3.4 REDUCING THE SHORT CIRCUIT CURRENT

We need to consider short-circuit current in two ways: first, how to minimize what is unavoid-
able, second how to avoid what is unnecessary.

2.3.4.1 RESISTIVE NETWORKS

Firstly, some logic styles deliberately use resistive networks formed from transistors to establish
the value of the output signal (e.g. pseudo-NMOS). These styles cannot be used for low-power de-
sign. Secondly, some strategies for avoiding power loss involve generating multiple voltage levels
using resistive networks either on-chip or at the system level. This static power loss must be care-
fully included in the evaluation of such strategies.

2.3.4.2 SWITCHING CURRENT

Even conventional static CMOS gate has a source of short-circuit currents. As input to a CMOS
gate changes, there 1s a pertod during which both nMOS and pMOS networks are switched ON,

7

that is when the input voltage is between (Vpp -17,) and 17, where V5V axe the threshold.volt-

n
ages of the pMOS and nMOS transistors respectively. During this period, there is a short-circuit
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current and so power dissipation. This is clearly dependent upon the rise and fall time of the input
signal. For poorly designed circuits, this power loss can be significant. A simple rule-of-thumb for
designers is to size the transistors of cells so that the delay in the output is the same as that of the
input; with this strategy, the short-circuit power loss is reduced to insignificant factor of the dynam-
1c power dissipation[17].

2.3.4.3 GLITCH PROPAGATION

In Section 2.3.2.1 spurious transitions were explained in terms of unit time delays and how to
reduce the unequal paths delays that converge to gates in circuits. In fact the problem is compound-
ed in that the output glitch propagates on to other stages. In practice this signal often takes the form
of a slowly varying voltage, which hovers in the centre of its range causing short-circuit currents in
the next gate. This is another source of power dissipation that contribute to increase the second
term of (2-1) and a further reason to avoid logic glitches.

2.4 POWER ESTIMATION AND OPTIMIZATION

Although it 1s well accepted that design is not a purely top down process, it is a convenient meth-
od of describing the low power activities at different levels of the design data hierarchy as well as
the flow of data and control. This section discuss the power issues in the context of a CAD system
to support design for low power.

The EDA industry has produced several analysis tools that help designers quantify power prob-
lems and some optimization tools to quench excess dissipation. More tools are needed; they must
fit existing methodologies and the tools must be internally consistent between analysis and optimi-
zation and across all levels of abstraction. Power problems are often trickier to solve than timing
problems because power is more pattern-dependent than timing. Low-power design techniques of-
ten conflict with area and timing constraints. Power management 1s ultimately about optimization
tools. Designers require automation to achieve fast objectives. Analysis should ideally be relegated
to a back-end validation step.

2.4.1 POWER ANALYSIS AND OPTIMIZATION TOOLS

Fast and accurate power estimation tools are needed at each level of abstraction in order to an-
alyse the power respectively energy consumption of a design and to validate that given design con-
straints are met. The existing power estimation tools reflect the trade-off between accuracy and
speed: The faster the program the less accurate the results, especially if we move up in the hierarchy
of abstraction levels.

A direct method for power analysis is to translate the given high-level architecture description
to the gate, circuit or physical level; at which point reasonably accurate low-level power analysis
tools can be used. This method is obviously infeasible if a large number of design alternatives have
to be evaluated. While power estimation has some application at the early stages of a design process,
power measurement only rough guesses are made about the total chip power.

Although high-level power estimates are critical in guiding the design process and meeting the
power budget, EDA industry has concentrated on power analysis tools, both in the areas of tran-
sistor, gate and RTL. Very few companies concentrate on RTL analysis. There are at present few
power estimation and optimization tools at the RTL and architectural levels of abstraction. Efforts
are under way by both industry and academia to fill this gap. In the other hand, while CAD logic
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synthesis and gate/transistor sizing tools have respectable but limited impact, the answer to power
reduction lies in design techniques.

2.4.2 LP AUTOMATED DESIGN METHODOLOGY

2.4.2.1 PREPARING FOR RTL DESIGN

The first decision 1s the choice of fabrication technology. Low supply voltage is good. Small fea-
ture size is very good because of the low capacitance and increased device speed due to the short
channel length. The technology library used in this work is CMOS 0.18um process from TSMC
with 0.9 and 1.8v operating voltage.

The general approach is based on evaluating and optimizing the algorithm in order to reduce the
number of operation then evaluating different suitable architectures for implementation. At this
level and with a judicious choice of architecture topology, power reduction can be achieved by min-
imizing the capacitance switched at different nodes. There are various topological choices for im-
plementing a given function. Once the architecture is fixed, the next decision is the design
partitioning. We should avoid architectures based on central processing units and always review the
specified algorithm. Splitting the architecture into small independent units (avoiding high capaci-
tance interconnects) operating in parallel if possible or adopting a partially parallel processing with
pipelining (raising throughput). The method is to apply the principle of locality of reference. Other
design strategies and choices are:

* Choosing Regular structures.

* Avoiding storage or memoties (memory-less design), i.e., on-chip computations.

* Since energy efficient design is better than low power design, low energy is targeted.

* Since, the target is high performance circuits, the predominant metric is defined as Energy-
delay product.

* Working at bit-level rather than using standard packages and functions.

* Preparing the design for clock gating.

Power consumption of currently used static CMOS-technologies is dominated by dynamic pow-
er consumption (except for very low-voltage technologies), 1.e. the circuit activities need to be an-
alysed. Precise simulation tools on circuit level like SPICE can not handle the complexity of large
circuits and huge number of possible stimuli. For this reason our methodology for power calcula-
tion is based on circuit activity analysis at logic level.

2.4.2.2 PRE-SYNTHESIS DESIGN IMPACT

In an automated design, a significant percent of the power in a large ASIC is committed by the
time the RTL design is finished. Effective system-level integration methodologies require power
issues to be addressed prior to synthesis. It is important to observe that there are several types and
sources of power, each having advantages and drawbacks that vary with the particular design. The
most significant criteria are:

* Circuit Function: Power comes from several different types of structures among these are
clocks, memory, 1/O, datapath, control. Depending on the IC, some or all of these may be
important. In a high-end communications chip, for instance, half the total power may be dis-
sipated in the memories while in a processor, the clocks or datapath are more likely to dom-
inate.
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* Static vs. dynamic power: Most power-reduction methodologies address dynamic power,
which occurs as charge is dumped into and out of capacitances during switching cycles. Dy-
namic power tends to dominate in large IC designs. We have to consider static power, which
is largely independent of switching activity and can also have a significant impact.

* Average vs. peak power: Most chip temperature analysis relies on steady-state temperature
estimates based on average switching activity in a design. Peak power is more difficult to cal-
culate because it varies with the specific vector set applied; there is not any statistical average
signal. Considerations such as electromigration and IR drop are much more related to peak
power than to average power, and either one should consider a design revision.

Although capacitances, and under certain conditions even supply voltages, can be influenced by
RTL/architecture design, the factor most accessible to us at this level is the effective switching fre-
quency. A key concept is to minimize energy waste due to operations and signal transitions.

2.5 LoOw POWER DESIGN FLOW

Figure 2-1 shows our ASIC low-power design flow using an EDA methodology that automates
power analysis and optimization tasks and makes those tasks an integral part of the design flow
from RTL to GDSII. This methodology is based on Synopsys tools for front-end part and Cadence
tools for back-end or physical design, as shown with more details in Figure 2-2. This methodology
has been validated to ensure that circuit meet power, timing and area goals. Obviously, in many cas-
es the area constraints has been relaxed in order to make sure that this constraint is not limiting
power optimization, at the same time the area level is controlled. The flow is based on scripts that
automate the RTL optimization up to post-layout analysis with minimal intervention.

2.5.1 SIMULATION BASED POWER ESTIMATION AND OPTIMIZATION

Unlike static timing analysis, accurate power analysis is vector dependent in both probabilistic
and simulation-based modes [18][19]. Therefore, the selected vector set for power analysis/optimi-
zation will dramatically affect the correlation between the power numbers derived from the power
analysis/optimization tools and the actual power consumed by the application. The best vectors set
depends on the application whether the average power or peak power is concerned. This rely on
the application and implies different considerations when selecting the power vectors. The average
power dependent applications typically include the battery operated applications for longer battery
life, cost sensitive chips including high volume productions such as the consumer electronics in or-
der to reduce the temperature and thus the packaging and cooling costs. Telecom and military ap-
plications deal with average power consumption in order to provide less electromigration, and
therefore higher reliability. Peak power dependent applications typically include noise sensitive ap-
plications and power supply sensitive systems in case where the power supply will not be able to
provide high peaks of current.

2.5.1.1 SELECTING THE BEST VECTOR SET

In this work we deal with the average power dependent applications, in which the power vectors
should closely imitate the day-to-day operation of the design chip in its target system. The key is
the closer the vectors are to the actual application’s operation, the better correlation between the
power number from power analysis tools and the actual system power consumption. These vectors
can be chosen as a set of random vectors that reaches the maximum circuit’s internal states (nets)
for higher margin (exercises a majority of the logic in the design). Nevertheless, in most applica-
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tions, the functional validation vectors are a good starting point for choosing the best power vec-
tors.

2.5.1.2 ASIC LIBRARIES

Synopsys Power Tools gives an accurate power estimation and optimization as long as the tech-
nology library has power information and the design is handled at gate level including accurate tim-
ing and parasitics information. When the Technology Library is not characterized for power, it is
possible to report power numbers. This is because net switching power is a function of pin capac-
1tances, voltage, and toggling frequency. However, this report is not accurate since the internal cells
power cannot be reported. Thus, the library cells must have lookup tables for internal power and
pin capacitance. Furthermore, it should be characterized for leakage power as well in order to op-
timize for leakage power.

2.5.1.3 VSS-FAIF INTERFACE

Simulation to capture switching activity at both RTL and Gate level uses VSS-SAIF interface as
shown in Figure 2-2. It allows to easily use SAIF files with VSS and Synopsys DesignPower tool for
power back-annotation and power reporting. DesignPower and PowerCompiler uses a probabilistic en-
gine to estimate the switching activity on the nets based upon the functionality of the design, the
static probability and the toggle (switching) rate. Power analysis quality is directly related to the suc-
cess of back-annotation of SA of the design. Power optimization is done using Synopsys PowerCons-
piler tool, which perform an incremental compile (resynthesize) for logic transformations.
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Figure 2-1: Low-power oriented design flow using sub-micron processes.
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2.5.2 FRONT-END OR LOGICAL DESIGN

Generally, from the design specification a model is designed with a high-level language (typically
C language). The C model allows resource analysis as well as the functional verification. From the
resource analysis we can fix the architecture applied to design the circuit.

After fixing the architecture, we model the circuit at behavioural level with VHDL. We could
also model the design within another level such as structural, PLA, etc. The behavioural description
(RTL) is simulated before the synthesis step in order to verify its functionality, to correct the de-
scription and even in the worst case, modify the architecture.

For the synthesis part, the tool used in this work is Synopsys Design Compiler. With this tool,
we can constraint the design with timing and/or area parameters. The source file is VHDL behav-
ioural description (also accept structural, etc.), which is mapped in the logic level, with technology
dependent standard cells. A logic netlist can be provided after logic synthesis in different formats.
The logic netlist contains all logic connectivity of the design. Generally, we generate a VHDL for-
mat netlist for gate level simulation, which takes into account cell delay and of the whole design
with VHDL Synopsys Simulator VSS. If the design meets the constraints we generate Verilog for-
mat netlist, which can be imported into floorplaning and place&route tool (Silicon ensemble). De-
sign constraints can also be generated in SDF format in order to be imported into floorplanning
tool.

2.5.2.1 BEHAVIOURAL/RT POWER ESTIMATION/REDUCTION

At the behavioural or RT levels switching activity can approximate the power consumption.
Nets and buses switching activity factors obtained from the RT level logic simulation can quickly
identify hot spots on which the designer’s efforts should be focused in order to reduce the switch-
ing power the dynamic power by either changing the HDL description or the architecture. No ac-
curate power estimation can be obtained at this level.

2.5.2.2 GATE LEVEL POWER CALCULATION AND OPTIMIZATION

At the gate level, an accurate power calculation is possible, limited only by the accuracy of the
gate power models and the extracted parasitics. Early, in the design, estimated parasitics (based on
wire load models which are much less accurate than parasitics extracted from the Place&Route
tools at the physical level) coupled with a zero-delay simulation can provide enough accuracy com-
pared to behavioural power estimation. Instead, post-wiring parasitics and nominal delay simula-
tion are required for more accurate calculations later on. Gate level simulation, with timing, is more
time consuming but the SA generated allows to capture activity of every element in the design and
accounts for any glitches. Additionally, we can capture state and path dependent SA if the targeted
library has state and path dependent power numbers. State dependency accounts for varying modes
of operation; for example, the power a RAM dissipates varies depending on Read or Write mode.
Path dependency accounts for varying power consumption based on various input to output path.

Much higher power reduction can be obtained at the gate level using power optimization tech-
niques provided by Synopsys Power Compiler tool. Power optimization depends on many factors
including power constraints, design specific (whether design rules and timing constraints are met
or not), target ASIC library: typically a library with rich set of cells can provide better power results.
Optimization is performed by means of buffers resizing and/or insertion, logic transformations,
cells replacement, etc. At this point a decision have to be taken in order to change the architecture
or to continue the flow if the power budgets are met (see Figure 2-1). Once the gate level design is
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optimized on power the resulting netlist is placed and routed then the estimated parasitics are ex-
tracted and used for a nominal delay simulation. At this point, final accurate calculation of power
are obtained.
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Figure 2-2: Detailed P deep submicron design flow

2.5.3 BACK-END OR PHYSICAL DESIGN

Generally, designs are partitioned in different level of hierarchy. So the main idea of the floor-
planning step is to process a block placing in order to optimize the interconnection between them.
You can extract from your floorplanned design important parameters, which can be back annotated
into the logic synthesis and simulation tools in order to re-evaluate the circuit. Back-annotation at
this level helps to give more accurate performance estimation of the design. Back-annotation step
can be performed under the ASIC designer’s control and multiple and lengthy iterations between
ASIC designers and foundry can be avoided. The design constraints (SDF file) can also be imported
in order to lead the floorplan strategy. Once you have the topology information, a PDEF file can
be generated as well as the estimated SDF file and back-annotated into synthesis tool. This step take
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into account the physical information of the design and re-optimize it, if necessary with new phys-
ical parameters. Using Silicon Ensemble for floorplan, place and route a timing-based design.

When the design is accurately floorplanned and the design constraints are met, the floorplan can
be placed and routed. Placement and routing tool imports DEF netlist, PDEF and SDF file from
Floorplanner. After final place & routing step, we can extract exact design parameters which must
satisfy the design constraints.

2.5.3.1 TIMING AND PARASITICS BACK-ANNOTATION

In many cases we will get the most accurate results with PrimeT7me, if we back-annotate load data
(using parasitics information generated at the physical level) and SDF files. This is because SDF
files contain only cells and interconnections delays and in most cases setup and hold checks. It is
useful for static timing analysis only. However, SDF files do not contain any information about ca-
pacitance or transition times. Without back-annotated capacitance, tools such as PrimeTime calcu-
lates transition times and wire capacitances based on wire load models, which are much less
accurate than back-annotated loads. In addition, if the SDF is missing any timing checks, back-an-
notated loads can be used to calculate accurately the setup and hold timing checks, which are de-
pendent on transition times. Also, if the SDF 1s missing any cell delays (1.e. providing interconnect
SDF but not cell delay), back-annotated load can be used to calculate these delays because cell de-
lays are dependent on input transition times as well as output loads. This situation happen when
the SDF doesn’t cover all of the timing arcs in the design, which could be the result of how timing
arcs are modelled in the technology library.

2.5.3.2 PRIORITY IN BACK ANNOTATION

If both SDF and back annotated lumped RCs are available for a particular net or cell timing arc,
SDF will take precedence in calculating the net or cell timing for that arc. Back annotated lumped
RCs will also take precedence over wire load models.






CHAPTER 3

3 STATE OF THE ART IN DESIGNING CRYPTOGRAPHIC
PRIMITIVES

This chapter describes some basic concept of cryptography and gives a brief summary and def-
initions related to the basic eryptographic primitives and their security. We focuse on the design of
four cryptographic primitives: block ciphers, stream ciphers, hash functions and public-key
schemes and expose their provable security properties. An overview of the design principles is giv-
en, which includes the global structure and modelization based on Cryptographic Finite State Ma-
chine CFSM. Also the basic of crypranalysis attacks are ovorviewed and the main security concerns
of such primitives are described. That is called cryptanalysis and it’s important to enumerate the
most useful attacks. The design of modern eryptographic primitives 1s guided by the secunty re-
quirements and methods of the corresponding available attacks. For a complete overview and
more details please refer to [68]]69]

3.1 CRYPTOGRAPHIC PRIMITIVES

Depending on the required sccurity services, there exist many cryptographic primitives from
which to choose. Common primitives are stream/bloc ciphers for data confidentiality, hash func-
tions and keyed hash functions (KHF) for data integrity and digital signature and public-key
schemes for key generation and distribution.
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3.2 INFORMATION SECURITY OBJECTIVES

Information security services includes entity authentication, integrity, repudiation prevention,
access control and confidentiality.

3.2.1 DATA CONFIDENTIALITY OR PRIVACY

Is a service used for rendering the data unintelligible to keep the content of information from
all but those authorized to have it.

3.2.1.1 ENCRYPTION/DECRYPTION PROCESS

Encryption is the process of transforming a message (plaintext) into a form that is s0 it 1S unin-
telligible to anyone but the intended recipient. Encryption algorithms are invertible transforma-
tions so that encrypted messages (cipherfext) can be decrypted. All transformations using the
encryption algorithm also called a cipher are referred to generally as a family of transformations.
Within the family of transformations, modern encryption systems use a key or seed a parameter,
which selects a particular transformation from the family of transformations or used as initial state.
Cryptography is the science of making this transformation as intricate as possible, so that reversing
it without certain key information is difficult, if not impossible. An important property of encryp-
tion algorithms is that unique keys will define unique encrypted messages or ciphertext.

Several encryption schemes are in wide use today they are mainly subdivided into tow symmetric
ciphers that uses the same key is used for both encryption and decryption and asymmetric schemes
that uses two different keys, one for encrypting and another for decryption. Although asymmetric
schemes solve the problem of key exchange, they are rarely used for data confidentiality purpose
to their bad performances. They are several order of magnitude slower compared to symmetric ci-
phers. On the other hand, according to their security and functional properties, symmetric key ci-
phers can be subdivided into two different primitives block and stream cipher.

3.2.1.2 CRYPTOSYSTEM

A cryptosystem can be defined as an encryption algorithm, a decryption algorithm and a specific
key which produces an unique invertible transformation using the given algorithm. Ideally, a cryp-
tosystem uses the key and the algorithm to produce a flat distribution for all properties of the mes-
sage to be encrypted, hiding all natural redundancies of the language that up the message. It should
appear to the attacker that the message represents random information.

3.2.2 DATA INTEGRITY AND AUTHENTICATION

Data integrity is a service which address the unauthorized afteration of data and prevent data ma-
nipulation (zmsertion, deletion, substitution) by unauthorized parties. Message authentication includes
data zntegrity. It is a service which provide data origin authentication with respect to the original mes-
sage source created at some time in the past.

Unkayed hash functions take a message as input and produce an output referred to as a hash
value or digital fingerprint or message digest which serves as a compact representative image of the mes-
sage. A one-way hash is a number of fixed length with the following characteristics:

* The value of the hash is unique for the hashed data. Any change in the data, even deleting or
altering a single character, results in a different value.
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» The content of the hashed data cannot, for all practical purposes, be deduced from the

hash, which is why it is called one-way.

These functions are used frequently in combination with digital signature schemes (see Section
3.2.3) to provide data integrity where a message is hashed first and then the resulting hash value as
a representative of the message is protected (sigred) in place of the original message. The problem
of preserving the integrity of a potentially large message is thus reduced to that of a small fixed-size
hash value. A distinct class of hash functions, called message authentication codes (MACs) may be
viewed as keyed hash functions which take two distinct inputs, a message and a secret key, and pro-
duce a fixed-size digital fingerprint output of the message.

3.2.3 DIGITAL SIGNATURE AND VERIFICATION

Encryption and decryption address the problem of eavesdropping but do not address the oth-
er two problems tampering and impersonation. Digital signature is a service which address the
problem of providing the digital counterpart to a handwritten signature. Signatures must be verifi-
able. Public-key techniques are generally used for digital signature generation and verification.

In fact, tamper detection and related authentication techniques rely on a one-way hash. With
public key schemes it's possible to use the private key for encryption and public key for decryption.
Although this is not desirable when we are encrypting sensitive information, it is a crucial part of
digitally signing any data. Instead of encrypting the data itself, the signing counterpart creates a one-
way hash of the data, then uses the private key to encrypt the hash value. The encrypted hash, along
with other information, such as the hashing algorithm, is known as a digital signature. Figure 3-2
shows a simplified scheme of the way a digital signature can be used to validate the integrity of
signed data.
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Figure 3-2: Digital signature for data integrity validation

The digital signature, which is basically a one-way hash of the original data is encrypted with the
signer's private key and transferred to the recipient. To validate the integrity of the data, the receiver
first uses the signer's public key to decrypt the hash. It then uses the same hashing algorithm that
generated the original hash to generate a new one-way hash of the same data (information about
the hashing algorithm is sent with the digital signature, although this isn't shown in the figure). Fi-
nally, the receiver compares the new hash against the original hash. If the two hashes match, the
data has not changed since it was signed. If they don't match, the data may have been tampered
with since it was signed, or the signature may have been created with a private key that doesn't cor-
respond to the public key presented by the signer.

If the two hashes match, the recipient can be certain that the public key used to decrypt the dig-
ital signature corresponds to the private key used to create the digital signature. Confirming the
identity of the signer, however, also requires some way of confirming that the public key really be-
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longs to a particular person or other entity. One solution is based on the key certification (see Sec-
tion 3.4.3.1).

The significance of a digital signature is comparable to the significance of a handwritten signa-
ture. Once signing some data, it is difficult to deny doing so later, assuming that the private key has
not been compromised or out of the owner's control. This quality of digital signatures provides a
high degree of non-repudiation. That is, digital signatures make it difficult for the signer to deny
having signed the data. In some situations, a digital signature may be as legally binding as a hand-
written signature.

3.2.4 ENTITY AUTHENTICATION AND KEY ESTABLISHMENT PROTOCOLS

This service address techniques which provide shared secret key between two more parties for
subsequent use as symmetric keys for encryption, message authentication, and entity authentica-
tion. These techniques are mainly based on public-key schemes and employ digital signature for au-
thentication as described in the section above. Authenticated key transport (or entity authentication
in this case) may be viewed as a special case of message authentication with privacy, here the mes-
sage in Figure 3-2 is replaced by the key.

Key establishment is subdivided into key transport, which is the protocol where one party cre-
ates a secret value and securely transfers it to the others and key agreement is the protocol where a
shared secret ID derived by two parties (or more) in such way that no other party can predetermine
the resulting value. Diffie-Hellman key agreement [85] (see Appendix A) is a fundamental tech-
nique providing unauthenticated key agreement.
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An example of the key establishment protocols is the authenticated Diffie-Hellman key agree-
ment protocol. The immunity against the man-in-the-middle attack (see Section 3.3.1.1) is achieved
by allowing the two parties to authenticate themselves to each other by the use of digital signatures
and public-key certificates (see Section 3.4.3.1). The two parties involved in key agreement accord-
ing to Diffie-Hellman algorithm described in Appendix A, each obtain a public/private key pair and
a certificate for the public key. As described in Figure 3-3, during the protocol, both parts authen-
ticate themselves (key authentication) using digital signature scheme on their public value generated
by the Diffie-Hellman key agreement then send it to each other. Both part verify the digital signa-
ture of each other before establishing the secret key.
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3.3 SECURITY CONSTRAINTS

Security requirements are defiant for each cryptographic primitives. A system is said to be com-
putationally secure if the task of determining the key is computationally infeasible or intractable. A
perfectly secure system is useful because the attacker does not have enough information from the ci-
phertext to determine the key. On the other hand, computationally secure systems are also useful be-
cause while the attacker has enough information in the ciphertext to determine the key, he does not
. have enough time to complete the task. Good cryptographic algorithms can never be fully tested.
It seems to be common practice of government organizations and some companies to spread bad
news about any encryption method other then theirs. When the strength of a cipher greatly exceeds
the effort required to obtain the same information in another way, the cipher is probably strong
enough and the mere fact that information has escaped does not necessarily mean that a cipher has
been broken.

3.3.1 CRYPTANALYSIS (ATTACK STRATEGIES)

Cryptanalysis can be defined as general ways in which a cryptanalyst may try to break or penetrate
the secrecy of a cryptographic primitive. These are not algorithms; they are just approaches called
aftacks as a starting point for constructing specific algorithms. Because there is no theory which
guarantees strength for any conventional cipher, ciphers traditionally have been considered strong
when they have been used for a long time without knowing how to break them easily. Cryptanalysis
seeks to improve this process by applying the known attack strategies to new ciphers and by actively
seeking new ones. The result is typically some value for the amount of effors which will achieve a
break (even if that value 1s impractical); this is the strength of the cipher. But while cryptanalysis
can prove weakness for a given level of effort, cryptanalysis cannot prove that there is no simpler
attack. That is, lack of proof of weakness is not proof of strength.

Many academic attacks are essentially theoretical, involving huge amounts of data and compu-
tation. But even when a direct technical attack is practical, that may be the most difficult, thoroughly
expensive and time consuming way to obtain the desired information. Success is never assured and
resources are always limited. Consequently, approaches other than a direct technical attack for ob-
taining the hidden information (or the key!) can be more effective: making a paper copy, stealing a
copy, cunning and bribery, theft and electromagnetic monitoring. No cipher can keep secret some-
thing, which has been otherwise revealed. Information security thus involves far more than just
cryptography and even a cryptographic system 1s more than just a cipher. Even finding that infor-
mation has been revealed does not mean that a cipher has been broken.

3.3.1.1 ATTACKS CLASSIFICATION

Classically, attacks were neither named nor classified; there was just here 1s a cipher and here is
the attack. While this gradually developed into named attacks, there is no overall attack taxonomy.
Currently, attacks are often classified by the information available to the attacker or constraints on
the attack and then by strategies, which use the available information. Not only ciphers, but also
cryptographic hash functions can be attacked, generally with very different strategies. When we are
to attack a cipher, which enciphers plaintext into ciphertext or deciphers the opposite way, under
control of a key, the available information necessarily constrains the attack strategies to these de-
scribed as follow:
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Known Plamtexf

A type of attack that allows the ciphering transformation to be examined directly in which the cryp-
tanalyst has some quantity of related plaintext and ciphertext of an arbitrary message not of his
choosing. It is surprisingly reasonable that the opponent might well have some known plaintext
(and related ciphertext). The particular message of the sender is said to be compromised. In some
systems, one known ciphertext-plaintext pair will compromise the overall system, both prior and
subsequent transmissions and resistance to this is characteristic of a secure code.

Ciphertext Only The attacker has only the encoded message from which to determine the plaintext, with no knowl-
edge whatsoever of the latter. A ciphertext only attack is usually presumed to be possible and a
code’s resistance to it is considered the basis of its cryptographic security.

Known Plaintext: |We have some, or even an extremely large amount, of plaintext and the associated ciphertext.
Defined Plaintext: | We use arbitrary messages to be ciphered and capture the resulting ciphertext. We use also Chosen
Plaintext and Adaptive Chosen Plaintext.
Defined Ciphertext |We can use arbitrary messages to be deciphered and see the resulting plaintext. We can use also
Chosen Ciphertext and Adaptive Chosen Ciphertext.
Chosen Key We specify a change in any particular key bit, or some other relationship between keys.
Fault Analysis We induce random faults into the ciphering process, and use those to expose the key.

Meet-in-the-Middle

Given a two-level multiple encryption, search for the keys by collecting every possible result for
enciphering a known plaintext under the first cipher, and deciphering the known ciphertext under
the second cipher; then find the match.

Differential Cryptan- |Find a statistical correlation between key values and cipher transformations (typically the Exclu-
alysis sive-OR of text pairs), then use sufficient defined plaintext to develop the key.
Linear Cryptanalysis |Find a linear approximation to the keyed S-boxes (see Section 3.4.1.2) in a ciphe, and use that to
reveal the key.
Key Schedule For use in block cipher cryptanalysis. Choose keys which produce known effects in different
rounds (see Section 3.4.1.2).
Birthday Usually a hash attack (see Section 3.4.5.1). Use the birthday paradox, the idea that it is much easier
to find two values which match than it is to find a match to some particular value.
Formal Coding Algebraic attack: from the cipher design, develop equations for the key in terms of known plain-
text, and then solve these equations.
Correlation In a stream cipher, distinguish between data and confusion, or between different confusion streams,

from a statistical imbalance in a combiner.

Man-in-the-Middle

We can subvert the routing capabilities of a computer network, and pose as the other side to each
of the communicators. Usually used as a key authentication attack on public key systems (see Sec-
tion 3.4.3.1).

Table 3-2: Attack strategies on cryplographic primitives

It is normal to assume that at least known-plaintext is available; often, defined-plaintext is assumed.
Sometimes the attack strategy is thought to be obvious, given a particular informational constraint
and 1s not further classified. Many attacks try to isolate unknown small components or aspects so
they can be solved separately, a process known as divide and conquer and usually used to cryptan-
alyze the stream cipher’s PRBG.

Computationally secure systems are rated by their resistance to three types of attack, cpherext-
only attack, known-plain text attack and chosen-plain text attack. In each type of attack, the attacker is giv-
en the encryption and decryption algorithms and with this information attempts to decrypt the mes-
sage. In the ciphertext only attack, the attacker 1s also given the encrypted message to examine. Any
system failing this attack is considered totally insecure. In a known-plaintext attack, the attacker is
given the algorithm, the original message and its encrypted form. Cryptosystems which survive this
attack are considered reasonably secure. A chosen plain text attack gives the attacker the algorithm
and the ability to encrypt and decrypt any message chosen. Cryptosystems which survive this attack
are considered very secure.
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3.3.2 ASYMMETRIC VS SYMMETRIC PRIMITIVE SECURITY

Most modern public-key ciphers, whose security relates to some long-studied mathematical
problem that is believed to be difficult to solve, 1.g., the integer factoring problem or finding dis-
crete logarithms or large integers (see Section 3.4.3), the security of most modern symmetric-key
pseudo-random bit generators PRBG (see Section 3.4.2.2.1) do not relate to any widely-studied,
hard-to-solve problems. Rather, PRBGs implemented as stream cipher, are designed in an ad-hoc
fashion to resist known cryptanalytic attacks. Consequently, the designs, analysis and implementa-
tion of reliably secure PRBGs 1s regarded as exceptionally difficult and is often regarded as more
of an art than a science.

Security analysis that constrains the designs of most symmetric key algorithms in the class of
block cipher, mainly the key size and data block size, are Brute-force, codebook attack.

3.3.2.1 BRUTE-FORCE OR EXHAUSTIVE KEY SEARCH

In this attack we try to decipher ciphertext under every possible key until readable messages are
produced. A way to improve brute force is to try these keys one-by-one form a list of the most-
likely keys rather than the search from the key space, also called drctionary method. This is the best
known attack against symmetric key systems. Nothing else seems to work. Thus, the attack is Purely
exponential. Thus, for a £-bit symmetric cipher, the expected time to break it is T(k) = 21 The
space requirements are trivial: a few kilobytes suffice. '

The main drawback with this method is the time and cost of attack. A machine using 10° chips
running at around 10 nanoseconds per cycle was proposed by Diffie and Hellman [20] for finding
a DES key (56-bits long) [1] in about a day through exhaustive search. Such a machine was gener-
ally thought to be too ambitious for the then current technology. Two decades later, Winner, in
1993, designed a $1 million DES cracking machine [21], which would crack a DES, key in 3.5 hours.
A late-1997 version of this machine [22] would be capable of finding DES keys in 35 minutes, on
average. A $10,000 version of this machine would be capable of finding DES keys in 2.5 days, on
average.

3.3.2.2 Codebook Attack

A form of attack in which the opponent simply tries to build or collect a codebook of all the
possible transformations between plaintext and ciphertext under a single key. This is the classic ap-
proach. The usual ciphertext-only approach depends upon the plaintext having strong statistical bi-
ases, which make some values far more probable than others, and also more probable in the context
of particular preceding known values. Such attacks can be defeated if the plaintext data are ran-
domised and thus evenly and independently distributed among the possible values. This may have

been the motivation for the use of a random confusion sequence in a stream cipher (see Section
3.42.2.1)

When a codebook attack is possible on a block cipher, the complexity of the attack is controlled
by the size of the block to be encrypted/decrypted (that is, the number of elements in the code-
book) and not the strength of the cipher. This means that a codebook attack would be equally ef-
fective against either DES or Triple-DES in the latter [23] the block size is the same simply the
input data is, in effect, encrypted three times using tree different key.

One way to avoid a codebook attack is by having a large block size, which will contain an un-
searchable amount of plaintext #nzgueness or entropy. Another approach is to randomise the plain-
text block, often by using an operating mode such as CBC (see Section 3.4.1.3).
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3.4 BUILDING CRYPTOGRAPHIC PRIMITIVES WITH THE CFSM
MODEL

From hardware point of view (structures), cryptographic primitives can be modelled as a cryp-
tographic finite state machine (CFSM) that could be build in as a chip or part of a chip.

The properties required from the CFSM depend on the type of algorithm for which it 1s used.
In the following section we will show how three different cryptographic primitives can be imple-
mented using a CFSM: block ciphers, stream cipher and cryptographic hash functions.

3.4.1 BLOCK CIPHERS (SUBSTITUTION PERMUTATION CIPHERS)

A block cipher requires the accumulation of data (in a block) before ciphering can begin. Other
than simple transposition ciphers, the basic idea is based on ciphers designed to emulate a keyed
simple substitution with a table of size far too large to realize. A block cipher operates on a block
of data (for example, multiple bytes) in a single ciphering, as opposed to a stream cipher (Section
3.4.2), which operates on bytes or bits as they occur. Block ciphers can be called "codebook-style” ci-
phers.
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Fugure 3-4: Cryptographic finite state machine: implementing of a Block Cipher

3.4.1.1 BLOCK CIPHER PROPERTIES
3.4.1.1.1DATA DIFFUSION

This is property of an ideal block cipher in which a change of even a single plaintext bit will
change every ciphertext bit with probability 0.5. In practice, a good block cipher will approach this
ideal called overall diffusion. This means that about half of the input bits should change for any pos-
sible change to the input block, even for differences of just one bit or that the ciphertext will appear
to change at random even between related message blocks. Thus, finding message relationships
which might be used to attack the cipher. Overall diffusion is present in a block cipher, but not in
a stream cipher. Data diffusion is a simple consequence of the keyed invertible simple substitution
nature of the 1deal block cipher.

Overall diffusion can be measured statistically in a realized cipher and used to differentiate be-
tween better and worse designs. It does not, by itself, define a good cipher, but 1t is required in a
good block cipher.
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3.4.1.1.2AVALANCHE EFFECT:

A small change in either the plaintext or the key produce a significant change in the ciphertext.
In DES a one bit change in either the key or plaintext produce on the average 35 changed bits in
the ciphertext.

3.41.1.3COMPLETENESS EFFECT:
Each ciphertext bit is a complex function of all input bits (in a block).

3.4.1.2 BLOCK CIPHERS CONSTRUCTION

Almost all single key block cipher proposals are of the derated type. Generally in block ciphers,
non-linear substitutions operations arc alternated with mixing functions in order to diffuse and
confuse the redundancy. These operations are grouped into a single round transformation and the
strength of a cryptographic primitive can be obtained by repeating this simple round transforma-
tion a specific number 7 of iterations using different key each iteration. These keys involved in the
rounds are generated using a key schedule unit which based on the master key it update the key for
each round.

* Non-lincarity essential to every strong cryptographic primitive. The simplest basic non-lin-
ear component consist of using lookup tables or S-boxes. Other techniques are based on
mathematical structures and logic unit such as exponentiation/inversion over finite field, ad-
dition and multiplication, Feistel network, addition and rotation, data dependent rotation
and Boolean functions.

¢ Diffusion in order to spread local changes. Linear transformations are very well suited for
this purpose. The simplest solution consist of bit permutation (transposition), rotation,
PHT (pseudo-Hadamard transform) and diffusion operations based on MDS (Maximum
Distance Separable) linear codes [69]. Some techniques consist of combining linear and
non-linear operations in such a way that changes are spread quickly through the block.

A block cipher based CFSM is illustrated in Figure 3-4 where, the state updating function f; is
the round function. The plaintext is loaded into the internal register and converted into the cipher-
text by performing riteration. The state updating function must obviously be invertible for decryp-
tion purpose. As will be shown in Chapter 7, the inverse of the round function may have different
datapath with complexity comparable to that of the round function.

3.4.1.3 MODE OF OPERATIONS

Block ciphers are used in several operating modes. From the point of view of hardware imple-
mentations, these modes can be divided into two major categories:

* Non-feedback modes, such as Electronic Code Book (ECB) mode and counter mode.

* Feedback modes, such as Cipher Block Chaining (CBC) mode, Cipher Feedback (CFB)

mode, and Output Feedback (EFB) mode.

In the non-feedback modes, encryption of each subsequent block of data can be performed in-
dependently from processing other blocks Figure 3-5. In particular, all blocks can been encrypted
in parallel. In the feedback modes, it is not possible to start encrypting the next block of data until
encryption of the previous block is completed. As a result, all blocks must be encrypted sequentialy,
with no capability for parallel processing.

The limitation imposed by the feedback modes does not concern decryption, which can be per-
formed on several blocks of ciphertext in parallel for both feedback and non-feedback operating
modes.
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According to current security standards, the encryption of data is performed primarily using
feedback modes, such as CBC and CFB. Non-feedback modes, such as ECB, are used primarily to
encrypt session keys during key distribution (key establishment, see Section 3.2.4). As a result, using
current standards does not permit to fully utilize the performance advantage of the hardware im-
plementations of secret key cryptosystems, based on parallel processing of multiple blocks of data.

The situation could be remedied by including in the block cipher interleaved modes of opera-
tion. In these modes, N streams of the plaintext blocks, each composed of blocks separated by N
positions, are encrypted independently, using classical feedback.

CBC Mode

CFB Mode
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Interleaved CBC Mode
P
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Figure 3-5: Block Cipher operating mode (encryption).

3.4.2 STREAM CIPHERS

This primitive is often used when it is necessary to encrypt large amount of data very quickly. It
directly handles messages of arbitrary size, by ciphering individual elements, such as bits or bytes.
This avoids the need to accumulate some amount of data or multiple data elements (into a block)
for ciphering to complete as is necessary in a conventional block cipher. But note that a stream ci-
pher can be seen as an operating mode, a streaming of a tiny block transformation (1-bit cipher feed-
back mode CFB with r=1) as shown in Figure 3-6 where, E denotes the block cipher.

91

c G

Frgure 3-6: Streaming using Block Cipher in CFB mode.
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Figure 3-7: Cryptographic finite state machine: implementation of a PRG
3.4.2.1 PROPERTIES
3.4.2.1.1STREAM CIPHER DIFFUSION

In a stream cipher, data diffusion may or may not occur, but if it does, it is necessarily one-way
(from earlier to later bit). Since bits are ciphered one-by-one, changing part of the plaintext can af-
fect that part and possibly later parts of the ciphertext; this is called stream cipher signature. In a few
stream cipher designs, the value of one message byte may change the enciphering of subsequent
message bytes; this is called forward data diffusion. In contrast, changing even the last bit in a block
cipher block will generally change about half of the earlier bits within the same block (overall dif-
fusion of block ciphers). Changing a bit in one block may even affect later blocks if we use a stream
meat-cipher composed of block cipher transformations, like CBF in Figure 3-6.

A conventional stream cipher generally does not need data diffusion for strength, as does a block
cipher. In a block cipher, it may be possible to separate individual components of the cipher if their
separate effects are not hidden by diffusion but a stream cipher generally re-uses the same transfor-
mation and has no multiple data components to hide.

3.4.2.2 STREAM CIPHER CONSTRUCTION

The classic stream cipher is simple, consisting of a keyed random bit generator, which produces
a random-like confusion sequence or running key or key-stream. The sequence is then combined with
plaintext data in a simple additive combiner to produce ciphertext.

The first stream cipher, which marks the start of modern cryptography, is the Vernam cipher
[24]. It directly combines a stream of plaintext data with a pseudo-random confusion stream using
what we know of as mod 2 addition (Boolean logic exclusive-OR). However, the Vernam cipher
succumbs to the known-plaintext attack (Section 3.3.1.1). The ultimate stream cipher is the One-
Time-Pad (O'TP), in which a random source produces sequence that is never reused. Assuming per-
fect randomness in the source the cipher is mathematically proven to be unbreakable. The confu-
ston sequence in the OTP 1s the key and it is as long as the data, which 1s infeasible in practice due
to the costs of transfer and storage of the keying material.

3.4.2.2.1 CONFUSION SEQUENCE

The key distribution problem for One-Time Pad suggests that one might use an algorithm to
generate the random sequence needed as the key (transfer of only a short seed would then be need-
ed). However, no algorithm using a finite state machine can produce a truly random sequence, since
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the finiteness forces the sequence to be periodic. The best we can do is use a psexdo-random sequences.
The use of pseudo-random bit generators PRBGs 1s central to stream ciphers, where the PRBG
constitutes most of the system. The sequence generator may be the most complex part of the de-
sign. Although cryptographic applications obviously impose special requirements, one approach 1s
to use one of the PRBGs, which have been developed for statistical use. The CFSM model can eas-
ily be used to build a PRG as shown in Figure 3-7. The system is initialled by loading the Initial State
IV into the internal register. The IV is generally a function of the Key and other fixed parameters.
Each clock cycle the state is updated and some bits are presented at the output as pseudo-random
bits.

There are so many PRBG designs and so many different claims for them. In [27] Ritter gives a
survey of pseudo-random sequence generators for cryptographic applications with extensive liter-
ature that it is difficult even to compare the claims and no survey can provide complete details of
all designs. This includes:

* Chaos, random behaviour based on non-linear dynamic equations |28][29].
* Cellular Automata, a sort of 1-dimensional Isfe game [30]

* "x? mod N" generator of Blum, Blum, and Shub [31] it is claimed to be polynomial-time un-
predictable and cryptographicaly secure.

* PRBGs based on Linear/Non-Linear Feedback Shift Registers LESR (finite fields Algebra).

* Additive PRBG proposed by Knuth [77] and Marsaglia [32] is a generalization of the LESR
and used normal arithmetic addition (with internal carry operation) instead of GFSR XOR
(no carry) operations. Especially efficient software implementations with a long, mathemati-
cally proven cycle length.

3.4.2.2.2COMBINER

The combiner is a mechanism which mixes the plamntext and key-stream into a single result. Re-
versible combiners are used for decryption. The ciphertext is then deciphered into plaintext using
a related inverse combiner. The most commonly used combiner 1s an additive combiner (exclusive-
OR). Irreversible or non-invertible combiners are often used to mix multiple RNG's into a single
confusion sequence, also can be used to select the running key from the PRBG, case of the output
function f,,, shown in Figure 3-7.

In real stream cipher the re-use of the confusion sequence is extremely dangerous. In general,
the most adopted technique is to use a complex PRBG with very long period sequences which, ob-
viously mncrease the complexity of the PRBG. Another alternative is to use a stronger combiner,
such as Latin square [25] or Dynamic Substitution [26] combining. This can drastically reduce the
complexity required 1n the confusion generator, which normally provides all stream cipher strength.
These stronger combiners are non-linear, with substantial state. We may elect to use multiple com-
bining in sequence, or a selection among different combiners. Neither of these approaches makes
much sense with an additive combiner. Moreover, if a simple additive combiner is used, the trans-
formation becomes weak upon the second character ciphered, or immediately, under known plain-
text (Section 3.3.1.1) (because the known plaintext can be subtracted from the ciphertext, thus
completely exposing the confusion sequence), making strength dependent on the confusion se-
quence. More complex transformations imply the need for correspondingly less strong confusion
sequences.

3.4.2.3 SECURITY OF STREAM CIPHER

The recovery of the key or CFSM internal state of the PRBG must be computationally infeasi-
ble. It follows that the security can be solely based upon the secrecy of the key, or solely upon the
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secrecy of the internal state (a mathematical function is used to generate a pseudo random stream
of bits based upon a small number of bits that comprise the secret Initial State of the generator).
The former property allows for re-initialization in the clear between two users who share the same
secret key. Because practical PRBGs always have a finite number of states or finite cycle, this cycle
length must be large enough to avoid repetitions in the output sequence. PRBG based on the LF-
SRs have the advantage that almost all internal states lie on one cycle, hence choosing LFSRs with
long periods increases the number of states and solves this problem. This fact may requires a longer

key depending on the initialization function f,, since the initial state is function of the key.

In the other hand, the influence of the key on the updating function should be as great as pos-
sible. This is realized if the updating of a state A with two different keys K; and K, never gives rise
to the same state, more formally VA :f (A, K;) = (A, K,) =K, = K,.

3.4.2.4 LFSRS BASED STREAM CIPHERS

The LESR's sequences are often used in Coding theory including Cryptography and Error Cor-
recting Codes due to their high linear complexity, long period and good statistical properties (see
Appendix A and the work by Golomb [34] for a general analysis of LFSRs). There have been a
number of proposals in the class of the LFSR-based synchronous stream ciphers. A good overview
of the activity in this area is given by Rainer Rueppel in [33]. A cryptographic view is available in
Beker and Piper |35], Berlekamp [36].

Rueppel has codified stream ciphers design criteria:

* Long period with no repetitions (Section 3.4.2.3)

* Large linear complexity based on size of equivalent LESR (Section A.1.3)

e Statistically random

¢ Confusion (output bits depend on all key bits)

* Diffusion

* Use of highly non-linear Boolean functions

Because of the weakness of the data-confusion combiner (exclusive-OR) and the simplicity of
the LFSR (Berklamp-Massey algorithm [37] will recover the unknown state of a simple #-bit LESR
and its primitive polynomial, with just 27 known bits), the need to generate a more “complex“se-
quence is a necessity. This led to the idea of using multiple LESR’s and somehow mixing them so
that the ultimate complexity was the product of the individual complexities. A number of proposals
exist and some successful stream ciphers do use LESRs, employing certain useful techniques and
some degree of non-linear elements to overcome the existing cryptanalytic attacks and produce a
highly confusing sequences. Some practical proposals include:

* Stuttering involves clocking the register a variable and unpredictable number of times be-
tween outputs (only select some of the output bits) [38].

* Clocking a set of LFSRs at different rate and combining their output [39]

* Using LESRs that control their own clock {40].

* Using multiple shift registers and combining outputs from them in non-linear fashion (mul-
tiplexing algorithm of Jennings [41], see Appendix A).

* Controlling the clocking of some LFSRs by another, the case of the alternative stop-and-go
generator [42].

Although some schemes falls to some attacks revealing a key redundancy or recovering the in-
ternal state of the generator, attacks on other schemes does not substantially weaken the gener-
ators. In Figure 3-8 are reported some useful LESR based stream cipher employing certain
techniques enumerated above and presenting a good cryptographic properties. The description of
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each cipher is reported in Table 3-3; the period and linear complexity of such primitives are depict-
ed in Table 3-4.
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Figure 3-8: Examples of LESR based Stream Cipher

a) This generator uses three LFSRs of different length L;,L,,L.;. LFSR-2 is clocked when the output of

LFSR-1 is 1; LFSR-3 is clocked when the output of LFSR-1 is 0. The output of the generator is the
XOR of LFSR-2 and LFSR-3. This generator has a long period and large linear complexity see Table
3-4. A correlation attack (see Section 3.4.2) against LFSR-1 have been found, but it does not substan-
tially weaken the generator. There have been other attempts at keystream generators along these lines.
b) The Gollmann cascade is a strengthened version of a stop-and-go generator. It consists of a series of
LFSRs, with the clock of each controlled by the previous LFSR. If the output of LFSR-1 is 1 at time ¢
- 1, then LFSR-2 clocks. If the output of LFSR-2 is 1 at time ¢ - 1, then LFSR-3 clocks, and so on. The
output of the final LFSR is the output of the generator. If all the LFSRs have the same length, n, the
period and linear complexity of a system with k LFSRs is reported in Table 3-4.

c) This generator uses two LFSRs, both of length n. The output of the generator is the XOR of the outputs
of each LFSR. If the output of LFSR-2 at time 7 — 1 is O and the output at time ¢ — 2 is 1, then LFSR-2
does not clock at time z. Conversely, if the output of LFSR-1 at time 7 — 1 is 0 and the output at 7 - 2 is
1, and if LFSR-1 clocked at time ¢z, then LFSR-2 does not clock at time ¢. No evident key redundancy
has been observed in this system

d) The shrinking generator uses a different form of clock control than the previous generators. Take two
LFSRs: LFSR-1 and LFSR-2 of length L;,L,. Clock both of them. If the output of LFSR-1 is 1, then
the output of the generator is LFSR-2. If the output of LFSR-1 is 0, discard the two bits, clock both
LFSRs, and try again. This idea is simple, reasonably efficient, and looks secure. If the feedback poly-
nomials are sparse, the generator is vulnerable, but no other problems have been found. One imple-
mentation problem is that the output rate is not regular; if LFSR-1 has a long string of zeros then the
generator outputs nothing. A Buffering technique can be used to solve this problem.

Table 3-3: Description of LESR based Stream Cipber.

b) (2n_1 )k n(2n_1 )k—1

c)
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Table 3-4: PRPG's Period and Linear Complexity.
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3.4.3 PuBLIC KEY CIPHERS

Public key ciphers are generally block ciphers, with the unusual property that one key is used to
encipher and a different, apparently unrelated key 1s used to decipher a message. So if we keep one
of the keys secret or private, we can release the other key (the public key) and anyone can use that to
encipher a message to us. Then we use our private key to decipher any such messages. It is inter-
esting that someone who enciphers a message to us cannot decipher their own message even if they
want to.

Public-key cryptographic systems have proven to be effective and more manageable than sym-
metric key systems in a large number of scenarios. Since the invention of public-key cryptography
in 1976 by Whitfield Diffie and Martin Hellman |85], numerous public-key cryptographic systems
have been proposed. All of these systems based their security on the difficulty of solving a mathe-
matical problem. Over the years, many of the proposed public-key cryptographic systems have
been broken and many others have been demonstrated to be impractical. Today, only three types
of systems are considered both secure and efficient. Examples of such systems and the mathemat-
ical problems on which their security is based, are:

a.) Integer factorization problem (IFP): RSA and Rabin-Williams.

b.) Discrete logarithm problem (DLP): U.S. government's Digital Signature Algorithm
(DSA), Diffie-Hellman key agreement scheme, ElGamal encryption and signature
schemes, Schnorr signature scheme, and Nyberg-Rueppel signature scheme.

c.) Elliptic curve discrete logarithm problem (ECDLP): the elliptic curve analog of the
DSA (ECDSA) and the elliptic curve analogs of the Diffie-Hellman key agreement
scheme, the ElGamal encryption and signature schemes, the Schnorr signature scheme
and the Nyberg-Rueppel signature scheme.

Each of these systems is capable of providing confidentiality, authentication, data integrity and

non-repudiation. It must be emphasized that none of these problems have been proven to be in-

tractable (i.e.,difficult to solve in an efficient manner). Rather, they are believed to be intractable
because years of intensive study by leading mathematicians and computer scientists has failed to
yield efficient algorithms for solving them.

Because public key ciphers operate on huge values, they are very slow and so are normally used
just to encipher hash values for digital signature (sce Section 3.2.3) or a random message key for
key establishment protocol see Section 3.2.4. The message key is then used by a conventional secret
key cipher, which actually enciphers the data.

3.4.3.1 CERTIFICATION

At first glance, public key ciphers apparently solve the key distribution problem. But in fact they
also open up the new possibility of a man-in-the-middle attack. To avoid this, it is necessary to as-
sure that one 1s using exactly the correct key for the desired user. This requires authentication (val-
idation or certification) via some sort of secure channel, and that can take as much effort as a secure
secret key exchange. A man-in-the-middle attack (see Section 3.3.1.1) is extremely worrisome, be-
cause it does not involve breaking any cipher, which means that all the effort spent in cipher design,
analysis, mathematical proofs and public review would be completely irrelevant.
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3.4.3.2 PuBLIC KEY CRYPTOSYSTEMS PROPERTIES
3.4.3.2.1EXPONENTIAL VERSUS POLYNOMIAL TIME ALGORITHMS

Above all else, the difficulty of a problem must be defined. What does it mean for a mathemat-
ical problem to be difficult? A mathematical problem is difficult if the fastest algorithm to solve the
problem takes a long time relative to the input size.

To analyse how long an algorithm takes, computer scientists introduced the concept of polyno-
mial time algorithms and exponential time algorithms. Roughly speaking, an algorithm runs quickly
relative to the size of its input if it is a polynomial time algorithm and slowly if it 1s an exponential
time algorithm. Therefore, easy problems equate with polynomial time algorithms and difficult
problems equate with exponential ime algorithms.

1t is important to notice the words relative to the input sige in the definition of polynomial time and
exponential time algorithms. All problems are straightforward to solve if the input size is very small,
but we are interested in how much harder a problem gets as the size of the input grows. For exam-
ple, adding two numbsers is straightforward, as 1s factoring two numbers. However, addition is an
example of an easy problem, because there is an algorithm to add numbers, which runs in polyno-
mial time, meaning that it would not take very long to add two enormous numbers. On the other
hand, factoring is a hard problem because, in general, factoring a large number takes a very long
time. Thus, when looking for a mathematical problem on which to base a public-key cryptographic
system, cryptographers are searching for a problem for which the fastest algorithm takes exponen-
tial time. In broad terms, the longer it takes to compute the best algorithm for a problem, the more
secure a public-key cryptosystem bascd on that problem will be.

The most upsetting long-term threat to DL cryptosystems that we can foresee right now comes
from quantum computers. Peter Shor in [43] showed that if such machines could be built, integer
factorization and discrete logs (including elliptic curve discrete logs) could be computed in polyno-
mial time. This result has stimulated an explosion in research on quantum computers. While there
1s still some debate on whether quantum computers are feasible, no fundamental obstructions to
their constructions have been found and novel approaches are regularly suggested. The one com-
forting factor is that all experts agree that even if quantum computers are eventually built, it will
take many years to do so (at least for machines on a scale that will threaten modern public key sys-
tems) and so there will be advance warning about the need to develop and deploy alternate systems.

In the other hand, because lower complexity bounds are hard to achieve, it is possible in DLP
for example that exponential attacks can be replaced by subexponential attacks [44] and subexpo-
nential attacks to be improved by polynomial time attacks. These algorithmic attacks, however, are
becoming increasingly complicated and it’s not clear whether their smaller (expected) running times
can be effectively attained in large field implementation. The DLP, thus, will serve as a reliable
source for secure protocols as long as the cryptographers are not running out of appropriate groups
where no subexponential time algorithm 1s known. For achieving provable security, lower bounds
in solving the corresponding problems are needed but these are either too difficult to establish or
restricted to a model not compliant with reality.

3.4.3.2.2DLP VERSUS IFP

RSA the first usable public key cryptosystem, introduced in [50] requires calculation of a private
key derived from the least common multiple of two large prime numbers. This particular crypto-
system 13 based on the difficulty of factoring very large numbers and today (determining the two
prime numbers), it is still the most widely used public-key cryptosystem in the world. Since then, in
the field of computational number theory, major work has been done towards efficient integer fac-
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torization. As a consequence, new types of public-key algorithms have arisen. The most important
competitors to RSA are schemes based on the Discrete Logarithm (DL) problem. Originally, the
DL problem was considered in the multiplicative group of a finite field, especially a prime field or
a field of characteristic 2, since the later is most appropriate for implementations.

The main concern is whether DL based cryptographic schemes are indeed more secure than the
IF based schemes. Although the mathematical principle of IF and DL schemes is quite different,
the algorithmic attacks of these schemes are though related. Bruce Schneier in [69] states that com-
. puting discrete logarithms is closely related to factoring. If we know how to calculate efficiently dis-
crete logs, then we can factor (that is the basis of Shor's quantum factoring algorithm [43]). Further,
one note the interesting statement in [48], while there are algorithms for factorization that do not
generalize to give discrete logarithm algorithms (the Schnorr-Lenstra algorithm, for example, see Ap-
pendix A), the converse is not the case. In other words, all currently known algorithms for solving
the DLP can be applied to the IFP, whereas the reverse is not always the case. It turn out that dis-
crete logarithms are at least as hard as factoring and likely to remain so.

On the other hand, breaking such systems is quite another matter, here we fall into the statement
of handling an exponential time algorithm, which requires a sieving process to handle the large
amount of involved calculations. At this point, number of approaches have been undertaken. The
most promising one, which may have a major impact, is based on the massive distributed comput-
ing over the Internet since, there 1s huge computing power available in the 1dle time of the comput-
ers on the Internet and that power can be harnessed casily. Given the rapid growth in such
computing power and the relatively slow increase in the running time of the number field sieve with
the size of the modulus in DLP, cryptosystem should be build in generous safety margins (larger
field sizes) to take into account the current state of the art and compensate for expected growth in
computing power as well as improvements in algorithms.

3.4.3.3 DLP IN GF(p) AND GF(2”)

There are two general types of GGalois Fields with cryptographic significance, GF(p) with p prime,
and the extension field GF(2”) where the field size m is large. It is unfortunate that these two systems,
though related, are both often discussed in the same breath, since theory in one field isn't necessar-
ily applicable in the other field. In this work special attention is devoted to the extension field
GF(2”) basically because it is easier to implement in hardware. The DLP is not equally difficult for
instances which use GF(2”) as those which use GF(p), where the sizes 2” and p of the fields are
approximately equal. Until the last decade, there have not been any mathematical discoveries, which
state that the DLP over GF(2") is easier or harder than the DLP over GF(p). Unfortunately, recent
discoveries [49] show that DLP in the field GF(2”) are much easier to compute. Although the fields
GF(p) with p prime appears to offer relatively high level of security, this does not restrict the use of
the corresponding extension field 1n cryptographic applications. In fact, through survey and analy-
sis of known algorithms for solving DLP [45][46][47], the field size 7 for which GF(2”) is used in
a cryptosystem, has to be carefully chosen such that 2”-1 is a large prime called Mersenne prime. A
good overview of the scientific activity in this area and main results and conclusions are given by
Odlyzko in [48].

3.4.3.4 DLP BASED CRYPTOSYSTEMS CONSTRUCTION

In what follows a description of our DLP based scheme, mainly exponentiation over GF(2”) is
given.
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Figure 3-9: Public and Private Operation Scheme of DLP based Cryptosystem.

Choosing some (arbitrary, non-zero) bit patterns, X defined as an initial vector I1” and D the
Decryption Key, also called the Private Key. It is not transmitted to anyone else, but 1s needed each
time we want to decrypt an encrypted message, so it must be stored (or at least we must remember
how to regencrate it, for example from a memorized passphrase).

Computing E = xP . Eis the Encryption Key, which can be published to anyone who wants to
send us an encrypted message; 1t is also called Public Key.

Choose a (true) random bit pattern R. R is the Random Key and is never stored, transmitted or
reused. Compute Q = X~ Q is the Open Key, and can be transmitted in-the-clear as part of a head-
er that precedes an encrypted message or published to the private party.

*  Enoryption:

Compute K = E® Kis the Closed Key or Secret Key. Use K to mnitialize the encryption engine’s
“mixture generator” and then use the mixture generator to operate upon the information to be en-
crypted (combining phase).

*  Decryption:

Compute the secret key from the Open Key and the private key K = 0P, that will be identical
to the K value computed above during encryption. Use K to initialize the encryption engine’s “mix-
ture generator” and then use the mixture generator to operate upon the encrypted information (de-
combining phase). Because the mixture generator is initialized to the identical state used to start

encryption, it is able to undo the encryption processing and recreate the original message.

All operations are performed modulo field generating polynomial of GF(2%).

3.4.4 CRYPTOGRAPHIC HASH FUNCTIONS (CHF)

Hash functions compress strings of arbitrary lengths to strings of fixed lengths (typically 128 bits
or 160 bits for modern cryptography). There have been many proposals on how to design and anal-
ysis this cryptographic primitive. One can refer to the doctoral dissertation of Bart Preneel [51]for
a huge treatment of this field. A survey on cryptographic hash functions can be found in [52].

All cryptographic hash functions proposals are build by means of chaining transformations as a
state updating function of a finite state machine. The message M (input) is padded and fed block
by block (m; for 1 <i<n) to a process governed by these chaining transformations that transform
the chaining state parametrized by the message block into another state. The initial state IV is spec-
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ified (fixed) and the final chaining state h,, 1s used to determine the hash result. This traditional CHF
is shown in Figure 3-10, where f;, is the transformation (compression) function.
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Figure 3-10: Cryptographic finite state machine: implementation of 2 CHF

In many proposals the compression function is realized by combinations of a block cipher and
some simple operations. Others are CHEF based on cellular automaton [53]|54] and Algebraic Ma-

trices [55]. Besides these there are many dedicated designs. The best known are MD5 [56], SHA
[57} and RIPEMD [58§]. '

3.4.4.1 SECURITY PROPERTIES

Hash functions must satisfy the following properties:

* Preimage resistance: it should be hard to find a preimage for a given hash result. In other
terms it should be computationally infeasible to find any input which hashes to any pre-
specified output.

* Second preimage resistance: it should be hard to find a second preimage for a given input.

* Collison resistance (collison free): it should be hard to find two different inputs with the
same hash result.

While these properties are simple, experience has shown that achieving them is quite hard. In

{61}, Ivan Dimgard presented in computational complexity theoretic framework a method to con-
struct a collision resistant hash function by using as chaining transformation a collision resistant

compression function f, with a fixed-length input #, as shown in Figure 3-10, where the hash
result H can be expressed as:

hi = fylh_;m)  0<i<t (3-4)

where, the arbitrary length message M is divided into # blocks #2y,7,,...,7, and each of which is
processed in one round, 4; 1s the chaining variable between iteration 71 and iteration 7 (with bit length
nn2m) on the fixed b-bits message block #;, hy = 1V is the initial state vector. The output hash
value 1s H(M) = f, (h,) where f, . is the output function. As example in the CBC-CHF, as spec-
ified in [59], the output transformation function f,,, consists of selecting the leftmost # bits of 4,.
Another example in [60] consists of selecting a multiple » of 16 of lefmost bits of 4,

From Equation 3-4, it turns out that generating a collision for such a CHF involves cither gen-
erating a collision for f, or solving a problem with comparable complexity. Consequently, the
component that is crucial for both performance and resistance against CHF cryptanalysis (which
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guaranty these properties) is the chaining transformation f, . Dimgard in[61] gave three exam-
ples of collision free functions to use in the chaining transformation. However, for two of these
examples collisions have been found in [62] [63]. Moreover, in [54], Joan Daemen showed that col-
lisions have been found for the third Damgard’s compression function. The weak point lies in the
uncertainty whether generating a collision is in fact a hard problem. Application of the Damgard’s
principle imposes important restrictions.

In his doctoral thesis dissertation [64], Joan Daemen proposes a generic model, which consists
. of the compression function f, with a fixed-length input based on an invertible chaining trans-
formation collisions. He showed that the Dimgard design principle can only be applied if the chain-
ing transformation is not invertible.

3.4.5 KEYED HasH FUNCTIONS (KHF)

In KHF a hash function take as a distinct secondary input a secret key. Such hash functions,
commonly known as Message Authentication Codes (MACs), have received widespread use 1n
practice for data integrity and data origin authentication, e.g. in banking applications.

These are conventional cryptographic algorithms, which allow a recetver to establish the source
of integrity of data received. Using KHFs, it 1s possible to produce a fixed length digital signature
that depends on the whole message and ensures authenticity of the message. T'o produce digital sig-
nature for a message M, the digest of M, given by H(M), 1s calculated and then encrypted with the
secret key of the sender. Encryption may be performed either by using a public key or a private key
algorithm. Encryption of the digest prevents active intruders from modifying the message when us-
ing only a hash value. Since active spoofer may intercept the transmitted message, modify it as he
wishes and resend it appended with the digest recalculated for the modified message.

3.4.5.1 REQUIREMENTS FOR KEYED HASH FUNCTIONS

We consider the following properties for keyed hash functions:

3.4.5.1.1SECURITY REQUIREMENTS

* It should use a secret key of at least 128 bits to prevent exhaustive key search.

* It should produce a message digest with at least 128 bits to thwart birthday attacks (Section
3.4.2).

* It should uniformly distribute the message digest in the message digest space. This thwarts
statistical attacks.

* It should require O(2”) known text-MAC pairs to find a second preimage.

3.4.5.1.2DESIGN HEURISTICS

* It should use the secret key many times in the hashing process (especially at the beginning
and the end).

* It should use every bit of the message several times in the hashing process (redundancy of
the message).

* The underlying round function should be analysed very carefully to thwart the attacks that
are based on the weaknesses of the round function, such as fixed-point attack. It needs spe-
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cial care when the design is based on an existing algorithm, such as an encryption algorithm
or a hash function.

3.4.5.2 CONSTRUCTION OF KEYED HASH FUNCTIONS

KHF's can be constructed from scratch, from an encryption algorithm (block or stream cipher)
as they already have a secret key and from an existing hash function. KHF are preferred to be used
in authentication schemes compared with the schemes based on encryption algorithms, since an
encryption algorithm might not satisfy the security requirements of keyed hash functions. In this
section, we show how a pre-existing hash function can be used to construct a keyed hash function.
This implies that, some security requirements of the designed keyed hash function rely on the se-
curity of the underlying hash function.

There are several way on how a pre-existing hash function can be used to construct a KHF (the
way for key injection). The secret key can be introduced in the Il in the compression function f;,
and in the output function /. There exist mainly three proposals: the secret prefix, secret suffix
and envelope method.

3.4.5.2.1THE SECRET PREFIX METHOD

The secret prefix method consists of prepending a secret key K to the message 7, before each
iteration of the hashing operation: 5;= f,(b, s, K;| |m) 0<i<t, where | | denotes concatenation.
The keyed hash value is hash KHF(M)= £, (h,). This method was suggested for some hash func-
tions, e.g. MD5 under the name MD2.5 and has been pointed out in several papers that this MAC
1s insecure: a single text-MAC pair contains information essentially equivalent to the secret key, in-
dependent of its size since an attacker may append any blocks to the message and update the KHF.

3.4.5.2.2THE SECRET SUFFIX METHOD

A second proposal is to append a secret key K, to the message »; before each iteration of the
hashing function: 4,= fj(h; 1,m;| | K5) 0<i<t.The keyed hash value is hash KHE(M)= f,,(5,). This
method is weak if a second preimage attack on the underlaying hash function is feasible [65] using
a forgery attack [67]. Further, it should be noted that an attacker can remove the feedforward in the
last iteration in Equation 3-4, since the chaining variable entering this iteration can be computed
using 7; (message sub-block) only.

3.4.5.2.3THE ENVELOPE METHOD

The envelope method combines the prefix and suffix methods. One prepends a secret key K
and appends a secret key K, to the message input 7, before the hashing function: b; = f(h;
1Kyl |7;] | Ky) 0<i<t. The keyed hash value is hash KHF(M)= f,,{#,). The main concern with
this method is that an Exhaustive Key Search attack [52] can be used to determine Kj if internal
collisions can be found for the chaining variable. After this, the envelope method 1s effectively re-
duced to the secret suffix method. Further, choosing K;#K, much additional security [65].

3.4.5.24NEw CONSTRUCTION

The weakness of the three existing proposals necessitate extreme care to be exercised in con-
structing a MAC from a hash function since, unkeyed hash functions are not typically designed for
use as MACs. Preneel and Oorschot proposed in [65] new constructions, with the following goals:

* 'The secret key should be involved at the beginning, at the end and in every, and in every it-
eration of the hash function.
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The deviation from the original hash function should be minimal (to minimize implementa-

tion effort and maximize on confidence previously gained).

The performance should be close to that of the hash function.
‘The approach should be generic, 1.e. should apply to any hash function based on the same

principles.

These guidelines have been considered in the design of the SSMG’s KHF reported in chapter 5.



CHAPTER 4

4 FINITE FIELD ARITHMETIC FOR CRYPTOGRAPHY

In this chapter Galois finite fields and finite field arithmetic operators are introduced. Defini-
tions and main results underlying finite field, GF(2”) theory and field-generating polynomial p(x)
are presented. Further, GF(2”) arithmetic architectures carrying out frequently used operations in
cryptography are discussed, mainly, multiplication and exponentiation over large prime field. In ad-
dition, new circuits are presented which are low-energy, highly regular and programmable with re-
spect to p(x). We demonstrate digit-serial (or partially parallel) architectures and rearranging the gate
topology from array-type to tree-type helps to achieve up to 90% saving of energy delay product
compared to their equivalents bit-serial.

4.1 FINITE FIELD ARCHITECTURES FOR CRYPTOGRAPHY

Finite field arithmetic architectures are the basic building blocks in many applications involving
cryptography. Many popular public-key algorithms including ElGamel encryption and signature
schemes |84], Diffie-Hellman key-distribution Scheme [85] and other variant of discrete log based
cryptosystems [86] relies on exponentiation in large finite field, either over integers modulo a prime
odd p (implementation over GF(p)), or a polynomial field (implementation over GF(27)). GF(2”)
was the preferred implementation, basically because it is easier to implement in hardware [69], [75].

GF(2”) exponentiation is a difficult task to carry out efficiently in software for large finite field
since it is a time consuming operation.For physical security and performance reasons it is often ad-
vantageous to implement this operation in hardware.

Exponentiation operation can be computed by repeated square-and-multiply operations (S&M
algorithm) [77] as a series of modular multiplications over GF(2”). Therefore, multiplication in
GE(2”) is usually considered the crucial operation which, determines the speed or throughput of 2
DL based cryptosystem.

The complexity of such large prime field multipliers is related to the field-size and field-gener-
- ating polynomial. Also, the long arithmetic operators exhibit in general a great activity and dissipate
consequent shares of the power supply. Thus, the design of efficient dedicated, low energy, finite
field multipliers improves the overall system performance of GF(2”) exponentiator.

The usual approach to reduce time complexity and improve the performance is to use parallel
multipliers. However, the hardware complexity of a bit-parallel multiplier is proportional to . Tts
area and energy consumption increase dramatically as the field order # increase since. So far, nor-
mal base (Section 4.2.6) and polynomual base (Section 4.2.4) representations have been to reduce
the complexity. Optimal normal base representations can be of special interest in this context be-
cause of their moderate complexity. However, base cannot be constructed for any field [97).
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Digit-serial technique an alternative to the bit-parallel approach, process multiple bits dig:z of an
entire word, referred to as the digit-sige, in one clock-cycle. This technique is suitable for the imple-
mentation of moderate sample rate systems where, the area and power consumption are critical. It
was first used to implement a Galois Field multiplier in [82]. However, the architecture of the mul-
tiplier is based on semi-systolic 2-D array multiplier architecture [78], in which a large amount of
gates and registers have to be mapped yielding to increase both area and power consumption when
large field-size is used. In this chapter a new digit-serial, high performance GF(2”) multipliers are
developed and implemented. The proposed architectures are mapped on low-power/low-voltage
technolegy. A technique such as gating the clock is used to analyse the amount of power savings
using different digit-size.

In the first part under Section 4.4, we present two low-energy, highly regular architectures per-
forming a large prime GF(2”) multiplication. The first one is arca-efficient digit-serial architecture,
when field-generating polynomial p(x) is a trinomial. The second architecture is digit-serial Linear
Systolic Array (LSA) and programmable on p(x). The parallel algorithm inside of each digit cell re-
duces both the global cycle time for the first architecture and the switching activity in the second
one. An analysis of the performance comparison 1s described as function of the digrt-sige. A com-
parison is made with the bit serial architecture based on the performance improvement with respect
to computation delay and energy consumption of one multiplication operation over GF(2607)
Thus, the factor of merit for performance measurement is defined as the product of energy times
the delay. Gate level simulation shows that the energy delay products are greatly reduced for both

architectures.

In Section 4.5, a digit-level pipelined, hinear systolic array exponentiator, implementing the S&M
algorithm. is derived from the LSA digit-serial multiplier. The architecture is regular, expendable to
any field order and programmable on p(x). It allows the input elements to enter a linear systolic ar-
ray in the same order and the system only requires one pipelined control signal. The squaring and
multiplication operations are overlapped at a high system frequency in order to reduce the total de-
lay of the computation. An analysis of the performance comparison is described as function of the
digit-size. The energy-delay product computed on gate level implementations shows an energy ef-
ficient circuit at the expanse of increased area.

4.2 FINITE FIELD FUNDAMENTALS

4.2.1 FINITE FIELDS

A field is essentially a set of elements in which it is possible to add, subtract, multiply and divide
field elements and always obtain another element within the set. A finite field 1s a field containing
a finite number of elements.

4.2.2 GALOIS FIELDS

It can be shown that the set of integers {0, 1, 2,..., p~1} where pis a prime, together with modulo
p addition and multiplication forms a field [71]. Such a field is called the finite field of order p, or
GFE(p), in honour of Evariste Galois [72]. In this thesis only binary arithmetic is considered, where
2 1s constrained to equal 2. This 1s because, as shall be seen, by starting with GF(2), the representa-
tion of finite field elements maps conveniently into the digital domain. Arithmetic in GF(2) is there-
fore defined modulo 2. It is from the base field GF(2) that the extension field GF(2”) is generated.
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4.2.3 THE EXTENSION FIELD GF(2”)

Before introducing GF(2”), some definitions are required.

Definition 1. A polynomial p(x) of degree 7 over GF(2) is a polynomial of the form:
p(x)=x"+p, X" +..+ px+p, 4-5)

where the coefficients p, are elements of GF(2) = {0,1}. Polynomials over GF(2) can be added,
subtracted, multiplied and divided in the usual way [70]. A useful property of polynomials over
GF(2) 1s that ([70], pp.29)

2 2 2 2 4 2 2
p (X) = (p0+p1x+p2x +...+pmxm) = p0+p1x +p2x +”‘+pmx m = p(x) (4_6)

Also, if p(x) 1s an irreducible polynomial (see Definition 2) and the primitive element (see Defi-
nition 5)ais a root of p(x) then,

m—1

oa" =3 po' @7)
i=0

‘The notion of an irreducible polynomial is now introduced.

Definition 2. A polynomial p(x) over GF(2) of degree  is irreducible if p(x) is not divisible by
any polynomial over GF(2) of degree less than » and greater than zero.

To generate the extension field GF(2”), an irreducible, monic polynomial of degree » over
GF(2) is chosen, p(x) say. Then the set of 2” polynomials of degree less than 7 over GF(2) is formed
and denoted F. It can then be proven that when addition and multiplication of these polynomials
is taken modulo p(x), the set F forms a field of 2” elements, denoted GF(2”) [71}. Note that GF(2")
1s extended from GF(2) in an analogous way that the complex numbers C are formed from the real
numbers R where in this case, p(x) = £+ 1.

To represent these 2” field elements, the important concept of a basis is now introduced.

4.2.4 'THE POLYNOMIAL BASIS AND PRIMITIVE ELEMENTS
Definition 3. A set of » linearly independent elements B = {B,B,, ..., B,,_ } of GF(2”) is called

a basis for GF(2").

A basis for GF(2”) is important because any element 2 € GF(2”) can be represented uniquely
as the weighted sum of these basis elements over GF(2). That is

a=aBy+aB;+...+a, B, , where a,e GF(2) (4-8)

Hence the field element  can be denoted by the vector (4, 41,...,4p.1)- This is why the restriction
P = 2 has been made, since the above representation maps immediately into the binary field.

There are a large number of possible bases for any GF(2”) [71]. One of the more important bas-
es 1s now introduced.

Definition 4. Let pgx) be the defining irreducible polynomial for GF(2”). Take o as a root of
p(x), then {1,0,..,0" "} is the polynomial basis for GF(2%).
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For example consider GF(24) with p(x) = »? + x + 1. Take o as a root of p(x) then {Lq, o, o'}
forms the polynomial basis for this field and all 16 elements can be represented as

a=ag+tao + a2a2 + a3oc3
where the 2; € GF(2). These basis coefficients can be stored in a basis table of the kind shown
in Appendix B.1.

Definition 5. An irreducible polynomial of degree » is a primitive polynomial if the smallest
positive integer # for which p(x) divides 7 + 7 is n = 27 - 1.

If o 1s a root of p(x) where this polynomial is not only irreducible but also l)rimitive, then GE(2")
can be represented alternatively by the set of elements GF(2”) = {0,1,a,0.%,...,a” 1}, (n = 27 -1).
In this case a is called a primitive element and o.” = 1. The relationship between powers of prim-
itive clements and the polynomial basis representation of GF(2% is shown in Appendix B.1.

The choice as to whether to represent field elements over a basis or as powers of a primitive
element usually depends on whether a hardware or a software implementation is being adopted.
This is because o' = o 77, where this indices addition is modulo 2”-1 and so can easily be carried
out on a general purpose computer. Multiplication of field elements using the primitive element
representation is thercfore simple to implement in software, but addition is much more difficult.
For implementation in hardware however a basis representation of field elements makes addition
relatively straight forward to implement. This is because

A=B+ C=(by+co) + (by+cDx +e+ (b + Cppp) ¥

and so addition is performed component-wise modulo 2. Hence, a GF(2”) adder circuit com-
prises 1 or  XOR gates depending on whether the basis coefficients are represented in series or
parallel. This is an important feature of GF(2”) and one of the main reasons why finite fields of this
form are so extensively used.

4.2.5 THE DUAL BASIS

The dual basis is an important concept in finite field theory and was originally exploited to allow
for the design of hardware efficient RS encoders [73]. Moreover, subsequent research has allowed
the use of dual basis multipliers to be adopted throughout the encoding and decoding processes.

Definition 6. Let {A,} and {u} be bases for GF(2”), let / be a linear function from GF(2”) —
GF(2), and Be GF(2”), p#0. Then {1} and {u;} are dual to each other with respect to fand B if

1 if i=j
)= 4-9
f(BAu) {0 i 4-9)

In this case, {A;} is the standard basis and {p;} is the dual basis.

Theorem 1. Every basis has a dual basis with respect to any non-zero linear function
f GF(2”) — GF(2), and any non-zero B € GF(2").

For example consider GF(24) with p(x) = x* + x + 1 and take « as a root of p(x). Then
{L o, ocz, cc3} is the polynomial basis for the field. Now taking B = 1 and / to be the least significant
polynomial basis coefficient, {1, 0c3, ocz, o} forms the dual basis to the polynomial basis. In fact by
varying B there are 2”-1 dual bases to any given basis and the dual basis with the most attractive
charactenstics can be taken. This is usually taken to mean the dual basis that can be obtained from
the polynomial basis with the simplest linear transformation.
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4.2.6 INORMAL BASIS

A normal basis for GF(2”) is a basis of the form { B, BZ, o Bzm 1 }Where B e GF(2™). For every
finite field there always exists at least one normal basis [74]. Normal basis representations of field
elements are especially attractive in situations where squaring is required, since if (g, @1,...,4,,1) is
the normal basis representation of 2 € GF(2”) then (g,, 1, 4y, @>---»3,,.2) is the normal basis represen-
tation of & mod 2P(>). This property is important in its own right but also because it allows for hard-

ware efficient Massey-Omura multipliers to be designed [94]. The normal basis representation of
GF (24) is given in Appendix B.1.

4.2.7 EXPONENTIATION OVER GF(2”): S& M ALGORITHM

Unlike addition and multiplication, exponentiation in GF(2”) is similar to the operation for or-
dinary integers. Given an arbitrary element 4="% 4 x e GF(2"), and Y a non-zero clement in
ry £ y 2 a 2"y
GF(2”) the exponentiation function is defined as

Y=Af 0<E<2"-1 (4-10)

A popular algorithm for computing this operzition, and the one that appears to be most suitable
for hardware implementation, 1s the square-and-multiply (S&M) algorithm as described below,

m=1 .
Let ( e5,€,e,5,¢, ) be the binary representation of the exponent E such that E= %e,.Z’_
Then, by Equation 4-10 we have )

Y='""(A2")' =fiv, @-11)
i=0 i=0
where
U, = A" if e =1 4-12)
1 ife=0

Thus, the algorithm breaks the exponentiation operation into series of squaring and multiplica-
tion operations in GF(2”) and can be expressed as follow:

Let U, be the square term and M, the product term.

U,=A
M_ =1
fori=0,-,m-1
U, =[Ui—1]2 (4-13)
1-M,, if e, =0
M, = . 4-14)
U, -M_ ife=1

The final resultis Y=A" =M

Let T, be the setup time of the exponentiator (i.e. time corresponding to serial data transfers)
and N the number of multiplication operations (including squaring operations) per exponentiation.
The exponentiation time T, can be expressed as T, =T, + NR™'T,, , where Ris the throughput rate of
the multiplier(s) and T, is the clock period. In terms of computation effort, assuming a random
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input, the number of ones in the exponent is equal to m/2, so N can be expressed as
(m-1)+m/2=3m/2 for large m. However, using synchronous exponentiator N becomes
(m+1)+m=2m since the multiplication in Equation 4-14 for e; = 0 has to be carried out.

4.3 PRIMITIVE POLYNOMIALS AND FIELD SIZE FOR FINITE
FIELD BASED CRYPTOSYSTEMS

Although, all practical DL based public-key schemes require operations in relatively large Finite
Fields; e.g., m > 500 bits (see Section 3.4.3.3 and [48][49]), the field-size » is selected so that 27-1 is
a large prime (a Mersenne prime). There are certain values of field-size for which the period of the
LFSR is the maximum, namely 2”-1, which is the all possible states of 7-bit vector, excluding the
all-zero state. A maximum length sequence occurs if the reduction polynomials for constructing ex-
tension field corresponding to the LESRs are prime elements of GF(2”) [75].

In addition, arithmetic in GF(2”) can usually be implemented more cfficiently if the chosen ir-
reducible polynomial has few non-zero terms. Since the least significant coefficient of any prime
polynomial must always be non-zero (otherwise the polynomial has 0 as a root), the Hamming
weight of the prime polynomials of degree at least 2 with few non-zero coefficients, must be odd
and have at least 3 coefficients (prime polynomials of low hamming weight). Polynomials of Ham-
ming weight 2, 3, 4 are called trinomials, guadrinomials and pentanomials respectively. An irreducible
trinomial of degree » must be of the form >/”+>(é+1, where 1<ksm—1. In fact, both the com-
plexity and energy consumption of mod p(x) operation could be significantly reduced by selecting
4 with smaller value and less Hamming weight [76]. Table 4-5, gives some practical values for pa-
rameter & and, the field-size #, for which an irreducible trinomial of degree m in Finite Field exists.

521 32,48,158,168,353,363,473,589

607 105,147,273,334,460,502

1279 216,418,861,1063

2281 715,915,1029,1252,1366,1566

3217 67,576,2641,3150

4423 271,369,370,649,1393,1419,2098,
2325,3004,3030,3774,4053,4054,

4152

Table 4-5: Most useful irreducible trinomials x""+>%+1, for each large Mersenne prime m, 512 <m <4423
g4 b

Further, since elements in one representation can be efficiently converted to elements in the oth-
er representation by using an appropriate change-of-basis matrix, the intractability of the DLP isn't
affected by the choice of representation.

4.4 ARCHITECTURES FOR MULTIPLICATION OVER LARGE GF(2%)

Various architectures have been proposed to perform modular multiplication operation efficien-
cy in GF(2”). Different basis representation have been used to obtain some interesting realizations
[75]198][89][78][88]. The parallel approaches, aren't to be enumerate here, since for large 7 the mul-
tiplier has to be of serial type. In fact for an arbitrary GF(2”) the gate count for a bit-parallel mul-
tiplier using either a PD or NB is proportional to 7. In that case, area complexity increases
dramatically for large field size.
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A synthesis comparison among DB, NB and SB is given in [79]{80]. There, the gate count is a
guideline for the implementation complexity. It shows that, multipliers based on NB and DB re-
quires basis conversion. Moreover, the area of NB multiplier grows dramatically as the order of the
tield goes up when optimal normal basis doesn't exist. Even when an optimal normal basis is cho-
sen, the size complexity is proportional to 3. Also, both DB and NB are not highly modular or
expendable [81]. Instead, the SD multiplier does not require basis conversion, its size and time com-
plexity are proportional to 7 and it is readily matched to any input or output system [79]. The pol-
ynomial basis multiplier can be implemented using different architectures. The systolic and/or
" semi-systolic multipliers are described in [89][78]. These architectures are pipelined and regular 2-
D systolic arrays based on approach similar to the bit-serial one (MSR) [75]. Their hardware imple-
mentations use # bit-serial parallel multipliers resulting in expensive hardware offering a high bit
rate. The systolic multiplier described in |89] and [78] is thus not very attractive for large Finite
Field.

4.4.1 BIT-SERIAL PB MULTIPLIERS

The MSR architecture described in [75] is a simple and area efficient (LFSR based multiplier)
way of implementing SB multiplication over large Galois field. The nice bit-slice depicted in Figure
4-11, simplifies the VLSI design for large field size. The input elements 4(x) and B(x) and the out-
put product C(x) are bit serial and the computation proceeds in bit-parallel fashion by convolution
and reduction modulo an irreducible polynomial p(x) of degree 7. For more details about the algo-
rithm, see [75].

The multiplication is performed with order O() in both computation time and implementation
area. 27 clock cycles are required between the first-in and first-out of computation and two-bits
control signal is required. The MSR architecture is programmable with respect to the primitive pol-
ynomial p(x) and field order , using extra gates in each multiplier cell [75]. The complexity can be
further reduced for implementations that use irreducible polynomials with few coefficients such as
trinomials or pentanomials.

oy

P LOAD

m-2

a,a,...am'_',‘\\
—

LOAD

Parallel/Serial Register 1T,

Figure 4-11: MSR m-bit multiplier architecture

In addition, it is easy to make the multiplier work as squarer since squarer can be realized as a
bit-serial multiplier. This, simplify the design of the MSR based exponentiator in which, squaring
can be carried out concurrently with multiplication|75].
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Another architecture LSA performing SD multiplication in GF(2”) is described in{88] and. re-
ported in Figure 4-12. It is bit-level pipelined and has a longest delay path independent of ». This
is most suited to applications where #1s large or where high clock frequencies are required. Further,
the architecture allows the input elements to enter a linear systolic array in the same order and the
system only requires one pipelined control signal. The architecture is also highly regular, expendable
to any field size and programmable with respect to the primitive polynomial p(x). The multiplica-
tion is performed in bit serial manner using the recursive algorithm in Equation 4-15. For more de-
tails abour the algorithm, see [88].

C(k) =

H

c*Pp+ab, ,  +ciP, 0<i<m-1
4P py+agb, ., i=0 (4-15)
=0 for 0<i<m-1

Where ¢ for 0<i<m—1 (output of the last cell-k) are the coefficients of the product
C(x) = A(x)- B(x) mod p(x) and p, for 0<i<m -1 are the coefficients of the polynomial generator.

a,a, am.1—-A> > - —P —>
bb,...b,,, B L > —p >
00...0 _C_> =0  — i=t —pp---—f i=m-1 —»CyCy..-Cp
fofyerefy —F . L > >
00..1 —S, > e -,

Figure 4-12: Linear systolic array multiplier

The circuit diagram of CELL-k is shown in Figure 4-13. Two internal registers » and ¢ are used
to hold the bit coefficients b, _; _, and cf:__ll)
the start of the multiplication. These coefficients are then used to compute CELL-k output (Equa-
tion 4-15) at next clock cycle when s;, = 0. Three registers 4, p and s are used to give one time unit

delay to the input bit coefficients ;, p; and s;. The outputs are then triggered using a next register

along the operation using the s;, signal which mark

output stage in master slave manner as shown in Figure 4-13.

if 5, then
begin
b=b,;ci=c,;

in?

b =b -5

out " in in;
Coy =Cp S, tc-pt+b-a;

a=a,; a,, =a,

in;
P= P> Pou = D5
§=s,S5

m out

=

Figure 4-13: LSA basic processing cell and its algorithm
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The 7-bit multiplication time takes 37-1 clock cycles. At 27 clock cycles after ,-1 and 4,,-1 en-
ter the leftmost cell; the results will start coming out from the rightmost cell at the rate of one co-
efficient every clock cycle.

This multiplier is programmable with respect to the primitive polynomial p(x). The algorithm is
often advantageous because of its efficient implementation time. The critical path in this architec-
ture is just the sum of one full-adder and one NAND gate delay.

4.4.2 ARCHITECTURE LEVEL TRANSFORMATION

In this section we extend the MSR and LSA bit serial multipliers to a generalized digit-serial ar-
chitecture, which 1s array-type at the digit-level using parallel multiplication algorithm inside of each
digit cells. These architectures are obtained by folding the bit-serial multipliers.

4.4.2.1 DIGIT-SERIAL MSR MULTIPLIER

The presence of long loaded lines (for large ») in architecture reported in Figure 4-11, affects
directly the maximum clock frequency and consequently the system performance. This can be
avolded (reduced) using digit-serial technique by folding the bit-serial MSR architecture. However,
the MSR digit-serial architecture cannot be pipelined below digit-level because of the presence of
the feedback loops in the MSR bit-serial architecture. This linear dependency in mod p(x) degree
reduction operation can be easily implemented using trinomials as field-generating polynomials.

The transformation approach involves treating the multiplicr operands as digits: the » bits of
data operands are processed in units (digits) of size D using d = [m/D7 slices. Let

m=1 . d-1 )
A=Y ax,B=) Bx"
i=0 i=0

where

D-1 ; .
j=0bDi+jx , 0 j<d-2
B" = m—1-D(d—1) ; (4-16)
Zj:o bpisyX's J=d =1
then

d-1
C=A-B mod p(x)=A-) Bx" mod p(x) (4-17)
=0

This results on array-type multiplication, which can be performed in the following way:
C =[B,A(x) mod p(x)]+[ B,(A(x) - x” mod p(x)]
+[ B, (2 (A(x) - x° mod PG |+ (4-18)

+[ B, (3" (A(x) - x° mod p(x))) |

We define now the polynomials Z_ jas:

d-1
Z_,(x)=Y z,,(x”) =(x") A(x) mod p(x),j=0,1,.,m—1 (4-19)

i=0
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where z; ;€ GF(2). Then:
d-1
C(x)=Y BZ_ (x) (4-20)
j=0

and in matrix notation:

G %0 21 0+ 2044
G 20 41 - - - Zea
c=|l . |=| . . ... . .|#"B=ZeB 4-21)
Cu 4.0 Za-11 -+ c Zged-l

Where Z 1s a 4 by 4 digit matrix. The columns of Z are the 4 consecutive states of a Galois-type
digit-parallel LFSR with feedback polynomial p(x), that has been initially loaded with 4 (=Z_). The
product is therefore obtained by first computing ByZ. ; and storing the result in 4 stage register of
D-bits size. Next we clock the LFSR, compute B, Z_ 1: add 1t to ByZ_, and store the result and so
forth. After 4 clock cycles the product is available in the lower regiéter. The general form of the
circuit is shown in Figure 4-14 for large Mersenne prime, using trinomial primitive polynomial with
appropriate choice of parameter £ (#, £ are selected from Table 1.). The structure is kept simple
and highly regular.

The explanatory notes for the italic line / across the signal lines denote the weights of the cor-
responding signals, i.e., < D-X, >, means that the corresponding line carries the D-X least sig-
nificant bits of the corresponding signal. The values of X; and X, are reported in Table 4-6 with
respect to the value of parameter £, the field-size » and digit-size D.

— § « 00..0

D>

R - T A,
<D>

DX LOAD

L\’ i DX <Xven
: D> k- I "I >,
AP Ay —*—’E > Mmee ees bt 4} jﬁlA'mﬂ|‘

LOAD T

<D-
<D>§<D>
E

1>
‘0
—

00...01

Dl oo ...
D>
o)

P >,
<D>, <D> <> <D <D>,
.......... ‘é
1 qub}-x A C[un]
—

<D-X>
<DXo>ysp

Ml

1
v N v
‘ Parallel-To-Serial

CCy-Cay

Figure 4-14: Digit-serial MSR mmltiplier for field-generating polynomial p(x)=1 +aF s

The LFSR performs the computation in Equation 4-2011, 1.e., A(x) multiplied by P followed
by mod p(x). The partial product generator denoted by ® computes B,Z_;in (12). The accumulator
is denoted by @ and performs the sum operation in Equation 4-21; it consists of XOR gates rear-
ranged from array-type to tree-type and storage elements, where the partial product B,Z_; and the
mntermediate result are accumulated using the binary-tree of XOR gates. At each cell, only D LSB-
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bits of the partial product are computed. At the last cell, a correction must be done in order to re-
duce the degree of the result from z+D-2 to z-1. This can be done efficiently in one step using a
feedback signal. The polynomial degree is reduced using AND and XOR gates (Equation 4-7). The
total computation time takes 34 clock cycles between the first-in digit and the last-out digit.

521 7 7 32
48
158
168
607 1 1 1 105
147
273
1279 1 1 1 216
418

1281 7 15 31 715
915
1029

3281 7 15 15 67
576

4423 1 9 25 271
Table 4-6: Xy and X, values for digit size D = 8,16,32

OW UL WWNO| = Ww=]OO O O]
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-
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4.4.2.2 LINEAR DIGIT-SERIAL SYSTOLIC ARRAY MULTIPLIER

Digit-serial LSA architecture is obtained by folding the bit-serial multiplier. We propose here a
methodology to design a programmable digit-serial Finite Field multiplier shown in Figure 4-12.

Consider the structure of the bit-serial multiplier. The transformation approach involves treating
the bits in this multiplier as digits. Therefore, the inputs bit 4;, &, ¢;and p; for 0<i<m—1 to CELL-
& 1n Figure 4-13, are replaced by digits forms 4;, B, C,, P; for 0<i<d -1 where,

D-1 : .
zj_ﬂ(a,),.ﬂ,b,),.ﬁ,cw,pmj)xf, 0<i<d-2
(AaB,,(ij): (4‘22)

m=1-D(d-1) P
z]-:() (@pirj>Bpis s Cpiass Ppic)X’» i=d —1

and
m=1 d-1 m=1 d;l .
A(x)= Zaixi = z Ax”, B(x)= Zbixi = ZBixD'
o - @
C(x)= Zcixi = ZCixDi, P(x)= Zpixi = ZP,.xDi
i=0 i=0 i=0 i=0

where, D denotes the digit-size and 4 the total number of digits, d = [m/D7].

Suppose that the resulting architecture can be implemented on a linear digit-serial systolic array,
as shown in Figure 4-15. The inputs digit-words 4, B,, C,, P;are fed into the multiplier in the same
order for 7 decreasing and from the MSB to the LSB. If # is not divisible per D, the zero padding
is performed at the LSB positions for i = 0.
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! (B)
0B, "Bd-1ﬁ'
00..0 memm k=0 k=1 k=d-1 -—-pCoC1...Cd_1
PoPs--Py. (P)
; —) )
00..1 &) —» 5
Fioure 4-15: Digit-serial, linear systolic array multiplier
if s, then
begin
B to D-1):=B,(D-1 to 0);
fori=0to D-1 A [D-1:0]] - ey |[[D-1:0]
CO=F (C,poPy By ’"ﬁ? PAG B [D-1.0] Ao
end for; B, c— :Dz Bout
D-1:0 i H -1:0
B, Ci L_L:l; P C ‘D—I_———l:) Cout
AT g Py T e,
S=5,5 8,, =5 Sp =P P S i —P> s,
P | I e

C,.(i)=G(s,.C,,C,P,,P,A,, A B);
end for;

Figure 4-16: LS A digit-serial basic processing cell and its algorithm

The system now consists of 4 identical cells for D - d-bit multiplication in GF(2”). It inputs the
data at the leftmost cell and outputs the results at the rightmost cell at the rate of one digit every
clock cycle. The basic processing element CELL-K of the multiplier is shown in Figure 4-16. Two
D-bit registers A, Pand 1-bit s registers are used to give one time unit delay to the input data A4, P,
and s; at each CELL-k. The s signal is used to denote the start of a multiplication.

The algorithm is obtained by grouping each set of D cells from the LSA multiplier in Figure 4-
12, then computing the outputs of each of these grouped cells after D steps (clock cycles). These
are the outputs of the resulting digit cell. This is illustrated in the example bellow.

Example 1.
Consider the computation” of C(x) = A(x)-B(x) mod p(x) over GF(27) where

A(x) = 1+x2+x4+x6,B(x) = x+x +x and p(x) = 1+x +x .

Consider now the basic processing element CELL-k and its algorithm given in Figure 4-13. Let
each CELL-k be represented using the I/O signals and the state of its internal registers as shown

in Figure 4-17.

CELL-4
ai ain are_q aouf
b f bin b reg b out
C/’ C,-” Creg Caur

pi p/n pre_q paur
5; S, 5 s

i in reg out

inputs internal registers  outputs
(states)

Figure 4-17: LS A CELL-K multiplier representation
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The I/O signals and the state of internal registers at each CELL-k for each computation step
are reported in Figure 4-17. The steps reported at the right side of each CELL-6 represents the steps
corresponding to the digit-serial architecture for D=3.

Therefore, by folding the bit-serial computations in Figure 4-17, and after 34-1 steps the output
of the multiplier expressed in digit form is as follows: .

¢, —000 000 000 000 000 011 001 000

ont

Thus, the C internal register of each CELL-£&in the digit-serial multiplier are expressed as fol-
lows:

LSA multiplier cell LSA multiplier time step

C (0) = ci(0,0) = C0) =Ci(2)

C(1) = cin(1,2) = cou(0,1)= cin(0,1) . 5, (0,) + ¢(0,0) . p(0,0) + b(0,0) . a(0,0)

= i(0,1) . 5, (0,) +c(0) . p(0,0) + b(0) . a(0,0)
2> C(1) = Cin(1) + (Ci(2) . Pin(2)) + (Bin(2) . Ain(2))
C(2) = cin(2,4) = Cou(1,3)= cin(1,3) . 5, (13) + c(1,2) . p(1,2) + b(1,2) . a(1,2)

= ci(1,3) . 5, 1L3) +c(1) . p(1,2) + b(1) . a(1,2)
where, cin(1,3) = oul(0,2) = €in(0,2) . 5:(0,2) + ¢(0) . p(0,1) + b(0) . a(0,1)
> C(2) =(Cin(0) + (Cin(2) . Pin(1)) + (Bin(2) . Ain(2))) + [(Cin(1)+ (Cin(2) . Pin(2))

+ (Bin(2) . Ain(2))) . Pin(2)] + (Bin(1) . Ain(2))

Note that all the states of C registers must be computed during one clock cycle. The C,,, regis-
ter’s bits at the output of cach CELL-k, are then expressed as follows:

Cour(2) = (((Cin(2)+(C(0) . P(0))+(B(0) . A(0))+(C(1) . P(1))
+(B(1) . A1) . 5, )+(C(2) . P2N+(B(2) . A2)));

Cout(l) = ((((Ciiz(l)+(c(0) . Pin(z))+(B(O) . Ain(z))) +(C(1) . P(O))
+(B(1) . A(0))) . 5, )+(C(2) . P(1)) +(B(2) . A(1)));

Cour(0) = ((((Cin(0)+(C(0) . Pin(1))+(B(0) . Ain(1))) +(C(1) . Pin(2))
+(B(1) . An(2))) . 5, )+(C(2) . P(0)) + (B(2) . A(0)));

We can extend these expressions to a D-bit digit words and drive a generalized algorithm by for-
mulating the expression of Fand G functions.

BN A P B, A2 P B{D-3) A(D3) P(D3) B(D2) A(D2) P(D-2) A(D-1) P(D-1)
B‘,,,(m;l c{0) | o1y ¢ Bo-n| ey |c. o B,(D-1)| C.(0-#)] €, (01} | B,(D-1) C,(D-1) B,,,(D-1)J C,(0-2) €, (D-1) C(D-1)

Rl

[ | S T * -t et —

SRR " SINE:

? N |

c(0)

o
= |

@
o
d

&)

- —
A A \ 4
FF FF FF
&(D-1) C(%-z) c(3) i’-)

Figure 4-18: Circuit diagram of the F function
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Figure 4-19: Folding bit-serial computations

In Figure 4-16, F denotes the function processing the state of C internal register. The circuit di-
agram of F function is shown in Figure 4-18, where FFF denotes a flip-flop. Note that the cntical

path is (D-1)(Txor 3 Tnanp-2)-

The G function process the state of the output register C,,. The corresponding circuit diagram
for one output coefficient is shown in Figure 4-20. The critical path in this architecture is increased
to D.Txor-3+Txor2+2Tnanp2

T'he d-bit multiplication implemented within architecture shown in Figure 4-15, takes -1 clock
cycles. At 24 clock cycles after A, and By enter the leftmost cell, the results will stast coming out
from the rightmost cell at the rate of one digit every clock cycle.
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C(D-1-) B(D-1-) ClD-2-) B(D-2-) ap2) B(D-2)
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Figure 4-20: Ciircuit diagram of the G function for one bit output

4.4.3 IMPLEMENTATION ISSUES AND COMPARISON

Clock gating technique can be used for power-efficient implementation of registers that are dis-
abled during some clock cycles, when such registers maintain the same value through multiple cy-
cles (see Section 2.3.2), such as the internal slave registers cand 4 in Figure 4-13 and Cand B shown
in Figure 4-16. These registers have their own load controlled by s;, signal. This technique works
well for data-flow logic, where clocking requirements can be predetermined at least one cycle ahead.
Thus, the clock gating enable signal s;, must be valid halfway into the cycle to gate off the capture
clock. T'o overcome this problem, we require that the internal registers 4, ¢, C and B be triggered
faster than the master registers 4,,,, ¢,,,, B,,, and C,,, using different clock edges. This requires one
more clock pulse, resulting in 2-phase non-overlapping clocking scheme.

The MSR, LSA and clock gated LSA architectures have been implemented at gate level using
different digit-size D=1,4,8,16 in order to perform a comparison in terms of speed, area and energy
consumption of GF (2607) multiplier with p(x)=1+x273 +x507 a5 primitive polynomial. We mapped
our circuits into a deep sub-micron (0.18pum) target library from XEMICS (Coolib) that contains

logic-gates optimized for power, operating at two different power supply 1.8v and 0.9v.

Different types of power dissipation components are estimated using gate level simulations on
a set of random stimulus. Since lw-energy design is more important than /lw-power design, the energy
and energy-delay product is computed. The performance characteristics including total delay, area
in term of gates and energy-delay product and are reported in Figure 4-21, Figure 4-22 and Figure
4-23 respectively. The power numbers are reported in Appendix C.1.
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Figure 4-21: Total delay comparison as function of the digit-size for one €. F Y pmultiplication

The long signals that are distributed to all slices in Figure 4-11 are susceptible to degradation due
to the large capacitive loads. For example, the serial input multiplicr bit 4 is a long line that has to
drive 77 AND gate. This signal must drive up to 11.76pF capacitive load. 'T'he source of this line will
be trying to push current into the entire load, expeniencing a very substantial RC delay, which in-
creascs considerably the eritical path and then the rotal delay as shown in Figure 4-21. We can con-
sider using fast buffers to isolate heavy loads. [However, buffering the architecture can severcly
degrade system performance. It increases the cntical path and creates the problem of skewed sig-
nals. The parallelism inside cach digit-cell in Figure 4-14 contributes to reduce the load on such long
heavily loaded signals, i.e., when the chosen digit-size is 8 the capacitive load is significantly reduced
to 1,35pF per bit-line for the most heavily loaded line (input multiplier digit-word Bj), experiencing
over 72% improvement in circuit speed when operating at 1.8v and 96% when operating at 0.9y.

@01 mD=4 0 D=8 OD=16 |

Architecture

Figure 4-22: Area in gates of the MSR, 1.5.4 and clock gating 1.5A digit-seral ¢ (2% multipliers as

Junction of the digit size
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Bit-level pipelining approach makes the LSA multiplier architecture more advantageous in term
of clock frequency and computation time. Both total delay and energy consumption are reduced.
On one hand, latency decreases lincarly with the digit-size but the eritical path increases linearly in
almost the same rate (Figure 4-21), resulting in a constant total delay for digit-size equal or larger
then 4. On the other hand, the area increases dramatically (Figure 4-22) due to the large number of
larches used to temporary hold the internal and the output data in master-slave manner. This means
that the level of parallelism is limited by the area constraints.

The most interesting result 1s obrained when comparing the Energy-Delay and the Encrgy-De-
lay-Area products. The performance charactenstic reported in Figure 4-23, shows that Energy-De-
lay products are significantly reduced for both LSA and MSR architecture when digit-size increase.
High gain is obtained for D=16 when operating at 0.9v and more than 99" reduction is noticed.
IHowever, when comparing the characteristic reported in Figure 4-24, the optimum gain for LSA
architecture is obtained for D=4 when operating at 1.8v due to the deamatic increase in circuit area
for larger digit-size. This is not the case when operating at 0.9v since the energy 1s significantly re-
duced.

Beside the programmability with respect to the pamitive polynomial of the LSA architecture,
the MSR present the best performance chamcteristic only for digit-size equal or larger then 8 due
to the large critical path for small digat-size.

|EI D=1 @ D=4 0 D=8 0 D=16

Energy x Delay [nJ.us]

Ik
Ilu Iﬁ ‘L: IL

Figure 4-23: Energy-Delay product comparsion between MSR and 1 5.4 digit-serial aF 2% meudtipliers

Clock gating technique inserted for LSA multiplier achieves a substantial reduction in both the
Energy-Delay (over 28% ar 0.9v and 17% ar 1.8y for D=8) and the Energy-Delay-Area product
(over 30% at 0.9v and 20% at 1.8v for D=8) for only 22" of clock gated registers. Clock gating
reduces the number of gates in such architecture (multi-bit registers) when digit-size increase. It
helps to eliminate the feedback loops and multiplexers used to feed back the output of each internal
starage clements back to the mput of synchronous load-enable registers. Such feedback loops and
multiplexers are replaced by only one integrated cell (latch based clock ganng cell), which results in
3.5% and 4.3% reduction n gate number at 0.9v and 1.8v respectively, when the chosen digit-size
15 8.
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Figure 4-24: Energy-Delay-Area product comparison between MSR and 1.85A digit-serial CV(2™") multipliers

Wht.n reducing the operating voltage by a factor § =2 the switching power is reduced by factor
57 in Equation 2-1, from Equation 2-2 assuming that V,5>>V, the delay is inereased by factor 8.
If the swatching power is a dominant factor then, the power saving 1s counterbalanced by the in-
creased delay since the energy-delay product is proportional 1o 8°.

4.5 EXPONENTIATION OVER LARGE GF(2”)

4.5.1 LOW POWER ARCHITECTURES FOR LARGE GF(2”) EXPONENTIATION

One new method for computing GF(2") exponentiation is presented in [87]. It is based on pat-
tern matching and recognition technique. The resulting circutt is a multistage linear static pipeline
and it can produce one result every clock cycle. However it has latency of O2”). T'he area and com-
plexity increase systematically when large field is used. This technique 1s more suitable for small
field-size (m < 8) as mentioned in the paper. Instead, S&M algornithm also called the binary method
deseribed in Section 4.2.7 breaks the exponentiation operation into a series of squaring and multi-
plication operations in GF(2™). This is the most adopted technique to design large finite field ex-
ponentiation.

4.5.1.1 REDUCING NUMBER OF OPERATIONS

Some interesting approaches have been proposed in [91] and [92] in order to reduce substannally
the average number of multiplications involved in the computation of 4™ in Figure 4-10 (thus re-
ducing the power consumption) using the czmomcal bit recording technique or signed digit SD number
representation. Iu:hnlque in [91] can be casily applied to the exponentiation over GF(2%). Efficient
implementation of of over GF (2™) using SD technique and based on bi-directional linear feedback
shift registers 1s proposed in [92]. However, the algonthm is limited to the exponentiation of a
Pramitive Root a and generally the SD technique require the construction of canonical signed-dign
vector of the exponent E which, introduce much extra power and area cost since one additional bit
is required for cach scanned exponent bit. Also, both techniques deseribed in [91] and [92] require
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the availability of the inverse 4. The cost of this operation far exceeds the time gained by the use
of the SD technique.

4.5.1.2 SPEEDING UP THE COMPUTATION

The conventional approach for speeding up the exponentiation over GF(2”) and reducing the
number of gperations uses a lookup table (LUT). This method consist of precomputing the field
clements A° (A conjugates) in Equation 4-11 and storing them in circulating registers or in a RAM
(area complexity ~ mz) and multiplied together according to the exponent using fully parallel mul-
tiplication tree | 75}{96]. For large » the multiplication has to be performed using bit-serial multiplier
(area complexity ~ » for both PB and NB, sec Table 4-7). Furthermore, setup times corresponding
to serial data transfers of the exponent and A's conjugates bits have to be considered, which in-
crease the latency to less than one exponentiation per " clock cycles. Thus, no area and timing gain
1s obtained using this approach even when » is moderately large. Another approach relies on the
Montgomery multiplication in GF(2”) [93] as a fast method for multiplying two polynomials. How-
ever, the algorithm includes some operations similar to those in the bit-serial SB multiplication al-
gorithm [75] or MSR digit-serial one described in Section 4.4.2.1 with more processing steps. This
approach is more suitable for implementation in software as claimed in the paper and doesn’t offer
any obvious advantages for hardware implementation.

4.5.1.3 BASES CHOICE

Since the exponentiation algorithm relies on polynomial multiplication in GF(2”), the design of
area efficient low-energy finite field multipliers can lead to dramatic improvement on the overall
performance of GF(2”) exponentiator. Table 4-7 shows some key parameters for different archi-
tectures of serial GF(2”) multipliers using different bases.

It is well known that squaring operation in normal basis NB can be achieved by a cyclic-shift
circuit [75][94]. However multiplication in NB requires the computation of the f function described
1n [94] which must be found by computer and hardwared. The complexity of this function grows
dramatically as the order of the field goes up. Massey and Omura have developed a NB multiplica- -
tion algorithm, which has been implemented in a pipelined architecture by Wang et al. [94] based
on AND-XOR PLA and has a throughput rate of one multiplication per » clock cycles. As 7 in-
creases, the signal propagation delay across the PLA (critical path) also increases. So, the area and
total delay may actually be larger owing to the slower clock rate.

From Table 4-7, it is clear that normal basis multiplication using the serial Massey-Omura mul-
tiplier in [75] requires the least number of gates, unfortunately this is for optimal normal basis mul-
tipliers which can be realized for only ~23% of the fields GF(2”), 2 <m < 1200 [97]. Another point
to consider is that the NB multiplier is not highly modular and expendable. Further, it and is not
programmable with respect to the p(x) due to the / function, which depends on the choice of nor-
mal basis thus, on the choice of p(x).

MSR/SB[75 — . 3a
LSA/SBI[88] 17mN7m 5 3m/3m High

Berlekamp/DB[98] 24m/ém >2+[ In(m)] mim Low No
MO/NBI[94] =5m 22+ In(m) mim Low No

Table 4-7: Key parameters for different architectures of serial GE(2”) multipliers using different bases

a. Critical path in term of gates but in fact it is determined by the driving capability of heavily loaded signals that are
distributed through the architecture.
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On the other hand, the DB multiplier requires basis conversion, which requires extra gates. Al-
though the Berlekamp DB multiplier [98] has a simple and regular structure it is not trivial to adapt
it to different choice of p(x) or to expand it to different field sizes because of the presence of two
different bases dual and polynomial. Also the critical path depends on the logic for computing the
inner product, which depends strongly on the field order and p(x). This means that the speed de-
creases, although slowly, with .

Even the PB multipliers have the most favourable properties for purpose of VLSI implementa-
tion, the critical path of the MSR multiplier described in Section 4.4.1 is limited by the driving ca-
pabilities of heavily loaded signals which degrade the performance as demonstrated in Section 4.4.3.
On the other hand, the linear systolic array (LSA) multiplier described in [88] and reported in Figure
4-12 shares some interesting characteristics with the MSR multiplier. It has the advantage of effi-
cient implementation time at the cost of increased complexity in term of gates.

4.5.2 LSA BASED ARCHITECTURE FOR GF(2”) EXPONENTIATION

In this section we present a new exponentiator circuit implementing S&M Algorithm and based
on a linear systolic array multiplier (LSA) described above in Section 4.4.1. The successive SB squar-
ing and multiplication operations are performed at high system frequency using only one multiplier
in order to reduce the area complexity of the exponentiator. For VLSI implementation of high per-
formance architecture, a digit-serial technique is applied on that multiplier in order to reduce both
the switching activity and total power (thus, reducing the energy-delay products of the exponenti-
ator) at the expense of increased area.

4.5.2.1 LINEAR SYSTOLIC ARRAY EXPONENTIATOR

In the LSA multiplier reported in Figure 4-12, the input operands (MSB-first), the control signal
as well as the primitive polynomial coefficients are outputted at each pipelined stage. These signals
with the result (MSB-first) could be feed-backed into the multiplier in order to perform successive
multiplication and squaring operations according to S&M algorithm. The cells contain registers
configured in master slave manner in which, internal data registers are used to give one more time
unit delay to the operands at each cell. The first output bit of the multiplication result 1s available
after 2m clock cycles. After » clock cycles the multiplier operands are completely loaded into the
architecture allowing the load of the operands for the next operation (squaring or multiplication),
while performing the computation of the current operation.

Mutltiplier
ayQy---4,, 1 —»
Al, L - - - — > - — A
€€, €, | —p Bl
EXPO. cr > - = =P - - =P c
PoP1+--Pp1 —» CTRL D i kil e --—»k=[§]—1—>---—> Sl
» —» -~ - - 2dt
00...1 —p] S Sour
M.=S,
. | l
Pmn
Smn
)1 Vi

Figure 4-25: GE(2") 1S.A based exponentiator for odd freld size m
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Thus, the operations in Equation 4-13 and Equation 4-14 could be overlapped to reduce the la-
tency and thus the exponentiation time T, . The general structure of the LSA based exponentiator
1s depicted in Figure 4-25, where p, for 0<i<m-1 are the primitive polynomial coefficients and §
1s a control signal (only the first bit among the » bits contains the value one).

Control State Load-square Load-multiply Squaring  Multiplication
m clock m clock m clock m clock m clock ¢ m clock > m clock »
¢ cycles >« cycles >4 cycles >« cyaes >4 cyclos » cycles cycles
LSA Multiplier
1% bit input AA At Uo Uo UoMo U1 U| M
LSA Multipiler

1* bit output

Figure 4-26: Ouverlapping the squaring and multiplication operations

The 7-bit multiplication time takes 3#-1 clock cycles. At 2 clock cycles after a,, 4 and 4,, | enter

the leftmost cell the results C,,; will start coming out from the rightmost cell at the rate of one co-

efficient (MSB-first) every clock cycle.
m clock cycles
Load-multiply ’

m clock cycles

00
muItipIication @’

m clock cycles m clock cycles

10

Figure 4-27: The exponentiator gperation modes

The squaring is performed continuously. The feedback signal outputted at CELL-[m/27-1 con-
tains the square term (operand) A,,;, which is used for computing the product U;,_;- M, _; in
Equation 4-14, according to the primitive polynomial coefficients P,,;; and control signal s, If 7
1s odd, these feedback signals are outputted from the internal registers of CELL-[m/27-1 as shown
in Figure 4-25, otherwise they are taken at the output of this cell. The squaring and multiplication
bits results C,,, are outputted iteratively from the last cell and used for computing the expression
in Equation 4-13 and Equation 4-14 according to the primitive polynomial coefficients P, and
control signal § . Signal §, ., in Figure 4-25 is the multiplier control signal .§ that defines the op-
erating modes of the exponentiator, it generate two internal control signals, load and square, which
defines 4 different operating modes as shown in Figure 4-27. 1f » is even then is outputted from
the internal register s of CELL-[m/27-1. It is also used as GF(2”) unit operand M_; for the com-
putation of the U_, - M_; in Equation 4-14. A transition in this signal at the input of CELL-[m/27-
1 means that the LSB of the inputs operands are completely loaded into the multiplier allowing the
load of next operands. Note that the multiplication 7-M;_; (0<i<m-1) in Equation 4-14 is not

performed. We can cope with this using the feedback operand A4,,, as the product term M, 4.
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We start the computation in lad-square mode. In this mode we perform a squaring operation on
the value of the base A. Once the coefficients are loaded into the multiplier after 7 clock cycles, we
switch the exponentiator to the bad-multiply mode. In this mode we perform the multiplication op-
eration U_; - M_; . Once the M_{ coefficients are loaded into the multiplier after » clock cycles, we
switch to the sguaring mode. In this mode we perform the computation in Equation 4-13, then we
switch to the multiplication mode in which we perform the computation in Equation 4-14. We repeat
successively these two last operating modes until the end of operation. This is described in the di-
agram reported in Figure 4-26.

For signals stability, different clock edges are used to handle the feedback signals in Figure 4-25.
Control states are then generated within the clock pulse and feedback signals are triggered by the
inverted clock at the exponentiator controller. The exponent E is fed into a LIFO stack (buffer) of
size 7. The buffer content is shifted one time when the test in Equation 4-14 is performed. Hence,
the buffer is completely empty after the output of the final result.

The setup time T of the exponentiator 1s equal to 7 clock cycles corresponding to serial data
transfers of the inputs. The throughput rate R of the multiplier is equal to one multiplication oper-
ation per # clock cycles. At » clock cycles, after the LSB of the inputs A4, E, P and § enter the ex-
ponentiator architecture, the exponentiation result Y will start coming out from the rightmost cell
after 2m-m clock cycles at the rate of one bit per clock cycle. Hence, the exponentiation time T,
becomes 2(m+1)-m-T,, . Compared with the MSR based exponentiator described in [94], witch
perform the computation in (m +2)-m clock cycles from the first-in bit to the last-out bit, the la-
tency is increased by 77 clock cycles. However, as demonstrated above in Section 4.4.3, the MSR
based multiplier presents long heavily loaded signals that increase the critical path and the total de-
lay for one multiplication operation is 96% higher. Hence, the latency gain of the MSR based ex-
ponentiator is counterbalanced by the clock period. Furthermore, the area complexity of both
exponentiators is almost the same ~17#.

4.5.2.2 DIGIT-SERIAL LINEAR SYSTOLIC ARRAY EXPONENTIATOR

The generated digit-serial architecture is obtained from the LSA digit-serial multiplier (Figure 4-
15). The resulting exponentiator circuit is linear array-type at the digit-level based on the parallel
multiplication algorithm inside of each digit cells.

The successive squaring and multiplication operation are then implemented in digit-serial man-
ner using the architecture depicted in Figure 4-28. The operands are digit-word inputs. Thus, the
inputs bit a,¢; and p, for 0<i<m~ 1 in Figure 4-25, are replaced by digits forms 4;, P, and E;, for
where

D--1

ZO(aDi+j’PDi+j’eDi+j)’xj’ 0<i<d-1

— j=

4.B.E)=1" . (4-24)
E(,) (Apisss Poisjrpin;) % i=d-1

and
m-1 . d-1 .

(APE)=Y @,p.0) % = (A, B, E)-x" (4-25)

i=0 i=0

The exponent E is expressed in binary form and fed into a LIFO stack (buffer) of size [m/D]D.
The input digit-words A4,, P, and E, are fed into the multiplier in the same order for 7 decreasing



4.5: EXPONENTIATION OVER LARGE GF(2M) 92

and from the MSB to the LSB. If 7 1s not divisible per D, then a zero padding is performed at the
LSB positions for 7=0 for .4; and P, and MSB positions for /=4-1 for the exponent E,. The s signal
is used to denote the start of the multiplication.

Digit-Serial LSA Multiplier
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Figure 4-28: Digit-Serial IS A multiplier based exponentiator

The exponentiator operates as the previously described bit-serial LSA based, where cach CELL-
k of the multiplier process one digit of an entire word in one clock-cycle. Note that the architecture
shown in Figure 4-28, is still programmable with respect to the primitive polynomial p(x).

At d clock cycles after the least significant digit-words A4, Ey, Py and the LSB of s enter the ex-
ponentiator, the result Y; will start coming out after 2m - d at the rate of one digit every clock cycle.
Thus, the exponentiation time T, takes 2(m + 1)d clock cycles.

4.5.3 IMPLEMENTATION RESULTS AND COMPARISON

The clock free and clock gating LSA exponentiators have been implemented at the gate level
using different digit-size D=1,4,8 in order to perform a comparison in terms of delay, area and en-
ergy consumption for one exponentiation over GF (2607) with p(x):1+x273 +x997 a5 primitive pol-
ynomial. These architectures are mapped on TSMC CMOS 0.18pum technology at a targeted supply
of Vpp=1.8vand 0.9v. Different types of power dissipation components are estimated using gate
level simulations on a set of random stimulus in order to compute the energy and energy-delay
product. The performance characteristics including total delay, area in term of gates and energy-
delay product are reported in Figure 4-29, Figure 4-30, and Figure 4-33 respectively. The cost func-
tion is reported in Figure 4-34 and defined as the Energy-Delay-Area products versus the digit-size.
The power numbers of different circuits are reported in Appendix C.2.

On the one hand, the critical path of the architecture shown in Figure 4-25 is just the sum of
one full-adder and one NAND gate delay. For larger digit-size the critical path is limited by the
function shown in Figure 4-18 and increases linearly with the digit-size as (D-1)(Txor.st TnanD.
»)- In the same time, the latency decreases linearly with the digit-size in almost the same rate result-
ing in almost a constant total delay as shown in Figure 4-29.
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Figure 4-29: Total Delay as function of the digit size for one 1.5.A digit-serial GF(2%"T) exponentiation

On the other hand, Figure 4-30 shows that the area increases dramatically with the digit-size due
to the large number of logical gates and latches used to temporary hold the internal and the output
data in master-slave manner. This means that the level of parallelism is limited by the area con-

straints (digit-size).

[an:t |-t un-s]

Gate Number (K gates]

o5 383888843

Architecture

Figure 4-30: Area in gates of the 1 5.4 digit-serial GF %7 exponentiator as function of the digit sie

Clock gating technique achieves a substantial ceduction in both the total delay and number of
gates (Figure 4-30), for digit-size equal or larger then 4. It helps to eliminate the feedback loops and
multiplexers used to feed the output of each internal storage clements back to the input for syn-
chronous load-enable. Such feedback loops are replaced by only one integrated cell (latch based
clock gating cell). Thus the area is reduced in all cases but for the bit-senial architecture (D=1) these
clock gating cells (latches) add a substannal delays which increase the cntical path.
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Fagure 4-32: Power profile for 1.S.A digit-serial (D=4) exponentiator (1.8v)

If the switching power i1s dominant then the power consumption can be reduced by factor B"‘
when reducing the operating voltage by a factor B Equation 2-1. From Equation 2-2 the delay is
increased by factor B assuming that F'pp>> 1, Therefore, the power saving is counterbalanced
by the increased delay since the energy-delay product is proportional ta 8™ - This is not the case for
'pp=1.8V and B =2 since F'pp is close to the threshold voltage 1, . Hence the delay increases
and the short eircuit power i1s no longer a negligible factor (switching power no longer the dominant
factor) as shown in Figure 4-31.
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Figure 4-33: Energy-Delay product us function of digit-sice of the .54 digit-serial GF(2%) expomentiator

The most interesting result is obtained when comparing the Energy-Delay and the cost function
versus the digit-size. ‘The performance charactenstic reported in Figure 4-33, shows that Encrgy-
Delay products are significantly reduced when digit-size increase. High gain is obrained for D=8
when operating at 0.9v and more than 75% reduction is noticed (more than 92% when gating the
clock) since the power is significantly reduced when operating at lower voltage. However, when
comparing the characteristic reported in Figure 4-33 (cost function), the optimum 1s obrained for
D=4 when operating at both 1.8v and 0.9v due 1o the dramatic increase in circuit arca for larger
digit-size. The highest gain is obtained when gating the clock as the number of gates and delay arc
substantally reduced.

QD=1 @D=4 no-e]

| il |~

o8v 1.8V o0.8v 1.8V
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Architecture

Figure 4-34: Energy-Delay-Area product as function of the digit size of the 1S A digit-serial GF(2%)
exponentiator
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Figure 4-32: Power profile for 1.SA digit-serial (D=4) exponentrator (1.8v)

If the switching power 1s dominant then the power consumption can be reduced by factor B’
when reducing the operating voltage by a factor B HEquation 2-1. From Equation 2-2 the delay 1s
increased by factor B assuming that I7pp>>17, Therefore, the power qavmg is counterbalanced
by the increased delay since the energy-delay product is proportional to 5% . This is not the case for

‘pp=1.8V and B =2 since " 1s close to the threshold voltage 17, . Hence the delay increases
and the short circuit power is no longer a negligible factor (switching power no longer the dominant
factor) as shown in Figure 4-31.
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4.6

PHYSICAL DESIGN: LSA EXPONENTIATOR (PLACEMENT AND
ROUTING)

Digit-serial LSA exponentiator with D=4 has been designed and synthesized in a 0184 m 6L.M

technology with a 100MHz working frequency. We were able to place and route the design with

"
|\|}:h den SIry achievable. First result on the pi.lccd and routed core gives about 0.994mm™ t.'hlp area

including the Dic boundary and 1/0 pins (the overhead of area unlization of all cells 15 91.64%)

Detatled implementation results are shown at Table 4-8. It shows that abour 89% of area 15 con

sumed by cells placement and routing. Other 11% is used by the controller. A layout of the core s

shown on Figure 4-35 where different components are highlighted

- Controllar
- Exponantialor

Figure 4-35: Dygit-serial (D=4) 1. 5A Esponentiator |ayout (0.18p m6M1)

['he impact on the timing delay 1s minimal since the hole architecture 1s pipclined and present a

short critical path, nevertheless the timing delay after physical back-annotation is increased to

2995

Unit Area (mm?) Overhead (%)
Exponantialor 0.088 108
Controliar 0.813 B892
Total area oan 100

Table 4-8: Area overhead: digit-serial (D=4) .S A Exponentiator core tmplementation







CHAPTER 5

5  SELF-SYNCHRONIZING STREAM CIPHERS (SSSC)

The generation of the keystream can be independent of the plaintext and ciphertext yielding
what is termed a synchronous stream cipher or it can depend on the data and its encryption, in
which case the stream cipher is said to be self-synchronizing. Most stream cipher designs are for
synchronous stream ciphers. In this chapter we propose an engineering oriented approach for the
design of self-synchronizing stream cipher SSSC. This approach appears to be useful in practical
design. The interesting ideas are more related to the way to combine strong building blocks while
we address the problem of designing these blocks themselves. An actual design called Self-Synchro-
nizing Mixture Generator (SSMG) 1s presented and claimed to be fast, cryptographicaly secure and
casily implementable in hardware.

5.1 SSSC DESIGN PARAMETERS

Stream encryption is performed by encrypting the plaintext digit by digit (or bit by bit for binary
stream ciphers). Let X = x5, x5, ..., ¥ = y;, 3, ... and Z = z,z,, ... denotes the binary plaintext, ci-
phertext and keystream sequences respectively, and let K denote the secret key that is chosen ran-
domly from the set k of possible keys (key space). The encryption transformation is denoted by
fo(xp z;) and must be invertible with respect to x;,

Vi = felxp 7)) (5-26)
X = fivp 2)

For the majority of designs the digits are bits. In this case, Equation 5-26 can be reduced to
XORing operation or a simple additive combiner. The keystream digits z; are generated independ-
ently of the message stream by a pseudo-random sequence generator (PSG) using the secret key K
as described in Section 3.4.2. This is a cryptographic finite state machine whose operation is gov-
erned by the two rules:

S; = f(S;_ )8y =1V = f,,AK) (5-27)

Where f, is the state transition function, f, the output function and £, ;, s the initialisation func-
tion. The finite state machine is initialised by loading the initialisation vector IT” into the finite state
machine. Generally, the mitialization procedure is performed by resetting the internal state to a
fixed value and substantially iterating the finite state machine a specified number of times. During
pseudo-random sequence generation the state transition can be modelled by the function f,. The
security of the stream cipher can be based entirely on the secrecy of (part of) the initial state §;.
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This secret information is generally referred to as the key K can be expressed by a function f, ;,. In
this thesis the specification of a PSG consists by definition of the three functions f,, f,, fi,;, -

5.1.1 CIPHER FEEDBACK APPROACH

Due to man-made noise, fading and temporary loss of contact, errors occur in bursts and receiv-
er may lost synchronization needed for synchronous encryption as the encryptor and decryptor
may have different initial state (continuous state machine). A resynchronization state is required at
the time of resynchronization. One solution is to specify the new internal state in terms of infor-
mation that is only known to the sender and recetver. In this case the sender and receiver calculate
the new internal state from the original internal state (or key) and a public parameter p (i.g. the time
at the moment of resynchronization,....,etc). The most obvious solution consist of adding some ex-
tra bits for message blocks/frames/packet identification.

v
f
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[l init
IV
State Load
Internal State =% £, > Key.s' tream (Z)
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Figure 5-36: Cryptographic state machine: implementation of an SSSC

For SSSC every keystream digit z; depends not only on the secret (N-bit) key K but also on a
public variable that is known to both the sender and the receiver, as shown in Figure 5-36. This
mechanism makes it possible to change the session key regularly without introducing new key ma-
terial. Thus, the cryptographic finite state machine become governed by the two rules:

S; =S(8;_pP) S_g = IV = firi(K, ) (5-28)
2 = fo(Si_ D)

The most widely adopted approach to self-synchronizing stream encryption is to use a fixed
number M of previous ciphertext digits as a public parameter p also can be called Cipher Feedback
approach analogously to Cipher Feedback (CFB) mode used in block ciphers. One can notice that
a block cipher in CFB mode is self-synchronous.

In this case z; can be calculated by evaluating a publicly known boolean function f, with N+M
input bits. This function is called the canonical function of the SSSC and is denoted by:

2 = f i pYi_ s Yi_pp K) (5-29)
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By reporting the change to Equation 5-28, we can express the SSSC’s CESM’s state transition as
follows:
Si = fi_pYi_p Vi K»S_g = 1V = f,,(K) (5-30)
z; = f(8;_ )

The mnitial vector IT” can be generated from the secret key in case where the finite state machine
1s an LFSR based autonomous machine since in general case the initial state is key dependent.

5.1.2 FAULT TOLERANCE

From Equation 5-30 it is clear that decryption is performed correctly if the last M received ci-
phertext bits have been correctly received. A single bit error y, ; on the channel between encryption
and decryption gives risc to an burst error of length / until the bit y; ;is shifted out of the canonical
function. Thus when bit error occurs, the next / bits cannot be correctly decrypted at the receiver.
So, every bit error in the ciphertext results in an error burst in the deciphered plaintext. Therefore,
the SSSCs which use this technique are suitable for application with low bit error rate but for which
bit synchronization is required for correct decryption.

5.2 FRAME BASED SSSC (SSMG PRINCIPLE)

In this section we describe our attempt to design an SSSC. The amount of data to be encrypted
is subdivided into frames that form the frame space denoted by ®. The purpose is to encrypt/de-
crypt each frame ¢ with a different key (key session). The key 1s calculated for each frame from the
master key using the fingerprint (keyed hash value) of the previous encrypted frame ciphertext.

The solution called Self-Synchronizing Mixture Generator SSMG is a frame based SSSC. The .
cipher here 1s a stream cipher and processes one bit or byte at the time (each frame is encrypted bit
per bit or byte by byte) and the hash value is computed for the entire frame. Figure 5-37 and 5-24
gives an overview of the encryption/decryption process respectively using the SSMG.

plaintext bits

§ecret kezm init keystream
Mixture Generator s Mangler

1/8

1/8 4 ciphertext bits
—-—>

buffer ¥32

224 first bits

KHF

stutter enable bit

Figure 5-37: SSMG stream cipher encryption

During encryption the Mixture Generator (a CESM) is initialized with the secret key. The first M-
bit length frame 1s encrypted in the Mangler (a combiner) using the keystream output of the SSMG.
‘The ciphertext is then buffered up to words of 32-bits length that are appended to the secret key
in enveloped method fashion (Section 3.4.5.2) and hashed using a chaining transformations han-
dled by a KHF (Section 3.4.5). The hashing operation can be performed in parallel with the encryp-
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tion process. The hash result is then used as an additional parameter to the secret key
(synchronization pattern) for Mixture Generator re-keying before processing the encryption of the
next frame.

During Decryption the received ciphertext bits are buffered and hashed in the same manner.
The Mixture Generator is initialized using the hash results and the secret key before processing the
next frame.

ciphertext bits

keystream
Mixture Generator ¢ Mangler
1/8
1/8 t plaintext bits
224 first bits
¥ e ey | ]
ngth = 256 bits buffer 4-32
KHF

stutter enable bit

Figure 5-38: SSMG stream cipher decryption

5.2.1 MIXTURE GENERATOR MG

The mixture generator is realized as an autonomous finite-state machine based on the Alternat-
ing Stop and Go scheme reported in Figure 3-8a (see Section 3.4.2.4), whose initial state and struc-
ture as well depend on the secret key K. In what follows, LESR-1 is called Mixer, LESR-2 is the Top
and LFSR-3 the Bottom. Both the Top and Bottom are clock-controlled LESRs. The secret key is
the Mixer initial state, which controls the clock generator. Each LFSR i1s based on 2 recurrence re-
lation over the Galois extension Field GF(2”) controlled by the field generating-polynomial (see
Appendix A.2), i.g, p(x)=1 +>F+5" for trinomials.

The result on the period and the linear complexity of the Alternating step generator (see Table
3-4) are best compared to these results obtained on the most concurrent generators. The best
known attack on the Alternating Stop and Go is a divide-and- conquer attack on the Mixer control
register, which takes approximately 2! steps (assuming a common length / for the three LFSRs).
Therefore, LFSRs should be of maximum-length. Those lengths must be pair-wise relatively prime
[68]. Moreover, there are certain values of 7 and £& for which the period of the LFSR is the maxi-
mum possible (see Section 4.3), namely 2”-1, which is all the possible states of # bits, excluding the
all-zero state.

The pairs #, 4 that define maximal period LFSRs can be chosen from Table 4-5. Further, the
LESRs lengths are chosen to be Lyyxpr™Lrop~LeoTToM in Order to optimize the hardware.

5.2.1.1 BIT AND BYTE GRANULARITY

‘The mixture generator delivers its output in 2 ways as a bit or byte (granularity). Figure 5-39 shows
a trinomial LFSR performing a byte granularity by folding the bit granularity architecture 8 times
and looking ahead for the calculation of the next output bits. For byte granularity the Mixer 1s
stepped or shifted one time wile both the Bottom and Top are shifted 8 times. Thus, the result of
requesting 4 bytes for example, is not necessarily the same as the result of requesting 32 bits, be-
cause of differences in the way that the LFSRs are stepped.
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Figure 5-39: Byte Granularity: trinomial LFSR

The different LESRs steps for the generation of keystream output give rise to different bit-rates
when working in bit or byte granularity. Figure 5-40 shows an improved Bottom LESR architecture
able to compute 8 bits output with bit granularity in one rather than 8 clock cycles. The same ar-
chitecture is applied for the Top LFST in order decreasc the total delay (latency) corresponding to
the delay of packet processing using bit granularity.
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Figure 540: Bit Granularity: Speeding up the Battom LFSR

5.2.1.2 MG STUTTERING

The complexity of the SSMG’s keystream output is increased using st#zfering. The LFSRs of the
MG are stepped irregularly in an attempt to break up their linearity while maintaining good statis-
tical properties. Another purpose consists of using the stuttering for SSMG’s re-keying between
frames processing (clocking the LEFSRs in an unpredictable number of times between outputs or
re-keying the generator using different internal state generated from the secret key). If the state bits
(of the corresponding 1.LFSR) selected by the stutter mask pattern are all zero, then the next skip
count bits of the shift register are discarded. The stuttering works differently during pre-mixing (in-
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itialization) operation than during the encryption operation. During initialization phase the stutter
uses a stutter mask given by the CellHash function (the hash result) or stutter enable bit in Figure 5-
41 and during encryption operation it uses a fix mask value which is generator’s state-dependent

(bit Sland S2).

Sttuter enable bit

hash results TOP
Sttuter

enablei T Sttuter Mask

MIXER bits (51,82) .
Sttuter ToP . E

o

enable Sttuter Mask A CF
l T bits (51,82)  MIXER %

LSB(YTE keystream

MIXER 1——‘—-)—— E%LSB(YTE)
y

r BOTTOM

Sttuter Mask

enableT ¢ bits (S1,52)

BOTTOM
Sttuter

BOTTOM
LSB(YTE)

Frgure 541: Mixture Generator Stuttering scheme

5.2.1.3 MG INITIALIZATION

During initialization, the secret key is loaded into the Mixer before the processing of each sub-
sequent frame. The Top and Bottom are both loaded with a state containing bit 1 at position £, all
other bits are 0, where £ is the feedback parameter of the trinomial field generating polynomial of
the corresponding LESR. The Mixer is stepped irregularly using the stutter enable bit from the KHF.
After initialization the 3 LFSRs are stepped using the fixed mask stutter to generate the keystream

output.

An output buffer is added to the Mixture Generator in order to increase run-time performance
in software implementation and reduce the KHF internal operation (1 iteration for each block of 4
bytes). The mixture generator is able to work in bit or byte granularity, the result in performance
and the resulting ciphertext will be different for each case.

5.2.2 MANGLER

The mangling operation is a simple bit-wise XOR between the key stream and the plaintext.

5.2.3 KEYED HASH FUNCTION (KHF)

The KHF is used to obtain a fingerprint of the encrypted frame block. This fingerprint is then
used as stutter mask during MG initialization before the next frame to be encrypted. The input to
the hash function is a message of the form M=my| | 7...| | m,, with every m; a 32 bit ciphertext.
According to the requirements for keyed hash function (see Section 3.4.5.1) and the new construc-
tion goals defined in Section 3.4.5.2, two sub-keys Kj, K, derived from the secret key K are used
with each message 7, The message block 7;1s prepended with key K; and appended with key K,
before the hashing operation: envelope method. The hash value H;is the result of applying the hash
function f; to Ky | | #;| | K5, according to Equation 3-4:
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H =f,(H_,K |m]|K,), forO<i<t (5-31)

Hy is equal to IV, a fixed initial value. The hash value of the entire message is given by:
KHFM)=H,. Here the output function is selected to be the output state buffer. Figure 5-28 shows
the structure of the adopted KHF. A hash result is processed on the base of the previous state buff-
er value and a message that is passed as parameter

il

| state Load

Internal Stafe

Buffer H, Hf

T
*

Message Buffer

State Read:\

\Message Load

4

Killm]ll &

0<i<n

Figure 5-42: KHF structure

5.2.3.1 IMPLEMENTATION OF THE HASH FUNCTION

The function f, is chosen to perform the authentication of large amounts of data or achieving
high speed if implemented in hardware.In [54] Joan Daemen proposes a generic model, which con-
sist of the compression function f, with a fixed-length input based on an invertible chaining trans-
formation. He presented a concrete proposal named Ce/bash. With respect to Cellhash the core
function is not modified but the functionality is updated to build a KHF according to Figure 5-29.
The core of this function is formed by two cellular automata operations and a permutation. The
computation of this function is done in 5 steps as described below:

o Swpl: h; = hj ® (hiy 1V o) non-linear cellular automata
« Step2:ihy=h, complementary operation

o Step 3 hi=h;_;®h®h;, ; linear cellular automata

e Swp 4 hj = hj @ mi_j message njection

e Swph: hi = hgy bit permutation

All computation are performed modulo 257.

These steps are used for updating the internal state of the KHF state machine at each iteration.
In S7ep 1 each bit value H; is updated according to the bits in its neighbourhood. This is invertible
operation if the length of H;is odd. S#e 2 consists of complementing 1 bit to eliminate circular sym-
metry in case all state-bits are 0. The linear CA operation in S#p 3 is invertible if the length of H; in
not a multiple of 7 or 31. S#p 4 consists of message injection and in SZp 5, bits are placed away
from their previous neighbours. The length of H; is then chosen to be the prime 257 to make Sgp
1 and 3 invertible and to prevent a birthday attack (size has to be at least a prime above 128 bits).
Through the different steps of the function a good level of confusion and diffusion is achieved,
circular symmetric patterns are avoided in H and the message bits are injected and diffused in the
result.
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Figure 5-43: Cellbash structure

The state buffer H; in this case is of length 257 bits. In our implementation the keys K; and K,
are made of the first 224 bits of the secret key K which constraint the limit size of the secret key
and hence the Mixer length to the minimum of 224 bits. The initial value I1”1s always zero and the
number of rounds depends of the size of the ciphertext block.

5.2.3.2 DIFFUSION AND CONFUSION

The function f, has to guarantee diffusion of information. With equal keys, two mnputs H; ; and
FP, ythat differ in only a few bits must give risc to two outputs H; and H’; differing in substantially
more bits. The hash result must depend on the message bits in an involved and complicated way
to achieve a good confusion.

As mentioned in [60] and shown in Figure 5-43, each bit of the state register depends on 9 bits
of its predecessor state at the fist iteration. After the second iteration each state bit becomes de-
* pendent on 81 bits of the predecessor state. After three iterations the dependence is complete. Fur-
ther, the key-dependence of the input massage bits maximizes the diffusion of both the message
and key bits into the hash results.

Studying the confusion deal with analysing the propagation of differences in the input to inter-
mediate values (differential cryptanalysis). It is shown in [60] that the contribution of szep 2-5 to the
confusion becomes clear only when characteristics over multiple iterations are considered and that
because of total diffusion of the compression function f}, calculations involving bits from internal
states separated by several iterations become extremely complicated even if a small number of iter-
ations is considered.

5.2.3.3 COLLISION FREE

For cryptographic purposes the CHF must be collision free. This implies that finding two dif-
ferent messages My and M, that have the same hash result must require a computational effort of
the order of 2”/2 applications of the hash function. In Section 3.4.4, we shows that generating a
collision for such a CHF involves either generating a collision for f, or solving a problem with com-
parable complexity. However, because of the uncertainty whether generating a collision is in fact a
hard problem, it is not claimed here that finding a collision for the proposed hash function is equiv-
alent to any other hard problem than finding a collision for the function.
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5.3 SSMG: OPERATIONS OF THE CIPHER

The SSMG stream cipher switches in between two states (modes of operation): Pre-combining and
Encryption/Decryption

Pre-combining consists of loading the Mixer with the secret key, then clocking the mixture gen-
erator until the complete content of the Mixer has been passed through the TOP and BOTTOM
LFSRs for the purpose of initialization. This operation is controlled with the stuttering bit of the
MIXER. The stuttering bits are the state bits H, of the KHEF corresponding to the keyed hash value
of the predecessor encrypted/decrypted frame’s finger-print or digest. The first time the mixture
generator is pre-combined no stuttering takes place for encrypting/decrypting the first frame.
When the pre-combining operation takes place, the KHF is reset before encrypting/decrypting
cach new frame. The stuttering is dependant of the complete previous ciphertext frames. Thus,
when starting the encryption of a new frame block, the state of the mixture generator becomes only
dependant of the last ciphertext block.

Once the Mixture generator is initialized, the current frame can be processed and authenticated
in the same time in a parallel fashion in order to avoid the additional latency of the KHEF at the pre-
combining process. Thus, reducing the total latency due to the pre-combining operation. During
encryption the stuttering takes place on the basis of a fix stutter mask. The message is injected to
the KHEF by block of 32 bits in order to achieve an optimum number of iterations.

Figure 5-44 shows the inter-frame dependencies during SSMG encryption and decryption.

frame nencryption frame n+1 encryption frarre ndearyption frame nH1 deoryplion

| | | |
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Figure 5-44: SSMG operation: inter-frame dependencies during encryption and decryption

5.4 SSMG: CRYPTOGRAPHIC SECURITY

In some applications the actual internal state of the MG is calculated from a secret key using a
publicly known keyed randomization function and a public variable ciphertext. This mechanism
makes it possible to change the internal state regularly without introducing new key material. Al-
though this technique 1s used to improve the security of the system, the additional freedom given
to the cryptanalyst can seriously weaken the security. The knowledge of the relation between the
secret key and the internal state can be exploited to obtain secret key information. This is can be
translated to the fact that the function combining State-transition (KHF) and Keystream Generator
(MG) can not approximated by a boolean function which is a necessary condition for an SSSC to
be secure according to Maurer [99]. Though, some SSSC criteria are discussed here under the
SSMG scheme, mainly repeated occurrences and dependencies between SSMG blocks sizes.
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5.4.1 REPEATED OCCURRENCES

A necessary condition for an SSSC to be secure is that both the key space k and the frame space
® must be sufficiently large such that the probability is negligible that a length M in Equation 5-30
or ¢ in Equation 5-31 ciphertext pattern is repeated before the secret key is changed. In our case
this can be translated to the probability that two frames ¢, and ¢, or more contain the same in-
formation, which implies the use of the same initial state of the MG. On the other hand, the length
of the Mixer Iy pg should be large in order to increase the internal state space. When M (frame
size) 1s large this probability can be very small but because the bit error on the channel propagate
over the following deciphered plaintext frame (Section 5.1.2), the frame size should be as small as
possible.

In fact, when a cryptanalyst can observe two occurrences of the same length (same frames) ci-
phertext pattern he 1s able to compute the XOR (modulo-2 sum) of the corresponding two cipher-
text frames (XORing two plaintext bits is equal to the XOR of 2 corresponding ciphertext bits
which, gives a way one bit of plaintext information).

This fact is more related to the nature of the information carried in the ciphertext frames (same
frames=same ciphertext=same digest=same internal state) or to collision of the f, reported in Fig-
ure 5-43 (collision=same digest=same internal state). Whatever, a collision may occur or frames are
repeated (which can reveal some information about the plaintext), since the internal state of the
mixture generator 1s ciphertext’s digest dependent and 1s frequently changed any information on
the secret key involve a huge computational effort either on the KHF and the MG due to depend-
encies of both blocks on the secret key and the nature of one way functions of these blocks.

5.4.2 PERIOD OF THE SSCS AND HASH RESULT SIZE

Although a synchronous stream cipher is insecure unless the period and the linear complexity
of the keystream sequence are sufficiently large (security criteria for synchronous stream cipher),
this cannot be applied to a traditional SSSC since there exists no sequence in the encryption process
that 1s independent of the plaintext. This is more related to the key space: 1s the key space as big as
the number of frames to be encrypted (plaintext size) principle of one time pad (see Figure 3.4.2)7.
This fact is dependent on the size of the hash value, which defines the probability of secret key oc-
currence in key space.

On one hand, the linear complexity of MG must be increased to avoid repeated occurrences and
the use of Berklamb-Massey Algorithm (Section 3.4.2.4). This means that the LFSRs size of the MG
must be large enough. On the other hand, the need of large keystream output is limited by the size
of the frame and since the MG is re-keyed for each frame, the MG LFSRs sizes may be reduced to
an acceptable range. Other than the frame size, the hash result size play an important role in in-
creasing the MG internal state space and reduce the probability of repeated recurrences. Conse-
quently, beside the KHF collisions, there exist a trade-off between the sizes of MG LEFSRs, the
frame’s size the size hash result. As stated before, although the frame size should be as small as pos-
sible in order to reduce the burst errors, it is important to notice that the frame’s size and the hash
result’s size are no longer independent.



CHAPTER 6

6 SECURING MPEG-2 STREAM IN DVB

Digital techniques have made rapid progress in audio and video for a number of reasons. A dig-
ital signal allows more data to be transmitted within a smaller bandwidth, allows greater consistency,
data reliability and stronger encryption of data. MPEG compression is already being used in broad-
casting and will become increasingly important in the future with the emergence of Digital Video
Broadcasting (DVB) standards. A DVB system is build upon MPEG-2 and uses MPEG-2 trans-
misston. It also defines additional private sections and providing a definition of the physical medi-
um (modulation, coding, ctc.) needed to carry the MPEG-2 Transport Stream (I'S) {109]. On the
other hand, some factors such as atmospheric noise, multi-path propagation, signal fades and trans-
mitter non-linearities may create received bit errors in a DVB system. Since, Forward Error Cot-
rection (FEC) layers can detect and correct these etrors, up to a reasonable limit, a DVB system
seems to be a suitable application for our SSMG.

The fist part (Section 6.1) of this chapter is focused on the performance study of MPEG-2
stream encryption using the AES (Advanced Encryption Standard) and our SSMG. Their impact
on real-time streaming is analysed using ciphers performance profiles in the frame of selective en-
cryption. This encryption method consists of encrypting small chosen segments of bits from an
MPEG video stream. The second part (Section 6.2) is consecrated to the hardware implementation
of our PK-SSMG scheme for securing MPEG-2 IS in DVB application. PK-SSMG is a hybrid
cryptosystem including LSA digit-serial exponentiator for key generation and SSMG for stream en-
cryption. Some design considerations have been undertaken in order to support the DVB-SPI in-
terface under resynchronization, 1.g., reducing the latency by buffering. Implementation issues and
results are detailed.

6.1 MPEG-2 STREAM SOFTWARE ENCRYPTION

Different studies have been made on the way to most efficiently encrypt MPEG-2 data stream.
Most of the encryption schemes present either the withdraw that they are not compatible with the
MPEG-2 standard [108] such as SECMPEG [107], which requires major changes to MPEG-2 co-
dec. Some of the studies such as Zig-zag permutation algorithm [102] add overhead to the MPEG
stream by rendering the compression less effective. The following schemes have been published:
Video Encryption Algorithm VEA [104], Pure Permutation Algorithm [105] (this list might not be
exhaustive). A comparison is made in [106] for the evaluation of these algorithms with respect to
performances (encryption speed) and security level. The authors show that these algorithms are al-

most vulnerable to some known attacks such as known-plaintext and known-ciphertext attacks (see
Section 3.3.1.1).

We can split the MPEG confidentiality schemes into two categories:
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¢ Systems where encryption is processed after MPEG compression; decryption is processed
before MPEG decompression. In these systems data is treated as a bit-stream and the entire
stream is encrypted. This method doesn't use any special of MPEG-2 structure, adds latency
to real time video delivering and involves heavy computations when software solution 1s

adopted but it provides the most secure MPEG bit-stream.

¢ The second approach consists of encrypting small chosen segments of bits from an MPEG-
2 video stream. The original motivation is to reduce the computation time in the MPEG de-
coding process, without compromising the security too much. Maples and Spanos in [100]
performed a real-time software encryption using selective encryption of the I-frames (see
section 6.1.2) using DES in CBC mode. In [101][102][103} many selective encryption
schemes are proposed using DES to reduce the number of encrypted bits.

The MPEG part of this section is based on the MPEG-2 software package of Felix Wuy and
Tsung-Li Wu [101]. Where a selective schemes has been implemented using a DES cipher.

6.1.1 CRYPTOGRAPHIC PRIMITIVES

A number of applications use software encryption in order to provide an acceptable security lev-
el at alow cost. An important constraint is that the performance of the application should be influ-
enced as little as possible by the introduction of cryptography. The performance of a cryptographic
algorithm 1s function of the efficiency of the algorithm (security level) and the speed of its execution
time. The stream/block ciphers that are used in this section are listed in Table 6-9.

No Cipher Keylength 0 _Keylengthl Key length:
1 DES[1] 56 56 56
2 3DES[23] 168 168 168
3 MARS[108] 128 192 256
4 RC6[109] 128 192 256
5 Rijndael[110] 128 192 256
6 TwoFish[112] 128 192 256
7 Serpent[111] 128 192 256
8 KASUMI[114] 128 128 128
9  IDEA[113] 128 128 128
0 SEAL{115] 160 160 160
A RC4[l16] 256 256 256
Z None - - -

Table 6-9: Configuration Values of the Encryption Interface

Almost all these ciphers have been enough cryptanalyzed and their analysis results are reported
on the related literature. We aim to compare the speed performance of these algorithms using

MPEG-2 selective encryption.

6.1.2 STRUCTURE OF THE MPEG-2 CODEC

Figure 6-45 shows the structure of MPEG video compression. Each group of picture GOP is
separated into I (intracoded), P or B (Non-intracoded) frames. The I-frames are separated into
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16X16 macro-blocks, which are sub-sampled to four 8X8 luminance blocks (Y blocks) and 8x8
chrominance blocks (C, and Cy, blocks).

f GOP-i | GOP-(i+1) | GOP-(i+2) 1
___________ Sequence: group of pictures
Y Sequence
IPB picture level
EEE . 2 S
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+ level
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Figure 6-45: Structure of the MPEG-2 codec

The blocks pass then through a Discrete Cosine Transform DCT, which has as effect to con-
centrate the energy to the upper left corner of the block (lower special frequencies). A quantizing
process sets to zero many of the DCT coefficients. The content of each special block is placed in
a linear vector following a Zig-Zag scheme starting at the upper left corner. By doing this the low
frequencies come always first in the resulting vector.

The P and B frames are defined by the motion estimation of their blocks. P frames are forward
motion estimated and B frames forward and backward motion estimated. When a block of P or B
frame cannot be obtained from the previous I or P frame (or previous and next P frame for B
frames) it is treated as an I frame block. Those blocks are called I-blocks. The resulting macro-block
vectors are then compressed using Huffman Entropy Coding (Variable Length Coding #/ in the
codec package) to obtain the compressed stream.

6.1.3 MPEG-2 STREAM ENCRYPTION

6.1.3.1 MPEG-2 SELECTIVE ENCRYPTION SCHEME

The idea behind the selective encryption scheme is that encrypting only a small part of the
MPEG stream could make the stream unusable to users, which have no decryption key. Theoreti-
cally, encrypting the I-frames only should render the information of the P and B frames useless. In
fact it is not the case. It has been shown in [102] that encrypting only the I-frames 1s, in some cases,
insufficient to make the stream secure. Due to the I-blocks coding in P and B frames some parts
of the video will still be viewable.
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Our implementation includes the encryption schemes reported in ‘T'able 6-10.

Scheme Description

None Original sequence — no encryption

If-DCLum I frame only, DC coefficients of luminance
blocs only

If-DCLumChr I frame only, DC coefficients of luminance
and chrominance blocs

IfTb-DCLum I frame and I blocs of other frames, DC
coefficients of luminance blocs

IfIb-DCLumChr I frame and I blocs, DC coefficients of
luminance and chrominance blocs

If-DCACs I frame, DC and AC (sign) coefficients

IPBf-DCACs IPB frame, DC and AC (sin) coefficients

IPBf-DCACall IPB frame, DC and AC coefficients

Total Naive encryption

Table 6-10: Selective Encryption Schemes

6.1.3.2 QUALITY OF SELECTIVE ENCRYPTION

In some applications as real-time secure MPEG players the overhead due to naive encryption
scheme can be unacceptable. This is an even more sensitive matter when the resolution of the
MPEG stream 1s high (HDT'V). Furthermore, in the case of broadcast communications single serv-
er multiple clients like video on demand VOD for example, the fact that each client uses a different
key implies that as many streams as clients have to be sent over the communication medium. This
has for effect the need of large bandwidth. Selective encryption offers:

* A way to limit the bandwidth in broadcast communications.
* A way to limit the encryption overhead in real-time decryption-decoding process.

Selective encryption schemes have also the advantage to be compatible with the MPEG-2 stand-
ard. This is true if the cryptosystem is not implemented as part of the encoder/decoder.

6.1.4 ENCRYPTION/DECRYPTION PROCESS

6.1.4.1 CONSTRAINTS

The encryption process as the compression tends to take redundancy out of the resulting data.
Therefore encrypting before compression would have as effect to make the compression less ef-
fective.

* In the case of MPEG stream, the compression implies loss of information. In the MPEG
codec, the information is lost during the quantizing operation.

e At the bit-level each byte is coded in variable length Huffman code. Thus, the identification
of the I-blocks in the MPEG stream needs to go trough the MPEG stream bit by bit.

6.1.4.2 DESIGN CHOICES

The encryption and decryption is performed on the bit level. Due to the Hamming variable
length encoding of the bytes, all the ciphers have been implemented in OFB mode, which can be
easily implemented for variable length bytes.



6.1: MPEG-2 STREAM SOFTWARE ENCRYPTION 112
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Figure 6-46: MPEG encryption/ decryption structure.

A set of functions have been designed or modified from the original version in order to inter-

face the ciphers with the MPEG codec. These functions have been designed in a way that either

object oriented ciphers or ANSI-C ciphers can be interfaced.

To define when the encryption/decryption has to take place, flags are set in the putvic or getvl
blocks (variable length encoding). The key-stream bits are retrieved from a key-stream buffer,
which is refilled when empty. The size of the key stream buffer (OFB mode) varies depending on’
the cipher block size. Figure 6-46 shows the block diagram of the MPEG?2 encryption and decryp-

tion.

6.1.4.3 INTERFACE FUNCTIONS

Following functions have been implemented in order to interface the different ciphers:

SecInit ():initializes the interface. Creates the key and cipher instances.
GetSecRandomBit (): Gets one bit of the key stream buffer. When the buffer is empty
a new key stream block (buffer size) is generated with the chosen cipher, see Figure 6-47.
GetSecRandomNBits (): N calls of the Get SecRandomBit (). Return N key
stream bits.

SecRelInit (): This function is used in order to offer the possibility to reinitialize the ci-
pher between frames or follow through any other operation, which has to take place before
starting a new frame. It is used to reinitialize the SSMG stream cipher.

SecClose (): This function has been create in order to support object oriented C code. It
1s used to place the object destructors.
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Figure 6-47: Interface for ciphers.

6.1.4.4 SSMG SOFTWARE IMPLEMENTATION

KHF function (CellHash) has been implemented as an ANSI pseudo-object based. It includes
one type definition used to create instances of the KHF (including the state of the CellHash and
other information) and a set of methods including one creator and one destructor.

To use the CellHash, once has to declare a variable of the Tcel1Hash type and pass a pointer
to the variable to the TCellHash Create () function. Each method of the CellHash needs
the pointer to the stage passed as input parameter.

In addition to the creator and destructor CellHash offers following functions:

* TCellHash PutMWORD (TCellHash* pThis, MWORD val): This function
adds the 32 bit value to the key value (that has been set during creation process), does a hash
operation and updates the state buffer value to the new result.

* TCellHash_GetMWORD (TCellHash* pThis): This function gets one MWORD of
the state buffer. Every time it 1s called the pointer to the state buffer is incremented. Once
all the words of the state buffer have been returned, the return value is set to zero until the
next time the CellHash is reinitialized.

* SSMGERROR TCellHash Reset (TCellHash* pThis): This function resets the
state buffer and the state buffer pointer. Next time that TCel1Hash GetMWORD is called
the first word of the state buffer will be returned.

6.1.5 IMPLEMENTATION AND ANALYSIS

This section presents the results of performance measurement to give a comparison of the most
used stream and block ciphers.

Table 6-11 shows the percentage of encrypted bits for each selective encryption scheme using a
total of 6388262 encoded data-stream bits (800 Kbytes) of a normal sequence. This video sequence
shows the traffic in a city (a bus followed by camera). Many different objects move in different di-
rections on a constant moving background.

Other sequences will have different quantities of I blocks and compression rates would there-
fore gives different results.
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Scheme Encrypted [bits] Encrypted [ %]
If-DCLum 58476 0.9
If-DCLumChr 73240 1.1
If-DCAC 890422 139
IfTb-DCLum 142105 2.2
IfTb-DCLumChr 169866 2.7
Iflb-DCAC . 1577346 24.7
IPBf-DCLum 142105 2.2
IPBf-DCLumChr 169866 2.7
IPBf-DCAC 5268102 82.5

Tuble 6-11: Encrypted Bits Per Mode

In order to have an idea of how a sclectively encrypted sequence looks like in amount of bits
encrypted, we have measured the number of encoded and encrypted bits by frame and processed
the mean value per group of picture over the video sequence described above. Results are reported
in Appendix D.

6.1.5.1 PERFORMANCE PROFILE OF THE MPEG ENCODER

The performance profile of the encoder has been measured with the Unix gprof application. The
encoder was running on a 360 MHz, HP-UX station. In Table 6-12 are presented the most time
consuming functions of the codec. These functions are shown in their respective patent/children
order. All functions with little consumption and of secondary importance have been removed. The
cally column shows the number of times the routine has been called. The total time column corre-
sponds to the time spent in the routine and it's sub-routines during the whole program operation.

Functions Calls Total Time [s] Time [%]
main 1 221.62 100
putseq 1 221.54 100
Motion_estimation 150 149.31 67.4
Transform (DCT) 150 46.92 21.2
putpict 150 11.79 53
Putlnra 117355 1.68 0.8
PutNonIntra 58932 3.41 1.5

putbits 5286830 1.18 0.5

Table 6-12: Time Consumption Profile of the MPEG-2 Codec

Analysis shows clearly that in the codec the most time consuming functions are the motion vec-
tors estimation (67.4%) and the Discrete Cosine Transform (21.2%).

6.1.5.2 PERFORMANCE OF THE CIPHERS DURING ENCRYPTION

In the following performance comparison of the proposed ciphers for MPEG codec we show
only the complete run time and the encryption run time without giving details about the complete
profile of the application. The aim here is to show the impact of the encryption on the runtime pet-
formance of the codec (ciphers encryption overhead in comparison to the performance of the
MPEG-2 codec). The measures for encryption have been made using gorof utility.

Figure 6-48 shows the result obtained using deferent key sizes. The AES ciphers and the SSMG
have been measured for 3 different key sizes. The measures have been made in the selective encryp-
tion scheme IPBf-DCACall in order to encrypt a maximum number of bits and have an idea of the
worst-case scheme
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Fioure 645 Performance of differeni aphers durimg encryption vs MPEC encoding

I'he results show that

* Performance of encryption i1s very much JL'an-J.ml of the number of imes the apher is
called. A apher able to process bigger blocks will be called less often; it wall therefore reduce
the call tmes and mught offer better performances

* T'he block size of the cipher has a important influence on the system performance

* RC6 and Rindael seem to be less optimized in their 192 bits key mode than in 128 or 256
bit keys. Rijndacl256 and Twofish128 are clearly the two fastest AES algonthms and have a

comparable performance
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Frgure 649: SSMG encryplion overhead reported to DES
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The difference of performance from one cipher to another appears to be of little importance in
comparison to the processing ime of the MPEG-2 encoding, In fact decryption has more an im-
pact on the MPEG decoder than encrypuon on the encoder. This is due to the fact that the motion
estimation is a time consuming operation during encoding,

At another side, the SSMG offers much worse performance and very high overhead. Figure 6-
49 shows the very high overhead of the SSMG compared to DES cipher. The result is dependent
of the number of times a cipher is called. The SSMG is called 64 times more than DES cipher and
the CellHash has not been optimized as will be described in the next section.

140

\\# &#J\& 'ﬁ’ﬁ.@

P ff,ffjgy

Figure 6-50: Bits Rates for the Different Cipher

Figure 6-50 and Figure 6-51 presents the bit rates we measured for the different aphers, on the
same sequence in [PBEDCACall selective encryption mode.

DES SSMG 521 SSMO 807 SSMG 1279
Ciphers

Figure 6-51: SSMG encryption bit-rate reported to DES
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6.1.5.3 PERFORMANCE PROFILE OF THE SSMG

Table 6-13 shows the performance profile of the SSMG cipher:

Functions called Time [g] Time [%]
getSecRandomBit 5286830 51,66 100,0%
Combiner_GeKSbit 5286830 51,22 99,1%
CellHash_PutMWORD 165213 49,52 95,9%

own lime - 23,14 44,8%

GetBit 381972456 16,57 32,1%

SeltBit 169838964 9,60 18,6%

TMixGen_Output 5286830 1,09 2.1%
TMixGen_PreCombine 150 0,07 0,1%

Table 6-13: Performance profile of the SSMG with key length 607

The numbers indicate very clearly the bad performance due to the Celll Tash function, which
96 time consuming operation (sce Figure 6-52). This is due to excessive use of ge/Bif and setBit
functions and probably a lack of optimization of the Cel1Hash PutMWORD () function. The
Celllfash has by now only been implemented to work, not to be outstanding, T'his function could
probably greatly be improved by the use of 257 bits rotations.

OCealHash_PUMNORD |
B 1 MkGen_Qutput
OTMxGen_PreCombine

0% 10% 20% 30% 40% 50% 60% 70% BO% 90% 100%

Figure 6-52: Impact of Cellhash on SSMC; performance

6.1.5.4 DECRYPTION AND REAL-TIME PLAYBACK

In OFB mode encryption and decryption are symmetrical operations and therefore consume the
same CPU time for the same amount of bits to encrypt and decrypt. This is true for all the ciphers
but the SSMG. Since the MPEG-2 decoding process is much faster than the encoding process, the
decryption has more influence on the decryption than the encryption.

Though gprof seems to not support our decoder implementation the Unix function time has been
used to measure the processing time of the secured MPEG decoder. The sequence mentioned in
above, under Section 6.1.5, has been repeated 10 times in order to obtain a more accurate measure.

This corresponds to a 1500 frame sequence. Result shows that in IPBF-DCACall selective encryp-
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tion mode, the encryption represents, for most of the cipher, less than 1% of the decoding time.
The resulting frame rate of all ciphers but SSMG is 75 fps for a sequence at 30 fps. Real-time play-
back is therefore insured. SSMG frame rate 1s about 55 fps.

Though we could not use gprof for the MPEG player it is difficult to say what is really measured.
The result has to be considered with carel. Each measure has been made 5 times with the mean
value. These measurements have a large diffusion of 240 ms. Therefore, this result can't be used to
compare the performance of the ciphers. This comparison is already done in Section 6.1.5.2. The
only result we could give is the difference between encrypted and not encrypted playback of the
video.

6.1.6 MAIN RESULTS

6.1.6.1 FASTEST CIPHERS

The measure we have made here give a good idea of the performance of the ciphers already enu-
merated. It shows clearly that RC4 is the fastest stream cipher and Rijndael presents the best per-
formance among the AES ciphers.

6.1.6.2 MEASURING ONE SEQUENCE

The measurements have been made only for one sequence. Different sequence would give dif-
ferent results due to the fact that the number of I, P or B frames can be different from one sequence
to another and the number of I-blocks depends of the complexity of the movements and changes
between the frames of a sequence. In fact the results can be extended to include to the other en-
cryption schemes or sequences from the bits/sec rate that different ciphers are able to process (if
the number of bits to be encrypted is known).

6.1.6.3 ENCRYPTION OVERHEAD

The results show that encryption represents a small part of the encoding-encryption process.
The selective encryption offers the possibility to reduce dramatically the number of bits, but in
some of the modes parts of the sequence are still visible.

In decryption-decoding process using IPBf-DCACall selective encryption mode, the processing
time for the cipher represents less than 1% of the complete processing time. Further, discussions
for the different modes can be found in [100].

6.1.6.4 INTERFACING THE CIPHERS

The interface between encoder and cipher has to be designed carefully in order to achieve the
highest performance. The number of time a cipher is called during a sequence should be brought
down as much as possible (work with big blocks). The OFB mode offers quite good results for
MPEG stream encryption (variable length encoded stream).

6.1.6.5 WEAKNESSES OF THE ENCRYPTION SCHEME

The overhead due to encryption will vary depending on the video sequence. The strongest var-
1ations will happen in the Iflb (I-frames an I-blocks) encryption schemes. This is due to the fact
that some complicated streams might have much more I-blocks than other steady or simple video
sequences. The selective encryption scheme should be designed for the worst case.
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6.2 PART2: MPEG-2 STREAM HARDWARE ENCRYPTION

6.2.1 PROGRAM STREAM AND TRANSPORT STREAM

Further to the MPEG-2 compression scheme the standard includes program and transports
streams definitions [108]. The program and transport stream define the way an MPEG-2 stream
will be packetized and multiplexed with other streams (audio, other video and more) for proper
transport through networks (transport stream) or storage on digital storage media (program

stream).
Uncompressed digjtal vid?o stream picture picture picture picture
(Presentation Unit) (830 kbytes) (830 kbytes) (830 kbytes) (830 kbytes)
MPEG-2 compression to 5 Mbit/s
(Access Unit)
The actual size depends on target bit-
rate and complexity of picture compressed compressed compressed compressed
"I picture ‘B’ picture "B’ picture P’ picture
(100 kbytes) (12 kbytes) (12 kbytes) (33 kbytes)

access unit

El y Stream prising units -
(video, audio or other)

Packetised Elementary Stream
(PES Packets)

188 bytes PES packet PES packet payload

@ PES packet headér

Transpan packe( Payload Adaptation field
{used to waste
excess space)

Transpont Stream (TS)

Header
(4 bytes)

Figure 6-53: MPEG-2 from Presentation unit to Transport stream

Figure 6-53 illustrates the different streams composing the MPEG-2 systems layer [108]. The
output of the MPEG-2 video/audio encoder is the eementary stream. This elementary stream is usu-
ally organized into access #nit. An access unit is a frame or picture in the case of a video stream or an
audio frame, in the case of an audio elementary stream. This elementary stream is now mapped onto
a packetized elementary stream (PES), that consists of PES packets. As shown in Figure 6-53, each PES
packet has a PES header followed by a variable size payload. This payload can be an exact access
unit (which is a frame or a picture in the context of video) of the elementary stream. The PES packet
is then converted into transport stream (IS) packets, also consisting of a header and a payload. TS
packets, as can be seen from the figure, are of fixed length. MPEG-2 defines this length to be 188
bytes. This length was chosen with ATM and ATM Adaptation Layer (AAL-1) as possible transport
protocol levels in mind. A TS packet maps exactly into payload of four ATM cells. An ATM cell
has 48 bytes of payload, but one byte of the payload is used for the AAL-1 protocol (ie.,
4Xx47=188). Please refer to[108] for more detailed information MPEG-2 system standard.

6.2.2 MPEG-2 TRANSMISSION USING DVB STANDARDS

6.2.2.1 TRANSMISSION OF THE MPEG-TS

MPEG-2 Transport Stream (MPEG-2) is so called, is not, in itself a transport layer protocol and
no mechanism 1s provided to ensure the reliable delivery of the transported data. MPEG-2 relies
on underlying layers to identify the transport packets and indicate in the transport packet header,
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when a transport packet has been etroneously transmitted. European Standards DVB (Digital Vid-
eo Broadcasting) have been developed in order to ensures that under normal transmission condi-
tion, the recetved MPEG2-TS flow is quast error free.

6.2.2.2 DVB BEARER NETWORKS

DVB standards allows a DVB signal to be carried over a range of bearer networks. Various
standards have evolved which define transmission over particular types of link:

* DVB-S (Satellite) ETS 300 421 (Digital Satellite Transmission Systems).

* DVB-T (Terrestrial) E'TS 300 744 (Digital Terrestrial Transmission Systems).

* Interfaces to Plesiochronous Digital Hierarchy (PDH) networks (prETS 300 813).

* Interfaces to Synchronous Digital Hierarchy (SDH) networks (prETS 300 814).

* Interfaces to Asynchronous Transfer Mode (ATM) networks (prETS 300 815).

* Interfaces for CATV/SMATYV Headends and similar Professional Equipment (EN50083-9)

Digital TV transmission is currently making inroads into all types of transmission path. At the
beginning, digital programs were transmitted via satellite (DVB-S), then via cable using standard
DVB-C and now terrestrial digital TV is taking shape. The objectives of DVB can be briefly sum-

marised as follows:

* More efficient utilisation of the physically limited transmission media (bandwidths) and, as a
conscquence, a wider spectrum of information and opinions.

* Transmission standard allowing the use of available channels for information and data other
than audio and video data with equal privilege.

* TV standard combining different existing analog standards.

* TV standard providing both upward and downward compatibility for HDT'V.

* Reliable picture quality improved against previous analog standard

In DVB-S, 16 bytes of Reed Solomon (RS) coding arc added to each 188 byte transport packet
to provide Forward Error Correction (FEC) using a RS(204,188,8) code. For the satellite transmis-
ston, the resultant bit stream 1s then interleaved and convolutional coding is applied. The digital bit
stream 1s then modulated using Quadrature Phase Shift Keying QPSK modulation. In DVB-T,
cach MPEG-2 MPTS multiplex carries a number of streams which in combination deliver the re-
quired services. The information is transmitted using COFDM or Quadrature Phase Modulation
(QPSK) (COFDM uses either 1705 cartiers (usually known as '2k"), or 6817 carriers ('8k’)). Reed-
Solomon (RS) coding at 8% overhead.

6.2.2.3 FEC AND CHANNEL CODING

Digital video, when used in networked multimedia applications, suffers from data losses/errors.
This is a serious problem in the case of wireless networks. There are several ways to recover from
these losses or errors. Recovery mechanisms based on re-transmission of the data may not be suit-
able in many cases because of the real-time nature of the applications and the absence of reverse
channel for feedback. Real-time communication of digital video, as in the case of video conferenc-
ing, benefit from forward error correction/recovery techniques. Forward error correction (FEC)
codes and frequent synchronizing codewords are used in which sufficient extra bits, known as re-
dundancy, are added to the data to allow the decoder to perform corrections in real time.

The FEC used in modern systems is usually based on the Reed-Solomon (R-S) codes. A full
discusston of these 1s outside the scope of this thesis. Briefly, R-S codes add redundancy to the data
to make a code-word such that when cach symbol is used as a term in a minimum of two simulta-
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neous equations, the sum (or syndrome) 1s always zero if there 1s no error. This zero condition 1s
obtained irrespective of the data and makes checking easy. In Transport streams, the packets are
always 188 bytes long. The addition of 16 bytes of R-S redundancy produces a standard FEC code-
word of 204 bytes. In the event that the syndrome is non-zero, solving the simultaneous equations
will result in two values needed for error correction: the location of the error and the nature of the
error. However, if the size of the error exceeds half the amount of redundancy added, the error can-
not be corrected. Unfortunately, in typical transmission channels, the signal quality is statistical.
This means that while single bits may be in error due to noise, on occasion a large number of bits,
known as a burst, can be corrupted together. This corruption might be due to ightning or interfer-
ence from electrical equipment.

It is not economic to protect every code word against such bursts because they do not occur
often enough. The solution is to use channel coding which is a technique known as interleaving.
When interleaving 1s used, the source data are FEC coded, but prior to transmission, then the se-
quential order of the data stream is scrambled or reordered using a RAM in order to disperse the
MPEG-2 packet data throughout time. On reception, the data are put back to their original order,
or deinterleaved, by using a second RAM. The result of the interleaving process is that a burst of
errors in the channel after deinterleaving becomes a large number of single-symbol errors, which
are more readily correctable.

When a burst error reaches the maximum correctable size, the system is vulnerable to random
bit errors that make code-words uncorrectable. The use of an znrer code applied after interleave and
corrected before deinterleave can prevent random errors from entering the deinterleave memory.
When this approach is used with a block interleave structure, the result is a product code. Moreover,
interleave can also be convolutional (T7e/izs encoding), in which the data array is sheared by applying
a different delay to each row. Convolutional, or cross interleave, has the advantage that less memory
1s needed to interleave and deinterleave.

There are other factors to be considered: efficient modulation and multiplexing schemes are
needed for maximum utilization of bandwidth and tolerable rate of signal error. Thus, FEC when
used with QPSK modulation uses two forms of error correction. In order to correct for burst errors
at the receiver, it will be necessary to implement a two level FEC strategy of an outer Reed Solomon
(204:188) Code for an inner FEC Convolutional code. This strategy will enable the realization of a
convolutional coding with Vizterbi algorithm code for inner FEC decoding at the receiver.

Inner decoding for correcting burst errors is implemented as a Viterbi decoder, while Reed Solo-
mon decoding is undertaken for outer decoding in order to complete the channel decoding stage.
After the convolutional etror correction code has been removed and used as needed, a second error
form of error correction is used called the Reed-Solomon code. This correction results in 188 bytes out
for every 204 bytes coming in with the remainder used as parity bits to help correct any remaining
errors. Additionally, the FEC scheme also uses interleaving of the data stream to prevent noise
bursts from interrupting the flow of data.

6.2.3 DVB ENCRYPTION SYSTEM

A general overview of the DVB system architecture is shown in Figure 6-54. The function of
each block is as follows:

e Jsource coding and multiplexing: This provides the MPEG-2 compression tools to compress the
digital video and audio signals to the rate required by the data stream which, in turn, de-
pends on the specified quality of the media signal. It helps to reduce the bandwidth needed.
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* channel adaptation: This block helps to facilitate the transmission of the MPEG-TS over the
specific delivery medium. A particular modulation and coding schemes are adopted to en-
sure that the signal 1s matched to the channel environment. Depending on the channel char-
acteristics, either a more robust or a more spectrum-efficient modulation scheme may be
optimum [119].

* Transmission media: The transmission media can be based on delivery by satellite, cable,
SMATYV or terrestrial transmitters (UHF or microwave). Each one has its own physical
properties which have been considered in the development of the DVB systems. Obvi-
ously, the DVB Project does not specify particular requirements for the transmission
medium, but the transmission channel characteristics have duly been taken into ac-
count to ensure that reception of the MPEG-TS is virtually free of errors. The con-
cept utilized by DVB is based on guai-error-free QEF reception of the MPEG2-TS

" signal. This means that less than one uncorrected error-even-per-hour should be
presented to the MPEG decoder.

* Demodulation: implemented in the receiver chain in order to acquire the baseband MPEG2-

TS signal and to remove the RF carrier signal.
* Decoding: MPEG2-TS source decoding,

The encryption module is then incorporated at the transmitter chain between the source coding
and channel adaptation. Decryption is performed on the stream between demodulator and decoder.

MPEG-2 TS | Chanel adaptation MPEG2 TS
s“mnm“ B (cdnged —4>| Transmission modia »  Demoduet »|  Decodng
A modulation) I\
. Interfaces points T T '
Y 8Pl interface Y Y P! interface Y
Qock | Clock
Data <8>: Data <B>p
Transmiter Récepteur
DVALID _ DVALID
PSYNC PSYNC > _ PSle | PSYNC

Figure 6-54: DVB Encryption System using SPI

6.2.3.1 BASEBAND MPEG-2 INTERFACES

Baseband MPEG-2 interfaces are used to communicate MPEG data packets amongst collocated
MPEG equipment. These interfaces may be categorized in different ways: some transmit serial bit
streams, while others transmit parallel byte streams. An important differentiating factor in catego-
rizing these interfaces is the relationship between the raw clock rate and the rate at which MPEG-
2 data 1s transmitted over the interface. Two types of relationships exist between these rates:

* Packet synchronous (PS): The raw clock rate is directly proportional to the rate at which
MPEG-2 data 1s transmitted; such interfaces contain no padding,

* Packet asynchronous (PA): The interface’s raw clock rate is fixed, while MPEG-2 data 1s
transmitted over the interface at some maximum allowable capacity. The capacity is deter-
mined by the raw clock rate and any overhead required by the interface.

The PA interface may be thought of as a fixed-size pipe through which data may be pumped at

any rate up to the maximum capacity of the pipe. The PS interface is more like a customized pipe,
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the capacity of which has been matched to the data rate. According to PS and AS, three different
interfaces have been standardized ASI, SSI and SP1L

6.2.3.1.JASYNCHRONOUS SERIAL INTERFACE (ASI)

The DVB-ASI interface has become popular for use with infrastructure equipment in such fa-
cilities as cable headends or uplink sites. DVB-ASI is a fixed-frequency serial interface with a clock
rate of 270 Mbps that transmits MPEG-2 data in packet asynchronous fashion.

6.2.3.1.2SYNCHRONOUS SERIAL INTERFACE (SSI)

This is DVB’s less popular synchronous serial interface. Like the other DVB interfaces, it 1s a
point-to-point uni-directional link. The clock frequency varies depending on the data rate required
by the MPEG-2 transport stream, with a maximum upper limit of 105 MHz. The DVB-SSI is a PS
interface with the clock rate locked to the transport rate so that no stuffing is needed. In fact, if no
error correction bytes are included, the data rate equals the raw clock rate. The SSI interface allows
transport of 188-byte packets, or 204-byte packets with 16 bytes reserved for RS coding bytes or
dummy bytes. Automatic packet type detection is performed using the sync byte’s period of occur-
rence and inversion of the MPEG-2 sync byte to 0xB8 when valid.

DVALID

povno M .

Transmission Format with 188 Byles Packets

w UL — UL —"1UuL
e XRE D
pvALD | | ——
— ] M

Transmission Format with 204 Bytes Packets
(188 data bytes and 16 dummy bytes)

DVALID

PSYNC l_l I-——I

Transmission Format with 204 Bytes Packets
(188 data bytes and 16 valid extra bytes)

Figure 5-55: MPEG-2 TS packet formats for SPI
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6.2.3.1.3SYNCHRONOUS PARALLEL INTERFACE (SPI)

The SPI interface is a fairly popular point-to-point unidirectional parallel interface for connect-
ing infrastructure equipment at the headend or within an uplink site. Since the transport packet rate
is locked to the clock rate, the interface is PS; it transmits byte wide with a clock, packet gy, and
data-va/id signal as shown in Figure 5-55. The data-valid signal is used to differentiate between bytes
that are part of the 188/204 byte packet versus dummy bytes that follow a 188-byte packet.

The interface use the MPEG2-TS Packet structure (188 bytes) or the RS-coded packet structure
(204 bytes). The 204 bytes coming in with the remainder used as parity bits (addition of 16 bytes of
R-S redundancy to produce a standard FEC code-word) to help correct any remaming errors. For
the Synchronous Parallel Interface (SP1) and the Synchronous Serial Interface (SSI), the 204-byte
format may be used either for the transmission of 188-byte MPEG2-TS packets with 16 dummy
bytes, or for the transmission of 204-byte RS-coded packets.

6.2.3.2 CRYPTOSYSTEM STRUCTURE

Figure 6-56 shows the overall system architecture of the PK-SSMG. The architecture consist
of a datapath with single data bus connecting all the different instances associated with a central
control processing unit for resources sharing, while minimising the clock period and interconnec-
tions which also makes it possible to take account of low power consumption constraints. The da-
tapath includes a hardware operators comprising the exponentiator unit and the SSMG.

The combination of the exponentiator with SSMG makes the cryptosystem operating in three
different modes, exponentiation mode, an initialization phase and a combining or streaming phase.
The exponentiation phase is done once when setting up the secret key. The later operating modes
are best viewed as two connected parts, unified by the concept of a mixture generator and the
haching unit.

The exponentiation mode consist of Key generation operation. The Public operator generates
the Open Key Q and the Closed Key K from the Public Key E and Random Key R for encryption and the
Private operator generates the same Closed Key K from Private Key D and the Open Key Q for
decryption. These operations are described under Section 3.4.3.4. The secret key K is then stored
in the Key Memory. The initialization phase consist of resetting the mixture generator, loading the
Mixer with the Closed Key K and initializing the MG according to scheme described in Section 5.3
for both encryption and decryption operation. Combining consist of encrypting and decrypting the
frames according to scheme described in Section 5.3.

All input/output data pass through the input/output FIFOs including the SPI data and the user
control and data signals. These interfaces operates at the link speed (13.5 MHz) while system’s in-
ternal frequency is set to 100 MHz.

6.2.3.2.1 PK-SSMG INTERFACE

The interface comprises the 10 pin configuration, the SPI 10 data and a user interface for test
and forward key mode. The system configuration parameters are set prior to the combining phase.
These includes the encryption/decryption mode, mixture generator configuration, the key size and
the bypass mode. During initialization and combining mode the granularity may be changed on the
fly. Its configuration bit is stored in the frame decoder for use at the start of each new frame.

The user interface can be used for external key load or supplying the system with the exponent
and the basc of the exponentiator. Three bits wsr_data_ctrl, sourcel and source2 are used for the con-
figuration of source/destination of user input data as shown in Table 5-14. The usr_data_ctr/ bit is
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used to configure the user interface’s input/output data port while sourcel and source? bits specify

the destination source.

Exponentiator (X)

5
0
1
1

0
1
0
1

Exponentiator (base)

key Memory

Table 6-14: User interface control bits: data input destination

In output mode, the user may access the exponentiator, the KHF and the MG for test purpose.
The user control bits values in output mode are reported in Table 6-15.

ourcet Urce utput data from tinatio
0 0 Qutput FIFO data_out
0 1 MG data_ctrl
1 0 Exponentiator data_ctrl
1 1 KHF data_ctrl
Table 6-15: User interface control bits: data ontput
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Figure 6-56: PK-SSMG datapath
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6.2.3.2.2 MPEG-TS PARSING (FRAME DECODING)

The MPEG2-TS Packet structure (188 bytes) or the RS-coded packet structure (204 bytes) be-

gins with a 4-byte header. Of the various fields it contains, as shown in Figure 6-57, two are of par-
ticular interests:

e Adaptation field control: 2-bit field ad) and ad, indicate whether the TS packet contains an ad-

aptation field or not and whether an adaptation field id followed by a Payload or not. If an
adaptation field is present then the next byte contain the length size of this field.
* Transport scrambling control 2-bit field 55y and s¢y indicate whether the TS packet 1s scrambled

or not. The values of the 'I'S scrambling contro/ bits are parsed, prior to the decryption process.

010001 11 bypass

TEI PUSI TP 01 bit granularity
O

R 10 byte granularity

xx | xx | cc
00 no adaptation field, payload only
Transport scrambling ~ adaptation field o1 adaptation field only
control bits control bits 10 adaptation field followed by payload

Figure 6-57: IS packet header

The MPEG2-TS parsing is done in the frame decoding unit. Packet’s payloads with sqy and s¢
bits equal to 01 are encrypted using bit granularity. The configuration 10 is used for byte granularity.
When these control bits are equal to 00, the payload data of the corresponding packet are bypassed.
The adaptation field and packet header bytes are bypassed to the output FIFO.

6.2.3.2.3 MIXTURE GENERATOR

The MG is programmable in security with respect to the LESRs lengths. Further, the LFSRs
lengths are chosen to be Lyyxvgr>Lrop~LpoTT0M I Order to optimize the hardware. The field
size # and parameter k for which an irreducible trinomial of degree # in Finite Field exists are re-
ported in Table 6-16. These pairs define maximal period LFSRs and high MG linear complexity.

(127,89,87) 127/97 89/51 87/13
(521,127,89) 521/158 127/97 89/51
(607,521,127) 607/273 521/158 127/97

(1279,521,127) 1279/418 521/158 127/97

Table 6-16: MG configuration parameters
6.2.3.2.4 EXPONENTIATOR

The digit-serial LSA exponentiator reported in Figure 4-28 is implemented with D=4. The ar-
chitecture has been modified to be programmable with respect to the key size (Lyygp). This is
done by simply adding some multiplexers to choose the right intermediate signals in feedback loop
of. The 1O data of the exponentiator are formatted at the input and output stages (interfaces be-
tween the input FIFO, the exponentiator and the bus). Since the user input data are buffered at the
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link speed and the exponentiator is clocked at the internal clock frequency, the exponentiator input
data are not immediately available. Thus, during the feeding operation the exponentiator is halted
and 1ts internal state i1s freezed when the input data is not available. Furthermore, the vector X in-
volved in the computation of the exponentiator (Sectton 3.4.3.4) 1s generated internally using the
control signal of the exponentiator.

6.2.3.2. 5INPUT/OUTPUT FIFOS

The DVB-SPI frequency and the modes of operation of the mixture generator and its granularity
described in Section 5.2, impose some buffering of the input and output data in order to reduce the
latency and provide a constant 10 bitrate (13.5 MB/s). This buffering is implemented using FIFOs
operating at the link speed and whose size may be matters at issue. Speeding up the frame process-
ing while maintaining the required 1O bitrate is one solution. In fact, there exist a trade-off between
the MG’s period (size) and the size of the FIFOs. Using long period for increasing security yields
to oversize the MG, increases the latency and thus, necessitate large FIFOs. Increasing the system’s
internal frequency yielding to operate at two system frequencies may be exploited to preserve the
MG security properties. Table 6-17 and 6-18 shows a worst cases analysis of SSMG latency oper-
ating at 100 MHz in bit and byte granularity respectively using two frame’s formats.

88/2 3640/3800
(521,127,89) 188/204 4040/4200 < 13912/15096
(607,521,127) 188/204 8360/8520 < 13912/15096
(1279,521,127) 188/204 8360/8520 < 13912/15096

Table 6-17: SSMG Latency: byte granularity

Thus, when operating at 100 MHz, the time required for processing one frame is less than the
input frame time. This is the case when the MG operates in byte but bit granularity (Table 6-18).
The frame processing latency is increased due to the slowness of MG. In this case we spend much
time in processing the frames, delay is accumulated and the 10 data cannot be efficiently buffered.

op Leotrom) .
(127,89,87) 89+87=176 1504/1632 16800/18080 > 13912/15096
(521,127,89) 216 1504/1632 17200/18480 > 13912/15096
(607,521,127) 648 1504/1632 21520/22800 > 13912/15096
(1279,521,127) 648 1504/1632 21520/22800 > 13912/15096

Table 6-18: SSMG Latency: byte granularity

We can remedy this issue using the LFSR architecture shown in Figure 5-40. Thus, speeding up
the MG when operating in bit granularity with keystream output bit rate equal to byte granularity
mode.

The worst case corresponds to 648 clock cycles required for the initialization of the MG in
(1279,521,127) configuration and operating at 100 MHZ internal frequency. During this time 88
IO data bytes must be buffered at 13.5 MHz. This is the minimum size of the input/output FIFOs.
Moreover, the FIFOs register based design uses a pointer-based scheme. When the FIFO is ac-
cessed, only the pointer stored in a single bit shift register moves, not the data. Compared to other
register based FIFO designs, where significant power can be consumed in shifting data between
registers, this scheme minimizes power by minimizing data switching.
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0 PSYNC VALID Mangler

1 0 0 Exponentiator (exponent)
1 0 1 Exponentiator (X)

1 1 0 Exponentiator (base)

1 1 1 key Memory

Table 6-19: Input FIFO: data flags

The FIFOs contains blocks of 11-bit data. Among these are 8-bit input data from the SPI, the
valid bit and PSYNC bit. The two later bits are used with an additional bit as flags. The forwarding
FIFOs data may be used to supply an external secret key to the key memory or other exponentiator
data. Table 6-19 shows the value of thesc flags and the corresponding destination of the data.

6.2.3.2.6 BUS MULTIPLEXING

In order to reduce the capacitance of point-to-point buses due to locality of reference (commu-
nication only with physically adjacent functional units see Section 2.3.3.2), a single shared bus is
used. Different tasks are sequenced using finite control state machine and data are exchanged on
the shared bus. Table 6-20 shows sources and destinations units sharing the bus.

i ource Destination
Exponent acquisition input FIFO Exponentiator
expo. base acquisition input FIFO Exponentiator
Exponentiation (result) Exponentiator output FIFO
key forward load input FIFO key Memory
MG initialization key Memory MG
SSMG test KHF output FIFO
input FIFO Mangler
Combining process MG Mangler
Mangier output FIFO and KHF

Table 6-20: Bus Sharing: source and destination

The Concurrent signals during combining phase are processed using time multiplexing bus.
Three cycles are required to process one byte of data frame (Figure 6-58) yielding to increase the
latency. Using the specification of input/output FIFOS we are able to buffer the input/output
frames before receiving a complete frame (no overflow), see Table 5-21. In the worst case, 110 10
data bytes must be buffered.

Bus i
state >< Mangler data input >< MG data output ><

Figure 6-58: Bus multiplexing during combining phase

Mangler data
output

X

"~ 75607

(621,127,89) 282 564/580 8460/8620 < 13912/15096
(607,521,127) 724 564/580 12880/13040 13912/15096
(1279,521,127) 808 564/580 13720/13880 13912/15096

Table 6-21: SSMG Latency with bus sharing: bit/ byte granularity
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6.2.3.2.7 MANGLER

In the case of adaptation and packet header fields the output bytes from the input FIFO are not
encrypted. These bytes are forwarded to the output FIFO. The Mangler request the keystream from
the MG only when the data is a part of the payload. The MG is disabled in case where the data is
bypassed and a control signal is received from the MG, which indicates that the bus is disposed for
the Mangler data output.

Bus s Mangler data
state output2
bypass

Figure 6-59: Bus multiplexing: data bypass and encryption

The Mangler request the keystream after receiving one byte data valid. The keystream is received
two clock cycles later due to the latency of the MG. Thus, the mangler data input is buffered up to
2 bytes. Figure 6-59 shows the bus multiplexing scheme during combining phase when the Mangler
data mnput is bypassed or encrypted.

6.2.3.3 PK-SSMG CONTROLLER

The controller is a finite state machine that controls the cryptosystem instances and mange the
shared bus.Figure 6-60 gives an overview over the state diagram governing the exponentiation and
the MG initialization process. The combining process including the mangler and the MG is con-
trolled by the frame decoder.

. FIFO, ty="1"
begin ~emply:

request data
from FIFO

disable Mangler
counter=counter-1
FIFO_empty="1"
data distination buffermem="1’{  data distination Test Mangler
test TS byte test TS byte

request data from
counter=2 FIFO

>

counter=2

exponentiators'1’ PSYNC="1"

Wai_Catch Catch key (request
discarde byte key trom keymem)
counter=counter-1 counter=2

NtAtore;

check exponentiatory
request data from
FIFO

MG TOP it_ini
AR wait_init
initialization countar=counter-1

MG BOTTOM
initiaalization Wait_HR
request mask bit
- reset hasher
counter=2

exponentiation finished

Send GetData_Ft

. counter/=0
wait_mangle
counter=counter-1

Figure 6-60: PK-SSMG finite state machine (controller)
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At the start we request a byte from the input FIFO. It is processed according to its destination
(if the FIFO is not empty): key memory or exponentiator. If the data is the first byte of a new frame,
the Mixture Generator 15 initialized. because of the system operates at two different fraquencies,
certain block such as the exponentiator are frozen (waiting for the next data bytes), when loading
the data operands while the FIFO 1s empty. Also, some wait states are included in order to over-
come the inherent latency of certain processing blocks which may be duc to the data formatting

6.2.3.3.1 THE BURST MODE

During MG nitilization phase, the incoming data are accumulated in the input FIFO. After in-
itialization the input FIFO is guttered nll empty at internal frequency rate; the data is then read each
3 clock cycles. In normal mode. When the input FIFO is empty, the read process becomes depend-
ent upon the incoming data from SPL The delivery rate (processing time) is then reduced to one
processing cach 7-8 cycles since the link speed 1s 13.5MHz. The burst mode is defined as the inter-
val of time spent in reading the FIFO s data after MG inttialization and before normal mode as
shown in Figure 6-61. During burst mode an amount of data bytes is available in the input FIFO,
which correspond to the bytes recetved from the SPI during MG initialization phase.

Loadingthe | Mixture Generator | nomal output FIFO guttaring
secrel key infigization  burst' mode,  mode
(160 cycles) | (648 cycles) {554612|qms) (< 808 cyctes)
Mudure |
generator activity

v sy -

output FIFO

Data output = m——

Figure 661 Burit mode

6.2.3.3.2 EXPONENTIATION PHASE

The bytes destined to the exponentiator (when Exponentiator ="17) are formatted are the input/
output stage. Thus two clock cycles per byte are required when loading input operands dunng burst
mode. In normal mode (input FIFO empty) the exponentiation is frozen waiting for SP1 data. Ex-
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ponentiation phase starts when the input operands are completely loaded. During the this phase
the MG, hash module and mangler are disabled till end of computation,

6.2.3.3.3 MG INITIALIZATION AND COMBINING PHASES

When the recetved byte is the first byte of a new frame (PSYNC="1") it is discarded and the MG
s initialized. It 1s requested afterwards when MG 1s initialized. During this phase the input FIFO is
filled with the SPI data bytes. These bytes are processed during burst mode, When switching be-
tween the fast cycle (burst mode) and normal mode, the incoming data rate from the input FIFO
s reduced to one processing cach 7-8 cycles. The fact that link and internal clock frequencies are
not synchronized at the end of burst mode, a test 1s made (test mode state in Figure 6-60) to detect
the end of burst mode by requesting a data from the input FIFO, During decryption at the end of
burst mode, the bus can be shared between the SPI data and the keystream or the output of the
previous data byte. In this case the requested keystream output and the incoming Mangler output
data must be sufficiently shifted in time such that they can be written on the bus, Another state s
added to the controller (disable Mangler) in order to disable the data request from the input FIFO
as shown in Figure 6-62.

COsl"lt;HtDe"Bf X tostmode X ‘digabls Mangisr X bagin X wait x cll:jll.l::lun X tent moda )

“Sa

i 1 dat
Action X requast data from Input FIFO anfl::"l‘ IF. ')
Bus state :X‘“m’,‘nmx e X ann X an X"""“""' Mn:g::;&aux\l_lu&gﬂtl)

Figure 6-62: Disabling data request from the input FIFO

6.2.4 PERFORMANCE MEASUREMENT AND RESULTS

The cryptosystem was implemented at gate level using the same technology 1.8pum operating at
1.8v. It was tested at all possible key lengths, granularity and packet sizes and was found to be fully
functional in all configurations.

Clock free architecture, K = (127, 521, 607, Quock free architecture, K = (127, 607)
tetad o 1Zrs ltal
T Exponentiator 7280 571 ° Exponentiator
& [Mixture Generator 2524 198 % Mixtum Gererator
2 |key Memory 043 7.4 % ey Memony
& |output FIFO 676 53¢ output FIFO
= [input FIFO 650 51°% |inputFIFO
- |cELLHASH 625 ag% |CHLHASH
Others 051 04 Others
gfol  21813mW | fiolal
E |Exponentiator 12600 583 Exponertiator
& |cK 4085 189% |cx
= |key Memory 1643 76 key Mamory
5 |Mixture Generator 1081 50%  |Mxture Generator
& |output FIFO 1081 509% |output FIFO
© CELLHASH 1037  48°% |CELLHASH
% |input FIFO 000 00% |input FIFO
CKB 0.00 0.0 % B
Others 0.86 04 % Othars

Table 6-22: Area and power consumption of each instance in the PK-SSMC oryptosystem
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Two different architectures were implemented. The first one 1s security scalable with four dif-
ferent key lengths 127,512,607 and 1279 buts. In the second architecture the key can be chosen to
be 127 bits length as low security level or 607 bits as high security level. The power consumption
and gates area are estimated. Table 6-22 shows the amount of power consumption and area occu-
pation of each instance of the cryptosystem for both implementations.

Bave | WO
y BCELLHASH ockKe
140.00 Wit FFC Wi f kO
/ Qoutpa FiF 0 250 = BCELLHASH
w  120.00 Omesro e Boutput FIFO
i EMire Generator s O Mixtire Genesator
100.00 _/ L S oone st E 200 gg:mtmxv
!. / 5 O e e
80.00 ] 150
60.00 - |
B , g 100
g 40.00 / 8
bA g
’ :
a
0.00 ! 0- .
Clock free Clock free  Clock gating Ciock free Clock free  Clock gating
chitecture K archwiecture K architecune K Foeture ochiteCtuse  Fchitectures
« (V). 521807 « (R7 607) « (27601 K=(R7 521 K «[R7.607) K=(R7.807)
279) 80T, ©719)
Architecture Architecture

Figure 6-63: Area and power profiles of the crypiosystem

I'he power is estimated using gate level simulation on a pseudo random input. The test compris-
es 127 bit exponentiation and the encryption of 4 frames. It is shown that the exponentiator con-
sume the greatest power and area shares (more than 40%). As shown in Figure 6-63, gating the
clock helps to reduce significantly (more than 50%) the power consumed by different instances
Also, a gain of 15% is noticed on the area when gating the clock. Hardware implementation s 2
orders of magnitude more area efficient when scaling the key length from 1279 down to 607 bits,

1200

o
o
o

Energy Dissipation per bit [pJ/bit

Clock Gated Clock Gated
Frea/K=127 ClockK=127 Free/K=807 OCock/K=607

Architecture type/Key length

Figure 6-64: Energy consumption per bit of different implementations
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The energy scalability of the cryptosystem is seen in Figure 6-49 which shows the effects of re-
ducing the key length (disabling unused datapaths) and gating the clock to exploit a reduction in the
amount of computation as the key length is varied from 607 bits down to 127 bits, at a fixed data
stream rate of 13.5MBytes/s. The results reported in Figure 6-64 are estimated using gate level sim-
ulation for the encryption and decryption of 20 pseudo random frames using bit and byte granular-
ity. The granularity has little effect on the power consumption as only little decrease (about 1.3%0)
in the switching activity is noticed at the same clock frequency. The same energy is consumed dur-
ing encryption and deeryption process as the system is completely symmetrical (the same resources

are shared during these processes).

Further, using 3 times low level of security helps to reduce the amount of encrgy consumed per
bit by 17% only. However, gating the clock reduces significantly the amount of encrgy. The optimal
solution dissipates between 200p] /bit (@13.5 Mbytes/s) using low level of security and 400 p] /bit
at the same throughput using high level of sccurity,

6.2.4.1 PHYSICAL DESIGN

The PK-SSMG core has been designed and synthesized in a 0.18um 61.M technology (technol-
ogy with high integraton density) with 100 MI1z internal system frequency. First result of the
placed and routed core including all components (exponentiator, SSMG) gives an area of less than
3mm> (.'I.?(n'm‘n2 including the Die boundary and 1/0 pins). Detailed implementation numbers of
the core are shown 1n T'able 6-23. A layout of the PK-SSMG s shown in Figure 6-65, where the
different components are highlighted. One can see the major impact of the exponentiator and the
Mixture Generator on the whole area mainly duc to the fact that we did not use full custom routing
of such highly regular block. However, their impact on the nming delay 1s minimal since the hole
architecture of such block is pipelined and presents a short eritical paths.

Unit Area (mm?) Overhead (%)
Exponantiator 1.23 46.9
Mixture Generator 0.58 22
Output FIFO 0.24 9.2
Input FIFO 023 8.7
KHF 0.18 6.8
Key buffer 015 56
Controller 0.005 0.33
Mangler 0.004 0.27
Frame Decoder 0.003 0.2
Total Calls Area 2.62 100

Table 6-23: PK-SSMC: Core VIST implementation (0.1 8um,6MI.)
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CHAPTER 7

7  EFFICIENT IMPLEMENTATION OF RIJNDAEL BLOCK
CIPHER

In this chapter we present an analysis of RIINDAEL hardware architectures from the viewpoint
of its realization in a FPGA. What follows is an investigation of the Rijndael block cipher to deter-
mine the nature of its underlying components. A general characteristics of the algorithm is ana-
lyzed, then the cipher structure is defined. An efficient iterative looping architecture is developed
and implemented. Implementations are done in ASIC and FPGA where, SBOXes are implemented
using LUT-free design. ASIC implementation, allows a faster analysis of the required area and per-
forming a power analysis, which is not possible within an FPGA. In the other hand FPGA imple-
mentation is optimized for high-throughput. As a result, the implementation exhibit higher
throughput Per Slices (I'PS) factor when compared to the most known FPGAs implementations.

7.1 CHOICE OF AN ARCHITECTURE

The choice of a hardware architecture suitable for the implementation of block ciphers is influ-
enced mainly by the required performances that can be defined by the throughput, power con-
sumption and area. Throughput can be limited by the mode of operation and area by the cost and
limit of maximum available FPGA slices.

7.1.1 MODE OF OPERATION

Symmetric-key block ciphers as described in Section 3.4.1.3 can be used in several operating
modes depending on the application and the current security standards. From the point of view of
hardware implementations, these modes can be classified into two major categories:

* Non-feedback (NFB) modes, such as ECB and counter mode.
¢ Feedback (FB) modes, such as CBC, CFB and OFB.

There are variety of suitable implementation of the architecture reported in Figure 3-4. The
choice is dictated by the throughput and limited by the operating mode, see Section 7.1.3 and Sec-
tion 7.1.4

7.1.2 HARDWARE PARAMETERS

Due to the nature of block ciphers algorithms, the hardware architectures most suited for their
implementation depends on the hardware characteristics and parameters including speed, area and
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the mutual dependence among these parameters. The most used characteristic for performance
evaluation of the block cipher is the throughput that is calculated as:

T = (B)xN,)/L (7-32)

where, B,is the block size, N, is the number of blocks processed simultaneously and Lis the la-
tency or cycles required per encrypted block. Typically, the encryption and decryption throughputs
are equal, and therefore only one parameter is reported.

AS FPGA resources are limited, a suitable metric for the measure of the FPGA hardware re-
sources cost associated with an implementation’s resultant throughput is the Throughput-Per-Slice
(IPS), defined 1n [124] as:

TPSE = (EncryptionRate)/(numberofCLBSlacesUsed) (7-33)

Therefore, the optimal implementation will display the highest throughput and have the largest
TPS. Note that the TPS metric behaves inversely to the classical time-area product used as perform-
ance parameter metric for ASIC implementation.

7.1.3 CIPHER ARCHITECTURES FOR FEEDBACK MODES

7.1.3.1 BASIC ITERATIVE LOOPING

Iterative looping is an effective method for minimizing the hardware required. This basic hard-
ware architecture used to implement an encryption unit of a typical secret-key block cipher is shown
in Figure 7-66a. One round of the cipher is implemented as a combinational logic, and supplement-
ed with a single register and a multiplexer. In the first clock cycle, input block of data is fed to the
circuit through the multiplexer, and stored in the register. In each subsequent clock cycle, one
round of the cipher is evaluated, the result is fed back to the circuit through the multiplexer, and
stored in the register. The two characteristic features of this architecture are:

* Only one block of data is encrypted at a time.
* The number of clock cycles necessary to encrypt a single block of data is equal to the
number of cipher rounds .
The throughput and latency of the basic iterative architecture, throughput bi and latency bi, are
given by,

T = (B,xf)/L (7-34)
where, the latency L is equal to rin this case.

7.1.3.2 PARTIAL AND FULL LOOP UNROLLING

The partial loop unrolling architecture is depicted in Figure 7-66b. The only difference com-
pared to the basic iterative one is that the combinational part of the circuit implements k <r rounds
of the cipher, instead of a single round. This architecture allows for the unrolling of multiple round.
However, while this approach reduces the number of clock cycles needed to perform a block en-
cryption, it maximizes the required hardware and the worst case register-to-register delay for the
system, resulting in an extremely slow system clock.

Architecture with full loop unrolling is shown in Figure 7-66¢. The input multiplexer and the
teedback loop are no longer necessary, leading relatively to a small increase in the cipher speed and
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decrease in the circuit are compared to the partial loop unrolling with the same number of the
rounds unrolled.

Register
Register

Combinatorial logkc = one
round

Ouput 3
Output
Register Input

Round #rounds

Qutput

Figure 7-66: Alternative architectures of the encryption/ decryption unit of a block cipher suitable for FB mode: a)
basic iterative looping, b) partial lop unrolling, c) full loop unrolling

From Equation 7-34, it is shown that bigger the latency L is, smaller is the achieved throughput
T using loop unrolling architecture. Basic iterative looping achieves the smallest throughput since
L=r. Partial and full loop unrolling helps to reduce the number of clock cycles necessary to encrypt
a single block of data by a factor £. At the same time the minimum clock period increases by a factor
slightly smaller then £, leading to an overall relatively small increase in the encryption throughput.
However, the area increases significantly as multiple round are implemented.

7.1.4 CIPHER ARCHITECTURES FOR NON-FEEDBACK MODE

Six alternative architectures that can be used for fast implementations of secret-key block ci-
phers operating in NFB modes are shown in Figure 6-6. These architectures can be dertved into
two major categories, with members of first group shown in Figure 6-6abc and members of second
group shown in Figure 6-6def. Each group consists of several architectures arranged in such way
that:

* 'The next architecture in the same category requires more area, but gives higher throughput
than the previous one.
* There exist a simple transformation that lead to the subsequent architecture in each se-
quence.
Each group of architectures start from the basic iterative approach, discussed above, that can be
chosen as an optimum architecture for the NFB mode.

7.1.4.1 PARTIAL/FULL PIPELINING

A partially pipelining architecture offers the advantage of high throughput rates by increasing
the number of blocks of data that are being simultaneously operated upon. The presence of regis-
ters inside the combinational logic on the boundaries between any two subsequent cipher rounds
allows the processing of £ blocks of data at the same time. Each of these block is stored in a dif-
ferent register at the end of a clock cycle. Thus, multiple streams of data are processed and the
throughput is increased by the hardware resources 1s maximized as shown in Figure 6-Gbc.
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7.1.4.2 PARTIAL/FULL PIPELINING WITH SUB-PIPELINING

A technique that can be used in order to reduce the delay between pipeline stages when the
round function of the pipelined architecture is complex. Adding sub-pipeline stages as shown in
allows the sub-division of the round function into smaller functional blocks. This sub-division can
be performed on the round function for the iterative loop unrolling and duplicated for each stage
on the pipelined architecture as shown in Figure 6-6def. The throughput and area of the circuit in-
crease proportionally to the number of round stages &, This have the.... of increased latency by a
factor equal to the number of sub-divisions.

Figure 7-67: Alternative architectures of the encryption/ decryption unit of a block cipher suitable for NFB miode:
a) basic iterative looping, b) partial outer-round pipelining, c) full onter-round pipelining, d) inner-round pipelining,
e) partial mixed inner- and outer-round pipelining, f) full mixed inner- and outer-round pipelining

7.2 STRUCTURE AND PARAMETERS OF RIJNDAEL BLOCK CIPHER

Created in 1999 by Vincent Rijmen and Joan Daemen [112]. The Ryndael round function is
based on 3 underlying processes as shown in Figure 7-68:

* Linear transformation using rotations and constant multiplications.
* Non-linear transformation based on SBOXEs
* Key injection using a XORing operation

Non-linearity is provided through the use of SBOXes, which includes operations such as inver-
sion and multiplication over GF(2%). Other operation such as rotation and combination of linear
and non linear transformation guaranty a high diffusion required to build up a block cipher.

The key length K; and the block size B, are independent and vary in the range 128,192 and 256
bits. The number of rounds 7 required for the encryption of one block of data is defined by both
K; and B, as shown in Table 7-1
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Figure 7-68: Rindael round function structure: a) general structure, b) optimized structure

BF128 bits BF192 bits BF256 bits
K=128 bits 10 12 14
KF=192 bits 12 12 14
K256 bits 14 14 14

Table 7-1: number of round r as a function of key and block length

In Section 7.1.3.2, it 1s shown that loop unrolling enables increasing the circuit speed in FB op-
erating mode. Nevertheless this increase is relatively small and incurs a large area penalty. In NFB

operating mode, full pipelining offers better characteristic since, it helps to reduce the latency, while
operating at the same minimum clock period. The throughput is thus increased with the number
of implemented round stages £ as shown in Figure 7-69. However, inserting registers inside of a
.cipher round significantly increases the area with respect to & compared to loop unrolling scheme.
As a result, the throughput to area ratio increases until the number of internal pipeline stages reach-

es 1ts maximum.
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Figure 7-69: Throughput & area vs round stages

In what follows an area efficient Rijndacl round funetion is implemented. The motivation is to
minimize the number of logic required mainly by the SBOXes. The targeted architecture is the basic
is the basic iterative looping since it is optimal architecture for both FB and NFB modes.

7.3  RINDAEL ITERATIVE LOOP UNROLLING

The round function describes exactly one round of the cipher, including encryption and decryp-
tion. The round can be run repeatedly to perform entire encryption or decryption process. The de-
sign includes a key schedule optimized implementation thus, all subkeys are computed on-chip.

7.3.1 INTERFACE

Fxternal interface is fixed to be of general purpose interface, which casily operate in a micro-
processor system, and allows performing encryption with the maximum speed. It consists of a 32
bits data/key bus along with 2 control signals as shown in Figure 7-70. These control signals arc
used to enable encryption and decryption modes as well as the data and key loading into the cireuit.

Input duta bus / Masier Key bus

,ir 11 bits

Clock —W» % -
Block cipher Rijndael [ EnerypuDecrypt
Resei —W —— Load
Done l 32 biu{ Qutput data bus

Figure 7-70: External interface

The circuit is composed of the key schedule and the round function as shown in Figure 7-71. At
cach iteration the round function uses a round key of 128 bits generated by the keyschedule.
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Key Schedule
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Figure 7-71: On-<chip subkeys calculation

7.3.2 KEY SCHEDULE

For each round key four 32-bit subkeys are computed on chip using the bit-level structure de-
picted in Figure 7-72. The input key is the master key for the first round and the previous computed
round keys for the later rounds. Beside the input /output stages, the expansion unit consists of byte
substitution (SBOX), rotation and constant multiplication with subkeys. These components are
configured to perform both encryption and decryption.
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Figure 7-72: Key-schedule Block bit-lerel S tructural Architecture
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The architecture can be extended to 192 or 256 bits key length using additional branches to the
right side of structure. The bit-level constant multiplications required for round keys generation
during decryption, are implemented using the MIX components in the FFs_RD KEYO,..,
FFs_RD_KEY3 modules configured as shown in Figure 7-73.

0 bia
EnuryptOecrypl
L
x|
E piDecrypt
ar bty

Figure 7-73: Output stage of the Key-schedule for final operation
7.3.3 DATA FLOow

The bit-level structure of Rijndael round function for encryption and deceyption is shown in Fig-
ure 7-74. It can be extended to variable message lengths. Here, only a version with 128-bit message
length is discussed. The datapath consists of input and output stages and four 32-bit wide branches
with processing components. Input and output data are XORed with the same four subkeys
KEYO,... KEY3 before and after the processing. T'he 32-bit dara in cach branch are processed using
the same components operations: byte substitutions (SBOXes), rotations and constant multiplica-
tions configured to perform the required operations for both encryption and decryption.
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Figure 7-74: Bit-level Structural architecture of the round function
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- 7.3.3.1 SHIFT ROwW FUNCTION

Shift components are bits and bytes rotation functions. SHIFTO is transparent component and
SHIFT?2 is 2 bytes right rotation. The structure of SHIFT1 and SHIFT3 components is reported
in Figure 7-75. These are bit rotations as detailed in the figure.

A 32 bits /Psz bits
3
11 OX— Encrypt/Decrypt 11 Or Encrypt/Decrypt
1 bit shift 3 bit shift 3 bit shift 1 bit shift
right right right right
g Z t/D N 02— E t/D
SHIFTY 0 Encrypt/Decrypt SHIFTS 1 ncrypt/Decrypt
A 32 bits A 32bits

Figure 7-75: SHIFTT and SHIFT3 components

7.3.3.2 MIX COLUMN FUNCTION

MIX components are applied on 32-bit words and they represent following matrix multiplica-
tion (encryption and decryption matrix),

02 03 01 o1] [X,
01 02 03 01} X,
= L]

01 01 02 03| |X,
03 01 01 02] | X,

OE OB 0D 09 X,
09 OE 0B 0D
= [ ]

X
0D 09 OE OB| |X,
0B 0D 09 OE| |X

RIS
SN 2N

These matrix multiplication are constant multiplications that are performed at MIX components
in Figure 7-74. The underlaying structure of a MIX component is depicted in Figure 7-76. Multipli-
cations are realized by bit-parallel GF (28) multipliers and are hardwared [75] and predisposed as
shown in Figure 7-76.
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Figure 7-76: MIX and Elementary MIX component structure
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7.4 RIJNDAEL SBOXES

When implementing the Rijndael algorithm, it was first determined that the SBOXes were the
dominant element of the round function in terms of the required logic blocks. Each round requires
16 copies of the SBOX, implementing a combination of GF(28) inversion with linear transforma-
tion as shown in Figure 7-77, each of which is an 8-bit to 8-bit requiring significant hardware re-
sources. However, the remaining components of the round function including byte substitutions,
rotations and constant GF (28) multiplications, are simple in structure requiring few hardware re-
sources.

o | 0,1 |32 | A3 | R4 | Bos boo | Bo Ro,s\ by | Bos | Pos
B0 &0 | 9 6|84 GF(2%) Affine Bio Dy [H b | P14 | Pis
a. . f - . b,

1 M inversion Transformation b. |b H b. b
B0 | Aoy | Qa3 | Boa | B 20 | Pot | U3 | P20 | Pas
Non-linear Linear
850 | 831 | 832 | 833 | %34 | F35 | Transformation Transformation B30 | P31 | Psz | Pog | Daa | Pos

Figure 7-77: Rijndael SBOX

Inversion over GF(2”) is generally costly in term of gate count and delay. Bit-serial inverter are
often used in order to reduce the hardware resources. T'wo solutions can be considered in order to
cope with the inherent latency of bit-serial architecture,

* Using Look-Up-Table (LUT) to store the inversion results. This requires two types of LUT
based SBOXes one for encryption and the other for decryption (RAM blocks organized in
8X256)

* Using bit-parallel inverters.

The usual solutions uses LUTs. Here each SBOX is an 8-bit to 8-bit LU'T, requiring significant
memory space. Figure 7-78 shows the amount of RAMS blocks required as function of the imple-
mented round stages in iterative/partial loop unrolling and partial pipelined architectures.

Since there 1s a space-time trade-off, bit-parallel architectures are faster, which makes them at-
tractive for constructing the SBOXes. However, the gate consumption of such architectures 1s to
high. Meanwhile, bit-parallel inversion is possible with moderate gate count using composite fields.

In composite field, GF (28) is decomposed into GE[(24?] and the representation of GF(ZS) 1s
looked at as an extension of the field GF (24). Therefore, the computation the parallel inversion over
GF (28) 1s implemented based on direct inversion in GF(24) using the algorithm of Morri-Kasahara.
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Figure 7-78: Memory requirement for Rijndael SBOXes vs round stages

7.4.1 ALGORITHM OF MORII-KASAHARA

The algorithm 1s described in [120] and reintroduced in [121], It makes use of extension ficld of
degree two,

Let us consider an clement A(x) € GF(2*?)%) in canonical representation: A(x)=astapy, where
agay € GER"?). There exist always an irreducible field polynomial of the form R(x)=x"+x+r,
where ry€ (;T"(Z”ﬂ) [122]. If the inverse of A(x) is denoted as B(x) = A'I(.\')= brtbyx, the equation:

A(x) B(x) = [(ab,+a,byw’’) + (ab, +ayb,+ ayby)x) mod R(x) =1 (7-35)
.

must be sansfied, which is equivalent to a set of two lincar equations in #; b, over GRER™?
whose solution is:

ﬂ:i’d"
by = 42
a,(al-r "h) +w oa, (236
ay, i

14
a‘,(a, ta,)+w ay

[lence, an inversion of an element in GF(2”) can be accomplished by 1 inversion, 3 general mul-
tiplications, 2 additions, 1 constant multiplication and 1 squaring, where all operations are over
GE2"). The main advantage of this algorithm is that the inversion now is perfarmed in the sub-
field, which is supposed to be considerably easier that in the field GF(2™).

7.42 GF(2% As AN EXTENSION OF GF(2%

We are in particular interested in the standard representation of GF(2®%) with the primitive poly-
nomial P = 14t 30+ 2%+ »#, which is used in Rijndacl algorithm to perform fintte ficld anth-
metic [112] and the standard representation of GF(2Y with the primitive polynomial Q) =1+y+".
The field GF(2%) can also be represented as an extension of its sub-field GF(2%). We shall refer to
this eepresentation as the composite representation of GF(2%. In this case an element Alx) €
GF(2% is represented cither as a polynomial of degree 1, A(x) =aftap where, aya, € GF(2Y. Ad-
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dition in GF(28) Is component-wise 10 GF(24). Multiplication is polynomial multiplication modulo
a primitive polynomial over GF (24) of degree 1.

With the standard representation of GF (28) with the primitive polynomial P(x) = 1+x-+ P+t
~® and the standard represenmtlon of GF (’)4) with the 1rreduc1ble polynomial Q(y) —1+y+y men-
tioned above we have GF(2 ) as an extension of GF(2’ ) with the irreducible polynomial R(3)

=pl*+ ~+~ , where w 1s a root of P(y).

7.4.3 'TRANSITION BETWEEN REPRESENTATIONS OF GF(28)

In the standard representation of GF (28) cach element A(x) is an 8-bit binary number 4 =
(ag.ay, a_g,aj,a ds5dgdz). In the composite representation, the same element is a pair (434;), where
azay, e GF(2 ) Note that a=(ayp.a;.ap.a;5) and a;=(ap.a)71,4,.4)3) in the standard representation of
GF(Z ), and therefore A= (ay.4;1,ap.a;3,a,0.4)1,9)04;3) in the composite representation.

The map from the standard representation (4p,...,¢7) into the composite form (#,...,4;3) can be
realized using the algorithm reported in [123], which finds linear zwmorphic mappings between dif-
ferent field representations by means of matrix representation T. The inverse of T, will perform the
mapping in the other direction. Here is the idea behind:

2 4 i . )
Let 0. be a root of P(x) and (1,0, a0, oc3, o, oc5, oc6, oc7) is the standard base with which the ele-

ments of GF(2%) are represented. Each element of GF(.’ZS) is thus represented as a binary of 8 vec-
tors, denoting a linear combination of the base elements.

In order to comtruct the isomorphic mapping, we are looking for /basc elements rcprcscntcd

with respect to GH 2 ) to which the / base elements from (1, o, ol o, o, o, ol ) are to be

mapped. The “one® element is mapped to the “one’ elcment The primitive baec clcmcnt o must
be mapped to a primitive element B’, the base element o must be mapped to B , and so on:

To' = B, i=0,1,..,7 (7-37)

Thus the mapping is based on determining the exponent ¢ with the following condition that as-
sure that the mapping is homomorphic with respect to multiplication and addition:

P(B')=0(modQ(y),R(2)) (7-38)

There will be exactly £ primitive element which fulfil this condition, namely B’ and its &1 con-
jugates [3'21 =12, k1.
In our case:
P(B)=pw+w’#0— P(B)#0 fori=2,4,8,16,32,64,128
P(B>)=1+w>+Bw+w?) 20— P(B)#0 fori=6,12,24,48,96,192
P(B*)=0

. P Y . . ..
Thus, o' is mapped to B’ % for 1<i<7 and the transformation matrix is
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ﬁO /35 /310 ﬁlS ﬁ20 ﬁ25 p30 535

o a, Y (1 1 0 1 1 1 1 0 a,
a, a, 0 0 0 1 0 0 1 O a,
a a, 0 01 0 1 1 1 0 a,
a, a, 0 1.1 0 1 0 0 O a,

=T e = . — 18 XOR gates

a, a, 01 0 0 0 1 0 1 a,
a, a, 0 01 1.0 0 0 0 a
a,. ag 0 1 o0 0 1 0 1 1 ag
a,, a, 0 0 0 0 0 1 0 1 a,

This transformation can be performed with no more than 18 XOR Gates. The reverse mapping
is performed using the inverse of T, which is the matrix 7!

a, @ 1 01 0 1 1 0 1) |%
a, 4, 0 00 0 1 0 0 1 a,
a, a 0 01 01 01 0 a,
a, e 0 01 0 1 1 1 0 a,
=T "o = . — 24 XOR gates
a, a,, 0 01 1 0 0 1 1 a,,
as a, 0 1t 0 1 0 1 1 1 a,
a, a, 0 1 1 0 1 1 1 0 a,
a, a, 01 01 0 1 1 O a,

7.4.4 AN INVERTER OVER GF(25)

We consider the field GF(2%) generated by the primitive polynomial P(x)= 14x+ ot st a8,
For the application of Mori-Kasahara algorithm the decomposition of GF(ZS) into GF [(24)2] 1s
considered. Let Q(y)=1+y+]4 be the primitive polynomial generating GE(2Y with Q(»)=0 and
R() =wl4+{+g{2 the primitive polynomial generating the composite field. R(x) 1s the best possible
irreductible polynomial since multiplication with w1 requires one XOR gate see Appendix B (it is
determined through an exhaustive search [123]).

For computing the inverse of an element in GF(2%) according to Equation 7-36 in hardware, the
following operations, providing arithmetic in GF (2%, must be realized (see Appendix B):

* 1 inversion: 10 AND gates and 15 XOR gates

* 3 general multiplication: 48 AND gates and 62 XOR gates
» 2 additions: 8 XOR gates

¢ 1 constant multiplication: 1 XOR gate

* 1 squaring: 2 XOR gates

In this case multiplication in the fields GF(2% can be performed as described in Appendix B.
The corresponding multiplier is often referred to as Mastrovito multiplier. Summation of the partial
complexities shows that bit-parallel inversion 1s possible with not more than 71 XOR and58 AND
gates
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7.4.5 RIJNDAEL SBOX CONFIGURATION

Each SBOX consists of four elementary SBOXes, whose outputs are configured to form a 32
bit output data. The elementary SBOX consists of an GF (2% inversion circuit combined with an
affine transformation or its inverse configured according to encryption or decryption process as
shown in Figure 7-79.

a) 8 bits b | ot
S
| 0 Encrypt/Decrypt 7
L 4
inverse
i / 8bi V 8 b / 8 bi / 8 b
funbtian A 8bits  f8bts  8bts 4 8hits
1 0 Encrypt/Decrypt Blementary | | Elementary | | Bementary | | Elementary
SBOX SBOX SBOX SBOX
GF@%) /f , , , ,
Inversion A 8 bits Y, 8 bits y, 8 bits / 8bits |.

SBOX
1 0 Encrypt/Decrypt [
/L 32 bits

y

affine
function

E vD
Elementary SBOX :‘ 0 _Z- Encrypt/Decrypt
1/8 bits

v

Figure 7-79: SBOX: a) structure of the elementary SBOX function, b) Rijndael SBOX component

7.5 IMPLEMENTATION RESULTS

In this section, implementation results of On-The-Fly SBOX architecture (SBOX-OF) regard-
ing power consumption, area and speed of the gate level circuit are discussed. Comparison is made
with the iterative looping architecture using LUT's components (SBOX-LUT). ASIC implementa-
tion uses the 0.18um technology operating at 0.9v and 1.8v.

7.5.1 ASIC IMPLEMENTATION

Figure 7-80 shows the area of each component that constitutes the round function and key
schedule unit for both architecture, where RF denotes the round function and KS the key schedule.
One can see that the MIX and round function SBOXes are the predominant components. Conse-
quently, the area 1s significantly reduced (about 45%) when using on-circuit GF[(24)2] parallel 1n-
version.
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Figure 7-80; Gate count of both SBOXALUT and SBOX-IN architectures: a) circuit aperating at (.18, b)
darcutt aperating al (.91

Although, the on-the-fly SBOX architecture minimizes the required hardware, the worst case
register-to-register is inereased by the combinational logic supplemented with a GE|(2%H parallel
mversion circuits. As shown in Figure 7-81, the induced penalty is about 14% when operating at
1.8v and 40% when operating at 0.9v. Gating the clock helps to increase slightly (2°%) the through-
put of the SBOX - LUT architecture with 4% decrease in the circuit arca when operating at 1.8v.
ITowever, little deerease (4%4) 18 noticed on the throughput of the SBOX - OF architecture when gat-
ing the clock due to the increase of the critical path.

25 ! OSBOXLUT mSBOXOF |

clock free |gared clock| clock free |clock gated

1.8v 0.8y

Fipure 7-81: Throwghput of both SBOX_IUT and SBOX-OF architectures in tterative looping confiouration

Figure 7-66 shows the power consumption profiles of the above mentioned architectures. The
power is estimated using gate level simulaton on 1KBytes pseudo-random input for both encryp-
tion and decryption operations. It 1s shown that encryption and decryption are not fully symmetn-
cal operations. In fact, before decryption r rounds are executed by the key schedule on the master
key in order to recover the last round key as a master key for decryption. Beside this key setup ac-
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tivity, the multiplication factors and constant operands are not the same for decryption, which adds
some switching activity and increase the total dynamic power.

[ Round function MKy schedule T Clock D0thers| | @Found function B Key schedule EICiock OOMhers |

B R 8 5 &

-
w

Dynamic Power [mW]
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L= -
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LI . -
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dockfree | galedclock | clookiee | galed clock
1.8v 0.8v
SBOX-LUT Decryption

Figure 7-82: Dynamic Power Consumption

Morcover, the SBOX -OF architecture exhibits higher switching activity than SBOX - LUT and
dissipates slightly more power (about 4-7%) due to the switching activity of the SBOXes. Gating
the clock helps to reduce the amount of clock switching activity. However, the logic inferred by the
clock gating contributes to increase the overall switching activity of the circuits, as it is often
switched and not well suited when operating at 1.8v. Furthermore, while reducing the supply volt-
age helps to reduce considerably the consumed power @ 90%), it is well desirable to analyze the
Energy-Delay product in this case, since the critical path delay is increased. This product is com-
puted and reported in Figure 7-83. It shows clearly that the SBOX - LUT outperforms our architec-
turc and its best energy-optimized circuit must operate at 0.9v, while SBOX-OF architecture

doesn't benefit from the supply voltage reduction.
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Figure 7-83: FEnergy-Delay Product during encryption

7.5.2 FPGA IMPLEMENTATION

‘I'he SBOX-OF architecture was implemented using XILINX Virtex FPGA XCV800. The
XCV800 s a 0.22um CMOS process, which delivers high-performance, high-capacity programma-
ble logics operating at 2.5V supply voltage. It exploits a 5 layer-metal to perform an efficient routing
required between configurable units. 1t has a 512 usable 1/0 pins and 114K bits of embedded RAM
divided among 24 RAM blocks that are separate from the main body of the FPGA and acts as
56X84 Configurable Logic Blocks (CLBs). It can also provide a maximum of 301K bits of RAM
independent of the embedded RAM. This amount of memory can be useful for testing the algo-
rithm ones implemented into the device.

I'he round keys for bath encryption and decryption were computed on the FPG A and not load-
ed from external key bus and stored in internal registers as the case in implementations reported in
[124] and [125]. Simulation was performed for functional correctness using test vectors provided
in Rijndac! package [112). The placed and routed design uses 4607 slices from the 9408 available
with up to 40% of device utilization and present a maximum delay of 16.18ns limiting the system
clock rate up to 60M1 1z ‘The implementation results are reported in Table 7-2. Comparison is made
with implementations reported in [124], [125] and [126] using TIPS and throughput metrics. It
should be noted that these implementations are performed in the same Xilinx Virtex family using
larger device XCV 1000, which presents higher-capacity of programmable logic blocks.

Clock Frequency Throughput
Arc-amm Slices [MHz) Latency (Mbit/s] TPS
SBOX-OF 4607 59.94 1" 897 5 151400
[Paar]® 3528 253 (K 2942 83387
[PaarP 3488 249 11 290.1 83159
[GMU] 2507 35.58 " 414 165137
[USC] 4312 30.34 n 353 51864

Tuble 7-2: FPGA Performance eraluation of Rijndael 1.1-1

a. speed optimized Rijndael LU1 architectura
b. area optimized Rijndael LU1 architecture
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In spite of implementing the key schedule, the proposed architecture has roughly two time high-
er throughput with comparable number of slices, used by the device to place and route the design,
yielding to much better TPS when compared to implementations reported in [124]. The [126] de-
sign includes the key scheduling units and presents slightly better area count but lower throughput.
Architecture in [125] presents higher TPS but area count includes only encryption and decryption
unit and memory of internal round keys, since key schedule unit is not fully implemented.




CHAPTER 8§

8 SUMMARY AND CONCLUSIONS

In this thesis we explore the state of the art in designing low-energy hardware implementing
cryptographic primitives. Mainly three primitives have been investigated. the first one concern
arithmetic in large Galois extension field GF(2”) mainly exponentiation, with » a large Mersenne
prime to be used in public key schemes. The second primitive is Self-Synchronizing Stream Cipher
SSSC and its construction from a clock-controlled LESRs stream cipher. The resultant scheme is
called Self-Synchronizing Mixture Generator SSMG and has been designed using the concept of
packet fingerprint, as synchronization patterns. These patterns are generated with keyed crypto-
graphic hash function that is well suited for hardware implementation. SSMG has been implement-
ed in both software and hardware. Software implementation has been compared with the AES
software implementation. Performance profiles have been derived in the frame of MPEG-2 selec-
tive encryption. A practical hardware cryptosystem has been implemented using the best reported
design of GF(2”) exponentiator and the SSMG packet based encryption. It has been validated using
DVB-SPI standard. The last part of this work deals with block ciphers and presents an efficient
hardware implementation of the Rijndael algorithm, the standard that is pointed by the NIST to be
a replacement for DES.

8.1 MAIN CONTRIBUTIONS

8.1.1 ARITHMETIC IN LARGE GF(2”)

First and foremost, two low-energy, digit-serial architectures, suitable for large prime GF(2%)
multiplication are presented. The MSR architecture is area efficient LESR-based for trinomial pol-
ynomial field-generator and the LSA architecture is bit-level pipelined, linear systolic array architec-
ture, which is programmable with respect to the primitive polynomial p(x). Digit-serial technique
when applied to the MSR architecture can be exploited efficiently, in order to decrease the critical
path (total delay), when buffering the architecture and helps to reduce the switching activity for the
LSA architecture at the expense of increased arca. Higher gain in energy-delay product is obtained
(over 90%) when digit-size is large. A trade-off can be made between the area, energy consumption
and speed. No significant gain on the ecnergy-delay product is obtained when reducing voltage sup-
ply since the delay and power counterbalance each other, when the switching power dominates.
Gating the clock when possible achieves a great saving in power consumption and area and has no
significant effect on the circuit speed.

A new area efficient (~177) exponentiator has been designed based on linear systolic array
(LSA) multiplier. The architecture implements exponentiation over large GF(2”) according to
square-and-multiply algorithm. These operations are overlapped in order to reduce the latency
down to 2(m+1)m per exponentiation. The architecture relies on Standard Basis, bit-level pipelined
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multiplier that is easily expendable to any field order. Also, the exponentiator is programmable with
respect to the primitive polynomial p(x).

In order to reduce the energy, we extended the LSA bit serial exponentiator to a generalized
digit-serial architecture obtained by folding the bit-serial multiplier. The resulting circuit 1s array
type at the digit-level using parallel multiplication algorithm inside of each digit cells. Consequently,
the latency is reduced to 2(»+1)d where 4 is the number of digits and the energy delay products are
significantly reduced (at the expanse of increasing area) when increasing the digit size D. The cost
function defined as the energy-delay-area product versus the digit-size D has an optimum for D=4
with 55% saving of energy-delay product and more than 94% when gating the clock.

8.1.2 SELF-SYNCHRONIZING MIXTURE GENERATOR

On the other hand, while public key schemes are useful for key establishment and digital sig-
nature, they are not fast enough to encrypt bulk of data as stream and block ciphers do. Also, most
of stream ciphers schemes are fast enough when implemented in hardware but lack resynchroniza-
tion mechanisms to recover from canal synchronization loss SL. Adding some synchronization pat-
terns increases the amount of information to be transmitted to the receiver and increases the
bandwidth. SSSCs are well suited in this case. These schemes use public parameters such as time at
the moment of resynchronization or ciphertext/plaintext patterns to recover from SL. The pro-
posed scheme in this work (SSMG) uses keyed packet identification or packet digest as public pa-
rameter. It is computed with a KHF using a part of the encryption secret key. Though SSMG
recovers from SL, it adds some workload in between packets/frames processing and increases the
latency since a key setup time is required before encryption/ decryption of each new frame. This is
the time required to reinitilize the MG (an LFSRs based PRBG). Choosing large frame size appears
to be helpful for reducing the initialization frequencies and decrease the total latency. Increasing
the frame size helps also to decrease the repeated occurrences and ensure the security of the SSMG.
However, within this scheme, it 1s shown that bit-error on the channel propagates over the follow-
ing deciphered plaintext frame and thus, the frame size should be as small as possible. Security cri-
teria of the SSMG is derived from the secret key and hash value sizes, which define the probability -
of secret key occurrence in the key space. Further, the hash result size is limited by the frame size
and collision-free degree of the KHF. It is concluded that beside KHF collisions, there exist a trade-
off between the MG LFSRs length, the frame size and the size of the hash result.

8.1.3 SECURING MPEG-2 BITSTREAM

SSMG has been implemented in software and used for real time MPEG-2 selective encryption
that consist of encrypting selective amount of MPEG-2 bit stream. Performance profiles have been
extracted and compared with the 5 AES finalists and other encryption stream/block ciphers. It is
shown that Rijndael has the best performance among the AES ciphers and that SSMG i1s not very
efficient in software implementations due to the bit level computations of the KHF.

A programmable PK-SSMG with respect to the key size has been implemented in hardware to
secure MPEG-2 bitstream in DVB system. MPEG-2 transport stream in DVB system is frame
based application with low bit-error (QEF). Further, incorporated FEC layers can detect and cor-
rect these errors, up to a reasonable limit. The cryptosystem has been interfaced with DVB-SPI and
input/output data are buffered to overcome the latency incurred by the MG initialization. Moreo-
ver, some design consideration have been undertaken to reduce number of interconnections and
the I/O buffer size, 1.g., operating at higher frequency and avoiding locality of references using time
multiplexing bus, or operating with bit/bytes granularity. Implementation results shows the energy
scalabiliry of cryptosystem with respect to the key size at a fixed data stream rate of 13.5 MBytes/s.
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The granularity (encryption bit/byte) has little effect on the power consumption as only little
decrease (about 1.3%) in the switching activity is noticed at the same clock frequency. The same
energy 1s consumed during the encryption and decryption process as the system is completely sym-
metrical (the same resources are shared during these processes). However, gating the clock reduces
significantly the amount of energy while using 3 times low-level of security helps to reduce the
amount of energy consumed per bit by 17% only. The optimal solution dissipates between 200 pJ/
bit (@13.5Mbytes/s, 100 MHz internal frequency) using low level of security and 400 p]/bit at the
same throughput using high level of security with ~5 times larger key length.

8.1.4 EFFICIENT IMPLEMENTATION OF RIJNDAEL BLOCK CIPHER

On the other hand, while multiplicative inverses over Galois field are well suited and used op-
eration in cryptographic block ciphers, typically for =8, it appears to be very difficult to find good
structures for fast and low cost parallel GF(2”) inversion when #28. It is difficult to even find the
Boolean functions defining the inverse. Nevertheless, an efficient architecture has been designed
based on computations in composite field GF [(28)2j that helps to reduce both area and time com-
plexities. The resultant bit-parallel inversion has been used to design an area efficient, iterative loop-
ing architecture, implementing Rijndael algorithm. First it is shown that the predominant
components are the SBOXes, whose operations are simple affine (linear) operation and GF (28) in-
version as non-linear transformation. These SBOXes necessitate large amount of hardware when
implemented as LUT. Thus, both round function and key schedule have been implemented using
on-chip computation of GF[(ZS)Q] inversion. Implementation results shows that the proposed ar-
chitecture have twice smaller area than LUT based SBOXes architecture, but dissipates about 4-7%
more power and present slightly lower throughput, about 14%. The real benefit is for FPGA im-
plementation, which exhibits higher TPS factor when compared to most known Rijndael FPGA
implementations.

8.2 FURTHER WORK

Practical solutions exist for designing low-energy, VLSI architectures, implementing crypto-
graphic primitives. It is possible to reduce the hardware complexity and increase the performance
of such primitives. Appropriate design methods must span the range from algorithm to hardware
implementation. Power-reduce can be achieved by technology-improvements, voltages-scaling and
design decision (partial parallelism, pipelining, ...). However, it is demonstrated along this work that,
reducing the supply voltage is not often the best solution for low-energy design as it degrades the
circuit performances when the supply voltage ' approaches the threshold voltage 17, it 1s
shown also that, gating the clock can be benefit for architectures whose part of logic is not often
switched and area can be traded for higher throughput. Furthermore, other than classical perform-
ance evaluation and optimization mainly power and speed, it is possible at the same time to increase
the security level at the cost of area. However, while efficient application of these solutions is al-
ready demonstrated, major open questions remain both for a firm theoretical foundation and the
proper cryptanalysis of SSMG.
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APPENDIX A

A CRYPTOGRAPHY (BASICS AND LFSRS THEORY)

A.1 DEFINITIONS
A.1.1 MAXIMAL LENGTH

A linear feedback shift register (LFSR) sequence of 2”-1 steps (assuming a bit-wide shift register
of # bits). This means that every binary value the register can hold, except zero, will occur on some
step, and then not occur again until all other values have been produced. A maximal-length LESR
can be considered a binary counter in which the count values have been shuffled or enciphered.
While the sequence from a normal binary counter is perfectly balanced, the sequence from a max-
imal-length LESR 1s almost perfectly balanced.

A.1.2 LINEAR COMPLEXITY

Definitionl: Let ¢ = 5,8, -8, be a binary sequence. The linear complexity L(s™) of this se-
quence is the size # of the smallest LFSR that can produce this sequence.

Each binary sequence generated using a finite state machine over a finite field has a finite linear
complexity. The linear complexity must be increased to avoid the use of Berklamb-Massey Algo-
rithm. Another notion is the linear complexity profile, which is the measure of the linear complexity
of binary sequences at the output of an LESR.

A.2 LFSR THEORY

The key distribution problem for One-Time Pad suggests that one might use an algorithm to

generate the random sequence needed as the key (transfer of only a short seed would then be need-
ed).

However, no algorithm using a finite state machine can produce a truly random sequence, since
the finiteness forces the sequence to be periodic. The best we can do is use very long period se-
quences, called psesdo-random sequences.

What properties should a pseudo-random sequence have to make it look like a random se-
quence?
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A.2.1 GOLOMB?’S PRINCIPLES

* GI: The number of zeros and ones should be equal as possible per period.

* G2: Half the runs in a period have length 1, one-quarter have length 2, ..., 1/ 2 have length
7. Moreover, for any length, half the runs are blocks and the other half gaps. (A block is a sub-
sequence of the form ...011110... and a gap is one of the form ...10000001..., either type is

called a run).
* G3: The out-of-phase autocorrelation .4C(£) has the same value for all &

Agreements — Disagreements (7-39)
p

AC(k) =

where we are comparing a sequence of period p and its shift by £ places. The autocorrelation 1s
out-of-phase if p does not divide 4.

LEFSRs are a commonly used method of producing pseudo-random sequences and are used in
BIST, cryptography and error coding theory. An LESR of length # (#-stage) consist of:

M‘304—51<—32 -y S5, [W@— S,

Frgure A-1: LESR structure

We first consider the case that fis a linear, 1.e,,
n—1|
fG&=Ycs, (7-40)
i=0

The output of this LEFSR is determined by the initial values and the linear recursion relationship:

-1
Sem = 2,CiSpas k20 (7-41)
i=0
or equivalently
> 65, =0, k20 (7-42)
i=0

where ¢,=1 by definition.
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A sequence produced by a length » LESR that has period 2”-1 is called a PN-sequence (or a pseu-
do-noise sequence).We can characterize the LESR’s that produce PN-seguences using the characteristic
polynomial of an LFSR as the polynomial,

n
-1 : ~
f)=cy+ex+-+c, x" +x”=zcix' (7-43)
<

where ¢,=1 by definition and ¢;=1 by assumption.

A.2.2 SOME FACTS AND DEFINITIONS FROM ALGEBRA

* Every polynomial f{x) with coefficients in GF(2) having {0)=1 divides x”+1 for some 7.
The smallest # for which this is true is called the period of f(x).

* An irreducible (can not be factored) polynomial of degree # has a period, which divides 2”-1.

* Anirreducible polynomial of degree #» whose period is 2”-1 is called a primitive polynomial.

Theorem: .4 L.LFSR produces a PN-sequence if and only if its characteristic polynomial is a primitive polyno-
wiial.

Definition: Let Q(f) denote the set of all sequences that can be produced from an LFSR with
characteristic polynomial f{x).

Since each starting state produces a different (we are considering shifts as different) sequence,
thete are 2" elements in Q(f) since there are that many starting states. The sum of two sequences
in Q(f) is again in Q(f) since the sum will satisfy the same recursion relationship (i.e., the sum cor-
responds to a different starting state).

We can characterize the elements of Q(f) in terms of the reciprocal polynomial of f.

Definition: The reciprocal polynomial of f{x) of degree #, denoted f¥(x) is:
P = X M1/ %) = g+ T+ e,

Note that if ) = g(x)h(x) then fX(x) = g*(x) A*(x).

Theorem: Q(f) = {(x)//*(x) where deg #(x) < n}.

Pf: We show that each element of Q(f) can be uniquely expressed in the desired form, and the
result will follow since there are exactly 2” binary polynomials of degree < .

Let S0 be in Q(f), where S(x) = sytsxtmx+... and f¥(x) = g +...+¢". Then

S f(x)= (Z sixt E"Lc,,_,-x" )
k=0 i=0

J
— j i

Jj=0 i=0 j2n i=0

=7(x)+ Z(i CiS(jomyei )xj =7(x)

jzn\ i=0
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Lemma 1: Let 4(x) and f{x) be the characteristic polynomials of an m-stage and respectively n-
stage LFSR. Then Q(h) is contained in Q(f) iff A(x) divides f{x).

Lemma 2: Let S(x) be in Q(f) with 5(x) = £(x)/f*(>). Then there exists an A(x) with A(x) dividing
Sx) and A(x) not equal to f{x) with S(x) in Q(h) iff ged(#(x), /¥(x)) #1.

We will now consider the pseudo-randomness of PN-sequences.

* Gl: Since every non-zero state appears once per period and the leftmost bit of the state is

the next output value of the sequence, it is easy to see that there are 2! ones and 2"-1-1 ze-
ros.

* G2:For k<n-2 ,arun oflength & will occur in the sequence whenever the leftmost &+2
states are of the form 0111...110 or 100...001. Since all states occur, the number of each of

these state sequences is 2"%2 There is one state 011.. .111, and it 1s followed by state
111...111 since fis primitive f{1)=1, and that state is followed by 111...110, thus there is no
block of size #-1 and one block of size . Similarly, there is no gap of size n and only of size
n-1. We can therefore calculate the number of runs as,

n=2
2) 2?4 2=2(2" =) +2=2"" (7-44)

k=1
and of these 1/2% of them are of length 4.

G3: Let {s;} be a PN-sequence and {s;;,} be the same sequence shifted £ places. The sum of
these two sequences satisfies the same recursion relation as the both of them do and so is a PN-
sequence as well. The number of agreements in the two sequences will be the number of 0's in the
sum and the number of disagreements is the number of 1's in the sum. So by G1,

n-1__ _ n_ _
= ;3 iz 1)=2,,11 forall 1ISk<2"-1 (7-45)

AC(k)=

Thus we see that PN-sequences satisfy all of Golomb’s conditions for pseudo-randomness.

Thus, linear feedback shift registers should not be used in cryptographic work (despite this, LF-
SR's are still the most commonly used technique). However, this argument does not apply to non-
linear FSR's so we need to examine them next.

An FSR with a possibly non-linear feedback function will still produce a periodic sequence (with
a possible non-periodic beginning). If the period is p, then the LESR with characteristic function
1+ and starting state equal to the period of the sequence, will produce the same sequence; possi-
bly other LESR's will also. Hence, the following definition makes sense.

Theorem: Let S(x) be the generating function of a periodic binary sequence with period p. Let
5@ (x) be the truncated polynomial of degree p-1. Then there exists a unique polynomial 7(x) with

a) S(x)€Q(m), and
b) if S(x)€ Q(h) then m(x)

h(x).

7(x) 1s called the minimal characteristic polynomial of S(x), and
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1+ x?

m ()= £cd SV (), 1+x7)

Proof. Let S(x) be in Q(m), but not in Q(f) for any proper divisor f of 7. We shall prove that »
is unique. Note that §(>) = @) (x)/ (1 + 5%). Since S(x) €Q(m), we know that there exists a #(x) with
degree < degree of m, such that S(x) = #>)/m*(x). By Lemma 2, ged (m*(x),4(x)) = 1, so

. SP)m (x)
gcd(m (X)’_l-}-—x-p_—)zl

ged (m" (x)(1+x7), 5P (x)m’ (x)) =1+ x”
m’ (x)ged (1+x7, 8% (x)) =1+ x7

1+x”

m (0= gcd(1+ x”,S(P)(x))

Corollary: The linear equivalence of S(x) with period p is the degree of #(x) above.

We see that the use of non-linear functions does not gain any cryptographic security since we
can always find a LFSR to give the same sequence. In an attempt to get this security, various means
of combining the outputs of LESR's in a non-linear way have been attempted. Clearly, sums, shifts
and products of outputs don't work. Most of the information on these techniques is classified (so,
someone does believe that the required security can be obtained this way). One such approach,
which 1s 1n the public domain, is the multiplexing algorithm of Jennings.

Take an m-stage (the ) and an n-stage (the 4) LFSR with primitive characteristic polynomials
and non-zero starting states. Choose h < min(m, log, n) entries from the set of subscripts {0, 1,..,
-1} and order them 0<i, <i,< ... <i, <fsg 0. At time ¢, define,

N() =ia(t)-2j" (7-46)

Let ¢ be any one-one mapping from {0,1,...,2/’—1} into {0,1,..., -1}. Define the output of the mul-
tiplexed sequence to be u(r) = by, (1)

Theorem: if (m,n) = 1 this multiplexed sequence has period (27 -1)(2" - 1).

Theorem: If (m,n) = 1 and h = m - 1, then the sequence has linear equivalence n(2” - 1).

A.3 DISCRETE LOGARITHM PROBLEM (DLP)

Let F = GF(g) and take p as a primitive element of F. Any ¢ in F¥ has a unique representation
asc=p”, for 0Sm<gq-1,¢can be computed from p and » with only 2|log, 4] multiplications. The
binary representation of » gives the order of the needed multiplications, which consist only of
squaring and multiplying by . For instance, if 7 = 171 then 171 = 128+32+8+2+1 = (10101011),
and the computation of p,1 1is carried out by starting with 1, then, working from the most signifi-
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cant bit down, we square the current value and if there is a 1 in the binary representation we also
. 2 AD2 N2 (22
multiply by p. Thus, u!"" = (1)) D WD W)
On the other hand, given ¢and p, finding # is a more difficult proposition and is called the discreze
logarithm problem (DLP).

If taking a power is of O() time, then finding a logarithm is of O(Z’/ 2) time. And this can be
made prohibitively large if # = log,g is large.

"~ A.3.1 DIFFIE-HELLMAN KEY EXCHANGE

The difficulty of taking logarithms makes exponentiation in a finite field a one-way function (not
a trapdoor function however). This can be used in a public key exchange protocol that has two sys-
tem’s parameters p and p. They are both public and could be used by all the users in a system. Pa-
rameter p 1s a prime number and parameter p < p (usually called a generator) is an integer with the
following property: for every number # between 1 and p-1 inclusive, there i1s a power » of p such
that » = p” mod p, where 7 is the public key and # is the private key. To exchange keys without
transmission, A and B generate a random private exponent # 4 and #p. A looks up B's public key
and exponentiates it with his own secret exponent . B does the same to A's public key. Thus, each
of them calculates the same shared key value p™™ = p™™, calculation done modulo the prime
number p. There does not appear to be any means of obtaining this value without first finding one
of the secret exponents... i.e., solving the discrete logarithm problem for this p. Diffie & Hellman

suggest using a value of p which is at least few hundred bits long,.
A.3.2 EL-GAMAL CRYPTOSYSTEM

For a prime p which is intractable (i.c., very large), let u be a generator of Z;*. Each user selects
a secret element a in Zp-l and makes public the value 8 = pu? mod p. Thus, u, B, and p are publicly
known. To send a message, Alice randomly selects a secret & in Zp-l and if x is the message, sends
the ordered pair ¥ x B% mod p, where B is Bob's B. To decrypt, Bob raises the first component
to his secret exponent g, finds the inverse (mod p) of this number, and multiplies the second com-
ponent by this inverse to get the message back. This computation is,

(B85 (! = x 8% 3% = xmod »

A.3.3 SHANK'S ALGORITHM FOR SOLVING THE DISCRETE LOGARITHM
PROBLEM

This algorithm is known as a Time-Memory Trade Off, that 1s, if you have enough memory at your
disposal you can use it to cut down the amount of time it would normally take to solve the problem.

Let /b be a prime, p a generator of Zp*. We wish to find 4, given 8 where 3 = u? mod p. Let 7 =
[-1)")

* Step 1: Compute w” mod p for 0<j<m—1.

e Step 2: Sort the pairs (/, u” mod p) by second coordinate in a list L;.

* Step 3: Compute 3 T mod p for 0<i<m-1.

* Step 4: Sort the pairs (7, u? mod ) by second coordinate in a list L.
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* Step 5: Find a pair in each list with the same second coordinate, i.e., (7)) in L; and (7 j) in
L,
e Step 6:a = »j +imod (p-1).

A.3.4 POHLIG-HELLMAN ALGORITHM

There are certain cases in which the DLP can be solved in less than O(ql/ 2) time, for instance
when ¢-1 has only small prime divisors. An algorithm for dealing with this special case was devel-
oped in 1978. We first look at a special case:

Suppose that - 1 = 2".

Let p be a primitive element in GF(g). Noting that in this case, q is odd, we have p(q'l)/ 2= 1.
Let m, 0<Sm<g-2, be the exponent of p that we wish to find, i.e. ¢ = u”, and write # in its binary
representation: 77 = my + m2 + my2% +... + m, 2" Now,

-1 q-1 q=1 .
3 m, 2 motm2+m 2+ . +m,_ 2 2 mol(g=1)/2) lifmy = 0 (7-47)
c” =) =(u ) = = i
-lifm, = 1

So the evaluation of £91/2 which costs at most 2 [logrg] operations, yields 7. We then deter-
mine ¢ = ¢ u™, and repeat the basic computation again to obtain 7.

-1 q-1 .
S mime.am gz 2 mia-nsn | 1ifmg =0 (7-48)
¢ = ) = u = lifm, = 1

_lifm, =

This procedure can then be repeated until each of the #; are obtained. The total number of op-
erations is thus #(2[log2q] + 2) ~ O((logzq)z).

The general case is dealt with by repeating the analogue of the special case for each of the prime
factors of 4-1 and then combining the results using the Chinese Remainder Theorem.

A.3.5 CHINESE REMAINDER THEOREM

Theorem: Suppose that #y, m,,..., 71, are pair-wise relatively prime positive integers, and let g,
an,..., 4, be integers. Then the system of congruences, x = 4; (mod #,) for 1<i<r, has a unique so-
lution modulo M = m;xm,x ... xm,, which is given by:

x=aMy +a,M,y,+--+a M,y (mod M) (7-49)

where M;= M/m;and y; = (M) (mod m) for I<i<r.
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Pf: Notice that gcd(M, ) = 1 for 1<i<r. Therefore, the y; all exist (and can be determined
easily from the extended Euclidean Algorithm). Now, notice that since My; = 1 (mod »,), we have
4My; = 4; (mod m,) for 1<i<r. On the other hand, 4My; = 0 (mod m)) if / is not 7 (since ; | M;
in this case). Thus, we see that x = 4; (mod =) for 1<i<r.

If there were two solutions, say x, and x;, then we would have x; - x; = 0 (mod =) for all 7, so
xg - x1 = 0 (mod M), i.e., they are the same modulo M.

Example

Find the smallest multiple of 10, which has remainder 2 when divided by 3, and remainder 3
when divided by 7.

We are looking for a number which satisfies the congruences, x = 2mod 3, x=3mod 7, x=0
mod 2 and x = 0 mod 5. Since, 2, 3, 5 and 7 are all relatively prime in pairs, the Chinese Remainder
Theorem tells us that there is a unique solution modulo 210 (=2x3X5X7). We calculate the M/'s and
yj's as follows:

M, =210/2 = 105; 3o = (105)"! (mod 2) = 1
My = 210/3 = 70; y3 = (70)"! (mod 3) = 1

M; = 210/5 = 42; y5 = (42)"! (mod 5) = 3 and
My = 210/7 = 30; 3, = (30)"! (mod 7) = 4.

So, x = 0(Myy,) + 2(Myys) + 0(Msys) + 3(Myy7) = 0 + 2(70)(1) + 0 + 3(30)(4) = 140 + 360 =
500 mod 210 = 80.

Remark 1: The theorem is valid in much more general situations than we have presented here.

Remark 2: The condition given 1s sufficient, but not necessary for a solution. Necessary and
sufficient conditions exist but we are not presenting them.

Remark 3: It is purported that Sun Tsu was aware of this result in the first century A.D.
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B  BIT PARALLEL ARITHMETICS IN GF(2%)

B.1 REPRESENTATIONS OF GF(2*

0000 0000 ' 0000

0 1000 7000 11
7 0100 0001 1001
2 0010 0010 1100
3 0001 0100 1000
a 1100 1001 0110
5 0110 0011 9101
6 0011 0110 0100
7 1101 1701 1710
8 1010 1010 0011
9 0101 0101 0001
10 1110 7011 7010
BEE 0111 GERE] 1701
12 11 ERER] 0010
13 7011 1170 7011
14 1001 1100 o111

Table A-1: Polynomial, dual and normal basis representations of GF (24 ), generated by the irresducible polynomial
plx)=1 +axcta?

B.2 STANDARD MULTIPLICATION IN GF(2%)

The product ({x) of two elements A(x), B(x) € GF (24), A= (ag,a1,30,a3), A= (by,b1,b2,03), 1s the
4-bit binary number corresponding to the coefficients of the polynomial

C(x)=(ﬂ0+ﬂ1x!-a1x2+a1x3)(170+b1xi-/71x2+b1x3) mod Q(x)

where (J(x) 1s the primitive polynomial used to generate the field. This can be expressed directly
in matrix form as:

€ by
c - A b,
<y b,
C3 b,
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where, for Q(x)=1+x+x4,matrix A is given by

% a3 a, 4
A= a ay,+ta, a,+a, a +a,

a, a, a,ta, a,+a,

a, a, a, a, +

A straightforward implementation requires 16 AND and 15 XOR gates.

B.3 STANDARD MULTIPLICATION BY CONSTANT »™* IN GF(2%)

The multiplication of A(x) € CF(24), A=(ay,ay,42,43), with the constant element w'* can be ac-
complished by

1 1 0 0)aq,
WA = 0 0 1 0]agq
0 0 0 1]|a,
1 0 0, O0)la,

which requires a single XOR gate.

B.4 STANDARD SQUARING IN GF(2%)

Squaring of an element A4(x) € GF (24), A=(ag,a1,a42,a3) gives

A2x=a+ap+ax+a+a P +a.3° mod O
0 2 1743 3

B.5 DIRECT INVERSION IN GF(2%)

A direct inversion of an element A(x) € GF(24), A=(ay,a,40,a3) result in the element B(x) €
GE(2%Y, B=(by,by,b0,b;) given by

by = agtraytaytagartajaytagayartaytajaray

by = agay+agartajarytaytaaztagaas

by = agaytaytagarytastagaytaparas

by = aytaytagtagaytajaytaraytaaray

This operation can be performed with no more than 10 AND gates and 15 XOR gates.
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C PERFORMANCES EVALUATION OF GF(2%07) MuL-
TIPLICATION AND EXPONENTIATION

c1 GF(2%7) MuLTIPLICATION

Architecture D=1 D=4 D=8 D=16

MSR LSA MSR LSA MSR LSA MSR LSA
Supply voltage [V] 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Nb. of gates 6180 11533 10505 21689 15975 | 44510 | 26323 89284
Cycle-time [ns] 48.08 0.96 25.27 1.85 13.95 3.81 11.29 7.73
Latency 1214 1821 304 456 152 228 76 114
Total Delay [uis] 58.369 1.74816 7.6821 0.8436 2.1204 | 0.8687 | 0.85804 | 0.8812
Cell Internal Power [mW] 2.7911 227.8638 | 6.2268 162.9072 | 11.549 | 81.384 | 13.9425 | 40.762
Net switching Power [mW] 1.1509 1204 3.0432 95.8767 5.6598 | 48.042 | 7.2597 23.917
Total Dynamic Power [mW] .3.942 348.2641 | 9.2699 258.7839 | 17.209 | 129.43 | 21.2023 | 64.679
Cell Leakage Power [nW] 438.6591 1103 624.9595 | 1483.2 855.08 | 2381.5 | 1354.8 3593.2
Energy [nJ] 230.09 608.8214 | 71.212 21831 36.49 11243 | 18.19 56.996
Energy Delay [n]. ps} 13430.19 | 1064.317 | 547.06 184.166 7137 97.671 | 15.61 50.225

Table A-2: Specifications of MSR and LSA multipliers over GF(2°% ) in Low-Power/ Low-Valtage COOLIB
J8Wm PROCESS (1.8v non aptimized).

Architecture D=1 D=4 D=8 D=16
Supply voltage [V] 1.8 1.8 1.8 1.8
Nb. of gates 12140 20477 43363 87544
Cycle-time [ns] 0.99 1.82 3.55 6.92
Latency 1821 456 228 114
Total Delay [ps] 1.80279 0.82992 0.8094 0.78888
Cell Internal Power [mW] 215.6584 136.7823 65.1512 35.8156
Net switching Power [mW] 116.233 80.0537 37.9278 21.06295
Total Dynamic Power [mW] 331.8915 216.836 103.079 56.87855
Cell Leakage Power [nW] 1176.6 1513.6 2312.3 3571.3
Energy [nJ] 598.331 179.9565 83.43214 44.8704
Energy Delay [n). us] 1078.665 149.35 67.52998 35.397

Table A-3: Specifications of LSA gated clock multiplier over GF (26 07) in Low-Power/ Low-Voltage COOLIB
J8Wm PROCESS (1.8v non optimized).
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Architecture D=1 D=4 D=8 D=16

MSR LSA MSR LSA MSR LSA MSR LSA
Supply voltage [V] 1.8 1.8 18 1.8 1.8 1.8 1.8 1.8
Nb. of gates 7225 16984 12411 23715 17891 45934 28153 90876
Cycle-time [ns] 49.99 1.1 26 1.98 14 3.91 12 7.72
Latency 1214 1821 304 456 152 228 76 114
Total Delay [ps] 60.68786 2.0031 7.904 0.90288 2.128 0.8915 0.912 0.8801
Cell Internal Power [mW] 0.86469 43.1227 1.1542 32.7358 2.8997 45.105 4.5507 27423
Net switching Power [mW] 0.78203 76.8519 1.8933 67.3089 4.2321 39.542 5.2074 14.917
Total Dynamic Power [mW] 1.6467 119.9746 3.0475 100.0446 7.1318 84.647 9.7581 42.34
Cell Leakage Power [uW] 0.58687 1691.7 0.82667 1.9608 1.0697 2.5989 1.5289 3.7545
Energy [nJ] 99.935 240.321 24.08744 90.3283 15.176 75.461 8.8994 37.263
Energy X Delay [nJ. ps] 6064.823 481.387 190.387 81.56 32.296 67.274 8.11624 32.796

Table A4: Specifications of MSR and LS A multipliers over GI|. 07) in Low-Power/ Low-Voltage COOLIB
J8Wm PROCESS (1.81; power optimized).

Architecture D=1 =4 D=8 D=16
Supply voltage {V] 1.8 1.8 1.8 1.8
Nb. of gates 15647 24583 43934 86830
Cycle-time [ns] 1.23 1.98 3.73 6.77
Latency 1821 456 228 114
Total Delay [s] 2.23983 0.90288 0.85044 0.77178
Cell Internal Power [mW] 38.1329 28.7036 47.0138 31.625
Net switching Power [mW) 77.4811 59.6161 30.2195 12,254
Total Dynamic Power [mW] 115614 88.3197 77.2333 43,879
Cell Leakage Power [nW] 1.7472 1.9394 2.314 3.3457
Energy [nJ] 258.956 79.7421 65.68229 33.865
Energy X Delay [nJ. ps] 580.017 71.9975 55.85885 26.1363

Table A-5: Specifications of LSA clock gated multiplier over GF(2°% ) in Low-Power/ Low-Voltage COOLIB
J8wm PROCESS (1.81; power optimized).

Architecture D=1 D=4 D=8 D=16

MSR LSA MSR LSA MSR LSA MSR LSA
Supply voltage [V] 0.9 0.9 09 0.9 09 0.9 0.9 0.9
Nb. of gates 6163 10926 11415 22294 16685 56668 34662 117496
Cycle-time [ns] 144.65 3.19 72.65 5.38 41.72 8.84 23.01 13.84
Latency 1214 1821 304 456 152 228 76 114
Total Delay [pis] 175.605 5.809 22.086 2.4533 6.3414 | 2.0155 1.7488 1.5778
Cell Intemal Power [mW] 0.33615 26.2992 0.48499 12.5967 0.9314 ] 9.1068 | 1.6373 4.213
Net switching Power [mW] 0.15125 13.4374 0.24365 7.205 04428 | 5.3202 | 0.83153 | 2.453
Total Dynamic Power [mW] 04874 39.7365 0.72864 19.8012 1.3742 14427 | 2.4689 6.666
Cell Leakage Power [nW] 137.391 361.0628 | 207.0966 | 4753315 | 278.53 [ 959.79 | 509.05 1354.6
Energy [nJj 85.5899 230.83 16.0925 48.58 8.7145 | 29.08 4.318 10.517
Energy X Delay [nJ. ps) 15030.02 | 1340.89 355.418 119.176 55.262 | 58.607 | 7.5505 16.594

Table A-6: Specifications of MSR and IS A multipliers over GF (26 07 ) in Low-Power/Low-Voltage COOLIB

J8Wm PROCESS (0.91, non optimised).
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Architecture D=1 D=4 D=8 D=16
Supply voltage [V] 0.9 0.9 0.9 0.9
Nb. of gates 12140 21233 51930 102788
Cycle-time [ns] 3.18 5.7 8.78 12.32
Latency 1821 456 228 114
Total Delay [ps] 5.7908 2.599 2.002 1.4045
Cell Internal Power [mW] 24746 10.4299 7.3051 2.213
Net switching Power [mW] 12.879 5.9461 4.1626 1.243
Total Dynamic Power [mW] 37.625 16.376 11.4677 - 3.456
Cell Leakage Power [nW] 373.836 470.945 895.86 1265.8
Energy [nJ] 217.88 42.5645 22.96 4.854
Energy X Delay [nJ. ps] 1261.69 110.625 45.96 6.817

18Wm PROCESS (0.9v, non optimized).

Table A-7: Specfications of LSA clock gated multiplier over GF (26 07) in Low-Power/ Low-Voltage COOLIB

Architecture D=1 D=4 D=8 D=16

MSR LSA MSR LSA MSR LSA MSR LSA
Supply voltage [V] 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Nb. of gates 7265 12561 12508 25188 17704 58249 35989 124371
Cycle-time [ns) 146 3.99 73.99 6 42 9 23 14
Latency 1214 1821 304 456 152 228 76 114
Total Delay [us] 177.244 7.266 22,493 2.736 6.384 2.052 1.748 1.596
Cell Internal Power [mW] 0.1122 10.1706 0.093721 | 3.3508 0.2269 2.9947 | 0.56499 1.736
Net switching Power [mW] 0.1085 10.1121 0.161533 | 6.2217 0.3254 4.7208 | 0.61995 1.897
Total Dynamic Power [mW] 0.221 20.2828 0.25525 | 9.5725 0.5524 7.7155 | 1.1849 3.633
Cell Leakage Power [nW] 187.132 2800224 | 265.607 | 693.0391 | 336.75 11509 | 556.2718 | 14657
Energy [nJ] 39.1709 147.371 5.74133 | 26.1904 3.527 15.832 | 2.0712 5.7983
Energy X Delay [nJ. ps] 6942.8113 | 1070.795 | 129.14 | 71.66 225133 | 32487 | 3.6204 | 9.254

Table A-8: Specifications of MSR and 1SA multipliers over GF(2°% ) in Low-Power/ Low-Valtage COOLIB
A8Wm PROCESS (0.9 power optimized).

Architecture D=1 D=4 D=8 D=16
Supply voltage [V] 0.9 0.9 0.9 0.9
Nb. of gates 13567 23214 56249 122371
Cycle-time [ns] 3.98 6 9 14
Latency 1821 456 228 114
Total Delay [ps] 7.248 2.736 2,052 1.596
Cell Internal Power [mW] 8.8719 2.5129 2.0064 1.305
Net switching Power [mW] 9.5627 4.948 3.5416 1.5086
Total Dynamic Power [mW] 18.4346 7.4672 5.548 2.8136
Cell Leakage Power [nW] 517.3934 636.7453 1025.09 1.3466
Energy [nJ] 133.606 20.4303 11.385 4.49
Energy X Delay [nl. ps] 968.38 55.8972 23.36 7.1668

18Wm PROCESS (0.9y;, power optimized).

Table A-9: Specifications of LSA clock gated multiplier over GF(2°%) in Low-Power/ Low-Voltage COOLIB
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C.2 GF(2%'7) EXPONENTIATION

APPENDIX C: PERFORMANCES EVALUATION OF

Architecture D=1 D=4 D=8
clock free clock clock free clock clock clock
gated _gated free _gated

Supply voltage [V] 1.8 1.8 1.8 1.8 1.8 1.8
Nb. of gates 13552 12826 24516 21268 50173 46026
Cycle-time [ns] 146 1.86 2.85 1.55 5.09 2,157
Latency 738113 738113 186049 186049 93633 93633
Total Delay {ms] 1.077645 | 1.3728902 0.53024 0.288376 | 0.476592 | 0.201311
Cell Internal Power [mW] 275.2802 244.5784 265.9354 215.1978 | 164.0043 | 263.0234
Net switching Power [mW] 136.6517 123.4497 143.2264 113.2237 | 1004114 | 160.9728
Total Dynamic Power [mW] 411.9319 368.0281 409.1617 328.4215 | 264.4157 | 423.9962
Cell Leakage Power [UW] 1.3102 1.3626 1.6918 1.6223 2.8705 2.6665
Energy {1J] 443.916 505.2622 216.954 94.709 126.0184 85.3551
Energy X Delay [W. ms) 478.384 693.6695 115.04 27.31176 60.0594 17.18292

Table A-10: Spectfications of LS.A exponentiator over GF (2597 ) in Low-Power/Low-Voltage COOLIB
J8Wm PROCESS (1.84, non optimised).

Architecture D=1 D=4 D=16
clock free clock clock free clock clock clock
gated _gated free _gated
Supply voltage [V] 1.8 1.8 1.8 1.8 1.8 1.8
Nb. of gates 18129 16364 26308 24235 52887 45656
Cycle-time [ns}] 1 1.78 3 1.72 5.08 3
Latency 738113 738113 186049 186049 93633 93633
Total Delay [ms] 0.738113 | 1.3138411 | 0.558147 0.32 0.475656 | 0.280899
Cell Internal Power [mW] 88.0412 64.3607 78.5737 73.5297 66.3909 102.8597
Net switching Power [mW] 92.5031 84.838 95.3351 75.2533 66.9479 114.3551
Total Dynamic Power [mW] 180.544 149.1987 173.9088 148.7829 133.3389 217.2148
Cell Leakage Power [uW] 1.8371 1.8702 2.1418 2.0297 31651 2.9101
Energy [J] 133.26211 | 196.02339 97.067 47611165 63.4234 61.01542
Energy X Delay [1WJ. ms] 983625 | 257.5436 | 54.1775 15326 | 30.16772 | 17.13917

Table A-11: Specifications of 154 exponentiator over GF (2697 ) in Low-Power/Low-Voltage COOLIB
J8Wwm PROCESS (1.84 power optimized).

Architecture D=1 D=4 D=8
clock free clock clock free clock clock clock
gated _gated free gated

Supply voltage [V] 0.9 0.9 0.9 0.9 0.9 0.9
Nb. of gates 15382 14053 25522 23009 58988 62394
Cycle-time [ns] 2.75 2.57 8.55 3.96 15.58 8.85
Latency 738113 738113 186049 186049 93633 93633
Total Delay [ms] 2.02981 1.8969504 | 1.591 0.736754 1.4588 0.8287
Cell Internal Power [mW] 31.5473 22.3263 16.2979 17.007 11.3807 13.8152
Net switching Power [mW] 15.1720 12.5613 8.3771 8.6958 7.0326 9.0955
Total Dynamic Power [mW] 46.7193 34.8875 24.675 25.7028 18.4134 22,9107
Cell Leakage Power [nW] 422.5316 | 460.4687 | 564.3649 | 546.8743 1023.5 1092.6
Energy [uJ] 94.831337 | 66.179857 | 39.251 18.93664 | 26.86151 | 18985
Energy X Delay [W. ms] 192.4896 125.5399 | 62.448 13.95164 | 39.186 15.732

Table A-12: Specifications of 1.SA exponentiator over GF(26 07) in Low-Power/ Low-Voltage COOLIB
J8Wm PROCESS (0.9, non optimized).
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Architecture

D=1 D=4 D=8
clock free clock clock free clock clock clock
gated gated free gated

Supply voltage [V] 0.9 0.9 0.9 0.9 . 0.9 0.9
Nb. of gates 18613 15708 30108 24087 64729 59627
Cycle-time [ns] 2.53 3.91 8.46 5.96 15.48 10
Latency 738113 738113 186049 186049 93633 93633
Total Delay {ms] 1.8674259 | 2.8860218 | 1.5739745 | 1.1088520 | 1.449439 | 0.93633
Cell Intemal Power [mW] 10.7201 7.1210 5.5338 6.1166 4.3317 5.4385
Net switching Power [mW] 11.2703 9.766 6.20008 6.6001 4.7659 6.2259
Total Dynamic Power [mW] 21.9904 16.887 11.7347 12.7167 9.0976 11.6644
Cell Leakage Power [nW] 588.9568 | 614.064 773.9136 701.3419 1154.6 1.1547
Energy 1] 41.065442 | 48.73625 18.470119 | 14.100939 | 13.18642 | 10.92173
Energy X Delay [W. ms] 76.68667 140.65388 | 29.071497 | 15.635855 | 19.11290 | 10.22634

A8Wwm PROCESS (0.91; power optimiged).

Table A-13: Specifications of LS.A exponentiator over GF (2607 ) in Low-Power/ Low-Voltage COOLIB
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APPENDIX D: SELECTIVE ENCRYPTION BITS FOR A

Encryped bits per frame IPBf-DCLum
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