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“From the moment I picked your book up until I laid it down I was convulsed
with laughter. Someday I intend reading it. ”
Groucho Marx



Abstract

Linear transforms and expansions are fundamental mathematical tools of signal
processing. In particular, the wavelet transform has played an important role
in several signal processing tasks, compression being a prime example. A signal
can be represented in a basis or a frame. Frames, which are an extension of
bases to overcomplete sets of vectors, are sometimes preferred to bases because
of their greater design freedom and recently they have had an important impact
in signal processing.

This thesis focuses on the design of new bases and frames for signal process-
ing and communications. The first contribution of the thesis is the exploration
of the use of oversampled filter banks, which represent a possible way to im-
plement frames, to robust communications. Normally, transforms are used as
a pure source coding method and a reliable communication is obtained with a
channel coder which follows the source coder. In this case, we use frames to
achieve efficient source compression and robustness to trasmission errors at the
same time.

In the context of pure source transform coding, we investigate the perfor-
mance of the wavelet transform and study the dependency of the wavelet co-
efficients across scales. This analysis leads to the design of a new expansion
which provides an efficient representation of piecewise smooth signals. We call
footprints the elements of this expansion. The main property of footprints is
that they efficiently characterize the singular structures of the signal, which
usually carry the main information. We show that algorithms based on foot-
prints outperform wavelet methods in different applications such as denoising,
compression and deconvolution.

Finally, we study a particular source coding technique called multiple de-
scription coding. This technique is used for data transmission over unreliable
networks. In multiple description coding, the coder generates several different
descriptions of the same signal and the decoder can produce a useful recon-
struction of the source with any received subset of these descriptions. We study
the problem of multiple description coding of stationary Gaussian sources with
memory. First, we compute the multiple description rate distortion region for
these sources. Then, we develop an algorithm for the design of optimal critically
sampled filter banks for multiple description coding of Gaussian sources.
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Sommario

Le trasformazioni e gli sviluppi lineari rappresentano uno strumento di vitale
importanza nell’elaborazione dei segnali. La trasformata wavelet, in particolare,
ha svolto un ruolo fondamentale im molte applicazioni come, ad esempio, la
compressione dei dati. Un segnale pud essere rappresentato attraverso una base
o una frame. Le frame sono una estensione del concetto di base. Una base & un
insieme di vettori che copre un certo spazio (in questo caso 'insieme dei vettori &
completo), mentre la frame & un insieme di vettori che contiene almeno una base
(in questo secondo caso l'insieme dei vettori & “pitt” che completo). Le frame
sono talvolta preferite alle basi proprio per la loro generalitd che ne garantisce
un uso piu efficace. A cio si deve il notevole impatto che le frame stanno avendo
nell’elaborazione dei segnali. Questo insieme di considerazioni giustificano I’in-
teresse a proseguire nella ricerca di nuove basi e nuove frame per affrontare, in
modo efficiente, i problemi legati all’elaborazione e alla trasmissione dei dati.

Il primo contributo di questa tesi consiste nello studio dei banchi di filtri
sovracampionati e nel loro utilizzo per i problemi di comunicazione affidabile.
I banchi di filtri sovracampionati rappresentano uno dei modi possibili di real-
izzare le frame. Generalmente, le trasformate sono utilizzate per la codifica di
sorgente mentre la codifica di canale & garantita da un secondo codificatore. In
questo caso, le frame sono utilizzate per garantire, allo stesso tempo, un’ efficace
compressione ed una trasmissione affidabile dei dati.

Nell’ ambito della pura codifica di sorgente tramite trasformate, le
prestazioni della trasformata wavelet sono state analizzate con particolare rifer-
imento alla dipendenza esistente tra i coefficienti wavelet a diverse scale di
risoluzione. Questa analisi ha condotto alla realizzazione di una nuova espan-
sione per la rappresentazione di segnali regolari a tratti (piecewise smooth
signals). Gli elementi di questo nuovo sviluppo sono stati chiamati footprints.
Una delle principali caratteristiche dei footprints consiste nel rappresentare ef-
ficacemente le discontinuitd di un segnale. Sono proprio le discontinuita che,
generalmente, contengono la parte saliente dell’informazione. Inoltre, si mostra
che, in molte applicazioni, gli algoritmi basati su questa nuova trasformata of-
frono prestazioni superiori ai corrispondenti algoritmi basati sulla trasformata
wavelet. Le applicazioni considerate sono : la compressione dati, la rimozione
di rumore nei segnali (denoising) e l'operazione di filtraggio inverso (deconvolu-
tion).

Infine, questa tesi affronta una particolare tecnica di codifica di sorgente chia-
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mata codifica a descrizione multipla. Si tratta di una tecnica generalmente usata
per trasmettere dati su sistemi di comunicazione non affidabili. Nella codifica a
descrizione multipla, il codificatore produce molteplici descrizioni del medesimo
segnale e il decodificatore pud ottenere un’utile ricostruzione del segnale con ogni
sottoinsieme di descrizioni ricevute. Oggetto di studio ¢ la codifica a descrizione
multipla di processi gaussiani stazionari con memoria. Dapprima si calcola la
regione tasso compressione-distorsione (rate distortion region) per questo tipo di
processi. Quindi, viene sviluppato un algoritmo per la costruzione di banchi di
filtri sottocampionati per la codifica a descrizione multipla di sorgenti gaussiane.
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Chapter 1

Introduction

1.1 Motivation

At the heart of many signal processing and communication tasks lies a repre-
sentation problem: what is the best way to look at data, what is the best way
to approximate a signal, what is the best representation to perform a certain
task. :

Usually signals are represented through a set of vectors {; };cz which form
a basis. In broad terms, a basis is a set of linearly independent vectors that
cover a space. For example, any set of two linearly independent vectors forms a
basis for the plane, or R2. In general, given a set of basis vectors {y;}, one can
represent any signal z as a linear combination of the {¢;}’s:

i€

In engineering, two types of bases have played an important role: the Fourier
series and the wavelet basis. Fourier analysis is widely used in many areas of
engineering especially to analyze stationary signals. Wavelets have become pop-
ular especially for their ability to analyze more complex signals (i.e., signals with
transient behaviours). Then, the choice between Fourier and wavelet transform
depends on the type of signal and on the kind of application. For instance, in
many applications the target is sparse representation. That is, a good basis
for a signal is the one in which only few coefficients are different from zero or
bigger than a small threshold. Now, if the target is sparse representation and
the signal contains transient behaviours such as impulses, then Fourier bases
perform poorly, while wavelets are the right representation of these objects. At
the same time, Fourier bases are more suited to approximate signals with high
frequency sinusoids.

These first considerations seem to indicate that while one particular repre-
sentation is not enough, the freedom to choose between a few different bases
might be the solution. With a simple example, we will soon show that this is not
the case and that in many situations the best signal representation is given by
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overcomplete expansions, that is, by sets of vectors which contain more than the
minimum number of elements necessary to form a basis. These sets of vectors
are more formally called frames.

Consider again the problem of sparse representations (this example will be
more formally explored in the next section). Assume that a signal z is well
represented in one basis (e.g. Fourier basis) and that a second signal y is well
represented in the other basis (e.g. wavelet basis). The signal = +y might not be
well represented in either basis. But the union of these two bases, which leads
to a frame, can give a compact representation of z + y. Thus, by extending
bases into frames, it is possible to obtain sparser signal representations.

Now, because the elements {¢;} of a frame are linearly dependent, there
are infinitely many ways to express a signal as a linear combination of the ¢,’s.
Because of this, the search for the right representation (i.e., sparse representation
in the example above) can be computationally complex and, in some cases,
computational complexity associated to a frame is a key issue. At the same time,
the freedom to represent a signal in different ways is an attractive property of
frames. In fact, different representations can be good for different applications.

Assume that our target is error resilience (for instance, in robust communi-
cation for wireless or packet transmission). In this case, sparse signal represen-
tation is not a good solution. In fact, if a signal is given by the combination
of only few elements of the frame, the error due to the loss of some of these
elements can be very high. However, if each ¢; contributes to the representa-
tion of the signal, that is, if the energy of the signal is spread over all the frame
elements, then the loss of some elements is much less dramatic. Clearly, this
resilience increases with the number of elements in a frame, since the energy of
the signal is spread over a larger number of elements. Therefore a basis, which
contains the minimum number of elements necessary to cover a space, is less
resilient to losses than frames.

Now, consider, again the signal  + y introduced before, and the frame given
by the union of two bases, in our example wavelet and Fourier bases. We have
seen that this frame can give a sparse representation of  +y. At the same time,
using the fact that there are infinitely many ways to express £ +y in terms of the
i’s, we can choose a representation in which z 4y is given by the combination
of all the elements of that frame. In this way, we achieve error resilience as
explained above. Thus, by changing signal representation we can solve different
problems.

These two examples shows that frames can be more powerful than bases
and that frames represent a flexible tool. These are some of the reasons for
the recent success of frames in applications and for our interest in frames. The
examples highlighted before are explored in more details in the next section.
Some historical notes about frames are given in Section 1.3. Finally, the outline
of the thesis is given in Section 1.4. '



1.2. A simple example 3

1.2 A simple example

We now explore the previous examples more formally. First, we pursue sparse
representations. We consider finite dimensional spaces (i.e. RY or CV) and
denote the space by HY. We define vectors as columns with the inner product

N-1
(z,9) = )«

=0

The two bases that we consider are the spike and the Fourier basis. The spike
basis is given by vectors {d;}i=o,.. n—1 Where ¢; is a vector with a 1 in the ¢-th
position and zero elsewhere. The Fourier basis is given by {fi}i=o,. nv—1 where

1

1 e2‘rri/N

fizﬁ

e2mi(N=1)/N

Clearly, both {8;}i=o,..~—1 and {f;}i=o,.,~n—1 are orthonormal bases for HY .
Therefore, any vector z € HY can be written as z = Zf:ol(m, 0;)6; or x =
N-1
Now, consider a signal z with one component well represented in one basis
(e.g., spike basis) and a second one well represented in the other basis (e.g.
Fourier basis), that is, assume that z is composed of a pure spike and a pure
sinusoid:

T =6m+ fir (1.1)

Clearly, = does not have a sparse representation in either the Fourier or the
spike basis. However, the overcomplete set of vectors F given by the union of
the Fourier and spike bases:

F = {¢iti=o,..2an-1 = {8i}i=o0,..N—1 U {fi}i=0, ., N1

can provide a sparse representation of z. In fact, there is one representation that
uses only 2 non-zero coefficients, namely the one given by (1.1). Because, the
vectors of this frame are linearly dependent, we can find other ways to express
x. But, one can easily convince oneself that the one in (1.1) is the sparsest
possible representation of z with that frame. It is also true that one can come
up with other frames or ad-hoc bases which allow even sparser representations.
Still, this example shows the advantage of going from bases to frames and that
redundant expansions allow sparser representations.

Assume, now, that we want to pursue resilience to erasures. That is, assume
that z is given by a linear combination of the p;’s: z = 2?2’0‘1 a;p; and that
some of the coefficients ¢; of this representation can be lost. These losses mimic
errors that can occur in an unreliable communication medium.!

LOf course, we are depicting a very simplified scenario.
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Our new target is to find a representation of z that minimizes the error due
to these erasures. Clearly, the representation in (1.1) is not good in this setting,
since the loss of one of the two non-zero coeflicients would be catastrophic.
Instead, consider the following representation of z:

L N1 L N1
T = 5 ;(x: 0:)0; + 3 ; (z, fi) fi.

In this case, the loss of some coefficients is less dramatic. In particular, in the
case of only one loss, it is always possible to reconstruct x exactly. This is
because the remaining 2.V — 1 vectors still cover the entire space. Assume, for
instance, that we lose one coefficient of the spike basis, then we can use the
coefficients (z, f;) of the Fourier basis to reconstruct z and viceversa.? Clearly,
bases do not perform well in this case. This is because in the case of loss, the
remaining elements of the basis do not cover the space anymore.

Therefore, frames can be more powerful than bases not only for sparse rep-
resentations but also for error resilient representations. Moreover, this second
example shows that one can use the same frames for different applications.

1.3 Historical notes

Frame were introduced by Duffin and Schaeffer [44] (1952) in the context of
non-harmonic Fourier series (i.e., expansions of function in L,([0,1]) in com-
plex exponentials exp(jA,x), where A\, # 27n). The theory then laid largely
dormant until 1986 with the publication of work by Daubechies, Grossman and
Meyer [25]. The mathematics of frames can be found in the works mentioned
above. In addition, the paper {23] and the book [24] by Daubechies offer an ex-
cellent introduction into frames, and in particular, wavelet and Gabor frames.

Frames, or redundant representations, have been used in different areas un-
der different guises. Perfect reconstruction oversampled filter banks are equiva-
lent to frames in [2(Z). The authors in [22, 9] describe and analyze such frames.
Frames show resilience to additive noise as well as numerical stability of re-
construction [24]. They have also demonstrated resilience to quantization [57].
Frames provide a greater freedom to capture significant signal characteristics
and this have been exploited in several works {5, 6, 100]. In communication,
frames have been used to design unitary space-time constellations for multiple-
antenna wireless systems [65] and to increase resilience to losses in a packet-
based communication system [56, 55].

In compression, the idea is to form a frame with the collection of different
bases and to search for the best basis among that collection. This gave rise to
wavelet packets [16, 88]. The advantage of this approach is that the search for
the best basis is less complex than a search in a general frame. In the case of
general frames, the matching pursuit algorithm [79] is the most used method.

2In the next chapter, we will also consider coefficient quantization and it will be shown
that this kind of representation is indeed optimal in the case of one erasure.
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Matching pursuit is a greedy search algorithm for an M-term approximation of
an input signal. This method is related to gain-shape vector quantization [50]
and to projection pursuit in statistics [49].

Frames have had an important role in analyzing performance of oversampled
analog-to-digital conversion. In this context, oversampling is used to reduce the
noise due to the analog-to-digital converter. Such oversampling has been used
for years, but the frame based interpretation and analysis has lead to new insight
and performance bounds [96].

Finally, overcomplete representations are becoming again popular in image
analysis. In this case, the main goal is to come up with representations having
good directionality properties. In this way, it is possible to catch and analyze
curves and contours in images [11, 30].

1.4 Thesis outline and contribution

The focus of this thesis is on redundant representations or frames with applica-
tions to either communication or signal processing problems.

In the next chapter we focus on oversampled filter banks and on their ap-
plication in communication. In particular, we consider communication systems
with erasures and study the use of frames to mitigate the effect of erasures.
In that chapter, basic properties of frames and oversampled filter banks are
reviewed. Then the effect of erasures on the structure of filter banks is stud-
ied and several filter bank examples are discussed. Finally, we show that filter
banks implementing uniform tight frames and newly defined strongly uniform
tight frames perform the best in this context.

In Chapters 3 and 4, we introduce a new overcomplete expansion for compact
representation of piecewise smooth signals. The elements of this expansion are
called footprints. Footprints are scale-space vectors built from the wavelet trans-
form and their main characteristics is to exploit the dependency across scales of
the wavelet coefficients. In Chapter 3, we present the footprint expansion and
propose algorithms to efficiently search for the sparsest footprint representation
of a signal. We also study the use of matching pursuit to approximate a signal
with footprints and show that in some cases matching pursuit performs as well
as the best search algorithm. Applications, namely compression, denoising and
deconvolution, are discussed in Chapter 4. We compare footprints based meth-
ods with wavelet algorithms and see that footprints are consistently superior to
wavelet algorithms.

In Chapters 5 and 6, we go back to communication problems. In particular,
we study a source coding technique called multiple description coding. Multiple
description coding is used for data transmission over unreliable networks in
particular packet switched networks.

In Chapter 5, we review some fundamental performance bounds of multi-
ple description coders and present a new multiple description rate-region for
stationary Gaussian sources.
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Chapter 6 studies some practical multiple description systems. In particu-
lar, we review the multiple description scalar quantizer [102] and the multiple
description transform coder [83, 110, 53, 54]. Then we propose the use of two-
channel critically sampled filter banks to implement multiple description coders.
In this case, we make statistical assumptions on the source to be coded and the
transform is designed to introduce statistical redundancy (correlation) in the
signal representation. This redundancy is used to combat channel impairments.
Therefore, eventhough we do not use frames in an explicit way, the idea of using
transforms which introduce statistical redundancy to increase error resilience
is in spirit similar to the idea of using the redundancy introduced by frames
to allow robust transmission. In other words, frames introduce deterministic
redundancy, critically sampled filter banks for multiple description coding in-
troduce statistical redundancy.

Finally, we conclude in Chapter 7 with a summary and an outlook on future
research.



Chapter 2

Frames and Oversampled
Filter Banks for
Communications

2.1 Introduction

The use of frame expansions in signal processing has recently become quite
popular. The basics of frames can be found in several sources, in particular,
in the original work by Duffin and Schaeffer [44] and in the paper [23] and the
book [24] by Daubechies which offer an excellent introduction into frames, and
in particular, wavelet and Gabor frames. Perfect reconstruction oversampled
filter banks which are equivalent to a particular class of frames in [2(Z) were
described and analyzed by Cvetkovi¢ and Vetterli in [22] (See also [9]).

In this chapter, our aim is to exploit the redundancy present in a frame
representation to reduce the effect of losses in a communication system. In a
previous work [55], the frame elements belonged to RY (or CV) and can be
seen as filters in a block-transform filter bank. Here, we investigate frames with
elements in [3(Z); they can be seen as filters in a general, oversampled filter
bank.

We consider the communication model depicted in Figure 2.1. An input
sequence z[n] is fed through an M-channel finite-impulse response (FIR) filter
bank followed by downsampling by N (N < M). The M output sequences are
then separately scalar quantized with uniform scalar quantizers and sent over
M different channels. Each channel either works perfectly or not at all. The
decoder receives only M — e of the quantized output sequences, where e is the
number of erasures during the transmission. We assume there are no more than
M — N erasures. The reconstruction process is linear. We wish to find properties
of the filter banks that minimize the mean square error (MSE) between the

O0This chapter includes research conducted jointly with Jelena Kovaevié and Vivek
Goyal [36, 74]
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input and the reconstructed sequences. We do not make any assumptions on
the input source. Rather, a statistical model for the quantization error makes
the reconstruction quality depend only on the characteristics of the filter bank.

v analysis filter bank

H EY1I_|Y1 /
paElp Onmill

Figure 2.1: Abstraction of a lossy network with a frame expansion implemented
by an oversampled FIR filter bank. An input sequence z[n] is fed through an M-
channel finite-impulse response (FIR) filter bank followed by downsampling by N
(N < M). The M output sequences are then separately scalar quantized with
uniform scalar quantizers and sent over M different channels. Each channel either
works perfectly or not at all. The decoder receives only M — e of the quantized
output sequences, where e is the number of erasures during the transmission. We
assume there are no more than M — N erasures. The reconstruction process is
performed by the synthesis filter bank. The choice of synthesis filters depends on
which channels are received.

In the next section, we go through the basics of frame expansions in CV and
15(Z). In Section 2.3, we introduce the notion of strongly uniform frames and
discuss several examples. We then quantize the frame coefficients and find the
MSE (Section 2.4). Finally, in Section 2.5 we let some coefficients be erased
(mimicking the losses in a network) and discuss the effect on both the structure
of the frame and the MSE. We draw conclusions in Section 2.6.

2.2 Frame Expansions and Oversampled Filter
Banks

This review of frames and oversampled filter banks is based on [22, 24, 55]. For
convenience we start with the finite-dimensional case, that is, we consider only
frames in CN.

A family of M vectors ® = {p;}¥, € CV constitutes a frame if for any
vector z € CN there exist two constants A > 0 and B < oo such that:

M
Allzl® < llyll> =D e, @) < Blial®. (2.1)

i=1
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all frames

-

<>

* UF uniform frames « UTF uniform s TF tight frames

+«UF1  uniform frames tight frames *« NTF  normalized
with norm 1 * ONB  orthonormal tight frames

* UTF1 uniform tight frames bases * UNTF  uniform normalized
with norm 1 tight frames

Figure 2.2: Frames at a glance. Note that here we denote by UF uniform frames
with the same norm, not necessarily 1. When the norm is 1, we say so explicitly.
For instance, UF1 denotes uniform frames with norm 1.

When A = B the frame is tight (TF). If A = B = 1, the frame is normalized
tight (NTF). A frame is uniform (UF) if all its elements have norm 1,! ||p;|| = 1.
For a UTF, the frame bound A gives the redundancy ratio (it is M /N in this
case). A UTF which is also normalized, that is, with A = 1, is an orthonormal
basis (ONB). Figure 2.2 helps to clarify the various possible sets of frames.
Moreover, the following theorem tells us that every tight frame can be seen as
a projection of an orthonormal basis from a larger space.

Theorem 2.1 (Naimark [2]) 2 A family {p;}icr in a Hilbert space H is a
normalized tight frame for H if and only if there is a larger Hilbert space H C K
and an orthonormal basis {e;}icr for K so that the orthogonal projection P of
K onto H satisfies: Pe; = y;, for alli € I.

If we denote vectors as columns then we can define the frame operator F as-
sociated with ® as an M x N matrix with the ith row equal to ¢}.> That
is:
Y - PIN
F=1: 0 ] (2.2)
Cmr - PMN
We then define an output vector with y = Fz. The properties of a frame can
be conveniently defined using its frame operator F. For example, (2.1) can be

1 Actually, the definition of a UF is more general; the norm is allowed to be ¢ # 1. In this
work, however, we consider only UF with norm 1.

2This theorem has been rediscovered by several people in recent years. See for instance: [24,
64, 94].

3The superscript * denotes the Hermitian transpose.
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rewritten as
| Al < F'F < BI. (2.3)
It follows that F*F' is invertible (Lemma 3.2.2 in [24]), and furthermore
B7'I < (F*F)™' < A7!IL (2.4)
Then, the dual frame of @ is a frame defined as & = {@;},, where
¢i = (F*F)7ly; (2.5)

fori =1,...,M. Noting that @} = ! (F*F)~! and stacking @}, @3, ..., @y
in a matrix, the frame operator associated with @ is

F = F(F*F)~L. (2.6)

Since F*F = (F*F)~!, (2.4) shows that B! and A~! are frame bounds for &.
Vector z can be reconstructed from y using the so called pseudo-inverse F'f.

Ft = F~. (2.7)

Finally, a frame is tight if and only if F*F = Aly, where Iy is the N x N
identity matrix while a UTF satisfies F*F = %I N-
If we call A; the eigenvalues of F*F, then:

1. the sum of the eigenvalues of F*F' equals the sum of the lengths of
the frame vectors: Zf;l Ai = tr(F*F) = tr(FF*) = Zﬂil PRk =
M

2. for a UF the sum of the eigenvalues equals M,
3. for a TF, F*F has eigenvalue A with multiplicity N,
4. for a UTF, F*F has eigenvalue AA’{— with multiplicity N.

Consider now the filter bank shown in Figure 2.1. The input into the fil-
ter bank is a square-summable infinite sequence z[n] € I3(Z). Call H;(w) =
[Hii(w), Hiz(w), ...Hin(w)]* the polyphase representation of the sth analysis fil-
ter where

Hij(w) = X300 il — jle=m.

n=—oo

Call H(w) the corresponding M x N polyphase analysis matrix, which is a matrix
whose ith row equals H}(w). The following result establishes the equivalence
between frames in I3(Z) and polyphase matrices:

Proposition 2.1 (Cvetkovié and Vetterli [22]) A filter bank implements a
frame decomposition in l2(Z) if and only if its analysis polyphase matriz is of
Sfull rank on the unit circle.
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Moreover, it is of interest to note that when the filters hyn], i =1,... , M,
are all of length N, then, each polyphase sequence is of length 1. Thus, H(w)
becomes a constant. In this case, it is easy to relate the polyphase matrix to
the frame operator F. In fact, the filter bank as given in Figure 2.1 implements
a finite-dimensional frame expansion as we explained earlier. In other words

Pin = R[N -], (2.8)

fori=1,...,Mandn =1,..., N and the polyphase matrix reduces to H(w) =
FJ, with J an antidiagonal matrix.*

Many properties of frames implemented with filter banks can be stated using
the polyphase matrix in much the same way as F was used to define properties
in the finite dimensional case. For instance as in the finite-dimensional case, the
dual frame is represented by

Hw) = Hw)(H*W)HW)™, (2.9)
while the pseudo-inverse is
H'(w) = H*(w). (2.10)

We now revisit briefly the definition of a UF. The frame is uniform if
||hi[n]|| =1 for i =1,... , M or, using Parseval’s relation, if

1M
o | 2 Hu(w)fPdw = 1,
k=1

fort=1,...,M. This leads us to define a more restrictive condition:

Definition 2.1 (Strongly uniform frame) A frame expansion in lo(Z) im-
plemented by an M x N polyphase matriz H(w) is strongly uniform® if

N
Yo Ha(w)? = 1, (2.11)
k=1

fori=1,... , M andw € [-m,7].

In other words, a strongly uniform frame is implemented by a filter bank which
is uniform for each fixed w. Clearly, strongly uniform frames are a subset of
uniform frames. If H(w) = F.J and F is uniform, then the corresponding frame
is strongly uniform. Moreover, a square paraunitary matrix is automatically
strongly uniform. Further examples of strongly uniform frames will be shown
in the next section.

In the finite dimensional case, we have seen that a frame is tight if and only
if F*F = A.In. If we are dealing with infinite sequences, analogous results can
be formulated. The following is known:

4The matrix J just reverses the order of columns of F.
5As before, when we say “strongly uniform”, we will mean “strongly uniform with norm
17,
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Proposition 2.2 (Cvetkovié and Vetterli [22]) A filter bank implements a
tight frame expansion in lo(Z) if and only if H*(w)H (w) = AlN.

Proposition 2.3 (Vaidyanathan [101]) An M x N polyphase matriz H(w)
represents a tight frame if and only if it has the following decomposition: H(w) =
U(w)F, where U(w) is an M x M paraunitary matriz® and F is an M x N matriz
such that F*F = Aly.

Proposition 2.4 (Cvetkovié [21]) For a frame associated with an FIR filter
bank, with the polyphase analysis matriz H(w), its dual frame (2.9) consists of
finite length vectors if and only if H* (w)H (w) is unimodular.

Here unimodular means that the determinant of H*(w)H (w) is £1. This result
leads us to formulate the following useful property of TFs:

Corollary 2.1 Given an FIR analysis polyphase matriz H(w) corresponding to
a TF, the synthesis polyphase matriz G(w) corresponding to the pseudo-inverse
as in (2.10), is FIR as well.

Proof: Using Proposition 2.2, we know that H*(w)H(w) = AlIx. Since H(w)
is FIR, H(w)/VA is FIR as well. Thus, (H(w)/VA)*(H(w)/VA) = Iy is
unimodular. By Proposition 2.4, the dual frame (synthesis polyphase matrix)
to H(w)/v/A is FIR as well. Since scaling does not affect the FIR. property, the

dual frame (synthesis polyphase matrix) to H(w) is FIR.
O

As for the eigenvalues, if we call A;(w) the spectral eigenvalues of H*(w)H (w),
then:

1. the integral sum of the spectral eigenvalues of H*(w)H (w) equals the sum
of the filters’ norms: - 7 YN Aw)dw = DX (han]|I?;

2. for a UF, the integral sum of the eigenvalues equals M;

3. for a TF, H*(w)H(w) has eigenvalues constant over the unit circle and
equal to A with multiplicity N: A\;(w) = A4, i=1,...,N;

4. for a UTF, H*(w)H(w) has eigenvalues constant over the unit circle and
equal to % with multiplicity N.

6A square matrix H(w) is called paraunitary if H*(w)H(w) = H(w)H*(w) = cl,c # 0.
Moreover, any paraunitary matrix can be decomposed into a sequence of elementary matrices
such as rotations and delays [101].
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2.3 Examples of Uniform and Strongly Uniform
Frames

Oversampled filter banks are sometimes preferred to classical critically down-
sampled filter banks for their greater design freedom. However, this freedom
makes the actual design difficult.

One of the most used families of oversampled filter banks is the nondown-
sampled one. They are obtained by eliminating the downsampling in the filter
bank scheme. If the analysis and synthesis filters are power complementary (i.e.
with FIR filters, the synthesis filters are the time reversed versions of the anal-
ysis ones) then the corresponding frame is tight and uniform but not strongly
uniform.

It will be shown in next sections that strongly uniform tight frames constitute
an important class of frames. We propose the following factorization to design
polyphase matrices corresponding to strongly uniform tight frames:

H(w) = FU(w), (2.12)

where F is a uniform tight frame in CV and U(w) is an N x N paraunitary
matrix. It is easy to see that such a polyphase matrix corresponds to a strongly
uniform tight frame. '

Note the difference between this factorization and the one in Proposition 2.3
(H(w) = U(w)F). The order of the elements is reversed, so in this last factor-
ization, the paraunitary matrix has size M x M, while in our factorization it
has size N x N (N < M). This is not surprising since the family of polyphase
matrices with the factorization H(w) = U(w)F represents the more general class
of tight frames and not the restricted class of strongly uniform tight frames.

Although we cannot claim that our factorization includes all possible
strongly uniform tight frames, we can state the following:

Theorem 2.2 Define an equivalence relation by bundling a frame (implemented
with an FIR oversampled filter bank) with all frames that result from rigid ro-
tations of its elements as well as negation or shift of some individual ones (i.e.
hiln] = —hiln — k] k € Z). When M = N + 1, there is a single equivalence
class for all strongly uniform tight frames.

Proof. See Appendix 2.A.1.

Since a UTF F in CV can be seen as a strongly uniform tight frame in
15(Z) (that is, H(w) = FJ), Theorem 2.2 basically says that the factorization
in (2.12) essentially includes all the possible strongly uniform tight frames
when M = N +1 (up to a shift or negation of some individual elements). Also,
when H(w) = FJ, this theorem reduces to Theorem 2.6 from [55].
Unfortunately, when M exceeds N + 1, there are uncountably many equiva-
lence classes of the type described above; thus, we cannot systematically obtain
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all uniform tight frames. However, at least for N = 2, UTFs still have a simple
characterization given by Theorem 2.7 from [55]:

Theorem 2.3 (Goyal, Kovagevi¢ and Kelner [55]) The following are
equivalent:

1. {pr = (cosag,sinag)}M | is a uniform tight frame.

2. ZkM=1 2k = 0 where z, = €2 fork=1,2,..., M.

Thus, a simple combination of our factorization (2.12) together with the
complete characterization of UTFs for N = 2 given by the above theorem,
produces a useful factorization (although probably not complete) of SUTFs.

2.4 Quantized Oversampled Filter Banks

In this section we will analyze the effect of quantization on the performance
of the system. For the moment we assume that there are no erasures during
transmission. We want the reconstruction operator to be linear, that is, we want
it to be implemented by a synthesis filter bank. The reconstruction operator
that we will use is the pseudo-inverse (2.10).

We will assume that the quantization error can be treated as additive white
noise with variance o2 = A?/12, where A represents the step size of the quan-
tizer and each quantizer has the same step size. We further assume that the
noise sequences generated by two different channels are pairwise uncorrelated.
This can be expressed as:

giln] = yiln] + win], (2.13)
fori=1,...,M, and
Elwi[nlwj[n — m]] = ¢°8;;6[m)]. (2.14)

Under this assumption (input sequences corrupted by additive white noise), the
pseudo-inverse in (2.7) and (2.10) is the best linear reconstruction operator in
the mean square sense [24]. Moreover, in Appendix 2.A.2 we show that the
MSE due to quantization is:

o? T
MSE = 5 _”tr((H*(w)H(w))'l)dw (2.15)
o2 ML 1
= 5w Zmdw, (2.16)

T k=1

where Ag(w), k = 1,..., N denote the spectral eigenvalues of H*(w)H (w). We
will be using the above two expressions interchangeably. Recall that the integral
sum of the eigenvalues is constant and if we are encoding with a uniform frame, it
is equal to M. Thus, we want to minimize the MSE given the constraint that the
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integral sum of the eigenvalues is constant. This occurs when the eigenvalues
are equal and constant over w which is true if and only if the original frame
is tight. The above discussion and computation can be summarized by the
following theorem:

Theorem 2.4 When encoding with a filter bank implementing a uniform frame
and decoding with the pseudo-inverse under the noise model (2.13)-(2.14), the
MSE is minimum if and only if the frame is tight. Then:

MSE, = %02. (2.17)

2.5 Introducing Erasures

Here we consider the effect of erasures on the structure of the frame and on the
MSE. We denote by E the index set of erasures and by Hg(w) the polyphase
matrix after e = |E| erasures. Hg(w) is an (M — e) x N matrix obtained by
deleting the E-numbered rows from the M x N polyphase matrix H(w). The
first question to be answered is under which conditions Hg(w) still represents a
frame. We then study the effect of erasures on the MSE.

2.5.1 Effect of Erasures on the Structure of a Frame

Our aim is to use the pseudo-inverse operator to reconstruct after e erasures.
The pseudo-inverse matrix is defined only if the matrix Hg(w) is still a frame,
that is, if and only if it is still of full rank on the unit circle. This leads to the
following definition:

Definition 2.2 An oversampled filter bank which implements a frame expan-
ston represented by a polyphase matriz H(w) is said to be robust to e = |E|
erasures if and only if for any index set E of erasures, Hg(w) is of full rank on
the unit circle.

Let us consider first the case where there is only one erasure.

Theorem 2.5 An oversampled filter bank which implements a uniform tight
frame is robust to one erasure if and only if

N

M
E IHik(w)lz < =
k=1 N

fori=1,... , M and for all w.

Proof: See Appendix 2.A.3.
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Recall that by definition a strongly uniform frame is such that:
E;\;l |H;j(w)|? = 1,4 = 1,..M, for allw. Thus, as a consequence of the
previous theorem we can state:

Corollary 2.2 Any oversampled filter bank which implements a strongly uni-
form tight frame is robust to one erasure.

The result of Theorem 2.5 does not reveal anything about the existence of filter
banks which are robust to more than one erasure.

In [55], it has been shown that a complex harmonic frame in CV or a real
harmonic frame in RY is robust to e erasures (¢ < M —N). A complex harmonic
tight frame is given by:

ori = Wi VY =12, N, k=12, M,

where Wy = e/27/M | (A real harmonic tight frame could be defined similarly).
The following theorem guarantees the existence of at least one family of strongly
uniform tight frames in [2(Z) which are robust to e erasures (e < M — N):

Theorem 2.6 Consider an oversampled filter bank with polyphase analysis ma-
triz G(w) = FU(w), where F is a complez harmonic frame in CV or a real har-
monic frame in RY and U(w) is an N x N polyphase matriz nonsingular on the
unit circle (det(U(w)) # 0). This filter bank is robust to e erasures (e < M—N ).

Proof: See Appendix 2.A.4.

If U(w) is a paraunitary matrix, the resulting oversampled filter bank
G(w) = FU(w) represents a strongly uniform tight frame robust to e erasures
(e< M —N).

2.5.2 Effect of Erasures on the MSE

In the previous section, it has been shown that it is possible to design oversam-
pled filter banks which are robust up to M — N erasures. We assume such filter
banks for the rest of the chapter.

Now, we want to compute the effect of the erasures on the MSE. Call H(w)
the polyphase matrix related to the original frame and Hg(w) the polyphase ma-
trix after e = |E| erasures. The reconstruction uses the dual polyphase matrix
H);(w) and the quantization model is the one proposed in (2.13)-(2.14). Under
these assumptions the mean square error is equivalent to the one determined in
(2.15)-(2.16):

MSEy = " wr((tp ) () 2.18)
o2 LT 1
= v 2 | W ) (2.19)
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where A (HE(W)Hg(w)), k = 1,..,N, are the spectral eigenvalues of
Hy(w)Hp(w).

However, our target is to express the mean square error in terms of the
original frame and to find properties that the original frame operator has to
satisfy to minimize the distortion. Consider first a strongly uniform frame and
e=1:

Theorem 2.7 Consider encoding with a strongly uniform frame and decoding
with linear reconstruction. The MSE averaged over all possible erasures of one
channel is minimum if and only if the original frame is tight. Moreover a tight
frame minimizes the mazimum distortion caused by one erasure. The MSE is
given by:

1
MSE, = (1 + T N) MSE,. (2.20)
where ‘[SEy is given by (2.17).
Proof: 3ee Appendix 2.A.5
0O

It is 1 rd to extend the result of this theorem to the case of more than
one er: ure. However, it is possible to compute the M SE with e > 1 when the
origing frame is strongly uniform and tight:

MSEp = (1 + L / i i —“&w) MSE, (2.21)
2 | o & M- Niu(w) !
where ;. :(w) are the spectral eigenvalues of 7*(w)T'(w) and T(w) is the N x e
polyphase matrix with columns {H;(w)}ieE.

Since (2.21) is similar to (2.16), and the spectral sum of the e eigenvalues
of T(w) is constrained to be a constant, the minimum in (2.21) occurs when all
the eigenvalues are equal and constant, which is true when T'(w) is tight.

When any erasure event is possible - meaning any combination of switches
may be open in Figure 2.1 - it is not possible to make 7T'(w) always correspond to
a tight frame. There are situations in which the number of “physical” channels
(separate transmission media) is less than the number of branches in the analysis
filter bank. In this case, there may be sets of branches that are each completely
lost or completely received and then it may be possible for the erased vectors to
form a tight frame. Therefore, in this situation it is possible to minimize (2.21).

2.6 Conclusions

In this chapter, we have investigated the use of frame expansions to mitigate
the effect of erasures in a communication systems. We have focused on the
case of frames implemented with oversampled filter banks and we have seen
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that oversampled filter banks associated with uniform and strongly uniform
tight frames perform the best in this context. In addition, we have presented
practical ways to design oversampled filter banks robust to one or more erasures.

Appendix 2.A Proofs
2.A.1 Proof of Theorem 2.2

Given a strongly uniform tight frame represented by the polyphase matrix K(w),
all the other polyphase matrices related to the same equivalent class are obtained
as follows:

Hw) = ¥ K(w) U(w), (2.22)
where U(w) is an N x N paraunitary matrix, ¥ = diag(o1,09,... ,0m) and
0; = + e 3% | € mathbbZ,i =1,..., M. This equivalence class preserves

tightness, uniformity, as well as strong uniformity. Thus, if K(w) is strongly
uniform and tight, so is H{w).

Now, let H(w) be a polyphase matrix associated with a SUTF with M =
N + 1. By Theorem 2.1, one can see that H(w) consists of the first ' columns
of a scaled (N + 1) x (N + 1) paraunitary matrix H(w). Each row (or column)

of H(w) is of norm /N + 1/N, that is:

N+1
. N+1
S Hp W) = T (2.23)
k=1
fori=1,2,...,N 4+ 1. Moreover, since our frame is strongly uniform we have:

N —
Y |Hu W) =1, (2.24)
k=1

fori=1,2,...,N + 1. Subtracting (2.24) from (2.23) we obtain:

_ 1
. 2 = —,
|Hi N1 (w)| N

Since H(w) is realized with FIR filters, it is formed only of Laurent polynomial
elements. This implies that ﬁi,NH (w) must be a monomial : I:Ii,NH(w) =
+N~VY2e=3w | € 7. Without loss of generality we assume that H; ni1(w) =
+N~1/2, That is, the last column of H(w) is (£N"V/2,£N-1/2  +N-1/2)
for some choice of signs.

Any given choice of signs in H; n+1(w) determines a subspace. Thus the
span of the other N subspaces (each subspace is related to one of the channels)
must be the orthogonal complement to this subspace. Since orthonormal bases
for a subspace are unitarily equivalent, the possible tight frames corresponding
to a single choice of signs are in the same equivalence class. Flipping signs yields
frames in the same equivalence class.
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2.A.2 Derivation of (2.16)

We now find the error of the reconstruction after the frame coefficients have
been quantized:

MSE = E[||z[n] - 3[n]|?]
= / B[l X (w) — X (@)[[?)dw

- 1N B @)W @) (W (@)do
1 *
= 5w/ E[ZW Wi (w)H} (0) Hj(w))dw

i,§=1

0.2 r M . .
s / ZH{(w)Hi(w)dw

- 271'N/ tr(H (w))dw

= 2 ~ tr((H*(w)H(w)) Vdw

o2 X1
- 2 — d
2rN /_ ,; Ne(@) ™

2.A.3 Proof of Theorem 2.5

Assume that the erased channel is H;(w). Call H(;(w) the polyphase matrix
after one erasure. Then:

Hiy(w)Hy(w) = HY(w)H(w) — Hi(w)H; (w) (2.25)
= —]]\—\{-IN - Hl(w)Hz*(w)

H;)(w) is a frame if and only if H, 2 (w)H ;) (w) is of full rank on the unit circle.
That means that (H (i (W) H) (w))~! must exist on the unit circle. The identity:

(A—BCD)™ = A1+ A"'B(C7'~-DA'B)"'DA™!, (2.26)

with A = (M/N)Iy, B = H;(w), C =1, and D = H}(w) yields:

(Hz;-)(w)H(i)(w))_l = (2.27)
= %—IN + (2.28)
+ %INHi(w) (l—H;(w)%INHi(w)) H;(w)%IN (2.29)

2 -1
- %Iwr Aj\gz (1—%H{‘(w)H¢(w)> Hi)H: ().  (230)
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Thus, the matrix is invertible if and only if:

1 2 H (@) Hiw) # 0

for all w. The desired inequality now follows from the fact that the frequency
response of each filter is continuous (since we are only considering FIR fil-
ters) and the frame is uniform. The continuity of the filters implies that
SN Hik(W)? < M/N, for all w or Y8, |Hi(w)[> > M/N, for all w. How-
ever, since the frame is uniform, that is, (1/27) ffﬂ ZkN=1 [|Hi(w)]? = 1, then
SN | Hik )2 < M/N, for all w.

2.A.4 Proof of Theorem 2.6

First note that if a finite set of channels has a subset that is a frame, then the
original set of channels is also a frame. Thus it suffices to consider subsets with
N channels; since all of these will be shown to be frames, larger subsets are also
frames.

Let us call Hg{w) the N x N polyphase matrix after e = M — N erasures.
Hg(w) is a frame if and only if det(Hg(w)) # 0 on the unit circle. Now, we
know that det(Fg) # 0 for any subset of e = (M — N) erasures [55] and since:
Hp(w) = FeU(w),

det(Hg(w)) = det(Fg)det(U(w)) # 0

for all w.

2.A.5 Proof of Theorem 2.7

As in the proof of Theorem 2.5, assume that the erased channel is H;(w). Call
H;)(w) the polyphase matrix after one erasure. Then (2.25) holds. According
to (2.18), the average MSE with one erasure is:

— o2 XL
MSEy = 5= / tr((Hyy () Hesy (@) ™) doo. (2.31)
=177
Call
v(w) = HY(w)H(W),
vi(w) = Hj(W)(H (w)H W)™ Hiw).

Note that v(w) is an N x N matrix, while v;(w) is a scalar. With that, (2.25)
can be rewritten as

vy (w) = H(i)(W)H(i) W) = vw) ~ Hi(w)H} (w).
We now find

’U(i)(w)_l = v(w)‘l +
v(w) T Hi(w) (1 - i(w)) ™ H (w)o(w) ™,

+
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where we used (2.26) with A = v(w), B = H;(w), C = 1, and D = H}(w).
Taking the trace of both sides gives

tr(vg W™ = triww)™) +

(1- vi (W) " tr(v(w) " Hy(w)H} (w)v(w) ™)
tr(ww)™t) +

+ (1= viw)  tr(H (w)v(w) 2H; (W)

o) + T ),

+

since both H}(w)v(w) 2H;(w) and 1 — v;(w) are scalars and the trace of the
product is invariant to the cyclic permutation of the factors. The average MSE
becomes

2 ™
SE, = N _”tr(v(w) Jdw +
v(w)?Hi(w)
27rMN Z 1 —v;(w) do.

The first term of the above equation is mlmmlzed if and only if the frame is
tight (since tr(v(w)™1) = tr((H*(w)H(w))™!) = Ziv 1 1/Ak(w). We show now
that the second term is minimized as well if and only if the frame is tight. We
can say that

M H @) 2Hiw) | eh u(w)?
; 1—% w)) 2 z:;m (2.32)

Here we used Lemma A.1 from [55] which is valid for SUFs and allows us to
exploit the following inequality:

H} (wp(w) ?Hi(w) > (H; @) Hiw)” = viw)?

Since we have the following constraint:

M
Zvi(w) = N,

=1
the equality and minimization of (2.32) occur when each term of Zz_l lv‘v‘:’(w)
contributes equally and when they are constant over w. This happens if and only
if the original frame is a SUTF. The minimax optimality is clear because the
average MSE is minimized while keeping every term in (2.31) equal. Obviously,
the maximum term of (2.31) cannot be smaller than the mean.
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Wavelet Footprints: Theory

3.1 Introduction

The design of a complete or overcomplete expansion that allows for compact
representation of arbitrary signals is a central problem in signal processing and
its applications. Parsimonious representation of data is important for compres-
sion [34]. Furthermore, achieving a compact representation of a signal also
means intimate knowledge of the signal features and this can be useful for many
other tasks including: denoising, classification and interpolation. From a com-
putational analysis point of view, one can say that the problem is to build a
dictionary D = {f; }ier of elementary functions which can well approximate any
signal in a given functional class F with the superposition of few of its elements.

The design of a dictionary with good approximation properties, however, is
not the only important element. Together with D, one also needs to develop a
fast algorithm that can efficiently find the sparsest representation of any signal
g € F in terms of the elements of D. When D = {f;}icr is a basis, there is
a unique way to express g as a linear combination of the f;’s, and this repre-
sentation can be easily found computing the inner products between g and the
duals of f;’s (clearly, the dual elements coincides with f; if the dictionary is
orthonormal). Despite this nice property, overcomplete dictionaries are usually
preferred to basis expansions. Overcomplete dictionaries are more flexible, they
can better adapt to the characteristics of the signal under consideration and this
allows for sparser signal representations. Examples of overcomplete dictionaries
include best basis methods or adaptive wavelet packets [16, 88]. In the case of
overcomplete bases, however, it is more difficult to develop fast algorithms that
find the right sparse representation of a signal in F. Because the elements of D
are linearly dependent, there are infinitely many ways to express g as a linear
combination of the f;’s, In few cases, it is possible to arrive at sparse signal
representations with linear complexity algorithms [33, 35, 46]. But, in general,
the search for the sparsest signal representation is an NP-complete problem [27).

OThis and the next chapter include research conducted jointly with Martin Vetterli {39, 41,
42, 43

23
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Note that techniques based on the Singular Value Decomposition (SVD) and
pseudo-inverse do not yield compact signal representations [51]. Other methods
like basis pursuit [12] are usually computationally intensive; matching pursuit
[79], which is a greedy iterative algorithm, is computational efficient but does not
converge in a finite number of iterations in general. Orthogonalized matching
pursuit [28, 85] does converge in a finite number of steps, but is computationally
heavy.

In this and in the next chapter, we focus on the class of piecewise smooth
functions. In particular we will mostly consider piecewise polynomial signals.
We propose a new representation of these functions in terms of objects which
we call footprints and which make up an overcomplete dictionary of atoms. The
footprints dictionary is built from the wavelet transform. Given a signal of in-
terest, we first perform the wavelet transform of this signal and then the wavelet
coefficients are expressed in terms of footprints. Together with the scaling co-
efficients, footprints can represent any piecewise polynomial signals. The main
property of footprints is that they characterize efficiently the singular structures
of the signal, which usually carry the main information. Wavelets are also effi-
cient at representing singularities, however the wavelet coeflicients generated by
a singularity are dependent across scales. By constructing the footprint expan-
sion on the wavelet transform we remove this dependency completely. Thus, by
representing any discontinuity with the combination of a few footprints, we can
get a sparser representation of the signal under consideration.

Eventhough the footprint expansion is overcomplete, it can be made locally
orthogonal and this allows the use of fast algorithms to find the right sparse
decomposition of the signal in terms of footprints. Alternatively, it is also
possible to use matching pursuit. We show that there are situations in which
matching pursuit with footprints can attain the sparsest signal representation
with a finite number of iterations.

This chapter is organized as follows. Section 3.2 is meant to build up intu-
ition about footprints. We analyze the dependency across scales of the wavelet
coefficients generated by discontinuities and demonstrate a decomposition of a
piecewise smooth signal into a piecewise polynomial signal and a regular resid-
ual (Theorem 3.1). This theorem will be invoked each time we will move from
piecewise polynomial to piecewise smooth signals. In Section 3.3, we present the
footprint expansion. We show that in the case of piecewise constant signals and
Haar wavelets, footprints form a biorthogonal basis (Proposition 3.1). In the
general case of piecewise polynomial signals, footprints form an overcomplete
dictionary. Moreover, we show that footprints are in some cases unconditional
for the class of piecewise constant and piecewise polynomial signals (Proposi-
tions 3.2, 3.4). In Section 3.4, we develop algorithms to efficiently represent
piecewise polynomial signals in terms of footprints (Algorithms 3.1, 3.2) and
show situations in which matching pursuit is optimal (Theorem 3.2). Finally,
we draw conclusions in Section 3.5.
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3.2 Dependency of the wavelet coefficients across
scales

In wavelet based signal processing, it is usually important to exploit the de-
pendency across scales of the wavelet coefficients and several efforts have been
made in this direction recently, see for instance [8, 20, 78, 80, 93]. The singular
structures of a signal often carry critical information and thus their efficient
characterization is crucial in many signal processing tasks.

In this section, we review some of the properties of the wavelet transform,
namely its ability to characterize the local regularity of a function and then we
focus on the analysis of the dependency of the wavelet coefficients generated by
discontinuities.

Our interest is in piecewise smooth signals, that is, in signals which are
made of regular pieces. The regularity of a function is usually measured with
the Lipschitz exponent [77, 78).1

Definition 3.1

e A function f(t) is pointwise Lipschitz o > 0 at v, if there exist ¢ K > 0,
and a polynomial p,(t) of degree m = |c] such that

Vt € R |f(t) — pu(t)| < K]t - v]°. (3.1)

o A function f(t) is uniformly Lipschitz o over [a,b] if it satisfies (3.1) for
all v € [a,b], with a constant K that is independent of v.

o The Lipschitz regularity of f(t) at v or over [a,b] is the supremum of the
a such that f(t) is Lipschitz a.

Therefore, we define a piecewise smooth function f(t), t € [0,T] with K + 1
pieces, as follows

K
HOED P A0) NI} (3.2)
1=0

where to = 0, tx41 = T and f;(¢) is uniformly Lipschitz a over [0,T]. Such
signals are interesting, because many signals encountered in practice can be
modeled as piecewise smooth. For example, in Figure 3.2 we show a line of
the image ‘Peppers’ (Figure 3.1), as you can see this signal is very close to a
piecewise smooth signal.

Consider now an orthonormal wavelet series with scale and shift parameters
m and n, respectively. We use the convention that small scales correspond to
large, negative m, that is:

Yrn() = 2—”%«/1(2—% —n) mnez (3.3)

1The so defined Lipschitz exponent is sometimes called Hélder exponent.
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Figure 3.1: The image 'Peppers’. Figure 3.2: One line of 'Peppers’.

Moreover, assume that the wavelet has k vanishing moments, that is

.
f tlpdt =0, d=0,1,.k-1
£
Then, it follows that the wavelet coefficients of a function which is uniformly
Lipschitz @ < k on an interval [a,b] decay across scales as 2m(@+1/2) [77, 78],
where m is the scale as defined in (3.3). The converse is also true: If the wavelet
coefficients of a function f(t) satisfies 2™(**1/2) on an interval [a,b] and a < k
is not an integer then f(t) is uniformly Lipschitz a on [a+ ¢,b — €], for any ¢ >
0 [77. 78]. The (local) decay property of the wavelet coefficients is at the heart of
the success of the wavelet transform in several applications. Now, because of this
decay property. larger wavelet coefficients tend to be around the singular parts of
a signal, that is, around points with small Lipschitz coefficients. These wavelet
coefficients gather most of the energy of the original signal and for this reason
we are interested in modeling their behaviour across scales. For instance, given
the signal (3.2), we are interested in studying the wavelet coefficients related to
the break-points t, 1 = 1,2.., K,

To begin our analysis, we start by considering a particular sub-class of
piecewise smooth signals, namely piecewise polynomial signals. A function p(t)
t € [0,T] is piecewise polynomial with K + 1 pieces if

.
P(t) =D pal)1g, 0,18, (3.4)

where g = 0, tg4y = T and pyi(t) = }:,',":{,a:d}t" i =0,1,..K are polynomials

of maximum degree D. Piecewise polynomial signals have a finite number of
degrees of freedom and are easier to analyze. However, despite their simplicity
they can be used to efficiently approximate piecewise smooth functions. In
fact, if the piecewise polynomial approximation is chosen properly, then the
approximation error shows interesting regularity properties.
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Theorem 3.1 Given is a piecewise smooth signal f(t) defined as in Eq. (3.2),
that is, with pieces of Lipschitz regularity «. Then, there exists a piecewise
polynomial signal p(t) with pieces of maximum degree d = | such that the
difference signal r,(t) = f(t) — p(¢) is uniformly Lipschitz a over [0, T.

Proof: See Appendix 3.A.1.

Theorem 3.1 indicates a practical way to deal with piecewise smooth sig-
nals. It shows that any piecewise smooth signal f(t) can be expressed as
the sum of a piecewise polynomial signal and a residual which is uniformly
Lipschitz a. That is

f() =p@) +ra(d).

Now, since the residual is regular, it can be well represented with wavelets
(the wavelet decomposition of r, (¢) results in small coefficients with fast decay
across -ales). Therefore, the only elements we need to analyze are disconti-
nuities n the piecewise polynomial function and, in particular, the dependency
across cales of the wavelet coefficients generated by these piecewise polynomial
disconi nuities.?

We start by considering the simple case of piecewise constant functions with
only o 2 discontinuity at location 1 (ie. p(t) = a(()o)l[o,tl[(t) + a§°>1[t1,T](t))
and a ravelet series with one vanishing moment and compact support. The
decom; »sition of this signal in the wavelet basis results in zero wavelet coeffi-
cients ¢ ccept for the coefficients in the cone of influence of ¢;. Recall that the
cone of influence of ¢ in the scale-space plane is the set of points (m,n) such
that ¢; s included in the support of ¥, »(t) (see figure 3.3. Now, in this case,
the wan ‘let coefficients in this cone of influence are dependent: they have only
one degree of freedom. This can be easily shown recalling that a wavelet with
k vanishing moments and fast decay can be written as the k** order derivative
of a function  which has also a fast decay {77]. Thus, the following condi-
tions are true: ¥(t) = (—l)kdka‘l)é£Z and Y n(t) = (—1)’“2’""%,;‘&, where
Omn(t) = 52720(27™t —n). Since the k** derivative of a function is well defined
in the sense of distributions, it follows that

(p(t)ﬂ/}m,n(t)) = =27 fm%ﬁem,n(t)dt

= —2m [* (@ = a)8(t — t1)8rm,n (t)dt.

where we used integration by parts to move the derivative from 6(t) to p(t).
That is (p(t), %(tt)) = —(d—"’}tﬁ,G(t)). Thus, if the wavelet has compact support,
(P(t), Ym.n(t)) is equal to zero if ¥ n(t) does not overlap t1, and (p(t), Ym,n (1))
depends only on the difference ago) — a(()o) otherwise. This means that, for a

step edge, the wavelet behaviour across scales is deterministic. If one knows the

2For simplicity, we call piecewise polynomial discontinuity a singularity between two poly-
nomials.
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value of a single non-zero wavelet coefficient in the cone of influence of t;, one
can derive from it all the other wavelet coefficients in that cone of influence.

scale m
m=-260000000/6000000000000
m=1¢ 0 0. @ @ €. 0 0 0 0 ©

l’ .
’ “
l‘ s,
m=0 S - o PR
l' .,

- - " - schift n
m=1-"® [ [ ]
m=2 @ .

Figure 3.3: The cone of influence of t; consists of the scale-space points m, n such
that ¢; is included in the support of ¥, ,(t).

This discussion generalizes to the case of piecewise polynomial signals with
polynomials of maximum degree D. Consider the case of a piecewise polynomial
function with one discontinuity at ¢; and polynomials p;(t) = Zf:o aid)td, i =
0,1. Compute the wavelet decomposition with a wavelet having D + 1 vanishing
moments and compact support. Again, the non-zero wavelet coefficients are only
in the cone of influence of ¢t; and we have

(P(), Y () = (~1)F2m* [ EROG, ((0)at| =

k=D
H (3.5)

(—1)(PHDmD+) [0 57D [ cab D (t = t1)0m n(t)dt,

where §(9(t) is the d** derivative of the Dirac é-function and the coefficients
cq depend on the differences (agd) — aéd)), d =0,1,..,D.2 Thus, in the more
general case, the wavelet coefficients in the cone of influence of ¢; have only
D + 1 degrees of freedom and one can determine all these wavelet coefficients
by knowing only D + 1 non-zero coeflicients in that cone of influence.

In summary, the above analysis indicates that piecewise polynomial signals
are well represented by wavelets, but that it is possible to model piecewise
polynomial discontinuities in a more efficient way. In the next section, we present
a new way to express discontinuities in piecewise polynomial signals. Together,
with Theorem 3.1, this will lead to efficient algorithms to represent piecewise
smooth signals. Although, we could perform this analysis in continuous time,
we concentrate on the discrete-time case. This is because our final target is to

3To be more precise, cq = '-1_0 t‘f“'(a?"“ - aéD”i)).
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develop efficient algorithms that act on discrete-time signals.

Figure 3.4: The HeaviSine function in
the time domain. This function is made
of three different sinusoids.

—

Figure 3.6: Piecewise linear approxi-
mation of the HeaviSine function. The
polynomials are chosen to guarantee
continuity at the border and first order
differentiability inside the interval. See
Theorem 3.1 and Corollary 3.1

Figure 3.5: Time domain (top)

and wavelet domain (bottom) repre-
sentation of the HeaviSine function.
Wavelet used: Daubechies with three
vanishing moments.

Figure 3.7: Time domain (top) and
wavelet domain (bottom) representa-
tion of the piecewise linear signal.
Scaling coefficients are omitted. The
wavelet coefficients in the two cones of
influence have only 2 degrees of free-
dom.

Before concluding this section, we want to analyze the border effects. Since
our signals are defined on a finite interval [0, T, we need to extend them outside
this interval in order to perform a wavelet decomposition. Several extensions
are possible [77] and some of them guarantees regularity of the signal at the
borders [15]. In our formulation, we make a periodic extension. That is, we
assume that they are T-periodic and that, on the period [0,7], they are given
by Eqns. (3.2),(3.4). Now this extension creates an artificial discontinuity at
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Figure 3.8: The residual r,(t) in the Figure 3.9: The residual r, () in the
time domain. time and wavelet domain.

t = m-T, m € Z and Theorem 3.1 does not guarantee that the periodic extension
of r4(t) is regular in t = m - T. However, using higher order polynomials, one
can easily generalize the result of Theorem 3.1 and guarantee regularity of 7, (t)
over all R: -

Corollary 3.1 Given is a T-periodic piecewise smooth signal f(t) defined as in
Eq. (3.2). There exists a T-periodic piecewise polynomial signal p(t) with pieces
of mazimum degree p+ 1 (p = |a]) such that the difference signal ro(t) =
F (@) — p(t) is uniformly Lipschitz a over R.

Proof: See Appendix 3.A.2.

Figures 3.4-3.9 show an example of approximation of a piecewise smooth
function with a piecewise polynomial signal. In that example, the ‘Heavisine’
function is approximated with a piecewise linear signal. The ‘Heavisine’
function is made of three different sinusoids. The approximation is performed
to guarantee first order differentiability inside [0,7] and continuity at the
border.

3.3 Footprint dictionaries

We now move from continuous-time to discrete-time signals and introduce the
notion of footprints which are finite scale-space vectors containing all the wavelet
coefficients generated by particular polynomial discontinuities.* We show that
any piecewise polynomial discontinuity is specified by the linear combination
of a few footprints, and that footprints can be interpreted as an overcomplete
expansion with good approximation properties.

4In continuous time, one can define footprints equivalently, but they are of infinite dimen-
sion and so of little computational value.
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3.3.1 Preliminaries

For our discussion, we need to introduce two discrete-time wavelet operators.
The first one is an orthonormal discrete-time wavelet decomposition with J
levels.> This decomposition can be efficiently implemented with a critically sub-
sampled octave-band filter bank [108]. Let 1;;[n] denote the wavelet function at
scale j and shift ! and ¢ j;[n] the scaling function at shift [. This wavelet operator
is linear and periodically shift-variant with period 27. The other operator is the
wavelet frame obtained by shifting out (with corresponding equivalent filters)
the subsamplers in the filter bank [108]. In this case, we denote the wavelet
functions at scale j and shift I with ;[n] and the scaling function at shift I
with ¢[n]. This frame is shift invariant.

The discrete-time signals we consider are N dimensional vectors defined over
the interval [0, N — 1]. Now, the wavelet operators defined above act in I3(Z),
so we need to modify them to act on [0, N — 1]. As anticipated in the previous
section, we use a periodic extension [77], so the wavelet basis becomes

Pl = Y puln + kN]

k=—00

and -
Pl = ) émln + kN,
k=—00
Recall that for any J < log, N, this set of periodic wavelets forms an orthogonal
basis in l5([0, N — 1]) [77]. The same extension applies to the wavelet frame and,
in this case, we get a frame in I5([0, N — 1]).

Finally, our interest is in the class of piecewise smooth and piecewise poly-
nomial signals. The discrete-time signals we consider are sampled version of
the signals given in (3.2),(3.4). That is, we define a discrete-time piecewise
polynomial signal p[r], n € [0, N — 1] as:

K
p[n] = Zpi[n]l[ki,ki-}»l[[n]’ (36)
=0

where kg = 0,kx+1 = N and p;jn] ¢ = 0,1,..,K is a sampled polynomial of
maximum degree D. In the same way, we say that a discrete-time piecewise
smooth signal f[n} n € [0, N — 1] is given by:

K
f[n] = Z fi[n]l[ki,k.'+1[[n]’ (37)
=0

where kg = 0,kx+1 = N and fi[n] i = 0,1,..,K is a sampled version of a
uniformly a-Lipschitz function.

Depending on the use of a wavelet frame or a wavelet basis, we can have
different footprint dictionaries. These two situations are analyzed in the next
sections.

5For simplicity we study only the orthogonal case. However, the notion of footprints easily
generalizes to the case of biorthogonal wavelets.
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3.3.2 Footprints built from a wavelet basis

In this section, we construct the footprint dictionary from a wavelet basis. First,
we study the simple case of piecewise constant signal and Haar wavelets. In this
particular setting, the footprint dictionary D is a biorthogonal basis. Then we
consider the more general case of piecewise polynomial signals and show that in
this case D is always overcomplete.

Piecewise constant signals

Consider a piecewise constant signal z[n], n € [0, N — 1] with only one disconti-
nuity at position k& and consider a J level wavelet decomposition of this signal
with a Haar wavelet:

N/27 -1 J Ny2i-a
znl= Y agnlpl+d>. > ypalnl, (3.8)
1=0 =1 1=0

where y;; = (z,¢;1), and ¢; = (z,¢:).® Since the Haar wavelet has one vanish-
ing moment and finite support, the non-zero wavelet coefficients of this decom-
position are only in the cone of influence of k. Thus, Eq. (3.8) becomes:

Ny27 -1 J
sl = Y anln]+ D vkt nl,
=0 j=1

where k; = {k/27|. Moreover, as in the continuous-time case, all these coef-
ficients depend only on the amplitude of the discontinuity at k. Thus, if one
defines a vector which contains all of them, one can specify any other step dis-
continuity at & by multiplying this vector by the right factor. This consideration
leads to the following definition (see also Figure 3.10):

Definition 3.2 Given a piecewise constant signal x with only one discontinuity
at position k, we call footprint f,go) the norm one scale-space vector obtained by
gathering together all the wavelet coefficients in the cone of influence of k and
then imposing || f,go)|| = 1. Ezpressed in the wavelet basis, this footprint can be

. 0 J J
written as £y [n] = Y7_; dy, e, [n], where dik; = yje; [/ 0=y ¥,

Now, any piecewise constant signal z[n] with a step discontinuity at k£ can be
represented in terms of the scaling functions ¢;[n] and of f,go). For instance,
the signal z[n] in Eq. (3.8) becomes:

Ny27 -1
afn]= Y. agaln]+af ), (39)
=0
where a = (z, f,go) ) = Z}I:O Yjk;djk;- The above discussion can be repeated
for any other step discontinuity at different locations and for each location | we

SNote that we are assuming N to be a power of 2, in this way, a wavelet decomposition
with a Haar wavelet does not suffer from border effects.
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Footprint

Figure 3.10: Time domain (top) and wavelet domain (bottom) representation of
the footprint f,go) with N = 128, J = 5 and k = 41. Notice that, except for the
case J = log, N (NN being a power of 2), a footprint does not look like a pure step
edge function.

have a different footprint fl(o). Call D ={ f,go), k=0,1,..,N — 1} the complete
dictionary of footprints. Some of the properties of this dictionary depend on the
number J of wavelet decomposition levels. For instance, just like the wavelet
basis, footprints are shift variant unless the shift is equal to m-27, m € Z. That
is:

Om=fOm+1-k, if l-k=m-2/, meZ. (3.10)

In addition, footprints are orthogonal to the scaling functions, but the orthog-
onality condition between footprints depends on the number J of wavelet de-
composition levels. Assume k = k'+m-27 and I =1’ +n-27 and assume [ > k.
We have:

(FfO, 1N =0 if m#£mn,

( f,§°), 1(0)) =, /f—,'(%:‘%% otherwise.

So, footprints related to neighbouring discontinuities are biorthogonal (see ex-
amples in Figures 3.11 and 3.12).

Finally, consider again Eq. (3.10). Since féo) [n] = 0, it follows that
fr(,% s[n] = 0. Thus, D contains only N — N/2” elements. Moreover, we have
that:

(3.11)

Proposition 3.1 The elements of D together with the N/27 scaling functions
dnln], 1 =0,1,..N/27 — 1 form a biorthogonal basis for I>([0, N —1]).

Proof: See Appendix 3.A.3 O

So, any signal z[n], n € [0, N — 1] can be expressed in terms of footprints and
scaling functions. In particular, if = is piecewise constant with K discontinu-
ity, together with the scaling functions, K footprints are sufficient to represent
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Figure 3.11: Orthogonal footprints.
Time domain (top) and wavelet domain
(bottom) representation of fi+ fi. In this
example N = 128, J = 4, k = 37 and
I = 77. Two footprints are orthogonal if
their cones of influence do not overlap.

Figure 3.12: Biorthogonal footprints.
Time domain (top) and wavelet domain
(bottom) representation of fr + fi. In
this example N = 128, J =4, k = 37
and | = 45. Two footprints are biorthog-
onal if their cones of influence overlap.

it. This can be shown by noticing that a piecewise constant signal with only
one discontinuity can be expressed in terms of one footprint (see Eq. (3.9)) and
piecewise constant signals with K discontinuities are given by the superposition
of K piecewise constant signals with only one discontinuity. Therefore, the foot-
print representation of a signal x with K discontinuities at positions ki, k2, .., kx

is given by:
N/27 ~1 K
gn)= Y adnln]+ Zaif,g?) [n]. (3.12)
=0 i=1

Note how this representation is sparser than the corresponding representation
in a wavelet basis which requires J times more wavelets than footprints. The
problem of finding the discontinuity locations and the correct values ¢; in (3.12)
will be treated in detail in Section 3.4.

Finally, one may wonder if any object generated with the superposition of
K footprints is piecewise constant with a number of discontinuities equal to the
number of footprints. That is, are D and the scaling functions an unconditional
basis for the class of piecewise constant signals? It turns out that this property
is satisfied when J = log, N (N being a power of 2).

Proposition 3.2 For J = log, N, the scaling function ¢jo[n] and the N — 1
footprints f,&o), k=1,2,..,N — 1 represent a biorthogonal basis which is uncon-
ditional for the class of piecewise constant signals defined over [0, N —1].

Proof: The biorthogonality comes from Proposition 3.1. We only need to show
that this basis is unconditional. That is, assume that z is a piecewise constant
signal with discontinuities at &y, ke, ...kx and consider its representation in terms
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of footprints:

K
z[n] = codo[n] + Z aif,g?).
=1
We need to show that for any set of coefficients &; satisfying |&;| < ||, the
signal

K
i[n] = cogoln] + Y diflY
=1
is still piecewise constant with discontinuity locations k;, k2, .., k. This can be
seen noticing that, for J = logy, N, ¢jo[n] is a constant function and f,go) [n] is
piecewise constant with one discontinuity at & (k = 1,2,.., N — 1). Therefore,
any linear combination of fi, k; € {ki,ks,...kx} gives a piecewise constant
signal with discontinuity locations ki, ks, .., kx.
O

Piecewise polynomial signals

We now generalize the above discussion to the case of discrete-time piecewise
polynomial signals with polynomials of maximum degree D. We show that in
this context each discontinuity is represented by D + 1 footprints rather than
one footprint.

Consider orthogonal wavelets with at least D + 1 vanishing moments and
compact support L and consider a piecewise polynomial signal z[n] with only
one discontinuity at k. Its J level wavelet decomposition with periodic wavelets
is:

N/27 -1 J Ny2i-a
z[n] = Z c ﬁ?[n]%-z Z yudy [n]. (3.13)
1=0 =1 1=0

First, notice that the periodic extension of the wavelet basis creates a second
discontinuity at location zero and that this is a polynomial discontinuity. Thus,
the non-zero wavelet coefficients of this expansion are only in the cone of influ-
ence of £ and in the cone of influence of zero. Assume, for now, that 0 K k K N
and 27 <« N so that there are no wavelet coefficients in common between these
two cones of influence. We can write

N/27 -1
sln) = Y adhinl+ D v+ Y vt n] (3.14)
1=0 Jtelo Jlel

where I} is the set of indices (4,!), which are in the cone of influence of & and Iy
is the set of indices (j,1), which are in the cone of influence of zero. It is easy to
verify that there are no more than J x (L — 1) wavelet coefficients in each cone
of influence. From Eq. (3.5) we know that the wavelet coefficients in each of
these cones of influence have only D + 1 degrees of freedom. Thus, we want to
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find a set of D + 1 footprints that can characterize these coeflicients. To build
this set of footprints, we resort to time-domain analysis.

The class of piecewise polynomial signals with one discontinuity at a fixed
position k € [0, N — 1] forms a linear space of dimension 2(D + 1) and a possible
basis for that space is represented by the following vectors:

PDn)=nd, d=0,1,.,D, nel0,N-1];

TP = 1gnoy(n-k+1)%  d=0,1,.,D, ne[o,N-1].

We can express these signals in a wavelet basis and we have:

N/2Y 1, (d d
P [n] = z=/o2 ! bz( ) gir[n] + Ej,lelo p§1)¢§zer[”]
d N/27 <1 (d r d r d er
TVl = S e o0 Inl + X per EOUET 0] + ;e £ 05,
(3.15)

where we have used the fact that the non-zero wavelet coefficients of P(#[n]
are only in Iy, while the non-zero wavelet coeflicients of T,Ed) are in the cones of
influence of k¥ and zero. Now, any signal z[n] in this class can be written as:

D D
z[n] = Za(()d)P(d) [n] + Zafcd)Tk(d) [n]. (3.16)
d=0 d=0

Therefore, combining Eqns. (3.14),(3.15),(3.16) and considering only the ele-
ments in I; we have:

D
STy = > ol 3 P yneninl. (3.17)

i€l d=0 JLELL

Call f,gd) [n] = X e, tg.'li) ¥ [n] the scale-space vector gathering the J x (L —1)
wavelet coefficients generated by the discontinuity in T,Sd). Eq. (3.17) shows
that the wavelet coefficients generated by any polynomial discontinuity at k are
characterized by a linear combination of f,gd). This indicates that the wavelet
coefficients in the cone of influence of a polynomial discontinuity have only
D + 1 degrees of freedom and proves that these coeflicients lie on a subspace of
dimension D + 1. The vectors f,gd) d = 0,1,..,D span that subspace and can
represent the set of footprints we are looking for. However, it is always better
to have orthogonal bases, so the footprints that we will consider are obtained
by applying a Gram-Schmidt orthogonalization process to f,gd). Thus, from the
above discussion it follows that:

Proposition 3.3 Given a piecewise polynomial signal with polynomials of maz-
imum degree D and with one discontinuity at position k, the J x (L—1) non-zero
wavelet coefficients in the cone of influence of that discontinuity lie on a sub-
space of dimension D 4+ 1.
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Definition 3.3 We call footprints f,gd) d =0,1,..,D the elements of an or-
thogonal vector basis which spans the subspace of dimension D + 1 generated
by a polynomial discontinuity at k. Foolprints are obtained by gathering to-
gether all the non-zero wavelet coefficients generated by the discontinuity in T,gd)
d=0,1,..,D and then imposing the two following conditions:

1F9 =1 d=0,1,.,D;
(W) py _ 5. s L
K y=465 i=0,1,.,D; j=0,1,.,D.

With this set of footprints, we can characterize any polynomial discontinuity at
position k. In particular, Eq. (3.13) can be written as:

N/27 -1 D
er er d
sl = > adiinl+ Y. v+ Y @ £ n]
1=0 glely d=0

where o(® = (z, f,sd)), d=0,1,..,D.7 With a similar analysis, we can create
a different set of D + 1 footprints to characterize a polynomial discontinuity
at a different location. To characterize any polynomial discontinuity (including
the discontinuity in zero), we need a dictionary D = { f,gd),d =0,1,..,.D;k =
0,1,..N — 1} of (D + 1)N footprints. With this dictionary of footprints and
with the scaling functions we can represent any piecewise polynomial signal. In
particular, a signal # with K discontinuities at locations k1, ks, ..kx is given by

Ny27 -1 K D
eil= 3 adh ]+ ol fPn], (3.18)
=0 =0 d=0

where ky = 0 is the discontinuity due to the periodic extension. Note again how
this representation is sparser than the corresponding representation in a wavelet
basis.

As for the case of piecewise constant signals, footprints are orthogonal to the
scaling functions, but footprints related to close discontinuities are biorthogonal.
In particular, we have: (fl(d),f,gc)) =0 for |l — k| > (L —1)-27. Moreover,
footprints are periodically shift-invariant of period 27, hence:

FO) = fDm+1-k, if l-k=m-2/, meZ,d=0,1,.,D. (3.19)

It is also of interest to note that, due to the periodic extension, the coefficients
agd) in (3.18) are not independent. For instance, for D = 0 it follows that

o = -TK, w} of , where the weights w} depend on the normalization in
Definition 3.3 (without normalization, it would be w). = 1). In general, we
have that:
K D
ag = -3 ufat, (3.20)
i=1 d=0
7In case of biorthogonal wavelets it would be: ald) = (z,flgd)) with flgd)

Yien djlﬁg’fr[n] where 1/3;’1” is the dual of ¢%/".
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where the weights w,‘fi depend on the orthogonalization process in Defini-

tion 3.3.8 For this reason, to extend Proposition 3.2 to the piecewise polynomial
case we need to consider the constraint in (3.20). Thus:

Proposition 3.4 For J = logzN any linear combination of ¢%g [n] and of
the (D + 1)N footprints fk which verifies (3.20) gives a piecewise polynomial
signal.

Proof We want to show that given a piecewise polynomial signal z{n] repre-
sented as in Eq. (3.18); for any set of coeflicients & ( ) satisfying |&; d)| < |a(d)|
and Eq. (3.20), the signal

&[] = coyy ] +22a“’)f“”

=0 d=0

is still piecewise polynomial with discontinuity locations k1, ks, .., kx. This can
be proved using arguments similar to that of Proposition 3.2. The scaling func-
tion ¢jo[n] is constant. Moreover, any pair of footprints: a(o) fo (© [n] + £y, () [n],
with o satisfying (3.20) represent a piecewise polynomial signal with one
discontinuity at k; € {ki,kz,..kx}. Therefore, any linear combination of these
pairs of footprints and of ¢jo[n] gives a piecewise polynomial signal with

discontinuities at k1, ks, ..kk .
O

Strictly speaking, Proposition 3.4 shows conditions under which any lin-
ear. combination of footprints leads to piecewise polynomial signals, but it
does not prove that footprints are an unconditional expansion for the class
of piecewise polynomial signals. However, in the rest of the chapter, for
simplicity, we will say that dictionaries of footprints satisfying the hypotheses
of Proposition 3.4 are unconditional for the class of piecewise polynomial
signals.

3.3.3 Footprints built from a wavelet frame

We have constructed a dictionary of (D + 1)N footprints that can efficiently
represent piecewise polynomial signals. However, this representation, like the
wavelet transform, is not shift-invariant. In some settings, it is useful to have
a shift-invariant dictionary. Such a dictionary can be constructed by simply
replacing the wavelet basis with the wavelet frame. In particular, let z[n] be a
piecewise constant signal with only one discontinuity at k. We have that

N/27 -1
zln] = Z per[“] + 2 Yt per [n] + Z le¢ o n]
=0 i€l id€l;

8The easiest way to verify this property is by noticing that if we take the (D 4 1)-th order
derivative of a periodic discrete-time piecewise polynomial signal, the sum of the resulting
non-zero coefficients is always zero.
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where we have again used the fact that the non-zero coefficients are only in the
cones of influence of k and 0. In this case, the cone of influence of k contains
J x (Lj — 1) coefficients, where L; is the length of the equivalent filter at level
j. Moreover, y; is given by y;; = (z, A;’,"), where {¢, ¥} is the dual frame of
{(5, $}. Now, the shift invariant footprint related to location k is given by

Omi= S dud¥ ),

gl

where dj; = y;1/+ /> A yf.l. The other footprints can be designed in the same
way, and it follows that

) = FOm+ k).

That is, all footprints are shifted versions of one footprint. If J is chosen such
that { éo), f,go)) =0, z[n] can be expressed as:

N/27 -1

ell= Y i n]+aofd” +anfy)
=0

where o) = (x,flgo)) and f,go) [n] = 3 ;e dit A;’l"[n]. In the same way, we can
design the footprint dictionary related to higher order polynomials. In this case,
one has to consider the signals T,gd) and their transform with a wavelet frame.
The footprints f,gd) at location k are obtained following the same procedure given
by Definition 3.3. Finally, given the dictionary D = { f,gd),d =0,1..,D;k =
0,1,..N — 1}, we have that:

D)= fDn+k, d=0,1,.,D.

As in the previous case, any piecewise polynomial signal can be expressed in
terms of this dictionary and we have:

Nj27 =1 K D
z[n] = Z adn’ [n] + Z Z aﬁd)f,gf’ [n]. (3.21)
1=0 i=0 d=0

3.4 Representation algorithms

In the previous sections, we have constructed different dictionaries of footprints
according to the kind of wavelets involved (i.e. wavelet bases or wavelet frames)
and to the class of signals considered (i.e. piecewise constant or piecewise poly-
nomial signals). The main characteristics of these dictionaries are summarized
in Table 3.1.

Before focusing on the representation algorithms, we want to mention that
the space required to store these footprints dictionaries is not high, since it grows
only linearly with the size N of the signal. In particular, in the case of shift-
variant footprints the required storage space is of the order of (L—1)-J-(D+1)-2”
coefficients, where (L — 1) - J are the wavelet coefficients contained in each
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piecewise constant signals piecewise polynomial signals | piecewise polynomial signals
and Haar wavelet and wavelet basis and wavelet frame
dictionary | complete, overcomplete, overcomplete,
properties | shift variant, shift variant, shift invariant,
unconditional if J =logy N. | unconditional if J =logs N | unconditional if J =log, N
and Eq. (3.20) is verified. and Eq. (3.20) is verified.

Table 3.1: Footprint dictionaries.

footprint and (D +1)-27 are the number of footprints one has to store, since the
others are shifted version of those (see Eq. (3.19)). Therefore, when J = log, N
(worst case), we have that the required memory space grows like Nlog, N.
Similar results apply to the case of shift invariant footprints.

Now, we need to develop a fast and robust algorithm that can find the right
representation of piecewise polynomial signals in terms of footprints. The algo-
rithms that we present are valid for any of the families of footprints in Table 3.1.
However, for the sake of simplicity, we study only the case of footprints built
from a wavelet basis, the extension to the wavelet frame being straightforward.

Consider a piecewise polynomial signal x with polynomials of degree D and
with K discontinuities at ki, ks,.., kx. We have seen that this signal can be
written as:

N/27 -1 K D
sl= 3 el +Y Y o? 0] (322)
=0 =0 d=0

Thus, our target is to develop a fast and robust algorithm that can find this
representation of z. In our analysis we do not consider the scaling functions,
since coefficients ¢; in (3.22) are always given by: ¢; = (z, ¢7;"

We present two different approaches, the first one is a variation of the tradi-
tional matching pursuit algorithm. We show that in particular situations, this
method can arrive at the correct representation of zjn] in a finite number of
iterations. The second approach is in spirit similar to matching pursuit, but it
uses the property that the orthogonality condition between footprints depends
on the number J of decomposition levels. We show that, with a slight increase
in complexity, this second algorithm always attains the correct signal represen-
tation with [K/2] iterations, where K is the number of discontinuities in the

signal.

3.4.1 Matching pursuit with footprints

Matching pursuit (MP) [79] is a greedy iterative algorithm which derives sparse
approximated representations of a signal by successive refinements.

Let D = {fr}rer be a complete or overcomplete dictionary of unit norm
vectors. In the first iteration, matching pursuit projects the signal of interest

z on the vectors fi € D and chooses the vector fr, which maximizes [{z, fr,)|.
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The process is then iterated on the residual

] R;=z_<mafko)fk0'
Let R? = z. At the ** iteration, the algorithm chooses fi,_, € D such that

(B, fuooa)| = max (R, fi) (3.23)
and computes the residual
Ry =R = (BT, fie i) oo
Since R! is orthogonal to f,_,,we have that
IRSHI® = IR + KR, fiaoa 2.

Thus, by selecting fr,_, such that [(R:1, fi._,)| is maximized, we are sure
to minimize the norm ||RL]|| of the residual. Moreover, it is possible to prove
that ||R%|| converges exponentially to 0 when i tends to infinity [79]. After M
itrrations, the approximated signal is given by:

M—1

.’E['I’L] = Z (R:Z;:afki>fki'

=0
1 e vector fi, selected by matching pursuit at the i*® step is, in general, not
o hogonal to the previously selected vectors { fx,. }o<m<i. So, when subtracting
s projection (R'z, fi,) f, from R:, the algorithm reintroduces new components
i the directions of {fi,, }o<m<i. For this reason, even in finite-dimensional
s} .ce, matching pursuit is not guaranteed to converge in a finite number of
it« -ations. One way to speed convergence is to use an orthogonalized version
of matching pursuit which at each step orthogonalizes the direction of the cho-
se. vector with respect to the previously selected vectors [28, 85]. In finite-
dimensional space, this algorithm has the advantage of converging in a finite
number of steps. However, it is computationally intensive (there is an orthog-
onalization process to compute at each iteration) so it will not be considered
hereafter.

Assume that D is the footprint dictionary and that z[n] is a piecewise poly-
nomial signal. Matching pursuit can be used to approximate z with D. We
know that the wavelet coeflicients generated by a single polynomial discontinu-
ity at k lie on a subspace of size D + 1 and that this subspace is spanned by
the footprints f,gd), d=0,1,..,D (Proposition 3.3). Hence, instead of using the
usual matching pursuit which projects the signal on single vectors, we employ
a subspace pursuit, where the signal is projected on different sub-spaces.

In the first iteration, for each possible discontinuity location k € [0, N — 1],
the algorithm computes the D + 1 inner products (z, f,gd) ), d=0,1,..,D and
choose the location kg such that Zf:o |{z, fé:))P is maximum. Then, x can be

1
X

¢+

written as its projection onto f,gg), d=0,1,..,D and a residual R}:

D
2= (n i)y + R
d=0
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Since footprints related to the same discontinuity location are orthogonal
(Proposition 3.3), we can write:

D
lzlf? = IR + D e, £

d=0

So, by choosing k¢ such that Z?:o |(z, f,gg))|2 is maximum, we minimize the

norm of the error RL. The algorithm is then iterated on the residual.

Note that, for D = 0 (piecewise constant signals) the subspace pursuit re-
duces to the traditional matching pursuit. The subspace pursuit with the foot-
print dictionary has the same drawback as matching pursuit, that is, it is not
guaranteed to converge in a finite number of steps. However, there exists situa-
tions in which it can obtain the exact representation of z in a finite number of it-
erations. The basic intuition is that, if the discontinuity location are sufficiently
far apart, then the wavelet coefficients generated by the signal discontinuities
do not overlap and so matching pursuit converges in a finite number of steps.
In particular, for the case of piecewise constant signals and the Haar wavelet,
we can state this exactly.

Theorem 3.2 Given is a piecewise constant signal with K discontinuities at
ki, ke, ..ki. If the distance between the two closest discontinuities is larger than
27 matching pursuit with footprints obtains the exact footprint representation
of x in K iterations.

Proof: This result can be easily proved by verifying that matching pursuit
chooses the correct footprint at each iteration. Assume, for instance, that = has
two discontinuities at location k; and ks, thatisz = oy f,g?) +as f,gg) and assume
that a; > a9 and ko — k1 > 27. Using Eq. (3.11), one can easily see that at the
first iteration, matching pursuit chooses the vector f,g?), since |(z, f,g?))| = |ay|is
maximum. The residual is R =z — a; f,g?) = ay f,gg), 8o in the second iteration

matching pursuit will choose f,gg) . This result, trivially, extends to the case of

more than two discontinuities.
(]

In the more general case of higher order polynomials, we have numerical evidence
that matching pursuit converges in a finite number of steps if the minimum
distance between the two closest discontinuity is larger than (L — 1) - 27.

3.4.2 Adaptive depth footprint pursuit

The basic intuition behind Theorem 3.2 is that the number of decomposition
level J should be chosen according to the distance between discontinuities.
If J is chosen properly, one can get the correct representation of z in a few
iterations, with a very simple method like matching pursuit. The problem
is that we do not know a priori the discontinuity locations. Therefore, we
propose a new algorithm, where we first find the discontinuity locations and
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then estimate the footprint coeflicients related to those discontinuities. For
simplicity, we concentrate on the case of piecewise constant signals and Haar
wavelets. Assume, for instance, that z has K discontinuities at positions
kl, k2, .y kK:

N/27 -1 K
alnl= > adaln)+ > aifOln] (3.24)

=0 =1
and that the footprint dictionary is chosen with J = log, V:
D = {f,EO’ = ijl djk; Yjr;3k = 0,1,.N — 1}.° The discontinuity loca-

tions ki, ks, ..kx are found in the following way:

Algorithm 3.1 (locations estimation)

1. Compute the dual basis of D and call f,go) k=1,2,.,N ~1 the elements
of this dual basis.'®

2. Compute the inner products (z, ~,§0)), k=1,2,..,N—1. The discontinuity
locations correspond to the indexes of the basis’ elements which have non-
zero inmer products with x.

Now that kj, ke, ..ig are known, we need to evaluate the coefficients a;. The
footprint coefficients are evaluated with an iterative method which is, in spirit,
similar to matching pursuit. At each iteration, we choose J such that the
footprints related to the two closest discontinuities are orthogonal, we estimate
the footprints coefficients of these two discontinuities and iterate the process on
the residual. At each iteration, we do not project the signal directly on the two
closest footprints, instead we compute the two dual footprints and project the
signals on these two dual elements. The complete algorithm operates as follows:

Algorithm 3.2 (coefficient estimation)

1. Call K = {k1,k2, ..kx} the set of estimated discontinuity locations.

2. Assume that k,,—1 and k,, are the two closest discontinuities in K. Choose
Ji = |logy(km — km—1)].

3. Call f,g?n) the sub-footprint obtained by considering only the first Jy ele-
ments of f,g?n). That is: A,gi)n) = ZJJ;I Qjkp; Vikm; - Define, in the same
way, the sub-footprint f,ggl)_l

91t is worth pointing out that, in this case, D is a biorthogonal basis, so the exact repre-
sentation of z can be found using the dual basis of D. However, this solution is not robust
to noise and does not generalize to piecewise polynomial signals. Therefore, it will not be
considered here.

1014 is of interest to emphasize that this dual basis turns out to be a first order derivative.
See Appendix 3.A.4.
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4. The sub-footprint f,g?n)_l is orthogonal to f,go) , k € K—{km-1} and verifies:
(f é?j_l,féi)_l) = “f;gi)_1||2. Likewise, the sub-footprint flg?,.) is orthogonal

to f,go), ke K- {kn} and (f,g?"), ,S:)) = ”fé?n)uz Thus, the contributions
QAm—1,0Qm are given by:

£(0) #(0)
1 fr 1 1 f
A,y = — (.Z', o )7 g, = _A‘_’<x, s ) (325)
1A 119 LA 179

5. Remove kp,_1,km from K and subtract the two estimated contributions

from the original signal: R. =z — oy, _, ,gi)_l - Qg,, f,g?n).

6. If K is not empty iterate the process on the residual, otherwise stop.

Notice that, since at each iteration we estimate two footprint coefficients, the
algorithm ends after [ K/2] iterations. So, we are guaranteed that the algorithm
converges after a finite number of steps. The interesting point of this algorithm
is that, at each iteration, it is very easy to find the pair of dual footprints
related to the footprints under consideration. There are two other advantages
of this algorithm compared to matching pursuit. First, at each iteration, we
chose the largest possible J; such that the footprints related to the two closest
discontinuities are orthogonal. Since multiscale operators like footprints are
robust to noise, by choosing J; as large as possible, we increase this robustness.
Second, the signal is reconstructed in terms of the footprint dictionary with
J = log, N, this dictionary is unconditional for the class of piecewise constant
signals (Proposition 3.2), thus, we are sure that the reconstructed signal is still
piecewise constant. This is a useful property when the signal to estimate has
been corrupted by noise.

The algorithin generalizes to the piecewise polynomial case. The disconti-
nuities are estimated with a D + 1 order derivative, while the coefficients agd)
are evaluated with a procedure similar to that presented above. That is, at
each iteration, we choose J such that the footprints related to the two closest
discontinuities are orthogonal, we estimate the footprints coefficients of these
two discontinuities and iterate the process on the residual. Finally, the coef-
ficient af is computed using equation (3.20). As for the previous case, since
J =log, N, Proposition 3.4 guarantees that the reconstructed signal is always
piecewise polynomial.

3.5 Conclusions

In this chapter, we have presented a new way to model the dependency across
scales of wavelet coefficients with atoms we called footprints. Footprints form
an overcomplete dictionary and are efficient at representing the singular struc-
tures of a signal. Moreover, with footprints, it is possible to get a sparser
representation of piecewise smooth signals than with wavelets. Together with
the simplicity of the algorithms involved, this seems to indicate that footprints
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might be useful in several signal processing tasks, namely denoising, deconvolu-
tion and compression. Applications of footprints to signal processing problems
will be the topic of the next chapter.

Appendix 3.A Proofs
3.A.1 Proof of Theorem 3.1

Counsider, first, a piecewise smooth signal f(t) t € [0,T] with only two pieces.
That is, f(t) = f1(t)1jot, + f2(t) 1,77 and fi(t), f2(t) are uniformly Lipschitz
« over [0,T]. Recall that, if a function f is uniformly Lipschitz @ > p in the
neighbourhood of v, then it is necessarily p times continuously differentiable
in that neighbourhood.!! Moreover, the polynomial p,(t) in Eq. (3.1) is the
Taylor expansion of f at v. Now, since f;(t), fo(t) are uniformly Lipschitz
over [0,T], then they are necessarily p times continuously differentiable on that
interval with p = |a|. Call p(t) = p,- (t)1jo,1,[ + Pyt (1,1, t € [0,T] the
piecewise polynomial signal whose two pieces Py (t) and Pyt (t) are given by

(p)
i () = fit) + S ¢ = 1) ot BB e

and
" (1)

Py (8) = folt) + S5 (0)(E = 01) o+ Fom(E = )P
That is, Py (t) and Pyt (t) are the Taylor expansions of f(t) about ¢; taken from
the left and from the right of ¢;. Now, the signal r,(t) = f(t) — p(t) is p times
continuously differentiable in [0,7] — {t1} and in ¢; it verifies:

Jim ral®) = fip i) = ©) = fim ro(t) = Jip £20) =5 () =0,
im 0@ = fim fO0) — p® s
lm ) = Jim A0 - 20
T Dy = 13 My _ Oy — —
- tl—fg' Ta (t) - tl—lgll f2 (t) pt;" (t) - 07 l - 172: - P-

Therefore, r,(t) is p times continuously differentiable on the entire interval
[0,T]. So, it is uniformly Lipschitz &' > p on that interval. The remaining step
is to prove that ' = a. This is clearly true for all points away from t;, we only
need to prove that r,(t) is a-Lipschitz in ¢;. Using the definition of Lipschitz
regularity, we have that for t < #;

fl)= P () + e (t) with |ei(2)] < Kyt — 01l
and for t > t;

f@) =p(t) +e2(t) with |ex(t)] < Kot — 1]

H'The converse is also true. That is, a function which is p times continuously differentiable
in the neighbourhood of v is Lipschitz ¢’ > p at v.



46 Chapter 3.

Now, since 7 (t) = f(t) — p(t), we can write |ro ()] < Ki|t —t,1|%, for t < ¢; and
|ra(t)] < Kalt —t1]%, for t > ;. Thus, if we call K = max{K;, K>}, then in the
neighbourhood of ¢; we have that |r,(t)| < K|t — t1|*, which proves that r,(t)
is Lipschitz « in ;. This completes the proof.

The generalization of this result to the case of a piecewise smooth signal f(#)
with K discontinuities at locations t1,1s, .., tx is straightforward. Assume that
S(t) is given by (3.2). Call p;(¢) = Py () 1o, + P 1y, 1 i =1,2,.., K; the
piecewise polynomial signal whose two pieces P;- (t) and Pt () are given by

®) (4.
e (0= fia @) + )t — 1)+ ot T
and )
P+ (t) = fit) + fi@) e —ti) + ...+ f’T‘(tQ(t — ;)%

That is, P- (t) and Py (t) are the Taylor expansions of f(t) about ¢; taken from
the left and from the right of ¢;. Then, as we proved before, the signal f(t) —
pi(t) is p times continuously differentiable in ¢;. So, the piecewise polynomial
signal p(t) = Zf‘;l pi(t) is such that ro(t) = f(t) ~ p(t) is p times continuously
differentiable in #;, t5, .., tx and, thus, r4(t) is p times continuously differentiable
on the entire interval [0,7"] and uniformly Lipschitz o' > p on that interval.
Finally, as in the previous example one can show that o’ = a.

3.A.2 Proof of Corollary 1.1

Assume that f(t) is a T-periodic function defined over the period [0,7] as in
Eq. (3.2) and assume that f(¢) has K discontinuities at locations t1,%s, .., fx-
Following the same procedure as in Theorem 3.1, one can construct a T-periodic
piecewise polynomial signal p(t) with pieces of degree p = || such that the
signal h(t) = f(t) — p(t) is uniformly Lipschitz a over ]0,T[. Now, due to the
periodicity, h(t) has still a discontinuity in ¢t = m - T, m € Z. This function
can be made p times continuously differentiable in ¢ = m - T by constructing a
T-periodic polynomial p(t) such that:

B(T7) = H(0%) = h(T™) — h(0T) (3.26)
and
pO@) - 0% = k(T - rD(0T), 1=12,.,p (3.27)
Assume, for instance, that we only want first order differentiability, that is
B(T™) = p(07) = h(T7) — h(0*) (3.28)
and

p@) - p(01) = AO(T7) — A (0F). (3.29)
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Then a T periodic polynomial p(t) = ap + a1t + azt?, meets the two constrains
in (3.28),(3.29), if ap is arbitrary and a; and ay satisfy

_ h@)—hot) _ ATy (oh)
a1 = T - 2 ’

4y = h(l)(T‘22;h(1)§0+).
Moreover, it is easy to verify that the function r,(¢) = h(t) — p(t) is T-periodic
and in C*(R).

In general, equations (3.26),(3.27) impose p + 1 constraints, and we need a
polynomial of degree p+1 to meet them. This is because the constant factor ap in
the polynomial is not subject to any of the constraints in (3.26),(3.27). Finally,
notice that p(t) + p(t) is piecewise polynomial with polynomials of maximum
degree p+1 and r,(t) = f(t) —p(t) —H(t) is periodic of period T and is in C?(R).
Moreover, with the same argument as in the Theorem 3.1, one can show that
ro(t) is uniformly Lipschitz o over R. This concludes the proof.

3.A.3 Proof of Proposition 3.1

We are considering signals in R and the union of footprints and scaling func-
tions gives N elements. We need to show that this set of elements is complete.
This is equivalent to showing that there exists no z[n] with ||z|| > 0 such that
it has a zero expansion, that is, such that:

STz FOW + S Kz, o) = 0. (3.30)
k l

We prove this for the case J = log, N, noting that with the same method one
can prove it for any J. Consider the representation of z in terms of the wavelet
basis:

J Nj27-1

oln] = coppolml + Y D wyivaln). (3.31)

j=1 =0

Eq. (3.30) already implies that the scaling coefficient ¢g = (z,¢jo) is zero.
We will show that if Eq. (3.30) is true then also all the wavelet coefficients
of z are zero and so it must be ||z|] = 0. Recall that, since J = log, N,
there is only one wavelet coefficient at level J, two wavelet coefficients at level
J — 1 and so on. First consider the footprint f,go) [n] = ELI djr; ¥jk,; [n] with
k = 27/2 and the corresponding inner product (z, f,go)). One can easily verify
that the only non-zero coefficient djx, of f,go) [n] is the one at scale J. That
is: f,go) [n] = dyk, ¥k, [n] = djoso[n] where in the last equality we have used
the fact that k; = 0. Thus, we have that {z, ,EO)) = yjodyo and this inner
product is equal to zero only if y;0 = 0. Consider now the footprint f,go) with
k = 27/4. In this case, f,§°) = djotgo[n] + d(s—1)0%-1)0[n], that is, f,go) has
only two non-zero coefficients d;;, at scales J and J — 1. So, we have that
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(z, IEO)) = yjodso + Y-1)0d(s-1)0- Since we have seen that yjo = 0, this
second inner product is zero only if y(j_1)0 = 0. In the same way, but with the
footprint related to position 27 /4 + 27 /2 we can prove that Ys-1)1 = 0. So the
wavelet coefficients at scales J and J — 1 are zero. The same analysis can be
repeated at each scale and in conclusion we have that condition (3.30) implies
that all the wavelet coefficients of = are zero. Therefore, £ must be the zero
vector.

3.A.4 The footprints dual basis

We consider vector in RY with N being a power of 2. We have seen that, for
J = log, N, the scaling function ¢j0 and the N — 1 footprints féo) form a
biorthogonal basis. Now, we want to show that, except for a normalizing factor,
the dual basis is given by:

FOm=6(n—k)-b6(n—-(k-1), k=1,2,.,N;
(3.32)

$s0ln] = paoln].

First notice that the vectors in (3.32) are linearly independent. We only need
to show that they verify the biorthogonality conditions. That is:

E2 1) =,
(%, 850) =0

and .
(0, Oy =,
(g0, d0) = 1

We have that ¢yo[n] is orthogonal to f,go)’s by construction and
(d50[n), dso[n]) = 1. Moreover, for J = log, N, f,EO) is piecewise constant with
one discontinuity at k. Therefore, the inner product

(FOm], £fOm) = £ - 1,20 - 1]

is different from zero only for j = k. In fact, in all the other cases, we have
f,§°) 4] = ,50) [7 — 1]. Therefore, the vectors in (3.32) verify the biorthogonal
conditions. The following example will clarify the result.

Example. We assume N = 4 and represent the footprint basis in matrix
form. We have that (as usual, rows represent the basis vectors):

O —v3/2 V3/6  V3/6 /3/6
e O -2 -2 12 )2
O T V36 —VB/6 —V3/6 V32

NP 12 12 1/2 1/2
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One can immediately verify that the inverse of F is given by (basis vectors are
in columns):

S -v3/2 0 0 1/2

a_| i@ o q0 o, || V32 -1 0 172
F 1 - f]o f20 30 ¢JO - 0 1 _\/5/2 1/2
P C 0 0 V3/2 1/2

Thus, the dual footprints follow the expression given in (3.32).






Chapter 4

Wavelet Footprint:
Applications

4.! Introduction

Af r the introduction of the notion of footprints in the previous chapter, we
no examine practical applications. We focus on three main signal processing
pr« Hlems for which wavelets were successful, namely denoising, deconvolution
an: compression. We present algorithms based on the footprint expansion and
shc 7 that these methods can further improve wavelet based algorithms. The
ma 1 characteristic of the footprint methods is that they can deal efficiently with
disc mtinuities. In Sections 4.2 and 4.3, we study denoising and deconvolution
ress ectively. Compression is examined in Section 4.4, where we prove (Theo-
ren; 4.1) that at high rates footprints based compression algorithms perform as
well as ideal methods. In Section 4.5, we assess the performance of the proposed
algorithms numerically and we give concluding remarks in Section 4.6.

4.2 Denoising

The term denoising usually refers to the removal of noise from a corrupted signal.
In the typical problem formulation, the original signal = has been corrupted by
additive noise. One observes z[n] = z[n] + e[n] where e[n] are independent and
identically distributed (i.i.d.) zero mean Gaussian variables with variance o
and the original signal is deterministic and independent of the noise. The goal
of the denoising algorithm is to obtain an estimate # of the original signal which
minimizes a risk function, usually the mean square error E[|| z — £ ||?]. The
wavelet based denoising algorithm introduced by Donoho and Johnstone [32]
simply shrinks the wavelet coeflicients. That is, it sets all wavelet coefficients
smaller than a threshold to zero and keeps the coefficients above the threshold
(hard thresholding) or shrinks them by a fixed amount (soft thresholding). The
threshold is usually set to 7' = cv/2In N, where N is the size of the signal [32].

51
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A limit of this approach is that it does not exploit the dependency across scales
of the wavelet coefficients. Thus, to overcome this limit, we apply a threshold
in the footprint domain rather than the wavelet domain. Doing so, we better
exploit the dependency of the wavelet coefficients across scales. As a matter
of fact, denoising in the footprint domain is equivalent to applying a vector
threshold in the wavelet domain rather than a scalar threshold as in the usual
methods.

Assume that the observed noisy signal is z[n] = z[n] + e[n] and that z[n]
is piecewise polynomial. We can express piecewise polynomial signals in terms
of footprints, thus our denoising system attempts to estimate this footprint
representation from the observed noisy version z[n]. The estimation procedure
follows the same steps as algorithms 3.1, 3.2. That is, one first estimates the
discontinuity locations and then evaluates the footprint coefficients. Since we
only observe a noisy version of the signal, we need to slightly modify these
two steps to make them more robust to noise. Again, for simplicity, we focus
on piecewise constant signals. The discontinuity locations are estimated in the
following way:

Algorithm 4.1 (location estimation, noisy case)
1. Choose a dictionary D = {f\" = Y7_, djk,¥jk;5k = 0,1,.N — "} of
footprints with J = log, N. This dictionary represents a biortho;onal
basis.

2. Compute the dual basis of D and call f,go) k=1,2,..,N — 1 the elements
of this dual basis.

3. Compute the N — 1 inner products (z,f,io)) k=1,2,.,N—1.

4. Consider as discontinuity locations the ones related to the inner products
larger than the threshold T} = Hf,go)HT. That is, if |(z,f,£0))| > T, then
assume that there is a discontinuity at location k. 7 is the universal
threshold equal to 6v2In N [32].

We have a set of estimated discontinuity locations: ki, ko, .., kk' The problem
is that, due to the noise, this estimation can have errors. Thus, this possibil-
ity must be considered in the next step where the footprints coefficients are
evaluated.

Algorithm 4.2 (coefficient estimation, noisy case)
1. Call K the set of estimated discontinuity locations.

2. Choose J; = LlogQ(lAcm - l}m_l)J, where km—_1,km are the two closest
discontinuity locations in K.
3. For each possible location k& € [lEm_l,I}m] compute the inner product
4(0) .
{z, W)’ where f,go) is the sub-footprint obtained by considering only
k
the first J1 wavelet coefficients of f,go).
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#(0)

4. Choose the location k; such that |(z, t ——)| is maximum.

A
5. If
f(O)
{2z, =7 > T, (4.1)
DI
then compute the residual:
. A
Ri=z2-—=(z WW
MWHWH

6. Iterate step 4-5 on the residual until condition (4.1) is not verified anymore.

7. Once condition (4.1) is not verified anymore, remove the two discontinuity
locations k;_1, k; from K.

8. If K is empty, stop. Otherwise go to step 2.

Finally, the estimated signal £ is:
2(0
R
|wm [l

where M is the total number of iterations and RJ = z.

First, notice that, since the footprints f,g?n) in Eq. (4.2) are obtained taking
a wavelet transform with J = log, N decomposition levels, we are sure that
the estimated signal # is piecewise constant like z (Proposition 3.2). This is
an important property, because traditional denoising algorithms suffer from the
presence of artifacts around discontinuities (pseudo-Gibbs effects). The advan-
tage of denoising in the footprints basis is that these artifacts are automatically
eliminated.

Notice that, at each iteration, given the two closest discontinuity loca-
tions IAcm_l, l}m, we run a complete matching pursuit algorithm on the interval
[Em—1, I}m] (step 3-6 of the algorithm). In this way, if there is a discontinuity
that has not been detected in the discontinuity estimation step, it can be found

M-1
%@M%0+Z YF ), (4.2)

in this step. This is the main difference between the noiseless and noisy version
of the algorithm.

The proposed denoising algorithm generalizes to piecewise polynomial sig-
nals. In this case, given the interval [I}m_l,l}m], instead of running matching
pursuit on this interval, we run the subspace pursuit presented in Section 3.4.1.
That is, for each k € {Em_l, IAcm], we project the set of the corresponding noisy
wavelet coefficients on the right sub-space, we choose the largest projection and
if this projection is larger than the threshold, we keep it. All the other previous
considerations apply also to the piecewise polynomial case.

Denoising in the wavelet domain suffers from the lack of shift invariance of
the wavelet basis. One way to overcome this limit is to use a denoising method
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called cycle-spinning {17]. For a range of shifts, cycle spinning shifts the noisy
signal, denoises each shifted version and, finally, unshift and average the de-
noised signals. Since footprints suffer from the same lack of shift invariance as
wavelets, one can use the idea of cycle spinning to reduce this shift dependency.
The only difference between cycle spinning with wavelets and cycle spinning with
footprints is that, in this second case, each shifted version of the signal is de-
noised with footprints (algorithms 4.1, 4.2) rather than wavelets. The only limit
of this approach is that we cannot guarantee anymore that the denoised signal
is piecewise polynomial. That is, Proposition 3.2 and 3.4 do not apply to this
case. In Section 4.5, we consider both methods (denoising with footprints and
cycle spinning with footprints) and compare them with the equivalent wavelet
based algorithms.

4.3 Deconvolution

In its simplest form, the deconvolution problem can be stated as follows. The
original unknown signal z[n] is blurred by a convolution operator h{n| and cor-
rupted by additive white Gaussian noise. One searches for a good estimate of
z[n] from the observed signal

y[n] = h[n] * z[n] + e[n]. (4.3)

Either h[n] is known, or it has to be estimated (blind deconvolution). In most
cases, h[n] behaves as a low-pass filter and does not have a bounded inverse, for
this reason such a deconvolution problem is usually called ill-posed.

There is a large number of methods that provide possible solutions to the
deconvolution problem [3, 8, 18, 31, 68, 69, 82, 95]. Some linear approaches,
for instance, use regularized inverse filters like Wiener filters to invert the effect
of hin]. The limit of these methods is that they are suited for regular signals,
but they fail when signals are characterized by the presence of discontinuities.
Indeed, discontinuities are the part of a signal which is most corrupted by the
convolution filter h[n]. According to the amount of prior information about the
signal, one can develop more sophisticated methods which force the estimated
signal to meet some prior constraints. Those approaches include methods based
on projection onto convex sets and methods based on iterative filters [95, 18,
69]. The main drawback of these techniques is that they are computationally
intensive. Finally, wavelet based deconvolution methods have become popular
recently [31, 68, 3, 82, 8], mostly because they deal well with singular structures
in the signals. In our approach, we use the footprint expansion to further
improve wavelet based techniques. We assume that A[n] is known.

Consider the case where z[n] is piecewise polynomial. We know that it can
be written as a linear combination of footprints (see Eq. (3.18)). Thus, by
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replacing z[n] with its footprints representation, Eq. (4.3) becomes

N/27 - er
W e in] + T Ky T ol Phin] + £0n] + eln]

y[n]
I er ri
W adh ] + T T ot iV [n] + eln],

where, in the last equality, we assumed f,gf) [n] = h[n] * f,g:l) [n]. That is, y[n]

is given by a linear combination of blurred footprints f,g:i) [n] plus the additive

white noise efn]. Call D = {{\?;k = 0,1,.,N — 1;d = 0,1,.., D} the dictio-
nary of blurred footprints. In our deconvolution algorithm, we first attempt
to remove the white noise and then the blurring effect. The noise is removed
using the denoising algorithm 4.1, 4.2, but we use the blurred dictionary D
to perform denoising rather than D. The deblurring process then simply con-
sists in replacing the f,g?)’s with the corresponding non-blurred footprints. The
complete algorithm can be summarized as follows

Algorithm 4.3 (Deconvolution of piecewise polynomial signals)

1. Consider the dictionary of blurred footprints D = { f,gd); k=0,1,.,N -
1;d = 0,1,..,D}. Remove the noise in y[n] using algorithms 4.1, 4.2 and
assuming D as the reference footprints dictionary.

2. Call the denoised signal g[n] = lli/on_l et n) +
Z{io ZdD=0 &Ed) figfi) [n].  The deconvolved signal &[n] is given by
z[n] = lji/ozl_l &by [n] + Z{io ZdDzo &Ed) fiil-i) [r], where we have simply

replaced f—lid) [n] with f ;i:i) [n].

If z[n] is piecewise smooth, we use a two step deconvolution algorithm. The
procedure of this algorithm is based on the result of Theorem 3.1, which says
that z[n] can be written as the sum of a piecewise polynomial signal p[n] and
a regular function r[n]. That is, z[n] = p[n] + r[n]. Therefore, the observed
signal y[n] can be written as: y[n] = h[n] x p[n] + h[n] * r[n] + e[n]. The aim of
the algorithm is to estimate the two contributions p[n] and r[n] in two different
phases. The complete algorithm operates in the following way (we assume that
h[n] is known)

Algorithm 4.4 (Two step deconvolution)

1. Estimate the piecewise polynomial behaviour underlying y[n] with the
deconvolution algorithm 4.3. Call the estimated signal p[n].

2. Compute the residual 7[n] = y[n] — h[n] * p[n].
3. Deconvolve the residual with a Wiener filter g[n]: #[n] = g[n] * #[n]

4. The estimated signal is: Z[n] = p[n] + #[n].
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4.4 Compression

Wavelets are widely used in compression. The reason is that wavelets have
very good approximation properties for representing certain classes of signals
like piecewise smooth signals. While good approximation properties are neces-
sary for good compression, it might not be enough. In compression, one has to
consider the costs corresponding to indexing and compressing the retained ele-
ments in the approximation and independent coding of these coefficients might
be inefficient [107].

Consider a piecewise smooth signal defined as in Eq. (3.2), that is, a function
with pieces that are a-Lipschitz regular and with a finite number of disconti-
nuities. It was shown in-[14] that standard wavelet based schemes such as
zerotrees [93] can achieve the following distortion-rate performance:

D(R) < ¢1R7%* + ¢y \/R,27 VR, (4.4)

where R = R;+ R, and R, are the bits used to quantize the wavelet coefficients
generated by the discontinuities, while R, are the bits used to code the wavelet
coeflicients corresponding to the smooth parts of the signal. Now, suppose that
the signal is piecewise polynomial. Then the wavelet coeflicients related to the
smooth parts of the signal are exactly zero, and so there is no need to use any
bits to code them. The distortion of a wavelet based scheme becomes

D(R) < coVR2™*sVE, (4.5)

However, a direct approach to compression of piecewise polynomial signals,
based on an oracle telling us where discontinuities are, will lead to D(R) <
42757 [86] and such behaviour is achievable using dynamic programming [86].
This large gap between ideal performance given by the scheme based on dy-
namic programming and wavelet performance is mainly due to the independent
coding of the wavelet coeflicients across scales. Statistical modeling [20] of such
dependencies can improve the constants in (4.5), but going from vR to R in
the exponent requires taking the deterministic behaviour of wavelet coeflicients
across scales at singularities into account. This is well done using footprints,
which thus close the gap with the ideal performance:

Theorem 4.1 Consider piecewise polynomial signals with polynomials of maz-
tmum degree D and no more than K discontinuities. A coder, which represents
these signals in the footprints basis and which scalar quantizes the discontinuity
locations and the footprint coefficients achieves:

D(R) < 27 'R, (4.6)

Proof: See Appendix 4.A.

Thus, this theorem shows that, in case of piecewise polynomial signals,
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footprints significantly improve performance of wavelet coders. Footprints can
be used for piecewise smooth signals too. Theorem 3.1 shows that a piecewise
smooth signal can be separated into two contributions a piecewise polynomial
part (call it p[n]) and a residual r[n] which is regular (e-Lipschitz over R).
Now, p[n] can be compressed with footprints and this coder achieves (4.6). The
residual r{n] can be compressed with any other coder which achieves [14]

D(R) < cgR™2°. (4.7)

It is worth noticing that, because of the regularity of r[n], the performance in
(4.7) can be achieved with a simple coder based on linear approximation of r[n]
in a wavelet or Fourier basis [14]. Combining (4.6) and (4.7) shows that a two
stage compression algorithm based on footprints and on linear approximation
of the residual achieves

D(R) < csR;?* + cg27 e, (4.8)

Comparing 4.4) and (4.8), we can seen that this coder does not change the
asymptotic: of the distortion-rate function of wavelet coders ( ~ cg R;%%). But,
by coding e discontinuities efficiently, this coder reaches the asymptotic be-
haviour mo : rapidly. Finally, notice that for this last performance, the under-
lying assun stion is that the encoder knows in advance the signal to code, in
this way it . in separate the polynomial and the smooth parts of the signal. In
the experim utal results, we will show that a realistic encoder can obtain similar
performance without knowing the signal characteristics in advance.

4.5 Numerical Experiments

In this section, we compare footprints with wavelet-based methods on several
examples. Our purpose is to show that footprints are a versatile tool and that
we can get good results in a variety of different applications.

4.5.1 Denoising

For denoising, we consider only piecewise polynomial signals. In Table 4.1,
we compare the performance of our denoising systems against a classical hard
thresholding algorithm [32] and against cycle-spinning [17]. In this experiment
we consider piecewise linear signals with no more than three discontinuities. The
performance is analyzed in function of the size IV of the signal. The table clearly
shows that denoising with footprints outperforms the hard thresholding system,
while cycle-spinning with footprints outperforms traditional cycle-spinning. In
Figures 4.1 and 4.2, we show examples of the denoising algorithms on piecewise
linear and piecewise quadratic signals. We can see that signals denoised with

footprints present better visual quality since they do not suffer from pseudo-
Gibbs effects.
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N 64 128 256 512

Footprints 17.4dB | 19.9dB | 21.9dB | 24.5dB
Hard thresholding 15.1dB | 17.1dB | 18.7dB | 21.4dB
Cycle spinning 17.9dB | 20dB 22dB | 24.5dB
Cycle-spin footprints | 18.4dB | 20.4dB | 22.5dB | 24.9dB

Table 4.1: Denoising with footprints. Piecewise linear signals with no more than
three discontinuities.

0.5 05 0.5
0 /_\ ° °
-0.5 -05 ~0.5

[¢) 100 200 0 100 200 0 100 200

a) Original signal b) Noisy signal ¢) Hard Th. (16.4dB)
0.5 05 0.5

0 0 4 .
N

~0.5 -05 ~0.5

[} 100 200 0 100 200 [4] 100 200

d) Footprints (19.3dB) 6) cyclo spin (18.9dB) ) cycle footprint (20.96B)

Figure 4.1: SNR results for denoising. a) Original signal. b) Noisy signal (13.8dB).
c) Hard Thresholding (16.4dB). d) footprints (19.3dB). e) cycle spinning with
wavelet transform (18.9dB). f) cycle spinning with footprints (20.9dB).

4.5.2 Deconvolution

In this case, we consider two different signals. One is a piecewise linear signal,
the other one is a line of the image ‘Cameraman’, which represents a possible
example of piecewise smooth signals. We first consider the case of a piecewise
linear signal and compare the performance of our system with WaRD [82]. In
this simulation, the original signal is first convolved with a box filter and then
white noise is added. The noise variance is set to o2 = 0.02. Figure 4.3 shows
that our system outperforms WaRD in both visual quality and SNR. It is of
interest to note that the signal reconstructed with footprints does not present
artifacts around discontinuities and that it manages to efficiently sharpen the
discontinuities. Of course, one of the reasons why footprints perform so well
is because the considered signal perfectly fits the model, since it is piecewise
polynomial.

In Figure 4.4, we consider the case where the signal is piecewise smooth.
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Figure 4.2: SNR results for denoising. a) Original signal. b) Noisy signal (22.5dB).
¢) Hard thresholding (25.3dB). d) Hard thresholding with footprints (28.5dB). e)
Cycle spinning with wavelet transform (29.8dB). f) Cycle spinning with footprints
(30.8dB).

Again, the original signal is convolved with a box filter and then white noise
is added. In this case, we use the two step deconvolution algorithm. The es-
timated piecewise polynomial behaviour p[n] underlying the signal is shown in
Figure 4.4(c). The estimated residual 7[n] and the deconvolved residual 7[n]
are shown in Figures 4.4(d) and 4.4(e) respectively. Finally, the reconstructed
signal is shown in Figure 4.4(f).

4.5.3 Compression

In Theorem 4.1, we have shown that in case of piecewise polynomial signals, a
footprint based coder can achieve the ideal rate-distortion performance. That
is, it has the correct rate of decay of the R-D function. Now, we are interested
in a numerical confirmation of this theorem. We consider piecewise constant
signals with no more than five discontinuities. The signal has size N = 210 and
the discontinuity locations are uniformly distributed over the interval {0, N —1].
The footprint coder operates as in Theorem 4.1, that is, it scalar quantizes the
footprint coefficients and the discontinuity locations. Bits are allocated with
a reverse waterfilling strategy as explained in Theorem 4.1. In Figure 4.5, we
compare the rate-distortion performance of this footprint coder against the ideal
bound and the ideal performance of a wavelet based coder. We can see that the
behaviour of the footprint coder is consistent with the theory, since it has the
same rate of decay as the ideal distortion function.

Finally, we consider a piecewise smooth signal. The compression operates in
the following way. With a denoising-like algorithm, we estimate the piecewise
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Figure 4.3: Deconvolution of a piecewise linear signal. (a) Test signal (N=256).
(b) Signal convolved with a box filter. (c) Observed signal.(SNR=6.5dB) (d)
Deconvolution with WaRD (SNR=8.8dB). (e) Deconvolution with Footprints
(SNR=13.4dB).
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Figure 4.4: Deconvolution of a piecewise smooth signal. (a) Test signal
(N=256). (b) Observed signal (SNR=16.7dB). (c) Piecewise polynomial estimation
(SNR=21.1dB). (d) Residual: # =y — hxp. (e) Deconvolution of the residual with
a Wiener filter. (f) Complete deconvolved signal (SNR=21.8dB).
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30 3‘5 40 4‘5 5‘0 5.5 6‘0 €5 7‘0 7‘5 80
Rate

Figure 4.5: Theoretical and experimental D/R curves. Dashed-dotted: theoretical

wavelet performance, dashed: empirical footprint performance, line: ideal perfor-

mance.

polynomial behaviour underlying the signal and compress it with footprints.
The residual is assumed regular and it is compressed in a wavelet basis. That
is, the first k coefficients of the wavelet decomposition are quantized, while the
other are set to zero (linear approximation). The allocation of the bits between
the piecewise polynomial signal and the residual and the number & of wavelet
coefficients that are quantized is chosen off-line, using some a-priori knowledge
of the signal.

In Figure 4.6, we show an example of the performance of the proposed com-
pression scheme and compare it with a 1-D version of SPIHT [90]. The signal
to compress is given by the union of smooth pieces. In this example, our system
outperforms SPIHT by about 3dB. Since SPIHT is more suited to compress 2-D
signals this comparison is only indicative. However, it shows that a compression
system based on footprints can outperform traditional wavelet methods also in
the case of piecewise smooth signals.

4.6 Conclusions

In this chapter, we have presented practical algorithms for denoising, decon-
volution and compression. Numerical simulations have shown that footprints
outperform wavelet methods. In short, wavelets have been very successful on
signals with discontinuities, be it for denoising, deconvolution or compression.
Wavelet footprints pursue this program further, by explicitly using the structure
of discontinuities across scales. The results, both theoretical and experimental,
confirm the usefulness of this approach. Together with the simplicity of the
algorithms involved, this indicates the usefulness of this new data structure.
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Figure 4.6: Compression of a piecewise smooth signal.

Appendix 4.A Proof of Theorem 4.1

" Consider a piecewise polynomial signal z[n] € [0, N — 1] of maximum degree D
and with no more than K discontinuities. Assume that the signal is bounded
in magnitude between [—A, A]. We want to prove that a compression scheme
based on footprints can achieve:

D(R) < 52 WFIRIDFT ~ g2 7R,

Consider the representation of z in terms of footprints for the case J = log, N:

z[n] = cod’y [n] + EZa(d)f(d) 1, (4.9)

=0 d=0

The compression algorithm consists in uniform scalar quantizing the disconti-
nuity locations k; and the footprints coefficients «; ) Since z is bounded, the
square error relative to the quantization of a smgle discontinuity location can
be upper bounded by

llz = &) < 44%|k; — ki,

where & is the approximated signal. If Rg, bits are used to quantize each
discontinuity then |k; — k;| < (N/2)2~ %% and the distortion related to a single
discontinuity is:

Dy(Ry,;) < 242N27 R,
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Consider now the quantization of the coefficients of the footprints expansion.!

Since || f,gd) || = 1, the square error due to the quantization of a single coeflicients
(d)

a; " is

le =3I = (ef - &)

Now, z is bounded and so each coefficient agd) is bounded too: a,(d) €
—Bgd),Bgd) . Thus, if R bits are allocated to quantize a(d), then the dis-
1 1 1 2

tortion due to this quantization can be upper-bounded by
(
Do(R{?) < B*27*R7,

where B = m%x Bgd). The global distortion bound is obtained by adding all the
1

distortion contributions:

K K D
D(R) < 3" DuRk) + Y. 3" Da(R™),

=0 d=0

where R = Y% Ry, + ©F, POy R, Finally, by allocating bits over the
different distortions with a reverse waterfilling scheme [19], the global distortion

becomes: on
D(R) < 62 DFORADID ~ g2 7R,

! The scaling coefficient cg is included in this formulation.



Chapter 5

Multiple Description Coding:
Theory

5.1 Introduction

Standard source coding techniques presupposes that the representation pro-
duced by the encoder will be available without errors to the decoder. This is in
accordance with the famous separation principle due to Shannon [92]. However,
there are errors in real communication systems. Consider, for instance, commu-
nications over heterogeneous packet switched networks. In this setting, packet
losses can be due to transmission errors or congestion. If the network is able to
provide preferential treatment to some packets, then the use of multiresolution
or layered source coding is the obvious solution. But if the network cannot
differentiate among packets, and if retransmissions are not allowed (e.g., due
to real-time delay constraints or in multicast scenarios), then the source cod-
ing strategy should be different. Indeed, it would be attractive to be able to
estimate the message despite packet losses and obtain a reproduction quality
proportionate to the number of received packets. Multiple Description (MD)
coding is a source coding method which offers a potentially attractive framework
in which to develop coding algorithms for such scenarios. A MD coder repre-
sents an information source using multiple bit streams (descriptions). Each
individual description provides an approximation to the original message, and
multiple descriptions can refine each other to produce a better approximation
than that attainable by any single one alone. In this chapter, after a comprehen-
sive introduction in which the main information theoretic results are reviewed,
we present a new MD rate-distortion region for stationary Gaussian sources
which is asymptotically tight at high rates (Theorem 5.2 of Section 5.6). The
review on MD coding is mostly based on [58, 59], while the new material comes
from [37, 38].

OThis chapter includes research conducted jointly with Sergio Servetto and Martin Vet-
terli [37, 38]

65
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5.2 Problem Statement

In its simplest formulation, MD coding refers to the scenario illustrated in Fig-
ure 5.1 and involves only two descriptions. This is the so called case of two
channels and three receivers. An encoder is given a sequence of source sym-
bols {X}} to communicate to three receivers over two noiseless channels. One
decoder receives information sent over both channels and can reconstruct the
source at some small distortion value Dy (the central distortion). The other two
decoders receive information only over their respective channels and reconstruct
the source at some higher distortion D4 or D» (the side distortions). The central

Description 1

R1) Decoder 1 (Dy |~
{Xx}
Source Encoder Decoder 0 (Do)
L
Decoder2 (D) [™
Description 2
(Ro)

Figure 5.1: The multiple description problem.

theoretical problem is to determine the set of quintuples (R;, Ra, Do, D1, D2)
for which there exist codes of rates R; and R, achieving average distortions
Dy, D1 and D,. Clearly, we can state that the rate R; necessary to achieve the
distortion D; cannot be smaller than R(D;) (R(-) is the rate-distortion function
for the source), similar arguments apply for the other two cases. So we can state
that a first bound for the MD rate region is:

R > R(Dy), (5.1)
Ri+Ry > R(Dy). (5.3)

In general, it is not possible to achieve equality simultaneously in the three
equations. On the one hand, two individually good descriptions tend to be
similar to each other. Thus, the second description will contribute very little to
improve the quality of the first one. On the other hand, two descriptions which
are complementary cannot be both individually good. Since the bounds (5.1)-
(5.3) are usually loose, the gaps from equality in (5.1)-(5.3) are usually called
ezcess rate. In particular, R; — R(D;), i = 1, 2. are called ezcess marginal rates
and R; + Ry — R(Dy) is called the excess rate sum!.

The MD problem can be generalized to more than two channels and more
than three receivers. The natural extension is to M channels and 2 — 1 re-
ceivers. The situation of three channel and seven receivers was studied by Zhang

1Sometimes the difference Ry + R2 — R(Do) is called redundancy.
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and Berger [115]. while an achievable region for the M-channel case has been
found recently [106]. Except for these works, there is no literature on all other
cases.

5.3 Related problems

The successive refinement (SR) problem shown in Figure 5.2 is a special case
of the MD problem. Unlike in MD coding, the channels in SR do not play
symmetric roles. One channel (Channel 1) is received by both decoders, while
the other channel (Channel 2) is received by one only decoder. For this reason,
the information sent on Channel 2 need not be useful without Channel 1, that
is, it only refines the information on Channel 1.

SR coding can be used for progressive transmission. In this case decoders
in Figure 5.2 represent two different states of the same user. The information
of Channel 1 is sent first and the receiver uses Decoder 1. If communication
is not terminated, the information on Channel 2 is then sent and the receiver
uses Decoder 0. SR coding also applies to layered broadcasting. In this case
there are two classes of users. Both receive Channel 1 but only one class receive
Channel 2. This situation may occur in wireless communication with multireso-
lution constellation [87] or when multicasting to groups with different available
bandwidths in a packet network [81]. Since the SR problem can be obtained as

Channel 1
(Rp) Decoder 1 (D1) =
{Xu}
Source Encoder Decoder 0 (Do) =

I

Channel 2
R

Figure 5.2: The successive refinement problem. It is obtained from MD problem
when one of the side decoder is removed.

a reduction of the MD problem, bounds for MD coding apply to SR coding. In
particular, since there is no constraint on D,, the most favorable case is when
equations (5.1) and (5.3) hold with equality. A source for which (5.1) and (5.3)
hold with equality is called successively refinable.

The first results on successive refinability were published by Koshelev [71, 72,
73]. He found sufficient conditions for a source to be successively refinable. Un-
aware of the work of Koshelev, Equitz and Cover found necessary and sufficient
conditions for a source to be successively refinable [47]. Examples of refinable
sources include discrete sources with Hamming distortion and Gaussian sources
with square error distortion. For related results on achievable bounds and on
similar network problems, refer to [62, 89].
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5.4 Domains of Application

The applicability of MD techniques depend on the type of data to be commu-
nicated and on the communication medium.

Clearly, MD coding can be used when lossless communication is not required.
That is, when users are satisfied with a degraded form of the information. Ex-
amples of sources which allows lossy compression includes audio, speech, images
and video. It is worth noticing that there might be exceptions. For instance,
images in medicine and publishing should be not compressed lossily.

Moreover, MD coding applies to several communication media. As men-
tioned in the introduction, MD coding is appropriate for communication over
packet networks. In fact, this possibility is mentioned in almost all works pre-
senting MD techniques. In this setting, it is natural to relate packets in a
communication network to descriptions in MD. Indeed, only certain types of
communication scenarios benefit from MD coding. MD coding is appropriate
for data transmission over packet networks when retransmission is not possible.
Retransmission can be precluded for several reasons. The lack of a feedback
channel is an example. In broadcast communications, for instance, acknowledg-
ment, messages create to much traffic and should be avoided. Moreover, broad-
caster cannot afford independent retransmission to each receiver. In addition,
retransmission implies delays and, in particularly congested situations, each re-
peated transmission might be lost as well, so delays might become unbounded.
Long delays should be avoided in interactive communication or real time appli-
cations (i.e. streaming of audio or video). Thus, MD techniques are appropriate
when retransmission is not possible and long delays are not acceptable.

Distributed storage matches the MD framework as well. Consider the basic
interaction in multimedia browsing, where a client requests for some information
(image, audio, video sequences) that is stored at a single server host. If the route
leading to this server is congested, the user will experience long delays. In the
Muitiple Description scenario, different coarse representations of the source are
stored at different databases (on different servers), so even if some of these
servers are congested the user can satisfy himself with a lower resolution version
of the signal using the description coming from one non-congested server.

Finally, there are situations in which a wireless channel is decomposed into
more than one virtual channel. MD coding may be appropriate on these virtual
channels. See [111, 58] for related results.

5.5 Fundamental results for memoryless sources

We now review a few fundamental results in MD coding which are also important
to prove Theorem 5.2 in the next Section.

The main result in MD coding is the achievable rate region determined by
El Gamal and Cover [45].

Theorem 5.1 (Achievable rates for multiple description coding [45])
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Let {X;} be a sequence of i.i.d. random variables drawn according to a
probability mass function p(z) and let the distortion measures d;(-,-), 1 =0,1,2,
be bounded. Then an achievable rate region for MD coding with distortions
(Do, D1, D) is given by the convex hull of all rates (Ry, Ry) such that

R > I(X;X)), (5.4)
Ry, > I(X;X,), (5.5)
Ri+Ry > I(X;Xo,X1,Xo) +I(X1;Xs), (5.6)

for some probability mass function p(x, &g, %1, %) such that

E[d(X,X;) < D;, i=0,1,2.

Note that with some simple manipulations Eq. (5.6) can be written as:
Ry + Ry > I(X; Xy) + I(X; Xa) + I(X; Xo| X1, X3).

This expression better highlights the fundamental trade-off in the MD problem.
If the rates R;, Ry are only allocated to the side decoders, that is, R; = I(X; X i)s
i = 1,2, then I(X; Xo| X1, X2) = 0. This means that the joint decoding of the
two channels does not add any information about the original source or as we
claimed in the beginning, the second description does not contribute to improve
the quality of the first one. If we want to allocate part of the rate to the
central decoder such that I(X; Xo|X1, X3) > 0, then we cannot have equality
in (5.4),(5.5).

Except for the memoryless Gaussian case [84] that will be discussed later,
there are no other cases where the converse to Theorem 5.1 has been proved.
However, Ahlswede [1] studied the case of no ezcess rate sum and showed that,
in this case, the El Gamal and Cover bounds are tight. Zhang and Berger [116]
considered the no ezxcess marginal rate case and they showed by counterexample
that in the excess rate case the achievable region of El Gamal and Cover is not
tight [115]. More recently, Linder et al. [76] found a rate region for memoryless
sources and locally quadratic distortion measure which is tight in the limit of
small distortions (high bit rate). Finally Zamir {112, 113] extended the Shannon
bounds [7] to the MD case and showed that for a Gaussian source the outer
bounds are asymptotically tight.

Thus, the case of memoryless Gaussian sources and square error distortion
studied by Ozarow [84] remains the only case where the complete MD rate-
region is known exactly. The explicit characterization of the set of achievable
distortions (Dg, Dy, D5) for a given pair of rates R;, Ry due to Ozarow is the
following:

D, > o%.272R (5.7)

Dy, > o°-27%F (5.8)
2 2—-2(R1+R2)

D, > = (5.9)

1- (JI- VA’
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where o2 is the variance of the memoryless Gaussian source, Il = (1-D, /o?)(1—
D3/0?) and A = (D1 Dy /o) — 2-AFi+hR2),
The inverse of these functions are the following [76, 84]

1 o?
> =1 — 1
R > 20g<D1), (5.10)
1 o?
> =1 —_— 11
Ry 2 20g<D2>, (5.11)
1 o? 1 o?
> 1 — -1 — ) 12
Ri+Ry > 2og< 1)+20g(D2>+’ (5.12)
6 is defined by:
1 1 < max
5= zlog(l—pi)’ Do < Dy (5.13)
0, Dy > Dp==
where:
DD,
Dy = 5.14
0 D1+D2~—(D1D2/0'2) ( )
and

ﬁAe2 —1ZA52 _‘
p=— (1_0:3\/56_2 = v=(1—¢o)[(e1 — €0)(e2 — €9) + €p€1€2 — 6(2)]
A=(1—€1)(1—62) 6i=Di/O'2 (’L=0,1,2)

The MD rate-region for memoryless Gaussian sources is sketched in Figure 5.3.
Notice that § depends on the three distortion (Dg, D1, D2) and on the variance
0% (Eq. (5.13)). However, by rearranging equation (5.12), one can see the rela-
tionship between & and the rates R; and R, and interpret é as the excess rate
that is used to reduce the central distortion given the two side distortions or:

2 2
§=R; — %log(g—l) + Ry~ -;—log (;—2> .
Now, if § = 0 then R, = 1/2log(0?/D;) and Ry = 1/2log(c%/D,). This means
that all the rate is used to minimize the side distortions and in this case Dy
equals its maximum value (D§***). If § > 0, it means that part of the rate
is used to reduce the central distortion which becomes smaller than D***. In
particular, Dy decreases from DJ**® to zero as J increases from zero to infinity.
This is why ¢ is also called the excess marginal rate [112, 116]. Finally, consider
the high rate situation, namely the case where the three distortions (Dg, D1, Ds)
are very small compared to the variance o2 or, in other words, the case where
the three ratios Dy/o?, D1 /02,Dy/0? go to zero. In this situation, the excess
marginal rate § (Eq. (5.13)) and the maximum central distortion Dg** (Eq.
(5.14)) do not depend on the variance of the source anymore. In particular, we
have [76]:
éar(Do, D1, D») limg 00 6(0?, Do, D1, D2)

lim)\_,o 5(0’2,)\D0,/\D1, /\Dg) (5.15)

1 1
2 log (l_pHR) ’

e e

il
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R 2
Achievable
RO+ L
R(D,) | .Unschievable
R(D,) RD)+8 R,

Figure 5.3: MD rate region of memoryless Gaussian sources.

where:
PR = (v/D1/Do = 1)(/D2/Do - 1) - 1
VD1D2/D2
and DD
. max __ 1472
Jm De™ = 55,

5.6 Multiple Description Rate Region for Stationary
Gaussian Sources

As shown in the previous section, much of the multiple description literature
is focused on memoryless sources. In this section, we present a new MD rate
region for stationary Gaussian sources with memory.

Theorem 5.2 In the limit of small distortions (i.e., Dy,D1,Ds — 0), the
asymptotic multiple description rate region for a stationary Gaussian source
and MSE distortions is given by the following equations:

R > &[T log (‘—%“1—’2) dw,

R, > Zl;ffwlog(%%l)dw,

S
Ri+R, > £ (ff7T log (%ﬁll) dw + [”_log (—é,—“—?) dw + 26HR) ,
where S(w) is the power spectral density of the Gaussian source.

Proof: Let {X;, t = 0,%1,..} be a discrete-time stationary Gaussian source.
We begin by considering N successive elements of this source and by calculating
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the asymptotic MD rate region of this N-sequence. Call @5 the N x N correla-
tion matrix related to any N successive components of {X;}. Since the source
is stationary, ®n is a symmetric Toeplitz matrix. Apply a Karhunen-Loeve
Transform (KLT) to the N-sequence to get uncorrelated (and so independent)
components. Because the KLT is unitary and invertible and we are considering
MSE as our distortion measure, the problem of finding the MD rate region in
the new coordinates is identical to that in the original ones, except that the
new components are statistically independent. Call Y = (y1,y2,..,yn) the N-
dimensional vector with independent components obtained after applying the
KLT to the original N-sequence and call Yo, Y1, Ys the appropriate reproducing
vectors at the three receivers. Moreover, ; will represent the i-th component
of the reproducing vector ?k, k = 0,1,2 and Y is a vector with the first ¢
elements of Y. Extending the El-Gamal-Cover results [45] to the vector case,
we have that the MD rate region is given by:

R > %minI(Y;Yl), (5.16)
1 o
Ry, > NminI(Y;Yz), (5.17)
1 NP s
Ri+Ry, > wmin(I(Y;Yo,Y,Y2) +1(Y1;12)), (5.18)

where the minima are over all the probability density functions p(Y, Yo, Y1, Y’z)
satisfying:

N
1 .
Bl Y (i - )] < Di, k=012
i=1

First notice that the term I(Y;Y,,Y;,Ys) + I(Yy;Y2) in Eq. (5.18) can be
equivalently expressed as:

I(Y; Yo, Y1, Y2) + I(Y1;Y2) (5.19)
= I(Y;Y,Y1,Ya) + H(V1) + H(Y:) - HY1,Ya) (5.20)

= I(Y;Y,Y,Ys) + I(YV;V)) + I(Y;Ya) — H(YL, Y,),  (5.21)

where in the last equality we have used the fact that };1, Y, are deterministic
functions of Y and thus H (Y'k) =1 (Y;}}k), k = 1,2. In the rest of the proof
we will use Eq. (5.21) rather than Eq. (5.19). Now, the first thing we want
to show is that the MD rate region of this N-vector reduces to the sum of the
MD rate region of each component of Y and that the problem of minimizing
(5.16-5.18) reduces to the problem of finding the right allocation strategy of the
rates Ry, Ry to the different components. Consider first Eq. (5.16), it follows
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that [19]:
I(Y;Y) = h(Y)-h(Y|V1) (5.22)

N N ) .

= Dby = 3 Ayl ) (5.23)
1;1 z]—vl

> D hy) = 3 hilyis) (5.24)
1;1 i=1

= Y I(ysd) (5.25)
=1

N

1 A2
> 5 log (Du) , (5.26)

i=1

v

where (5.23) follows from the independence of the components y; and from
the chain rule fo>r entropy. The inequality in (5.24) follows from the fact
that conditionin ; reduces entropy and we can achieve equality by choosing
p(Y|Y1) = Hfi p(y;|g1:). The last inequality follows from the expression of
the rate distorti n function of a Gaussian source and equality can be achieved
by choosing eac  §1; ~ N(0,A? — Dy;), where A? is the variance of the i-th
component and . )1; = E[(y; — §1:)?] is the distortion related to that component.
Hence, from Eq's. (5.22-5.26), we obtain that the minimization in equation
(5.16) reduces tc [19]:

1 21 X2
> —min) = . .
Rl_len- 2log (Dli), (5.27)

=1

where the minimum, now, is over all the possible distortions Dj; such that:
1 & 1 &
Ely > (i — 9% = N ;Du < D,.

=1

Similar arguments apply to equation (5.17) and that minimization reduces to:

1 "1 A2
> — mi § - : )
Ry >  min 2 2log (D%), (5.28)

where the minimum is over all the distortions D»; such that % Zf;l Dy; < Ds.
Consider, now, equation (5.18) and its alternative representation in (5.21). Con-
sider, first, the term I(Y;Yp, Y1, Y2); following the same procedure as in (5.22-
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5.26) we have:
I(Y;Yo,1,Y2) = h(Y) = h(Y[Y,Y1,Y2) (5.29)

N N
= S hly) - Y h@lY Y, Vi, Ya)  (5.30)

N N
2 Z h(y:) — Z h(yildoi, §14, Gai) (5.31)
i=1 1=1
N
= Z I(yi; 9ois 913, G2s), (5.32)
i=1

where inequality in (5.31) follows from the fact that conditioning reduces entropy
and equality is achieved if p(Y|Yp,Y1,Y2) = Hf;l p(yilGoi, G1i, §2:)- For the
second term of (5.21), we obtain:

I(Y;Y) + 1(Y;Y;) — H(V1, Y2) (5.33)
N N
> Y Iysgu) + Y Iy g) — HY, Ya) (5.34)

N N N
> > s + Y Iwisdoe) — Y HGuis i), (5.35)
i=1 i=1 =1
where inequality in (5.34) follows from (5.22-5.25) and we c«n achieve equality
by choosing p(Y|Vz) = Hz-l p(yt|yk,) for k = 1,2. The last inequality follows
from the fact that H (Yl,Y2) < zz_ H ($14,%2;) and equality is achieved if
p(Y1,Ys) = Hfil (G154, G2i). Thus, combining the results from (5.29-5.32) and
(5.33-5.35), we have:

I(Y;Y0,Y1,Y,) + I(Y; V1) + I(Y; Ya) — H(Y3,Y3) (5.36)
N
2 Z (I (yis Gois Gri» D2i) + L(ys; Gri) + I(yis §2i) — H (G4, §2:))  (5.37)
=1
N
1 22 1 A2
> Sl (2) 41 5, .
> ;210g(D1i>+2 og(D21>+ (5.38)

where the last inequality comes from the Ozarow equations and equality can be
achieved by a correct choice of each triple (¥o:,¥1:,%2i).- This choice depends
on the three distortions Dg;, Dq;, D2; and for an explicit characterization refer
to [84].

Eqns. (5.36-5.38) shows that minimization in (5.18) reduces to:

R1+R2>m1n(NZlog()‘2> 2N210g( ) ]tr(s,) (5.39)

where the minimum, now, is over all the distortions Dy;, Dy;, Da; such that
L SN Dii < Dy, k = 0,1,2. Now, combining (5.27), (5.28) and (5.39), we
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can see that the MD rate region of Y reduces, indeed, to the sum of the MD rate
region of each component and that the original minimization problem reduces
to:

/\2

R > ! 5.40
tos ¥ Z Dl:—Dx 2N Z °8 <D1z> ( )
Ry, > 5.41
2 =3, D25—D2 2N Z (Dm) ( )

1 & X

Ri+Ry > min — ) o :

' 2= & £i Doi=Do (2N ; 8 (Dli)

—,lv ¥ D1i=D14 3; D2i=D>

1 o A2 1
+5 ;log < D%) +N‘5"> (5.42)

Thius, the problem now is to understand how each component should contribute
to the total distortion to minimize the quantities in (5.40-5.42) or, stated in
a ifferent way, the problem is to understand how the rates Rj, R2 should be
al »cated to the various components to minimize (5.40-5.42). Using Lagrange
m: ltipliers we can construct the following three functionals:

( Dh) +1 E Dy, (5.43)
( a ) + v ZD% (5.44)

X2 A2
(D“) N Zlog (Dz,)

i=1

+N5i +1/021:D0i +Vlzi:D1i +VQZ1;D2¢. (545)

Jl =

J3:

‘Z
Jo = i
v

The problem of minimizing the first two functionals is equivalent to the prob-
lem of finding the optimal allocation strategy for the single description case.
Differentiating with respect to Di; and Ds; and setting equal to zero, we have:

an 1 1

I T SN 4
3D, sND, T 0 (5.46)
8., 11
L1 - 47
5Ds; SN D,, 11270 (5.47)
and
Di; = o =D, (5.48)
Dzi = C2 = D2, (5.49)

where ¢; and ¢y are constants. Hence, the optimum allocation of the rates to the
various components results in equal distortion for each component [7, 19]. This
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is due to the fact that the slopes of the curves (5.43)-(5.44) are independent
of the variances. This argument is not valid for the third functional (5.45)
since the slope of § depends on the variance. However, in the limit of small
distortions & becomes independent of the variance 6 — dgr (see Eq. (5.15)),
and the minimization strategy for the third functional becomes the same as for
the first two functionals (i.e., Dy; = D1,Dq; = D2, Dy; = Dy i =1,2,..,N.).
Then the MD rate-region becomes:

R > 2%\{25\;11%(%%)’
R, > ﬁzgiﬂ‘)g(%%)’

2 A2
R+R > ﬁ Zﬁ—_l log (%’;) + '2—11V szil log (ﬁz_) +dynR.

Notice that, since the Ozarow’s MD rate region is achievable and tight [84],
then also our MD rate region is (asymptotically) achievable and tight. Indeed,
we have seen that the MD rate-distortion functions (5.16-5.18) of the vector
Y are lower bounded by the sum of the MD rate-distortion functions of each
component y; and this lower bound is achieved by coding each componen: in-
dependently. Now, since the direct and converse part of the Ozarow thec rem
apply to each component, the minima in Eqns.(5.40-5.42), not only repre sent
an achievable region, but they also represent a tight region.

Now, using the result of the Toeplitz Distribution Theorem [7, 63] (see Ap-
pendix 5.A), we can go to the limit of infinite N and find the MD rate region
of the complete source {X;}:

Bio > g [T log () do,
)

Ry > 7 log (%) aw,

Ri+ Ry > & (f7,108(52) dw+ [T, tog ($2) dw + 264 ).

1

A similar result in terms of the entropy rate power of the Gaussian source can
be found in [112, 113]. In these papers Zamir extended the Shannon bounds [7]
to the MD case and then showed that the outer bound is asymptotically tight.
His results are valid both for sources with or without memory.

Theorem 5.2 shows that at high rates the single description allocation strat-
egy is also optimal in the MD case. That is because the slopes of the three
functionals (5.43-5.45) are independent of the source. At low rates, this last
assumption is not valid. The functional (5.45) has a slope dependent on the in-
put source variance and in general, it is not minimized with a single description
allocation strategy. So we can state the following corollary:
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Corollary 5.1 Under a high rate assumption, and for stationary Gaussian
sources, the single description rate allocation strategy is also optimal in the
Multiple Description case. At low rates it is, in general, sub-optimal.

In conclusion, the main contribution of this chapter is the extension of the
Ozarow results to the case of stationary Gaussian sources. In the next chapter,
we will concentrate on practical implementations of MD coders and propose
a new MD system. The definition of the new performance bounds given by
Theorem 5.2 will allow us to analyze the performance of MD systems which
operates on sequences with memory and this was not possible before.

Appendix 5.A Toeplitz Distribution Theorem

For a proof of this theorem refer to [63] (see also [61, 60]):

Theorem 5.3 Let &, be an infinite Toeplitz matriz with entry ¢r on the kth
diagonal. The eig: nvalues of @, are contained in the interval § < A < A where
d and A are the es sential infimum and supremum,? respectively, of the function:

d(w) = i pre Ik,

k=—00

Moreover, if both 7 and A are finite and G()\) is any continuous function of
A € [0, A], then:

n—co 1 2 —_

lim =3 GO) = -1; G[d(w)]dw,
k=1

where the )\2") are the eigenvalues of the nth-order matriz ®,, centered about the
main diagonal of Y.

2The essential supremum of a function f(x) is the i%f sup f(z) where E ranges over all sets
z¢€E
of Lebesgue measure zero. Likewise, the essential infimum is sup 122 f(=z).
E






Chapter 6

Multiple Description Coding:
Practical Techniques

6.1 Introduction

Up to now, we have studied the performance bounds of MD coders, but we
have not considered the problem of how to design practical systems that can
achieve that performance. One can get the impression that MD coding arose
as a pure theoretical problem and found applications later. In fact, to be more
precise, MD coding was born as a practical scheme to deal with errors in a
communication channel. To quote [58): More accurately, MD coding has come
full circle from explicit practical motivation to theoretical novelty and back to
engineering application.

In this chapter we focus on practical implementations. The next section
will briefly survey existing methods, while in Section 6.3, we present a new
MD coder. In that section we show a way to design optimal two-channel filter
banks for MD coding of stationary Gaussian sources (Theorem 6.1). Finally, in
Section 6.4 we assess the performance of this system. In particular, we show that
in some realistic settings (i.e., low complexity and low bit rate) the proposed
system outperform existing methods.

6.2 Survey of existing MD techniques

Several efforts have been made to design practical MD coding systems. These
systems can be divided into two main families which follow two different philoso-
phies. One family focuses on the problem of designing particular quantizers that
can meet the MD constraint, while the other family uses ordinary quantizers
and get the MD property from the choice of a particular transform. The main
methods based on these two different approaches are presented in the next two

OThis chapter includes research conducted jointly with Martin Vetterli [40], and Sergio
Servetto and Martin Vetterli {37, 38]
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subsections. In Section 6.2.3, we present two extensions of these techniques to
the case of stationary sequences.

6.2.1 Multiple description scalar quantizer

In [102], a design procedure for the construction of fixed-rate MD scalar quan-
tizers was presented. A multiple description scalar quantizer (MDSQ) produces
a pair of indices for each source sample. Denote the encoder mapping by aq:
R — Z; x I, where symbols in Z; are sent over channel i, ¢ = 1,2. The central
decoder receives both indices and can reconstruct the source with a mapping
from 7; x I, to R. The side decoders receive only one of the two indices and
have to reconstruct the source with a different mapping from Z; to R, ¢ = 1, 2.
Therefore, as in all multiple description systems, the design challenge is to si-

A

B - X1
_ o] Channel 1
x i Inde;
X A
—_— o ! i Bo l—w X
1
[_—12__- Channel 2
I | B, |l %

MDSQ Encoder o,

Figure 6.1: The multiple description scalar quantizer. The encoder ag produces
two indices i; € 77,12 € Iy for each input sample. It can be seen as an ordinary
encoder o and an index assignment £. The decoder 3, receives both indices, 3;
receives only i; and ;2 only is.

multaneously provide good individual descriptions and a good joint description.
An MD scalar quantizer encoder can be seen as an ordinary quantizer encoder
«a which maps R into an index set Z plus an index assignment £ : T — 1 x I,.
In this interpretation, an MD scalar quantizer is an ordinary quantizer pius an
index assignment and two extra decoder mappings for the side decoders. If we
call By, B1, B> the three different decoders, the design challenge reduces to the
optimization of the five elements e, I, By, 51, B2 (See Figure 6.1).

Vaishampayan [102] proposed a generalized Lloyd-Max-like algorithm to find
the optimal ¢, 8y, 81, e for a fixed £. The algorithm uses Lagrange multipliers
A1, A to create a scalar distortion criterion Do + A1 Dy + A2 Ds. Now, just as
in the iterative design of an ordinary fixed-rate quantizer, one can alternate
between improving the encoder a and the decoders (o, 51, 82, until a locally
optimal MD scalar quantizer is obtained.!

The remaining problem is to optimize £. Unfortunately, no efficient method
for its optimization is known. Instead, Vaishampayan [102] gives several heuris-
tic techniques that likely get close to the best possible performance. The easiest

1For more details on the Lloyd-Max algorithm refer to [50].
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way to represent an index assignment is by writing £ as a two-dimensional array
(See Figure 6.2). The basic idea is that this array should be populated from
the main diagonal outward and that the numbering should run from upper-left
corner to lower-right corner. The aim in doing this is to keep the reconstruc-
tion error at the side decoders as small as possible. MD scalar quantization
is flexible in that it allows a designer to choose the relative importance of the
central distortion and of each side distortion, by changing the number of filled
diagonals. That is, if only the main diagonal is filled, we obtain a repetition
code and we minimize the side distortions, but the central distortion is high;
if the two-dimensional array is completely filled (maximum number of filled di-
agonals), we minimize the central distortion but we have poor side distortions.
The following example will clarify the design method of ¢ and this trade-off.
Example. Consider a source uniformly distributed on [0,1]. The encoder
« is uniform in [0, 1] and the number of cells in o depends on £ as it will result
clear in a moment. The decoders 8;, i = 0,1,2 are optimal for a given o and
£. Assume that R; = Ry = 2 (that is, Z; = {0,1,2,3}, ¢ = 1,2) and that the
index assignment is represented by the array in Figure 6.2 (In this case only
two diagonals have been filled). Note that the array contains 7 numbers, this
means that the encoder a can only partition the interval [0,1] in 7 cells (see
Figure 6.2). Now, assume that a realization z of the source is such that the

0 0 1
o
0 1 2 3 a4 , 5 6 1 2 3
2 4 5
3 6

»

Figure 6.2: Example of a multiple description scalar quantizer. On the left, the
encoder «; on the right, the index assignment array. In this case only two diagonals
are filled.

encoder a produces the index 3. Then £ will produce the two indices i; = 2 and
12 = 1 corresponding to the coordinates of 3 in the two-dimensional array. The
three decoders Bg, 51, 52 have a copy of the same array. The central decoder
gets both coordinates i1,32 and can find the original index 3. Therefore the
reconstructed value %o will be the centroid of the 3** cell. Decoder 3; has
only access to 4; or, in other words, it has only access to the columns of the
two-dimensional array but not to the rows. So it cannot recover the original
index 3, instead it can only say that the index was either 3 or 4. Therefore,
the reconstructed value £; will be the centroid of the cells 3 and 4. Likewise,
the reconstructed value at decoder (82 will be the centroid of the cells 2,3. In
Figure 6.3, different index assignment strategies for the case Ry = Ry = 2 are
presented. The reader can easily convince himself that the upper-left strategy
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corresponds to a simple repetition code. That is, any input sample z produces
the same indices 7; and 42 and the three decoders Bg, 31,82 have the same
performance. This is the most favorable case for the side decoders. The lower-
right array represents the opposite strategy. That is, the central decoder has 16
different reconstruction levels which is the best case for a 4-bits quantizer, but
in this case the side decoders show poor performance. The average central and
side distortions for the four example in Figure 6.3 are shown in Table 6.1 [59].

0 [ 0 0 1 4

1 1 1 21315 8
2 2 2 6 7 9
3 3 3 101 11

0 0| 2 3 0 0 1] 5 6
1 1 4 7 8 1 2 4 7 12
2 5 6 9 12 2 3 8 11 14
3 10 ] 11 | 13 3 9 10113 | 15

Figure 6.3: Example of different index assignment strategies. These examples
exhibit the possibility of trading off central and side distortions. The upper-left
strategy is the most favorable to the side decoders, while the lower-right one is the
best for the central decoder.

LAssignment Dg D, D,
Upper-left above | 0.0052 | 0.0052 | 0.0052
Upper-right above | 0.0006 | 0.021 | 0.024
Lower-left above 0.0004 | 0.026 | 0.036
Lower-right above | 0.0003 | 0.041 | 0.046

Table 6.1: Performance of different multiple description scalar quantizers according
to the assignment strategy shown in Figure 6.3. The distortion is the MSE and the
input source is uniform over [0, 1] [59].

In [104], the procedure to design fixed rate MD scalar quantizers was ex-
tended to the entropy-constrained case. In [103], an asymptotic high rate
analysis of MD scalar quantizers is performed and is based on high resolu-
tion quantization theory. In particular, it is shown that at high rates, for the
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case of balanced descriptions (R; = Ry = R) and Gaussian sources, the dis-
tortion product DoD; of the entropy-constrained MD scalar quantizer takes
the form }(Z€)?274E. At the same time, the MD rate distortion bound [84]
(when put in distortion product form) becomes 412‘43. This is an important
result because it shows that for the multiple description scalar quantizer both
the side and the central distortion attain the optimal exponential rate of decay
(Do ~ 272E Dy ~ 272E). The only sub-optimality of MDSQ at high rates is
due to the use of a scalar quantizer which partitions the space into cubic re-
gions instead of an ideal vector quantizer that would optimally partition the
space into spheres. Various constructions of MD vector quantizers have been
proposed [29, 48, 70, 105] and the MD lattice quantizers of [105] do effectively
close the gap between the performance of the entropy constrained MD scalar
quantizer and the MD rate-distortion bound.

6.2.2 Multiple description coding with correlating transforms

A rather different approach pioneered by Wang et al. [83, 110] and then ex-
tended by Goyal and Kovagevié [53, 54] consists of applying a suitable blockwise
transform to the input vector before coding to obtain the MD property. This
approach is usually called MD Transform Coding or MD coding with correlat-
ing transforms. In this case, instead of using MDSQ to produce two indices
that describe the same quantity, the MD character is achieved with a linear
transform that introduces correlation between a pair of random variable. The
basic idea is to decorrelate the vector components and then to introduce again
correlation between coefficients, but in a known and controlled manner, so that
erased coefficients can be statistically estimated from those received.

The MD transform coder is illustrated in Figure 6.4. The usual assumption
is that the two input components z,,xs are correlated Gaussian variables. M
represents the decorrelating transform (KLT), while T is the transform that
reintroduces correlation. The decorrelated components are first scalar quantized

X, % M

- ! A Entropy coder

© M % [ '] A T Y,

™ —'i Entropy coder I.-—>

Figure 6.4: The encoding part of the multiple description transform coder with
correlating transforms. The input components 1,2 are correlated Gaussian vari-
ables. M is the decorrelating transform (KLT), T is the discrete version of the
“recorrelating” transform T'.

with a uniform scalar quantizer with stepsize A and then transformed with an
invertible discrete transform 7. Recall that T' is obtained by factoring the
linear transform T into lifting steps and then by sequentially rounding each
step of this decomposition {26]. The two components y;,y» are entropy coded
and sent over two independent erasure channels. When both components are
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received, the reconstruction process is just to invert T and the distortion is
precisely the quantization error. If one component is lost, it is estimated from
the received one and the distortion is dominated by the estimating error. This
last error depends on the correlation introduced by T'. Call R; = diag(c?,02)
the correlation matrix of the decorrelated vector with the usual assumption that
02 > o2. Since in the high rate regime T ~ T, the correlation matrix of y;,y»
is, with good approximation, given by R, = TR,TT. Now, since quantization
is fine, y1,y2 can be treated as Gaussian random variables quantized with a step
size A. Therefore, if we call Ry,, and R,,, the variances of y; and y2, the rate
necessary to code them is [53, 54]:

Ry = }log2meR,,, —logA

Ry = log2meR,,, —log A,
whereas the rates necessary to code the decorrelated variables is:

R} = 3log2meo} —log A

R} = 1 log2neo? — log A.

The difference p = 2(R; + R;) — 3(R} + R}) is called redundancy and represent
the price we pay in rate in order to potentially reduce the distortion when there
are erasures. So, the goal is to find a transform T that minimizes the side
distortion (i.e., the distortion in case of erasure) for a given fixed p.

In the particular case where the two channels have the same erasure
probability and the two components are coded at the same rate (R; = R»),
Goyal and Kovagevi¢ [53, 54] show that the optimal correlating transform is

a 1
2a

T = , (6.1)
2a

where the value of a depends on the redundancy p:

- \/ 201(220 — /2% — 1) 62)

The side distortion D = D; = D is given by?

2
_dt_ 1 .
=3 4.220(2% — /2% — 1) (o7 — 03). (6.3)

21t is interesting to notice that if the Gaussian source has a circularly symmetric probability
density, i.e., o1 = o2, then the distortion is independent of p. In this case, the side distortion
cannot be reduced with the addition of redundancy, so the approach based on correlating
transforms is useless.
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This result will be useful in the proof of Theorem 6.1. Notice that D starts at a
maximum value of (6 +032)/2 and asymptotically approaches a minimum value
of o2.

Goyal and Kovagevié¢ give also analytical solutions to this problem in the
most general setting where channels failures need not have equal probability or
be independent, and R; is not necessarily equal to Rs. The interested reader
can refer to [53, 54] for more details.

6.2.3 Multiple description coding of stationary sequences

MD scalar quantizers and MD transform coders with correlating transforms
work in the case of memoryless sources or sources with finite memory. In par-
ticular, MD scalar quantizers treat each scalar sample independently and thus
they are suited for memoryless sources. MD transform coders with correlating
transforms operates on vectors of finite dimension and, thus, they are good for
sources with finite memory.3

The problem of MD coding of stationary sources has been considered by
Ingle and Vaishampayan in [67] and Batllo and Vaishampayan in [4]. In [67],
Ingle et al. consider the problem of designing DPCM systems for MD coding of
sources with memory. While Batllo et al. proposed a solution that combines the
use of an orthogonal block transform and of MDSQ [4]. As for the MDSQ, this
system has some good asymptotic properties. At low rates, however, except
for some practical results obtained in the context of still image coding [91],
much less is known. Note that Batllo and Vaishampayan use the term Multiple
Description Transform Coder (MDTC) to refer to this system. From now on,
we will also use that name to refer to their system. Since our main interest
is in MD coding of stationary sources, we detail here the analysis of these two
systems. We assume Ry = Ry = R and Dy = D;.

I Binary L Channel 1
uln] | Encoder

vin] | Binary l Channel 2

x[n] + e[n] Q[n] 1 |
ﬁQ—" q(+) '—-l 1:2 [___,I 2:1

x[n]

[ rw | X[n]
L=~ [

Figure 6.5: The MD-DPCM system.

The analysis part of the MD-DPCM system [67] is illustrated in Figure 6.5.

3To be precise, optimal MD transform coders are known only for the case of two channels
and two-dimensional vectors. The case of larger vector is still open.
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P(2) = byz~ 1 +by272 is a second order predictor filter. The quantized predicted
sequence é[n] is separated into two subsequences containing the even and the
odd samples and these subsequences are sent over two different channels. If one
subsequence is lost, it is linearly estimated using the received one. Now, if the
input source is Gauss-Markov with regression coefficient «, it turns out that
the estimating filters present in the synthesis part of the system are realizable
filters. Moreover, in this case, the side distortion is given by [67]:

_ 1 (bg + 2b202 + a2)
D= (- ) (64

while the central distortion is [67]:
Do = (1+b3/a?)e?272R (6.5)

where €% depends on the kind of quantizer used and by, b, are related by the
following equation: by /a + by /a?® =1, 0 < by < o®. An important point to
note is that the side distortion of the MD-DPCM system does not go to zero
even at infinite rate.

X1

ECMDS I
. QA Channel 1 .
xX[n} KLT Xx [
o ~—=| ECMDSQ
N - L
. o] Channel2 e .

I o ECMDSQ ]

Figure 6.6: The Multiple Description Transform Coder.

The Multiple Description Transform Coder [4] is illustrated in Figure 6.6.
It is represented by two main elements: a linear transform which turns out
to be a KLT and a set of Entropy Constrained MDSQ. Recall that an MDSQ
produces a pair of indices for each input scalar sample and that the behaviour of
an MDSQ is characterized by the strategy in the assignment of the two output
indices. This element defines the trade-off between side and central distortion.
That is, it defines if the indices are assigned in a way to mainly minimize the
central or the side distortion. The system works in the following way: it takes a
block of N consecutive elements of the input sequence z[n] and applies a KLT
to them. Then each of the decorrelated component is encoded with a different
Entropy Constrained MDSQ and the pair of indices produced by the MDSQ are
transmitted over two separate channels. In case of Gaussian input sources and
at high rates, optimal performance is achieved if the index assignment strategy
is the same for each MDSQ and bits are allocated to each component according
to a single description allocation strategy [4]. Finally letting N go to infinity
and in the case of high rates, the performance of this system is given by [4]:

D0D1 = ’)/2_4R exp (l/
m

-

ki

In S(w)dw) ) (6.6)
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where Dy is the central distortion, D is the side distortion, R is the average rate
per sample per channel, S(w) is the input power spectral density and y = (Z£)2.

As for the case of MDSQ, in MDTC both side and central distortions decay
exponentially with the rate. Since the side distortion of MD-DPCM does not go
to zero even at infinite rate, it seems clear that, in the high rate regime, MDTC
is superior to MD-DPCM. In Section 6.4, we analyze in detail the performance
of these two systems and we compare them with the ideal bounds (Theorem 5.2
of the previous chapter) and with our MD system that we present in the next

section.

6.3 Optimal two-channel filter banks for MD coding

We now present an algorithm for the design of optimal two-channel filter banks
for MD coding of Gaussian sources. The filter banks are designed using an ap-
proach ~imilar to the one proposed in the case of block transforms: we construct
afirst i ter bank to decorrelate the two input sequences and then we use a sec-
ond filt r bank to efficiently recorrelate them. The main result of this section is
Theore 1 6.1 where we show that optimal filters are obtained by allocating the
redund ncy (excess rate) over frequency with a reverse “water-filling” strategy.

6.3.1 Problem formulation and notation

Conside the classical two-channel filter bank scheme shown in Figure 6.7. Here
the inpi t z[n] is assumed to be a stationary Gaussian random process with
known ssatistics and is fed through an analysis filter bank. The two output
sequenc 5 are then separately quantized and sent over two different erasure
channels. We suppose that the channels are independent, that they have the
same erasure probability and that R; = Ry*. For convenience we will formulate
our problem in the polyphase domain [101, 108]. In this case the analysis stage
can be equivalently represented by the block scheme shown in Figure 6.8.

1[n]
Hy () —@y— Q Gy

xn] X[n]

y2[n]
wo HEP e - oo

Figure 6.7: Two channel filter banks.

First we move the quantization step before the transform and approximate

4This last hypothesis, although reasonable, is not strictly necessary; but it simplifies the
solution.
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our continuous polyphase transform with a discrete one.’ The discrete transform
can be obtained by factoring the continuous one into a product of lifting steps
and then sequentially rounding all these intermediate factors [10, 26]. It can be
shown that the error due to this approximation can be bounded and that it goes
to zero at high rates [52, 54]. The reason why we use this kind of structure is that
if the quantization is performed before the transform, then the square partition
cells are maintained. This enables the use of nonorthogonal transforms without
increasing the quantization error. The importance of performing quantization
before the transform in the MD case was pointed out for the first time in [83]
(See also [109}). Since at high rates the difference between the discrete and the
continuous transforms is small, our analysis will be based on properties of the
continuous transform.

x[n] m x,(n] yi[n]
2 —

R@®| Hew | RO
ya[n]

=)

x,[n]

Figure 6.8: The polyphase representation of the analysis stage

Now consider again Figure 6.8. The input-output relation can be =xpressed
in matrix notation introducing the analysis polyphase matrix H(w):

Yi(w) \ _ Hi(w) Hiz(w) X1 (w) (6.7)
Yz(w) Hy (w) sz(w) Xz(w) ' )
Call R;(w) the 2 x 2 polyphase power spectral density (p.s.d.) matrix of the

input process. Likewise Ry(w) is the p.s.d. matrix of the outputs. The system
response has the following form:

Ry(w) = H(w)Re (w)H" (w), (6.8)

where H*(w) denotes the Hermitian transpose of H(w).
The synthesis part of the system can be analyzed in a similar fashion. Recall
that, given the analysis matrix, the synthesis polyphase matrix G(w) is uniquely
defined (up to a phase factor). In fact G(w) must be such that the condition
G(w)H (w) = I is satisfied [108].

Now, assume that the target central distortion is Dy and that both channels
are coded independently. Since y;[n], y2[n] are stationary Gaussian sources and
quantization is fine, the minimum bit rates necessary to scalar code the two

5By continuous transform we mean a generic linear operator in I3(Z). The discrete trans-
form is a perfectly invertible operator that converts quantized sequences into quantized se-
quences [10, 66, 114].
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sequences is [7]:

“r (6.9)
Ry(Do) = 5= [ 3log ﬁ‘%Jzo(i)dw + 1log(Ze).

In case we do not use any subband decomposition, the bit rate necessary to
get the same central distortion Dy is [7]:

. 1 1 S(w) 1 e
R*(Dy) = o / 2log Dy dw+§log(F), (6.10)

—m

where S(w) is the p.s.d. of the input process. We call redundancy the difference
rate between these two cases:

p= leDOZ;R2!D0! —R*(Do)

— 1 r 1 Ryu (w)Ryn (w) (611)

=— [ z1
) 2% 920)

Note that Eq. (6.9) holds because the transform is performed after the quanti-
zation. If the transform were performed before the quantization, the shape of
the quantization cells would be affected and one should also consider this effect
to compute the correct rates.

Now consider the case when one channel (e.g., channel 1) is cut off and y; [n]
must be estimated from the received sequence yz[n]. The optimal estimation is
obtained by Wiener filtering:

Vi (w) = %YQ(@. (6.12)

Call j(w) the error in predicting Y; (w) from Y3 (w):

n(w) = ¥i(w) - ¥ (w). (6.13)

Since we have used a nonorthogonal transform, we must return to the original

x[n] x,[n] y, [n] v,[n] x1[n]
— ! Channel 1 ! @ i[l’l]
H(w) G)
@—' Channel 2 N @—
x,[n] ¥, [n] y,[n] X, [n]

Figure 6.9: The complete MD system in the polyphase domain.
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space in order to compute the distortion (mean square error distortion in our
case); therefore (see also Figure 6.9):

( £1(w) ) - (@) Guw ) (e )

X3(w) Go(w) G2(w) Yz (w)
(6.14)
- ( X1(w) )+( G (w)n(w) )
T\ X2(w) Ga1(w)n(w)
and
G (w @\
X(w) — 2 ( H ) 6.15
) - X = (G2 (6.5
Considering the fact that the error n is still a Gaussian process with p.s.d.
Ry (w) — '—R”L(()lr and using Parseval’s relation we obtain:
Dz = El|z{n] - [n]|i?]
x (6.16)

= 2 | 3(63)Gn () + G11(@)Gn ) - (R, () - LD

vaz (W)

and, finally, using the biorthogonal relations, we can express the distortion as a
function of the analysis filters:

T y .
D: = & | oo (B () Hn () + Hia(w) Hao (@) - (R () ~ VR )do

= f (H31(w)Ha (w) + His(w)Haa (w)) - (%ff((‘%)‘l)dw‘

(6.17)

Likewise, we can obtain an expression for the distortion D, associated with
the loss of y2[n]. Since the two channels have the same erasure probability, the
expected distortion due to erasure (side distortion) is:

D= %(D1 + D). (6.18)

Note that in our formulation we have only considered the distortion due to
erasure and have neglected the one due to quantization, since at high rates, it
is much smaller.

Our target is to find a perfect reconstruction filter bank which minimizes
the side distortion D. The perfect reconstruction condition is realized by the
constraint: det[H(w)] = 1.° The design of the filter bank is also constrained
by the redundancy through equations (6.8) and (6.11). Thus, our optimization
problem is to find a perfect reconstruction filter bank which minimizes the side
distortion D for a given, fixed redundancy p.

6Strictly speaking the perfect reconstruction condition is satisfied if and only if det[H (w)] #
0 on the unit circle. However, a factorization into lifting steps is possible only if det[H (w)] is a
monomial [26] Since the side distortion (6.17) does not depend on the value of the determinant,
we can assume, without loss of generality, det[H (w)] = 1.
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6.3.2 Optimal solution

As a first step we decompose the matrix H(w) into the product of two matrices
M(w) and T(w)

Hw) = T(w)M(w). (6.19)

M (w) is a unitary decorrelating matrix that diagonalizes the input covariance
matrix Ry(w). Thus: R,(w) = M(w)A(w)M*(w) where A(w) is a diagonal
matrix which contains the spectral eigenvalues of Ry (w).

A (w) 0
0 Mw)

For a stationary input process, the decorrelating matrix can be found analyti-
cally and has the following form [97] (see also [99, 98]):

ew/2 1
M) = ¥=2 ; (6.21)
_1 e—j‘-‘)/2

the filter bank related to M (w) is usually called the principal component filter
bank [97]. Now, this factorization does not reduce the generality of the solu-
tion, since M (w) is a unitary invertible matrix independent of p and we are
considering square error distortions. So it is enough to solve the simpler prob-
lem of optimally designing the matrix T(w) for the two input sequences with
p.s.d. matrix A(w). Then the final solution will be represented by the product
between this matrix and the decorrelating matrix M (w). From now on we will
always assume that the two sequences (z1[n], z2[n]) have already been decorre-
lated and are represented by the diagonal p.s.d. matrix A(w). Notice that these
two sequences are still a realization of a stationary Gaussian process.

For the sake of clarity, we recall once more the results presented in [53],[54].
Here Goyal et al. study the problem of designing an optimal block transform
to transmit two Gaussian variables over two erasure channels. As mentioned in
Section 6.2.2, in the case the two channels have the same erasure probability
and the two components are coded at the same rate (R; = Ry), they show that
the optimal MD correlating transform, is:

a i
2a

T= , (6.22)
2a

where the value of a depends on the redundancy p:

09 .
o= \/ 201 (2% — 2 = 1) (6.23)
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0? and o2 are the variances of the two Gaussian components, with the usual

assumption that o2 > 3. Finally the side distortion is given by:

2
o7 1

2 4. 22p(22p oY) 1) (

We can now state the following theorem:

of - 03). (6.24)

Theorem 6.1 Assume that p>> 0 and that the two p.s.d. A} (w),\3(w) of the
two decorrelated input sequences z1[n}, z2[n] are such that 6; > Ay where 6 is
the essential infimum of A3 (w) and A, is the essential supremum of M3(w). Then
the optimal analysis filters for MD Coding of z1[n] and x2[n] are represented by
the following polyphase matriz:

T(w)= [ —a(w) %; },
where
a(w) = Ao ()
2 (w)(220(w) — \/247007__—1)
and

plw) = p+ 10803(w) M) - - [ 1oB0¥@) - ).

-7

Proof: Consider only N consecutive elements of the first channel sequence z;[n],
and N consecutive elements of the second channel sequence z2[n] which are
located at the same temporal interval. Call ¢yn and ¢on the two N x N cor-
responding correlation matrices. Apply a KLT to each of the two IN-sequences
to get independent components and name Y and Yan the two N-sequences
after the transformation. Call A?;,, i = 1,...,N, the variances related to the
N-sequence Yy and \2;, i=1,..., N, the variances related to the second N-
sequence (Yon). Since ¢y and @ony are Hermitian Toeplitz matrices it results
(see Appendix 5.A) that:

<M <A Vi (6.25)
and that:
6 <A <Ay Vi (6.26)

where A; and d;, 7 = 1,2, are the essential suprema and the essential infima
of the power spectral densities A?(w) and A\2(w). Equations (6.25) and (6.26)
imply that A2, > \2,, i=1,..., N, since we assumed &; > A,.

Now, consider the generic i-th couple of elements (y1i,y2:). We can apply
the results of [53] to this pair and say that if we are allowed to use a redundancy
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p; then the optimal correlating transform for that pair is:

a; 2—-
T, = i]" , (6.27)
@i 204'
where a; is given by:
Ao
a; = , 6.28
’ \/2)\”(22/’* — J24ri — 1) ( )
and that the side distortion is:
/\_'{’i 1

D; = (A%, = X3). (6.29)

2 4.92n (220 — (/2401 — 1)

However, we want to minimize the global side distortion:

1
D=+ Z D;, (6.30)

given a global redundancy budget

1
P=5 Z . (6.31)

This is a typical problem of constrained minimization, so we define a new
cost function L which combines the distortion and the redundancy through a
positive Lagrange multiplier v:

L =D +vp,
(6.32)
L; =D;+vp;, 1=1,2,..,N.

Finding a minimum of L amounts to finding minima for each L; (because the
costs are additive). Writing distortion as a function of the redundancy, D;(p;),
and taking derivatives we get:

dp; ~ Op

+v=0. (6.33)

Thus, for a solution to be optimal, the set of chosen redundancy p; has to
correspond to constant-slope points on their respective distortion-redundancy
curves. Uniqueness follows from the convexity of these curves and from the use
of the Kuhn-Tucker conditions when necessary [13]. A constant-slope solution
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is obtained for any fixed value of p. To enforce the constraint (6.31) exactly,
one has to search over all the values of v until the budget is met. However, if
we suppose that p; is sufficiently large then it is possible to give a closed form
for the allocation problem. In fact, it follows that:

oD, n2(\; =A%)  _In2

Opi  4-2wi(\/2i —1) 4

The constant-slope solution forces the redundancies to be of the following form

(A2, = 22)27% = —p. (6.34)

1
pi=a+3 log(A\2, — A2,). (6.35)

Using the redundancy constraint (6.31)

1
d_pi=Naty) log(\; - X,) = N, (6.36)
i i
we find
1
X=PT AN El: log(A\3; — A%;) (6.37)
and finally
pi=p+ llog()\2- -22) - L Zlog()\2- —-A2) (6.38)
1 4 14 21 AN - 12 21/

The approximation in Eq. (6.34) holds if p; is sufficiently large. Its value de-
pends on the total redundancy budget p and on the difference A2, — A\%,. The
difference A2, — A2, influences the slope of the distortion-redundancy curves
(6.34). Now, the global distortion is minimized when the set of chosen redun-
dancy p; corresponds to constant slope points. If A%, — A2, = 0, the slope of the
ith curve is zero and the optimal solution is always found imposing the Kuhn-
Tucker condition: p; = 0. For this reason the approximation in Eq. (6.34) holds
only when both the conditions p 3> 0 and §; > A, are verified (61 > Az implies
A2, > X3, Vi). In general we can say that the difference A2, — A2, influences
the allocation strategy of the redundancy. The redundancy is mainly allocated
in the region where this difference is higher.

Now we can let N go to infinity and find, in this way, the optimal spectral
distribution of the redundancy:

p) = p-+ 10E0G() ~ M) - 5- [ 10BN @)~ M)dw. (639

—T
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Once p(w) is known, we can obtain the expression of the side distortion D:

D= % / D(w)dw, (6.40)

where:
A3 (w) 1

D) =257 - e v M@~ Be) 64y

and the expression of the polyphase matrix T'(w):

o) o
afw) |, (6.42)
—aw) 2a(w)

where:

_ Az (w)
a(w) = \/2)\1(w)(22p(w) — \/W—_l)' (6.43)

When the approximation (6.34) is not verified, namely when at least one
of the the two hypotheses p > 0 and 6; > A, is not satisfied, the optimal
allocation of the redundancy over frequency can only be found numerically.
This means that, for any fixed v, one has to numerically solve Eq. (6.34) and
then has to search over all the values of » until the constraint (6.31) is met.

Consider, now, equations (6.40) and (6.41). They express the side distortion
in function of the spectral distribution of the redundancy p. The side distortion
is maximum when we are not allowed to allocate any redundancy over the
frequency and its maximum value is:

1 ™
D=_— / (A2 (w) + A (w))dw. (6.44)
87 J_,
Its mininum value occurs when we can allocate an infinite amount of redundancy
over the frequency and it is equal to:
1 w

D=, [ Mwidw. (6.45)

-7

This value represents the systematic error due to the estimation of one sub-
sequence with the other one and cannot be eliminated even at infinite redun-
dancy. The systematic error typically occurs in MD systems based on correlating
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transforms [54, 109]. This is in contrast with the performance of other systems
(i.e. MDTC), where at high rates both side and central distortions decrease with
the rate. Thus, this result gives us a first insight about the performance of the
filter bank system:

Corollary 6.1 The filter bank system is not useful at high rates since, indepen-
dently of the amount of redundancy allocated, the side distortion has a constant
Jactor (the systematic error) that cannot be eliminated.

6.3.3 Approximate FIR solutions

In general, the filters obtained with the optimization algorithm of the previous
section are of infinite length. However, in some applications it is important
to approximate them with FIR filters. Let us call H;(w) the polyphase matrix
related to the FIR filter bank and Dy the corresponding side distortion obtained
with this set of filters. Clearly Dy > D, where D is the ideal side distortion
given by (6.18), since the best performance is usually achieved with infinite
length filters. Now, the problem is to design a perfect reconstruction FIR filter
bank that minimizes the performance gap D; — D for each fixed redundancy.

We solve this problem numerically by running a constrained minimization al-
gorithm using a gradient descendent approach. The convex function to minimize
is ||D — Dy||?, while the constraints are: the perfect reconstruction condition:
det[H(w)] = 1 and the maximum allowed redundancy p.

Recall that given an FIR analysis filter bank, perfect reconstruction with
FIR filters is possible if and only if det[H (w)] is a monomial {108]. So, once we
have designed FIR analysis filters with the constraint det[Hs(w)] = 1, we know
that it is possible to reconstruct the signal with FIR synthesis filters. These
synthesis filters are obtained in the usual way:

Golw) = e H, (w+ ),

G1(w) = e’ Ho(w + ).

Finally, recall that once the FIR filter bank is obtained, it can always be
factored into a finite number of lifting steps. These steps can be sequentially
rounded and, in this way, one can obtain the discrete version of the continuous
transform.

6.3.4 Application to a Gauss-Markov process

To conclude this section, we apply our filter design techniques to a Gaussian
source and analyze the filter responses.

We consider a Gauss-Markov source z[n] = az[n — 1] + w[n], where the
regression coefficient o has magnitude less than 1 and where w[n] is a zero
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mean, unit variance, i.i.d. Gaussian source. The p.s.d. of this process is:

_ 1
T |1 —aemiw|?’

Sz (w) (6.46)
Now, the polyphase matrix H(w) of the optimal filter bank is given by the
product of the matrix T'(w) with the matrix M(w). This second one is known and
is given by (6.21). To design T'(w) we need to compute the spectral eigenvalues
of the input p.s.d. matrix. First notice that the two subsequences obtained by
downsampling z[n] are still Gauss-Markov processes, but with the regression
coefficient o replaced by o? and the i.i.d. original Gaussian source w[n] replaced
by a new i.i.d. Gaussian source with zero mean and variance 1+ a®. Hence the
power spectral densities for these two processes are given by:

1+a?
Rp11(w) = Rapa(w) = = atedo]2’ (6.47)
The cross 1.5.d. Rgi2(w) is given by:
ol + el=3¥)
Rzlz(w) - %Rzu(w), (648)
with Rye- w) = R%,5(w). Finally the p.s.d. matrix after decorrelation is:
o (w) (1+ 2852002 0
Alw) = . (6.49)

0 Ron(w) (1 - 225%52)

Observe t!.at the two spectral eigenvalues are equal only at m (and of course
at —m). As previously stated, at the points closest to the frequency values
where A2(w) = A2(w) it is not possible to use the closed-form (6.39) even in
the high redundancy hypothesis. So, for the Gauss-Markov source, a(w) (and
consequently T'(w)) can only be found numerically.

In Figure 6.10, we show the frequency responses of the two analysis filters
as a function of the redundancy for the case ¢ = 0.9. It is interesting to notice
that the amplitudes of the two frequency responses are exactly the same; the
two filters differ only for the phase response. This is due to the presence of the
principal component filter bank given by M(w) and to the constraint R; = Ry
which forces the matrix T'(w) to have the shape given by Eq. (6.42). Moreover,
notice that at high redundancies the two filters tend to be low-pass. In the case
of a = 0.9, the Gauss-Markov process is a low-pass process, thus the frequency
responses of the two filters tend to preserve the frequency region where the p.s.d.
of the input process is mostly concentrated. This is valid in general, that is at
high redundancies the analysis filters better preserve the region where most of
the p.s.d. of the input process is concentrated. It is also of interest to note
that, at low redundancies, the two filter responses do not tend to be that of a
principal component filter bank, that is an ideal low pass and an ideal high pass
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filter. This is because, if quantization is performed before the transform, the
principal component filter bank does not represent the only solution that gives
minimum coding rates. The same phenomenon happens in the block transform
case, where the KLT does not represent the only transform that gives minimum
rates if quantization is performed before the transform [52, 53]. Thus, this
additional degree of freedom makes it possible to have a filter bank (or a block
transform [53]) that achieves, at the same time, minimum coding rates and
balanced rates. This is the solution that we have at low redundancies.

Finally, in Figure 6.11 we show the frequency response of the two FIR anal-
ysis filters obtained with the minimization algorithm presented in Section 3.3.
The filters are all of length 6. It is interesting to compare these frequency re-
sponses with the ones in Figure 6.10. In the FIR case, the amplitude responses
of the two filters are not equal, but they tend to be close to each others at
high redundancies. Moreover, in the high redundancy region the two frequency
responses tend to be low-pass as in the ideal case.

6.4 Performance analysis

In order to assess the performance of the filter bank proposed in t 1e previous
section, we compare it with the asymptotic ideal bounds found in Section 5.6
and with the MD Transform Coder [4] and the MD-DPCM syst m [67]. In
the simulations, we consider two different Gaussian input sources: a classical
Gauss-Markov source and a low-pass Gaussian source obtained a: illustrated
in Figure 6.12, where z;[n] and z2[n] are two i.i.d. Gaussian sources with
variances 07,02 and G(w) is an ideal low-pass filter. Moreover, we consider
two different scenarios: high rate, infinite delay/complexity and low rate, finite
delay/complexity. In the first scenario, the analysis and the results presented in
the first part of this chapter are valid. The second more realistic simulation is
important, because we do not have clear theoretical answers on the behaviour
of the considered systems in this particular context.

6.4.1 High rate, infinite complexity performance

We consider a first order Gauss-Markov source. In the high rate and infinite
complexity hypothesis, the performance of the Multiple Description Transform
Coder is given by (6.6) where S(w) is given by (6.46). The side and central
distortions of the MD-DPCM are given by (6.4) and (6.5). For the filter bank
case, the filter responses are obtained numerically as shown in Section 6.3.4.
Given the filter responses, the side distortion at high rates is given by Eqns.
(6.17) and (6.18). The central distortion is obtained by numerically inverting
the equations in (6.9).

In Figure 6.13, we compare the four performances: MD Transform Coder,
MD-DPCM, MD filter bank and ideal bounds, for the case of a« = 0.9 and
R = 6 bit/sample/channel. As we can see the MDTC outperforms the other
two systems. This is not astonishing since in the MDTC both the central and
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x1[n] ylr]

X,[n]

Figure 6.12: A low-pass Gaussian source. G(w) is an ideal low-pass filter and
z1[n], z2[n] are two i.i.d. Gaussian sources.

the side distortions decrease exponentially with the rate R. The side distortions

of the MD-DPCM system and of our system suffer of the systematic estimation

error that becomes dominant at high rates and that does not reduce with the

rate. It is also interesting to note that the gap between the ideal bounds and the

MDTC is constant and equal to 3.06dB. This confirms that this system attains
symptotically optimal performance.

14—

Figure 6.13: Asymptotic performance for a Gauss-Markov input source. Abscissa:
central distortion, Ordinate: side distortion. Dotted: ideal bounds, dashed-dotted:
Multiple Description Transform Coder, dashed: filter banks for MD coding, line:
MD-DPCM.

6.4.2 Low rate, finite delay/complexity performance

In practical settings, we are more interested in low rate behaviours and we
have to deal with finite delay/complexity constraints. That means that either
the KLT or the filters in the filter bank have finite length N. The FIR filters
are designed using the numerical optimization presented in Section 6.3.3.7 The
Multiple Description Transform Coder is the same shown previously except that

"For simplicity, we did not decompose the filters into lifting steps. Doing this decomposition
would slightly improve the filter bank scheme.
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the KLT operates on blocks of finite length N. Bits are still allocated according
to a single description allocation strategy and the MD scalar quantizers are
designed such that the index assignment strategy is the same for each of the N
components. The MD-DPCM system is made of realizable filters and does not
need to be approximated.

In the first simulation, we consider again a first order Gauss-Markov process
with memory a = 0.9. Numerical results are shown in Figure 6.14. Here, we
consider two bit-rates R = 2 and R = 3 bit/sample/channel and two different
length constraints: N = 6 and N = 8. The graphs show the trade-off between
side and central distortion for the three systems. The first interesting thing to
note is that, in the low rate regime, the Multiple Description Transform Coder,
which is optimal at high rates, is generally outperformed by the other two
systems. The MD-DPCM system is the best system in this context. Moreover,
comparing the results of Figure 6.13 and Figure 6.14, one can conclude that,
in this case, our system can attain the same performance as the MD-DPCM
system only at the prize of infinite delay/complexity (i.e. with infinite length
filters).

Rate 2 bits/sample Rate 3 bits/sample
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Figure 6.14: Comparison between Multiple Description Transform Coder, filter
banks for MD coding and MD-DPCM system. Input source: Gauss-Markov. Line:
Multiple Description Transform Coder, dashed: filter banks for MD coding, dashed-
dotted: MD-DPCM.

It seems that one of the reasons why the MD-DPCM system is superior to
the other two is because it has been designed assuming that the input source is
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Gauss-Markov and, thus, it well exploits the particular structure of this source.
The other two systems do not take particular advantage of the characteristics of
the input source. For this reason, it is of interest to run similar simulations with
a different Gaussian source. We consider a low-pass Gaussian source obtained
as illustrated in Figure 6.12, where z;[n] and z2[n] are two i.i.d. Gaussian
sources with variances o3 = 1.5 and o3 = 0.5 respectively. We consider two bit-
rates R = 1 and R = 2 bit/sample/channel and two different length constraints:
N =6 and N = 8. Numerical results are shown in Figure 6.15. We can see that,
in this context, our system is the best system in the medium-low redundancy
region. It is also of interest to note that the performance gap between our system
and the MDTC reduces with the rate, in particular we have noticed that for
rates greater than R = 3 bit/sample/channel the MDTC performs better also
at low redundancies (See Figure 6.16). Finally, the performance of these two
systems slightly increases with the length N but, this length does not changes
the performance gap between them.

In conclusion, this set of experiments indicate that, in the low bit rate regime
and at low and medium redundancies, MD-DPCM and filter bank system per-
form better than the MDTC. Moreover, in this regime and for some classes of
Gaussian sources, our system outperforms the other two.
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Figure 6.15: Comparison between Multiple Description Transform Coder, filter
banks for MD coding and MD-DPCM system. Input source: low-pass Gaussian
source. Line: Muitiple Description Transform Coder, dashed: filter banks for MD
coding, dashed-dotted: MD-DPCM.
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bits/sample/channel. Input source: low-pass Gaussian source. Line: Multiple De-
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MD-DPCM.
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Conclusions

In the introduction, we explained the importance of overcomplete expansions
or frames. With a simple example, we showed that frames are more flexible
than bases and that in many situations they are more useful than bases. In
this thesis, we have studied redundant expansions with an interest on different
possible applications. We summarize the key results of this work and discuss
open issues below.

7.1 Summary

Oversampled filter banks for communications

In a recent work by Goyal and Kovacevié¢ [55], the redundancy present in a
frame was used to reduce the effect of losses in a communication system. In
that work, frame elements belonged to RY (or CV). We investigated the more
general case of frames with elements in [3(Z), which can be implemented with
oversampled filter banks. We showed that filter banks implementing uniform
and strongly uniform tight frames are the best in this context.

Wavelet footprints: theory and applications

We have seen that in many core signal processing problems, it is important to
have a compact signal representation. We proposed a new way to represent
piecewise polynomial signals in terms of elements which we called footprints.
Footprints make up an overcomplete set of vectors and allow a compact
representation of piecewise polynomial signals. Footprints are efficient at
representing the singular structures of a signal. Numerical simulations showed
that footprints outperform wavelet methods in several applications, namely
denoising, deconvolution and compression. Together with the simplicity of
algorithms involved this showed the usefulness of this new representation.

Multiple description coding
Multiple description coding is a source coding technique for data transmission
over unreliable networks. We reviewed the fundamental theoretical results
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on multiple description coding. Moreover, we found a multiple description
rate distortion region for stationary Gaussian sources. This region general-
izes the multiple description rate distortion region of El Gamal, Cover and
Ozarow [45, 84] for memoryless Gaussian sources.

Practical multiple description coding techniques

Several systems which meet the multiple description constraints have been
proposed in the last years. We reviewed the most popular among those
systems. Then we presented an optimal way to design two channel filter banks
for multiple description coding of Gaussian sources. We made a comprehensive
analysis of the performance of this system and showed situations in which our
system is superior to other multiple description systems.

7.2 Future Research

The development of new signal representations is an active research area in
the signal processing community. In this thesis we have proposed new signal
expansions which are promising and lead to a variety of possible expansions.
We give an overview of future research directions.

Frames for communications

The purpose of our work was to come up with general methods to design
oversampled filter banks for communication problems. We did not concentrate
on the problem of designing application-specific filter banks. Now, the family
of filters which we proved to be optimal in our communication settings, is still
quite large. Therefore, it is of interest to see if it is possible to design filter
banks which are optimal in our communication scenario and which show other
desirable properties (which can be useful in other applications) such as good
space-frequency localization.

Two-dimensional footprints

We have seen that footprints are a powerful tool for processing one-dimensional
piecewise smooth signals. Thus, it is natural to look for an extension to
the two dimensional case. In this case, the goal is to come up with efficient
representations of images.

In images, edges and contours carry most of the information. These
contours are usually regular, therefore the wavelet coeflicients generated by
them are spatially correlated. A good two dimensional footprint expansion
should exploit this spatial correlation. A possible way to exploit this correlation
is to perform the one dimensional footprint transform on the rows and the
columns of the image and to chain the footprint coefficients generated by a
contour to form a one-dimensional signal. Finally, this one-dimensional signal
can be represented again with footprints. This idea of chaining of footprints
is similar to the idea of bandelets introduced in [75]. However, by applying
a footprint transform on the chain of footprints, one completely exploits the
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spatial correlation and the correlation across scales of the wavelet coefficients
generated by a contours. Bandelets do not exploit the interscale dependency.

Multiple description coding for more than two descriptions

The main theoretical results on multiple description coding apply only to the
case of two descriptions. The open problem is to find tight bounds for the case
of more than two descriptions. This is also of interest for practical applications,
since, in practice, one wants to create more than two descriptions of a source.
Moreover, it is of interest to employ practical multiple description systems on
concrete applications such as transmission of video over internet.
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