CELLULAR AUTOMATA AND OTHER CELLULAR
SYSTEMS:
DESIGN & EVOLUTION

THESE N° 2541 (2002)

PRESENTEE A LA FACULTE IC SECTION D'INFORMATIQUE
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Mathieu CAPCARRERE

Master of Engineering in Computing, Imperial College, University of London, Royaume-Uni
et de nationalité frangaise

acceptée sur proposition du jury:

Prof. M. Sipper, directeur de thése
Prof. C. Chopard, rapporteur
Prof. D. Floreano, rapporteur

Prof. M. Tomassini, rapporteur

Lausanne, EPFL
2002

iii

PhD Abstract

Nature abounds in examples of cellular systems. From ant colonies to cellular tissues, from
molecular systems to the human brain, cellularity seems to be the way Nature operates. The
brain, surely one of the most complex objects to be found on earth, is the quintessence of a
cellular system: a huge number of simple elements with an extremely high local connectivity
and deprived of any sort of central control, giving rise to a rich global behavior. Cellular
interactions thus seem to-be the basis for complex phenomena, exhibiting qualities often
missing in human artifacts : robustness, self-repair and, more generally, adaptability.

The goal of this thesis is to answer the following question: “What may be computed in
cellular systems ?”. This question is far from obvious and implies many interrogations such
as how to obtain the aforementioned qualities, how to program such systems, and, more
fundamentally, what does computation mean in a cellular system.

This thesis is mainly centered around the abstract and formal model of Cellular Au-
tomata. Through the study and the resolution of different tasks by means of evolution or
mathematical demonstrations, 1 will show that it is not unreasonable to expect artificial
systems to exhibit some of the qualities of natural systems, and that (guided) artificial
evolution is surely the best approach to define the local behavior of elements which, when
grouped as a cellular system, give rise to a desired global behavior. Above all, I will argue
that truly emergent behavior in such designed systems is only a matter of perspective.

Résumé de la thése:

Les exemples de systémes cellulaires dans la nature sont innombrables. Ils sont présents a
tous les niveaux: des colonies de fourmis aux tissus cellulaires, des systémes moléculaires
au cerveau. Le cerveau, justement, 'une des structures connues les plus complexes, est la
quintessence du systéme cellulaire: des éléments simples, excessivement interconnectés, et
dépourvus de controle centralisé, donnant naissance & un comportement global trés riche. Les
systémes cellulaires semblent donc étre & la source de nombreux phénomenes complexes. Or
ils présentent souvent des qualités inexistantes dans les productions humaines: la tolérance
aux fautes, 'auto-réparation, et, plus généralement, la capacité d’adaptation.

Cette thése a pour but de répondre & la question du traitement de l'information dans
les systémes cellulaires. Cette problématique est loin d’étre évidente et contient en elle
différentes interrogations liées a I'obtention des qualités sus-mentionnés dans des systémes
construits, ou encore 4 la programmation de tels systémes. Au-dela de ces problémes d’ordre
«pratique», la question fondamentale porte sur la signification méme de calcul, lorsque celui-
ci est effectué par de tels systémes.

Nous nous attacherons surtout au modeéle abstrait et formel des automates cellulaires.
A travers I’étude et la résolution de différents problémes, tant par évolution artificielle que
par démonstration mathématique, nous démontrerons que les qualités présentes dans les
systémes naturels peuvent se retrouver dans les systémes artificiels ou encore que 1’évolution
artificielle (guidée) est srement le meilleur moyen de retrouver le comportement local
d’éléments, qui, mis ensemble, produisent le comportement global désiré. Surtout, nous
argumenterons qu'un traitement de 'information réellement émergent, dans le cadre des
automates cellulaires, n’est qu’affaire de regard.

Beuveurs
tresillustres
&
vous
Verolés
tresprecieux
car
a
vous
non
a
autres
sont
dediés
mes
escriptz !

Most noble boozers, and you my very esteemed and poxy friends - for to you and you alone are
my writings dedicated - (Translated by J.M Cohen, Penguin 1955).
Rabelais, Gargantua, Prologue de Pautheur, in [157].

vii

Il n’y a pas un point ot 'on puisse fixer ses propres limites,
de maniére & dire: jusqu’ici c’est moi.
Plotin, Ennéades?.

Remerciements et autres futilités

Les remerciements d’une thése s’adresse a deux publics différents, mais pas forcément dis-
tincts. Le premier, professionnel, aguerri aux choses de 'informatique et intéressé par 'objet
que vous tenez en main, a lu cette thése, et méme, pour certains, ’a décortiquée. Ce public-
14 mérite ces salutations publiques pour avoir constamment, ou ponctuellement, amélioré,
guidé, corrigé, compris, suggéré, en un mot, enrichi ce travail. Le deuxiéme public me touche
plus personnellement. Les 453 grammes de papier que vous tenez entre les mains argumente
de 'importance des interactions. Cette thése est le fruit de mille interactions sociales. Méme
si elles ne sont pas toutes citées ici, et je m’en excuse déja, les personnes qui le sont ont
largement participé & celles-ci.

D’abord et avant tout, il convient donc de rendre hommage 4 ceux qui ont lu ce travail,
et au premier d’entre eux, mon directeur de thése, le Professeur Moshe Sipper. C’est grace
a lui que j’ai découvert ’évolution artificielle et les automates cellulaires au cours d’un stage
il y a un peu plus de six années, et c’est sous sa houlette que j’ai accompli les travaux
ici présentés. Sa relecture attentive de toutes et chacune des pages qui suivent les rendent
aujourd’hui un peu plus lisibles et un peu moins fautives. Qu’il en soit remercié. Je tiens ici
aussi a rendre hommage & mes rapporteurs: — le professeur Marco Tomassini co-responsable
de mon goit pour les automates cellulaires et les algorithmes évolutionnistes, et relecteur
inflexible; — le professeur Bastien Chopard, physicien et commentateur avisé de ce travail;
— le professeur Dario Floreano, dont les travaux sur la robotique évolutive sont & la base de
mon intérét pour la Vie Artificielle en général, et dont le point de vue externe au domaine
fut I'un des plus «dérangeant» — et enfin, le professeur Paolo Ienne, remplacant méritoire
de notre ex-directeur de département, le professeur Hersch.

Le lieu ou ce travail fut accompli, le Laboratoire de Systémes Logiques, ou, plus précisé-
ment, les gens qui y travaillent ou y ont travaillé ont apporté beaucoup a ce travail et & son
auteur. Le professeur Daniel Mange, directeur émérite de ce lieu, chercheur passionné et
figure paternelle incontournable, nous fournit & tous salaire et conditions de travail excep-
tionnelles. Quiconque a vu la fameuse feuille de répartition des salaires lui en témoignera
gratitude. Sa passion des trains (& ’heure) et des montres (Suisses) s’est parfois heurtée a un
certain flegme matutinal — adaptation trop parfaite au quart d’heure vaudois? — mais qu’il
soit ici remercié de son extréme humanité. Pour quelques raisons historiques obscures le
LSL ne compte pas un professeur mais trois. Aux cotés de Daniel, se trouvent, le professeur
Zahnd, JK, & sa droite et le professeur Eduardo Sanchez, a sa gauche. JK, combien de fois

2Edition de Plotin, [154], cité in [17], p.29.

viii

ai-je silencieusement «béni» ton aptitude & la modération des séances volubiles ou apprécié
tes remarques acides, ’air de ne pas y toucher. Eduardo, représentant underground du M19
en Suisse, tes apparitions au laboratoire & des heures indues en compagnie de ta placidité
et bonne humeur habituelle — sauf peut-étre lorsqu’une balle de squash heurte la ligne? -
ont adouci les moments d’écriture nocturne de ce mémoire. Soyez tous deux remerciés de
votre influence sur 'ambiance du lieu. Au LSL, comme ailleurs, les trois mousquetaires
sont quatre. Je tiens donc aussi a remercier André Stauffer, le talent graphique du LSL et
compagnon fort agréable des nuits praguoises.

Apreés les hautes sphéres académiques, il convient de parler des petits, des obscurs, des
sans-grades, eux qui travaillent fourbus, blessés, affamés, malades, avec espoir de doctorats
et de dotations. Eux qui travaillent toujours et jamais n’avancent... et vice-versa. Pour ces
remerciements, ’ordre sera chronologique et topique, comprenne qui pourra.

En premier lieu, il convient de rendre hommage au plus ancien d’entre tous. Gian-
luca, ’homme aux mille biéres, cruciverbiste et angliciste trés impressionnant, défenseur
intraitable de la pause syndicale et soutien musical appréciable (ah Leonard C.), ton ami-
tié fut la premiére en territoire helvétique. Ensuite vint Emeka, expert-és-distillation de
houblon belge, entrepreneur impénitent (la sonde reste dans les mémoires). C’est grace &
toi, malgré ta jovialité usuelle, que j’ai appris que 'on pouvait étre quinteux sans tousser
et que j’ai pu enfin mettre un terme sur ma procrastination. Enfin, Dom, le quatriéme du
235, complice politique, ami indéfectible, partenaire de Blast toujours regretté, esthéte pur
malt et fine bouche, sache que I’Hotel de ville nous attend. Soyez tous trois remerciés pour
avoir créé une atmosphére unique faute d’étre studieuse. Mais les doctorants doctorent et
les tétes changent. Ainsi sont arrivés Enrico et Yann. Récupérant un joueur de volley-ball
et un basketteur semi-professionnels, le laboratoire multiplia ainsi par trois son contingent
de sportif. Enrico, ’enfer pour un francophone doit se trouver quelque part entre deux italo-
phones. Yann, Frank Zappa est mort... Désolé. Merci & tous deux d’avoir (avantageusement
?) remplacé Moshe sur la liste Jokes. En nous déplagant de quelques métres, nous trouvons
les valaisans, espéce étrange se nourrissant uniquement d’abricotine et de fromage fondu.
Jean-Luc, merci de m’avoir fait découvrir le ski de rando et la montagne octodurienne (méme

~ si je t’assure que la montagne ailleurs est jolie aussi). Jaco, nous n’avons pas gagné contre
Métrociné, mais je compte sur toi pour continuer le combat contre Europlex. Dans le bruit
indescriptible que peuvent produire les deux sus-mentionnés jouant au Blast, se tenait Fabio
coi, discret, serviable et aimable comme & son habitude. Son statut de pére peut seul expli-
quer cette capacité surhumaine & s’abstraire des contingences sonores. Puis vint Christof,
travailleur infatigable, chercheur obstiné, I’lhomme qui publie plus vite que son ombre, dont
la seule vue suffit 4 culpabiliser le plus consciencieux d’entre nous. J’ai apprécié, et j’apprécie
encore les conversations que nous avons. Enfin, pour prendre un peu de hauteur, le LSL
s’est judicieusement muni avec Fabien d’un aérostier béarnais, pays délicieux du Jurangon
et du paté maison. Merci Fabien d’avoir apporté un peu de sel aux verrées du négoce. Mais
I’ambiance du Laboratoire ne serait pas sans I’armada colombienne. Nous avons déja évoqué
leur chef supréme Eduardo, et I’'un de ses hommes de main, Fabio, mais le compte n’y serait
pas sans Andrés et Carlos-Andrés. Philosophes 4 leurs heures, 'un est amateur de robotique
et d’intelligence artificielle au sens premier, 'autre est féru de logique floue, que celle ci soit
informatique ou politique et sociale. Merci 4 tous deux des longs échanges passionnants que
nous avons eus. Finalement, Ralph, étant le plus jeune des plus éloignés, se retrouve 3 la fin
de cette liste, et pourtant tu fus un partenaire de Blast et de Squash trés apprécié (et pas
seulement lorsque tu perdais).

Finalement le LSL ne serait pas sans Marlyse ni Chico. Organisatrice impeccable et d’'un
gentillesse toujours égale, jamais Marlyse ne fut & cours d’une solution. Merci pour ton aide
et ta patience. Jongleur au fer-a-souder parait-il, mais que je connais plus pour ses jeux de
mots laids, son acharnement & recréer la petite boutique des horreurs dans notre salle de
réunion et son maniement de la caisse occulte, Chico, je dois te dire que malgré tous tes
efforts, tu n’arrives pas & étre insupportable.

Ce séjour en Suisse m’a permis de découvrir une image assez lointaine de la carte postale
mais fort sympathique, faite de bars, de théatre amateur, de militantisme politique et de
mille autres choses encore. M’a accompagnée dans les premiers beaucoup de monde mais plus
particuliérement Sandrine, Bossetteuse a nulle autre pareille, et compagnonne d’infortune.
Merci de ton amitié. Je tiens aussi a remercier les Polyssons, troupe enthousiaste qu’aucun
défi n’arréte. La joyeuse ambiance des représentations me manque déja. Parmi tous ces
histrions herbeux, je tiens & remercier Caro pour nos longs papotages en tous lieux et &
toutes heures. Mention politique, mais aussi amicale, je tiens & remercier les membres
de Regards Critiques, et tout spécialement, George et Carmen, Carola et par extension
Igor, Antonin, Marc, et biens d’autres encore, démonstrations que 'extrémisme est toujours
nécessaire. Enfin, une mention spéciale pour Joce, toujours présente quand il a fallu.

Just a little bit of English to thank the few people from IC that still matter. Thanks to
Jon, Simon, Karen and Torbjgrn. Torbjgrn, the discussion with you influenced most of the
research in this thesis and trust me: representation is useless.

Encore une note pour remercier la clique restée en France, et en particulier Eric et
Christophe, amis indispensables.

Last but not least, je tiens & remercier ici ma famille, soutien indéfectible et irrem-
plagable. Ma meére, d’abord, & qui je dois, tout simplement, tout. Mon pére ensuite,
partenaire de discussions intenses, mais pére avant toutes autres choses. Mon frére, en-
fin, questionneur attentif de mes travaux et modéle d’humanité. Je tiens aussi & remercier
mon parrain, figure exemplaire pour cette carriére académique que je commence et 4 qui je
dois, trés directement, d’étre arrivé ici. Je voudrais encore rendre hommage, in memoriam,
a mes deux grands-meéres pour m’avoir permis de faire les études que je désirais. Que ma
tante, Marie-Germaine, soit aussi remerciée pour m’avoir montré le chemin de la Suisse,
mais aussi, pour m’avoir, enfant, distrait avec la science. Enfin, je voudrais aussi remercier
Betty et Michel, Marie-Francoise, Jean-Louis et Chris d’étre ce qu’ils sont.

Je remercie Anne pour avoir toujours cru en moi, m’avoir encouragé et relancé dans les
moments difficiles et aussi pour m’avoir supporté durant I'écriture de ce mémoire. Merci
d’étre 14 et d’accompagner ma vie.

Contents

Abstract/Résumé
Remerciements/Acknowledgements
List of Figures

1 Introduction

2 Cellularity, Ontogeny, and Evolution
2.1 Introduction
2.2 Cellular Automata
221 Cellular automata
2.3 Ontogenetic Systems
2.4 The Evolutionary Paradigm
2.4.1 Genetic algorithms,
242 Genetic programmingo
2.4.3 Other evolutionary techniques

3 Phuon: An Evolving, Ontogenetic System
3.1 Introduction
3.2 Motivations
3.3 A Detailed Description of the System
3.3.1 The Phuon developmental system
3.3.2 The evolutionary engine L.
34 Results. e
341 Foodforaging
3.42 Controlled growth
3.4.3 An aside: The bloat problem
3.5 Concluding Remarks

4 Cellular Automata for Problem Solving
4.1 Introduction
4.2 Computational Tasks for One-Dimensional Cellular Automata
4.3 Scalability of Non-Uniform Cellular Automata
4.4 The Density Task
4.4.1 Notation and definitions
442 No two-state, non-uniform cellular automata can classify density . . .
4.4.3 A simple CA that solves the density problem

xi

iii

vii

xiii

55
35
56
58
61
62
63

xii CONTENTS

4.4.4 Necessary conditions on d-dimensional CA density classifiers
4.4.5 An aside: No uniform CA solves perfectly the sorting task
4.5 Concluding Discussion Lo

5 Evolution of Cellular Automata
5.1 Introduction e
5.1.1 Parallel evolutionary algorithms
5.1.2 Cellular programming
5.2 Statistical Measures for Cellular Evolutionary Algorithms
5.2.1 Basic definitions and notation
5.2.2 The statistical measureso L.
53 Resultsand analysiso
53.1 Common features
9.3.2 Thecontroltask
5.3.3 Random number generation (RNG)
5.3.4 Synchronization L
65.3.5 Density e
54 Concluding Remarks

6 From Chaos to Order
6.1 Introductiono
6.2 Asynchronous Cellular Automata
6.2.1 Evolution of non-uniform binary asynchronous CA
6.3 Design and Evolution of Redundant Asynchronous CA
6.3.1 A simple and efficient time-stamping method
6.3.2 Quasi-perfect, efficient, lossy asynchronous synchronization
6.3.3 Evolution of asynchronous synchronization
6.4 Fault-Tolerant Cellular Automata
6.4.1 Fault-resistant rules oL
6.4.2 Fault-tolerant self-replication
6.5 Concluding Remarks

7 Conclusions
Bibliography

A Some Cell Programs Obtained Using Phuon
Al Food Foraging
A2 Controlled Growth

B Curriculum Vitae

123
129

145
145
146

153

List of Figures

2.1

2.2

2.3

24

2.5
2.6

2.7

3.1
3.2
3.3
3.4

3.5

Mustration of a one-dimensional, 2-state CA. The connectivity radiusisr = 1,
meaning that each automaton has two neighbors, one to its immediate left
and one to its immediate right. The rule table for updating the grid is shown
on top. The grid configuration over one time step is shown at the bottom.
This figure is based on Mitchell {131].

Example of a fixed border, 15x15 CA (a), and the same CA with periodic
boundaries (b) L

We can see in this figure an example of emergent computation in CA demon-
strated on the density classification task. The rule in all four figures is 184 in
Wolfram’s notation, but the boundaries are toroidal in (a) and (¢) and fixed
in (b) and (d). The left border is fixed to 0 while the right border is fixed to
1. In (a) and (b) there are more 0s than 1s while it is the contrary in (c) and

Example of a L-system to model plant growth. The L-grammar is given at the
top left corner. X is the starting case, represented here by a vertical segment.
-X (+X) is X inclined —25° (+25° resp.) relatively to its parent. This figure
is adapted from figure 1.24a in [156]. To the right, we can see the results of
a more complex grammar, and a much more complex graphical mapping.
Pseudo-algorithm of a generational Genetic Algorithm.
The two parents P1 and P2 give rise to the two children Cl and C2 via
one-point crossover (a) or via two-point crossover (b).
The two parents P1 and P2 give the two children C1 and C2. The dashed
lines show the subtrees resulting from the crossover points (the black arrows)
involved in the creation of C1 and C2. Here, we can see that if we take 0 for
False and 1 for True, we have a syntactically closed language. Subtrees such

as (OR (True,...)) which could be simplified as True are typical of unused
genetic material (in the biology analogy, non-coding DNA).

A view of the environment layer in Phuon.
An overview of the cell organization
The replication model of the Phuon cell.,

An illustration of the deterministic synchronization between the cells. The
number on the cells is their id, and represents their order of creation. They
are placed next to the program instruction they are about to execute. The
number of instruction per update hereis 1.

A population of worlds o Lo

xiv

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

LIST OF FIGURES

he general structure of the language as a list of trees. The arguments are
linked to the node with plain lines while the next statement is linked with
dotted lines. Depthl represents the number of top-level statements. Depth2
represents the depth of the subtrees which is calculated taking the next state-
ment as any other argument. Lo

In (a), we can see the environmental layer used for the evolution of the Food
Foraging solvers and in (b) the cellular layer after a 100 time steps with
n;/s¢ = 1. Light blue color in (a) reflects the state 0, i.e., no food..

An example of the differences implied by the n;/s; parameter (in a secure
environment). (a) The environment with several piles of food, at varying
distance from one another. (b) n;/s; =1, s; = 100, (c) n;/st = 1, s¢ = 1000,
(d) ni/st - 4, St = 250, (e) ni/st =].0, St = 100, (f)nz/st = 50, St = 20.

An example of the differences implied by n;/s; according to the value of ps
in a faulty environment. From (a) to (d) n;/s; = 1, and resp. py = 2,3,5,7
and s; = 500, 600, 2500, 3500. As one may see performance is not degraded
in (a) but gets worse from there as p; goes up. From (e) to (h) n;/s; = 10,
and resp. py = 2,3,5,7, and s; = 1000, 2000, 400, 400. One can see that with
a higher n;/s;, the same program maintains the same level of performance
as in a non-faulty environment, for a higher p;. In (i), n;/s; = 50, py =7,
and s; = 700. The s; given is the first one for which the structure shown was
attained, and no larger structure was ever reached.

Development of an individual that is able, without any environmental con-
straints, to grow and then stabilize its size and position. The program of this
individual may be found in section A.2. In (Bgd 1) and (Bgd 2), we see the
environmental layer at about the time steps of figure (b) and (e) respectively.
One can see the growth from (a) to (d), (d) being in the first step on the
infinite cycle; and three characteristic pictures of its “adult” cycle (d) and (f).

The problem of program Bloat in Phuon. The evolution of the tree size versus
the number of steps for two evolutionary runs of the size control problem
with the same parameter. In (a) without fitness penalty and tree-structure
simplification, and in (b) with both these techniques.

Demonstration of three evolved non-uniform CAs. Grid is one-dimensional,
with radius r = 1 and size n = 150. White squares represent cells in state
0, black squares represent cells in state 1. The pattern of configurations is
shown through time (which increases down the page). Initial configurations
were generated at random. (a) The density task. Initial density of s is greater
than 0.5 and the CA relaxes to a fixed pattern of all 1s, correctly classifying
the initial configuration. (b) The synchronization task. Final pattern consists
of an oscillation between a configuration of all Os and a configuration of all
1s. (c) Random number generation. Essentially, each cell’s sequence of states
through time is a pseudo-random bit stream.

Scaling of one-dimensional synchronization task: Operation of a synchronous,
non-uniform CA, with connectivity radius » = 1. (a) Evolved CA of size
N =149. (b) Scaled CA of size N'=350.

49

51

LIST OF FIGURES

4.3

5.1

5.2
5.3

5.4

5.5

5.6

5.7

5.8

5.9

Density classification: Demonstration of rule 184 on four initial configura-

tions. White squares represent cells in state 0, black squares represent cells
in state 1. The pattern of configurations is shown for the first 200 time steps,
with time increasing down the page.

The two basic models of parallel evolutionary algorithms: (a) the coarse-
grained island model, and (b) the fine-grained grid (or cellular) model.
Pseudo-code of the cellular programming algorithm.
Progression of the transition frequency (v) over the first 20 generations of
typical runs.o L e
Control task: we can see here the diversity D(z), the entropy H(z), and the
frequency of transitions v(z) for a “typical” run of the cellular programming
algorithm on the control task. What appears here as thick lines are the values
of D(z), H(x), and v(z) averaged over 100 runs of the evolutionary algorithm.
Fitness and entropy (H) vs. time for a typical run of the RNG task. We
observe that D, H and v decline rapidly while fitness increases, and then
keep on their descent but at a much slower pace.
The evolutionary runs for the synchronization task can be classified into six
distinct classes, based on the four observed fitness phases: phase I (low fit-
ness), phase II (rapid fitness increase), phase III (high fitness) and phase IV
(medium high fitness). Here we present the two classes of successful runs. (a)
Successful run, exhibiting but the first two phases. The solution is found at
the end of phase II. (b) Successful run, exhibiting three phases. The solution
is found at the end of phase ITI.
We can see here the four kind of unsuccessful evolutionary runs for the syn-
chronization task out of the six distinct classes, based on the four observed
fitness phases: phase I (low fitness), phase II (rapid fitness increase), phase
IIT (high fitness) and phase IV (medium high fitness). Here we present the
four types of unsuccessful runs. (a) Unsuccessful run, “stuck” in phase 1. (b)
Unsuccessful run, exhibiting three phases. Phase III does not give rise to
a perfect solution. (c) Unsuccessful run, exhibiting three phases: I, II, IV.
Falling into the Phase IV trap directly from phase II. (d) Unsuccessful run,
exhibiting all four phases. Falling into the phase IV trap after reaching phase
ITI. A block of 127 takeover.
This figure demonstrates the efficiency of rule 127 for the synchronization task
and its insensitivity to perturbation. The rightmost space time diagram (time
flowing downward) illustrates rule 127, on a random initial configuration. The
other diagrams show rule 127 containing a different rule at cell 10 (0 being
the rightmost cell) on the same initial configuration.
The evolutionary runs for the density task can be classified into three distinct
classes, based on the three observed fitness phases: phase I (rapid fitness
increase), phase II (fitness stabilization), and phase III (unstable fitness).
(a) Unsuccessful run, exhibiting only the first two phases. (b) Successful run,
exhibiting only phase I and III. (¢) Successful run, exhibiting the three phases.
The solution is found during phase III. (Note that phase II for a successful
run exhibits higher H, D and v values than that of its counterpart in an
unsuccessful run; however, phase III can still be readily distinguished by a
net increase in these values.) L L oL

XV

89

xvi

LIST OF FIGURES

5.10 The first 250 generations of the evolutionary runs for the density task pre-

6.1

6.2

6.3

6.4

6.5

6.6

sented in Figure 5.9. (a) We can see clearly in this zoom, the very low values
of entropy, diversity and transition frequency characterizing the first kind of
phase II, typical of type-a unsuccessful runs. (b) Relative high values for
phase for type-b successful runs. (c) Successful run, exhibiting the low values
of H, D and v characterizing the second kind of phase II at the very end of
this graph, around generation 250. These values are still higher than in (a).

In (a) and (b) we can see the result on the one-dimensional density task of
two co-evolved, non-uniform, connectivity radius » = 1 CAs. In (c) and (d)
we can see the result on the one-dimensional synchronization task of two co-
evolved, asynchronous (model-3), non-uniform CA, with connectivity radius
r = 1. White squares represent cells in state 0, black squares represent
cells in state 1. The pattern of configurations is shown through time (which
increases down the page). (a) A synchronous CA. Grid size is N = 149. CA
is run for 150 time steps. (b) An asynchronous (model-1) CA. Grid size is
N = 150, with two 75-cell blocks (#; = 2). CA is run for 665 time steps.
The randomly generated initial configurations in (a) and (b) have a density
of 1s greater than 0.5, and the CAs relax to a fixed pattern of all 1s, which
is the correct solution. In (c) and (d), CA size is N = 150, partitioned into 4
blocks (# = 4). (¢) The CA’s configuration is depicted at every time step.
(d) The CA’s configuration is depicted at every logical step (= 4 time steps).
In all cases, the equivalent of synchronous CA 184 is run on the same initial
configuration, 179080, The blue color represents a data component of 1, green
a data component of 0, while the pink represents a cell that did not update
(either voluntarily or due to faults). In (a), py is 0.001, in (b), ps is 0.1 and
in(c),ppis 0.2.
Experimental data demonstrating the effectiveness of our simple time-stamping
algorithm. We call the relative lateness of rule 184, the ratio of the lateness
(in the sense of figure 6.2) by the total number of faults happening in the au-
tomata. This graph shows a rapid decrease in this ratio, thereby illustrating
the rapid increase in efficiency of the algorithm.
We can see the same non-uniform synchronization task with the 4-state lossy
method. The state 1 is represented as black, 0 as gray while white dots
represent a cell that has not updated. In (a), p; is 0.01. We can see a failure
happening consecutively to 2 joint faults. We remark that this remnant fault
is then corrected by two further faults. In (b) we can see the same CA
correcting all the faults (py = 0.001).
The global probability of failure versus the probability of fault of one cell. The
plain line represents this global probability for a 159 cells classic automata,
while the dotted line is for a cellular automata of the same length using the
d-state lossy method.
Three examples of 4 state non-uniform redundant CA found through evolution
that successfully cope with an asynchronous environment. The probability of
synchrony faults here is p; = 0.002 in all three figures. The colors represent
the following states: blue is 0, cyan-green is 1, yellow is 2 and magenta is
3. The size of the CAs is 159 and there are 400 time steps shown here. The
different strategies in (a), (b) and (c) are discussed in the text.

96

102

105

LIST OF FIGURES

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15

The experiments were run on 10 random initial configurations for 10000 time
steps. The CA size N is 159. The “unmodified” version is the binary non-
uniform CA that was the base used both for the “perfect” and the “lossy”
method. The “best evolved” is the one shown in Figure 6.6.b.
In this figure we can see the comparison between the probability of faults

of the Langton’s loop (which spans about 100 cells) and the experimentally

obtained probability of the faults of a 100-cell structure designed according

to the fault-tolerant method.o
Structure and its neighborhood oL
Usual data pipe o e
Fault-tolerant data pipe
Problem with the head signal
The constructing arm.
Duplication of asignal
This figure shows the complete constructing loop. It conveys and duplicates
the signals and constructs an advancing arm. As one may note, in the border,
a peculiar cell configuration was necessary to insure the integrity of the loop
while not overlapping with the neighborhoods implied by the empty spaces on
the side of the loop. Also note that to make the data pipe reversible another
“background” was used. The structure as it is here relies on a 10-state CA
+ 1 quiescent state. This is a little bit more than Langton’s loop while the
structure does not yet self-replicate, but one should take care that it has not
been fully optimized. The figure shows succeeding time steps, except the last
one which is taken several time steps later to show the growth of the arm. .

xvii

. 122

7.1 We need to change our look on CA computation to grab its full potentialities. 125

Objection contre la science: ce monde ne mérite pas d’étre connu'.

Cioran, Syllogismes de ’amertume, ch. L’escroc du Goulffre. {30].
Les philosophes n’ont fait qu’interpréter le monde de diverses maniéres;
ce qui importe, c’est de le transformer?.

Karl Marx, Théses sur Feuerbach, XI. [126].

Chapter 1

Introduction

What are cellular systems? A precise answer, would require this thesis, and many more
to come. But not to lure the occasional reader further than what is necessary, I shall try here
to define the scope of our interrogation. A cellular system is considered here to be, simply,
many locally interacting elements. The three important notions are locality, interactions
and the number of elements. Locality implies the absence of global control, which excludes
our usual way of thinking, we who consider the brain as a necessary supervisor. Interactions:
mutual or reciprocal actions or influences, as the Merriam-Webster defines it. More precisely,
mutual influence is what we are looking for. Cellular systems are not made of independent
elements, but, on the contrary, of deeply interconnected elements. It is through interactions
that a global behavior may emerge from the system as a whole. The number is a rather
vague notion. What is enough? What is too few? The importance of the number is not so
much a question of quantity but rather a question of richness, of potentialities of the system.
It is often in its redundancy, multiplicity, that a cellular system find its qualities which go
beyond the qualities of each individual elements. This may seem like much constraints and
one may wonder why should one use cellular systems.

Why use cellular systems? One of the prime motivations in this thesis is that Nature
abounds in examples of cellular systems, from ant colonies to cellular tissues, from molec-
ular systems to the human brain. Actually, though it is natural for us to design globally
controlled systems, as a reproduction of a certain model of the human body that we feel
as controlled by a unique instance, our brain, this is not the way natural systems proceed.
This is quite remarkable as the brain, as far as we know, is not a monolithic controller but
rather the quintessence of a cellular system: a huge number of simple elements exhibiting
extremely rich local connectivity and deprived of any sort of global control. Cellular inter-
actions seem thus to be at the foundation of the complex phenomena. Actually, aggregation
and collective working is more and more often purported as one of the basic, fundamental
structures of “progress” in the universe. Elementary particles, quarks, interact and aggregate

!Objection against science: this world does not deserve to be known.
2Philosophers did only interpret the world diversely; what matters is to transform it.

Introduction

to ‘become’ hadrons; hadrons aggregate following the strong force to become atoms; atoms,
molecules; molecules, cell; cells, body; bodies, society, etc. It seems that collective behavior
resulting from local interactions eventually brings out a new level of complexity that su-
persedes previous structures. Though speculative on physics grounds, this point of view is
strongly backed when one considers biology. Multi-cellular organisms present a complexity,
a robustness, and a wealth of potentialities unknown to unicellulars. To take an objective
metrics, as shown in Fittkau and Klinge [50], about one-third of the entire animal biomass
of the Amazonian rain forest is composed of ants and termites. Moreover, along with bees
and wasps, these insects comprise more than 75% of the total insect biomass. Thus, social
insects, that is, ants, termites, bees and wasps, constitute an amazing ecological success.
What makes Nature’s examples so interesting is that they demonstrate surprising qualities
usually nonexistent in human production: robustness, self-repair and more generally adapt-
ability. And there are good reasons to believe that these qualities come from cellularity, at
least that cellularity is a necessary condition. First, all elements work in interactions but
the whole system does not rely on any one of them as there is no global controller; thus none
are a priori essential. Second, the number of elements allows simplicity of any one of them
without impairing the global potentialities of the system, and simple elements make for an
easier replacement. Finally, cellular systems do not rely on a minute number of elements,
the arrangements are not brittle and thus adapt “easily” to a dynamic noisy environment as
is the case in Nature. So cellular systems have nice qualities, but, though an intermediate
goal may be to reproduce these, what we seek is to get these qualities in a system that
solves any desired problem. Then the question is how to get the cellular system to solve a
given problem. Though this question is a difficult one and is implicitly or explicitly evoked
throughout this thesis, we have first to answer the question of what does it mean for a
cellular system to solve a problem. This may not seem at first sight a particularly tough
question, but it turns out to be central to the “how to” interrogations.

What is computation by means of a cellular system? This question is what this thesis
tries to answer, or at least give pieces of an answer. Here, I will only try, in a few lines,
to give a feeling for the problem. Considering the computation of the system as a whole,
we concentrate on the global behavior of the system. This brings us to a first distinction of
importance. The workings of a cellular system, when this system is designed, is described
in terms of the local interaction function(s). On the contrary, the desired goal, the problem-
solving capability, is expressed as a global behavior. This difference is an important one when
the vocabularies, the levels of description of the two behaviors, are in different categories.
For instance: one may talk of HoO or of water. In one case, we talk at the cellular element
level, the molecule, in the other, at the system level, the macroscopic level. There is no
clear link between one and the other. It does not mean anything to say that one molecule
is liquid. The fact that there is the necessity of distinct levels of language is actually the
definition of an emergent global behavior according to some (Luc Steels for instance,[197]).
The question of emergence is a vast one that I will not tackle now, but this difference of
levels of language, this gain between the single elements of the system and the system as a
whole is what defines an interesting cellular system. To come back to the question of what
is computation by means of cellular systems, we have to wonder what we mean by problem

solving, especially in the case of such “interesting” cellular systems. In living systems, the
global behavior is the “output” of the system, the “input” being the external constraints,
and the problem this “computation” solves is survival. To take a specific example, let’s take
a wasp colony whose “output” may be considered to be a nest. The only objective behaviors
of the system are that of single wasps’ behavior. The fact that a nest is constructed is only
the emergent, global behavior. As outside observers, we see the nest which is protecting the
colony, and deduce that to solve the problem of protection, wasps build nests. However,
this is not obvious at all, and from each wasp’s point of view, it is its own behavior that
insure reproduction, the final effect of the global emergent property that is a nest. This
may seem like a fallacious argument either because the result of wasp building strikes us as
a nest or because this is not specific to cellular systems. The way one envisages a problem
always affects the possibility of finding a solution or not, but the question here is far more
pregnant. The global, emergent behavior, especially in designed systems, is only a figment of
our imagination, even if the realization is tangible. The only thing one knows for sure is the
local behavior. Whereas in classical systems we design a system to fit the problem, in cellular
systems we design at the local level; we design the immediately accessible behaviors of the
system, but we wish to obtain the computation result at a different level, at a global level.
Hence we come back to the original problem of linking the local and the global behaviors,
but adding the supplementary constraint that this global behavior is not given as such. In
the abstract computing model of cellular systems such as cellular automata that will be
studied throughout this thesis, this question is particularly important. It is our view as a
human of the system that determines the quality of its global behavior. In effect, it is the
system in itself, by its own global state that solves the problem. Here, the question of what
is computation is thus really how should we look at the system. The system may very well
solve the problem, in a certain way, but we may be drawn into the local details, or look
“wrongly” at the behavior, from the wrong perspective. The fourth chapter of this thesis
actually argues that computation in cellular systems is really a question of visual efficiency.
“[I] have to act like painters and pull away, but not too far. How far then? Guess!”3.

How do we design cellular systems? What we are looking for are locally interacting sys-
tems producing global behavior surpassing the capacity of each individual, namely, emergent
cellular systems. As we saw, this emergence in itself may not be obvious, and requires the
correct look. So, is it at all possible, given a problem, to design a cellular system that will
solve it? Is it possible to derive the local interactions of a cellular system so as to get the
desired global behavior? This is a very difficult task, and even in very formal systems, such
as cellular automata, studied in this thesis, mathematics leaves us powerless, missing some
sort of a universal solution. However, there are two ways studied in this thesis to make
that missing link between local and global behavior. The first one, still following Nature’s
model, is evolution. That is to say, devise through artificial evolution, the local interaction
function(s) by selecting the individuals according to the global behavior of the group, of the
whole cellular system. The usual mechanism of (artificial) evolution is to work on a genotype
but to select a phenotype, thus it maps naturally here to our problem: we work at the local

3«11 faut que je fasse comme les peintres et que je m’en éloigne, mais non pas trop. De combien
donc ? Devinez!» Blaise Pascal, pensées 479 in [149].

4 Introduction

level but evaluate at the global level. The second way to map the local to the global is more
mathematical. It consists in stripping down the idea behind the task, to avoid looking at
it from too narrow a view, with the wrong perspective, and then derive the maximum of
constraints to be able to observe physically or artificially? the restrained system so as to
evaluate their efficiency on the task.

In summary, this thesis is going to concentrate on the question of computation in cellular
systems. I thus try to answer what is computation and how to do computation with cellular
systems, how to link local and global behavior, both mathematically and by evolution. I
will look also into the question of how to fully exploit cellularity so as to gain robustness.

In chapter 2, I present formally and in detail, the basic, and less basic, principles of
this work, namely: — Cellular automata, which will be used in all but the third chapter and
which are the quintessential model of a cellular system; — Ontogenetic systems, which will
be used in the third chapter to exploit the underlying robustness quality of cellularity and;
— The Evolutionary paradigm, which will be used as a tool in chapters 3 and 6 and studied
as a process in chapter 5.

Chapter 3 presents an original cellular system developed for this thesis, named Phuon.
The motivation behind this project was to go beyond classical cellular systems, such as cel-
lular automata. As we will see in the following chapters, these are powerful while remaining
conceptually “simple”. However they usually lack adaptability, and are very brittle to syn-
chronization and general failure. The idea here was to add ontogeny to cellularity, growth
and development being means of adaptation and thus robustness.

In chapter 4, I will tackle the question of what is a problem-solving cellular automata.
Through the study of mostly mathematical properties of both uniform and non-uniform
CAs, I am going to provide some answers, at the price of limiting the scope of this question.
More precisely, by concentrating mainly on the density classification task, I will ponder
what computation by means of CAs really is, and argue that it is “wisual’ computation.
Moreover, I will propose a new definition of emergent global behavior in the limited scope
of non-uniform CAs. This chapter constitutes the core of this thesis, in the sense that it
tackles directly the problem underlying the other chapters.

In chapter 5, I propose to study statistically a peculiar kind of evolutionary algorithm.
The motivation of this work is quite evident when we think about the lack of understanding
of the inner workings of evolutionary algorithms in general. I will concentrate on a special
kind of algorithm: Structured, fine-grained parallel evolutionary algorithms. To do this, the
cellular programming algorithm, presented by Sipper [180], will be studied.

Finally, in chapter 6, I will come back to the question of robustness, but in the restrained
scope of Cellular Automata. Life was an awe inspiring model for the first Cellular Automata
designers. I believe that robustness, an ever present quality in living systems, was omitted
more for practical reasons. obustness to faults and robustness to asynchronous dynamics will
be studied in this chapter. This study will also be the occasion to deepen our understanding
of the information contained in a cellular automata.

I conclude this thesis in chapter 7 where I come back on the question of what is compu-
tation in emergent cellular automata.

4This is not done in this thesis though.

Like all people who try to exhaust a subject,
he exhausted his listeners.
Oscar Wilde, The picture of Dorian Gray, ch.III. [221]

Chapter 2

Cellularity, Ontogeny, and Evolution

2.1 Introduction

The readership of this thesis may come from very diverse backgrounds, ranging from people
with a broad interest in A-Life methodology to physicist studying density conserving cellular
automata as traffic-flow models. This chapter presents the basic, and less basic, principles of
this work, namely, Cellular automata, Ontogenetic systems and the Evolutionary paradigm.

In section 2.2, we detail what Cellular Automata are. Then, through a little bit of
history, we will give a glimpse at both their importance and diversity. Finally, the question
of behavior classification will be the occasion to hint at one of the issues of this thesis: going
from global to local and vice versa. Cellular systems in general will not be overviewed in
this section for two reasons. The first reason is that most systems of interests to us are
ontogenetic, and will thus be treated in the following section. The second reason is that the
field as such is far too large to be covered in any meaningful way here. It will be better
served by a restricted development at the occasion of the presentation of our own cellular
system, Phuon , in chapter 3.

Ontogenetic systems, or systems that develop, are not so common in computer science.
In section 2.3, after a brief presentation of our own definition of such systems, I propose
to present some examples of such studies. Though most of the work in the literature con-
centrated on the morphogenesis aspect, I will try there to give an insight on works that go
beyond. The systems presented are both abstract and realistic. As we will see, their purpose
is as well understanding biology as problem solving.

Finally, in section 2.4, we will return to more familiar grounds for computer scientists,
at least for the A-life community, and describe some of the most common evolutionary
techniques. To avoid babbling over too large a subject, I will specifically concentrate on
the line of this thesis, Genetic Algorithms and Genetic Programming. The question of the
efficiency of such algorithms will be briefly addressed through the presentation of the schema
theorem, a question related to the study of the evolutionary cellular algorithm presented in
chapter 5.

Cellularity, Ontogeny, and Evolution

2.2 Cellular Automata

There are many (perhaps too many) cellular systems developed by the Artificial-Life com-
munity. Moreover systems of interest from our view point encompass also many of those
originating from the Artificial Intelligence or from the Neural Network communities. In ef-
fect, neural networks as such, but also some works on agents could be considered as cellular
systems. So what are cellular systems?

To adopt an intuitive definition, we could say that any system composed of a multitude
of simple quasi-identical elements interacting locally with each other and lacking global,
central control is a cellular system. This characterization, however simple and however large
the domain it covers, reflects the two quintessential properties of such a system: massive
parallelism and no global control. Nevertheless, it would be pointless to start here a review
ranging from cellular phones to massively parallel computers via quantum computing, result-
ing in too long a list. More reasonably, I will present here only the cellular automata model,
the quintessence of any cellular system, leaving the works that were the most significant
when we defined the concepts underlying Phuon to section 2.3 and chapter 3.

In the following section, I will thus concentrate on cellular automata, a model which in
its infinite variations nourished most of this thesis, and percolated through every chapter.
However, I should warn the reader that this will not constitute in any way an exhaustive re-
view of cellular automata and that many results will be presented in the succeeding chapters
for the sake of simplicity and understandability.

2.2.1 Cellular automata

Cellular automata (CA) is surely the best-known — and most thoroughly studied — abstract
cellular system model. Its main qualities are simplicity, a rigorous mathematical definition,
and, paradoxically, a potential wealth of complex behaviors. The attractiveness of this
model was such that since its first formal characterization by von Neumann [139], it became
an interdisciplinary object of study, from computer science to biology, from mathematics to
physics. Its importance in discrete mathematics, the mathematics of computing, was deemed
by Toffoli and Margolus [210] to be as high as differential equations for the mathematics of
the continuum. Wolfram argued numerous times of CA’s importance in modeling physics
and, if we are to believe the rumors about his latest book [228], it could be the complete
model for the universe. Whatever these declarations, in this thesis I shall, more modestly,
concentrate on Cellular Automata as a computing model: a model of massive parallelism,
a model suited for hardware implementation, and a model suited for the study of Artificial
Life problems.

So what are Cellular Automata ? I shall first answer this legitimate question in the
forthcoming subsection. I will then look at the past to understand the variety CAs offer,
and how this model lies naturally in the A-Life field. Finally, before concluding with some
variations of the cellular automata model, T will evoke the attempts at classification of the
global behavior of CAs.

2.2 Cellular Automata

What are cellular automata ?

Cellular automata are dynamical systems discrete both in space and time. In space, a CA
is a collection of finite state automata, distributed over the nodes of a regular, geometric
structure, a lattice. There is an automata at each and every node of the lattice. This topo-
logical structure induces the connections in-between automata. Usually, each automaton
is connected to every other automaton at a pre-determined distance, usually called radius,
along each dimension of the lattice. In time, each automaton updates its state synchronously
with all other automata. This update is done according to a fixed mapping from the present
states of the automaton itself and of the neighboring automata to its future state. Each
automaton applies the same mapping function. The neighborhood is usually composed of
the automata to which it is connected. In two dimensions, for instance, we say that a CA
uses the von Neumann neighborhood when each automaton is connected to its immediate
two neighbors in each dimension, left and right, up and down. Each automaton can be in
one of any finite number of states.

To make things clearer, consider the simple example of a two-state, one-dimensional,
linear CA with radius 1 (Figure 2.1). In this case, the topological structure is an array of
dimension one, and thus the neighborhood at distance one is composed of the immediate
right and left neighbors. Each automaton can have only two states, 0 or 1. Hence the
mapping function is f : {0,1}? — {0,1}. In such a simple case, it can also be expressed as
a rule table, and even more simply by the output bit string of this rule table in the order of
Figure 2.1. This is called the rule of the CA. Wolfram, in [226], who concentrated on such
1d, radius 1, 2-state CAs, so-called elementary CAs, proposed this scheme to characterize all
256 such CAs by a decimal number corresponding to the binary one formed by the output
bit string, i.e., CA 232 refers to transition rule 11101000.

Rule table:

neighborhood: 111 110 101 100 011 010 001 000

output bit: 1 1 1 0 1 0 0 0
Grid:
t=0 .. J1|1JoJ1JoJ1J1Jof1J1JOjO]IT..

t=1 L [7[1[1J0[T[1[1[1[1][1]0]0]7]~

Figure 2.1 Illustration of a one-dimensional, 2-state CA. The connectivity radius is r = 1,
meaning that each automaton has two neighbors, one to its immediate left and one to its
immediate right. The rule table for updating the grid is shown on top. The grid configuration
over one time step is shown at the bottom. This figure is based on Mitchell [131].

In theory, the lattice is infinite, implying for instance that the set IN of integers is
isomorphic to 1d CAs. However, in practice, a CA is always bounded. There are two

Cellularity, Ontogeny, and Evolution

standard ways to deal with borders: fized or periodic boundaries. Fixed boundary conditions
can be of two sorts: 1) The missing input automaton at the boundaries, i.e. the left (resp.
right) neighbor state for the left-most (resp. right-most) automaton for the ld case, is
replaced by a fixed input to the transition function. For instance in a 1d, 2-state CA, a fixed
1 at the right mimic an infinite string of 1. 2) The fixed boundary problem may be solved
by introducing 2 * d special rules for d-dimensional CAs. one at each border taking only
itself and its available neighbors as inputs. Periodic boundary conditions are used most
often. This is due to their simplicity, natural mimicry of infinite lattice and conservation
of uniformity. This boundary condition simply consists in suppressing the boundaries. By
this we mean folding each dimension, so that one bound in dimension d is connected to
its counterpart. For instance in dimension 1, we fold a segment so as to get a loop. In
dimension 2, we fold a matrix so as to get a toroid (a doughnut). One may see the example
of the latter “folding” in Figure 2.2. These two forms of boundary condition always result
in very different behaviors of the CA, though as one may see in Figure 2.3, using the same
general rule, the computational power may be preserved.

(a) (b)

Figure 2.2 Example of a fixed border, 15x15 CA (a), and the same CA with periodic
boundaries (b) .

Hence, CAs exhibit three notable features, namely, massive parallelism, locality of cel-
lular interactions, and simplicity of basic components (cells). As such they are naturally
suited for Artificial Life studies, living systems exhibiting the same features, and well suited
for hardware implementation, with the potential of exhibiting extremely fast and reliable
computation that could be as robust to noisy input data and component failure as living
systems are. A major impediment preventing ubiquitous computing with CAs stems from
the difficulty of using their complex behavior to perform useful computations. Designing
CAs to exhibit a specific behavior or to perform a particular task is highly complicated,
thus severely limiting their applications. This results from the local dynamics of the system,
which renders the design of local rules to perform global computational tasks extremely
arduous. In this thesis, we will both try to automate this design, thereby following the foot-
steps of Mitchell et al [132] and Sipper [180], and prove some mathematical results useful to
design these complex machines.

2.2 Cellular Automata

A question of vocabulary

CA or cellular automata will be used interchangeably to refer to all automata, with their
current state, the topology of the geometrical structure on which they are distributed, the
neighborhood and the local transition rule. An automaton is usually called a cell in this
thesis. Hence, the plural will be cells and the term automata will be reserved as an abbre-
viation of cellular automata. The global configuration is simply the state of all the cells at
a given time. One should keep in mind that this information is geometrically structured.
For instance, the global configuration of a two-dimensional CA is a matrix. However, if
we talk about a toroidal CA, any configuration that may be attained by translation, or a
composition of translations (in dimension greater than 1), is identical. The configuration at
time 0 is the input configuration. When the neighborhood is regular, namely identical along
each dimension, the radius is defined as the number of neighbors along each dimension, on
one side. So if there are d dimensions, the number of neighbors of a CA with radius r is
2dr + 1.

A short historical tour

It is hard to pinpoint the exact origins of Cellular Automata. As with many mathematical
notions, it is quite sure that they were reinvented several times under different appellations
before being commonly accepted. Nevertheless, it is the habit to attribute the founding ideas
to Stanislav Ulam [214] and John von Neumann [139] in the fifties, even though, according to
Toffoli and Margolus [210], the mathematical structures developed by Zuse [236] are cellular
automata that are not named as such. These official “parents” are of particular significance
for the development of the field. If we have earlier underlined the mathematical importance
of the field, the point of view of Stanilav Ulam one could say, von Neumann paternity on
the other hand lead naturally to the Artificial Life development of Cellular Automata.

The original study of von Neumann could be summed up as: Can machine self-reproduce
like living organisms ? Hence, I could say now that Cellular Automata from their first
formalizations were developed from an A-Life approach. In fact, the idea of von Neumann
was to bring the axiomatic and deductive treatment to the study of biological systems.
The central question was self-reproduction, but not in a naive way as he points out in the
fifth lecture given at the University of Illinois in 1949: “One of the difficulties in defining
what one means by self-reproduction is that certain organizations, such as growing crystals,
are self-reproductive by any naive definition of self-reproduction, yet nobody is willing to

award them the distinction of being self-reproductive”!

. The original model, theoretically
developed by von Neumann in the fifties, using a cellular structure at Ulam’s suggestion,
was a 2d, 29-state, infinite CA. This CA structure is basically made of one main part, a
universal constructor. This constructor can take an input string describing any structure
in the CA and replicate it elsewhere on the CA grid. It is universal in the sense that any
structure can be described as an input string, including the constructor itself. This simple
and clever idea allows this system to go beyond what seemed to be an intuitive limit. In

fact, it answered one of the first of von Neumann’s questions: is it possible for a machine to

'In the works edited by Burks [139], p.86

10 Cellularity, Ontogeny, and Evolution

construct a machine as complex as itself? There he had created one able to create machine
of any complexity, even more complex than itself.

This original milestone remained only an abstract work on paper (at least until 1995,
see Pesavento [151]), but the ideas attracted a lot of interest, not only for CAs but also for
the question of self-replication /self-reproduction, as one may judge from the Sipper’s review
of self-replication [183]. One should note that these works did not restrain itself to the
cellular automata. For instance, Laing [105] proposed a string system, far less structured
than CAs, which stemmed from his earlier work [104] which was directly inspired by DNA
molecular interactions. This was some twenty years before the seminal paper of Adleman [3]
on DNA computing. Closer to our interest, the idea of self-replication in CAs motivated
many works, mainly centered around the question von Neumann exposed from the start:
what constitutes non-naive self-replication ? The idea of Burks was that the self-replicating
automata should have universal computation power (i.e., the power of a universal Turing
machine). As early as 1973, Hermann [82], presented a very simple self-reproducing CA
structure capable also of universal computation. This is due to the fact that a universal
Turing machine is actually very simple and thus a single automaton with few states (less
than von Neumann’s 29) is capable of universal computation. Replication is then just cell
duplication, and thus trivial. I will leave here the question of self-replication (see chapter 6
for further discussion of this theme). However, this quest of what constitutes a complex,
interesting, some would say emergent, process in cellular automata has pérmeated through
all the past and current research, and through this thesis.

The work of von Neumann opened more than the self-replication problem, and developed
into the vaster field of Cellular Automata. These studies started with their application
to optimization problems by John Holland [83] and, two years later, the first complete
formalization of CAs by Codd [31]. Soon after, Conway’s game of life, popularized by
Gardner [67], opened the field to a large audience. Strangely, this is through this large non-
academical attention, but also through the collected essays by Burks [23] which included
works by Moore, Holland, and Myhill, that the field gained its spurs. Although this allowed
the development of Cellular Automata research, this newly acquired independence also led
the enthusiasts for novelty to forget the mathematical roots of CAs as Transitional Shift
Dynamical Systems. Thus some duplication of results occurred. For instance, as noted
by Toffoli and Margolus [209], Patt [7] re-proved in 1971 and Richardson [163] in 1972
results presented to the mathematics community by Hedlund [80,81] in 1963 and 1969.
Unfortunately, the probability of duplicate results is no lower today than at the start of
CA studies... CA very rapidly attracted a large variety of persons from different fields, but
they never really joined forces. The activities of people with an interest for CAs could be
divided into 4 main categories: Mathematical theory, Physics modeling, Biological/Social
systems rodeling, and Computational Systems. This division is often very well marked and
communication between the scientists is rather poor. I will briefly cover these four fields.

For the mathematical part, the history of CAs by Sarkar [168], though concerned with
the theory of computation, is a good overview of mathematical problems linked to CAs.
This review duly acknowledge early theoretical thinkers, such as von Neumann, Arbib,
Amoroso and Cooper or Smith ([6,7,12,190]) or current mathematicians working on CAs,

2.2 Cellular Automata 11

such as Mazoyer or Sutner ([127,200]). It should be noted that it fails to acknowledge some
important theoretical physics thinkers such as Vichniac [218], or even pure mathematician
like Fisch [49]. This review is exemplary of the partition of the field, in that Artificial Life
works are almost completely forgotten.

The physics modeling use of CAs is surely the most successful sub-domain as a research
subject. The use of discrete models (CAs or close variations) in physics appeared early.
Greenberg, Gerola and Seiden, Harvey, and Langer presented between 1978 and 1980 results
using non-continuous models ([69,72,110]). However, Stephen Wolfram’s 1983 article [223]
is often considered as a major milestone. Its goal was rather modest: “CA are used as
simple mathematical models to investigate self-organization in statistical dynamics”, but its
extensive study of one-dimensional, two-state CA would bring a re-birth of the field and
stir great interest from computer scientists. In 1984, Vichniac [217] argued that CAs are
more than just a surrogate for partial differential equations and could be used as an exact
model for simulation of complex phenomena. More fundamentally, he remarked that CAs
exhibit “unmistakably” physical properties and interrogations, such as ergodicity, relaxation
to chaos, and time reversibility. They are physical models in themselves. As Toffoli [208]
put it in the same issue, the idea was to consider “Cellular automata as an alternative to
(rather than an approximation of) differential equations in modeling physics”. Still in this
special issue of Physica D, Wolfram [225] presented what is considered a landmark paper in
the field of CA. The paper concentrates, on one one-dimensional, two-state CAs, so called
elementary CAs. Firstly, he introduced a classification of the global behavior of CAs based
on 4 classes, through the systematic observation of their dynamics (see next section for
details). Second, and this derives from the first point, Wolfram introduced the idea that
simple CAs are powerful in the sense that they can generate complex self-organization that
is neither chaotic nor periodic. This idea of self-organization, and walking on the border
line of chaos, exerted a great attraction at the time, and still does. Nowadays, even though
the excitement has subsided, the research on CAs as physical models is still active, for
instance for traffic flow simulation [47,61,137,138] or crystal and other surface growth
modeling [1,16,167]. The main results for CAs are still to be usually found in the physics
literature. For a contemporary discussion on the use of CAs as physical models, one may
see the recent book by Chopard and Droz [28].

Using CAs to mimic biology, as we saw, was the starting point of the field. Was not the
idea of von Neumann to formalize living phenomena ? However, we have to distinguish, on
one hand, the close modeling of biological phenomena with CAs, and on the other hand,
using biological inspiration to study interesting phenomena in CAs. In some sense, these
are the two viewpoints of Artificial Life, if we are to consider CA as computational tools.
Many people, like Sieburg et al [175,176], have done much work in the field. But we will not
discuss the close modeling of biology here as it goes beyond our competence and the scope
of this work. For a good discussion on this use of CA in biology, the reader may refer to
the paper [46] by Ermentrout. On the other hand, the work inspired by biology is of prime
concern for our approach. The distinction we are now making between this paragraph and
the next, treating computational aspects of CAs, is rather artificial, and some of the articles
presented here could lie just as well below in the third category. After the seminal reflection

12 Cellularity, Ontogeny, and Evolution

of von Neumann on self-reproduction, as we saw, Burks pointed out that the universality-
of-computation property of CAs was essential to avoid naive replication. However, in 1984,
Langton [112] presented a self-replicating loop incapable of universal computation, stating
that this property was anything but essential. On the contrary, he argued that natural
(self-)reproduction relied on a genotype (a DNA string) that was decoded into a phenotype
(the acting organism), and that these specificities were the ones to be looked for. His
loop exhibiting these two characteristics, it really answered the original question of von
Neumann. What is sure is that the article attracted much attention, and 1 would guess that
its visual similarity to a living “thing”, the undeniable feeling that something is replicating
in front of your eyes, constituted its best argument®. Langton’s work on self-replication led
to several developments in the same spirit: Tempesti [204|, who added programmability,
Perrier [150] et al who added a universal Turing machine, and Chon and Reggia [29], who
used duplication to create a fully parallel solver for the NP-Complete Problem, SAT-3.
To stay with Artificial Life flavored work, Reggia et al [162]| also obtained emergent self-
replicating structures in CAs through artificial evolution. This is a very interesting example
of ALife systems plowing into biology but concerned with results proper to computing. Still
in this category, Hiroaki Sayama [170| added an evolvable genome to the self-replicating
loops in CAs, thereby allowing more complex structures to emerge.

(a) (b) (c) (d)

Figure 2.3 We can see in this figure an example of emergent computation in CA demon-
strated on the density classification task. The rule in all four figures is 184 in Wolfram's
notation, but the boundaries are toroidal in (a) and (c¢) and fixed in (b) and (d). The left
border is fixed to () while the right border is fixed to 1. In (a) and (b) there are more Os
than ls while it is the contrary in (c¢) and (d).

The computational category of works, one would expect, should be the main part in
a computer science thesis, but the presentation here will be just a quick overview, and
most of the material will appear in the subsequent chapters. Ultimately, CAs are but a
computational tool, and if we except the mathematical theory, all the other domains are
just using C'As as a simulation tool, and so as a computational tool (even if physics tried to
go further). There are four ways to view the computational aspects of Cellular Automata.

‘Barry McMullin [128] presented an excellent paper on von Neumann quest for complexity, in
which he argued that Langton’s loop, however interesting, was no answer to the original question.

2.2 Cellular Automata 13

The first and most natural one is to consider them as abstract computing systems such as
Turing machines or finite state automata. These kind of studies consider what languages
CA may accept, time and space complexity, undecidable problems, etc. There has been
a wealth of work in this field [36,37,41,91,224], most of which is based on or completes
the mathematical studies of CA. The second way is to develop structures inside the CAs
(a specific initial configuration) which are able to perform universal computation. A prime
example of this is the Game of Life, [67], which was proved to be a universal computer using
structures like gliders and glider guns to implement logic gates [18]. This was also applied
to one-dimensional CAs where structures were found to be a universal Turing machine [120].
A third way is to view CAs as “computing black boxes”. The initial configuration is then
the input data and output is given in the form of some spatial configuration after a certain
number of time steps. This includes so-called soliton or particle or collision based computing.
In these systems, computing occurs on collision of particles carrying information (2, 198]. In
these works, usually, computation really occurs in some specific cells, i.e., most cells are only
particle transmitters and some, often the same, do the computation, this even if factually all
cells are identical. Hence, parallelism is not really exploited as such. However, there are CAs
belonging to this “black box” type which are quite different. In these, like the density task
solvers that we will present and study in chapter 4 and which are demonstrated in Figure 2.3,
computation is intrinsically parallel. Their solving property relies on each and every cell. All
are involved in the computation and there is no quiescent state as such. The result is then to
be considered globally. The frontier between these two sub-categories is not always clear, and
in fact, the core of this distinction depends on the ill-defined notion of emergence. The latter
type being so, the former not. We will come back to this discussion in chapter 4. Finally,
there is a fourth way, which is to consider CA computational mechanics. This kind of study
concentrates on regularities, particles and exceptions arising in the spatial configuration of
the CAs considered through time. This is really a study of the dynamical global behavior
of the system. This research does not concentrate on the particular computation of CA.
Though it often took as object of study CAs of the emergent type of the third category,
it was also applied to CAs with no problem solving aim, dissecting their behavior with no
further consideration. There has been much work in this domain, accomplished mainly by
Hanson, Crutchfield and Mitchell [35,77] and Hordijk [88].

In this thesis, we will mainly concentrate on the third kind of study. More particularly on
the second type, the research of problem solving, emergent CAs. Nevertheless, our interests
and some of our results will lie also in the first and the last category. Though not our prime
concern, the interrogation on what is emergent, global behavior will percolate through our
work.

Classifying cellular automata behavior

The classification of cellular automata behavior, first initiated by Wolfram, is neither math-
ematically tight nor complete. The reason we would like to expose it briefly here, aside from
its historical importance, is that, as it characterizes more objectively global behavior, it is
a prerequisite to any attempt to link local behavior to global behavior, a question that is
hovering over this thesis.

14 Cellularity, Ontogeny, and Evolution

Wolfram classified uni-dimensional, two-state CAs into four classes, according to their
global behavior through time, starting from a random configuration. Class I CAs develop
toward an homogeneous state, all 1 or all 0. Class II CAs develop toward simple stable
or periodic structures (with a short period). Class III CAs develop into totally chaotic
patterns. Class IV CAs develop toward complex localized structures, sometimes, long-
lived. Firstly, we can remark that these classes may be applied to any sort of CA. Secondly,
it strikes us that though class I and II are objectively defined, class III and IV rely more on
a subjective observer. In fact, the popularity of this classification comes from the analogy
made by Wolfram between the dynamics of CAs, discrete systems, and dynamical systems
described by differential equations. In this analogy, class I CAs correspond to fixed point in
phase space of continuous dynamical systems, class II to limit cycles, and class III to chaotic
strange attractors. Class IV has no counterpart and is specific to CAs. Computer scientists
argued along with Wolfram that only class-IV CAs were capable of universal computation.
This last result, however, is only a conjecture. As we will see later in chapter 4, rules
from class IT may turn out to be interesting from a computational standpoint. Actually, we
will conjecture that any rule creating regularity, which can be classified into distinguishable
classes, may prove to be computationally effective. Thus compared to the general view, T will
not only consider class-IV CAs, but also class I, as “interesting”. Many other classifications
have been proposed, for instance, a refinement of the Wolfram scheme into 6 classes by Li
and Packard [117,118] or a mathematically tight version (but intuitively more obscure) by
Culik and Yu [38].

To try to formalize this class definition and, more importantly, to predict to which class
the CA behavior will belong, Langton developed the A term. The lambda term is defined
as follows: A = (¢" —t4)/q", where ¢ is the set of all possible state of the automaton, n is
the size of the neighborhood (thus ¢™ is the number of entries in the transition table) and
ty is the number of entries of the transition table which map to the quiescent state. The
quiescent state is arbitrarily defined. This measure was first introduced in 1986 {113}, but
it is in 1990 [111] that Langton argued for the “clear” correlation between Wolfram’s classes
and the lambda parameter. As we can see this measure does not apply only to elementary
CAs and, actually, Langton argued for its prediction efficiency, through the study of ¢ = 4,
n = 5, one-dimensional CAs. In fact, he acknowledges that for low values of ¢ and n, the
capacity of prediction of the lambda parameter is weak, while it gets better as q and n get
larger. However, as this conclusion relies on an exhaustive study of CA behavior, it very
soon becomes impossible to check its validity as ¢ and n grow. His main conclusion was
that classes I and II match low lambda values and class I1I high lambda values, while the
“interesting class”, class IV, lies at critical values between 0.35 and 0.45, that is, in-between
periodic and chaotic behavior. Following his argument, he claimed that the real order for
the classes should be I, II, IV and III and that computation happens only at the edge of
chaos

The attempts to classify “objectively” CA behavior is valuable, in that they are an
essential preliminary to developing tools to predict the global behavior from the local rules.
Langton’s work remains one of the best attempt to solve the question. However, some
researchers have criticized the usefulness of the scheme given its average validity and the fact

2.2 Cellular Automata 15

that it is based on visual control [88,133]. We can also note that from an adaptation of the
formalized classification of Culik and Yu, Sutner [199] deduced that it is undecidable whether
all spatially periodic configurations (i.e. on a periodic-boundaries CA) evolve to a fixed point.
There are actually many results of undecidability, like this one, precluding any general map
from locality to globality. In this thesis, I will argue, most notably concerning the density
classification task, that visual observation is at the heart of computation in cellular automata
and more generally of any valuable classification of global CA behavior. For this very reason,
our critique is that Langton’s work does not answer an essential question: what is visual
efficiency. Wuensche [231] recently presented a measure, the input-entropy, in an attempt
to classify automatically CAs, a measure which may turn out to be a possible answer to this
essential question. We will discuss in more depth this point in chapter 4.

Variations: quasi cellular automata

There are many variations around the concept of Cellular Automata, and in fact, we could
even argue that the Moore neighborhood is already an heterodox understanding of the
original model. The real question is when are the differences such that we can no longer
talk of cellular automata. To answer, we will present in this paragraph some of the most
common variations still lying in the CA scope, and more particularly those we used and
studied in this thesis.

As a first variation we could alter the structure of the lattice. In two dimensions, the
original model, if we want the cell to cover the whole space, there are only two different
structures possible: a grid with square cells (the usual model) or hexagonal cells on an
hexagonal mesh. Each cell then has six neighbors. This has been used to model “hexagonal”
phenomena such as snowflake growth [121] or the fly retina [57]. On the other hand, if
we are to abandon any visual representation, then obviously it is possible to imagine any
kind of structure. However, this kind of theoretical model has never been researched to
my knowledge. After the structure, the second characteristic of a CA is its connectivity,
i.e., the neighborhood. In a certain sense, this is also a structural variation if we are to
consider the connectivity graph as the backbone of the cellular automata. Natural CAs
in one and two dimensions could then be classified as the ones with a planar, undirected,
connectivity graph. This would include in 2D both von Neumann and Moore neighborhoods,
and 6-neighbor hexagonal CAs and in one dimension any CA with any radius. If we keep
on with the idea of not distinguishing the topology of our CA and its connectivity graph,
then any undirected graph will define a “normal” CA in any dimension, in the sense of a
normal extension to the original model. If we introduce the idea of directed graph, then
we have one-way CAs3. To go further, we distinguish between the connectivity graph and
the topology. Then we can imagine various lengths of connections, for instance at distance
2 and 5 but not 3 and 4, with or without non-symmetrical connections or any other kind
of neighborhood. In this latter case, the appellation of CA is arguable and would surely
rely on the relative locality and regularity of the connections. A third variation, and one of

3These CAs were introduced by Dyer [44] and have been the subject of countless studies about
their theoretical computational power.

16 Cellularity, Ontogeny, and Evolution

peculiar interest to this thesis, is to alter the uniformity of the automata. Very intuitively,
in these non-uniform CAs, each automaton can have its own transition rule. These have
been the subject of many studies by Sipper et al [180, 182], and is at the center of chapter 5
of this thesis. Finally, the fourth variation may be on the functioning of the CA. It may be
a relaxation of the synchronization of the updates, or the introduction of non-deterministic
transition rules. These two aspects will be discussed and treated in chapter 6.

2.3 Ontogenetic Systems

Ontogeny: the development or course of development especially of an individual organism.
Such is the definition of the Merriam-Webster dictionary. But what is development and
how does it apply to computer systems? Morphogenesis which is certainly the most visible
aspect of the phenomenon, is often given as an answer to the question. However, though
this notion covers the vast majority of the works concerned with development, ontogenesis
is not limited to this facade. The works that state morphogenesis as their explicit goal are
really concerned with an exterior appearance, namely reaching a certain form. Whereas
real developmental systems, ontogenetic systems, enclose all the aspects of development and
growth including cell differentiation, adaptation to the conditions, cell lineage, etc. Hence,
morphogenesis is an observer point of view while ontogeny is an insider’s standpoint. Unlike
for most works in computing science, the meaning of morphogenesis in biology includes all
the development of structures beneath, but even then, it is just a subpart of ontogeny which
comprises development not toward form.

Computer scientists went to look at biology for inspiration on how to get flexibility,
adaptation, to gain qualities such as-robustness, self-repair and other properties common
to all living things but rarely found in engineered systems. In the studies concerned with
development however, the understanding of bioclogical reality is often the underlying mo-
tive, at least primarily. This is the other side of Artificial Life: trying to understand the
quintessential principles of the living systems.

The developmental models presented here may be divided into two classes: the abstract
and the realistic models. The former are concerned with extracting the principles of what is
development at a very high level. Their goal is often an application to problems rather than
the study of the system for itself. The latter try to be as close as possible to reality. The
very nature and limitations of computing systems necessitate a certain level of abstraction,
even in these latter realistic models, but the prime motivation for these studies is really
biological modeling in itself. Nevertheless as we will see, applications sometimes also derive
from these.

Abstract models

Surely the most famous work among the abstract systems of development are the L-Systems,
conceived by Lindenmayer in the late 70’s, [119]. This grammar-based model goes beyond
' morphogenesis even though it is mainly concerned with form. In fact, it is a good abstraction
of genetic control of cell-division and is convenient to describe cell lineage. The system

2.3 Ontogenetic Systems 17

uses rewriting rules to sequentially modify a string which represents the organism. This
system was particularly successful at modeling plant growth (see Figure 2.4 and [156]) and
other systems, such as neural networks, [114], or body organs, [43]. The model was later
augmented to incorporate some environmental influences and cell-cell interactions by using
a context-sensitive language. An even later model included some elements of differential
equations to mimic physical forces such as osmotic pressure [144]. This latter model is in-
between abstract and realistic conceptions, and could as well have been in the next section.
Nevertheless, these systems are explicitly morphogen, and the end result is not due to the
internal metabolism of cells but rather to a “constructing program”.

\

=0 1=1 t=2

L—=grammar:

X
X —> X[+XIX[-X]

Figure 2.4 Example of a L-system to model plant growth. The L-grammar is given at the
top left corner. X is the starting case, represented here by a vertical segment. -X (+X) is X
inclined —25° (+25° resp.) relatively to its parent. This figure is adapted from figure 1.24a
in |156]. To the right, we can see the results of a more complex grammar, and a much more
complex graphical mapping.

Another interesting work of abstract ontogeny is Gruau ef al's |74| developmental en-
coding of neural networks. This model is interesting for two reasons. The first one is that it
is an example of development that disregards shape — it is not morphogenesis. The second
one is that it is rather far from the biological reality and clearly aimed at problem solving.
By these specificities, it is close to our work presented in chapter 3. It is, as the L-systems
are, based on a rewriting rule grammar that defines the topalogy of a neural network. The
grammar is represented as a tree that encodes the cell lineage. The system proved to be
efficient at solving a variety of simple problems. but it is not biologically defensible. For
instance this is not a cellular model® in the sense that the resulting topology is encoded in
the grammar, not in the cell metabolism. Surprisingly, this work, not concerned with form,
is close to the very morphogenetic work of Sims [177]. In that model, the development of a
body was encoded as a recursive graph (a folded tree), each node being a body part, each
arc a joint.

In this ontogenetic section, 1 use the term cellular model in a restricted sense compared to the
definition of p.6.

18 Cellularity, Ontogeny, and Evolution

There are many more grammar-based works and other abstract models but to finish
this paragraph, I would like to briefly talk about “ Tile Automaton”, a system developed by
Yamamoto and Kaneko [232]. This work is worth mentioning on several grounds. Firstly,
it is one of the very few model of basic ontogeny, at the limit between elementary organic
growth and chemical self-organization. Secondly, it is a good example of what is covered by
ontogeny at large, going beyond morphogenesis. Finally, it is close, in its spirit, to many
aspects of our own work. The Tile automaton is an abstract model of chemical reaction
of molecules scattered over a 2D Lattice. Each molecule reacts to strictly deterministic
rules, in discrete time-steps. It is thus very close to a CA structure. What is remarkable is
that given certain initial environmental conditions, structures develop with specialization of
certain parts to produce the energy needed by the rest of the structure to maintain itself.
There are many other interesting works of cellular ontogeny, such as the development model
of Dellaert [40] and the Cell Programming Language by Agarwal [4].

Realistic models

One of the first examples of realistic models kind of studies dates back to 1952, when Turing,
in his paper The chemical basis of Morphogenesis, [213], presented a mathematical model
of cell interactions based on reaction-diffusion systems that could exhibit stable properties.
This model was quite simple, focusing on one mechanism of development, cell interactions.
This early work, however, gave rise to many successful models of pattern formation in
shells [130], zebra coats [15], and butterfly wings [136].

More recently, in 1994, Kitano [97,98] proposed a system that seems rather abstract,
topologically based on a 2D lattice, but that is quite realistic in its modeling of the chemical
cell-cell interactions, the morphogen diffusion, and the active transportation of chemicals.
Evolution was applied to the metabolism of the cell. This is the internal process that gives
rise to the development of a structure. A successful process of morphogenesis (ontogenesis
really in our understanding) was obtained, but the results remained preliminary. It is
interesting to note that Kitano has an on-going project to develop a realistic simulation
of the complete cell metabolism (yeast) and then the complete growth of an organism: C-
Elegans. The first, modest step in this direction was to reconstruct the cell lineage of the
worm from 2 to 7 cells[233].

The most complete realistic model to date was done by Kurt Fleischer [51,52]. It is
mostly based on differential equations, where a set of these constitutes the genome of a
cell. The space is either 2D or 3D, and continuous. Basically, this equation set governs
how the chemical concentration varies and how the external forces are applied to the cell
and so modify its shape (its radius to be precise) and its movement. Internally to the cell,
a simple conditional system models loosely the gene expression regulation. Besides change
in the environment outside the cell, interactions between two cells and friction mechanical
forces are simulated via an external set of partial equations. Thus, there is an internal
metabolism and an outside world with fixed rules. However realistic this modeling may be,
many processes remain discrete. For instance, when a specific behavior function crosses the
zero threshold, a cell division occurs and a new cell is created, instantly. Most of the encoding
and tuning of the parameters were done by hand and they gave rise to some interesting

2.4 The Evolutionary Paradigm 19

phenomena of development: from simple behavior, such as cells climbing a gradient to more
complex behaviors, such as cell differentiation and neurite growth. As the preceding work, all
development results only from the confrontation of the internal metabolism of the cell with
an external environment — there is no constructing program. The advantages of this work
are quite evident: it is the most biologically realistic model to date, it is a general model,
and it presented results close to reality. Nevertheless, the disadvantages are also numerous:
it is computationally very intensive, hard to tune (the attempts to do the tuning by means
of evolutionary computation failed), and many biological aspects, like the gene expression
regulation network, are still poorly approximated. Finally, to conclude this section, it is nice
to see that Fleisher’s work which was mainly interested in basic research problems found
an application as a texture mapper for complex 3D shape. The general idea for this task
was that each cell could grow only on the surface, and then developed according to the cell
around it and some physical law (like gravity). The result was an automatic covering of the
abstract bodies, for instance, mimicking rather well animal fur.

There are many other works of interest in theoretical biology, among which we can cite
the work of Savchenko et al [169] or Unemi [215] where developmental cellular system are
studied and more particularly in the last one, the evolution of cellular system.

2.4 The Evolutionary Paradigm

If development is adaptation on the scale of life, evolution is adaptation on the scale of
history. As we saw, in the 1950’s people like Turing and von Neumann got interested in
modeling and understanding biological phenomena in terms of information processes. The
beginning of the computer era pushed forward that simulation trend and it was then natural
that models of artificial evolution were developed. The first work going in this sense date
back to the 1950’s and was done by Fraser [59]. Fraser’s work is really the modeling of
biological phenomena by means of a digital computer. A year later, Friedberg [60] conceived
an evolutionary model in the modern sense. He explicitly wrote that it was for automatic
programming. These two works are usually considered as the foundation of evolutionary
computing. By the middle of the 1960’s three of the four main strands of evolutionary
computation were defined, Evolutionary Programming (EP), by Lawrence Fogel 55|, Genetic
Algorithm (GA), by Holland [84], and Ewvolution Strategies (ES), by Bienert, Rechenberg and
Schwefel [159]. The field, however, matured into a unified domain of research of itself only in
the late eighties, early nineties, with the acceptation of the term evolutionary computation
as covering the whole field, and the first EC conferences.

In the next subsection, I will present the first important form chronologically®, Genetic
Algorithms (GAs). A general overview of the principles will be presented along with the most
common problems encountered using evolutionary algorithms in general. This subsection
will also present most of the vocabulary of this field, which is usually borrowed from biology.

In the subsequent subsection, I will present Genetic Programming (GP). The material
evolved in GAs is a string, not a full-blown program. GP proposes to evolve tree-structured

5This is arguable, and some would rightly say that evolution strategies were first. However,
Genetic Algorithms were the first to be formally presented and intensively explored.

20 Cellularity, Ontogeny, and Evolution

programs, a form much closer to real programming. However, this variation is not problem-
free. More specifically, I will present one of the main problems of GP, program bloat.

Finally, after this presentation of GA and GP which are the techniques used in this
thesis, we will take a quick look at the two remaining strands of evolutionary computation,
Evolutionary Programming (EP) and Evolutionary Strategies (ES).

2.4.1 Genetic algorithms

After having cleared up some of the jargon, I will present the pseudo-algorithm of a Genetic
Algorithm. Quite naturally, the best way to understand its workings is to grasp the global
architecture of the system. I will then expand upon some fundamental points: population
generation, fitness evaluation, parent selection, reproduction, mutation, and replacement.
I will conclude by examining the question of GA efficiency by way of a discussion of the

schema theorem.

Jargon

Inspired by biology, the specialized vocabulary of EC descends directly from natural evolu-
tion. However, sometimes the terms have changed in meaning, and, moreover, they always
have a precise sense, specific to computer science. The terms will remain vague here as
their exact meaning will become clear throughout this section. First, the strings subjected
to the Genetic Algorithm (and more generally any structure subjected to any evolutionary
algorithm) is evolved. What is evolved (for GAs, strings) is called a genome or a genotype or
sometimes a chromosome. This is quite understandable if we are to think of these structures
as the genetic material. Each genome is an individual in a population, a pool of genomes.
This notion of individual can be taken as the string itself, or the behavior implied by the
execution of the string. Hence, it is both the genotype and the phenotype. The fitness of an
individual is the equivalent in natural evolution of its capacity to survive. A higher fitness
improves the probability of being selected for reproduction. Reproduction of individuals is
the altered copy of their genome, either randomly, and this is mutation, or altered as a
function of another selected individual, and this is a crossover. The children or offspring
of an individual are the resulting genomes from these alterations. If all the population is
replaced by the offspring, then the new population is called the next generation.

The algorithm

The best way to explain a Genetic Algorithm is to have a look at an archetypal pseudo-
algorithm of such programs.

As one may see in Figure 2.5, the general principles are quite simple. The idea is to first
probe randomly the search space, GENERATE_POPULATION, and then apply recombination,
REPRODUCE, to good individuals, SELECT_PARENTS, to lead to better individuals. However
the algorithm is more subtle than simple hill-climbing because a Genetic Algorithm is sup-
posed to poll new points in the search space and so avoid local maxima. This is done

~ most notably through mutation, MUTATE, but also through recombination, REPRODUCE. Ac-
tually, the aim of most of the variations around this archetypal structure is to find for the

2.4 The Evolutionary Paradigm 21

P = GENERATE_POPULATION();
current_generation = 0;
WHILE (current_generation < MAX_NUM_GENERATION) DO
FOR_EACH Individual i in P DO
fitness_i = EVAL_FITNESS(i);
IF (fitness_i >= ACCEPTABLE_FITNESS)
result = i;
HALT;
ENDIF
ENDFOR
fitnesses = {fitness_1,...,fitness_n};
PP = SELECT_PARENTS(P,fitnesses);
C = REPRODUCE(PP);
MUTATE(C) ;
P = REPLACE(P,C);
current_generation = current_generation +1;
ENDWHILE

Figure 2.5 Pseudo-algorithm of a generational Genetic Algorithm.

given problem a good balance between exploration and improvement. This question is often
called the exploration vs exploitation problem. We will now explicate all the functions of
the pseudo-algorithm, thereby showing the most common types of GAs.

GENERATE_POPULATION

The first thing to do in a GA is to generate a population of string candidates of solu-
tions. This is usually done completely randomly according to the problem to solve. For
instance, in chapter 4, we seek a one-dimensional, nearest neighbor CA rule which can be
characterized as an 8 bit string. Hence, the population is just generated by randomly pick-
ing numbers between 0 and 255. However, in some cases it may be interesting to do this
not quite randomly, in order to bias the initial generation of the population. This can be
done either by strictly restricting the search space, e.g., in the example above only pick
odd numbers, or by introducing a preference for a part of the search space, e.g., still in the
example above, double the probability of picking an even number, or by a combination of
both techniques. This question has been seldom explored in the past, but it brings out the
representation issue. This is central to any evolutionary algorithm and could be summed
up as how to encode the problem to solve into the structure evolved, in the case of genetic
algorithms, into a string. There are two sides to this question, one is how to encode the
problem so that the crossover operator(s) will be meaningful and the other is how to map
the string to a solution — how to map genotype to phenotype. We will explore the first
part of the question in the REPRODUCE paragraph, while treating the second part in the
next paragraph.

22 Cellularity, Ontogeny, and Evolution

EVAL_FITNESS

Fitness evaluation is the central part of Genetic Algorithms. It aims at favoring, i.e.,
giving a high score to, individuals with a good genome, that is with promising genes, that
could, when crossed with other good individuals, give better individuals. But, fitness is very
specific to the problem considered. Genetic Algorithm (more often Genetic Programming
that we will see in section 2.4.2) have been qualified as an automatic process of discovery
or as an automatic programming system. We would tend to moderate these claims by qual-
ifying GA’s as semi-automatic. The success of GA techniques often depends on its design
and more specifically on the fitness function design. In effect, the fitness function judges the
validity and the potential of the candidates. In some sense, this is where the discernment,
the acumen of such algorithms lies. Though the solutions are dependent on the problem
sought, a certain number of recurring issues occur when designing a fitness function. For
instance, starting from a random population, the fitness should be able to distinguish be-
tween hopeless individuals and poor individuals with a potential. This problem is usually
addressed in two ways, through selection, by amplifying the fitness differences as we will
see in the SELECT_PARENTS paragraph, or by using several/evolving fitness functions,
where the fitness evaluation criteria gets harder as the average fitness gets better. A second
problem encountered is avoiding “false solutions”. It is often hard to include all possible so-
lutions to the problem in the good-fitness set and to preclude from this set all bad solution.
And Genetic Algorithms are very good at optimizing the fitness with candidates not solving
the problem we are tackling. This is perhaps Murphy’s Law of evolutionary computation
in general. Hence, one should take care that high fitness candidates should only be good
candidates. It would be impossible here to review all the problems linked to the design of a
fitness evaluation function, as this is where the intelligence of the system lies. However, in
the coming chapters concerning the evolution of cellular machines (3 and 5), we will address

the question.
SELECT_PARENTS

Talking about fitness without saying anything about the parent selection procedure
would be meaningless. It would be a bit like giving a measure without the scale. Contrary to
the fitness function, the selection procedures are well-defined. Of course, it is not impossible
to define new selection operators, but the four detailed below are, by far, the most commonly
used.

e Fitness proportionate selection This selection procedure was introduced by Hol-
land (see [85], ch.5 and 10.2), as a way to optimize the trade-off between exploration
and exploitation. Its workings are quite simple. First, normalize all fitnesses to the
range [0,1], and then use the normalized fitnesses as the probability to select individu-
als. As pointed out by Tettamanzi and Tomassini [206], this selection process, though

2.4 The Evolutionary Paradigm 23

backed by decision theory®, is not without drawbacks. For instance, it does not deal
well with low fitness differences, or high-fitness unique individual. In the latter case,
it leads to quick convergence, which of course, may result in premature convergence.

e Rank selection Fitness proportionate selection is directly based on the absolute value
of fitness. However, as we have seen earlier, fitness definition can be quite arduous
and its absolute value less meaningful than its relative value. Rank (or linear-ranked)
selection establishes a probability of selecting an individual as a function of its rank.
The formula to calculate this probability is usually:

1—1

W‘T]a 1>82>2. (2.1)

1
pi= B - 205 - 1)
Tl
This selection procedure, first developed by Grefenstette [73] and Whitley [219], is
modulated by the selection bias term of the equation, #. One may see that if § =
1, then there is no selection pressure at all, while if 8 = 2, the worst individual has
simply a null probability of being selected.

e Tournament selection As put by Sean Luke in |123], “tournament selection is pop-
ular because it is simple, fast and has well-understood statistical properties”. The
selection is done by successive tournaments among k individuals of the population
each time. These individuals are chosen with uniform probability. Some have argued
for no re-insertion while others have put forward the necessity of totally independent,
selection. The winner is either the fittest of the k (this is the deterministic case) or
is chosen via fitness proportionate selection among the k individuals. The selection
bias for this algorithm is, evidently, the number k. The higher the tournament size
the more selective it is.

" o Truncation selection

Truncation selection is what has been used for most experiments with Phuon , the
system presented in chapter 3. Its principle is very simple: select the p best individuals
and reproduce each parents ¥ times. It is sometimes called the (A, u) selection, where
A = ku, and A is the size of the population. A variation is the (A + p) selection, where
one parent is selected from the p set of individual while the other is taken from the
remaining of the population.

REPRODUCE

How does one combine the genetic material of the selected parents ? The answer lies
in the reproduce operator, almost always called crossover. In the present case of Genetic
Algorithms, as we are dealing with fixed-length strings, crossover is quite straightforward.
One point is chosen in the strings, and the material beyond that point is exchanged (see
Figure 2.6.a). A popular variant is to chose two points and exchange the material in-between
the two points (see Figure 2.6.b). These are by far the most current crossover techniques

8Tt is built on Dan Frantz’s work [58].

24 Cellularity, Ontogeny, and Evolution

for GAs. However, this operator is often defined as a function of the representation of the
problem to be meaningful. For a complete overview of recombination operators see [22].

PLOOIP10111 . Cl1001110101 PL 001D101]L1 CL0011101)11
! ! . 1 1 1 1
I]

P2011,010101 C2011p10111 P2011]1101D1 c2oriproipl
i . ’ ! ' 0 1 t

(a) ' (b)

Figure 2.6 The two parents P1 and P2 give rise to the two children C1 and C2 via one-point
crossover (a) or via two-point crossover (b).

MUTATE

Mutation is the other genetic operator. This would be the only operator for evolution
in asexual reproduction. Actually in evolutionary programming, EP, (see Porto [222] for a
complete overview) mutation is the only operator, with selection. In GAs, the aim of mu-
tation is to introduce more or less random individuals into the population and thus explore
more of the search space. The principle is straightforward. It usually consists in exchanging
a symbol of the string chosen randomly by any other symbol from the available alphabet.
Of course according to the representation of the problem this may vary. This is more than
an exploration tool, however, as proven by EP, as it polls the search space nearby a good
candidate.

REPLACE

The REPLACE function delineates how to place the children in the existing population.
In Generational GAs, the whole population is usually replaced by the children of the
selected parents. Hence the “good” parents from the previous generation are lost. This
has the advantage of keeping diversity rather high and so avoiding premature convergence.
However, if crossover is potentially destructive or very destructive, the best individual from
the next generation may be very much worse than the best from the preceding one. To avoid
this, we can copy directly to the next generation the best individual, or individuals. This
elitist approach is often limited to the top 5%, to maintain the balance between exploration
and exploitation.

However, there exists a totally different replacement algorithm. Actually, it implies a
modification in the structure of the algorithm itself. The steady-state approach suppresses
the idea of generation. At each loop, only new individuals are evaluated, then over the whole
population the parents are selected to generate a number of children, ¢, where ¢ < n, the
size of the population. Usually ¢ is about 1 or 2. To maintain the size of the population
fixed, ¢ individuals are selected for removal. In this algorithm parents thus compete with
children, thereby removing the question of using elitism or not. A generation, in such an
algorithm, is defined as n/c times the main loop, i.e, when n individuals have been replaced.

2.4 The Evolutionary Paradigm 25

This approach, known as steady-state for GAs, is also known as (u+ 1) for evolution strate-
gies. Under that latter name, it was first presented by Rechenberg [160], and expanded by
Holland in his landmark book [85]. The reader may refer to Fogel and Fogel [53] for a study
of the virtues (or lack thereof) of this strand of GAs for optimization problems.

Some words on the schema theorem:

The schema theorem was presented by Holland in 1975, (in [85], theorem 6.2.3). It has
often been presented as the reason genetic algorithms work. In fact, this crucial question
remains unanswered for the most part. In this section, we will present the schema theorem
and briefly recapitulate what we can say about the efficiency of GAs. The schema theorem
is as follows:

Theorem 1 In a genetic algorithm using fitness proportionate selection and single point
crossover occurring with probability r, then for each schema H.:

p(H) = p(H) 22 (1 - 14 2)

where: H is a schema, L is the length of the chromosome, L(H) is the length of the schema
and is strictly less than L, p(H) = Xzeup(z) is the frequency of the schema H in the
population, p(H)' is the frequency of the schema in the next generation population, and
W(H) = Zgenw(z)p(z)/p(H) is the marginal fitness of the schema’.

It basically says that the frequency of a schema in the next generation is directly
proportional to its frequency in the previous generation, its relative fitness, and the non-
destructiveness of the recombination operator. Some, like Radcliffe [158] even said that the
schema theorem was a tautology. This is not quite true, as it can be deduced from it that if
a schema is rare and has high relative fitness, it will multiply through the population at an
exponential rate. Actually, it is interesting to note that Holland in his original publication
does not promise anything more. So this theorem does not teach us much on why GAs are
good search algorithms. Altenberg argued in his 1994 article (in [96], pp.47-74) that a way
to measure the efficiency was to compare GA efficiency to random search efficiency. More
precisely, for GAs to be better than random search there has to be a correlation between
the fitness of parents and the upper tail of the distribution of their offspring, i.e., the off-
spring should not be normally distributed. Theorem 5 from Altenberg’s paper [5], called by
the author the missing schema, theorem, basically proves that GAs are better than random
search, according to the criteria above, depending on: the positive co-variance of the fittest
schemata and the fittest offspring, and on the probability of the recombination operator to
create more positive genotypes than it disrupts (positive in the sense that it alters positively
the fitness distribution). This theorem is an answer to the question proposed by Altenberg,
nevertheless, it is not immune to the tautology critique. Without delving into this discus-
sion here, I can note, with Altenberg himself, that this correlation itself does not answer the

"The notation adopted here is that of Altenberg in [5]. It differs quite a lot from the original one
by Holland. A schemais a regular string setting only some loci thereby matching many chromosomes,
e.g., ¥101*1 matches 010101, 010111, 110101, and 110111.

26 Cellularity, Ontogeny, and Evolution

question of GA efficiency in its general form. If we consider a system where the offspring
always get the mean fitness value of its parents, Theorem 5 entails that the upper tail of the
fitness distribution fares better than random search — there is a perfect correlation between
parents and offspring, but there is no evolution. The fitness never gets better than the best
fitness at generation one.

So the question of GA efficiency remains unanswered, and the numerous studies on the
subject do not explain why GAs work, much beyond the intuitive arguments. It should
be remarked that the No Free Lunch theorem® by Wolpert and Macready, [229,230], tells
us that it is just hopeless to try to prove that any search/optimization algorithm could
outperform all the others on every class of problems. Nevertheless, as pointed out by many,
this theorem is no longer true if one considers only a special class of problems, and that real,
interesting problems were such a special class. For an interesting discussion on this matter,
one may refer to Oliver Sharpe’s work, [174].

The situation for Genetic Programming, that we are going to see in the coming section,
is now the same. There was almost no theory at all for some time, but the recent attempts
by Poli et al were successful. There is now an exact schema theorem for GP, [155],. .. which
obviously does not say more than the GA schema theorem.

2.4.2 Genetic programming

Genetic Programming is essentially Genetic Algorithm on different structures: trees? instead
of strings. In fact, it was introduced as such by Koza in 1989 [99]. This paternity of the field
attributed to Koza is mainly due to the large body of work presented in his 1992 book [100].
As always in research, GP is actually the result of many preceding works such as [34, 56],
but we owe to Koza a wealth of experiments that gave to GP its status as a separate strand
from GAs. And though the global structure of the algorithm is identical to the one presented
earlier in Figure 2.5, GP presents specific problems. Moreover its own crossover operator
and its specific mapping from genotype to phenotype really “defines a conceptually different
approach to [GAs]” as Kenneth Kinnear, [96], put it.

In this section we will outline the main differences between GP and GA. Technically,
these lie principally in the REPRODUCE and MUTATE functions, and conceptually, in the fitness
evaluation. We will also evoke some of the problems specific to Genetic Programming, and
more particularly code-bloat.

Genetic Programming is an evolutionary technique where the genetic material is not a
string, like in GAs, but an ezecutable program. This change in structure involves major
modifications in the fitness evaluation procedure. With GAs, one of the main questions was
to define a proper encoding/decoding of the problem as a fixed-length string. Here, decoding
is just executing the program. Hence, ideally, the fitness is just the ability of the program
to solve a given problem, i.e., given the inputs, to produce the desired outputs. With the
exception of a few, Nordin for instance [141], the program is not executed, and usually not

8To put it briefly the NFL theorem says that all algorithms that search for an extremum of a
cost function perform exactly the same, when averaged over all possible cost functions.

9Though tree is the historical structure and the one mainly used, GP actually concerns any
variable-size structures.

2.4 The Evolutionary Paradigm 27

executable, directly on the system. The original idea remained conceptual and the structure
evolved is just the representation of a program. There are many reasons to this choice but
the three principal ones are: 1) An evolved program is something issued from a “random”
process and may be either dangerous for the machine, or not executable at all; 2) The space
of all possible programs, in any language, is vastly too large for the problem tackled, and
so would imply a loss of both time and computational resources; 3) Finally, the crossover of
real-program would be very complex compared to the usual crossover that we will see below
(Figure 2.7).

So Genetic Programming evolves program representations, more precisely trees®. This
representation presents many advantages, but the original reason was that it fitted well with
LISP s-expressions. If we take lisp-atom or no-argument functions as leaves, and functions
as nodes with arguments modeled as subtrees then the tree-representation is immediate.
Usually, the leaves are known as terminals and the nodes as non-terminals. So there is a
coding and decoding part in GP, just like for GAs, but it is limited to determining what the
necessary terminals (inputs) are (both variable such as sensors, and constant such as integer
numbers) and what the ideal non-terminals (functions) are for the problem to be solved.

Before jumping to the crossover question, there are some specific problems concerning
the population generation for GP to be mentioned. The tree generation is just as random
as the string generation is for GAs. However, as the structure is more complex, we usually
distinguish three different ways to do this: grow, full and ramped half and half. The grow
method is the “natural” way to generate trees: 1) pick at random, in the bags of terminals
and non-terminals, a function; 2) for each argument of the function (if any), start again
to generate the sub-tree argument. To limit the size of the trees generated, it is usual to
fix a maximum depth, which when reached only allows picking terminals. The full method
is exactly the same except that before reaching maximum depth only non-terminals may
be chosen. This implies that the tree generated will be full. Finally, the ramped half and
half consists simply in choosing at random either the full or the grow method for each tree
generated. To go further, the reader may refer to Sean Luke’s thesis ([123], ch.8), in which
he studied of the consequences of the different tree-generation strategies, these three and
others, for certain sets of terminals and non-terminals.

The most structure-dependent functions in evolutionary algorithms are obviously the
genetic operators. Thus, crossover and mutation for genetic programming differs com-
pletely from the standard crossover of GAs (Figure 2.6). The crossover here proceeds as
follows. First, a crossover point must be chosen in both parents. If we consider the tree as a
graph, it will be one of the edges. This defines a subtree and an amputated parent tree for
both parents. The two subtrees are then swapped. Figure 2.7 illustrates this mechanism. It
is usual to predetermine a probability of picking a terminal as the subtree to be swapped.
This is due to the fact that if the average arity of the non-terminals is a, then the ratio of
non-terminals to terminals in a full tree tends toward ﬁ, thereby implying a high proba-
bility of picking a terminal, which in terms of evolution is not a good strategy as it assumes
a correct global structure of the tree.

This crossover technique implies a fundamental property about the language chosen to
be evolved. It has to be syntactically closed. If we are to find a numerical approximation

28 Cellularity, Ontogeny, and Evolution

Figure 2.7 The two parents P1 and P2 give the two children C1 and C2. The dashed
lines show the subtrees resulting from the crossover points (the black arrows) involved in
the creation of C1 and C2. Here, we can see that if we take 0 for False and 1 for True,
we have a syntactically closed language. Subtrees such as (OR (True,...)) which could be
simplified as True are typical of unused genetic material (in the biology analogy, non-coding
DNA).

of a function and we choose R as the set of terminals and (4, #) as the function set, then
it will naturally be closed as we are working in semigroups. Nevertheless, if we include
division we will already be confronted with the problem of division by zero. The solution
usually adopted in this case is to define a meta-function, DIV, which returns a predefined
result when given zero as argument. However, if we extend the language to more complex
instructions such as Boolean operators and conditional branching, the problem of syntactic
closure appears in its full-blown form. There are two main strategies to solve this. The
first is to render the language artificially syntactically closed. For instance all functions may
return an integer and take an integer as argument. The advantage of this solution is that
it is easy, simple, and leaves complete liberty to the genetic programming algorithm, the
drawback being non-nonsensical crossover. The second strategy is to define syntactically
closed subgroups of the language. For instance, Boolean or arithmetical subgroups, and
then modify the crossover operator so that it picks two subtrees of the same subgroups.
The advantage of this method is a more meaningful crossover. The drawback is, of course,
the complication of the global algorithm but also, for certain researchers, the interventionist
approach. This second method is usually called strongly typed genetic programming (See
Montana [134]).

Mutation in GP consists in choosing a subtree from the selected individual randomly,

2.4 The Evolutionary Paradigm 29

removing it, and replacing it by a new randomly generated subtree. The method of genera-
tion is usually the same as for the parent: grow, full, or ramped half and half. Of course, the
depth of the subtrees is chosen in accordance with the maximum depth. Actually, it hap-
pens often that this maximum depth is chosen at random in a pre-specified range. Hence,
even if the method is ‘full’, a mutated tree may result in a non-full tree if the depth of the
new subtree is not in accordance with the depth of the original parent. Crossover is rarely
constrained (except for special problems) to maintain the fullness of the offsprings, and thus
the full approach only influences the original population. Both these genetic operators tend
to create bigger and bigger trees. This problem is called tree bloat and will be treated below.

Automatically Defined Functions (ADFs) extension to GP

An interesting extension to GP, and the only one we are going to talk about, is Automatically
Defined Functions (ADF). The goal of this extension is to create building blocks, which once
evolved, are left untouched. It is somehow in the same spirit as strongly typed GP. They
both intend to create more meaningful genetic material recombination, either by recombining
blocks of the same type or by evolving functional blocks. ADF were first introduced by
Koza [101]. The idea is to add procedure call to the language set of the problem, and
evolve simultaneously but separately both the caller and the callee. To do so, two types of
functions, ADFs and ARGs, are added to the language set of the problem. ADFy,...,ADF,,
are the names of the procedures, where n is decided at the conception of the language set.
The ARGs are just here to specify how many arguments the ADFs take. Hence, when we
apply crossover to two trees, the ADFs appears as monolithic, unbreakable blocks in the
main tree, while at the same time it is possible to breed the two trees defining two ADFs.
There is a double crossover taking place.

This method gave excellent results on a number of problems'?. It was further developed
in 1996 by Koza and Andre [102] to permit dynamic adaptation of the ADFs during evolution
and thus to limit further the user pre-specification of the system. It is interesting to note
that, though this is the most common, this is not the only method to automatically define
procedure, automatically define constructing blocks. Rosca and Ballard [165] proposed in
1996 a set of heuristics that evaluates the usefulness of all the subtrees in the population and
creates automatically procedures from the most useful ones. Lee Spector in 1996 [193] intro-
duced a variation of ADF, called ADM, Automatically Defined Macro, which reevaluates the
arguments each time; this is of particular import when this evaluation either changes with
time or modifies the external environment. Finally, to conclude this paragraph on ADFs, we
may evoke the claim of Angeline and Pollack [11], that GP automatically discovers effective
modularization of the evolved programs and thus renders ADFs superfluous.

The bloat problem

There are many issues concerning evolutionary techniques in general, the main one being,
as we saw when we exposed the schema theorem, why it works. In this paragraph, I would

10 Actually, the Genetic Programming II book [101] by Koza is a catalog of problems where ADFs
were used efficiently.

30 Cellularity, Ontogeny, and Evolution

like to concentrate on an important and well-studied problem: bloat. This problem is not
GP specific and affects any evolutionary algorithm working on variable-length structure.
However, GP being, by far, the most renowned and popular algorithm of this type, and the
one used in this thesis (see chapter 3), I will treat it in this context.

Bloat is the uncontrolled growth of an individual’s genetic material. More exactly, it is
uncontrolled growth with no gain in fitness — a prejudicial growth. It was first noted as
a serious problem in 1980 by Smith [189] in the context of classifier systems. Concerning
GP, Koza, in his 1992 book already mentioned bloat, but as the field developed, the issue
became more pregnant and thus the subject of many studies [10,20,129], especially by
William Langdon [107,108|. These latter theoretical studies have shown that when the size
of the trees reaches a critical size, growth tends to be quadratic, which very quickly stalls
the evolutionary process. '

Even if intuitively the occurrence of bloat, given the crossover techniques used, is not
completely surprising, there is no clear theory about its causes. Sean Luke has quite rightly
identified 4 main theories(see [123], ch.9), that I will expose now. The first one, chronologi-
cally, presented by Tackett [201], argues that the numerous useless subtrees, called introns
in reference to non-coding DNA, that are stuck to useful subtrees will travel with them
through the generations and propagate through the population, thereby accumulating in
time. Tackett argued that the more selective pressure you have, the more code growth you
get. Introns are also involved in a second theory. This relies on the fact that crossover
is as constructive as destructive. Hence, the more ineffective code a good individual pos-
sesses, the less destructive crossover may be, and thus the less brittle the individual will be.
It is interesting to remark that Tackett disagrees with this “risk-aversion” theory, usually
termed as defense against crossover, which was independently defended by Blickle [20] and
Nordin [142]. Removal bias, a third theory introduced by Soule and Foster [192] is basically
based on the same argument as the second one, namely crossover defense. It focuses on spe-
cial kind of introns, inviable code. Inviable code is code that cannot change an individual’s
fitness or function through crossovers. Finally, the fourth theory, diffusion, developed by
Langdon [109], who also supports the three others, is not based on introns. He argues that
there are more large fit trees than small ones in the whole space of possible trees. But, as we
always start with very small trees (if we are to consider the whole space of possible trees),
the size inevitably tends to augment as the search goes on, simply to reach equilibrium.
None of these theories is improbable, but none neither reached a consensual acceptance.

Though the causes are unclear, solutions exist. There are several methods to limit
bloat. We can divide these techniques into prevention and cure. As to the first, we have
depth-limited tree generation, and its corollary, depth limited mutation. A more radical
prevention is to change the structure of GP. Here, the introduction of the child or the parent
depends on which is the best, the shorter being chosen in case of equal fitness. In-between
prevention and cure, we have fitness pressure on size, where bigger trees are penalized. This
last method attempts to withdraw the relative advantages of resisting destructive crossover.
Finally, on the cure side, we have a radical method: forbid any trees with a size bigger than
a predetermined depth-limit, which, unfortunately, tends to limit the space searched to the
structure of the bigger trees existing when the limit is reached. Thereby, the effectiveness

2.4 The Evolutionary Paradigm 31

of GP tends to nil. However, another dire method, code editing, has proved effective. The
idea is to remove automatically the introns, and simplify the existing code. This method
combats bloat efficiently, but should be used with precautions to maintain the balance
between exploration and exploitation. Over-simplifying the tree inevitably leads to very
poor search results.

As we see, there is no definite theory for the causes of code bloat and thus no cure. The
heart of the problem may be that code bloat is an inherent part of artificial evolution and
that limiting it, however useful from a practical standpoint, is just harmful to the global
efficiency of the algorithm. Tentatively, one could pursue the analogy with natural evolution,
and consider the great percentage of non-coding DNA as natural bloat. We will come back
to the issue of code bloat when confronting the problem in chapter 3.

2.4.3 Other evolutionary techniques

To conclude this section on evolutionary computation, I will complete our tour by having
a look at what is considered as the other two main strands of evolutionary computation.
We detailed GA and GP that are used in this thesis. They allowed us to understand the
fundamental principles of evolutionary computation in general. We now look briefly at the
other two models, Evolutionary Programming (EP) and Evolution Strategies (ES).

Evolutionary Programming (EP)

EP was proposed by Fogel in 1962 [54]. He proposed that intelligence was the ability to
make predictions and translate these into suitable responses to attain a certain goal. He
deduced from this proposition that the classical heuristic approach to Artificial Intelligence
was flawed, and remarked that evolution in nature is what produced this sort of adaptability,
this sort of ‘intelligence’. Fogel’s first experiments, described in [55], were on finite state
machines. He generated at random a population of finite state machines (FSM), and then
repeatedly mutated the current population, evaluated the mutants, and then selected among
both originals and mutants for the next ‘generation’. This evaluation, the fitness measure,
was the ability of the candidate FSMs to predict the desired output. This process was
in perfect concordance with his first proposition. EP has been expanded to any sort of
genome, its particularities being no sexual reproduction and selection after mutation. EP is
used nowadays with success on numerous problems, notably neural-network training. Being
based only on mutation, EP somewhat contradicts the usefulness of building blocks evoked
in the ADFs section. Nevertheless, the current trend is to attribute to EP good capabilities
on problems different than those on which GA or GP work well.

Evolution Strategies: (ES)

Evolution Strategies were first conceived in 1964 by Bienert, Rechenberg and Schwefel [159],
but the archetype of ES that was later to be adopted was defined in 1973 {160]. This 1973
version of ES proceeds as follows: an individual a consists of two elements, Z € R", and
o € R". £ is mutated by adding a vector of random independent normally distributed
values with mean 0 and standard deviation o. If the new mutant vector Z’ is better, i.e.,

32 Cellularity, Ontogeny, and Evolution

optimizes a certain pre-defined function f : R™ — IR, then it replaces the old one Z. As such
the system was not a novelty. As Schwefel [172] pointed out, there were already forerunners
in the late 50’s. However, Rechenberg introduced the idea of mutating & by increasing it,
if over a certain number of steps, the mutations of ¥ were successful more than 1/5 of the
times, decreasing it otherwise. Hence, each individual carries its own standard deviation, its
own genetic operator in some genre. Later on, the selection-replace scheme was extended to
(u+), where p parents generate A offspring, and then y individuals are selected among the
u+ A candidates. The earlier scheme was thus (1+1) ES. The modern forms of ES include a
more subtle set of parameters controlling the mutation, rather than just the deviation vector
& and usually, beyond mutation, a certain crossover between two parents. That crossover
operator, when applied to vectors, is either done discretely, as for GAs, or, intermediately,
in which case the values z;, 0; are linearly combined.

To understand things, you have to see them develop.
Aristotle, Metaphysics, X.

Chapter 3

Phuon: An Evolving, Ontogenetic
System

3.1 Introduction

In this chapter I present an original cellular system developed for this thesis, named Phuon.
The main motivation behind this project was to go beyond classical cellular systems, such
as cellular automata. As we will see in the following chapters, CAs are powerful while
remaining conceptually very simple. However they lack adaptability, and are highly prone
to synchronization and general failure. The idea here was to add ontogeny to cellularity,
growth and development being means of adaptation and thus robustness.

In the first section, I detail the motivations behind the conception of Phuon. I also
overview the general principles of the model and relate them to some inspiring works about
cellular systems exhibiting some similarities.

In section 3.3, I detail the implementation of Phuon. This is not a technical description
as such, though many technical details will be given. This section is rather an explanation
of the inner workings of Phuon, where I discuss the questions surrounding such a system,
including synchronization and growth.

Section 3.4 finally presents the results obtained with Phuon. I will explain the two
main tasks on which successful solvers were found, and demonstrate their robustness and
adaptability qualities, or lack thereof.

These results are limited and consequently the concluding section, 3.5, will be a discus-
sion of the problems encountered, the limits and the capabilities of Phuon.

3.2 Motivations

Cellular interactions are at the foundation of the complex phenomena of life. Kennedy and
Eberhart even argued in their recent book, [95], that human intelligence and intelligence in
general derives from “social” interactions, i.e., from the group. While not going this far, as
I will show in the forthcoming chapters, even the simplest models of interactions, such as
Cellular Automata, are capable of generating complex emergent behavior from simplicity.

33

34 Phuon: An Evolving, Ontogenetic System

However the capabilities of such simple models are limited and so is the global behavior to
be expected. As we saw in chapter 2, many researchers have in recent years concentrated
on more complex models, to study biological, sociological or computing problems, [13, 51,
90,97,203], to cite but a few.

The question when one sets to study emergent behavior in cellular systems should be, in
most cases, what for? The general aim here is to get adaptiveness and robustness through
cellularity. However, these properties do not come per se with cellularity. The absence
of global control avoids a sensitive point whose failure is inevitably fatal to the system,
and local interactions create good conditions for adaptation. On the other hand, as a
counterpart, cellular systems require sophisticated interactions to gain self-organization and
their very decentralized nature may render any subpart as important and as vital as the
global controller of a centralized system. One means to create adaptiveness and provide
reconstruction after failure is ontogenesis. One may wonder how growth can be a factor of
adaptation? I use growth here in the sense of growth in nature: a process that depends on
environmental factor and as such is adaptation'. As a historical aside, it is interesting to
note that growth is somehow a characterization of life. When pre-Socratic philosophers had
to chose a term for the concept of nature, as opposed to the Texve (Techne), to what was
man-made, they called it dvoer (Phuses), which derived from ®vev (Phuein), To grow. And
however strange, this is still a rather good definition. What are self-replication, reproduction,
self-reparation, if not growth, if not self-production. Crystals grow, one may even remark
that technically it is a growth that changes according to the environmental conditions, but
they miss the essential counterpart to growth, and that is death. In homage to ancient
thought, the system presented below has been called ®vwv, (Phuon), the growing one.

Choosing between enough complexity to get interesting global emergent behavior and
enough simplicity to still be able to talk about emergent behavior ([164] and references
therein) is a complex task. The main model for this work was Cellular Automata. The aim
here is to go beyond CAs, but they were the starting point and the base for reflection. Like a
CA, this system is a spatially extended model discrete both in time and space. However there
are two major differences, the first one in the dynamics and the second in the computation
unit. Here the dynamics is asynchronous, and each cell is updated one after the other in
order or randomly. They do so very briefly so as to mimic a sort of parallelism, but there
is no perfect synchronization. For the second point, the cell we consider is more complex
than a CA cell. Besides, I divided the system into two layers, one active (the cellular layer)
and one passive (the environmental layer). This is only a particular point of view of the
system, and it may have been seen as a single layered system (though the mapping is not
obvious). This secondary view point has been adopted for CAs many times, for instance by
Reggia[161]. Though CAs were the major starting point they were not the only source of
inspiration. Most of the works? presented in the ontogenetic section of chapter 2 influenced
this work. Here I would like to point out the works of Taylor [202,203] which are quite
similar in the topology and the dynamics, keeping the system simple, in the sense of discrete

1Tt is interesting to note that, in a different context, Lee Spector [194] proposed an evolving
system capable of adaptation at run time that he called ontogenetic GP.
?Basically the work before 1998.

3.3 A Detailed Description of the System 35

time and space. Nevertheless contrary to our system, this work concentrates on the study
of the system in itself as a model of the early chemistry of life and has no other aim than
itself. The work of Furusawa and Kaneko [62] on developing cellular systems aiming at
cell differentiation was of interest not for the design of my system but rather as a good
overview of the possible modeling of cell growth, and the problems linked with it. This
model again, as all cellular developmental models to date, is only studied in itself. Finally
the work of morphogenesis via developmental cellular systems of Hugo de Garis [68] is very
close to Phuon in many respects: both time and space are discrete, and this model is based
very closely on CAs. However there the cell possesses only a very basic internal program. I
should point out that this is one of the only works that I know of where the aim was not
only the study of the system in itself. In Phuon, the aim is not to evolve the system for
_itself, but rather to evolve cells that through their development will solve problems in an
adaptive and robust manner. So actually what we are seeking is a developmental system for
problem solving.

The problem with CAs and their likes is the lack of a mathematical framework or any
other systematic means to map a desired global, emergent behavior onto the necessary
local behavior. In Phuon, as the system is much more complex, this task becomes perfectly
impossible systematically. One way to avoid this impossible design is to search automatically
the whole space mapping every genotype to every phenotype. Unfortunately exhaustive
search is out of the question given the size of the search space. This is why I make recourse
to evolutionary strategies to find the proper internal cell program that would develop into
solving the desired problem. So in this project one has to distinguish two phases of research:
the evolutionary phase and the simulation phase. The former is there to find a good solution
to a problem, the latter is to exploit this solution, i.e, to see the emergent global behavior. In
the detailed description below I shall first begin by the developmental system, the core and
soul of Phuon. This phase is the only way to map a genotype to a phenotype, thus it is a
necessary preliminary to understanding the evolutionary phase that will then be presented.

3.3 A Detailed Description of the System

In this section, the Phuon system will be detailed. I will present every important choice
of implementation. This will also be the occasion to discuss the choices made. This pre-
sentation will be divided in two subsections: the developmental system and the evolutionary
engine. The developmental system is the core of the project. As stated earlier my aim is to
evolve the internal program of the cell so that it develops into a consistent organism, poten-
tially able to solve a problem. Hence, this part is really what determines the “physical rule”
of the system, physical in the most general sense, that is, including the biology of the world.
It determines what a cell can and cannot do, the environment, what are the interactions,
etc. The second subsection is concerned with evolution. It depicts the parameters chosen
for the evolution process, and more generally raises the problematics related to the artificial
evolution of the system.

36 Phuon: An Evolving, Ontogenetic System

3.3.1 The Phuon developmental system

Phuon can be viewed as a two-layer cellular system. A passive environmental layer, and
an active cellular layer. I will first present the former briefly and then describe the latter
at length. In the second part, I will first explain the cell globally, then its language and its
growth, to finally conclude with the question of synchronization.

The environmental layer

The environment is a simple 2D square grid of size n? (In the example of subsection 3.4.1,
n is 100). Each square is denoted by its coordinate (x,y) and a state s, where s a positive
integer. On every square of this layer at most one cell of the cellular layer may lie. It is a
passive layer but not a static one: the cellular layer can alter the state. Topologically, it is
bounded and finite (thus, not toroidal). The environment is thus defined as the mapping
I A{(z,y)|z,y € (0,..,n)} — IN. The original mapping is the data input to the problem.

An Environment Square, of
coordinates X;, Y,

Figure 3.1 A view of the environment layer in Phuon.

The Cellular Layer

A population of cells develops over the environmental layer. This population of cells is called
the cellular layer. As every cell is exactly over one environmental square and every environ-
mental square is below at most one cell, it is conceptually easier to see the cellular layer as
composed of void and cells, thus making it isomorphic topologically to the environmental
layer.

The cellular layer is the active layer of the system. One may say the “living layer”, that
will through its activity solve a given problem. The environment, at least at the start of
the experiments, encodes the data that depends on the given instance of the problem. A
germ cell (or a few germ cells depending on the problem) is placed on the environment and
will through its functioning develop, interact with its daughters and the environment so as
to finally solve the given problem. The results presented in section 3.4 take this cellular
layer to be the solution to the given instantiation of the problem. However, it is perfectly
imaginable that the modified environment at the end of the run will be the result for other
kinds of problem.

3.3 A Detailed Description of the System 37

To understand its workings, let’s first describe the cell and the then its dynamics.

What is a cell ?

The cell is the fundamental unit of the system. It is the only active element and it is
through its functioning and multiplication that the system will eventually solve the given
problem. As exposed earlier our goals were cellularity and ontogeny. The first of these
terms implies that there is no global control, that globality may emerge only through local
interactions. Hence our cell only interacts with its direct environment. The second term,
ontogeny, implies some developmental mechanism. This is done both explicitly and implic-
itly. Explicitly the cell can duplicate itself. Implicitly, just as biological cells specialize and
abandon their totipotent status, here our artificial cell may specialize irreversibly in time.

Figure 3.2 An overview of the cell organization

Interactions

The general architecture of the cell is characterized by three objects: a state, an in-buffer
and a program (Figure 3.2). The program controls all the activity of the cell and will be
detailed below. As for the ‘state’ and the ‘in-buffer’ they are the results of our choice for
interactions. Many questions arise when considering interactions, but they may be summed
up as two main ones: What information may a cell exchange? And is the exchange passive
or active? In Cellular Automata, the information exchanged is the state of the cell, and the
communication is passive, that is, a cell reads another cell’s state, but does not exchange
information as such. Here, the ‘state’ is the only information available to the neighbor cells.
However, this is different than CAs, as it is set by the cell ‘voluntarily’. So it may be a
functioning state as for CAs, but it is not necessarily so. The second kind of information that
cells may exchange in Phuon is through the ‘in-buffer’. Any cell may write to the in-buffer
of any of its neighbors. Then, the data may be read by the receiving cell. So its a doubly
active process. It is noteworthy to say that the in-buffer is only readable by the owner cell.
Technically the information exchanged in both cases is a positive integer. To continue the
CA comparison, the numbers exchanged here, through the ‘state’ or the ‘in-buffer’, are not
bounded a priori, though obviously it is de facto bounded. So these exchanges may only
occur in a local neighborhood. This neighborhood is defined as its four direct neighbors
(a sort of von Neumann neighborhood). Finally the last kind of interaction is indirect and
through the environment. Each cell may read or write its own environmental square. As we
will see in the next paragraph the cell may move as a result of other cells’ replication. So
another cell may later find itself on that modified environmental square.

38 Phuon: An Evolving, Ontogenetic System

Ontogeny

As hinted above, the ontogenetic part of the cell is double, both implicit and explicit.
As specialization may only occur as an emergent property of development, here I will only
present the explicit ontogeny of the system, growth and death. The cell can duplicate itself.
A growth by scissiparity, one could say, to pursue the biological analogy. This replication
is done voluntarily and is the result of the execution of an instruction of the cell’s internal
program. The child cell is created in a chosen direction above an environmental square
next to the one where the parent stands. There are eight possible directions. (see Figure
3.3.a). A problem appears when the desired reproduction site is already occupied. In real
cell replication, the new cell makes its way by pushing up the existing cells. I dealt with
this problem in the same way, though the result is a bit more extreme. Here we have a
two-dimensional discrete space, so when a cell is created in an occupied space, that older
cell is pushed forward in the same direction. If that place is also occupied, the process is
repeated until the border of the layer is reached. As our environment is limited in size, it
made no sense to make it toroidal. So a cell that happens to be pushed over the “edge”
of the grid is.destroyed (see figure 3.3.b and 3.3.c). If there is a way to grow, there must
be a way to die. As pointed out in section 3.2, death is as much a part of the ontogenetic
process as growth. This instruction is equivalent to suicide. This instruction is all the more
necessary as in a first version of Phuon the program was read forever in an infinite loop.
Thus voluntary death was the only way for the number of cells to decrease. Secondly, and
principally, if we desire ontogeny to be a means of computation it seems necessary that
dying should happen voluntarily at any time during the execution of the program, as part
of computation and not as a fatality.

These actions have been encoded into a language that is described in the next paragraph.

& Cell
& Mother Cell
(O Daughter Cell

=2
Z e

3 lme | 4 Z

QS
W

o

(a) (b) (c)

Figure 3.3 The Cell reproduction: In figure (a) we can see the 8 possible reproduction
sites. In figure (b) we see the cellular layer before the mother cell (the scaly cell) creates a
daughter cell in direction 4, and in figure (c) we see the results with the older cell C being
pushed out of the grid and thus sacrificed.

3.3 A Detailed Description of the System 39

The program

The program of a cell is a list of simple instructions, encoded as a basic register machine
assembler. Table 3.1 presents all the instructions, with their arguments and actions. It
encodes the behavior of the cell. A certain number of instructions are there for interactions
with the environment layer and the neighbor cells, in the form of Reads and Writes. A special
instruction SPLIT allows for cell duplication. Its counterpart DEATH kills the cell. Besides
these instructions which have been discussed above, there is one more ‘action’ instruction and
NOP. The operation NOP is necessary for synchronization between cells, to create some sort of
“waiting for results” instruction. Beyond action instructions, there are a number of control
instructions. They appear in the assembler language as the branching instructions BZ, DBNZ.
However to understand what these really mean, I have to say that this assembler language
is designed and used only to facilitate asynchrony. Our cellular system is partially or totally
asynchronous. I am going to come back to this question in the paragraph on the system
dynamics. However, to simulate this asynchrony, we need some sort of multitasking to switch
between cells program execution. To do this, Phuon uses this pseudo-assembler language.
In effect, this language is totally linear. Hence if the program counter and the registers
are saved, any computation may be stopped anywhere and restored easily. Conceptually,
however I designed the language at a higher level. At that level, it may be represented as a
tree and this is the representation I will use quite naturally for the evolutionary engine. This
representation is exposed in section 3.3.2. So conceptually, rather than branch, the control in
the language comprises conditional expression, of course, If...then and if..then...else, and also
a Repeat loop. These control instructions necessitate Boolean operators such as comparison
and logical operations, which are thus also part of the language. Addition and multiplication
operators were naturally added to allow some sort of simple computation. This language
allows for complex and sophisticated behavior, the downside being a rather large search
space. Evolved trees, as pointed in the background chapter, may be meaningless. Though
I have developed specific genetic operators (see section 3.3.2 for details), it is still possible
to have trees of the form “IF (false) Then...”. It is useful to keep such genetic material for
the sake of diversity, but when compiling into the pseudo-assembler I simplify the trees as
much as possible without changing the semantics.

Instruction Arity | Arg. | Comment

code type

DEATH 0 The cell commits suicide.

NOP 1 CST | The cell does nothing for n cycles, where n is specified

' in the constant arg.

WRITEENV 1 REG | The environment square on which the cell is takes on
the value in the register specified.

WRITEO i REG | The state of the cell takes on the value in the register
specified.

WRITEz 1 REG | where z is one of E,W,S,N. Writes the value in the reg-
ister specified to its East,West, south,North neighbor
respectively.

Continues »

40 Phuon: An Evolving, Ontogenetic System

» Conitinued

Instruction Arity | Arg. | Comment

code type

SPLIT 2 REG | Create a new cell in the position specified in the first
register whose initial state is the value in the second
register.

READENV 1 REG | Puts the value of the environment square on which the
cell is in the register specified.

READO 1 REG | Puts the value of its own state in the register specified.

READB 1 | REG | Puts the value of the in-buffer in the register specified.

READz 1 REG | where z is one of E,W,S,N. Puts the value of the re-

spectively East, West, South and North neighbor in
the specified register. Puts 0 if there is no neighbor in
that direction.

CONST 2 | R/C | Puts the value of the constant in the register specified.

SUM,MULT 2 REG | Sums/Multiplies the values of the two registers, and
puts the result in the first register.

GT, LT, EQ 2 REG | Returns True in the first register if the value in the first

register is greater than (less than , equal to, respec-
tively) than the value in the second register. Returns
False otherwise.

AND,OR,XOR 2 | REG | Returns in the first register the results of the logical
’and’ (or, xor, resp.) between the value the two registers

specified.

NOT 1 REG | Replace the value of the register by its logical negative.

BZ 2 R/C | Branch to the relative address specified by the constant
if the register is zero.

DBNZ 2 | R/C | Branch to the relative address specified by the constant
if the register is NOT zero.

B 1 CST | Branch unconditionally to the relative address specified
by the constant.

END 0 Depending on the version, either the program termi-
nates and the cell dies, or it resets the PC and the
registers.

Table 3.1 The register machine instructions. For the argument types, REG denotes a
register, CST a constant and R/C both types. True is coded as 1 and False as 0.

The dynamics of Phuon

In the real world, true parallelism is the standard at every level. Galaxies work in parallel,
planets work in parallel, organisms work in parallel, cells work in parallel, atoms work in
parallel. Each entity has an inner movement or follows external forces, but none requires
some global external processing power to keep going. Sequentiality is a characteristics of
computer simulation. When one sets to simulate parallelism on a conventional computer,
it is impossible to create an exact image of parallelism. So the question is what synchrony
or asynchrony to apply when evaluating each entity. Traditionally CAs for instance are

3.3 A Detailed Description of the System 41

totally synchronous. This hardly reflects any real systems though it does provide a back-
ground prone to mathematical analysis®. As the aim of this system is to gain robustness,
an asynchronous model was the obvious choice.

Two models of asynchrony were implemented in Phuon, a regular model and fully asyn-
chronous model. I define a regular asynchronous model to be a deterministic model. Tech-
nically, in this first model, every cell present at the beginning of a time step is run for a
fixed number of instruction cycles in order of their creation. A time step is the update of
every cell once. The cells created at the present time step are updated for the first time
at the next step. Thus these cells may remain inactive for a long time if there are already
many cells, while they are physically present in the cellular layer at creation. Thus this
deterministic model allows for repetitive experiment, but does not reflect real parallelism.
The second model is fully asynchronous. All cells are updated individually, but the order
is totally random and the number of instructions executed at each update is also random
within a small range. This model is thus much closer to full parallelism, however it is not
really parallel as no two cells may be updated at the same time step. As we will see in the
results section, this model, while more satisfying for the mind, seems to impair basic cell
communication.

STEP O STEP 1 STEP 2 STEP 3

)
© @

CRE®

OREEEEO

® SPLIT 10 @® SPLIT10 ®® SPLIT10 OO @ SPLIT10
SPLIT 6 0 © SPLIT 60 ® SPLIT60 ® ® SPLIT 60
SPLIT 3 0 SPLIT 3 0 ©® SPLIT 30 @® SPLIT 30

©

Figure 3.4 An illustration of the deterministic synchronization between the cells. The
number on the cells is their id, and represents their order of creation. They are placed next
to the program instruction they are about to execute. The number of instruction per update
here is 1.

As said earlier the program is expressed as a tree for the evolutionary algorithm (See
section 3.3.2), and is compiled into a simple assembler program for the simulation phase.
Each update of the cell is thus a precise number of instruction evaluations in the deterministic
case or a random value within a range for the non-deterministic case. For both the (n;/s¢)
number of instructions per step (a step being the evaluation of all the cells created before
the step begun in that model) is an important parameter. The smaller the n;/s; the more

3In chapter 6, I study asynchronous CAs.

42 Phuon: An Evolving, Ontogenetic System

aware of the environment the cell is, the larger n;/s; the more sophisticated the program
may be. For instance if we perform 1000 steps per evaluation, then n;/s; implies at most
1000 instructions executed which in the compiled assembler remains a rather basic program.
So this parameter is a sort of measure of what percentage is supposed to be computed via
interactions and what percentage is left to a sophisticated complex and poorly interactive
cell. T tested values n;/s; of between 1 and 1000.

One can see in figure 3.4 an example of the execution of a simple program with the
regular asynchrony mode.

3.3.2 The evolutionary engine

As exposed earlier, there are two motivations in using evolutionary computation techniques.
The first one is practical. It is always very complex, and most often mathematically in-
tractable to devise algorithms for complex systems. The second one is that if the aim here
is to develop problem solvers, the questions related to the study of self-organization are also
of interest. Evolutionary techniques often propose unexpected means of self-organization.
Given the choice that a cell would be controlled by an internal program, Genetic program-
ming (GP) was the natural evolutionary paradigm to adopt.

But using an evolutionary strategy does not come for free, it introduces many parameters
to tune. The search space here being huge and the control sought being complex, the
evolutionary tuning is actually central to our work. The basic framework of the algorithm
remains unchanged through our experiments and is based on the GP paradigm presented in
chapter 2, but three functions which are of crucial importance for a successful search were
modified for Phuon : Tree Generation, Tree mating, and Tree mutations.

I am now going to describe the general framework and then each of these three specific
functions. But first let’s describe what is the concept of a world in Phuon and then the
language used for the algorithm.

What is a world ?

What do we evolve 7 Obviously we evolve the program of the cell, but it is conceptually
better to see the population as a population of worlds. To pursue the biology analogy,
evolution takes place on the genotype, but what is “selected” is the individual behavior in an
environment, the phenotype. A world (see Figure 3.5) here is a program, in both its forms
(evolvable and compiled), an environment, and a developed cellular layer. It includes all
these elements as we may calculate our fitness based on any of these, for instance, we may
calculate a penalty based on the length of the compiled program, a bonus for a particular
final configuration of the environment and of the cellular layer. This precision is important
in that the mapping from genotype to phenotype is rather complex here. If we mate cell
programs, we are not mating cells (as in the cellular algorithm presented in chapter 5). Each
cell multiplies and behaves in a different world.

3.3 A Detailed Description of the System 43

EF S [F

Worldl Worldz ~ World3 "Worldn

o

SETREADENV REGO

BZREGO#M
SETREADWESTREGO
SPLITREGO

BR

DIE

Environmental layer
END

N /

Figure 3.5 A population of worlds

General framework

The evolutionary paradigm used is classic Genetic Programming. A number of programs
as tree structures are generated. They are then compiled and run, each of them in their
own world, following the simulation phase described in section 3.3.1. The fitness is mostly
calculated during this simulation phase. I used for almost all experiments a truncation
selection where we select the top half of the trees which are mated to produce 95% of the
population. A high elitism rate is also employed as the top 5% are copied from one generation
to the next. This selection combined with elitism lead to a rather high convergence so the
mutation rate is also high comparatively to what is found in the literature to be established
at 5%.

The general settings where established after a core of initial experiments and were seldom
changed afterward. Elitism is undeniably essential to Phuon. Each and every experiment
run without elitism failed to find good individuals. On the selection mode, I also tested
ranked selection with a medium and high pressure (8 = 1.5 and 8 = 1.8) which gave
no significant difference with truncation selection which was finally adopted. These results
however should be mitigated by the fact that they are the results of about twenty experiments
on the food foraging task.

The cellular language

As said earlier the assembler language is the result of the compilation of the tree structured
language used for the evolutionary algorithm. Actually the language was designed in the
from presented here. This design has been influenced both by the simulation phase and
by the evolutionary phase. The former is of course the most important, influencing the
essence of the language, the inner semantic. The latter influenced the syntax. The language

44 Phuon: An Evolving, Ontogenetic System

is divided into three types of instruction, which will be useful for the genetic operators as
we will see below. These three types are: Statement, Arithmetic and Boolean. The global
structure of the language is a specially shaped tree. Each Arithmetic or Boolean function
is a standard GP tree, however, the Statement function take its arguments as defined in
table 3.2, plus the next Statement. Hence it is more a list of trees rather than a tree (see
Figure 3.6). Here is now a description of the high-level language.

Statement type: This is a kind of generic type that groups many different functions which.
all have two characteristics in common: ~ they are actions and — they do not return
any value. They are described in table 3.2(a) This is the top level type, and the trees
to be evolved are a list of ‘statements’. A typical tree may be seen in Figure 3.6. The
instructions have their exact counterpart in the assembly language, so their meaning
is evident from table 3.1.

Statement Type Instr. Arithmetic Type Instr. Boolean Type Instr.
Instr. Arity | Type Instr. Arity | Type || Instr. | Arity | Type
Die 0 - Sum 2 Al1,A2 || > 2 Al,A2
Nop 1 A Mult 2 A1,A2 || < 2 A1,A2
IfThen 2 B,S #n 0 - == 2 Al1,A2
IfThenElse 3 B,S1,52 || ReadEnv 0 - - 2 B1,B2
Repeat 2 A, S ReadO 0 - I 2 B1,B2
WriteEnv 1 A ReadB 0 - && 2 B1,B2
WriteO 1 A Readz 0 - NOT 1 B
Writez 1 A True 0 -

Split 2 Al,A2 False 0 -

(a) (b) (c)

Table 3.2 The cellular language instructions. The ‘Type’ columns denote the type of the
arguments, where A is for arithmetic, B for boolean and S for statement. It is importnat to
note that the first argument is always evaluated first. The meaning of each function is quite
intuitive. The reader will refer to table 3.1 and the text above for an explanation. Writez
and Readz are actually for instructions with z being any of EW,S,N.

Arithmetic type: All operations of this type return an unsigned integer. The terminals
are either a constant (#n) or the Read functions which allows the cell to see its
environment and the neighboring cells. The constant is chosen at random at tree
generation between 0 and a predefined constant*. The functions are the two classical
arithmetic operations, sum and multiplication. (Modified Division and Subtraction,
so as to remain in IN, were introduced and then removed when it appeared that their
effect was rather detrimental or nil). The instructions are listed in table 3.2(b).

Boolean type: The Boolean type operations return a Boolean, True or False. The mapping
to the assembler language is almost immediate, knowing that || means OR and ~~
means XOR. The instructions are listed in table 3.2(c).

4In practice this constant is often very low, between 10 and 100.

3.3 A Detailed Description of the System 45

Tree generation

At the start of a GA there is classically a random generation of possible trees. The positive
aspect of such a procedure is that no a priori direction is given toward a possible solution.
The negative is obviously the counterpart, we do not partake of the knowledge (or intuition)
we may have about the problem to be solved. The idea, thus, in implementing a special
Tree_generation procedure is to introduce some a priori knowledge.

If (ReadEnv < ReadN)
Then
Split(ReadEnv,3);
WriteO(ReadS);
Else
WriteS(ReadE);
EndIf;
Nop(1);
WriteE(Read(S);

Depthl

Depth2

Figure 3.6 The general structure of the language as a list of trees. The arguments
are linked to the node with plain lines while the next statement is linked with dot-
ted lines. Depthl represents the number of top-level statements. Depth2 represents the
depth of the subtrees which is calculated taking the next statement as any other argu-
ment. For instance here, Depth2 is 3: IfThenElse-Split-WriteO-Read$S, while Depthl is
3: IfThenElse-Nop-WriteE-ReadS.

There are two procedures for generating trees in Phuon. The first one is the classic
random one with the ‘grow’ method. The trees are then generated with the only constraint
to have a size within a predetermined range. Given the structure of our language, there is
actually one defining the limits on the size of the list of trees, and another how deep may
each subtree be (Depthl and Depth2 respectively in Figure 3.6). These limiting factors
do not prevent bloat as we will see®. The second procedure to generate trees follows these
constraints. However, instead of picking the nodes at random with uniform probability, a
bias is introduced in function of the task. For instance, one may classify the instructions
according to some interesting characteristic, e.g., communication (Reads and Writes), size
regulation (Split and Death) and control (Ifs and Repeat). The rest of the operation is
left aside. Then we could estimate a task as highly demanding in communication but
not in growth factor and generate the trees with on average 10% growth instructions, 60%

5This confirms Langdon’s recent works which state that the initial tree size does not influence
bloat,[108].

46 Phuon: An Evolving, Ontogenetic System

communication, and 20% control instructions. I should point out that the experiments I ran,
though not statistically significant, tend to show that except with extreme percentages (10
and 90% for instance), the general behavior of the evolutionary runs did not show noticeable

differences.

Genetic operators: Mutation and Crossover

Classically in GP, Mutation and Crossover are done totally randomly. To do so, it is custom-
ary to make the language subject to evolution semantically closed. Here as False is coded as
0 and True as anything not 0, then making any statement return a dummy positive integer
would have done the trick. Nevertheless, this would lead to rather “dumb” programs with
meaningless expressions like If (Split) Then {Not True}. Thus I modified Mutation and
Crossover in order to make meaningful operations. By meaningful, I mean both making
sensible crossover, but also deriving programs out of the evolutionary runs that are under-
standable by humans. For this, as we saw in table 3.2, I divided the language into the
three types ‘Statements’, ‘Arithmetic’ and ‘Boolean’. Then, for crossover, a node is chosen
totally randomly in the first parent, but is chosen at random in the second parent among the
nodes of the same types. For mutation, the subtree starting at the node chosen randomly
is replaced by a new subtree generated randomly but of the same type. Therefore an If
statement, for instance, will always have a Boolean as a first argument, and two statement
subtrees as its other two arguments. Of course, one may argue that the division could have
been finer, and that replacing a Split with a Write0 does not make much more sense.
However, one should remember that this “knowledge” inserted into the genetic operations
should be limited so as not to prevent unexpected solutions to emerge. This is even truer
when there is no a priori knowledge of what the solution may look like. We always fall
back on the eternal question of Exploration Vs Exploitation. Thus, I voluntarily maintained
that partition of the language to what seemed the minimal acceptable and desirable level.
Leaving still as much liberty as possible to the GP algorithm.

3.4 Results

In this section I present the two main tasks solved with Phuon: Food foraging and Con-
trolled growth. As one may see, these results are rather limited compared to the ambitions.
However, they provided the opportunity to observe some nice properties and limitations of
the system, specifically as it concerns adaptiveness and fault-tolerance. I will discuss, in
section 3.5, the reasons for these limited results after having presented very briefly in this
section the problem of program bloat in Phuon.

- 3.4.1 Food foraging

This task was the first one on which the system was tested, and the task on which it was
the most successful. As we will see, not only several solutions were found but they exhibited
the desired properties of working in full asynchrony and being relatively fault tolerant.

3.4 Results 47

The task

The aim of the task is starting from an undifferentiated zone to explore the environment
and find a pile of food. This pile is modeled as a limited zone on the environmental layer
where the values are different from zero. As we may see in figure 3.7, | modeled it as a large
square with different values. At the start, the cell starts at a random place and should only
develop largely on the pile of food.

(a) (b)

Figure 3.7 In (a), we can see the environmental layer used for the evolution of the Food
Foraging solvers and in (b) the cellular layer after a 100 time steps with n;/s, = 1. Light
blue color in (a) reflects the state 0, i.e., no food.

The main result

For the evolutionary runs, we used the environmental layer of figure 3.7.a. The fitness
evaluation was done as follows: A germ cell was placed at random on the grid, and then
run for a random number of steps between 100 and 150 The pile of food is also placed at
random each time. Here ‘step’ is to be understood in the sense defined in The dynamics of
Phuon paragraph, p. 40. This is done 10 times The fitness is sunmed over the ten times
and was +30 for a cell being at the center of the pile and then it was decreasing by the sum
of x-distance and y-distance to the center of the pile. Thus it was still +10 for a cell at the
border of the pile but rapidly decreasing to large negative values. The world where no cell
was created was given a fixed -1000000, and a world where cells had been created but no
cells were left was given -500000. The n;/s; parameter, the number of instructions executed
at each step for each cell was set to 50. The mode of Asynchrony used was the regular one.
For the general data, the global size of the layers was 100x100, and the maximum number
of cells was 5000. The population size in terms of GP, the number of worlds in other words,
was set at 500.

These evolutionary runs were very successful. A good fitness was reached in about 80%

48 Phuon: An Evolving, Ontogenetic System

of the experiments®, and this with either of the two selection procedures: truncation and
ranked selection. The result of the development of one of the best individuals found is shown
in figure 3.7.b. Its program may be found in the annex A, in section A.1, at the end of this
thesis.

The working principles of the program are hard to grasp. By using GP and a natural
language, for computer people, one of the aims was to gain understandability in the end
results of the evolutionary runs. In this respect, the use of GP has not proven successful.
However, I can say that basically it compares the state of its neighbors with the environment
square on which it stands to decide to split or not and in which directions. Besides at
one point it takes as state the value of its environment square, while never altering that
environment. Actually if one looks carefully at the program, one may realize that it is only
good at covering completely the pile of food while not extending too far from it. Quite
logically it optimizes the fitness, but it is not really foraging. Nevertheless, this should be
mitigated, as it does a rather good job at foraging for other piles if it can start on a pile of
food, as one may see in Figure 3.8.

Regular Asynchrony Vs Fully Asynchronous mode

The specific program presented in more detail here was obtained through evolution-
ary runs using the Regular Asynchrony mode. Other results faring as well in fitness and
reasonably well visually were also obtained when running the evolution with the Fully Asyn-
chronous mode. The interesting fact to note here is that the program studied here works as
well in the fully asynchronous mode. This shows that hoping to gain general synchronization
failure robustness using cellularity is not hopeless, if not guaranteed of course. This also
underlines that the communication between cells is not sophisticated. However, as appears
clearly when looking at the code, it is not nonexistent by far.

On the importance of the n;/s; parameter

As underlined in the general description of Phuon, the n;/s; parameter influences greatly
the outcome of run. Using a more complex environment than the original one (Figure 3.8.a),
we illustrate this change in behavior. In figure (b), we see the program evaluated for a
total of 100 instructions and in (c) after 1000 instructions. One may see in (d) that the
same program, still evaluated for 1000 instructions, but 4 instructions at a time, exhibits a
different behavior as it discovers another pile of food. This is even clearer with 10 instructions
per step, where for still 1000 instructions in total, it discovers 2 more food piles than for
n;/s; = 1. Finally in (e) we can see how the cell behaves with the parameter as during the
evolutionary run. This little illustration of the consequences of this parameter shows two
interesting characteristics of the program found here. Firstly, it backs the idea of asynchrony
robustness. The cells work in a different environment for each variation: the neighboring
cells change all the more between each step as n;/s; gets larger. But secondly, it reveals
the “strategy” for foraging in that case. As n;/s; gets larger, a lot more cells get created at
each step. Hence a particular cell gets displaced a lot farther before being active, thereby
increasing the chance to be on a more distant pile of food. This is particularly clear in figure

().

5The runs being rather long at the time, the statistics are based on relatively few experiments, a
little more than 50 in this case.

3.4 Results 49

() (e) n

Figure 3.8 An example of the differences implied by the n;/s; parameter (in a secure
environment), (a) The environment with several piles of food, at varying distance from one
another, (b) ny/s; = 1, 8, = 100, (¢) n¢/s¢ = 1, 8¢ = 1000, (d) ni/s; = 4, s, = 250, (e)
ni/sy = 10, s, = 100, (f)ng/sp = 50, 8¢ = 20.

Fault-Tolerance of the solution found

One of the motivations for using growth was to gain adaptability and up to a point this
was reached. As we saw, though it was evolved on only one environment, the program found
fitted many. The other motivation, in conjunction with the use of cellularity, was to gain
a certain robustness to failure of the cell. To test this quality, a faulty environment was
devised. This environment is defined as follows: For each instruction, a cell executes the
DEATH instruction instead of the correct one with a probability py. Thus the cell is then
destroyed and removed from the cellular layer. Hence if the number of instructions executed
is n then the probability of failure is 1 — (1 - py)".

The program of Annex A.l was tested in this uncertain environment, and proved suc-
cessful for reasonable values of p;”(below 8%). This confirms that the a priori expectations
of the systems are not unfounded. It is interesting to note that the parameter n;/s; is not
negligible in terms of failure robustness. Basically, it seems that it does not change signifi-
cantly the value of ps for which the program fails. For all the n;/s; tested: 1, 2, 3, 5, 10,
5, and 100, it always fell apart for py = 8. However, the same program copes better for
higher values. If for ny/s; = 1, performance starts to degrade for py = 3, for ni/s; = 50, the
performance is maintained for py = 7. But both fail for p; = 8 and higher. We can remark
that the number of cells when it stabilizes gets smaller and smaller as py increases, which

ps will be expressed as a percentage to make the reading easier.

50 Phuon: An Evolving, Ontogenetic System

seems rather intuitive, but this creates a certain instability meaning that structures like in
Figure 3.9.d, h and i may at some points in time cover less piles of food. Nevertheless, they
do always recover, which does not happen for p; = 8.

DIDDB
wER

Figure 3.9 An example of the differences implied by n;/s; according to the value of
p; in a faulty environment. From (a) to (d) ny/s; = 1, and resp. pr = 2,3,5,7 and

= 500,600, 2500, 3500. As one may see performance is not degraded in (a) but gets
worse from there as py goes up. From (e) to (h) n;/s; = 10, and resp. pr = 2,3,5,7,
and s = 1000,2000,400,400. One can see that with a higher n;/s;, the same program
maintains the same level of performance as in a non-faulty environment, for a higher p 7. In
(i), ng/sy = 50, py = 7, and s; = 700. The 5, given is the first one for which the structure
shown was attained, and no larger structure was ever reached.

3.4.2 Controlled growth

Maintaining its own size at a stable limit is not a simple task in general for any growing
system in which there is no energy limit. In the food foraging task, there was a clear limit
predefined in the environment. Here, the task is to be able to grow first, but then stop
growing through cellular communication. It thus requires much more active interaction
than food foraging. Our tests actually showed that, on the one hand, it was a much tougher
task for evolution and on the other hand the solution found was much more brittle.

The task

The aim of the task is to grow in a controlled manner. For that a unique seed cell is
placed in the middle of a totally empty environment. All the squares are set to zero. After
100 time steps, an organism should have grown to any size that is non-negligible but far less
than the maximum size allowed by the total number of cells and should be able to maintain
an almost constant size.

The main result

The definition of fitness for such a task is not obvious. We are faced with one of those
tasks were it is easy to explain the goal to a human but hard to do so to a computer. To be

3.4 Results 51

precise, it is hard to define it in a way that is not limiting. There are many criteria like the
shape or the size of the organism that are not defined at all. Any shape or size would do.
The fitness is measured in three stages. First, at step 100, the number of existing cells is
counted. If the number of cells is within 20% of the maximum number of cells allowed, the
fitness is set to a very low score L. Otherwise, the simulation is run again for 20 steps. The
fitness of the program is set to the original number of cells*10. Then it is decreased by 10
times the number of cells that are outside a 10% margin of the original count. If there are
no more cells, the fitness is set lower than L. This second stage is performed again at step
200 to confirm. This fitness presents several advantages:— it is very general,— it privileges
large structures over small ones and growth over full death; — finally it allows for non-fixed
sized structures. This last property is necessary in Phuon. The very nature of the system
almost forbids any fixed size structures. In effect, cells die when reaching the end of their
program, so they must be continuously replaced, a bit like our own body cells, and at any
one time it is thus impossible to guarantee an exact number of cells.

(Bgd 1) {a) (b) (c)

(Bgd 2) (d) (e) U}

Figure 3.10 Development of an individual that is able, without any environmental con-
straints, to grow and then stabilize its size and position. The program of this individual
may be found in section A.2. In (Bgd 1) and (Bgd 2), we see the environmental layer at
about the time steps of figure (b) and (e) respectively. One can see the growth from (a) to
(d), (d) being in the first step on the infinite cycle; and three characteristic pictures of its
“adult” cycle (d) and (f).

The evolutionary runs on this tasks were not very successful. Actually, the fitness de-
scribed above is the one with which the best ‘organism’ was found. This individual is
presented in Figure 3.10, and its program may be found in Annex A, in section A.2. Many
other fitness functions were tested, including limiting a special shape or privileging in a first
stage of evolution poor individuals, but none gave rise to good results. Most of the “best”

52 Phuon: An Evolving, Ontogenetic System

programs found were actually cheating by really growing after step 200 (or any other limit
of the different fitnesses). This tends to prove that the task is particularly hard for this
system. | will discuss this point in section 3.5.

The program found is very large and complex. Even the simplified version® turns out
to be totally incomprehensible. This shows that GP is not a guarantee of interpretable
solutions. What is sure is that it uses the environment as a way to “communicate” between
cells. It constructs a structure during the growth period, which it will then use to maintain
a stable size. Actually the dynamics is a short growth followed by an infinite loop of cell
production and death that maintains the organism stable.

Brittleness of the result

Contrary to the food foraging solver that was found, the program of controlled growth
is very sensitive and very brittle. It was evolved with a regular asynchrony mode, using
ni/s; = 50. If any of these criteria are changed it falls completely apart. This is due to
the fact that, during the cycle, once grown, there is a precise timing between the top cell in
blue that breeds in directions 6 and 7 and the bottom cells in pink that breed in direction
0. Thus, if a cell reproduces once more than what its timing was supposed to be, the cells
will not meet for “synchronization” and the top cell will never stop to breed.

3.4.3 An aside: The bloat problem

During the evolution of these two tasks (and many others for which the results were not
as conclusive as the one presented here), the problem of program bloat occurred acutely.
Bloat is not specific to Phuon and is a problem common to many GP systems as we saw
in Chapter 2. From the very first runs, after a few tens of generations, it was not possible
anymore to compile the program in the pseudo-assembler in the space allocated (16Kb).
The first remedy was not on the cause but rather on the effect by simplifying the program
to remove all the unreachable code before compiling it. This turned out to be useful in
terms of computational time (though marginally) but not against program bloat.

L 1 g

- - .',‘T -
I

A

fa) i

il

s b1
&
<
£
S e —
e
— —
e
L)] i

Figure 3.11 The problem of program Bloat in Phuon. The evolution of the tree size
versus the number of steps for two evolutionary runs of the size control problem with the
same parameter. In (a) without fitness penalty and tree-structure simplification, and in (b)
with both these techniques.

5 A version where all the non-reachable blocks, such as If (False), are removed.

3.5 Concluding Remarks 53

There were two efficient solutions found against this problem. One specific to Phuon
which consisted in simplifying the trees themselves when their sizes were too large. This
implied a loss in genetic material but considerably reduced the tree size, which tends to
show that most of this growth is due to introns. The other solution, which was combined
with the first one, was a penalty on the fitness. This is the reason I mention this problem as
it affects the results found by the system. To try to minimize the impact of this penalty on
the solutions found, I devised a technique based on two fitnesses. A primary fitness based
on the behavior of the program was designed as a multiple of 10, while the penalty, the
secondary fitness, was bounded between 0 and -10. As truncation selection was used, this
scheme allowed the selection of good individuals first and then, with the same performance,
short ones. The lower limit of -10 for the secondary fitness was then increased when the
bloat problem tended to be become more pronounced. Figure 3.11 illustrates the use of
these two techniques combined.

3.5 Concluding Remarks

The results presented in this chapter, though interesting, are limited and do not fulfill one
of our original motivations: problem solving. This partial disappointment should not be
deceptive. Phuon produced what it could. The a posteriori discussion of what are really
the potentials and the limits of such a system therefore comes naturally.

The food foraging example seems to demonstrate that such a developmental system can
provide and even favor good qualities of adaptation: adaptation to a changing environment
but also adaptation to faulty functioning. These qualities are attributable mainly to the
continuous cycle of death and birth/growth. In effect, this cycle acts like biological cells
whereby this cycle of death/replacement allows for most self-repair functions. However, as
with natural cells, our system tends to suffer from cancer: cell division rapidly becomes
uncontrolled. The poor results on the controlled growth task in absentia of environmental
guides illustrates this natural disposition of Phuon. Interestingly enough if we look at the
work of De Garis [68], his own system suffers from the same tares. I tried many experiments
that aimed at morphogenesis, but for no shape, be it 'L’, "M’, square, or circle did I manage
to evolve successful cell programs. The reasons for this impossibility are difficult to identify
for sure. In the introduction, I voluntarily left aside the question of the explosion of pa-
rameters in such a complex system as Phuon, but this turned out to be a real problem. As
illustrated with the food foraging example every parameter influences greatly the end-result,
independently of the program run. Moreover, one has to take into account the problems of
the evolutionary algorithm which are not negligible by far. The relation between any of the
parameters is intricate and most of the times impossible to work out. Nevertheless, through
the experiments, we identified some problems inherent to the system. The major source of
problems that seems to stand out is the difficulty of cell-cell communication. This appears
clearly in the morphogenesis task which was only solved through communication, and also in
other (unsuccessful) experiments I ran on problems like the convex hull, the Traveling Sales-

54 Phuon: An Evolving, Ontogenetic System

man Problem or more simply the Bridge®. This interaction problem is due to many factors,
among which the two most relevant seem to be the necessity for active communication, and
the passive move of cells. As noted earlier, (p.37), communication may be passive through
the reading of the state of a neighboring cell — however this state does not necessarily repre-
sent the state of the computation in the cell and must be set actively by the cell read — but
is often active, necessitating the reading of the In-Buffer, synchronized with a meaningful
write from a neighbor in this buffer. And this brings us to the other problem: the passive
move. Cells change place because of the replication of other cells. This, combined with the
multitasking, implies that a cell may well execute one instruction, be swapped out, displaced
to a totally new neighborhood, and then execute the next instruction. If that instruction
was in reference to the neighborhood at the previous time step, then its execution becomes
meaningless. Obviously, these two constraints impaired fatally the possibilities of Phuon.

This lack of results implied a major redesign of the system towards much more simplifica-
tion. But then, it appeared quickly that a better understanding of simpler cellular systems
should be gained first before moving forward. This is why all the forthcoming chapters
concentrate on Cellular Automata, the most basic of such systems. Through this simpler
model, yet still complex, I will come back to all the problems tackled in phuon. 1 will first
explore the question of problem solving with CAs. Afterward, I will study the dynamics of
the evolution of such systems, and finally I will extend the CA model to return, separately,
to the questions of Asynchrony and Fault-Tolerance.

9Two points in the environment must be joined by a quasi-straight line.

Beauty is something wonderful and strange that the artist fashions out of the chaos].]
W. Somerset Maugham, The Moon and Six pence, Ch. XIX.[191]

Chapter 4

Cellular Automata for Problem
Solving

4.1 Introduction

What is a problem-solving cellular automata ? As any interesting question with intuitive
straightforward answers, there is none definitive. In this chapter, through the study of mostly
mathematical properties of both uniform and non-uniform CAs, I am going to provide some
answers, at the price of limiting the scope of this question. More precisely, by concentrating
mainly on the density classification task, I will ponder what computation by means of CAs
really is, and argue that it is ‘wisual’ computation.

First, in section 4.2, T will define the three computational tasks used in this thesis to
study CA behavior: Density classification, Synchronization, and Random Number Gener-
ation. This chapter will be almost entirely devoted to the theoretical study of the first of
these, density classification, but will use the second one, synchronization, to illustrate a
generalization of non-uniform CAs. The third task is used as an illustration of the diversity
of what may be problem solving by means of CAs. Besides, it is one of the tasks for which
the evolution-of-solution process is studied in chapter 5.

In section 4.3 I propose an empirical scheme to scale non-uniform CAs that were found
by evolution. One of the main critiques made against non-uniform CAs, especially when
found by evolution, is their non-scalability, i.e, the “impossibility” to adapt the solution
found to any grid size. The scheme proposed, though empirical, dismisses this critique and
generalizes any non-uniform CA. The discussion about the validity of the method will be
an occasion to propose a definition of what is an emergent global behavior, in the scope of
CAs.

The main part of this chapter is section 4.4, devoted entirely to the density task. I first
extend to two-state, non-uniform, CAs the proof of the impossibility to solve the density
task in its original form. I then prove that a particular elementary CA, CA 184 in Wolfram’s
notation, solves perfectly a modified version of the density problem. Thereby, I prove that
the computational power of a specific cellular automata is in itself a non-evident problem.
Finally, I prove two necessary conditions upon CAs for solving a generalized form of the

55

56 Cellular Automata for Problem Solving

density task, and thus open the problem to higher dimensions. As an aside I prove the
impossibility of solving a newly defined task, the grouping task.

Finally, we conclude in section 4.5 by discussing shortly the question of what is problem
solving by means of cellular automata and its corollary: what is the computational power
of cellular automata.

4.2 Computational Tasks for One-Dimensional Cel-
lular Automata

In this section, I present three computational tasks accomplished by means of Cellular
Automata. These are at the heart of this and the subsequent chapters, constituting a prime
example of cellular automata computation. Actually, the first two are instances of emergent
computation, while the third one uses the temporal dynamics of CA. As we saw in chapter 2,
there are four main ways of considering computation in CAs. The first two tasks presented
here are naturally of the second kind of the third type: they take a global input and produce
a global output while computing locally. The third one, however, produces its result all along
the run, locally.

The density task. The one-dimensional density task is to decide whether or not the initial
configuration contains more than 50% 1s, relaxing to a fixed-point pattern of all 1s if
the initial density of 1s exceeds 0.5, and all Os otherwise (Figure 4.1a). Packard was
the first to introduce this version problem [147]. As noted by Mitchell et al. [132],
the density task comprises a non-trivial computation for a small radius CA (r € N,
where N is the grid size). Density is a global property of a configuration whereas a
small-radius CA relies solely on local interactions. Since the 1s can be distributed
throughout the grid, propagation of information must occur over large distances (i.e.,
O(N)). The minimum amount of memory required for the task is O(log N) using
a serial-scan algorithm, thus the computation involved corresponds to recognition of
a non-regular language. Note that the density task cannot be perfectly solved by
a uniform, two-state CA, as proven by Land and Belew [106]. This said nothing,
however, about how well an imperfect CA might perform. One such CA, known as
the GKL rule [66], can correctly classify approximately 82% out of a random sample of
initial configurations, for a grid of size N = 149 [8]. Recently, researchers have focused
on the use of artificial evolution techniques, demonstrating that high-performance
(though imperfect) CAs can be evolved to solve this problem ([8,132,179,185]). This
impossibility however applies to the above statement of the problem, where the CA’s
final pattern (i.e, output) is specified as a fixed-point configuration. However, as I will
prove in section 4.4.3, if we change the output specification, there exists a two-state,
r == 1 uniform CA that can perfectly solve the density problem. Besides this problem
may be extended to a more general version: A d-dimensional CA is said to classify
density if it falls in one of two “effectively” distinguishable classes of configuration
according to whether the density of the d-dimensional input configuration is lower
than or above a threshold p.

4.2 Computational Tasks for One-Dimensional Cellular Automata 57

The synchronization task. The one-dimensional synchronization task was introduced by
Das et al. [39] and studied among others by Hordijk [87]. Sipper {180, 181] proposed
using non-uniform CAs!. In this task the CA, given any initial configuration, must
reach a final configuration, within M time steps, that oscillates between all 0s and all
1s on successive time steps (Figure 4.1b). As with the density task, synchronization
also comprises a non-trivial computation for a small-radius CA. In the case of uniform
CA, there is a perfect = 3 CA, in the non-uniform case, many perfect r = 1 CAs do

exist.

Obviously, in the non-uniform case there is an immediate solution consisting of a
unique ‘master’ rule, alternating between ‘0’ and ‘1’, whatever the neighborhood, and
all other rules being its ‘slave’ and alternating according to its right neighbor state
only. However, Sipper used non-uniform CAs to find perfect synchronizing CAs only
by means of evolution. It appeared that this “basic” solution was never found by
evolution and, in fact, the “master” or “blind” rule 10101010, rule 170, was never part
of the evolved solutions. This is simply due to the fact that this rule has to be unique
for the solution to be perfect, which is contradictory to the natural tendency of the
evolutionary algorithm used (See chapter 5, for an analysis of the tendencies of this
algorithm). In this thesis, I only used evolved solutions to this task.

The random number generation task (RNG). Random numbers are needed in a vari-
ety of applications, yet finding good random number generators is a difficult task [148].
To generate a random sequence on a digital computer, one starts with a fixed-length
seed, then iteratively applies some transformation to it, progressively extracting as
long as possible a random sequence. Such numbers are usually referred to as pseudo-
random, as distinguished from true random numbers resulting from some natural
physical process. In the last decade cellular automata have been used to generate

random numbers [89,227].

Sipper and Tomassini [186, 187] applied the cellular programming algorithm to evolve
random number generators. Essentially, the cell’s fitness score for a single configura-
tion (refer to Figure 5.2) is the entropy of the temporal bit sequence of that cell, with
higher entropy implying better fitness (this should not be confused with the entropy
measures defined in Section 5.2.2). This fitness measure was used to drive the evo-
lutionary process, after which standard tests were applied to evaluate the quality of
the evolved CAs. The results obtained suggest that good generators can indeed be
evolved (Figure 4.1c); these exhibit behavior at least as good as that of previously
described CAs, with notable advantages arising from the existence of a “tunable” al-
gorithm for obtaining random number generators. Recently Tomassini, Sipper and
Perrenoud [212] described a two-dimensional, non-uniform CA that produces very
high quality random numbers.

1As a reminder, non-uniform CAs are CAs where each automaton may have a different rule.

ot
oo

Cellular Automata for Problem Solving

ta)

Figure 4.1 Demonstration of three evolved non-uniform CAs. Grid is one-dimensional,
with radius r = 1 and size n = 150. White squares represent cells in state 0, black squares
represent cells in state 1. The pattern of configurations is shown through time {which
increases down the page). Initial configurations were generated at random. (a) The density
task, Initial density of 1s is greater than 0.5 and the CA relaxes to a fixed pattern of all 1s,
correctly classifving the initial configuration. (b) The svnchronization task. Final pattern
consists of an oscillation between a configuration of all 0s and a configuration of all 1s. (¢)
Random number generation. Essentially, each cell's sequence of states through time is a
pseudo-random bit stream.

4.3 Scalability of Non-Uniform Cellular Automata

In this section we concentrate on non-uniform, one-dimensional CAs, our interest lying in
the scalability issue. For uniform CA, scaling is not an issue as such as there is only a unique
way to consider larger lattice sizes and that is to duplicate the existing rule. However, this
form of simple scaling does not bring about task scaling; as demonstrated, e.g., by [35]
for the density task, performance decreases as grid size increases. Actually, I conjecture,
given the necessary conditions on the density task we demonstrate later in this chapter,
that these CAs “cheat” to solve the task, more exactly thev rely on a local density. Then.
obviously, as the grid gets bigger, the chances of this guess to be accurate diminishes. In the
case of non-uniformm CAs the question is more complex. Besides this task scaling problem
which remains, this simple scaling is not possible anymore, each rule belonging to a precise
locus (modulo a translation in the case of periodic boundaries). But this question is of
particular importance in the case of solutions found by evolutionary computation. In effect,
the evolutionary runs demand lots of computational and time resources, an it would be useful
to be able to quickly adapt the solution found to any desired grid size. Though Sipper and
Tomassini had attained successful systems for a random number generation task using a
simple scaling scheme involving the duplication of the rules grid [187], below we present
a more sophisticated, empirically-obtained scheme that has proved successful. While not
proving it, we will strongly argue in favor of its universality.

Given a, possibly evolved, non-uniform CA of size N, our goal is to obtain a grid of
size N', where N’ is given but arbitrary (N’ may be > N or < N), such that the original

4.3 Scalability of Non-Uniform Cellular Automata 59

performance level is maintained. This requires an automated procedure to determine which
rule should be placed in each cell of the size N’ grid, so as to preserve the original grid’s
“essence”, i.e., its emergent global behavior; thus, we must determine what characterizes this
latter behavior. We first noted two basic rule structures of importance in the original grid:

e The local structure with respect to cell 4, 7 € ‘{0, ...,N—1} inanr =1 CA is the
set of three rules in cells ¢ — 1, ¢, and ¢ + 1 (indices are computed modulus N since
the grid is circular). This extends naturally for any r to the set of 27 + 1 rules in cells
VI U SO A

e The global structure is derived by observing the zones of identical rules present in the
grid. For example, for the following evolved N = 15 grid:
| RIRiR\R1 | RyRy | R3 | R4R4R4Rs | Ry | R5RsRs |
where R;, j € {1,...,5}, denotes a distinct rule, the number of zones is 6, and the
global structure is given by the list {R;, Ro, R3, R4, Ry, Rs}.

We thought at the time that if these structures were preserved the scaled CA’s behavior
was identical to that of the original one. The heuristic principle we derived was thus to
expand (or reduce) a zone of identical rules which spanned at least three cells, while keeping
intact zones of length two or less. It is straightforward to observe that a zone of length one
or two should be left untouched, so as to maintain the local structure. However we remarked
that zones of length three were also to be left untouched to conserve the global behavior
even if there was no a-priori reason as changing its size would have maintained both the
global and the local structure.

Actually the “essence” of the CA may be represented in one structure, which is a bit more
complex than both the local and the global structures defined earlier. This new structure
includes the two old ones but also adds a third kind of interaction. It is defined as follows:

e Let s; be the rule at position 4 (all positions are assumed to be modulus the size of
the CA). Let N = (Si—r, ..y Siy ..Sitr), and N = N7 if and only if s;—r = sy and
.. and $;4r = 5;4r. Then:

The essential structure of a one-dimensional non-uniform CA of radius r is the graph
Gca, where:

— N is a node of Gea if and only if NI # NI

— (M, N]),i # j is an edge of Goa if and only if Vk,i < k < BN =N]

— (N7, NT) is an edge of Gea if and only if N = N, ;.

We remark that besides the local and the global structure, this takes into account
what one could call the neighborhood interactions. This means that if this essential struc-
ture is preserved then the tuple of neighborhood rules of any cell in any neighborhood is
left unchanged. For instance, the “leftmost” cell of the CA above has neighborhood rules
(Rs, Ry, Ry), the left neighbor of this cell has neighborhood rules (Rs, Rs, R;) and the right
neighbor (R3, Ry, Ry). Then any new CA conserving the essential structure will exhibit the
same property.

60 Cellular Automata for Problem Solving

It is clear that a simple heuristic to leave this essential structure unchanged is to add
cells to any block of rules of size greater than or equal to 2r + 2. In other word, our scaling
algorithin gives us a minimal size of the CA, but no upper limit or no unreachable size above
that lower ground. The minimal size is obviously attained when all blocks of cells of size
bigger than s,,;, = 2r + 2, are reduced to this size, syin. Thus, the CA above cannot be
further reduced.

As an example of this procedure, consider the above N = 15 CA; scaling this grid to
size N' = 25 results in:

[RiRiRiRiRiRiR Ry | RoRs | Ry | RaR4RaRaR4R4R4RsR4Ry | R | RsRsRs |

Note that the essential structure is preserved. We tested our scaling procedure on several
CAs that were evolved to solve the synchronization task. The original grid sizes were N =
100, 150, which were then scaled to grids of sizes N’ = 200, 300, 450, 500, 750. In all cases
the scaled grids exhibited the same (perfect) performance level as that of the original ones.
An example of a scaled system is given in Figure 4.2.

Discussion on the validity of this scheme, and how it relates to emergence:
There is no way to effectively prove the universality or the validity of the scheme given that
there is no a priori way to determine why a particular CA gives rise to a specific emergent
global behavior. Actually, all the validity of the scheme reside in the definition of what
is an emergent global behavior. In fact, I will reverse the problem and state the following
definition:

Definition: Given a ¢ state, non-uniform, one-dimensional CA, with rules R,,..., R,,
which on any and every input, I € ¢" gives rise to the global behavior, By, then
If any g state, non-uniform, one-dimensional CA, with rules R., ..., R}, respecting
the essential structure of the original CA, gives rise to the identical “scaled” global
behavior B}, then the original CA (and the others) exhibit a truly emergent global

behavior.

The validity of the scaling scheme resides on a number of features and thus this definition
implies several limitations of what may be an emergent global behavior. First and foremost
that the global behavior exhibited is perfect. In fact, I would conjecture that any imperfect
behavior is the result of some sort of “cheating”, i.e., no real computation occurs, and so no
universality may be derived from such CA. Second, that the computation does not reside
in any sort of special timing for collisions, as varying the block sizes reduces to nil such a
brittle arrangement. Finally, that the computation is global, the cells are not differentiated,
as any translation of the input should still give rise to the expected global behavior, and all
the cells are used as input. This last point is really important as it precludes the idea of
having “computing structures” designed in the CA as it is often the case in collision based
computing (cf. [152]).

These restrictions, in my opinion, define well emergence in that scope. A property that is
the fruit of all the cells interacting locally, that is global, and universal. Thus it is a property

4.4 The Density Task 61

(a)

(b)

Figure 4.2 Scaling of one-dimensional synchronization task: Operation of a synchronous,
non-uniform CA, with connectivity radius r = 1. (a) Evolved CA of size N = 149. (b)
Scaled CA of size N' = 350.

that is not brittle, in the sense that it appears on any external conditions (the input states
or size), but rather depends on the minute spatial arrangement of specific local behavior.

4.4 The Density Task

In this section, I concentrate on the density task problem in its original form, in its modified
form and finally in its generalized form presented in section 4.2. This task has attracted much
interest from various researchers in the Cellular Automata community as it seemed to be a
prime example of global computation by means of CA. Our interest is rather mathematical
and thus I will not consider imperfect solutions here?.

[will first define a few notations that will be used throughout this section. 1 will then

1 study the process of evolving these imperfect solutions in chapter 5.

62 Cellular Automata for Problem Solving

prove that the impossibility of designing a perfect, uniform, two-state, one-dimensional CA
to solve the density classification task in its original form also holds for non-uniform CAs.
This proves that the task is utterly impossible in its original definition. I will then show
that by changing, but not complexifying, the task finds a solution in the simplest class of
uniform CAs. Finally, I will then define a most general form of the density task to derive
necessary conditions, even in higher dimensions, on the CA behavior to solve it.

4.4.1 Notation and definitions

A configuration is the state of all cells of the CA at a given time step. The transition rule,
s, is the complete lookup table, delineating a cell’s state at the next time step for every
possible local configuration of neighboring states. The successor function, S, is derived by
simultaneously applying s to the entire configuration yielding the configuration at the next
time step. In the case of non-uniform CAs s; denotes the transition table of cell . ¢ denotes
a configuration of states, o¢ denotes the input configuration at time ¢t = 0, and o, denotes
the configuration at time step ¢, resulting from ¢ successive applications of § to gy, i.e.,
g = St(ao).

Let I(c) be the number of 1s of configuration o. Density D(o) thus equals I(o)/|o|,
where |o| is the length (i.e., number of cells) of o. The bitwise inversion of configuration o
is denoted @.

Following Wolfram’s [223], the transition rule s can be written as a bit string; D(s) is
then defined as the density of Is in this bit string.

For one-dimensional CAs, o(»7) denotes the |3 — j| bits of configuration ¢ positioned
between bits 4 and (j — 1), inclusive. (¢)* is the concatenation of k configurations o.

o A configuration of the cellular automata

oo The input configuration, the configuration at ¢ = 0
s,8; The transition rule, the transition rule of cell 7

S The results of applying s to all cell synchronously once

Si(@) The results of applying S to all cell synchronously once
to the partial configuration « applying rules from cell ¢
St The results of applying s to all cell synchronously t times
oy o, = S'(o)
o',0*=9 The state of the cell i in o, the states of cellsito j —1in ¢
I(c) The number of 1s of o
o] The size of o
D(o) The density of 1s in ¢
D(s) The density of 1s in the transition rule s
T The radius of the CA considered (always uniform radius)

Table 4.1 Notations for the subsequent proofs.

In this the following subsection, we consider 2-state, one-dimensional non-uniform CA.
In subsection 4.4.3, we consider a particular 2-state, r=1, one-dimensional uniform CA,

4.4 The Density Task 63

namely CA 184. Finally in subsection 4.4.4, we consider d-dimensional toroidal CAs, whose
radius, r, is defined as an extension of the von-Neumann neighborhood: a cell has r neighbors
on both sides of each dimension; in addition, the cell itself is included in its neighborhood.

All the notations are summed up in table 4.1. The general version of the density-
classification problem is defined as follows:

Definition. Considering a toroidal, 2-state CA, a successor function S is said to be
a perfect density classifier, if S, when applied to an arbitrary initial configuration of any
length, progresses toward a configuration that allows to distinguish whether the density of
1s in the original configuration is greater or smaller than a predetermined threshold, p.

4.4.2 No two-state, non-uniform cellular automata can classify
density

I propose here to extend® Land and Belew’s proof to non-uniform CAs. More exactly, I
prove that there is no two-state one-dimensional, non-uniform CA, which perfectly relaxes
to an all 1s (resp. all 0s) fixed point configuration on any initial configuration whose density
is greater (resp. lower) than a predetermined threshold p.

The idea of the proof is to show that given the partial configuration 02710%", then the
number of 1s at the next time step, for any 4, I(S;(0%"10?")), can neither be 0 nor 1 nor
more than 1, thereby proving the impossibility to find such a perfect CA.

Theorem 2 For a given neighborhood radius r, a density p and one-dimensional grid size
N, N > (4r/(1 — p)), there does not ezist a two-state non-uniform CA such that on any
input of size N, og, it correctly relazes to the fized point all 1s when D(og) > p and to the
fized point all Os when D(op) < p.

To prove that no CA can classify density by falling into either of the two fixed point
all 0’s or all 1’s according to whether D(op) is greater than or less than a pre-specified p,
—;{7 < p < %, we need first to prove three lemmas.

Lemma 2.1: If D(0y) is greater than (respectively less than) p then for all ¢, D(S*(oq))
is greater than (respectively less than) p.

Proof: Obvious, identical to the uniform case.

Lemma 2.2: Let s; be any transition rule from a perfect CA, then s;(0*"*!) = 0 and
Si(121"+1) =1.

Proof: Assume there exists 4, such that s;(02+1) = 1, then S(0V) # 0V. But this
contradicts the theorem assumption of the existence of a fixed point, therefore for all 4,
5;(0%rt1) = 0. Identically, we find that for all 1, 5;(127+1) = 1.

Lemma 2.3: Let S be the successor function of a perfect CA, and let « be the par-
tial configuration 02"1%" and B be the partial configuration 1?"0%" then Vi,j I(S;(a)) +
1(8,(8)) = 2.

Proof: First consider the configuration o = 0V ~%1% where k is such that k¥ < pN < k+1,
then from Lemma 2.2 we know that S(o) = A0V ~%~2"B1%¥~2" where A = S;(0%"1%") and

3This is not an extension as such of the Land and Belew’s proof in the sense that it does not
exploit the same idea.

64 Cellular Automata for Problem Solving

B = 8;,1(1270%"). As we know from Lemma 2.1 that I(S(0)) < k, then I(A4) + I(B) < 2r.
Now consider the configuration ¢’ = 0N ~*~11¥+1 where k is such that k < pN < k+1, then
S(o) = AlQN—k=1=2r BI1k+1-2r where A' = $;(0°1?") and B’ = S;1441(1%70%"). Given the
value k, we have I(A’) + I(B’) > 2r. However, we can align o and ¢’ so that A = A’, and
then from the two inequalities we derive that I(B') > I(B). With 8 = 1%270?", this means
that 1(S;1xe1(8)) > I(Si+x(8)). As the grid is toroidal, it is impossible that there exists an
i such that I(S;4x+1(8)) > I(S;1x(B)), hence we conclude that I(S;4x+1(8)) = I(Si+x(B))
for any ¢. Then I(B) = I(B’) and thus we derive from the two inequalities that for all ¢,
I(S;(0%r127)) + I(S;(I1?"0%")) = 2r, thereby proving the lemma.

We can now prove the theorem 2.

Proof of Theorem 2:

There are three possibilities for I(S;(02710%7)):

o I(S;(02710%")) = 0. Let us consider the configuration ¢ = a0*"10%" and ¢’ = 0% 00%",
where |a| is such that |a0%"z0?"| = N. Then if we define § = S;(0%"10%r) and §' =
S;(0%700?7), we can align identically o and ¢, so as to have S(¢) = 84 and S(o') =
B'8', where 8 = S;11(0% a0?") and B’ = S;11(0%" a0?"), thus B = B’. From Lemma 2.2,
we know that for all 4, S;(02700%") = 0%+, as we assumed that I(S;(0%710%)) = 0,
we then have 6 = §'. Hence, I(S(c)) = I(B84) = I(8'8") = I(S(d")).

However, as we assumed that N > (4r/(1—p)), we can define o such that I(c) > pN
and I(o’) < pN, but then from Lemma 2.1, it would be impossible that I(S(c)) =
I(S(c")).

— We thus conclude that there is no i such that S;(0%710%") = 0.

e I(5;(02710%")) > 1. Consider the configuration o = 02710V ~2r—k1%~1 k < pN < k+1.
From the conditions on N stated in the theorem we know that N — 2r — k > 2r,
thus I(S(o)) = I(S;(0%710%")) 4 I(S;12,+1(0"1¥710?"). But from lemmas 2.2 and
2.3, we straightforwardly derive that for any j, I(S;+1(02"1%10?") = k — 1, thus as
I(S;(0%10%")) > 1, we have I(S(o)) > k + 1, which contradicts Lemma 2.1.

— Hence there is no i such that 1(5;(02102")) > 1.

e I(5;(0%10%7)) = 1. This actually reflects two cases, at the next step, either the 1
remains at the same cell, or the 1 is shifted. The former is easy to disqualify as a
configuration 0V ~!1 aligned on that cell i would never reach the correct classification
0N. For the latter consider again the configuration 01, then the 1 shifted brings
us back to the starting configuration 0V=11, shifted by a few places. But we saw that
whatever the shift at the next step there can be no place where the 1 is absorbed
(I(S;(0%710%") = 0), or multiplied (7(S;(0%10%") > 1), thus it must be shifted forever
and so 0V 11 never classify to 0V.

— Hence for all i, I(S;(0%710%)) # 1

4Strictly speaking, for the sake of simplicity, we ignore here the case where [pN] = |pN| as it
would not change the general argument but would require to consider a configuration of the style
a0?710%7¢'0?710%", lengthening uselessly the proof.

4.4 The Density Task 65

Hence, all three possibilities being impossible, we conclude that no two-state, non-
uniform CA can classify density by reaching the fixed states 0V or 1V, QED.

4.4.3 A simple CA that solves the density problem

In this subsection I prove that there exists a uniform Cellular Automata that solves perfectly
the density classification problem upon defining an output specification different than the
original one.

In its original form (relaxing to all Os or all 1s), it had been proven by [106] that for a
one-dimensional grid of fixed size N, and for a fixed radius r > 1, there exists no two-state
one-dimensional CA rule which correctly classifies all possible initial configurations. We just
saw the extension of this proof to the non-uniform case. Actually up to the date of the proof
I am going to present (1996, [26]), only convergence to one of two fixed-point configurations
was considered. Here, I show that a perfect CA density classifier exists, upon considering a
different output specification of no greater complexity.

Consider the two-state, r = 1 rule 184 CA, defined as follows:

o :{ ot ifaf=0
b+l ot ifol=1

where o} is the state of cell i at time t. Upon presentation of an arbitrary initial
configuration, the grid relaxes to a limit-cycle, within [N/2] time steps, that provides a
classification of the initial configuration’s density of 1s: if this density > 0.5 (respectively,
< 0.5), then the final configuration consists of one or more blocks of at least two consecutive
1s (0s), interspersed by an alternation of Os and 1s; for an initial density of exactly 0.5, the
final configuration consists of an alternation of 0s and 1s. The computation’s output is given
by the state of the consecutive block (or blocks) of same-state cells (Figure 4.3); as proved in
this paper, this rule performs perfect density classification (including the density=0.5 case).
We note in passing that the reflection-symmetric rule 226 holds the same properties of rule
184 studied below.

As the input configuration is random, this entails a high Kolmogorov complexity; intu-
itively, for a given finite string, this measure concerns the size of the shortest program that
computes the string [116]. Both the fixed-point output of the original problem, as well as
our own “blocks” output, involve a notable reduction with respect to this complexity mea-
sure. It has been noted by [132] that the computational complexity of the input is that of a
non-regular language since a counter register is needed whose size is proportional to log(N),
whereas the fixed-point output of the original problem involves a simple regular language
(all Os or all 1s) [86]; we note that our novel output specification also involves a regular
language (a block of two state-0 or state-1 cells). We thus conclude that our newly proposed
density classifier is as viable as the original one with respect to these complexity measures,
while surpassing the latter in terms of performance. Lee et al [115] very recently briefly
mis-argued that our CA required “global memory” due to the necessity to scan through

the configuration. However, this is a misinterpretation of the output condition considered
here: Firstly, if we scan through our grid a simple three state automata can detect any two

66 Cellular Automata for Problem Solving

succeeding 1s or 0s, thereby giving out the good result, and not necessitating any sort of
global memory; Moreover, the need for scanning is unnecessary as the resulting two cell
block result will pass through all the cells in N time steps.

(c) (d)

Figure 4.3 Density classification: Demonstration of rule 184 on four initial configurations.
White squares represent cells in state (), black squares represent cells in state 1. The pattern
of configurations is shown for the first 200 time steps, with time increasing down the page.
Initial configurations in figures (a)-(c) were randomly generated. (a) Grid size is N = 149.
D(S(0)) = 0.497, i.e., 756 cells are in state 0, and 74 are in state 1. The final configuration
consists of an alternation of 0s and 1s with a single block of two cells in state (. (b) N = 149.
D(S(0)) = 0.537. The final configuration consists of an alternation of Os and 1s with several
blocks of two or more cells in state 1. (¢) N = 150. D(S(0)) = 0.5. The final configuration
consists of an alternation of Os and 1s. (d) N = 149. Initial configuration consists of a
block of 37 zeros, followed by 37 ones, followed by 37 zeros, ending with 38 ones. The final
configuration consists of an alternation of Os and 1s with a single block of two cells in state
1. In all cases the CA correctly classifies the initial configuration.

4.4 The Density Task 67

In the remainder of this section, I prove rule 184’s ability to perfectly classify density.
Throughout, I assume that cellular indices are computed modulus the grid size N (grid is
circular), and that they are in the range {0,..., N — 1}; for brevity we omit this range
hereafter.

Theorem 3 For a finite-size CA of size N, let o = {0?,..., aiv_l} be the grid configuration
at time step t, let D(ai’(Hk—l)) be the density of 1s at time t over a block of k cells at positions
{iy...,i+k—=1}, and let T = [N/2]. Then:
1. If D(oy) > 0.5 then:
(a) there exists a pair of adjacent cells i,7 + 1 such that
crrff =1 and aéﬁH =1,
(b) for all i, ok =0 = U:irJrl =1.
2. If D(og) < 0.5 then:
(a) there exists a pair of adjacent cells 1,7 + 1 such that
0} =0 and a;fH =0,
(b) for all i, ok =1 = a;?"l =0.
3. If D(0g) = 0.5 then for all i, 0% # o).

The proof of this theorem involves four lemmas, proved below.

Lemma 3.1.— For any configuration o of size N, D(S(0;)) = D(ay)), t € {0,1,...},
where S is the 184 transition function.

Proof: Taking note of the grid’s circularity, any configuration o; can be expressed as
0N, 1V or 1%10%,...,1970% where n > 1, a;,b; > 0,4 € {1,...,n}, and Yoijai+bi=N.
In the first two cases, we have S(0Y) = 0" and S(1V) = 1%V, and the Lemma holds. In
the latter case, it follows directly from the rule’s definition that a block 1%0% at time ¢ is
transformed into 1%1010%~! at time ¢ + 1. Thus, each such block conserves its density
over one time step and the lemma is proven.

Corollary 3.1.1— For any configuration o of size N, D(S(04)) = D(0y)), t € {0,1,...},
where S is the 184 transition function.

Proof: Follows directly from Lemma 3.1 by recursive application.

Lemma 3.2.— Given a block x0%1%y, z,y € {0,1}, 2 < o,8 < N — 2, at time t,
beginning at cell ¢ (i.e., cell ¢ is the block’s leftmost cell), then at time t+v, v = min(a, 8)—1,
and beginning at cell 7 + v:

1. If a > B there is a block 0 8+11y.

2. If B > a there is a block £018-2+1y,

3. If o = S there is a block z01y.

Proof: Applying the transition rule to a block x0*1%y at time t, beginning at cell i,
results at time ¢ + 1 in a block £0%11%~1y beginning at cell 4 + 1. By simple recursion, at
time ¢ + u, u < min(a, B) — 2, there is a block 20%~%15~%y, beginning at cell i + w.

Consider the case o > 8, and let u = 8 — 2. At time ¢ + u, there is a block z0%#+212y,
beginning at cell ¢ + u. Applying the transition rule results at the next time step, t + v,
v = B—1, in a block 0% #+11y, beginning at cell i +v. The case § > a follows analogously.

For a = f3, at time ¢ + 8 — 2 there is a block £0%1%y, beginning at cell s + 8 — 2, which
yields a block 01y at the next time step, beginning at cell ¢ + 8 — 1 (=1 + v).

68 Cellular Automata for Problem Solving

Lemma 3.3.— Given a block 0% (respectively, 1¢), 1 < a < N, at time ¢ beginning at
cell 4, then at time ¢ — u, u < ¢, there was a block 0% (1%) beginning at cell i — u (7 + u).

Proof: By contradiction (we prove the 0% case, with the 1% case following analogously).
Suppose at time t — 1 there exists j € {i — 1,...,i+ a — 2}, such that a{_l = 1. Given
that o7%! = 0, this implies that a{fll =1 and a{ff = 0; however, this results in o7 = 1
and a{ 2o 1, at least one of which must be within the 0% block beginning at cell ¢, thus
contradicting the assumption. Therefore, at time ¢ — 1 there is a block 0% beginning at cell
1 — 1; the lemma is proven by recursively applying this argument.

Lemma 3.4.— For a finite-size CA of size N, no two blocks 0% and 1%, 2 < a,8 < N -2,
can coexist at time [N/2].

Proof: By contradiction. If two blocks 0% and 17 coexist at time [N/2], then by lemma
3.3 they coexisted at time 0 (each shifted by [N/2] cells). This means that over the [N/2]
time steps the blocks had been displaced by one cell per time step, the 0% block “moving”
to the right, the 17 block moving to the left. Thus, both blocks would “meet” after [(N —
(a + ())/2] time steps at the latest, satisfying the conditions of lemma 3.2. This implies
that at most one block would remain after [(N — (o + £))/2 + min(a, 8) — 1] time steps.
This latter expression < [N/2], thus proving the lemma.

We now prove theorem 3.

Proof of Theorem 3:

According to corollary 3.1.1, the density of the initial configuration is preserved at each
successive time step. According to lemma 3.4, after [N/2] steps only 0% or 17 blocks exist,
2 <o, <N -2, but not both (except for density=0.5, where no such block exists). This
means that the “correct” block must exist, with no occurrence of the “incorrect” one, thereby
proving the theorem. We also note that after [IN/2] time steps the number of cells in state
1 short (respectively, in excess) of |[0.5N | is given by (3_i~, a;) — m, where m is the number
of 0% (1%) blocks, and a; are their respective sizes.

Note that in order to “read” the output one can either terminate the CA’s execution after
[N/2] time steps, or, alternatively, let it continue running (for a maximum of N —1 additional
time steps) until the (cycling) two-cell, same-state block arrives at two predetermined cells.

Are there any other density classifiers in the two-state, r = 1 class of CAs? An ex-
haustive check shows that rules 184 and 226 are the only ones that perform perfect density
classification with respect to the output specification discussed in this paper 3.

In summary, we have shown that a locally-specified, » = 1 CA of any finite size N
can classify the global density of bits for an arbitrary initial state configuration. It has
previously been determined that this problem cannot be resolved by two-state CAs of any
radius, if one insists on a fixed-point output. By changing the output specification, without
increasing its complexity, perfect density classification can be attained. It is interesting that
the system giving rise to this (difficult) emergent computation exists in the simplest class

SAt the time, each of the 256 two-state, 7 = 1 CA rules was tested on 1000 randomly generated
initial configurations for a grid of size N = 149, where a correct output is considered to be that
specified by the theorem. As expected only rules 184 and 226 yielded a success rate of 100% followed
by rule 57 and 99 trailing markedly behind at 60%. Interestingly, these latter two rules produce
patterns that are visually similar to rules 184 and 226; however, the simple aforementioned test
reveals their complete inadequacy.

4.4 The Density Task 69

of one-dimensional CAs, namely two-state, 7 = 1. This raises the intriguing question of
whether other such simple CAs exist, which, while not capable of universal computation,
may nonetheless prove highly efficient in solving specific tasks. This also brings out the
question of the specification of the problem. With no more complexity we moved from a
dead-end to a simple solution. This suggests that the question of what is computation, or
more exactly what is the computational power of a CA is not straightforward. After proving
some necessary conditions in the next subsection, we will discuss this important problem in
subsection 4.5.

4.4.4 Necessary conditions on d-dimensional CA density clas-
sifiers

In this subsection I prove two necessary conditions that a uniform CA of any dimension
must satisfy in order to classify density in its generalized form: (1) the density of the initial
configuration must be conserved over time, and (2) the rule table must exhibit a density of
0.5.

A perfect density classifier must conserve density: The one-dimensional
case

I now prove that a perfect CA density classifier cannot alter the density of the input con-
figuration. I first prove this result for one-dimensional CAs for sake of simplicity and then
provide a ‘straightforward’ extension of the proof to any dimension.

Theorem 4 Let S be a successor function of a perfect one-dimensional density classifier.
Then: VO’(), Vt,D(O'()) = D(St(O'())).

The proof of this theorem involves five lemmas proved below.

Lemma 4.1: Let S be a perfect density classifier successor function. Then, Voy, Vi,
D(09) < p= D(S%00)) < p and D(ag) > p = D(S*(00)) > p.

Proof: Follows straightforwardly from the above definition of the density-classification
problem.

Lemma 4.2: Let s be the transition rule of a perfect density classifier with radius r.
Then, s(02+1) = 0 and s(127*!) = 1.

Proof: 1f s(0%"+1) = 1 and s(127 1) = 1, or s(0%"*!) = 0 and s(1?"*!) = 0, then the input
configurations 0" and 1", where n is the size of the CA, are classified as belonging to the same
class, thus contradicting s’s being a perfect density classifier transition rule. If s(0%"+1) = 1
and s(127*1) = 0, then 0" and 1™ give rise to a cycle of alternating configurations, thus
contradicting s’s being a perfect density classifierS.

6In theory, we could insist that s stop at a given, predetermined time step, thus enabling the
use of s(0?"+1) = 1 and s(12"*!) = 0 in a classifier. This would impose an additional temporal
constraint I wish to avoid for the sake of simplicity. Remark that Theorem 4 would still hold if T
were to include this constraint.

70 Cellular Automata for Problem Solving

Lemma 4.3: For any one-dimensional input configuration oy of size n, and for any den-
sity threshold p, there exist mg, m; such that D(0™00¢1™) > p and D(0{motDg1(mai—1)y <
p-

Proof: Assuming 1/(1 — p) is not an integer, then, setting mg +mq = [n/(1 — p)] — 7,
it is straightforward to see that if I(og) = 0, we can set m; = [n/(1 — p)] —n and mg = 0,
with the result that D(0™0g¢1™1) > p and D(0™+Vge1(m~1)) < o Now, if I(ag) # 0,
then decreasing m, by I(og) and increasing mg by the same amount will satisfy the lemma.

If 1/(1 — p) is an integer, then setting mg +m1 = [n/(1 — p)] —n+ 1 leads to the same
result.

Lemma 4.4: Let S be the successor function for a one-dimensional CA, oy an initial
configuration, and p an integer, such that I(S(og)) = I(0o) + p. Then, I(S((00)¥) =
I((00)¥) + kp.

Proof: As our CAs are toroidal, S((0¢)¥) = (o1)*. Then, I(S((00)*)) = I((01)*) =
kxI(01) = kx*I(og)+kp=I((c0)*) + kp.

Lemma 4.5: Let S be a successor function of a perfect one-dimensional density classifier,
and let r be the radius of the CA. For any configuration oy, if I(S(0g)) = I{o¢) + p then

—4r < p < br.
Proof: Let oy be a configuration such that I(S(og)) = I(og) + p. Define a configuration
vg, such that vg = 0™ Ry09Re 1™, where Ry = a(()o’r) and By = aon_r’n and mg, m; > 2r+1.

Then, given Lemma 4.2 and our definition of R; and Ry, we conclude that S(vg) =
C10™0~2rCyg1 C31™ 2" where C is the 27-bit-long configuration obtained at the border
of 1270%", C, is the r-bit-long configuration obtained at the border of 02" Ry, and Cj is the
r-bit-long configuration obtained at the border of Rp1%".

From Lemma 4.3 we know that we can define mg, m; such that D(vg) > p and that if
we decrease m1 by 1 and increase mg by 1, D(vg) < p. (Note that we can increase both
mg and mq by 2r + 1 so that mg,m; > 2r + 1 as required earlier). Then, as D(vo) > p, we
know that D(v1) > p (Lemma 4.1), which, given the chosen values of mg, m;, implies that
I(v1) > I(vg). Expanding I(v1) and I(vg), we can derive that I(Cy) + I(Cs) + I(C3) +p —
9% — I(Ry) — I(Ry) > 0.

Analogously, if we define mg, m; such that D(vg) < p and that if we decrease mq by 1
and increase mq by 1, D(vg) > p. Then, as D(vg) < p, we know that D(v;) < p (Lemma
4.1), which, given the chosen values of mq, m;, implies that I(vy) < I(vg) from which we
derive that I(Cy) + I(Cs) + I(C3) +p — 2r — I(Ry) — I(R2) < 0.

Hence, we know that I(C)) + I(Cy) + I(C3) + p — 2r — I(R;) — I(Ry) = 0, meaning
that p—the variation of number of 1s between og and o;—is exactly equal to I(R;) +
I(Ry) — I(Cy) — I(Cy) — I(C3) +2r. Given the length of Ry, Ry, Cy, Cs, Cs, we compute that
—4r < p < 6r.

We are now able to prove Theorem 4.

Proof of Theorem 4. We will proceed by contradiction.

Assume there exists a configuration g, such that I(S(oy)) = I(op) + p, p a non-zero
integer. From Lemma 4.4 we know that we can create a configuration 79 = (0¢)¥, such that
I(S(79)) = I(70)+kp. However, if we set k = 7r, where r is the radius of the CA in question,
then we have a configuration 79, wherein I(S(79)) = I(7p) + 7rp, which contradicts Lemma

4.4 The Density Task 71

4.5, since p 75_0.
Hence p = 0, and thus, for all configurations og, I(S(09)) = I(09).

A perfect density classifier must conserve density: The d-dimensional case

This section is an extension of the previous one. However, I chose to split the proof into
two parts, the one-dimensional case and its generalization, to provide a simpler and more
straightforward approach to the proof.

Theorem 4(d) Let S be a successor function of a perfect d-dimensional density classi-
fier.

Then: Yog, Vt, D(og) = D(S*(0y))- ,

Lemmas 4.1(d) and 4.2(d) follow straightforwardly from their one dimensional coun-
terpart. I now provide the proof of the other lemmas for the d-dimensional case.

Lemma 4.3(d): For any d-dimensional input configuration oq of size nj ... * ng, where
ny * ... * ng are the dimensions along each dimension, and for any density threshold p,
there exist two d-dimensional configurations Ay and By of size mj * no * n3 * ... * ng and
p1 *xng *xng * ... * ng, with Vo € Ag,z = 0 and Vz € By,z = 1, such that D(A4goeBy) > p
and D(AjooBj) < p, where Aj, is the block of 0 of size (1 + 1) * no * ng * ... * ng and By is
the block of 1 of size (p; — 1) * na * n3 * ... ¥ ng.

Proof: Tt follows quite naturally from the one-dimensional lemma 4.3, that if such a
combination of “borderline” m, p; exist with a variation of 1, then they obviously exist with
a variation ng * ng * ... * ng, given these are non null.

Lemma 4.4(d): Let S be the successor function for a perfect d-dimensional CA, g an
initial configuration, and p an integer, such that I(S(og)) = I(0og) + p. Then, I(S((0p)*) =
I((00)¥) + kp, where (0¢)* is the stacking up along one dimension of k configuration oy.

Proof: As our CAs are toroidal, S((d9)¥) = (01)*. Then, I(S((c0)¥)) = I((o1)F) =
kx I(01) =k x I(00) + kp = I((00)) + kp.

Lemma 4.5(d): Let S be a successor function of a perfect d-dimensional density clas-
sifier, and let r be the radius of the CA in the first dimension. For any configuration og of
dimension n; *...xng, if I(S(0g)) = I{0og) +p then —4rx (no*...xng) < p < 6r* (N9 *...xng).

Proof: Quite straightforwardly, following the one-dimensional proof, if we define R; =
aé(o’r)’”“”'"’"d} and Ry = aé("l—r’")’"z""’"d} then we can define a d-dimensional vg, vy =
olmun2,nal Ry g Ry1{P1m25ma}l - Given that we proved Lemma 4.2(d) and 4.3(d) we can
follow exactly the same proof as for the one dimensional case, to obtain the bounding range
for p. : »

Proof of Theorem 4(d). We will proceed by contradiction.

Assume there exists a d dimensional configuration oy, such that I(S(o¢)) = I(o0) + p,
p a non-zero integer. From Lemma 4.4(d) we know that we can create a configuration
70 = (00)¥, the stacking along dimension one, such that I(S(7y)) = I(7y) + kp. However, if
we set k = Tr*ng*...*ng, where r is the radius of the CA in question along that dimension,
then we have a configuration 79, wherein I(S(rg)) = I(79) + (7r * g * ... * ng) * p, which
contradicts Lemma 4.5(d), since p # 0.

Hence p = 0, and thus, for all configurations o¢, I(S(o0)) = I{00)-

72 Cellular Automata for Problem Solving

A perfect density classifier’s rule must exhibit a density of 0.5

Having obtained a necessary condition on the global successor function S, I prove in this
section a theorem relating to the local transition rule, s, namely, it must exhibit a density
of 0.5. Thus, from a constraint on the function, I derive a constraint on the form.

Theorem 5 Let s be the transition rule of a perfect, 2-state, toroidal density classifier of
any dimension. Then, for any density threshold of 1s, p, D(s) = 0.5.

The proof of this theorem involves five lemmas and a result on consecutive-l graphs
proved by [42].

A consecutive-l graph, G(I,n,q, h), is an n-node directed graph, wherein exists an edge,
(4,7), iff j € {gi + k(mod n) : h < k < h+1—1}. Du et al. [42] proved that such a graph
contains a Hamiltonian cycle if g = 1,7 =0, and h > gcd(n,q) > 2.

Lemma 5.1: For any radius r, one-dimensional, 2-state toroidal CA, there exists a
configuration og of length 22" +1 such that all 227! neighborhoods are present once and
only once.

Proof: Consider the directed graph G, whose vertices are the 22”*! binary numbers
0,...,22+t1 _ 1 defined as follows: there is an edge from vertex v, to vertex v, iff the last
2r bits of v, are identical to the first 27 bits of v,,. Then finding a Hamiltonian cycle in G
is equivalent to finding an input configuration oq satisfying the conditions of the Lemma.

The set of edges of G can be defined as follows: ¢ — jif j € {2i+k(mod n) : 0 < k < 1}.
We thus obtain a consecutive-2 directed graph, G(I,n,q,h), with ¢ =1 =2 and h = 0. As
the number of nodes n is a power of 2, we have ¢ = I,h = 0 and h > ged(n,q) > 2. Thus,
following the results of [42], G contains a Hamiltonian cycle, thereby proving the lemma.

Lemma 5.2: Let oo be a d-dimensional configuration of length 22¢7+! such that all
22dr+1 neighborhoods of a d-dimensional CA are present once and only once. Then, &g, the
bitwise inversion of o, is also such a configuration.

Proof: Consider any two of the 2247+ possible neighborhoods of @5: @ and b. Then,
by definition, there exist a, b, the two corresponding neighborhoods of ¢y. As each neigh-
borhood is present once and only, a # b, and thus @ # b. Given that there are only 22¢r+1
neighborhoods in &g, and given that there are 22¢"+1 possible different neighborhoods for a
d-dimensional CA, then all neighborhoods are present once and only once in 7g.

Lemma 5.3: For any r, there exists a one-dimensional, 2-state configuration oy of
length 22" such that for any 2 blocks a, b of oy of length 227+1 a # b.

Proof: One may see that the proof of Lemma 5.1 still holds for even power of 2. Thus we
know that there exists a configuration of length 22", such that any blocks Qi Q34 2r—1) mod 227
is different from any other block a;...a(j19,_1)moa22r, ¢ # j. It is obvious that in such a con-
figuration, any block a;...a(; 4 2) moed 22- is thus different from any other block a;...a(;2,) moa 22+ »
i #]

Lemma 5.4: For any d-dimensional, 2-state toroidal CA, and for any radius r, there
exists a configuration, wherein all 224"+1 possible neighborhoods are present once and only
once.

Proof: We will prove this lemma by induction.

4.4 The Density Task 73

The base of the induction, d = 1, is proved by Lemma 5.1.

Induction step: Assume a d-dimensional configuration og that includes all 22¢7+! possible
neighborhoods, each present once and only once.

We next construct 8y = aj...a92r, the d+I-dimensional configuration, by “stacking
up” along the (d+1)-th dimension 22" «'s, where o € {0¢,09}. We construct the se-
quence a...azr, such that any block ;..o 9r) moa 22 is different from any other block
Qj..-Q(j42r) mod 227> ¢ # J. One can see this is possible: if we denote the case a = g by 0
and the case @ = 7y by 1, we can then invoke Lemma 5.3.

From the induction assumption and from Lemma 5.2, we know that along each hyper-
plane «; there are 22¢"+1 different neighborhoods. Each of these neighborhoods includes
along its (d+1)-th dimension the sequence of bits b(;_p) mod 22 ---B(itr) mod 22~ We know
that this sequence is different for each hyperplane from the construction constraint that any
block ...0¢(;197) moq 22 18 different from any other block ay...c(j12r) mod 227, ¢ # j. Thus,
all 22¢7+1 different neighborhoods on hyperplane «; are different from all 224r+! different
neighborhoods on hyperplane a;, i # j. Then, we know that we have 2r* 22dr+1 = 92(d+1)r+1
different neighborhoods in £y, which is also the maximum number of possible neighborhoods.
Thus, fy is a configuration of dimension d+1, in which all 22(d+1)r+1 pogsible neighborhoods
are present once and only once. This proves the induction step, d to d+1.

Lemma 5.5: Let og be a d-dimensional configuration, such that all 224"+1 possible
input states are present once and only once, in any dimension d. Then, D(og) = 0.5.

Proof: The density of all neighborhoods, i.e., the density of all the numbers from 0 to
22dr+1.1 is 0.5. When “moving” along o to collect all neighborhoods, each bit is counted
exactly the same number of times, namely, 2dr + 1 times. Thus, the density of g is the
same as the density of all possible neighborhoods, i.e., 0.5.

We are now able to prove Theorem 5.

. Proof of Theorem 5: Assume configuration o contains all 22¢"+1 possible neigh-
borhoods once and only once. From Lemma 5.4 we know that such a og exists. From
Theorem 4 we deduce that—given that S is a perfect density classifier successor function—
D(S(o9)) = D(og), which, from Lemma 5.5, we know to be 0.5. Moreover, as all 22dr+1
possible neighborhoods are present once and only once, then D(S(0gy)) = D(s), and hence
D(s) =0.5.

I should point out that recently Boccara and Fuk$ presented a proof that a toroidal,
uniform, one-dimensional CA is number-conserving on inputs of any size if it is number
conserving for all the configurations of length 4r + 1,[21]. This property may turn out to
be useful if we are to seek number-conserving CAs. In the same paper, they also prove a
generalized version of the result above. However, one should note their result is only for
one-dimensional CAs while ours is valid for any dimension.

4.4.5 An aside: No uniform CA solves perfectly the sorting
task

Oliveira et al [145] have recently proposed to evolve solutions for a new task: the sorting
task. This task is an extension of the sorting task presented by Sipper et al [184] to toroidal

74 Cellular Automata for Problem Solving

CAs. We prove here that no CA solves perfectly this task.

Theorem 6 There exists no toroidal, uniform, two-state CAs such that:
Yoo, 3t,= St(op) = 0™01™, where ny = I(op).

The proof of this theorem involves just one lemma.

Lemma 6.1: Let S be a perfect sorting CA then S conserves density.

Proof: Quite evidently if there exists £ and o¢ such that I(S%(gg)) # I(op) and S
correctly sorts o, then S incorrectly sorts St(op). By contradiction, we conclude that S
necessarily conserves density.

Proof of Theorem 6: Let’s consider the configuration og = 10™10P, where m, p larger
than the radius of the CA considered. From lemma 6.1, we know that there are necessarily
two and only two 1s in the succeeding configuration. As m and p are larger than the radius
of the CA, and the CA is uniform, then the two ones may only be both shifted to the
left, or both to the right or both unmoved, thereby proving that there exists no ¢t such that
St(gg) = 110™*P. QED.
| We can note here that the proof of lemma 6.1 is also a corollary of theorem 4. If we
consider the two separate sets of configuration A and B defined as follows A = {0"01™|ny <
ni}, B = {0™1™|ny > n;}, then it would classify the input configurations according to
whether their density is above or below p = 0.5 into the distinct classes A and B.

4.5 Concluding Discussion

We have shown that according to the task definition, density classification could change
status dramatically in terms of “CA” computability. It moved from utterly impossible for
two-state CAs, (uniform and non-uniform!), to “basic” as it found a solution in the simplest
class: the elementary CAs. These results led us to wonder on what was required to solve
that task in its essential form. Essential in the sense of stripping down its definition to the
minimal form beyond which the task loses its meaning. From these minimal assumptions,
we derived that a perfect CA density classifier must conserve in time the density of the
initial configuration, and that its rule table must exhibit a density of 0.5. Thus, non-
density-conserving CAs (such as the GKL rule) are by nature imperfect, and, indeed, any
specification of the problem which involves density change precludes the ability to perform
perfectly density classification.

The necessary condition of density conservation brings out the question of what is com-
putation by means of cellular automata. If we conserve density, then computation here is
only re-ordering the “1s” among the “0s”, which strictly speaking means no computation.
As a consequence, there is no loss of information through time’. What we are looking for,
hence, is not a simplification of the input. This remark is far from being intuitive: the
original question was it not to reduce any configuration, 2V bits, to an answer yes or no, 1
bit? So beyond the aid that this result on necessary conditions might give in the search for
locally interacting systems that compute the global density property, it is its consequences
on the question of computation that makes it important. This question was already made

7This is not true of spatial information as rule 184 is not invertible.

4.5 Concluding Discussion 75

particularly pregnant when it was discovered that the computability of the task was more
dependent on its definition rather than its inherent difficulty.

All these considerations call for a reflection on the question of what constitutes compu-
tation in CAs. I am not pretending, here, to give a definitive answer nor a universal one,
but rather some tracks for thought. If computation here is only reordering, then what con-
stitute the result is actually the visual efficiency of the final (or temporal) configuration of
the CA. That is, if one watches Figure 4.3, one can instantly say if the original configuration
was holding more 1s than Os or the contrary. Of course, this translates also into the fact
that a simple three state automaton can then classify the density, but the most convinc-
ing argument that CA 184 does the job is that it is visually efficient. It is hard to define
formally what is this efficiency, but we can say, without doubt, at least in this case that it
relies on patterns that become visibly obvious as they stand out of a regular background.
This view is also what changed between the impossibility of the task in its original form to
its evident solution. So the question of computation is finally the hazardous meeting of an
actual computation by CAs with the “good” look from an outside observer.

In the future, our search for a perfect density classifier, in dimensions higher than one for
instance, will thus be limited to density conserving CAs, but more importantly will surely
rely on defining an automatic observer. We could imagine a mechanical search (either
exhaustive of by means or evolutionary computation) where the success criteria would be
given by an artificial observer. We evoked in a preceding chapter the work of Wuensche [231]
in which he proposed a measure of input entropy, based on the frequency of look up of the
different neighborhoods. These measures were devised in order to find “interesting” CAs,
interesting in the sense of Wolfram’s class III. Wuensche follows the ideas originated by
Gutowitz and Langton: is there a quantitative way to define class III CAs, [75], and can we
find them by means of artificial evolution [76]? But all these works were somehow seeking
an artificial observer. Class III was firstly (and still is) only defined on criteria based on
observation. So our aim, in future research, will be the same in spirit. However it will be
totally different in practice. Actually, what we said before was that interesting CAs for us
were CAs which produced regularity, or more exactly irregularity (patterns) on regularity,
and these are surely to be found in class II rather than class III. Nevertheless, Wuensche’s
frequency measure may be a good start for our work. He introduced the idea of filtering the
output of the CAs by omitting in the visual representation the neighborhoods that were used
the most often. For instance, this would lead in CA 184 to discard patterns 101 and 010.
This is definitely an interesting path to follow to discard regularity, and thereby provides a
first step in the direction of an automatic observer. Our future research will concentrate on
extending this idea to two-dimensional CAs. If one may wonder why try to solve the density
task for two and higher dimension, besides the pure research interest, an answer is that it
could be a way to speed-up the computation. In one dimension, obviously, we can define
easily a CA with radius » = k to produce a linear k speed-up. But as the computation here
is basically dependent on the time a cell takes to go through the grid, then one may hope
that in two dimensions we may find a CA solving the density task in O(/n) time. If this is
the case, it is probable that a theoretical d-dimensional CA would solve the task in O(¢/n)
time.

Nous ne contemplons pas une nature gouvernée par la Loi, mais

par un processus aléatoire et sans but, et le régne lugubre

de la chance remplace les principes directeurs de la raison’.

Emmanuel Kant, Idée d’une Histoire universelle au point de vue cosmopolitique. [94].

Chapter 5

Evolution of Cellular Automata

5.1 Introduction

In this chapter, we propose to study statistically a peculiar kind of evolutionary algorithm.
The motivation of this work is quite evident when we think about the lack of understanding
of the inner workings of evolutionary algorithms in general, examples of which we saw in both
chapters 2 and 3. However, our purpose here is not to give some results about evolutionary
computation in general, but rather to concentrate on a special kind of algorithm: Structured,
fine-grained parallel evolutionary algorithms. To do this, we study the cellular programming
algorithm presented by Sipper in [180].

The cellular programming algorithm is a means to evolve the rules for problem-solving
non-uniform Cellular Automata. As we saw in chapter 4, designing Cellular Automata rules
to attain a predefined global behavior is not computationally tractable nor mathematically
easy. Actually, most of the time, it is impossible to systematically deduce global behavior
from the local rules. So, it is quite natural that evolutionary computation techniques are
used to design cellular automata rules {132]). Specifically, Sipper proposed in the mid 90’s
to evolve non-uniform Cellular Automata [179]. These allow more complex behavior than
uniform CA at, almost, no extra cost in terms of hardware. However, the search space for
such CA is bigger by several order of magnitude than the one for uniform CA. The cellular
programming algorithm not only succeeds in finding good problem solving CA but does it
faster than a classical GA. It is a prime example of an evolutionary algorithm which fully
exploit their inherent parallelism, evolve a strictly spatially structured population, and aim
at a good general fitness rather than one super-individual.

We begin, in the first subsection, by treating in more detail the question of parallelism
which is at the core of cellular systems and their evolution. We then present in subsec-
tion 5.1.2 the cellular programming algorithm. Section 5.2 introduces the various statistical
measures used in the analysis of cellular evolutionary algorithms. In Section 5.3, we analyze

'We are not contemplating a Nature governed by Law, but rather a random and goalless process,
and the dismal reign of chance replaces the guiding principles of reason.

77

78 Evolution of Cellular Automata

the dynamics, both genotypic and phenotypic of the cellular programming algorithm when
used to evolve solutions to three different problems: density, synchronization, and random
number generation. Finally, we conclude in Section 5.4. The work presented in this chapter
is an augmented and completed version of the results published by Capcarrere et al [27].

5.1.1 Parallel evolutionary algorithms

One of the most basic aspects of evolutionary algorithms is their inherent parallelism: the
existence of a population implies, ipso facto, that there are several individuals evolving
in parallel. This has not escaped practitioners in the field, who have indeed explored the
issue of parallel evolutionary algorithms. One can cite two basic motivations underlying
these parallelization efforts. First, there is the wish to reduce (often quite markedly) the
necessary run time, thus expediting the emergence of a solution to the problem at hand. A
second motivation lies in the algorithmic benefits resulting from a parallel implementation
that echoes evolution in nature—the field’s fundamental inspiration.

ir\r)
B
<p-
4
b
—b—r
h
N
4
P
<
oD o)
O

Y
D
-
Y
D
<
O

0
N
4
g
d
©

\
)
)
by
5o

Ll S S e S - =
h_d
4
O O W, W, .

4
12 AN

L &
€ T; 4 H—4
& &dd
5660060000

—
=3
~

Figure 5.1 The two basic models of parallel evolutionary algorithms: (a) the coarse-grained
island model, and (b) the fine-grained grid (or cellular) model.

A basic tenet of parallel evolutionary algorithms is that the population has a spatial
structure. A number of models based on this observation have been proposed, the two most
important being the island model and the grid model. The coarse-grained island model
features geographically separated subpopulations of relatively large size. Subpopulations
exchange information by having some individuals migrate from one subpopulation to an-
other with a given frequency and according to various migrational patterns (Figure 5.1a).
This can work to offset premature convergence, by periodically reinjecting diversity into oth-
erwise converging subpopulations. In the fine-grained grid model individuals are placed on
a toroidal d-dimensional grid (where d = 1,2, 3 is used in practice), one individual per grid
location (the fine-grained approach is also known as cellular [211,220]; see Figure 5.1b).
Fitness evaluation is done simultaneously for all individuals, with genetic operators (se-
lection, crossover, mutation) taking place locally within a small neighborhood. From an
implementation point of view, coarse-grained island models, where the ratio of computation
to communication is high, are more adapted to multiprocessor systems or workstation clus-
ters, whereas fine-grained cellular models are better suited for massively parallel machines

5.1 Introduction 79

or specialized hardware. Hybrid models are also possible, e.g., one might consider an island
model in which each island is structured as a grid of locally interacting individuals. For
recent reviews of parallel evolutionary algorithms (including several references) the reader
is referred to [24,205].

Though such parallel models have empirically proven worthwhile [9, 32,122, 124, 146, 196,
211], there seems to be lacking a better understanding of their workings. Gaining insight
into the mechanisms of parallel evolutionary algorithms is the underlying motivation of our
chapter. Specifically, concentrating on cellular models, our objectives are: (1) to introduce
several statistical measures of interest, both at the genotypic and phenotypic levels, that are
useful for analyzing the workings of fine-grained parallel evolutionary algorithms, and (2) to
demonstrate the application and utility of these measures on a specific example, that of the
cellular programming evolutionary algorithm [180]. Among the few theoretical works carried
out to date, one can cite Mithlenbein [135), Canta-Paz and Goldberg [25], and Rudolph and
Sprave {166]. The latter treated a special case of fine-grained cellular algorithms, studying
its convergence properties.

5.1.2 Cellular programming

In this chapter we investigate the evolution of non-uniform cellular automata. The CA
model for which we presented a scaling scheme in chapter 4, so as to generalize the solution
obtained by evolution. Such automata function in the same way as uniform ones, the only
difference being in the cellular rules that need not be identical for all cells. Our focus here
is on the evolution of non-uniform CAs to perform computational tasks using the cellular
programming approach. In this section, we present the cellular programming algorithm, the
subject of our statistical analysis. This algorithm was introduced by Sipper in [179].

The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a different rule. A
cell’s rule table is encoded as a bit string (the “genome”), containing the next-state (output)
bits for all possible neighborhood configurations (as in Figure 2.1). Rather than employ a
population of evolving, uniform CAs, as with standard genetic algorithm approaches, our
algorithm involves a single, non-uniform CA of size n, where the population of cell rules is
initialized at random. Initial configurations are then generated at random, in accordance
with the task at hand, and for each one the CA is run for M time steps. Each cell’s fitness
is accumulated over C' = 300 initial configurations, where a single run’s score is 1 if the
cell is in the correct state after M iterations, and 0 otherwise. After every C configurations
evolution of rules occurs by applying crossover and mutation. This evolutionary process is
performed in a completely local manner, where genetic operators are applied only between
directly connected cells. It is driven by nf;(c), the number of fitter neighbors of cell i after
¢ configurations. The pseudo-code of the algorithm is delineated in Figure 5.2.

Crossover between two rules is performed by selecting at random (with uniform prob-
ability) a single crossover point and creating a new rule by combining the first rule’s bit
string before the crossover point with the second rule’s bit string from this point onward.

80 Evolution of Cellular Automata

Mutation is applied to the bit string of a rule with probability 0.001 per bit.

for each cell ¢ in CA do in parallel
initialize rule table of cell ¢
fi =0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell < do in parallel
if cell 7 is in the correct final state then
fi=fi+1
end if
end parallel for
c=c+1
if c mod C = 0 then { evolve every C configurations}
for each cell i do in parallel
compute nf;(c) { number of fitter neighbors }
if nf;(c) = 0 then rule 7 is left unchanged
else if nf;(c) = 1 then replace rule 7 with the fitter neighboring rule,
followed by mutation
else if nf;(c) = 2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c) > 2 then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)
end if
fi=0
end parallel for
end if
end while

Figure 5.2 Pseudo-code of the cellular programming algorithm.

There are two main differences between the cellular programming algorithm and the
standard genetic algorithm approach (e.g., [132]): (a) The latter involves a population of
evolving, uniform CAs; all CAs are ranked according to fitness, with crossover occurring
between any two individuals in the population. Thus, while the CA runs in accordance with
a local rule, evolution proceeds in a global manner. In contrast, the cellular programming
algorithm proceeds locally in the sense that each cell has access only to its locale, not
only during the run but also during the evolutionary phase, and no global fitness ranking
is performed. (b) The standard genetic algorithm involves a population of independent

5.2 Statistical Measures for Cellular Evolutionary Algorithms 81

problem solutions; the CAs in the population are assigned fitness values independent of
one another, and interact only through the genetic operators in order to produce the next
generation. In contrast, our CA coevolves since each cell’s fitness depends upon its evolving
neighbors. This may also be considered a form of symbiotic cooperation, which falls, as
does coevolution, under the general heading of “ecological” interactions (see Mitchell [131],
pages 182-183). In summary, cellular programming is a local, coevolutionary, parallel genetic
algorithm.

5.2 Statistical Measures for Cellular Evolutionary
Algorithms

In this section, we present the statistical measures that we use in the next section for the
analysis of cellular evolutionary algorithms. Most of these are rather intuitive, but do take
into account the structural specificities of the parallel algorithm we consider. They give
a good objective account of both the visual side, the phenotypic aspects, and the hidden
side, the genotypic activity. Credits for these measures goes to Andrea Tettamanzi who
formalized them.

5.2.1 Basic definitions and notation

Let us first formally define the basic elements used in this chapter (a summary of which
is provided in Table 5.1). A population is a collection of individuals, each represented
by a genotype. A genotype is not necessarily unique—it may occur several times in the
population. In addition, if the population has a topology, the spatial distribution of the
genotypes is of interest. Let n be the number of individuals in the system. Let R;, 1 <
t < n be the genome of the ith individual. Let I' be the space of genotypes and G(T')
be the space of all possible populations. Let f(7y) be the fitness of an individual having
genotype v € I'' When the cells are arranged in a row, as is the case in the example of
Section 5.1.2, a population can be defined as a vector of n genotypes z = (R1,...,Ry);
then we have G(I') = '™, provided the row of cells is not folded into a circle by connecting
the extremity cells as is often done?. For example, with a three-bit genotype, the space of
genotypes I' is: {000, 001, 010, ..., 111}; for a population of size n = 2, G(T') is: T2 =
{{000, 000}, {000,001}, ..., {111,111} }.

For all populations z € G(I'}, an occupancy function n,: I' — N is defined, such that,
for all v € T', ngy(7y) is the number of individuals in z sharing the same genotype v, i.e., the
occupancy number of 7 in z. The size of population z, ||z|, is defined as ||z|| = 3 ,cr ns(7)-

We can now define a share function g, : I' — [0, 1] giving the fraction g;(7) of individuals
in z that have genotype 7, i.e., ¢z (v) = ng(v)/||z||.

Consider the probability space (', 2T, u), where 2T is the algebra of the parts of I' and
(4 is any probability measure on I'. Let us denote by i the probability of generating a

2Actually, if we connect the border (a toroidal CA, for instance), then G(T') = 15, ,¢(d)k"/9,

T n
where n is as defined above, d are the divisor of n, k is the cardinality of T',|T'l, and ¢ is Euler’s
indicator, that is to say, ¢(d) are all the postive number lesser than d and prime to d.

82 Evolution of Cellular Automata

r Space of genotypes
v Genotype in T
f(~) Fitness of genotype y
G(I') Space of populations
7 Probability measure over I'
i Probability measure over G(I")
n Population size
t Generation
z Population in G(T')
nz(y) Occupancy number of genotype < in population z
gz(v) Share of genotype 7y in population =
P Probability measure over the trajectories
¢ Probability function over fitness
R; Genotype of ith individual in the population
X:; (Random) population at ¢th generation
Q Space of all possible evolutionary trajectories
w Evolutionary trajectory

Table 5.1 Nomenclature.

population z € G(T') by extracting n genotypes from I' according to measure p. It can be
shown that it is sufficient to know either of the two measures—u (over the genotypes) or fi
(over the populations)—in order to reconstruct the other.

The fitness function establishes a morphism from genotypes into real numbers. If geno-
types are distributed over I" according to a given probability measure u, then their fitness
will be distributed over the reals according to a probability measure ¢ obtained from p by
applying the same morphism. This can be summarized by the following diagram:

r L R
! ! (5.1)
7 ¢

The probability ¢(v) of a given fitness value v € [0, +00) is defined as the probability that
an individual extracted from T' according to measure p has fitness v (or, if we think of
fitness values as a continuous space, the probability density of fitness v): for all v € [0, +00),
$(v) = pu(f~1(v)), where f~ (v) = {y €T : f(y) =v}.

An evolutionary algorithm can be regarded as a time-discrete stochastic process
{Xt(w)}=0,1,2,...5 (5.2)

having the probability space (€2, F,P) as its base space, (G(T'),26(1) as its state space, and
the natural numbers as the set of times, here called generations. §2 might be thought of as
the set of all the evolutionary trajectories, F is a o-algebra on €2, and P is a probability
measure over F.

The transition function of the evolutionary process, in turn based on the definition of
the genetic operators, defines a sequence of probability measures over the generations.

5.2 Statistical Measures for Cellular Evolutionary Algorithms 83

Let fi; denote the probability measure on the state space at time t¢; for all populations
z € G(I),
pi(z) = P{w € Q: X¢(w) = z}. (5.3)

In the same way, let u; denote the probability measure on space (I',27) at time ¢; for all
vel,
w(7) = Plk = 7|k € Xy(w)]. (5.4)

Similarly, we define the sequence of probability functions ¢:(-) as follows: for all v €
[0,400) and t € N,
$t(v) = m(f ' (). (5.5)

5.2.2 The statistical measures

In this section we shall introduce several statistics pertaining to cellular evolutionary algo-
rithms, which can be divided into two classes: genotypic statistics, which embody aspects
related to the genotypes of individuals in a population, and phenotypic statistics, which
concern properties of individual performance (fitness) for the problem at hand. Table 5.2
provides a summary of our statistics.

Notation Formula Explanation

na(7) Occupancy number of v in popu-
lation z

q:(7Y) nz(7)/ |zl Share of 7 in population z

v(z) ST, S jENG)[Ri#R;) Frequency of transitions in popu-

i IN@I lation z

H(z) > ver 4z(7) log qz;(w) Entropy of population z
Genotypic diversity of population

D(CE) T%nyer‘ Qz(7)(1 "‘Qz(’}/)) T yp y pop

El¢;] Performance of population

() Var[s,] P?henotypic diversity of popula-
tion z

2
2 1Nn _ LHINOIAR) :
pA(x)) [1 1+ZjeN(i)f(RJ'):| Ruggedness of population z

Table 5.2 Summary of statistics introduced in this section.

Genotypic statistics

One important class of statistics consists of various genotypic diversity indices (within the
population) whose definitions are based on the occupancy and share functions delineated
below.

84 Evolution of Cellular Automata

Occupancy and share functions
At any time ¢t € N, for all v € T, nx,(v) is a discrete random variable with binomial
distribution
n

Plox, () = H =})mn* o = mln" 55)

thus, E[nx,(v)] = nut(y) and Var[nx, ()] = npe(y)[1 = pe(y)]. The share function gx, ()
is perhaps more interesting, because it is an estimator of the probability measure u(y); its
mean and variance can be calculated from those of ny, (), yielding

(DIL = pe()) (5.7)

Blax,(v)] = () and Varlgx,(7)] = EEE—FE12,

Structure

Statistics in this category measure properties of the population structure, that is, how
individuals are spatially distributed; obviously, such statistics apply only to populations that
have a spatial structure (e.g., Figure 5.1b).

Frequency of transitions:

The frequency of transitions v(z) of a population z of n individuals (cells) is defined
as the number of borders between homogeneous blocks of cells having the same genotype,
divided by the number of distinct couples of adjacent cells. Another way of putting it is
that v(z) is the probability that two adjacent individuals (cells) have different genotypes,
i.e., belong to two different blocks.

Formally, the frequency of transitions v(z) can be expressed as

Dic1 Ljene)[Bi # Byl
2i=1 IN@)]
where [P] denotes the indicator function of proposition P, and N (%) is the neighborhood of

cell ¢, i.e., the set of cells spatially adjacent to it. In the example studied in Section 5.1.2,
we have a one-dimensional grid structure, whereby Equation 5.8 reduces to

v(z) = , (5.8)

[Ri 7é R(z mod n)-l—l] . (59)
1

S|t

v(z) = .

n
1=
Diversity
There are a number of conceivable ways to measure genotypic diversity, two of which we
define below: population entropy, and the probability that two individuals in the population

have different genotypes.

Entropy:
The {bit) entropy of a population z of size n is defined as
. 1
H(z) = gz(7)lo . 5.10)
}: =(7) log gz () (

vel

Entropy takes on values in the interval [0,logn] and attains its maximum, H(z) = logmn,
when z comprises n different genotypes.
Diversity indices:

5.2 Statistical Measures for Cellular Evolutionary Algorithms 85

The probability that two individuals randomly chosen from z have different genotypes
is denoted by D(z).
Index D(X}) is an estimator of quantity
Do) (=) =1-3_ m()?, (5.11)
vel' yel

which relates to the “breadth” of measure ;.

Proposition 1 Let z be a population of n individuals with genotypes in I'. Then,

)1 = gz(7))- (5.12)

’yEI‘

Proof: We choose the first individual at random with uniform probability: it will have
genotype « with probability ¢;(y). We then choose a second individual without replace-

ment (i.e., from the remaining n — 1 individuals). This time, the probability that it will
ng(y)—1
n—1

probability that it will not have genotype 7 is

have genotype -y is , given that the first individual has genotype <y. Therefore, the

ng(y) — 1 _n- "m(’)’)

1-— =
n—1 n—1

(5.13)

Now, we have to sum up this probability over all possible genotypes that can be extracted
first, weighted by the probability of extracting them, which is g,:

Dla) = 3 gal) 2 221) (5.14)

n—1
yer

Observe that
n—ng(y) _n-ng(y _

= = 1— go(7)). 1
— p— — (1~ a() | (5.15)
Substituting in Equation 5.14 yields the thesis. QED
We observe that for all populations z € G(T'),
H(z)
D(z) > . 5.16
(@) 2 o (5.16)

In other words, D(z) rises more steeply than entropy as diversity increases.
An interesting relationship between D and v is given by the following proposition.

Proposition 2 Given a random one-dimensional linear population x of size n, the expected
frequency of transitions will be given by

E[v(z)] = D(x). (5.17)

Proof: We express the expected frequency of transitions:

[V(.’L‘ ZP Yi 76 '7 (i modn +1 Z D (5'18)

(Note that this can also be proven for dimensions higher than one by generalizing the above
proof.) QED

86 Evolution of Cellular Automata

Phenotypic statistics

Phenotypic statistics deal with properties of phenotypes, which means, primarily, fitness.
Associated with a population z of individuals, there is a fitness distribution. We will denote
by ¢, its (discrete) probability function.

Performance

The performance of population z is defined as its average fitness, or the expected fitness
of an individual randomly extracted from z, E[¢;].

Diversity The most straightforward measure of phenotypic diversity of a population z
is the variance of its fitness distribution, o(z) = Var[¢,].

Structure

Statistics in this category measure how fitness is spatially distributed across the individ-
uals in a population.

Ruggedness:

Ruggedness measures the dependency of an individual’s fitness on its neighbors’ fitness
(a sort of phenotypic entropy). Ruggedness of population z € G(T") of size n can be defined
as follows:

2

1 & 1+ |ING)|f(R:)
p2(a:)=—2|:1—- 1+z”: @I f((é) . (5.19)

s jen() J
Notice that p?(z) is independent of the fitness magnitude in population z, i.e., of performance

E[¢s].
For a one-dimensional population of size n, Equation 5.19 becomes:
1< [1+ 2f(R;) r’
2 a
po(z) = — 1-—- . (520)
(=) n ; 1+ f(Ri modny+1) T f(Ri—2 mod n)+1)

The computational tasks

In the next section we study the cellular programming algorithm on the three computational
tasks presented in chapter 4, in section 4.2: density, synchronization, and random number
generation (RNG). We use thus one-dimensional, 2-state, r = 1 cellular automata.

5.3 Results and analysis

Using the different measures presented in Section 5.2.2, we analyzed the processes taking
place during the execution of the cellular programming algorithm presented in the previous
section. This was carried out for all three tasks delineated in 4.2 (density, synchronization,
and RNG). From previous experiments, we knew that they present different degrees of
difficulty for the evolutionary algorithm, with density being the hardest and the other two
being easier (though non-trivial [179,182]). All experiments were run for CAs of size 150.
The number of experiments varied with the tasks: 100 for RNG, 96 for density, and 103 for
synchronization.

First, we present features commonly observed for all tasks. We then compare these
results with those obtained via a control task to distinguish what may be properties intrinsic

5.3 Results and analysis 87

to the algorithm itself from idiosyncrasies common to the three tasks studied. Finally, the
specific properties of each tasks are described in the subsequent subsections.

5.3.1 Common features

There are a number of trends found to be common to all three tasks. A notable feature we
observed is the significant decrease in entropy (H) which is initially naturally high, due to
the population randomness. This can be considered as an increase in order, which is also
reflected in the trends exhibited by other measures, described below.

In all runs the entropy falls from a high of approximately 0.8 to a low of approximately
0.7 within the first 20 generations, and from then on generally tends to decline. Though
this latter decline is not monotonous, for all three tasks—whatever the outcome, successful
or unsuccessful—the entropy ends up below 0.5. This fall in entropy is due to two factors.
First, we can observe in all runs a steep drop in the transition frequency (v) in the first few
generations, followed by an almost continuous drop in the subsequent generations, whose
slope is task dependent (see Figure 5.3). Though it may be intuitive that, given the pos-
sibility of rule replication between neighboring cells after each generation, blocks will tend
to form, our measures now provide us with quantitative evidence. Note that the transition
frequency (v) progresses towards an oscillatory state about values below 0.3 (including the
synchronization case, though this occurs at a later time—around generation 160—not shown
in Figure 5.3). The second factor involved in the lower entropy is the number of rules. One
can see directly that a low v implies few rules. This is corroborated by the diversity (D)
measure decreasing trend.

0.9

\
o\

0,7

\
o's \\§"‘§_\ _‘—\/\\

e

D—m

frequency trans,

0.5
0.4 S

03¢ """:}"Q:Tf""*w«..d.::'-’*w-_‘ AN

NN e density

0.2 ~~.rng
0 2 4 6 8 10 12 14 16 18 20

generations

Figure 5.3 Progression of the transition frequency (v) over the first 20 generations of
typical runs.

For the three tasks studied herein the objective is to reach a high average fitness over
the entire population, rather than consider just the highest-fitness individual cell. Thus,
intuitively we can expect that the phenotypic variance will tend to be minimized, and we
can factually check that both the fitness variance (¢2) and ruggedness (p?) are always very
low towards the end of an evolutionary run. A clear correlation between genotypic and

88 Evolution of Cellular Automata

phenotypic measures we observed is that a higher fitness variance results in a much steeper
decrease of v in the first steps when it is very high, thereby rendering the grid more uniform
(see Figure 5.3). This trend in the very first steps is an indication on the subsequent
dynamics of the run. We will see that the normalized entropy is lower for RNG and Density
classification than for the synchronization task. Usually the evolved CA had less than 10
different rules out of the 256 possible ones. We found that fitness variance (0?) is about ten
times higher for RNG and density than for synchronization, which underlies the difference
in the declivity of the v curves in Figure 5.3.

In conclusion, there is an increase in order, meaning that the population tends to evolve
towards a small number of rules organized in blocks, i.e., a low H and v. As we will see in
the following subsections, which detail properties specific to each task, the exact values of
H, D, and v differ. Nonetheless, the general tendencies prevail.

5.3.2 The control task

To be able to distinguish peculiarities of the evolutionary runs due to the tasks from the
specificities of the co-evolutionary algorithm itself, we propose in this section to study the
dynamics of the algorithm on a control task. To define a control task, we have to remem-
ber the purposes of this statistical work. There are two of them: to understand the inner
workings of the algorithm (genotypic statistics) and to correlate what happens at the geno-
typic and phenotypic levels. Thus we need a control task where the phenotypic behavior
is not related to the genotypic workings of our algorithm. This may seems paradoxical as
the very principle of evolutionary algorithms is to establish this link between genotype and
phenotype. So to do that we have to fool the algorithm. There are two ways to accomplish
this. Either affect the workings of the cellular automata to disconnect the global behavior
from the local rule, the genome, or affect the “vision” of the algorithm, namely the fitness
function. It is clear that if we attribute a uniformly random fitness to each cell, then we get
the desired gap between the genotypic changes and the phenotypic behavior.

As we can observe clearly in Figure 5.4, the general trend of ordering seems to be
inherent to the algorithm. D, H and v first fall down sharply and then level off to a limit
value as the average curves show. More precisely, v exhibit the most significant decrease,
thereby implying the rapid formation of blocks. However, if this implies a diminution of the
number of rules, the relatively high stabilization of the diversity measure (as compared to
the other tasks) demonstrates the liveliness of a certain variety of rules present. The fact
that diversity remains high also shows that the repartition of the rules is quite uniform,
i.e., there is no block taking over. Though one would expect such a behavior, given the
nature of the task, interestingly enough, it proves that the tendency to form blocks is not a
tendency to total uniformity in general. This underlines the properties of over-ordering of
both RNG and density classification. It is not directly observable in Figure 5.4, but the first
twenty generations of the control task confirm our hypothesis that a high fitness variance at
the beginning of the evolutionary runs induces a rapid decrease in the transition frequency.
Nevertheless, the very random nature of the control task maintains a rather high diversity
and entropy, unlike, as we will see, the case for RNG and diversity. Let’s now concentrate

5.3 Results and analysis 89

1Djversity
r"'ﬂ’.)‘ 4 A !
Ty L 'f §

0.9} ¥
" |

\average

4
N average

s average

0 100 200 300 400 500 600 700 800 900 1000
generations

Figure 5.4 Control task: we can see here the diversity D(z), the entropy H(z), and the
frequency of transitions v(z) for a “typical” run of the cellular programming algorithm on
the control task. What appears here as thick lines are the values of D(z), H(z), and v(z)
averaged over 100 runs of the evolutionary algorithm.

on each of the tasks studied.

5.3.3 Random number generation (RNG)

The evolution of random number generators is highly successful in terms of final fitness.
Thoeugh high fitness does not necessarily entail good random behavior, Sipper and Tomassini
[186,187] have shown that such evolved CAs do fare well on several randomness tests. For
all runs, we obtained normalized fitness values higher than 0.99, in relatively few generations
(approximately 100).

One can note that there is a steady increase in fitness during the first 60 generations,
accompanied by a relatively sharp descent in entropy (H) which drops from a high of 0.8
to a low of approximately 0.3. We see in Figure 5.5 that the fitness average is already
high (approximately 0.98) when the entropy reaches the low-value range. We then observe
that the entropy stabilizes, without stopping its descent, and the average fitness remains
generally high. During the stabilization phase the genotypic “variance” (v) declines to almost
0; indeed, the evolved CA usually contained less than 10 different rules, with three or four
rules eventually covering almost all the CA grid. This stabilization is not a leveling off like
for the control task. Diversity D actually keeps on its descent at about the same rate all
along the run. Given that the transition frequency remains almost stable during after the
initial steep fall, this demonstrates that a block, or a few blocks of rule are taking over the
CA. 1t finally translates into an eventual diminution of v. Hence, the cellular algorithm
while maintaining the fitness high tends to simplify the “global” genome. A property rather
uncommon in evolutionary algorithms.

90 Evolution of Cellular Automata

trans. feq, -
diversity ——
normalized entropy -

0 20 40 B0 80 100 120 140 160 180 200

Figure 5.5 Fitness and entropy (H) vs. time for a typical run of the RNG task. We
observe that D, H and v decline rapidly while fitness increases, and then keep on their
descent but at a much slower pace.

5.3.4 Synchronization

The evolutionary dynamics of the synchronization task were found to exhibit at most four
fitness phases: a low-fitness phase, followed by a rapid-increase phase, continuing with a
high-fitness phase and ending with a medium high, stable fitness phase. Note that for
this task a successful run is considered to be one where a perfect fitness value of 1.0 is
attained. The evolutionary runs can be classified into six distinct classes. Two of the classes
represent successful runs (Figures 5.6a and 5.6b), and the other four represent unsuccessful
runs (Figures 5.7a, 5.7b, 5.7c and 5.7d). This classification is based on the number of
phases exhibited during the evolution. We should note that these six classes do not happen
with equal probabilities. To give a rough idea of this distribution, we may say that we
reach a perfect solution about two-third of the times. Hence the four type of unsuccessful
runs represent only one third of the runs.. We now present the results of our experiments
according to these four fitness phases.

Phase I: Low fitness. This phase is characterized by an average fitness of 0.5, with an
extremely low variance. However, while exhibiting phenotypic (fitness) “calmness,”
this phase is marked by high underlying genotypic activity: the entropy (H) steadily
decreases, and the number of rules strongly diminishes. An unsuccessful type-a run
(Figure 5.7a) results from “genotypic failure” in this phase. To explain this, let us first
note that for the synchronization task, only rules with neighborhood 111 mapped to 0
and 000 mapped to 1 (cf. Figure 2.1) may appear in a successful solution. Let us call
this the “good” quadrant of the rule space, and define the “bad” quadrant to be the one
that comprises rules mapping 111 to 1 and 000 to 0. In some experiments, evolution
falls into the bad quadrant, possibly due to a low fitness variance. Only the mutation
operator can possibly hoist the evolutionary process out of this trap. However, it is
usually insufficient in itself, at least with the mutation rate used herein. Thus, in such
a case the algorithm is stuck in a local minimum, and fitness never ascends beyond

5.3 Results and analysis

1

09
08 |
0.7
0.6 t:
0.5

iyt
04 | tfl M

03

U
At Y e
Y
]
]
)
'
]
1
'
|
1
|

\lﬂ ;“i\ #‘#‘#E %fv*)‘r 9”(;

02t

0.1

dJVCl'Slty

0 100 200 300 400 500 6()0
generations

(a)

03

1 Wﬁ "*‘w \‘.;Hjuw("‘m{}w r“

0.2
0.1

91

1‘

0

100 200 300 400 500 600 700 800 900
generations

(b)

Figure 5.6 The evolutionary runs for the synchronization task can be classified into six
distinct classes, based on the four observed fitness phases: phase I (low fitness), phase II
(rapid fitness increase), phase III (high fitness) and phase IV (medium high fitness). Here
we present the two classes of successful runs. (a) Successful run, exhibiting but the first two
phases. The solution is found at the end of phase II. (b) Successful run, exhibiting three

phases. The solution is found at the end of phase III.

0.53 (Figure 5.7a). We may surmise that this fall in the bad quadrant prevents any
block of rules to attain good fitness. Hence, as we see in the Figure, diversity remains
really high while transition frequency settles at about the same rate as for the control
task. This is intuitively sound as this fall in the bad quadrant is “almost” equivalent
to random fitness.

Phase IT: Rapid fitness increase. A rapid increase of fitness characterizes this phase, its

- onset marked by the attainment of a 0.54 fitness value (at least). This comes about
when a sufficiently large block of rules from the good quadrant emerges through the
evolutionary process. In a relatively short time after this emergence (less than 100
generations), evolved rules over the entire grid all end up in the good quadrant of the
rule space; this is coupled with a high fitness variance (¢2). This variance then drops,
while the average fitness steadily increases, reaching a value of 0.8 at the end of this
phase. Entropy never stabilizes before the end of this task. While transition frequency
always settle down after 200 to 400 generations, whatever the fitness outcome. On
certain runs a perfect CA was found directly at the end of this stage, thus bringing
the evolutionary process to a successful conclusion (Figure 5.6a).

Phase III: High fitness. The transition from phase I to phase III is not clear cut, but

we observed that when a fitness of approximately 0.82 is reached, the fitness average
then begins to oscillate between 0.65 and 0.99. During this phase the fitness variance
also oscillates between approximately 0 and 0.3. While low, this variance is still higher
than that of phase I. Whereas in phases I and I we observed a clear decreasing trend
for entropy (H), in this phase entropy exhibits an oscillatory pattern between values
of approximately 0.3 and 0.5. We conclude that when order (low entropy) is too

92 Evolution of Cellular Automata

1 v T y T T 1

oyoi =
09 | M"'W,\ P 09t 1Y Y sl 1 At
¥ \ i LI 3 Vi 1K
08 ",A %, ” }‘] 1 F ‘J/’\J. 08 1t :d'l "w !‘ ‘ll‘ ll 1
o i it Ul |
07t : ﬁmess —_— 0.7 ; :) NN ‘ ‘ | i
i trans. freq. I i\ é
0.6 ‘-P i diversity = 1 0.6 H H
P\ | Phasel L. ¢ t
0.5 Phetronobperi 0.5 1 fitness —— PhaseIII ‘,l
L, 1 trans. freq. -
04 g% ﬂ N" 1 04 ' | 5 dwersxty
ﬁ
03} | 5 \!‘ Aw 031 & ‘ﬂ[ﬁb"f] Ml?“f
02| W" ﬂﬁﬁw 02t N '1
0.1 L 0.1
0 2()0 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
generations generations
(b)
1 v T —
o '
09 ™y 1 k!]
08| 1 | ! iy ey
07} |]
0.6 *i
o ; Phase IV
A0 |G | G
111, [}
0.4 { [}
i i
03t Jr‘qﬁ‘ : finess ——
; T 3 trans. freq. ——
o2}) ﬁ/’\/ t diversity
0 A Y A .. 0 Far O A P T P
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
generations generations
(c) (d)

Figure 5.7 We can see here the four kind of unsuccessful evolutionary runs for the syn-
chronization task out of the six distinct classes, based on the four observed fitness phases:
phase I (low fitness), phase II (rapid fitness increase), phase III (high fitness) and phase IV
(medium high fitness). Here we present the four types of unsuccessful runs. (a) Unsuccess-
ful run, “stuck” in phase I. (b) Unsuccessful run, exhibiting three phases. Phase III does
not give rise to a perfect solution. (c) Unsuccessful run, exhibiting three phases: I, II, IV.
Falling into the Phase IV trap directly from phase II. (d) Unsuccessful run, exhibiting all
four phases. Falling into the phase IV trap after reaching phase III. A block of 127 takeover.

high, disorder is reinjected into the evolutionary process, while remaining in the good
quadrant of the rule space; hence the oscillatory behavior. This is quite particular of
this task. As we saw, for RNG entropy steadily decreased to value around 0.25. and
as we will see, this oscillatory behavior of H is in-between much lower values for the
density task. In fact, the synchronization behavior is close to the control task behavior
(from an entropy point of view). On certain runs it took several hundred generations
in this phase to evolve a perfect CA—this is a success of type b (Figure 5.6b). Finally,
on other runs no perfect CA was found, though phase III was reached and very high
fitness was attained. This is a type-b unsuccessful run (Figure 5.7b) which does not
differ significantly from type-b successful runs.

Phase IV: Stable medium high fitness. This phase may appear after phase II (Fig-

5.3 Results and analysis 93

ure 5.7c) or phase IIT (Figure 5.7d). It is characterized by an extremely low fitness
variance, even lower than phase I, as it reaches 0 sometimes and an average global
fitness of 0.8. But what marks unmistakably phase IV is a complete drop of transition
frequency to reach values close to zero and, thus, a very sharp drop of diversity and
entropy to also attain values close to zero. This can only be explained by one block
taking over or almost taking over all the grid, and, this is the case. Just as for type-a
unsuccessful runs we fall here into an evolutionary trap. What happens is that the
uniform cellular automata with rule 1273 do fare well on our fitness criteria (0.8). No
single rule can perturbate the global efficiency of a 127 rule block (see Figure 5.8).
Thus if a mutation occurs, it will always be wiped out after one generation. Then
obviously as cross-over is of no help against a block of 127 cells, the trap is perfect
and the algorithm never gets out of it.

Figure 5.8 This figure demonstrates the efficiency of rule 127 for the synchronization
task and its insensitivity to perturbation. The rightmost space time diagram (time flowing
downward) illustrates rule 127, on a random initial configuration. The other diagrams show
rule 127 containing a different rule at cell 10 (0 being the rightmost cell) on the same initial
configuration.

5.3.5 Density

Density is arguably the most difficult task of the three. Indeed, this task necessitated the
longest evolution times, with fitness never exceeding 0.95. Thus, following Sipper [179], we
define a successful density CA to be one with average fitness higher than 0.9.

One can distinguish three fitness phases: a rapid increase phase (I), a stable phase
(II) and an unstable phase(III). Note that they are different from the synchronization
task phases. These phases also differ from those identified by Mitchell, Crutchfield, and
Hraber [132], when applying a genetic algorithm to the evolution of uniform CAs that solve
the density task (briefly, they observed four phases, which they dubbed “epochs of inno-
vation”; the difference between the dynamics of their algorithm and ours is not altogether
surprising, in view of the very different natures of the two). Phase I occurs in every run
from the first generation onward. It may be followed by phase II or III or a “mix” of the
two. These dynamics describe three main classes of runs: type-a exhibiting phase I and II

3in Wolfram notation

94 Evolution of Cellular Automata

only, type-b exhibiting phase I and III only and finally type-c exhibiting all three phases
(see respectively Figure 5.9a, 5.9b and 5.9c). The last two types may be successful, by the
criteria stated earlier, while the type-a runs are always unsuccessful.

Phase I: Rapid fitness increase. During this phase the frequency transition () and the
entropy (H) rapidly decrease, approximately, from 0.8 and 0.98 respectively to about
0.2 and 0.4 respectively within the first 10 to 20 generations, while average fitness
increases to approximately 0.8. Diversity (D) decreases also during this phase from
about 0.98 to 0.8. With this task, rules that are from the “bad” quadrant can nonethe-
less exhibit high fitness, between approximately 0.75 and 0.85 (here the “bad” quadrant
of the rule space is the one in which the genome maps 111 to 0 and 000 to 1). This
presents an obstacle to evolution, possibly leading to a local minimum, where only the
mutation operator may be of help (as is phase II). However this may be the reason
why “evolution” is instantaneous. Fitness rises from the very first step and onward
until it reaches about 0.8. (see Figure 5.10a, b and c¢). There is no warning in this
phase to know if we are going to fall in phase II or in phase III.

Phase 1I: Fitness stabilization. After this initial burst of high evolutionary activity in
phase I, the algorithm either enters phase II or phase III. In phase II, the average
fitness levels off and begins to oscillate in a narrow band of values mostly between 0.8
and 0.85. Actually, phase II comes in two flavors. The first one, which is typical of
type-a run (see Figure 5.9a), is characterized by an almost nil entropy, frequency of
transitions and most notably an almost nil diversity. Both H and v oscillate between
0 and 0.1 while D is generally below 0.2 with some rare bursts above. This first
kind of phase II is also marked by a relatively low fitness variance. The second type
of phase II exhibits the same fitness an equivalently low fitness variance. However,
as may be seen in Figure 5.9¢, though it is distinguished by very low values of D
particularly, but also H and v, much lower than in phase III, these are not as low as
in the first kind of phase II. This shows that in this second kind of phase II there is
still non negligible genotypic activity, which often leads this kind of phase to develop
into phase I1I. However, if the entropy falls below 0.1 durably, then it turns into the
first type of phase II and the run is bound to fail. So what is this phase II really ?
Actually, it matches a large block of 127 cells. This may seem strange as it is a rule
in the “bad” quadrant. However, as we are measuring fitness on a single step, and as
rule 127 tends after one step to synchronize on the local majority side, then when we
take our measure after an even number of steps, it naturally fares well (about 0.8 on
average). The difference between the first and the second kind of phase II is the size
of the block of rules 127. Usually in the second kind, there is a block of another rule,
creating enough perturbations to finally overcome the block of 127, while in the first
kind, the block is so large, that given the very high stability of rule 127 (there is no
information transfer, no particle in this rule), it turns out to be an evolutionary trap,
just like the phase IV in the synchronization task.

Phase III: Unstable fitness. This phase, the onset of which is the hallmark of successful
runs, is characterized by the destabilization of the average fitness (see Figure 5.9b

5.3 Results and analysis

1

09

0.8
0.7

06 |;
os b
04 fi
03 j
02 i

I phasg I .

il
1
t
L}

! fitness —— 1

0 500 10()0 1500 2000 2500 3000 3500 4000
generations

(a)

IIQ |] phase III

0
0

500 1000 1500 2000 2500 3000 3500 4000
generations

(b)

0.9
0.8 :
07 ¢
0.6
0.5
04
03
0.2 .
0.1

fitness

j b diversity

¥\ entropy

] trans.
freq.

0
0 500 1000 1500 2000 2500 3000 3500 4000
generations

(c)

95

Figure 5.9 The evolutionary runs for the density task can be classified into three distinct
classes, based on the three observed fitness phases: phase I (rapid fitness increase), phase
IT (fitness stabilization), and phase III (unstable fitness). (a) Unsuccessful run, exhibiting
only the first two phases. (b) Successful run, exhibiting only phase I and III. (¢) Successful
run, exhibiting the three phases. The solution is found during phase III. (Note that phase
IT for a successful run exhibits higher H, D and v values than that of its counterpart in an
unsuccessful run; however, phase III can still be readily distinguished by a net increase in
these values.)

and c¢). It exhibits highly oscillating fitness behavior, with values possibly differing

by as much as 0.3 (between approximately 0.65 and 0.95) from one generation to the

next. This suggests that the fitness landscape is highly rugged, which may explain the
relative difficulty of the task. In this phase diversity (D) is really high compared to
phase II. However, we may note that the values between 0.2 and 0.7 are quite below

that of any RNG or synchronization runs, or for the control task. This tendency to a

low diversity and entropy, a tendency to order, explains the relatively high occurrences

of phase II, an over-ordering phase.

96 Evolution of Cellular Automata

“diversity
"

\\
s,
oaf = Mwwwﬂm
0.7 ‘\'\
n

"
rans.

© l <

0 50 100 150 200 250 [} 50 100 150 200 250 [50 100 150 200 250

generations generagions generations

(a) (h (c)

Figure 5.10 The first 250 generations of the evolutionary runs for the density task pre-
sented in Figure 5.9. (a) We can see clearly in this zoom, the very low values of entropy,
diversity and transition frequency characterizing the first kind of phase II, typical of type-a
unsuccessful runs. (b) Relative high values for phase for type-b successful runs. (c) Success-
ful run, exhibiting the low values of H, D and v characterizing the second kind of phase II
at the very end of this graph, around generation 250. These values are still higher than in

().

5.4 Concluding Remarks

In this chapter we demonstrated the application of several statistical measures of interest,
both at the genotypic and phenotypic levels, which are useful for analyzing the workings
of fine-grained parallel evolutionary algorithms in general. The cellular programming evo-
lutionary algorithm, which we employed to evolve solutions to three different problems:
density, synchronization, and random number generation, revealed more of its workings
through these statistics.

We observed a number of features common to all three tasks, most of which were con-
firmed on the control task. They may therefore represent inherent algorithmic properties.
First and foremost among these concerns the notable difference between activity at the geno-
typic level and at the phenotypic level. At several stages of the evolutionary process, though
seemingly little phenotypic (observable) activity is taking place, the population is in fact
teeming with underlying genotypic activity. This latter gives rise at certain points in time to
discernible phenotypic effects, evident by fitness phase transitions. This may be an evidence
that our fitness criteria are not fine enough, at least in the early stage. Besides, and more
importantly, we noted a strong decrease in diversity (D), transition frequency (v), entropy
(H), and number of rules. This provides quantitative evidence that the population tends
to evolve towards a more ordered state with respect to the initial state—which is random
and therefore highly disordered. As we saw, there is a risk of over-ordering which translates
usually into fitness traps. This may be an argument to introduce a genotypic measure in
the fitness, to counter this problem.

Each of the tasks also exhibited a number of specific properties. For the RNG task a
high-fitness solution was always evolved, in usually no more than 100 generations with a
relatively high order. The synchronization task was seen to undergo (at most) four fitness
phases: a low-fitness phase, followed by a rapid increase in fitness, continued with a high-
fitness phase and ended by a high fitness evolutionary trap. The nature of these stages,

5.4 Concluding Remarks 97

or the absenceé of some of them, served to distinguish between six types of evolutionary
runs. Finally, the density task was seen to undergo (at most) three evolutionary phases:
a rapid-increase phase, followed by a highly stable phase, ending with an unstable phase.
A successful solution was observed to emerge only during the third phase (which was not
necessarily reached, e.g., in certain failed runs). For these last two tasks, the genotypic
measures gave & good insight of both traps, and a good, albeit not a perfect one, to predict
the outcome of the runs.

Parallel evolutionary algorithms have been receiving increased attention in recent years.
Gaining a better understariding of their workings and of their underlying mechanisms thus
presents an important research challenge. We hope that the work presented in this chapter
represents a small step in this direction.

Mais en disant la personne, il faut bien comprendre que je n’entends point cette rencontre
miraculeuse et vaine de cellules auxquelles la vie impose sa silencieuse unité — j’entends
plutdt cette unité spirituelle qui au-dela des apparences concrétes ou psychiques n’atteint

sa véritable raison d’étre qu’au moment méme ou elle consent & se perdre dépouillée des

passions trop humaines!.

Henri Féraud, Le Génie d’oc et ’homme méditerranéen. [{8]

Chapter 6

From Chaos to Order

6.1 Introduction

Though life was an awe-inspiring model for the first Cellular Automata designers, simpli-
fication was a prime constraint in all these studies, not only for obvious practical reasons,
but also as a guide to extract the quintessential ideas behind self-replication. Nevertheless,
I believe that an ever present quality was omitted for the former reasons than the latter
choice: robustness. Robustness to faults and robustness to asynchronous dynamics. In this
chapter, I propose simple and practical models of robust CAs.

In the first part of this chapter, section 6.2 and section 6.3, I will concentrate on the
asynchrony problem. Obviously in CA, this may be regarded as a particular case of fault-
resistance. But providing a specific view of this part of the problem, however, allows us to
develop perfect or economic solutions. In that section I will first study the (im)possibility
of evolving asynchronous binary CA, and then demonstrate the wealth of redundant CAs
through the exposition of: 1)perfect, 2)imperfect but economic, and 3)evolved methods.

In section 6.4, I will tackle the more general problem of fault-resistance, which could be
renamed as non-deterministic CA. The goal could then be expressed as designing determin-
istic CA in a nondeterministic environment. The solution I propose is general but is not
easily adaptable to any CA. It relies on error correcting code and presents the advantage
compared to existing methods of requiring no complexation of the inner CA workings or
extra space or memory. As an illustration, [will propose some fault-resistant structures
towards the creation of a fault-resistant self-replicating loop.

Both these approaches will be the occasion, in the concluding section, to illustrate the
crucial question of the information stored in a CA.

1But when I say the person, we have to understand not this miraculous and vain encounter of
cells upon which life imposes its silent unity — but rather this spiritual unity which beyond its
apparences, concrete or psychical, reaches its real raison d’étre only when it concedes to lose itself
pared down of too human passions.

99

100 From Chaos to Order
6.2 Asynchronous Cellular Automata

One of the prominent features of the CA model is its synchronous mode of operation,
meaning that all cells are updated simultaneously. But this feature is far from being realistic
from a biological point of view as well as from a computational point of view. As for the
former, it is quite evident that there is no accurate global synchronization in nature. As for
the latter, it turns out to be impossible to maintain a large network of automata globally
synchronous in practice. Besides, for our interest in this thesis which is concerned with
problem-solving CAs, it is interesting to try to delineate what part of the computation relies

on the synchrony constraint.

A preliminary study of asynchronous CAs, where one cell is updated at each time step,
was carried out by Ingerson and Buwel,[92], where the different dynamical behavior of syn-
chronous and asynchronous CAs was compared; they argued that some of the apparent self-
organization of CAs is an artifact of the synchronization of the clocks. Wolfram, [226], noted
that asynchronous updating makes it more difficult for information to propagate through
the CA and that, furthermore, such CAs may be harder to analyze. Asynchronous CAs
have also been discussed from a problem-solving and/or Artificial Life standpoint in Refs.
[19,79,93,143,171,178,195]. All these works devoted to asynchronous cellular automata
only concentrated on the study of the effects but not on correcting asynchrony or dealing
with it.From a theoretical computer science perspective, Zielonka [234,235] introduced the
concept of asynchronous cellular automata. Though the question attracted quite some in-
terest {33,103, 153], the essential idea behind them was to prove that they were “equivalent”
to synchronous CA in the sense that, for instance, they recognize the same trace language
or could decide emptiness. From these two fields, we thus know that asynchronous CA are
potentially as powerful as synchronous CA, computationally speaking?, and, nevertheless,
that most of the effects observed in the synchronous case are artifacts of the global clock. In
this section, we thus propose to develop asynchronous CA exhibiting the same behavior as
Asynchronous CA through both design and evolution. As Gacs|[63, 64] reminded us, asyn-
chrony may be considered a special case of fault-tolerance. However, if this consideration
is nice in its generalization (i.e. a fault-tolerant CA is also asynchronous), it eschews a lot
of potential optimization. As we will see later this cost is not only in terms of complexity
and/or memory, but also in terms of efficiency. Effectively as we will see, a simple time
stamping method allows perfect asynchronous behavior, whereas fault-tolerance is always
bounded.

In section 6.2.1, I will present the evolution of binary asynchronous CAs. The results of
the evolutionary runs lead me to consider redundant CA. I call a CA redundant, when the
input, the initial configuration is coded on ¢ states but the CAs work with k states, k > q.
In section 6.3, I will study both designed and evolved solutions to asynchrony with such
CAs, both perfect and imperfect, demonstrating that even perfect solutions may not be the
best depending on the computational goal sought.

2In the traditional sense, not in the sense of visual computation introduced in chapter 4.

6.2 Asynchronous Cellular Automata 101

6.2.1 Evolution of non-uniform binary asynchronous CA

The issue investigated in this section is that of evolving non-uniform binary asynchronous
CAs to perform the original density and the synchronization tasks. This is a particularly
difficult task as no extra states are given to the CA to cope with the synchronization faults.
Hence it should be pointed out that there is no extra cost for the solution presented here
compared to the non-uniform synchronous case. However, the principal purpose of this task
is to highlight the difficulty of the task, if we are not prepare to concede extra-cost to cope
with the asynchronous environment. As we will see in the next section, a few extra bits give
rise to very efficient solutions.

I will first present the different models of asynchrony for which solutions were sought,
and then present briefly the results for the original, imperfect density task and the synchro-
nization task, both presented in section 4.2.

The model: The grid is partitioned into blocks in which synchronous updating takes
place (i.e., all cells within a block are updated simultaneously), while the blocks themselves
are updated asynchronously (rather than have all blocks updated at once); thus, inter-
block updating is synchronous while intra-block updating is asynchronous.3 The number of
blocks per grid, #p, is a tunable parameter, entailing a scale of asynchrony, ranging from
complete synchrony (#;, = 1) to complete asynchrony (#; = N). The scale of asynchrony
is further refined by three models of inter-block synchronization (intra-block updating is
always synchronous). These three models are:

Model 1 At every time step each block is updated independently of the others with prob-
ability py, chosen so as to insure that at least one block is updated per time step with
probability > 0.99.

Model 2 Each time step a different block is chosen at random without replacement, such
that every #; steps, all blocks are updated exactly once. We denote by logical step
the succession of #, time steps necessary for one full update cycle, in which all cells
are updated (thus, one logical step is equivalent to one time step in the synchronous
model, with respect to cell updating).

Model 3 All blocks are updated in a fixed, random order every logical step. This is similar
to the second model, in that each cell is guaranteed to have updated its state every
logical step, however, the (random) update order is fixed (rather than selected anew
each logical step). Note that though the update order is deterministic, this model is
interesting in that cells are not updated in a regular manner; neighboring cells may
be updated at different points in time, which renders the computation more difficult.

Perfect cyclic behavior cannot arise in the first model, since the notion of a logical step,
i.e., a fixed number of time steps after which all cells will have been updated, does not
exist; however, a fixed point, such as that desired for the density problem, can be attained.

3A preliminary investigation of a CA-derived model based on the “blocks” idea was carried out
in [178].

102 From Chaos to Order

Models 2 and 3 can be .'ti:Fl]l.l'II to the svnchronization]H'“"lII'III since cyvelie behavior may
be attained, if one considers the CA's configuration every logical step, i.e., the alternation

between all Os and all 1s takes place every #), time steps

i;lrl

AR

(a) (h) () ()

Figure 6.1 In (a) and (b) we can see the result on the one-dimensional density task of
two co-evolved, non-uniform. connectivity radius r = 1 CAs. In (¢) and (d) we can see the
result on the one-dimensional synchronization task of two co-evolved, asynchronous (model
3), non-uniform CA, with connectivity radius r = 1. White squares represent cells in stats
0, black squares represent cells in state 1. The pattern of configurations is shown through
time (which increases down the page). (a) A synchronous CA. Grid size is N = 149. CA
1s run for 150 time steps. (b) An asynchronous (model-1) CA. Grid size is N = 150, with
two Th-cell blocks (#; = 2). CA is run for 665 time steps. The randomly generated initial
confirurations in (a) and (b) have a density of 1s greater than 0.5, and the CAs relax to a
fixed pattern of all 1s, which is the correct solution In (¢) and (d), CA size is N 150
partitioned into 4 blocks (# 1). (¢) The CA's configuration is depicted at every tims
step. (d) The CA's configuration is depicted at every logical step (= 4 time steps

6.3 Design and Evolution of Redundant Asynchronous CA 103

Our results for the density task show that model-1 asynchronous CAs can be evolved
whose performance is comparable to the synchronous case,* provided the number of blocks
does not exceed three (#; < 3). As we saw in chapter 4, a perfect solution for this form of
the density task cannot be evolved. Actually, this result of comparable performance with
low asynchrony to the synchronous case tends to confirm the clever “cheating” hypothesis
I presented, as a reasonable information loss is not of great importance. Nevertheless, for
#p > 3, successful asynchronous CAs for density classification did not evolve. Figure 6.1(b)
demonstrates the operation of an evolved, non-uniform, model-1 asynchronous CA on the
density task.

For the synchronization task, successful model-3 CAs with #; < 8 were evolved (grid
sizes considered were in the range N € [100, 150]); applying model 2, no successful CA had
emerged from the evolutionary process. Figures 6.1(c) and 6.1(d) demonstrate the operation
of an evolved, non-uniform, model-3 asynchronous CA on the synchronization task. The
deterministic updating schedule of model 3 renders it easier for evolution to cope with,
as compared with model 2. For both, however, an obstacle that hinders the evolutionary
algorithm is the need to adapt to block boundaries. A “good” rule in cell 4 may be of no
use, or even detrimental, in cell 7 + 1, if a block boundary occurs between these two cells.
Two strategies were observed to emerge through the evolutionary process in order to cope
with this problem: either specialized rules are evolved at block boundaries (different than
the rules present in the rest of the block), or a rule is evolved that is essentially insensitive
to the presence or absence of a boundary.

6.3 Design and Evolution of Redundant Asynchronous
CA

The relatively weak capability of binary CAs to cope with even limited asynchrony called for
the use of redundant CA to deal with full asynchrony. I call redundant CA, a CA which uses
more states in the asynchronous mode than is necessary in the synchronous mode to solve the
same task. The idea behind redundancy is that the information in a CA configuration is not
only the current state and the topology, but also the timing. For instance, in a synchronous
CA, rule 184°, if a block of two or more 1’s is present at position ¢ after t steps, it means
that there are no block of white cells between the positions 4,7 + ¢, or more exactly that the
density has been calculated for the cells 7 — £...i + . Hence the information that this block
carries is not just 111 but rather a 3-tuple (111,4,¢). Therefore, to deal with asynchrony,
I add redundancy to store, partially, that timing information explicitly in the state rather
than implicitly in the global synchronization as is the case in synchronous CA. As we will
see, the redundancy allows for perfect or efficient solutions to be designed and evolved.

In section 6.3.1, I will study a designed time-stamping method that allows perfect resis-
tance to asynchrony, i.e., there is no loss of information. In section 6.3.2, I present a low-cost
imperfect solution to the synchronization problem. Using a peculiar property of this task, I

“Performance results for the synchronous case are reported in [179].
5in Wolfram’s notation

104 From Chaos to Order

develop a lossy strategy that allows for instant correction. Finally in section 6.3.3, I present
a solution to asynchrony found through evolution. But first I describe the model used in
the rest of this section on asynchrony.

The model: I use the most general fully asynchronous model. Each cell has the same
probability ps of not updating its state at each step. In this case the cell state remains
unchanged. Otherwise the uniform or non uniform CA is perfectly classic. Hence, the
probability of CA of size N working synchronously for ¢ time steps is (1 — pf)N t

6.3.1 A simple and efficient time-stamping method

If what is looked for is a method to perfectly correct asynchrony, then all information
should be maintained. This is to say, all the 3-tuples (c, i,t), where c is the state of cell ¢
at time ¢, of the synchronous case should be reconstructible in the asynchronous case. As
a definition, I call the equivalent-time ¢, the minimal time of an asynchronous CA when we
can reconstruct the information of the corresponding synchronous CA. The simplest way
to achieve this information-keeping task, is that each cell store each time it updates the
2-tuple associating the current time and state. This way if a cell updates only if its current
time matches a tuple in each of its neighbors, or waits otherwise, time consistency will be
maintained. This solution answers the query but unrealistically, as the number of state
grows indefinitely as time goes by. However, if we strip down this idea to the essential, then
a practical perfect algorithm may be devised.

The method relies on two essential pieces of data. Firstly, a cell knows if it can update,
i.e., if it is ahead of one of its neighbors or not. Secondly, a cell knows its neighbor state
corresponding to its own state. This can be nicely summed up as: a cell must know if it can
update, i.e., if it is allowed to and if it is able to update.

The method

Quite simply, a time-stamp is added to each cell so that the cell may know if it is ahead of
one of its neighbors. The minimum value of the time-stamp, not to confuse between being
ahead or being late, is 3. Then if each cell stores both its current and last state, the new CA
is both able to know if it can update and how it should update. The simple algorithm below,
executed at each update, will thus guarantee that whatever ps the CA computes correctly.

If (for all neighbors)
neighbors_time-stamp != (my_time-stamp-1)%3)
then
past_state = current_state
current_state = RULE(neighbor_states(my_time-tamp))
my_time-tamp = (my_time-tamp +1)%3
endif

where neighbor_states returns the current state of the neighbor if the time-stamps are
identical or the past state of the neighbor if the time-stamps are different.

6.3 Design and Evolution of Redundant Asynchronous CA 105

Hence if the original CA had g states, the new CA has 3 * ¢° states. This idea of having
a phase component and a data component in the state set is not new as such. Toffoli in [207]
presented such a solution in the general case of concurrent behavior of automata. A solution
he reused with Margolus in [209] to deal with Asynchronous CA. However, it should be
pointed out that their solution uses a phase component of 4 states, which, as we see, is not

minimal.

Practical results

As the method corrects perfectly the synchrony errors, it is useless to test it for results
as such. However, this may be illustrated with the adaptation of rule 184. As shown in
chapter 4, this rule needs to lose no bit of information to work correctly. We can see in
Figure 6.2, the 184-adapted CA working in a more or less faulty environment. This figure
presents also another property that I am going to study now: time-efficiency.

(b)

Figure 6.2 In all cases, the equivalent of synchronous CA 184 is run on the same initial
configuration, 17°0%°. The blue color represents a data component of 1, green a data com-
ponent of 0, while the pink represents a cell that did not update (either voluntarily or due
to faults). In (a), py is 0.001, in (b), py is 0.1 and in (c), py is 0.2.

(a)

(c)

This simple algorithm possesses the nice property of using to the limit the inherent
parallelism of CA. Quite naturally the healing is local and thus cells at a distance of more
than 7% can keep on working normally. But this would be almost useless if the lateness at the
end of the run was equal to the number of synchronization faults. However, the algorithm
cancels errors in such a way that the more errors happen the more errors are cancelled.
This works in the following way. If a fault occurs, then the lateness propagates through the

grid until all cells are late by one step. This “error” propagation proceeds quite naturally at

64 is here the radius of the CA considered.

106 From Chaos to Order

the speed of light” as the correction mechanism is driven by the natural mechanism of cell
update. But if another error occurs after that first error but above the propagation line, then
the error propagation line will meet and “cancel” each other. Basically, all the automata will
be late by one more step, but the ratio of lateness versus the number of errors will only be
1/2. Then it appears clearly that the “best case” happens when all cells suffer from a fault
at the exact same time step, then this ratio gets as low as 1/N which is its minimal value.
In Figure 6.2.a, by looking at the upper part, one may realize more easily the cancellation
mechanism, then by comparing it to 6.2.b and 6.2.c, one may see the importance of this
ratio. In effect going from left to right, there are, statistically, 100 times more faults in (b)
and 200 times more in (c) compared to (a).

Using the initial configuration of Figure 6.2, we can measure this lateness by measuring
when the block of two 0’s, issued from the computation of rule 184, reaches the left “border”.
This block reaches the border at time N when py = 0. I thus define the lateness L; to be
the difference between N and the effective time at which the blocks reaches the border. If
I define Ny, to be the total number of faults that occurs during the run of the automata,
then the ratio L/Ny will decrease from 1 to 1/N as py augments . We can see in Figure 6.3
the experimental data averaged on 1000 runs of the algorithms that illustrate this relation
between py and Ly/Ny. We observe that this curve decreases very steeply to almost reach
its minimal value as py is at 0.1, thereby underlining the importance of this error cancel-
lation property and thus the suitability of this algorithm for dealing with problem-solving
asynchronous CA.

Relative lateness Vs py

Experimental data on 1000 runs < -

0.05 ¢ .
0 A O D O O £>
0 01 02 03 04 05 06 07 08 09 1
Dy

Figure 6.3 Experimental data demonstrating the effectiveness of our simple time-stamping
algorithm. We call the relative lateness of rule 184, the ratio of the lateness (in the sense
of figure 6.2) by the total number of faults happening in the automata. This graph shows
a rapid decrease in this ratio, thereby illustrating the rapid increase in efficiency of the
algorithm.

"The speed of light in a CA is the maximum distance that a bit of information may travel at
each time step, which is r.

e

6.3 Design and Evolution of Redundant Asynchronous CA 107

6.3.2 Quasi-perfect, efficient, lossy asynchronous synchroniza-
tion

It is interesting, knowing that there exists a simple algorithm that perfectly recovers from
synchronization faults, to study imperfect solutions that optimize other properties. In this
subsection, I present an algorithm that corrects instantly the synchronization faults with
fewer states, at the cost of imperfect correction of errors and with loss of information. It
should be pointed out that the method uses a priori knowledge of the task studied, herein
the synchronization task.

A 4-state lossy method

The idea here is to use the specificity of the synchronization task to correct instantly the
synchronization errors. A CA solving the synchronization task, when converged, alternates
between 0 and 1, thus if a cell is late by one step, at the next time step it will be in the correct
state. Then it is easy to derive a 4-state lossy method. We need only a 2-state time-stamp,
to detect if we are synchronized or not with the neighbors. Obviously this minimal solution
has the drawback of not making clear if the cell is late or ahead. But this is not a problem
because whether late or ahead by one or several steps is not of importance if we take into
account the fact that the cell alternates between 0 and 1. If the cell is desynchronized by
two or any even number of steps, it will be both in the “correct” data state and time state.
In the same way, if the cell is desynchronized by one or any odd number of steps it will be
both in the “opposite” data state and time state. As the CA is binary, with four states, the
cell is able to cope with asynchrony by the following algorithm.

If (my-ts == ts-left && (my-ts == ts-right) then
my-state = MyTransitionRule(left-state, my-state, right-state)
endif

If (my-ts !'= ts-left & (my-ts == ts-right) then

my-state = MyTransitionRule(!left-state, my-state, right-state)
endif
If (my-ts == ts-left &% (my-ts != ts-right) then

my-state = MyTransitionRule(left-state, my-state, !right-state)
endif
If (my-ts !'= ts-left & (my-ts != ts-right) then

my-state = MyTransitionRule(left-state, !my-state, right-state)
endif

where ts is an abbreviation for time-stamp.

The algorithm may be generalized. If a majority® of neighbors has a time-stamp identical
to the one of the cell then take the neighbor state if its time-stamp is identical and its
complementary otherwise. If a majority of neighbors has a time-stamp different from the
one of the cell then do the reverse.

8 As the neighborhood in the case of one-dimensional, regular CA is always odd, the majority is
always well defined.

108 From Chaos to Order

(a) (h)

Figure 6.4 We can see the same non-uniform synchronization task with the 4-state lossy
method. The state 1 is represented as black, 0 as gray while white dots represent a cell that
has not updated. In (a), pyis 0.01. We can see a failure happening consecutively to 2 joint
faults. We remark that this remnant fault is then corrected by two further faults. In (b) we
can see the same CA correcting all the faults (py = 0.001)

In Figure 6.4, we can see the 4-state lossy method at work for two different py values
adapted from the same binary non-uniform synchronous CA". What is remarkable, is that
this method, developed on the assumption of alternation which is only valid after the CA
converged onto the svnchronized cvele, does not hinder at all synchronization. There are
mainly two advantages to this method compared to the perfect method described in the
previous subsection. Firstly, it is low cost as only 4 states are necessary compared to the
previous twelve. And, secondly. it corrects errors instantly. This may seem a poor advantage
given the task tackled. In effect there is no “result” of computation to be collected here,
However, we are very interested here in having a maximum number of synchronized cells,
With the perfect method, the late cell “cone” grows from the fault, until the entire grid
is swept. For the synchronization task, this leads to having on average only half the cells
synchronized at any one time if faults occur. Obviously, this simple method is not perfect,
Firstly it is not general, but more importantly, it does not guarantee perfect computation,
as one may see in Figure 6.4.(a), Nevertheless, one may also note that another fault at
the same site corrects the error. Formally, these unrecoverable errors occur when 2 or more
faults occur on the same neighborhood. In effect, as seen in the algorithm, it 15 always
assumed that only one error occurs. However, practically, as is shown in Figure 6.5 the error
15 less than what could be expected theoretically. This is due to the fact that some cases
of two non-joint faults are corrected due to the particularity of the original transition rule,
An example of this may be observed in Figure 6.4.(a). The probability of failure, i.e., the
probability of a de facto uncorrectable error, was experimentally obtained and is compared
in Figure 6.5 to the probability of a synchronization fault on the whole automata. The

length of 159 was chosen as it is the size of the example of Figure 6.4. We considered the

"The original CA was found by evolution.

6.3 Design and Evolution of Redundant Asynchronous CA 109

occurrence of an error in a classic CA to be a total failure, though as it is demonstrated in
[188] this is not true as such. This approximation however is not false in the scope of this
comparison as our CA is neither indefinitely affected by such an error as it is demonstrated
in the previous figure.

Probability of Global Failure Vs p¢

1 | | | | 1 T I | T
0.8 1 (1—ps)5 %

Exp. data averaged on 100000 runs - - .- ‘
0.6 o -

Failure rate o
0.4 Ir R i
0.2 fF R 4
o R0l
O@Q’ <E L ! ! ! 1 1 1 !

0 005 01 015 02 025 03 035 04 045 0.5
Dy

Figure 6.5 The global probability of failure versus the probability of fault of one cell. The
plain line represents this global probability for a 159 cells classic automata, while the dotted
line is for a cellular automata of the same length using the 4-state lossy method.

6.3.3 Evolution of asynchronous synchronization

To conclude this section on redundant asynchronous CA, I will quickly overview the evolution
of such CAs. As we saw in section 6.2.1, the evolution of binary CAs does not produce good
results on real asynchrony and could only cope with limited (#, < 4) regular asynchrony.
In the previous subsection, a simple method to deal with full asynchrony was designed using
only 4 states. I thus propose here to try to evolve 4-state CAs as we know that this was
sufficient to develop good, imperfect, solutions.

The evolutionary algorithm used is the cellular programming algorithm presented in
chapter 5, in Figure 5.2. The crossover used is the standard one-point crossover, thereby the
number of states makes no difference. So, I evolved a 4-state non-uniform CA in the faulty
environment. Asynchrony is then just one of the constraints like the radius or the number
of states. Each string of genomes is tested on 100 configurations for 3 probability-of-fault
values, py = 0.001,0.002,0.006289. The fitness is the “same” as the one for the binary case.
After 1.5N time steps, for four steps, each cell gets a point of fitness if it alternates correctly
between 1,042 and Opyoq2. The first state to be in is determined by which state the majority
of cells is in. Hence, as we see, if the 4 states are not distinguished into a data component
and a phase component a priori, the definition of the fitness however clearly does this by
not distinguishing 1 and 3, and 0 and 2. But as we are going to see, evolution did not use
this strategy.

110 From Chaos to Order

Globally the evolutionary runs are very successful, and if we consider a fitness of (.98
as equivalent to a fitness of 1.0 in the synchronous case'?, the success rate is equivalent to
the evolution of binary CAs in the synchronous case. Figure 6.6 presents three successfully
evolved CAs.

(a) (b) (c)

Figure 6.6 Three examples of 4 state non-uniform redundant CA found through evolution
that successfully cope with an asynchronous environment. The probability of synchrony
faults here is py = 0.002 in all three figures. The colors represent the following states: blue
is 0, cyan-green is 1, yellow is 2 and magenta is 3. The size of the CAs is 159 and there are
400 time steps shown here. The different strategies in (a), (b) and (c¢) are discussed in the
text

[t is interesting to look at the strategies found by evolution to cope with asynchrony.
As said before, our prejudices led us to define a fitness encouraging a phase and a data
component just as in our solution. However, as appears in Figure 6.6, this is not the case:
either the CA settled into the cycle 0,1 or the cycle 2,3 but none of the CA evolved exploited
the possibility of falling into the cycle 0,1,2,3. Thus for most of the working the CA is not
really using the extra states. Nevertheless, in the three cases above, the unused state in the
synchronized cycle is used to go from the initial random configuration to the desired unified
state. But, more importantly from our viewpoint, each fault of synchrony, produces one
or two unused states in the next time step. This, somehow, allows the CA to “detect” the
anomaly and correct it very briefly, in the next 1,2 or 3 time steps. In the worst cases, either
a “tumor” develops briefly but is resorbed relatively quickly as in 6.6.a or the error drifts
until it reaches a rule, or a group of rules able to absorb it, (6.6.b and ¢). It is important
to note that neither the cell, nor the neighbor knows it suffered from a fault. Hence, this
detection is only done through the wrong state of the cell concerned

Actually if we test the best solution found by evolution (6.6.b), it turns out better than

UThe faults introduce necessarily some cells in the wrong state

6.4 Fault-Tolerant Cellular Automata 111

the designed solutions, both the perfect and the imperfect ones, in terms of the percentage
of cells synchronized for low values of p¢’s. The test I realized was to measure the proportion
of cells synchronized in the same state, in an alternating cycle, for different values of py’s.
Interestingly, all evolved solutions fared better for a probability of faults less than or equal
to 1/N, but in the long run the perfect solution which suffered from the fact that only “half”
the grid is synchronized on average on the next N time steps if only one fault occurs, fares
better. Then the fact that it does not lose information and that synchronizing trails cancel
each other makes it the better solution. We can note also that the designed lossy method
achieves its goal of being very good for low values of ps, however in the middle range it is
worse than the evolved solution but maintains performance better in the long run. Finally,
as a control I tested the uniform solution. Obviously when the number of faults is very low,
by its nature, it correctly resynchronizes. Nevertheless it falls quickly to low values as py
increases to settle down close to 0.55. We should not be fooled by the lower score of the
evolved solution for high p;’s . The unmodified version can take only 2 states and thus
would fare 0.5 as the lowest possible score, while the evolved solution can take 4 states and
thus could settle as low as 0.25. Figure 6.7 illustrates these results.

Synchronization efficiency

YL I T f I I I T T

0.95 F+-..]
0.9) X_ |
0.85) unmodified <— .
0.8 designed lossy + - |

designed perfect 55—
best evolved -X- -

Syachi .75

0.7 + i
0.65 - |
0‘6 S T < 7]
........... *
o5 e
o | | | ! ! I] ! L

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Ds

Figure 6.7 The experiments were run on 10 random initial configurations for 10000 time
steps. The CA size N is 159. The “unmodified” version is the binary non-uniform CA that
was the base used both for the “perfect” and the “lossy” method. The “best evolved” is the
one shown in Figure 6.6.b.

6.4 Fault-Tolerant Cellular Automata

Cellular automata considered up to now in this thesis follow a deterministic rule. Hence no
faults ever occur in the transition rule nor in the cell current states. Nevertheless if we are to
look at real biology, it a,ppe.ars at all levels that either insensitivity to faults or self-repair is a
prime condition of survival, the environment being extremely noisy. Fault resistant cellular
automata have been designed early in the history of CAs. Some of the first examples may be

112 From Chaos to Order

found in Nishio [140] and Harao [78]. However, these designs rely on a sort of hierarchical
building and error-correcting code. The nice point about these is that they are general,
the inconvenient being that they require a large minimal neighborhood (about 49 points to
correct 1 error). Others like Peter Gacs[63-65], followed an even more theoretical direction.
The idea is to design a CA, where, starting from a uniform configuration of all Os (resp. all
1s), we can guarantee that for all ¢ and all z, po(z,t) > 2/3; po(z,t) being the probability
of cell z at time ¢ to be in state 0 (resp. 1). The CA may use any number of states. Gacs
proved that this is possible to design such a CA in any dimension, including one, in any
noisy environment. Practicaﬂy, however, this is of no help as the number of states required
is something between 22* and 2%%° according to Lawrence Gray’s analysis [71].

In this section, I propose to develop fault-tolerant rules on a classical CA structure, via
the design of the rule and using'about the same complexity as the equivalent fault-intolerant
CA.

I will first accurately define what is meant by a faulty environment. Then, in sec-
tion 6.4.1, after a short reminder of error correcting code theory, I will adapt it to propose
a general model of fault-resistant rules and the method used here. Finally, in section 6.4.2,
I propose some structures developed with this scheme which goes toward a self-replicating
loop.In this section, I first quickly evaluate the impact of the noisy environment on classical
self-replicating structures, such as Langton’s loop. And whereas the idea of self-replication
in CA was motivated by the modeling of life, the current models do not present any quality
of self-repair. This leads us, using our method, to propose some tracks for developing such
a fault-tolerant self-replicating loop at possibly very little extra cost.

A non-deterministic cellular automata space

The idea of fault-tolerance is rather vague and our intention in this section is not to state
any definitive definition. Rather, I propose here, first of all, to delineate the scope of validity
of our work, and, secondly, to briefly argue its validity in a practical environment. Besides,
as I will show later, this noisy environment is more than enough to irrevocably perturbate
and thus destroy any of the most famous self-replicating structures.

Definition of the faulty environment: Formally cellular automata are d-dimensional
discrete space, in which each point, called a cell, can take on a finite number of states g.
Fach cell updates its own state according to the states of a fixed neighborhood of size k
following a deterministic rule. A CA is called uniform when this rule is the same for every
cell. Hence a CA may be defined by its transition rule S:

S:qk—>q

In this model, faults may basically occur at two levels : synchrony (time) and cell
transition rule (space). As for the former problem we saw in the previous section that a
time-stamping method may prevent all synchronizing defaults. But, more importantly in
this section, synchronization faults may be modeled as a particular instance of the general
faulty environment presented here. As for the latter problem, which could be further divided
into reading and writing errors, we model it as a non-deterministic rule. More precisely,

6.4 Fault-Tolerant Cellular Automata 113

there is a probability of faults ps, such that any given cell will follow the transition rule
with probability (1 — py), and erroneously take any state with probability ps. This model,
though apparently catering only for writing errors, simulates perfectly reading errors or
synchronization faults. One may object that we did not mention the major fault problems
when a cell simply stops functioning at all. It is not our purpose to treat this kind of
’hardware’ problem here, but we may say that our model could be implemented over an
embryonnics tissue[125] which deals with this kind of malfunction. I should say also that a
permanent error is not fatal in itself, it just makes the neighborhoods containing this cell as
fragile as non fault-tolerant CAs.
We now explain how to design fault-tolerant structures.

6.4.1 Fault-resistant rules

In this noisy environment a cell cannot trust entirely its neighborhood to define its future
state. In other works, where the aim was to design generic faultless cellular automata, a
hierarchical construction was used, e.g., a meta-automata of dimension 2 creates a fault-
tolerant 1-d automata. However our approach here is not to create a fault-tolerant CA
structure, but rather to design the rules of a classical CA so that the emergent, global
behavior is preserved. This latter choice allows both a reduced computation time and lesser
memory space than the former, the cost being a resulting CA specific to one task. In this
section I first briefly present some elements of error-correcting code theory, on which I base
the design of fault-tolerant rules presented afterwards.

Error-correcting code

The idea behind the error correcting code theory is to code a message so that when sent
over a noisy transmission channel, at reception, one can detect and correct potential errors
through decoding, and thus reconstruct the original message.

Formally, let ¥ be an alphabet of ¢ symbols, let a code C be a collection of sequence ¢; of
exactly n symbols of ¢, and let d(c;, ¢;) be the Hamming distance between ¢; and ¢;. We call
d(C) the minimal distance of a code C which is defined as min;x; d(c;, ¢;), ¢i,¢; € C. Then
the idea of an error-correcting code, introduced by Shannon[173], is to decode, on reception,
the word received by the word belonging to C which is at minimal Hamming distance. Using
this simple strategy with a code C of minimal distance d, allows the correction of up to
(d —1)/2 errors.

In this theory one may see that the number of words in C, M, and the minimal distance
d, play against one another for a fixed n and ¢. To avoid waste of memory space in our
fault-tolerant rules developed in the next subsection, it will be useful to maximize M for a
given d. However, it is not always possible to determine it a priori, but for d = 2e + 1, so
that we can correct e errors, this maximum M, A4(n,d), is bounded. The lower and upper
bounds known as Gilbert-Varshamov[216] bounds, are:

g < Ayn,d) < 1 (6.1)

114 From Chaos to Order

Theoretical aspects of fault-resistant rules

A rule 7 in a 2-dimensional cellular automata is the mapping between a neighborhood, v,
and future state, c*, and, if we use Moore neighborhood, may be written as (vy, ..., v9 — ¢¥).
In the noisy environment, as defined in section 6.4, the values v1,...,vg may be corrupted,
thereby inducing in most cases a corrupted value of ¢*, propagating in time the original
error. The idea behind this method is to see ¢ as the message to be transmitted over a
noisy channel, and vy, ...,v9 as the encoding of the message. Then it becomes clear that if
this encoding respects the error correcting code theory constraints exposed above then, even
if the neighborhood values are corrupted, it will still be decoded into the correct ¢t future
state and the original errors will not last further than one time step.

Of course, the constraints will depend on the number of errors, e, we want to be able to
correct for a given neighborhood. We define (vi,...,u9 — c*,€) to be the transition rule r
resisting e errors. In consequence, we also define V() to be the set of rules co-defined by 7,
V(r) =(Z — ¢*),d(Z,v;..v9) = €). Then it appears clearly that if each rule of the co-defined
set of rules is at a minimal Hamming distance of 1 of any other rule of the co-defined set of
rules, that is, if each main rule is at minimal Hamming distance of 2e + 1 of any other main
rule, then, reinterpreting the result of Shannon above, we can guarantee that the CA thus
defined will be able to function correctly providing that at most e errors happen at any one
time step in each neighborhood. As one may note, the size of V(r) is rather large. More
precisely, for a neighborhood of size n, and an alphabet of ¢ symbols we have:

V()| = zz:o<§><q — 1) 6.2)

A conflict appears when the intersection between every co-defined set of rules is not
empty. For instance, for a von Neumann neighborhood, r; = (03234 — 1,1) and ry =
(03034 -» 2,1) are in major conflict as the neighborhood (03234) lies both in V(r;) and
V(rq). To avoid wasting too many possible different neighborhoods, we distinguish magor
and minor conflicts. Major conflicts appears when the future state of the conflicting rules
are different. However, minor conflicts, when future states of the conflicting rules are iden-
tical, are reasonable as it does not prevent error correction. Thus we have the following
reinterpreted Shannon’s theorem:

Theorem 7 Given a neighborhood of size n and a collection of rules resisting e errors, if
we have:

Vi# jd(ri,r;) > 2 +1 or ¢f =}

then we can guarantee that the CA will correct up to e errors occurring in one time step in
any neighborhood.

We have now defined theoretically how to conceive a fault-tolerant structure on a classical
CA. In the following, we study the practical application of the above defined constraints to
peculiar substructures of interest for self-replication. On this more practical aspect of the

6.4 Fault-Tolerant Cellular Automata 115

question, it would be interesting to know how many different rules are available for use. If
we do not take into account the distinction of minor and major conflicts, and as we need all
the rules to be at a Hamming distance of d = 2e + 1 to guarantee distinct co-defined set of
rules, the number of rules available is given by the bounds of Gilbert-Varshamov (eq. 6.1).
Nevertheless these bounds are rather large, and do not include the large advantages brought
by the minor conflict exception. Moreover, if the waste of possible rules is rather large, it is
not more than in classical self-replicating structures, such as Tempesti’s or Langton’s loops.
In the former case, the number of used rules compared to the number of rules available
(namely ¢"), is well within the Gilbert-Varshamov bounds for a minimal number of errors
e = 1. And even for e = 1, the global probability of failure is well decreased by our scheme
for values of py between 0.001 and 0.05 as may be seen in Figure 6.8. In effect, the probability
of failure of one neighborhood is reduced, roughly!!, to 1 — (1 — ps)™ — n x ps(1 — py)* 1
from 1 — (1 —ps)™.

Langton’s loop Vs a Fault-Tolerant Structure

1-(1-%)**¥100 — -

<> Experimental data on 10000 runs < -
0< O 1 1 {
0 0.05 0.1 0.15 0.2
Dy

Figure 6.8 In this figure we can see the comparison between the probability of faults of the
Langton’s loop (which spans about 100 cells) and the experimentally obtained probability
of the faults of a 100-cell structure designed according to the fault-tolerant method.

6.4.2 Fault-tolerant self-replication

Self-replicating structures in cellular automata have generated a large quantity of papers [183].
In the Artificial Life field, most of these have been devoted to the study of the self-replicating
process in itself, as a model of one of life’s primary properties. The underlying motivation
of such research could be expressed as a question: What are the minimal information pro-
cessing principles involved in non-naive self-replication ? I believe that in past studies the
property of self-repair, of tolerance to a noisy environment, has been omitted for practical
reasons rather than theoretical choices.

17T do not take into account here the fact that a cell may “fail” in the correct state.

116 From Chaos to Order

In this section, I propose to apply practically the theoretical ideas put forward in the
previous subsection. I will only consider rules that can correct up to 1 error in their neighbor-
hood, as it seems a reasonable compromise between the fault-tolerance capabilities and the
implied “waste” of rules. In the same way of thinking, I will only consider the two-dimensional
Moore neighborhood, as it provides a wealth of rules compared to the von Neumann neigh-
borhood, at no additional cost in terms of computational time, memory space, or physical
complexity. But let’s first have a quick look at how classical self-replicating loops behave in
the faulty environment.

Classical self-replicating structures behavior

In this section, I demonstrate the brittleness of some famous and less famous classical self-
replicating structures. I first consider Langton’s loop[112], then move on to the more complex
Tempesti’s loop[204], to finish with one of the simplest self-replicating loops described by
Chou and Reggia[162]. I do not consider the seminal work of Von Neumann[139] for obvious
practical reasons. However one may note that the very accurate nature of this work leads
to “natural” brittleness.

Applying this model of noisy environment to the landmark self-replicating structure
of Langton shows high sensitivity to failure. Following the notation described above, a
probability of fault ps as low as 0.0001 shows a complete degradation of the self-replication
function. Tempesti’s structure shows exactly the same type of failure for an even lower p;.
The main cause of this total fault intolerance is due to what we may call irreducible remains
(garbage). Both these loops have as default rule, no change. When confronted an unexpected
neighborhood, i.e., when the fault only generates unexpectancy and not confusion, the cell
remains in its previous state. Then garbage that appears in the void (in the middle of a
quiescent zone) is irreducible and remains forever, or at least, and that is the source of this
high-sensitivity to faults, until the loop meets it for its inevitable loss.

The Chou and Reggia loop, [162], begins to show significant degradation with a proba-
bility py of 0.001. This relative resistance is only due to its small size (3x3), and any fault
affecting the loop almost inevitably leads to its complete destruction. One may note that
this loop suffers, as the preceding examples, from irreducible remains.

It is clear that these rules were not designed to be fault-tolerant and thus their size is
their only means of defense. Effectively, their probability of failure may be approximated
by (1 — (1 — ps)***¢). Of course this probability, to be accurate, should be augmented by
the number of neighboring cells, and diminished by the non-degrading fault probability, the
latter figure being almost nil for the above mentioned structures.

Fault-resistant structures

The aim of this work is to develop a fault-tolerant self-replicating structures. I propose here
in detail three essential substructures to attain such a goal: data pipe, signal duplication, and
constructing arm. Firstly, I will study some common problems and desirable properties to
construct such structures. Secondly, I will show how to practically construct a fault-tolerant
data pipe, a structure essential to convey information, and thus be able to construct a

6.4 Fault-Tolerant Cellular Automata 117

looping structure. Then briefly a fault-tolerant signal duplicator and constructing arm will
be presented, as central elements for self-replication. Finally, a fault-tolerant constructing
loop is demonstrated in Figure 6.15. The structures presented here were partially developed
in common with Daniel Biinzli.

Properties, methods and problems

Our CA’s structure is quite classically defined as an “active” structure in a pool, possibly

LA

infinite, of quiescent cells (henceforth represented by the ’.> symbol). Hence the first nec-
essary rule is rqg = (......... — .,1). Its co-defined set of rules V(r;) defines all the rules
with one active cell. It has the advantage of covering what I called in earlier the irreducible
remains. Effectively, any fault creating a single active cell in a quiescent neighborhood will
be reverted to the quiescent state at the next time step. This eliminates one of the main
problems encountered by the non-fault-tolerant structures. Although the encounter of our
fault-tolerant rules with the remains would not be as deadly as for the classical loops, this
prevents accumulation of errors in the same neighborhood over time. Nevertheless, it is
important to note that that peculiar properties, consequent to the definition of ry, forbid
any rules with less than 3 active cells in its neighborhood. Its co-defined set of rules would
otherwise intersect with V(rq) and create a major conflict, unless, of course its future state
is ’.". This last constraint which may be seen as a disadvantage in terms of the global size
of the structure, is not much of a problem from the point of view of error-correction as the
fault-tolerance capabilities of our structures only depends on the size of the neighborhood
and not on the global structure.

Figure 6.9 Structure and its neighborhood

The latter implied property brings us to a more general remark about the method to
use when creating fault-tolerant structures. If we observe figure 6.9, one would be tempted
not to define the rule r = (........ M — .,1) arguing that it is covered by V(r,). However,
this would be mistake as V(r;) # V(ry) and thus we would lose our guarantee of error
correction. Hence, minor conflicts are handy as they allow us to define rules such as r; and
rq simultaneously, nevertheless they do not make the definition of v, unnecessary if we are
unsure of the fault-tolerance property.

Besides these kinds of “tricks” one should use, I am currently developing a method to
facilitate the creation of fault-tolerant rules. At the moment, the “algorithm” goes as follows:

118 From Chaos to Order

When going from the structure at one time step to the next one, I define the rules (with
e = 1) for each cell in the structure and its neighborhood, going from left to right and top
to bottom. After each rule definition, I test for major conflicts. This way of proceeding
prevents much useless work, but does not discard the design by hand of the initial structure

and its successors.

Safe data pipe

Now that we have seen the theoretical aspects and some general practical constraints to
define fault-tolerant structures, we are able to define a fault tolerant data pipe. Effectively,
self-replicating loops are usually based on such information transmission structures. These
allow simply to move information form one part to another of the cellular space. A typical
example is given in figure 6.10.

0+0000 00+000 000+00

t t+1 t+2

Figure 6.10 Usual data pipe

One sees immediately the problem with such structures. It implies the two following rules
r1 =(0...0+0 — +) and ro =(+0...0 — 0), which obviously provoke a major conflict.
In fact, we remember that each rule must have a Hamming distance of 3 between each other
and thus at least 3 cells must change. This last constraint has the advantage of solving the
quiescent-rule constraint also. We can see in figure 6.11 an example of a fault-tolerant data
pipe, thus respecting that constraint.

...........................

ooo{oo[oo 000}00100 oooo{oo[o

oo{LO[+00 000}L01DO ooo{Lo[+0

ooo{oo[o0 000}00]00 oooo{oofo
t=0 t=1 t=2

Figure 6.11 Fault-tolerant data pipe

Actually, this data pipe is able to transmit trains of data. As one may see, two types of
data are transmitted in this example: L which uses 3 states to move itself, and + which uses
4. As we will see later the 4 states are needed as it is the head of the data train.

I will now take a more detailed look at this fault-tolerant data type.

6.4 Fault-Tolerant Cellular Automata 119

e at { = 0, the upper and lower “wings” are necessary to maintain the ’0’ state situated
at the 'east’ of the head of the signal, the "+’state. This state ’0’ is designed to make
the head move forward.

e at t = 1, we have a transitory structure. This transition is necessary to maintain the
integrity of the pipe. Effectively, the upper and lower “wings” have not been moved
yet. If they were still in the state [’ then we would end up with a transition rule
(0..00D[[. — [,1) which would enter in direct conflict with the (0..000+[. —
0,1) defined at the preceding time step. This transitional step creates a diversity in
the neighborhood, thereby suppressing all the conflicts.

e at t = 2, we get back to the original structure, the train of signal (which one may
define as L+) has moved forward.

As I noted earlier, a supplementary state was required for the head of the signal, the
data '+, than for the rest of the signal 'L’. It can be clearly seen why, if we imagine the
situation without the supplementary state (see figure 6.12).

000}00]000

000}L0]+00

000}00]000
t=1

Figure 6.12 Problem with the head signal

In this situation we have to define the rule (0000000+0 —0,1), which then conflicts
with the rule (000000[+[— 1,1) defined at the preceding time step. The transitional
state 'D’ solves this conflict. The neighborhood of L, and any other following signal being
more diverse, that supplementary transitional state is then useless.

Signal duplication and the constructing arm

Now that we have, through the detailed definition of a fault-tolerant data pipe, seen the
practical aspects of making fault-tolerant structures, we propose in this last section to quickly
view a fault-tolerant signal duplicator and a constructing arm. These peculiar substructures
are always present in self-replicating loops.

....................................

000([0X... 000]OX. .. 0000DX. .. 0000]X...
00[DOXX. . 000JLXX.. 000[[XX.. 0000]LX. .
ooof[oX... 0oojJox. .. 000O0DX. .. 0000]X...

120 From Chaos to Order

....................................

00000D. .. 00000] . 000000K. . 000000X. .

0000 [DX. . 00000[L. . 000000C. . 000000XX.

00000D. .. 000001 . 000000 . . 000000X. .
t=4 t=5 t=6 t="17

Figure 6.13 The constructing arm.

Actually it is the core of self-replication. The data pipe is there to convey information,
the duplicator is there to allow self-replication, and the constructing arm is there to create
the replicate. We can check that this rather more complex structure only requires the use
of three more states besides the state needed by the data pipe described above, two, C and
K, for the duplicator described in Figure 6.14, and one X for the constructing arm described
in Figure 6.13. This last supplementary state is absolutely necessary as it is a zone where
we have to maintain integrity between the void and the structure.

OJOUCCCUOOOO
0]D00CO00000
0]0000000000

OUOJCCCODOOO
0001DC000000
000100000000

DDOD+KC00000
00000KDC0000
000001000000

00[0CCC00000
0[+00C000C00
00[000000000

0000+CC00000
000[+C000000
0000[000G000

0000K+KDDDDO
00000[+00000
000000[00000

OOJOCCCOOOOO
001D0C000000
001000000000

OOUODCCOODOO
00001+000000
000010000000

0000[]]00000
00000¢]DO000
000000100000

OOD[CCCOOOOD
oo[+0Ccoo0000
000[00000000

UODODDCDODOO
0000 [DO00000
00000[000000

............

DOUOC[C[OUOD
00000C[+0000
0000000 [0000

6.5 Concluding Remarks 121

000..... 000..... .0o0..... 000..... 000.....
000..... 000..... .000..... 000..... 0no0.....
goo..... 0oo..... .opo..... [+0..... 113.....
...0DD..... [+0..... B D P 0[o..... 000.....
R I 5 I0[0.....000.....000.....000.....
()000CCC] 0000 0000CCC0[000 0000CCC01000 0000CCCO0 [00 0000¢CCo0I00
00000C01DO00 00000C0[+000 00000C00]1D00 00000C00[+00 00000C000]D0
0000000] 0000 00000000[000 00000000]000 000000000 [00 000000000100
t=12 t=13 t=14 t =15 t=16

Figure 6.14 Duplication of a signal

6.5 Concluding Remarks

Constructing robust CAs has been around for some time now. Fault-tolerance has been a
theme of research since the mid-70’s and the question of asynchronous CA was tackled by
researchers in the mid 80’s and 90’s. However, our point here was not really to introduce new
methods, most of them rely on known principles, but to illustrate the question of information
in CAs and the use one could make of this to acquire robustness.

For the synchrony question, the objective was double. The first one, a minor one, was
to demonstrate that the simplest method to correct synchronization faults was excellent for
CAs. In effect, it exploits fully the inherent parallelism of CA to minimize the total delay
incurred. As an aside, it was interesting to note that this “perfection” was relative and for
tasks that lose information, imperfect solutions could turn out to be better. This brings us
to the second point which was that the information in a CA was time dependent. Most of the
studies on asynchronous CA aimed either at proving that computation in CA was an artifact
of the global clock, or that asynchronous mode could lead to interesting global behavior.
Our point here is to express clearly that these studies are two faces of the same coin. As
clearly demonstrated by rule 184, the real state of a cell, i.e., the information it carries, is
a state, a time, and a place. Some tasks, obviously, do not consider all this information,
and this is why imperfect solutions may work, but if we are to design asynchronous cellular
systems, we have to, in full knowledge of the consequences, choose between “lossy” methods
or systems that maintain the integrity of information.

The fault-tolerant CA study started from the following assessment: in 2-dimensional CA,
there is a huge waste of possibilities. A large number of the possible states of the structure
are usually unused whereas the complexity, at least theoretically, is present. The idea was
thus to use this information available for “free”. Our loop, shown in Figure 6.15, uses extra
information beyond what is needed for the task. To make things clearer, the “184-corrected”
CA presented on page 105 is a regular 12-state CA that can work in an asynchronous
environment, but this is just due to the fact that it uses extra states to maintain the level of
information it needs. Identically, our constructing loop uses, in a hidden way, extra states
to maintain the required information level necessary for the task. However, the trick here is
to use the available neighborhoods in the classical structure to hide the fact that we need
extra states, and thus end up with a structure that is, apparently, inherently fault tolerans.

From Chaos to Order

Figure 6.15 This figure shows the complete construct

and duplicates
the signals and constructs an advancing arm. As

ne may note, in the border
necessary to

INLEETILY

a peculiar cell
configuration was insure the f the loop while not overlapping with
the |]|'|‘_"I|‘!|lfri'hlllni?—: l1|_'!||:1-al by the ¢ mpry Spaces on the iele of the |-...,l|. Also note that to

make the data pipe reversible another " was used. The structure as

background’ t is here
relies on a 10-state CA

| quiescent state. This is a little bit more than Langton's loop
vhile thi cture does not yet self-replicate, but one should take care that it has not been
1 timized. The figure show ceedi i1 pt the last one which is taken
i teps later to show the growt ftl

La derniére chose que 1'on trouve en finissant un ouvrage

est celle que I’on doit mettre en premier!.

Blaise Pascal, Pensées, 757 in [149].

Chapter 7

Conclusions

This thesis investigated computation in cellular systems, and more specifically in cellular
automata. This study concerned principally the question of what constitutes computation,
but also the two natural corollaries, why are these systems interesting, a pre-question, and
how to perform computation in cellular systems, a post-question. This handful of questions,
which was put on the table in the introductory chapter were answered throughout this
theses. I will now address these in the form of a general conclusion to this work. Then, I
will present the main personal contributions excerpted from each preceding chapter, in the
form of an ordered list, as is the tradition. Finally I will discuss some of the paths for future
works opened by this work.

General Conclusions

The conclusions I am going to draw now concern mainly cellular automata, but their validity
extends, at least partially, to cellular systems in general.

The nature of computation in cellular automata is a complex one. As we saw in chap-
ter 2, there are four ways to consider this question, but only the global, emergent type, the
second kind of the third type therein, was of real interest to us. In effect, only this type
of computation presents the fascinating qualities that one seeks in cellular systems, namely,
a global behavior that goes beyond the capabilities of each of the elements and dismisses
artifacts of sequential systems developed on a cellular substrate. But the nature, the essence
of the computation of this kind is far from obvious. Actually, as gleaned from the density
task example studied in this thesis, computation may be as simple as a reordering of 1s and
0s. Thus the simplification of the output in that sense is only simplification in the eye of
the beholder. This is particularly important, in my opinion, as it means that computation
occurs in creating order (regularity). To be more accurate, it creates a large “ocean” of reg-
ularity which allows the onlooker to see the distinguishing patterns of irregularity. Hence,
one may conclude from this, and I would, that problem-solving truly emergent CAs are to
be found in class II rather than Wolfram’s class III CAs. I believe that this conclusion
goes well beyond the density task. If we look back on the Cellular Automata literature this

1The last thing one finds when finishing a book is the one that must be put first.

123

124 Conclusions

feeling for the necessity of a beholder is often explicitly or implicitly quoted. Wolfram’s
classes, for instance, are only a subjective classification depending on the aspects of the
space-time diagrams. Langton’s loop, which does not lie in this category of computation,
still relies on the impression of life it leaves in the eye of the spectator. Actually, most CAs
designed in the past have most often been (inappropriately ?) aimed at human, knowingly
or unknowingly. And even the original definition of the density classification task was taking
into account that fact. Effectively, even though it was defined according to a model close
to the one of figure 7.1(a), that is of a classical computing machine taking an input and
finishing in a yes or no state, the specification of the output itself, all Os or all 1s, was clearly
aimed at a human. A few years ago, Ronald, Sipper and myself proposed a definition of
emergence which relies on the idea of an observer, [164]2. In fact, now we can establish
our own definition of emergence which is a little different. Beneath the idea of emergence,
there is always the key concept that new properties that emerge were not present at the
level of the individual element. In fact, this is the only tangible aspect of emergence. But,
by definition, a property has an effect. A property without effect has no existence. For
instance one may say that the emergent property of social insect societies is robustness to
attack and to environment hardship. The effect is then their ecological success. However,
even if these properties and effects are objective, their consideration and definition is sub-
jective. For instance, the necessity of describing a bunch of HoO molecules as being liquid
is merely a question of viewpoints. It appears as a necessity, given the dramatic effects of
the liquid property, but one should remember that the liquid state of the matter is still
ill-defined as of today. This inevitable subjectivity lead many to introduce the idea of an
observer [14,45,164]. So this idea of the necessity of an observer is not new in itself, but
I go further in this thesis. In emergent systems, the observer is necessary to establish the
emergent. properties and its effects, but usually not for the property to happen. However
in the case of CAs, computation only happens in the eye of the beholder. The CA in itself
cannot get from any feedback, such as the environment for social insect and thus the effect
of the property can only take place in the observer. This is due to the simple fact that no
element, especially in simple, basic binary CA could “grasp” the global, emergent result...by
definition. The object of the effect, “the effectee”; is here only the observer. Maybe this is
the main point of this thesis, CAs can’t be self-inspecting and emergent computation in
CA is thus epistemic. This does not mean that there is no computation in a CA. A CA
computes actually because of our inability to see in the input arrangement and the local rule
what will happen after a few time steps. CA computation hinges on the weakness of our
mind. However this is not degrading at all and in fact is common to all sorts of computation.
If one would see the same thing in v/27225/5, and in 33, then there would be no need for
calculators. But it is meaningless to consider this computation in abstracto, in absentia of
an observer. Concretely, this means that a CA computes if from a chaotic input configura-

2In this context, I should say that Gordon, who argued that this idea of a designer/observer
implied the idea of god, {70], misunderstood our argument. The necessity of the observer is only
there to establish the emergent behavior, not for the behavior to occur. Though an insect is not
conscious of death, it still dies. As for the designer argument, though maybe not clear at the time,
I would say today that it just subsumes the idea that local behavior is quite objectively established,
whereas global behavior is subjective, a question of perspective.

125

tion, it stabilizes in a global state that appears visually to be ordered, understandable. A
problem-solving CA is the fortunate meeting of a good look with a good local rule. This
couple CA/beholder opens the path for new considerations. For instance the result is not
anymore a final configuration but rather the global temporal dynamic of the CA, such as
illustrated in figure 7.1(b). This last point is interesting in two ways. On the one hand, it
discards the need to look after n time steps, which solves one of the usual paradox. Solving
the density task without a global counter, but requiring it to get the final result is rather
paradoxical. On the other hand, now considering cycle and the global dynamic provides a
much richer pool of potentially interesting CAs. This view of problem-solving CAs could
have great influence on how one may find such CAs. For instance, by evolution, whereas to-
day how the CA should behave globally is decided a priori, in the future an artificial observer
could actually judge the fitness of the CA, the result being then the pair observer/CA.

t
;“p/ output.. /

(b)

Figure 7.1 We need to change our look on CA computation to grab its full potentialities.

If the desired global behavior is fixed a priori, as is the case in the synchronization task,
finding the good local behavior to produce is still not a trivial problem by far. Evolution is
the natural way to proceeds as it is inherently a system that maps a genotype, the local rule,
to a phenotype, the global behavior. However, as we have shown in the case of asynchronous
CA, it is often useful to remember what is the information contained in a CA. In effect, it is
often taken for granted that the global state of a CA is the spatial arrangement of the states of
each cell. This has led many researchers to conclude that the behavior of a CA is an artifact
of the global clock. This conclusion is interesting in two respects. First, it reflects the fact
that one views the computation of the CA to be the visual result. The spatial arrangement
of the states of each cell is nothing else than what is viewed. Second, it deceptively implies
that if a two-state CA solves a task working synchronously, one should have expected to
find another two-state CA solving the task asynchronously; the set of possible global states,
the set of possible spatial arrangements of the states of each cell, being a priori the same
in both cases. As the study conducted in this thesis with respect to asynchronous CA has
shown, this is unwarranted. The information contained in a CA is really the states and the
spatial arrangement, but also the time step. If we take all this information into account
then in synchronous and asynchronous modes the set of possible global states are totally
different. This appears clearly in the evolution of asynchronous CA, while the evolution of
binary CA gave little results, the evolution of slightly redundant CA gave surprisingly good
results. As shown with the perfect method of correction of asynchronous CA, three times
the original number of states in the asynchronous case is enough to maintain the same level
of information as in the synchronous case. Hence, the interesting question, when trying to

126 Conclusions

find a good local rule, is what are the necessary number of states to solve the task in the
given environment, a necessary number of states which should inevitably be augmented in
an asynchronous or faulty CA.

These were the main conclusions I wanted to draw from this work, as they are in my
opinion good answers to the original queries. Nevertheless, this work brought many other
contribuiions, more or less important or factual, that I expose below.

Thesis Contributions

This section highlights the contributions of this work, organized in chronological order.

o A novel developmental cellular system was presented. The results obtained demon-
strated that qualities of robustness to faults and fully asynchronous mode could be
obtained with such systems. It demonstrated also that development was a way tc en-
code a more general solution within a simpler genome. However, the mitigated results
on more complex tasks showed that such properties were not to be found systemati-
cally in this system. The main contribution is thus to have paved the path for future
developments of ontogenetic cellular systems.

e A scaling method for non-uniform CAs. Non-uniform CAs have proven in the past
more powerful than uniform ones, at no extra cost in terms of “hardware”, while
being faster to evolve. The principal critique concerning evolution of non-uniform
CAs were their non-adaptability to different sizes than the one they were evolved for.
Empirically, I demonstrated that the method proposed allowed adaption to all sizes
(above a minimum size).

e A definition of emergent global behavior in the scope of non-uniform CAs. The dis-
cussion about the validity of this scaling method by a dialectical reversal led me to
propose a definition of emergent global behavior, restricted to the scope of compu-
tation by non-uniform CAs. The main conclusions were that such a behavior must,
obviously, result from local interactions and be global, but moreover it should be total,
in the sense that the result is the state of the system as a whole, that all elements in
the grid were inputs and outputs, and that the result holds for any system size.

e Proofs concerning the density task. In this thesis I proved a series of results about
the density task in its various forms. To wit, the proof of the impossibility to find a
non-uniform CA to solve perfectly the density task in its original form. This proof was
important in two ways. First, it relativized the power of non-uniform CAs compared
to uniform CAs. Second, and more importantly, it showed that the density task as
originally defined was utterly impossible. It was also demonstrated in this thesis that
this impossibility was very relative as a different definition on the form but not in the
essence of the task allowed me to find a CA solving perfectly in one of the simplest class
of CAs. This led me to prove necessary conditions to solve the density task, mainly
that a density classifying CA should be density conserving. A last proof showed that
a newly proposed task was as impossible as the density task.

127

o A proposition of what is computation in CAs: Visual efficiency. Please refer to the first
part of this chapter for a detailed exposition, but essentially I argued that problem-
solving CAs were the fortunate meeting of a good CA with the correct perspective from
the beholder, and thus that they relied on being visually efficient.

o An analysis of the Cellular Programming Algorithm. In this analysis, I showed a
number of features of each task, demonstrating the traps in which this algorithm may
fall. Most notably, common to two of the three specific tasks studied, the algorithm
revealed o tendency to uniform the grid, thus losing diversity. This was confirmed by
the behavior of the algorithm on the control task, tending to show that the algorithm
always creates large blocks. These conclusions may help in the design of future fine
grained parallel evolutionary algorithms.

o Different methods for Asynchronous Cellular Automata were presented. Essentially,
it was shown that a simple perfect method existed that fully exploited the inherent
parallelism of CA, decreasing the relative lateness of the automata as the probability
of synchronization faults augments. Though this method is perfect, it is not the best
in all respects. That’s why I then presented an imperfect method particular to the
synchronization task which performs well at a much lower cost in terms of necessary
states per cell, and with no lateness. Finally, I evolved redundant CAs and found
low-cost, timely efficient solutions this way.

o Reevaluation of what is the global state of a CA. Please see the first part of this
chapter for a detailed exposition, but, briefly, I concluded from the preceding study
of asynchronous CAs that the information contained in a CA was the state and the
space but also the time, and that redundant CAs were absolutely necessary if one was
to find good asynchronous CA through evolution.

e A low-cost fault-tolerant CA. The previous conclusion led naturally to observe that
extra states were necessary to correct faulty CAs. Noticing that usual CA constructs
like loops leave many neighborhoods unused (the equivalent of many extra states),
1 derived a simple method, based on error-correcting code, to design fault-tolerant
constructs.

Future work

This thesis, like any PhD thesis, calls for more work, numerous ideas having sprouted during
the realization (and the writing). For instance, the present results of the developmental
model calls for the design of a new system taking into account the conclusions drawn from
the current model. This is a long term goal as I believe that any truly ontogenetic system
should rely on a cellular approach and that we need first a better understanding of cellularity.

The main work to come, the one that is the most urgent in my view, is the artificial
observer, and this in many ways. First, there are many studies to conduct to determine
what is visually efficiency, e.g., how to measure irregularity vs. regularity. Second, we need
to study the evolution of a CA when the fitness criteria are not given anymore objectively,

128 Conclusions

strictly fixed criteria, but rather by this artificial observer. Thirdly, another way to go, or
a joint way to go, is to co-evolve an observer and a CA, thereby resulting in a coupled pair
observer/CA. This latter kind of study may provide interesting results on the observer point
of view. Nevertheless, these are all mid term projects, and first, one should try out these
ideas on the density task in two dimensions, to test if it is possible to find a solution which
would run in O(y/n) time.

The results on the fault-tolerant loop should be completed, both out of curiosity, to
know in how many states one could code such a loop, but also more generally. In effect,
one should try to establish an algorithmic way to develop such structures, concentrating on
the question of the number of neighborhoods available. It would be interesting to explore
the development of an algorithm based on artificial evolutionary techniques to find, given a
series of shapes in a quiescent sea in time, a suite of neighborhoods at a Hamming distance
greater than three.

Finally, it would be interesting to develop a new evolutionary algorithm for non-uniform
CAs that could balance the tendency to create blocks. A tendency which obviously we do
not want to eliminate completely, as it is the basis of our scaling algorithm, but that is not
good in itself, preventing any solution containing a large number of blocks to be found.

As one may see, the future paths are very much centered around the evolutionary tech-
niques. This is due to two facts. First, we are still left with no mathematical way to map
local to global behavior. Second, as highlighted several times throughout this thesis, ar-
tificial evolution matches inherently this structure global/local. However, as shown, such
development should be based around studies of the cellular system in itself to avoid blind

evolution.

Bibliography

[1]
2]
3]
[4]

[5]

[6]
[7]

[9]

Andrew Adamatzky. Simulation of inflorescence growth in cellular automata. Chaos,
Solitons and Fractals, 7(7):1065-1094, 1996.

Andrew Adamatzky. Computing in Nonlinear Media € Automata Collectives. Institute
of Physics Publishing, 2001.

Leonard M. Adleman. Molecular computation of solutions to combinatorial problem.
Science, 266:1021-1024, November 1994.

Pankaj Agarwal. The cell programming language. Courant Institute of Mathemati-
cal Sciences, Computer Science Dept, New-York University, 1993. Technical Report
TR630.

Lee Altenberg. The schema theorem and price’s theorem. In Darrel Whitley and
Michael Vose, editors, Foundations Of Genetic Algorithms 3, San Francisco, CA, 1995.
Morgann Kaufmann Publishers. completed version of August 15, 2001.

Serafino Amoroso and Gerald Cooper. Tessellation structures for reproduction of
arbitrary patterns. Journal of Computer and System Science, 5:455-464, 1971.

Serafino Amoroso and Y. N. Patt. Decision procedures for surjectivity and injectivity
of parallel maps for tessellation structures. Journal of Computer and System Science,
10:77-82, 1975.

David Andre, Forrest H. Bennet III, and John R. Koza. Discovery by genetic program-
ming of a cellular automata rule that is better than any known rule for the majority
classification problem. In John R. Koza, David E. Goldberg, David B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Proceedings of the first conference, pages
3-11, Cambridge, MA, 1996. The MIT Press.

David Andre and John R. Koza. Parallel genetic programming: A scalable imple-
mentation using the transputer network architecture. In P. Angeline and K. Kinnear,
editors, Advances in Genetic Programming 2, Cambridge, MA, 1996. The MIT Press.

Peter J. Angeline. Subtree crossover causes bloat. In J.R:. Koza, K. Deb, M. Dorigo,
D.B. Fogel, M.H. Gazon, and R.L. Riolo, editors, Genetic Programming 1998: Pro-
ceedings of the third annual conference. Morgan Kaufmann, 1998.

Peter J. Angeline and J. B. Pollack. Co-evolving high-level representations. In C. G.
Langton, editor, Artificial Life III, pages 55-71, Reading, MA, 1994. Addison-Wesley.

Michael A. Arbib. Simple self-reproducing universal automata. Information and Con-
trol, 9(2):177-189, 1966.

Robert Axelrod. Advancing the art of simulation in the social sciences. In R. Conte,
Hegselmann, and P. Terna, editors, Simulating Social Phenomena, pages 21-40, Berlin,
1997. Springer.

129

130
[14]
[15]
[16]

[17]
[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

28]
[29]

[30]
[31]

Bibliography

Nils A. Baas and Claus Emmeche. On emergence and explanation. Intellectica, 25:67-
83, 1997.

Jonathan B. L. Bard. A model for generating aspects of zebra and other mammalian
coat patterns. Journal of Theoretical Biology, 93, 1981.

Vladimir Belitsky and Pablo A. Ferrari. Ballistic annihilation and deterministic surface
growth. Journal of Statistical Physics, 80(3/4):517-543, 1995.

Miguel Benasayag. Le mythe de lindividu. La Découverte, Paris, 1998.

Elwin R. Berkelamp, John H. Conway, and R. K. Guy. Winning ways for your math-
ematical plays. Academic Press, 1982.

Hugues Bersini and Vincent Detours. Asynchrony induces stability in cellular au-
tomata based models. In R.A. Brooks and P. Maes, editors, Proceedings of the Artifi-
ctal Life IV conference, pages 382-387, Cambridge, MA, 1994. MIT Press.

Tobias Blickle and Lothar Thiele. Subtree crossover causes bloat. In J. Hopf, ed-
itor, Genetic Algorithm within the Framework of Evolutionary Computation (KI-94
worksjop, Saarbricken), pages 33-38. Max-Planck Institut fiir Informatik, 1994.

Nino Boccara and Henry Fuk$. Number-conserving cellular automaton rules. Funda-
menta Informaticae, To Appear, 2001/20027

Lashon B. Booker, David B. Fogel, Darell Whitley, Peter J. Angeline, and A. E. Eiben.
Ch. 33: Recombination. In Thomas Baeck, Fogel David B, and Zbigniew Michalewicz,
editors, Evolutionary Computation 1, pages 256-307, Bristol, UK and Philadelphia,
USA, 2000. Institute of Physics Publishing.

Arthur W. Burks, editor. Essays on Cellular Automata. University of Illinois Press,
Urbana, IL., 1970.

Erik Canti-Paz. A summary of research on parallel genetic algorithms. Technical
Report 95007, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL, July 1995.

Ernk Cantt-Paz and David E. Goldberg. Modeling idealized bounding cases of parallel
genetic algorithms. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba,
and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual
Conference, pages 353—-361, San Francisco, 1997. Morgan Kaufmann Publishers.

Mathieu S. Capcarrere, Moshe Sipper, and Marco Tomassini. Two-state, r=1 cel-
lular automaton that classifies density. Physical Review Letters, 77(24):4969-4971,
December 1996.

Mathieu S. Capcarrere, Andrea Tettamanzi, Marco Tomassini, and Moshe Sipper. Sta-
tistical study of a class of cellular evolutionary algorithms. Evolutionary Computation,
7(3):255-274, 1998.

Bastien Chopard and Michel Droz. Cellular Automata Modeling of Physical Systems.
Cambridge University Press, 1998.

Hui-Sien Chou and James A. Reggia. Problem solving during artificial selection of
self-replicating loops. Physica D, 115(3):293-312, 1998.

Cioran. QOeuvres. Quarto. Gallimard, Paris, 1995(1952).
Edgar F. Codd. Cellular Automata. Academic Press, New-York, NY, 1968.

Bibliography 131

[32] James P. Cohoon, S. U. Hedge, Worthy N. Martin, and Dana S. Richards. Punctuated
equilibria: A parallel genetic algorithm. In John J. Grefenstette, editor, Proceedings
of the Second International Conference on Genetic Algorithms, page 148. Lawrence
Erlbaum Associates, 1987.

[33] Robert Cori, Yves Métivier, and Wieslaw Zielonka. Asynchronous mappings and asyn-
chronous cellular automata. Information and Computation, 106:159-202, 1993.

[34] Nichael J. Cramer. A representation of the adaptive generation of simple sequential
program. In John J. Grefenstette, editor, Proceedings of the 1st Internatinal Confer-
ence on Genetic Algorithms (Pittsburgh, PA, July 1985), Hillsdale, NJ, 1985. Erlbaum.

[35] James P. Crutchfield and Melanie Mitchell. The evolution of emergent computation.
Proceedings of the National Academy of Science, 23(92):10742, 1995.

[36] Karel Culik II, Lyman P. Hurd, and Sheng Yu. Computation theoretic aspects of
cellular automata. Physica D, 45:357-378, 1990.

[37] Karel Culik II, Lyman P. Hurd, and Sheng Yu. Formal languages and global cellular
automata. Physica D, 45:396-403, 1990,

[38] Karel Culik IT and Sheng Yu. Undecidability of ca classification schemes. Complex
Systems, 2:177-190, 1988.

[39] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson. Evolving
globally synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of the

Sizth International Conference on Genetic Algorithms, pages 336-343, San Francisco,
CA, 1995. Morgan Kaufmann.

[40] Frank Dellaert. Toward a Biologically Defensible Model of Development. Dept of

Computer Engineering and science, Case Western Reserve University, 1995. PhD
Thesis.

[41] Marianne Delorme and Jacques Mazoyer. Cellular automata as language recognizers.
In M. Delorme and J. Mazoyer, editors, Cellular Automata: A parallel model. Kluwer
Acadamecic Publishers, 1999.

[42] D. Z. Du, D. F. Hsu, and F. K. Hwang. The hamiltonian properties of consecutive-d
digraphs. Math. Comput. Modelling, 17(11):61-63, 1993.

[43] R. Durikovic, K. Kaneda, and H. Yamashita. Animation of biological organ growth
based on l-systems. Computer graphics forum: the international journal of the Euro-
graphics Association, 17(3):C1-C13, 1998.

[44] Charles Dyer. One-way cellular automata. Information and Control, 44:54-69, 1980.

[45] Claus Emmeche, Simo Kgppe, and Frederik Stjernfelt. Explaining emergence: Towards
an ontology of levels. Journal for General Philosophy of Science, 28:83-119, 1997.

[46] G. Bard Ermentrout and Leah Edestein-Keshet. Cellular automata approaches to
biological modeling. Journal of Theoretical Biology, 160:97-133, 1993.

[47] Jorg Esser and Michael Schreckenberg. Microscopic simulation of urban traffic based
on cellular automata. International Journal of Modern Physics C, 8(5):1025-1036,
October 1997.

132

Bibliography

[48] Henri Féraud, Pierre et Maria Sire, Joé Bousquet, Claire-Charles Géniaux, Albert

[49]
[50]
[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]
[59]

[60]
[61]

[62]

[63]

[64]

[65]

Béguin, and Louis prat. Soirée languedocienne: Entretien dans la cité. In Joé Bous-
quet, Jean Ballard, René Nelli, P.M. Sire, and Henri Féraud, editors, Le Génie d’Oc
et I’homme méditerranéen, pages 390-405. Les Cahiers du Sud, 1943. (retranscrit par
Jean Ballard).

Robert Fisch. Cyclic cellular automata and related processes. Physica D, 45:19-25,
1990.

E. J. Fittkau and H. Klinge. On biomass and trophic structure of the central amazonian
rain forest ecosystem. Biotropica, 5:2-14, 1973.

Kurt Fleischer. A Multiple Mechanism Developmental Model for Defining Self-
Organing Structures. California Institute of Technology, 1995. PhD Thesis.

Kurt Fleischer and A. H. Barr. A simulation testbed for the study of multicellular
development: The multiple mechanisms of morphogenesis. In C. G. Langton, editor,
Artificial life ITI, volume XVII of SFI Studies in the Sciences of Complezity. Addison-
Wesley, 1994,

Gary B. Fogel and David B. Fogel. Continuous evolutionary programming: analysis
and experiments. Cybernetic systems, 26:79-90, 1995.

Lawrence Fogel. Autonomous automata. Industrial Reasearch, 4:14-19, 1962.

Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial intelligence
through Stmulated Evolution. John-Wiley, New-York, N.Y., 1966.

Richard Forsyth. BEAGLE A Darwinian approach to pattern recognition. Kybernetes,
10:159-166, 1981.

E. Franji, M. Dascalu, and M. Stanescu. Cellular automata architecture for the artifi-
cial insect eye. In Proceedings of NC 1998: International ICSC/IFAC Symposium on
Neural Computation, pages 664-668. Academic Press, Zurich, Switzerland, 1998.

Dan R. Frantz. Non-linearities in Gnetic Adaptive Search. University of Michigan:
Ann Arbor, 1972. PhD Thesis.

A. S. Fraser. Simulation of genetic systems by automatic digital computers. Australian
Journal of Biological Sciences, 10:484-499, 1957.

R. M. Friedberg. A learning machine: part i. IBM Journal, 2:2-13, 1958.

Henry Fuks. Exact results for deterministic cellular automata traffic models. Physical
Review E, 60(1):197-202, 1999.

Chikara Furusawa and Kunihiko Kaneko. Emergence of multicellular organisms with
dynamic differentiation and spatial pattern. Artificial Life, 4:79-93, 1998.

Peter Gacs. Self-correcting two-dimensionnal arrays. In Silvio Micali, editor, Random-
ness in computation, volume 5 of Advances in Computing Research, pages 223-326,
Greenwich, Conn, 1989. JAI Press.

Peter Gécs. Reliable cellular automata with self-organization. In Proceedings of the
38th IEEE Symposium on the Foundation of Computer Science, pages 90-99, 1997.

Peter Gacs. Reliable cellular automata with self-organization. Journal of Statistical
Physics, 103(1/2):45-268, 2001.

Bibliography 133

[66] Peter Gacs, G. L. Kurdyumov, and L. A. Levin. One-dimensional uniform arrays that
wash out finite islands. Problemy Peredachi Informatsii, 14:92-98, 1978.

[67] Martin Gardner. The fantastic combinations of john conway’s new solitaire game ’life’.
Scientific American, 223(4):120-123, July 1970.

[68] Hugo de Garis. Artificial embryology and cellular differentaition. In Peter Bentley,
editor, Evolutionary Design by Computers, pages 281-295, San Francisco, CA, 1999.
Morgan Kaufmann.

[69] H. Gerola and P. Seiden. Stochastic star formation and spiral structures of galaxy.
Astrophysical Journal, 223:129, 1978.

[70] R. Gordon. The emergence of emergence: A critique of "design, observation, surprise!".
Rivista di Biologia-Biology Forum, 93(2):346-356, 2000.

[71] Lawrence F. Gray. A reader’s guide to gacs’s “positive rates” paper. Journal of
Statistical Physics, 103(1/2):1-44, 2001.

[72] J. M. Greenberg, B. D. Hassard, and S. P. Hastings. Pattern formation and peri-
odic structures in systems modelled by reaction-diffusion equations. Bulletin of The
American Mathematical Society, 84:1296, 1978.

[73] John J. Grefenstette and James Edward Baker. How genetic algorithms work: a
critical look at implicit parallelism. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 20-27. Morgan Kaufmann,
1989.

[74] Frederic Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic
Algorithm. PhD Thesis, LIP-Ecole Normale Supérieure de LYON, 1994.

[75] Howard A. Gutowitz and Christopher Langton. Methods for designing "in-
teresting" cellular automata. CNLS News Letter, 1988. may be found at
http://www.santafe.edu/“hag/interesting/interesting.html.

[76] Howard A. Gutowitz and Christopher Langton. Mean field theory of the edge of chaos.
In F. Moréan, A. Moreno, J. J. Merelo, and P. Chacon, editors, Advances in Artificial
Life, Proceedings of the 3rd European Conference on Artificial Life, volume 929 of
LNAI pages 52-64. Springer-Verlag, 1995.

[77] James E. Hanson and James P. Crutchfield. Computational mechanics of cellular
automata. Physica D, 103:169-189, 1997.

[78] Masaretu Harao and Shoici Noguchi. Fault tolerant cellular automata. Journal of
computer and system sciences, 11:171-185, 1975.

[79] H. Hartman and Gérard Y. Vichniac. Inhomogeneous cellular automata (inca). In
E. Bienenstock et al., editor, Disordered Systems and Biological Organization, volume
F 20, pages 53-57. Springer-Verlag, Berlin, 1986.

[80] G. A. Hedlund. Endomorphism and automorphism of shift dynamical systems. Math-
ematical Systems Theory, 3:51-59, 1969.

[81] G. A. Hedlund, K. I. Appel, and Welch L. R. All onto functions of span less than or
equal to five. Communications Research Division, JULY 1963. working paper.

[82] G. T. Herman. On universal computer-constructors. Information Processing Letters,
2:61-64, 1973.

134
[83]
[84]

[85]

[86]
[87]

[88]

[89]

[90)

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Bibliography

John Holland. Universal species: A basis for studies in adaptation. Automata Theory,
pages 218-230, 1966.

John H. Holland. Nonlinear environment permitting efficient adaptation. Academic
Press, New-York, N.Y., 1967.

John H. Holland. Adaptation in natural and artificial systems: An introductory analy-
sis with applications to biology, control, and artificial intelligence. MIT Press/Bradford
book editions, 1992(1975).

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory Languages
and Computation. Addison-Wesley, Redwood City, CA, 1979.

Wim Hordijk. The structure of the synchonizing-ca landscape. Technical Report
96-10-078, Santa Fe Institute, Santa Fe, NM (USA), 1996.

Wim Hordijk. Dynamics, Emergent Computation and Evolution in Cellular Automata.
Computer Science Dept, University of New Mexico, Albuquerque, NM (USA), Dec.
1999.

Peter D. Hortensius, Robert D. McLeod, and Howard C. Card. Parallel random
number generation for VLSI systems using cellular automata. IEEE Transactions on
Computers, 38(10):1466-1473, October 1989.

Peter T. Hraber, Terry Jones, and Stephanie Forrest. The ecology of echo. Artificial
Life Journal, 3:165-190, 1997.

Oscar Ibarra. Computational complexity of cellular automata: an overview. In M. De-
lorme and J. Mazoyer, editors, Cellular Automata: A parallel model. Kluwer Acadame-
cic Publishers, 1999.

T. E. Ingerson and R. L. Buvel. Structures in asynchronous cellular automata. Physica
D, 10:59-68, 1984.

Yasusi Kanada. Asynchronous 1d cellular automata and the effects of fluctuation
and randomness. In R.A. Brooks and P. Maes, editors, A-Life IV: Proceedings of the
Fourth Conference on Artificial Life, page Poster, Cambridge, MA, 1994. MIT Press.

Emmanuel Kant. Idée d’une histoire universelle au point de vue cosmopolitique. Bor-
das, Paris, 1988. Translation J.-M. Muglioni. Notes: 1) The translation of this sentence
in this edition is slightly different from the one quoted here. 2) Of course, this sentence
is taken in the opposite of its original meaning, Kant believing in a teleological nature.

James Kennedy and Rusell C. Eberhart (with Yuhui Shi). Swarm Intelligence. Morgan
Kaufmann Publishers, 2001.

Kenneth E. Kinnear, editor. Advances in Genetic Programming. MIT Press, Cam-
bridge, MA., 1994.

Hiroaki Kitano. A simple model of neurogenesis and cell differentiation based on
evolutionary large-scale chaos. Artificial Life, 2(1):79-99, 1995.

Hiroaki Kitano. Building complex system using a developmental process: An engi-
neering approach. In Proceedings of the Second International Conference on Evolvable
Systems: From Biology to Hardware (ICES98). Springer-Verlag, 1998.

John R. Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In Proceedings of the 11th Internatinal Joint Conference on Artificial In-
telligenge, San Mateo, CA, 1989. Morgan Kaufmann.

Bibliography 135

[100] John R. Koza. Genetic Programming: On The Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

[101] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA, 1994.

[102] John R. Koza and David Andre. Classifying protein segments as transmembrane do-
mains using architecture-altering operations in genetic programming. In P. Angeline
and K. Kinnear, editors, Advances in Genetic Programming 2, pages 155-176, Cam-
bridge, MA, 1996. The MIT Press. h

[103] Dietrich Kuske. Emptiness is decidable for asynchronous cellular machines. In
C. Palamidessi, editor, CONCUR 2000, Lecture Notes in Computer Science, LNCS
1877, pages 536-551, Berlin, 2000.

[104] Richard Laing. Artificial organisms and autonomous cell rules. Journal of Cybernetics,
2(1):38-49, 1972.

[105] Richard Laing. Automaton introspection. Journal of Computer and System Sciences,
13:172-183, 1976.

[106] Mark Land and Richard K. Belew. No perfect two-state cellular automata for density
classification exists. Physical Review Letters, 74(25):5148-5150, June 1995.

[107] William B. Langdon. Size fair and homologous tree genetic programming crossovers.
In W. Banzhaf, j: Daida, A.E. Eiben, M.H: Garzon, V. Honavar, M. Jakiela, and R.E.
smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), volume 2, pages 1092-1097. Morgan Kaufmann, 1999.

[108] William B. Langdon. Quadratic bloat in genetic programming. In Darrel Whit-
ley, David Goldberg, Erick Cantii-Paz, Lee Spector, lan Parmee, and Hans-Georg
Beyer, editors, Genetic and Evolutionary Computing COnference’00: The proceedings
of, pages 451-458, San Francisco, CA, July 2000. Morgan Kaufmann.

[109] William B. Langdon and Riccardo Poli. Fitness causes bloat. In R. Chawdhry,
P.K.and Roy and R.K. Pant, editors, Soft Computing in Engineering Design and Man-
ufacturing, pages 13-22, London, 1997. Springer-Verlag.

[110]} J. S. Langer. Instabilities and pattern formation in crystals growth. Review of Modern
Physics, 52:1, 1980.

[111] Christopher G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D, 42:12-37, 1984.

[112] Christopher G. Langton. Self-reproduction in cellular automata. Physica D, 10:135—
144, 1984.

[113] Christopher G. Langton. Studying artificial life with cellular automata. Physica D,
22:120-149, 1986.

[114] Dong Wook Lee and Kwee Bo Sim. Ontogenesis of artificial neural networks based on
l-system and genetic algorithms. In Proceedings of the 5th International Conference
on Soft Computing and Information/Intelligent Systems. Methodologies for the Con-
ception, Design and Application of Soft Computing, pages 817-820, Singapore, 1998.
World Scientific Publishing Comp.

[115] K. M. Lee, Hao Xu, and H. F. Chau. Parity problem with a cellular automaton
solution. Physical Review F, 64:026702, July 2001. The page number refers to the
official internet numbering scheme of the American Physical Society.

136

Bibliography

[116] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complezity and its Appli-

(117
[118]
[119]
[120]
[121]

[122]
[123]
[124]
[125]

[126]
[127]

[128]

[129]

[130]
[131]

[132]

cations. Springer-Verlag, New-York, 1993.

Wentian Li. Phenomenology of non-local cellular automata. Journal of Statistical
Physics, 68:829-882, 1992.

Wentian Li and Norman Packard. The structure of elementary cellular automata rule
space. Complezr Systems, 4:281-297, 1990.

Aristid Lindenmayer. Mathematical models for cellular interaction in develop-
ment,part i and ii. Journal of Theoretical Biology, 18, 1968.

K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional
cellular automata. Complexr Systems, 4:299-318, 1990.

Shida Liu and Ziguo Zhang. Simulation of snowflake by cellular automata. Scientia-
Atmospherica-Sinica, 13(2):193-198, 1989.

Andrea Loraschi, Andrea Tettamanzi, Marco Tomassini, and P. Verda. Distributed
genetic algorithms with an application to portfolio selection problems. In Proceedings
of the International Conference on Artificial Neural Networks and Genetic Algorithms,
pages 384-387. Springer-Verlag, New-York, 1995.

Sean Luke. Issues in Scaling Genetic Programming: Breeding Strategies, tree Gener-
ation, and Code Bloat. University of Maryland, 2000. PhD Thesis.

Bernard Manderick and Piet Spiessens. Fine-grained parallel genetic algorithms. In
J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, page 428. Morgan Kaufmann, 1989.

Daniel Mange, Moshe Sipper, Andre Stauffer, and Gianluca Tempesti. Towards robust
integrated circuits: The embryonics approach. Proceedings of the IEEE, 88(4):516-541,
April 2000.

Karl Marx. Philosophie. Number 244 in Folio. Gallimard, 2000.

Jacques Mazoyer and N. Reimen. A linear speed-up theorem for cellular automata.
Theoretical Computer Science, 50(2):183-238, 1992.

Barry McMullin. John von neumann and the evolutionary growth of complexity:
Looking backwards, looking forwards... In Mark A. Bedau, John 5. McCaskill, Nor-
man H. Packard, and Steen Rasmussen, editors, Artificial Life VII: Proceedings of the
seventh international conference, pages 467-476, Cambridge, MA., 2000. MIT Press.

Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication in genetic
programming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the sizth
international conference (ICGA’95), pages 303-309. Morgan Kaufmann, 1995.

Hans Meinhardt. Models of Biological Pattern Formation. Academic Press, london,
1982.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Evolving cellular au-
tomata to perform computations: Mechanisms and impediments. Physica D, 75:361—
391, 1994.

Bibliography 137

[133] Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield. Revisiting the edge

of chaos: Evolving cellular automata to perform computations. Complez Systems,
7:89-130, 1993.

[134] David J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3(2):199-230, 1995.

[135] Heinz Miihlenbein. Evolution in time and space—the parallel genetic algorithm. In Gre-
gory J. E. Rawlins, editor, Foundations Of Genetic Algorithms I. Morgann Kaufmann
Publishers, 1991.

[136] James D. Murray. On pattern formation mechanisms for lepidoptera wing patterns
and mammalian coat markings. Philosophical Transactions of the Royal Society (B),
295, 1981.

[137] Kai Nagel and Hans J. Hermann. Deterministic model for traffic jams. Physica A,
199:254-269, 1993.

[138] Kai Nagel, Dietrich E. Wolf, Peter Wagner, and Patrice Simon. Two-lane traffic rules
for cellular automata: A systematic approach. Physical Review E, 58(2):1425-1437,
August 1998.

[139] John Von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Illinois, 1966. Edited and completed by A. W. Burks.

[140] Hidenosuke Nishio and Youichi Kobuchi. Fault tolerant cellular spaces. Journal of
computer and system sciences, 11:150-170, 1975.

[141] Peter Nordin. A compiling genetic programming system that directly manpulates
the machine code. In K. E Kinnear Jr, editor, Advances in Genetic Programming,
Cambridge, MA, 1994. MIT Press.

[142] Peter Nordin and Wolfgang Banzhaff. Complexity, compression adn evolution. In
L. Eshelman, editor, Genetic Algorithms: Proceedings of the sizth international con-
ference (ICGA’95), pages 310-317. Morgan Kaufmann, 1995.

[143] Martin A. Nowak, Sebastian Bonhoeffer, and Robert M. May. Spatial games and the

maintenance of cooperation. Proceedings of the National Academic of Sciences USA,
91:4877-4881, May 1994.

[144] G. M. Odell, G. Oster, P. Albrech, and B. Burnside. The mechanical basis of morpho-
genesis. Developmental Biology, 85, 1981.

[145] G. M. B. Oliveira, P. P. B. De Oliveira, and N. Omar. Searching for one-dimensional
cellular automata, in the absence of a priori information. In Jozef Kelemen and
Petr Sosik, editors, Advances in Artificial Life: Proceedings of the sixth Furopean
Conference on Artificial Life (ECAL’01), Lecture Notes in Artificial Intelligence 2159,
pages 262-271. Springer-Verlag, 2001.

[146] M. Oussaidene, Bastien Chopard, Olivier Pictet, and Marco Tomassini. Parallel ge-
netic programming and its application to trading model induction. Parallel Computing,
23:1183-1198, 1997.

[147] Norman H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J.
Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems, pages
293-301. World Scientific, Singapore, 1988.

138
[148]

[149]
[150]

[151]

[152]

[153]
[154]
[155]
[156]

[157]

[158]
[159]

[160]

[161]

[162]
[163]

[164]

Bibliography

Stephen K. Park and Keith W. Miller. Random number generators: Good ones are
hard to find. Communications of the ACM, 31(10):1192-1201, October 1988.

Blaise Pascal. Pensées. Folio/Gallimard, 1977. Edition de Michel le Guern.

Jean-Yves Perrier, Moshe Sipper, and Jacques Zhand. Toward a viable, self-
reproducing universal computer. Physica D, 97:335-352, 1996.

Umberto Pesavento. An implementation of von neumann’s self-reproducing machine.
Artificial Life, 2(4):337-354, 1995.

Enrico Petraglio, Jean-Marc Henry, and Gianluca Tempesti. Arithmetic operations
on self-replicating cellular automata. In D. Floreano, J.-D. Nicoud, and F. Mondada,
editors, Advances in Artificial Life, Proceedings of the 5th European Conference on
Artificial Life, pages 447-456. Springer Verlag, 1999.

Giovanni Pighizzini. Asynchronous automata versus asynchronous cellular automata.
Theoretical Computer Science, 132:179-207, 1994.

Plotin. Ennéades. Les Belles Lettres, Paris, 1970.

Riccardo Poli. Exact schema theory for genetic programming and variable-length
genetic algorithms with one-point crossover. Genetic Programming and Evolvable Ma-
chines, 2(2):123-163, 2001.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, New-York, N.Y., 1990.

Francois Rabelais. Les Cing Livres — Gargantua/Pantagruel/Le Tiers Livre/Le
Quart Livre/Le Cinquiéme Livre. Classiques Modernes/La Pochothéque. Le Livre
de Poche/Librairie Générale Francaise, 1994. Edition critique de Jean Céard, Gérard
Defaux, et Michel Simonin.

Nicholas Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5(2):183-205, 1991.

Ingo Rechenberg. Cybernetic Solution Path of an experiemnial Problem. Royal Aircraft
Establishment Library Transslation, 1965. 1122.

Ingo Rechenberg. Evolutionstrategis: Optimierung technisher Systeme nach Prinzipien
der biologischen Ewolution. Fromman-Holzboog Verlag, Stuttgart, 1973. Evolution
strategy: the optimization of technical systems according to the principles of biological
evolution.

James A. Reggia, Hui-Sien Chou, and Jason D. Lohn. Cellular automata models
of self-replicating systems. In Marshall C. Yovits, editor, Advances in Computers,
volume 47. Academic Press, 1998.

James A. Reggia, Hui-Sien Chou, and Jason D. Lohn. Self-replicating structures :
Evolution, emergence and computation. Artificial Life, 4:283-302, 1998.

D. Richardson. Tessellation with local transformations. Journal of Computer and
System Science, 6:373-388, 1972.

Edmund Ronald, Moshe Sipper, and Mathieu S. Capcarrére. A test of emergence,
design, observation, surprise! Artificial Life, 5(3):225-239, 1999.

Bibliography

[165)

[166)

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]
[179]

[180]

139

Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines in genetic program-
ming. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2,
pages 177-202, Cambridge, MA, 1996. The MIT Press.

Giinter Rudolph and Joachim Sprave. A cellular genetic algorithm with self-adjusting
acceptance threshold. In First IEE/IEEFE International Conference on Genetic Algo-
rithms in Engineering Systems: Innovations and Applications, pages 365-372, London,
1995. IEE.

Steven J. Ruuth and Barry Merriman. Convolution-thresholding methods for interface
motion. Journal of Computational Physics, 169(2):678-707, May 2001.

Palash Sarkar. A brief history of cellular automata. ACM Computing Surveys,
32(1):80-107, March 2000.

V. V. Savchenko, A. G. Basnakian, and A. A. Pasko. Computer simulation and analysis
of a growing mammalian cell colony. Lectures in Mathematics in the Life Sciences,
26:111-120, 1999.

Hiroaki Sayama. Constructing evolutionary systems on a simple deterministic cellular
automata space. Dept of Information Science, University of Tokyo, December 1998.
PhD Thesis.

Birgitt Schonfisch and André de Roos. Synchronous and asynchronous updating in
cellular automata. BioSystems, 51:123-143, 1999.

Hans-Peter Schwefel and G. Rudolph. Contemporary evolution strategies. In
F. Morana et al, editor, Advances in Artificial Life, pages 893-907, Berlin, 1995.
Springer-Verlag.

Claude E. Shannon. A mathematical theory of communication. University of Illinois

Press, 1949.

Oliver Sharpe. Continuing beyond nfl: dissecting real world problems. In W. Banzhaf,
J. Daida, A.E. Eiben, M.H: Garzon, V. Honavar, M. Jakiela, and R.E. smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO0’99),
volume 2, pages 1074-1381. Morgan Kaufmann, 1999.

Hans B. Sieburg, J. Allen McCutchan, Oliver K. Clay, Lisa Cabalerro, and James J.
Ostlund. Simulation of hiv infection in artificial immune systems. Physica D, 45:208~
227, 1990.

Oliver K. Sieburg, Hans B. Clay. The cellular device machine development system for
modeling biology on the computer. Complex Systems, 5(6):575-601, 1991.

Karl Sims. Evolving 3d morphology and behavior by competition. In R.A. Brooks
and P. Maes, editors, A-Life IV: Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems, Cambridge, MA, 1994. MIT Press.

Moshe Sipper. Studying artificial life using a simple, general cellular model. Artificial
Life Journal, 2(1):1-35, 1995.

Moshe Sipper. Co-evolving non-uniform cellular automata to perform computations.
Physica D, 92:193-208, 1996.

Moshe Sipper. FEwvolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer-Verlag, Heidelberg, 1997.

140
[181]
[182]
[183]

[184]

[185]

[186]

[187]

[188]

[189]
[190]

[191]
[192]

[193]

[194]

[195]

[196]

Bibliography

Moshe Sipper. The evolution of parallel c‘ellular machines: Toward evolware. BioSys-
tems, 42:29-43, 1997.

Moshe Sipper. Computing with cellular automata: Three cases for nonuniformity.
Physical Review E, 57(3), March 1998.

Moshe Sipper. Fifty years of research on self-replication: An overview. Artificial Life,
4:237-257, 1998.

Mashe Sipper, Mathieu S. Capcarrére, and Edmund Ronald. A simple cellular automa-
ton that solves the density and ordering problems. International Journal of Modern
Physics C, 9(7):899-902, October 1998.

Moshe Sipper and Ethan Ruppin. Co-evolving architectures for cellular machines.
Physica D, 99:428-441, 1997.

Moshe Sipper and Marco Tomassini. Co-evolving parallel random number genera-
tors. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, volume 1141 of Lecture Notes in Computer
Science, pages 950-959. Springer-Verlag, Heidelberg, 1996.

Moshe Sipper and Marco Tomassini. Generating parallel random number generators
by cellular programming. International Journal of Modern Physics C, 7(2):181-190,
1996.

Moshe Sipper, Marco Tomassini, and Olivier Beuret. Studying probabilistic faults in
evolved non-uniform cellular automata. International Journal of Modern Physics C,
7(6):923-939, 1996.

S.F. Smith. A Learning System Based on Genetic Adaptive Algorithms. Computer
Science Dept, University of Pittsburg, 1980. PhD Dissertation.

Alvy Ray Smith III. Cellular aﬁtomata complexity trade-offs. Information and Con-
trol, 18:223-253, 1971.

William Somerset Maughan. The moon and siz pence. Dover Thrift, 2000.

Terence Soule and J.A. Foster. Removal bias: a new cause of code growth in tree based
evolutionary programming. In 1998 IEEE Conference on Evolutionary Computation,
pages 781-786, New-York, N.Y., USA, 1998. IEEE Press.

Lee Spector. Simultaneous evolution of programs and their control structures. In
P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, pages 137—
154, Cambridge, MA, 1996. The MIT Press.

Lee Spector and Killian Stoffel. Automatic generation of adaptive programs. In
P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson, editors, From Animals
to Animat 4: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior (SAB’96), pages 476-483, Cambridge, CA, 1996. MIT Press.

W. Richard Stark. Dynamics for fundamental problem of biological information pro-
cessing. International Journal of Artificial Intelligence Tools, 4(4):471-488, 1995.

T. Starkweather, Darrell Whitley, and K. Mathias. Optimization using distributed
genetic algorithms. In H.-P. Schwefel and R. Ménner, editors, Parallel Problem Solving
from Nature, volume 496 of Lecture Notes in Computer Science, page 176, Heidelberg,
1991. Springer-Verlag.

Bibliography 141

[197] Luc Steels. The artificial intelligence roots of artificial life. Artificial Life, 1(1/2):75~
110, 1994.

[198] Kenneth Steiglitz, R. K. Squier, and M. H. Jakubow. Programmable parallel arith-
metic in cellular automata using a particle model. Complez Systems, 8:311-323, 1994.

[199] Klaus Sutner. Classifying circular cellular automata. Physica D, 45:386-395, 1990.

[200] Klaus Sutner. sigma-automata and chebyshev-polynomials. Theoretical Computer
Science, 230(1-2):39-73, January 2000.

[201] Walter Alden Tackett. Recombination, Selection, and the Genetic Construction of
Computer Programs. Dept of Elect. Eng. Syst.: University of Southern California,
1994. PhD Thesis.

[202] Timothy Taylor. Nidus Design Document. University of Edinburgh, 1998. Depart-
mental Working Paper No.269. Department of Artificial Intelligence.

[203] Timothy Taylor. From Artificial Evolution to Artificial Life. University of Edinburgh,
1999. PhD Thesis.

[204] Gianluca Tempesti. A new self-reproducing cellular automaton capable of construction
and computation. In F. Moran, A. Moreno, J. J. Merelo, and P. Chacon, editors,
Advances in Artificial Life: Proc. 3rd Eur. Conf. on Artificial Life (ECAL95), volume
929 of LNAI pages 555-563. Springer-Verlag, 1995.

[205] Andrea Tettamanzi and Marco Tomassini. Evolutionary algorithms and their appli-
cations. In D. Mange and M. Tomassini, editors, Bio-Inspired Computing Machines:
Toward Novel Computational Architectures. Presses Polytechniques et Universitaires
Romandes, Lausanne, Switzerland, 1998. (to appear).

[206] Andrea Tettamanzi and Marco Tomassini. Soft Computing : Integrating Evolutionary,
Neural, and Fuzzy System. Springer-Verlag, 2001.

[207] Tommaso Toffoli. Integration of the phase difference relation in asynchronous sequen-
tial networks. In Giorgio Aussiello and Corrado Béhm, editors, Automata, Languages
and Programming, fifth(international) colloquium; Udine, July 17-21, 1978, pages 457
473, Berlin, 1978.

[208] Tommaso toffoli. Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica D, 10:117-127, 1984.

[209] Tommaso Toffoli and Norman H. Margolus. Cellular Automata Machines, A new
Environment for modeling. MIT Press, Cambridge, MA, 1987.

[210] Tommaso Toffoli and Norman H. Margolus. Invertible cellular automata: A review.
Physica D, 45:229-253, 1990.

[211] Marco Tomassini. The parallel genetic cellular automata: Application to global func-
tion optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Pro-
ceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms, pages 385-391. Springer-Verlag, 1993.

[212] Marco Tomassini, Moshe Sipper, and Mathieu Perrenoud. On the generation of high-
quality random numbers by two-dimensional cellular automata. IEEE Transactions
on Computers, 49(10):1146-1151, 2000.

[213] Alan Turing. The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society (B), 237, 1952.

142
[214]
[215]
[216)
[217]
[218]

[219]

[220]

[221]

[222]

[223]
[224]
[225]
[226]
[227]

[228]
[229]

[230]

[231]

Bibliography

Stanislav Ulam. Random processes and transformations. In Proceedings of the Inter-
national congress of Mathematics, 1950, volume 2, 1952.

Tatsuo Unemi. A simple evolvable development system in euclidean space. Lectures
in Mathematics in the Life Sciences, 26:103-110, 1999.

R. R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl.
Akad. Nauk. SSSR, 117:739-741, 1957.

Gérard Y. Vichniac. Simulating physics with cellular automata. Physica D, 10:96-116,
1984.

Gérard Y Vichniac. Boolean derivatives on cellular automata. Physica D, 45:63-74,
1990.

Darell Whitley. The genitor algorithm and selection pressure: why rank-based alloca-
tion of reproductive trials is best. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 239-255. Morgan Kaufmann,
1989.

Darrel Whitley. Cellular genetic algorithms. In Stephanie Forrest, editor, Proceed-
ings of the Fith International Conference on Artificial Neural Networks and Genetic
Algorithms, page 658, San Mateo, CA, 1993. Morgan Kaufmann.

Oscar Wilde. The picture of Dorian Gray and other writings. A Bantam Classic.
Bantam Books, New-York, 1982(1891).

V. william Porto. Evolutionary programming. In Thomas Baeck, Fogel David B, and
Zbigniew Michalewicz, editors, Evolutionary Computation 1, pages 89-102, Bristol,
UK and Philadelphia, USA, 2000. Institute of Physics Publishing.

Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of Modern
Physics, 55(3):601-644, july 1983.

Stephen Wolfram. Computation theory of cellular automata. Communications in
mathematical physics, 96:15-57, 1984.

Stephen Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-
35, 1984.

Stephen Wolfram. Approaches to complexity engineering. Physica D, 22:385-399,
1986.

Stephen Wolfram. Cellular Automata and Complezity. Addison-Wesley, Reading, MA,
1994.

Stephen Wolfram. A new kind of science. Wolfram media, inc., 20017

David H. Wolpert and William G. Macready. No free lunch theorems for search. Santa
Fe Institute Tech. Rep., SFI-TR-95-02-010, 1995.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, April 1997.

Andrew Wuensche. Classifying cellular automata automatically: Finding gliders, fil-
tering, and relating space-time patterns, attractor basins, and the z paramater. Com-
plezity, 4(3):47-66, 1999.

Bibliography

[232]

[233]

[234)

[235]

[236]

143

Tomoyuki Yamamoto and Kunihiko Kaneko. Tile automaton: A model for an archi-
tecture of a living system. Artificial Life, 5:37-76, 1999.

Tomohiro Yasuda, Hideo Bannai, Shuichi Onami, Satoru Miyano, and Hiroaki Kitano.
Towards automatic construction of cell-lineage of c.elegans from nomarski dic micro-
scope images. In K. Asai, S. Miyano, and T. Takagi, editors, Genome Informatics
1999, Tokyo, 1999. Universal Academy Press.

Wieslaw Zielonka. Notes on finite asynchronous automata. Informatique théorique et
Applications/Theoretical Infomatics and Applications, 21(2):99-135, 1987.

Wieslaw Zielonka. Safe executions of recognizable trace languages by asynchronous
automata. In Albert R. Meyer and Michael A. Taitslin, editors, Logic at Botik’89,
Lecture Notes in Computer Science, LNCS 363, pages 278-289, Berlin, 1989. Springer-
Verlag.

Konrad Zuse. Rechnender Raum. Vieweg, Braunschweig, 1969. Translated as Calcu-
lating Space, Tech. Trans., AZT-70-164-DEMIT, MIT Project MAC (1970).

Appendix A

Some Cell Programs Obtained Using
Phuon

This annex presents, for information, the two cell programs studied in chapter 3. The food
foraging program was found by an earlier version of the cellular language where the Split
command took only one argument, the direction in which the new cell is created, and the
Nop command had a constant argument 1. The instructions are numbered in the form X.xx,
where X is either S, B, or 4, indicating the type, Statement, Boolean and Arithmetic, and
xx is simply the total number of instructions in its type.

A.1 Food Foraging

1: Nop{1);

2: IfB.1:((A.1: readEnv) > (A.2: readN)){
.5.3: Split (4.3: readEnv);

_S.4: Nop(1);

.5.5: Write_Own(A.4: readEnv);

_S.6: IfB.2:((A.5: readEnv) > (A.6: readN)){
_.S.7: Split (A.7: readEnv);

_.5.8: Split (A.8: readEnv);

__8.8: Nop(1);

--8.10: Write_Own(A.9: readEnv);

_-S.11: IfB.3:((A.10: readEnv) > (A.11: readN)){
§.12: Split (A.12: readEnv);

§.13: Split (A.13: readEnv);

S.14: Nop(1);

S.15: Write_Own(A.14: readEnv);

$.16: IfB.4:((A.15: readEnv) > (A.16: readN)){
$.17: Split (A.17: readEnv);

____5.18: Nop(1);

---}else {

—---5.19: Nop(1);

----5.20: Nop(1);

S.21: DIE!;

S.
S.

)

-__8.22: Nop(1);
---5.23: DIE!;
__}else {
___5.24: Nop(1);
___5.25: Nop(1);
_--5.26: Nop(1);
-}

_.5.27: Nop(1);
..5.28: DIE!;
_}else {

__5.29: Nop(1);
_-8.30: Nop(1);
_-5.31: Nop(1);

_}

_5.32: Nop(1);

_$.33: DIE!;

Jelse {

_S5.34: 1fB.5:((A.18: readEnv) > (A.19: readN)){
__S.35: Split (A.20: readS);

..5.36: Split (A.21: read0);

__S.37: Nop(1);

_}else {

145

146 Some Cell Programs Obtained Using Phuon

--5.38: Nop(1);
-.5.39: DIE!;

23

-5.40: Nop(1);
_8.41: Nop(1);
}

$.42: Nop{1);

$.43: Nop(1);

A.2 Controlled Growth

S.1: Repeat (£.1: read0) {
__8.2: Write_Env (A.2: readE) ;
__5.3: Write_West (A.3: read$) ;
__S.4: Repeat A.4: (_0){

S.5: Repeat (A.5: readEnv) {

.7: IfB.1: ((A.6: readS) < (A.7: readd)) {
S.8: Split{ Argl: A.8: (.7), Arg2: A.9: (¥2));
$.9: Write_Own (A.10: readN) ;

S.11: Write_Own (A.11: readN) ;
S.12: Split(Argl: A.12: ((A.13: readW) + A.14: (#6)) , Arg2: A.15: (#8));
_S.13: DIE!;

_5.14: Write_Own (A.16: readN) ;
$.15: Repeat (A.17: readEnv) {
$.16: DIE!;

2}
_S.17: IfB.2: ((A.18: readS) < (A.19: readW)) {

5.19: Write_North (A.20: readE) ;
______ §.20: Write_Dwn (A.21: readl) ;
_.S.21: DIEY;

--..8.22: Vrite_Own (A.22: readN) ;

_S.23: Repeat (A.23: readl) {

§.24: Write_Env (A.24: readE) ;

S.25: Write_West (A.25: readS) ;

$.26: Repeat A.26: (#0){

$.27: Repeat (4.27: readEnv) {
$.28: DIE!;

$.29: IfB.3: ((A.28: readN) > (A.29: readd)) {
$.30: Split(Argl: A.30: (#7), Arg2: 4.31: (#2));
S.31: Split(Argl: A.32: (#0), Arg2: (A.33: readB));

_S5.33: Split(Argl: A.34: (#0), Arg2: (4.35: readN));
_.5.34: DIE!;

$.35: Write_Own (A.36: readN) ;
S.36: Repeat (A.37: readEnv) {
__5.37: DIE!;

S5.38: IfB.4: ((A.38: readN) > (A4.39: readd)) {

: Write_Own (4.40: readN) ;

: Split(Argl: A.41: ((A.42: readd) + A4.43: (#6)) , Arg2: A.44: (#8));
: DIE!;

: Write_North (4.45: readE) ;

: Write_Env A.46: (#1);

: Write_Own (A.47: readEnv) ;

: Split(Argl: A.48: (#7), Arg2: A.49: (#8));

: Write_Own (A.50: readN) ;

: Split(Argl: A.51: ((A.52: readW) + (A.53: readN)) , Arg2: A.B4: (#8));
: DIE!;

§.49: Write_Own (A.55: readN) ;
________ S.50: DIE!;

.51: IfB.5: ((A.56: readB) > (A.57: readd)) {
$.52: Write_West (A.58: readW) ;

$.53: Repeat A.59: (#0){

.54: Write_North (A.60: readN) ;

§.55: Write_South (A.61: read0) ;

$.56: Write_North (A.62: read0) ;

§.57: Write_Env A.63: (#7);

§.58: Write Dwn (A.64: readEnv) ;

S

]

S

i
|
(%)

.59: Split(Argl: A.65: (#7), Arg2: A.66: (#8));

.60: Write_Own (A.67: readN) ;

.61: Split(Argl: A.68: ((A.69: TeadW) + A.70: (#6)) , Arg2: A.71: (#8));
S.62: DIE!;

¥
S.63: IfB.6: ((A.72: readS) < (A.73: readW)) {
S.64: Split(Argl: A.74: (#0), Arg2: (A.75: readB));

A.2 Controlled Growth 147

: Write_North (A.77: readN) ;
: Write_South (A.78: readl) ;
: Write_North (A.79: readd) ;
: Write_Env A.80: (#1);
: Write_Own (A.81: readEmnv) ;
: Split(Argl: A.82: (#7), Arg2: A.83: (#8));
: IfB.7: (. (A.84: readB) < (A.85: readd)) {~
______ $.76: Split(Argl: A.86: (#7), Arg2: A.87: (#2));
S.77: Write_Own (A.88: readN) ;
.---5.78: DIE!;
____Yelse {
_S.79: Split(Argl: A.89: (#0), Arg2: (A.90: readB));

: Write_Own (A.91: readN) ;

__--5.82: Split(Argl: A.92: ((A.93: readN) + A.94: (#6)) , Arg2: A.95: (#8));
$.83: IfB.8; ((A.96: readS) < (A.97: readd)) {

: Write_Dwn A.98: (#0);

: DIE!;

: Write_Env A.99: (#7);

: Write_Dwn (4.100: readEnv) ;

: Split(Argl: A.101: (#7), Arg2: A.102: (#8));

: Write_Own (A.103: readN) ;

: Split(Argl: A.104: ((A.105: readW) + 4.106: (#6)) , Arg2: A.107: (#8));
:+ DIEY;

---_5.92: Write_0wn (A4.108: readl) ;
--..5.93: Write_West (A.109: readW) ;
----5.94: Repeat (4.110: readW) {
-5.95: DIE!;

P J
..5.96: IfB.9: ((A.111: readB) > (A.112: read0)) {
_5.97: Split(Argl: A.113: (#0), Arg2: (A.114: readB));

$.99: NOP(A.115: (#6));

----5.100: DIE!;

>

__5.101: IfB.10: ((A.116: readS) < (A.117: readl)) {
..8.102: Write_West (A.118: readl) ;

---_5.103: Repeat 4.119: (#0){

-5.104: DIE!;

3
$.105: IfB.11: ((A.120: readS) < (A.121: readW)) {
_-5.106: Split(Argl: A.122: (#0), Arg2: (A.123: readN));
$.107: Repeat (A.124: readEnv) {
__5.108: Repeat (A.125: readD) {
__5.109: VWrite Env (A.126: readE) ;
_5.110: Write_West (A.127: readS) ;
_S.111: Repeat A.128: (#0){
_5.112: Write_North (A4.129: readN) ;
§.113: Write_South (A4.130: readd) ;
___________ S.114: Write_North (A.131: readl) ;
___________ §.115: Write_Env A.132: (#1);
: Write_Own (4.133: readEnv) ;
: Split(Argl: A.134: (#7), Arg2: A.135: (#8));
1fB.12: ((A.136: readB) < (A.137: readd)) {
Split(Argi: A.138: (#7), Arg2: A.139: (#2))
: Write_Own (A.140: readN) ;
: DIE!;

: Split(Argl: A.141: (#0), Arg2: (A.142: readB));
: DIEf;

___S.124: Write_Own (A4.143: readN) ;
__S5.125: 'Repeat (A.144: readEnv) {
---5.126: DIE!;

3}

.5.127: IfB.13: ((A.145: readS) < (A.146: read0)) {
___5.128: Write_Own A.147: (#0);

S.129: DIE!;

- ___5.130: Write_North (A.148: readE) ;
- _§.131: Write_Own (A.149: readd) ;
5.132: DIE!;

X

_5.133: Write_Own (A4.150: read0) ;
___________ 5.134: Write_West (A4.151: readW) ;
___________ $.135: Repeat (4.152: readw) {
.--5.136: DIE!;

___________ S.137: IfB.14: ((A.153: readS) < (A.154: xreadW)) {
_$.138: Split(Argl: A.155: (#0), Arg2: (A.156: readB));
$.139: DIE!;

148

: Write_North (A4.157: readN) ;
: Write_South (A.158: read) ;
Write_North (A.159: readl) ;
: Write_Env A.160: (#1);

Write_Own (A.161: readEnv) ;

: Write Own (A.168: readN) ;
DIE¢;

: DIE!;

_S.152: Write_Own (A.171: readN) ;

_S.153: Repeat (A.172: readEnv) {

»

_S.155: IfB.16: ((A.173: readS) < (A.174:
Write_Dwn A4.175: (#0);

: DIE!;

: Write_North (A.176: readE) ;
: Write_Qwn (A.177: read0) ;
: DIE!;

.161: Write_Own (A.178: read0) ;
.162: Write_West (A.179: readW) ;
.163: Repeat (4.180: readW) {
.5.164: DIEY;

.165: IfB.17: ((A.181: readB) > (A.182:

$.167: DIE!;

.168: NOP(A.185: (#6));
.169: DIE!;

Some Cell Programs Obtained Using Phuon

Split(Argl: A.162: (#7), Arg2: A.163: (#8));
IfB.15: ((A.164: readB) < (A.165:
Split(Argl: A.166: (#7), Arg2: A.167: (#2));

readd)) {

Split(Argi: A.169: (#0), Arg2: (A.170: readB));

readl)) {

readld)) {

.§.166: Split(Argl: A.183: (#0), Arg2: (A.184: readB));

$.170: I£B.18: ((A.186: readS) < (A.187: read0)) {

§.171: Write_West (A.188: readD) ;
$.172: Repeat A.189: (#0){
§.173: DIE!;

}
$.174: IfB.19: ((A.190: readS) < (A.191:

.176: Repeat (A.194: readEnv) {

_S.177: Repeat (A.195: read0) {

_5.178: Write_Env (A.196: readE) ;
$.179: Write_West (A.197: readS) ;
$.180: Repeat A.198: (#0){

S.181: Write_North (A.199: readN) ;
S.182: Write_South (A.200: read0) ;
__5.183: Write_North (A.201: readl) ;
__8.184: Write_Env A4.202: (#1);
S.185: Write_Own (A.203: readEnv) ;

$.187: IfB.20: ((A.206: readB) <
Split(Argl: A.208: (#7),
: Write_Own (A.210: readN) ;
: DIE!;

Split(Argl: A.211: (#0),
: DIE!;

$.193: Write_Own (A.213: readN) ;
$.194: Repeat (A.214: readEnv) {
..5.195: DIE!;

_____ }

S$.196: IfB.21: ((A.215: readS) <
S.197: Write_Own A.217: (#0);
$.198: DIE!;

S.199: Write_North (A.218: readE)
_5.200: Write_Own (4.219: readl) ;
_5.201: DIEY;

$.202: Write_Own (A.220: readD) ;
..-5.203: Write_West (A.221: readW) ;
5.204: Repeat (A.222: readW) {
_-5.205: DIEY;

IfB.22: ((A.223: readB) >
5.207: Split(Argl: A.225: (#0),
_.5.208: DIE!;

: Write_North (A.227: readN) ;
: Write_South (A.228: read0)

: Write_North (A4.229: read0) ;
: Write_Env A.230: (#1);

: Write_Own (A.231: readEnv) ;

readH)) {

$.175: Split(Argl: A.192: (#0), Arg2: (A.193: readN));

$.186: Split(Argl: A.204: (#7), Arg2: A.205: (#8));

(A.207: readd)) {
Arg2: A.209: (#2));

Arg2: (A.212: readB));

(4.216: readd)) {

(A.224: readl)) {
Arg2: (A.226: readB));

: Split(Argl: A.232: (#7), Arg2: A.233: (#8));

A.2 Controlled Growth

_5.215:

I£B.23: ((A.234: readB) > (A.235: readd)) {
© Split(Argl: A.236: (#7), Arg2: 4.237: (#2));
Write_Dwn (A.238: readN) ;

DIE!;

Split(Argl: A.239: (#0), Arg2: (A.240: readB));
DIEY;

.221: Write_Own (A.241: readN) ;
.222: Repeat A.242: (#7){
.5.223: DIE!;

.
---5.224: IfB.24: ((A.243: readS) < (A.244: read0)) {
_--S$.225: Write_Own A.245: (#0);
DIE!;

Write_North (A.246: readE) ;
Write_Ouwn (4.247: readl) ;
DIE!;

--S.230: Write_ Own (A.248: readD) ;
_--5.231: Write_West (4.249: readW) ;
.5.232: Repeat (4.250: readW) {

_____ $.233: DIE!;

I
- _5.234: IfB.25: ((A.251: readB) > (4.252: readd)) {
- _8.235: Split(Argl: A.253: (#0), Arg2: (A.254: readB));
- .5$.236: DIE!;

-}
---5.237: NOP(A.255: (#6));
.5.238: DIE!;

2}

.5.239: IfB.26: ((A.256: readS) < (A.257: readl)) {
___8.240: Vrite_West (A.258: readD) ;

-.-5.241: Repeat 4.259: (#0){

§.242: DIE!;

2y

_5.243: IfB.27: ((A.260: readS) < (A.261: readW)) {
S.244: Write_West (A.262: readS) ;

$.245: Repeat A.263: (#0){

S.246: Repeat (4.264: readEnv) {

$.247: DIE!;

.248: 1£B.28: ((A.265: readS) < (A.266: readd)) {
5.249: Split(Argl: A.267: (#7), Arg2: A.268: (#2));
$.250: Write_lwn (A.269: readN) ;

5.251: DIE!;

§.2562: Write_0wn (A.270: readN) ;

$.254: DIE!;

$.255: Write_Own (A.275: readN) ;
S.256: Repeat (A.276: readEnv) {
$.257: DIE!;

¥

$.258: IfB.29: ((A.277: readS) < {(4.278: readW)) {
§.259: DIE!;

Yelse {

$.260: Write _North (A.279: readE) ;

$.261: Write_Own (A.280: readd) ;

$.262: DIE!;

}
$.263: Write_Own (A.281: readN) ;
$.264: Repeat (A.282: readd) {
S.265: Write_ Env (A.283: readE) ;
5.266: Write_West (A.284: readS) ;
$.267: Repeat A4.285: (#0){

$.268: Repeat (A.286: readEnv) {

S.276: Write_Own (A.295: readN) ;
$.277: Repeat (4.296: readEnv) {
S$.278: DIE!;

$.279: IfB.31: ((A.297: readS) < (A.298: readw)) {
§.280: Write_Own (A.299: read¥) ;

S.281: Split(Argl: A.300: ((A.301: read0) + 4.302:
--5.282: DIE!;

Yelse {

$.283: Write_North (A.304: readk) ;

§.284: Write_Env A.305: (#1);

S.285: Write_Own (A.306: readEnv) ;

$.286: Split(Argl: A.307: (#7), Arg2: A.308: (#8));

$.253: Split(Argl: A.271: ((A.272: readW) + A.273: (#6))

S.269: DIE!;

¥

5.270: IfB.30: ((A.287: readB) > (A.288: readd)) {
$.271: Split(Argl: A.289: (#7), Arg2: A.290: (#2));
$.272: Split(Argl: A.291: (#0), Arg2: (A.292: readB));
§.273: DIE!;

Yolse {
S.274: Split(Argl: A.293: (#0), Arg2: (A.294: readN));
S5.275: DIE!;

}

(#6))

» Arg2: A.274:

, Arg2: A.303:

(#8));

(#8));

149

150

Some Cell Programs Obtained

§.287: Write_Own (4.309: readN) ;

$.289: DIE!;
}
§$.290: Write_Own (A.314: readN) ;
$.291: DIEI;
}
$.292: IfB.32: ((A.315: readB) < (4.316: readl)) {

5.293: Write_West (4.317: readW) ;

5.294: Repeat 4.318: (#0){

295: Write_North (A.319: readN) ;

296: Write_South (4.320: read0) ;

.297: Write_North (A.321: readl) ;

.298: Write_Env A.322: (#7);

.299: Write_Own (A.323: readEnv) ;

.300: Split(Argl: A.324: (#7), Arg2: A.325: (#8));

301: Write_Own (A.326: readN) ;

302: Split(Argl: A.327: ((A.328: readW) + A.329: (#6)) , Arg2: A.330: (#8));

nunnrmumunwmnnn

303: DIE!;

.304: IfB.33: ((A.331: readB) > (A.332: readd)) {

(2]

S.305: Split(Argl: A4.333: (#0), Arg2: (A.334: readB));

$.306: DIE!;

12

.307: NOP(A.335: (#6));

2]

.308: DIE!;

}

§.309: DIE!;

310: ¥Write_North (A4.336: readN) ;

311: Write_South (4.337: readl) ;

312: Write_North (4.338: read0) ;

313: Write_Env A.339: (#1);

314: Write_Own (A.340: readEnv) ;

315: Split(Argl: A.341: (#7), Arg2: A.342: (#8));
316: I£fB.34: ((A.343: readB) < (A.344: read0)) {
S.317: Split(Argl: A.345: (#7), Arg2: A.346: (#2));

et KNy

$.318: Write_Own (A.347: readN) ;

§.319: DIE!;

Jelse {

$.320: IfB.35: ((A.348: readS) < (A.349: readld)) {

S.321: Split(Argl: A.350: (#0), Arg2: (4.351: readB));
$.322: DIE!;

}

$.323: NOP(A.352: (#6));

$.324: DIE!;

.325: Write_Own (A.353: readN) ;
§.326: Rep 4.354: (#2){

§.827: DIE!;

}

$.328: Split(Argl: A.355: (#0), Arg2: (A.356: readB));
$.329: DIE!;

.330: IfB.36: ((A.357: readS) < (A.358: readd)) {

5.331: Write_West (A.359: readd) ;
$.332: Repeat 4.360: (#0){
$.333: DIE!;

}
§.334: IfB.37: ((A.361: readS) < (A.362: readW)) {

$.335: Split(Argl: A.363: (#0), Arg2: (A.364: readN));
$.336: Repeat (A.365: readEnv) {

$.337: Repeat (A.366: read0) {

5.338: Write_Env (A.367: readE) ;

$.339: I£B.38: ((A.368: reads) < (A.369: readd)) {

$.340: Write_West (A.370: readl) ;

S.341: Repeat 4.371: (#0){

$.342: DIE!;

}
§.343: IfB.39: ((4.372: readS) < (4.373: readd)) {

345: Write_West (A.376: readl) ;

3
S.344: Split(Argl: A.374: (#0), Arg2: (A.375: readN));
S.
S.

346: Repeat A.377: (#0){

$.347: DIE!;

¥

.348: I£B.40: ((A.378: readB) < (A.379: readl)) {

w

.349: Split(Argl: A.380: (#0), Arg2: (A.381: readN));

.350: Write_South (A.382: readw) ;

.351: Write_North (A.383: readl) ;

352: Write_Env A.384: (#1);

353: Write_Own (A.385: readEnv) ;

354: Split(Argl: A.386: (#7), Arg2: A.387: (#8));

365: Write_Own (A.388: readN) ;

356: Split(Argl: A.389: ((A.390: readW) + A.391: (#6)) , Arg2: A.392:

unnmuanan

357: DIE!;

[Z]

.368: NOP(A.393: (#6));

w

.359: DIE!;

[

5.360: NOP(A.384: (#6));

§.361: DIE!;

Using Phuon

§.288: Split(Argl: A.310: ((A.311: readW) + (A.312: readN)) , Arg2: A.313: (#8));

(#8));

A.2 Controlled Growth 151

$.362: DIE!;

363: Write_North (A.395: readN) ;

364: Write_South (A.396: readl) ;

365: Write_North (A.397: readD) ;

366: Write_Env A4.398: (#7);

367: Write_Own (4.399: readEnv) ;

368: Split(Argl: A.400: (#7), Arg2: A.401: (#8));

369: Write_Own (A.402: readN) ;

370: Split(Argl: A.403: ((A.404: readW) + A.405: (#6)) , Arg2: A.406: (#8));
371: DIE!;

ML mmnnn Y

}

$.372: Write_Own (A.407: readN) ;

$.373: Split(Argl: A.408: (A.409: (#7) + A.410: (#6)) , Arg2: A.411: (#8));

$.374: Write_Oun (A.412: readN) ;

S.375: Split(Argl: A.413: ((A.414: readW) + A.415: (#6)) , Arg2: (A.416: readB));
§.376: DIE!;

.
$.377: NOP(A.417: (#6));
5.378: DIE!;

}
_S5.379: DIE!;

_S.380: DIE!;

.5.381: DIE!;

-2

____5.382: Write_North (A.418: readN) ;
$.383: Repeat A.419: (#0){

S.384: Repeat (A.420: readEnv) {
5.385: DIE!;

2}
______ $.386: IfB.41: ((A.421: readN) > (A.422: readl)) {
: Split(Argl: A.423: (#7), Arg2: A.424: (#2));
1 Split{ Argl: A.425: (#0), Arg2: (A.426: readB));
: DIE!;

----Yelse {

_--5.390: Split(Argl: A.427: (#0), Arg2: (A4.428: readN));
: DIE!;

_5.392: Write_Own (A.429: readN) ;
---.5.393: Repeat (A.430: readEnv) {
5.394: DIEY;

___:5.395: I1fB.42: ((A.431: readN) > (A4.432: readd)) {

: Write_Own (A.433: readN) ;

: Split(Argl: A.434: ((A.435: read0) + 4.436: (#6)) , Arg2: A.437: (#8));
: DIE!;

.399: Write_North (A.438: readE) ;

.400: Write_Env A.439: (#1);

.401: Write_Own (A.440: readEnv) ;

.402: Split(Argl: A.441: (#7), Arg2: A.442: (#8));

.403: Write_Own (A.443: readN) ;

.-§.404: Split(Argl: A.444: ((A.445: readW) + (A.446: readN)) , Arg2: A.447: (¥8));
S$.406: DIE!;

-}

$.406: Write_Own (A.448: readN) ;

5.407: DIE!;

2}

$.408: IfB.43: ((A.449: readB) > (4.450: readd)) {
__________________ $.409: Write_West (A.451: readW) ;

_5.410: Repeat A4.452: (#0){

.411: Write_North A.453: ((A.454: readW) + 4.455: (#6)) ;
.412: Write_South (A.456: read0) ;

.413: Write_North (A.457: readl) ;

.414: Write_Env A.458: (#7);

.415: Write_Own (A.459: readEnv) ;

.416: Split(Argl: A.460: (#7), Arg2: A.461: (#8));

.417: Write_Own (4.462: readN) ;

.418: Split(Argl: 4.463: ((A.464: readW) + A.465: (#6)) , Arg2: A.466: (#8));
S.419: DIE!;

__________________ S.420: IfB.44: ((A.467: readS) < (A.468: readW)) {
_§.421: Split(Argl: A.469: (#0), Arg2: (A.470: readB));
_.5.422: DIE!';

2y
_5.423: NOP(A.471: (¥6));
_S.424: DIE!;

2}
--5.425: DIE!;

: Write_ Own (4.472: readN) ;

Split(Argl: A.473: (A.474: (#7) + A.475: (#6)) , Arg2: A.476: (#8));
: Write_Own (A.477: readN) ;

Split(Argl: A.478: ((A.479: readW) + A.480: (#6)) , Arg2: (A.481: readB));
: DIE!;

_5.431: NOP(A.482: (#6));
$.432: DIE!;

$.433: DIE!;

152 Some Cell Programs Obtained Using Phuon

: Write_North (4.483: readN) ;
: Write_South (A.484: read0) ;
: Write_North (A4.485: readd) ;
: Write_Env A.486: (#7);
: Write_Own (A.487: readEnv) ;
Split(Argl: A.488: (#7), Arg2: A.489: (#8));
: Write_Dwn (A.490: readN) ;
¢ Split(Argl: A.491: ((A.492: readW) + 4.493: (#6)) , Arg2: A.404: (#8));
: DIE!;

: Write_Dwn (A.495: readN) ;

: Splis(Argl: A.496: (A.497: (#7) + A.498: (#6)) , Arg2: 4.499: (#8));

: Write_Dwn (A.500: readN) ;

: Split(Argl: A.501: ((4.502: readW) + 4.503: (#6)) , Arg2: (A.804: readB));
: DIE!;

—__5.448: NOP(A.505: (#6));
S.449: DIE!;

-}
.5.450: DIE!;

451: VWrite_North (A.506: readN) ;

452: Write_Youth (A.507: readW) ;

453: Write_North (A.508: readl) ;

454: Write_Emv A.509: (#1);

455: Write_(wn (A.510: readEmv) ;

456: Split(Argl: A.511: (#7), Arg2: A.512: (#8));

457: Write_Own (A.513: readN) ;

458: Split(Argl: A.514: ((A.515: readW) + A.516: (#6)) , Arg2: A.517: (#8));
459: DIE!;

[N T R

Appendix B

Curriculum Vitae

Mathieu Capcarrére was born on the 14%" of March 1974 in Montpellier. He gained in
1992 his French baccalaureate in mathematics and physics with honors and moved to the
Mathématiques Supérieures class. In 1993, he joined the Imperial College of Science Tech-
nology (that was to become soon afterward the Imperial College of Science, Technology and
Medicine), and gained in 1997 a first-honours Master of Engineering degree in computing
science, specializing in Artificial Intelligence. Following, unknowingly, the same path many
followed before, he found in Artificial Life an answer to the original queries of Artificial In-
telligence, dropping the "logic" straitjacket. During this London stay, he spent six months
in 1996 at the Logic Systems Laboratory in Lausanne, working with Drs Tomassini and
Sipper. In 1997, he rejoined them, and started a PhD, in july 1998, whose results is the
book you hold. Mathieu Capcarrére is author or co-author of a dozen papers listed below:

Journal Papers:

1. M. Capcarrere, M. Sipper, Necessary Conditions for Density Classification by Cellular
Automata, In Physical Review E, 6403 (3): 6113-7, Part 2, Sep 2001.

2. M. Capcarrere, A. Tettamanzi, M. Tomassini, M. Sipper, A Statistical Study of a
Class of Cellular Evolutionary Algorithms, Evolutionary Computation, 7(3):255-274,
1999.

3. E. Ronald, M. Sipper, M. S. Capcarrére, Design, Observation, Surprise! A Test of
Emergence, Artificial Life, 5(3): 225-239, 1999.

4. M. Sipper, M. S. Capcarrére, E. Ronald, A simple Cellular automaton that solves the
density and ordering problems. International Journal of Modern Physics C, 9(7):899-
902, October 1998.

5. M. Sipper, M. Tomassini, M. Capcarrere, Designing Cellular Automata Using a Paral-
lel Evolutionnary Algorithm, In ATHENP’96 proceedings, World Scientific Publishing
Company. This paper was reprinted in "Nuclear instruments & Methods In Physics
research A", 389:278-283, 1997, Elsevier Publisher.

6. M. Capcarrere, M. Tomassini, M. Sipper, A r=1, two-state Cellulor Automata that
Classifies density, In Physical Review Letters, 77(24):4969-4971, 1996.
Conference Papers

1. M.S.Capcarrere, Evolution of Asynchronous Cellular Automata The seventh interna-
tional conference on Parallel Problem Solving From Nature, PPSN’02 Proceedings.
(Full paper to Appear)

153

154

Curriculum Vitae

. M.5.Capcarrere, Emergent computation in CA: A matter of visual efficiency. Fifth

International Conference on Complex Systems: ICCS 2002 Proceedings. (Full paper
to Appear)

. M.5.Capcarrere, Fvolution of Asynchronous Cellular Automata: Finding the Good

Compromise. Genetic and Evolutionary Computing COnference 2002: GECCO’02,
New-York, NY, USA. Proceedings published by Morgan Kaufmann to appear. (poster:
1 page summary). .

. D. Biinzli and M.S.Capcarrere, Fault-tolerant structures: Towards robust self-replication

in a probabilistic environment, Advances in Artificial Life, proceedings of ECAL'01,
Josef Kelemen and Petr Sosik Eds, Lecture Notes in Artificial Intelligence (LNAI
2159), Springer-Verlag, 2001.

. J. Conus, D.Bongard and M.S.Capcarrere, The evolution of computer viruses: a natu-

ral A-Life task, International Confernce in Artificial Life (A-Life VII), 2000, (Poster).

. E. Ronald, M. Sipper, M. S. Capcarrére, Testing for Emergence in Artificial Life, in

Advances in Artificial Life, 5th European Conference, ECAL’99 proceedings, Floreano,
D. and Nicoud, J.-D. and Mondada, F., (Eds.), Lecture Notes in Artificial Intelligence
(LNAI 1674), Springer-Verlag, 1999.

. M. Capcarrere, A. Tettamanzi, M. Tomassini, M. Sipper, Studying Parallel Evolution-

ary Algorithms: The Cellular Programming Case, A. E. Eiben, T. Béck, M. Schoe-
nauer, H.-P. Schwefel (Eds), Parallel Problem Solving from Nature - PPSN V, proceed-
ings of. Lecture Notes in Computer Science series (LNCS), no 1498, Springer-Verlag,
1998.

. M. Sipper, M. Tomassini, M. Capcarrere, Evolving Asynchronous and scaleable Cel-

lular Automata, International Conf. on Artificial neural Network and Genetic Algo-
rithms, ICANNGA’97 proceedings, Smith et al Eds, Springer-Verlag, 1998.

Special

1. M.Capcarrere, J. Cunningham, L. Kamara, J. Pitt and M. Rigg, A Testbed for Animat-

ing Multi-Agent System, ESPRIT Basic Research Project 6471, Deliverable DV .2-2P.
1995.

Member of the Program Committee

e ACRI 02: Fifth International Conference on Cellular Automata for Research and

Industry. Program Chair: Bastien Chopard.

e ECAL 99: European Conference on Artificial Life, Program Chair: Dario Floreano,

Francesco Mondada and Jean-Daniel Nicoud, Conference Secretary: Joseba Urzelai.

e ICES 98: International Conference on Evolvable Systems, Program Chair: Daniel

Mange and Moshe Sipper, Conference Secretary: Andres Perez-Uribe.

Occasional reviewer for the following journals

e Physica D, Elsevier Press.
e IEEE Transactions on Evolutionary Computation.

e Evolutionary Computation Journal, Elsevier Press.

