NUMERICAL SIMULATION AND FLOW ANALYSIS OF AN
ELBOW DIFFUSER

THESE N° 2527 (2002)

PRESENTEE A LA FACULTE STI SECTION DE GENIE MECANIQUE
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Sebastiano MAURI

Dipl. Masch. Ing. ETH
de nationalité suisse et originaire de Chiasso (TI)

acceptée sur proposition du jury:

Prof. F. Avellan, directeur de thése
Prof. M. Deville, rapporteur
Prof. C. Hirsch, rapporteur

Dr H. Keck, rapporteur
Prof. J.-L. Kueny, rapporteur
Dr A. Ruprecht, rapporteur

Lausanne, EPFL
2002






Abstract

Numerical simulation of the unsteady turbulent flow in a three-dimensional
elbow diffuser is performed. The investigation is carried out with a commer-
cial finite volume solver implementing the Reynolds averaged Navier-Stokes
equations. Against the background of current research in DNS and LES, the
modeling of most practically relevant turbulent flows continues to be based
on this system of equations. For this reason it is important to evaluate the
limitations of the Reynolds averaging approach with the associated turbulence
modeling, in particular for the prediction of time-dependent flows. Verifica-
tion and validation are presented; detailed measurements are compared with
computations. While a great deal of research has focused on draft tube de-
sign, relatively little is known about the complex flow features present. The
flow is analyzed over a wide range of operating conditions including part load.
Topological changes in the flow patterns with the global characteristics of the
diffuser are presented. Visualization provides extra insight into the complex
flow. Forced and self-sustained time-dependent flow phenomena are captured.
Falling into these categories are flow field fluctuations introduced by the run-
ner, self-sustained vortex shedding phenomena, and the typical rotating helical
vortex observed at part load. Additionally, the linear stability of measured inlet
profiles is investigated, providing a fuller understanding of the basic instability
mechanism.




Résumé

Une simulation numérique de I’écoulement turbulent instationnaire dans un
diffuseur coudé tridimensionnel est effectuée. L’étude est menée avec un code
commercial résolvant les équations de Navier Stokes moyennées en formulation
volume fini. Beaucoup des recherches actuelles sont axées sur la DNS et la LES,
néanmoins la modélisation de la plupart des écoulements turbulents rencontrés
en pratique continue a étre basée sur ce systeme d’équations. Pour cette raison,
il est important d’évaluer les limitations de cette approche, en particulier pour
la prédiction des écoulements instationnaires. Des vérification et validation
sont présentées; des mesures détaillées sont comparées aux calculs. Alors qu'une
grande partie de la recherche était concentrée sur le design du diffuseur, peu
de connaissance sur les caractéristiques complexes de I’écoulement qui y est
présent a été acquis. L’écoulement est analysé sur une large bande de points de
fonctionnement incluant des points a charges partielles. Les changements de
la topologie de ’écoulement et des caractéristiques globales du diffuseur sont
présentés. La visualisation permet une vision supplémentaire de 1’écoulement
complexe. Des phénomenes instationnaires sont capturés. Parmi ces catégories,
on peut citer les fluctuations introduites par la roue, le phénomene de détache-
ment tourbillonnaire auto-entretenu et le tourbillon hélicoidal observé a charge
partielle. De plus, la stabilité linéaire du profil de vitesse mesuré en sortie de
roue a été étudiée, permettant une compréhension du mécanisme de base de
I'instabilité.
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1

Motivation

The purpose of the study is the modeling, simulation and characterization of a
complex three-dimensional unsteady flow and an evaluation of the prediction
capacity of the numerical simulations. The modeling of most practically rele-
vant turbulent flows continues to be based on the Reynolds averaged Navier-
Stokes equations. For this reason it is important to evaluate the limitations of
this approach with the associated turbulence modeling, in particular for the
prediction of time-dependent flows. This work is also strongly related to an
industrial application, the understanding of the turbulent flow in a compact
draft tube for low head hydraulic turbines. Attention is focused in particular on
fluid losses associated with hydraulic efficiency penalties and to the unsteady
phenomena in the flow.

Scientific motivation The swirl introduced at the runner outlet sets
complex inlet boundary conditions for the draft tube. Greater complexity fol-
lows from the draft tube flow streamline curvature and the adverse pressure
gradient caused by the diffusion due to the geometrical configuration and from
the change of cross sectional shape. Each of these characteristics is known to
be difficult to predict with numerical computations. A clear comparison with
detailed measurements over a wide range of operating conditions, which would
allow an estimation of the influence of modeling parameters, is still missing.
Various forms of unsteadiness characterize the flow of hydraulic turbines. In
the draft tube, in particular for part load operating conditions, strong flow
fluctuations are observed. Relatively little is known about time-dependent phe-
nomena. The application of the two-equation turbulence models quasi-steady
approach for the simulation of unsteady flows is questionable, and the limita-
tions are still not well defined. In particular the time scales associated with
the runner rotation could invalidate the basic assumption that the turbulence
has characteristic time scales that are significantly smaller than those associ-
ated with the periodic fluctuation. The conventional closure assumptions have
been derived for and calibrated by reference to steady flow and are carried
over to unsteady conditions. The likelihood of this being an adequate frame-
work decreases with increasing frequency of the coherent motion. It is expected
that when the transient term becomes important everywhere and the temporal
variation of the Reynolds stresses is significant, the law of the wall no longer
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applies and turbulence models that account only partially for history effects,
e.g. only through the total derivative of the turbulent kinetic energy and of the
dissipation, are likely to misrepresent the turbulence structure. Visualization
of scientific data plays an important role in understanding complex phenom-
ena. Data mining becomes indispensable with the acquisition of high-resolution
time-dependent data by means of the numerical simulation. The simulation,
visualization and analysis of the flow in the draft tube represent a challenge.

Industrial motivation A large number of hydraulic turbomachinery in-
stallations are ageing. This gives rise to the potential for the refurbishment
to implementing changes in the design for improved efficiency and associated
power output as well as greater operating stability. Usually the runner and
guide vanes are focused upon in the refurbishment process. Due to capital con-
structional costs the spiral casing and the draft tube are seldom redesigned.
Unfavorable flow behavior occurs when the runner and the draft tube are
unsuitably matched. This can sacrifice flow stability and reduce the optimal
operating range of the machine. The modern energy market dictates that en-
ergy consortiums operate their hydraulic machines at off-design conditions due
to rapidly changing user load conditions. Off design performance of hydraulic
turbomachinery is accompanied by strong flow field fluctuations in the draft
tube. Modern hydraulic turbomachines are reasonably efficient (up to 95%).
Nevertheless it must recognized that efficiency improvements of only a few
tenths of a percent generate substantially increased profits. In Switzerland
alone minor improvements in draft tube design for medium head power plants
could improve the electrical production by several millions kWh [DBSV90].
During the last decade computational fluid dynamics (CFD) has been used
extensively in the analysis and design of hydraulic turbines. Today CFD as a
design and analysis tool is applied routinely to all the components of the ma-
chine (see for instance [VS88], [KDS96], [LC9I8], [BFM*99]). Due to the lack of
detailed measurements of the draft tube flow, the precision and validity range
of numerical simulations is not well defined.
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Hydraulic turbomachinery

[Kov65][Raa85]

Fig. 2.1 shows a simplified view of a low-head hydro-plant employing a Francis
turbine. A dam insures the storage reservoir. The water reaches the spiral cas-
ing through a conduit. Here the fluid direction is forced from axial to radial.
Before reaching the runner the flow direction is regulated with the distribu-
tor. The distributor is a mechanism consisting of a large number of hydrody-
namically shaped guide vanes disposed around the circumference, which are
simultaneously angularly adjustable. From the distributor, the water passes
through the runner. The Francis type is a radial turbine: the water flows ra-
dial from the exterior to the interior and the direction of the flow changes
gradually from radial to axial. The blades are fixed and have a curved shape
that induces the necessary pressure difference on the two sides of the blades
that causes the rotational motion. The axis of the runner is coupled to the
generator, which converts the rotational motion into electric power. The water
reaches then the tail water through the draft tube. The diverging draft tube
reduces the velocity at the turbine exit and is intended primarily for the regain
of head. For constructional reasons most plants have elbow-type draft tubes.
The costs of excavation in the deep are very expensive. Often one or two piers
are necessary for structural reasons. Head, flow rate and angular velocity give
the flow conditions of a Francis turbine. The characteristics of the machine are
represented on a ¢ — 1 hill-chart for a given angular velocity. The nondimen-
sional coefficients of the head ¢ and of the flow rate ¢, allow the comparison
with other machines of different dimensions and rotational speeds. The specific
speed v is a nondimensional parameter based on the best efficiency point of the
machine and defines the main characteristics of the runner design. Depending
on the specific speed, the turbines are divided into low- (v <0.35), medium-,
and high-speed (v >0.6) types. A graph illustrating the hydraulic losses in a
Francis machine in function of the specific speed is shown in fig. 2.2. For high
specific speed machines the draft tube is the most critical component with
respect to the losses because of the increasing available energy at the runner
outlet.
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Figure 2.1: Schematic of a power plant.
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Figure 2.2: a) Losses in a Francis machine depending on the specific speed
[OH84], b) influence of the momentum thickness 6* on the diffuser efficiency
[Ack58].

Figure 2.3: Schematic of a draft tube.
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2.1 The draft tube

Diffusers are components which act to convert a maximum of dynamic pressure
into static pressure. A measure of the efficiency of the diffuser is the static
pressure recovery obtained. For conical diffusers with non-swirling inlet flow
conditions, best performances are obtained for total internal angles of around
8 and area ratio of 4. Because of design constraints it is desired to use wider-
angle diffusers to reduce the total length. The role of the draft tube can be
pointed out by considering the energetic balance between sections 1 and II
(fig. 2.3) with and without the draft tube (following [Ave01]):
1 1., 1 c
AFE = gAz + ;Ap + §Ac =g(z1 —zi1) + ;(pl — Do) + 3 (2.1)
where g is the gravitational acceleration, z the geostatic height, p the pressure, ¢
the mean velocity and p, the atmospheric pressure. ¢;; is considered negligible
(large surface). The energetic balance between sections 1-I and I-II can be
written as follows:

2
€1
R R cd AFE) 2.2
g21+ +2 g1+p+2+ loss1_ 1 (2.2)
2
gzr + % + EI = gzr + % + AE103517H (23)

where the losses due to the sudden change in the section between I and II
can be estimated as AFys,_,, = (c; — cr7)?/2 = ¢#/2. Without the draft tube
P1 = pq so that (2.1) becomes:

L,

AFEgithout = 9(2z1 — 211) + 501 (2.4)
With the draft tube :
2
AElwith = 51 + AE]OSSl_I (25)
The energetic gain due to the diffuser is therefore:
Ad—c

A-Ewithout - AEWith = 9(2’1 - ZII) + - AElossl,] (26)
The draft tube allows the recovery of a part of the kinetic energy between
runner outlet and free surface and the level difference.

For an estimation of the static pressure recovery in the draft tube can be
decomposed into three elementary components: the inlet cone (a-b, fig. 2.3),
a curved diverging diffuser (b-c) and the last straight divergent diffuser (c-d).
The application of the energy balance equation from the inlet to the outlet
shows the fundamental role played by the cone, where a big part of the static
pressure conversion occurs. For each component delimited by the sections
and j we assume: Ap;; = n;;5¢7[1— (3—2)2], where p is the static pressure, 1 the
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component efficiency, p the water density, ¢ the mean normal velocity and A
the section surface. Since we are interested in the pressure recovery due to the
section expansion, the geostatic height is not considered. Applying Bernoulli
and the continuity equation and introducing the data of the studied geometry:

Ps— D1 Ay 2 Ay 2 A, 2
= 1— (== Sy 22
s = el GG - G+
Ay 9 As o
+7734(A—3) [1— (A—4> | =
= 0.487712 + 0.327723 + 0.157734 (27)

The ideal recovery factor is 0.95. The maximal recovery occurs in the cone
(51%).

In a real flow a crucial role on the pressure recovery in a diffuser is played by the
momentum thickness §* (loss momentum in the boundary layer as compared
with a uniform flow) where an increase of ¢*/D from 0.5% to 3% leads to a
drop of the efficiency of 20%, as shown in fig. 2.2 [Ack58].
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Numerical flow simulation in a
draft tube, state-of-the-art

Due to the complexity of the flow in the hydraulic turbine draft tube the first
publications on three-dimensional RANS-based numerical studies began only
in the second half of the eighties. From the initial 10* grid points, we reach
today 10° points. In [SB86] and [ARCSS] the importance of the inlet swirl on
the overall pressure recovery and on the stalling characteristics in the down-
stream region is already recognized. The recovery factor increases up to a given
swirl and then drops off. A good agreement in the comparison with three mea-
surement section results and the static pressure evolution is found in [VS88].
The mesh dependence study shows that a 5.10* grid points mesh provides a
precision comparable with the measurement uncertainty of pitot tube tests. In
the Gamm workshop [SR89] seven contributions deal with the flow in the draft
tube. Euler and RANS solver are employed. Comparisons with measurements
show a fair degree of agreement for the static pressure evolution and impor-
tant differences in the secondary flow. Experimentally the flow is found to be
unsteady in the outlet region. The importance of inlet and outlet boundary
conditions is recognized. In [Rup89] and [Rup90] the agreement with mea-
surements is quite satisfactory and the results are more accurate for the case
with non-swirling inlet boundary conditions. Numerical results are compared
with experimental flow patterns from the oil film method in [TITS90]. The
main flow behaviours are in part adequately predicted but not the total loss.
Detailed measurements of the flow and pressure field are compared with com-
putations in [CVD90]. Good agreement is found for the overall static pressure
evolution and for the velocity field up to the pier. An overall view of knowl-
edge of draft tubes was published in 1990 [DBSV90]. This reference contains a
complete data bank about power plant specifications and geometric draft tube
dimensions, including plans of all Swiss low head schemes. The pier is found
to strongly affect the entire flow field in [DGS92]. The velocity distributions
for four operating points are sufficiently close to the measurements even in
the case of swirling inlet flow. Discrepancies increase for the velocity profile
near the walls. The flow is found to be very sensitive to velocity and turbu-
lence inlet conditions. A numerical optimization of the geometry is successfully
achieved in [Chi93]. Other comparisons with measurements can be found in
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[PDHT94], [RCG94], [SC94], [VSPI6], [KHAI6], [LCI]. In 1999 a workshop on
the flow in a draft tube was held in Sweden [GGK99]. The 26 simulations show
a wide range of scatter. Several groups are however able to predict the pres-
sure recovery factor with reasonable accuracy. Second moment closure models
do not show any advantages compared with the simple two-equation models.
A strong sensitivity to inlet condition is recognized. A contributor estimates
that it would require at least 2.10% grid points for a pressure recovery error
below 1%. In [BFM™99] the k-e model is believed to be inaccurate for the
description of the flow in the draft tube. Numerical results are compared with
measurements on an air test rig of a Kaplan turbine. The same case of the
workshop is studied in [KMO0O]. A Reynolds Stress Transport model is found
to perform better then a two-equation model. A full stage simulation of a high
specific speed Francis turbine is described in [KDS96]. The application of a
LES method to a full machine, however with a coarse mesh, is carried out
in [Che95], where the largest peak of the power spectra of the draft tube is
found at a Strouhal number of 0.19 and has the greatest effect on the power
output oscillation. Computation of the draft tube flow with the LES method
on a coarse mesh is also performed in [WJXT00], where a rotating inlet eddy
is imposed at the inlet. The influence of the eddy is limited up to the elbow.
Recently in [RHASO1] and [RS01] the frequency of the typical helical rotating
vortex visible at part load is obtained by means of RANS computation with
steady inlet boundary conditions.
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Thesis focus and document
organization

Summarizing the bibliographic study the computation of the mean flow field in
a draft tube is still a challenging task. Hereto the results of the recent Swedish
workshop are a good example. A clear comparison with detailed measurements
over a wide range of operating conditions, allowing an estimation of the in-
fluence of modeling parameters, is still missing. In spite of the relatively large
number of studies, little is known about the flow features in the draft tube.
The first unsteady computations reported in the literature indicate that the
RANS approach brings, at least for operating conditions showing a strong in-
stability, valuable information. Investigations on other types of unsteadiness
are necessary.

The main objectives of the work are therefore the definition of the capac-
ity of the numerical simulation to reproduce the flow in the draft tube and the
comprehension of the associated mean and time-dependent flow phenomena.
In particular, a typical sudden drop of the pressure recovery near the best
efficiency operating condition should be explained and the influence of forced
fluctuations introduced by the runner, as well as possible self-sustained oscil-
lations, should be investigated. Due to the spreading use and to the limited
computational resources, the Reynolds averaged equations are adopted. Hence
the work falls into three main themes:

e verification and validation of computed results,
e analysis of the mean steady flow field,
e analysis of the time-dependent flow phenomena.

The governing equations of internal incompressible flows and the relative dis-
cretization applied by the code are first presented. Four reference cases check
the numerical approach for different aspects of the draft tube flow (part III).
The test cases are:

flow in a slot with an oscillating pressure gradient,
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vortex shedding past a square cylinder,
swirling flow in a pipe,
swirling flow in a conical diffuser.

For the first case the analytical solution is derived. In the other cases ex-
perimental data are found in the ERCOFTAC database!. The investigated
geometry and operating conditions are described in part IV. The main work
begins with the verification of the computations with respect to modeling and
discretization choices, which are treated in part V. Part VI is devoted to the
flow analysis of the steady computations and to the comparison with measure-
ments. The flow is first analyzed globally with an energetic approach in VI.3,
then locally by means of a topological investigation in VI.4. Flow patterns and
energy evolution along the draft tube are revealed. The unsteady phenomena
are first considered in part VII, where steady boundary conditions are applied.
Some operating conditions indeed show periodic self-sustained fluctuations.
Unsteady inlet velocity profiles are imposed for the computations presented in
part VIII. Firstly, the influence of the forced unsteadiness due to the runner is
introduced via the inlet boundary conditions and the evolution of the blades
wake is analyzed. An operating point at part load with the rotating vortex is
then studied in VIIL.2. Finally the linear stability of the inlet profiles is in-
vestigated in VIIL.4. A short summary and some perspectives are discussed in

IX.

Thttp://ercoftac.mech.surrey.ac.uk
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I1.1 Governing equations

1

Governing equations

1.1 The Navier-Stokes equations

Most of the flows in nature and in industry are turbulent. In this case the inertia
force dominates over the viscous force (large Reynolds number). The governing
equations of hydrodynamic turbulent flows are the conservation laws of mass,
momentum and energy. In engineering applications many hydraulic flows can
be considered incompressible. The disadvantage of this assumption is that hy-
dro acoustic waves are not modeled. In a hydraulic machine these phenomena
play an important role on the dynamic of the installation. This is observed in
particular during the transient phases such as the start up or at those part
load operation conditions where the eigenfrequency of the installation is ex-
cited by the typical helical rotating vortex. The flow in our application can
be considered isothermal. The fluid is assumed to be a Newtonian continuum.
An incompressible and isothermal flow has a constant viscosity and can be
described by the velocity field and the pressure. The conservation laws system
is known as the Navier-Stokes equations. Experience shows that this system of
equations accurately describes the flow of Newtonian fluids. Mathematically
the incompressible Navier-Stokes are of mixed elliptic-parabolic and the com-
pressible hyperbolic-parabolic type. The continuity equation can be expressed
in a Cartesian coordinate system (z,,2)" and in tensor notation as follows:

Ou;

and the momentum conservation:

- (— 1.2
ot Oz, p< ox; 8xj> (12)

where u; represents the velocities in the z; coordinate directions, p is the static
pressure, p the constant density, and 7;; the viscous stress tensor.
For a Newtonian fluid:

. au, 8Uj
Tij N M(gl'] + 8%)
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where p is the dynamic viscosity.
The equation can be made nondimensional by means of a characteristic length
L,, time scale t, and velocity v,.

our 0 (uiu; on* 1 [ 0%u*
StE 4 (1 ):—i+— = (1.4)
ot* o} Ox;  Re \ 0x}
where z} = 7+, t* = ti, uw' = % p* = L2 the Strouhal number St = Lo and
7 o o ? Vo pvg voto
Reynolds number Re = %fo.
The equations system can be written in conservative form as follows:
oG
—+V - =0 1.5
ot (15)

where G=[p pu pv pw |.

1.2 The Reynolds averaged Navier-Stokes equa-

tions [Rods4]

Turbulent fluid motion is highly random, unsteady, three-dimensional: it con-
sists of many eddies with different lengths and time scales. Due to these com-
plexities, the turbulent motions are extremely difficult to describe and thus to
predict theoretically. Often the fluctuating turbulent motions contribute sig-
nificantly to the transport of momentum, heat and mass and hence have a
determining influence on the velocity field. The exact equations describing the
turbulent motion are believed to be the Navier-Stokes equations, and numeri-
cal procedures are available to solve these equations, but the storage capacity
and speed of present-day computers is still not sufficient to allow a solution
for a practically relevant turbulent flow. This approach is known as direct nu-
merical simulation (DNS). The reason is that the turbulent motion contains
elements which are much smaller than the extent of the flow domain and small
time scales. Specifying boundary conditions at open boundaries is also a diffi-
cult issue. If complex flows have to be computed, turbulent inflow and outflow
boundary conditions are also required.

As the turbulent transport process can not be calculated with an exact method,
it must be approximated by a turbulence model which, with the aid of empir-
ical information, allows the turbulent transport quantities to be related to the
mean flow field. In the Reynolds-averaged procedure, the Navier-Stokes equa-
tions are averaged over a time period larger than the largest characteristic
period of the flow motion. The physical variables are decomposed into mean
and fluctuating components. Only the mean values are solved and therefore
it is necessary to express the fluctuating values in function of these ones. The
resulting equations describe the mean flow field and introduce an additional
unknown: the Reynolds stress. This term describes the influence of the tur-
bulent field on the mean flow. Due to nature of turbulence it is impossible to
model this term in a general way. Today the best compromise between range of
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applicability and computational economy is still offered by the so-called two-
equation models employing differential transport equations for the velocity and
length scales of the fluctuating motion. No single turbulence model captures
all features of a moderately complex flow. However, many flow features do not
depend on a precise evaluation of the Reynolds stresses, being dominated by
other phenomena such as inviscid effects.

The instantaneous depending variables r* are decomposed as follows:

(@i, t) = r(w:) + (2, ) (1.6)

where r are the time-averaged variables and r’ the superimposed fluctuations.
The time-averaging operator is defined as:

o ‘ 1 [totar

r¥ = Altlinoo A rrdt = r(x;) (1.7)
where the time interval At is long compared with time scale of the turbulent
fluctuations.
Inserting the decomposed variables into (1.1) and (1.2) and applying the
property r’ = 0 one obtains the Reynolds-averaged Navier-Stokes equations
(RANS):

ou;
=, (15)
Ou; Oujui __ 9 ol Tl :
ot om = " om  oay (T — PU)

where all variables are now time averaged, although the same notation as
equations (1.1)-(1.5) is used. The Reynolds stress puju’; can not be expressed
exactly as function of the mean flow variables and must be related to known

quantities using a turbulence model.

1.3 Turbulence model

The simplest approach to turbulence closure is based on the scalar eddy-
viscosity concept, relating the Reynolds stress to the associated primary strain
components. Implicit in the concept is a number of assumptions about turbu-
lence which are incompatible with experimental observations, such as: insen-
sitivity to turbulence structure, isotropy of normal stresses, near-isotropy of
turbulent transport, local equilibrium of stresses and insensitivity of any stress
to strains other than that involved in the eddy-viscosity relation. Typical con-
sequences are: excessive production of shear stress, suppression of separation
along curved walls, excessive level of turbulence in regions of strong normal
stress and wrong response to swirl.

The Reynolds stress is assumed to be proportional to the local mean veloc-
ity gradients, in analogy to the viscous stress in laminar flows (Boussinesq’s
eddy-viscosity concept (1877)):

0 = — (ot = o,k 1.
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where i, is the turbulent (eddy) viscosity, k the turbulent (fluctuating motion)
kinetic energy and d;; is the Kronecker delta'. The eddy viscosity is not a fluid
property as the molecular viscosity, but a flow property that depends strongly
on the state of turbulence.

Additionally to the eddy-viscosity concept it is necessary to make the ex-
pression applicable also to the normal stresses, which sum is twice the kinetic

energy k = % w/u!. The inclusion of the second term in (1.9) assures this prop-
erty. In analogy to the molecular viscosity that is proportional to the average
velocity and the mean free path of molecules, the eddy viscosity is considered
proportional to a velocity characterizing the fluctuating motion ( ~ v/k) and

to a characteristic length (~ kiﬁ):
k?
pe = e, (1.10)

The analogy to the Stokes’ viscosity law presumes that the turbulent eddies
behave like molecules that collide and exchange momentum. This assumption
is conceptually weak, but the eddy-viscosity concept is found to work well in
many flow situations. ¢, is an empirical constant. The turbulence model is used
to provide the eddy viscosity and the turbulent kinetic energy.

Two equation turbulence models

k — ¢ model The model solves the transport equations for the turbulent
kinetic energy k and for €, the dissipation rate of k, i.e. the rate at which
turbulent kinetic energy is converted into internal energy by viscous action.
The semi-empirical transport equations are:

d(pk) N d(pujk) _ 0 im0k
ot ij ij ak&cj
dpe)  O(puje) 0  p0e €

ot Or; O, (aeaxj) * E<661P’“ ~ prer) (1.12)

in which the production rate of turbulent kinetic energy, Py, is given by:

Ou;  Ou; . Ju;

P — 7 + ] 7

F Mt(@xj 8x2)8x3

The empirical constants in the model equations take usually the standard
values given by Launder and Spalding [L.S74].

) + Py — pe (1.11)

(1.13)

k—w model Standard turbulence models based on the e-equation often pre-
dict the onset of separation too late and underpredict the amount of separation
later on. This model has been developed to solve these problems. Analogously
to the k — e model two transport equations for the turbulent kinetic energy k
and the “turbulent frequency” (inverse time scale) w are solved. The turbulent
viscosity is computed from these scalars:

k

Hi :pcu; (1.14)

1;;=1fori=jand é;; =0 fori#j.
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Reynolds-stress-equation model (RSM, second-order closure scheme)

As the complexity of the flow increases, the limits of the turbulence models
become evident (see for instance [Nal87]) and improved models are necessary.
Second-order closure schemes do not employ the eddy viscosity concept but
solve the transport equations for the individual Reynolds stresses and are there-
fore better suited for complex strain fields as well as for simulating transport
and history effects and anisotropy of turbulence. They automatically account
of the effects due to streamline curvature and rotation. While there is no doubt
that Reynolds stress models have greater potential to represent turbulent flow
phenomena more correctly than the two-equation models, their success so far
has been moderate [FP99.

1.3.1 Near-wall treatment

The viscous sublayers are not resolved in most practical calculations with the
k-e and RSM model due to the steep gradients present in these regions. Addi-
tionally the high Reynolds number turbulence models are not applicable where
viscous effects dominate. The turbulent core and the viscous sublayer have in-
dependent behaviours. The connecting zone is described in the “wall function”
approach by a logarithmic relation between the near wall tangential velocity
and the wall shear stress. It is assumed that in this region the velocity pro-
file is entirely determined by the fluid characteristics and is independent from
the flow. This relation has been found to have an unexpected large universal-
ity, however its application in particular flow situations, e.g. where separation
occurs, is questionable. The logarithmic relation can be expressed as:

1
ut==-In(y")+C (1.15)

K
with w = 2t y" = 907w, = ™, u, is the wall tangential velocity, 7, the

wall shear stress, k and C' are well defined empirical constants. The logarithmic
zone corresponds to 30 < y* < 400. The near wall region is divided in two
additional zones: the “laminar” sublayer for 0 < y™ < 3 with «™ = y* and the
buffer zone 3 < y* < 30.
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Flow solver

Due to the spreading use in the industry the numerical computation are carried
out with the commercial code TASCHlow.

2.1 Numerical method [rRcHS9]|[TAS99]

A fully implicit, collocated, finite volume method has been implemented. The
conservation equations are integrated over finite control volumes from hexahe-
dral flux elements with a strongly conservative approach. Shape functions are
used to evaluate the derivatives for all the diffusion terms.

The finite volume method The governing equations and the Cartesian
components of momentum are used in strong conservation form. By integrating
over each finite volume and using Gauss’s theorem, equation (1.5) becomes:

%/‘/GJr/SFidni:O (2.1)

where V and S denote the volume and surface integrals respectively, and dn;
are the differential Cartesian components of the outward normal surface vector.
The surface integrals are integrations of the fluxes of the conserved quantities.
The control volume (cv) surfaces are defined by the element mid-planes. Ap-
plying the first order implicit Euler temporal scheme the discrete form of (2.1)
can be written as:

G-G°
At

V( )+ (FAn)y, =0 (2.2)
ip

where the superscript ()° indicates the old time level, and ip denotes an inte-

gration point.

Collocation The modeling of incompressible flows on a collocated grid!
leads to the problem of pressure field decoupling. To avoid this a method

Tall the variables are stored at the same set of points; the location of the momentum
control volumes and the continuity control volumes are not shifted to one another as in the
case of a staggered grid.
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similar to that of Rhie and Chow has been implemented. The basic principle is
to incorporate pressure-velocity coupling into the continuity equation so that
pressure appears in a manner that precludes the decoupling. This is done by
introducing a pressure redistribution term.

Advection modeling The approach taken is to use an upwind skew
scheme that is physically corrected to be second-order-accurate. From a Taylor
series expansion a variable in an integration point ¢;, can be written as ¢;, =
Oy + As% + O(As?), where s is the streamwise direction. The term ¢, is
estimated by a skew scheme, and A¢ = As% is modeled by the advection
correction term. The skew scheme primarily addresses the directionality of
the flow, while the physical advection correction (PAC) term addresses the
streamwise variation of the transported variable and is needed to achieve the
second order accuracy in the streamwise direction. The upwind skew scheme
is a refinement of the skew upwind difference scheme of Raithby [VTRS7].

e Linear profile skew (LPS) scheme :

The value of ¢, is determined from a tri-linear interpolation of the ¢ lying on
the flux surface that is intersected by the straight line from the integration
point upstream in the local flow direction. LPS with PAC is second order
accurate. Also available :

e Modified linear profile skew (MLPS) scheme:

The interpolation coefficients obtained with LPS are modified to replace any
node which is on the downstream side of the integration point surface, with
an equal dependence on the nearest node within the element that is situated
in the upstream side of the integration point surface. This modification effec-
tively limits the most damaging negative coefficient influence, but the formal
accuracy is no longer of second order.

Diffusion terms Following the standard finite element approach, shape
functions are used to evaluate the derivatives for all the diffusion terms. The
resultant gradient estimates are first order accurate.

Pressure gradient term The value of the pressure at the integration
points is evaluated by linear interpolation using the shape functions.

Algebraic solver The implemented algebraic solver is fully coupled. The
base solver used is the coupled Gauss-Siedel. This solver preferentially reduces
the high frequency errors and leaves the long wavelength errors relatively un-
changed. In order to reduce the long wavelength errors a multigrid linear ac-
celerator is used.
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Transient term For steady problems a marching method is used to in-
tegrate the unsteady terms until the solution is sufficiently close to the steady
solution. In this case the goal is simply to remove the transient portion of the
solution as quickly as possible and therefore time accuracy is not required.
The strongly nonlinear RANS equations are temporarily linearized to enable
an implicit solution approach. No effort is done to recover the nonlinearity of
the equations. The transient term is approximated by an implicit first order
accurate Euler scheme, which is robust and creates no time step limitations.
For unsteady problems an internal loop tries to recover the nonlinearity of the
equations. The approach is similar to the Newton-Raphson iterative method
but with frozen coefficients. An implicit second order scheme is employed.

Turbulence models In addition to the classical k-¢ model, the Kato-
Launder k-e model [KL93], the classical k —w Wilcox model [Wil86] and the
baseline (BSL) model [TAS99] are implemented. The BSL model blends be-
tween the k — w, applied near the surface, and the k — € applied outside the
boundary layer. The classical LRR model proposed by Launder et al. [LS75],
which uses a linear relation for the pressure-strain correlation, and the SSG
model of Speziale et al. [SSG91], characterized instead by a quadratic relation,
are implemented as second-order closure schemes.

Near wall treatment The near wall region is described with the help
of a wall function as explained in section 1.3.1. In the buffer zone 3 < y* < 30
it is assumed that: u™ = dlgﬁg + d2y+2 + dsyt + dy with di = 6.4264e™4,
dy = —5.2113e72, d3 = 1.4729, dy = —1.1422 and x = 0.41, C = 5.2 (see
(1.15)).

2.1.1 Boundary conditions

No-slip wall The fluid velocity normal to the wall is zero; each boundary
integration point mass flow is set to zero. The boundary wall momentum flow
includes pressure and viscous forces. The pressure force is computed by inter-
polation of the control volume pressures. The normal viscous force is set to
zero such that the viscous force is equal to the tangential component. Based on
a logarithmic velocity profile, the wall shear stress is computed and hence the
wall tangential viscous force. The gradients normal to the wall are zero. The
flux of k£ and € through the wall is assumed to be zero. The production of £ is
estimated in the near wall region, based on an assumption of local equilibrium
between the production and dissipation of turbulent kinetic energy.

Inlet The velocity and turbulent kinetic energy profiles are imposed. The
turbulent dissipation rate is computed from € = k3/2/L,, where L, is the eddy
length scale. The inlet flows of k£ and € involve advection and diffusion. Diffusion
is assumed negligible compared with advection. Pressure is an implicit result
of the simulation. The inlet momentum flow involves advection, pressure and
viscous force components. The pressure force is computed by interpolation of
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the cv pressures. The viscous force is expressed in terms of the cv velocities
and the specified velocity.

Outlet The outlet boundary velocity for the purposes of advection is
assumed to be an implicit result of the computation. Consistent with a fully
developed flow, the normal viscous force component is assumed to be zero.
For incompressible flow with one outlet it is possible to leave the pressure
unspecified. The outlet momentum flow is composed by the advection, pressure
and viscous force components. The normal viscous force is set to zero and the
tangential component is computed based on the cv velocities. The boundary
pressure is equal to the interpolated nodal pressure. For the transport equations
the gradients normal to the outlet face are assumed to be zero. PAC terms at
boundary cv are computed by a first order extrapolation of the PAC terms at
nearby interior volume.
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1

Piston reciprocating in simple
harmonic motion

1.1 Description

An incompressible viscous fluid in a rectangular duct is forced to move under
an oscillating pressure gradient. This type of flow occurs for instance under
the influence of a reciprocating piston. This is an extension of the problem
of the boundary layer of a viscous fluid bounded by an infinite plane sur-
face which executes a simple harmonic oscillation with a frequency w, in its
own plane, which was first studied by Stokes (from [Sch64]). For this type of
flow, transverse waves occur in the fluid, with the velocity perpendicular to
the direction of propagation. Stokes introduced the length scale [y = \/(2v)/w
(Stokes length), representing the depth of penetration of the viscous wave.
The amplitude of the transverse waves is exponentially damped by e ¥/ as
one moves away from the solid surface (y-direction). The motion of an oscil-
lating flow in a duct is also characterized by the depth of penetration of the
viscous wave. In the case of high-frequency oscillations the viscous term can
be neglected everywhere except in the very narrow layers near the walls. The
width of these layers is in the order of magnitude of the penetration depth of
the viscous wave d ~ m At a large distance from the wall the fluid moves
as if it was frictionless and, moreover, its phase is shifted by half a period with
respect to the exciting force. A pure pulsating flow in a circular pipe driven by
a periodic pressure difference was investigated experimentally by Richardson
and Tyler (1929), and its exact analytic solution was obtained by Sexl (1970)
and Uchida (1956) (from [Sch64]). The interesting feature of this flow is that
the amplitude of the oscillations divided by the amplitude at the axis, has a
maximum, which occurs near the wall as shown in figure 1.2. Introducing the
nondimensional distance from the wall y, = y/l; = y/1/(2v)/w, it was found
both experimentally and analytically, that the maximum occurs at y, = 2.28.
This effect is known as “Richardson’s annular effect” [Sch64]. The solution de-
pends only from the nondimensional frequency f* = L/l = \/w/(2v)L, where
w is the imposed frequency and L the half of the duct height. f* is the ratio
of the characteristic length of the geometry to the characteristic length of the
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Figure 1.1: Instantaneous velocity profiles on a quarter of cycle for different f*
(from the top: f* = .1,10,1000).

viscous terms. Figure 1.1 shows some examples of velocity profiles. For small
f* the profile are the same as the quasi steady solution. For high values the
fluid moves like a solid body. The measurements of Binder [BK81] in turbulent
channel flow with forced velocity oscillations of small amplitude show that the
mean flow and the mean turbulent intensity are not affected by the forced oscil-
lations. The amplitude and the phase shift of the periodic velocity fluctuations
follow the laminar Stokes solution at high frequency. At low frequencies near
the wall the gradient of the amplitude becomes steeper than in the Stokes flow
and the phase shift decreases to slight negative values. The Stokes thickness
ls = 4/(2v)/w and the viscous length [, = v/u, of the steady wall flow are the
relevant length scales. The relevant parameter governing the evolution of the
velocity oscillations is I = I,/l,. This parameter shows how far the laminar
Stokes layer would reach into the inner layer of the steady turbulent flow if
there was no interaction between the two flows.

1.2 Analytical solution

An incompressible liquid forced to move in a duct under an oscillating pressure
gradient is considered. The velocity vector is supposed to be one-dimensional,
so that the velocity vector is v = (u(z,y,t),0,0). The Navier-Stokes equations
assume following form:

ou __ 1 d 8%u .
S=; (- rugy) ino (1.1)
u=~0 on 0f)

where €0 is the domain and 92 the bounding walls. For a sinusoidal pressure
gradient:

_ 1 ap _ : _ iwt
§= Y Asin(wt) = Im[Ae™"] (1.2)

and by assuming that the velocity function has the following form:

u = Im[f(y)e™'] (1.3)
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one finds:
A cosh(y/ & .
u=1Im|— 1—M et (-L<y<L) (1.4)
W cosh(y/** L)

where v = % and 2L is the duct height.

For lim & u= 2 (L* — y?)sin(wt), the profiles have the classical parabolic

—0
shape, with the amplitude according to the instantaneous pressure gradient.
Viscous diffusion is rapid enough to keep the profile in a quasi steady state.
When the viscous diffusion depth is small compared with the slot width the
fluid moves like a solid body: lim Eoe U= —Acos(wt).

For a general harmonic oscillation:

10
6:—;a—§=D+ASin(wt—cp) (1.5)
the velocity profile and the pressure gradient can be developed with the eigen-

vectors ( of the Laplace operator in (1.1):

AC ==X
{ ((0) = ¢(2L) =0 (1-6)
G = sin(szy), A = (];Z)?, k=1,3,5,...(0<y<2L) (1.7)
k k
u = zk:uk sin(%y), 5= zk:ék sin(%y) (1.8)

in this way the partial differential equation is reduced to :

e — _pApuy + 0
pT KUk + O
{ e e (19)
t
up = / o VA (E=T)OR(T) g (1.10)
0
finally the coefficients are:
o LD
g km [ v(57)2
A ) km :
AT (sm(wt) [u@)%os(w) " wsmw] "
k_ﬂ- 2 o . —v(Emy2g
cos(wt) 1/(2L) sin(p) —wcos(p)| | +e V2L L] (1.11)

This solution corresponds to the steady parabolic profile due to the constant
term D in the pressure gradient in (1.5) superposed to the solution (1.4). The
system (1.1) is linear in u.
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Figure 1.2: a) Relative amplitude of the periodic velocity oscillations versus
nondimensional distance ys = y/ls where the Stokes length is [, = \/2v/w, b)

phase shift of the oscillations from the wall to the axis.

1.3 Simulation

The channel ratio length/height is set to 20. Because of the symmetry of the
flow the computational domain covers only the half of the rectangular channel.
A 150*50 nodes mesh is used. The ratio of the first interval at the wall to the
last at the axis is 0.002. A uniform profile at the inlet and a zero gradient
outlet condition are imposed. After a length of four diameters the velocity
assumes the form of the developed profile. In order to compare the results
with the analytical solution, the pressure gradient that causes the same mass
flow evolution as imposed in the computations must be found out. The phase
shift between the flow rate and the pressure gradient oscillation tends to 7 for
low frequencies f* and to 7/2 for high f*. A laminar flow is considered, the
Reynolds number based on the mean velocity and the half channel height is
5. The time step corresponds to 1/30 of the period. A target of 1.e™3 for the
maximal residuum of the internal loop leads to the same velocity profiles as
when the convergence is set to 1.e~*. However in this case, in some range of the
period, wiggles in the pressure gradient are observed. The first order integration
scheme needs four times more time steps per period in order to reach the same
precision as with the use of the second order scheme. Six frequency ranging
from f* = 0.35—112 (I, = 0.14 — 4.5¢*) are computed. Results are compared
with the analytical solution in figure 1.2. The agreement is excellent. Some
cases with D # 0 (1.5) have been also successfully tested.
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2

Vortex shedding past a square
obstacle

2.1 Introduction

The separated flow around two-dimensional bluff bodies exhibits, for a suffi-
ciently high Reynolds number, self-induced periodical fluctuations due to vor-
tices being shed alternately from either sides of the body with a dominant
frequency f ~ %, as a result of the interaction between the two shear lay-
ers. The problem of vortex shedding from bluff bodies has been extensively
studied since the pioneering work of Strouhal (1878) and von Karman (1912).
The near-field wake flow behind the bluff body is temporally and spatially
complex, with direct interaction between the two separated shear layers and
regions of irrotational flow entrained into the wake. The separation is charac-
terized by two reversal point in the velocity profile (see fig. 2.1) and a positive
pressure gradient in the flow direction in the separated zone. Velocity profiles
with reversal points, in particular when coupled with separated regions, often
show instability phenomena.

Bluff body wake flows have direct engineering significance. The alternate shed-
ding of vortices in the wake leads to large fluctuating pressure forces in a direc-
tion transverse to the flow and may cause structural vibrations and acoustic

Figure 2.1: Mean flow Re = 22000: a) computed streamlines, b) corresponding
recirculation (r) and detachment (d) lines and recirculation length (L) and
height (H) .
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Figure 2.3: Mesh: half domain and particular around the body.

noise.

2.2 Description

The periodic vortex shedding past a square cylinder, which is a simple bluff
body with fixed separation points at the sharp edges, is investigated.

The vortex shedding can be characterized by the Reynolds Re = "TD and
the Strouhal number St = f D In the literature the stability limit for this
bluff body is given by a Reynolds number of about 70. Six laminar (Re =

70, 100, 150, 200, 250, 300), and one turbulent (Re = 22000) case are computed.

2.3 Computational setup

The dimension of the computational domain and the distribution of grid nodes
are given in figure 2.2. The same cartesian mesh (3’600 grid points) as in
[Bos95] is used (fig. 2.3). The first grid row near the wall is placed at d/D=.042.
A uniform velocity U, = 1 and turbulence distribution (2%) are set at the
inlet. The viscosity is adjusted to match the Reynolds number. The turbulent
dissipation rate € is calculated from the turbulent kinetic energy k as: € =
k%2 /L.; where L. = 0.081D is the eddy length scale, which represents the flow
largest eddies dimension. At the outlet and at the lateral boundaries a constant
pressure and symmetry conditions are respectively imposed. A computation
at Re = 100 with a shorter domain has proved that the constant pressure
condition does not significantly affect the pressure and velocity distribution of
the time averaged solution. The shedding period is discretized with resp. 200
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time steps in the laminar cases and 400 in the turbulent case. The time scheme
is second order accurate. The convergence criterion for the maximal residuum
of the internal loop that recovers the nonlinearity of the equations (11.2.1) is
set to le™3 because of the limited computational resources. No appreciable
differences are however found when a target of 1.e™* is imposed. The pure
linear profile advection skew scheme (I1.2.1) gives slight better results than
the modified scheme. In the turbulent simulation the standard or the Kato-
Launder k-e models with wall functions are employed. The Kato-Launder k-¢
model [KL93] avoids the spurious build up of turbulence energy as a stagnation
point is approached. Major improvements should result in the predicted drag
and list coefficients and also in the mean and turbulent flow pattern in the
near wake.

2.4 Strouhal versus Reynolds number

Figure 2.10a shows the nondimensional frequencies of the vortex shedding on
a wide range of Reynolds numbers (experiments [Oka82], [LR94], [DHP8g]).
Measurements are compared with the computational results. Six laminar cases
and the turbulent case at Re = 22000 are represented. The frequencies in
the laminar region are underestimated, however the overall behaviour is fairly
well captured. In the turbulent case the Strouhal number seems to be quite
insensitive to the computational parameters and the predicted values are pretty
close to the experimental ones. This indicates that the shedding frequency is
not an ideal indicator for the accuracy of the computation.

2.5 Laminar cases: Re = 70...300

The Reynolds number influence on the velocity and pressure distribution are
given in fig. 2.4(a-e). As the Reynolds number increases the length of the re-
circulating region becomes shorter, while the backflow velocity on the axis
increases until about a value of 150 and then decreases anticipating the ten-
dency of the shedding frequency (fig. 2.4f).

2.6 Turbulent case: Re = 22000

The turbulent periodic flow past a cylinder is a difficult task for turbulence
models. For this case measurements were reported by Lyn in [LR94] and
[LERP95]. The experimental data are available on the ERCOFTAC database’.
This case was also selected for a workshop held in 1995 designed to assess the
state-of-the-art in LES of complex flow [REBP97].

The experiment reports that the separation and the wake are periodic, al-
though with some modulation. It shows that the inflow to the computational
domain is laminar, and that the transition takes place in the separated shear

Thttp://ercoftac.mech.surrey.ac.uk
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Figure 2.4: Laminar cases Re = 70 — 300. a) c¢) d) e) Velocity profiles (u:
streamwise , v: crossflow) and b) pressure distribution (cp) along the symmetry
line. f) Nondimensional frequency versus recirculation length and minimal axial
velocity.
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Figure 2.5: Instantaneous streamlines for t=T/10, 2T /10, 3T/10, 4T /10, where
T is the shedding period. Re = 22000.
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Figure 2.6: Position of the center and the inferior saddle (s) of the instantaneous
vortex at eight time steps covering a half period and corresponding velocity
profiles on the vertical axis passing by the center (c).
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Figure 2.7: Axial velocity of the mean flow field at Re = 22000, comparison
with measurements of Lyn (points).
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Figure 2.8: Instantaneous vector field Re = 22000: a) Lyn’s measurements,

b) k-e model.

Figure 2.9: Instantaneous streamlines Re = 22000: a) Lyn’s measurements,
b) k-e model.
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Figure 2.10: Turbulent case Re = 22000. a) Nondimensional shedding fre-
quency (Str) versus Reynolds number (Re). b) Mean pressure distribution
(cp) at the wall. ¢) Mean streamwise velocity profiles. d) Recirculation length
obtained with the standard k& — ¢ model and the Kato-Launder model (kl). e)
Near-wall axial velocity profile, the resolution is insufficient. f) Mean kinetic
energy distribution on the symmetry axis.




2.6 Turbulent case: Re = 22000 35

Pressure Axial velocity Tangetial velocity
1.2 3
J;}C
. - —
A - -
_ 1e® _ 1e° _ 1e°
% 1e = 1et = e
2 2
Al <\(D_“1e'2 <> 1e? < 1e? I
1e? 1e? 1e3 1
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 02 03 04 05 0.0 0.1 0.2 0.3 04 05
St[-] Stl- St[-]
A2
A3 I I
B1 I
B2 1
| = |
B3
C1
Cc2 Y I
C3 I

Figure 2.11: Discrete Fourier transform of the velocity and pressure signals at
different places in the domain. The distribution of the amplitude corresponding
to the shedding frequency is illustrated on the top.




36

I11.2 Vortex shedding past a square obstacle

o —————— e \ I e o e R
,,,”,”““\\\w////fﬁ AN
. n’)’f/////f-—'—-‘\-\.“"\\\\\\l\L = \. // \\\\lfff/——= BRI

[

R R B
T \\\ LN T (1

O R i =S
VIS e ==
N R RN RN R IT o
JI'I'I'.‘urff’///z’// / _ :
VLT h’ ' ,

RN RERNREY 3 \
S /
RN RN

S AN S = N /:/:/// (/(
R R R R = ) : )
.\\\\\\\\\u___._b—//// | 3 - = \\\::—ﬂ////."ll\\\
'\\\\\\\\“\"‘\-“—v—’—"/////}l({[

S S l\\\\\-—__ﬁ/

O e

//\\\v-a//xu\\\
/ AN PN TN
/ \\\sﬂ_,//} R B T B

S0 I RN I N Py

Figure 2.12: Instantaneous streamlines of the fluctuating field at a given phase.

layers on the sides of the cylinder just downstream of the front corners. This
is a reason why the square cylinder flow is difficult to simulate. The resolution
in this region must be high enough to resolve accurately the developments and
transition of the separated shear layer. Given the short length of travel of the
reversed flow from the cylinder sides, the boundary layers along the sidewalls
are not fully developed turbulent. The validity of the wall function is question-
able in this zone. An impression of the nature of the flow can be taken from
the sequence of instantaneous streamlines (IS) patterns (fig. 2.5). IS do not
contain transient information but describe well the entrainment process. IS
can be obtained photographically from short-time exposures of small particles
which have been introduced into the flow. Singular points in the instantaneous
field are visible only near the body because of the low convection velocity. Out-
side this zone the observer must travel with the convection velocity in order
to see these points. The evolution of the vortex center and saddle positions
are illustrated in fig. 2.6 for several phases. The instantaneous fluctuating field
shows clearly all the structures (fig. 2.12). The genesis of a new structure is
illustrated in fig. 2.13 and interpreted in fig. 2.14. The birth of the structure
corresponds to the onset of a saddle point (third sketch in fig. 2.14) and the
shedding process by the release of this point (last sketch).

2.7 Comparison with the experimental data

The mean axial flow field is compared with measurements in fig. 2.7. A com-
parison of the measured velocity vectors and instantaneous streamlines for a
given phase with the predicted flow is shown in fig. 2.8 and fig. 2.9. The k-¢
model with wall functions is applied. A good general agreement is found. The
shedding motion is qualitatively well resolved, but there are significant quanti-
tative differences among the results corresponding to the two tested turbulence
models. All computed flows are periodic and symmetric. The Strouhal num-
ber falls in a narrow range close to the experimental value. The results for the
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Figure 2.14: Schematic interpretation of fig. 2.13.

length of the time-mean recirculation zone behind the cylinder show important
variations. The recirculation zone predicted by the two turbulence models are
shown in fig. 2.10d. The following table shows the comparison with the experi-
mental results of the length (L) and height (H) of the mean backflow zone (see
fig. 2.1), normalized with the size of the square (D).

L/D | H/D | St
Measurement Lyn | 0.88 | 0.74 | 0.13240.004
k—e 0.81 | 0.64 | 0.133
Kato-Launder 0.53 | 0.63 | 0.133

It is usually reported in the literature that purely two-dimensional simula-
tions give recirculation zones which are much too long and drag coefficients
which are much too small. Results for the mean averaged velocity and pressure
distributions are illustrated in fig. 2.10. The pressure on the upstream face is
fairly well predicted but the values on the other faces show significant disagree-
ment both with each other and with the experiments, as might be expected
from the different results regarding the recirculation zone. One should also
note the important difference in the two sets of experimental results ( [BT71]
and [Lee75] that were however acquired at different Reynolds numbers). The
turbulent kinetic energy is shown in fig. 2.10f. Bosch [Bos95] argued that the
difference between computations and experiments could be explained by the
presence of forces acting parallel to the cylinder axis (irregularity in the flow
are observed), which are not taken into account in a 2D computation. In the
experiment these irregularities are taken into account by the phase average and
increase the turbulent components. Fig. 2.10e shows that the grid distribution
near the body is insufficient to resolve the region of reversed flow.
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3

Steady swirling flow in a pipe

3.1 Introduction

The flow in the draft tube of a hydro power plant is often swirling when
the turbine is operating outside its best efficiency point. Even for optimal
conditions the runner is usually designed to supply a certain amount of swirl
in the cone. This allows the use of wider cone opening angles without the
manifestation of detachments and therefore attaining a higher static pressure
recovery in this component. Flows with swirl are known to be a great challenge
for turbulence models. The complexity of the mean flow field invalidates the
assumption on which simple turbulence models are based, in particular that
there is only a single dominant rate of strain. It is believed that the presence
of mean rotation may modify the dynamics of the fluctuating velocity field
considerably.

The swirling flow in a long pipe is investigated. Due to the simplicity of the
geometry, the flow should be largely influenced by the turbulent stresses. The
swirl is recognized to decay slowly in pipes. The objective of this study is to
evaluate the capability of two turbulence models to simulate this type of flow.
However it should be noted that the swirl decay at large distances from the
inlet is relatively unimportant for this work. The mean-line length of the draft
tube is about only five inlet diameters. The measured profiles in the pipe have
similar characteristics to those measured at the inlet of the investigated draft
tube.

3.2 Description of the case

Steenbergen has performed measurements in a hydraulically smooth pipe with
diameter D = 70[mm], the fluid being water (see ERCOFTAC database' and
[Ste95]). The Reynolds number, based on the diameter and on the bulk velocity
(4.3[m/s]), is 300'000. The data has been obtained with a 2-component laser-
Doppler system and contains the distribution of mean velocities and Reynolds
stresses. Eight axes of measurements are available: the first is used to define
the inlet boundary conditions for the computation. The location of the seven

Thttp://ercoftac.mech.surrey.ac.uk
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Figure 3.1: Streamlines: a) skin friction lines, b) started from the vertical inlet
axis line, ¢) on three sections using the tangential velocity field.

it
i)

juing
i

Figure 3.2: Fine mesh, 770k mesh points: a) quarter of the inlet, b) half longi-
tudinal section.

axes is as follows: 3.4, 7.2, 17, 23.8, 30.6, 44.2 and 71.3 (diameters downstream
the inlet). An impression of the nature of the flow can be taken from fig.3.1,
where streamlines are shown in the region of the pipe inlet (computation with
the k-e model).

3.3 Computational setup

The classical k-e and the LRR-RSM models, coupled with wall functions, are
employed. The fluid properties are set to values corresponding to water at at-
mospheric conditions. The inlet velocity profiles and the turbulent kinetic en-
ergy are interpolated with cubic splines from the measurement points (fig. 3.5).
The values at the wall are set as nine tenths of the nearby interior measurement
point values. The turbulent dissipation rate € is calculated from the turbulent
kinetic energy k as: € = k%/? /L¢; where L, is the eddy length scale, which rep-
resents the flow largest eddies dimension. It is usual to assume an eddy length
scale of one order of magnitude smaller than the diameter. In this case better
results are achieved with L, = 0.014D. For the RSM model the Reynolds’
stresses are computed from the turbulent kinetic energy. The code does not
allow imposing the measured profiles. The outlet of the computational model
is set at 74D. The computation is considered converged to the steady solution
when the value of the maximal normalized equation residual is less than 1074
Two meshes of respectively 510k, covering the whole domain (cylinder of length
74D), and 770k (fig. 3.2) nodes, covering only a length of 3.7D, are compared.
In spite of the strong mesh density difference (the finer mesh domain is much
smaller) the velocity profiles are similar (fig. 3.3). The solution on the coarser
mesh is considered sufficiently close to the exact solution. The nondimensional
distance from the wall of the first grid point is within the range 25 < y* < 35.
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Figure 3.3: First measurement axis: a) turbulence model influence, fine mesh,
b) mesh influence, k-¢ model.

3.4 Comparison with the experimental data

The eddy-viscosity based models are expected to be inadequate for swirling
flows. The evolution of the local specific energies (see Nomenclature, IX) in
fig. 3.4 and the profiles at the first measurement axis (fig. 3.3) differ only
slightly for the two turbulence models. The RSM model better resolves the
axial velocity depression in the central zone in the first half of the domain.
However, this velocity component differs considerably from the measurements
in the second half. Indeed the flow is accelerated in the central zone, leading
to a central peak, while in the measurements the profile develops toward a
parabolic profile. The swirling component does not differ considerably from
that obtained by the k-e¢ model. It is believed that only second-order closure
schemes are capable of capturing the physics of swirling flows, in this com-
putation however the applied RSM models does not effectively improve the
solution. Unfortunately it was not possible to impose the measured Reynolds’
stresses. The velocity and turbulent kinetic energy profiles resulting from the
computation with the 510k nodes mesh using the k-e¢ model are compared with
the measurements in fig. 3.5. As expected, important differences are observed.
In particular the strong gradient in the central zone for the swirling component,
and therefore also the axial velocity depression, are smeared out too fast in
the computation. The flow develops too rapidly toward a solid-body rotation
velocity distribution. Simlar results are also observed in [Ste95]. The gradi-
ent is however represented with a sufficient number of mesh points. As noted
above, the used eddy length scale is small compared with the values used for
non-swirling flows. With larger values the damping tendency is accentuated. A
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Figure 3.4: Specific energies evolution from the inlet to the outlet, coarse mesh.
The evaluation are done at the measurement axes positions: a) k-¢ model,
b) curves: RSM model, symbols: k-e model.

reduction of the length scale reduces the radial mixing of momentum resulting
in a stronger dependence of the initial velocity distribution. The computational
results show that the imposed turbulent kinetic energy profile with the impor-
tant peak in the central zone is damped in a very short distance. Indeed if a
constant k is imposed, only negligible differences are observed. This could be
explained by the fact that the Prandtl-Kolmogorov hypothesis relates directly
the turbulent kinetic energy with the turbulent viscosity and thus the model
adopts large eddy viscosity in the central zone, leading to the rapid turbu-
lent momentum transfer. However the same behaviour occurs using the RSM
model.
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4

Steady swirling flow in a
diffuser

4.1 Introduction

The swirling flow in a straight diffuser is investigated. This case is considered
as an extension of the previously described swirling flow in a pipe (IIL.3). How-
ever the inlet flow condition differs considerably from the previous case.

The art of draft tube design is to decelerate the flow avoiding flow separation.
The opening angle of the cone results from this compromise. The divergent
geometry introduces an adverse pressure gradient that raises the risk of flow
separation. The swirl has the opposite effect and prevents boundary layer sepa-
ration. The adverse pressure gradient due to the diffuser as seen from a particle
near the wall in a swirling flow is smaller compared with a non-swirling one
because of its trajectory angle. The centrifugal effect resulting from the tangen-
tial velocity brings energy at the boundary layer and raises the axial velocity
component on the axis eventually leading to the formation of backflow zones as
observed in the predicted flow field of this configuration in a small region near
the outlet (see streamlines in fig. 4.1b). The decay of swirl in the diffuser leads
to the decay in the radial pressure gradient. This produces a larger positive
axial pressure gradient at the axis than it would be the case for a non-swirling
flow.

4.2 Description of the case

The steady turbulent swirling flow in a diffuser has been experimentally inves-
tigated by Clausen et al. [CKW93]. The experimental data is available on the
ERCOFTAC database®. A rotating swirl generator of diameter D = 0.26 [m]
supplies a conical diffuser with an included angle of 20° and area ratio 2.84,
placed 0.38D downstream the swirl generator. The cone is 1.96D long (fig. 4.1).
A rotating cylinder including a honeycomb screen at its inlet creates the
swirling flow. The fluid is air with a kinematic viscosity of 1.5e75 [m?/s],

Thttp://ercoftac.mech.surrey.ac.uk
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Figure 4.1: Investigated geometry: a) measurement axes, b) tangential stream-
lines on the longitudinal plane, k-¢ model.

Figure 4.2: Streamlines, k-e¢ model: a) skin friction lines, b) tangential stream-
lines on three normal sections.

the average axial velocity at the inlet is U, = 11.6 [m/s] and the diffuser
discharges to the atmosphere. The corresponding diameter based Reynolds
number is 202'000. The inlet velocity profile is measured at 0.01D upstream
the cone. Measurements are available at seven stations along the diffuser on
axes perpendicular to the wall (fig. 4.1). An impression of the nature of the
flow can be taken from fig. 4.1 and 4.2, where streamlines tangential to several
surfaces are shown (computation with the k-e model). The main aim of the
experiment was to measure the mean velocities and the Reynolds stresses in a
swirling diffuser flow that is close to separation and recirculation. The imposed
swirl is of sufficient magnitude to prevent boundary layer separation but just
insufficient to cause backflow in the core flow. This test case was computed
assuming circumferential symmetry by Armfield and Fletcher [AF89] and by
Page et al. [PGM96]. Armfield and Fletcher compare two k-¢ models and two
algebraic Reynolds stress models. All the models lead to qualitatively satis-
factory agreement, with the algebraic Reynolds stress models giving better
results on the fine detail. The k-e models underpredict the magnitude of the
near wall axial and swirling velocity peak. The algebraic Reynolds stress mod-
els describe the peaks accurately, but place the axial velocity peak too close to
the wall and therefore underestimate the axial velocity. The authors argue that
the reason why the k-e¢ model gives less satisfactory results is that the eddy
viscosity is much larger than the experimental value. Two commercial codes
using the classical k-¢ model are compared in [PGM96]. Computed values are
judged in good agreement with measured flow parameters along the diffuser.
The performances of the two codes are similar.
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Figure 4.3: Coarse mesh, 140k nodes: a) quarter of the inlet, b) half longitudinal
section.
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Figure 4.4: From the inlet to the outlet: a) normalized pressure at the wall,
fine mesh, k-e¢ model, b) specific energies evolution. Coarse mesh versus fine
mesh, k-e model.

4.3 Computational setup

The classical k-e and the LRR-RSM models, coupled with wall functions, are
employed. The fluid properties are set to values corresponding to the experi-
ment. The inlet velocity profiles are interpolated with cubic splines from the
measurement points (fig. 4.5A). The values at the wall are set as the half
of the interior nearby point values. The turbulent kinetic energy is assumed
to be 5% of the total energy. The turbulent dissipation rate e is calculated
from the turbulent kinetic energy k as: ¢ = k%?/L.; where L. = 0.04D is
the eddy length scale, which represents the flow largest eddies dimension. The
computation is considered converged to the steady solution when the value
of the maximal normalized equation residual is less than 10~*. Two meshes
of respectively 140k (fig. 4.3) and 770k nodes are compared. The evolution
of the local specific energies (see Nomenclature, IX) is illustrated in fig. 4.4.
The difference in the static pressure recovery for the two meshes is 3.6%. The
nondimensional distance from the wall of the first grid point is within the range
100 < y* < 300.
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4.4 Comparison with the experimental data

The velocity and the kinetic energy profiles are compared with the measure-
ments in fig. 4.5 and the normalized pressure at the wall in fig. 4.4a. The
results are fairly satisfactory. The near wall axial velocity peak is however un-
derpredicted while the centerline axial velocity is accentuated. The maximal
difference reaches the 50% on the centerline. The swirling component compares
better with the experiment, while the kinetic energy values differ considerably
from the measurements. The strong peak and gradient near the wall are clearly
underpredicted. The second order closure scheme does not improve the solu-
tion.
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Figure 4.5: Comparison with the experimental data, fine mesh, k-e model.
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Summary

The capability of the code to describe a laminar unsteady flow is tested simulat-
ing the flow in a slot with an oscillating pressure gradient. The code describes
accurately this type of flow on a wide range of frequency. The simulation of the
flow past a bluff body shows that low frequency self-sustained instabilities can
be described with enough precision by the model, in spite of the quasi steady
approach of the turbulence models. The influence of the turbulence modeling is
however important on the fine details. The swirling flow in a simple geometry
is computed with the k-e¢ and a RSM model. As expected the eddy viscos-
ity based model is not able to capture accurately this type of flow especially
at large distances from the inlet. More surprisingly the second order closure
scheme does not improve the prediction. Similar results are obtained also for
a swirling flow in a straight diffuser. These tests confirm the doubt upon the
adequacy of the model to describe accurately the flow in the draft tube.
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1

Investigated geometry

1.1 Reduced scale model machine

Investigations are carried out on a vertical axis reduced scale model (1:10) of
an existing water turbine at the test rig facilities of the EPFL - Laboratory for
Hydraulic Machines. A high specific speed (v = 0.56, n, = 92) Francis runner
supplies the symmetrical draft tube with a single pier, designed to reproduce
the typical drop in the pressure recovery occurring near the best efficiency
region. The geometry and the cross area evolution are shown in fig. 1.3. The
runner diameter measures 0.4 [m].

Following IEC recommendations [IEC99] the draft tube is connected to an
outlet tank as shown in fig. 1.1 and 1.2. 17 runner blades, 20 guide vanes and
10 stay vanes characterize the machine.

Figure 1.1: Test rig, upper part.
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Figure 1.2: Machine reduced scale model.
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Figure 1.3: Draft tube, cross-area evolution graph.
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2

Measurements

Jorge Arpe and Gabriel Ciocan have carried out the experimental investiga-
tions presented in this work.

2.1 The test rig

The test rig is equipped with accurate measuring instrumentation and is suit-
able for development and acceptance tests according to the IEC standard
[IEC99]. The test rig has a maximum head of 100 [m]| and a maximum dis-
charge of 1.5 [m?/s]. The maximum rotational speed is 2500 [rpm] and the
pump power is 2 x 300 [kW]. The flow rate is measured by an electromagnetic
flow meter adapted for discharges in the range 0.05-1.5 [m?®/s|. The specific
hydraulic energy is measured with a differential pressure transducer that al-
lows three sensibility ranges: 0-2, 0-5, 0-10 [bar]|. The transducer is calibrated
by the use of a digital balance.

2.2 Measuring techniques

The draft tube equipment consists in 300 taps for unsteady wall pressure trans-
ducers and 10 windows for the flow surveys with five sensors pressure probes
and Laser Doppler Anemometer (LDA) (fig. 1.2). Additional details are given
in [CMAKO1] and [CKAO0].

The wall pressure is acquired simultaneously at up to 96 positions at the
frequency of up to 51.2 [kHz]. The 2 [bar| piezoresistive transducers have
sensibility of 40 [mV/bar]. The measurement uncertainty is estimated to be
less than 3%.

The steady pressure probe consists in five differential 1 [bar] transducers with
a sensibility of 330 [mV/bar|. The probe is suited for velocities of more than 3
[m/s] and probe orientation angles of £25° with respect to the flow direction.
In these conditions the measurement uncertainty is estimated to be less than

5%.
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The unsteady pressure probe has five absolute 1 [bar] transducers with a sensi-
tivity of 500 [mV//bar]. The probe is suited for velocities of more than 3 [m/s]
and probe orientation angles of £25° with respect to the flow direction. The
measurement uncertainty is estimated to be less than 3%.

The LDA device is a two component system. It uses back scattered light and
the signals are transmitted by optical fiber. The source is an argon-ion laser
of 5 [IW]. A spectrum analyzer performs the signal processing. Spherical silver
coated glass particles of 10 [pm] having water density introduced in the circuit,
reduce the acquisition time. The three components of the velocity vector are
obtained with a non-orthogonal optical arrangement. Two additional surveys
are necessary for the determination of the Reynolds’ stress tensor. An encoder
fixed on the shaft of the runner delivering a reference impulse per each rotation
through a photosensitive cell, is used to evaluate the phase average synchro-
nised with the angular position of the runner. The encoder provides the time
basis for the velocity acquisition. The acquisition of 15’000 instantaneous ve-
locities are necessary to obtain a 2% uncertainty on the phase averaged flow;
60’000 for a 3% uncertainty on the Reynolds’ stress tensor.

Wall friction measurements are performed with a hot-film probe. Temperature
influence, sensor contamination and offset drift are quantified and included in
the treatment procedure.
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3

Machine characteristics

3.1 Machine performance

The machine and draft tube performances measured at the rotational speed of
1000 [rpm]| are shown in fig. 3.1 over a wide range of heads and flow rates. The
draft tube efficiency is estimated by the recovery factor defined as x = (py —
p1)/(pc?), where the reference section 1 is set at 0.6D from the runner outlet
and section 2 is placed near the outlet as shown in fig. 3.3. The static pressure
p is estimated with two pressure ring manifolds connecting respectively four
and eight locations at the sections 1 and 2 (fig. 3.3).

3.2 Investigated operating conditions

The experimental results presented in this chapter are obtained by Gabriel Cio-
can. The investigation is carried out at the constant head * = 1.06. For the
six flow rates corresponding to ¢* = 0.919, ¢* = 0.973, p* = 0.994, ¢* = 1.027,
©* = 1.064 and ¢* = 1.108, detailed experimental data are available. The ve-
locity profiles are obtained on the diameter along the draft tube’s longitudinal
axis by means of the LDA technique and are shown in the figures 3.4, 3.5, 3.6.
This axis is positioned 0.2D below the runner outlet (fig. 3.3).

3.2.1 Time averaged velocity profiles

An impression of the nature of the flow can be taken from figures 3.5 and 3.6.
The evolution of the axial velocity component at the inlet (fig. 3.4) is char-
acterized by the decreasing importance of the low velocity zone at the center,
caused by the higher swirl characterizing the lower flow rates. The circum-
ferential velocity component inverts its rotational direction for the operating
points at the higher flow rates (fig. 3.4 and 3.5). An intuitive explanation of
the sign change is given by considering the velocity triangles at the runner
blades as shown in fig. 3.2. At the design point the circumferential component
Cy- is usually minimized. By the fact that the relative velocity angle j7 is
fixed by the blade geometry, a change in the flow rate will play on « lead-
ing to the inversion of the rotation direction when the flow rate is increased.
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Figure 3.1: Hill-charts: a) machine efficiency, b) draft tube recovery factor.
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axial

circumferential

Figure 3.2: a) Schematic of the runner with the velocity profiles in the cone,
b) schematic of the flow angles at the inlet and outlet of the blades. The
absolute velocity component C, the relative velocity component W and the

circumferential component U are shown.

Figure 3.3: Pressure ring manifolds and measurement axis.
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Figure 3.4: a), b), ¢), d) Velocity and kinetic energy inlet profiles for three
operating points corresponding to ¢* = 0.919, ¢* = 0.994 and ¢* = 1.108.
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Figure 3.5: Velocity vector on the inlet radius for ¢* = 0.919, ¢* = 0.973,
©* = 0.994, p* = 1.027, p* = 1.054 and ¢* = 1.108 (bottom: center, top:

wall).

Figure 3.6: Tangential streamlines at the inlet section for ¢* = 0.919, ¢*

0.973, ¢* = 0.994, ©* = 1.027, * = 1.054 and ©* = 1.108.
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Figure 3.7: Reynolds’ stresses, ¢* = 0.994.

The distribution of o and 3 (defined in fig. 3.2) is given in fig. 3.4. (3 still fol-
lows the blade angle in the external region. The radial velocity component is
nearly linear , showing the influence of the bend. The turbulent kinetic energy
(fig. 3.7) differentiates mainly in the core, showing higher values for low flow
rates where the swirl is higher. The turbulent kinetic energy is considered for
the mean flow field as the sum of all fluctuations including the deterministic
ones introduced by the blade passage. By assuming turbulence isotropy for the
normal stress components:

k=3/4{(E+)," + (E+).} (3.1)

where the signal is decomposed into mean- (time independent), fluctuating-
(phase averaged) and turbulent- components:

c=c¢+c+d (3.2)

The isotropy assumption is a fairly good approximation as shown in fig. 3.7.
The maximal difference in the turbulent kinetic energy, estimated with the
isotropy assumption or computed with the three normal stresses, is 20% in the
central zone.

Note on the best efficiency profile

The best efficiency profile is characterized by the steeper slope of the circum-
ferential velocity component in the center.

3.2.2 Phase averaged velocity profiles

The rotational periodicity allows the evaluation at the runner outlet of the
phase average with respect to the angular position of the runner. 11 diameters
distributed on a sector of 27 /17 [rad] (the runner has 17 blades) are measured.
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Figure 3.8: Phase averaged fluctuating circumferential (left) and axial (right)
velocity components ¢* = 0.994.
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Figure 3.9: Phase averaged fluctuating tangential (left) and axial (right) ve-
locity components, ¢* = 0.919, ¢* = 0.994, ¢* = 1.108 (from the top). The
tangential maximal fluctuations correspond respectively to 15%, 17% and 14%,
and the axial fluctuations to 1.1%, 2% and 0.9% of the mean axial velocity.
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The measured fluctuating velocity field does not differ significantly between
the two radii. The amplitude of the oscillation at the runner passage frequency
represents a few percent of the mean velocity and is therefore not negligible.
The fluctuating field for three operating points is shown in fig. 3.8 and 3.9.
The blades influence is clearly recognizable. The amplitude of the fluctuations
can reach 17% of the mean axial velocity for the tangential, and 2% for the
axial velocity components.
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V.1 Introduction

1

Introduction

In this chapter modeling and discretization choices are discussed. Modeling
includes also data input to the code as the geometrical data, the boundary and
initial conditions. A reasonable agreement with experimental results is not a
sufficient proof of accuracy, especially if adjustable parameters are involved.
Modeling errors (difference between the real flow and the exact solution of the
mathematical model) and discretization errors (difference between the exact
solution of the conservation equations and the exact solution of the algebraic
system obtained by the discretization) should be estimated. For this purpose
computational results and comparisons with experimental data are shown.
The recovery factor is used as quantitative comparison value and skin-friction
lines give a qualitative idea of the flow differences between the results. The
detailed flow discussion is however presented only in part VI. While the results
depend on the interaction between the different parameters, they are here
discussed as independent variables for simplicity. Investigated parameters are:
mesh density, outlet region modeling, inlet radial velocity component, near
wall velocity profile, inlet turbulent dissipation, inlet turbulent kinetic energy,
advection modeling and turbulence modeling. Investigations are carried out by
varying a parameter one at a time. The other parameters correspond to the
best choices resulting from each investigation.

1.1 Steadiness

In this part the flow is assumed to be steady even if this is not always justified
and the steadiness is always a scale dependent characteristic in real flows. It is
assumed that in the operating range considered in this study (IV.3.2) the main
flow characteristics can be described assuming flow steadiness. It should be
mentioned that measurements show regions with strong fluctuations in partic-
ular for the operating at higher flow rate. Time-dependent computations are
discussed later.
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1.2 Convergence

The computation is considered converged to the steady solution, when the
value of the maximal normalized equation residual is less than 10~*. No ap-
preciable difference is observed in the recovery factor, in the specific energies
evolution along the draft tube, on the experimentally investigated velocity and
pressure profiles when the criterion is set to 107°. Some points in the domain
are also monitored during the iterative process and show the achievement of
the steady state.

1.3 Independent of the initial solution

All operating points have been computed by increasing or decreasing the flow
rate using the solution of the previous point as initial state. No difference has
been observed.
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V.2 Mesh

2
Mesh

2.1 Domain

Three different domains are compared (fig. 2.1): 1) the draft tube on its own,
2) with the addition of a downstream channel, and 3) with the addition of the
first part of the test rig downstream tank (see (IV.1), fig. 1.2). The influence
of this choice is discussed in (V.4).

2.2 Topology

The geometry of the simple draft tube model is discretized with a structured
multiblock mesh. The blocks are shown in fig. 2.2. A butterfly topology with
a C-shaped grid around the pier is used.

2.3 Quality

Different grid distributions are tested. The minimal skew angle in the cells is
42° and the maximum aspect ratio of the cells is 14. The y* values of the
first grid points off the wall remain within the range of 20 and 400 for all
operating points and meshes, where the majority of the points lies between
30 <yt < 100

Figure 2.1: Treatment of the outlet region.
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Figure 2.3: Mesh examples: a) 330’000 and 1'100°000 grid points , b) Quarter
of two section, 330’000 nodes mesh.
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3

Grid convergence

3.1 Introduction and definitions

An a posteriori numerical error estimation based on the generalized Richard-
son extrapolation, not requiring any restriction to integer refinement and ap-
plicable to solution functionals, is carried out. This extrapolation does not
however assure the maintenance of conservation properties. Following Roache
[Roa93] [Roa97] [Roa98] the more conservative Grid Convergence Index is also
reported. It is required that the observed rate equals the formal convergence
rate. The actual asymptotic rate of convergence may differ from the formal rate
due to the competition of truncation error terms, or because the refinement is
not achieved where necessary or a finer scale is missed. Error estimation using
unrelated grids (not obtained simply one from the other) poses a challenge.
However, it is mostly the case when working with complex three-dimensional
meshes.

The Richardson extrapolation assumes that the discrete solutions f have a
series representation:

b
f = fexact + Zgihlil (31)
i=1

the functions g; are defined in the continuum, b is the order of the discretization
and h is the grid spacing h. By combining two separate discrete solutions fi, fo
on two different grids, so as to eliminate the leading order error terms in the
assumed error expansion, a more accurate estimate of fecact is found

fexactzfl—i_(fl_fZ)/(rp_l) (32)

where r is the refinement ratio and p the order of the discretization. The
extrapolation is (p+1) accurate for upstream-weighted methods for advection.
The estimated fractional error for the fine grid solution f; is

Ey=¢/(r"=1),e=(fo— fi)/f (3.3)
and for the coarse solution:

EQ = ’I“pEl (34)
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The actual fractional error for the fine grid solution A; is

Al = (fl - fexact)/fexact (35)

The estimated fractional error is a good approximation of the actual fractional
error, when the solution is of reasonable accuracy.

The idea behind the Grid Convergence Index (GCI) is to approximately relate
the obtained € to the e that would be expected from a grid refinement study
of the same problem, with the same fine grid, and using a grid doubling with
a second-order method. This allows a uniform reporting of grid convergence
tests and a more conservative error band as the estimated fractional error.

GCIL, = 3¢/(r? — 1), GCI, = r*GCI, (3.6)
The asymptotic range is achieved when
GCIgg ~ TpG0112 (37)

where 1,2 and 3 refer to respectively the fine, intermediate and coarse grid.

3.2 Error estimation

The recovery factor obtained with four meshes are compared at ¢* = 0.994.
The number of nodes corresponds to the effective number of points in the draft
tube geometry (overlapping nodes at the block interfaces are counted only once
and the downstream channel is not considered). The grid refinement is reported
simply in terms of the total number of grid points used in the two meshes as
rij = (N /Nj)%. The meshes have the same topology but the grid refinement
is not uniform in the space. This may give an inaccurate estimation of the
accuracy depending on whatever the grid refinement occurs in the critical areas
or not. Depending on the mesh resolution at the inlet the resulting flow rate will
change and must be corrected to retrieve the measured value by multiplying
the velocity field by a factor. Slight differences in the inlet boundary conditions
introduce an additional uncertainty. The first three meshes seem to be in the
asymptotic range; (3.7) is reasonably well satisfied (actual asymptotic rate
of convergence p=2.2 to be compared with the theoretical order p=2). This

N1=1'855"152 No=1"107"237 N3=633"720 N,=328360
7’12:1187717 7’23:1204429 7"13:1430520 7’14:1781051
Y1=0.7739 Yo=0.7737 Y3=0.7733 Y4=0.7826

E,=0.17-0.08 £5,=0.20-0.11 E3=0.28-0.16
GCL=0.51-0.23 GCI1,=0.61-0.33 GC13=0.83-0.49

Table 3.1: ¢* = 0.994. N: number of nodes, r: grid refinement ratio, x: recovery
factor, F: estimated fractional error, GCI: grid convergence index. Values for
E, GCT are reported in [%] using p=1— 2.

results are expected to be only partially representative for other operating
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Figure 3.1: Skin friction lines at the pier, left side, a) p* = 0.919, b) ¢* = 0.994,
c) ¢* = 1.108 (from the left to the right). N,=328'360 (top), No=1'107"237
(bottom). Note: the lines are not started from the same positions for the two
meshes.

conditions due to the important flow differences. The results for the meshes
Ny and N, are compared also at the points ¢* = 0.919 — 1.108 in table 3.2.
As observed for ¢* = 0.994 we can expect that the solution obtained with N,
is not in the asymptotic range and consequently the estimated fractional error
is only indicative. As expected the mesh influence for the operating points

No=1'107'237 N,=328"360 No=1°107"237 N,;=328'360
r94=1.499559 r24=1.499559

Y2=0.5783  y4=0.5584 v2=0.5305 Ya=0.5385
F,=6.80-2.75  E,=10.33-6.20 F,=3.02-1.21 E,;=4.53-2.72

Table 3.2: a) ¢* = 0.919 b) ¢* = 1.108. See caption in table 3.1.

lying outside the optimal range increases. The skin friction lines show however
only slight differences, visible in particular in the backflow zone for ¢* = 0.919
(fig. 3.1).
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Outlet boundary condition

While the position of the inlet section is fixed by the location of the measure-
ments, the treatment of the outlet region must be investigated. The RANS
equations can have an elliptic character and possibly the flow of a channel has
an influence on the other side in the outlet region. In high Reynolds number
flows, upstream propagation of error should be weak. Backflow zones can occur
however for most of the operating conditions.

Three different domains are compared (fig. 2.1): 1) the draft tube on its own
(hereafter referred as case “simple”), 2) with the addition of a downstream
channel (“box”; following the philosophy that boundaries should be as far
downstream of the region of interest as possible), and 3) with the addition of
the first part of the test rig downstream tank (“tank”). On the test rig this
part ends with flow tranquilizing screens. These screens are modeled consid-
ering this region as a porous object with a factor describing the fraction open
to fluid (8 = 0.433). Moreover a simple momentum loss model applying to
the fluid flow within the porous region is provided. A source term is added
to the momentum equations. This term consists of a pressure gradient scaled
with the local dynamic head: VP = kp—ff. The factor k£ = 30 is set follow-
ing the experimental values contained in [Ide69]. For all cases the pressure is
set constant at the outlet. The same results are obtained when the pressure
is left unspecified. The influence of the outlet is investigated for ¢* = 0.919,
©* = 0.994, p* = 1.108. The recovery factor is only slightly affected by this
choice as illustrated in table 4.1. For the point at the lowest flow rate the only

0" =0.919 ¢*=0.994 ¢*=1.108
“simple” x=0.5602  x=0.7802  y=0.5053
“box” x=0.5584  x=0.7826  x=0.5385
“tank” x=0.5597  x=0.7742  x=0.5405
meas. x=0.4937 x=0.7584  x=0.5192

Table 4.1: Influence of the outlet boundary conditions on the recovery factor.

differences are visible in the small backflow region situated on the left channel
as shown in fig. 4.1. The obtained recovery factor differs by only tenths of a
percent point. At ¢* = 0.994 some differences are visible for the case “tank”
at the outlet corners of the pier due to the abrupt section expansion (fig. 4.2).
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The recovery factor is for this case closer to the experimental value, with a
difference of one percent from the other cases. At the highest flow rate the
backflow region occurring on the right channel, is similarly predicted in the
cases “box” and “tank” (fig. 4.3). The recovery factor for the “simple” case is
six percent lower than for the other cases.

Figure 4.1: Skin friction lines at the pier, left side, p* = 0.919. a) Case “simple”,
b) “box”, ¢) “tank”.

Figure 4.2: Skin friction lines at the pier, right side, ¢* = 0.994. a) Case
“simple”, b) “box”, ¢) “tank”.

Figure 4.3: Skin friction lines, view from above, ¢p* = 1.108. a) Case “simple”,
b) “box”, ¢) “tank”.
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Inlet radial velocity component

Some discrepancies on the radial component of the velocity are observed be-
tween the LDA and steady probe measurements. The probe indicates a velocity
vector that is parallel to the surface near the walls, with a nearly linear evo-
lution in the interior. LDA results show a slope indicating a more pronounced
effect due to the bend. For this reason two different distributions are investi-
gated. While the axial and tangential velocity components are interpolated by
cubic splines, this type of interpolation leads to oscillation for the radial com-
ponent. This is due to the inferior number of measurement points and the poor
smoothness of the profile. The profile is therefore interpolated by the best lin-
ear fit. The profiles for ¢* = 0.919, ¢* = 0.994 and ¢* = 1.108 are illustrated
in fig. 5.1. The dotted line describes the evolution of the radial component
with the equation C, = Cytan(fr/R) (hereafter “geometrical” distribution), 0
being the cone half opening angle. The inclination of the velocity vector in the
radial direction is therefore determined by the geometry of the cone (similarly
to the steady probe measurements). The influence of the inlet radial velocity
component is investigated for a) ¢* = 0.919, b) ¢* = 0.994, ¢) ¢* = 1.108.
The recovery factor is affected by this choice as illustrated in table 5.1. Skin
friction lines are shown in fig. 5.2, 5.3, 5.4.

C,/Cy

-0.05

iR iR
Figure 5.1: Inlet radial velocity distribution. a) ¢* = 0.919, b) ¢* = 0.994,
c) ¢* = 1.108. Points: LDA measurements, dotted line: best linear fit to the
measurements, solid line: “geometrical” distribution.
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*=0.919 ¢*=0.994 ¢*=1.108

best linear fit x=0.5642  x=0.7955 x=0.6224
“geometrical” distribution x=0.5584  x=0.7826  x=0.5385
measured x=0.4937 x=0.7584  x=0.5192

Table 5.1: Influence of the inlet radial velocity component on the recovery
factor.

Figure 5.2: Skin friction lines, view from above, p* = 0.919: a) “geometrical”
distribution, b) best linear fit distribution.

Figure 5.3: Skin friction lines, view from above, p* = 0.994: a) “geometrical”
distribution, b) best linear fit distribution.

Figure 5.4: Skin friction lines, view from above, ¢* = 1.108: a) “geometrical”
distribution, b) best linear fit distribution.
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Near wall velocity profile

The measured velocity profiles are interpolated by cubic splines. The nearest
measurement point is at .076 inlet diameters from the wall. In order to control
the extrapolation at the wall, the velocity is here imposed to be a factor f
of the nearby interior measurement point value. This factor plays a role on
the wall velocity gradient and consequently on the wall friction. The swirl is
proportional to the squared radius and therefore the velocity near the wall can
have an important weight. The influence of this parameter is investigated for
the extreme points at ¢* = 0.919 and ¢* = 1.108. The recovery factor is clearly
affected by this choice, varying almost linearly with f as illustrated in table
6.1. The importance of the momentum thickness on the pressure recovery was
already recognized by Ackeret, as described in the introduction (1.2), fig. 2.2.
Indeed, most of the recovery does take place in the cone. The stronger influence
occurs for the point with the highest swirl, where the boundary flow energy
is higher. The influence on the skin friction lines is illustrated in fig. 6.1 and
6.2. The flow angles in the cone are strongly affected especially at the highest
flow rate. Comparisons with measurements are shown in fig. 6.3. The near-wall
steep gradients are reproduced in the computations only in the case f = 0.900.

f=0.006 x=0.6099 x=0.5860
f=0215 x=0.6121 x=0.5772
f=0.900 x=0.5584  x=0.5385
meas. x=0.4937  x=0.5192

Table 6.1: Influence of the near wall velocity profile on the recovery factor.
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V.6 Near wall velocity profile

Figure 6.1: Skin friction lines, view from behind, ¢* = 0.919. a) f = 0.005, b)
f=0.215 and ¢) f = 0.900.

Figure 6.2: Skin friction lines, view from behind, ¢* = 1.108. a) f = 0.005, b)
f=0.215 and ¢) f = 0.900.

| Ny L 1 4 A

-1 CalCo 1 1 CiCo 1 -1 CalCo 1 1 C{Co 1

Figure 6.3: Axial (C,) and tangential (C;) velocity profile at the section 1.75,
from the wall to the cone center. Points: measurements, solid lines: f = 0.005,
f = 0215 and f = 0.900: a) ¢* = 0.919, b) ¢* = 1.108. The near-wall
steep gradients are partially reproduced in the computations only in the case
f =0.900.
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Inlet turbulent dissipation

LDA measurements indicate a locally isotropic turbulence (IV.3.2), which is an
assumption of the k — ¢ model. This could be explained by the fact that the
inlet swirl is still moderate. Blade passage introduces periodic velocity fluctu-
ations that do not correspond to statistic turbulence. These fluctuations are
here recognizable only in a limited region outside the central core and at some
distance from the wall. The turbulent kinetic energy imposed in the computa-
tions includes all types of fluctuations. In the standard k—e model it is assumed
that ¢ = k%2/L,. For the computation of € from the measured turbulent ki-
netic energy, the length scale L, defining the size of the largest eddies must be
determined. L. can be assumed to be of the same order as the smallest distance
between the runner blades, which is 0.03 D. From the Boussinesq hypothesis
and the measurements results it is possible to estimate the turbulent viscosity
;. With the tangential components of the velocity: —pc1c/y = ut(g—;; + g—fci),
where ¢q, ¢o are the tangential components of the velocity and 1, xs the cor-
responding orthogonal basis. From the Prandtl-Kolmogorov modeling of the
turbulent viscosity p; = pcuLgx/%, the eddy length can be calculated, ¢, being
a constant. The estimation shows that the length is nearly constant, except
in the central zone and near the wall. The corresponding value is about 0.02
D and thus in the same order of the smallest distance between the runner
blades. The influence of this parameter is investigated for the operating points
at p* = 0.919, ¢* = 0.994 and ¢* = 1.108. The recovery factor is clearly af-
fected by this choice as illustrated in table 7.1. Better numerical results with

0*=0919 ¢*=0994 ¢*=1.108
L.=0.0001 x=0.5524 x=0.7688  x=0.5304
L.=0.001 x=0.5584 x=0.7826 x=0.5385
L.=0.01 x=0.5475  x=0.8018  x=0.6339
meas. x=0.4937 x=0.7584  x=0.5192

Table 7.1: Influence of the inlet turbulent dissipation length on the recovery
factor.

respect to the measurements (recovery factor, surveys at the sections 1.75,
15.5, 20.75) are obtained with L. = 0.001, i.e. with one order of magnitude
smaller values than the previous estimates. The flow angles in the cone and
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the backflow regions are affected by this parameter especially at higher flow
rates as shown in fig. 7.1, 7.2, 7.3 and 7.4. In particular at ¢* = 1.108 the
experimentally observed backflow region in the right channel is not predicted
with L. = 0.01 (fig. 7.3).

Figure 7.1: Skin friction lines at the pier, left side, ¢* = 0.919: a) L. = 0.0001,
b) L. = 0.001, ¢) L. = 0.01.

Figure 7.2: Skin friction lines, view from behind, ¢* = 0.994: a) L. = 0.0001,
b) L. =0.001, ¢) L. = 0.01.

Figure 7.3: Skin friction lines, view from above, ¢* = 1.108: a) L. = 0.0001,
b) L. = 0.001, ¢) L. = 0.01.

Figure 7.4: Skin friction lines, view from behind, ¢* = 1.108: a) L. = 0.0001,
b) L. = 0.001, ¢) L. = 0.01.
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Inlet turbulent kinetic energy

The computational results show that the imposed turbulent kinetic energy
profile with the important peak in the central zone (IV.3.2) is smeared out
in a very short distance. This could maybe be explained by the fact that the
Prandtl-Kolmogorov hypothesis directly relates the turbulent kinetic energy
with the turbulent viscosity and thus the model adopts large eddy viscosity in
the central zone, leading to the rapid turbulent momentum transfer. This is
however observed also in the test cases even when the RSM model is used. The
influence of the inlet turbulent kinetic energy is investigated for the operating
point at ¢* = 0.919. The turbulent kinetic energy is either assumed to be resp.
1% of the total energy (Tw = 0.01), 0.1% (T'w = 0.001) or the experimental
profile is imposed. The influence on the recovery factor is illustrated in table
8.1. The recovery factor as well as the skin friction lines (fig. 8.1) and the
velocity and pressure profiles at the experimentally investigated sections are
quite unaffected by the imposed inlet turbulent kinetic energy.

©* =0.919
Tu = 0.001 x=0.5472
Tu=0.01 x=0.5529
experimental profile y=0.5584
measured x=0.4937

Table 8.1: Influence of the inlet turbulent dissipation length on the recovery
factor.

Figure 8.1: Skin friction lines at the pier, left side, ¢* = 0.919, L. = 0.001. a)
Tu = 0.01, b) Tu = 0.001, ¢) experimental profile.
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V.9 Advection scheme

9

Advection scheme

The linear profile skew scheme (LPS) is compared with the modified linear
profile skew scheme (MLPS) (IL.2.1). While the MLPS is a hybrid scheme and
the formal accuracy is no more of second order, the comparisons with the
experimental data show better performances as the LPS scheme. The main
flow evolution (VI.4) is the same for the two schemes, however with a shift
with respect to the flow rate. The LPS scheme anticipates the flow evolution
obtained with the MLPS scheme when the flow rate is increased. This can be
seen in the recovery factor prediction shown in fig. 9.1 and in the skin friction
lines (fig. 9.2, 9.3). In particular the phenomenon responsible for the pressure
recovery drop (described later) is already visible at ¢* = 0.994 (fig. 9.3) when
the LPS scheme is adopted. The MLPS scheme correctly describes the begin
of the drop after the flow rate corresponding to ¢* = 0.994. While at a first
glance the recovery factor seems to be better predicted with the LPS scheme,
the analysis of the flow evolution and the comparisons with the velocity and
pressure profiles at the sections 1.75, 15.5 and 20.75, clearly indicate that better
results are obtained using the MLPS scheme.
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Figure 9.1: Recovery factor obtained with two advection schemes.

Figure 9.2: Skin friction lines, view from above, a) ¢* = 0.919, b) ¢* = 0.994,
¢) ¢* = 1.108. MLPS scheme.

Figure 9.3: Skin friction lines, view from above, a) ¢* = 0.919, b) ¢* = 0.994,
¢) ¢* = 1.108. LPS scheme.
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10

Turbulence modeling

10.1 k£ — w model

The use of the £ —w and BSL models (I1.2.1) does not improve the agreement
with the experimental data in comparison with the standard k& — €, even for
the operating point at ¢* = 1.108 where a large separated region is found to
play an important role on the recovery factor (V.7), as shown in table 10.1.

©*=0.994 ¢*=1.108
k—w x=08012 x=0.6318
BSL  x=0.8021 -
k—e x=0.7826  x=0.5385
meas. x=0.7584  x=0.5192

Table 10.1: Influence of the turbulence model on the recovery factor.

10.2 Reynolds-stress-equation model (RSM)

Reynolds stress models are characterized by a higher degree of universality
and should better describe in particular the effects of streamline curvature and
secondary flows as well as the characteristics of swirling flows. The recovery
factors obtained using the RSM-LLR model are reproduced in table 10.2. It

©*=0.919 ¢*=0.994
RSM — LLR x=0.5675  x=0.7652
k—e€ x=0.5584  x=0.7826
meas. x=0.4937  x=0.7584

Table 10.2: Influence of the turbulence model on the recovery factor.

should be mentioned however that the code does not allow specifying the
measured stress profiles at the inlet. These are computed from the turbulent
kinetic energy. Even if the recovery factor matches better with the use of the
RSM model for the operating point at ¢* = 0.994, the comparisons with the
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Figure 10.1: a) Pressure, b) axial velocity, c¢) radial velocity, d) tangential
velocity and e) energy profile at the section 1.75, from the wall to the cone
center. Points: measurements, fine solid line: & — ¢, large solid line: RSM.
©* =0.919.

measured velocity and pressure profiles at the sections 1.75 and 15.5 and 20.75
indicate better performances for the standard k — e for both operating points.
The profiles on one axis at the section 1.75 for the point at higher swirl,
corresponding to the flow rate ¢* = 0.919, are shown in fig. 10.1.
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11

Summary and conclusions

For operating points lying in the optimal range the mesh with N3=633’720 ef-
fective nodes insures a GCI smaller than 1% for the recovery factor. The mesh
influence increases for the extreme points. While the mesh with N;=3287360
does not lie in the asymptotic range in the prediction of the recovery fac-
tor, the results obtained with this mesh show the same flow topology as the
finer meshes and compare even slightly better with the measured velocity and
pressure profiles (sections 1.75, 15.5). For these reasons and the limited compu-
tational resources the investigations are carried out with the mesh consisting

of N;=328’360 nodes.

Globally the outlet boundary condition has little influence on the recovery
factor and on the overall flow. Experimentally the level of the water in the
tank of the test rig does not affect the performances of the draft tube. These
facts indicate a parabolic behaviour of the flow at the outlet. This is explained
by the uniformity of the pressure in the two channels in the outlet region.
However, when an important recirculation occurs in the outlet region, the case
“simple” leads to relatively important differences compared with the other
cases. Due to the computational economy the outlet region will be treated
as in the case “box” with the simple addition of a downstream channel. The
simulation of the first part of the test rig downstream tank (case “tank”) does
not considerably improve the solution.

The radial velocity component can affect considerably the flow in the draft
tube in spite of the small magnitude of this component. While for the op-
erating points at ¢* = 0.919 and ¢* = 0.994 the differences using the two
distributions are relatively small, at ¢* = 1.108 the flow differs considerably.
The “geometrical” distribution leads to better results in comparison with the
measurements (recovery factor, surveys at the sections 1.75, 15.5, 20.75) for
all operating points.

Steep gradients for the inlet velocity at the wall better reproduce the experi-
mental data. The velocity value at the wall is set to be nine tenths of the value
at the first measurement point.
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For the point at higher flow rate (¢* = 1.108) the inlet eddy length scale
plays an important role on the recovery factor. A too lower inlet turbulent dis-
sipation rate causes a failed prediction of the experimentally observed backflow
zone and leads to a clearly overestimated recovery factor. For the other oper-
ating points the influence is clearly less important. The inlet eddy length scale
is set to L. = 0.001 (0.002D) for all operating points.

The inlet turbulent kinetic energy has a small influence on the results. The
experimental profile is imposed.

While both advection schemes predict the same flow evolution when the flow
rate is increased, the LPS scheme anticipates this evolution in comparison with
the MLPS scheme and to the measurements. A better match with experiments
is obtained using the MLPS scheme.

In spite of the potential of advanced turbulence models the standard k — €
model leads to the best agreement with the experiments. It should be men-
tioned however that the code does not allow specification of the measured
stress profiles at the inlet.

It is clear from this study that in spite of the detailed measurements, these
are still insufficient. The simulation of the flow in the draft tube requires the
calibration of several parameters.

Garbage in, garbage out (saying in the CFD community).
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VI.1 Introduction

1

Introduction

In this part the flow field obtained with the modeling choices discussed in
part V and summarized in table 1.1, are first compared with the experimental
data (VI.2) and then analyzed in (VI.3) and (VI.4). Measurements are available
on the sections illustrated in fig. 1.1.

In addition to the experimentally investigated operating conditions, four addi-
tional flow rates between respectively ¢* = 0.994—1.027 and ¢* = 1.027—1.054
are computed. The inlet conditions are linearly interpolated from the measured
profiles.

domain “box”

mesh, number of nodes 3287360

radial velocity distribution “geometrical”

near wall velocity extrapolation f = 0.900

inlet turbulent dissipation L. =0.001

inlet turbulent kinetic energy experimental profile
advection scheme MLPS

turbulence model k—e€

Table 1.1: Computational parameters. See part V.

Figure 1.1: Measurement sections.
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Comparison with experimental
data

No one believes the CFD results except the one who performed the
calculation, and everyone believes the experimental results except
the one who performed the experiment.

(saying in the aerodynamics community, quoted in [Roa98]).

The velocity and pressure profiles in sections 1.75 and 15.5 and the wall pres-
sure measurements were carried out by Jorge Arpe. Gabriel Ciocan obtained
the two-dimensional velocity field in sections 20.75 and the wall friction at
three positions in the cone.

2.1 Recovery factor

The recovery factor is compared with the measurements in fig. 2.1. The overall
agreement is fairly good. The pressure recovery drop takes place at the same
flow rate which is observed experimentally. However, the computations over-
estimate the recovery factor over the whole range, with a maximal difference
of 14% of the measured value. Near the best efficiency conditions the maximal
difference is 6%.

2.2 Velocity and pressure profiles, sections 1.75
and 15.5

The velocity and pressure profiles acquired with the five-sensor steady probe
on 16 measurement axes on sections 1.75 and 15.5 are compared with the
computations for three operating conditions in fig. 2.2, 2.3 and 2.4. On the
whole the flow is fairly well predicted. Locally important differences occur
for all velocity components. Despite the short distance from the inlet, at the
section 1.75 for the operating point at higher swirl corresponding to ¢* = 0.919,
the maximum velocity difference reaches .5C,. The averaged difference value is
.1C,. This is explained by the known difficulties of the & — e model to correctly
simulate swirling flows as already observed in (IIL.3). Just upstream the pier
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Figure 2.1: Static pressure recovery. Comparison measurement computation.
The GCI (V.3) is reported for ¢* = 0.994.

on section 15.5, the averaged difference values range from .1 to .3C, and the
maximum difference is .5C,. The reference pressure corresponds to the value
at the outlet ring manifold (IV.3.2).

2.3 Wall pressure, sections 1.3, 1.75, 6.5, 9.5,
12.5

The wall static pressure is compared at six sections in fig. 2.5 for three oper-
ating conditions. The global agreement is fairly good. Locally the differences
reach 80% of the measured value. The computations clearly overestimate the
bend influence at the section 1.75, but the differences decrease in the following
sections.

2.4 Velocity field, sections 20.75

Two velocity components acquired with the LDA system at 950 points on
sections 20.75 are compared with the computations in fig. 2.6 and 2.7. The
estimated flow rate distribution in the two channels is listed in table 2.1. Bet-
ter agreement is observed for the extreme points. The central points are less
satisfactory, probably due to rapid flow changes occurring in this region.

2.5 Wall shear stress in the cone

The obtained values are clearly underestimated as well as the influence of the
divergent geometry (position 1 and 2), while the influence of the bend (posi-
tion 1 and 3) is correctly resolved. As discussed in (VI1.6) the near wall velocity
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Figure 2.2: Sections 1.75 (left) and 15.5 (right), ¢* = 0.919: comparisons mea-
surements (points) - computations (line). Section 1.75: from the wall to the
center, section 15.5: from the upper wall to the bottom. p: static pressure, c¢,:
normal velocity component, ¢,: radial velocity component, ¢, ¢;1, ¢;o: tangen-
tial velocity component, E = p+1/2pc?: total pressure. The velocity is divided
by the mean normal velocity C, of the investigated section and the pressure
by 1/2pC,2. The reference pressure corresponds to the value at the outlet ring
manifold (IV.3.2).
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Figure 2.3: Sections 1.75 (left) and 15.5 (right), ¢* = 0.994: comparisons mea-
surements (points) - computations (line). Section 1.75: from the wall to the
center, section 15.5: from the upper wall to the bottom. p: static pressure, ¢,:
normal velocity component, ¢,: radial velocity component, ¢, ¢;1, ¢;o: tangen-
tial velocity component, E = p+1/2pc?: total pressure. The velocity is divided
by the mean normal velocity C, of the investigated section and the pressure

by 1/2pC,2. The reference pressure corresponds to the value at the outlet ring
manifold (IV.3.2).
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Figure 2.4: Sections 1.75 (left) and 15.5 (right), ¢* = 1.108: comparisons mea-
surements (points) - computations (line). Section 1.75: from the wall to the
center, section 15.5: from the upper wall to the bottom. p: static pressure, c¢,:
normal velocity component, ¢,: radial velocity component, c¢,, ¢;1, ¢o: tangen-
tial velocity component, E = p+1/2pc?: total pressure. The velocity is divided
by the mean normal velocity C, of the investigated section and the pressure
by 1/ 2pC,2%. The reference pressure corresponds to the value at the outlet ring
manifold (IV.3.2).
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Figure 2.5: Wall static pressure, sections 1.3, 1.75, 6.5, 9.5, 12.5. ¢* = 0.919,
©* = 0.994, o* = 1.108 (from the left to the right). The pressure values are
divided by the mean value on section 1.3 and the reference is set at the same
section. Solid line: computation, dotted lines: experiments.
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Figure 2.6: Outlet velocity field, comparisons with measurement. ¢* = 0.919,
©* =0.973, p* = 0.994.
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Figure 2.7: Outlet velocity field, comparisons with measurement. ¢* = 1.027,
©* =1.054, ¢* = 1.108.
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operating point measurement computation

ot = 0.919 73% 72%
o =0.973 57% 66%
o* = 0.994 51% 63%
ot = 1.027 64% 68%
ot = 1.054 63% 62%
ot = 1.108 62% 66%

Table 2.1: Flow rate on the left channel. Note that only less than three quarters
of the total rate flows through the measured sections. The experimental value
is therefore only indicative.
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Figure 2.8: Wall friction. Comparison with measurements.

gradient in the cone plays an important role on the overall draft tube efficiency.
Best results are obtained with the steepest profiles of the tested set. The mea-
sured wall shear stresses indicate that the gradient is even higher. However,
the experimental data should be viewed with some degree of reservation due
to its preliminary nature.

2.6 Summary

While the main flow features are well captured for all the investigated operating
conditions, locally important differences between the numerical and measured
flow field are observed. The model is not able to describe the fine details.
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3

Flow analysis: flow rate and
specific energy balance

The flow rate and the specific energy evolution (see Nomenclature, IX) at three
operating points are compared in fig. 3.1. The domain is split into two symmet-
rical parts allowing a comparison between the left and the right channel, even
upstream at the pier’s leading edge. The main static pressure recovery differ-
ence does take place in the bend. The flow rate distribution in the channels is
shown in fig. 3.2. The specific static pressure energy recovery is summarized in
fig. 3.3 over the whole computed operating range. As expected (1.2) most of the
recovery occurs in the cone. An efficiency drop taking place in the second half
of the bend is clearly visible in the range ¢* = 1.021 — 1.049. This deficiency is
partially recovered in the last part. On the left side the pressure recovery drops
due to a flow acceleration, while on the right channel the pressure recovery is
very small in the straight diffuser, indicating an unfavorable flow situation. The
two nearby computed operating points before the drop (¢* = 1.008 —1.014) do
not show appreciable differences in the evolution of specific energies as shown
in fig. 3.4. The first point in the recovery drop region differs considerably from
the nearby points showing an important change in the flow rate distribution.
The flow rate in the left side increases from 62% to 66%. An increase of the
specific kinetic energy is also observed. The flow rate in the right channel starts
again to increase between p* = 1.0320 — 1.038 (fig. 3.4).
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4

Flow analysis: velocity field

For the central and the extreme points (¢* = 0.994, ¢* = 0.919 and ¢* = 1.108)
the skin friction lines and the tangential streamlines on several cross-sections,
are shown in fig. 4.1 to 4.6. The pictures reveal a change of the flow direction
in the channels due to the increase of the secondary flow introduced by the
bend when the flow rate is increased and due to the change of the rotation
direction at the inlet (IV.3.2). While at ¢* = 0.919 the inlet swirl forms a
vortex that develops in the right channel and reaches the outlet (fig. 4.7),
for the other points the vortex core is only detectable in the inlet region.
The vortex core lines are extracted from the flow data using the eigenvector
method of Sujudi and Haimes [SH95]. The algorithm looks for the points in
the velocity field where a single real eigenvector exists and this is parallel to
the velocity vector. The technique is based on decomposing finite elements
into tetrahedrons and then solving closed-form equations to determine the
velocity gradient tensor values at the nodes. Due to the linear implementation,
the algorithm has problems finding cores of curved vorticities. A review of
vortex visualization methods can be found in [Rot00]. Due to the change of
the rotation direction in the central region at the inlet for the higher flow
rates, the vortex core moves in the opposite direction as at ¢* = 0.919. The
centrifugal effect introduced by the increase of the flow rate is evident in the
mid-plane section shown in fig. 4.8. The consequent separation at the upper
wall forms an U-shaped vortex (fig. 4.9).

4.1 Topology evolution

4.1.1 Introduction

The efficiency drop (VI.3) is hereafter explained by putting in evidence the
topological changes in the flow with the flow rate as parameter. The framework
introduced in Tobak & Peake [TP82] is adopted to describe a three-dimensional
separated flow region in the draft tube. Similar terminologies are discussed also
in Hornung & Perry [HP84] and other references cited therein. The skin fric-
tion lines are considered as trajectories having the properties of a continuous
vector field subjected to precise topological rules. Elementary singular (or crit-
ical) points of the field can be categorized mathematically. Critical points are




4.1 Topology evolution 105

Figure 4.1: Skin friction lines, ¢* = 0.919.
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Figure 4.2: Tangential streamlines on cross-sections from the inlet to the outlet,
©* =0.919.
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Figure 4.3: Skin friction lines, ¢* = 0.994.
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Figure 4.4: Tangential streamlines on cross-sections from the inlet to the outlet,
©* =0.994.
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Figure 4.5: Skin friction lines, ¢* = 1.108.




110 V1.4 Flow analysis: velocity field

Figure 4.6: Tangential streamlines on cross-sections from the inlet to the outlet,
©* = 1.108.
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Figure 4.7: Central vortex cores identified with the eigenvector method of Su-
judi and Haimes [SH95]: a) ¢* = 0.919 (light), ¢* = 0.994, ¢* = 1.108 (dark),
b) surrounding streamlines, ¢* = 0.919.

Figure 4.8: Tangential streamlines at the symmetry mid-plane, cone and bend.
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ST

Figure 4.9: Examples of flow separation and vortex generation: a) ¢* = 1.054.
U-shaped vortex at the upper side of the pier, b) ¢* = 0.919. Left side of the
pier.

points in the flow field where the streamline slope is indeterminate and the
velocity is zero relatively to an appropriate observer. Asymptotically exact
solutions of the Navier-Stokes equations can be derived close to the critical
points, and these give a number of flow patterns (see Perry & Chong [PC87]).
Two patterns are said to be topologically equivalent if a stretching process can
distort them into one another. If the topology of a critical point is changed by
an infinitesimal change in any of the relevant flow parameters, this point is said
to be structurally unstable. The flow is called structurally stable relative to a
parameter if a change in the parameter does not alter the topological structure.
An instability is called global if it permanently alters the topological structure
of the velocity field. A global instability results in the emergence of a saddle
point in the surface pattern. The flow patterns at the wall are investigated
and particular attention is focused on separation (or bifurcation) lines. These
are lines drawn in the flow toward which other trajectories are asymptotic. A
universal definition of separation in a three-dimensional flow is still subject of
debate. The specification of separation by means of a reverse flow or vanishing
wall shear stress is usually inadequate in three-dimensional flows. A necessary
condition for the occurrence of flow separation is the convergence of skin fric-
tion lines (or wall streamlines, or limiting streamlines) onto a separation line.
The regions of flow separation are important because of the reduced kinetic
energy and the consequent blockage effect that they can introduce. Following
the Tobak & Peake’s terminology the separation line emerging from a saddle
point is a global line of separation and leads to global flow separation. When
the separation line does not originate from a saddle point, the line is called a
local line of separation and leads to local flow separation. A global instability
leads to flow bifurcation. At supercritical bifurcation, as a relevant parameter
is increased just beyond the critical value, the flow adopts a new stable form.
The bifurcation flow breaks the symmetry of the precedent flow, adopting a
form of lesser symmetry in which dissipative structures arise to absorb just the
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amount of excess available energy that the more symmetrical flow no longer
was able to absorb. A particular global form of separation is marked by the on-
set on the surface of a focus in company with a saddle point. One leg of the line
of separation emanating from the saddle point winds into the focus to form the
curve on the surface from which the dividing surface stems. The focus on the
wall extends into the fluid as a concentrated vortex filament, while the surface
rolls up around the filament. This flow behaviour was first hypothesized by
Legendre in 1965 and confirmed by the experiments of Werlé (1962) and takes
the name of Werlé-Legendre separation. The cooperation between these two
scientists is described in [Dél01]. Kinematically possible combinations of ele-
mentary structures of flow patterns on the surface and in the interior domain
(plane of flow symmetry) can be found in Dallmann’s article in [JOe85].

4.1.2 Flow stability

The main flow characteristics are summarized in fig. 4.10 where the aforemen-
tioned change of the flow direction in the channels due to the increase of the
secondary flow introduced by the bend and to the change of the rotation di-
rection at the inlet, is put in evidence by the main separation lines. The three
operating points before the efficiency drop show local separation lines with-
out any critical point at the surface. After the drop the flow stemming from
the cone region situated exterior side of the bend curvature, is forced by the
secondary flow to the inner side, while the flow angle imposed by the blades
geometry remains constant for all operating points. The collision of these two
flow directions leads to the onset on the surface of a focus and a saddle point
leading to a global separation (see also fig. 4.11 and 4.12). The flow pattern in
the inner domain can be seen in fig. 4.13, where the vortex core stemming from
the focus and the tangential streamlines on two cross-sections are shown, and
in fig. 4.14 illustrating section 12 (half bend). There is a practical difficulty to
define the separation region delimited by the stream surface (dividing surface),
originating from the line of separation. A simple separation region extraction
algorithm is used to define a volume. Streamlines are started from the zone at
the wall where separation occurs. A streamline is then equidistantly divided
and from each point the intersection of the corresponding normal plane with
all other streamlines is computed. From each group of points the mean point
is calculated and used to define a new line and the procedure is repeated until
the desired convergence is achieved. From each cloud of points, corresponding
to the intersection of the normal plane of this mean line with all streamlines,
the best fitting ellipse to the external points of the cloud is computed. The
resulting tube with elliptic sections approximates the separation zone. The pro-
cedure is illustrated in fig. 4.15 and the vortex evolution in fig. 4.16. The vortex
moves toward the center of the section and increases its size and strength until
©* = 1.032, then begins to decay and at ¢* = 1.054 the focus changes into
a node (fig. 4.12). The correlation with the flow rate distribution shown in
fig. 3.2 and with the pressure recovery illustrated in fig. 3.3 is evident.
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Figure 4.10: Flow topology, main separation lines and critical points. Onset
on the surface of a focus in company with a saddle point. Before the efficiency
drop: ¢* = 0.919, ¢* = 0.973, ¢* = 0.994, after: p* = 1.027, ¢* = 1.054,
©* = 1.108.
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Figure 4.11: Skin friction lines, onset on the surface of a focus in company

with a saddle point. Before the efficiency drop: ¢*

©* = 1.021, p*

0.994, ¢* = 1.014, after:

1.038, ©* = 1.054.
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Figure 4.12: Interpretation of fig. 4.11. S: saddle, F: focus, N: Node.
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Figure 4.13: Vortex core and separation line, ¢* = 1.021.

Figure 4.14: Tangential streamlines. Section 12. Before the efficiency drop:
©* =1.008, p* = 1.014, after: ¢* = 1.027, ¢* = 1.032, ¢* = 1.038, ¢* = 1.043,
o* = 1.049, ©* = 1.054.
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Figure 4.15: Vortex region extraction, ¢* = 1.027: a) streamlines originating
from a zero velocity region, b) mean-line and clouds of points resulting from
the intersection with the streamlines and the normal planes to the mean-line,
¢) right channel, tangential streamlines and cloud of points, d) resulting vortex
tube.
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Figure 4.16: Vortex evolution. Before the drop: ¢* = 1.014, after: ¢* = 1.021,
©* =1.027, p* = 1.032, ¢* = 1.038. The last picture summarizes the first four
operating conditions.
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4.1.3 Conclusion

The efficiency drop (V1.3) is explained by a global instability that has the flow
rate as parameter. The topological structure of the velocity field changes with
the emergence of a saddle point and a focus in the surface pattern, leading to
the global Werlé-Legendre separation that blocks the right channel.
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1

Introduction

Simple direct observations of the flow in the draft tube model prove the un-
steady nature of the flow also at the macroscopic scales and low frequency
(in the order of Hertz). The existence of self-sustained unsteadiness is first
investigated. The boundary conditions are kept steady. The application of the
two-equation turbulence models quasi-steady approach for the simulation of
unsteady flows is questionable, and the limitations are still not well defined.
The test case of the bluff body shows that at least this type of self-sustained
vortex shedding can be reproduced with such an approach. The instability is
however of low frequency and exists also in the laminar range and therefore
the main mechanism is not dictated by the turbulent term. At two operating
points, under particular circumstances and in spite of the steady boundary
conditions, the numerical investigations show an unsteady periodic flow char-
acterized by self-sustained vortex shedding.

1.1 Kelvin-Helmholtz instability [Bat67][DR81][Ge98]

In the framework of the linear instability theory one may distinguish between
amplifiers, the dynamics of which are sensitive to inflow perturbations, and
oscillators, which sustain intrinsic global modes tuned at a well defined fre-
quency. For two-dimensional parallel shear flows, the purely mechanical (in-
viscid) Kelvin-Helmholtz instability is connected with the presence of an in-
flection point in the velocity profile (in contrast to e.g. viscous instabilities
such the Tollmien-Schlichting instability occurring for instance in a pressure
driven Poiseuille flow). This classical inflection point criterion (Rayleigh, 1880)
provides a necessary (but not sufficient) condition for the inviscid instability
of parallel flows. It can be shown that it is a consequence of the conserva-
tion of momentum. The unbounded vortex sheet defined by U(y) = Uy, y >
0; U(y) = Us, y < 0, where U; > U, (fig. 1.1), is the simplest example of unsta-
ble flow leading to the well-known Kelvin-Helmholtz vortices. The shear layer
rolls up to spanwise co-rotating vortices convected in the streamwise direction.
From the Rayleigh’s equation (corresponding to the Orr-Sommerfeld equation
in the limit lim Re — oo) it results a real phase speed ¢ = w/k, where w is
the real frequency and k the real wave number, equal to the average velocity
U = .5(Uy + Uy). This flow is always unstable; for all wavelength, there be-
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Figure 1.1: Shear flows: a) unbounded vortex sheet, b) mixing layer R < 1,
¢) mixing layer R > 1.

ing no length scale of the basic flow. For a real shear layer of finite thickness,
it can be shown that short waves are stable. Waves which propagate in the
basic flow direction grow most rapidly, so, after some time, these waves will
be dominant. The mechanism of instability has been described by Batchelor
by considering two irrotational regions corresponding to the uniform flows of
respective velocity U and —U separated by a thin longitudinal stripe of rota-
tional fluid. By supposing that this rotational zone is perturbed and undulates
in a sine wave about the interface, the two crests of the sine will travel in the
opposite directions. This will steepen the vortex sheet transforming it into a
spiral. Within the linear instability analysis, the vorticity is indeed transported
by the basic flow. The velocity ratio R = AU/(2U) is an essential parameter
in the determination of the absolute/convective nature of the instability. For
R < 1 (co-flow mixing layer) a spatially developing mixing layer extremely
sensitive to external noise, is observed. In unforced mixing layers, the various
scales of natural white noise are differently amplified: the power spectra in the
roll-up region then exhibit a large bandwidth of amplified frequencies with a
maximum at a natural frequency f,,. This quantity is observed to scale with the
vorticity thickness d,,(0) and the average velocity U so that the Strouhal num-
ber remains constant to approximately St = £,0,,(0)/U = 0.03. In the roll-up
region the vortices are characterized by a predominant shedding rate f,, and
associated wavelength A = U/ f,,. In the case of counterflow mixing layers with
R > 1, temporally evolving Kelvin-Helmholtz vortices with a well defined nat-
ural wave number k, are observed. Such a configuration is quite insensitive
to external noise and acts as a self-sustained hydrodynamic oscillator. It has
been shown that the nature of the instability changes from convective (local-
ized disturbances are swept away from the source) to absolute (disturbances
spread upstream and downstream) for R > 1.315 for the hyperbolic-tangent
mixing layer. The most amplified wave number (the amplification rate is maxi-
mal for this wave number) calculated by Milchalke (1964) for a velocity profile
of hyperbolic-tangent form, is given by k = 0.44/3, corresponding to a spatial
wavelength \ = 144;.
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2

Operating point in the efficiency
drop at ©* = 1.021

The 1'100°000 grid points mesh leads to the same main flow topologies as the
standard mesh with 330’000 points for most of the computed operating points,
but not for the first point in the efficiency drop (¢* = 1.021). While the coarser
mesh predicts the leg of the line of separation emanating from the saddle point
to develop in the right channel (fig. 2.2), the other simulation shows a stronger
focus and the line of separation can reach the other channel allowing a large
backflow region in the right channel (fig. 2.1). This configuration could indicate
that the previously described flow bifurcation (VI.4.1) is not the only possible
one, showing the sensitivity of the flow in this operating region to small pertur-
bation. The absence of hysteresis phenomena on the measured recovery factor
seems however to indicate that experimentally the same bifurcation is always
observed. The finer mesh results show a periodical vortex shedding along the
separation lines of the backflow region (fig. 2.1) as illustrated in figures 2.4, 2.6
and 2.7. The topological configurations of the process are sketched in fig. 2.5.
The vortex motion occurs along the separation lines connecting two saddle
points. A saddle point coupled with a focus is periodically shed on either the
separation line directed toward the left channel or on the line at the upper
wall of the right channel. The vortex movement stops when the other saddle
point is reached. A heuristic explanation of the mechanism is that the vortex
motion on the right channel directly induces flow acceleration in the backflow
region and this also indirectly by restricting the shape of this area. The in-
creased kinetic energy feeds the generation of the focus in the cone, which is
successively convected away when the kinetic energy decreases again because
the vortex on the channel disappears when the saddle is reached. Near the wall
on the right channel between the two saddle points, the periodical variation
of the kinetic energy in the backflow region has in fact an amplitude of 25%
of the mean value. The shedding frequency is f = 2.38[H z] corresponding to
a Strouhal number of St = fD/U, = 0.14 (D inlet diameter, U, mean in-
let velocity). The period is discretized with 60 time steps. A further increase
of the time resolution does not have an influence on the shedding frequency.
The convergence criterion for the maximal residuum of the internal loop that
recovers the nonlinearity of the equations (I1.2.1), is set to le™® because of
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the limited computational resources. This criterion is found accurate enough
for the unsteady reference cases. The instantaneous flow rate distribution and
specific energies (see Nomenclature, IX) flow evolution along the draft tube
do not show important oscillations. The global efficiency variation is 1%. The
pressure oscillations and corresponding phase are illustrated resp. in fig. 2.8
and 2.9. The wavelength is clearly recognizable. The backflow regions induce
a phase shift.
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Figure 2.1: Mean flow topology.
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Figure 2.2: Topology of the steady solution obtained with the standard mesh.
F: focus.

Figure 2.3: Backflow region and velocity profiles.
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Figure 2.4: Skin friction lines at four phases equally spaced over a period.
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Figure 2.5: Topological phases. S: saddle, F: focus.
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Figure 2.6: Particular of the cone showing the vortex shedding. The leading
edge of the pier is visible on the bottom right. Skin friction lines at seven
phases equally spaced over a period. The first picture represents the averaged
flow.
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Figure 2.7: Top view of the right channel showing the vortex shedding. The
first part of the pier is visible. Skin friction lines at seven phases equally spaced
over a period. The first picture represents the averaged flow.
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Figure 2.8: Isocontour of the fluctuating pressure field. The wave-train nature
of the oscillation is clearly recognizable.
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Figure 2.9: Phase of the wall pressure fluctuations at the shedding frequency
(from —7 (white) to 7w (black)). The white lines limit the backflow regions.
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3

Operating point at the highest
flow rate p* = 1.108

At this operating point low frequency large-sized vortex shedding is directly
observable at the draft tube outlet. A computation with a 900’000 points mesh
predicts a self-sustained vortex shedding along the separation line limiting a
backflow region at the pier wall (fig. 3.2). The near-wall flow field is compared
with the solution obtained with the standard mesh in fig. 3.1. While the in-
cidence of the separation line with respect to the upper wall is small in the
simulation with the standard mesh, in the other case the line is almost per-
pendicular to the wall, giving rise to an additional saddle point and a focus
compared with the first solution. The focus moves along the line between two
saddle points modifying the surrounding flow field and giving rise to the in-
teraction with the upstream saddle. This interaction leads to the periodical
vortex shedding. When the focus reaches a critical distance from the upstream
saddle, a line emanating from this point rolls, building a focus and a new down-
stream saddle (fig. 3.3, 3.4). The streamlines stemming from the focus region
are illustrated in fig. 3.6. The fluctuating velocity field is shown in fig. 3.5.
The maximal kinetic energy and pressure fluctuations (fig. 3.7) reach 3% of
the inlet kinetic energy. Small fluctuations are visible also at the left side. The
shedding frequency is f = 1.11[Hz] corresponding to a Strouhal number of
St = fD/U, = 0.06 (D inlet diameter, U, mean inlet velocity). The period is
discretized with 30 time steps. A further increase of the time resolution does
not have an influence on the shedding frequency.

Figure 3.1: Skin friction lines, right side of the pier: a) steady flow solution,
standard mesh, b) unsteady flow solution, mean flow field, 900’000 mesh.
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Figure 3.2: Velocity profiles: a) backflow region, b) near-wall velocity profiles
at the pier surface.
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Figure 3.3: Skin friction lines at height phases equally spaced over a period.
Right side of the pier.

Figure 3.4: Topological bifurcation. S: saddle, F: focus.
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Figure 3.5: Skin friction lines of the fluctuating field at four phases equally
spaced over a period. Right side of the pier.

Figure 3.6: Skin friction lines at four phases equally spaced over a period. Right
side of the pier. Streamlines have been also started from regions near the foci
(in white).
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Figure 3.7: Isocontour of the fluctuating pressure field. The wave-train nature
of the oscillation is clearly recognizable.
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4

Conclusion

Two computations at different operating conditions employing a finer mesh
predict self-sustained vortex shedding. Both cases are characterized by the
existence of a backflow region and a focus placed between two saddle points
along the separatrix defining the border of this region at the wall. The focus
moves along the line modifying the surrounding flow field and giving rise to
the interaction with the upstream saddle. This interaction leads to periodical
vortex shedding. The Strouhal number defined with the inlet diameter and
velocity is St ~ 0.1. The velocity profiles at the backflow region interface
are unstable in the sense of the inflection point criterion, and could present
the Kelvin-Helmholtz instability mechanism. Typically the velocity ratio of
these profiles is greater than the value necessary for the onset of an absolute
instability for the hyperbolic-tangent mixing layer. Of course the studied case
is fully three-dimensional and non-linear and therefore the two-dimensional
linear theory can only give some indications. From the computations it seems
that a necessary condition for the instability of the counterflow mixing layers
in such three-dimensional configurations, is the presence of two saddle points
along the interface.

These results should be viewed however with some degree of reservation, owing
to the sensitivity of the results to numerical parameters.
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Time-dependent flow
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VIII.1 Phase averaged inlet velocity profile

1

Phase averaged inlet velocity
profile

The runner rotation introduces fluctuations at different frequencies. Usually
one observes the rotational frequency due to the axis asymmetry, the blade
passage frequency caused by the velocity difference between the two blade
sides and the product of the guide vanes blades with the runner frequency.
The purpose of this chapter is the study of the evolution of the unsteadiness
introduced by the blade passage. The measured phase averaged velocity profiles
tuned at the runner frequency and averaged on a representative blade-to-blade
channel presented in (IV.3.2), are made to turn at the runner frequency in the
computation. The amplitude of the oscillation at the runner passage frequency
represents a few percent of the mean velocity and cannot be neglected. For
simplicity this fluctuation is however not taken into account. A computation
with the standard mesh leads to the complete damping of the blade fluctuations
already in the first cell rows, even with a high temporal resolution. The study
is therefore carried out in the cone only, allowing a better spatial resolution.
Due to the fact that the inlet measurement section lies several centimeters
below the runner outlet and the profile still shows fluctuations of 10% of the
mean velocity value, it seems unlikely that the fast damping is a physical
process. However measurements show that the blade passage influence almost
disappears at the cone outlet.

1.0.1 Numerical tests

e Several spatial and temporal resolutions have been tested, which always
lead to the fast damping of the fluctuations. The tested time steps range
from 9 to 300 per blade passage and the finer mesh reaches 1.8M nodes
(fig. 1.1). The typical resulting evolution of the fluctuation amplitude
is shown in fig. 1.2. It should be mentioned that the choice of a CFL
number near to the unity (though not required, the employed scheme
being unconditionally stable) in the axial and circumferential directions
leads to a prohibitive spatial resolution. Even with the scarce temporal
resolution of 9 steps per blade passage the mesh covering only half height
of the cone requires 1.2M nodes.
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Figure 1.1: Fine mesh, 1800 k nodes.
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Figure 1.3: Phase shift error in [rad] vs CFL number for a temporal resolution
of 30, 60 or 120 time steps per period.

The same damping is observed when the turbulence model is switched
off.

The steady computation in a rotating frame with counter-rotating walls
predicts the same damping.

If the angular frequency is reduced by a factor of 10, the velocity fluctu-
ations are propagated until the outlet.

The influence of the CFL number is investigated for the simplest inviscid
one-dimensional case. The evolution equation for a velocity field v =
(u(t),0,0) reduces to:

ou 10p

To a velocity oscillation u(t) = @ + @ cos(wt) corresponds a pressure gra-
dient %(t) = pwisin(wt). The phase shift between velocity and pressure
gradient is therefore 7/4. The angular frequency corresponding to the
blade passage is imposed. The error in the phase shift prediction ver-
sus CFL number is plotted in fig. 1.3 for a temporal resolution of 30,
60 or 120 time steps per period. For CFL numbers below 0.2 the error
increases considerably. Similar results are obtained for a ten times slower
frequency. The resulting error in the pressure gradient amplitude is how-
ever greater for the higher frequency. The high runner rotation frequency
typically forces small CFL numbers as illustrated above in the case of
the cone.
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1.0.2 Theoretical considerations
Temporal and spatial accuracy

As illustrating example the one-dimensional convection equation

ou ou

ot " "or
is discretized using the central second order difference scheme. The resulting
leading error terms can be expressed in terms of the reference spatial length
L, the reference convection velocity U, the relevant angular frequency of the
unsteadiness w, the number of mesh points N, over L and the number of time
steps NV, in one period:

0 (1.2)

temp(?ral eIror <&>2 (1.3)
spatial error Ny

where K = wL/U is the reduced frequency representing the relevance of the
unsteadiness on the convection. As the reduced frequency is increased, the
CFL number (CFL = UAt/Ax = 21/ K3/?) quickly decreases if the temporal
to spatial error ratio (1.3) is kept close to 1. The blade passage is characterized
by K = 110, leading to a C'F'L = 0.005. This illustrates that the choice of the
spatial and temporal resolution is not trivial.

Dynamical equation for the periodic motion

The dynamical equations governing the mean flow field and the periodic motion
can be derived by decomposing the flow into the averaged and fluctuating
components. The influence of the random fluctuations is taken into account
with the modeling of the Reynolds’ stress tensor. The signals are written as
f=f+ f , where f is the mean (time-averaged) contribution and f the periodic
wave. Substituting the decomposed fields into the continuity and momentum
equations and time averaging, the dynamical equation for the mean flow field
can be expressed as:

PU; dx; Oy Ox;? Ox; Ox;

ou; __
81‘7; - B
- 0 _ _ 0p 0%u; 98, _ Oy (1.4)

and the fluctuating flow field :

9% —
8xi~_ e oo 85 o 95 Pyp— . (1.5)
(i + 1 3?5; + u; 3;‘]) =~ T ng?é s T 5 (Will; — Ui;)

where S;; represents the Reynolds’ stress tensor. The organized motion acts in
the same way as the turbulent motion on the mean flow field. An estimation
of the terms of the dynamical equation from the computational results for
the periodic motion shows that the total derivative is mainly balanced by the
pressure term. When the ten times slower angular frequency is imposed (the
fluctuations are in this case propagated), the pressure fluctuation has a phase
shift close to /4 with respect to the velocity fluctuation. The fluctuations are

almost in phase opposition when the runner rotational frequency is imposed.
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1.0.3 Conclusion

When the measured phase averaged velocity profile is made to turn at the
runner frequency, the resulting flow shows an unphysical fast damping of the
fluctuations. If the frequency is reduced by a factor ten, the oscillations are
propagated until the cone outlet. Surprisingly the steady computation in a
rotating frame leads to the same damping. The validity of the quasi-steady
turbulence models and wall functions for a moderate to fast unsteadiness is
questionable. The subject is discussed in [Les99]. The influence of the tur-
bulence model in this case is unclear because the turbulent terms are here
negligible. Also unclear is the influence that possible inaccuracy in the inlet
boundary conditions could have on the fluctuations. The disappearance of the
fluctuations is probably attributable to an unexplained error in the prediction
of the phase shift between velocity and pressure fluctuations. Such an error
is also observed in the one-dimensional inviscid pulsating flow, especially for
small CFL numbers. It seems that the code is not able to describe correctly
high frequency three-dimensional unsteadiness.
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Rotating helical vortex

2.1 Introduction [0Oha91]

Hydroelectric power units equipped with (in particular) Francis turbines occa-
sionally experience severe oscillations of hydraulic, mechanical and electrical
quantities when operating at off-design load. At part load (50 — 80% of the
best efficiency point flow rate) these oscillations are related to the onset of a
periodic rotating roughly helical vortex. The vortex frequency f, is typically
between 0.2 and 0.3 of the runner rotational frequency f,. The amplitude of
pressure fluctuations associated with this phenomenon is greatly influenced by
the turbine design and the dynamic response of the whole installation. Such
low frequency pressure fluctuations are a special threat to stability of opera-
tion because they may propagate the whole piping system and cause hydraulic
resonance. This occurs under particular conditions causing synchronous pres-
sure and mass oscillation on the whole installation. It seems that a necessary
condition for the synchronous pressure oscillations is the presence of an elbow
in the draft tube. It is supposed that the excitation mechanism of the hydraulic
oscillations is the interaction of the vortex with the secondary flow introduced
by the elbow. The nondimensional vortex frequency St = f,D/U, (f, vortex
frequency, D inlet diameter, U, mean inlet velocity) is fairly well predicted by
simple theoretical models having the inlet swirl number as parameter, indicat-
ing the direct independence from the runner rotational speed (which is linearly
related to the mean velocity U,). Similar flow behaviours can be indeed also
obtained with a set of fixed guide vanes instead of a turbine runner. As example
the Nishi’s model [NMaYS82] assumes that the vortex rotates around a central
reversed flow region and relates the swirl number with the radius of this core.
The flow is assumed to consist in a dead irrotational water zone at the center
and in a free-vortex flow field outside. The rotational speed of the vortex core
is calculated as the half of the swirling velocity component evaluated at the
radius of the stalled region and corrected by an empirical factor.
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1.66

116

0.65
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Figure 2.1: Inlet conditions, a) tangential and b) axial velocity field.

2.2 Phase averaged inlet profile

In the case study the helical vortex is visible at ¢)* = 1.063 in the range 0.676 <
©* < 0.865 corresponding to 70 — 85% of the best efficiency point flow rate.
The velocity profiles are however not yet experimentally investigated. LDA
measurements at the runner outlet obtained by Gino Blommaert are available
for a similar machine [Blo95]. The experimental investigations are carried out
at 70% of the best efficiency point flow rate (H = 15[m], Q = 0.37[m3/s]), both
in the presence or absence of vapour in the vortex (this is obtained by adjusting
the pressure level of the installation). The velocity profiles are found to be quite
similar. A two phases compressible flow computation is outside the scope of
this work but suitable because the volume of vapour is known to influence the
vortex frequency and the level of the pressure fluctuations. The inlet velocity
condition for the computation is interpolated from the phase averaged profiles
obtained on a radius at 21 temporal steps, for the conditions without vapour.
The phase average is tuned on the precession frequency f,, = 0.224f, = 2.6[H z]
(Strouhal number St = f,D/U, = 0.4, where D is the inlet diameter and U,
the mean inlet velocity). The profile shown in fig. 2.1 is made to turn at the
vortex frequency.

2.2.1 Mesh and computational parameters

Because of code’s limitations, the inlet region is meshed differently as in the
previous investigations. A polar mesh with 40 grid points in the radial direc-
tion, 120 in the circumferential and 50 points in the axial direction is used to
discretize the cone. The same choices used for the previous computations are
applied. The convergence criterion for the maximal residuum of the internal
loop that recovers the nonlinearity of the equations (I1.2.1), is set to le~3. The
time step is 1/60 of the period. The turbulence intensity is set to 5%.
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skin friction

lines are almost identical for all the phases near the wall showing that this
region is almost unaffected by the vortex movement. This is also visible in

fig. 2.10 showing four phases.
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flow. The backflow region rotates in the cone with the vortex (fig. 2.4) and
does not occupy statically the central region. The longitudinal swirling regions

giving rise to the helical motion are shown in fig. 2.5. The skin friction lines and
tangential streamlines on several cross-sections for the global and fluctuating

The inlet profile and the velocity field in the cone shown in fig. 2.3 illustrate
that the vortex core corresponds to the position of the maximal axial reversed

velocity field for a given phase, are given in fig. 2.6 to 2.9. The

2.2.2 Results

the modes at the

and the position of
and few harmonics only, as shown in fig. 2.14. The

the position of the vortex core obtained

Y

The vortex becomes static already in the bend.

)

corresponds quite well with the vortex core, in the bend the pressure gradients

introduced by this component become predominant. The vortex core lines are
shown in fig. 2.12. For some phases there is a discontinuity in the lines near
the half bend (fig. 2.13), the secondary flow introduced by the bend being
almost static. As previously discussed this interaction is suspected to be the
excitation mechanism of the synchronous pressure and mass oscillation. The
maximal pressure fluctuations reach 100% of the inlet kinetic energy at the
inlet section and decay quickly, the flow in the channels being almost steady.

the local minimum of pressure. While in the cone the pressure local minimum

pressure and velocity signals in the domain are composed by

by the eigenvector method of Sujudi and Haimes [SH95]
vortex frequency (mainly

Fig. 2.11 displays the vector field



150 VIII.2 Rotating helical vortex

Wil T
e Al }\\\\\
"

Figure 2.3: Example of velocity profiles in the cone. Tangential and axial vec-
tors along the line passing through the vortex center.

2

Figure 2.4: Backflow region at four phases equally spaced over a period.

The amplitudes of the pressure fluctuations normalized with the maximal value
at each cross-section are shown in fig. 2.14. The fluctuations in the channels
are weak. The phase at the vortex rotational frequency shows clearly coherent
structures (fig. 2.16). The vortex motion affects only weakly the flow rate
distribution in the two channels (£1%), while the static pressure recovery
(efficiency) fluctuates between the values of 21% and 26% of the inlet kinetic
energy (fig. 2.17).
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Figure 2.5: Tangential streamlines and backflow region (large lines) at several
phases equally spaced over a period. The first picture represents the mean flow.
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Figure 2.6: Skin friction lines for a given phase.
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Figure 2.7: Skin friction lines of the fluctuating field at a given phase corre-
sponding to fig. 2.6.
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Figure 2.8: Instantaneous tangential streamlines at a given phase correspond-
ing to fig. 2.6. From the inlet to the outlet.
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Figure 2.9: Instantaneous tangential streamlines of the fluctuating field at a
given phase corresponding to fig. 2.6. From the inlet to the outlet.
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Figure 2.10: Instantaneous tangential streamlines at four phases equally spaced
over a period. From the inlet to section 7.
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Figure 2.12: Vortex core identified with the eigenvector method of Sujudi and
Haimes [SH95]. 15 phases equally spaced over a period.

Figure 2.13: Discontinuity in the vortex core at three phases.
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Figure 2.14: Discrete Fourier transform at several locations for the
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0.01 0.50 1.00
0.75

0.26

Figure 2.15: Amplitude of the pressure fluctuations at the vortex rotational fre-
quency. The values are divided by the maximal amplitude of the corresponding
cross-section.

Figure 2.16: Phase of the wall pressure fluctuations, vortex frequency (from
—m (white) to m (black)) .
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Flow rate - Area [-]

Specific energy [-]

Figure 2.17: Flow rate distribution and specific energies evolution along the
draft tube at four phases equally spaced over a period.

0.8

06

04

02

left 81%
o—o0—0

o
o
=

Reverse flow rate [-]

=4
o
N}

. .
0.4 0.6

Streamwise [-]

0.9

0.8

0.7

06

05

04

03

02

0.1

0.0 -

total pressure

energy

static pressure

efficiency 24 %

0.0 0.2

0.4 0.6
Streamwise [-]

0.1

0.0 -

0.0 0.2

0.4 0.6

0.8

1.0

0.8

0.6

0.4

0.2

left 80%
o——o0—0

02}

0.1

0.0

efficiency 21 %

0.0

0.2

04

09

08

0.7

06 [

05

0.4 |

03

0.2 |

0.1

0.0

efficiency 26 % |

0.0

0.2

0.4

0.6 0.8 1.0

0.04




162

VIII.2 Rotating helical vortex

2.3 Time averaged inlet profile

In order to investigate the stability of the mean flow field, the axial symmetrical
time averaged velocity profile (fig. 2.18) is imposed in the computation. The
usual mesh is employed. While the & — ¢ model leads to a steady solution,
the use of the RSM model captures the development of the rotating vortex
in spite of the steady boundary conditions. The resulting velocity field is less
smooth than that obtained with the £ — € model and the vortex core can be
identified only in the cone as shown in fig. 2.19. The reverse flow region in the
cone is however more symmetrical as in the previous case. The obtained vortex
rotational frequency is inaccurate to within 9%. A difference of 1% is found
on the frequency when the period is discretized with 60 or 120 time steps,
indicating therefore the necessity of a high temporal accuracy. It should be
noted that the symmetrical profile is imposed at some distance from the runner
outlet. This and the fact that measurements were carried out on a different
geometry and the negligence of compressibility effects are possible explanations
for the lack of accuracy in the obtained frequency. The damping effect of the
k — e model could probably explain the steadiness of the flow downstream the
bend, as observed when the phase averaged profile is imposed.

0.80 - circumferential

axial

radial

0.00 0.20 0.40 0.60 0.80 1.00
radius

Figure 2.18: Inlet conditions, velocity field.

Figure 2.19: Vortex core identified with the eigenvector method of Sujudi and
Haimes [SH95]. 15 phases equally spaced over a period.
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Conclusion

It seems that the code is not able to describe the evolution of the fluctuations
introduced by the runner having a nondimensional frequency St = 18. For this
reason it was not possible to investigate the influence of the forced oscillations
on the self-sustained instabilities discussed in the previous part. On the other
hand, at least in the first part of the draft tube, the rotating vortex seems
to be qualitatively well predicted. This unsteadiness is however characterized
by a lower frequency St = 0.4. As an additional comparison the self-sustained
instabilities show slow oscillation having typically St = 0.1. Therefore it seems
that problems arise in the computation of time-dependent flows when the
unsteadiness largely dominates the convective terms. Even if it is not excluded,
there is no direct evidence that this is due to the turbulence modeling.
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4

Linear stability of the time
averaged inlet profiles

There has been considerable work on the stability of vortex flows since the
pioneer works of Howard & Gupta [HG62] and Batchelor & Gill [BG62]. Main
objective was to understand the properties of aircraft trailing vortices and the
phenomenon known as vortex breakdown ([Hal72] and [Lei78]). Most of these
investigations focused on Batchelor’s trailing vortex [Bat64]. The inviscid in-
stability properties were first examined by Lessen, Singh & Paillet [LSP74]
and more recently by Mayer & Powell [MP92]. Purely viscous modes display
growth rates that are orders of magnitude below their inviscid counterparts
([LP74], [Kho91], [MP92]). The influence of swirl on the inviscid helical modes
leads first to the attenuation of the co-rotating mode and to the enhancing
of the counter-rotating one. The further increase of swirl gradually damp all
modes until complete stabilization of the flow. The absolute-convective insta-
bility properties of the Batchelor vortex were determined by direct numerical
simulation of the linear impulse response in [DCH98]. The application of swirl
considerably widens the range of profiles giving rise to absolute instability.
Only a slight amount of counterflow is necessary to trigger absolute instabil-
ity.

The measured time averaged velocity profile at the runner outlet differs how-
ever from the flows considered in these studies. As preliminary investigation
the temporal linear stability analysis is therefore carried out on the experi-
mental profiles (fig. 2.18). The study should find out if the frequency of the
rotating vortex is determined by its initial genesis due to infinitesimal per-
turbations, or by the following non-linear effects. The fluctuations observed
for the points at part load are very strong and the investigation is therefore
mainly addressed to a better understanding of the possible basic instability
mechanism. The linearized stability equation system in cylindrical coordinates
is solved by the Chebyshev spectral collocation method described in [KM89).
The discretization leads to a generalized eigenproblem. The method has been
applied to the Poiseuille flow in a fixed or rotating pipe and to the Batchelor’s
trailing vortex and the results are in good agreement with those reported in
the literature. Experimentally the helical vortex has a short wavelength and a
very small diameter near the best efficiency region and its length increases up
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Figure 4.1: Vaporous core of the vortex in a v = 0.5 Francis turbine [Jac93].
From the left a) 80%, b) 90%, ¢) 95%, d) 100% of the best efficiency flow rate.

to about one diameter as the flow rate is decreased, as shown in fig. 4.1.

Governing equations

The flow with velocity U = (U,(r), Uy(r), U.(r))* relative to cylindrical coor-
dinates (7, 0, z), is subjected to small disturbances. The velocity and pressure
perturbation are respectively u'(r, 6, z) and p'(r, 6, z). The following normal-
mode type of disturbance is assumed

u' = (iF(r),G(r), H(r))" ef@snomen (4.1)
p/ _ P(T) ei(n9+az—wt) (42)

Here « is the real axial wave number (wavelength A\, = 27 /«), n the integer
azimuthal wave number (wavelength \g = 27/n), and the complex temporal
frequency w determines by its imaginary part w; the amplification of the dis-
turbance and by its real part the frequency w,/(27). F(r), G(r), H(r) and
P(r) are the complex disturbance eigenfunctions. Substituting the assumed
flow field in the Navier-Stokes equations and neglecting the nonlinear terms,
the linearized form of the governing equations is obtained. They can be written
in nondimensional form as follows:

F G
F’+?+n7+ozH = 0 (4.3)
K" 1 AU, nUy
- U — ——|F' L —% —al,
Re—l—z[ Rer} +[w+zdr r Vst
i (n*+1 i2n 20,
@( e P e - e = 0 ey
G" 1 nU, U,
——+[Ur——}G’+[—iw+m—9+z‘aUz+—+
Re Rer r r

1 (n2+1 AU 2 iU, inP
§<nj +a2>1G+li—0—|— - +Z—"]F+& — 0 (45)

T dr Rer? T r
H" 1 ;

S {Ur _ —] H + [—iw + 0 | iou,+
Re Rer r

1 (n? v,
E(%Jra?)]ﬂﬂdrwrmp — 0 (46)
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where Re is the Reynolds number based on the cone radius, and primes denote
differentiation with respect to the radial coordinate. The variation of the mean
axial profile in the z-direction appearing in the z-momentum equation (4.6)
is neglected. It has been confirmed experimentally that this gradient is small.
Helical vortices very similar to those observed in the cone of Francis turbines
can be seen also in simple cylinders. This approximation is therefore expected
to have only a slight influence on the main results. The radial component is
consequently also neglected. The system represents an eigenproblem, with w
as eigenvalue and is solved for a given axial and circumferential wave number.
At the outer wall the no-slip conditions are enforced and at the centerline all
physical quantities must be smooth and bounded. As discussed in [KM89] the
boundary conditions are for n = 1: F' = G = H = P = 0 at the wall and
H=P=0,F+G=0,2F + G =0 at the centerline.

Numerical method

An interpolant polynomial is constructed in terms of the values of the flow vari-
able at collocation points by employing a truncated Chebyshev series. Cheby-
shev polynomials are defined on the interval (-1,1) by Ty({) = cos[k cos™(],
where the following transformation relates the variable to the physical radius:
¢ = 1—2r. The collocation points are the extrema of the last retained Cheby-
shev polynomial in the truncated series: (; = cos%j, j=0,1,.., N. As example
the eigenfunction F' is approximated with

N
F(Q) = axTi(¢) (4.7)
k=0
the derivatives of the variables are determined explicitly using the interpolant:
dF al d*F ol
dC k=0 dC k=0

j=0,1,..,N, where Aj;, and Bj; are the elements of the derivative matrices
and are given as:

C, (—1)k+
Ap = =2 k 4.9
Gj
Ai = —— >
77 2(1 o CJ2)
2N? +1
AOO - _ANN - T
B = AjmAmk (4.10)

with Cy = Cy = 2, C; = 1for 1 < j < N —1. The extension to the others vari-
ables is straightforward. Inserting the polynomials in (4.3)-(4.6) the governing
equations can be represented in the generalized eigenvalue format as

DX =wEX, X =[FGHP]" (4.11)
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Figure 4.2: Variation of the growth rate w; and frequency w, versus axial wave
number « of the disturbances for the most amplified helical (n=1) mode, ¢* =
0.703, measured profile.

D and FE are square matrices with dimension 4(/N 4 1). Since F is singular, an
artificial compressibility factor ywP is introduced in the continuity equation
(v is a very small value). The generalized eigenproblem is solved using the QZ
algorithm implemented in the NAG library.

Results

The radius is discretized with 151 points. The time averaged measured pro-
file at ¢* = 0.703 is first considered. The variation of the nondimensional
growth rate and frequency of the disturbances for the most amplified helical
(n=1) mode plotted against the axial wave number is shown in fig. 4.2. Exper-
imentally the nondimensional frequency and axial wave number of the helical
vortex are respectively 1.86 and about 3. As described in the previous chap-
ter the frequency obtained with the RANS computation is 9% lower than the
experimental value. The most amplified computed wave number is 1.43 corre-
sponding to a frequency of 2.48 and a grow rate of 0.73 (fig. 4.2). As expected
the frequency is not accurately predicted (50% error). However, the fluctuating
field shown in fig. 4.4 is similar to that obtained with the RANS computation
(fig. 2.9, chapt. 2). In particular the distance of the vortex core to the center is
very close in the two cases. In order to identify the main instability mechanism
the mean profiles are simplified as shown in fig. 4.3. Two additional operating
points at higher flow rate are also investigated. The results are illustrated in
fig. 4.3 and 4.4. The simplified profiles show the same characteristics as the
experimental profiles. The observations illustrated in fig. 4.1 agree in the main
trend with the predicted axial wavelength and fluctuating field. The points at
the higher flow rates are even more unstable than the point at part load.

Even when neglecting the swirling component at ¢* = 0.703 the simplified
axial profile shows unstable modes. The perturbation field is similar to that
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Figure 4.3: a) b) c¢) Simplified profiles (dotted lines: experimental). d) Variation
of the growth rate w; and e) frequency w, versus axial wave number « of the
disturbances for the most amplified helical (n=1) mode. f) Spatial distribution
of the amplitude of the eigenfunction P.

Figure 4.4: Streamlines of the most amplified perturbation velocity field for the
three operation conditions. From the left ¢* = 0.703, ¢* = 0.919, ¢* = 0.973.
Top: experimental profile, bottom: simplified profile.
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Figure 4.5: Streamlines of the most amplified perturbation velocity field for the
simplified axial velocity profile without the swirling component, ¢* = 0.703.

obtained with the swirling component (fig. 4.5). The center of the resulting vor-
tex corresponds to the inflection point in the axial profile. It seems therefore
that this point causes the main instability mechanism, following the classical
Rayleigh criterion. The swirling component is hence only indirectly related to
the appearance of the rotating helical vortex. It is the rotational motion that
induces the trough in the axial velocity. An increase of the Reynolds number
does not affect significantly the results, showing the inviscid nature of this
instability.
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Summary and perspectives

Summary

The numerical simulation of the unsteady turbulent flow in a draft tube is car-
ried out with a commercial finite volume code solving the Reynolds averaged
Navier-Stokes equations.

The flow in the draft tube is complex because of its unsteady three-dimensio-
nal and rotating nature. Time-dependent investigations have become feasible
for industrial complex geometries; the limitations of this approach, however,
are not well known. This work attempts to increase the understanding of the
draft tube flow and to define the prediction capability of the model. Although
the large-scale development of the hydroelectric resources on our continent is
practically complete, the industrial interest lies in the considerable economical
potential for refurbishment of the existing power plants.

Firstly, basic flows are addressed. Four reference cases testifies the capabil-
ity of the code to describe a laminar pulsating flow, a self-sustained vortex
shedding behind a bluff body and the influence of swirl and adverse pressure
gradients. However, these tests confirm that the model is not able to accurately
predict swirling flows.

The attention is then focused on the mean flow field in the draft tube. Com-
parisons with detailed experimental data over an extended range of operating
conditions reveal the limitations of the approach and the sensitivity on the
inlet boundary conditions. After the parameters are calibrated, the mean flow
field is however correctly captured with main trends. Quantitatively the static
pressure recovery is reasonably well predicted while locally the flow details
are partially missed. The numerical optimization of this component without
measurements could be therefore hazardous. In spite of the detailed measure-
ments, it is clear that insufficient data is present for the definition of the mean
flow boundary conditions. A great effort is underway in the development of
advanced turbulence models such as LES methods. These are today applicable
to complex geometries. The use of advanced models however, requires even
more detailed information at the boundaries, making this approach even more
difficult to properly apply.

Visualization of scientific data sets plays an important role in understanding
complex phenomena and data mining becomes more and more indispensable
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with the acquisition of time-dependent high-resolution data by means of the
numerical simulation. The topological study of the flow field is a useful tool
in the synthesis and analysis of the data and has allowed the comprehension
of the efficiency drop in the draft tube. The topological structure of the flow
field shows a bifurcation with the flow rate as parameter leading to a Werlé-
Legendre separation that reduces the performances over an operating range.

Time-dependent flow phenomena are then investigated. Steadiness is always a
scale dependent characteristic in real flows. Measurements show regions with
strong fluctuations, in particular for the operating points at higher flow rate
or at part load, where oscillations are related to the onset of a periodic rotat-
ing fairly helical vortex. The runner rotation also introduces fluctuations at
different frequencies. Firstly, possible self-sustained time-dependent phenom-
ena are addressed. Even with steady boundary conditions two computations
at different operating conditions predict self-sustained vortex shedding at a
nondimensional frequency of about St = 0.1. Both cases are characterized by
the existence of a backflow region and a focus located between two saddle
points along the separatrix, defining the border of this region at the wall. The
mean flow field is however only slightly affected by these phenomena.

Forced time-dependent phenomena are then considered. The code is appar-
ently not able to describe the evolution of the oscillations introduced by the
blade passage, which are characterized by a high frequency St = 18. A quick
damping of the fluctuations, caused by an error in the prediction of the phase
shift between velocity and pressure fluctuations, is observed. Experimentally
these fluctuations are however recognized to disappear already at the cone
outlet. On the other hand, at least in the first part of the draft tube, the ro-
tating helical vortex seems to be qualitatively well predicted. The rotational
frequency is St = 0.4. The computation of the operating point at part load
by imposing the time averaged profile can predict, at least when an advanced
turbulence model is applied, the onset of the instability without the necessity
of any perturbation. It seems therefore that problems arise in the computation
of time-dependent flows when the unsteadiness largely dominates the convec-
tive terms. Even if it is not excluded, there is no direct evidence that this is
due to the turbulence modeling.

As a preliminary investigation a temporal linear stability analysis is carried
out on experimental profiles with the objective to gain some insight of the ba-
sic instability mechanism at part load. Even if the frequency is not accurately
predicted probably due to the influence of non-linear effects it seems that the
instability has an inviscid nature and is attributable to the inflection point in
the axial profile. The swirling component is hence only indirectly related to
the appearance of the rotating helical vortex.
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IX.0

Perspectives

Complementary measurements should reduce the degrees of freedom in the
inlet boundary definition and clarify the necessary level of detail. For instance
the inlet turbulent kinetic energy profile is almost uninfluential on the predic-
tion. The model is probably unable to correctly account for all the imposed
information. The problem with the inlet boundary condition underlines the
necessity for coupled runner-draft tube computations. Several research groups
are currently investigating the capability of unsteady rotor-stator interface
models. However the limitations of turbulence models, even for the prediction
of relatively simple steady flows, are well known. The attempt to take into
account more complex phenomena is questionable.

The capabilities of second-order closure schemes are still unclear. The em-
ployed RSM model performs poorly in the prediction of the steady state flow.
The Reynolds’ stress tensor at the inlet is however simply assumed isotropic
and defined by the measured kinetic energy profile. On the other hand only
this scheme is able to predict the onset of the self-sustained instability at
part load. Investigations on the influence of the inlet Reynolds’ stresses should
definitively define the real potential of this turbulence model. LES computa-
tions are today feasible and it would be interesting to verify this approach in
particular for the prediction of high frequency flow phenomena.

The analysis of the skin friction lines is found to be a very effective tool in
the analysis of the numerical results. The interest of an automatic topological
analysis is evident. This kind of investigation could also deliver valuable ex-
perimental data by means of the surface oil-flow visualization technique. Even
if the investigation is more qualitative, it shows not only the main trends but
also the localization of the critical regions in the flow. The global character of
these measurements facilitates the interpretation of the comparison with the
predicted flow.

Currently PIV measurements are carried out in the draft tube and will prob-
ably clarify the nature of the large scaled unsteadiness directly observable in
the outlet region. This should indicate the physical or numerical nature of the
predicted self-sustained vortex shedding phenomena.

In the near future, measurements will be available to quantitatively verify
the prediction capability of the instability at part load. This capability will be
useful for the conception of preventive measures that reduce dangerous fluctu-
ations. A two-phase flow computation should be envisaged.

Unsteady computations still require several weeks of CPU time and this fact
has limited the investigations. Additional, both experimental and numerical,
studies are still necessary in order to clearly define the potential of the URANS
approach.
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Nomenclature

A, Inlet section area

Arer  Reference section area

cv  Control volume surface defined by mid-planes
C  Velocity vector

C, Normal velocity component

C, Mean local normal velocity

C, Radial velocity component

C;  Circumferential velocity component

D  Diameter, runner outlet diameter D = 0.4 [m)]
Ey,

€r = Local mean specific kinetic energy coefficient
I Eko

By, . : :
€p = By Local mean specific static pressure energy coefficient

e, = g}:z Local mean specific energy coefficient

Ey, = % Ja, %5 nndA Inlet mean kinetic specific energy

Ey, = é S Ai(%)aﬁdA Local mean kinetic specific energy

E, = Qi i) Ai(%)aﬁdA Local mean static pressure specific energy
E, = é Ja, (B + F)ciidA  Local mean specific energy

k  Turbulent kinetic energy

K =wL/U Reduced frequency

L Characteristic length scale

L. Turbulent (eddy, dissipation) length scale

p  Static pressure

@ Flow rate

r  Radius

Re = % Reynolds number

S = (f.C,Cyr*dr)/(.5D [, C*rdr)  Swirl number

St = fL/U, Strouhal number (nondimensional frequency)
u,  Wall tangential velocity

U, Characteristic velocity scale

Tw  Wall shear stress

y™  Nondimensional distance from the wall

X = (%APdt)/(ﬁ(&)z) Pressure recovery factor

APy, Mean wall bressure difference between draft tube inlet and outlet
¢ Turbulent dissipation rate

w  Angular frequency

¢ Flow rate coefficient
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¢*  Flow rate coefficient divided by the ¢ of the best efficiency point
1 Head coefficient

1*  Head coefficient divided by the v of the best efficiency point

v Specific speed, kinematic viscosity

p  Water density
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